xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.td (revision 7029da5c36f2d3cf6bb6c81bf551229f416399e8)
1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Stack allocation
11//===----------------------------------------------------------------------===//
12
13// The callseq_start node requires the hasSideEffects flag, even though these
14// instructions are noops on SystemZ.
15let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
16  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17                                [(callseq_start timm:$amt1, timm:$amt2)]>;
18  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
19                                [(callseq_end timm:$amt1, timm:$amt2)]>;
20}
21
22// Takes as input the value of the stack pointer after a dynamic allocation
23// has been made.  Sets the output to the address of the dynamically-
24// allocated area itself, skipping the outgoing arguments.
25//
26// This expands to an LA or LAY instruction.  We restrict the offset
27// to the range of LA and keep the LAY range in reserve for when
28// the size of the outgoing arguments is added.
29def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
30                         [(set GR64:$dst, dynalloc12only:$src)]>;
31
32
33//===----------------------------------------------------------------------===//
34// Branch instructions
35//===----------------------------------------------------------------------===//
36
37// Conditional branches.
38let isBranch = 1, isTerminator = 1, Uses = [CC] in {
39  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
40  // with the condition-code mask being the first operand.  It seems friendlier
41  // to use mnemonic forms like JE and JLH when writing out the assembly though.
42  let isCodeGenOnly = 1 in {
43    // An assembler extended mnemonic for BRC.
44    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
45    // An assembler extended mnemonic for BRCL.  (The extension is "G"
46    // rather than "L" because "JL" is "Jump if Less".)
47    def BRCL : CondBranchRIL<"jg#", 0xC04>;
48    let isIndirectBranch = 1 in {
49      def BC  : CondBranchRX<"b#",  0x47>;
50      def BCR : CondBranchRR<"b#r", 0x07>;
51      def BIC : CondBranchRXY<"bi#", 0xe347>,
52                Requires<[FeatureMiscellaneousExtensions2]>;
53    }
54  }
55
56  // Allow using the raw forms directly from the assembler (and occasional
57  // special code generation needs) as well.
58  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
59  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
60  let isIndirectBranch = 1 in {
61    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
62    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
63    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
64                 Requires<[FeatureMiscellaneousExtensions2]>;
65  }
66
67  // Define AsmParser extended mnemonics for each general condition-code mask
68  // (integer or floating-point)
69  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
70                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
71    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
72    def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>;
73    let isIndirectBranch = 1 in {
74      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
75      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
76      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
77                    Requires<[FeatureMiscellaneousExtensions2]>;
78    }
79  }
80}
81
82// Unconditional branches.  These are in fact simply variants of the
83// conditional branches with the condition mask set to "always".
84let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
85  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
86  def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>;
87  let isIndirectBranch = 1 in {
88    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
89    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
90    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
91             Requires<[FeatureMiscellaneousExtensions2]>;
92  }
93}
94
95// NOPs.  These are again variants of the conditional branches,
96// with the condition mask set to "never".
97def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
98def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;
99
100// Fused compare-and-branch instructions.
101//
102// These instructions do not use or clobber the condition codes.
103// We nevertheless pretend that the relative compare-and-branch
104// instructions clobber CC, so that we can lower them to separate
105// comparisons and BRCLs if the branch ends up being out of range.
106let isBranch = 1, isTerminator = 1 in {
107  // As for normal branches, we handle these instructions internally in
108  // their raw CRJ-like form, but use assembly macros like CRJE when writing
109  // them out.  Using the *Pair multiclasses, we also create the raw forms.
110  let Defs = [CC] in {
111    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
112    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
113    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
114    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
115    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
116    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
117    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
118    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
119  }
120  let isIndirectBranch = 1 in {
121    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
122    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
123    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
124    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
125    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
126    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
127    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
128    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
129  }
130
131  // Define AsmParser mnemonics for each integer condition-code mask.
132  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
133                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
134    let Defs = [CC] in {
135      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
136      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
137      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
138                                          imm32sx8>;
139      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
140                                          imm64sx8>;
141      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
142      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
143      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
144                                          imm32zx8>;
145      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
146                                          imm64zx8>;
147    }
148    let isIndirectBranch = 1 in {
149      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
150      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
151      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
152                                         imm32sx8>;
153      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
154                                         imm64sx8>;
155      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
156      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
157      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
158                                         imm32zx8>;
159      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
160                                         imm64zx8>;
161    }
162  }
163}
164
165// Decrement a register and branch if it is nonzero.  These don't clobber CC,
166// but we might need to split long relative branches into sequences that do.
167let isBranch = 1, isTerminator = 1 in {
168  let Defs = [CC] in {
169    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
170    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
171  }
172  // This doesn't need to clobber CC since we never need to split it.
173  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
174              Requires<[FeatureHighWord]>;
175
176  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
177  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
178  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
179  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
180}
181
182let isBranch = 1, isTerminator = 1 in {
183  let Defs = [CC] in {
184    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
185    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
186    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
187    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
188  }
189  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
190  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
191  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
192  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
193}
194
195//===----------------------------------------------------------------------===//
196// Trap instructions
197//===----------------------------------------------------------------------===//
198
199// Unconditional trap.
200let hasCtrlDep = 1, hasSideEffects = 1 in
201  def Trap : Alias<4, (outs), (ins), [(trap)]>;
202
203// Conditional trap.
204let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
205  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
206
207// Fused compare-and-trap instructions.
208let hasCtrlDep = 1, hasSideEffects = 1 in {
209  // These patterns work the same way as for compare-and-branch.
210  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
211  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
212  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
213  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
214  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
215  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
216  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
217  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
218  let Predicates = [FeatureMiscellaneousExtensions] in {
219    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
220    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
221  }
222
223  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
224                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
225    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
226    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
227    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
228    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
229    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
230                                         imm32sx16>;
231    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
232                                         imm64sx16>;
233    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
234                                         imm32zx16>;
235    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
236                                         imm64zx16>;
237    let Predicates = [FeatureMiscellaneousExtensions] in {
238      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
239      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
240    }
241  }
242}
243
244//===----------------------------------------------------------------------===//
245// Call and return instructions
246//===----------------------------------------------------------------------===//
247
248// Define the general form of the call instructions for the asm parser.
249// These instructions don't hard-code %r14 as the return address register.
250let isCall = 1, Defs = [CC] in {
251  def BRAS  : CallRI <"bras", 0xA75>;
252  def BRASL : CallRIL<"brasl", 0xC05>;
253  def BAS   : CallRX <"bas", 0x4D>;
254  def BASR  : CallRR <"basr", 0x0D>;
255}
256
257// Regular calls.
258let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
259  def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
260                        [(z_call pcrel32:$I2)]>;
261  def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
262                        [(z_call ADDR64:$R2)]>;
263}
264
265// TLS calls.  These will be lowered into a call to __tls_get_offset,
266// with an extra relocation specifying the TLS symbol.
267let isCall = 1, Defs = [R14D, CC] in {
268  def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
269                         [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
270  def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
271                         [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
272}
273
274// Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
275// are argument registers and since branching to R0 is a no-op.
276let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
277  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
278                     [(z_sibcall pcrel32:$I2)]>;
279  let Uses = [R1D] in
280    def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
281}
282
283// Conditional sibling calls.
284let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
285  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
286                                   pcrel32:$I2), []>;
287  let Uses = [R1D] in
288    def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
289}
290
291// Fused compare and conditional sibling calls.
292let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in {
293  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
294  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
295  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
296  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
297  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
298  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
299  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
300  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
301}
302
303// A return instruction (br %r14).
304let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
305  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
306
307// A conditional return instruction (bcr <cond>, %r14).
308let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
309  def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
310
311// Fused compare and conditional returns.
312let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
313  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
314  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
315  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
316  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
317  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
318  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
319  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
320  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
321}
322
323//===----------------------------------------------------------------------===//
324// Select instructions
325//===----------------------------------------------------------------------===//
326
327def Select32    : SelectWrapper<i32, GR32>,
328                  Requires<[FeatureNoLoadStoreOnCond]>;
329def Select64    : SelectWrapper<i64, GR64>,
330                  Requires<[FeatureNoLoadStoreOnCond]>;
331
332// We don't define 32-bit Mux stores if we don't have STOCFH, because the
333// low-only STOC should then always be used if possible.
334defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
335                                 nonvolatile_anyextloadi8, bdxaddr20only>,
336                      Requires<[FeatureHighWord]>;
337defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
338                                 nonvolatile_anyextloadi16, bdxaddr20only>,
339                      Requires<[FeatureHighWord]>;
340defm CondStore32Mux : CondStores<GRX32, nonvolatile_store,
341                                 nonvolatile_load, bdxaddr20only>,
342                      Requires<[FeatureLoadStoreOnCond2]>;
343defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
344                                 nonvolatile_anyextloadi8, bdxaddr20only>;
345defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
346                                 nonvolatile_anyextloadi16, bdxaddr20only>;
347defm CondStore32    : CondStores<GR32, nonvolatile_store,
348                                 nonvolatile_load, bdxaddr20only>;
349
350defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
351                    nonvolatile_anyextloadi8, bdxaddr20only>;
352defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
353                    nonvolatile_anyextloadi16, bdxaddr20only>;
354defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
355                    nonvolatile_anyextloadi32, bdxaddr20only>;
356defm CondStore64 : CondStores<GR64, nonvolatile_store,
357                              nonvolatile_load, bdxaddr20only>;
358
359//===----------------------------------------------------------------------===//
360// Move instructions
361//===----------------------------------------------------------------------===//
362
363// Register moves.
364def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
365def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
366
367let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
368  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
369  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
370}
371
372let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
373  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
374
375// Immediate moves.
376let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
377  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
378  // deopending on the choice of register.
379  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
380               Requires<[FeatureHighWord]>;
381  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
382  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
383
384  // Other 16-bit immediates.
385  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
386  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
387  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
388  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
389
390  // 32-bit immediates.
391  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
392  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
393  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
394}
395
396// Register loads.
397let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
398  // Expands to L, LY or LFH, depending on the choice of register.
399  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
400             Requires<[FeatureHighWord]>;
401  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
402  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
403            Requires<[FeatureHighWord]>;
404  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
405
406  // These instructions are split after register allocation, so we don't
407  // want a custom inserter.
408  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
409    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
410                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
411  }
412}
413let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
414  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
415  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
416}
417
418let canFoldAsLoad = 1 in {
419  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
420  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
421}
422
423// Load and zero rightmost byte.
424let Predicates = [FeatureLoadAndZeroRightmostByte] in {
425  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
426  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
427  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
428            (LZRF bdxaddr20only:$src)>;
429  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
430            (LZRG bdxaddr20only:$src)>;
431}
432
433// Load and trap.
434let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
435  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
436  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
437  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
438}
439
440// Register stores.
441let SimpleBDXStore = 1, mayStore = 1 in {
442  // Expands to ST, STY or STFH, depending on the choice of register.
443  def STMux : StoreRXYPseudo<store, GRX32, 4>,
444              Requires<[FeatureHighWord]>;
445  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
446  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
447             Requires<[FeatureHighWord]>;
448  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
449
450  // These instructions are split after register allocation, so we don't
451  // want a custom inserter.
452  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
453    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
454                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
455  }
456}
457def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
458def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
459
460// 8-bit immediate stores to 8-bit fields.
461defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
462
463// 16-bit immediate stores to 16-, 32- or 64-bit fields.
464def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
465def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
466def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
467
468// Memory-to-memory moves.
469let mayLoad = 1, mayStore = 1 in
470  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
471let mayLoad = 1, mayStore = 1, Defs = [CC] in {
472  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
473  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
474  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
475}
476
477// Move right.
478let Predicates = [FeatureMiscellaneousExtensions3],
479    mayLoad = 1, mayStore = 1, Uses = [R0L] in
480  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
481
482// String moves.
483let mayLoad = 1, mayStore = 1, Defs = [CC] in
484  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
485
486//===----------------------------------------------------------------------===//
487// Conditional move instructions
488//===----------------------------------------------------------------------===//
489
490let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
491  // Select.
492  let isCommutable = 1 in {
493    // Expands to SELR or SELFHR or a branch-and-move sequence,
494    // depending on the choice of registers.
495    def  SELRMux : CondBinaryRRFaPseudo<GRX32, GRX32, GRX32>;
496    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
497    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
498    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
499  }
500
501  // Define AsmParser extended mnemonics for each general condition-code mask.
502  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
503                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
504    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
505                                          GR32, GR32, GR32>;
506    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
507                                          GRH32, GRH32, GRH32>;
508    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
509                                          GR64, GR64, GR64>;
510  }
511}
512
513let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
514  // Load immediate on condition.  Matched via DAG pattern and created
515  // by the PeepholeOptimizer via FoldImmediate.
516
517  // Expands to LOCHI or LOCHHI, depending on the choice of register.
518  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
519  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
520  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
521  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
522
523  // Move register on condition.  Matched via DAG pattern and
524  // created by early if-conversion.
525  let isCommutable = 1 in {
526    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
527    // depending on the choice of registers.
528    def LOCRMux : CondBinaryRRFPseudo<GRX32, GRX32>;
529    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
530  }
531
532  // Load on condition.  Matched via DAG pattern.
533  // Expands to LOC or LOCFH, depending on the choice of register.
534  def LOCMux : CondUnaryRSYPseudo<nonvolatile_load, GRX32, 4>;
535  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, nonvolatile_load, GRH32, 4>;
536
537  // Store on condition.  Expanded from CondStore* pseudos.
538  // Expands to STOC or STOCFH, depending on the choice of register.
539  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
540  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
541
542  // Define AsmParser extended mnemonics for each general condition-code mask.
543  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
544                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
545    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
546                                         imm32sx16>;
547    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
548                                         imm64sx16>;
549    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
550                                         imm32sx16>;
551    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
552    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
553    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
554  }
555}
556
557let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
558  // Move register on condition.  Matched via DAG pattern and
559  // created by early if-conversion.
560  let isCommutable = 1 in {
561    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
562    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
563  }
564
565  // Load on condition.  Matched via DAG pattern.
566  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
567  defm LOCG : CondUnaryRSYPair<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
568
569  // Store on condition.  Expanded from CondStore* pseudos.
570  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
571  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
572
573  // Define AsmParser extended mnemonics for each general condition-code mask.
574  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
575                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
576    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
577    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
578    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
579    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
580    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
581    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
582  }
583}
584//===----------------------------------------------------------------------===//
585// Sign extensions
586//===----------------------------------------------------------------------===//
587//
588// Note that putting these before zero extensions mean that we will prefer
589// them for anyextload*.  There's not really much to choose between the two
590// either way, but signed-extending loads have a short LH and a long LHY,
591// while zero-extending loads have only the long LLH.
592//
593//===----------------------------------------------------------------------===//
594
595// 32-bit extensions from registers.
596def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
597def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
598
599// 64-bit extensions from registers.
600def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
601def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
602def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
603
604let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
605  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
606
607// Match 32-to-64-bit sign extensions in which the source is already
608// in a 64-bit register.
609def : Pat<(sext_inreg GR64:$src, i32),
610          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
611
612// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
613// depending on the choice of register.
614def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
615            Requires<[FeatureHighWord]>;
616def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
617def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
618          Requires<[FeatureHighWord]>;
619
620// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
621// depending on the choice of register.
622def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
623            Requires<[FeatureHighWord]>;
624defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
625def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
626            Requires<[FeatureHighWord]>;
627def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
628
629// 64-bit extensions from memory.
630def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
631def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
632def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
633def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
634def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
635let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
636  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
637
638//===----------------------------------------------------------------------===//
639// Zero extensions
640//===----------------------------------------------------------------------===//
641
642// 32-bit extensions from registers.
643
644// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
645def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
646              Requires<[FeatureHighWord]>;
647def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
648// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
649def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
650              Requires<[FeatureHighWord]>;
651def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
652
653// 64-bit extensions from registers.
654def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
655def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
656def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
657
658// Match 32-to-64-bit zero extensions in which the source is already
659// in a 64-bit register.
660def : Pat<(and GR64:$src, 0xffffffff),
661          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
662
663// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
664// depending on the choice of register.
665def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
666             Requires<[FeatureHighWord]>;
667def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
668def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
669           Requires<[FeatureHighWord]>;
670
671// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
672// depending on the choice of register.
673def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
674             Requires<[FeatureHighWord]>;
675def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
676def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
677            Requires<[FeatureHighWord]>;
678def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
679
680// 64-bit extensions from memory.
681def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
682def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
683def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
684def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
685def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
686
687// 31-to-64-bit zero extensions.
688def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
689def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
690def : Pat<(and GR64:$src, 0x7fffffff),
691          (LLGTR GR64:$src)>;
692def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
693          (LLGT bdxaddr20only:$src)>;
694
695// Load and zero rightmost byte.
696let Predicates = [FeatureLoadAndZeroRightmostByte] in {
697  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
698  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
699            (LLZRGF bdxaddr20only:$src)>;
700}
701
702// Load and trap.
703let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
704  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
705  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
706}
707
708// Extend GR64s to GR128s.
709let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
710  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
711
712//===----------------------------------------------------------------------===//
713// "Any" extensions
714//===----------------------------------------------------------------------===//
715
716// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
717def : Pat<(i64 (anyext GR32:$src)),
718          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
719
720// Extend GR64s to GR128s.
721let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
722  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
723
724//===----------------------------------------------------------------------===//
725// Truncations
726//===----------------------------------------------------------------------===//
727
728// Truncations of 64-bit registers to 32-bit registers.
729def : Pat<(i32 (trunc GR64:$src)),
730          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
731
732// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
733// STC, STCY or STCH, depending on the choice of register.
734def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
735             Requires<[FeatureHighWord]>;
736defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
737def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
738           Requires<[FeatureHighWord]>;
739
740// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
741// STH, STHY or STHH, depending on the choice of register.
742def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
743             Requires<[FeatureHighWord]>;
744defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
745def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
746           Requires<[FeatureHighWord]>;
747def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
748
749// Truncations of 64-bit registers to memory.
750defm : StoreGR64Pair<STC, STCY, truncstorei8>;
751defm : StoreGR64Pair<STH, STHY, truncstorei16>;
752def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
753defm : StoreGR64Pair<ST, STY, truncstorei32>;
754def  : StoreGR64PC<STRL, aligned_truncstorei32>;
755
756// Store characters under mask -- not (yet) used for codegen.
757defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
758def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
759
760//===----------------------------------------------------------------------===//
761// Multi-register moves
762//===----------------------------------------------------------------------===//
763
764// Multi-register loads.
765defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
766def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
767def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
768def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
769
770// Multi-register stores.
771defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
772def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
773def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
774
775//===----------------------------------------------------------------------===//
776// Byte swaps
777//===----------------------------------------------------------------------===//
778
779// Byte-swapping register moves.
780def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
781def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
782
783// Byte-swapping loads.
784def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
785def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
786def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
787
788// Byte-swapping stores.
789def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
790def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
791def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
792
793// Byte-swapping memory-to-memory moves.
794let mayLoad = 1, mayStore = 1 in
795  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
796
797//===----------------------------------------------------------------------===//
798// Load address instructions
799//===----------------------------------------------------------------------===//
800
801// Load BDX-style addresses.
802let isAsCheapAsAMove = 1, isReMaterializable = 1 in
803  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
804
805// Load a PC-relative address.  There's no version of this instruction
806// with a 16-bit offset, so there's no relaxation.
807let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
808  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
809
810// Load the Global Offset Table address.  This will be lowered into a
811//     larl $R1, _GLOBAL_OFFSET_TABLE_
812// instruction.
813def GOT : Alias<6, (outs GR64:$R1), (ins),
814                [(set GR64:$R1, (global_offset_table))]>;
815
816//===----------------------------------------------------------------------===//
817// Absolute and Negation
818//===----------------------------------------------------------------------===//
819
820let Defs = [CC] in {
821  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
822    def LPR  : UnaryRR <"lpr",  0x10,   z_iabs, GR32, GR32>;
823    def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>;
824  }
825  let CCValues = 0xE, CompareZeroCCMask = 0xE in
826    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
827}
828def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
829def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
830defm : SXU<z_iabs,   LPGFR>;
831defm : SXU<z_iabs64, LPGFR>;
832
833let Defs = [CC] in {
834  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
835    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
836    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
837  }
838  let CCValues = 0xE, CompareZeroCCMask = 0xE in
839    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
840}
841def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
842def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
843defm : SXU<z_inegabs,   LNGFR>;
844defm : SXU<z_inegabs64, LNGFR>;
845
846let Defs = [CC] in {
847  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
848    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
849    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
850  }
851  let CCValues = 0xE, CompareZeroCCMask = 0xE in
852    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
853}
854defm : SXU<ineg, LCGFR>;
855
856//===----------------------------------------------------------------------===//
857// Insertion
858//===----------------------------------------------------------------------===//
859
860let isCodeGenOnly = 1 in
861  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
862defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
863
864defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
865defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
866
867defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
868defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
869
870// Insert characters under mask -- not (yet) used for codegen.
871let Defs = [CC] in {
872  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
873  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
874}
875
876// Insertions of a 16-bit immediate, leaving other bits unaffected.
877// We don't have or_as_insert equivalents of these operations because
878// OI is available instead.
879//
880// IIxMux expands to II[LH]x, depending on the choice of register.
881def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
882             Requires<[FeatureHighWord]>;
883def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
884             Requires<[FeatureHighWord]>;
885def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
886def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
887def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
888def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
889def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
890def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
891def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
892def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
893
894// ...likewise for 32-bit immediates.  For GR32s this is a general
895// full-width move.  (We use IILF rather than something like LLILF
896// for 32-bit moves because IILF leaves the upper 32 bits of the
897// GR64 unchanged.)
898let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
899  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
900               Requires<[FeatureHighWord]>;
901  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
902  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
903}
904def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
905def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
906
907// An alternative model of inserthf, with the first operand being
908// a zero-extended value.
909def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
910          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
911                  imm64hf32:$imm)>;
912
913//===----------------------------------------------------------------------===//
914// Addition
915//===----------------------------------------------------------------------===//
916
917// Addition producing a signed overflow flag.
918let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
919  // Addition of a register.
920  let isCommutable = 1 in {
921    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
922    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
923  }
924  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
925
926  // Addition to a high register.
927  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
928              Requires<[FeatureHighWord]>;
929  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
930              Requires<[FeatureHighWord]>;
931
932  // Addition of signed 16-bit immediates.
933  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
934  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
935  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
936
937  // Addition of signed 32-bit immediates.
938  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
939               Requires<[FeatureHighWord]>;
940  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
941  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
942             Requires<[FeatureHighWord]>;
943  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
944
945  // Addition of memory.
946  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
947  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>;
948  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
949             Requires<[FeatureMiscellaneousExtensions2]>;
950  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
951  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, load, 8>;
952
953  // Addition to memory.
954  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
955  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
956}
957defm : SXB<z_sadd, GR64, AGFR>;
958
959// Addition producing a carry.
960let Defs = [CC] in {
961  // Addition of a register.
962  let isCommutable = 1 in {
963    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
964    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
965  }
966  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
967
968  // Addition to a high register.
969  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
970               Requires<[FeatureHighWord]>;
971  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
972               Requires<[FeatureHighWord]>;
973
974  // Addition of signed 16-bit immediates.
975  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
976                Requires<[FeatureDistinctOps]>;
977  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
978                Requires<[FeatureDistinctOps]>;
979
980  // Addition of unsigned 32-bit immediates.
981  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
982  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
983
984  // Addition of signed 32-bit immediates.
985  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
986              Requires<[FeatureHighWord]>;
987
988  // Addition of memory.
989  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
990  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
991  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, load, 8>;
992
993  // Addition to memory.
994  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
995  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
996}
997defm : ZXB<z_uadd, GR64, ALGFR>;
998
999// Addition producing and using a carry.
1000let Defs = [CC], Uses = [CC] in {
1001  // Addition of a register.
1002  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
1003  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1004
1005  // Addition of memory.
1006  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>;
1007  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
1008}
1009
1010// Addition that does not modify the condition code.
1011def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1012             Requires<[FeatureHighWord]>;
1013
1014
1015//===----------------------------------------------------------------------===//
1016// Subtraction
1017//===----------------------------------------------------------------------===//
1018
1019// Subtraction producing a signed overflow flag.
1020let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
1021  // Subtraction of a register.
1022  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1023  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1024  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1025
1026  // Subtraction from a high register.
1027  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1028              Requires<[FeatureHighWord]>;
1029  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1030              Requires<[FeatureHighWord]>;
1031
1032  // Subtraction of memory.
1033  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
1034  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
1035  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
1036             Requires<[FeatureMiscellaneousExtensions2]>;
1037  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
1038  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, load, 8>;
1039}
1040defm : SXB<z_ssub, GR64, SGFR>;
1041
1042// Subtracting an immediate is the same as adding the negated immediate.
1043let AddedComplexity = 1 in {
1044  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1045            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1046        Requires<[FeatureHighWord]>;
1047  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1048            (AFIMux GR32:$src1, simm32n:$src2)>,
1049        Requires<[FeatureHighWord]>;
1050  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1051            (AHI GR32:$src1, imm32sx16n:$src2)>;
1052  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1053            (AFI GR32:$src1, simm32n:$src2)>;
1054  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1055            (AGHI GR64:$src1, imm64sx16n:$src2)>;
1056  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1057            (AGFI GR64:$src1, imm64sx32n:$src2)>;
1058}
1059
1060// And vice versa in one special case, where we need to load a
1061// constant into a register in any case, but the negated constant
1062// requires fewer instructions to load.
1063def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1064          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1065def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1066          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1067
1068// Subtraction producing a carry.
1069let Defs = [CC] in {
1070  // Subtraction of a register.
1071  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1072  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1073  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1074
1075  // Subtraction from a high register.
1076  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1077               Requires<[FeatureHighWord]>;
1078  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1079               Requires<[FeatureHighWord]>;
1080
1081  // Subtraction of unsigned 32-bit immediates.
1082  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
1083  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1084
1085  // Subtraction of memory.
1086  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
1087  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
1088  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, load, 8>;
1089}
1090defm : ZXB<z_usub, GR64, SLGFR>;
1091
1092// Subtracting an immediate is the same as adding the negated immediate.
1093let AddedComplexity = 1 in {
1094  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1095            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1096        Requires<[FeatureDistinctOps]>;
1097  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1098            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1099        Requires<[FeatureDistinctOps]>;
1100}
1101
1102// And vice versa in one special case (but we prefer addition).
1103def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1104          (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1105
1106// Subtraction producing and using a carry.
1107let Defs = [CC], Uses = [CC] in {
1108  // Subtraction of a register.
1109  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
1110  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1111
1112  // Subtraction of memory.
1113  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>;
1114  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
1115}
1116
1117
1118//===----------------------------------------------------------------------===//
1119// AND
1120//===----------------------------------------------------------------------===//
1121
1122let Defs = [CC] in {
1123  // ANDs of a register.
1124  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1125    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1126    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1127  }
1128
1129  let isConvertibleToThreeAddress = 1 in {
1130    // ANDs of a 16-bit immediate, leaving other bits unaffected.
1131    // The CC result only reflects the 16-bit field, not the full register.
1132    //
1133    // NIxMux expands to NI[LH]x, depending on the choice of register.
1134    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1135                 Requires<[FeatureHighWord]>;
1136    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1137                 Requires<[FeatureHighWord]>;
1138    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1139    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1140    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1141    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1142    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1143    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1144    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1145    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1146
1147    // ANDs of a 32-bit immediate, leaving other bits unaffected.
1148    // The CC result only reflects the 32-bit field, which means we can
1149    // use it as a zero indicator for i32 operations but not otherwise.
1150    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1151      // Expands to NILF or NIHF, depending on the choice of register.
1152      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1153                   Requires<[FeatureHighWord]>;
1154      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1155      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1156    }
1157    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1158    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1159  }
1160
1161  // ANDs of memory.
1162  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1163    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>;
1164    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>;
1165  }
1166
1167  // AND to memory
1168  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1169
1170  // Block AND.
1171  let mayLoad = 1, mayStore = 1 in
1172    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
1173}
1174defm : RMWIByte<and, bdaddr12pair, NI>;
1175defm : RMWIByte<and, bdaddr20pair, NIY>;
1176
1177//===----------------------------------------------------------------------===//
1178// OR
1179//===----------------------------------------------------------------------===//
1180
1181let Defs = [CC] in {
1182  // ORs of a register.
1183  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1184    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1185    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1186  }
1187
1188  // ORs of a 16-bit immediate, leaving other bits unaffected.
1189  // The CC result only reflects the 16-bit field, not the full register.
1190  //
1191  // OIxMux expands to OI[LH]x, depending on the choice of register.
1192  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1193               Requires<[FeatureHighWord]>;
1194  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1195               Requires<[FeatureHighWord]>;
1196  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1197  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1198  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1199  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1200  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1201  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1202  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1203  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1204
1205  // ORs of a 32-bit immediate, leaving other bits unaffected.
1206  // The CC result only reflects the 32-bit field, which means we can
1207  // use it as a zero indicator for i32 operations but not otherwise.
1208  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1209    // Expands to OILF or OIHF, depending on the choice of register.
1210    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1211                 Requires<[FeatureHighWord]>;
1212    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1213    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1214  }
1215  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1216  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1217
1218  // ORs of memory.
1219  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1220    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>;
1221    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>;
1222  }
1223
1224  // OR to memory
1225  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1226
1227  // Block OR.
1228  let mayLoad = 1, mayStore = 1 in
1229    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
1230}
1231defm : RMWIByte<or, bdaddr12pair, OI>;
1232defm : RMWIByte<or, bdaddr20pair, OIY>;
1233
1234//===----------------------------------------------------------------------===//
1235// XOR
1236//===----------------------------------------------------------------------===//
1237
1238let Defs = [CC] in {
1239  // XORs of a register.
1240  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1241    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1242    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1243  }
1244
1245  // XORs of a 32-bit immediate, leaving other bits unaffected.
1246  // The CC result only reflects the 32-bit field, which means we can
1247  // use it as a zero indicator for i32 operations but not otherwise.
1248  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1249    // Expands to XILF or XIHF, depending on the choice of register.
1250    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1251                 Requires<[FeatureHighWord]>;
1252    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1253    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1254  }
1255  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1256  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1257
1258  // XORs of memory.
1259  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1260    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>;
1261    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>;
1262  }
1263
1264  // XOR to memory
1265  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1266
1267  // Block XOR.
1268  let mayLoad = 1, mayStore = 1 in
1269    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
1270}
1271defm : RMWIByte<xor, bdaddr12pair, XI>;
1272defm : RMWIByte<xor, bdaddr20pair, XIY>;
1273
1274//===----------------------------------------------------------------------===//
1275// Combined logical operations
1276//===----------------------------------------------------------------------===//
1277
1278let Predicates = [FeatureMiscellaneousExtensions3],
1279    Defs = [CC] in {
1280  // AND with complement.
1281  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1282    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1283    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1284  }
1285
1286  // OR with complement.
1287  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1288    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1289    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1290  }
1291
1292  // NAND.
1293  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1294    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1295    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1296  }
1297
1298  // NOR.
1299  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1300    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1301    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1302  }
1303
1304  // NXOR.
1305  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1306    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1307    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1308  }
1309}
1310
1311//===----------------------------------------------------------------------===//
1312// Multiplication
1313//===----------------------------------------------------------------------===//
1314
1315// Multiplication of a register, setting the condition code.  We prefer these
1316// over MS(G)R if available, even though we cannot use the condition code,
1317// since they are three-operand instructions.
1318let Predicates = [FeatureMiscellaneousExtensions2],
1319    Defs = [CC], isCommutable = 1 in {
1320  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
1321  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1322}
1323
1324// Multiplication of a register.
1325let isCommutable = 1 in {
1326  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
1327  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1328}
1329def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1330defm : SXB<mul, GR64, MSGFR>;
1331
1332// Multiplication of a signed 16-bit immediate.
1333def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
1334def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1335
1336// Multiplication of a signed 32-bit immediate.
1337def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
1338def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1339
1340// Multiplication of memory.
1341defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
1342defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
1343def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
1344            Requires<[FeatureMiscellaneousExtensions2]>;
1345def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
1346def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
1347
1348// Multiplication of memory, setting the condition code.
1349let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1350  def MSC  : BinaryRXY<"msc",  0xE353, null_frag, GR32, load, 4>;
1351  def MSGC : BinaryRXY<"msgc", 0xE383, null_frag, GR64, load, 8>;
1352}
1353
1354// Multiplication of a register, producing two results.
1355def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
1356def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1357           Requires<[FeatureMiscellaneousExtensions2]>;
1358def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
1359def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1360
1361def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1362          (MGRK GR64:$src1, GR64:$src2)>;
1363def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1364          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1365
1366// Multiplication of memory, producing two results.
1367def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
1368def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
1369def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>,
1370          Requires<[FeatureMiscellaneousExtensions2]>;
1371def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
1372def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;
1373
1374def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1375          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1376def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1377          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1378
1379//===----------------------------------------------------------------------===//
1380// Division and remainder
1381//===----------------------------------------------------------------------===//
1382
1383let hasSideEffects = 1 in {  // Do not speculatively execute.
1384  // Division and remainder, from registers.
1385  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
1386  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1387  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
1388  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
1389  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;
1390
1391  // Division and remainder, from memory.
1392  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
1393  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
1394  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
1395  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
1396  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
1397}
1398def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1399          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1400def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
1401          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1402def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1403          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1404def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1405          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1406
1407def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1408          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1409                                       subreg_l32)), GR32:$src2)>;
1410def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
1411          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1412                                      subreg_l32)), bdxaddr20only:$src2)>;
1413def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1414          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1415def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1416          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1417
1418//===----------------------------------------------------------------------===//
1419// Shifts
1420//===----------------------------------------------------------------------===//
1421
1422// Logical shift left.
1423defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1424def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1425def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1426
1427// Arithmetic shift left.
1428let Defs = [CC] in {
1429  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1430  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1431  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1432}
1433
1434// Logical shift right.
1435defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1436def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1437def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1438
1439// Arithmetic shift right.
1440let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1441  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1442  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1443  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1444}
1445
1446// Rotate left.
1447def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
1448def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1449
1450// Rotate second operand left and inserted selected bits into first operand.
1451// These can act like 32-bit operands provided that the constant start and
1452// end bits (operands 2 and 3) are in the range [32, 64).
1453let Defs = [CC] in {
1454  let isCodeGenOnly = 1 in
1455    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1456  let CCValues = 0xE, CompareZeroCCMask = 0xE in
1457    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1458}
1459
1460// On zEC12 we have a variant of RISBG that does not set CC.
1461let Predicates = [FeatureMiscellaneousExtensions] in
1462  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1463
1464// Forms of RISBG that only affect one word of the destination register.
1465// They do not set CC.
1466let Predicates = [FeatureHighWord] in {
1467  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1468  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
1469  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
1470  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
1471  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
1472  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1473  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1474}
1475
1476// Rotate second operand left and perform a logical operation with selected
1477// bits of the first operand.  The CC result only describes the selected bits,
1478// so isn't useful for a full comparison against zero.
1479let Defs = [CC] in {
1480  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1481  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1482  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1483}
1484
1485//===----------------------------------------------------------------------===//
1486// Comparison
1487//===----------------------------------------------------------------------===//
1488
1489// Signed comparisons.  We put these before the unsigned comparisons because
1490// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1491// of the unsigned forms do.
1492let Defs = [CC], CCValues = 0xE in {
1493  // Comparison with a register.
1494  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
1495  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1496  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;
1497
1498  // Comparison with a high register.
1499  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1500             Requires<[FeatureHighWord]>;
1501  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1502             Requires<[FeatureHighWord]>;
1503
1504  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
1505  // depending on the choice of register.
1506  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1507               Requires<[FeatureHighWord]>;
1508  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1509  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1510
1511  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1512  // depending on the choice of register.
1513  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1514               Requires<[FeatureHighWord]>;
1515  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1516  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1517             Requires<[FeatureHighWord]>;
1518  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1519
1520  // Comparison with memory.
1521  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
1522  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
1523               Requires<[FeatureHighWord]>;
1524  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
1525  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
1526               Requires<[FeatureHighWord]>;
1527  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
1528  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
1529  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
1530  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
1531  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
1532  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
1533  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
1534  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
1535
1536  // Comparison between memory and a signed 16-bit immediate.
1537  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
1538  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
1539  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
1540}
1541defm : SXB<z_scmp, GR64, CGFR>;
1542
1543// Unsigned comparisons.
1544let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1545  // Comparison with a register.
1546  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
1547  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1548  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
1549
1550  // Comparison with a high register.
1551  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1552              Requires<[FeatureHighWord]>;
1553  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1554              Requires<[FeatureHighWord]>;
1555
1556  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1557  // or CLIH, depending on the choice of register.
1558  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1559                Requires<[FeatureHighWord]>;
1560  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1561  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
1562              Requires<[FeatureHighWord]>;
1563  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1564
1565  // Comparison with memory.
1566  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
1567                Requires<[FeatureHighWord]>;
1568  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
1569  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
1570                Requires<[FeatureHighWord]>;
1571  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
1572  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
1573  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1574                             aligned_azextloadi16>;
1575  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1576                             aligned_load>;
1577  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1578                             aligned_azextloadi16>;
1579  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1580                             aligned_azextloadi32>;
1581  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1582                             aligned_load>;
1583
1584  // Comparison between memory and an unsigned 8-bit immediate.
1585  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
1586
1587  // Comparison between memory and an unsigned 16-bit immediate.
1588  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
1589  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
1590  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
1591}
1592defm : ZXB<z_ucmp, GR64, CLGFR>;
1593
1594// Memory-to-memory comparison.
1595let mayLoad = 1, Defs = [CC] in {
1596  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
1597  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1598  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1599  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1600}
1601
1602// String comparison.
1603let mayLoad = 1, Defs = [CC] in
1604  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1605
1606// Test under mask.
1607let Defs = [CC] in {
1608  // TMxMux expands to TM[LH]x, depending on the choice of register.
1609  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1610               Requires<[FeatureHighWord]>;
1611  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1612               Requires<[FeatureHighWord]>;
1613  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1614  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1615  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1616  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1617
1618  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1619  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1620  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1621  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1622
1623  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
1624}
1625
1626def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1627def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1628
1629// Compare logical characters under mask -- not (yet) used for codegen.
1630let Defs = [CC] in {
1631  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1632  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1633}
1634
1635//===----------------------------------------------------------------------===//
1636// Prefetch and execution hint
1637//===----------------------------------------------------------------------===//
1638
1639let mayLoad = 1, mayStore = 1 in {
1640  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1641  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1642}
1643
1644let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1645  // Branch Prediction Preload
1646  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1647  def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1648
1649  // Next Instruction Access Intent
1650  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1651}
1652
1653//===----------------------------------------------------------------------===//
1654// Atomic operations
1655//===----------------------------------------------------------------------===//
1656
1657// A serialization instruction that acts as a barrier for all memory
1658// accesses, which expands to "bcr 14, 0".
1659let hasSideEffects = 1 in
1660def Serialize : Alias<2, (outs), (ins), []>;
1661
1662// A pseudo instruction that serves as a compiler barrier.
1663let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
1664def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;
1665
1666let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1667  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
1668  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
1669  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
1670  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1671  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
1672  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
1673  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
1674  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
1675  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
1676  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
1677}
1678
1679def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
1680def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
1681def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
1682
1683def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1684def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1685let Predicates = [FeatureNoInterlockedAccess1] in {
1686  def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
1687  def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
1688  def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
1689  def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
1690  def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
1691  def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
1692}
1693
1694def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1695def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
1696def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
1697
1698def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1699def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1700let Predicates = [FeatureNoInterlockedAccess1] in {
1701  def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
1702  def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
1703                                                 imm32ll16c>;
1704  def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
1705                                                 imm32lh16c>;
1706  def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
1707  def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
1708  def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1709                                                 imm64ll16c>;
1710  def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1711                                                 imm64lh16c>;
1712  def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1713                                                 imm64hl16c>;
1714  def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1715                                                 imm64hh16c>;
1716  def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1717                                                 imm64lf32c>;
1718  def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1719                                                 imm64hf32c>;
1720}
1721
1722def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1723def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1724let Predicates = [FeatureNoInterlockedAccess1] in {
1725  def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
1726  def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
1727  def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
1728  def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
1729  def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
1730  def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
1731  def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
1732  def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
1733  def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
1734  def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
1735  def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
1736}
1737
1738def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1739def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1740let Predicates = [FeatureNoInterlockedAccess1] in {
1741  def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
1742  def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
1743  def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
1744  def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
1745  def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
1746}
1747
1748def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1749def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1750                                               imm32lh16c>;
1751def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
1752def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1753                                                imm32ll16c>;
1754def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1755                                                imm32lh16c>;
1756def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
1757def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
1758def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1759                                                imm64ll16c>;
1760def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1761                                                imm64lh16c>;
1762def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1763                                                imm64hl16c>;
1764def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1765                                                imm64hh16c>;
1766def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1767                                                imm64lf32c>;
1768def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1769                                                imm64hf32c>;
1770
1771def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1772def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
1773def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
1774
1775def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1776def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
1777def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
1778
1779def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1780def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
1781def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
1782
1783def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1784def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
1785def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
1786
1787def ATOMIC_CMP_SWAPW
1788  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1789                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1790                                  uimm32:$bitsize),
1791           [(set GR32:$dst,
1792                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1793                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1794                                     uimm32:$bitsize))]> {
1795  let Defs = [CC];
1796  let mayLoad = 1;
1797  let mayStore = 1;
1798  let usesCustomInserter = 1;
1799  let hasNoSchedulingInfo = 1;
1800}
1801
1802// Test and set.
1803let mayLoad = 1, Defs = [CC] in
1804  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1805
1806// Compare and swap.
1807let Defs = [CC] in {
1808  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1809  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1810}
1811
1812// Compare double and swap.
1813let Defs = [CC] in {
1814  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1815  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1816}
1817
1818// Compare and swap and store.
1819let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1820  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1821
1822// Perform locked operation.
1823let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1824  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1825
1826// Load/store pair from/to quadword.
1827def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1828def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1829
1830// Load pair disjoint.
1831let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1832  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
1833  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1834}
1835
1836//===----------------------------------------------------------------------===//
1837// Translate and convert
1838//===----------------------------------------------------------------------===//
1839
1840let mayLoad = 1, mayStore = 1 in
1841  def TR : SideEffectBinarySSa<"tr", 0xDC>;
1842
1843let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1844  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
1845  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1846}
1847
1848let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1849  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1850
1851let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1852  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
1853  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1854}
1855
1856let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1857  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1858  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1859  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1860  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1861}
1862
1863let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1864  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1865  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1866  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1867  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1868  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1869  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1870
1871  let isAsmParserOnly = 1 in {
1872    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1873    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1874  }
1875}
1876
1877//===----------------------------------------------------------------------===//
1878// Message-security assist
1879//===----------------------------------------------------------------------===//
1880
1881let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1882  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
1883  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1884
1885  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1886  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1887  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1888
1889  let Predicates = [FeatureMessageSecurityAssist4] in {
1890    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1891    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1892    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1893                                               GR128, GR128, GR128>;
1894    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
1895  }
1896
1897  let Predicates = [FeatureMessageSecurityAssist5] in
1898    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1899  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1900    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1901
1902  let Predicates = [FeatureMessageSecurityAssist8] in
1903    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1904                                              GR128, GR128, GR128>;
1905
1906  let Predicates = [FeatureMessageSecurityAssist9] in
1907    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1908}
1909
1910//===----------------------------------------------------------------------===//
1911// Guarded storage
1912//===----------------------------------------------------------------------===//
1913
1914// These instructions use and/or modify the guarded storage control
1915// registers, which we do not otherwise model, so they should have
1916// hasSideEffects.
1917let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1918  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1919  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1920
1921  let mayLoad = 1 in
1922    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1923  let mayStore = 1 in
1924    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1925}
1926
1927//===----------------------------------------------------------------------===//
1928// Decimal arithmetic
1929//===----------------------------------------------------------------------===//
1930
1931defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
1932def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;
1933
1934defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1935def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1936
1937let mayLoad = 1, mayStore = 1 in {
1938  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1939  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1940  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1941
1942  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
1943  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
1944  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
1945  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
1946  let Defs = [CC] in {
1947    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
1948    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
1949  }
1950}
1951
1952let mayLoad = 1, mayStore = 1 in {
1953  let Defs = [CC] in {
1954    def AP : SideEffectBinarySSb<"ap", 0xFA>;
1955    def SP : SideEffectBinarySSb<"sp", 0xFB>;
1956    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
1957    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
1958  }
1959  def MP : SideEffectBinarySSb<"mp", 0xFC>;
1960  def DP : SideEffectBinarySSb<"dp", 0xFD>;
1961  let Defs = [CC] in {
1962    def ED : SideEffectBinarySSa<"ed", 0xDE>;
1963    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
1964  }
1965}
1966
1967let Defs = [CC] in {
1968  def CP : CompareSSb<"cp", 0xF9>;
1969  def TP : TestRSL<"tp", 0xEBC0>;
1970}
1971
1972//===----------------------------------------------------------------------===//
1973// Access registers
1974//===----------------------------------------------------------------------===//
1975
1976// Read a 32-bit access register into a GR32.  As with all GR32 operations,
1977// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
1978// when a 64-bit address is stored in a pair of access registers.
1979def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
1980
1981// Set access register.
1982def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
1983
1984// Copy access register.
1985def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
1986
1987// Load address extended.
1988defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
1989
1990// Load access multiple.
1991defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
1992
1993// Store access multiple.
1994defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
1995
1996//===----------------------------------------------------------------------===//
1997// Program mask and addressing mode
1998//===----------------------------------------------------------------------===//
1999
2000// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
2001let Uses = [CC] in
2002  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
2003
2004// Set CC and program mask from a register.
2005let hasSideEffects = 1, Defs = [CC] in
2006  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
2007
2008// Branch and link - like BAS, but also extracts CC and program mask.
2009let isCall = 1, Uses = [CC], Defs = [CC] in {
2010  def BAL  : CallRX<"bal", 0x45>;
2011  def BALR : CallRR<"balr", 0x05>;
2012}
2013
2014// Test addressing mode.
2015let Defs = [CC] in
2016  def TAM : SideEffectInherentE<"tam", 0x010B>;
2017
2018// Set addressing mode.
2019let hasSideEffects = 1 in {
2020  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2021  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2022  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2023}
2024
2025// Branch and set mode.  Not really a call, but also sets an output register.
2026let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2027  def BSM : CallRR<"bsm", 0x0B>;
2028
2029// Branch and save and set mode.
2030let isCall = 1, Defs = [CC] in
2031  def BASSM : CallRR<"bassm", 0x0C>;
2032
2033//===----------------------------------------------------------------------===//
2034// Transactional execution
2035//===----------------------------------------------------------------------===//
2036
2037let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2038  // Transaction Begin
2039  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2040    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2041    let hasNoSchedulingInfo = 1 in
2042     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2043    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2044                                      int_s390_tbeginc, imm32zx16>;
2045  }
2046
2047  // Transaction End
2048  let Defs = [CC] in
2049    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2050
2051  // Transaction Abort
2052  let isTerminator = 1, isBarrier = 1, mayStore = 1,
2053      hasSideEffects = 1 in
2054    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2055
2056  // Nontransactional Store
2057  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2058
2059  // Extract Transaction Nesting Depth
2060  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2061}
2062
2063//===----------------------------------------------------------------------===//
2064// Processor assist
2065//===----------------------------------------------------------------------===//
2066
2067let Predicates = [FeatureProcessorAssist] in {
2068  let hasSideEffects = 1 in
2069    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2070  def : Pat<(int_s390_ppa_txassist GR32:$src),
2071            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2072                 0, 1)>;
2073}
2074
2075//===----------------------------------------------------------------------===//
2076// Miscellaneous Instructions.
2077//===----------------------------------------------------------------------===//
2078
2079// Find leftmost one, AKA count leading zeros.  The instruction actually
2080// returns a pair of GR64s, the first giving the number of leading zeros
2081// and the second giving a copy of the source with the leftmost one bit
2082// cleared.  We only use the first result here.
2083let Defs = [CC] in
2084  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2085def : Pat<(ctlz GR64:$src),
2086          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2087
2088// Population count.  Counts bits set per byte or doubleword.
2089let Predicates = [FeatureMiscellaneousExtensions3] in {
2090  let Defs = [CC] in
2091    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2092  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2093}
2094let Predicates = [FeaturePopulationCount], Defs = [CC] in
2095  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2096
2097// Search a block of memory for a character.
2098let mayLoad = 1, Defs = [CC] in
2099  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2100let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2101  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2102
2103// Compare until substring equal.
2104let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2105  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2106
2107// Compare and form codeword.
2108let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2109  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2110
2111// Update tree.
2112let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2113    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2114  def UPT : SideEffectInherentE<"upt", 0x0102>;
2115
2116// Checksum.
2117let mayLoad = 1, Defs = [CC] in
2118  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2119
2120// Compression call.
2121let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2122  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2123
2124// Sort lists.
2125let Predicates = [FeatureEnhancedSort],
2126    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2127  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2128
2129// Deflate conversion call.
2130let Predicates = [FeatureDeflateConversion],
2131    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2132  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2133                                           GR128, GR128, GR64>;
2134
2135// Execute.
2136let hasSideEffects = 1 in {
2137  def EX   : SideEffectBinaryRX<"ex", 0x44, GR64>;
2138  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>;
2139}
2140
2141//===----------------------------------------------------------------------===//
2142// .insn directive instructions
2143//===----------------------------------------------------------------------===//
2144
2145let isCodeGenOnly = 1, hasSideEffects = 1 in {
2146  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2147  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2148                                             imm32sx16:$I2),
2149                                ".insn ri,$enc,$R1,$I2", []>;
2150  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2151                                              AnyReg:$R3, brtarget16:$I2),
2152                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
2153  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2154                                              brtarget32:$I2),
2155                                 ".insn ril,$enc,$R1,$I2", []>;
2156  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2157                                               uimm32:$I2),
2158                                  ".insn rilu,$enc,$R1,$I2", []>;
2159  def InsnRIS : DirectiveInsnRIS<(outs),
2160                                 (ins imm64zx48:$enc, AnyReg:$R1,
2161                                      imm32sx8:$I2, imm32zx4:$M3,
2162                                      bdaddr12only:$BD4),
2163                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2164  def InsnRR : DirectiveInsnRR<(outs),
2165                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2166                               ".insn rr,$enc,$R1,$R2", []>;
2167  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2168                                              AnyReg:$R1, AnyReg:$R2),
2169                                 ".insn rre,$enc,$R1,$R2", []>;
2170  def InsnRRF : DirectiveInsnRRF<(outs),
2171                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2172                                      AnyReg:$R3, imm32zx4:$M4),
2173                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2174  def InsnRRS : DirectiveInsnRRS<(outs),
2175                                 (ins imm64zx48:$enc, AnyReg:$R1,
2176                                      AnyReg:$R2, imm32zx4:$M3,
2177                                      bdaddr12only:$BD4),
2178                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2179  def InsnRS  : DirectiveInsnRS<(outs),
2180                                (ins imm64zx32:$enc, AnyReg:$R1,
2181                                     AnyReg:$R3, bdaddr12only:$BD2),
2182                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
2183  def InsnRSE : DirectiveInsnRSE<(outs),
2184                                 (ins imm64zx48:$enc, AnyReg:$R1,
2185                                      AnyReg:$R3, bdaddr12only:$BD2),
2186                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2187  def InsnRSI : DirectiveInsnRSI<(outs),
2188                                 (ins imm64zx48:$enc, AnyReg:$R1,
2189                                      AnyReg:$R3, brtarget16:$RI2),
2190                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2191  def InsnRSY : DirectiveInsnRSY<(outs),
2192                                 (ins imm64zx48:$enc, AnyReg:$R1,
2193                                      AnyReg:$R3, bdaddr20only:$BD2),
2194                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2195  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2196                                             bdxaddr12only:$XBD2),
2197                                ".insn rx,$enc,$R1,$XBD2", []>;
2198  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2199                                              bdxaddr12only:$XBD2),
2200                                 ".insn rxe,$enc,$R1,$XBD2", []>;
2201  def InsnRXF : DirectiveInsnRXF<(outs),
2202                                 (ins imm64zx48:$enc, AnyReg:$R1,
2203                                      AnyReg:$R3, bdxaddr12only:$XBD2),
2204                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2205  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2206                                              bdxaddr20only:$XBD2),
2207                                 ".insn rxy,$enc,$R1,$XBD2", []>;
2208  def InsnS : DirectiveInsnS<(outs),
2209                             (ins imm64zx32:$enc, bdaddr12only:$BD2),
2210                             ".insn s,$enc,$BD2", []>;
2211  def InsnSI : DirectiveInsnSI<(outs),
2212                               (ins imm64zx32:$enc, bdaddr12only:$BD1,
2213                                    imm32sx8:$I2),
2214                               ".insn si,$enc,$BD1,$I2", []>;
2215  def InsnSIY : DirectiveInsnSIY<(outs),
2216                                 (ins imm64zx48:$enc,
2217                                      bdaddr20only:$BD1, imm32zx8:$I2),
2218                                 ".insn siy,$enc,$BD1,$I2", []>;
2219  def InsnSIL : DirectiveInsnSIL<(outs),
2220                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2221                                      imm32zx16:$I2),
2222                                 ".insn sil,$enc,$BD1,$I2", []>;
2223  def InsnSS : DirectiveInsnSS<(outs),
2224                               (ins imm64zx48:$enc, bdraddr12only:$RBD1,
2225                                    bdaddr12only:$BD2, AnyReg:$R3),
2226                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2227  def InsnSSE : DirectiveInsnSSE<(outs),
2228                                 (ins imm64zx48:$enc,
2229                                      bdaddr12only:$BD1,bdaddr12only:$BD2),
2230                                 ".insn sse,$enc,$BD1,$BD2", []>;
2231  def InsnSSF : DirectiveInsnSSF<(outs),
2232                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2233                                      bdaddr12only:$BD2, AnyReg:$R3),
2234                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2235}
2236
2237//===----------------------------------------------------------------------===//
2238// Peepholes.
2239//===----------------------------------------------------------------------===//
2240
2241// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2242// equivalent to (and (xor x, -1), y)
2243def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2244                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2245
2246// Shift/rotate instructions only use the last 6 bits of the second operand
2247// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2248// last 16 bits.
2249// Complexity is added so that we match this before we match NILF on the AND
2250// operation alone.
2251let AddedComplexity = 4 in {
2252  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2253            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2254
2255  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2256            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2257
2258  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2259            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2260
2261  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2262            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2263
2264  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2265            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2266
2267  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2268            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2269
2270  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2271            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2272
2273  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2274            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2275}
2276
2277// Substitute (x*64-s) with (-s), since shift/rotate instructions only
2278// use the last 6 bits of the second operand register (making it modulo 64).
2279let AddedComplexity = 4 in {
2280  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2281            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2282
2283  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
2284            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2285
2286  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2287            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2288
2289  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2290            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2291}
2292
2293// Peepholes for turning scalar operations into block operations.
2294defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
2295                      XCSequence, 1>;
2296defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
2297                      XCSequence, 2>;
2298defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
2299                      XCSequence, 4>;
2300defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
2301                      OCSequence, XCSequence, 1>;
2302defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
2303                      XCSequence, 2>;
2304defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
2305                      XCSequence, 4>;
2306defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
2307                      XCSequence, 8>;
2308