xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.td (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9def IsTargetXPLINK64      : Predicate<"Subtarget->isTargetXPLINK64()">;
10def IsTargetELF           : Predicate<"Subtarget->isTargetELF()">;
11
12//===----------------------------------------------------------------------===//
13// Stack allocation
14//===----------------------------------------------------------------------===//
15
16// These pseudos carry values needed to compute the MaxcallFrameSize of the
17// function.  The callseq_start node requires the hasSideEffects flag.
18let usesCustomInserter = 1, hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
19  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
20                                [(callseq_start timm:$amt1, timm:$amt2)]>;
21  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
22                                [(callseq_end timm:$amt1, timm:$amt2)]>;
23}
24
25// Takes as input the value of the stack pointer after a dynamic allocation
26// has been made.  Sets the output to the address of the dynamically-
27// allocated area itself, skipping the outgoing arguments.
28//
29// This expands to an LA or LAY instruction.  We restrict the offset
30// to the range of LA and keep the LAY range in reserve for when
31// the size of the outgoing arguments is added.
32def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
33                         [(set GR64:$dst, dynalloc12only:$src)]>;
34
35let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
36    usesCustomInserter = 1 in
37  def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
38                             (ins GR64:$oldSP, GR64:$space),
39           [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;
40
41let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
42    hasSideEffects = 1 in
43  def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;
44
45let Defs = [R3D, CC], Uses = [R3D, R4D], hasNoSchedulingInfo = 1,
46    hasSideEffects = 1 in
47  def XPLINK_STACKALLOC : Pseudo<(outs), (ins), []>;
48
49//===----------------------------------------------------------------------===//
50// Branch instructions
51//===----------------------------------------------------------------------===//
52
53// Conditional branches.
54let isBranch = 1, isTerminator = 1, Uses = [CC] in {
55  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
56  // with the condition-code mask being the first operand.  It seems friendlier
57  // to use mnemonic forms like JE and JLH when writing out the assembly though.
58  let isCodeGenOnly = 1 in {
59    // An assembler extended mnemonic for BRC.
60    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
61    // An assembler extended mnemonic for BRCL.  (The extension is "G"
62    // rather than "L" because "JL" is "Jump if Less".)
63    def BRCL : CondBranchRIL<"jg#", 0xC04>;
64    let isIndirectBranch = 1 in {
65      def BC  : CondBranchRX<"b#",  0x47>;
66      def BCR : CondBranchRR<"b#r", 0x07>;
67      def BIC : CondBranchRXY<"bi#", 0xe347>,
68                Requires<[FeatureMiscellaneousExtensions2]>;
69    }
70  }
71
72  // Allow using the raw forms directly from the assembler (and occasional
73  // special code generation needs) as well.
74  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
75  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
76  let isIndirectBranch = 1 in {
77    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
78    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
79    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
80                 Requires<[FeatureMiscellaneousExtensions2]>;
81  }
82
83  // Define AsmParser extended mnemonics for each general condition-code mask
84  // (integer or floating-point)
85  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
86                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
87    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
88    def JGAsm#V : FixedCondBranchRIL<CV<V>, "j{g|l}#", 0xC04>;
89    let isIndirectBranch = 1 in {
90      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
91      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
92      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
93                    Requires<[FeatureMiscellaneousExtensions2]>;
94    }
95  }
96}
97
98// Unconditional branches.  These are in fact simply variants of the
99// conditional branches with the condition mask set to "always".
100let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
101  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
102  def JG : FixedCondBranchRIL<CondAlways, "j{g|lu}", 0xC04>;
103  let isIndirectBranch = 1 in {
104    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
105    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
106    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
107             Requires<[FeatureMiscellaneousExtensions2]>;
108  }
109}
110
111// NOPs.  These are again variants of the conditional branches, with the
112// condition mask set to "never".  NOP_bare can't be an InstAlias since it
113// would need R0D hard coded which is not part of ADDR64BitRegClass.
114def NOP : NeverCondBranchRX<"nop", 0x47>;
115let isAsmParserOnly = 1, hasNoSchedulingInfo = 1, M1 = 0, X2 = 0, B2 = 0, D2 = 0 in
116  def NOP_bare  : InstRXb<0x47,(outs), (ins), "nop", []>;
117def NOPR : NeverCondBranchRR<"nopr", 0x07>;
118def NOPR_bare : InstAlias<"nopr", (NOPR R0D), 0>;
119
120// An alias of BRC 0, label
121def JNOP : InstAlias<"jnop\t$RI2", (BRCAsm 0, brtarget16:$RI2), 0>;
122
123// An alias of BRCL 0, label
124// jgnop on att ; jlnop on hlasm
125def JGNOP : InstAlias<"{jgnop|jlnop}\t$RI2", (BRCLAsm 0, brtarget32:$RI2), 0>;
126
127// Fused compare-and-branch instructions.
128//
129// These instructions do not use or clobber the condition codes.
130// We nevertheless pretend that the relative compare-and-branch
131// instructions clobber CC, so that we can lower them to separate
132// comparisons and BRCLs if the branch ends up being out of range.
133let isBranch = 1, isTerminator = 1 in {
134  // As for normal branches, we handle these instructions internally in
135  // their raw CRJ-like form, but use assembly macros like CRJE when writing
136  // them out.  Using the *Pair multiclasses, we also create the raw forms.
137  let Defs = [CC] in {
138    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
139    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
140    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
141    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
142    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
143    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
144    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
145    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
146  }
147  let isIndirectBranch = 1 in {
148    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
149    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
150    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
151    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
152    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
153    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
154    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
155    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
156  }
157
158  // Define AsmParser mnemonics for each integer condition-code mask.
159  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
160                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
161    let Defs = [CC] in {
162      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
163      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
164      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
165                                          imm32sx8>;
166      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
167                                          imm64sx8>;
168      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
169      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
170      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
171                                          imm32zx8>;
172      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
173                                          imm64zx8>;
174    }
175    let isIndirectBranch = 1 in {
176      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
177      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
178      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
179                                         imm32sx8>;
180      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
181                                         imm64sx8>;
182      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
183      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
184      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
185                                         imm32zx8>;
186      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
187                                         imm64zx8>;
188    }
189  }
190}
191
192// Decrement a register and branch if it is nonzero.  These don't clobber CC,
193// but we might need to split long relative branches into sequences that do.
194let isBranch = 1, isTerminator = 1 in {
195  let Defs = [CC] in {
196    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
197    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
198  }
199  // This doesn't need to clobber CC since we never need to split it.
200  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
201              Requires<[FeatureHighWord]>;
202
203  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
204  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
205  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
206  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
207}
208
209let isBranch = 1, isTerminator = 1 in {
210  let Defs = [CC] in {
211    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
212    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
213    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
214    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
215  }
216  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
217  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
218  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
219  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
220}
221
222//===----------------------------------------------------------------------===//
223// Trap instructions
224//===----------------------------------------------------------------------===//
225
226// Unconditional trap.
227let hasCtrlDep = 1, hasSideEffects = 1 in
228  def Trap : Alias<4, (outs), (ins), [(trap)]>;
229
230// Conditional trap.
231let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
232  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
233
234// Fused compare-and-trap instructions.
235let hasCtrlDep = 1, hasSideEffects = 1 in {
236  // These patterns work the same way as for compare-and-branch.
237  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
238  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
239  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
240  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
241  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
242  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
243  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
244  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
245  let Predicates = [FeatureMiscellaneousExtensions] in {
246    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
247    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
248  }
249
250  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
251                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
252    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
253    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
254    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
255    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
256    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
257                                         imm32sx16>;
258    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
259                                         imm64sx16>;
260    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
261                                         imm32zx16>;
262    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
263                                         imm64zx16>;
264    let Predicates = [FeatureMiscellaneousExtensions] in {
265      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
266      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
267    }
268  }
269}
270
271//===----------------------------------------------------------------------===//
272// Call and return instructions
273//===----------------------------------------------------------------------===//
274
275// Define the general form of the call instructions for the asm parser.
276// These instructions don't hard-code %r14 as the return address register.
277let isCall = 1, Defs = [CC] in {
278  def BRAS  : CallRI <"bras", 0xA75>;
279  def BRASL : CallRIL<"brasl", 0xC05>;
280  def BAS   : CallRX <"bas", 0x4D>;
281  def BASR  : CallRR <"basr", 0x0D>;
282}
283
284// A symbol in the ADA (z/OS only).
285def adasym : Operand<i64>;
286
287// z/OS XPLINK
288let Predicates = [IsTargetXPLINK64] in {
289  let isCall = 1, Defs = [R7D, CC], Uses = [FPC] in {
290    def CallBRASL_XPLINK64 : Alias<8, (outs), (ins pcrel32:$I2, variable_ops),
291                          [(z_call pcrel32:$I2)]>;
292    def CallBASR_XPLINK64  : Alias<4, (outs), (ins ADDR64:$R2, variable_ops),
293                          [(z_call ADDR64:$R2)]>;
294  }
295
296  let isCall = 1, Defs = [R3D, CC], Uses = [FPC] in {
297    def CallBASR_STACKEXT  : Alias<4, (outs), (ins ADDR64:$R2), []>;
298  }
299
300  let hasNoSchedulingInfo = 1, Defs = [CC] in {
301    def ADA_ENTRY : Alias<12, (outs GR64:$Reg), (ins adasym:$addr,
302                              ADDR64:$ADA, imm64:$Offset),
303                            [(set i64:$Reg, (z_ada_entry i64:$addr,
304                              i64:$ADA, i64:$Offset))]>;
305  }
306  let mayLoad = 1, AddedComplexity = 20, hasNoSchedulingInfo = 1, Defs = [CC] in {
307    def ADA_ENTRY_VALUE : Alias<12, (outs GR64:$Reg), (ins adasym:$addr,
308                              ADDR64:$ADA, imm64:$Offset),
309                            [(set i64:$Reg, (z_load (z_ada_entry
310                              iPTR:$addr, iPTR:$ADA, i64:$Offset)))]>;
311 }
312}
313
314// Regular calls.
315// z/Linux ELF
316let Predicates = [IsTargetELF] in {
317  let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
318    def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
319                          [(z_call pcrel32:$I2)]>;
320    def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
321                          [(z_call ADDR64:$R2)]>;
322  }
323
324  // TLS calls.  These will be lowered into a call to __tls_get_offset,
325  // with an extra relocation specifying the TLS symbol.
326  let isCall = 1, Defs = [R14D, CC] in {
327    def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
328                           [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
329    def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
330                           [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
331  }
332}
333
334// Sibling calls. Indirect sibling calls must be via R6 for XPLink,
335// R1 used for ELF
336let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
337  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
338                     [(z_sibcall pcrel32:$I2)]>;
339  def CallBR : Alias<2, (outs), (ins ADDR64:$R2),
340                     [(z_sibcall ADDR64:$R2)]>;
341}
342
343// Conditional sibling calls.
344let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
345  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
346                                   pcrel32:$I2), []>;
347  def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1,
348                                  ADDR64:$R2), []>;
349}
350
351// Fused compare and conditional sibling calls.
352let isCall = 1, isTerminator = 1, isReturn = 1 in {
353  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
354  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
355  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
356  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
357  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
358  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
359  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
360  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
361}
362
363let Predicates = [IsTargetXPLINK64] in {
364  // A return instruction (b 2(%r7)).
365  let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
366    def Return_XPLINK : Alias<4, (outs), (ins), [(z_retglue)]>;
367
368  // A conditional return instruction (bc <cond>, 2(%r7)).
369  let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
370    def CondReturn_XPLINK : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
371}
372
373let Predicates = [IsTargetELF] in {
374  // A return instruction (br %r14).
375  let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
376    def Return : Alias<2, (outs), (ins), [(z_retglue)]>;
377
378  // A conditional return instruction (bcr <cond>, %r14).
379  let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
380    def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
381}
382
383// Fused compare and conditional returns.
384let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
385  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
386  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
387  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
388  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
389  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
390  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
391  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
392  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
393}
394
395//===----------------------------------------------------------------------===//
396// Select instructions
397//===----------------------------------------------------------------------===//
398
399def Select32    : SelectWrapper<i32, GR32>,
400                  Requires<[FeatureNoLoadStoreOnCond]>;
401def Select64    : SelectWrapper<i64, GR64>,
402                  Requires<[FeatureNoLoadStoreOnCond]>;
403
404// We don't define 32-bit Mux stores if we don't have STOCFH, because the
405// low-only STOC should then always be used if possible.
406defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
407                                 nonvolatile_anyextloadi8, bdxaddr20only>,
408                      Requires<[FeatureHighWord]>;
409defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
410                                 nonvolatile_anyextloadi16, bdxaddr20only>,
411                      Requires<[FeatureHighWord]>;
412defm CondStore32Mux : CondStores<GRX32, simple_store,
413                                 simple_load, bdxaddr20only>,
414                      Requires<[FeatureLoadStoreOnCond2]>;
415defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
416                                 nonvolatile_anyextloadi8, bdxaddr20only>;
417defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
418                                 nonvolatile_anyextloadi16, bdxaddr20only>;
419defm CondStore32    : CondStores<GR32, simple_store,
420                                 simple_load, bdxaddr20only>;
421
422defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
423                    nonvolatile_anyextloadi8, bdxaddr20only>;
424defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
425                    nonvolatile_anyextloadi16, bdxaddr20only>;
426defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
427                    nonvolatile_anyextloadi32, bdxaddr20only>;
428defm CondStore64 : CondStores<GR64, simple_store,
429                              simple_load, bdxaddr20only>;
430
431//===----------------------------------------------------------------------===//
432// Move instructions
433//===----------------------------------------------------------------------===//
434
435// Register moves.
436def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
437def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
438
439let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
440  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
441  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
442}
443
444let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
445  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
446
447// Immediate moves.
448let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
449  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
450  // deopending on the choice of register.
451  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
452               Requires<[FeatureHighWord]>;
453  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
454  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
455
456  // Other 16-bit immediates.
457  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
458  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
459  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
460  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
461
462  // 32-bit immediates.
463  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
464  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
465  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
466}
467def LLGFI : InstAlias<"llgfi\t$R1, $RI1", (LLILF GR64:$R1, imm64lf32:$RI1)>;
468def LLGHI : InstAlias<"llghi\t$R1, $RI1", (LLILL GR64:$R1, imm64ll16:$RI1)>;
469
470// Register loads.
471let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
472  // Expands to L, LY or LFH, depending on the choice of register.
473  def LMux : UnaryRXYPseudo<"l", z_load, GRX32, 4>,
474             Requires<[FeatureHighWord]>;
475  defm L : UnaryRXPair<"l", 0x58, 0xE358, z_load, GR32, 4>;
476  def LFH : UnaryRXY<"lfh", 0xE3CA, z_load, GRH32, 4>,
477            Requires<[FeatureHighWord]>;
478  def LG : UnaryRXY<"lg", 0xE304, z_load, GR64, 8>;
479
480  // These instructions are split after register allocation, so we don't
481  // want a custom inserter.
482  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
483    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
484                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
485  }
486}
487let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
488  def LT  : UnaryRXY<"lt",  0xE312, z_load, GR32, 4>;
489  def LTG : UnaryRXY<"ltg", 0xE302, z_load, GR64, 8>;
490}
491
492let canFoldAsLoad = 1 in {
493  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_z_load, GR32>;
494  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_z_load, GR64>;
495}
496
497// Load and zero rightmost byte.
498let Predicates = [FeatureLoadAndZeroRightmostByte] in {
499  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
500  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
501  def : Pat<(and (i32 (z_load bdxaddr20only:$src)), 0xffffff00),
502            (LZRF bdxaddr20only:$src)>;
503  def : Pat<(and (i64 (z_load bdxaddr20only:$src)), 0xffffffffffffff00),
504            (LZRG bdxaddr20only:$src)>;
505}
506
507// Load and trap.
508let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
509  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
510  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
511  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
512}
513
514// Register stores.
515let SimpleBDXStore = 1, mayStore = 1 in {
516  // Expands to ST, STY or STFH, depending on the choice of register.
517  def STMux : StoreRXYPseudo<store, GRX32, 4>,
518              Requires<[FeatureHighWord]>;
519  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
520  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
521             Requires<[FeatureHighWord]>;
522  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
523
524  // These instructions are split after register allocation, so we don't
525  // want a custom inserter.
526  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
527    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
528                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
529  }
530}
531def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
532def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
533
534// 8-bit immediate stores to 8-bit fields.
535defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
536
537// 16-bit immediate stores to 16-, 32- or 64-bit fields.
538def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
539def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
540def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
541
542// Memory-to-memory moves.
543let mayLoad = 1, mayStore = 1 in
544  defm MVC : MemorySS<"mvc", 0xD2, z_mvc>;
545let mayLoad = 1, mayStore = 1, Defs = [CC] in {
546  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
547  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
548  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
549}
550
551// Memset[Length][Byte] pseudos.
552def MemsetImmImm : MemsetPseudo<imm64, imm32zx8trunc>;
553def MemsetImmReg : MemsetPseudo<imm64, GR32>;
554def MemsetRegImm : MemsetPseudo<ADDR64, imm32zx8trunc>;
555def MemsetRegReg : MemsetPseudo<ADDR64, GR32>;
556
557// Move right.
558let Predicates = [FeatureMiscellaneousExtensions3],
559    mayLoad = 1, mayStore = 1, Uses = [R0L] in
560  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
561
562// String moves.
563let mayLoad = 1, mayStore = 1, Defs = [CC] in
564  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
565
566//===----------------------------------------------------------------------===//
567// Conditional move instructions
568//===----------------------------------------------------------------------===//
569
570let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
571  // Select.
572  let isCommutable = 1 in {
573    // Expands to SELR or SELFHR or a branch-and-move sequence,
574    // depending on the choice of registers.
575    def  SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
576    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
577    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
578    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
579  }
580
581  // Define AsmParser extended mnemonics for each general condition-code mask.
582  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
583                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
584    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
585                                          GR32, GR32, GR32>;
586    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
587                                          GRH32, GRH32, GRH32>;
588    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
589                                          GR64, GR64, GR64>;
590  }
591}
592
593let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
594  // Load immediate on condition.  Matched via DAG pattern and created
595  // by the PeepholeOptimizer via FoldImmediate.
596
597  // Expands to LOCHI or LOCHHI, depending on the choice of register.
598  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
599  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
600  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
601  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
602
603  // Move register on condition.  Matched via DAG pattern and
604  // created by early if-conversion.
605  let isCommutable = 1 in {
606    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
607    // depending on the choice of registers.
608    def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
609    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
610  }
611
612  // Load on condition.  Matched via DAG pattern.
613  // Expands to LOC or LOCFH, depending on the choice of register.
614  defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
615  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;
616
617  // Store on condition.  Expanded from CondStore* pseudos.
618  // Expands to STOC or STOCFH, depending on the choice of register.
619  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
620  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
621
622  // Define AsmParser extended mnemonics for each general condition-code mask.
623  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
624                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
625    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
626                                         imm32sx16>;
627    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
628                                         imm64sx16>;
629    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
630                                         imm32sx16>;
631    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
632    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
633    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
634  }
635}
636
637let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
638  // Move register on condition.  Matched via DAG pattern and
639  // created by early if-conversion.
640  let isCommutable = 1 in {
641    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
642    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
643  }
644
645  // Load on condition.  Matched via DAG pattern.
646  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
647  defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;
648
649  // Store on condition.  Expanded from CondStore* pseudos.
650  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
651  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
652
653  // Define AsmParser extended mnemonics for each general condition-code mask.
654  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
655                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
656    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
657    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
658    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
659    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
660    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
661    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
662  }
663}
664//===----------------------------------------------------------------------===//
665// Sign extensions
666//===----------------------------------------------------------------------===//
667//
668// Note that putting these before zero extensions mean that we will prefer
669// them for anyextload*.  There's not really much to choose between the two
670// either way, but signed-extending loads have a short LH and a long LHY,
671// while zero-extending loads have only the long LLH.
672//
673//===----------------------------------------------------------------------===//
674
675// 32-bit extensions from registers.
676def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
677def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
678
679// 64-bit extensions from registers.
680def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
681def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
682def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
683
684let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
685  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
686
687// Match 32-to-64-bit sign extensions in which the source is already
688// in a 64-bit register.
689def : Pat<(sext_inreg GR64:$src, i32),
690          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
691
692// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
693// depending on the choice of register.
694def LBMux : UnaryRXYPseudo<"lb", z_asextloadi8, GRX32, 1>,
695            Requires<[FeatureHighWord]>;
696def LB  : UnaryRXY<"lb", 0xE376, z_asextloadi8, GR32, 1>;
697def LBH : UnaryRXY<"lbh", 0xE3C0, z_asextloadi8, GRH32, 1>,
698          Requires<[FeatureHighWord]>;
699
700// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
701// depending on the choice of register.
702def LHMux : UnaryRXYPseudo<"lh", z_asextloadi16, GRX32, 2>,
703            Requires<[FeatureHighWord]>;
704defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, z_asextloadi16, GR32, 2>;
705def  LHH  : UnaryRXY<"lhh", 0xE3C4, z_asextloadi16, GRH32, 2>,
706            Requires<[FeatureHighWord]>;
707def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_z_asextloadi16, GR32>;
708
709// 64-bit extensions from memory.
710def LGB   : UnaryRXY<"lgb", 0xE377, z_asextloadi8,  GR64, 1>;
711def LGH   : UnaryRXY<"lgh", 0xE315, z_asextloadi16, GR64, 2>;
712def LGF   : UnaryRXY<"lgf", 0xE314, z_asextloadi32, GR64, 4>;
713def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_z_asextloadi16, GR64>;
714def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_z_asextloadi32, GR64>;
715let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
716  def LTGF : UnaryRXY<"ltgf", 0xE332, z_asextloadi32, GR64, 4>;
717
718//===----------------------------------------------------------------------===//
719// Zero extensions
720//===----------------------------------------------------------------------===//
721
722// 32-bit extensions from registers.
723
724// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
725def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
726              Requires<[FeatureHighWord]>;
727def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
728// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
729def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
730              Requires<[FeatureHighWord]>;
731def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
732
733// 64-bit extensions from registers.
734def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
735def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
736def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
737
738// Match 32-to-64-bit zero extensions in which the source is already
739// in a 64-bit register.
740def : Pat<(and GR64:$src, 0xffffffff),
741          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
742
743// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
744// depending on the choice of register.
745def LLCMux : UnaryRXYPseudo<"llc", z_azextloadi8, GRX32, 1>,
746             Requires<[FeatureHighWord]>;
747def LLC  : UnaryRXY<"llc", 0xE394, z_azextloadi8, GR32, 1>;
748def LLCH : UnaryRXY<"llch", 0xE3C2, z_azextloadi8, GRH32, 1>,
749           Requires<[FeatureHighWord]>;
750
751// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
752// depending on the choice of register.
753def LLHMux : UnaryRXYPseudo<"llh", z_azextloadi16, GRX32, 2>,
754             Requires<[FeatureHighWord]>;
755def LLH   : UnaryRXY<"llh", 0xE395, z_azextloadi16, GR32, 2>;
756def LLHH  : UnaryRXY<"llhh", 0xE3C6, z_azextloadi16, GRH32, 2>,
757            Requires<[FeatureHighWord]>;
758def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_z_azextloadi16, GR32>;
759
760// 64-bit extensions from memory.
761def LLGC   : UnaryRXY<"llgc", 0xE390, z_azextloadi8,  GR64, 1>;
762def LLGH   : UnaryRXY<"llgh", 0xE391, z_azextloadi16, GR64, 2>;
763def LLGF   : UnaryRXY<"llgf", 0xE316, z_azextloadi32, GR64, 4>;
764def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_z_azextloadi16, GR64>;
765def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_z_azextloadi32, GR64>;
766
767// 31-to-64-bit zero extensions.
768def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
769def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
770def : Pat<(and GR64:$src, 0x7fffffff),
771          (LLGTR GR64:$src)>;
772def : Pat<(and (i64 (z_azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
773          (LLGT bdxaddr20only:$src)>;
774
775// Load and zero rightmost byte.
776let Predicates = [FeatureLoadAndZeroRightmostByte] in {
777  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
778  def : Pat<(and (i64 (z_azextloadi32 bdxaddr20only:$src)), 0xffffff00),
779            (LLZRGF bdxaddr20only:$src)>;
780}
781
782// Load and trap.
783let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
784  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
785  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
786}
787
788// Extend GR64s to GR128s.
789let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
790  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
791
792//===----------------------------------------------------------------------===//
793// "Any" extensions
794//===----------------------------------------------------------------------===//
795
796// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
797def : Pat<(i64 (anyext GR32:$src)),
798          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
799
800// Extend GR64s to GR128s.
801let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
802  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
803
804//===----------------------------------------------------------------------===//
805// Truncations
806//===----------------------------------------------------------------------===//
807
808// Truncations of 64-bit registers to 32-bit registers.
809def : Pat<(i32 (trunc GR64:$src)),
810          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
811
812// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
813// STC, STCY or STCH, depending on the choice of register.
814def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
815             Requires<[FeatureHighWord]>;
816defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
817def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
818           Requires<[FeatureHighWord]>;
819
820// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
821// STH, STHY or STHH, depending on the choice of register.
822def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
823             Requires<[FeatureHighWord]>;
824defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
825def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
826           Requires<[FeatureHighWord]>;
827def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
828
829// Truncations of 64-bit registers to memory.
830defm : StoreGR64Pair<STC, STCY, truncstorei8>;
831defm : StoreGR64Pair<STH, STHY, truncstorei16>;
832def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
833defm : StoreGR64Pair<ST, STY, truncstorei32>;
834def  : StoreGR64PC<STRL, aligned_truncstorei32>;
835
836// Store characters under mask -- not (yet) used for codegen.
837defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
838def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
839
840//===----------------------------------------------------------------------===//
841// Multi-register moves
842//===----------------------------------------------------------------------===//
843
844// Multi-register loads.
845defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
846def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
847def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
848def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
849
850// Multi-register stores.
851defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
852def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
853def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
854
855//===----------------------------------------------------------------------===//
856// Byte swaps
857//===----------------------------------------------------------------------===//
858
859// Byte-swapping register moves.
860def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
861def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
862
863// Byte-swapping loads.
864def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
865def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
866def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
867
868// Byte-swapping stores.
869def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
870def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
871def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
872
873// Byte-swapping memory-to-memory moves.
874let mayLoad = 1, mayStore = 1 in
875  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
876
877//===----------------------------------------------------------------------===//
878// Load address instructions
879//===----------------------------------------------------------------------===//
880
881// Load BDX-style addresses.
882let isAsCheapAsAMove = 1, isReMaterializable = 1 in
883  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
884
885// Load a PC-relative address.  There's no version of this instruction
886// with a 16-bit offset, so there's no relaxation.
887let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
888  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
889
890// Load the Global Offset Table address.  This will be lowered into a
891//     larl $R1, _GLOBAL_OFFSET_TABLE_
892// instruction.
893def GOT : Alias<6, (outs GR64:$R1), (ins),
894                [(set GR64:$R1, (global_offset_table))]>;
895
896//===----------------------------------------------------------------------===//
897// Absolute and Negation
898//===----------------------------------------------------------------------===//
899
900let Defs = [CC] in {
901  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
902    def LPR  : UnaryRR <"lpr",  0x10,   abs, GR32, GR32>;
903    def LPGR : UnaryRRE<"lpgr", 0xB900, abs, GR64, GR64>;
904  }
905  let CCValues = 0xE, CompareZeroCCMask = 0xE in
906    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
907}
908defm : SXU<abs, LPGFR>;
909
910let Defs = [CC] in {
911  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
912    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
913    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
914  }
915  let CCValues = 0xE, CompareZeroCCMask = 0xE in
916    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
917}
918defm : SXU<z_inegabs, LNGFR>;
919
920let Defs = [CC] in {
921  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
922    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
923    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
924  }
925  let CCValues = 0xE, CompareZeroCCMask = 0xE in
926    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
927}
928defm : SXU<ineg, LCGFR>;
929
930//===----------------------------------------------------------------------===//
931// Insertion
932//===----------------------------------------------------------------------===//
933
934let isCodeGenOnly = 1 in
935  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, z_azextloadi8, 1>;
936defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, z_azextloadi8, 1>;
937
938defm : InsertMem<"inserti8", IC32,  GR32, z_azextloadi8, bdxaddr12pair>;
939defm : InsertMem<"inserti8", IC32Y, GR32, z_azextloadi8, bdxaddr20pair>;
940
941defm : InsertMem<"inserti8", IC,  GR64, z_azextloadi8, bdxaddr12pair>;
942defm : InsertMem<"inserti8", ICY, GR64, z_azextloadi8, bdxaddr20pair>;
943
944// Insert characters under mask -- not (yet) used for codegen.
945let Defs = [CC] in {
946  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
947  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
948}
949
950// Insertions of a 16-bit immediate, leaving other bits unaffected.
951// We don't have or_as_insert equivalents of these operations because
952// OI is available instead.
953//
954// IIxMux expands to II[LH]x, depending on the choice of register.
955def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
956             Requires<[FeatureHighWord]>;
957def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
958             Requires<[FeatureHighWord]>;
959def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
960def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
961def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
962def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
963def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
964def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
965def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
966def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
967
968// ...likewise for 32-bit immediates.  For GR32s this is a general
969// full-width move.  (We use IILF rather than something like LLILF
970// for 32-bit moves because IILF leaves the upper 32 bits of the
971// GR64 unchanged.)
972let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
973  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
974               Requires<[FeatureHighWord]>;
975  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
976  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
977}
978def LFI : InstAlias<"lfi\t$R1, $RI1", (IILF GR32:$R1, uimm32:$RI1)>;
979def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
980def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
981
982// An alternative model of inserthf, with the first operand being
983// a zero-extended value.
984def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
985          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
986                  imm64hf32:$imm)>;
987
988//===----------------------------------------------------------------------===//
989// Addition
990//===----------------------------------------------------------------------===//
991
992// Addition producing a signed overflow flag.
993let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
994  // Addition of a register.
995  let isCommutable = 1 in {
996    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
997    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
998  }
999  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
1000
1001  // Addition to a high register.
1002  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
1003              Requires<[FeatureHighWord]>;
1004  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
1005              Requires<[FeatureHighWord]>;
1006
1007  // Addition of signed 16-bit immediates.
1008  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
1009  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
1010  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
1011
1012  // Addition of signed 32-bit immediates.
1013  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
1014               Requires<[FeatureHighWord]>;
1015  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
1016  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
1017             Requires<[FeatureHighWord]>;
1018  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
1019
1020  // Addition of memory.
1021  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, z_asextloadi16, 2>;
1022  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, z_load, 4>;
1023  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, z_asextloadi16, 2>,
1024             Requires<[FeatureMiscellaneousExtensions2]>;
1025  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, z_asextloadi32, 4>;
1026  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, z_load, 8>;
1027
1028  // Addition to memory.
1029  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
1030  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
1031}
1032defm : SXB<z_sadd, GR64, AGFR>;
1033
1034// Addition producing a carry.
1035let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
1036  // Addition of a register.
1037  let isCommutable = 1 in {
1038    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
1039    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
1040  }
1041  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
1042
1043  // Addition to a high register.
1044  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
1045               Requires<[FeatureHighWord]>;
1046  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
1047               Requires<[FeatureHighWord]>;
1048
1049  // Addition of signed 16-bit immediates.
1050  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
1051                Requires<[FeatureDistinctOps]>;
1052  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
1053                Requires<[FeatureDistinctOps]>;
1054
1055  // Addition of unsigned 32-bit immediates.
1056  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
1057  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
1058
1059  // Addition of signed 32-bit immediates.
1060  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
1061              Requires<[FeatureHighWord]>;
1062
1063  // Addition of memory.
1064  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, z_load, 4>;
1065  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, z_azextloadi32, 4>;
1066  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, z_load, 8>;
1067
1068  // Addition to memory.
1069  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
1070  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
1071}
1072defm : ZXB<z_uadd, GR64, ALGFR>;
1073
1074// Addition producing and using a carry.
1075let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1076  // Addition of a register.
1077  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
1078  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1079
1080  // Addition of memory.
1081  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, z_load, 4>;
1082  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, z_load, 8>;
1083}
1084
1085// Addition that does not modify the condition code.
1086def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1087             Requires<[FeatureHighWord]>;
1088
1089
1090//===----------------------------------------------------------------------===//
1091// Subtraction
1092//===----------------------------------------------------------------------===//
1093
1094// Subtraction producing a signed overflow flag.
1095let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
1096    CCIfNoSignedWrap = 1 in {
1097  // Subtraction of a register.
1098  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1099  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1100  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1101
1102  // Subtraction from a high register.
1103  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1104              Requires<[FeatureHighWord]>;
1105  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1106              Requires<[FeatureHighWord]>;
1107
1108  // Subtraction of memory.
1109  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, z_asextloadi16, 2>;
1110  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, z_load, 4>;
1111  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, z_asextloadi16, 2>,
1112             Requires<[FeatureMiscellaneousExtensions2]>;
1113  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, z_asextloadi32, 4>;
1114  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, z_load, 8>;
1115}
1116defm : SXB<z_ssub, GR64, SGFR>;
1117
1118// Subtracting an immediate is the same as adding the negated immediate.
1119let AddedComplexity = 1 in {
1120  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1121            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1122        Requires<[FeatureHighWord]>;
1123  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1124            (AFIMux GR32:$src1, simm32n:$src2)>,
1125        Requires<[FeatureHighWord]>;
1126  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1127            (AHI GR32:$src1, imm32sx16n:$src2)>;
1128  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1129            (AFI GR32:$src1, simm32n:$src2)>;
1130  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1131            (AGHI GR64:$src1, imm64sx16n:$src2)>;
1132  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1133            (AGFI GR64:$src1, imm64sx32n:$src2)>;
1134}
1135
1136// And vice versa in one special case, where we need to load a
1137// constant into a register in any case, but the negated constant
1138// requires fewer instructions to load.
1139def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1140          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1141def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1142          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1143
1144// Subtraction producing a carry.
1145let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
1146  // Subtraction of a register.
1147  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1148  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1149  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1150
1151  // Subtraction from a high register.
1152  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1153               Requires<[FeatureHighWord]>;
1154  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1155               Requires<[FeatureHighWord]>;
1156
1157  // Subtraction of unsigned 32-bit immediates.
1158  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
1159  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1160
1161  // Subtraction of memory.
1162  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, z_load, 4>;
1163  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, z_azextloadi32, 4>;
1164  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, z_load, 8>;
1165}
1166defm : ZXB<z_usub, GR64, SLGFR>;
1167
1168// Subtracting an immediate is the same as adding the negated immediate.
1169let AddedComplexity = 1 in {
1170  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1171            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1172        Requires<[FeatureDistinctOps]>;
1173  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1174            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1175        Requires<[FeatureDistinctOps]>;
1176}
1177
1178// And vice versa in one special case (but we prefer addition).
1179def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1180          (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1181
1182// Subtraction producing and using a carry.
1183let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1184  // Subtraction of a register.
1185  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
1186  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1187
1188  // Subtraction of memory.
1189  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, z_load, 4>;
1190  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, z_load, 8>;
1191}
1192
1193
1194//===----------------------------------------------------------------------===//
1195// AND
1196//===----------------------------------------------------------------------===//
1197
1198let Defs = [CC] in {
1199  // ANDs of a register.
1200  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1201    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1202    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1203  }
1204
1205  let isConvertibleToThreeAddress = 1 in {
1206    // ANDs of a 16-bit immediate, leaving other bits unaffected.
1207    // The CC result only reflects the 16-bit field, not the full register.
1208    //
1209    // NIxMux expands to NI[LH]x, depending on the choice of register.
1210    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1211                 Requires<[FeatureHighWord]>;
1212    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1213                 Requires<[FeatureHighWord]>;
1214    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1215    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1216    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1217    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1218    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1219    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1220    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1221    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1222
1223    // ANDs of a 32-bit immediate, leaving other bits unaffected.
1224    // The CC result only reflects the 32-bit field, which means we can
1225    // use it as a zero indicator for i32 operations but not otherwise.
1226    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1227      // Expands to NILF or NIHF, depending on the choice of register.
1228      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1229                   Requires<[FeatureHighWord]>;
1230      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1231      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1232    }
1233    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1234    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1235  }
1236
1237  // ANDs of memory.
1238  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1239    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, z_load, 4>;
1240    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, z_load, 8>;
1241  }
1242
1243  // AND to memory
1244  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1245
1246  // Block AND.
1247  let mayLoad = 1, mayStore = 1 in
1248    defm NC : MemorySS<"nc", 0xD4, z_nc>;
1249}
1250defm : RMWIByte<and, bdaddr12pair, NI>;
1251defm : RMWIByte<and, bdaddr20pair, NIY>;
1252
1253//===----------------------------------------------------------------------===//
1254// OR
1255//===----------------------------------------------------------------------===//
1256
1257let Defs = [CC] in {
1258  // ORs of a register.
1259  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1260    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1261    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1262  }
1263
1264  // ORs of a 16-bit immediate, leaving other bits unaffected.
1265  // The CC result only reflects the 16-bit field, not the full register.
1266  //
1267  // OIxMux expands to OI[LH]x, depending on the choice of register.
1268  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1269               Requires<[FeatureHighWord]>;
1270  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1271               Requires<[FeatureHighWord]>;
1272  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1273  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1274  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1275  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1276  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1277  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1278  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1279  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1280
1281  // ORs of a 32-bit immediate, leaving other bits unaffected.
1282  // The CC result only reflects the 32-bit field, which means we can
1283  // use it as a zero indicator for i32 operations but not otherwise.
1284  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1285    // Expands to OILF or OIHF, depending on the choice of register.
1286    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1287                 Requires<[FeatureHighWord]>;
1288    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1289    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1290  }
1291  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1292  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1293
1294  // ORs of memory.
1295  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1296    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, z_load, 4>;
1297    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, z_load, 8>;
1298  }
1299
1300  // OR to memory
1301  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1302
1303  // Block OR.
1304  let mayLoad = 1, mayStore = 1 in
1305    defm OC : MemorySS<"oc", 0xD6, z_oc>;
1306}
1307defm : RMWIByte<or, bdaddr12pair, OI>;
1308defm : RMWIByte<or, bdaddr20pair, OIY>;
1309
1310//===----------------------------------------------------------------------===//
1311// XOR
1312//===----------------------------------------------------------------------===//
1313
1314let Defs = [CC] in {
1315  // XORs of a register.
1316  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1317    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1318    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1319  }
1320
1321  // XORs of a 32-bit immediate, leaving other bits unaffected.
1322  // The CC result only reflects the 32-bit field, which means we can
1323  // use it as a zero indicator for i32 operations but not otherwise.
1324  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1325    // Expands to XILF or XIHF, depending on the choice of register.
1326    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1327                 Requires<[FeatureHighWord]>;
1328    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1329    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1330  }
1331  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1332  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1333
1334  // XORs of memory.
1335  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1336    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, z_load, 4>;
1337    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, z_load, 8>;
1338  }
1339
1340  // XOR to memory
1341  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1342
1343  // Block XOR.
1344  let mayLoad = 1, mayStore = 1 in
1345    defm XC : MemorySS<"xc", 0xD7, z_xc>;
1346}
1347defm : RMWIByte<xor, bdaddr12pair, XI>;
1348defm : RMWIByte<xor, bdaddr20pair, XIY>;
1349
1350//===----------------------------------------------------------------------===//
1351// Combined logical operations
1352//===----------------------------------------------------------------------===//
1353
1354let Predicates = [FeatureMiscellaneousExtensions3],
1355    Defs = [CC] in {
1356  // AND with complement.
1357  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1358    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1359    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1360  }
1361
1362  // OR with complement.
1363  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1364    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1365    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1366  }
1367
1368  // NAND.
1369  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1370    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1371    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1372  }
1373
1374  // NOR.
1375  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1376    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1377    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1378    let isAsmParserOnly = 1 in {
1379      def NOTR : UnaryRRFa<"notr", 0xB976, nor, GR32, GR32>;
1380      def NOTGR : UnaryRRFa<"notgr", 0xB966, nor, GR64, GR64>;
1381    }
1382  }
1383
1384  // NXOR.
1385  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1386    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1387    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1388  }
1389}
1390
1391//===----------------------------------------------------------------------===//
1392// Multiplication
1393//===----------------------------------------------------------------------===//
1394
1395// Multiplication of a register, setting the condition code.  We prefer these
1396// over MS(G)R if available, even though we cannot use the condition code,
1397// since they are three-operand instructions.
1398let Predicates = [FeatureMiscellaneousExtensions2],
1399    Defs = [CC], isCommutable = 1 in {
1400  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
1401  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1402}
1403
1404// Multiplication of a register.
1405let isCommutable = 1 in {
1406  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
1407  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1408}
1409def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1410defm : SXB<mul, GR64, MSGFR>;
1411
1412// Multiplication of a signed 16-bit immediate.
1413def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
1414def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1415
1416// Multiplication of a signed 32-bit immediate.
1417def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
1418def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1419
1420// Multiplication of memory.
1421defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, z_asextloadi16, 2>;
1422defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, z_load, 4>;
1423def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, z_asextloadi16, 2>,
1424            Requires<[FeatureMiscellaneousExtensions2]>;
1425def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, z_asextloadi32, 4>;
1426def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, z_load, 8>;
1427
1428// Multiplication of memory, setting the condition code.
1429let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1430  defm MSC  : BinaryRXYAndPseudo<"msc",  0xE353, null_frag, GR32, z_load, 4>;
1431  defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, z_load, 8>;
1432}
1433
1434// Multiplication of a register, producing two results.
1435def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
1436def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1437           Requires<[FeatureMiscellaneousExtensions2]>;
1438def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
1439def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1440
1441def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1442          (MGRK GR64:$src1, GR64:$src2)>;
1443def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1444          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1445
1446// Multiplication of memory, producing two results.
1447def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, z_load, 4>;
1448def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, z_load, 4>;
1449def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, z_load, 8>,
1450          Requires<[FeatureMiscellaneousExtensions2]>;
1451def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, z_load, 4>;
1452def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, z_load, 8>;
1453
1454def : Pat<(z_smul_lohi GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1455          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1456def : Pat<(z_umul_lohi GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1457          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1458
1459//===----------------------------------------------------------------------===//
1460// Division and remainder
1461//===----------------------------------------------------------------------===//
1462
1463let hasSideEffects = 1 in {  // Do not speculatively execute.
1464  // Division and remainder, from registers.
1465  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
1466  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1467  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
1468  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
1469  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;
1470
1471  // Division and remainder, from memory.
1472  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, z_load, 4>;
1473  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, z_load, 4>;
1474  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, z_load, 8>;
1475  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, z_load, 4>;
1476  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, z_load, 8>;
1477}
1478def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1479          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1480def : Pat<(z_sdivrem GR64:$src1, (i32 (z_load bdxaddr20only:$src2))),
1481          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1482def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1483          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1484def : Pat<(z_sdivrem GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1485          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1486
1487def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1488          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1489                                       subreg_l32)), GR32:$src2)>;
1490def : Pat<(z_udivrem GR32:$src1, (i32 (z_load bdxaddr20only:$src2))),
1491          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1492                                      subreg_l32)), bdxaddr20only:$src2)>;
1493def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1494          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1495def : Pat<(z_udivrem GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1496          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1497
1498//===----------------------------------------------------------------------===//
1499// Shifts
1500//===----------------------------------------------------------------------===//
1501
1502// Logical shift left.
1503defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1504def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1505def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1506
1507// Arithmetic shift left.
1508let Defs = [CC] in {
1509  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1510  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1511  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1512}
1513
1514// Logical shift right.
1515defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1516def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1517def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1518
1519// Arithmetic shift right.
1520let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1521  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1522  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1523  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1524}
1525
1526// Rotate left.
1527def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
1528def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1529
1530// Rotate second operand left and inserted selected bits into first operand.
1531// These can act like 32-bit operands provided that the constant start and
1532// end bits (operands 2 and 3) are in the range [32, 64).
1533let Defs = [CC] in {
1534  let isCodeGenOnly = 1 in
1535    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1536  let CCValues = 0xE, CompareZeroCCMask = 0xE in {
1537    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1538    def RISBGZ : RotateSelectRIEf<"risbgz", 0xEC55, GR64, GR64, 0, 128>;
1539  }
1540}
1541
1542// On zEC12 we have a variant of RISBG that does not set CC.
1543let Predicates = [FeatureMiscellaneousExtensions] in {
1544  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1545  def RISBGNZ : RotateSelectRIEf<"risbgnz", 0xEC59, GR64, GR64, 0, 128>;
1546}
1547
1548// Forms of RISBG that only affect one word of the destination register.
1549// They do not set CC.
1550let Predicates = [FeatureHighWord] in {
1551  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1552  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
1553  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
1554  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
1555  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
1556  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1557  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1558}
1559
1560// Rotate second operand left and perform a logical operation with selected
1561// bits of the first operand.  The CC result only describes the selected bits,
1562// so isn't useful for a full comparison against zero.
1563let Defs = [CC] in {
1564  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1565  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1566  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1567}
1568
1569//===----------------------------------------------------------------------===//
1570// Comparison
1571//===----------------------------------------------------------------------===//
1572
1573// Signed comparisons.  We put these before the unsigned comparisons because
1574// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1575// of the unsigned forms do.
1576let Defs = [CC], CCValues = 0xE in {
1577  // Comparison with a register.
1578  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
1579  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1580  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;
1581
1582  // Comparison with a high register.
1583  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1584             Requires<[FeatureHighWord]>;
1585  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1586             Requires<[FeatureHighWord]>;
1587
1588  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
1589  // depending on the choice of register.
1590  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1591               Requires<[FeatureHighWord]>;
1592  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1593  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1594
1595  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1596  // depending on the choice of register.
1597  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1598               Requires<[FeatureHighWord]>;
1599  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1600  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1601             Requires<[FeatureHighWord]>;
1602  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1603
1604  // Comparison with memory.
1605  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, z_asextloadi16, 2>;
1606  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, z_load, 4>,
1607               Requires<[FeatureHighWord]>;
1608  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, z_load, 4>;
1609  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, z_load, 4>,
1610               Requires<[FeatureHighWord]>;
1611  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, z_asextloadi16, 2>;
1612  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, z_asextloadi32, 4>;
1613  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, z_load, 8>;
1614  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_z_asextloadi16>;
1615  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_z_load>;
1616  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_z_asextloadi16>;
1617  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_z_asextloadi32>;
1618  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_z_load>;
1619
1620  // Comparison between memory and a signed 16-bit immediate.
1621  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, z_asextloadi16, imm32sx16>;
1622  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, z_load, imm32sx16>;
1623  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, z_load, imm64sx16>;
1624}
1625defm : SXB<z_scmp, GR64, CGFR>;
1626
1627// Unsigned comparisons.
1628let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1629  // Comparison with a register.
1630  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
1631  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1632  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
1633
1634  // Comparison with a high register.
1635  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1636              Requires<[FeatureHighWord]>;
1637  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1638              Requires<[FeatureHighWord]>;
1639
1640  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1641  // or CLIH, depending on the choice of register.
1642  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1643                Requires<[FeatureHighWord]>;
1644  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1645  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
1646              Requires<[FeatureHighWord]>;
1647  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1648
1649  // Comparison with memory.
1650  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, z_load, 4>,
1651                Requires<[FeatureHighWord]>;
1652  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, z_load, 4>;
1653  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, z_load, 4>,
1654                Requires<[FeatureHighWord]>;
1655  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, z_azextloadi32, 4>;
1656  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, z_load, 8>;
1657  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1658                             aligned_z_azextloadi16>;
1659  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1660                             aligned_z_load>;
1661  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1662                             aligned_z_azextloadi16>;
1663  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1664                             aligned_z_azextloadi32>;
1665  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1666                             aligned_z_load>;
1667
1668  // Comparison between memory and an unsigned 8-bit immediate.
1669  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, z_azextloadi8, imm32zx8>;
1670
1671  // Comparison between memory and an unsigned 16-bit immediate.
1672  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, z_azextloadi16, imm32zx16>;
1673  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, z_load, imm32zx16>;
1674  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, z_load, imm64zx16>;
1675}
1676defm : ZXB<z_ucmp, GR64, CLGFR>;
1677
1678// Memory-to-memory comparison.
1679let mayLoad = 1, Defs = [CC] in {
1680  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc>;
1681  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1682  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1683  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1684}
1685
1686// String comparison.
1687let mayLoad = 1, Defs = [CC] in
1688  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1689
1690// Test under mask.
1691let Defs = [CC] in {
1692  // TMxMux expands to TM[LH]x, depending on the choice of register.
1693  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1694               Requires<[FeatureHighWord]>;
1695  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1696               Requires<[FeatureHighWord]>;
1697  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1698  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1699  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1700  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1701
1702  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1703  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1704  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1705  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1706
1707  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, z_anyextloadi8, imm32zx8>;
1708}
1709
1710def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1711def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1712
1713// Compare logical characters under mask -- not (yet) used for codegen.
1714let Defs = [CC] in {
1715  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1716  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// Prefetch and execution hint
1721//===----------------------------------------------------------------------===//
1722
1723let mayLoad = 1, mayStore = 1 in {
1724  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1725  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1726}
1727
1728let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1729  // Branch Prediction Preload
1730  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1731  def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1732
1733  // Next Instruction Access Intent
1734  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1735}
1736
1737//===----------------------------------------------------------------------===//
1738// Atomic operations
1739//===----------------------------------------------------------------------===//
1740
1741// A serialization instruction that acts as a barrier for all memory
1742// accesses, which expands to "bcr 14, 0".
1743let hasSideEffects = 1 in
1744def Serialize : Alias<2, (outs), (ins), []>;
1745
1746let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1747  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_i32, GR32>;
1748  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_i64, GR64>;
1749  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
1750  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1751  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_i32, GR32>;
1752  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_i64, GR64>;
1753  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_i32, GR32>;
1754  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_i64, GR64>;
1755  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_i32, GR32>;
1756  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_i64, GR64>;
1757}
1758
1759def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
1760
1761def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1762def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1763
1764def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1765
1766def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1767def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1768
1769def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1770def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1771
1772def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1773def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1774
1775def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1776def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1777                                               imm32lh16c>;
1778
1779def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1780def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1781def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1782def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1783
1784def ATOMIC_CMP_SWAPW
1785  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1786                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1787                                  uimm32:$bitsize),
1788           [(set GR32:$dst,
1789                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1790                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1791                                     uimm32:$bitsize))]> {
1792  let Defs = [CC];
1793  let mayLoad = 1;
1794  let mayStore = 1;
1795  let usesCustomInserter = 1;
1796  let hasNoSchedulingInfo = 1;
1797}
1798
1799// Test and set.
1800let mayLoad = 1, Defs = [CC] in
1801  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1802
1803// Compare and swap.
1804let Defs = [CC] in {
1805  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1806  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1807}
1808
1809// Compare double and swap.
1810let Defs = [CC] in {
1811  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1812  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1813}
1814
1815// Compare and swap and store.
1816let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1817  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1818
1819// Perform locked operation.
1820let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1821  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1822
1823// Load/store pair from/to quadword.
1824def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1825def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1826
1827// Load pair disjoint.
1828let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1829  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
1830  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1831}
1832
1833//===----------------------------------------------------------------------===//
1834// Translate and convert
1835//===----------------------------------------------------------------------===//
1836
1837let mayLoad = 1, mayStore = 1 in
1838  def TR : SideEffectBinarySSa<"tr", 0xDC>;
1839
1840let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1841  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
1842  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1843}
1844
1845let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1846  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1847
1848let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1849  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
1850  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1851}
1852
1853let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1854  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1855  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1856  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1857  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1858}
1859
1860let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1861  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1862  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1863  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1864  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1865  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1866  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1867
1868  let isAsmParserOnly = 1 in {
1869    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1870    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1871  }
1872}
1873
1874//===----------------------------------------------------------------------===//
1875// Message-security assist
1876//===----------------------------------------------------------------------===//
1877
1878let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1879  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
1880  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1881
1882  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1883  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1884  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1885
1886  let Predicates = [FeatureMessageSecurityAssist4] in {
1887    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1888    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1889    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1890                                               GR128, GR128, GR128>;
1891    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
1892  }
1893
1894  let Predicates = [FeatureMessageSecurityAssist5] in
1895    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1896  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1897    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1898
1899  let Predicates = [FeatureMessageSecurityAssist8] in
1900    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1901                                              GR128, GR128, GR128>;
1902
1903  let Predicates = [FeatureMessageSecurityAssist9] in
1904    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1905}
1906
1907//===----------------------------------------------------------------------===//
1908// Guarded storage
1909//===----------------------------------------------------------------------===//
1910
1911// These instructions use and/or modify the guarded storage control
1912// registers, which we do not otherwise model, so they should have
1913// hasSideEffects.
1914let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1915  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1916  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1917
1918  let mayLoad = 1 in
1919    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1920  let mayStore = 1 in
1921    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1922}
1923
1924//===----------------------------------------------------------------------===//
1925// Decimal arithmetic
1926//===----------------------------------------------------------------------===//
1927
1928defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, z_load, 4>;
1929def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, z_load, 8>;
1930
1931defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1932def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1933
1934let mayLoad = 1, mayStore = 1 in {
1935  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1936  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1937  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1938
1939  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
1940  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
1941  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
1942  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
1943  let Defs = [CC] in {
1944    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
1945    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
1946  }
1947}
1948
1949let mayLoad = 1, mayStore = 1 in {
1950  let Defs = [CC] in {
1951    def AP : SideEffectBinarySSb<"ap", 0xFA>;
1952    def SP : SideEffectBinarySSb<"sp", 0xFB>;
1953    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
1954    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
1955  }
1956  def MP : SideEffectBinarySSb<"mp", 0xFC>;
1957  def DP : SideEffectBinarySSb<"dp", 0xFD>;
1958  let Defs = [CC] in {
1959    def ED : SideEffectBinarySSa<"ed", 0xDE>;
1960    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
1961  }
1962}
1963
1964let Defs = [CC] in {
1965  def CP : CompareSSb<"cp", 0xF9>;
1966  def TP : TestRSL<"tp", 0xEBC0>;
1967}
1968
1969//===----------------------------------------------------------------------===//
1970// Access registers
1971//===----------------------------------------------------------------------===//
1972
1973// Read a 32-bit access register into a GR32.  As with all GR32 operations,
1974// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
1975// when a 64-bit address is stored in a pair of access registers.
1976def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
1977
1978// Set access register.
1979def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
1980
1981// Copy access register.
1982def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
1983
1984// Load address extended.
1985defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
1986
1987// Load access multiple.
1988defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
1989
1990// Store access multiple.
1991defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
1992
1993//===----------------------------------------------------------------------===//
1994// Program mask and addressing mode
1995//===----------------------------------------------------------------------===//
1996
1997// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
1998let Uses = [CC] in
1999  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
2000
2001// Set CC and program mask from a register.
2002let hasSideEffects = 1, Defs = [CC] in
2003  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
2004
2005// Branch and link - like BAS, but also extracts CC and program mask.
2006let isCall = 1, Uses = [CC], Defs = [CC] in {
2007  def BAL  : CallRX<"bal", 0x45>;
2008  def BALR : CallRR<"balr", 0x05>;
2009}
2010
2011// Test addressing mode.
2012let Defs = [CC] in
2013  def TAM : SideEffectInherentE<"tam", 0x010B>;
2014
2015// Set addressing mode.
2016let hasSideEffects = 1 in {
2017  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2018  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2019  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2020}
2021
2022// Branch and set mode.  Not really a call, but also sets an output register.
2023let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2024  def BSM : CallRR<"bsm", 0x0B>;
2025
2026// Branch and save and set mode.
2027let isCall = 1, Defs = [CC] in
2028  def BASSM : CallRR<"bassm", 0x0C>;
2029
2030//===----------------------------------------------------------------------===//
2031// Transactional execution
2032//===----------------------------------------------------------------------===//
2033
2034let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2035  // Transaction Begin
2036  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2037    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2038    let hasNoSchedulingInfo = 1 in
2039     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2040    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2041                                      int_s390_tbeginc, imm32zx16>;
2042  }
2043
2044  // Transaction End
2045  let Defs = [CC] in
2046    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2047
2048  // Transaction Abort
2049  let isTerminator = 1, isBarrier = 1, mayStore = 1,
2050      hasSideEffects = 1 in
2051    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2052
2053  // Nontransactional Store
2054  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2055
2056  // Extract Transaction Nesting Depth
2057  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2058}
2059
2060//===----------------------------------------------------------------------===//
2061// Processor assist
2062//===----------------------------------------------------------------------===//
2063
2064let Predicates = [FeatureProcessorAssist] in {
2065  let hasSideEffects = 1 in
2066    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2067  def : Pat<(int_s390_ppa_txassist GR32:$src),
2068            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2069                 zero_reg, 1)>;
2070}
2071
2072//===----------------------------------------------------------------------===//
2073// Miscellaneous Instructions.
2074//===----------------------------------------------------------------------===//
2075
2076// Find leftmost one, AKA count leading zeros.  The instruction actually
2077// returns a pair of GR64s, the first giving the number of leading zeros
2078// and the second giving a copy of the source with the leftmost one bit
2079// cleared.  We only use the first result here.
2080let Defs = [CC] in
2081  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2082def : Pat<(i64 (ctlz GR64:$src)),
2083          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2084
2085// Population count.  Counts bits set per byte or doubleword.
2086let Predicates = [FeatureMiscellaneousExtensions3] in {
2087  let Defs = [CC] in
2088    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2089  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2090}
2091let Predicates = [FeaturePopulationCount], Defs = [CC] in
2092  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2093
2094// Search a block of memory for a character.
2095let mayLoad = 1, Defs = [CC] in
2096  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2097let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2098  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2099
2100// Compare until substring equal.
2101let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2102  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2103
2104// Compare and form codeword.
2105let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2106  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2107
2108// Update tree.
2109let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2110    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2111  def UPT : SideEffectInherentE<"upt", 0x0102>;
2112
2113// Checksum.
2114let mayLoad = 1, Defs = [CC] in
2115  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2116
2117// Compression call.
2118let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2119  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2120
2121// Sort lists.
2122let Predicates = [FeatureEnhancedSort],
2123    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2124  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2125
2126// Deflate conversion call.
2127let Predicates = [FeatureDeflateConversion],
2128    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2129  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2130                                           GR128, GR128, GR64>;
2131
2132// NNPA.
2133let Predicates = [FeatureNNPAssist],
2134    mayLoad = 1, mayStore = 1, Defs = [R0D, CC], Uses = [R0D, R1D] in
2135  def NNPA : SideEffectInherentRRE<"nnpa", 0xB93B>;
2136
2137// Execute.
2138let hasSideEffects = 1 in {
2139  def EX   : SideEffectBinaryRX<"ex", 0x44, ADDR64>;
2140  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, ADDR64>;
2141  let hasNoSchedulingInfo = 1 in
2142    def EXRL_Pseudo : Alias<6, (outs), (ins i64imm:$TargetOpc, ADDR64:$lenMinus1,
2143                                          bdaddr12only:$bdl1, bdaddr12only:$bd2),
2144                                          []>;
2145}
2146
2147//===----------------------------------------------------------------------===//
2148// .insn directive instructions
2149//===----------------------------------------------------------------------===//
2150
2151let isCodeGenOnly = 1, hasSideEffects = 1 in {
2152  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2153  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2154                                             imm32sx16:$I2),
2155                                ".insn ri,$enc,$R1,$I2", []>;
2156  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2157                                              AnyReg:$R3, brtarget16:$I2),
2158                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
2159  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2160                                              brtarget32:$I2),
2161                                 ".insn ril,$enc,$R1,$I2", []>;
2162  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2163                                               uimm32:$I2),
2164                                  ".insn rilu,$enc,$R1,$I2", []>;
2165  def InsnRIS : DirectiveInsnRIS<(outs),
2166                                 (ins imm64zx48:$enc, AnyReg:$R1,
2167                                      imm32sx8:$I2, imm32zx4:$M3,
2168                                      (bdaddr12only $B4, $D4):$BD4),
2169                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2170  def InsnRR : DirectiveInsnRR<(outs),
2171                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2172                               ".insn rr,$enc,$R1,$R2", []>;
2173  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2174                                              AnyReg:$R1, AnyReg:$R2),
2175                                 ".insn rre,$enc,$R1,$R2", []>;
2176  def InsnRRF : DirectiveInsnRRF<(outs),
2177                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2178                                      AnyReg:$R3, imm32zx4:$M4),
2179                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2180  def InsnRRS : DirectiveInsnRRS<(outs),
2181                                 (ins imm64zx48:$enc, AnyReg:$R1,
2182                                      AnyReg:$R2, imm32zx4:$M3,
2183                                      (bdaddr12only $B4, $D4):$BD4),
2184                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2185  def InsnRS  : DirectiveInsnRS<(outs),
2186                                (ins imm64zx32:$enc, AnyReg:$R1,
2187                                     AnyReg:$R3, (bdaddr12only $B2, $D2):$BD2),
2188                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
2189  def InsnRSE : DirectiveInsnRSE<(outs),
2190                                 (ins imm64zx48:$enc, AnyReg:$R1,
2191                                      AnyReg:$R3, (bdaddr12only $B2, $D2):$BD2),
2192                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2193  def InsnRSI : DirectiveInsnRSI<(outs),
2194                                 (ins imm64zx48:$enc, AnyReg:$R1,
2195                                      AnyReg:$R3, brtarget16:$RI2),
2196                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2197  def InsnRSY : DirectiveInsnRSY<(outs),
2198                                 (ins imm64zx48:$enc, AnyReg:$R1,
2199                                      AnyReg:$R3, (bdaddr20only $B2, $D2):$BD2),
2200                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2201  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2202                                             (bdxaddr12only $B2, $D2, $X2):$XBD2),
2203                                ".insn rx,$enc,$R1,$XBD2", []>;
2204  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2205                                              (bdxaddr12only $B2, $D2, $X2):$XBD2),
2206                                 ".insn rxe,$enc,$R1,$XBD2", []>;
2207  def InsnRXF : DirectiveInsnRXF<(outs),
2208                                 (ins imm64zx48:$enc, AnyReg:$R1,
2209                                      AnyReg:$R3, (bdxaddr12only $B2, $D2, $X2):$XBD2),
2210                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2211  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2212                                              (bdxaddr20only $B2, $D2, $X2):$XBD2),
2213                                 ".insn rxy,$enc,$R1,$XBD2", []>;
2214  def InsnS : DirectiveInsnS<(outs),
2215                             (ins imm64zx32:$enc, (bdaddr12only $B2, $D2):$BD2),
2216                             ".insn s,$enc,$BD2", []>;
2217  def InsnSI : DirectiveInsnSI<(outs),
2218                               (ins imm64zx32:$enc, (bdaddr12only $B1, $D1):$BD1,
2219                                    imm32sx8:$I2),
2220                               ".insn si,$enc,$BD1,$I2", []>;
2221  def InsnSIY : DirectiveInsnSIY<(outs),
2222                                 (ins imm64zx48:$enc,
2223                                      (bdaddr20only $B1, $D1):$BD1, imm32zx8:$I2),
2224                                 ".insn siy,$enc,$BD1,$I2", []>;
2225  def InsnSIL : DirectiveInsnSIL<(outs),
2226                                 (ins imm64zx48:$enc, (bdaddr12only $B1, $D1):$BD1,
2227                                      imm32zx16:$I2),
2228                                 ".insn sil,$enc,$BD1,$I2", []>;
2229  def InsnSS : DirectiveInsnSS<(outs),
2230                               (ins imm64zx48:$enc, (bdraddr12only $B1, $D1, $R1):$RBD1,
2231                                    (bdaddr12only $B2, $D2):$BD2, AnyReg:$R3),
2232                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2233  def InsnSSE : DirectiveInsnSSE<(outs),
2234                                 (ins imm64zx48:$enc,
2235                                      (bdaddr12only $B1, $D1):$BD1,(bdaddr12only $B2, $D2):$BD2),
2236                                 ".insn sse,$enc,$BD1,$BD2", []>;
2237  def InsnSSF : DirectiveInsnSSF<(outs),
2238                                 (ins imm64zx48:$enc, (bdaddr12only $B1, $D1):$BD1,
2239                                      (bdaddr12only $B2, $D2):$BD2, AnyReg:$R3),
2240                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2241  def InsnVRI : DirectiveInsnVRI<(outs),
2242                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2243                                  imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
2244                                 ".insn vri,$enc,$V1,$V2,$I3,$M4,$M5", []>;
2245  def InsnVRR : DirectiveInsnVRR<(outs),
2246                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2247                                  VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
2248                                  imm32zx4:$M6),
2249                                  ".insn vrr,$enc,$V1,$V2,$V3,$M4,$M5,$M6", []>;
2250  def InsnVRS : DirectiveInsnVRS<(outs),
2251                                 (ins imm64zx48:$enc, AnyReg:$R1, VR128:$V3,
2252                                  (bdaddr12only $B2, $D2):$BD2, imm32zx4:$M4),
2253                                 ".insn vrs,$enc,$BD2,$M4", []>;
2254  def InsnVRV : DirectiveInsnVRV<(outs),
2255                                 (ins imm64zx48:$enc, VR128:$V1,
2256                                      (bdvaddr12only $B2, $D2, $V2):$VBD2, imm32zx4:$M3),
2257                                 ".insn vrv,$enc,$V1,$VBD2,$M3", []>;
2258  def InsnVRX : DirectiveInsnVRX<(outs),
2259                                 (ins imm64zx48:$enc, VR128:$V1,
2260                                  (bdxaddr12only $B2, $D2, $X2):$XBD2, imm32zx4:$M3),
2261                                 ".insn vrx,$enc,$V1,$XBD2,$M3", []>;
2262  def InsnVSI : DirectiveInsnVSI<(outs),
2263                                 (ins imm64zx48:$enc, VR128:$V1,
2264                                  (bdaddr12only $B2, $D2):$BD2, imm32zx8:$I3),
2265                                  ".insn vsi,$enc,$V1,$BD2,$I3", []>;
2266}
2267
2268//===----------------------------------------------------------------------===//
2269// Peepholes.
2270//===----------------------------------------------------------------------===//
2271
2272// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2273// equivalent to (and (xor x, -1), y)
2274def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2275                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2276
2277// Use LCGR/AGHI for i64 xor with -1.
2278def : Pat<(xor GR64:$x, (i64 -1)),
2279          (AGHI (LCGR GR64:$x), (i64 -1))>;
2280
2281// Shift/rotate instructions only use the last 6 bits of the second operand
2282// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2283// last 16 bits.
2284// Complexity is added so that we match this before we match NILF on the AND
2285// operation alone.
2286let AddedComplexity = 4 in {
2287  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2288            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2289
2290  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2291            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2292
2293  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2294            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2295
2296  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2297            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2298
2299  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2300            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2301
2302  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2303            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2304
2305  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2306            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2307
2308  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2309            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2310}
2311
2312// Substitute (x*64-s) with (-s), since shift/rotate instructions only
2313// use the last 6 bits of the second operand register (making it modulo 64).
2314let AddedComplexity = 4 in {
2315  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2316            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2317
2318  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
2319            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2320
2321  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2322            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2323
2324  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2325            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2326}
2327
2328// Peepholes for turning scalar operations into block operations.  The length
2329// is given as one less for these pseudos.
2330defm : BlockLoadStore<anyextloadi8, i32, MVCImm, NCImm, OCImm, XCImm, 0>;
2331defm : BlockLoadStore<anyextloadi16, i32, MVCImm, NCImm, OCImm, XCImm, 1>;
2332defm : BlockLoadStore<load, i32, MVCImm, NCImm, OCImm, XCImm, 3>;
2333defm : BlockLoadStore<anyextloadi8, i64, MVCImm, NCImm, OCImm, XCImm, 0>;
2334defm : BlockLoadStore<anyextloadi16, i64, MVCImm, NCImm, OCImm, XCImm, 1>;
2335defm : BlockLoadStore<anyextloadi32, i64, MVCImm, NCImm, OCImm, XCImm, 3>;
2336defm : BlockLoadStore<load, i64, MVCImm, NCImm, OCImm, XCImm, 7>;
2337
2338//===----------------------------------------------------------------------===//
2339// Mnemonic Aliases
2340//===----------------------------------------------------------------------===//
2341
2342def JCT   : MnemonicAlias<"jct", "brct">;
2343def JCTG  : MnemonicAlias<"jctg", "brctg">;
2344def JC    : MnemonicAlias<"jc", "brc">;
2345def JCTH  : MnemonicAlias<"jcth", "brcth">;
2346def JAS   : MnemonicAlias<"jas", "bras">;
2347def JASL  : MnemonicAlias<"jasl", "brasl">;
2348def JXH   : MnemonicAlias<"jxh", "brxh">;
2349def JXLE  : MnemonicAlias<"jxle", "brxle">;
2350def JXHG  : MnemonicAlias<"jxhg", "brxhg">;
2351def JXLEG : MnemonicAlias<"jxleg", "brxlg">;
2352
2353def BRU   : MnemonicAlias<"bru", "j">;
2354def BRUL  : MnemonicAlias<"brul", "jg", "att">;
2355def BRUL_HLASM  : MnemonicAlias<"brul", "jlu", "hlasm">;
2356
2357foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
2358              "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
2359  defm BRUAsm#V  : MnemonicCondBranchAlias <CV<V>, "br#", "j#">;
2360  defm BRULAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jg#", "att">;
2361  defm BRUL_HLASMAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jl#", "hlasm">;
2362}
2363