1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SystemZ implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZInstrInfo.h" 14 #include "MCTargetDesc/SystemZMCTargetDesc.h" 15 #include "SystemZ.h" 16 #include "SystemZInstrBuilder.h" 17 #include "SystemZSubtarget.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/LiveInterval.h" 20 #include "llvm/CodeGen/LiveIntervals.h" 21 #include "llvm/CodeGen/LivePhysRegs.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/CodeGen/VirtRegMap.h" 35 #include "llvm/MC/MCInstrDesc.h" 36 #include "llvm/MC/MCRegisterInfo.h" 37 #include "llvm/Support/BranchProbability.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Target/TargetMachine.h" 41 #include <cassert> 42 #include <cstdint> 43 #include <iterator> 44 45 using namespace llvm; 46 47 #define GET_INSTRINFO_CTOR_DTOR 48 #define GET_INSTRMAP_INFO 49 #include "SystemZGenInstrInfo.inc" 50 51 #define DEBUG_TYPE "systemz-II" 52 53 // Return a mask with Count low bits set. 54 static uint64_t allOnes(unsigned int Count) { 55 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 56 } 57 58 // Pin the vtable to this file. 59 void SystemZInstrInfo::anchor() {} 60 61 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 62 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 63 RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()), 64 STI(sti) {} 65 66 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 67 // each having the opcode given by NewOpcode. 68 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 69 unsigned NewOpcode) const { 70 MachineBasicBlock *MBB = MI->getParent(); 71 MachineFunction &MF = *MBB->getParent(); 72 73 // Get two load or store instructions. Use the original instruction for one 74 // of them (arbitrarily the second here) and create a clone for the other. 75 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 76 MBB->insert(MI, EarlierMI); 77 78 // Set up the two 64-bit registers and remember super reg and its flags. 79 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 80 MachineOperand &LowRegOp = MI->getOperand(0); 81 Register Reg128 = LowRegOp.getReg(); 82 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill()); 83 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef()); 84 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 85 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 86 87 if (MI->mayStore()) { 88 // Add implicit uses of the super register in case one of the subregs is 89 // undefined. We could track liveness and skip storing an undefined 90 // subreg, but this is hopefully rare (discovered with llvm-stress). 91 // If Reg128 was killed, set kill flag on MI. 92 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit); 93 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl); 94 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed)); 95 } 96 97 // The address in the first (high) instruction is already correct. 98 // Adjust the offset in the second (low) instruction. 99 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 100 MachineOperand &LowOffsetOp = MI->getOperand(2); 101 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 102 103 // Clear the kill flags on the registers in the first instruction. 104 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse()) 105 EarlierMI->getOperand(0).setIsKill(false); 106 EarlierMI->getOperand(1).setIsKill(false); 107 EarlierMI->getOperand(3).setIsKill(false); 108 109 // Set the opcodes. 110 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 111 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 112 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 113 114 EarlierMI->setDesc(get(HighOpcode)); 115 MI->setDesc(get(LowOpcode)); 116 } 117 118 // Split ADJDYNALLOC instruction MI. 119 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 120 MachineBasicBlock *MBB = MI->getParent(); 121 MachineFunction &MF = *MBB->getParent(); 122 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 123 MachineOperand &OffsetMO = MI->getOperand(2); 124 SystemZCallingConventionRegisters *Regs = STI.getSpecialRegisters(); 125 126 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 127 Regs->getCallFrameSize() + 128 Regs->getStackPointerBias() + 129 OffsetMO.getImm()); 130 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 131 assert(NewOpcode && "No support for huge argument lists yet"); 132 MI->setDesc(get(NewOpcode)); 133 OffsetMO.setImm(Offset); 134 } 135 136 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 137 // if the first operand is a low GR32 and HighOpcode if the first operand 138 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 139 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 140 // MI has the same kind of operand as LowOpcode, so needs to be converted 141 // if HighOpcode is used. 142 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 143 unsigned HighOpcode, 144 bool ConvertHigh) const { 145 Register Reg = MI.getOperand(0).getReg(); 146 bool IsHigh = SystemZ::isHighReg(Reg); 147 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 148 if (IsHigh && ConvertHigh) 149 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 150 } 151 152 // MI is a three-operand RIE-style pseudo instruction. Replace it with 153 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 154 // followed by HighOpcode or LowOpcode, depending on whether the target 155 // is a high or low GR32. 156 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 157 unsigned LowOpcodeK, 158 unsigned HighOpcode) const { 159 Register DestReg = MI.getOperand(0).getReg(); 160 Register SrcReg = MI.getOperand(1).getReg(); 161 bool DestIsHigh = SystemZ::isHighReg(DestReg); 162 bool SrcIsHigh = SystemZ::isHighReg(SrcReg); 163 if (!DestIsHigh && !SrcIsHigh) 164 MI.setDesc(get(LowOpcodeK)); 165 else { 166 if (DestReg != SrcReg) { 167 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 168 SystemZ::LR, 32, MI.getOperand(1).isKill(), 169 MI.getOperand(1).isUndef()); 170 MI.getOperand(1).setReg(DestReg); 171 } 172 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 173 MI.tieOperands(0, 1); 174 } 175 } 176 177 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 178 // if the first operand is a low GR32 and HighOpcode if the first operand 179 // is a high GR32. 180 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 181 unsigned HighOpcode) const { 182 Register Reg = MI.getOperand(0).getReg(); 183 unsigned Opcode = getOpcodeForOffset( 184 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode, 185 MI.getOperand(2).getImm()); 186 MI.setDesc(get(Opcode)); 187 } 188 189 // MI is a load-on-condition pseudo instruction with a single register 190 // (source or destination) operand. Replace it with LowOpcode if the 191 // register is a low GR32 and HighOpcode if the register is a high GR32. 192 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 193 unsigned HighOpcode) const { 194 Register Reg = MI.getOperand(0).getReg(); 195 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode; 196 MI.setDesc(get(Opcode)); 197 } 198 199 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 200 // of one GRX32 into another. Replace it with LowOpcode if both operands 201 // are low registers, otherwise use RISB[LH]G. 202 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 203 unsigned Size) const { 204 MachineInstrBuilder MIB = 205 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 206 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 207 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 208 209 // Keep the remaining operands as-is. 210 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) 211 MIB.add(MO); 212 213 MI.eraseFromParent(); 214 } 215 216 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 217 MachineBasicBlock *MBB = MI->getParent(); 218 MachineFunction &MF = *MBB->getParent(); 219 const Register Reg64 = MI->getOperand(0).getReg(); 220 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32); 221 222 // EAR can only load the low subregister so us a shift for %a0 to produce 223 // the GR containing %a0 and %a1. 224 225 // ear <reg>, %a0 226 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 227 .addReg(SystemZ::A0) 228 .addReg(Reg64, RegState::ImplicitDefine); 229 230 // sllg <reg>, <reg>, 32 231 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64) 232 .addReg(Reg64) 233 .addReg(0) 234 .addImm(32); 235 236 // ear <reg>, %a1 237 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 238 .addReg(SystemZ::A1); 239 240 // lg <reg>, 40(<reg>) 241 MI->setDesc(get(SystemZ::LG)); 242 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0); 243 } 244 245 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 246 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 247 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 248 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 249 // KillSrc is true if this move is the last use of SrcReg. 250 MachineInstrBuilder 251 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 252 MachineBasicBlock::iterator MBBI, 253 const DebugLoc &DL, unsigned DestReg, 254 unsigned SrcReg, unsigned LowLowOpcode, 255 unsigned Size, bool KillSrc, 256 bool UndefSrc) const { 257 unsigned Opcode; 258 bool DestIsHigh = SystemZ::isHighReg(DestReg); 259 bool SrcIsHigh = SystemZ::isHighReg(SrcReg); 260 if (DestIsHigh && SrcIsHigh) 261 Opcode = SystemZ::RISBHH; 262 else if (DestIsHigh && !SrcIsHigh) 263 Opcode = SystemZ::RISBHL; 264 else if (!DestIsHigh && SrcIsHigh) 265 Opcode = SystemZ::RISBLH; 266 else { 267 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 268 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 269 } 270 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 271 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 272 .addReg(DestReg, RegState::Undef) 273 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 274 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 275 } 276 277 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 278 bool NewMI, 279 unsigned OpIdx1, 280 unsigned OpIdx2) const { 281 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 282 if (NewMI) 283 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 284 return MI; 285 }; 286 287 switch (MI.getOpcode()) { 288 case SystemZ::SELRMux: 289 case SystemZ::SELFHR: 290 case SystemZ::SELR: 291 case SystemZ::SELGR: 292 case SystemZ::LOCRMux: 293 case SystemZ::LOCFHR: 294 case SystemZ::LOCR: 295 case SystemZ::LOCGR: { 296 auto &WorkingMI = cloneIfNew(MI); 297 // Invert condition. 298 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 299 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 300 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 301 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 302 OpIdx1, OpIdx2); 303 } 304 default: 305 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 306 } 307 } 308 309 // If MI is a simple load or store for a frame object, return the register 310 // it loads or stores and set FrameIndex to the index of the frame object. 311 // Return 0 otherwise. 312 // 313 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 314 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 315 unsigned Flag) { 316 const MCInstrDesc &MCID = MI.getDesc(); 317 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 318 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 319 FrameIndex = MI.getOperand(1).getIndex(); 320 return MI.getOperand(0).getReg(); 321 } 322 return 0; 323 } 324 325 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 326 int &FrameIndex) const { 327 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 328 } 329 330 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 331 int &FrameIndex) const { 332 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 333 } 334 335 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 336 int &DestFrameIndex, 337 int &SrcFrameIndex) const { 338 // Check for MVC 0(Length,FI1),0(FI2) 339 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 340 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 341 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 342 MI.getOperand(4).getImm() != 0) 343 return false; 344 345 // Check that Length covers the full slots. 346 int64_t Length = MI.getOperand(2).getImm(); 347 unsigned FI1 = MI.getOperand(0).getIndex(); 348 unsigned FI2 = MI.getOperand(3).getIndex(); 349 if (MFI.getObjectSize(FI1) != Length || 350 MFI.getObjectSize(FI2) != Length) 351 return false; 352 353 DestFrameIndex = FI1; 354 SrcFrameIndex = FI2; 355 return true; 356 } 357 358 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 359 MachineBasicBlock *&TBB, 360 MachineBasicBlock *&FBB, 361 SmallVectorImpl<MachineOperand> &Cond, 362 bool AllowModify) const { 363 // Most of the code and comments here are boilerplate. 364 365 // Start from the bottom of the block and work up, examining the 366 // terminator instructions. 367 MachineBasicBlock::iterator I = MBB.end(); 368 while (I != MBB.begin()) { 369 --I; 370 if (I->isDebugInstr()) 371 continue; 372 373 // Working from the bottom, when we see a non-terminator instruction, we're 374 // done. 375 if (!isUnpredicatedTerminator(*I)) 376 break; 377 378 // A terminator that isn't a branch can't easily be handled by this 379 // analysis. 380 if (!I->isBranch()) 381 return true; 382 383 // Can't handle indirect branches. 384 SystemZII::Branch Branch(getBranchInfo(*I)); 385 if (!Branch.hasMBBTarget()) 386 return true; 387 388 // Punt on compound branches. 389 if (Branch.Type != SystemZII::BranchNormal) 390 return true; 391 392 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 393 // Handle unconditional branches. 394 if (!AllowModify) { 395 TBB = Branch.getMBBTarget(); 396 continue; 397 } 398 399 // If the block has any instructions after a JMP, delete them. 400 MBB.erase(std::next(I), MBB.end()); 401 402 Cond.clear(); 403 FBB = nullptr; 404 405 // Delete the JMP if it's equivalent to a fall-through. 406 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) { 407 TBB = nullptr; 408 I->eraseFromParent(); 409 I = MBB.end(); 410 continue; 411 } 412 413 // TBB is used to indicate the unconditinal destination. 414 TBB = Branch.getMBBTarget(); 415 continue; 416 } 417 418 // Working from the bottom, handle the first conditional branch. 419 if (Cond.empty()) { 420 // FIXME: add X86-style branch swap 421 FBB = TBB; 422 TBB = Branch.getMBBTarget(); 423 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 424 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 425 continue; 426 } 427 428 // Handle subsequent conditional branches. 429 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 430 431 // Only handle the case where all conditional branches branch to the same 432 // destination. 433 if (TBB != Branch.getMBBTarget()) 434 return true; 435 436 // If the conditions are the same, we can leave them alone. 437 unsigned OldCCValid = Cond[0].getImm(); 438 unsigned OldCCMask = Cond[1].getImm(); 439 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 440 continue; 441 442 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 443 return false; 444 } 445 446 return false; 447 } 448 449 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 450 int *BytesRemoved) const { 451 assert(!BytesRemoved && "code size not handled"); 452 453 // Most of the code and comments here are boilerplate. 454 MachineBasicBlock::iterator I = MBB.end(); 455 unsigned Count = 0; 456 457 while (I != MBB.begin()) { 458 --I; 459 if (I->isDebugInstr()) 460 continue; 461 if (!I->isBranch()) 462 break; 463 if (!getBranchInfo(*I).hasMBBTarget()) 464 break; 465 // Remove the branch. 466 I->eraseFromParent(); 467 I = MBB.end(); 468 ++Count; 469 } 470 471 return Count; 472 } 473 474 bool SystemZInstrInfo:: 475 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 476 assert(Cond.size() == 2 && "Invalid condition"); 477 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 478 return false; 479 } 480 481 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 482 MachineBasicBlock *TBB, 483 MachineBasicBlock *FBB, 484 ArrayRef<MachineOperand> Cond, 485 const DebugLoc &DL, 486 int *BytesAdded) const { 487 // In this function we output 32-bit branches, which should always 488 // have enough range. They can be shortened and relaxed by later code 489 // in the pipeline, if desired. 490 491 // Shouldn't be a fall through. 492 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 493 assert((Cond.size() == 2 || Cond.size() == 0) && 494 "SystemZ branch conditions have one component!"); 495 assert(!BytesAdded && "code size not handled"); 496 497 if (Cond.empty()) { 498 // Unconditional branch? 499 assert(!FBB && "Unconditional branch with multiple successors!"); 500 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 501 return 1; 502 } 503 504 // Conditional branch. 505 unsigned Count = 0; 506 unsigned CCValid = Cond[0].getImm(); 507 unsigned CCMask = Cond[1].getImm(); 508 BuildMI(&MBB, DL, get(SystemZ::BRC)) 509 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 510 ++Count; 511 512 if (FBB) { 513 // Two-way Conditional branch. Insert the second branch. 514 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 515 ++Count; 516 } 517 return Count; 518 } 519 520 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 521 Register &SrcReg2, int64_t &Mask, 522 int64_t &Value) const { 523 assert(MI.isCompare() && "Caller should have checked for a comparison"); 524 525 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 526 MI.getOperand(1).isImm()) { 527 SrcReg = MI.getOperand(0).getReg(); 528 SrcReg2 = 0; 529 Value = MI.getOperand(1).getImm(); 530 Mask = ~0; 531 return true; 532 } 533 534 return false; 535 } 536 537 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 538 ArrayRef<MachineOperand> Pred, 539 Register DstReg, Register TrueReg, 540 Register FalseReg, int &CondCycles, 541 int &TrueCycles, 542 int &FalseCycles) const { 543 // Not all subtargets have LOCR instructions. 544 if (!STI.hasLoadStoreOnCond()) 545 return false; 546 if (Pred.size() != 2) 547 return false; 548 549 // Check register classes. 550 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 551 const TargetRegisterClass *RC = 552 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 553 if (!RC) 554 return false; 555 556 // We have LOCR instructions for 32 and 64 bit general purpose registers. 557 if ((STI.hasLoadStoreOnCond2() && 558 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 559 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 560 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 561 CondCycles = 2; 562 TrueCycles = 2; 563 FalseCycles = 2; 564 return true; 565 } 566 567 // Can't do anything else. 568 return false; 569 } 570 571 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 572 MachineBasicBlock::iterator I, 573 const DebugLoc &DL, Register DstReg, 574 ArrayRef<MachineOperand> Pred, 575 Register TrueReg, 576 Register FalseReg) const { 577 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 578 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 579 580 assert(Pred.size() == 2 && "Invalid condition"); 581 unsigned CCValid = Pred[0].getImm(); 582 unsigned CCMask = Pred[1].getImm(); 583 584 unsigned Opc; 585 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 586 if (STI.hasMiscellaneousExtensions3()) 587 Opc = SystemZ::SELRMux; 588 else if (STI.hasLoadStoreOnCond2()) 589 Opc = SystemZ::LOCRMux; 590 else { 591 Opc = SystemZ::LOCR; 592 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 593 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 594 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 595 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg); 596 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg); 597 TrueReg = TReg; 598 FalseReg = FReg; 599 } 600 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 601 if (STI.hasMiscellaneousExtensions3()) 602 Opc = SystemZ::SELGR; 603 else 604 Opc = SystemZ::LOCGR; 605 } else 606 llvm_unreachable("Invalid register class"); 607 608 BuildMI(MBB, I, DL, get(Opc), DstReg) 609 .addReg(FalseReg).addReg(TrueReg) 610 .addImm(CCValid).addImm(CCMask); 611 } 612 613 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 614 Register Reg, 615 MachineRegisterInfo *MRI) const { 616 unsigned DefOpc = DefMI.getOpcode(); 617 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 618 DefOpc != SystemZ::LGHI) 619 return false; 620 if (DefMI.getOperand(0).getReg() != Reg) 621 return false; 622 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 623 624 unsigned UseOpc = UseMI.getOpcode(); 625 unsigned NewUseOpc; 626 unsigned UseIdx; 627 int CommuteIdx = -1; 628 bool TieOps = false; 629 switch (UseOpc) { 630 case SystemZ::SELRMux: 631 TieOps = true; 632 [[fallthrough]]; 633 case SystemZ::LOCRMux: 634 if (!STI.hasLoadStoreOnCond2()) 635 return false; 636 NewUseOpc = SystemZ::LOCHIMux; 637 if (UseMI.getOperand(2).getReg() == Reg) 638 UseIdx = 2; 639 else if (UseMI.getOperand(1).getReg() == Reg) 640 UseIdx = 2, CommuteIdx = 1; 641 else 642 return false; 643 break; 644 case SystemZ::SELGR: 645 TieOps = true; 646 [[fallthrough]]; 647 case SystemZ::LOCGR: 648 if (!STI.hasLoadStoreOnCond2()) 649 return false; 650 NewUseOpc = SystemZ::LOCGHI; 651 if (UseMI.getOperand(2).getReg() == Reg) 652 UseIdx = 2; 653 else if (UseMI.getOperand(1).getReg() == Reg) 654 UseIdx = 2, CommuteIdx = 1; 655 else 656 return false; 657 break; 658 default: 659 return false; 660 } 661 662 if (CommuteIdx != -1) 663 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 664 return false; 665 666 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 667 UseMI.setDesc(get(NewUseOpc)); 668 if (TieOps) 669 UseMI.tieOperands(0, 1); 670 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 671 if (DeleteDef) 672 DefMI.eraseFromParent(); 673 674 return true; 675 } 676 677 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const { 678 unsigned Opcode = MI.getOpcode(); 679 if (Opcode == SystemZ::Return || 680 Opcode == SystemZ::Return_XPLINK || 681 Opcode == SystemZ::Trap || 682 Opcode == SystemZ::CallJG || 683 Opcode == SystemZ::CallBR) 684 return true; 685 return false; 686 } 687 688 bool SystemZInstrInfo:: 689 isProfitableToIfCvt(MachineBasicBlock &MBB, 690 unsigned NumCycles, unsigned ExtraPredCycles, 691 BranchProbability Probability) const { 692 // Avoid using conditional returns at the end of a loop (since then 693 // we'd need to emit an unconditional branch to the beginning anyway, 694 // making the loop body longer). This doesn't apply for low-probability 695 // loops (eg. compare-and-swap retry), so just decide based on branch 696 // probability instead of looping structure. 697 // However, since Compare and Trap instructions cost the same as a regular 698 // Compare instruction, we should allow the if conversion to convert this 699 // into a Conditional Compare regardless of the branch probability. 700 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 701 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 702 return false; 703 // For now only convert single instructions. 704 return NumCycles == 1; 705 } 706 707 bool SystemZInstrInfo:: 708 isProfitableToIfCvt(MachineBasicBlock &TMBB, 709 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 710 MachineBasicBlock &FMBB, 711 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 712 BranchProbability Probability) const { 713 // For now avoid converting mutually-exclusive cases. 714 return false; 715 } 716 717 bool SystemZInstrInfo:: 718 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 719 BranchProbability Probability) const { 720 // For now only duplicate single instructions. 721 return NumCycles == 1; 722 } 723 724 bool SystemZInstrInfo::PredicateInstruction( 725 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 726 assert(Pred.size() == 2 && "Invalid condition"); 727 unsigned CCValid = Pred[0].getImm(); 728 unsigned CCMask = Pred[1].getImm(); 729 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 730 unsigned Opcode = MI.getOpcode(); 731 if (Opcode == SystemZ::Trap) { 732 MI.setDesc(get(SystemZ::CondTrap)); 733 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 734 .addImm(CCValid).addImm(CCMask) 735 .addReg(SystemZ::CC, RegState::Implicit); 736 return true; 737 } 738 if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) { 739 MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn 740 : SystemZ::CondReturn_XPLINK)); 741 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 742 .addImm(CCValid) 743 .addImm(CCMask) 744 .addReg(SystemZ::CC, RegState::Implicit); 745 return true; 746 } 747 if (Opcode == SystemZ::CallJG) { 748 MachineOperand FirstOp = MI.getOperand(0); 749 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 750 MI.removeOperand(1); 751 MI.removeOperand(0); 752 MI.setDesc(get(SystemZ::CallBRCL)); 753 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 754 .addImm(CCValid) 755 .addImm(CCMask) 756 .add(FirstOp) 757 .addRegMask(RegMask) 758 .addReg(SystemZ::CC, RegState::Implicit); 759 return true; 760 } 761 if (Opcode == SystemZ::CallBR) { 762 MachineOperand Target = MI.getOperand(0); 763 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 764 MI.removeOperand(1); 765 MI.removeOperand(0); 766 MI.setDesc(get(SystemZ::CallBCR)); 767 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 768 .addImm(CCValid).addImm(CCMask) 769 .add(Target) 770 .addRegMask(RegMask) 771 .addReg(SystemZ::CC, RegState::Implicit); 772 return true; 773 } 774 return false; 775 } 776 777 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 778 MachineBasicBlock::iterator MBBI, 779 const DebugLoc &DL, MCRegister DestReg, 780 MCRegister SrcReg, bool KillSrc) const { 781 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the 782 // super register in case one of the subregs is undefined. 783 // This handles ADDR128 too. 784 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 785 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 786 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 787 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 788 .addReg(SrcReg, RegState::Implicit); 789 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 790 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 791 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 792 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit)); 793 return; 794 } 795 796 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 797 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 798 false); 799 return; 800 } 801 802 // Move 128-bit floating-point values between VR128 and FP128. 803 if (SystemZ::VR128BitRegClass.contains(DestReg) && 804 SystemZ::FP128BitRegClass.contains(SrcReg)) { 805 MCRegister SrcRegHi = 806 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64), 807 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 808 MCRegister SrcRegLo = 809 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64), 810 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 811 812 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg) 813 .addReg(SrcRegHi, getKillRegState(KillSrc)) 814 .addReg(SrcRegLo, getKillRegState(KillSrc)); 815 return; 816 } 817 if (SystemZ::FP128BitRegClass.contains(DestReg) && 818 SystemZ::VR128BitRegClass.contains(SrcReg)) { 819 MCRegister DestRegHi = 820 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64), 821 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 822 MCRegister DestRegLo = 823 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64), 824 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 825 826 if (DestRegHi != SrcReg) 827 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false); 828 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo) 829 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1); 830 return; 831 } 832 833 // Move CC value from a GR32. 834 if (DestReg == SystemZ::CC) { 835 unsigned Opcode = 836 SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH; 837 BuildMI(MBB, MBBI, DL, get(Opcode)) 838 .addReg(SrcReg, getKillRegState(KillSrc)) 839 .addImm(3 << (SystemZ::IPM_CC - 16)); 840 return; 841 } 842 843 // Everything else needs only one instruction. 844 unsigned Opcode; 845 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 846 Opcode = SystemZ::LGR; 847 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 848 // For z13 we prefer LDR over LER to avoid partial register dependencies. 849 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 850 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 851 Opcode = SystemZ::LDR; 852 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 853 Opcode = SystemZ::LXR; 854 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 855 Opcode = SystemZ::VLR32; 856 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 857 Opcode = SystemZ::VLR64; 858 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 859 Opcode = SystemZ::VLR; 860 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 861 Opcode = SystemZ::CPYA; 862 else 863 llvm_unreachable("Impossible reg-to-reg copy"); 864 865 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 866 .addReg(SrcReg, getKillRegState(KillSrc)); 867 } 868 869 void SystemZInstrInfo::storeRegToStackSlot( 870 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, 871 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 872 const TargetRegisterInfo *TRI, Register VReg) const { 873 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 874 875 // Callers may expect a single instruction, so keep 128-bit moves 876 // together for now and lower them after register allocation. 877 unsigned LoadOpcode, StoreOpcode; 878 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 879 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 880 .addReg(SrcReg, getKillRegState(isKill)), 881 FrameIdx); 882 } 883 884 void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 885 MachineBasicBlock::iterator MBBI, 886 Register DestReg, int FrameIdx, 887 const TargetRegisterClass *RC, 888 const TargetRegisterInfo *TRI, 889 Register VReg) const { 890 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 891 892 // Callers may expect a single instruction, so keep 128-bit moves 893 // together for now and lower them after register allocation. 894 unsigned LoadOpcode, StoreOpcode; 895 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 896 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 897 FrameIdx); 898 } 899 900 // Return true if MI is a simple load or store with a 12-bit displacement 901 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 902 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 903 const MCInstrDesc &MCID = MI->getDesc(); 904 return ((MCID.TSFlags & Flag) && 905 isUInt<12>(MI->getOperand(2).getImm()) && 906 MI->getOperand(3).getReg() == 0); 907 } 908 909 namespace { 910 911 struct LogicOp { 912 LogicOp() = default; 913 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 914 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 915 916 explicit operator bool() const { return RegSize; } 917 918 unsigned RegSize = 0; 919 unsigned ImmLSB = 0; 920 unsigned ImmSize = 0; 921 }; 922 923 } // end anonymous namespace 924 925 static LogicOp interpretAndImmediate(unsigned Opcode) { 926 switch (Opcode) { 927 case SystemZ::NILMux: return LogicOp(32, 0, 16); 928 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 929 case SystemZ::NILL64: return LogicOp(64, 0, 16); 930 case SystemZ::NILH64: return LogicOp(64, 16, 16); 931 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 932 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 933 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 934 case SystemZ::NILF64: return LogicOp(64, 0, 32); 935 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 936 default: return LogicOp(); 937 } 938 } 939 940 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 941 if (OldMI->registerDefIsDead(SystemZ::CC)) { 942 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 943 if (CCDef != nullptr) 944 CCDef->setIsDead(true); 945 } 946 } 947 948 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI, 949 MachineInstr::MIFlag Flag) { 950 if (OldMI->getFlag(Flag)) 951 NewMI->setFlag(Flag); 952 } 953 954 MachineInstr * 955 SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, 956 LiveIntervals *LIS) const { 957 MachineBasicBlock *MBB = MI.getParent(); 958 959 // Try to convert an AND into an RISBG-type instruction. 960 // TODO: It might be beneficial to select RISBG and shorten to AND instead. 961 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) { 962 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 963 // AND IMMEDIATE leaves the other bits of the register unchanged. 964 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 965 unsigned Start, End; 966 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 967 unsigned NewOpcode; 968 if (And.RegSize == 64) { 969 NewOpcode = SystemZ::RISBG; 970 // Prefer RISBGN if available, since it does not clobber CC. 971 if (STI.hasMiscellaneousExtensions()) 972 NewOpcode = SystemZ::RISBGN; 973 } else { 974 NewOpcode = SystemZ::RISBMux; 975 Start &= 31; 976 End &= 31; 977 } 978 MachineOperand &Dest = MI.getOperand(0); 979 MachineOperand &Src = MI.getOperand(1); 980 MachineInstrBuilder MIB = 981 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 982 .add(Dest) 983 .addReg(0) 984 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 985 Src.getSubReg()) 986 .addImm(Start) 987 .addImm(End + 128) 988 .addImm(0); 989 if (LV) { 990 unsigned NumOps = MI.getNumOperands(); 991 for (unsigned I = 1; I < NumOps; ++I) { 992 MachineOperand &Op = MI.getOperand(I); 993 if (Op.isReg() && Op.isKill()) 994 LV->replaceKillInstruction(Op.getReg(), MI, *MIB); 995 } 996 } 997 if (LIS) 998 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 999 transferDeadCC(&MI, MIB); 1000 return MIB; 1001 } 1002 } 1003 return nullptr; 1004 } 1005 1006 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1007 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1008 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1009 LiveIntervals *LIS, VirtRegMap *VRM) const { 1010 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1011 MachineRegisterInfo &MRI = MF.getRegInfo(); 1012 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1013 unsigned Size = MFI.getObjectSize(FrameIndex); 1014 unsigned Opcode = MI.getOpcode(); 1015 1016 // Check CC liveness if new instruction introduces a dead def of CC. 1017 SlotIndex MISlot = SlotIndex(); 1018 LiveRange *CCLiveRange = nullptr; 1019 bool CCLiveAtMI = true; 1020 if (LIS) { 1021 MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1022 auto CCUnits = TRI->regunits(MCRegister::from(SystemZ::CC)); 1023 assert(range_size(CCUnits) == 1 && "CC only has one reg unit."); 1024 CCLiveRange = &LIS->getRegUnit(*CCUnits.begin()); 1025 CCLiveAtMI = CCLiveRange->liveAt(MISlot); 1026 } 1027 1028 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1029 if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1030 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1031 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1032 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1033 MI.getDebugLoc(), get(SystemZ::AGSI)) 1034 .addFrameIndex(FrameIndex) 1035 .addImm(0) 1036 .addImm(MI.getOperand(2).getImm()); 1037 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1038 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1039 return BuiltMI; 1040 } 1041 return nullptr; 1042 } 1043 1044 // All other cases require a single operand. 1045 if (Ops.size() != 1) 1046 return nullptr; 1047 1048 unsigned OpNum = Ops[0]; 1049 assert(Size * 8 == 1050 TRI->getRegSizeInBits(*MF.getRegInfo() 1051 .getRegClass(MI.getOperand(OpNum).getReg())) && 1052 "Invalid size combination"); 1053 1054 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1055 isInt<8>(MI.getOperand(2).getImm())) { 1056 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1057 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1058 MachineInstr *BuiltMI = 1059 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1060 .addFrameIndex(FrameIndex) 1061 .addImm(0) 1062 .addImm(MI.getOperand(2).getImm()); 1063 transferDeadCC(&MI, BuiltMI); 1064 transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap); 1065 return BuiltMI; 1066 } 1067 1068 if ((Opcode == SystemZ::ALFI && OpNum == 0 && 1069 isInt<8>((int32_t)MI.getOperand(2).getImm())) || 1070 (Opcode == SystemZ::ALGFI && OpNum == 0 && 1071 isInt<8>((int64_t)MI.getOperand(2).getImm()))) { 1072 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST 1073 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI); 1074 MachineInstr *BuiltMI = 1075 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1076 .addFrameIndex(FrameIndex) 1077 .addImm(0) 1078 .addImm((int8_t)MI.getOperand(2).getImm()); 1079 transferDeadCC(&MI, BuiltMI); 1080 return BuiltMI; 1081 } 1082 1083 if ((Opcode == SystemZ::SLFI && OpNum == 0 && 1084 isInt<8>((int32_t)-MI.getOperand(2).getImm())) || 1085 (Opcode == SystemZ::SLGFI && OpNum == 0 && 1086 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) { 1087 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST 1088 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI); 1089 MachineInstr *BuiltMI = 1090 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1091 .addFrameIndex(FrameIndex) 1092 .addImm(0) 1093 .addImm((int8_t)-MI.getOperand(2).getImm()); 1094 transferDeadCC(&MI, BuiltMI); 1095 return BuiltMI; 1096 } 1097 1098 unsigned MemImmOpc = 0; 1099 switch (Opcode) { 1100 case SystemZ::LHIMux: 1101 case SystemZ::LHI: MemImmOpc = SystemZ::MVHI; break; 1102 case SystemZ::LGHI: MemImmOpc = SystemZ::MVGHI; break; 1103 case SystemZ::CHIMux: 1104 case SystemZ::CHI: MemImmOpc = SystemZ::CHSI; break; 1105 case SystemZ::CGHI: MemImmOpc = SystemZ::CGHSI; break; 1106 case SystemZ::CLFIMux: 1107 case SystemZ::CLFI: 1108 if (isUInt<16>(MI.getOperand(1).getImm())) 1109 MemImmOpc = SystemZ::CLFHSI; 1110 break; 1111 case SystemZ::CLGFI: 1112 if (isUInt<16>(MI.getOperand(1).getImm())) 1113 MemImmOpc = SystemZ::CLGHSI; 1114 break; 1115 default: break; 1116 } 1117 if (MemImmOpc) 1118 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1119 get(MemImmOpc)) 1120 .addFrameIndex(FrameIndex) 1121 .addImm(0) 1122 .addImm(MI.getOperand(1).getImm()); 1123 1124 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1125 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1126 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1127 // If we're spilling the destination of an LDGR or LGDR, store the 1128 // source register instead. 1129 if (OpNum == 0) { 1130 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1131 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1132 get(StoreOpcode)) 1133 .add(MI.getOperand(1)) 1134 .addFrameIndex(FrameIndex) 1135 .addImm(0) 1136 .addReg(0); 1137 } 1138 // If we're spilling the source of an LDGR or LGDR, load the 1139 // destination register instead. 1140 if (OpNum == 1) { 1141 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1142 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1143 get(LoadOpcode)) 1144 .add(MI.getOperand(0)) 1145 .addFrameIndex(FrameIndex) 1146 .addImm(0) 1147 .addReg(0); 1148 } 1149 } 1150 1151 // Look for cases where the source of a simple store or the destination 1152 // of a simple load is being spilled. Try to use MVC instead. 1153 // 1154 // Although MVC is in practice a fast choice in these cases, it is still 1155 // logically a bytewise copy. This means that we cannot use it if the 1156 // load or store is volatile. We also wouldn't be able to use MVC if 1157 // the two memories partially overlap, but that case cannot occur here, 1158 // because we know that one of the memories is a full frame index. 1159 // 1160 // For performance reasons, we also want to avoid using MVC if the addresses 1161 // might be equal. We don't worry about that case here, because spill slot 1162 // coloring happens later, and because we have special code to remove 1163 // MVCs that turn out to be redundant. 1164 if (OpNum == 0 && MI.hasOneMemOperand()) { 1165 MachineMemOperand *MMO = *MI.memoperands_begin(); 1166 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) { 1167 // Handle conversion of loads. 1168 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1169 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1170 get(SystemZ::MVC)) 1171 .addFrameIndex(FrameIndex) 1172 .addImm(0) 1173 .addImm(Size) 1174 .add(MI.getOperand(1)) 1175 .addImm(MI.getOperand(2).getImm()) 1176 .addMemOperand(MMO); 1177 } 1178 // Handle conversion of stores. 1179 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1180 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1181 get(SystemZ::MVC)) 1182 .add(MI.getOperand(1)) 1183 .addImm(MI.getOperand(2).getImm()) 1184 .addImm(Size) 1185 .addFrameIndex(FrameIndex) 1186 .addImm(0) 1187 .addMemOperand(MMO); 1188 } 1189 } 1190 } 1191 1192 // If the spilled operand is the final one or the instruction is 1193 // commutable, try to change <INSN>R into <INSN>. Don't introduce a def of 1194 // CC if it is live and MI does not define it. 1195 unsigned NumOps = MI.getNumExplicitOperands(); 1196 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1197 if (MemOpcode == -1 || 1198 (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) && 1199 get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC))) 1200 return nullptr; 1201 1202 // Check if all other vregs have a usable allocation in the case of vector 1203 // to FP conversion. 1204 const MCInstrDesc &MCID = MI.getDesc(); 1205 for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) { 1206 const MCOperandInfo &MCOI = MCID.operands()[I]; 1207 if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum) 1208 continue; 1209 const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass); 1210 if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) { 1211 Register Reg = MI.getOperand(I).getReg(); 1212 Register PhysReg = Reg.isVirtual() 1213 ? (VRM ? Register(VRM->getPhys(Reg)) : Register()) 1214 : Reg; 1215 if (!PhysReg || 1216 !(SystemZ::FP32BitRegClass.contains(PhysReg) || 1217 SystemZ::FP64BitRegClass.contains(PhysReg) || 1218 SystemZ::VF128BitRegClass.contains(PhysReg))) 1219 return nullptr; 1220 } 1221 } 1222 // Fused multiply and add/sub need to have the same dst and accumulator reg. 1223 bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB || 1224 Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB); 1225 if (FusedFPOp) { 1226 Register DstReg = VRM->getPhys(MI.getOperand(0).getReg()); 1227 Register AccReg = VRM->getPhys(MI.getOperand(3).getReg()); 1228 if (OpNum == 0 || OpNum == 3 || DstReg != AccReg) 1229 return nullptr; 1230 } 1231 1232 // Try to swap compare operands if possible. 1233 bool NeedsCommute = false; 1234 if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR || 1235 MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR || 1236 MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB || 1237 MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) && 1238 OpNum == 0 && prepareCompareSwapOperands(MI)) 1239 NeedsCommute = true; 1240 1241 bool CCOperands = false; 1242 if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR || 1243 MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) { 1244 assert(MI.getNumOperands() == 6 && NumOps == 5 && 1245 "LOCR/SELR instruction operands corrupt?"); 1246 NumOps -= 2; 1247 CCOperands = true; 1248 } 1249 1250 // See if this is a 3-address instruction that is convertible to 2-address 1251 // and suitable for folding below. Only try this with virtual registers 1252 // and a provided VRM (during regalloc). 1253 if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) { 1254 if (VRM == nullptr) 1255 return nullptr; 1256 else { 1257 Register DstReg = MI.getOperand(0).getReg(); 1258 Register DstPhys = 1259 (DstReg.isVirtual() ? Register(VRM->getPhys(DstReg)) : DstReg); 1260 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg() 1261 : ((OpNum == 1 && MI.isCommutable()) 1262 ? MI.getOperand(2).getReg() 1263 : Register())); 1264 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg && 1265 SrcReg.isVirtual() && DstPhys == VRM->getPhys(SrcReg)) 1266 NeedsCommute = (OpNum == 1); 1267 else 1268 return nullptr; 1269 } 1270 } 1271 1272 if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) { 1273 const MCInstrDesc &MemDesc = get(MemOpcode); 1274 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1275 assert(AccessBytes != 0 && "Size of access should be known"); 1276 assert(AccessBytes <= Size && "Access outside the frame index"); 1277 uint64_t Offset = Size - AccessBytes; 1278 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1279 MI.getDebugLoc(), get(MemOpcode)); 1280 if (MI.isCompare()) { 1281 assert(NumOps == 2 && "Expected 2 register operands for a compare."); 1282 MIB.add(MI.getOperand(NeedsCommute ? 1 : 0)); 1283 } 1284 else if (FusedFPOp) { 1285 MIB.add(MI.getOperand(0)); 1286 MIB.add(MI.getOperand(3)); 1287 MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1)); 1288 } 1289 else { 1290 MIB.add(MI.getOperand(0)); 1291 if (NeedsCommute) 1292 MIB.add(MI.getOperand(2)); 1293 else 1294 for (unsigned I = 1; I < OpNum; ++I) 1295 MIB.add(MI.getOperand(I)); 1296 } 1297 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1298 if (MemDesc.TSFlags & SystemZII::HasIndex) 1299 MIB.addReg(0); 1300 if (CCOperands) { 1301 unsigned CCValid = MI.getOperand(NumOps).getImm(); 1302 unsigned CCMask = MI.getOperand(NumOps + 1).getImm(); 1303 MIB.addImm(CCValid); 1304 MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask); 1305 } 1306 if (MIB->definesRegister(SystemZ::CC) && 1307 (!MI.definesRegister(SystemZ::CC) || 1308 MI.registerDefIsDead(SystemZ::CC))) { 1309 MIB->addRegisterDead(SystemZ::CC, TRI); 1310 if (CCLiveRange) 1311 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1312 } 1313 // Constrain the register classes if converted from a vector opcode. The 1314 // allocated regs are in an FP reg-class per previous check above. 1315 for (const MachineOperand &MO : MIB->operands()) 1316 if (MO.isReg() && MO.getReg().isVirtual()) { 1317 Register Reg = MO.getReg(); 1318 if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass) 1319 MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass); 1320 else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass) 1321 MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass); 1322 else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass) 1323 MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass); 1324 } 1325 1326 transferDeadCC(&MI, MIB); 1327 transferMIFlag(&MI, MIB, MachineInstr::NoSWrap); 1328 transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept); 1329 return MIB; 1330 } 1331 1332 return nullptr; 1333 } 1334 1335 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1336 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1337 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1338 LiveIntervals *LIS) const { 1339 return nullptr; 1340 } 1341 1342 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1343 switch (MI.getOpcode()) { 1344 case SystemZ::L128: 1345 splitMove(MI, SystemZ::LG); 1346 return true; 1347 1348 case SystemZ::ST128: 1349 splitMove(MI, SystemZ::STG); 1350 return true; 1351 1352 case SystemZ::LX: 1353 splitMove(MI, SystemZ::LD); 1354 return true; 1355 1356 case SystemZ::STX: 1357 splitMove(MI, SystemZ::STD); 1358 return true; 1359 1360 case SystemZ::LBMux: 1361 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1362 return true; 1363 1364 case SystemZ::LHMux: 1365 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1366 return true; 1367 1368 case SystemZ::LLCRMux: 1369 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1370 return true; 1371 1372 case SystemZ::LLHRMux: 1373 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1374 return true; 1375 1376 case SystemZ::LLCMux: 1377 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1378 return true; 1379 1380 case SystemZ::LLHMux: 1381 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1382 return true; 1383 1384 case SystemZ::LMux: 1385 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1386 return true; 1387 1388 case SystemZ::LOCMux: 1389 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1390 return true; 1391 1392 case SystemZ::LOCHIMux: 1393 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1394 return true; 1395 1396 case SystemZ::STCMux: 1397 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1398 return true; 1399 1400 case SystemZ::STHMux: 1401 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1402 return true; 1403 1404 case SystemZ::STMux: 1405 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1406 return true; 1407 1408 case SystemZ::STOCMux: 1409 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1410 return true; 1411 1412 case SystemZ::LHIMux: 1413 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1414 return true; 1415 1416 case SystemZ::IIFMux: 1417 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1418 return true; 1419 1420 case SystemZ::IILMux: 1421 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1422 return true; 1423 1424 case SystemZ::IIHMux: 1425 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1426 return true; 1427 1428 case SystemZ::NIFMux: 1429 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1430 return true; 1431 1432 case SystemZ::NILMux: 1433 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1434 return true; 1435 1436 case SystemZ::NIHMux: 1437 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1438 return true; 1439 1440 case SystemZ::OIFMux: 1441 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1442 return true; 1443 1444 case SystemZ::OILMux: 1445 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1446 return true; 1447 1448 case SystemZ::OIHMux: 1449 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1450 return true; 1451 1452 case SystemZ::XIFMux: 1453 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1454 return true; 1455 1456 case SystemZ::TMLMux: 1457 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1458 return true; 1459 1460 case SystemZ::TMHMux: 1461 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1462 return true; 1463 1464 case SystemZ::AHIMux: 1465 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1466 return true; 1467 1468 case SystemZ::AHIMuxK: 1469 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1470 return true; 1471 1472 case SystemZ::AFIMux: 1473 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1474 return true; 1475 1476 case SystemZ::CHIMux: 1477 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1478 return true; 1479 1480 case SystemZ::CFIMux: 1481 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1482 return true; 1483 1484 case SystemZ::CLFIMux: 1485 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1486 return true; 1487 1488 case SystemZ::CMux: 1489 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1490 return true; 1491 1492 case SystemZ::CLMux: 1493 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1494 return true; 1495 1496 case SystemZ::RISBMux: { 1497 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg()); 1498 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg()); 1499 if (SrcIsHigh == DestIsHigh) 1500 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1501 else { 1502 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1503 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1504 } 1505 return true; 1506 } 1507 1508 case SystemZ::ADJDYNALLOC: 1509 splitAdjDynAlloc(MI); 1510 return true; 1511 1512 case TargetOpcode::LOAD_STACK_GUARD: 1513 expandLoadStackGuard(&MI); 1514 return true; 1515 1516 default: 1517 return false; 1518 } 1519 } 1520 1521 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1522 if (MI.isInlineAsm()) { 1523 const MachineFunction *MF = MI.getParent()->getParent(); 1524 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1525 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1526 } 1527 else if (MI.getOpcode() == SystemZ::PATCHPOINT) 1528 return PatchPointOpers(&MI).getNumPatchBytes(); 1529 else if (MI.getOpcode() == SystemZ::STACKMAP) 1530 return MI.getOperand(1).getImm(); 1531 else if (MI.getOpcode() == SystemZ::FENTRY_CALL) 1532 return 6; 1533 1534 return MI.getDesc().getSize(); 1535 } 1536 1537 SystemZII::Branch 1538 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1539 switch (MI.getOpcode()) { 1540 case SystemZ::BR: 1541 case SystemZ::BI: 1542 case SystemZ::J: 1543 case SystemZ::JG: 1544 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1545 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1546 1547 case SystemZ::BRC: 1548 case SystemZ::BRCL: 1549 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1550 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1551 1552 case SystemZ::BRCT: 1553 case SystemZ::BRCTH: 1554 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1555 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1556 1557 case SystemZ::BRCTG: 1558 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1559 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1560 1561 case SystemZ::CIJ: 1562 case SystemZ::CRJ: 1563 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1564 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1565 1566 case SystemZ::CLIJ: 1567 case SystemZ::CLRJ: 1568 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1569 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1570 1571 case SystemZ::CGIJ: 1572 case SystemZ::CGRJ: 1573 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1574 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1575 1576 case SystemZ::CLGIJ: 1577 case SystemZ::CLGRJ: 1578 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1579 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1580 1581 case SystemZ::INLINEASM_BR: 1582 // Don't try to analyze asm goto, so pass nullptr as branch target argument. 1583 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr); 1584 1585 default: 1586 llvm_unreachable("Unrecognized branch opcode"); 1587 } 1588 } 1589 1590 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1591 unsigned &LoadOpcode, 1592 unsigned &StoreOpcode) const { 1593 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1594 LoadOpcode = SystemZ::L; 1595 StoreOpcode = SystemZ::ST; 1596 } else if (RC == &SystemZ::GRH32BitRegClass) { 1597 LoadOpcode = SystemZ::LFH; 1598 StoreOpcode = SystemZ::STFH; 1599 } else if (RC == &SystemZ::GRX32BitRegClass) { 1600 LoadOpcode = SystemZ::LMux; 1601 StoreOpcode = SystemZ::STMux; 1602 } else if (RC == &SystemZ::GR64BitRegClass || 1603 RC == &SystemZ::ADDR64BitRegClass) { 1604 LoadOpcode = SystemZ::LG; 1605 StoreOpcode = SystemZ::STG; 1606 } else if (RC == &SystemZ::GR128BitRegClass || 1607 RC == &SystemZ::ADDR128BitRegClass) { 1608 LoadOpcode = SystemZ::L128; 1609 StoreOpcode = SystemZ::ST128; 1610 } else if (RC == &SystemZ::FP32BitRegClass) { 1611 LoadOpcode = SystemZ::LE; 1612 StoreOpcode = SystemZ::STE; 1613 } else if (RC == &SystemZ::FP64BitRegClass) { 1614 LoadOpcode = SystemZ::LD; 1615 StoreOpcode = SystemZ::STD; 1616 } else if (RC == &SystemZ::FP128BitRegClass) { 1617 LoadOpcode = SystemZ::LX; 1618 StoreOpcode = SystemZ::STX; 1619 } else if (RC == &SystemZ::VR32BitRegClass) { 1620 LoadOpcode = SystemZ::VL32; 1621 StoreOpcode = SystemZ::VST32; 1622 } else if (RC == &SystemZ::VR64BitRegClass) { 1623 LoadOpcode = SystemZ::VL64; 1624 StoreOpcode = SystemZ::VST64; 1625 } else if (RC == &SystemZ::VF128BitRegClass || 1626 RC == &SystemZ::VR128BitRegClass) { 1627 LoadOpcode = SystemZ::VL; 1628 StoreOpcode = SystemZ::VST; 1629 } else 1630 llvm_unreachable("Unsupported regclass to load or store"); 1631 } 1632 1633 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1634 int64_t Offset, 1635 const MachineInstr *MI) const { 1636 const MCInstrDesc &MCID = get(Opcode); 1637 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1638 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1639 // Get the instruction to use for unsigned 12-bit displacements. 1640 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1641 if (Disp12Opcode >= 0) 1642 return Disp12Opcode; 1643 1644 // All address-related instructions can use unsigned 12-bit 1645 // displacements. 1646 return Opcode; 1647 } 1648 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1649 // Get the instruction to use for signed 20-bit displacements. 1650 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1651 if (Disp20Opcode >= 0) 1652 return Disp20Opcode; 1653 1654 // Check whether Opcode allows signed 20-bit displacements. 1655 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1656 return Opcode; 1657 1658 // If a VR32/VR64 reg ended up in an FP register, use the FP opcode. 1659 if (MI && MI->getOperand(0).isReg()) { 1660 Register Reg = MI->getOperand(0).getReg(); 1661 if (Reg.isPhysical() && SystemZMC::getFirstReg(Reg) < 16) { 1662 switch (Opcode) { 1663 case SystemZ::VL32: 1664 return SystemZ::LEY; 1665 case SystemZ::VST32: 1666 return SystemZ::STEY; 1667 case SystemZ::VL64: 1668 return SystemZ::LDY; 1669 case SystemZ::VST64: 1670 return SystemZ::STDY; 1671 default: break; 1672 } 1673 } 1674 } 1675 } 1676 return 0; 1677 } 1678 1679 bool SystemZInstrInfo::hasDisplacementPairInsn(unsigned Opcode) const { 1680 const MCInstrDesc &MCID = get(Opcode); 1681 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1682 return SystemZ::getDisp12Opcode(Opcode) >= 0; 1683 return SystemZ::getDisp20Opcode(Opcode) >= 0; 1684 } 1685 1686 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1687 switch (Opcode) { 1688 case SystemZ::L: return SystemZ::LT; 1689 case SystemZ::LY: return SystemZ::LT; 1690 case SystemZ::LG: return SystemZ::LTG; 1691 case SystemZ::LGF: return SystemZ::LTGF; 1692 case SystemZ::LR: return SystemZ::LTR; 1693 case SystemZ::LGFR: return SystemZ::LTGFR; 1694 case SystemZ::LGR: return SystemZ::LTGR; 1695 case SystemZ::LCDFR: return SystemZ::LCDBR; 1696 case SystemZ::LPDFR: return SystemZ::LPDBR; 1697 case SystemZ::LNDFR: return SystemZ::LNDBR; 1698 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1699 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1700 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1701 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1702 // actually use the condition code, we may turn it back into RISGB. 1703 // Note that RISBG is not really a "load-and-test" instruction, 1704 // but sets the same condition code values, so is OK to use here. 1705 case SystemZ::RISBGN: return SystemZ::RISBG; 1706 default: return 0; 1707 } 1708 } 1709 1710 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1711 unsigned &Start, unsigned &End) const { 1712 // Reject trivial all-zero masks. 1713 Mask &= allOnes(BitSize); 1714 if (Mask == 0) 1715 return false; 1716 1717 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1718 // the msb and End specifies the index of the lsb. 1719 unsigned LSB, Length; 1720 if (isShiftedMask_64(Mask, LSB, Length)) { 1721 Start = 63 - (LSB + Length - 1); 1722 End = 63 - LSB; 1723 return true; 1724 } 1725 1726 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1727 // of the low 1s and End specifies the lsb of the high 1s. 1728 if (isShiftedMask_64(Mask ^ allOnes(BitSize), LSB, Length)) { 1729 assert(LSB > 0 && "Bottom bit must be set"); 1730 assert(LSB + Length < BitSize && "Top bit must be set"); 1731 Start = 63 - (LSB - 1); 1732 End = 63 - (LSB + Length); 1733 return true; 1734 } 1735 1736 return false; 1737 } 1738 1739 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1740 SystemZII::FusedCompareType Type, 1741 const MachineInstr *MI) const { 1742 switch (Opcode) { 1743 case SystemZ::CHI: 1744 case SystemZ::CGHI: 1745 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1746 return 0; 1747 break; 1748 case SystemZ::CLFI: 1749 case SystemZ::CLGFI: 1750 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1751 return 0; 1752 break; 1753 case SystemZ::CL: 1754 case SystemZ::CLG: 1755 if (!STI.hasMiscellaneousExtensions()) 1756 return 0; 1757 if (!(MI && MI->getOperand(3).getReg() == 0)) 1758 return 0; 1759 break; 1760 } 1761 switch (Type) { 1762 case SystemZII::CompareAndBranch: 1763 switch (Opcode) { 1764 case SystemZ::CR: 1765 return SystemZ::CRJ; 1766 case SystemZ::CGR: 1767 return SystemZ::CGRJ; 1768 case SystemZ::CHI: 1769 return SystemZ::CIJ; 1770 case SystemZ::CGHI: 1771 return SystemZ::CGIJ; 1772 case SystemZ::CLR: 1773 return SystemZ::CLRJ; 1774 case SystemZ::CLGR: 1775 return SystemZ::CLGRJ; 1776 case SystemZ::CLFI: 1777 return SystemZ::CLIJ; 1778 case SystemZ::CLGFI: 1779 return SystemZ::CLGIJ; 1780 default: 1781 return 0; 1782 } 1783 case SystemZII::CompareAndReturn: 1784 switch (Opcode) { 1785 case SystemZ::CR: 1786 return SystemZ::CRBReturn; 1787 case SystemZ::CGR: 1788 return SystemZ::CGRBReturn; 1789 case SystemZ::CHI: 1790 return SystemZ::CIBReturn; 1791 case SystemZ::CGHI: 1792 return SystemZ::CGIBReturn; 1793 case SystemZ::CLR: 1794 return SystemZ::CLRBReturn; 1795 case SystemZ::CLGR: 1796 return SystemZ::CLGRBReturn; 1797 case SystemZ::CLFI: 1798 return SystemZ::CLIBReturn; 1799 case SystemZ::CLGFI: 1800 return SystemZ::CLGIBReturn; 1801 default: 1802 return 0; 1803 } 1804 case SystemZII::CompareAndSibcall: 1805 switch (Opcode) { 1806 case SystemZ::CR: 1807 return SystemZ::CRBCall; 1808 case SystemZ::CGR: 1809 return SystemZ::CGRBCall; 1810 case SystemZ::CHI: 1811 return SystemZ::CIBCall; 1812 case SystemZ::CGHI: 1813 return SystemZ::CGIBCall; 1814 case SystemZ::CLR: 1815 return SystemZ::CLRBCall; 1816 case SystemZ::CLGR: 1817 return SystemZ::CLGRBCall; 1818 case SystemZ::CLFI: 1819 return SystemZ::CLIBCall; 1820 case SystemZ::CLGFI: 1821 return SystemZ::CLGIBCall; 1822 default: 1823 return 0; 1824 } 1825 case SystemZII::CompareAndTrap: 1826 switch (Opcode) { 1827 case SystemZ::CR: 1828 return SystemZ::CRT; 1829 case SystemZ::CGR: 1830 return SystemZ::CGRT; 1831 case SystemZ::CHI: 1832 return SystemZ::CIT; 1833 case SystemZ::CGHI: 1834 return SystemZ::CGIT; 1835 case SystemZ::CLR: 1836 return SystemZ::CLRT; 1837 case SystemZ::CLGR: 1838 return SystemZ::CLGRT; 1839 case SystemZ::CLFI: 1840 return SystemZ::CLFIT; 1841 case SystemZ::CLGFI: 1842 return SystemZ::CLGIT; 1843 case SystemZ::CL: 1844 return SystemZ::CLT; 1845 case SystemZ::CLG: 1846 return SystemZ::CLGT; 1847 default: 1848 return 0; 1849 } 1850 } 1851 return 0; 1852 } 1853 1854 bool SystemZInstrInfo:: 1855 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const { 1856 assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() && 1857 MBBI->getOperand(1).isReg() && !MBBI->mayLoad() && 1858 "Not a compare reg/reg."); 1859 1860 MachineBasicBlock *MBB = MBBI->getParent(); 1861 bool CCLive = true; 1862 SmallVector<MachineInstr *, 4> CCUsers; 1863 for (MachineInstr &MI : llvm::make_range(std::next(MBBI), MBB->end())) { 1864 if (MI.readsRegister(SystemZ::CC)) { 1865 unsigned Flags = MI.getDesc().TSFlags; 1866 if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast)) 1867 CCUsers.push_back(&MI); 1868 else 1869 return false; 1870 } 1871 if (MI.definesRegister(SystemZ::CC)) { 1872 CCLive = false; 1873 break; 1874 } 1875 } 1876 if (CCLive) { 1877 LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo()); 1878 LiveRegs.addLiveOuts(*MBB); 1879 if (LiveRegs.contains(SystemZ::CC)) 1880 return false; 1881 } 1882 1883 // Update all CC users. 1884 for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) { 1885 unsigned Flags = CCUsers[Idx]->getDesc().TSFlags; 1886 unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ? 1887 0 : CCUsers[Idx]->getNumExplicitOperands() - 2); 1888 MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1); 1889 unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm()); 1890 CCMaskMO.setImm(NewCCMask); 1891 } 1892 1893 return true; 1894 } 1895 1896 unsigned SystemZ::reverseCCMask(unsigned CCMask) { 1897 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1898 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1899 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1900 (CCMask & SystemZ::CCMASK_CMP_UO)); 1901 } 1902 1903 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) { 1904 MachineFunction &MF = *MBB->getParent(); 1905 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 1906 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 1907 return NewMBB; 1908 } 1909 1910 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI, 1911 MachineBasicBlock *MBB) { 1912 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 1913 NewMBB->splice(NewMBB->begin(), MBB, 1914 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 1915 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 1916 return NewMBB; 1917 } 1918 1919 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI, 1920 MachineBasicBlock *MBB) { 1921 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 1922 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 1923 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 1924 return NewMBB; 1925 } 1926 1927 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1928 if (!STI.hasLoadAndTrap()) 1929 return 0; 1930 switch (Opcode) { 1931 case SystemZ::L: 1932 case SystemZ::LY: 1933 return SystemZ::LAT; 1934 case SystemZ::LG: 1935 return SystemZ::LGAT; 1936 case SystemZ::LFH: 1937 return SystemZ::LFHAT; 1938 case SystemZ::LLGF: 1939 return SystemZ::LLGFAT; 1940 case SystemZ::LLGT: 1941 return SystemZ::LLGTAT; 1942 } 1943 return 0; 1944 } 1945 1946 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1947 MachineBasicBlock::iterator MBBI, 1948 unsigned Reg, uint64_t Value) const { 1949 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1950 unsigned Opcode = 0; 1951 if (isInt<16>(Value)) 1952 Opcode = SystemZ::LGHI; 1953 else if (SystemZ::isImmLL(Value)) 1954 Opcode = SystemZ::LLILL; 1955 else if (SystemZ::isImmLH(Value)) { 1956 Opcode = SystemZ::LLILH; 1957 Value >>= 16; 1958 } 1959 else if (isInt<32>(Value)) 1960 Opcode = SystemZ::LGFI; 1961 if (Opcode) { 1962 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1963 return; 1964 } 1965 1966 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1967 assert (MRI.isSSA() && "Huge values only handled before reg-alloc ."); 1968 Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 1969 Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 1970 BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0); 1971 BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1) 1972 .addReg(Reg0).addImm(Value >> 32); 1973 BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg) 1974 .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1)); 1975 } 1976 1977 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI, 1978 StringRef &ErrInfo) const { 1979 const MCInstrDesc &MCID = MI.getDesc(); 1980 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1981 if (I >= MCID.getNumOperands()) 1982 break; 1983 const MachineOperand &Op = MI.getOperand(I); 1984 const MCOperandInfo &MCOI = MCID.operands()[I]; 1985 // Addressing modes have register and immediate operands. Op should be a 1986 // register (or frame index) operand if MCOI.RegClass contains a valid 1987 // register class, or an immediate otherwise. 1988 if (MCOI.OperandType == MCOI::OPERAND_MEMORY && 1989 ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) || 1990 (MCOI.RegClass == -1 && !Op.isImm()))) { 1991 ErrInfo = "Addressing mode operands corrupt!"; 1992 return false; 1993 } 1994 } 1995 1996 return true; 1997 } 1998 1999 bool SystemZInstrInfo:: 2000 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 2001 const MachineInstr &MIb) const { 2002 2003 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 2004 return false; 2005 2006 // If mem-operands show that the same address Value is used by both 2007 // instructions, check for non-overlapping offsets and widths. Not 2008 // sure if a register based analysis would be an improvement... 2009 2010 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 2011 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 2012 const Value *VALa = MMOa->getValue(); 2013 const Value *VALb = MMOb->getValue(); 2014 bool SameVal = (VALa && VALb && (VALa == VALb)); 2015 if (!SameVal) { 2016 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 2017 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 2018 if (PSVa && PSVb && (PSVa == PSVb)) 2019 SameVal = true; 2020 } 2021 if (SameVal) { 2022 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 2023 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 2024 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 2025 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 2026 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 2027 if (LowOffset + LowWidth <= HighOffset) 2028 return true; 2029 } 2030 2031 return false; 2032 } 2033