1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SystemZ implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZInstrInfo.h" 14 #include "MCTargetDesc/SystemZMCTargetDesc.h" 15 #include "SystemZ.h" 16 #include "SystemZInstrBuilder.h" 17 #include "SystemZSubtarget.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/LiveInterval.h" 20 #include "llvm/CodeGen/LiveIntervals.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SlotIndexes.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/Support/BranchProbability.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 42 using namespace llvm; 43 44 #define GET_INSTRINFO_CTOR_DTOR 45 #define GET_INSTRMAP_INFO 46 #include "SystemZGenInstrInfo.inc" 47 48 #define DEBUG_TYPE "systemz-II" 49 50 // Return a mask with Count low bits set. 51 static uint64_t allOnes(unsigned int Count) { 52 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 53 } 54 55 // Pin the vtable to this file. 56 void SystemZInstrInfo::anchor() {} 57 58 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 59 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 60 RI(), STI(sti) { 61 } 62 63 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 64 // each having the opcode given by NewOpcode. 65 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 66 unsigned NewOpcode) const { 67 MachineBasicBlock *MBB = MI->getParent(); 68 MachineFunction &MF = *MBB->getParent(); 69 70 // Get two load or store instructions. Use the original instruction for one 71 // of them (arbitrarily the second here) and create a clone for the other. 72 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 73 MBB->insert(MI, EarlierMI); 74 75 // Set up the two 64-bit registers and remember super reg and its flags. 76 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 77 MachineOperand &LowRegOp = MI->getOperand(0); 78 Register Reg128 = LowRegOp.getReg(); 79 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill()); 80 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef()); 81 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 82 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 83 84 if (MI->mayStore()) { 85 // Add implicit uses of the super register in case one of the subregs is 86 // undefined. We could track liveness and skip storing an undefined 87 // subreg, but this is hopefully rare (discovered with llvm-stress). 88 // If Reg128 was killed, set kill flag on MI. 89 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit); 90 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl); 91 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed)); 92 } 93 94 // The address in the first (high) instruction is already correct. 95 // Adjust the offset in the second (low) instruction. 96 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 97 MachineOperand &LowOffsetOp = MI->getOperand(2); 98 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 99 100 // Clear the kill flags on the registers in the first instruction. 101 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse()) 102 EarlierMI->getOperand(0).setIsKill(false); 103 EarlierMI->getOperand(1).setIsKill(false); 104 EarlierMI->getOperand(3).setIsKill(false); 105 106 // Set the opcodes. 107 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 108 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 109 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 110 111 EarlierMI->setDesc(get(HighOpcode)); 112 MI->setDesc(get(LowOpcode)); 113 } 114 115 // Split ADJDYNALLOC instruction MI. 116 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 117 MachineBasicBlock *MBB = MI->getParent(); 118 MachineFunction &MF = *MBB->getParent(); 119 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 120 MachineOperand &OffsetMO = MI->getOperand(2); 121 122 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 123 SystemZMC::CallFrameSize + 124 OffsetMO.getImm()); 125 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 126 assert(NewOpcode && "No support for huge argument lists yet"); 127 MI->setDesc(get(NewOpcode)); 128 OffsetMO.setImm(Offset); 129 } 130 131 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 132 // if the first operand is a low GR32 and HighOpcode if the first operand 133 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 134 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 135 // MI has the same kind of operand as LowOpcode, so needs to be converted 136 // if HighOpcode is used. 137 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 138 unsigned HighOpcode, 139 bool ConvertHigh) const { 140 Register Reg = MI.getOperand(0).getReg(); 141 bool IsHigh = SystemZ::isHighReg(Reg); 142 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 143 if (IsHigh && ConvertHigh) 144 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 145 } 146 147 // MI is a three-operand RIE-style pseudo instruction. Replace it with 148 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 149 // followed by HighOpcode or LowOpcode, depending on whether the target 150 // is a high or low GR32. 151 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 152 unsigned LowOpcodeK, 153 unsigned HighOpcode) const { 154 Register DestReg = MI.getOperand(0).getReg(); 155 Register SrcReg = MI.getOperand(1).getReg(); 156 bool DestIsHigh = SystemZ::isHighReg(DestReg); 157 bool SrcIsHigh = SystemZ::isHighReg(SrcReg); 158 if (!DestIsHigh && !SrcIsHigh) 159 MI.setDesc(get(LowOpcodeK)); 160 else { 161 if (DestReg != SrcReg) { 162 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 163 SystemZ::LR, 32, MI.getOperand(1).isKill(), 164 MI.getOperand(1).isUndef()); 165 MI.getOperand(1).setReg(DestReg); 166 } 167 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 168 MI.tieOperands(0, 1); 169 } 170 } 171 172 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 173 // if the first operand is a low GR32 and HighOpcode if the first operand 174 // is a high GR32. 175 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 176 unsigned HighOpcode) const { 177 Register Reg = MI.getOperand(0).getReg(); 178 unsigned Opcode = getOpcodeForOffset( 179 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode, 180 MI.getOperand(2).getImm()); 181 MI.setDesc(get(Opcode)); 182 } 183 184 // MI is a load-on-condition pseudo instruction with a single register 185 // (source or destination) operand. Replace it with LowOpcode if the 186 // register is a low GR32 and HighOpcode if the register is a high GR32. 187 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 188 unsigned HighOpcode) const { 189 Register Reg = MI.getOperand(0).getReg(); 190 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode; 191 MI.setDesc(get(Opcode)); 192 } 193 194 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 195 // of one GRX32 into another. Replace it with LowOpcode if both operands 196 // are low registers, otherwise use RISB[LH]G. 197 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 198 unsigned Size) const { 199 MachineInstrBuilder MIB = 200 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 201 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 202 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 203 204 // Keep the remaining operands as-is. 205 for (unsigned I = 2; I < MI.getNumOperands(); ++I) 206 MIB.add(MI.getOperand(I)); 207 208 MI.eraseFromParent(); 209 } 210 211 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 212 MachineBasicBlock *MBB = MI->getParent(); 213 MachineFunction &MF = *MBB->getParent(); 214 const Register Reg64 = MI->getOperand(0).getReg(); 215 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32); 216 217 // EAR can only load the low subregister so us a shift for %a0 to produce 218 // the GR containing %a0 and %a1. 219 220 // ear <reg>, %a0 221 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 222 .addReg(SystemZ::A0) 223 .addReg(Reg64, RegState::ImplicitDefine); 224 225 // sllg <reg>, <reg>, 32 226 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64) 227 .addReg(Reg64) 228 .addReg(0) 229 .addImm(32); 230 231 // ear <reg>, %a1 232 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 233 .addReg(SystemZ::A1); 234 235 // lg <reg>, 40(<reg>) 236 MI->setDesc(get(SystemZ::LG)); 237 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0); 238 } 239 240 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 241 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 242 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 243 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 244 // KillSrc is true if this move is the last use of SrcReg. 245 MachineInstrBuilder 246 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 247 MachineBasicBlock::iterator MBBI, 248 const DebugLoc &DL, unsigned DestReg, 249 unsigned SrcReg, unsigned LowLowOpcode, 250 unsigned Size, bool KillSrc, 251 bool UndefSrc) const { 252 unsigned Opcode; 253 bool DestIsHigh = SystemZ::isHighReg(DestReg); 254 bool SrcIsHigh = SystemZ::isHighReg(SrcReg); 255 if (DestIsHigh && SrcIsHigh) 256 Opcode = SystemZ::RISBHH; 257 else if (DestIsHigh && !SrcIsHigh) 258 Opcode = SystemZ::RISBHL; 259 else if (!DestIsHigh && SrcIsHigh) 260 Opcode = SystemZ::RISBLH; 261 else { 262 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 263 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 264 } 265 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 266 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 267 .addReg(DestReg, RegState::Undef) 268 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 269 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 270 } 271 272 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 273 bool NewMI, 274 unsigned OpIdx1, 275 unsigned OpIdx2) const { 276 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 277 if (NewMI) 278 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 279 return MI; 280 }; 281 282 switch (MI.getOpcode()) { 283 case SystemZ::SELRMux: 284 case SystemZ::SELFHR: 285 case SystemZ::SELR: 286 case SystemZ::SELGR: 287 case SystemZ::LOCRMux: 288 case SystemZ::LOCFHR: 289 case SystemZ::LOCR: 290 case SystemZ::LOCGR: { 291 auto &WorkingMI = cloneIfNew(MI); 292 // Invert condition. 293 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 294 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 295 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 296 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 297 OpIdx1, OpIdx2); 298 } 299 default: 300 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 301 } 302 } 303 304 // If MI is a simple load or store for a frame object, return the register 305 // it loads or stores and set FrameIndex to the index of the frame object. 306 // Return 0 otherwise. 307 // 308 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 309 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 310 unsigned Flag) { 311 const MCInstrDesc &MCID = MI.getDesc(); 312 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 313 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 314 FrameIndex = MI.getOperand(1).getIndex(); 315 return MI.getOperand(0).getReg(); 316 } 317 return 0; 318 } 319 320 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 321 int &FrameIndex) const { 322 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 323 } 324 325 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 326 int &FrameIndex) const { 327 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 328 } 329 330 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 331 int &DestFrameIndex, 332 int &SrcFrameIndex) const { 333 // Check for MVC 0(Length,FI1),0(FI2) 334 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 335 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 336 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 337 MI.getOperand(4).getImm() != 0) 338 return false; 339 340 // Check that Length covers the full slots. 341 int64_t Length = MI.getOperand(2).getImm(); 342 unsigned FI1 = MI.getOperand(0).getIndex(); 343 unsigned FI2 = MI.getOperand(3).getIndex(); 344 if (MFI.getObjectSize(FI1) != Length || 345 MFI.getObjectSize(FI2) != Length) 346 return false; 347 348 DestFrameIndex = FI1; 349 SrcFrameIndex = FI2; 350 return true; 351 } 352 353 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 354 MachineBasicBlock *&TBB, 355 MachineBasicBlock *&FBB, 356 SmallVectorImpl<MachineOperand> &Cond, 357 bool AllowModify) const { 358 // Most of the code and comments here are boilerplate. 359 360 // Start from the bottom of the block and work up, examining the 361 // terminator instructions. 362 MachineBasicBlock::iterator I = MBB.end(); 363 while (I != MBB.begin()) { 364 --I; 365 if (I->isDebugInstr()) 366 continue; 367 368 // Working from the bottom, when we see a non-terminator instruction, we're 369 // done. 370 if (!isUnpredicatedTerminator(*I)) 371 break; 372 373 // A terminator that isn't a branch can't easily be handled by this 374 // analysis. 375 if (!I->isBranch()) 376 return true; 377 378 // Can't handle indirect branches. 379 SystemZII::Branch Branch(getBranchInfo(*I)); 380 if (!Branch.hasMBBTarget()) 381 return true; 382 383 // Punt on compound branches. 384 if (Branch.Type != SystemZII::BranchNormal) 385 return true; 386 387 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 388 // Handle unconditional branches. 389 if (!AllowModify) { 390 TBB = Branch.getMBBTarget(); 391 continue; 392 } 393 394 // If the block has any instructions after a JMP, delete them. 395 while (std::next(I) != MBB.end()) 396 std::next(I)->eraseFromParent(); 397 398 Cond.clear(); 399 FBB = nullptr; 400 401 // Delete the JMP if it's equivalent to a fall-through. 402 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) { 403 TBB = nullptr; 404 I->eraseFromParent(); 405 I = MBB.end(); 406 continue; 407 } 408 409 // TBB is used to indicate the unconditinal destination. 410 TBB = Branch.getMBBTarget(); 411 continue; 412 } 413 414 // Working from the bottom, handle the first conditional branch. 415 if (Cond.empty()) { 416 // FIXME: add X86-style branch swap 417 FBB = TBB; 418 TBB = Branch.getMBBTarget(); 419 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 420 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 421 continue; 422 } 423 424 // Handle subsequent conditional branches. 425 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 426 427 // Only handle the case where all conditional branches branch to the same 428 // destination. 429 if (TBB != Branch.getMBBTarget()) 430 return true; 431 432 // If the conditions are the same, we can leave them alone. 433 unsigned OldCCValid = Cond[0].getImm(); 434 unsigned OldCCMask = Cond[1].getImm(); 435 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 436 continue; 437 438 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 439 return false; 440 } 441 442 return false; 443 } 444 445 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 446 int *BytesRemoved) const { 447 assert(!BytesRemoved && "code size not handled"); 448 449 // Most of the code and comments here are boilerplate. 450 MachineBasicBlock::iterator I = MBB.end(); 451 unsigned Count = 0; 452 453 while (I != MBB.begin()) { 454 --I; 455 if (I->isDebugInstr()) 456 continue; 457 if (!I->isBranch()) 458 break; 459 if (!getBranchInfo(*I).hasMBBTarget()) 460 break; 461 // Remove the branch. 462 I->eraseFromParent(); 463 I = MBB.end(); 464 ++Count; 465 } 466 467 return Count; 468 } 469 470 bool SystemZInstrInfo:: 471 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 472 assert(Cond.size() == 2 && "Invalid condition"); 473 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 474 return false; 475 } 476 477 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 478 MachineBasicBlock *TBB, 479 MachineBasicBlock *FBB, 480 ArrayRef<MachineOperand> Cond, 481 const DebugLoc &DL, 482 int *BytesAdded) const { 483 // In this function we output 32-bit branches, which should always 484 // have enough range. They can be shortened and relaxed by later code 485 // in the pipeline, if desired. 486 487 // Shouldn't be a fall through. 488 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 489 assert((Cond.size() == 2 || Cond.size() == 0) && 490 "SystemZ branch conditions have one component!"); 491 assert(!BytesAdded && "code size not handled"); 492 493 if (Cond.empty()) { 494 // Unconditional branch? 495 assert(!FBB && "Unconditional branch with multiple successors!"); 496 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 497 return 1; 498 } 499 500 // Conditional branch. 501 unsigned Count = 0; 502 unsigned CCValid = Cond[0].getImm(); 503 unsigned CCMask = Cond[1].getImm(); 504 BuildMI(&MBB, DL, get(SystemZ::BRC)) 505 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 506 ++Count; 507 508 if (FBB) { 509 // Two-way Conditional branch. Insert the second branch. 510 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 511 ++Count; 512 } 513 return Count; 514 } 515 516 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 517 unsigned &SrcReg2, int &Mask, 518 int &Value) const { 519 assert(MI.isCompare() && "Caller should have checked for a comparison"); 520 521 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 522 MI.getOperand(1).isImm()) { 523 SrcReg = MI.getOperand(0).getReg(); 524 SrcReg2 = 0; 525 Value = MI.getOperand(1).getImm(); 526 Mask = ~0; 527 return true; 528 } 529 530 return false; 531 } 532 533 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 534 ArrayRef<MachineOperand> Pred, 535 unsigned TrueReg, unsigned FalseReg, 536 int &CondCycles, int &TrueCycles, 537 int &FalseCycles) const { 538 // Not all subtargets have LOCR instructions. 539 if (!STI.hasLoadStoreOnCond()) 540 return false; 541 if (Pred.size() != 2) 542 return false; 543 544 // Check register classes. 545 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 546 const TargetRegisterClass *RC = 547 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 548 if (!RC) 549 return false; 550 551 // We have LOCR instructions for 32 and 64 bit general purpose registers. 552 if ((STI.hasLoadStoreOnCond2() && 553 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 554 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 555 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 556 CondCycles = 2; 557 TrueCycles = 2; 558 FalseCycles = 2; 559 return true; 560 } 561 562 // Can't do anything else. 563 return false; 564 } 565 566 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 567 MachineBasicBlock::iterator I, 568 const DebugLoc &DL, unsigned DstReg, 569 ArrayRef<MachineOperand> Pred, 570 unsigned TrueReg, 571 unsigned FalseReg) const { 572 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 573 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 574 575 assert(Pred.size() == 2 && "Invalid condition"); 576 unsigned CCValid = Pred[0].getImm(); 577 unsigned CCMask = Pred[1].getImm(); 578 579 unsigned Opc; 580 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 581 if (STI.hasMiscellaneousExtensions3()) 582 Opc = SystemZ::SELRMux; 583 else if (STI.hasLoadStoreOnCond2()) 584 Opc = SystemZ::LOCRMux; 585 else { 586 Opc = SystemZ::LOCR; 587 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 588 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 589 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 590 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg); 591 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg); 592 TrueReg = TReg; 593 FalseReg = FReg; 594 } 595 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 596 if (STI.hasMiscellaneousExtensions3()) 597 Opc = SystemZ::SELGR; 598 else 599 Opc = SystemZ::LOCGR; 600 } else 601 llvm_unreachable("Invalid register class"); 602 603 BuildMI(MBB, I, DL, get(Opc), DstReg) 604 .addReg(FalseReg).addReg(TrueReg) 605 .addImm(CCValid).addImm(CCMask); 606 } 607 608 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 609 unsigned Reg, 610 MachineRegisterInfo *MRI) const { 611 unsigned DefOpc = DefMI.getOpcode(); 612 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 613 DefOpc != SystemZ::LGHI) 614 return false; 615 if (DefMI.getOperand(0).getReg() != Reg) 616 return false; 617 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 618 619 unsigned UseOpc = UseMI.getOpcode(); 620 unsigned NewUseOpc; 621 unsigned UseIdx; 622 int CommuteIdx = -1; 623 bool TieOps = false; 624 switch (UseOpc) { 625 case SystemZ::SELRMux: 626 TieOps = true; 627 LLVM_FALLTHROUGH; 628 case SystemZ::LOCRMux: 629 if (!STI.hasLoadStoreOnCond2()) 630 return false; 631 NewUseOpc = SystemZ::LOCHIMux; 632 if (UseMI.getOperand(2).getReg() == Reg) 633 UseIdx = 2; 634 else if (UseMI.getOperand(1).getReg() == Reg) 635 UseIdx = 2, CommuteIdx = 1; 636 else 637 return false; 638 break; 639 case SystemZ::SELGR: 640 TieOps = true; 641 LLVM_FALLTHROUGH; 642 case SystemZ::LOCGR: 643 if (!STI.hasLoadStoreOnCond2()) 644 return false; 645 NewUseOpc = SystemZ::LOCGHI; 646 if (UseMI.getOperand(2).getReg() == Reg) 647 UseIdx = 2; 648 else if (UseMI.getOperand(1).getReg() == Reg) 649 UseIdx = 2, CommuteIdx = 1; 650 else 651 return false; 652 break; 653 default: 654 return false; 655 } 656 657 if (CommuteIdx != -1) 658 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 659 return false; 660 661 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 662 UseMI.setDesc(get(NewUseOpc)); 663 if (TieOps) 664 UseMI.tieOperands(0, 1); 665 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 666 if (DeleteDef) 667 DefMI.eraseFromParent(); 668 669 return true; 670 } 671 672 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const { 673 unsigned Opcode = MI.getOpcode(); 674 if (Opcode == SystemZ::Return || 675 Opcode == SystemZ::Trap || 676 Opcode == SystemZ::CallJG || 677 Opcode == SystemZ::CallBR) 678 return true; 679 return false; 680 } 681 682 bool SystemZInstrInfo:: 683 isProfitableToIfCvt(MachineBasicBlock &MBB, 684 unsigned NumCycles, unsigned ExtraPredCycles, 685 BranchProbability Probability) const { 686 // Avoid using conditional returns at the end of a loop (since then 687 // we'd need to emit an unconditional branch to the beginning anyway, 688 // making the loop body longer). This doesn't apply for low-probability 689 // loops (eg. compare-and-swap retry), so just decide based on branch 690 // probability instead of looping structure. 691 // However, since Compare and Trap instructions cost the same as a regular 692 // Compare instruction, we should allow the if conversion to convert this 693 // into a Conditional Compare regardless of the branch probability. 694 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 695 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 696 return false; 697 // For now only convert single instructions. 698 return NumCycles == 1; 699 } 700 701 bool SystemZInstrInfo:: 702 isProfitableToIfCvt(MachineBasicBlock &TMBB, 703 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 704 MachineBasicBlock &FMBB, 705 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 706 BranchProbability Probability) const { 707 // For now avoid converting mutually-exclusive cases. 708 return false; 709 } 710 711 bool SystemZInstrInfo:: 712 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 713 BranchProbability Probability) const { 714 // For now only duplicate single instructions. 715 return NumCycles == 1; 716 } 717 718 bool SystemZInstrInfo::PredicateInstruction( 719 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 720 assert(Pred.size() == 2 && "Invalid condition"); 721 unsigned CCValid = Pred[0].getImm(); 722 unsigned CCMask = Pred[1].getImm(); 723 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 724 unsigned Opcode = MI.getOpcode(); 725 if (Opcode == SystemZ::Trap) { 726 MI.setDesc(get(SystemZ::CondTrap)); 727 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 728 .addImm(CCValid).addImm(CCMask) 729 .addReg(SystemZ::CC, RegState::Implicit); 730 return true; 731 } 732 if (Opcode == SystemZ::Return) { 733 MI.setDesc(get(SystemZ::CondReturn)); 734 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 735 .addImm(CCValid).addImm(CCMask) 736 .addReg(SystemZ::CC, RegState::Implicit); 737 return true; 738 } 739 if (Opcode == SystemZ::CallJG) { 740 MachineOperand FirstOp = MI.getOperand(0); 741 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 742 MI.RemoveOperand(1); 743 MI.RemoveOperand(0); 744 MI.setDesc(get(SystemZ::CallBRCL)); 745 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 746 .addImm(CCValid) 747 .addImm(CCMask) 748 .add(FirstOp) 749 .addRegMask(RegMask) 750 .addReg(SystemZ::CC, RegState::Implicit); 751 return true; 752 } 753 if (Opcode == SystemZ::CallBR) { 754 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 755 MI.RemoveOperand(0); 756 MI.setDesc(get(SystemZ::CallBCR)); 757 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 758 .addImm(CCValid).addImm(CCMask) 759 .addRegMask(RegMask) 760 .addReg(SystemZ::CC, RegState::Implicit); 761 return true; 762 } 763 return false; 764 } 765 766 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 767 MachineBasicBlock::iterator MBBI, 768 const DebugLoc &DL, MCRegister DestReg, 769 MCRegister SrcReg, bool KillSrc) const { 770 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the 771 // super register in case one of the subregs is undefined. 772 // This handles ADDR128 too. 773 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 774 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 775 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 776 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 777 .addReg(SrcReg, RegState::Implicit); 778 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 779 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 780 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 781 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit)); 782 return; 783 } 784 785 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 786 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 787 false); 788 return; 789 } 790 791 // Move 128-bit floating-point values between VR128 and FP128. 792 if (SystemZ::VR128BitRegClass.contains(DestReg) && 793 SystemZ::FP128BitRegClass.contains(SrcReg)) { 794 MCRegister SrcRegHi = 795 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64), 796 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 797 MCRegister SrcRegLo = 798 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64), 799 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 800 801 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg) 802 .addReg(SrcRegHi, getKillRegState(KillSrc)) 803 .addReg(SrcRegLo, getKillRegState(KillSrc)); 804 return; 805 } 806 if (SystemZ::FP128BitRegClass.contains(DestReg) && 807 SystemZ::VR128BitRegClass.contains(SrcReg)) { 808 MCRegister DestRegHi = 809 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64), 810 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 811 MCRegister DestRegLo = 812 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64), 813 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 814 815 if (DestRegHi != SrcReg) 816 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false); 817 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo) 818 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1); 819 return; 820 } 821 822 // Move CC value from/to a GR32. 823 if (SrcReg == SystemZ::CC) { 824 auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg); 825 if (KillSrc) { 826 const MachineFunction *MF = MBB.getParent(); 827 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 828 MIB->addRegisterKilled(SrcReg, TRI); 829 } 830 return; 831 } 832 if (DestReg == SystemZ::CC) { 833 BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH)) 834 .addReg(SrcReg, getKillRegState(KillSrc)) 835 .addImm(3 << (SystemZ::IPM_CC - 16)); 836 return; 837 } 838 839 // Everything else needs only one instruction. 840 unsigned Opcode; 841 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 842 Opcode = SystemZ::LGR; 843 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 844 // For z13 we prefer LDR over LER to avoid partial register dependencies. 845 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 846 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 847 Opcode = SystemZ::LDR; 848 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 849 Opcode = SystemZ::LXR; 850 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 851 Opcode = SystemZ::VLR32; 852 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 853 Opcode = SystemZ::VLR64; 854 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 855 Opcode = SystemZ::VLR; 856 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 857 Opcode = SystemZ::CPYA; 858 else if (SystemZ::AR32BitRegClass.contains(DestReg) && 859 SystemZ::GR32BitRegClass.contains(SrcReg)) 860 Opcode = SystemZ::SAR; 861 else if (SystemZ::GR32BitRegClass.contains(DestReg) && 862 SystemZ::AR32BitRegClass.contains(SrcReg)) 863 Opcode = SystemZ::EAR; 864 else 865 llvm_unreachable("Impossible reg-to-reg copy"); 866 867 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 868 .addReg(SrcReg, getKillRegState(KillSrc)); 869 } 870 871 void SystemZInstrInfo::storeRegToStackSlot( 872 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 873 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 874 const TargetRegisterInfo *TRI) const { 875 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 876 877 // Callers may expect a single instruction, so keep 128-bit moves 878 // together for now and lower them after register allocation. 879 unsigned LoadOpcode, StoreOpcode; 880 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 881 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 882 .addReg(SrcReg, getKillRegState(isKill)), 883 FrameIdx); 884 } 885 886 void SystemZInstrInfo::loadRegFromStackSlot( 887 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 888 int FrameIdx, const TargetRegisterClass *RC, 889 const TargetRegisterInfo *TRI) const { 890 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 891 892 // Callers may expect a single instruction, so keep 128-bit moves 893 // together for now and lower them after register allocation. 894 unsigned LoadOpcode, StoreOpcode; 895 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 896 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 897 FrameIdx); 898 } 899 900 // Return true if MI is a simple load or store with a 12-bit displacement 901 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 902 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 903 const MCInstrDesc &MCID = MI->getDesc(); 904 return ((MCID.TSFlags & Flag) && 905 isUInt<12>(MI->getOperand(2).getImm()) && 906 MI->getOperand(3).getReg() == 0); 907 } 908 909 namespace { 910 911 struct LogicOp { 912 LogicOp() = default; 913 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 914 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 915 916 explicit operator bool() const { return RegSize; } 917 918 unsigned RegSize = 0; 919 unsigned ImmLSB = 0; 920 unsigned ImmSize = 0; 921 }; 922 923 } // end anonymous namespace 924 925 static LogicOp interpretAndImmediate(unsigned Opcode) { 926 switch (Opcode) { 927 case SystemZ::NILMux: return LogicOp(32, 0, 16); 928 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 929 case SystemZ::NILL64: return LogicOp(64, 0, 16); 930 case SystemZ::NILH64: return LogicOp(64, 16, 16); 931 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 932 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 933 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 934 case SystemZ::NILF64: return LogicOp(64, 0, 32); 935 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 936 default: return LogicOp(); 937 } 938 } 939 940 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 941 if (OldMI->registerDefIsDead(SystemZ::CC)) { 942 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 943 if (CCDef != nullptr) 944 CCDef->setIsDead(true); 945 } 946 } 947 948 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI, 949 MachineInstr::MIFlag Flag) { 950 if (OldMI->getFlag(Flag)) 951 NewMI->setFlag(Flag); 952 } 953 954 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 955 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 956 MachineBasicBlock *MBB = MI.getParent(); 957 958 // Try to convert an AND into an RISBG-type instruction. 959 // TODO: It might be beneficial to select RISBG and shorten to AND instead. 960 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) { 961 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 962 // AND IMMEDIATE leaves the other bits of the register unchanged. 963 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 964 unsigned Start, End; 965 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 966 unsigned NewOpcode; 967 if (And.RegSize == 64) { 968 NewOpcode = SystemZ::RISBG; 969 // Prefer RISBGN if available, since it does not clobber CC. 970 if (STI.hasMiscellaneousExtensions()) 971 NewOpcode = SystemZ::RISBGN; 972 } else { 973 NewOpcode = SystemZ::RISBMux; 974 Start &= 31; 975 End &= 31; 976 } 977 MachineOperand &Dest = MI.getOperand(0); 978 MachineOperand &Src = MI.getOperand(1); 979 MachineInstrBuilder MIB = 980 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 981 .add(Dest) 982 .addReg(0) 983 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 984 Src.getSubReg()) 985 .addImm(Start) 986 .addImm(End + 128) 987 .addImm(0); 988 if (LV) { 989 unsigned NumOps = MI.getNumOperands(); 990 for (unsigned I = 1; I < NumOps; ++I) { 991 MachineOperand &Op = MI.getOperand(I); 992 if (Op.isReg() && Op.isKill()) 993 LV->replaceKillInstruction(Op.getReg(), MI, *MIB); 994 } 995 } 996 transferDeadCC(&MI, MIB); 997 return MIB; 998 } 999 } 1000 return nullptr; 1001 } 1002 1003 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1004 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1005 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1006 LiveIntervals *LIS, VirtRegMap *VRM) const { 1007 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1008 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1009 unsigned Size = MFI.getObjectSize(FrameIndex); 1010 unsigned Opcode = MI.getOpcode(); 1011 1012 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1013 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1014 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1015 1016 // Check CC liveness, since new instruction introduces a dead 1017 // def of CC. 1018 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 1019 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 1020 ++CCUnit; 1021 assert(!CCUnit.isValid() && "CC only has one reg unit."); 1022 SlotIndex MISlot = 1023 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1024 if (!CCLiveRange.liveAt(MISlot)) { 1025 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1026 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1027 MI.getDebugLoc(), get(SystemZ::AGSI)) 1028 .addFrameIndex(FrameIndex) 1029 .addImm(0) 1030 .addImm(MI.getOperand(2).getImm()); 1031 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1032 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1033 return BuiltMI; 1034 } 1035 } 1036 return nullptr; 1037 } 1038 1039 // All other cases require a single operand. 1040 if (Ops.size() != 1) 1041 return nullptr; 1042 1043 unsigned OpNum = Ops[0]; 1044 assert(Size * 8 == 1045 TRI->getRegSizeInBits(*MF.getRegInfo() 1046 .getRegClass(MI.getOperand(OpNum).getReg())) && 1047 "Invalid size combination"); 1048 1049 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1050 isInt<8>(MI.getOperand(2).getImm())) { 1051 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1052 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1053 MachineInstr *BuiltMI = 1054 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1055 .addFrameIndex(FrameIndex) 1056 .addImm(0) 1057 .addImm(MI.getOperand(2).getImm()); 1058 transferDeadCC(&MI, BuiltMI); 1059 transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap); 1060 return BuiltMI; 1061 } 1062 1063 if ((Opcode == SystemZ::ALFI && OpNum == 0 && 1064 isInt<8>((int32_t)MI.getOperand(2).getImm())) || 1065 (Opcode == SystemZ::ALGFI && OpNum == 0 && 1066 isInt<8>((int64_t)MI.getOperand(2).getImm()))) { 1067 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST 1068 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI); 1069 MachineInstr *BuiltMI = 1070 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1071 .addFrameIndex(FrameIndex) 1072 .addImm(0) 1073 .addImm((int8_t)MI.getOperand(2).getImm()); 1074 transferDeadCC(&MI, BuiltMI); 1075 return BuiltMI; 1076 } 1077 1078 if ((Opcode == SystemZ::SLFI && OpNum == 0 && 1079 isInt<8>((int32_t)-MI.getOperand(2).getImm())) || 1080 (Opcode == SystemZ::SLGFI && OpNum == 0 && 1081 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) { 1082 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST 1083 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI); 1084 MachineInstr *BuiltMI = 1085 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1086 .addFrameIndex(FrameIndex) 1087 .addImm(0) 1088 .addImm((int8_t)-MI.getOperand(2).getImm()); 1089 transferDeadCC(&MI, BuiltMI); 1090 return BuiltMI; 1091 } 1092 1093 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1094 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1095 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1096 // If we're spilling the destination of an LDGR or LGDR, store the 1097 // source register instead. 1098 if (OpNum == 0) { 1099 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1100 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1101 get(StoreOpcode)) 1102 .add(MI.getOperand(1)) 1103 .addFrameIndex(FrameIndex) 1104 .addImm(0) 1105 .addReg(0); 1106 } 1107 // If we're spilling the source of an LDGR or LGDR, load the 1108 // destination register instead. 1109 if (OpNum == 1) { 1110 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1111 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1112 get(LoadOpcode)) 1113 .add(MI.getOperand(0)) 1114 .addFrameIndex(FrameIndex) 1115 .addImm(0) 1116 .addReg(0); 1117 } 1118 } 1119 1120 // Look for cases where the source of a simple store or the destination 1121 // of a simple load is being spilled. Try to use MVC instead. 1122 // 1123 // Although MVC is in practice a fast choice in these cases, it is still 1124 // logically a bytewise copy. This means that we cannot use it if the 1125 // load or store is volatile. We also wouldn't be able to use MVC if 1126 // the two memories partially overlap, but that case cannot occur here, 1127 // because we know that one of the memories is a full frame index. 1128 // 1129 // For performance reasons, we also want to avoid using MVC if the addresses 1130 // might be equal. We don't worry about that case here, because spill slot 1131 // coloring happens later, and because we have special code to remove 1132 // MVCs that turn out to be redundant. 1133 if (OpNum == 0 && MI.hasOneMemOperand()) { 1134 MachineMemOperand *MMO = *MI.memoperands_begin(); 1135 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) { 1136 // Handle conversion of loads. 1137 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1138 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1139 get(SystemZ::MVC)) 1140 .addFrameIndex(FrameIndex) 1141 .addImm(0) 1142 .addImm(Size) 1143 .add(MI.getOperand(1)) 1144 .addImm(MI.getOperand(2).getImm()) 1145 .addMemOperand(MMO); 1146 } 1147 // Handle conversion of stores. 1148 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1149 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1150 get(SystemZ::MVC)) 1151 .add(MI.getOperand(1)) 1152 .addImm(MI.getOperand(2).getImm()) 1153 .addImm(Size) 1154 .addFrameIndex(FrameIndex) 1155 .addImm(0) 1156 .addMemOperand(MMO); 1157 } 1158 } 1159 } 1160 1161 // If the spilled operand is the final one or the instruction is 1162 // commutable, try to change <INSN>R into <INSN>. 1163 unsigned NumOps = MI.getNumExplicitOperands(); 1164 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1165 1166 // See if this is a 3-address instruction that is convertible to 2-address 1167 // and suitable for folding below. Only try this with virtual registers 1168 // and a provided VRM (during regalloc). 1169 bool NeedsCommute = false; 1170 if (SystemZ::getTwoOperandOpcode(Opcode) != -1 && MemOpcode != -1) { 1171 if (VRM == nullptr) 1172 MemOpcode = -1; 1173 else { 1174 assert(NumOps == 3 && "Expected two source registers."); 1175 Register DstReg = MI.getOperand(0).getReg(); 1176 Register DstPhys = 1177 (Register::isVirtualRegister(DstReg) ? VRM->getPhys(DstReg) : DstReg); 1178 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg() 1179 : ((OpNum == 1 && MI.isCommutable()) 1180 ? MI.getOperand(2).getReg() 1181 : Register())); 1182 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg && 1183 Register::isVirtualRegister(SrcReg) && 1184 DstPhys == VRM->getPhys(SrcReg)) 1185 NeedsCommute = (OpNum == 1); 1186 else 1187 MemOpcode = -1; 1188 } 1189 } 1190 1191 if (MemOpcode >= 0) { 1192 if ((OpNum == NumOps - 1) || NeedsCommute) { 1193 const MCInstrDesc &MemDesc = get(MemOpcode); 1194 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1195 assert(AccessBytes != 0 && "Size of access should be known"); 1196 assert(AccessBytes <= Size && "Access outside the frame index"); 1197 uint64_t Offset = Size - AccessBytes; 1198 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1199 MI.getDebugLoc(), get(MemOpcode)); 1200 MIB.add(MI.getOperand(0)); 1201 if (NeedsCommute) 1202 MIB.add(MI.getOperand(2)); 1203 else 1204 for (unsigned I = 1; I < OpNum; ++I) 1205 MIB.add(MI.getOperand(I)); 1206 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1207 if (MemDesc.TSFlags & SystemZII::HasIndex) 1208 MIB.addReg(0); 1209 transferDeadCC(&MI, MIB); 1210 transferMIFlag(&MI, MIB, MachineInstr::NoSWrap); 1211 return MIB; 1212 } 1213 } 1214 1215 return nullptr; 1216 } 1217 1218 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1219 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1220 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1221 LiveIntervals *LIS) const { 1222 return nullptr; 1223 } 1224 1225 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1226 switch (MI.getOpcode()) { 1227 case SystemZ::L128: 1228 splitMove(MI, SystemZ::LG); 1229 return true; 1230 1231 case SystemZ::ST128: 1232 splitMove(MI, SystemZ::STG); 1233 return true; 1234 1235 case SystemZ::LX: 1236 splitMove(MI, SystemZ::LD); 1237 return true; 1238 1239 case SystemZ::STX: 1240 splitMove(MI, SystemZ::STD); 1241 return true; 1242 1243 case SystemZ::LBMux: 1244 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1245 return true; 1246 1247 case SystemZ::LHMux: 1248 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1249 return true; 1250 1251 case SystemZ::LLCRMux: 1252 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1253 return true; 1254 1255 case SystemZ::LLHRMux: 1256 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1257 return true; 1258 1259 case SystemZ::LLCMux: 1260 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1261 return true; 1262 1263 case SystemZ::LLHMux: 1264 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1265 return true; 1266 1267 case SystemZ::LMux: 1268 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1269 return true; 1270 1271 case SystemZ::LOCMux: 1272 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1273 return true; 1274 1275 case SystemZ::LOCHIMux: 1276 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1277 return true; 1278 1279 case SystemZ::STCMux: 1280 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1281 return true; 1282 1283 case SystemZ::STHMux: 1284 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1285 return true; 1286 1287 case SystemZ::STMux: 1288 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1289 return true; 1290 1291 case SystemZ::STOCMux: 1292 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1293 return true; 1294 1295 case SystemZ::LHIMux: 1296 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1297 return true; 1298 1299 case SystemZ::IIFMux: 1300 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1301 return true; 1302 1303 case SystemZ::IILMux: 1304 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1305 return true; 1306 1307 case SystemZ::IIHMux: 1308 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1309 return true; 1310 1311 case SystemZ::NIFMux: 1312 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1313 return true; 1314 1315 case SystemZ::NILMux: 1316 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1317 return true; 1318 1319 case SystemZ::NIHMux: 1320 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1321 return true; 1322 1323 case SystemZ::OIFMux: 1324 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1325 return true; 1326 1327 case SystemZ::OILMux: 1328 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1329 return true; 1330 1331 case SystemZ::OIHMux: 1332 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1333 return true; 1334 1335 case SystemZ::XIFMux: 1336 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1337 return true; 1338 1339 case SystemZ::TMLMux: 1340 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1341 return true; 1342 1343 case SystemZ::TMHMux: 1344 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1345 return true; 1346 1347 case SystemZ::AHIMux: 1348 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1349 return true; 1350 1351 case SystemZ::AHIMuxK: 1352 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1353 return true; 1354 1355 case SystemZ::AFIMux: 1356 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1357 return true; 1358 1359 case SystemZ::CHIMux: 1360 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1361 return true; 1362 1363 case SystemZ::CFIMux: 1364 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1365 return true; 1366 1367 case SystemZ::CLFIMux: 1368 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1369 return true; 1370 1371 case SystemZ::CMux: 1372 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1373 return true; 1374 1375 case SystemZ::CLMux: 1376 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1377 return true; 1378 1379 case SystemZ::RISBMux: { 1380 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg()); 1381 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg()); 1382 if (SrcIsHigh == DestIsHigh) 1383 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1384 else { 1385 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1386 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1387 } 1388 return true; 1389 } 1390 1391 case SystemZ::ADJDYNALLOC: 1392 splitAdjDynAlloc(MI); 1393 return true; 1394 1395 case TargetOpcode::LOAD_STACK_GUARD: 1396 expandLoadStackGuard(&MI); 1397 return true; 1398 1399 default: 1400 return false; 1401 } 1402 } 1403 1404 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1405 if (MI.isInlineAsm()) { 1406 const MachineFunction *MF = MI.getParent()->getParent(); 1407 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1408 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1409 } 1410 return MI.getDesc().getSize(); 1411 } 1412 1413 SystemZII::Branch 1414 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1415 switch (MI.getOpcode()) { 1416 case SystemZ::BR: 1417 case SystemZ::BI: 1418 case SystemZ::J: 1419 case SystemZ::JG: 1420 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1421 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1422 1423 case SystemZ::BRC: 1424 case SystemZ::BRCL: 1425 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1426 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1427 1428 case SystemZ::BRCT: 1429 case SystemZ::BRCTH: 1430 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1431 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1432 1433 case SystemZ::BRCTG: 1434 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1435 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1436 1437 case SystemZ::CIJ: 1438 case SystemZ::CRJ: 1439 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1440 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1441 1442 case SystemZ::CLIJ: 1443 case SystemZ::CLRJ: 1444 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1445 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1446 1447 case SystemZ::CGIJ: 1448 case SystemZ::CGRJ: 1449 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1450 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1451 1452 case SystemZ::CLGIJ: 1453 case SystemZ::CLGRJ: 1454 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1455 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1456 1457 case SystemZ::INLINEASM_BR: 1458 // Don't try to analyze asm goto, so pass nullptr as branch target argument. 1459 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr); 1460 1461 default: 1462 llvm_unreachable("Unrecognized branch opcode"); 1463 } 1464 } 1465 1466 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1467 unsigned &LoadOpcode, 1468 unsigned &StoreOpcode) const { 1469 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1470 LoadOpcode = SystemZ::L; 1471 StoreOpcode = SystemZ::ST; 1472 } else if (RC == &SystemZ::GRH32BitRegClass) { 1473 LoadOpcode = SystemZ::LFH; 1474 StoreOpcode = SystemZ::STFH; 1475 } else if (RC == &SystemZ::GRX32BitRegClass) { 1476 LoadOpcode = SystemZ::LMux; 1477 StoreOpcode = SystemZ::STMux; 1478 } else if (RC == &SystemZ::GR64BitRegClass || 1479 RC == &SystemZ::ADDR64BitRegClass) { 1480 LoadOpcode = SystemZ::LG; 1481 StoreOpcode = SystemZ::STG; 1482 } else if (RC == &SystemZ::GR128BitRegClass || 1483 RC == &SystemZ::ADDR128BitRegClass) { 1484 LoadOpcode = SystemZ::L128; 1485 StoreOpcode = SystemZ::ST128; 1486 } else if (RC == &SystemZ::FP32BitRegClass) { 1487 LoadOpcode = SystemZ::LE; 1488 StoreOpcode = SystemZ::STE; 1489 } else if (RC == &SystemZ::FP64BitRegClass) { 1490 LoadOpcode = SystemZ::LD; 1491 StoreOpcode = SystemZ::STD; 1492 } else if (RC == &SystemZ::FP128BitRegClass) { 1493 LoadOpcode = SystemZ::LX; 1494 StoreOpcode = SystemZ::STX; 1495 } else if (RC == &SystemZ::VR32BitRegClass) { 1496 LoadOpcode = SystemZ::VL32; 1497 StoreOpcode = SystemZ::VST32; 1498 } else if (RC == &SystemZ::VR64BitRegClass) { 1499 LoadOpcode = SystemZ::VL64; 1500 StoreOpcode = SystemZ::VST64; 1501 } else if (RC == &SystemZ::VF128BitRegClass || 1502 RC == &SystemZ::VR128BitRegClass) { 1503 LoadOpcode = SystemZ::VL; 1504 StoreOpcode = SystemZ::VST; 1505 } else 1506 llvm_unreachable("Unsupported regclass to load or store"); 1507 } 1508 1509 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1510 int64_t Offset) const { 1511 const MCInstrDesc &MCID = get(Opcode); 1512 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1513 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1514 // Get the instruction to use for unsigned 12-bit displacements. 1515 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1516 if (Disp12Opcode >= 0) 1517 return Disp12Opcode; 1518 1519 // All address-related instructions can use unsigned 12-bit 1520 // displacements. 1521 return Opcode; 1522 } 1523 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1524 // Get the instruction to use for signed 20-bit displacements. 1525 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1526 if (Disp20Opcode >= 0) 1527 return Disp20Opcode; 1528 1529 // Check whether Opcode allows signed 20-bit displacements. 1530 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1531 return Opcode; 1532 } 1533 return 0; 1534 } 1535 1536 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1537 switch (Opcode) { 1538 case SystemZ::L: return SystemZ::LT; 1539 case SystemZ::LY: return SystemZ::LT; 1540 case SystemZ::LG: return SystemZ::LTG; 1541 case SystemZ::LGF: return SystemZ::LTGF; 1542 case SystemZ::LR: return SystemZ::LTR; 1543 case SystemZ::LGFR: return SystemZ::LTGFR; 1544 case SystemZ::LGR: return SystemZ::LTGR; 1545 case SystemZ::LER: return SystemZ::LTEBR; 1546 case SystemZ::LDR: return SystemZ::LTDBR; 1547 case SystemZ::LXR: return SystemZ::LTXBR; 1548 case SystemZ::LCDFR: return SystemZ::LCDBR; 1549 case SystemZ::LPDFR: return SystemZ::LPDBR; 1550 case SystemZ::LNDFR: return SystemZ::LNDBR; 1551 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1552 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1553 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1554 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1555 // actually use the condition code, we may turn it back into RISGB. 1556 // Note that RISBG is not really a "load-and-test" instruction, 1557 // but sets the same condition code values, so is OK to use here. 1558 case SystemZ::RISBGN: return SystemZ::RISBG; 1559 default: return 0; 1560 } 1561 } 1562 1563 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1564 // have already been filtered out. Store the first set bit in LSB and 1565 // the number of set bits in Length if so. 1566 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1567 unsigned First = findFirstSet(Mask); 1568 uint64_t Top = (Mask >> First) + 1; 1569 if ((Top & -Top) == Top) { 1570 LSB = First; 1571 Length = findFirstSet(Top); 1572 return true; 1573 } 1574 return false; 1575 } 1576 1577 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1578 unsigned &Start, unsigned &End) const { 1579 // Reject trivial all-zero masks. 1580 Mask &= allOnes(BitSize); 1581 if (Mask == 0) 1582 return false; 1583 1584 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1585 // the msb and End specifies the index of the lsb. 1586 unsigned LSB, Length; 1587 if (isStringOfOnes(Mask, LSB, Length)) { 1588 Start = 63 - (LSB + Length - 1); 1589 End = 63 - LSB; 1590 return true; 1591 } 1592 1593 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1594 // of the low 1s and End specifies the lsb of the high 1s. 1595 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1596 assert(LSB > 0 && "Bottom bit must be set"); 1597 assert(LSB + Length < BitSize && "Top bit must be set"); 1598 Start = 63 - (LSB - 1); 1599 End = 63 - (LSB + Length); 1600 return true; 1601 } 1602 1603 return false; 1604 } 1605 1606 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1607 SystemZII::FusedCompareType Type, 1608 const MachineInstr *MI) const { 1609 switch (Opcode) { 1610 case SystemZ::CHI: 1611 case SystemZ::CGHI: 1612 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1613 return 0; 1614 break; 1615 case SystemZ::CLFI: 1616 case SystemZ::CLGFI: 1617 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1618 return 0; 1619 break; 1620 case SystemZ::CL: 1621 case SystemZ::CLG: 1622 if (!STI.hasMiscellaneousExtensions()) 1623 return 0; 1624 if (!(MI && MI->getOperand(3).getReg() == 0)) 1625 return 0; 1626 break; 1627 } 1628 switch (Type) { 1629 case SystemZII::CompareAndBranch: 1630 switch (Opcode) { 1631 case SystemZ::CR: 1632 return SystemZ::CRJ; 1633 case SystemZ::CGR: 1634 return SystemZ::CGRJ; 1635 case SystemZ::CHI: 1636 return SystemZ::CIJ; 1637 case SystemZ::CGHI: 1638 return SystemZ::CGIJ; 1639 case SystemZ::CLR: 1640 return SystemZ::CLRJ; 1641 case SystemZ::CLGR: 1642 return SystemZ::CLGRJ; 1643 case SystemZ::CLFI: 1644 return SystemZ::CLIJ; 1645 case SystemZ::CLGFI: 1646 return SystemZ::CLGIJ; 1647 default: 1648 return 0; 1649 } 1650 case SystemZII::CompareAndReturn: 1651 switch (Opcode) { 1652 case SystemZ::CR: 1653 return SystemZ::CRBReturn; 1654 case SystemZ::CGR: 1655 return SystemZ::CGRBReturn; 1656 case SystemZ::CHI: 1657 return SystemZ::CIBReturn; 1658 case SystemZ::CGHI: 1659 return SystemZ::CGIBReturn; 1660 case SystemZ::CLR: 1661 return SystemZ::CLRBReturn; 1662 case SystemZ::CLGR: 1663 return SystemZ::CLGRBReturn; 1664 case SystemZ::CLFI: 1665 return SystemZ::CLIBReturn; 1666 case SystemZ::CLGFI: 1667 return SystemZ::CLGIBReturn; 1668 default: 1669 return 0; 1670 } 1671 case SystemZII::CompareAndSibcall: 1672 switch (Opcode) { 1673 case SystemZ::CR: 1674 return SystemZ::CRBCall; 1675 case SystemZ::CGR: 1676 return SystemZ::CGRBCall; 1677 case SystemZ::CHI: 1678 return SystemZ::CIBCall; 1679 case SystemZ::CGHI: 1680 return SystemZ::CGIBCall; 1681 case SystemZ::CLR: 1682 return SystemZ::CLRBCall; 1683 case SystemZ::CLGR: 1684 return SystemZ::CLGRBCall; 1685 case SystemZ::CLFI: 1686 return SystemZ::CLIBCall; 1687 case SystemZ::CLGFI: 1688 return SystemZ::CLGIBCall; 1689 default: 1690 return 0; 1691 } 1692 case SystemZII::CompareAndTrap: 1693 switch (Opcode) { 1694 case SystemZ::CR: 1695 return SystemZ::CRT; 1696 case SystemZ::CGR: 1697 return SystemZ::CGRT; 1698 case SystemZ::CHI: 1699 return SystemZ::CIT; 1700 case SystemZ::CGHI: 1701 return SystemZ::CGIT; 1702 case SystemZ::CLR: 1703 return SystemZ::CLRT; 1704 case SystemZ::CLGR: 1705 return SystemZ::CLGRT; 1706 case SystemZ::CLFI: 1707 return SystemZ::CLFIT; 1708 case SystemZ::CLGFI: 1709 return SystemZ::CLGIT; 1710 case SystemZ::CL: 1711 return SystemZ::CLT; 1712 case SystemZ::CLG: 1713 return SystemZ::CLGT; 1714 default: 1715 return 0; 1716 } 1717 } 1718 return 0; 1719 } 1720 1721 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1722 if (!STI.hasLoadAndTrap()) 1723 return 0; 1724 switch (Opcode) { 1725 case SystemZ::L: 1726 case SystemZ::LY: 1727 return SystemZ::LAT; 1728 case SystemZ::LG: 1729 return SystemZ::LGAT; 1730 case SystemZ::LFH: 1731 return SystemZ::LFHAT; 1732 case SystemZ::LLGF: 1733 return SystemZ::LLGFAT; 1734 case SystemZ::LLGT: 1735 return SystemZ::LLGTAT; 1736 } 1737 return 0; 1738 } 1739 1740 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1741 MachineBasicBlock::iterator MBBI, 1742 unsigned Reg, uint64_t Value) const { 1743 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1744 unsigned Opcode; 1745 if (isInt<16>(Value)) 1746 Opcode = SystemZ::LGHI; 1747 else if (SystemZ::isImmLL(Value)) 1748 Opcode = SystemZ::LLILL; 1749 else if (SystemZ::isImmLH(Value)) { 1750 Opcode = SystemZ::LLILH; 1751 Value >>= 16; 1752 } else { 1753 assert(isInt<32>(Value) && "Huge values not handled yet"); 1754 Opcode = SystemZ::LGFI; 1755 } 1756 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1757 } 1758 1759 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI, 1760 StringRef &ErrInfo) const { 1761 const MCInstrDesc &MCID = MI.getDesc(); 1762 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1763 if (I >= MCID.getNumOperands()) 1764 break; 1765 const MachineOperand &Op = MI.getOperand(I); 1766 const MCOperandInfo &MCOI = MCID.OpInfo[I]; 1767 // Addressing modes have register and immediate operands. Op should be a 1768 // register (or frame index) operand if MCOI.RegClass contains a valid 1769 // register class, or an immediate otherwise. 1770 if (MCOI.OperandType == MCOI::OPERAND_MEMORY && 1771 ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) || 1772 (MCOI.RegClass == -1 && !Op.isImm()))) { 1773 ErrInfo = "Addressing mode operands corrupt!"; 1774 return false; 1775 } 1776 } 1777 1778 return true; 1779 } 1780 1781 bool SystemZInstrInfo:: 1782 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 1783 const MachineInstr &MIb) const { 1784 1785 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 1786 return false; 1787 1788 // If mem-operands show that the same address Value is used by both 1789 // instructions, check for non-overlapping offsets and widths. Not 1790 // sure if a register based analysis would be an improvement... 1791 1792 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 1793 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 1794 const Value *VALa = MMOa->getValue(); 1795 const Value *VALb = MMOb->getValue(); 1796 bool SameVal = (VALa && VALb && (VALa == VALb)); 1797 if (!SameVal) { 1798 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1799 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1800 if (PSVa && PSVb && (PSVa == PSVb)) 1801 SameVal = true; 1802 } 1803 if (SameVal) { 1804 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 1805 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 1806 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1807 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1808 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1809 if (LowOffset + LowWidth <= HighOffset) 1810 return true; 1811 } 1812 1813 return false; 1814 } 1815