xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp (revision 6966ac055c3b7a39266fb982493330df7a097997)
1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 
42 using namespace llvm;
43 
44 #define GET_INSTRINFO_CTOR_DTOR
45 #define GET_INSTRMAP_INFO
46 #include "SystemZGenInstrInfo.inc"
47 
48 #define DEBUG_TYPE "systemz-II"
49 STATISTIC(LOCRMuxJumps, "Number of LOCRMux jump-sequences (lower is better)");
50 
51 // Return a mask with Count low bits set.
52 static uint64_t allOnes(unsigned int Count) {
53   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
54 }
55 
56 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
57 // than a low register.
58 static bool isHighReg(unsigned int Reg) {
59   if (SystemZ::GRH32BitRegClass.contains(Reg))
60     return true;
61   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
62   return false;
63 }
64 
65 // Pin the vtable to this file.
66 void SystemZInstrInfo::anchor() {}
67 
68 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
69   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
70     RI(), STI(sti) {
71 }
72 
73 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
74 // each having the opcode given by NewOpcode.
75 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
76                                  unsigned NewOpcode) const {
77   MachineBasicBlock *MBB = MI->getParent();
78   MachineFunction &MF = *MBB->getParent();
79 
80   // Get two load or store instructions.  Use the original instruction for one
81   // of them (arbitrarily the second here) and create a clone for the other.
82   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
83   MBB->insert(MI, EarlierMI);
84 
85   // Set up the two 64-bit registers and remember super reg and its flags.
86   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
87   MachineOperand &LowRegOp = MI->getOperand(0);
88   unsigned Reg128 = LowRegOp.getReg();
89   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
90   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
91   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
92   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
93 
94   if (MI->mayStore()) {
95     // Add implicit uses of the super register in case one of the subregs is
96     // undefined. We could track liveness and skip storing an undefined
97     // subreg, but this is hopefully rare (discovered with llvm-stress).
98     // If Reg128 was killed, set kill flag on MI.
99     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
100     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
101     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
102   }
103 
104   // The address in the first (high) instruction is already correct.
105   // Adjust the offset in the second (low) instruction.
106   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
107   MachineOperand &LowOffsetOp = MI->getOperand(2);
108   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
109 
110   // Clear the kill flags on the registers in the first instruction.
111   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
112     EarlierMI->getOperand(0).setIsKill(false);
113   EarlierMI->getOperand(1).setIsKill(false);
114   EarlierMI->getOperand(3).setIsKill(false);
115 
116   // Set the opcodes.
117   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
118   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
119   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
120 
121   EarlierMI->setDesc(get(HighOpcode));
122   MI->setDesc(get(LowOpcode));
123 }
124 
125 // Split ADJDYNALLOC instruction MI.
126 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
127   MachineBasicBlock *MBB = MI->getParent();
128   MachineFunction &MF = *MBB->getParent();
129   MachineFrameInfo &MFFrame = MF.getFrameInfo();
130   MachineOperand &OffsetMO = MI->getOperand(2);
131 
132   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
133                      SystemZMC::CallFrameSize +
134                      OffsetMO.getImm());
135   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
136   assert(NewOpcode && "No support for huge argument lists yet");
137   MI->setDesc(get(NewOpcode));
138   OffsetMO.setImm(Offset);
139 }
140 
141 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
142 // if the first operand is a low GR32 and HighOpcode if the first operand
143 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
144 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
145 // MI has the same kind of operand as LowOpcode, so needs to be converted
146 // if HighOpcode is used.
147 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
148                                       unsigned HighOpcode,
149                                       bool ConvertHigh) const {
150   unsigned Reg = MI.getOperand(0).getReg();
151   bool IsHigh = isHighReg(Reg);
152   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
153   if (IsHigh && ConvertHigh)
154     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
155 }
156 
157 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
158 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
159 // followed by HighOpcode or LowOpcode, depending on whether the target
160 // is a high or low GR32.
161 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
162                                        unsigned LowOpcodeK,
163                                        unsigned HighOpcode) const {
164   unsigned DestReg = MI.getOperand(0).getReg();
165   unsigned SrcReg = MI.getOperand(1).getReg();
166   bool DestIsHigh = isHighReg(DestReg);
167   bool SrcIsHigh = isHighReg(SrcReg);
168   if (!DestIsHigh && !SrcIsHigh)
169     MI.setDesc(get(LowOpcodeK));
170   else {
171     if (DestReg != SrcReg) {
172       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
173                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
174                     MI.getOperand(1).isUndef());
175       MI.getOperand(1).setReg(DestReg);
176     }
177     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
178     MI.tieOperands(0, 1);
179   }
180 }
181 
182 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
183 // if the first operand is a low GR32 and HighOpcode if the first operand
184 // is a high GR32.
185 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
186                                        unsigned HighOpcode) const {
187   unsigned Reg = MI.getOperand(0).getReg();
188   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
189                                        MI.getOperand(2).getImm());
190   MI.setDesc(get(Opcode));
191 }
192 
193 // MI is a load-on-condition pseudo instruction with a single register
194 // (source or destination) operand.  Replace it with LowOpcode if the
195 // register is a low GR32 and HighOpcode if the register is a high GR32.
196 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
197                                        unsigned HighOpcode) const {
198   unsigned Reg = MI.getOperand(0).getReg();
199   unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode;
200   MI.setDesc(get(Opcode));
201 }
202 
203 // MI is a load-register-on-condition pseudo instruction.  Replace it with
204 // LowOpcode if source and destination are both low GR32s and HighOpcode if
205 // source and destination are both high GR32s.
206 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode,
207                                         unsigned HighOpcode) const {
208   unsigned DestReg = MI.getOperand(0).getReg();
209   unsigned SrcReg = MI.getOperand(2).getReg();
210   bool DestIsHigh = isHighReg(DestReg);
211   bool SrcIsHigh = isHighReg(SrcReg);
212 
213   if (!DestIsHigh && !SrcIsHigh)
214     MI.setDesc(get(LowOpcode));
215   else if (DestIsHigh && SrcIsHigh)
216     MI.setDesc(get(HighOpcode));
217   else
218     LOCRMuxJumps++;
219 
220   // If we were unable to implement the pseudo with a single instruction, we
221   // need to convert it back into a branch sequence.  This cannot be done here
222   // since the caller of expandPostRAPseudo does not handle changes to the CFG
223   // correctly.  This change is defered to the SystemZExpandPseudo pass.
224 }
225 
226 // MI is a select pseudo instruction.  Replace it with LowOpcode if source
227 // and destination are all low GR32s and HighOpcode if source and destination
228 // are all high GR32s.  Otherwise, use the two-operand MixedOpcode.
229 void SystemZInstrInfo::expandSELRPseudo(MachineInstr &MI, unsigned LowOpcode,
230                                         unsigned HighOpcode,
231                                         unsigned MixedOpcode) const {
232   unsigned DestReg = MI.getOperand(0).getReg();
233   unsigned Src1Reg = MI.getOperand(1).getReg();
234   unsigned Src2Reg = MI.getOperand(2).getReg();
235   bool DestIsHigh = isHighReg(DestReg);
236   bool Src1IsHigh = isHighReg(Src1Reg);
237   bool Src2IsHigh = isHighReg(Src2Reg);
238 
239   // If sources and destination aren't all high or all low, we may be able to
240   // simplify the operation by moving one of the sources to the destination
241   // first.  But only if this doesn't clobber the other source.
242   if (DestReg != Src1Reg && DestReg != Src2Reg) {
243     if (DestIsHigh != Src1IsHigh) {
244       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, Src1Reg,
245                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
246                     MI.getOperand(1).isUndef());
247       MI.getOperand(1).setReg(DestReg);
248       Src1Reg = DestReg;
249       Src1IsHigh = DestIsHigh;
250     } else if (DestIsHigh != Src2IsHigh) {
251       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, Src2Reg,
252                     SystemZ::LR, 32, MI.getOperand(2).isKill(),
253                     MI.getOperand(2).isUndef());
254       MI.getOperand(2).setReg(DestReg);
255       Src2Reg = DestReg;
256       Src2IsHigh = DestIsHigh;
257     }
258   }
259 
260   // If the destination (now) matches one source, prefer this to be first.
261   if (DestReg != Src1Reg && DestReg == Src2Reg) {
262     commuteInstruction(MI, false, 1, 2);
263     std::swap(Src1Reg, Src2Reg);
264     std::swap(Src1IsHigh, Src2IsHigh);
265   }
266 
267   if (!DestIsHigh && !Src1IsHigh && !Src2IsHigh)
268     MI.setDesc(get(LowOpcode));
269   else if (DestIsHigh && Src1IsHigh && Src2IsHigh)
270     MI.setDesc(get(HighOpcode));
271   else {
272     // Given the simplifcation above, we must already have a two-operand case.
273     assert (DestReg == Src1Reg);
274     MI.setDesc(get(MixedOpcode));
275     MI.tieOperands(0, 1);
276     LOCRMuxJumps++;
277   }
278 
279   // If we were unable to implement the pseudo with a single instruction, we
280   // need to convert it back into a branch sequence.  This cannot be done here
281   // since the caller of expandPostRAPseudo does not handle changes to the CFG
282   // correctly.  This change is defered to the SystemZExpandPseudo pass.
283 }
284 
285 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
286 // of one GRX32 into another.  Replace it with LowOpcode if both operands
287 // are low registers, otherwise use RISB[LH]G.
288 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
289                                         unsigned Size) const {
290   MachineInstrBuilder MIB =
291     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
292                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
293                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
294 
295   // Keep the remaining operands as-is.
296   for (unsigned I = 2; I < MI.getNumOperands(); ++I)
297     MIB.add(MI.getOperand(I));
298 
299   MI.eraseFromParent();
300 }
301 
302 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
303   MachineBasicBlock *MBB = MI->getParent();
304   MachineFunction &MF = *MBB->getParent();
305   const unsigned Reg64 = MI->getOperand(0).getReg();
306   const unsigned Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
307 
308   // EAR can only load the low subregister so us a shift for %a0 to produce
309   // the GR containing %a0 and %a1.
310 
311   // ear <reg>, %a0
312   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
313     .addReg(SystemZ::A0)
314     .addReg(Reg64, RegState::ImplicitDefine);
315 
316   // sllg <reg>, <reg>, 32
317   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
318     .addReg(Reg64)
319     .addReg(0)
320     .addImm(32);
321 
322   // ear <reg>, %a1
323   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
324     .addReg(SystemZ::A1);
325 
326   // lg <reg>, 40(<reg>)
327   MI->setDesc(get(SystemZ::LG));
328   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
329 }
330 
331 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
332 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
333 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
334 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
335 // KillSrc is true if this move is the last use of SrcReg.
336 MachineInstrBuilder
337 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
338                                 MachineBasicBlock::iterator MBBI,
339                                 const DebugLoc &DL, unsigned DestReg,
340                                 unsigned SrcReg, unsigned LowLowOpcode,
341                                 unsigned Size, bool KillSrc,
342                                 bool UndefSrc) const {
343   unsigned Opcode;
344   bool DestIsHigh = isHighReg(DestReg);
345   bool SrcIsHigh = isHighReg(SrcReg);
346   if (DestIsHigh && SrcIsHigh)
347     Opcode = SystemZ::RISBHH;
348   else if (DestIsHigh && !SrcIsHigh)
349     Opcode = SystemZ::RISBHL;
350   else if (!DestIsHigh && SrcIsHigh)
351     Opcode = SystemZ::RISBLH;
352   else {
353     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
354       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
355   }
356   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
357   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
358     .addReg(DestReg, RegState::Undef)
359     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
360     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
361 }
362 
363 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
364                                                        bool NewMI,
365                                                        unsigned OpIdx1,
366                                                        unsigned OpIdx2) const {
367   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
368     if (NewMI)
369       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
370     return MI;
371   };
372 
373   switch (MI.getOpcode()) {
374   case SystemZ::SELRMux:
375   case SystemZ::SELFHR:
376   case SystemZ::SELR:
377   case SystemZ::SELGR:
378   case SystemZ::LOCRMux:
379   case SystemZ::LOCFHR:
380   case SystemZ::LOCR:
381   case SystemZ::LOCGR: {
382     auto &WorkingMI = cloneIfNew(MI);
383     // Invert condition.
384     unsigned CCValid = WorkingMI.getOperand(3).getImm();
385     unsigned CCMask = WorkingMI.getOperand(4).getImm();
386     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
387     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
388                                                    OpIdx1, OpIdx2);
389   }
390   default:
391     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
392   }
393 }
394 
395 // If MI is a simple load or store for a frame object, return the register
396 // it loads or stores and set FrameIndex to the index of the frame object.
397 // Return 0 otherwise.
398 //
399 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
400 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
401                         unsigned Flag) {
402   const MCInstrDesc &MCID = MI.getDesc();
403   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
404       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
405     FrameIndex = MI.getOperand(1).getIndex();
406     return MI.getOperand(0).getReg();
407   }
408   return 0;
409 }
410 
411 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
412                                                int &FrameIndex) const {
413   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
414 }
415 
416 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
417                                               int &FrameIndex) const {
418   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
419 }
420 
421 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
422                                        int &DestFrameIndex,
423                                        int &SrcFrameIndex) const {
424   // Check for MVC 0(Length,FI1),0(FI2)
425   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
426   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
427       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
428       MI.getOperand(4).getImm() != 0)
429     return false;
430 
431   // Check that Length covers the full slots.
432   int64_t Length = MI.getOperand(2).getImm();
433   unsigned FI1 = MI.getOperand(0).getIndex();
434   unsigned FI2 = MI.getOperand(3).getIndex();
435   if (MFI.getObjectSize(FI1) != Length ||
436       MFI.getObjectSize(FI2) != Length)
437     return false;
438 
439   DestFrameIndex = FI1;
440   SrcFrameIndex = FI2;
441   return true;
442 }
443 
444 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
445                                      MachineBasicBlock *&TBB,
446                                      MachineBasicBlock *&FBB,
447                                      SmallVectorImpl<MachineOperand> &Cond,
448                                      bool AllowModify) const {
449   // Most of the code and comments here are boilerplate.
450 
451   // Start from the bottom of the block and work up, examining the
452   // terminator instructions.
453   MachineBasicBlock::iterator I = MBB.end();
454   while (I != MBB.begin()) {
455     --I;
456     if (I->isDebugInstr())
457       continue;
458 
459     // Working from the bottom, when we see a non-terminator instruction, we're
460     // done.
461     if (!isUnpredicatedTerminator(*I))
462       break;
463 
464     // A terminator that isn't a branch can't easily be handled by this
465     // analysis.
466     if (!I->isBranch())
467       return true;
468 
469     // Can't handle indirect branches.
470     SystemZII::Branch Branch(getBranchInfo(*I));
471     if (!Branch.hasMBBTarget())
472       return true;
473 
474     // Punt on compound branches.
475     if (Branch.Type != SystemZII::BranchNormal)
476       return true;
477 
478     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
479       // Handle unconditional branches.
480       if (!AllowModify) {
481         TBB = Branch.getMBBTarget();
482         continue;
483       }
484 
485       // If the block has any instructions after a JMP, delete them.
486       while (std::next(I) != MBB.end())
487         std::next(I)->eraseFromParent();
488 
489       Cond.clear();
490       FBB = nullptr;
491 
492       // Delete the JMP if it's equivalent to a fall-through.
493       if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
494         TBB = nullptr;
495         I->eraseFromParent();
496         I = MBB.end();
497         continue;
498       }
499 
500       // TBB is used to indicate the unconditinal destination.
501       TBB = Branch.getMBBTarget();
502       continue;
503     }
504 
505     // Working from the bottom, handle the first conditional branch.
506     if (Cond.empty()) {
507       // FIXME: add X86-style branch swap
508       FBB = TBB;
509       TBB = Branch.getMBBTarget();
510       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
511       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
512       continue;
513     }
514 
515     // Handle subsequent conditional branches.
516     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
517 
518     // Only handle the case where all conditional branches branch to the same
519     // destination.
520     if (TBB != Branch.getMBBTarget())
521       return true;
522 
523     // If the conditions are the same, we can leave them alone.
524     unsigned OldCCValid = Cond[0].getImm();
525     unsigned OldCCMask = Cond[1].getImm();
526     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
527       continue;
528 
529     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
530     return false;
531   }
532 
533   return false;
534 }
535 
536 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
537                                         int *BytesRemoved) const {
538   assert(!BytesRemoved && "code size not handled");
539 
540   // Most of the code and comments here are boilerplate.
541   MachineBasicBlock::iterator I = MBB.end();
542   unsigned Count = 0;
543 
544   while (I != MBB.begin()) {
545     --I;
546     if (I->isDebugInstr())
547       continue;
548     if (!I->isBranch())
549       break;
550     if (!getBranchInfo(*I).hasMBBTarget())
551       break;
552     // Remove the branch.
553     I->eraseFromParent();
554     I = MBB.end();
555     ++Count;
556   }
557 
558   return Count;
559 }
560 
561 bool SystemZInstrInfo::
562 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
563   assert(Cond.size() == 2 && "Invalid condition");
564   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
565   return false;
566 }
567 
568 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
569                                         MachineBasicBlock *TBB,
570                                         MachineBasicBlock *FBB,
571                                         ArrayRef<MachineOperand> Cond,
572                                         const DebugLoc &DL,
573                                         int *BytesAdded) const {
574   // In this function we output 32-bit branches, which should always
575   // have enough range.  They can be shortened and relaxed by later code
576   // in the pipeline, if desired.
577 
578   // Shouldn't be a fall through.
579   assert(TBB && "insertBranch must not be told to insert a fallthrough");
580   assert((Cond.size() == 2 || Cond.size() == 0) &&
581          "SystemZ branch conditions have one component!");
582   assert(!BytesAdded && "code size not handled");
583 
584   if (Cond.empty()) {
585     // Unconditional branch?
586     assert(!FBB && "Unconditional branch with multiple successors!");
587     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
588     return 1;
589   }
590 
591   // Conditional branch.
592   unsigned Count = 0;
593   unsigned CCValid = Cond[0].getImm();
594   unsigned CCMask = Cond[1].getImm();
595   BuildMI(&MBB, DL, get(SystemZ::BRC))
596     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
597   ++Count;
598 
599   if (FBB) {
600     // Two-way Conditional branch. Insert the second branch.
601     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
602     ++Count;
603   }
604   return Count;
605 }
606 
607 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
608                                       unsigned &SrcReg2, int &Mask,
609                                       int &Value) const {
610   assert(MI.isCompare() && "Caller should have checked for a comparison");
611 
612   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
613       MI.getOperand(1).isImm()) {
614     SrcReg = MI.getOperand(0).getReg();
615     SrcReg2 = 0;
616     Value = MI.getOperand(1).getImm();
617     Mask = ~0;
618     return true;
619   }
620 
621   return false;
622 }
623 
624 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
625                                        ArrayRef<MachineOperand> Pred,
626                                        unsigned TrueReg, unsigned FalseReg,
627                                        int &CondCycles, int &TrueCycles,
628                                        int &FalseCycles) const {
629   // Not all subtargets have LOCR instructions.
630   if (!STI.hasLoadStoreOnCond())
631     return false;
632   if (Pred.size() != 2)
633     return false;
634 
635   // Check register classes.
636   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
637   const TargetRegisterClass *RC =
638     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
639   if (!RC)
640     return false;
641 
642   // We have LOCR instructions for 32 and 64 bit general purpose registers.
643   if ((STI.hasLoadStoreOnCond2() &&
644        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
645       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
646       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
647     CondCycles = 2;
648     TrueCycles = 2;
649     FalseCycles = 2;
650     return true;
651   }
652 
653   // Can't do anything else.
654   return false;
655 }
656 
657 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
658                                     MachineBasicBlock::iterator I,
659                                     const DebugLoc &DL, unsigned DstReg,
660                                     ArrayRef<MachineOperand> Pred,
661                                     unsigned TrueReg,
662                                     unsigned FalseReg) const {
663   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
664   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
665 
666   assert(Pred.size() == 2 && "Invalid condition");
667   unsigned CCValid = Pred[0].getImm();
668   unsigned CCMask = Pred[1].getImm();
669 
670   unsigned Opc;
671   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
672     if (STI.hasMiscellaneousExtensions3())
673       Opc = SystemZ::SELRMux;
674     else if (STI.hasLoadStoreOnCond2())
675       Opc = SystemZ::LOCRMux;
676     else {
677       Opc = SystemZ::LOCR;
678       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
679       unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
680       unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
681       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
682       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
683       TrueReg = TReg;
684       FalseReg = FReg;
685     }
686   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
687     if (STI.hasMiscellaneousExtensions3())
688       Opc = SystemZ::SELGR;
689     else
690       Opc = SystemZ::LOCGR;
691   } else
692     llvm_unreachable("Invalid register class");
693 
694   BuildMI(MBB, I, DL, get(Opc), DstReg)
695     .addReg(FalseReg).addReg(TrueReg)
696     .addImm(CCValid).addImm(CCMask);
697 }
698 
699 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
700                                      unsigned Reg,
701                                      MachineRegisterInfo *MRI) const {
702   unsigned DefOpc = DefMI.getOpcode();
703   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
704       DefOpc != SystemZ::LGHI)
705     return false;
706   if (DefMI.getOperand(0).getReg() != Reg)
707     return false;
708   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
709 
710   unsigned UseOpc = UseMI.getOpcode();
711   unsigned NewUseOpc;
712   unsigned UseIdx;
713   int CommuteIdx = -1;
714   bool TieOps = false;
715   switch (UseOpc) {
716   case SystemZ::SELRMux:
717     TieOps = true;
718     LLVM_FALLTHROUGH;
719   case SystemZ::LOCRMux:
720     if (!STI.hasLoadStoreOnCond2())
721       return false;
722     NewUseOpc = SystemZ::LOCHIMux;
723     if (UseMI.getOperand(2).getReg() == Reg)
724       UseIdx = 2;
725     else if (UseMI.getOperand(1).getReg() == Reg)
726       UseIdx = 2, CommuteIdx = 1;
727     else
728       return false;
729     break;
730   case SystemZ::SELGR:
731     TieOps = true;
732     LLVM_FALLTHROUGH;
733   case SystemZ::LOCGR:
734     if (!STI.hasLoadStoreOnCond2())
735       return false;
736     NewUseOpc = SystemZ::LOCGHI;
737     if (UseMI.getOperand(2).getReg() == Reg)
738       UseIdx = 2;
739     else if (UseMI.getOperand(1).getReg() == Reg)
740       UseIdx = 2, CommuteIdx = 1;
741     else
742       return false;
743     break;
744   default:
745     return false;
746   }
747 
748   if (CommuteIdx != -1)
749     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
750       return false;
751 
752   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
753   UseMI.setDesc(get(NewUseOpc));
754   if (TieOps)
755     UseMI.tieOperands(0, 1);
756   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
757   if (DeleteDef)
758     DefMI.eraseFromParent();
759 
760   return true;
761 }
762 
763 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
764   unsigned Opcode = MI.getOpcode();
765   if (Opcode == SystemZ::Return ||
766       Opcode == SystemZ::Trap ||
767       Opcode == SystemZ::CallJG ||
768       Opcode == SystemZ::CallBR)
769     return true;
770   return false;
771 }
772 
773 bool SystemZInstrInfo::
774 isProfitableToIfCvt(MachineBasicBlock &MBB,
775                     unsigned NumCycles, unsigned ExtraPredCycles,
776                     BranchProbability Probability) const {
777   // Avoid using conditional returns at the end of a loop (since then
778   // we'd need to emit an unconditional branch to the beginning anyway,
779   // making the loop body longer).  This doesn't apply for low-probability
780   // loops (eg. compare-and-swap retry), so just decide based on branch
781   // probability instead of looping structure.
782   // However, since Compare and Trap instructions cost the same as a regular
783   // Compare instruction, we should allow the if conversion to convert this
784   // into a Conditional Compare regardless of the branch probability.
785   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
786       MBB.succ_empty() && Probability < BranchProbability(1, 8))
787     return false;
788   // For now only convert single instructions.
789   return NumCycles == 1;
790 }
791 
792 bool SystemZInstrInfo::
793 isProfitableToIfCvt(MachineBasicBlock &TMBB,
794                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
795                     MachineBasicBlock &FMBB,
796                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
797                     BranchProbability Probability) const {
798   // For now avoid converting mutually-exclusive cases.
799   return false;
800 }
801 
802 bool SystemZInstrInfo::
803 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
804                           BranchProbability Probability) const {
805   // For now only duplicate single instructions.
806   return NumCycles == 1;
807 }
808 
809 bool SystemZInstrInfo::PredicateInstruction(
810     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
811   assert(Pred.size() == 2 && "Invalid condition");
812   unsigned CCValid = Pred[0].getImm();
813   unsigned CCMask = Pred[1].getImm();
814   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
815   unsigned Opcode = MI.getOpcode();
816   if (Opcode == SystemZ::Trap) {
817     MI.setDesc(get(SystemZ::CondTrap));
818     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
819       .addImm(CCValid).addImm(CCMask)
820       .addReg(SystemZ::CC, RegState::Implicit);
821     return true;
822   }
823   if (Opcode == SystemZ::Return) {
824     MI.setDesc(get(SystemZ::CondReturn));
825     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
826       .addImm(CCValid).addImm(CCMask)
827       .addReg(SystemZ::CC, RegState::Implicit);
828     return true;
829   }
830   if (Opcode == SystemZ::CallJG) {
831     MachineOperand FirstOp = MI.getOperand(0);
832     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
833     MI.RemoveOperand(1);
834     MI.RemoveOperand(0);
835     MI.setDesc(get(SystemZ::CallBRCL));
836     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
837         .addImm(CCValid)
838         .addImm(CCMask)
839         .add(FirstOp)
840         .addRegMask(RegMask)
841         .addReg(SystemZ::CC, RegState::Implicit);
842     return true;
843   }
844   if (Opcode == SystemZ::CallBR) {
845     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
846     MI.RemoveOperand(0);
847     MI.setDesc(get(SystemZ::CallBCR));
848     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
849       .addImm(CCValid).addImm(CCMask)
850       .addRegMask(RegMask)
851       .addReg(SystemZ::CC, RegState::Implicit);
852     return true;
853   }
854   return false;
855 }
856 
857 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
858                                    MachineBasicBlock::iterator MBBI,
859                                    const DebugLoc &DL, unsigned DestReg,
860                                    unsigned SrcReg, bool KillSrc) const {
861   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
862   // super register in case one of the subregs is undefined.
863   // This handles ADDR128 too.
864   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
865     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
866                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
867     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
868       .addReg(SrcReg, RegState::Implicit);
869     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
870                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
871     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
872       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
873     return;
874   }
875 
876   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
877     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
878                   false);
879     return;
880   }
881 
882   // Move 128-bit floating-point values between VR128 and FP128.
883   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
884       SystemZ::FP128BitRegClass.contains(SrcReg)) {
885     unsigned SrcRegHi =
886       RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
887                              SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
888     unsigned SrcRegLo =
889       RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
890                              SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
891 
892     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
893       .addReg(SrcRegHi, getKillRegState(KillSrc))
894       .addReg(SrcRegLo, getKillRegState(KillSrc));
895     return;
896   }
897   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
898       SystemZ::VR128BitRegClass.contains(SrcReg)) {
899     unsigned DestRegHi =
900       RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
901                              SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
902     unsigned DestRegLo =
903       RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
904                              SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
905 
906     if (DestRegHi != SrcReg)
907       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
908     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
909       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
910     return;
911   }
912 
913   // Move CC value from/to a GR32.
914   if (SrcReg == SystemZ::CC) {
915     auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg);
916     if (KillSrc) {
917       const MachineFunction *MF = MBB.getParent();
918       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
919       MIB->addRegisterKilled(SrcReg, TRI);
920     }
921     return;
922   }
923   if (DestReg == SystemZ::CC) {
924     BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH))
925       .addReg(SrcReg, getKillRegState(KillSrc))
926       .addImm(3 << (SystemZ::IPM_CC - 16));
927     return;
928   }
929 
930   // Everything else needs only one instruction.
931   unsigned Opcode;
932   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
933     Opcode = SystemZ::LGR;
934   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
935     // For z13 we prefer LDR over LER to avoid partial register dependencies.
936     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
937   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
938     Opcode = SystemZ::LDR;
939   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
940     Opcode = SystemZ::LXR;
941   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
942     Opcode = SystemZ::VLR32;
943   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
944     Opcode = SystemZ::VLR64;
945   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
946     Opcode = SystemZ::VLR;
947   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
948     Opcode = SystemZ::CPYA;
949   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
950            SystemZ::GR32BitRegClass.contains(SrcReg))
951     Opcode = SystemZ::SAR;
952   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
953            SystemZ::AR32BitRegClass.contains(SrcReg))
954     Opcode = SystemZ::EAR;
955   else
956     llvm_unreachable("Impossible reg-to-reg copy");
957 
958   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
959     .addReg(SrcReg, getKillRegState(KillSrc));
960 }
961 
962 void SystemZInstrInfo::storeRegToStackSlot(
963     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
964     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
965     const TargetRegisterInfo *TRI) const {
966   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
967 
968   // Callers may expect a single instruction, so keep 128-bit moves
969   // together for now and lower them after register allocation.
970   unsigned LoadOpcode, StoreOpcode;
971   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
972   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
973                         .addReg(SrcReg, getKillRegState(isKill)),
974                     FrameIdx);
975 }
976 
977 void SystemZInstrInfo::loadRegFromStackSlot(
978     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
979     int FrameIdx, const TargetRegisterClass *RC,
980     const TargetRegisterInfo *TRI) const {
981   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
982 
983   // Callers may expect a single instruction, so keep 128-bit moves
984   // together for now and lower them after register allocation.
985   unsigned LoadOpcode, StoreOpcode;
986   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
987   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
988                     FrameIdx);
989 }
990 
991 // Return true if MI is a simple load or store with a 12-bit displacement
992 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
993 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
994   const MCInstrDesc &MCID = MI->getDesc();
995   return ((MCID.TSFlags & Flag) &&
996           isUInt<12>(MI->getOperand(2).getImm()) &&
997           MI->getOperand(3).getReg() == 0);
998 }
999 
1000 namespace {
1001 
1002 struct LogicOp {
1003   LogicOp() = default;
1004   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
1005     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
1006 
1007   explicit operator bool() const { return RegSize; }
1008 
1009   unsigned RegSize = 0;
1010   unsigned ImmLSB = 0;
1011   unsigned ImmSize = 0;
1012 };
1013 
1014 } // end anonymous namespace
1015 
1016 static LogicOp interpretAndImmediate(unsigned Opcode) {
1017   switch (Opcode) {
1018   case SystemZ::NILMux: return LogicOp(32,  0, 16);
1019   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
1020   case SystemZ::NILL64: return LogicOp(64,  0, 16);
1021   case SystemZ::NILH64: return LogicOp(64, 16, 16);
1022   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
1023   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
1024   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
1025   case SystemZ::NILF64: return LogicOp(64,  0, 32);
1026   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
1027   default:              return LogicOp();
1028   }
1029 }
1030 
1031 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
1032   if (OldMI->registerDefIsDead(SystemZ::CC)) {
1033     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
1034     if (CCDef != nullptr)
1035       CCDef->setIsDead(true);
1036   }
1037 }
1038 
1039 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
1040     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
1041   MachineBasicBlock *MBB = MI.getParent();
1042 
1043   // Try to convert an AND into an RISBG-type instruction.
1044   // TODO: It might be beneficial to select RISBG and shorten to AND instead.
1045   if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
1046     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
1047     // AND IMMEDIATE leaves the other bits of the register unchanged.
1048     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
1049     unsigned Start, End;
1050     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
1051       unsigned NewOpcode;
1052       if (And.RegSize == 64) {
1053         NewOpcode = SystemZ::RISBG;
1054         // Prefer RISBGN if available, since it does not clobber CC.
1055         if (STI.hasMiscellaneousExtensions())
1056           NewOpcode = SystemZ::RISBGN;
1057       } else {
1058         NewOpcode = SystemZ::RISBMux;
1059         Start &= 31;
1060         End &= 31;
1061       }
1062       MachineOperand &Dest = MI.getOperand(0);
1063       MachineOperand &Src = MI.getOperand(1);
1064       MachineInstrBuilder MIB =
1065           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
1066               .add(Dest)
1067               .addReg(0)
1068               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
1069                       Src.getSubReg())
1070               .addImm(Start)
1071               .addImm(End + 128)
1072               .addImm(0);
1073       if (LV) {
1074         unsigned NumOps = MI.getNumOperands();
1075         for (unsigned I = 1; I < NumOps; ++I) {
1076           MachineOperand &Op = MI.getOperand(I);
1077           if (Op.isReg() && Op.isKill())
1078             LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
1079         }
1080       }
1081       transferDeadCC(&MI, MIB);
1082       return MIB;
1083     }
1084   }
1085   return nullptr;
1086 }
1087 
1088 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1089     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1090     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1091     LiveIntervals *LIS, VirtRegMap *VRM) const {
1092   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1093   const MachineFrameInfo &MFI = MF.getFrameInfo();
1094   unsigned Size = MFI.getObjectSize(FrameIndex);
1095   unsigned Opcode = MI.getOpcode();
1096 
1097   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1098     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1099         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1100 
1101       // Check CC liveness, since new instruction introduces a dead
1102       // def of CC.
1103       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1104       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1105       ++CCUnit;
1106       assert(!CCUnit.isValid() && "CC only has one reg unit.");
1107       SlotIndex MISlot =
1108           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1109       if (!CCLiveRange.liveAt(MISlot)) {
1110         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1111         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1112                                         MI.getDebugLoc(), get(SystemZ::AGSI))
1113                                     .addFrameIndex(FrameIndex)
1114                                     .addImm(0)
1115                                     .addImm(MI.getOperand(2).getImm());
1116         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1117         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1118         return BuiltMI;
1119       }
1120     }
1121     return nullptr;
1122   }
1123 
1124   // All other cases require a single operand.
1125   if (Ops.size() != 1)
1126     return nullptr;
1127 
1128   unsigned OpNum = Ops[0];
1129   assert(Size * 8 ==
1130            TRI->getRegSizeInBits(*MF.getRegInfo()
1131                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1132          "Invalid size combination");
1133 
1134   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1135       isInt<8>(MI.getOperand(2).getImm())) {
1136     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1137     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1138     MachineInstr *BuiltMI =
1139         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1140             .addFrameIndex(FrameIndex)
1141             .addImm(0)
1142             .addImm(MI.getOperand(2).getImm());
1143     transferDeadCC(&MI, BuiltMI);
1144     return BuiltMI;
1145   }
1146 
1147   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1148        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1149       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1150        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1151     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1152     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1153     MachineInstr *BuiltMI =
1154         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1155             .addFrameIndex(FrameIndex)
1156             .addImm(0)
1157             .addImm((int8_t)MI.getOperand(2).getImm());
1158     transferDeadCC(&MI, BuiltMI);
1159     return BuiltMI;
1160   }
1161 
1162   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1163        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1164       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1165        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1166     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1167     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1168     MachineInstr *BuiltMI =
1169         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1170             .addFrameIndex(FrameIndex)
1171             .addImm(0)
1172             .addImm((int8_t)-MI.getOperand(2).getImm());
1173     transferDeadCC(&MI, BuiltMI);
1174     return BuiltMI;
1175   }
1176 
1177   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1178     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1179     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1180     // If we're spilling the destination of an LDGR or LGDR, store the
1181     // source register instead.
1182     if (OpNum == 0) {
1183       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1184       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1185                      get(StoreOpcode))
1186           .add(MI.getOperand(1))
1187           .addFrameIndex(FrameIndex)
1188           .addImm(0)
1189           .addReg(0);
1190     }
1191     // If we're spilling the source of an LDGR or LGDR, load the
1192     // destination register instead.
1193     if (OpNum == 1) {
1194       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1195       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1196                      get(LoadOpcode))
1197         .add(MI.getOperand(0))
1198         .addFrameIndex(FrameIndex)
1199         .addImm(0)
1200         .addReg(0);
1201     }
1202   }
1203 
1204   // Look for cases where the source of a simple store or the destination
1205   // of a simple load is being spilled.  Try to use MVC instead.
1206   //
1207   // Although MVC is in practice a fast choice in these cases, it is still
1208   // logically a bytewise copy.  This means that we cannot use it if the
1209   // load or store is volatile.  We also wouldn't be able to use MVC if
1210   // the two memories partially overlap, but that case cannot occur here,
1211   // because we know that one of the memories is a full frame index.
1212   //
1213   // For performance reasons, we also want to avoid using MVC if the addresses
1214   // might be equal.  We don't worry about that case here, because spill slot
1215   // coloring happens later, and because we have special code to remove
1216   // MVCs that turn out to be redundant.
1217   if (OpNum == 0 && MI.hasOneMemOperand()) {
1218     MachineMemOperand *MMO = *MI.memoperands_begin();
1219     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1220       // Handle conversion of loads.
1221       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1222         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1223                        get(SystemZ::MVC))
1224             .addFrameIndex(FrameIndex)
1225             .addImm(0)
1226             .addImm(Size)
1227             .add(MI.getOperand(1))
1228             .addImm(MI.getOperand(2).getImm())
1229             .addMemOperand(MMO);
1230       }
1231       // Handle conversion of stores.
1232       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1233         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1234                        get(SystemZ::MVC))
1235             .add(MI.getOperand(1))
1236             .addImm(MI.getOperand(2).getImm())
1237             .addImm(Size)
1238             .addFrameIndex(FrameIndex)
1239             .addImm(0)
1240             .addMemOperand(MMO);
1241       }
1242     }
1243   }
1244 
1245   // If the spilled operand is the final one or the instruction is
1246   // commutable, try to change <INSN>R into <INSN>.
1247   unsigned NumOps = MI.getNumExplicitOperands();
1248   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1249 
1250   // See if this is a 3-address instruction that is convertible to 2-address
1251   // and suitable for folding below.  Only try this with virtual registers
1252   // and a provided VRM (during regalloc).
1253   bool NeedsCommute = false;
1254   if (SystemZ::getTwoOperandOpcode(Opcode) != -1 && MemOpcode != -1) {
1255     if (VRM == nullptr)
1256       MemOpcode = -1;
1257     else {
1258       assert(NumOps == 3 && "Expected two source registers.");
1259       Register DstReg = MI.getOperand(0).getReg();
1260       Register DstPhys =
1261         (TRI->isVirtualRegister(DstReg) ? VRM->getPhys(DstReg) : DstReg);
1262       Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1263                                     : ((OpNum == 1 && MI.isCommutable())
1264                                            ? MI.getOperand(2).getReg()
1265                                          : Register()));
1266       if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1267           TRI->isVirtualRegister(SrcReg) && DstPhys == VRM->getPhys(SrcReg))
1268         NeedsCommute = (OpNum == 1);
1269       else
1270         MemOpcode = -1;
1271     }
1272   }
1273 
1274   if (MemOpcode >= 0) {
1275     if ((OpNum == NumOps - 1) || NeedsCommute) {
1276       const MCInstrDesc &MemDesc = get(MemOpcode);
1277       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1278       assert(AccessBytes != 0 && "Size of access should be known");
1279       assert(AccessBytes <= Size && "Access outside the frame index");
1280       uint64_t Offset = Size - AccessBytes;
1281       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1282                                         MI.getDebugLoc(), get(MemOpcode));
1283       MIB.add(MI.getOperand(0));
1284       if (NeedsCommute)
1285         MIB.add(MI.getOperand(2));
1286       else
1287         for (unsigned I = 1; I < OpNum; ++I)
1288           MIB.add(MI.getOperand(I));
1289       MIB.addFrameIndex(FrameIndex).addImm(Offset);
1290       if (MemDesc.TSFlags & SystemZII::HasIndex)
1291         MIB.addReg(0);
1292       transferDeadCC(&MI, MIB);
1293       return MIB;
1294     }
1295   }
1296 
1297   return nullptr;
1298 }
1299 
1300 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1301     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1302     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1303     LiveIntervals *LIS) const {
1304   return nullptr;
1305 }
1306 
1307 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1308   switch (MI.getOpcode()) {
1309   case SystemZ::L128:
1310     splitMove(MI, SystemZ::LG);
1311     return true;
1312 
1313   case SystemZ::ST128:
1314     splitMove(MI, SystemZ::STG);
1315     return true;
1316 
1317   case SystemZ::LX:
1318     splitMove(MI, SystemZ::LD);
1319     return true;
1320 
1321   case SystemZ::STX:
1322     splitMove(MI, SystemZ::STD);
1323     return true;
1324 
1325   case SystemZ::LBMux:
1326     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1327     return true;
1328 
1329   case SystemZ::LHMux:
1330     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1331     return true;
1332 
1333   case SystemZ::LLCRMux:
1334     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1335     return true;
1336 
1337   case SystemZ::LLHRMux:
1338     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1339     return true;
1340 
1341   case SystemZ::LLCMux:
1342     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1343     return true;
1344 
1345   case SystemZ::LLHMux:
1346     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1347     return true;
1348 
1349   case SystemZ::LMux:
1350     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1351     return true;
1352 
1353   case SystemZ::LOCMux:
1354     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1355     return true;
1356 
1357   case SystemZ::LOCHIMux:
1358     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1359     return true;
1360 
1361   case SystemZ::LOCRMux:
1362     expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR);
1363     return true;
1364 
1365   case SystemZ::SELRMux:
1366     expandSELRPseudo(MI, SystemZ::SELR, SystemZ::SELFHR,
1367                          SystemZ::LOCRMux);
1368     return true;
1369 
1370   case SystemZ::STCMux:
1371     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1372     return true;
1373 
1374   case SystemZ::STHMux:
1375     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1376     return true;
1377 
1378   case SystemZ::STMux:
1379     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1380     return true;
1381 
1382   case SystemZ::STOCMux:
1383     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1384     return true;
1385 
1386   case SystemZ::LHIMux:
1387     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1388     return true;
1389 
1390   case SystemZ::IIFMux:
1391     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1392     return true;
1393 
1394   case SystemZ::IILMux:
1395     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1396     return true;
1397 
1398   case SystemZ::IIHMux:
1399     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1400     return true;
1401 
1402   case SystemZ::NIFMux:
1403     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1404     return true;
1405 
1406   case SystemZ::NILMux:
1407     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1408     return true;
1409 
1410   case SystemZ::NIHMux:
1411     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1412     return true;
1413 
1414   case SystemZ::OIFMux:
1415     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1416     return true;
1417 
1418   case SystemZ::OILMux:
1419     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1420     return true;
1421 
1422   case SystemZ::OIHMux:
1423     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1424     return true;
1425 
1426   case SystemZ::XIFMux:
1427     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1428     return true;
1429 
1430   case SystemZ::TMLMux:
1431     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1432     return true;
1433 
1434   case SystemZ::TMHMux:
1435     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1436     return true;
1437 
1438   case SystemZ::AHIMux:
1439     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1440     return true;
1441 
1442   case SystemZ::AHIMuxK:
1443     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1444     return true;
1445 
1446   case SystemZ::AFIMux:
1447     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1448     return true;
1449 
1450   case SystemZ::CHIMux:
1451     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1452     return true;
1453 
1454   case SystemZ::CFIMux:
1455     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1456     return true;
1457 
1458   case SystemZ::CLFIMux:
1459     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1460     return true;
1461 
1462   case SystemZ::CMux:
1463     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1464     return true;
1465 
1466   case SystemZ::CLMux:
1467     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1468     return true;
1469 
1470   case SystemZ::RISBMux: {
1471     bool DestIsHigh = isHighReg(MI.getOperand(0).getReg());
1472     bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg());
1473     if (SrcIsHigh == DestIsHigh)
1474       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1475     else {
1476       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1477       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1478     }
1479     return true;
1480   }
1481 
1482   case SystemZ::ADJDYNALLOC:
1483     splitAdjDynAlloc(MI);
1484     return true;
1485 
1486   case TargetOpcode::LOAD_STACK_GUARD:
1487     expandLoadStackGuard(&MI);
1488     return true;
1489 
1490   default:
1491     return false;
1492   }
1493 }
1494 
1495 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1496   if (MI.isInlineAsm()) {
1497     const MachineFunction *MF = MI.getParent()->getParent();
1498     const char *AsmStr = MI.getOperand(0).getSymbolName();
1499     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1500   }
1501   return MI.getDesc().getSize();
1502 }
1503 
1504 SystemZII::Branch
1505 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1506   switch (MI.getOpcode()) {
1507   case SystemZ::BR:
1508   case SystemZ::BI:
1509   case SystemZ::J:
1510   case SystemZ::JG:
1511     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1512                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1513 
1514   case SystemZ::BRC:
1515   case SystemZ::BRCL:
1516     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1517                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1518 
1519   case SystemZ::BRCT:
1520   case SystemZ::BRCTH:
1521     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1522                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1523 
1524   case SystemZ::BRCTG:
1525     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1526                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1527 
1528   case SystemZ::CIJ:
1529   case SystemZ::CRJ:
1530     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1531                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1532 
1533   case SystemZ::CLIJ:
1534   case SystemZ::CLRJ:
1535     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1536                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1537 
1538   case SystemZ::CGIJ:
1539   case SystemZ::CGRJ:
1540     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1541                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1542 
1543   case SystemZ::CLGIJ:
1544   case SystemZ::CLGRJ:
1545     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1546                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1547 
1548   case SystemZ::INLINEASM_BR:
1549     // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1550     return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1551 
1552   default:
1553     llvm_unreachable("Unrecognized branch opcode");
1554   }
1555 }
1556 
1557 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1558                                            unsigned &LoadOpcode,
1559                                            unsigned &StoreOpcode) const {
1560   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1561     LoadOpcode = SystemZ::L;
1562     StoreOpcode = SystemZ::ST;
1563   } else if (RC == &SystemZ::GRH32BitRegClass) {
1564     LoadOpcode = SystemZ::LFH;
1565     StoreOpcode = SystemZ::STFH;
1566   } else if (RC == &SystemZ::GRX32BitRegClass) {
1567     LoadOpcode = SystemZ::LMux;
1568     StoreOpcode = SystemZ::STMux;
1569   } else if (RC == &SystemZ::GR64BitRegClass ||
1570              RC == &SystemZ::ADDR64BitRegClass) {
1571     LoadOpcode = SystemZ::LG;
1572     StoreOpcode = SystemZ::STG;
1573   } else if (RC == &SystemZ::GR128BitRegClass ||
1574              RC == &SystemZ::ADDR128BitRegClass) {
1575     LoadOpcode = SystemZ::L128;
1576     StoreOpcode = SystemZ::ST128;
1577   } else if (RC == &SystemZ::FP32BitRegClass) {
1578     LoadOpcode = SystemZ::LE;
1579     StoreOpcode = SystemZ::STE;
1580   } else if (RC == &SystemZ::FP64BitRegClass) {
1581     LoadOpcode = SystemZ::LD;
1582     StoreOpcode = SystemZ::STD;
1583   } else if (RC == &SystemZ::FP128BitRegClass) {
1584     LoadOpcode = SystemZ::LX;
1585     StoreOpcode = SystemZ::STX;
1586   } else if (RC == &SystemZ::VR32BitRegClass) {
1587     LoadOpcode = SystemZ::VL32;
1588     StoreOpcode = SystemZ::VST32;
1589   } else if (RC == &SystemZ::VR64BitRegClass) {
1590     LoadOpcode = SystemZ::VL64;
1591     StoreOpcode = SystemZ::VST64;
1592   } else if (RC == &SystemZ::VF128BitRegClass ||
1593              RC == &SystemZ::VR128BitRegClass) {
1594     LoadOpcode = SystemZ::VL;
1595     StoreOpcode = SystemZ::VST;
1596   } else
1597     llvm_unreachable("Unsupported regclass to load or store");
1598 }
1599 
1600 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1601                                               int64_t Offset) const {
1602   const MCInstrDesc &MCID = get(Opcode);
1603   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1604   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1605     // Get the instruction to use for unsigned 12-bit displacements.
1606     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1607     if (Disp12Opcode >= 0)
1608       return Disp12Opcode;
1609 
1610     // All address-related instructions can use unsigned 12-bit
1611     // displacements.
1612     return Opcode;
1613   }
1614   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1615     // Get the instruction to use for signed 20-bit displacements.
1616     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1617     if (Disp20Opcode >= 0)
1618       return Disp20Opcode;
1619 
1620     // Check whether Opcode allows signed 20-bit displacements.
1621     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1622       return Opcode;
1623   }
1624   return 0;
1625 }
1626 
1627 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1628   switch (Opcode) {
1629   case SystemZ::L:      return SystemZ::LT;
1630   case SystemZ::LY:     return SystemZ::LT;
1631   case SystemZ::LG:     return SystemZ::LTG;
1632   case SystemZ::LGF:    return SystemZ::LTGF;
1633   case SystemZ::LR:     return SystemZ::LTR;
1634   case SystemZ::LGFR:   return SystemZ::LTGFR;
1635   case SystemZ::LGR:    return SystemZ::LTGR;
1636   case SystemZ::LER:    return SystemZ::LTEBR;
1637   case SystemZ::LDR:    return SystemZ::LTDBR;
1638   case SystemZ::LXR:    return SystemZ::LTXBR;
1639   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1640   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1641   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1642   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1643   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1644   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1645   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1646   // actually use the condition code, we may turn it back into RISGB.
1647   // Note that RISBG is not really a "load-and-test" instruction,
1648   // but sets the same condition code values, so is OK to use here.
1649   case SystemZ::RISBGN: return SystemZ::RISBG;
1650   default:              return 0;
1651   }
1652 }
1653 
1654 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1655 // have already been filtered out.  Store the first set bit in LSB and
1656 // the number of set bits in Length if so.
1657 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1658   unsigned First = findFirstSet(Mask);
1659   uint64_t Top = (Mask >> First) + 1;
1660   if ((Top & -Top) == Top) {
1661     LSB = First;
1662     Length = findFirstSet(Top);
1663     return true;
1664   }
1665   return false;
1666 }
1667 
1668 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1669                                    unsigned &Start, unsigned &End) const {
1670   // Reject trivial all-zero masks.
1671   Mask &= allOnes(BitSize);
1672   if (Mask == 0)
1673     return false;
1674 
1675   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1676   // the msb and End specifies the index of the lsb.
1677   unsigned LSB, Length;
1678   if (isStringOfOnes(Mask, LSB, Length)) {
1679     Start = 63 - (LSB + Length - 1);
1680     End = 63 - LSB;
1681     return true;
1682   }
1683 
1684   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1685   // of the low 1s and End specifies the lsb of the high 1s.
1686   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1687     assert(LSB > 0 && "Bottom bit must be set");
1688     assert(LSB + Length < BitSize && "Top bit must be set");
1689     Start = 63 - (LSB - 1);
1690     End = 63 - (LSB + Length);
1691     return true;
1692   }
1693 
1694   return false;
1695 }
1696 
1697 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1698                                            SystemZII::FusedCompareType Type,
1699                                            const MachineInstr *MI) const {
1700   switch (Opcode) {
1701   case SystemZ::CHI:
1702   case SystemZ::CGHI:
1703     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1704       return 0;
1705     break;
1706   case SystemZ::CLFI:
1707   case SystemZ::CLGFI:
1708     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1709       return 0;
1710     break;
1711   case SystemZ::CL:
1712   case SystemZ::CLG:
1713     if (!STI.hasMiscellaneousExtensions())
1714       return 0;
1715     if (!(MI && MI->getOperand(3).getReg() == 0))
1716       return 0;
1717     break;
1718   }
1719   switch (Type) {
1720   case SystemZII::CompareAndBranch:
1721     switch (Opcode) {
1722     case SystemZ::CR:
1723       return SystemZ::CRJ;
1724     case SystemZ::CGR:
1725       return SystemZ::CGRJ;
1726     case SystemZ::CHI:
1727       return SystemZ::CIJ;
1728     case SystemZ::CGHI:
1729       return SystemZ::CGIJ;
1730     case SystemZ::CLR:
1731       return SystemZ::CLRJ;
1732     case SystemZ::CLGR:
1733       return SystemZ::CLGRJ;
1734     case SystemZ::CLFI:
1735       return SystemZ::CLIJ;
1736     case SystemZ::CLGFI:
1737       return SystemZ::CLGIJ;
1738     default:
1739       return 0;
1740     }
1741   case SystemZII::CompareAndReturn:
1742     switch (Opcode) {
1743     case SystemZ::CR:
1744       return SystemZ::CRBReturn;
1745     case SystemZ::CGR:
1746       return SystemZ::CGRBReturn;
1747     case SystemZ::CHI:
1748       return SystemZ::CIBReturn;
1749     case SystemZ::CGHI:
1750       return SystemZ::CGIBReturn;
1751     case SystemZ::CLR:
1752       return SystemZ::CLRBReturn;
1753     case SystemZ::CLGR:
1754       return SystemZ::CLGRBReturn;
1755     case SystemZ::CLFI:
1756       return SystemZ::CLIBReturn;
1757     case SystemZ::CLGFI:
1758       return SystemZ::CLGIBReturn;
1759     default:
1760       return 0;
1761     }
1762   case SystemZII::CompareAndSibcall:
1763     switch (Opcode) {
1764     case SystemZ::CR:
1765       return SystemZ::CRBCall;
1766     case SystemZ::CGR:
1767       return SystemZ::CGRBCall;
1768     case SystemZ::CHI:
1769       return SystemZ::CIBCall;
1770     case SystemZ::CGHI:
1771       return SystemZ::CGIBCall;
1772     case SystemZ::CLR:
1773       return SystemZ::CLRBCall;
1774     case SystemZ::CLGR:
1775       return SystemZ::CLGRBCall;
1776     case SystemZ::CLFI:
1777       return SystemZ::CLIBCall;
1778     case SystemZ::CLGFI:
1779       return SystemZ::CLGIBCall;
1780     default:
1781       return 0;
1782     }
1783   case SystemZII::CompareAndTrap:
1784     switch (Opcode) {
1785     case SystemZ::CR:
1786       return SystemZ::CRT;
1787     case SystemZ::CGR:
1788       return SystemZ::CGRT;
1789     case SystemZ::CHI:
1790       return SystemZ::CIT;
1791     case SystemZ::CGHI:
1792       return SystemZ::CGIT;
1793     case SystemZ::CLR:
1794       return SystemZ::CLRT;
1795     case SystemZ::CLGR:
1796       return SystemZ::CLGRT;
1797     case SystemZ::CLFI:
1798       return SystemZ::CLFIT;
1799     case SystemZ::CLGFI:
1800       return SystemZ::CLGIT;
1801     case SystemZ::CL:
1802       return SystemZ::CLT;
1803     case SystemZ::CLG:
1804       return SystemZ::CLGT;
1805     default:
1806       return 0;
1807     }
1808   }
1809   return 0;
1810 }
1811 
1812 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1813   if (!STI.hasLoadAndTrap())
1814     return 0;
1815   switch (Opcode) {
1816   case SystemZ::L:
1817   case SystemZ::LY:
1818     return SystemZ::LAT;
1819   case SystemZ::LG:
1820     return SystemZ::LGAT;
1821   case SystemZ::LFH:
1822     return SystemZ::LFHAT;
1823   case SystemZ::LLGF:
1824     return SystemZ::LLGFAT;
1825   case SystemZ::LLGT:
1826     return SystemZ::LLGTAT;
1827   }
1828   return 0;
1829 }
1830 
1831 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1832                                      MachineBasicBlock::iterator MBBI,
1833                                      unsigned Reg, uint64_t Value) const {
1834   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1835   unsigned Opcode;
1836   if (isInt<16>(Value))
1837     Opcode = SystemZ::LGHI;
1838   else if (SystemZ::isImmLL(Value))
1839     Opcode = SystemZ::LLILL;
1840   else if (SystemZ::isImmLH(Value)) {
1841     Opcode = SystemZ::LLILH;
1842     Value >>= 16;
1843   } else {
1844     assert(isInt<32>(Value) && "Huge values not handled yet");
1845     Opcode = SystemZ::LGFI;
1846   }
1847   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1848 }
1849 
1850 bool SystemZInstrInfo::
1851 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1852                                 const MachineInstr &MIb,
1853                                 AliasAnalysis *AA) const {
1854 
1855   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1856     return false;
1857 
1858   // If mem-operands show that the same address Value is used by both
1859   // instructions, check for non-overlapping offsets and widths. Not
1860   // sure if a register based analysis would be an improvement...
1861 
1862   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1863   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1864   const Value *VALa = MMOa->getValue();
1865   const Value *VALb = MMOb->getValue();
1866   bool SameVal = (VALa && VALb && (VALa == VALb));
1867   if (!SameVal) {
1868     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1869     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1870     if (PSVa && PSVb && (PSVa == PSVb))
1871       SameVal = true;
1872   }
1873   if (SameVal) {
1874     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1875     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1876     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1877     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1878     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1879     if (LowOffset + LowWidth <= HighOffset)
1880       return true;
1881   }
1882 
1883   return false;
1884 }
1885