xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrHFP.td (revision b1879975794772ee51f0b4865753364c7d7626c3)
1//==- SystemZInstrHFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The instructions in this file implement SystemZ hexadecimal floating-point
10// arithmetic.  Since this format is not mapped to any source-language data
11// type, these instructions are not used for code generation, but are provided
12// for use with the assembler and disassembler only.
13//
14//===----------------------------------------------------------------------===//
15
16//===----------------------------------------------------------------------===//
17// Move instructions
18//===----------------------------------------------------------------------===//
19
20// Load and test.
21let Defs = [CC] in {
22  def LTER : UnaryRR <"lter", 0x32,   null_frag, FP32,  FP32>;
23  def LTDR : UnaryRR <"ltdr", 0x22,   null_frag, FP64,  FP64>;
24  def LTXR : UnaryRRE<"ltxr", 0xB362, null_frag, FP128, FP128>;
25}
26
27//===----------------------------------------------------------------------===//
28// Conversion instructions
29//===----------------------------------------------------------------------===//
30
31// Convert floating-point values to narrower representations.
32def LEDR : UnaryRR <"ledr", 0x35,   null_frag, FP32, FP64>;
33def LEXR : UnaryRRE<"lexr", 0xB366, null_frag, FP32, FP128>;
34def LDXR : UnaryRR <"ldxr", 0x25,   null_frag, FP64, FP128>;
35let isAsmParserOnly = 1 in {
36  def LRER : UnaryRR <"lrer", 0x35, null_frag, FP32, FP64>;
37  def LRDR : UnaryRR <"lrdr", 0x25, null_frag, FP64, FP128>;
38}
39
40// Extend floating-point values to wider representations.
41def LDER : UnaryRRE<"lder", 0xB324, null_frag, FP64,  FP32>;
42def LXER : UnaryRRE<"lxer", 0xB326, null_frag, FP128, FP32>;
43def LXDR : UnaryRRE<"lxdr", 0xB325, null_frag, FP128, FP64>;
44
45def LDE : UnaryRXE<"lde", 0xED24, null_frag, FP64,  4>;
46def LXE : UnaryRXE<"lxe", 0xED26, null_frag, FP128, 4>;
47def LXD : UnaryRXE<"lxd", 0xED25, null_frag, FP128, 8>;
48
49// Convert a signed integer register value to a floating-point one.
50def CEFR : UnaryRRE<"cefr", 0xB3B4, null_frag, FP32,  GR32>;
51def CDFR : UnaryRRE<"cdfr", 0xB3B5, null_frag, FP64,  GR32>;
52def CXFR : UnaryRRE<"cxfr", 0xB3B6, null_frag, FP128, GR32>;
53
54def CEGR : UnaryRRE<"cegr", 0xB3C4, null_frag, FP32,  GR64>;
55def CDGR : UnaryRRE<"cdgr", 0xB3C5, null_frag, FP64,  GR64>;
56def CXGR : UnaryRRE<"cxgr", 0xB3C6, null_frag, FP128, GR64>;
57
58// Convert a floating-point register value to a signed integer value,
59// with the second operand (modifier M3) specifying the rounding mode.
60let Defs = [CC] in {
61  def CFER : BinaryRRFe<"cfer", 0xB3B8, GR32, FP32>;
62  def CFDR : BinaryRRFe<"cfdr", 0xB3B9, GR32, FP64>;
63  def CFXR : BinaryRRFe<"cfxr", 0xB3BA, GR32, FP128>;
64
65  def CGER : BinaryRRFe<"cger", 0xB3C8, GR64, FP32>;
66  def CGDR : BinaryRRFe<"cgdr", 0xB3C9, GR64, FP64>;
67  def CGXR : BinaryRRFe<"cgxr", 0xB3CA, GR64, FP128>;
68}
69
70// Convert BFP to HFP.
71let Defs = [CC] in {
72  def THDER : UnaryRRE<"thder", 0xB358, null_frag, FP64, FP32>;
73  def THDR  : UnaryRRE<"thdr",  0xB359, null_frag, FP64, FP64>;
74}
75
76// Convert HFP to BFP.
77let Defs = [CC] in {
78  def TBEDR : BinaryRRFe<"tbedr", 0xB350, FP32, FP64>;
79  def TBDR  : BinaryRRFe<"tbdr",  0xB351, FP64, FP64>;
80}
81
82
83//===----------------------------------------------------------------------===//
84// Unary arithmetic
85//===----------------------------------------------------------------------===//
86
87// Negation (Load Complement).
88let Defs = [CC] in {
89  def LCER : UnaryRR <"lcer", 0x33,   null_frag, FP32,  FP32>;
90  def LCDR : UnaryRR <"lcdr", 0x23,   null_frag, FP64,  FP64>;
91  def LCXR : UnaryRRE<"lcxr", 0xB363, null_frag, FP128, FP128>;
92}
93
94// Absolute value (Load Positive).
95let Defs = [CC] in {
96  def LPER : UnaryRR <"lper", 0x30,   null_frag, FP32,  FP32>;
97  def LPDR : UnaryRR <"lpdr", 0x20,   null_frag, FP64,  FP64>;
98  def LPXR : UnaryRRE<"lpxr", 0xB360, null_frag, FP128, FP128>;
99}
100
101// Negative absolute value (Load Negative).
102let Defs = [CC] in {
103  def LNER : UnaryRR <"lner", 0x31,   null_frag, FP32,  FP32>;
104  def LNDR : UnaryRR <"lndr", 0x21,   null_frag, FP64,  FP64>;
105  def LNXR : UnaryRRE<"lnxr", 0xB361, null_frag, FP128, FP128>;
106}
107
108// Halve.
109def HER : UnaryRR <"her", 0x34, null_frag, FP32, FP32>;
110def HDR : UnaryRR <"hdr", 0x24, null_frag, FP64, FP64>;
111
112// Square root.
113def SQER : UnaryRRE<"sqer", 0xB245, null_frag, FP32,  FP32>;
114def SQDR : UnaryRRE<"sqdr", 0xB244, null_frag, FP64,  FP64>;
115def SQXR : UnaryRRE<"sqxr", 0xB336, null_frag, FP128, FP128>;
116
117def SQE : UnaryRXE<"sqe", 0xED34, null_frag, FP32, 4>;
118def SQD : UnaryRXE<"sqd", 0xED35, null_frag, FP64, 8>;
119
120// Round to an integer (rounding towards zero).
121def FIER : UnaryRRE<"fier", 0xB377, null_frag, FP32,  FP32>;
122def FIDR : UnaryRRE<"fidr", 0xB37F, null_frag, FP64,  FP64>;
123def FIXR : UnaryRRE<"fixr", 0xB367, null_frag, FP128, FP128>;
124
125
126//===----------------------------------------------------------------------===//
127// Binary arithmetic
128//===----------------------------------------------------------------------===//
129
130// Addition.
131let Defs = [CC] in {
132  let isCommutable = 1 in {
133    def AER : BinaryRR<"aer", 0x3A, null_frag, FP32,  FP32>;
134    def ADR : BinaryRR<"adr", 0x2A, null_frag, FP64,  FP64>;
135    def AXR : BinaryRR<"axr", 0x36, null_frag, FP128, FP128>;
136  }
137  def AE : BinaryRX<"ae", 0x7A, null_frag, FP32, z_load, 4>;
138  def AD : BinaryRX<"ad", 0x6A, null_frag, FP64, z_load, 8>;
139}
140
141// Addition (unnormalized).
142let Defs = [CC] in {
143  let isCommutable = 1 in {
144    def AUR : BinaryRR<"aur", 0x3E, null_frag, FP32, FP32>;
145    def AWR : BinaryRR<"awr", 0x2E, null_frag, FP64, FP64>;
146  }
147  def AU : BinaryRX<"au", 0x7E, null_frag, FP32, z_load, 4>;
148  def AW : BinaryRX<"aw", 0x6E, null_frag, FP64, z_load, 8>;
149}
150
151// Subtraction.
152let Defs = [CC] in {
153  def SER : BinaryRR<"ser", 0x3B, null_frag, FP32,  FP32>;
154  def SDR : BinaryRR<"sdr", 0x2B, null_frag, FP64,  FP64>;
155  def SXR : BinaryRR<"sxr", 0x37, null_frag, FP128, FP128>;
156
157  def SE : BinaryRX<"se", 0x7B, null_frag, FP32, z_load, 4>;
158  def SD : BinaryRX<"sd", 0x6B, null_frag, FP64, z_load, 8>;
159}
160
161// Subtraction (unnormalized).
162let Defs = [CC] in {
163  def SUR : BinaryRR<"sur", 0x3F, null_frag, FP32, FP32>;
164  def SWR : BinaryRR<"swr", 0x2F, null_frag, FP64, FP64>;
165
166  def SU : BinaryRX<"su", 0x7F, null_frag, FP32, z_load, 4>;
167  def SW : BinaryRX<"sw", 0x6F, null_frag, FP64, z_load, 8>;
168}
169
170// Multiplication.
171let isCommutable = 1 in {
172  def MEER : BinaryRRE<"meer", 0xB337, null_frag, FP32,  FP32>;
173  def MDR  : BinaryRR <"mdr",  0x2C,   null_frag, FP64,  FP64>;
174  def MXR  : BinaryRR <"mxr",  0x26,   null_frag, FP128, FP128>;
175}
176def MEE : BinaryRXE<"mee", 0xED37, null_frag, FP32, z_load, 4>;
177def MD  : BinaryRX <"md",  0x6C,   null_frag, FP64, z_load, 8>;
178
179// Extending multiplication (f32 x f32 -> f64).
180def MDER : BinaryRR<"mder", 0x3C, null_frag, FP64, FP32>;
181def MDE  : BinaryRX<"mde",  0x7C, null_frag, FP64, z_load, 4>;
182let isAsmParserOnly = 1 in {
183  def MER : BinaryRR<"mer", 0x3C, null_frag, FP64, FP32>;
184  def ME  : BinaryRX<"me",  0x7C, null_frag, FP64, z_load, 4>;
185}
186
187// Extending multiplication (f64 x f64 -> f128).
188def MXDR : BinaryRR<"mxdr", 0x27, null_frag, FP128, FP64>;
189def MXD  : BinaryRX<"mxd",  0x67, null_frag, FP128, z_load, 8>;
190
191// Fused multiply-add.
192def MAER : TernaryRRD<"maer", 0xB32E, null_frag, FP32, FP32>;
193def MADR : TernaryRRD<"madr", 0xB33E, null_frag, FP64, FP64>;
194def MAE  : TernaryRXF<"mae",  0xED2E, null_frag, FP32, FP32, z_load, 4>;
195def MAD  : TernaryRXF<"mad",  0xED3E, null_frag, FP64, FP64, z_load, 8>;
196
197// Fused multiply-subtract.
198def MSER : TernaryRRD<"mser", 0xB32F, null_frag, FP32, FP32>;
199def MSDR : TernaryRRD<"msdr", 0xB33F, null_frag, FP64, FP64>;
200def MSE  : TernaryRXF<"mse",  0xED2F, null_frag, FP32, FP32, z_load, 4>;
201def MSD  : TernaryRXF<"msd",  0xED3F, null_frag, FP64, FP64, z_load, 8>;
202
203// Multiplication (unnormalized).
204def MYR  : BinaryRRD<"myr",  0xB33B, null_frag, FP128, FP64>;
205def MYHR : BinaryRRD<"myhr", 0xB33D, null_frag, FP64,  FP64>;
206def MYLR : BinaryRRD<"mylr", 0xB339, null_frag, FP64,  FP64>;
207def MY   : BinaryRXF<"my",   0xED3B, null_frag, FP128, FP64, z_load, 8>;
208def MYH  : BinaryRXF<"myh",  0xED3D, null_frag, FP64,  FP64, z_load, 8>;
209def MYL  : BinaryRXF<"myl",  0xED39, null_frag, FP64,  FP64, z_load, 8>;
210
211// Fused multiply-add (unnormalized).
212def MAYHR : TernaryRRD<"mayhr", 0xB33C, null_frag, FP64,  FP64>;
213def MAYLR : TernaryRRD<"maylr", 0xB338, null_frag, FP64,  FP64>;
214def MAYH  : TernaryRXF<"mayh",  0xED3C, null_frag, FP64,  FP64, z_load, 8>;
215def MAYL  : TernaryRXF<"mayl",  0xED38, null_frag, FP64,  FP64, z_load, 8>;
216
217// MAY and MAYR allow the user to specify the floating point register pair
218// making up the FP128 register by either the lower-numbered register or the
219// higher-numbered register, in contrast to all other floating point
220// instructions.
221// For this reason, the defs below accept `FP64,FP64` instead of `FP128,FP64`.
222// This is ok since these instructions are not used in code generation.
223// If and when code generation is enabled, the code gen variants should be
224// split out from this and use the proper register classes, while these should
225// remain for the Assembler and Disassembler to remain compliant with the POP.
226def MAY   : TernaryRXF<"may",   0xED3A, null_frag, FP64, FP64, z_load, 8>;
227def MAYR  : TernaryRRD<"mayr",  0xB33A, null_frag, FP64, FP64>;
228
229// Division.
230def DER : BinaryRR <"der", 0x3D,   null_frag, FP32,  FP32>;
231def DDR : BinaryRR <"ddr", 0x2D,   null_frag, FP64,  FP64>;
232def DXR : BinaryRRE<"dxr", 0xB22D, null_frag, FP128, FP128>;
233def DE  : BinaryRX <"de",  0x7D,   null_frag, FP32, z_load, 4>;
234def DD  : BinaryRX <"dd",  0x6D,   null_frag, FP64, z_load, 8>;
235
236
237//===----------------------------------------------------------------------===//
238// Comparisons
239//===----------------------------------------------------------------------===//
240
241let Defs = [CC] in {
242  def CER : CompareRR <"cer", 0x39,   null_frag, FP32,  FP32>;
243  def CDR : CompareRR <"cdr", 0x29,   null_frag, FP64,  FP64>;
244  def CXR : CompareRRE<"cxr", 0xB369, null_frag, FP128, FP128>;
245
246  def CE : CompareRX<"ce", 0x79, null_frag, FP32, z_load, 4>;
247  def CD : CompareRX<"cd", 0x69, null_frag, FP64, z_load, 8>;
248}
249
250