xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZInstrFP.td (revision b9128a37faafede823eb456aa65a11ac69997284)
1//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// TODO: Most floating-point instructions (except for simple moves and the
10// like) can raise exceptions -- should they have hasSideEffects=1 ?
11
12//===----------------------------------------------------------------------===//
13// Select instructions
14//===----------------------------------------------------------------------===//
15
16// C's ?: operator for floating-point operands.
17let Predicates = [FeatureVector] in {
18  def SelectVR32 : SelectWrapper<f32, VR32>;
19  def SelectVR64 : SelectWrapper<f64, VR64>;
20}
21def SelectF32  : SelectWrapper<f32, FP32>;
22def SelectF64  : SelectWrapper<f64, FP64>;
23let Predicates = [FeatureNoVectorEnhancements1] in
24  def SelectF128 : SelectWrapper<f128, FP128>;
25let Predicates = [FeatureVectorEnhancements1] in
26  def SelectVR128 : SelectWrapper<f128, VR128>;
27
28defm CondStoreF32 : CondStores<FP32, simple_store,
29                               simple_load, bdxaddr20only>;
30defm CondStoreF64 : CondStores<FP64, simple_store,
31                               simple_load, bdxaddr20only>;
32
33//===----------------------------------------------------------------------===//
34// Move instructions
35//===----------------------------------------------------------------------===//
36
37// Load zero.
38let isAsCheapAsAMove = 1, isMoveImm = 1 in {
39  def LZER : InherentRRE<"lzer", 0xB374, FP32,  fpimm0>;
40  def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  fpimm0>;
41  def LZXR : InherentRRE<"lzxr", 0xB376, FP128, fpimm0>;
42}
43
44// Moves between two floating-point registers.
45def LER : UnaryRR <"ler", 0x38,   null_frag, FP32,  FP32>;
46def LDR : UnaryRR <"ldr", 0x28,   null_frag, FP64,  FP64>;
47def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;
48
49// For z13 we prefer LDR over LER to avoid partial register dependencies.
50let isCodeGenOnly = 1 in
51  def LDR32 : UnaryRR<"ldr", 0x28, null_frag, FP32, FP32>;
52
53// Moves between two floating-point registers that also set the condition
54// codes. Note that these instructions will turn SNaNs into QNaNs and should
55// not be used for comparison if the result will be used afterwards.
56let Uses = [FPC], mayRaiseFPException = 1,
57    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
58  def LTEBR : UnaryRRE<"ltebr", 0xB302, null_frag, FP32, FP32>;
59  def LTDBR : UnaryRRE<"ltdbr", 0xB312, null_frag, FP64, FP64>;
60  def LTXBR : UnaryRRE<"ltxbr", 0xB342, null_frag, FP128, FP128>;
61}
62
63// Use a load-and-test for compare against zero (via a pseudo to simplify
64// instruction selection).
65let Uses = [FPC], mayRaiseFPException = 1,
66    Defs = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in {
67  def LTEBRCompare_Pseudo : Pseudo<(outs), (ins FP32:$R1), []>;
68  def LTDBRCompare_Pseudo : Pseudo<(outs), (ins FP64:$R1), []>;
69  def LTXBRCompare_Pseudo : Pseudo<(outs), (ins FP128:$R1), []>;
70}
71defm : CompareZeroFP<LTEBRCompare_Pseudo, FP32>;
72defm : CompareZeroFP<LTDBRCompare_Pseudo, FP64>;
73let Predicates = [FeatureNoVectorEnhancements1] in
74  defm : CompareZeroFP<LTXBRCompare_Pseudo, FP128>;
75
76// Moves between 64-bit integer and floating-point registers.
77def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
78def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;
79
80// fcopysign with an FP32 result.
81let isCodeGenOnly = 1 in {
82  def CPSDRss : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP32>;
83  def CPSDRsd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP64>;
84}
85
86// The sign of an FP128 is in the high register.
87let Predicates = [FeatureNoVectorEnhancements1] in
88  def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 FP128:$src2)))),
89            (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
90let Predicates = [FeatureVectorEnhancements1] in
91  def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 VR128:$src2)))),
92            (CPSDRsd FP32:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;
93
94// fcopysign with an FP64 result.
95let isCodeGenOnly = 1 in
96  def CPSDRds : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP32>;
97def CPSDRdd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP64>;
98
99// The sign of an FP128 is in the high register.
100let Predicates = [FeatureNoVectorEnhancements1] in
101  def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 FP128:$src2)))),
102            (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
103let Predicates = [FeatureVectorEnhancements1] in
104  def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 VR128:$src2)))),
105            (CPSDRdd FP64:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>;
106
107// fcopysign with an FP128 result.  Use "upper" as the high half and leave
108// the low half as-is.
109class CopySign128<RegisterOperand cls, dag upper>
110  : Pat<(fcopysign FP128:$src1, cls:$src2),
111        (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>;
112
113let Predicates = [FeatureNoVectorEnhancements1] in {
114  def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64),
115                                    FP32:$src2)>;
116  def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
117                                    FP64:$src2)>;
118  def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64),
119                                    (EXTRACT_SUBREG FP128:$src2, subreg_h64))>;
120}
121
122// The length is given as one less for MVCImm.
123defm LoadStoreF32  : MVCLoadStore<load, f32,  MVCImm, 3>;
124defm LoadStoreF64  : MVCLoadStore<load, f64,  MVCImm, 7>;
125defm LoadStoreF128 : MVCLoadStore<load, f128, MVCImm, 15>;
126
127//===----------------------------------------------------------------------===//
128// Load instructions
129//===----------------------------------------------------------------------===//
130
131let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
132  defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>;
133  defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>;
134
135  // For z13 we prefer LDE over LE to avoid partial register dependencies.
136  let isCodeGenOnly = 1 in
137    def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>;
138
139  // These instructions are split after register allocation, so we don't
140  // want a custom inserter.
141  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
142    def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
143                     [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
144  }
145}
146
147//===----------------------------------------------------------------------===//
148// Store instructions
149//===----------------------------------------------------------------------===//
150
151let SimpleBDXStore = 1, mayStore = 1 in {
152  defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>;
153  defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>;
154
155  // These instructions are split after register allocation, so we don't
156  // want a custom inserter.
157  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
158    def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
159                     [(store FP128:$src, bdxaddr20only128:$dst)]>;
160  }
161}
162
163//===----------------------------------------------------------------------===//
164// Conversion instructions
165//===----------------------------------------------------------------------===//
166
167// Convert floating-point values to narrower representations, rounding
168// according to the current mode.  The destination of LEXBR and LDXBR
169// is a 128-bit value, but only the first register of the pair is used.
170let Uses = [FPC], mayRaiseFPException = 1 in {
171  def LEDBR : UnaryRRE<"ledbr", 0xB344, any_fpround, FP32, FP64>;
172  def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
173  def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;
174
175  def LEDBRA : TernaryRRFe<"ledbra", 0xB344, FP32,  FP64>,
176               Requires<[FeatureFPExtension]>;
177  def LEXBRA : TernaryRRFe<"lexbra", 0xB346, FP128, FP128>,
178               Requires<[FeatureFPExtension]>;
179  def LDXBRA : TernaryRRFe<"ldxbra", 0xB345, FP128, FP128>,
180               Requires<[FeatureFPExtension]>;
181}
182
183let Predicates = [FeatureNoVectorEnhancements1] in {
184  def : Pat<(f32 (any_fpround FP128:$src)),
185            (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_h32)>;
186  def : Pat<(f64 (any_fpround FP128:$src)),
187            (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>;
188}
189
190// Extend register floating-point values to wider representations.
191let Uses = [FPC], mayRaiseFPException = 1 in {
192  def LDEBR : UnaryRRE<"ldebr", 0xB304, any_fpextend, FP64, FP32>;
193  def LXEBR : UnaryRRE<"lxebr", 0xB306, null_frag, FP128, FP32>;
194  def LXDBR : UnaryRRE<"lxdbr", 0xB305, null_frag, FP128, FP64>;
195}
196let Predicates = [FeatureNoVectorEnhancements1] in {
197  def : Pat<(f128 (any_fpextend (f32 FP32:$src))), (LXEBR FP32:$src)>;
198  def : Pat<(f128 (any_fpextend (f64 FP64:$src))), (LXDBR FP64:$src)>;
199}
200
201// Extend memory floating-point values to wider representations.
202let Uses = [FPC], mayRaiseFPException = 1 in {
203  def LDEB : UnaryRXE<"ldeb", 0xED04, any_extloadf32, FP64, 4>;
204  def LXEB : UnaryRXE<"lxeb", 0xED06, null_frag, FP128, 4>;
205  def LXDB : UnaryRXE<"lxdb", 0xED05, null_frag, FP128, 8>;
206}
207let Predicates = [FeatureNoVectorEnhancements1] in {
208  def : Pat<(f128 (any_extloadf32 bdxaddr12only:$src)),
209            (LXEB bdxaddr12only:$src)>;
210  def : Pat<(f128 (any_extloadf64 bdxaddr12only:$src)),
211            (LXDB bdxaddr12only:$src)>;
212}
213
214// Convert a signed integer register value to a floating-point one.
215let Uses = [FPC], mayRaiseFPException = 1 in {
216  def CEFBR : UnaryRRE<"cefbr", 0xB394, any_sint_to_fp, FP32,  GR32>;
217  def CDFBR : UnaryRRE<"cdfbr", 0xB395, any_sint_to_fp, FP64,  GR32>;
218  def CXFBR : UnaryRRE<"cxfbr", 0xB396, any_sint_to_fp, FP128, GR32>;
219
220  def CEGBR : UnaryRRE<"cegbr", 0xB3A4, any_sint_to_fp, FP32,  GR64>;
221  def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, any_sint_to_fp, FP64,  GR64>;
222  def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, any_sint_to_fp, FP128, GR64>;
223}
224
225// The FP extension feature provides versions of the above that allow
226// specifying rounding mode and inexact-exception suppression flags.
227let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureFPExtension] in {
228  def CEFBRA : TernaryRRFe<"cefbra", 0xB394, FP32,  GR32>;
229  def CDFBRA : TernaryRRFe<"cdfbra", 0xB395, FP64,  GR32>;
230  def CXFBRA : TernaryRRFe<"cxfbra", 0xB396, FP128, GR32>;
231
232  def CEGBRA : TernaryRRFe<"cegbra", 0xB3A4, FP32,  GR64>;
233  def CDGBRA : TernaryRRFe<"cdgbra", 0xB3A5, FP64,  GR64>;
234  def CXGBRA : TernaryRRFe<"cxgbra", 0xB3A6, FP128, GR64>;
235}
236
237// Convert am unsigned integer register value to a floating-point one.
238let Predicates = [FeatureFPExtension] in {
239  let Uses = [FPC], mayRaiseFPException = 1 in {
240    def CELFBR : TernaryRRFe<"celfbr", 0xB390, FP32,  GR32>;
241    def CDLFBR : TernaryRRFe<"cdlfbr", 0xB391, FP64,  GR32>;
242    def CXLFBR : TernaryRRFe<"cxlfbr", 0xB392, FP128, GR32>;
243
244    def CELGBR : TernaryRRFe<"celgbr", 0xB3A0, FP32,  GR64>;
245    def CDLGBR : TernaryRRFe<"cdlgbr", 0xB3A1, FP64,  GR64>;
246    def CXLGBR : TernaryRRFe<"cxlgbr", 0xB3A2, FP128, GR64>;
247  }
248
249  def : Pat<(f32  (any_uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>;
250  def : Pat<(f64  (any_uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>;
251  def : Pat<(f128 (any_uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>;
252
253  def : Pat<(f32  (any_uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>;
254  def : Pat<(f64  (any_uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>;
255  def : Pat<(f128 (any_uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>;
256}
257
258// Convert a floating-point register value to a signed integer value,
259// with the second operand (modifier M3) specifying the rounding mode.
260let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
261  def CFEBR : BinaryRRFe<"cfebr", 0xB398, GR32, FP32>;
262  def CFDBR : BinaryRRFe<"cfdbr", 0xB399, GR32, FP64>;
263  def CFXBR : BinaryRRFe<"cfxbr", 0xB39A, GR32, FP128>;
264
265  def CGEBR : BinaryRRFe<"cgebr", 0xB3A8, GR64, FP32>;
266  def CGDBR : BinaryRRFe<"cgdbr", 0xB3A9, GR64, FP64>;
267  def CGXBR : BinaryRRFe<"cgxbr", 0xB3AA, GR64, FP128>;
268}
269
270// fp_to_sint always rounds towards zero, which is modifier value 5.
271def : Pat<(i32 (any_fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
272def : Pat<(i32 (any_fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
273def : Pat<(i32 (any_fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
274
275def : Pat<(i64 (any_fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
276def : Pat<(i64 (any_fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
277def : Pat<(i64 (any_fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
278
279// The FP extension feature provides versions of the above that allow
280// also specifying the inexact-exception suppression flag.
281let Uses = [FPC], mayRaiseFPException = 1,
282    Predicates = [FeatureFPExtension], Defs = [CC] in {
283  def CFEBRA : TernaryRRFe<"cfebra", 0xB398, GR32, FP32>;
284  def CFDBRA : TernaryRRFe<"cfdbra", 0xB399, GR32, FP64>;
285  def CFXBRA : TernaryRRFe<"cfxbra", 0xB39A, GR32, FP128>;
286
287  def CGEBRA : TernaryRRFe<"cgebra", 0xB3A8, GR64, FP32>;
288  def CGDBRA : TernaryRRFe<"cgdbra", 0xB3A9, GR64, FP64>;
289  def CGXBRA : TernaryRRFe<"cgxbra", 0xB3AA, GR64, FP128>;
290}
291
292// Convert a floating-point register value to an unsigned integer value.
293let Predicates = [FeatureFPExtension] in {
294  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
295    def CLFEBR : TernaryRRFe<"clfebr", 0xB39C, GR32, FP32>;
296    def CLFDBR : TernaryRRFe<"clfdbr", 0xB39D, GR32, FP64>;
297    def CLFXBR : TernaryRRFe<"clfxbr", 0xB39E, GR32, FP128>;
298
299    def CLGEBR : TernaryRRFe<"clgebr", 0xB3AC, GR64, FP32>;
300    def CLGDBR : TernaryRRFe<"clgdbr", 0xB3AD, GR64, FP64>;
301    def CLGXBR : TernaryRRFe<"clgxbr", 0xB3AE, GR64, FP128>;
302  }
303
304  def : Pat<(i32 (any_fp_to_uint FP32:$src)),  (CLFEBR 5, FP32:$src,  0)>;
305  def : Pat<(i32 (any_fp_to_uint FP64:$src)),  (CLFDBR 5, FP64:$src,  0)>;
306  def : Pat<(i32 (any_fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>;
307
308  def : Pat<(i64 (any_fp_to_uint FP32:$src)),  (CLGEBR 5, FP32:$src,  0)>;
309  def : Pat<(i64 (any_fp_to_uint FP64:$src)),  (CLGDBR 5, FP64:$src,  0)>;
310  def : Pat<(i64 (any_fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>;
311}
312
313
314//===----------------------------------------------------------------------===//
315// Unary arithmetic
316//===----------------------------------------------------------------------===//
317
318// We prefer generic instructions during isel, because they do not
319// clobber CC and therefore give the scheduler more freedom. In cases
320// the CC is actually useful, the SystemZElimCompare pass will try to
321// convert generic instructions into opcodes that also set CC. Note
322// that lcdf / lpdf / lndf only affect the sign bit, and can therefore
323// be used with fp32 as well. This could be done for fp128, in which
324// case the operands would have to be tied.
325
326// Negation (Load Complement).
327let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
328  def LCEBR : UnaryRRE<"lcebr", 0xB303, null_frag, FP32,  FP32>;
329  def LCDBR : UnaryRRE<"lcdbr", 0xB313, null_frag, FP64,  FP64>;
330  def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
331}
332// Generic form, which does not set CC.
333def LCDFR : UnaryRRE<"lcdfr", 0xB373, fneg, FP64,  FP64>;
334let isCodeGenOnly = 1 in
335  def LCDFR_32 : UnaryRRE<"lcdfr", 0xB373, fneg, FP32,  FP32>;
336
337// Absolute value (Load Positive).
338let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
339  def LPEBR : UnaryRRE<"lpebr", 0xB300, null_frag, FP32,  FP32>;
340  def LPDBR : UnaryRRE<"lpdbr", 0xB310, null_frag, FP64,  FP64>;
341  def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
342}
343// Generic form, which does not set CC.
344def LPDFR : UnaryRRE<"lpdfr", 0xB370, fabs, FP64,  FP64>;
345let isCodeGenOnly = 1 in
346  def LPDFR_32 : UnaryRRE<"lpdfr", 0xB370, fabs, FP32,  FP32>;
347
348// Negative absolute value (Load Negative).
349let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
350  def LNEBR : UnaryRRE<"lnebr", 0xB301, null_frag, FP32,  FP32>;
351  def LNDBR : UnaryRRE<"lndbr", 0xB311, null_frag, FP64,  FP64>;
352  def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
353}
354// Generic form, which does not set CC.
355def LNDFR : UnaryRRE<"lndfr", 0xB371, fnabs, FP64,  FP64>;
356let isCodeGenOnly = 1 in
357  def LNDFR_32 : UnaryRRE<"lndfr", 0xB371, fnabs, FP32,  FP32>;
358
359// Square root.
360let Uses = [FPC], mayRaiseFPException = 1 in {
361  def SQEBR : UnaryRRE<"sqebr", 0xB314, any_fsqrt, FP32,  FP32>;
362  def SQDBR : UnaryRRE<"sqdbr", 0xB315, any_fsqrt, FP64,  FP64>;
363  def SQXBR : UnaryRRE<"sqxbr", 0xB316, any_fsqrt, FP128, FP128>;
364
365  def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<any_fsqrt>, FP32, 4>;
366  def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<any_fsqrt>, FP64, 8>;
367}
368
369// Round to an integer, with the second operand (modifier M3) specifying
370// the rounding mode.  These forms always check for inexact conditions.
371let Uses = [FPC], mayRaiseFPException = 1 in {
372  def FIEBR : BinaryRRFe<"fiebr", 0xB357, FP32,  FP32>;
373  def FIDBR : BinaryRRFe<"fidbr", 0xB35F, FP64,  FP64>;
374  def FIXBR : BinaryRRFe<"fixbr", 0xB347, FP128, FP128>;
375}
376
377// frint rounds according to the current mode (modifier 0) and detects
378// inexact conditions.
379def : Pat<(any_frint FP32:$src),  (FIEBR 0, FP32:$src)>;
380def : Pat<(any_frint FP64:$src),  (FIDBR 0, FP64:$src)>;
381def : Pat<(any_frint FP128:$src), (FIXBR 0, FP128:$src)>;
382
383let Predicates = [FeatureFPExtension] in {
384  // Extended forms of the FIxBR instructions.  M4 can be set to 4
385  // to suppress detection of inexact conditions.
386  let Uses = [FPC], mayRaiseFPException = 1 in {
387    def FIEBRA : TernaryRRFe<"fiebra", 0xB357, FP32,  FP32>;
388    def FIDBRA : TernaryRRFe<"fidbra", 0xB35F, FP64,  FP64>;
389    def FIXBRA : TernaryRRFe<"fixbra", 0xB347, FP128, FP128>;
390  }
391
392  // fnearbyint is like frint but does not detect inexact conditions.
393  def : Pat<(any_fnearbyint FP32:$src),  (FIEBRA 0, FP32:$src,  4)>;
394  def : Pat<(any_fnearbyint FP64:$src),  (FIDBRA 0, FP64:$src,  4)>;
395  def : Pat<(any_fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>;
396
397  // floor is no longer allowed to raise an inexact condition,
398  // so restrict it to the cases where the condition can be suppressed.
399  // Mode 7 is round towards -inf.
400  def : Pat<(any_ffloor FP32:$src),  (FIEBRA 7, FP32:$src,  4)>;
401  def : Pat<(any_ffloor FP64:$src),  (FIDBRA 7, FP64:$src,  4)>;
402  def : Pat<(any_ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>;
403
404  // Same idea for ceil, where mode 6 is round towards +inf.
405  def : Pat<(any_fceil FP32:$src),  (FIEBRA 6, FP32:$src,  4)>;
406  def : Pat<(any_fceil FP64:$src),  (FIDBRA 6, FP64:$src,  4)>;
407  def : Pat<(any_fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>;
408
409  // Same idea for trunc, where mode 5 is round towards zero.
410  def : Pat<(any_ftrunc FP32:$src),  (FIEBRA 5, FP32:$src,  4)>;
411  def : Pat<(any_ftrunc FP64:$src),  (FIDBRA 5, FP64:$src,  4)>;
412  def : Pat<(any_ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>;
413
414  // Same idea for round, where mode 1 is round towards nearest with
415  // ties away from zero.
416  def : Pat<(any_fround FP32:$src),  (FIEBRA 1, FP32:$src,  4)>;
417  def : Pat<(any_fround FP64:$src),  (FIDBRA 1, FP64:$src,  4)>;
418  def : Pat<(any_fround FP128:$src), (FIXBRA 1, FP128:$src, 4)>;
419}
420
421//===----------------------------------------------------------------------===//
422// Binary arithmetic
423//===----------------------------------------------------------------------===//
424
425// Addition.
426let Uses = [FPC], mayRaiseFPException = 1,
427    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
428  let isCommutable = 1 in {
429    def AEBR : BinaryRRE<"aebr", 0xB30A, any_fadd, FP32,  FP32>;
430    def ADBR : BinaryRRE<"adbr", 0xB31A, any_fadd, FP64,  FP64>;
431    def AXBR : BinaryRRE<"axbr", 0xB34A, any_fadd, FP128, FP128>;
432  }
433  defm AEB : BinaryRXEAndPseudo<"aeb", 0xED0A, any_fadd, FP32, load, 4>;
434  defm ADB : BinaryRXEAndPseudo<"adb", 0xED1A, any_fadd, FP64, load, 8>;
435}
436
437// Subtraction.
438let Uses = [FPC], mayRaiseFPException = 1,
439    Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in {
440  def SEBR : BinaryRRE<"sebr", 0xB30B, any_fsub, FP32,  FP32>;
441  def SDBR : BinaryRRE<"sdbr", 0xB31B, any_fsub, FP64,  FP64>;
442  def SXBR : BinaryRRE<"sxbr", 0xB34B, any_fsub, FP128, FP128>;
443
444  defm SEB : BinaryRXEAndPseudo<"seb",  0xED0B, any_fsub, FP32, load, 4>;
445  defm SDB : BinaryRXEAndPseudo<"sdb",  0xED1B, any_fsub, FP64, load, 8>;
446}
447
448// Multiplication.
449let Uses = [FPC], mayRaiseFPException = 1 in {
450  let isCommutable = 1 in {
451    def MEEBR : BinaryRRE<"meebr", 0xB317, any_fmul, FP32,  FP32>;
452    def MDBR  : BinaryRRE<"mdbr",  0xB31C, any_fmul, FP64,  FP64>;
453    def MXBR  : BinaryRRE<"mxbr",  0xB34C, any_fmul, FP128, FP128>;
454  }
455  defm MEEB : BinaryRXEAndPseudo<"meeb", 0xED17, any_fmul, FP32, load, 4>;
456  defm MDB  : BinaryRXEAndPseudo<"mdb",  0xED1C, any_fmul, FP64, load, 8>;
457}
458
459// f64 multiplication of two FP32 registers.
460let Uses = [FPC], mayRaiseFPException = 1 in
461  def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
462def : Pat<(any_fmul (f64 (any_fpextend FP32:$src1)),
463                    (f64 (any_fpextend FP32:$src2))),
464          (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
465                                FP32:$src1, subreg_h32), FP32:$src2)>;
466
467// f64 multiplication of an FP32 register and an f32 memory.
468let Uses = [FPC], mayRaiseFPException = 1 in
469  def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>;
470def : Pat<(any_fmul (f64 (any_fpextend FP32:$src1)),
471                    (f64 (any_extloadf32 bdxaddr12only:$addr))),
472          (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32),
473                bdxaddr12only:$addr)>;
474
475// f128 multiplication of two FP64 registers.
476let Uses = [FPC], mayRaiseFPException = 1 in
477  def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
478let Predicates = [FeatureNoVectorEnhancements1] in
479  def : Pat<(any_fmul (f128 (any_fpextend FP64:$src1)),
480                      (f128 (any_fpextend FP64:$src2))),
481            (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
482                                  FP64:$src1, subreg_h64), FP64:$src2)>;
483
484// f128 multiplication of an FP64 register and an f64 memory.
485let Uses = [FPC], mayRaiseFPException = 1 in
486  def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>;
487let Predicates = [FeatureNoVectorEnhancements1] in
488  def : Pat<(any_fmul (f128 (any_fpextend FP64:$src1)),
489                      (f128 (any_extloadf64 bdxaddr12only:$addr))),
490            (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64),
491                  bdxaddr12only:$addr)>;
492
493// Fused multiply-add.
494let Uses = [FPC], mayRaiseFPException = 1 in {
495  def MAEBR : TernaryRRD<"maebr", 0xB30E, z_any_fma, FP32, FP32>;
496  def MADBR : TernaryRRD<"madbr", 0xB31E, z_any_fma, FP64, FP64>;
497
498  defm MAEB : TernaryRXFAndPseudo<"maeb", 0xED0E, z_any_fma, FP32, FP32, load, 4>;
499  defm MADB : TernaryRXFAndPseudo<"madb", 0xED1E, z_any_fma, FP64, FP64, load, 8>;
500}
501
502// Fused multiply-subtract.
503let Uses = [FPC], mayRaiseFPException = 1 in {
504  def MSEBR : TernaryRRD<"msebr", 0xB30F, z_any_fms, FP32, FP32>;
505  def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_any_fms, FP64, FP64>;
506
507  defm MSEB : TernaryRXFAndPseudo<"mseb", 0xED0F, z_any_fms, FP32, FP32, load, 4>;
508  defm MSDB : TernaryRXFAndPseudo<"msdb", 0xED1F, z_any_fms, FP64, FP64, load, 8>;
509}
510
511// Division.
512let Uses = [FPC], mayRaiseFPException = 1 in {
513  def DEBR : BinaryRRE<"debr", 0xB30D, any_fdiv, FP32,  FP32>;
514  def DDBR : BinaryRRE<"ddbr", 0xB31D, any_fdiv, FP64,  FP64>;
515  def DXBR : BinaryRRE<"dxbr", 0xB34D, any_fdiv, FP128, FP128>;
516
517  defm DEB : BinaryRXEAndPseudo<"deb", 0xED0D, any_fdiv, FP32, load, 4>;
518  defm DDB : BinaryRXEAndPseudo<"ddb", 0xED1D, any_fdiv, FP64, load, 8>;
519}
520
521// Divide to integer.
522let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
523  def DIEBR : TernaryRRFb<"diebr", 0xB353, FP32, FP32, FP32>;
524  def DIDBR : TernaryRRFb<"didbr", 0xB35B, FP64, FP64, FP64>;
525}
526
527//===----------------------------------------------------------------------===//
528// Comparisons
529//===----------------------------------------------------------------------===//
530
531let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC], CCValues = 0xF in {
532  def CEBR : CompareRRE<"cebr", 0xB309, z_any_fcmp, FP32,  FP32>;
533  def CDBR : CompareRRE<"cdbr", 0xB319, z_any_fcmp, FP64,  FP64>;
534  def CXBR : CompareRRE<"cxbr", 0xB349, z_any_fcmp, FP128, FP128>;
535
536  def CEB : CompareRXE<"ceb", 0xED09, z_any_fcmp, FP32, load, 4>;
537  def CDB : CompareRXE<"cdb", 0xED19, z_any_fcmp, FP64, load, 8>;
538
539  def KEBR : CompareRRE<"kebr", 0xB308, z_strict_fcmps, FP32,  FP32>;
540  def KDBR : CompareRRE<"kdbr", 0xB318, z_strict_fcmps, FP64,  FP64>;
541  def KXBR : CompareRRE<"kxbr", 0xB348, z_strict_fcmps, FP128, FP128>;
542
543  def KEB : CompareRXE<"keb", 0xED08, z_strict_fcmps, FP32, load, 4>;
544  def KDB : CompareRXE<"kdb", 0xED18, z_strict_fcmps, FP64, load, 8>;
545}
546
547// Test Data Class.
548let Defs = [CC], CCValues = 0xC in {
549  def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>;
550  def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>;
551  def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>;
552}
553
554//===----------------------------------------------------------------------===//
555// Floating-point control register instructions
556//===----------------------------------------------------------------------===//
557
558let hasSideEffects = 1 in {
559  let mayLoad = 1, mayStore = 1 in {
560    // TODO: EFPC and SFPC do not touch memory at all
561    let Uses = [FPC] in {
562      def EFPC  : InherentRRE<"efpc", 0xB38C, GR32, int_s390_efpc>;
563      def STFPC : StoreInherentS<"stfpc", 0xB29C, storei<int_s390_efpc>, 4>;
564    }
565
566    let Defs = [FPC] in {
567      def SFPC : SideEffectUnaryRRE<"sfpc", 0xB384, GR32, int_s390_sfpc>;
568      def LFPC : SideEffectUnaryS<"lfpc", 0xB29D, loadu<int_s390_sfpc>, 4>;
569    }
570  }
571
572  let Defs = [FPC], mayRaiseFPException = 1 in {
573    def SFASR : SideEffectUnaryRRE<"sfasr", 0xB385, GR32, null_frag>;
574    def LFAS  : SideEffectUnaryS<"lfas", 0xB2BD, null_frag, 4>;
575  }
576
577  let Uses = [FPC], Defs = [FPC] in {
578    def SRNMB : SideEffectAddressS<"srnmb", 0xB2B8, null_frag, shift12only>,
579                Requires<[FeatureFPExtension]>;
580    def SRNM  : SideEffectAddressS<"srnm", 0xB299, null_frag, shift12only>;
581    def SRNMT : SideEffectAddressS<"srnmt", 0xB2B9, null_frag, shift12only>;
582  }
583}
584
585//===----------------------------------------------------------------------===//
586// Peepholes
587//===----------------------------------------------------------------------===//
588
589def : Pat<(f32  fpimmneg0), (LCDFR_32 (LZER))>;
590def : Pat<(f64  fpimmneg0), (LCDFR (LZDR))>;
591def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
592