1//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8 9// TODO: Most floating-point instructions (except for simple moves and the 10// like) can raise exceptions -- should they have hasSideEffects=1 ? 11 12//===----------------------------------------------------------------------===// 13// Select instructions 14//===----------------------------------------------------------------------===// 15 16// C's ?: operator for floating-point operands. 17let Predicates = [FeatureVector] in { 18 def SelectVR32 : SelectWrapper<f32, VR32>; 19 def SelectVR64 : SelectWrapper<f64, VR64>; 20} 21def SelectF32 : SelectWrapper<f32, FP32>; 22def SelectF64 : SelectWrapper<f64, FP64>; 23let Predicates = [FeatureNoVectorEnhancements1] in 24 def SelectF128 : SelectWrapper<f128, FP128>; 25let Predicates = [FeatureVectorEnhancements1] in 26 def SelectVR128 : SelectWrapper<f128, VR128>; 27 28defm CondStoreF32 : CondStores<FP32, simple_store, 29 simple_load, bdxaddr20only>; 30defm CondStoreF64 : CondStores<FP64, simple_store, 31 simple_load, bdxaddr20only>; 32 33//===----------------------------------------------------------------------===// 34// Move instructions 35//===----------------------------------------------------------------------===// 36 37// Load zero. 38let isAsCheapAsAMove = 1, isMoveImm = 1 in { 39 def LZER : InherentRRE<"lzer", 0xB374, FP32, fpimm0>; 40 def LZDR : InherentRRE<"lzdr", 0xB375, FP64, fpimm0>; 41 def LZXR : InherentRRE<"lzxr", 0xB376, FP128, fpimm0>; 42} 43 44// Moves between two floating-point registers. 45def LER : UnaryRR <"ler", 0x38, null_frag, FP32, FP32>; 46def LDR : UnaryRR <"ldr", 0x28, null_frag, FP64, FP64>; 47def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>; 48 49// For z13 we prefer LDR over LER to avoid partial register dependencies. 50let isCodeGenOnly = 1 in 51 def LDR32 : UnaryRR<"ldr", 0x28, null_frag, FP32, FP32>; 52 53// Moves between two floating-point registers that also set the condition 54// codes. 55let Uses = [FPC], mayRaiseFPException = 1, 56 Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 57 defm LTEBR : LoadAndTestRRE<"ltebr", 0xB302, FP32>; 58 defm LTDBR : LoadAndTestRRE<"ltdbr", 0xB312, FP64>; 59 defm LTXBR : LoadAndTestRRE<"ltxbr", 0xB342, FP128>; 60} 61// Note that LTxBRCompare is not available if we have vector support, 62// since load-and-test instructions will partially clobber the target 63// (vector) register. 64let Predicates = [FeatureNoVector] in { 65 defm : CompareZeroFP<LTEBRCompare, FP32>; 66 defm : CompareZeroFP<LTDBRCompare, FP64>; 67 defm : CompareZeroFP<LTXBRCompare, FP128>; 68} 69 70// Use a normal load-and-test for compare against zero in case of 71// vector support (via a pseudo to simplify instruction selection). 72let Uses = [FPC], mayRaiseFPException = 1, 73 Defs = [CC], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in { 74 def LTEBRCompare_VecPseudo : Pseudo<(outs), (ins FP32:$R1, FP32:$R2), []>; 75 def LTDBRCompare_VecPseudo : Pseudo<(outs), (ins FP64:$R1, FP64:$R2), []>; 76 def LTXBRCompare_VecPseudo : Pseudo<(outs), (ins FP128:$R1, FP128:$R2), []>; 77} 78let Predicates = [FeatureVector] in { 79 defm : CompareZeroFP<LTEBRCompare_VecPseudo, FP32>; 80 defm : CompareZeroFP<LTDBRCompare_VecPseudo, FP64>; 81} 82let Predicates = [FeatureVector, FeatureNoVectorEnhancements1] in 83 defm : CompareZeroFP<LTXBRCompare_VecPseudo, FP128>; 84 85// Moves between 64-bit integer and floating-point registers. 86def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>; 87def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>; 88 89// fcopysign with an FP32 result. 90let isCodeGenOnly = 1 in { 91 def CPSDRss : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP32>; 92 def CPSDRsd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP32, FP32, FP64>; 93} 94 95// The sign of an FP128 is in the high register. 96let Predicates = [FeatureNoVectorEnhancements1] in 97 def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 FP128:$src2)))), 98 (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; 99let Predicates = [FeatureVectorEnhancements1] in 100 def : Pat<(fcopysign FP32:$src1, (f32 (fpround (f128 VR128:$src2)))), 101 (CPSDRsd FP32:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>; 102 103// fcopysign with an FP64 result. 104let isCodeGenOnly = 1 in 105 def CPSDRds : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP32>; 106def CPSDRdd : BinaryRRFb<"cpsdr", 0xB372, fcopysign, FP64, FP64, FP64>; 107 108// The sign of an FP128 is in the high register. 109let Predicates = [FeatureNoVectorEnhancements1] in 110 def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 FP128:$src2)))), 111 (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; 112let Predicates = [FeatureVectorEnhancements1] in 113 def : Pat<(fcopysign FP64:$src1, (f64 (fpround (f128 VR128:$src2)))), 114 (CPSDRdd FP64:$src1, (EXTRACT_SUBREG VR128:$src2, subreg_h64))>; 115 116// fcopysign with an FP128 result. Use "upper" as the high half and leave 117// the low half as-is. 118class CopySign128<RegisterOperand cls, dag upper> 119 : Pat<(fcopysign FP128:$src1, cls:$src2), 120 (INSERT_SUBREG FP128:$src1, upper, subreg_h64)>; 121 122let Predicates = [FeatureNoVectorEnhancements1] in { 123 def : CopySign128<FP32, (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_h64), 124 FP32:$src2)>; 125 def : CopySign128<FP64, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), 126 FP64:$src2)>; 127 def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_h64), 128 (EXTRACT_SUBREG FP128:$src2, subreg_h64))>; 129} 130 131defm LoadStoreF32 : MVCLoadStore<load, f32, MVCSequence, 4>; 132defm LoadStoreF64 : MVCLoadStore<load, f64, MVCSequence, 8>; 133defm LoadStoreF128 : MVCLoadStore<load, f128, MVCSequence, 16>; 134 135//===----------------------------------------------------------------------===// 136// Load instructions 137//===----------------------------------------------------------------------===// 138 139let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in { 140 defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32, 4>; 141 defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64, 8>; 142 143 // For z13 we prefer LDE over LE to avoid partial register dependencies. 144 let isCodeGenOnly = 1 in 145 def LDE32 : UnaryRXE<"lde", 0xED24, null_frag, FP32, 4>; 146 147 // These instructions are split after register allocation, so we don't 148 // want a custom inserter. 149 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { 150 def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src), 151 [(set FP128:$dst, (load bdxaddr20only128:$src))]>; 152 } 153} 154 155//===----------------------------------------------------------------------===// 156// Store instructions 157//===----------------------------------------------------------------------===// 158 159let SimpleBDXStore = 1, mayStore = 1 in { 160 defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32, 4>; 161 defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64, 8>; 162 163 // These instructions are split after register allocation, so we don't 164 // want a custom inserter. 165 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { 166 def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst), 167 [(store FP128:$src, bdxaddr20only128:$dst)]>; 168 } 169} 170 171//===----------------------------------------------------------------------===// 172// Conversion instructions 173//===----------------------------------------------------------------------===// 174 175// Convert floating-point values to narrower representations, rounding 176// according to the current mode. The destination of LEXBR and LDXBR 177// is a 128-bit value, but only the first register of the pair is used. 178let Uses = [FPC], mayRaiseFPException = 1 in { 179 def LEDBR : UnaryRRE<"ledbr", 0xB344, any_fpround, FP32, FP64>; 180 def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>; 181 def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>; 182 183 def LEDBRA : TernaryRRFe<"ledbra", 0xB344, FP32, FP64>, 184 Requires<[FeatureFPExtension]>; 185 def LEXBRA : TernaryRRFe<"lexbra", 0xB346, FP128, FP128>, 186 Requires<[FeatureFPExtension]>; 187 def LDXBRA : TernaryRRFe<"ldxbra", 0xB345, FP128, FP128>, 188 Requires<[FeatureFPExtension]>; 189} 190 191let Predicates = [FeatureNoVectorEnhancements1] in { 192 def : Pat<(f32 (any_fpround FP128:$src)), 193 (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_hh32)>; 194 def : Pat<(f64 (any_fpround FP128:$src)), 195 (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_h64)>; 196} 197 198// Extend register floating-point values to wider representations. 199let Uses = [FPC], mayRaiseFPException = 1 in { 200 def LDEBR : UnaryRRE<"ldebr", 0xB304, any_fpextend, FP64, FP32>; 201 def LXEBR : UnaryRRE<"lxebr", 0xB306, null_frag, FP128, FP32>; 202 def LXDBR : UnaryRRE<"lxdbr", 0xB305, null_frag, FP128, FP64>; 203} 204let Predicates = [FeatureNoVectorEnhancements1] in { 205 def : Pat<(f128 (any_fpextend (f32 FP32:$src))), (LXEBR FP32:$src)>; 206 def : Pat<(f128 (any_fpextend (f64 FP64:$src))), (LXDBR FP64:$src)>; 207} 208 209// Extend memory floating-point values to wider representations. 210let Uses = [FPC], mayRaiseFPException = 1 in { 211 def LDEB : UnaryRXE<"ldeb", 0xED04, any_extloadf32, FP64, 4>; 212 def LXEB : UnaryRXE<"lxeb", 0xED06, null_frag, FP128, 4>; 213 def LXDB : UnaryRXE<"lxdb", 0xED05, null_frag, FP128, 8>; 214} 215let Predicates = [FeatureNoVectorEnhancements1] in { 216 def : Pat<(f128 (any_extloadf32 bdxaddr12only:$src)), 217 (LXEB bdxaddr12only:$src)>; 218 def : Pat<(f128 (any_extloadf64 bdxaddr12only:$src)), 219 (LXDB bdxaddr12only:$src)>; 220} 221 222// Convert a signed integer register value to a floating-point one. 223let Uses = [FPC], mayRaiseFPException = 1 in { 224 def CEFBR : UnaryRRE<"cefbr", 0xB394, any_sint_to_fp, FP32, GR32>; 225 def CDFBR : UnaryRRE<"cdfbr", 0xB395, any_sint_to_fp, FP64, GR32>; 226 def CXFBR : UnaryRRE<"cxfbr", 0xB396, any_sint_to_fp, FP128, GR32>; 227 228 def CEGBR : UnaryRRE<"cegbr", 0xB3A4, any_sint_to_fp, FP32, GR64>; 229 def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, any_sint_to_fp, FP64, GR64>; 230 def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, any_sint_to_fp, FP128, GR64>; 231} 232 233// The FP extension feature provides versions of the above that allow 234// specifying rounding mode and inexact-exception suppression flags. 235let Uses = [FPC], mayRaiseFPException = 1, Predicates = [FeatureFPExtension] in { 236 def CEFBRA : TernaryRRFe<"cefbra", 0xB394, FP32, GR32>; 237 def CDFBRA : TernaryRRFe<"cdfbra", 0xB395, FP64, GR32>; 238 def CXFBRA : TernaryRRFe<"cxfbra", 0xB396, FP128, GR32>; 239 240 def CEGBRA : TernaryRRFe<"cegbra", 0xB3A4, FP32, GR64>; 241 def CDGBRA : TernaryRRFe<"cdgbra", 0xB3A5, FP64, GR64>; 242 def CXGBRA : TernaryRRFe<"cxgbra", 0xB3A6, FP128, GR64>; 243} 244 245// Convert am unsigned integer register value to a floating-point one. 246let Predicates = [FeatureFPExtension] in { 247 let Uses = [FPC], mayRaiseFPException = 1 in { 248 def CELFBR : TernaryRRFe<"celfbr", 0xB390, FP32, GR32>; 249 def CDLFBR : TernaryRRFe<"cdlfbr", 0xB391, FP64, GR32>; 250 def CXLFBR : TernaryRRFe<"cxlfbr", 0xB392, FP128, GR32>; 251 252 def CELGBR : TernaryRRFe<"celgbr", 0xB3A0, FP32, GR64>; 253 def CDLGBR : TernaryRRFe<"cdlgbr", 0xB3A1, FP64, GR64>; 254 def CXLGBR : TernaryRRFe<"cxlgbr", 0xB3A2, FP128, GR64>; 255 } 256 257 def : Pat<(f32 (any_uint_to_fp GR32:$src)), (CELFBR 0, GR32:$src, 0)>; 258 def : Pat<(f64 (any_uint_to_fp GR32:$src)), (CDLFBR 0, GR32:$src, 0)>; 259 def : Pat<(f128 (any_uint_to_fp GR32:$src)), (CXLFBR 0, GR32:$src, 0)>; 260 261 def : Pat<(f32 (any_uint_to_fp GR64:$src)), (CELGBR 0, GR64:$src, 0)>; 262 def : Pat<(f64 (any_uint_to_fp GR64:$src)), (CDLGBR 0, GR64:$src, 0)>; 263 def : Pat<(f128 (any_uint_to_fp GR64:$src)), (CXLGBR 0, GR64:$src, 0)>; 264} 265 266// Convert a floating-point register value to a signed integer value, 267// with the second operand (modifier M3) specifying the rounding mode. 268let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in { 269 def CFEBR : BinaryRRFe<"cfebr", 0xB398, GR32, FP32>; 270 def CFDBR : BinaryRRFe<"cfdbr", 0xB399, GR32, FP64>; 271 def CFXBR : BinaryRRFe<"cfxbr", 0xB39A, GR32, FP128>; 272 273 def CGEBR : BinaryRRFe<"cgebr", 0xB3A8, GR64, FP32>; 274 def CGDBR : BinaryRRFe<"cgdbr", 0xB3A9, GR64, FP64>; 275 def CGXBR : BinaryRRFe<"cgxbr", 0xB3AA, GR64, FP128>; 276} 277 278// fp_to_sint always rounds towards zero, which is modifier value 5. 279def : Pat<(i32 (any_fp_to_sint FP32:$src)), (CFEBR 5, FP32:$src)>; 280def : Pat<(i32 (any_fp_to_sint FP64:$src)), (CFDBR 5, FP64:$src)>; 281def : Pat<(i32 (any_fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>; 282 283def : Pat<(i64 (any_fp_to_sint FP32:$src)), (CGEBR 5, FP32:$src)>; 284def : Pat<(i64 (any_fp_to_sint FP64:$src)), (CGDBR 5, FP64:$src)>; 285def : Pat<(i64 (any_fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>; 286 287// The FP extension feature provides versions of the above that allow 288// also specifying the inexact-exception suppression flag. 289let Uses = [FPC], mayRaiseFPException = 1, 290 Predicates = [FeatureFPExtension], Defs = [CC] in { 291 def CFEBRA : TernaryRRFe<"cfebra", 0xB398, GR32, FP32>; 292 def CFDBRA : TernaryRRFe<"cfdbra", 0xB399, GR32, FP64>; 293 def CFXBRA : TernaryRRFe<"cfxbra", 0xB39A, GR32, FP128>; 294 295 def CGEBRA : TernaryRRFe<"cgebra", 0xB3A8, GR64, FP32>; 296 def CGDBRA : TernaryRRFe<"cgdbra", 0xB3A9, GR64, FP64>; 297 def CGXBRA : TernaryRRFe<"cgxbra", 0xB3AA, GR64, FP128>; 298} 299 300// Convert a floating-point register value to an unsigned integer value. 301let Predicates = [FeatureFPExtension] in { 302 let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in { 303 def CLFEBR : TernaryRRFe<"clfebr", 0xB39C, GR32, FP32>; 304 def CLFDBR : TernaryRRFe<"clfdbr", 0xB39D, GR32, FP64>; 305 def CLFXBR : TernaryRRFe<"clfxbr", 0xB39E, GR32, FP128>; 306 307 def CLGEBR : TernaryRRFe<"clgebr", 0xB3AC, GR64, FP32>; 308 def CLGDBR : TernaryRRFe<"clgdbr", 0xB3AD, GR64, FP64>; 309 def CLGXBR : TernaryRRFe<"clgxbr", 0xB3AE, GR64, FP128>; 310 } 311 312 def : Pat<(i32 (any_fp_to_uint FP32:$src)), (CLFEBR 5, FP32:$src, 0)>; 313 def : Pat<(i32 (any_fp_to_uint FP64:$src)), (CLFDBR 5, FP64:$src, 0)>; 314 def : Pat<(i32 (any_fp_to_uint FP128:$src)), (CLFXBR 5, FP128:$src, 0)>; 315 316 def : Pat<(i64 (any_fp_to_uint FP32:$src)), (CLGEBR 5, FP32:$src, 0)>; 317 def : Pat<(i64 (any_fp_to_uint FP64:$src)), (CLGDBR 5, FP64:$src, 0)>; 318 def : Pat<(i64 (any_fp_to_uint FP128:$src)), (CLGXBR 5, FP128:$src, 0)>; 319} 320 321 322//===----------------------------------------------------------------------===// 323// Unary arithmetic 324//===----------------------------------------------------------------------===// 325 326// We prefer generic instructions during isel, because they do not 327// clobber CC and therefore give the scheduler more freedom. In cases 328// the CC is actually useful, the SystemZElimCompare pass will try to 329// convert generic instructions into opcodes that also set CC. Note 330// that lcdf / lpdf / lndf only affect the sign bit, and can therefore 331// be used with fp32 as well. This could be done for fp128, in which 332// case the operands would have to be tied. 333 334// Negation (Load Complement). 335let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 336 def LCEBR : UnaryRRE<"lcebr", 0xB303, null_frag, FP32, FP32>; 337 def LCDBR : UnaryRRE<"lcdbr", 0xB313, null_frag, FP64, FP64>; 338 def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>; 339} 340// Generic form, which does not set CC. 341def LCDFR : UnaryRRE<"lcdfr", 0xB373, fneg, FP64, FP64>; 342let isCodeGenOnly = 1 in 343 def LCDFR_32 : UnaryRRE<"lcdfr", 0xB373, fneg, FP32, FP32>; 344 345// Absolute value (Load Positive). 346let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 347 def LPEBR : UnaryRRE<"lpebr", 0xB300, null_frag, FP32, FP32>; 348 def LPDBR : UnaryRRE<"lpdbr", 0xB310, null_frag, FP64, FP64>; 349 def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>; 350} 351// Generic form, which does not set CC. 352def LPDFR : UnaryRRE<"lpdfr", 0xB370, fabs, FP64, FP64>; 353let isCodeGenOnly = 1 in 354 def LPDFR_32 : UnaryRRE<"lpdfr", 0xB370, fabs, FP32, FP32>; 355 356// Negative absolute value (Load Negative). 357let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 358 def LNEBR : UnaryRRE<"lnebr", 0xB301, null_frag, FP32, FP32>; 359 def LNDBR : UnaryRRE<"lndbr", 0xB311, null_frag, FP64, FP64>; 360 def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>; 361} 362// Generic form, which does not set CC. 363def LNDFR : UnaryRRE<"lndfr", 0xB371, fnabs, FP64, FP64>; 364let isCodeGenOnly = 1 in 365 def LNDFR_32 : UnaryRRE<"lndfr", 0xB371, fnabs, FP32, FP32>; 366 367// Square root. 368let Uses = [FPC], mayRaiseFPException = 1 in { 369 def SQEBR : UnaryRRE<"sqebr", 0xB314, any_fsqrt, FP32, FP32>; 370 def SQDBR : UnaryRRE<"sqdbr", 0xB315, any_fsqrt, FP64, FP64>; 371 def SQXBR : UnaryRRE<"sqxbr", 0xB316, any_fsqrt, FP128, FP128>; 372 373 def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<any_fsqrt>, FP32, 4>; 374 def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<any_fsqrt>, FP64, 8>; 375} 376 377// Round to an integer, with the second operand (modifier M3) specifying 378// the rounding mode. These forms always check for inexact conditions. 379let Uses = [FPC], mayRaiseFPException = 1 in { 380 def FIEBR : BinaryRRFe<"fiebr", 0xB357, FP32, FP32>; 381 def FIDBR : BinaryRRFe<"fidbr", 0xB35F, FP64, FP64>; 382 def FIXBR : BinaryRRFe<"fixbr", 0xB347, FP128, FP128>; 383} 384 385// frint rounds according to the current mode (modifier 0) and detects 386// inexact conditions. 387def : Pat<(any_frint FP32:$src), (FIEBR 0, FP32:$src)>; 388def : Pat<(any_frint FP64:$src), (FIDBR 0, FP64:$src)>; 389def : Pat<(any_frint FP128:$src), (FIXBR 0, FP128:$src)>; 390 391let Predicates = [FeatureFPExtension] in { 392 // Extended forms of the FIxBR instructions. M4 can be set to 4 393 // to suppress detection of inexact conditions. 394 let Uses = [FPC], mayRaiseFPException = 1 in { 395 def FIEBRA : TernaryRRFe<"fiebra", 0xB357, FP32, FP32>; 396 def FIDBRA : TernaryRRFe<"fidbra", 0xB35F, FP64, FP64>; 397 def FIXBRA : TernaryRRFe<"fixbra", 0xB347, FP128, FP128>; 398 } 399 400 // fnearbyint is like frint but does not detect inexact conditions. 401 def : Pat<(any_fnearbyint FP32:$src), (FIEBRA 0, FP32:$src, 4)>; 402 def : Pat<(any_fnearbyint FP64:$src), (FIDBRA 0, FP64:$src, 4)>; 403 def : Pat<(any_fnearbyint FP128:$src), (FIXBRA 0, FP128:$src, 4)>; 404 405 // floor is no longer allowed to raise an inexact condition, 406 // so restrict it to the cases where the condition can be suppressed. 407 // Mode 7 is round towards -inf. 408 def : Pat<(any_ffloor FP32:$src), (FIEBRA 7, FP32:$src, 4)>; 409 def : Pat<(any_ffloor FP64:$src), (FIDBRA 7, FP64:$src, 4)>; 410 def : Pat<(any_ffloor FP128:$src), (FIXBRA 7, FP128:$src, 4)>; 411 412 // Same idea for ceil, where mode 6 is round towards +inf. 413 def : Pat<(any_fceil FP32:$src), (FIEBRA 6, FP32:$src, 4)>; 414 def : Pat<(any_fceil FP64:$src), (FIDBRA 6, FP64:$src, 4)>; 415 def : Pat<(any_fceil FP128:$src), (FIXBRA 6, FP128:$src, 4)>; 416 417 // Same idea for trunc, where mode 5 is round towards zero. 418 def : Pat<(any_ftrunc FP32:$src), (FIEBRA 5, FP32:$src, 4)>; 419 def : Pat<(any_ftrunc FP64:$src), (FIDBRA 5, FP64:$src, 4)>; 420 def : Pat<(any_ftrunc FP128:$src), (FIXBRA 5, FP128:$src, 4)>; 421 422 // Same idea for round, where mode 1 is round towards nearest with 423 // ties away from zero. 424 def : Pat<(any_fround FP32:$src), (FIEBRA 1, FP32:$src, 4)>; 425 def : Pat<(any_fround FP64:$src), (FIDBRA 1, FP64:$src, 4)>; 426 def : Pat<(any_fround FP128:$src), (FIXBRA 1, FP128:$src, 4)>; 427} 428 429//===----------------------------------------------------------------------===// 430// Binary arithmetic 431//===----------------------------------------------------------------------===// 432 433// Addition. 434let Uses = [FPC], mayRaiseFPException = 1, 435 Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 436 let isCommutable = 1 in { 437 def AEBR : BinaryRRE<"aebr", 0xB30A, any_fadd, FP32, FP32>; 438 def ADBR : BinaryRRE<"adbr", 0xB31A, any_fadd, FP64, FP64>; 439 def AXBR : BinaryRRE<"axbr", 0xB34A, any_fadd, FP128, FP128>; 440 } 441 def AEB : BinaryRXE<"aeb", 0xED0A, any_fadd, FP32, load, 4>; 442 def ADB : BinaryRXE<"adb", 0xED1A, any_fadd, FP64, load, 8>; 443} 444 445// Subtraction. 446let Uses = [FPC], mayRaiseFPException = 1, 447 Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0xF in { 448 def SEBR : BinaryRRE<"sebr", 0xB30B, any_fsub, FP32, FP32>; 449 def SDBR : BinaryRRE<"sdbr", 0xB31B, any_fsub, FP64, FP64>; 450 def SXBR : BinaryRRE<"sxbr", 0xB34B, any_fsub, FP128, FP128>; 451 452 def SEB : BinaryRXE<"seb", 0xED0B, any_fsub, FP32, load, 4>; 453 def SDB : BinaryRXE<"sdb", 0xED1B, any_fsub, FP64, load, 8>; 454} 455 456// Multiplication. 457let Uses = [FPC], mayRaiseFPException = 1 in { 458 let isCommutable = 1 in { 459 def MEEBR : BinaryRRE<"meebr", 0xB317, any_fmul, FP32, FP32>; 460 def MDBR : BinaryRRE<"mdbr", 0xB31C, any_fmul, FP64, FP64>; 461 def MXBR : BinaryRRE<"mxbr", 0xB34C, any_fmul, FP128, FP128>; 462 } 463 def MEEB : BinaryRXE<"meeb", 0xED17, any_fmul, FP32, load, 4>; 464 def MDB : BinaryRXE<"mdb", 0xED1C, any_fmul, FP64, load, 8>; 465} 466 467// f64 multiplication of two FP32 registers. 468let Uses = [FPC], mayRaiseFPException = 1 in 469 def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>; 470def : Pat<(any_fmul (f64 (any_fpextend FP32:$src1)), 471 (f64 (any_fpextend FP32:$src2))), 472 (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)), 473 FP32:$src1, subreg_h32), FP32:$src2)>; 474 475// f64 multiplication of an FP32 register and an f32 memory. 476let Uses = [FPC], mayRaiseFPException = 1 in 477 def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load, 4>; 478def : Pat<(any_fmul (f64 (any_fpextend FP32:$src1)), 479 (f64 (any_extloadf32 bdxaddr12only:$addr))), 480 (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_h32), 481 bdxaddr12only:$addr)>; 482 483// f128 multiplication of two FP64 registers. 484let Uses = [FPC], mayRaiseFPException = 1 in 485 def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>; 486let Predicates = [FeatureNoVectorEnhancements1] in 487 def : Pat<(any_fmul (f128 (any_fpextend FP64:$src1)), 488 (f128 (any_fpextend FP64:$src2))), 489 (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)), 490 FP64:$src1, subreg_h64), FP64:$src2)>; 491 492// f128 multiplication of an FP64 register and an f64 memory. 493let Uses = [FPC], mayRaiseFPException = 1 in 494 def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load, 8>; 495let Predicates = [FeatureNoVectorEnhancements1] in 496 def : Pat<(any_fmul (f128 (any_fpextend FP64:$src1)), 497 (f128 (any_extloadf64 bdxaddr12only:$addr))), 498 (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_h64), 499 bdxaddr12only:$addr)>; 500 501// Fused multiply-add. 502let Uses = [FPC], mayRaiseFPException = 1 in { 503 def MAEBR : TernaryRRD<"maebr", 0xB30E, z_any_fma, FP32, FP32>; 504 def MADBR : TernaryRRD<"madbr", 0xB31E, z_any_fma, FP64, FP64>; 505 506 def MAEB : TernaryRXF<"maeb", 0xED0E, z_any_fma, FP32, FP32, load, 4>; 507 def MADB : TernaryRXF<"madb", 0xED1E, z_any_fma, FP64, FP64, load, 8>; 508} 509 510// Fused multiply-subtract. 511let Uses = [FPC], mayRaiseFPException = 1 in { 512 def MSEBR : TernaryRRD<"msebr", 0xB30F, z_any_fms, FP32, FP32>; 513 def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_any_fms, FP64, FP64>; 514 515 def MSEB : TernaryRXF<"mseb", 0xED0F, z_any_fms, FP32, FP32, load, 4>; 516 def MSDB : TernaryRXF<"msdb", 0xED1F, z_any_fms, FP64, FP64, load, 8>; 517} 518 519// Division. 520let Uses = [FPC], mayRaiseFPException = 1 in { 521 def DEBR : BinaryRRE<"debr", 0xB30D, any_fdiv, FP32, FP32>; 522 def DDBR : BinaryRRE<"ddbr", 0xB31D, any_fdiv, FP64, FP64>; 523 def DXBR : BinaryRRE<"dxbr", 0xB34D, any_fdiv, FP128, FP128>; 524 525 def DEB : BinaryRXE<"deb", 0xED0D, any_fdiv, FP32, load, 4>; 526 def DDB : BinaryRXE<"ddb", 0xED1D, any_fdiv, FP64, load, 8>; 527} 528 529// Divide to integer. 530let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in { 531 def DIEBR : TernaryRRFb<"diebr", 0xB353, FP32, FP32, FP32>; 532 def DIDBR : TernaryRRFb<"didbr", 0xB35B, FP64, FP64, FP64>; 533} 534 535//===----------------------------------------------------------------------===// 536// Comparisons 537//===----------------------------------------------------------------------===// 538 539let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC], CCValues = 0xF in { 540 def CEBR : CompareRRE<"cebr", 0xB309, z_any_fcmp, FP32, FP32>; 541 def CDBR : CompareRRE<"cdbr", 0xB319, z_any_fcmp, FP64, FP64>; 542 def CXBR : CompareRRE<"cxbr", 0xB349, z_any_fcmp, FP128, FP128>; 543 544 def CEB : CompareRXE<"ceb", 0xED09, z_any_fcmp, FP32, load, 4>; 545 def CDB : CompareRXE<"cdb", 0xED19, z_any_fcmp, FP64, load, 8>; 546 547 def KEBR : CompareRRE<"kebr", 0xB308, z_strict_fcmps, FP32, FP32>; 548 def KDBR : CompareRRE<"kdbr", 0xB318, z_strict_fcmps, FP64, FP64>; 549 def KXBR : CompareRRE<"kxbr", 0xB348, z_strict_fcmps, FP128, FP128>; 550 551 def KEB : CompareRXE<"keb", 0xED08, z_strict_fcmps, FP32, load, 4>; 552 def KDB : CompareRXE<"kdb", 0xED18, z_strict_fcmps, FP64, load, 8>; 553} 554 555// Test Data Class. 556let Defs = [CC], CCValues = 0xC in { 557 def TCEB : TestRXE<"tceb", 0xED10, z_tdc, FP32>; 558 def TCDB : TestRXE<"tcdb", 0xED11, z_tdc, FP64>; 559 def TCXB : TestRXE<"tcxb", 0xED12, z_tdc, FP128>; 560} 561 562//===----------------------------------------------------------------------===// 563// Floating-point control register instructions 564//===----------------------------------------------------------------------===// 565 566let hasSideEffects = 1 in { 567 let mayLoad = 1, mayStore = 1 in { 568 // TODO: EFPC and SFPC do not touch memory at all 569 let Uses = [FPC] in { 570 def EFPC : InherentRRE<"efpc", 0xB38C, GR32, int_s390_efpc>; 571 def STFPC : StoreInherentS<"stfpc", 0xB29C, storei<int_s390_efpc>, 4>; 572 } 573 574 let Defs = [FPC] in { 575 def SFPC : SideEffectUnaryRRE<"sfpc", 0xB384, GR32, int_s390_sfpc>; 576 def LFPC : SideEffectUnaryS<"lfpc", 0xB29D, loadu<int_s390_sfpc>, 4>; 577 } 578 } 579 580 let Defs = [FPC], mayRaiseFPException = 1 in { 581 def SFASR : SideEffectUnaryRRE<"sfasr", 0xB385, GR32, null_frag>; 582 def LFAS : SideEffectUnaryS<"lfas", 0xB2BD, null_frag, 4>; 583 } 584 585 let Uses = [FPC], Defs = [FPC] in { 586 def SRNMB : SideEffectAddressS<"srnmb", 0xB2B8, null_frag, shift12only>, 587 Requires<[FeatureFPExtension]>; 588 def SRNM : SideEffectAddressS<"srnm", 0xB299, null_frag, shift12only>; 589 def SRNMT : SideEffectAddressS<"srnmt", 0xB2B9, null_frag, shift12only>; 590 } 591} 592 593//===----------------------------------------------------------------------===// 594// Peepholes 595//===----------------------------------------------------------------------===// 596 597def : Pat<(f32 fpimmneg0), (LCDFR_32 (LZER))>; 598def : Pat<(f64 fpimmneg0), (LCDFR (LZDR))>; 599def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>; 600