xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision dbaad75f2834f40bfe74ebe393d2101967052036)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       setOperationAction(ISD::ABS, VT, Legal);
168 
169       // Expand individual DIV and REMs into DIVREMs.
170       setOperationAction(ISD::SDIV, VT, Expand);
171       setOperationAction(ISD::UDIV, VT, Expand);
172       setOperationAction(ISD::SREM, VT, Expand);
173       setOperationAction(ISD::UREM, VT, Expand);
174       setOperationAction(ISD::SDIVREM, VT, Custom);
175       setOperationAction(ISD::UDIVREM, VT, Custom);
176 
177       // Support addition/subtraction with overflow.
178       setOperationAction(ISD::SADDO, VT, Custom);
179       setOperationAction(ISD::SSUBO, VT, Custom);
180 
181       // Support addition/subtraction with carry.
182       setOperationAction(ISD::UADDO, VT, Custom);
183       setOperationAction(ISD::USUBO, VT, Custom);
184 
185       // Support carry in as value rather than glue.
186       setOperationAction(ISD::ADDCARRY, VT, Custom);
187       setOperationAction(ISD::SUBCARRY, VT, Custom);
188 
189       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
190       // stores, putting a serialization instruction after the stores.
191       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
192       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
193 
194       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
195       // available, or if the operand is constant.
196       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
197 
198       // Use POPCNT on z196 and above.
199       if (Subtarget.hasPopulationCount())
200         setOperationAction(ISD::CTPOP, VT, Custom);
201       else
202         setOperationAction(ISD::CTPOP, VT, Expand);
203 
204       // No special instructions for these.
205       setOperationAction(ISD::CTTZ,            VT, Expand);
206       setOperationAction(ISD::ROTR,            VT, Expand);
207 
208       // Use *MUL_LOHI where possible instead of MULH*.
209       setOperationAction(ISD::MULHS, VT, Expand);
210       setOperationAction(ISD::MULHU, VT, Expand);
211       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
212       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
213 
214       // Only z196 and above have native support for conversions to unsigned.
215       // On z10, promoting to i64 doesn't generate an inexact condition for
216       // values that are outside the i32 range but in the i64 range, so use
217       // the default expansion.
218       if (!Subtarget.hasFPExtension())
219         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
220 
221       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
222       // default to Expand, so need to be modified to Legal where appropriate.
223       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
224       if (Subtarget.hasFPExtension())
225         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
226 
227       // And similarly for STRICT_[SU]INT_TO_FP.
228       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229       if (Subtarget.hasFPExtension())
230         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
231     }
232   }
233 
234   // Type legalization will convert 8- and 16-bit atomic operations into
235   // forms that operate on i32s (but still keeping the original memory VT).
236   // Lower them into full i32 operations.
237   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
248 
249   // Even though i128 is not a legal type, we still need to custom lower
250   // the atomic operations in order to exploit SystemZ instructions.
251   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
252   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
253 
254   // We can use the CC result of compare-and-swap to implement
255   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
257   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
259 
260   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
261 
262   // Traps are legal, as we will convert them to "j .+2".
263   setOperationAction(ISD::TRAP, MVT::Other, Legal);
264 
265   // z10 has instructions for signed but not unsigned FP conversion.
266   // Handle unsigned 32-bit types as signed 64-bit types.
267   if (!Subtarget.hasFPExtension()) {
268     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
272   }
273 
274   // We have native support for a 64-bit CTLZ, via FLOGR.
275   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
276   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
277   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
278 
279   // On z15 we have native support for a 64-bit CTPOP.
280   if (Subtarget.hasMiscellaneousExtensions3()) {
281     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
282     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
283   }
284 
285   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
286   setOperationAction(ISD::OR, MVT::i64, Custom);
287 
288   // Expand 128 bit shifts without using a libcall.
289   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
290   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
291   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
292   setLibcallName(RTLIB::SRL_I128, nullptr);
293   setLibcallName(RTLIB::SHL_I128, nullptr);
294   setLibcallName(RTLIB::SRA_I128, nullptr);
295 
296   // We have native instructions for i8, i16 and i32 extensions, but not i1.
297   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
298   for (MVT VT : MVT::integer_valuetypes()) {
299     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
300     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
301     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
302   }
303 
304   // Handle the various types of symbolic address.
305   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
306   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
307   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
308   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
309   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
310 
311   // We need to handle dynamic allocations specially because of the
312   // 160-byte area at the bottom of the stack.
313   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
314   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
315 
316   // Use custom expanders so that we can force the function to use
317   // a frame pointer.
318   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
319   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
320 
321   // Handle prefetches with PFD or PFDRL.
322   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
323 
324   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
325     // Assume by default that all vector operations need to be expanded.
326     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
327       if (getOperationAction(Opcode, VT) == Legal)
328         setOperationAction(Opcode, VT, Expand);
329 
330     // Likewise all truncating stores and extending loads.
331     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
332       setTruncStoreAction(VT, InnerVT, Expand);
333       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
334       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
335       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
336     }
337 
338     if (isTypeLegal(VT)) {
339       // These operations are legal for anything that can be stored in a
340       // vector register, even if there is no native support for the format
341       // as such.  In particular, we can do these for v4f32 even though there
342       // are no specific instructions for that format.
343       setOperationAction(ISD::LOAD, VT, Legal);
344       setOperationAction(ISD::STORE, VT, Legal);
345       setOperationAction(ISD::VSELECT, VT, Legal);
346       setOperationAction(ISD::BITCAST, VT, Legal);
347       setOperationAction(ISD::UNDEF, VT, Legal);
348 
349       // Likewise, except that we need to replace the nodes with something
350       // more specific.
351       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
352       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
353     }
354   }
355 
356   // Handle integer vector types.
357   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
358     if (isTypeLegal(VT)) {
359       // These operations have direct equivalents.
360       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
361       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
362       setOperationAction(ISD::ADD, VT, Legal);
363       setOperationAction(ISD::SUB, VT, Legal);
364       if (VT != MVT::v2i64)
365         setOperationAction(ISD::MUL, VT, Legal);
366       setOperationAction(ISD::ABS, VT, Legal);
367       setOperationAction(ISD::AND, VT, Legal);
368       setOperationAction(ISD::OR, VT, Legal);
369       setOperationAction(ISD::XOR, VT, Legal);
370       if (Subtarget.hasVectorEnhancements1())
371         setOperationAction(ISD::CTPOP, VT, Legal);
372       else
373         setOperationAction(ISD::CTPOP, VT, Custom);
374       setOperationAction(ISD::CTTZ, VT, Legal);
375       setOperationAction(ISD::CTLZ, VT, Legal);
376 
377       // Convert a GPR scalar to a vector by inserting it into element 0.
378       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
379 
380       // Use a series of unpacks for extensions.
381       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
382       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
383 
384       // Detect shifts by a scalar amount and convert them into
385       // V*_BY_SCALAR.
386       setOperationAction(ISD::SHL, VT, Custom);
387       setOperationAction(ISD::SRA, VT, Custom);
388       setOperationAction(ISD::SRL, VT, Custom);
389 
390       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
391       // converted into ROTL.
392       setOperationAction(ISD::ROTL, VT, Expand);
393       setOperationAction(ISD::ROTR, VT, Expand);
394 
395       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
396       // and inverting the result as necessary.
397       setOperationAction(ISD::SETCC, VT, Custom);
398       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
399       if (Subtarget.hasVectorEnhancements1())
400         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
401     }
402   }
403 
404   if (Subtarget.hasVector()) {
405     // There should be no need to check for float types other than v2f64
406     // since <2 x f32> isn't a legal type.
407     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
408     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
409     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
410     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
411     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
412     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
413     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
414     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
415 
416     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
418     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
419     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
420     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
421     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
422     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
423     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
424   }
425 
426   if (Subtarget.hasVectorEnhancements2()) {
427     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
428     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
429     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
430     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
431     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
432     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
433     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
434     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
435 
436     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
438     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
439     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
440     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
441     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
442     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
443     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
444   }
445 
446   // Handle floating-point types.
447   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
448        I <= MVT::LAST_FP_VALUETYPE;
449        ++I) {
450     MVT VT = MVT::SimpleValueType(I);
451     if (isTypeLegal(VT)) {
452       // We can use FI for FRINT.
453       setOperationAction(ISD::FRINT, VT, Legal);
454 
455       // We can use the extended form of FI for other rounding operations.
456       if (Subtarget.hasFPExtension()) {
457         setOperationAction(ISD::FNEARBYINT, VT, Legal);
458         setOperationAction(ISD::FFLOOR, VT, Legal);
459         setOperationAction(ISD::FCEIL, VT, Legal);
460         setOperationAction(ISD::FTRUNC, VT, Legal);
461         setOperationAction(ISD::FROUND, VT, Legal);
462       }
463 
464       // No special instructions for these.
465       setOperationAction(ISD::FSIN, VT, Expand);
466       setOperationAction(ISD::FCOS, VT, Expand);
467       setOperationAction(ISD::FSINCOS, VT, Expand);
468       setOperationAction(ISD::FREM, VT, Expand);
469       setOperationAction(ISD::FPOW, VT, Expand);
470 
471       // Handle constrained floating-point operations.
472       setOperationAction(ISD::STRICT_FADD, VT, Legal);
473       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
474       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
475       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
476       setOperationAction(ISD::STRICT_FMA, VT, Legal);
477       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
478       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
479       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
480       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
481       if (Subtarget.hasFPExtension()) {
482         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
483         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
484         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
485         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
486         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
487       }
488     }
489   }
490 
491   // Handle floating-point vector types.
492   if (Subtarget.hasVector()) {
493     // Scalar-to-vector conversion is just a subreg.
494     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
495     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
496 
497     // Some insertions and extractions can be done directly but others
498     // need to go via integers.
499     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
500     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
501     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
502     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
503 
504     // These operations have direct equivalents.
505     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
506     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
507     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
508     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
509     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
510     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
511     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
512     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
513     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
514     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
515     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
516     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
517     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
518     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
519 
520     // Handle constrained floating-point operations.
521     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
533   }
534 
535   // The vector enhancements facility 1 has instructions for these.
536   if (Subtarget.hasVectorEnhancements1()) {
537     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
538     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
539     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
540     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
541     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
542     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
543     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
544     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
545     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
546     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
547     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
548     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
549     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
550     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
551 
552     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
553     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
554     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
555     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
556 
557     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
558     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
559     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
560     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
561 
562     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
563     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
564     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
565     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
566 
567     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
568     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
569     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
570     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
571 
572     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
573     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
574     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
575     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
576 
577     // Handle constrained floating-point operations.
578     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
590     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
591                      MVT::v4f32, MVT::v2f64 }) {
592       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
593       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
594       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
595       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
596     }
597   }
598 
599   // We only have fused f128 multiply-addition on vector registers.
600   if (!Subtarget.hasVectorEnhancements1()) {
601     setOperationAction(ISD::FMA, MVT::f128, Expand);
602     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
603   }
604 
605   // We don't have a copysign instruction on vector registers.
606   if (Subtarget.hasVectorEnhancements1())
607     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
608 
609   // Needed so that we don't try to implement f128 constant loads using
610   // a load-and-extend of a f80 constant (in cases where the constant
611   // would fit in an f80).
612   for (MVT VT : MVT::fp_valuetypes())
613     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
614 
615   // We don't have extending load instruction on vector registers.
616   if (Subtarget.hasVectorEnhancements1()) {
617     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
618     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
619   }
620 
621   // Floating-point truncation and stores need to be done separately.
622   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
623   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
624   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
625 
626   // We have 64-bit FPR<->GPR moves, but need special handling for
627   // 32-bit forms.
628   if (!Subtarget.hasVector()) {
629     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
630     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
631   }
632 
633   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
634   // structure, but VAEND is a no-op.
635   setOperationAction(ISD::VASTART, MVT::Other, Custom);
636   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
637   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
638 
639   // Codes for which we want to perform some z-specific combinations.
640   setTargetDAGCombine(ISD::ZERO_EXTEND);
641   setTargetDAGCombine(ISD::SIGN_EXTEND);
642   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
643   setTargetDAGCombine(ISD::LOAD);
644   setTargetDAGCombine(ISD::STORE);
645   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
646   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
647   setTargetDAGCombine(ISD::FP_ROUND);
648   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
649   setTargetDAGCombine(ISD::FP_EXTEND);
650   setTargetDAGCombine(ISD::SINT_TO_FP);
651   setTargetDAGCombine(ISD::UINT_TO_FP);
652   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
653   setTargetDAGCombine(ISD::BSWAP);
654   setTargetDAGCombine(ISD::SDIV);
655   setTargetDAGCombine(ISD::UDIV);
656   setTargetDAGCombine(ISD::SREM);
657   setTargetDAGCombine(ISD::UREM);
658   setTargetDAGCombine(ISD::INTRINSIC_VOID);
659   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
660 
661   // Handle intrinsics.
662   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
663   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
664 
665   // We want to use MVC in preference to even a single load/store pair.
666   MaxStoresPerMemcpy = 0;
667   MaxStoresPerMemcpyOptSize = 0;
668 
669   // The main memset sequence is a byte store followed by an MVC.
670   // Two STC or MV..I stores win over that, but the kind of fused stores
671   // generated by target-independent code don't when the byte value is
672   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
673   // than "STC;MVC".  Handle the choice in target-specific code instead.
674   MaxStoresPerMemset = 0;
675   MaxStoresPerMemsetOptSize = 0;
676 
677   // Default to having -disable-strictnode-mutation on
678   IsStrictFPEnabled = true;
679 }
680 
681 bool SystemZTargetLowering::useSoftFloat() const {
682   return Subtarget.hasSoftFloat();
683 }
684 
685 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
686                                               LLVMContext &, EVT VT) const {
687   if (!VT.isVector())
688     return MVT::i32;
689   return VT.changeVectorElementTypeToInteger();
690 }
691 
692 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
693     const MachineFunction &MF, EVT VT) const {
694   VT = VT.getScalarType();
695 
696   if (!VT.isSimple())
697     return false;
698 
699   switch (VT.getSimpleVT().SimpleTy) {
700   case MVT::f32:
701   case MVT::f64:
702     return true;
703   case MVT::f128:
704     return Subtarget.hasVectorEnhancements1();
705   default:
706     break;
707   }
708 
709   return false;
710 }
711 
712 // Return true if the constant can be generated with a vector instruction,
713 // such as VGM, VGMB or VREPI.
714 bool SystemZVectorConstantInfo::isVectorConstantLegal(
715     const SystemZSubtarget &Subtarget) {
716   const SystemZInstrInfo *TII =
717       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
718   if (!Subtarget.hasVector() ||
719       (isFP128 && !Subtarget.hasVectorEnhancements1()))
720     return false;
721 
722   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
723   // preferred way of creating all-zero and all-one vectors so give it
724   // priority over other methods below.
725   unsigned Mask = 0;
726   unsigned I = 0;
727   for (; I < SystemZ::VectorBytes; ++I) {
728     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
729     if (Byte == 0xff)
730       Mask |= 1ULL << I;
731     else if (Byte != 0)
732       break;
733   }
734   if (I == SystemZ::VectorBytes) {
735     Opcode = SystemZISD::BYTE_MASK;
736     OpVals.push_back(Mask);
737     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
738     return true;
739   }
740 
741   if (SplatBitSize > 64)
742     return false;
743 
744   auto tryValue = [&](uint64_t Value) -> bool {
745     // Try VECTOR REPLICATE IMMEDIATE
746     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
747     if (isInt<16>(SignedValue)) {
748       OpVals.push_back(((unsigned) SignedValue));
749       Opcode = SystemZISD::REPLICATE;
750       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
751                                SystemZ::VectorBits / SplatBitSize);
752       return true;
753     }
754     // Try VECTOR GENERATE MASK
755     unsigned Start, End;
756     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
757       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
758       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
759       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
760       OpVals.push_back(Start - (64 - SplatBitSize));
761       OpVals.push_back(End - (64 - SplatBitSize));
762       Opcode = SystemZISD::ROTATE_MASK;
763       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
764                                SystemZ::VectorBits / SplatBitSize);
765       return true;
766     }
767     return false;
768   };
769 
770   // First try assuming that any undefined bits above the highest set bit
771   // and below the lowest set bit are 1s.  This increases the likelihood of
772   // being able to use a sign-extended element value in VECTOR REPLICATE
773   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
774   uint64_t SplatBitsZ = SplatBits.getZExtValue();
775   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
776   uint64_t Lower =
777       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
778   uint64_t Upper =
779       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
780   if (tryValue(SplatBitsZ | Upper | Lower))
781     return true;
782 
783   // Now try assuming that any undefined bits between the first and
784   // last defined set bits are set.  This increases the chances of
785   // using a non-wraparound mask.
786   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
787   return tryValue(SplatBitsZ | Middle);
788 }
789 
790 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
791   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
792   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
793   SplatBits = FPImm.bitcastToAPInt();
794   unsigned Width = SplatBits.getBitWidth();
795   IntBits <<= (SystemZ::VectorBits - Width);
796 
797   // Find the smallest splat.
798   while (Width > 8) {
799     unsigned HalfSize = Width / 2;
800     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
801     APInt LowValue = SplatBits.trunc(HalfSize);
802 
803     // If the two halves do not match, stop here.
804     if (HighValue != LowValue || 8 > HalfSize)
805       break;
806 
807     SplatBits = HighValue;
808     Width = HalfSize;
809   }
810   SplatUndef = 0;
811   SplatBitSize = Width;
812 }
813 
814 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
815   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
816   bool HasAnyUndefs;
817 
818   // Get IntBits by finding the 128 bit splat.
819   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
820                        true);
821 
822   // Get SplatBits by finding the 8 bit or greater splat.
823   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
824                        true);
825 }
826 
827 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
828                                          bool ForCodeSize) const {
829   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
830   if (Imm.isZero() || Imm.isNegZero())
831     return true;
832 
833   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
834 }
835 
836 /// Returns true if stack probing through inline assembly is requested.
837 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
838   // If the function specifically requests inline stack probes, emit them.
839   if (MF.getFunction().hasFnAttribute("probe-stack"))
840     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
841            "inline-asm";
842   return false;
843 }
844 
845 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
846   // We can use CGFI or CLGFI.
847   return isInt<32>(Imm) || isUInt<32>(Imm);
848 }
849 
850 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
851   // We can use ALGFI or SLGFI.
852   return isUInt<32>(Imm) || isUInt<32>(-Imm);
853 }
854 
855 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
856     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
857   // Unaligned accesses should never be slower than the expanded version.
858   // We check specifically for aligned accesses in the few cases where
859   // they are required.
860   if (Fast)
861     *Fast = true;
862   return true;
863 }
864 
865 // Information about the addressing mode for a memory access.
866 struct AddressingMode {
867   // True if a long displacement is supported.
868   bool LongDisplacement;
869 
870   // True if use of index register is supported.
871   bool IndexReg;
872 
873   AddressingMode(bool LongDispl, bool IdxReg) :
874     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
875 };
876 
877 // Return the desired addressing mode for a Load which has only one use (in
878 // the same block) which is a Store.
879 static AddressingMode getLoadStoreAddrMode(bool HasVector,
880                                           Type *Ty) {
881   // With vector support a Load->Store combination may be combined to either
882   // an MVC or vector operations and it seems to work best to allow the
883   // vector addressing mode.
884   if (HasVector)
885     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
886 
887   // Otherwise only the MVC case is special.
888   bool MVC = Ty->isIntegerTy(8);
889   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
890 }
891 
892 // Return the addressing mode which seems most desirable given an LLVM
893 // Instruction pointer.
894 static AddressingMode
895 supportedAddressingMode(Instruction *I, bool HasVector) {
896   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
897     switch (II->getIntrinsicID()) {
898     default: break;
899     case Intrinsic::memset:
900     case Intrinsic::memmove:
901     case Intrinsic::memcpy:
902       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
903     }
904   }
905 
906   if (isa<LoadInst>(I) && I->hasOneUse()) {
907     auto *SingleUser = cast<Instruction>(*I->user_begin());
908     if (SingleUser->getParent() == I->getParent()) {
909       if (isa<ICmpInst>(SingleUser)) {
910         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
911           if (C->getBitWidth() <= 64 &&
912               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
913             // Comparison of memory with 16 bit signed / unsigned immediate
914             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
915       } else if (isa<StoreInst>(SingleUser))
916         // Load->Store
917         return getLoadStoreAddrMode(HasVector, I->getType());
918     }
919   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
920     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
921       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
922         // Load->Store
923         return getLoadStoreAddrMode(HasVector, LoadI->getType());
924   }
925 
926   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
927 
928     // * Use LDE instead of LE/LEY for z13 to avoid partial register
929     //   dependencies (LDE only supports small offsets).
930     // * Utilize the vector registers to hold floating point
931     //   values (vector load / store instructions only support small
932     //   offsets).
933 
934     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
935                          I->getOperand(0)->getType());
936     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
937     bool IsVectorAccess = MemAccessTy->isVectorTy();
938 
939     // A store of an extracted vector element will be combined into a VSTE type
940     // instruction.
941     if (!IsVectorAccess && isa<StoreInst>(I)) {
942       Value *DataOp = I->getOperand(0);
943       if (isa<ExtractElementInst>(DataOp))
944         IsVectorAccess = true;
945     }
946 
947     // A load which gets inserted into a vector element will be combined into a
948     // VLE type instruction.
949     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
950       User *LoadUser = *I->user_begin();
951       if (isa<InsertElementInst>(LoadUser))
952         IsVectorAccess = true;
953     }
954 
955     if (IsFPAccess || IsVectorAccess)
956       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
957   }
958 
959   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
960 }
961 
962 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
963        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
964   // Punt on globals for now, although they can be used in limited
965   // RELATIVE LONG cases.
966   if (AM.BaseGV)
967     return false;
968 
969   // Require a 20-bit signed offset.
970   if (!isInt<20>(AM.BaseOffs))
971     return false;
972 
973   AddressingMode SupportedAM(true, true);
974   if (I != nullptr)
975     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
976 
977   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
978     return false;
979 
980   if (!SupportedAM.IndexReg)
981     // No indexing allowed.
982     return AM.Scale == 0;
983   else
984     // Indexing is OK but no scale factor can be applied.
985     return AM.Scale == 0 || AM.Scale == 1;
986 }
987 
988 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
989   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
990     return false;
991   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
992   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
993   return FromBits > ToBits;
994 }
995 
996 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
997   if (!FromVT.isInteger() || !ToVT.isInteger())
998     return false;
999   unsigned FromBits = FromVT.getFixedSizeInBits();
1000   unsigned ToBits = ToVT.getFixedSizeInBits();
1001   return FromBits > ToBits;
1002 }
1003 
1004 //===----------------------------------------------------------------------===//
1005 // Inline asm support
1006 //===----------------------------------------------------------------------===//
1007 
1008 TargetLowering::ConstraintType
1009 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1010   if (Constraint.size() == 1) {
1011     switch (Constraint[0]) {
1012     case 'a': // Address register
1013     case 'd': // Data register (equivalent to 'r')
1014     case 'f': // Floating-point register
1015     case 'h': // High-part register
1016     case 'r': // General-purpose register
1017     case 'v': // Vector register
1018       return C_RegisterClass;
1019 
1020     case 'Q': // Memory with base and unsigned 12-bit displacement
1021     case 'R': // Likewise, plus an index
1022     case 'S': // Memory with base and signed 20-bit displacement
1023     case 'T': // Likewise, plus an index
1024     case 'm': // Equivalent to 'T'.
1025       return C_Memory;
1026 
1027     case 'I': // Unsigned 8-bit constant
1028     case 'J': // Unsigned 12-bit constant
1029     case 'K': // Signed 16-bit constant
1030     case 'L': // Signed 20-bit displacement (on all targets we support)
1031     case 'M': // 0x7fffffff
1032       return C_Immediate;
1033 
1034     default:
1035       break;
1036     }
1037   }
1038   return TargetLowering::getConstraintType(Constraint);
1039 }
1040 
1041 TargetLowering::ConstraintWeight SystemZTargetLowering::
1042 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1043                                const char *constraint) const {
1044   ConstraintWeight weight = CW_Invalid;
1045   Value *CallOperandVal = info.CallOperandVal;
1046   // If we don't have a value, we can't do a match,
1047   // but allow it at the lowest weight.
1048   if (!CallOperandVal)
1049     return CW_Default;
1050   Type *type = CallOperandVal->getType();
1051   // Look at the constraint type.
1052   switch (*constraint) {
1053   default:
1054     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1055     break;
1056 
1057   case 'a': // Address register
1058   case 'd': // Data register (equivalent to 'r')
1059   case 'h': // High-part register
1060   case 'r': // General-purpose register
1061     if (CallOperandVal->getType()->isIntegerTy())
1062       weight = CW_Register;
1063     break;
1064 
1065   case 'f': // Floating-point register
1066     if (type->isFloatingPointTy())
1067       weight = CW_Register;
1068     break;
1069 
1070   case 'v': // Vector register
1071     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1072         Subtarget.hasVector())
1073       weight = CW_Register;
1074     break;
1075 
1076   case 'I': // Unsigned 8-bit constant
1077     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1078       if (isUInt<8>(C->getZExtValue()))
1079         weight = CW_Constant;
1080     break;
1081 
1082   case 'J': // Unsigned 12-bit constant
1083     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1084       if (isUInt<12>(C->getZExtValue()))
1085         weight = CW_Constant;
1086     break;
1087 
1088   case 'K': // Signed 16-bit constant
1089     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1090       if (isInt<16>(C->getSExtValue()))
1091         weight = CW_Constant;
1092     break;
1093 
1094   case 'L': // Signed 20-bit displacement (on all targets we support)
1095     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1096       if (isInt<20>(C->getSExtValue()))
1097         weight = CW_Constant;
1098     break;
1099 
1100   case 'M': // 0x7fffffff
1101     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1102       if (C->getZExtValue() == 0x7fffffff)
1103         weight = CW_Constant;
1104     break;
1105   }
1106   return weight;
1107 }
1108 
1109 // Parse a "{tNNN}" register constraint for which the register type "t"
1110 // has already been verified.  MC is the class associated with "t" and
1111 // Map maps 0-based register numbers to LLVM register numbers.
1112 static std::pair<unsigned, const TargetRegisterClass *>
1113 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1114                     const unsigned *Map, unsigned Size) {
1115   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1116   if (isdigit(Constraint[2])) {
1117     unsigned Index;
1118     bool Failed =
1119         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1120     if (!Failed && Index < Size && Map[Index])
1121       return std::make_pair(Map[Index], RC);
1122   }
1123   return std::make_pair(0U, nullptr);
1124 }
1125 
1126 std::pair<unsigned, const TargetRegisterClass *>
1127 SystemZTargetLowering::getRegForInlineAsmConstraint(
1128     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1129   if (Constraint.size() == 1) {
1130     // GCC Constraint Letters
1131     switch (Constraint[0]) {
1132     default: break;
1133     case 'd': // Data register (equivalent to 'r')
1134     case 'r': // General-purpose register
1135       if (VT == MVT::i64)
1136         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1137       else if (VT == MVT::i128)
1138         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1139       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1140 
1141     case 'a': // Address register
1142       if (VT == MVT::i64)
1143         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1144       else if (VT == MVT::i128)
1145         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1146       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1147 
1148     case 'h': // High-part register (an LLVM extension)
1149       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1150 
1151     case 'f': // Floating-point register
1152       if (!useSoftFloat()) {
1153         if (VT == MVT::f64)
1154           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1155         else if (VT == MVT::f128)
1156           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1157         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1158       }
1159       break;
1160     case 'v': // Vector register
1161       if (Subtarget.hasVector()) {
1162         if (VT == MVT::f32)
1163           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1164         if (VT == MVT::f64)
1165           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1166         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1167       }
1168       break;
1169     }
1170   }
1171   if (Constraint.size() > 0 && Constraint[0] == '{') {
1172     // We need to override the default register parsing for GPRs and FPRs
1173     // because the interpretation depends on VT.  The internal names of
1174     // the registers are also different from the external names
1175     // (F0D and F0S instead of F0, etc.).
1176     if (Constraint[1] == 'r') {
1177       if (VT == MVT::i32)
1178         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1179                                    SystemZMC::GR32Regs, 16);
1180       if (VT == MVT::i128)
1181         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1182                                    SystemZMC::GR128Regs, 16);
1183       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1184                                  SystemZMC::GR64Regs, 16);
1185     }
1186     if (Constraint[1] == 'f') {
1187       if (useSoftFloat())
1188         return std::make_pair(
1189             0u, static_cast<const TargetRegisterClass *>(nullptr));
1190       if (VT == MVT::f32)
1191         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1192                                    SystemZMC::FP32Regs, 16);
1193       if (VT == MVT::f128)
1194         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1195                                    SystemZMC::FP128Regs, 16);
1196       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1197                                  SystemZMC::FP64Regs, 16);
1198     }
1199     if (Constraint[1] == 'v') {
1200       if (!Subtarget.hasVector())
1201         return std::make_pair(
1202             0u, static_cast<const TargetRegisterClass *>(nullptr));
1203       if (VT == MVT::f32)
1204         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1205                                    SystemZMC::VR32Regs, 32);
1206       if (VT == MVT::f64)
1207         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1208                                    SystemZMC::VR64Regs, 32);
1209       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1210                                  SystemZMC::VR128Regs, 32);
1211     }
1212   }
1213   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1214 }
1215 
1216 // FIXME? Maybe this could be a TableGen attribute on some registers and
1217 // this table could be generated automatically from RegInfo.
1218 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1219                                                   const MachineFunction &MF) const {
1220 
1221   Register Reg = StringSwitch<Register>(RegName)
1222                    .Case("r15", SystemZ::R15D)
1223                    .Default(0);
1224   if (Reg)
1225     return Reg;
1226   report_fatal_error("Invalid register name global variable");
1227 }
1228 
1229 void SystemZTargetLowering::
1230 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1231                              std::vector<SDValue> &Ops,
1232                              SelectionDAG &DAG) const {
1233   // Only support length 1 constraints for now.
1234   if (Constraint.length() == 1) {
1235     switch (Constraint[0]) {
1236     case 'I': // Unsigned 8-bit constant
1237       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1238         if (isUInt<8>(C->getZExtValue()))
1239           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1240                                               Op.getValueType()));
1241       return;
1242 
1243     case 'J': // Unsigned 12-bit constant
1244       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1245         if (isUInt<12>(C->getZExtValue()))
1246           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1247                                               Op.getValueType()));
1248       return;
1249 
1250     case 'K': // Signed 16-bit constant
1251       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1252         if (isInt<16>(C->getSExtValue()))
1253           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1254                                               Op.getValueType()));
1255       return;
1256 
1257     case 'L': // Signed 20-bit displacement (on all targets we support)
1258       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1259         if (isInt<20>(C->getSExtValue()))
1260           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1261                                               Op.getValueType()));
1262       return;
1263 
1264     case 'M': // 0x7fffffff
1265       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1266         if (C->getZExtValue() == 0x7fffffff)
1267           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1268                                               Op.getValueType()));
1269       return;
1270     }
1271   }
1272   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1273 }
1274 
1275 //===----------------------------------------------------------------------===//
1276 // Calling conventions
1277 //===----------------------------------------------------------------------===//
1278 
1279 #include "SystemZGenCallingConv.inc"
1280 
1281 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1282   CallingConv::ID) const {
1283   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1284                                            SystemZ::R14D, 0 };
1285   return ScratchRegs;
1286 }
1287 
1288 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1289                                                      Type *ToType) const {
1290   return isTruncateFree(FromType, ToType);
1291 }
1292 
1293 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1294   return CI->isTailCall();
1295 }
1296 
1297 // We do not yet support 128-bit single-element vector types.  If the user
1298 // attempts to use such types as function argument or return type, prefer
1299 // to error out instead of emitting code violating the ABI.
1300 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1301   if (ArgVT.isVector() && !VT.isVector())
1302     report_fatal_error("Unsupported vector argument or return type");
1303 }
1304 
1305 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1306   for (unsigned i = 0; i < Ins.size(); ++i)
1307     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1308 }
1309 
1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1311   for (unsigned i = 0; i < Outs.size(); ++i)
1312     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1313 }
1314 
1315 // Value is a value that has been passed to us in the location described by VA
1316 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1317 // any loads onto Chain.
1318 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1319                                    CCValAssign &VA, SDValue Chain,
1320                                    SDValue Value) {
1321   // If the argument has been promoted from a smaller type, insert an
1322   // assertion to capture this.
1323   if (VA.getLocInfo() == CCValAssign::SExt)
1324     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1325                         DAG.getValueType(VA.getValVT()));
1326   else if (VA.getLocInfo() == CCValAssign::ZExt)
1327     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1328                         DAG.getValueType(VA.getValVT()));
1329 
1330   if (VA.isExtInLoc())
1331     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1332   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1333     // If this is a short vector argument loaded from the stack,
1334     // extend from i64 to full vector size and then bitcast.
1335     assert(VA.getLocVT() == MVT::i64);
1336     assert(VA.getValVT().isVector());
1337     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1338     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1339   } else
1340     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1341   return Value;
1342 }
1343 
1344 // Value is a value of type VA.getValVT() that we need to copy into
1345 // the location described by VA.  Return a copy of Value converted to
1346 // VA.getValVT().  The caller is responsible for handling indirect values.
1347 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1348                                    CCValAssign &VA, SDValue Value) {
1349   switch (VA.getLocInfo()) {
1350   case CCValAssign::SExt:
1351     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1352   case CCValAssign::ZExt:
1353     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1354   case CCValAssign::AExt:
1355     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1356   case CCValAssign::BCvt:
1357     // If this is a short vector argument to be stored to the stack,
1358     // bitcast to v2i64 and then extract first element.
1359     assert(VA.getLocVT() == MVT::i64);
1360     assert(VA.getValVT().isVector());
1361     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1362     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1363                        DAG.getConstant(0, DL, MVT::i32));
1364   case CCValAssign::Full:
1365     return Value;
1366   default:
1367     llvm_unreachable("Unhandled getLocInfo()");
1368   }
1369 }
1370 
1371 SDValue SystemZTargetLowering::LowerFormalArguments(
1372     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1373     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1374     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1375   MachineFunction &MF = DAG.getMachineFunction();
1376   MachineFrameInfo &MFI = MF.getFrameInfo();
1377   MachineRegisterInfo &MRI = MF.getRegInfo();
1378   SystemZMachineFunctionInfo *FuncInfo =
1379       MF.getInfo<SystemZMachineFunctionInfo>();
1380   auto *TFL =
1381       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1382   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1383 
1384   // Detect unsupported vector argument types.
1385   if (Subtarget.hasVector())
1386     VerifyVectorTypes(Ins);
1387 
1388   // Assign locations to all of the incoming arguments.
1389   SmallVector<CCValAssign, 16> ArgLocs;
1390   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1391   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1392 
1393   unsigned NumFixedGPRs = 0;
1394   unsigned NumFixedFPRs = 0;
1395   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1396     SDValue ArgValue;
1397     CCValAssign &VA = ArgLocs[I];
1398     EVT LocVT = VA.getLocVT();
1399     if (VA.isRegLoc()) {
1400       // Arguments passed in registers
1401       const TargetRegisterClass *RC;
1402       switch (LocVT.getSimpleVT().SimpleTy) {
1403       default:
1404         // Integers smaller than i64 should be promoted to i64.
1405         llvm_unreachable("Unexpected argument type");
1406       case MVT::i32:
1407         NumFixedGPRs += 1;
1408         RC = &SystemZ::GR32BitRegClass;
1409         break;
1410       case MVT::i64:
1411         NumFixedGPRs += 1;
1412         RC = &SystemZ::GR64BitRegClass;
1413         break;
1414       case MVT::f32:
1415         NumFixedFPRs += 1;
1416         RC = &SystemZ::FP32BitRegClass;
1417         break;
1418       case MVT::f64:
1419         NumFixedFPRs += 1;
1420         RC = &SystemZ::FP64BitRegClass;
1421         break;
1422       case MVT::v16i8:
1423       case MVT::v8i16:
1424       case MVT::v4i32:
1425       case MVT::v2i64:
1426       case MVT::v4f32:
1427       case MVT::v2f64:
1428         RC = &SystemZ::VR128BitRegClass;
1429         break;
1430       }
1431 
1432       Register VReg = MRI.createVirtualRegister(RC);
1433       MRI.addLiveIn(VA.getLocReg(), VReg);
1434       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1435     } else {
1436       assert(VA.isMemLoc() && "Argument not register or memory");
1437 
1438       // Create the frame index object for this incoming parameter.
1439       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1440                                      VA.getLocMemOffset(), true);
1441 
1442       // Create the SelectionDAG nodes corresponding to a load
1443       // from this parameter.  Unpromoted ints and floats are
1444       // passed as right-justified 8-byte values.
1445       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1446       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1447         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1448                           DAG.getIntPtrConstant(4, DL));
1449       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1450                              MachinePointerInfo::getFixedStack(MF, FI));
1451     }
1452 
1453     // Convert the value of the argument register into the value that's
1454     // being passed.
1455     if (VA.getLocInfo() == CCValAssign::Indirect) {
1456       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1457                                    MachinePointerInfo()));
1458       // If the original argument was split (e.g. i128), we need
1459       // to load all parts of it here (using the same address).
1460       unsigned ArgIndex = Ins[I].OrigArgIndex;
1461       assert (Ins[I].PartOffset == 0);
1462       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1463         CCValAssign &PartVA = ArgLocs[I + 1];
1464         unsigned PartOffset = Ins[I + 1].PartOffset;
1465         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1466                                       DAG.getIntPtrConstant(PartOffset, DL));
1467         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1468                                      MachinePointerInfo()));
1469         ++I;
1470       }
1471     } else
1472       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1473   }
1474 
1475   if (IsVarArg) {
1476     // Save the number of non-varargs registers for later use by va_start, etc.
1477     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1478     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1479 
1480     // Likewise the address (in the form of a frame index) of where the
1481     // first stack vararg would be.  The 1-byte size here is arbitrary.
1482     int64_t StackSize = CCInfo.getNextStackOffset();
1483     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1484 
1485     // ...and a similar frame index for the caller-allocated save area
1486     // that will be used to store the incoming registers.
1487     int64_t RegSaveOffset =
1488       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1489     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1490     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1491 
1492     // Store the FPR varargs in the reserved frame slots.  (We store the
1493     // GPRs as part of the prologue.)
1494     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1495       SDValue MemOps[SystemZ::NumArgFPRs];
1496       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1497         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1498         int FI =
1499           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1500         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1501         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1502                                      &SystemZ::FP64BitRegClass);
1503         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1504         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1505                                  MachinePointerInfo::getFixedStack(MF, FI));
1506       }
1507       // Join the stores, which are independent of one another.
1508       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1509                           makeArrayRef(&MemOps[NumFixedFPRs],
1510                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1511     }
1512   }
1513 
1514   return Chain;
1515 }
1516 
1517 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1518                               SmallVectorImpl<CCValAssign> &ArgLocs,
1519                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1520   // Punt if there are any indirect or stack arguments, or if the call
1521   // needs the callee-saved argument register R6, or if the call uses
1522   // the callee-saved register arguments SwiftSelf and SwiftError.
1523   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1524     CCValAssign &VA = ArgLocs[I];
1525     if (VA.getLocInfo() == CCValAssign::Indirect)
1526       return false;
1527     if (!VA.isRegLoc())
1528       return false;
1529     Register Reg = VA.getLocReg();
1530     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1531       return false;
1532     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1533       return false;
1534   }
1535   return true;
1536 }
1537 
1538 SDValue
1539 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1540                                  SmallVectorImpl<SDValue> &InVals) const {
1541   SelectionDAG &DAG = CLI.DAG;
1542   SDLoc &DL = CLI.DL;
1543   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1544   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1545   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1546   SDValue Chain = CLI.Chain;
1547   SDValue Callee = CLI.Callee;
1548   bool &IsTailCall = CLI.IsTailCall;
1549   CallingConv::ID CallConv = CLI.CallConv;
1550   bool IsVarArg = CLI.IsVarArg;
1551   MachineFunction &MF = DAG.getMachineFunction();
1552   EVT PtrVT = getPointerTy(MF.getDataLayout());
1553   LLVMContext &Ctx = *DAG.getContext();
1554 
1555   // Detect unsupported vector argument and return types.
1556   if (Subtarget.hasVector()) {
1557     VerifyVectorTypes(Outs);
1558     VerifyVectorTypes(Ins);
1559   }
1560 
1561   // Analyze the operands of the call, assigning locations to each operand.
1562   SmallVector<CCValAssign, 16> ArgLocs;
1563   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1564   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1565 
1566   // We don't support GuaranteedTailCallOpt, only automatically-detected
1567   // sibling calls.
1568   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1569     IsTailCall = false;
1570 
1571   // Get a count of how many bytes are to be pushed on the stack.
1572   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1573 
1574   // Mark the start of the call.
1575   if (!IsTailCall)
1576     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1577 
1578   // Copy argument values to their designated locations.
1579   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1580   SmallVector<SDValue, 8> MemOpChains;
1581   SDValue StackPtr;
1582   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1583     CCValAssign &VA = ArgLocs[I];
1584     SDValue ArgValue = OutVals[I];
1585 
1586     if (VA.getLocInfo() == CCValAssign::Indirect) {
1587       // Store the argument in a stack slot and pass its address.
1588       unsigned ArgIndex = Outs[I].OrigArgIndex;
1589       EVT SlotVT;
1590       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1591         // Allocate the full stack space for a promoted (and split) argument.
1592         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1593         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1594         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1595         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1596         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1597       } else {
1598         SlotVT = Outs[I].ArgVT;
1599       }
1600       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1601       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1602       MemOpChains.push_back(
1603           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1604                        MachinePointerInfo::getFixedStack(MF, FI)));
1605       // If the original argument was split (e.g. i128), we need
1606       // to store all parts of it here (and pass just one address).
1607       assert (Outs[I].PartOffset == 0);
1608       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1609         SDValue PartValue = OutVals[I + 1];
1610         unsigned PartOffset = Outs[I + 1].PartOffset;
1611         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1612                                       DAG.getIntPtrConstant(PartOffset, DL));
1613         MemOpChains.push_back(
1614             DAG.getStore(Chain, DL, PartValue, Address,
1615                          MachinePointerInfo::getFixedStack(MF, FI)));
1616         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1617                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1618         ++I;
1619       }
1620       ArgValue = SpillSlot;
1621     } else
1622       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1623 
1624     if (VA.isRegLoc())
1625       // Queue up the argument copies and emit them at the end.
1626       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1627     else {
1628       assert(VA.isMemLoc() && "Argument not register or memory");
1629 
1630       // Work out the address of the stack slot.  Unpromoted ints and
1631       // floats are passed as right-justified 8-byte values.
1632       if (!StackPtr.getNode())
1633         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1634       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1635       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1636         Offset += 4;
1637       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1638                                     DAG.getIntPtrConstant(Offset, DL));
1639 
1640       // Emit the store.
1641       MemOpChains.push_back(
1642           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1643     }
1644   }
1645 
1646   // Join the stores, which are independent of one another.
1647   if (!MemOpChains.empty())
1648     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1649 
1650   // Accept direct calls by converting symbolic call addresses to the
1651   // associated Target* opcodes.  Force %r1 to be used for indirect
1652   // tail calls.
1653   SDValue Glue;
1654   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1655     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1656     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1657   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1658     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1659     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1660   } else if (IsTailCall) {
1661     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1662     Glue = Chain.getValue(1);
1663     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1664   }
1665 
1666   // Build a sequence of copy-to-reg nodes, chained and glued together.
1667   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1668     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1669                              RegsToPass[I].second, Glue);
1670     Glue = Chain.getValue(1);
1671   }
1672 
1673   // The first call operand is the chain and the second is the target address.
1674   SmallVector<SDValue, 8> Ops;
1675   Ops.push_back(Chain);
1676   Ops.push_back(Callee);
1677 
1678   // Add argument registers to the end of the list so that they are
1679   // known live into the call.
1680   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1681     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1682                                   RegsToPass[I].second.getValueType()));
1683 
1684   // Add a register mask operand representing the call-preserved registers.
1685   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1686   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1687   assert(Mask && "Missing call preserved mask for calling convention");
1688   Ops.push_back(DAG.getRegisterMask(Mask));
1689 
1690   // Glue the call to the argument copies, if any.
1691   if (Glue.getNode())
1692     Ops.push_back(Glue);
1693 
1694   // Emit the call.
1695   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1696   if (IsTailCall)
1697     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1698   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1699   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1700   Glue = Chain.getValue(1);
1701 
1702   // Mark the end of the call, which is glued to the call itself.
1703   Chain = DAG.getCALLSEQ_END(Chain,
1704                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1705                              DAG.getConstant(0, DL, PtrVT, true),
1706                              Glue, DL);
1707   Glue = Chain.getValue(1);
1708 
1709   // Assign locations to each value returned by this call.
1710   SmallVector<CCValAssign, 16> RetLocs;
1711   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1712   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1713 
1714   // Copy all of the result registers out of their specified physreg.
1715   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1716     CCValAssign &VA = RetLocs[I];
1717 
1718     // Copy the value out, gluing the copy to the end of the call sequence.
1719     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1720                                           VA.getLocVT(), Glue);
1721     Chain = RetValue.getValue(1);
1722     Glue = RetValue.getValue(2);
1723 
1724     // Convert the value of the return register into the value that's
1725     // being returned.
1726     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1727   }
1728 
1729   return Chain;
1730 }
1731 
1732 bool SystemZTargetLowering::
1733 CanLowerReturn(CallingConv::ID CallConv,
1734                MachineFunction &MF, bool isVarArg,
1735                const SmallVectorImpl<ISD::OutputArg> &Outs,
1736                LLVMContext &Context) const {
1737   // Detect unsupported vector return types.
1738   if (Subtarget.hasVector())
1739     VerifyVectorTypes(Outs);
1740 
1741   // Special case that we cannot easily detect in RetCC_SystemZ since
1742   // i128 is not a legal type.
1743   for (auto &Out : Outs)
1744     if (Out.ArgVT == MVT::i128)
1745       return false;
1746 
1747   SmallVector<CCValAssign, 16> RetLocs;
1748   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1749   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1750 }
1751 
1752 SDValue
1753 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1754                                    bool IsVarArg,
1755                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1756                                    const SmallVectorImpl<SDValue> &OutVals,
1757                                    const SDLoc &DL, SelectionDAG &DAG) const {
1758   MachineFunction &MF = DAG.getMachineFunction();
1759 
1760   // Detect unsupported vector return types.
1761   if (Subtarget.hasVector())
1762     VerifyVectorTypes(Outs);
1763 
1764   // Assign locations to each returned value.
1765   SmallVector<CCValAssign, 16> RetLocs;
1766   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1767   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1768 
1769   // Quick exit for void returns
1770   if (RetLocs.empty())
1771     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1772 
1773   if (CallConv == CallingConv::GHC)
1774     report_fatal_error("GHC functions return void only");
1775 
1776   // Copy the result values into the output registers.
1777   SDValue Glue;
1778   SmallVector<SDValue, 4> RetOps;
1779   RetOps.push_back(Chain);
1780   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1781     CCValAssign &VA = RetLocs[I];
1782     SDValue RetValue = OutVals[I];
1783 
1784     // Make the return register live on exit.
1785     assert(VA.isRegLoc() && "Can only return in registers!");
1786 
1787     // Promote the value as required.
1788     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1789 
1790     // Chain and glue the copies together.
1791     Register Reg = VA.getLocReg();
1792     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1793     Glue = Chain.getValue(1);
1794     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1795   }
1796 
1797   // Update chain and glue.
1798   RetOps[0] = Chain;
1799   if (Glue.getNode())
1800     RetOps.push_back(Glue);
1801 
1802   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1803 }
1804 
1805 // Return true if Op is an intrinsic node with chain that returns the CC value
1806 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1807 // the mask of valid CC values if so.
1808 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1809                                       unsigned &CCValid) {
1810   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1811   switch (Id) {
1812   case Intrinsic::s390_tbegin:
1813     Opcode = SystemZISD::TBEGIN;
1814     CCValid = SystemZ::CCMASK_TBEGIN;
1815     return true;
1816 
1817   case Intrinsic::s390_tbegin_nofloat:
1818     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1819     CCValid = SystemZ::CCMASK_TBEGIN;
1820     return true;
1821 
1822   case Intrinsic::s390_tend:
1823     Opcode = SystemZISD::TEND;
1824     CCValid = SystemZ::CCMASK_TEND;
1825     return true;
1826 
1827   default:
1828     return false;
1829   }
1830 }
1831 
1832 // Return true if Op is an intrinsic node without chain that returns the
1833 // CC value as its final argument.  Provide the associated SystemZISD
1834 // opcode and the mask of valid CC values if so.
1835 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1836   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1837   switch (Id) {
1838   case Intrinsic::s390_vpkshs:
1839   case Intrinsic::s390_vpksfs:
1840   case Intrinsic::s390_vpksgs:
1841     Opcode = SystemZISD::PACKS_CC;
1842     CCValid = SystemZ::CCMASK_VCMP;
1843     return true;
1844 
1845   case Intrinsic::s390_vpklshs:
1846   case Intrinsic::s390_vpklsfs:
1847   case Intrinsic::s390_vpklsgs:
1848     Opcode = SystemZISD::PACKLS_CC;
1849     CCValid = SystemZ::CCMASK_VCMP;
1850     return true;
1851 
1852   case Intrinsic::s390_vceqbs:
1853   case Intrinsic::s390_vceqhs:
1854   case Intrinsic::s390_vceqfs:
1855   case Intrinsic::s390_vceqgs:
1856     Opcode = SystemZISD::VICMPES;
1857     CCValid = SystemZ::CCMASK_VCMP;
1858     return true;
1859 
1860   case Intrinsic::s390_vchbs:
1861   case Intrinsic::s390_vchhs:
1862   case Intrinsic::s390_vchfs:
1863   case Intrinsic::s390_vchgs:
1864     Opcode = SystemZISD::VICMPHS;
1865     CCValid = SystemZ::CCMASK_VCMP;
1866     return true;
1867 
1868   case Intrinsic::s390_vchlbs:
1869   case Intrinsic::s390_vchlhs:
1870   case Intrinsic::s390_vchlfs:
1871   case Intrinsic::s390_vchlgs:
1872     Opcode = SystemZISD::VICMPHLS;
1873     CCValid = SystemZ::CCMASK_VCMP;
1874     return true;
1875 
1876   case Intrinsic::s390_vtm:
1877     Opcode = SystemZISD::VTM;
1878     CCValid = SystemZ::CCMASK_VCMP;
1879     return true;
1880 
1881   case Intrinsic::s390_vfaebs:
1882   case Intrinsic::s390_vfaehs:
1883   case Intrinsic::s390_vfaefs:
1884     Opcode = SystemZISD::VFAE_CC;
1885     CCValid = SystemZ::CCMASK_ANY;
1886     return true;
1887 
1888   case Intrinsic::s390_vfaezbs:
1889   case Intrinsic::s390_vfaezhs:
1890   case Intrinsic::s390_vfaezfs:
1891     Opcode = SystemZISD::VFAEZ_CC;
1892     CCValid = SystemZ::CCMASK_ANY;
1893     return true;
1894 
1895   case Intrinsic::s390_vfeebs:
1896   case Intrinsic::s390_vfeehs:
1897   case Intrinsic::s390_vfeefs:
1898     Opcode = SystemZISD::VFEE_CC;
1899     CCValid = SystemZ::CCMASK_ANY;
1900     return true;
1901 
1902   case Intrinsic::s390_vfeezbs:
1903   case Intrinsic::s390_vfeezhs:
1904   case Intrinsic::s390_vfeezfs:
1905     Opcode = SystemZISD::VFEEZ_CC;
1906     CCValid = SystemZ::CCMASK_ANY;
1907     return true;
1908 
1909   case Intrinsic::s390_vfenebs:
1910   case Intrinsic::s390_vfenehs:
1911   case Intrinsic::s390_vfenefs:
1912     Opcode = SystemZISD::VFENE_CC;
1913     CCValid = SystemZ::CCMASK_ANY;
1914     return true;
1915 
1916   case Intrinsic::s390_vfenezbs:
1917   case Intrinsic::s390_vfenezhs:
1918   case Intrinsic::s390_vfenezfs:
1919     Opcode = SystemZISD::VFENEZ_CC;
1920     CCValid = SystemZ::CCMASK_ANY;
1921     return true;
1922 
1923   case Intrinsic::s390_vistrbs:
1924   case Intrinsic::s390_vistrhs:
1925   case Intrinsic::s390_vistrfs:
1926     Opcode = SystemZISD::VISTR_CC;
1927     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1928     return true;
1929 
1930   case Intrinsic::s390_vstrcbs:
1931   case Intrinsic::s390_vstrchs:
1932   case Intrinsic::s390_vstrcfs:
1933     Opcode = SystemZISD::VSTRC_CC;
1934     CCValid = SystemZ::CCMASK_ANY;
1935     return true;
1936 
1937   case Intrinsic::s390_vstrczbs:
1938   case Intrinsic::s390_vstrczhs:
1939   case Intrinsic::s390_vstrczfs:
1940     Opcode = SystemZISD::VSTRCZ_CC;
1941     CCValid = SystemZ::CCMASK_ANY;
1942     return true;
1943 
1944   case Intrinsic::s390_vstrsb:
1945   case Intrinsic::s390_vstrsh:
1946   case Intrinsic::s390_vstrsf:
1947     Opcode = SystemZISD::VSTRS_CC;
1948     CCValid = SystemZ::CCMASK_ANY;
1949     return true;
1950 
1951   case Intrinsic::s390_vstrszb:
1952   case Intrinsic::s390_vstrszh:
1953   case Intrinsic::s390_vstrszf:
1954     Opcode = SystemZISD::VSTRSZ_CC;
1955     CCValid = SystemZ::CCMASK_ANY;
1956     return true;
1957 
1958   case Intrinsic::s390_vfcedbs:
1959   case Intrinsic::s390_vfcesbs:
1960     Opcode = SystemZISD::VFCMPES;
1961     CCValid = SystemZ::CCMASK_VCMP;
1962     return true;
1963 
1964   case Intrinsic::s390_vfchdbs:
1965   case Intrinsic::s390_vfchsbs:
1966     Opcode = SystemZISD::VFCMPHS;
1967     CCValid = SystemZ::CCMASK_VCMP;
1968     return true;
1969 
1970   case Intrinsic::s390_vfchedbs:
1971   case Intrinsic::s390_vfchesbs:
1972     Opcode = SystemZISD::VFCMPHES;
1973     CCValid = SystemZ::CCMASK_VCMP;
1974     return true;
1975 
1976   case Intrinsic::s390_vftcidb:
1977   case Intrinsic::s390_vftcisb:
1978     Opcode = SystemZISD::VFTCI;
1979     CCValid = SystemZ::CCMASK_VCMP;
1980     return true;
1981 
1982   case Intrinsic::s390_tdc:
1983     Opcode = SystemZISD::TDC;
1984     CCValid = SystemZ::CCMASK_TDC;
1985     return true;
1986 
1987   default:
1988     return false;
1989   }
1990 }
1991 
1992 // Emit an intrinsic with chain and an explicit CC register result.
1993 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1994                                            unsigned Opcode) {
1995   // Copy all operands except the intrinsic ID.
1996   unsigned NumOps = Op.getNumOperands();
1997   SmallVector<SDValue, 6> Ops;
1998   Ops.reserve(NumOps - 1);
1999   Ops.push_back(Op.getOperand(0));
2000   for (unsigned I = 2; I < NumOps; ++I)
2001     Ops.push_back(Op.getOperand(I));
2002 
2003   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2004   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2005   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2006   SDValue OldChain = SDValue(Op.getNode(), 1);
2007   SDValue NewChain = SDValue(Intr.getNode(), 1);
2008   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2009   return Intr.getNode();
2010 }
2011 
2012 // Emit an intrinsic with an explicit CC register result.
2013 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2014                                    unsigned Opcode) {
2015   // Copy all operands except the intrinsic ID.
2016   unsigned NumOps = Op.getNumOperands();
2017   SmallVector<SDValue, 6> Ops;
2018   Ops.reserve(NumOps - 1);
2019   for (unsigned I = 1; I < NumOps; ++I)
2020     Ops.push_back(Op.getOperand(I));
2021 
2022   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2023   return Intr.getNode();
2024 }
2025 
2026 // CC is a comparison that will be implemented using an integer or
2027 // floating-point comparison.  Return the condition code mask for
2028 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2029 // unsigned comparisons and clear for signed ones.  In the floating-point
2030 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2031 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2032 #define CONV(X) \
2033   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2034   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2035   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2036 
2037   switch (CC) {
2038   default:
2039     llvm_unreachable("Invalid integer condition!");
2040 
2041   CONV(EQ);
2042   CONV(NE);
2043   CONV(GT);
2044   CONV(GE);
2045   CONV(LT);
2046   CONV(LE);
2047 
2048   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2049   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2050   }
2051 #undef CONV
2052 }
2053 
2054 // If C can be converted to a comparison against zero, adjust the operands
2055 // as necessary.
2056 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2057   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2058     return;
2059 
2060   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2061   if (!ConstOp1)
2062     return;
2063 
2064   int64_t Value = ConstOp1->getSExtValue();
2065   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2066       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2067       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2068       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2069     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2070     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2071   }
2072 }
2073 
2074 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2075 // adjust the operands as necessary.
2076 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2077                              Comparison &C) {
2078   // For us to make any changes, it must a comparison between a single-use
2079   // load and a constant.
2080   if (!C.Op0.hasOneUse() ||
2081       C.Op0.getOpcode() != ISD::LOAD ||
2082       C.Op1.getOpcode() != ISD::Constant)
2083     return;
2084 
2085   // We must have an 8- or 16-bit load.
2086   auto *Load = cast<LoadSDNode>(C.Op0);
2087   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2088   if ((NumBits != 8 && NumBits != 16) ||
2089       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2090     return;
2091 
2092   // The load must be an extending one and the constant must be within the
2093   // range of the unextended value.
2094   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2095   uint64_t Value = ConstOp1->getZExtValue();
2096   uint64_t Mask = (1 << NumBits) - 1;
2097   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2098     // Make sure that ConstOp1 is in range of C.Op0.
2099     int64_t SignedValue = ConstOp1->getSExtValue();
2100     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2101       return;
2102     if (C.ICmpType != SystemZICMP::SignedOnly) {
2103       // Unsigned comparison between two sign-extended values is equivalent
2104       // to unsigned comparison between two zero-extended values.
2105       Value &= Mask;
2106     } else if (NumBits == 8) {
2107       // Try to treat the comparison as unsigned, so that we can use CLI.
2108       // Adjust CCMask and Value as necessary.
2109       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2110         // Test whether the high bit of the byte is set.
2111         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2112       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2113         // Test whether the high bit of the byte is clear.
2114         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2115       else
2116         // No instruction exists for this combination.
2117         return;
2118       C.ICmpType = SystemZICMP::UnsignedOnly;
2119     }
2120   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2121     if (Value > Mask)
2122       return;
2123     // If the constant is in range, we can use any comparison.
2124     C.ICmpType = SystemZICMP::Any;
2125   } else
2126     return;
2127 
2128   // Make sure that the first operand is an i32 of the right extension type.
2129   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2130                               ISD::SEXTLOAD :
2131                               ISD::ZEXTLOAD);
2132   if (C.Op0.getValueType() != MVT::i32 ||
2133       Load->getExtensionType() != ExtType) {
2134     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2135                            Load->getBasePtr(), Load->getPointerInfo(),
2136                            Load->getMemoryVT(), Load->getAlignment(),
2137                            Load->getMemOperand()->getFlags());
2138     // Update the chain uses.
2139     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2140   }
2141 
2142   // Make sure that the second operand is an i32 with the right value.
2143   if (C.Op1.getValueType() != MVT::i32 ||
2144       Value != ConstOp1->getZExtValue())
2145     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2146 }
2147 
2148 // Return true if Op is either an unextended load, or a load suitable
2149 // for integer register-memory comparisons of type ICmpType.
2150 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2151   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2152   if (Load) {
2153     // There are no instructions to compare a register with a memory byte.
2154     if (Load->getMemoryVT() == MVT::i8)
2155       return false;
2156     // Otherwise decide on extension type.
2157     switch (Load->getExtensionType()) {
2158     case ISD::NON_EXTLOAD:
2159       return true;
2160     case ISD::SEXTLOAD:
2161       return ICmpType != SystemZICMP::UnsignedOnly;
2162     case ISD::ZEXTLOAD:
2163       return ICmpType != SystemZICMP::SignedOnly;
2164     default:
2165       break;
2166     }
2167   }
2168   return false;
2169 }
2170 
2171 // Return true if it is better to swap the operands of C.
2172 static bool shouldSwapCmpOperands(const Comparison &C) {
2173   // Leave f128 comparisons alone, since they have no memory forms.
2174   if (C.Op0.getValueType() == MVT::f128)
2175     return false;
2176 
2177   // Always keep a floating-point constant second, since comparisons with
2178   // zero can use LOAD TEST and comparisons with other constants make a
2179   // natural memory operand.
2180   if (isa<ConstantFPSDNode>(C.Op1))
2181     return false;
2182 
2183   // Never swap comparisons with zero since there are many ways to optimize
2184   // those later.
2185   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2186   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2187     return false;
2188 
2189   // Also keep natural memory operands second if the loaded value is
2190   // only used here.  Several comparisons have memory forms.
2191   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2192     return false;
2193 
2194   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2195   // In that case we generally prefer the memory to be second.
2196   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2197     // The only exceptions are when the second operand is a constant and
2198     // we can use things like CHHSI.
2199     if (!ConstOp1)
2200       return true;
2201     // The unsigned memory-immediate instructions can handle 16-bit
2202     // unsigned integers.
2203     if (C.ICmpType != SystemZICMP::SignedOnly &&
2204         isUInt<16>(ConstOp1->getZExtValue()))
2205       return false;
2206     // The signed memory-immediate instructions can handle 16-bit
2207     // signed integers.
2208     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2209         isInt<16>(ConstOp1->getSExtValue()))
2210       return false;
2211     return true;
2212   }
2213 
2214   // Try to promote the use of CGFR and CLGFR.
2215   unsigned Opcode0 = C.Op0.getOpcode();
2216   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2217     return true;
2218   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2219     return true;
2220   if (C.ICmpType != SystemZICMP::SignedOnly &&
2221       Opcode0 == ISD::AND &&
2222       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2223       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2224     return true;
2225 
2226   return false;
2227 }
2228 
2229 // Check whether C tests for equality between X and Y and whether X - Y
2230 // or Y - X is also computed.  In that case it's better to compare the
2231 // result of the subtraction against zero.
2232 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2233                                  Comparison &C) {
2234   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2235       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2236     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2237       SDNode *N = *I;
2238       if (N->getOpcode() == ISD::SUB &&
2239           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2240            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2241         C.Op0 = SDValue(N, 0);
2242         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2243         return;
2244       }
2245     }
2246   }
2247 }
2248 
2249 // Check whether C compares a floating-point value with zero and if that
2250 // floating-point value is also negated.  In this case we can use the
2251 // negation to set CC, so avoiding separate LOAD AND TEST and
2252 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2253 static void adjustForFNeg(Comparison &C) {
2254   // This optimization is invalid for strict comparisons, since FNEG
2255   // does not raise any exceptions.
2256   if (C.Chain)
2257     return;
2258   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2259   if (C1 && C1->isZero()) {
2260     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2261       SDNode *N = *I;
2262       if (N->getOpcode() == ISD::FNEG) {
2263         C.Op0 = SDValue(N, 0);
2264         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2265         return;
2266       }
2267     }
2268   }
2269 }
2270 
2271 // Check whether C compares (shl X, 32) with 0 and whether X is
2272 // also sign-extended.  In that case it is better to test the result
2273 // of the sign extension using LTGFR.
2274 //
2275 // This case is important because InstCombine transforms a comparison
2276 // with (sext (trunc X)) into a comparison with (shl X, 32).
2277 static void adjustForLTGFR(Comparison &C) {
2278   // Check for a comparison between (shl X, 32) and 0.
2279   if (C.Op0.getOpcode() == ISD::SHL &&
2280       C.Op0.getValueType() == MVT::i64 &&
2281       C.Op1.getOpcode() == ISD::Constant &&
2282       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2283     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2284     if (C1 && C1->getZExtValue() == 32) {
2285       SDValue ShlOp0 = C.Op0.getOperand(0);
2286       // See whether X has any SIGN_EXTEND_INREG uses.
2287       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2288         SDNode *N = *I;
2289         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2290             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2291           C.Op0 = SDValue(N, 0);
2292           return;
2293         }
2294       }
2295     }
2296   }
2297 }
2298 
2299 // If C compares the truncation of an extending load, try to compare
2300 // the untruncated value instead.  This exposes more opportunities to
2301 // reuse CC.
2302 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2303                                Comparison &C) {
2304   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2305       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2306       C.Op1.getOpcode() == ISD::Constant &&
2307       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2308     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2309     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2310         C.Op0.getValueSizeInBits().getFixedSize()) {
2311       unsigned Type = L->getExtensionType();
2312       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2313           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2314         C.Op0 = C.Op0.getOperand(0);
2315         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2316       }
2317     }
2318   }
2319 }
2320 
2321 // Return true if shift operation N has an in-range constant shift value.
2322 // Store it in ShiftVal if so.
2323 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2324   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2325   if (!Shift)
2326     return false;
2327 
2328   uint64_t Amount = Shift->getZExtValue();
2329   if (Amount >= N.getValueSizeInBits())
2330     return false;
2331 
2332   ShiftVal = Amount;
2333   return true;
2334 }
2335 
2336 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2337 // instruction and whether the CC value is descriptive enough to handle
2338 // a comparison of type Opcode between the AND result and CmpVal.
2339 // CCMask says which comparison result is being tested and BitSize is
2340 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2341 // return the corresponding CC mask, otherwise return 0.
2342 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2343                                      uint64_t Mask, uint64_t CmpVal,
2344                                      unsigned ICmpType) {
2345   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2346 
2347   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2348   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2349       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2350     return 0;
2351 
2352   // Work out the masks for the lowest and highest bits.
2353   unsigned HighShift = 63 - countLeadingZeros(Mask);
2354   uint64_t High = uint64_t(1) << HighShift;
2355   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2356 
2357   // Signed ordered comparisons are effectively unsigned if the sign
2358   // bit is dropped.
2359   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2360 
2361   // Check for equality comparisons with 0, or the equivalent.
2362   if (CmpVal == 0) {
2363     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2364       return SystemZ::CCMASK_TM_ALL_0;
2365     if (CCMask == SystemZ::CCMASK_CMP_NE)
2366       return SystemZ::CCMASK_TM_SOME_1;
2367   }
2368   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2369     if (CCMask == SystemZ::CCMASK_CMP_LT)
2370       return SystemZ::CCMASK_TM_ALL_0;
2371     if (CCMask == SystemZ::CCMASK_CMP_GE)
2372       return SystemZ::CCMASK_TM_SOME_1;
2373   }
2374   if (EffectivelyUnsigned && CmpVal < Low) {
2375     if (CCMask == SystemZ::CCMASK_CMP_LE)
2376       return SystemZ::CCMASK_TM_ALL_0;
2377     if (CCMask == SystemZ::CCMASK_CMP_GT)
2378       return SystemZ::CCMASK_TM_SOME_1;
2379   }
2380 
2381   // Check for equality comparisons with the mask, or the equivalent.
2382   if (CmpVal == Mask) {
2383     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2384       return SystemZ::CCMASK_TM_ALL_1;
2385     if (CCMask == SystemZ::CCMASK_CMP_NE)
2386       return SystemZ::CCMASK_TM_SOME_0;
2387   }
2388   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2389     if (CCMask == SystemZ::CCMASK_CMP_GT)
2390       return SystemZ::CCMASK_TM_ALL_1;
2391     if (CCMask == SystemZ::CCMASK_CMP_LE)
2392       return SystemZ::CCMASK_TM_SOME_0;
2393   }
2394   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2395     if (CCMask == SystemZ::CCMASK_CMP_GE)
2396       return SystemZ::CCMASK_TM_ALL_1;
2397     if (CCMask == SystemZ::CCMASK_CMP_LT)
2398       return SystemZ::CCMASK_TM_SOME_0;
2399   }
2400 
2401   // Check for ordered comparisons with the top bit.
2402   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2403     if (CCMask == SystemZ::CCMASK_CMP_LE)
2404       return SystemZ::CCMASK_TM_MSB_0;
2405     if (CCMask == SystemZ::CCMASK_CMP_GT)
2406       return SystemZ::CCMASK_TM_MSB_1;
2407   }
2408   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2409     if (CCMask == SystemZ::CCMASK_CMP_LT)
2410       return SystemZ::CCMASK_TM_MSB_0;
2411     if (CCMask == SystemZ::CCMASK_CMP_GE)
2412       return SystemZ::CCMASK_TM_MSB_1;
2413   }
2414 
2415   // If there are just two bits, we can do equality checks for Low and High
2416   // as well.
2417   if (Mask == Low + High) {
2418     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2419       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2420     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2421       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2422     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2423       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2424     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2425       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2426   }
2427 
2428   // Looks like we've exhausted our options.
2429   return 0;
2430 }
2431 
2432 // See whether C can be implemented as a TEST UNDER MASK instruction.
2433 // Update the arguments with the TM version if so.
2434 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2435                                    Comparison &C) {
2436   // Check that we have a comparison with a constant.
2437   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2438   if (!ConstOp1)
2439     return;
2440   uint64_t CmpVal = ConstOp1->getZExtValue();
2441 
2442   // Check whether the nonconstant input is an AND with a constant mask.
2443   Comparison NewC(C);
2444   uint64_t MaskVal;
2445   ConstantSDNode *Mask = nullptr;
2446   if (C.Op0.getOpcode() == ISD::AND) {
2447     NewC.Op0 = C.Op0.getOperand(0);
2448     NewC.Op1 = C.Op0.getOperand(1);
2449     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2450     if (!Mask)
2451       return;
2452     MaskVal = Mask->getZExtValue();
2453   } else {
2454     // There is no instruction to compare with a 64-bit immediate
2455     // so use TMHH instead if possible.  We need an unsigned ordered
2456     // comparison with an i64 immediate.
2457     if (NewC.Op0.getValueType() != MVT::i64 ||
2458         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2459         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2460         NewC.ICmpType == SystemZICMP::SignedOnly)
2461       return;
2462     // Convert LE and GT comparisons into LT and GE.
2463     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2464         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2465       if (CmpVal == uint64_t(-1))
2466         return;
2467       CmpVal += 1;
2468       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2469     }
2470     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2471     // be masked off without changing the result.
2472     MaskVal = -(CmpVal & -CmpVal);
2473     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2474   }
2475   if (!MaskVal)
2476     return;
2477 
2478   // Check whether the combination of mask, comparison value and comparison
2479   // type are suitable.
2480   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2481   unsigned NewCCMask, ShiftVal;
2482   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2483       NewC.Op0.getOpcode() == ISD::SHL &&
2484       isSimpleShift(NewC.Op0, ShiftVal) &&
2485       (MaskVal >> ShiftVal != 0) &&
2486       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2487       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2488                                         MaskVal >> ShiftVal,
2489                                         CmpVal >> ShiftVal,
2490                                         SystemZICMP::Any))) {
2491     NewC.Op0 = NewC.Op0.getOperand(0);
2492     MaskVal >>= ShiftVal;
2493   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2494              NewC.Op0.getOpcode() == ISD::SRL &&
2495              isSimpleShift(NewC.Op0, ShiftVal) &&
2496              (MaskVal << ShiftVal != 0) &&
2497              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2498              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2499                                                MaskVal << ShiftVal,
2500                                                CmpVal << ShiftVal,
2501                                                SystemZICMP::UnsignedOnly))) {
2502     NewC.Op0 = NewC.Op0.getOperand(0);
2503     MaskVal <<= ShiftVal;
2504   } else {
2505     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2506                                      NewC.ICmpType);
2507     if (!NewCCMask)
2508       return;
2509   }
2510 
2511   // Go ahead and make the change.
2512   C.Opcode = SystemZISD::TM;
2513   C.Op0 = NewC.Op0;
2514   if (Mask && Mask->getZExtValue() == MaskVal)
2515     C.Op1 = SDValue(Mask, 0);
2516   else
2517     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2518   C.CCValid = SystemZ::CCMASK_TM;
2519   C.CCMask = NewCCMask;
2520 }
2521 
2522 // See whether the comparison argument contains a redundant AND
2523 // and remove it if so.  This sometimes happens due to the generic
2524 // BRCOND expansion.
2525 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2526                                   Comparison &C) {
2527   if (C.Op0.getOpcode() != ISD::AND)
2528     return;
2529   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2530   if (!Mask)
2531     return;
2532   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2533   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2534     return;
2535 
2536   C.Op0 = C.Op0.getOperand(0);
2537 }
2538 
2539 // Return a Comparison that tests the condition-code result of intrinsic
2540 // node Call against constant integer CC using comparison code Cond.
2541 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2542 // and CCValid is the set of possible condition-code results.
2543 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2544                                   SDValue Call, unsigned CCValid, uint64_t CC,
2545                                   ISD::CondCode Cond) {
2546   Comparison C(Call, SDValue(), SDValue());
2547   C.Opcode = Opcode;
2548   C.CCValid = CCValid;
2549   if (Cond == ISD::SETEQ)
2550     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2551     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2552   else if (Cond == ISD::SETNE)
2553     // ...and the inverse of that.
2554     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2555   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2556     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2557     // always true for CC>3.
2558     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2559   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2560     // ...and the inverse of that.
2561     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2562   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2563     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2564     // always true for CC>3.
2565     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2566   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2567     // ...and the inverse of that.
2568     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2569   else
2570     llvm_unreachable("Unexpected integer comparison type");
2571   C.CCMask &= CCValid;
2572   return C;
2573 }
2574 
2575 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2576 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2577                          ISD::CondCode Cond, const SDLoc &DL,
2578                          SDValue Chain = SDValue(),
2579                          bool IsSignaling = false) {
2580   if (CmpOp1.getOpcode() == ISD::Constant) {
2581     assert(!Chain);
2582     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2583     unsigned Opcode, CCValid;
2584     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2585         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2586         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2587       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2588     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2589         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2590         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2591       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2592   }
2593   Comparison C(CmpOp0, CmpOp1, Chain);
2594   C.CCMask = CCMaskForCondCode(Cond);
2595   if (C.Op0.getValueType().isFloatingPoint()) {
2596     C.CCValid = SystemZ::CCMASK_FCMP;
2597     if (!C.Chain)
2598       C.Opcode = SystemZISD::FCMP;
2599     else if (!IsSignaling)
2600       C.Opcode = SystemZISD::STRICT_FCMP;
2601     else
2602       C.Opcode = SystemZISD::STRICT_FCMPS;
2603     adjustForFNeg(C);
2604   } else {
2605     assert(!C.Chain);
2606     C.CCValid = SystemZ::CCMASK_ICMP;
2607     C.Opcode = SystemZISD::ICMP;
2608     // Choose the type of comparison.  Equality and inequality tests can
2609     // use either signed or unsigned comparisons.  The choice also doesn't
2610     // matter if both sign bits are known to be clear.  In those cases we
2611     // want to give the main isel code the freedom to choose whichever
2612     // form fits best.
2613     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2614         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2615         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2616       C.ICmpType = SystemZICMP::Any;
2617     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2618       C.ICmpType = SystemZICMP::UnsignedOnly;
2619     else
2620       C.ICmpType = SystemZICMP::SignedOnly;
2621     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2622     adjustForRedundantAnd(DAG, DL, C);
2623     adjustZeroCmp(DAG, DL, C);
2624     adjustSubwordCmp(DAG, DL, C);
2625     adjustForSubtraction(DAG, DL, C);
2626     adjustForLTGFR(C);
2627     adjustICmpTruncate(DAG, DL, C);
2628   }
2629 
2630   if (shouldSwapCmpOperands(C)) {
2631     std::swap(C.Op0, C.Op1);
2632     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2633   }
2634 
2635   adjustForTestUnderMask(DAG, DL, C);
2636   return C;
2637 }
2638 
2639 // Emit the comparison instruction described by C.
2640 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2641   if (!C.Op1.getNode()) {
2642     SDNode *Node;
2643     switch (C.Op0.getOpcode()) {
2644     case ISD::INTRINSIC_W_CHAIN:
2645       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2646       return SDValue(Node, 0);
2647     case ISD::INTRINSIC_WO_CHAIN:
2648       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2649       return SDValue(Node, Node->getNumValues() - 1);
2650     default:
2651       llvm_unreachable("Invalid comparison operands");
2652     }
2653   }
2654   if (C.Opcode == SystemZISD::ICMP)
2655     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2656                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2657   if (C.Opcode == SystemZISD::TM) {
2658     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2659                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2660     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2661                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2662   }
2663   if (C.Chain) {
2664     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2665     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2666   }
2667   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2668 }
2669 
2670 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2671 // 64 bits.  Extend is the extension type to use.  Store the high part
2672 // in Hi and the low part in Lo.
2673 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2674                             SDValue Op0, SDValue Op1, SDValue &Hi,
2675                             SDValue &Lo) {
2676   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2677   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2678   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2679   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2680                    DAG.getConstant(32, DL, MVT::i64));
2681   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2682   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2683 }
2684 
2685 // Lower a binary operation that produces two VT results, one in each
2686 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2687 // and Opcode performs the GR128 operation.  Store the even register result
2688 // in Even and the odd register result in Odd.
2689 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2690                              unsigned Opcode, SDValue Op0, SDValue Op1,
2691                              SDValue &Even, SDValue &Odd) {
2692   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2693   bool Is32Bit = is32Bit(VT);
2694   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2695   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2696 }
2697 
2698 // Return an i32 value that is 1 if the CC value produced by CCReg is
2699 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2700 // in CCValid, so other values can be ignored.
2701 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2702                          unsigned CCValid, unsigned CCMask) {
2703   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2704                    DAG.getConstant(0, DL, MVT::i32),
2705                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2706                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2707   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2708 }
2709 
2710 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2711 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2712 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2713 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2714 // floating-point comparisons.
2715 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2716 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2717   switch (CC) {
2718   case ISD::SETOEQ:
2719   case ISD::SETEQ:
2720     switch (Mode) {
2721     case CmpMode::Int:         return SystemZISD::VICMPE;
2722     case CmpMode::FP:          return SystemZISD::VFCMPE;
2723     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2724     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2725     }
2726     llvm_unreachable("Bad mode");
2727 
2728   case ISD::SETOGE:
2729   case ISD::SETGE:
2730     switch (Mode) {
2731     case CmpMode::Int:         return 0;
2732     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2733     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2734     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2735     }
2736     llvm_unreachable("Bad mode");
2737 
2738   case ISD::SETOGT:
2739   case ISD::SETGT:
2740     switch (Mode) {
2741     case CmpMode::Int:         return SystemZISD::VICMPH;
2742     case CmpMode::FP:          return SystemZISD::VFCMPH;
2743     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2744     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2745     }
2746     llvm_unreachable("Bad mode");
2747 
2748   case ISD::SETUGT:
2749     switch (Mode) {
2750     case CmpMode::Int:         return SystemZISD::VICMPHL;
2751     case CmpMode::FP:          return 0;
2752     case CmpMode::StrictFP:    return 0;
2753     case CmpMode::SignalingFP: return 0;
2754     }
2755     llvm_unreachable("Bad mode");
2756 
2757   default:
2758     return 0;
2759   }
2760 }
2761 
2762 // Return the SystemZISD vector comparison operation for CC or its inverse,
2763 // or 0 if neither can be done directly.  Indicate in Invert whether the
2764 // result is for the inverse of CC.  Mode is as above.
2765 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2766                                             bool &Invert) {
2767   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2768     Invert = false;
2769     return Opcode;
2770   }
2771 
2772   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2773   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2774     Invert = true;
2775     return Opcode;
2776   }
2777 
2778   return 0;
2779 }
2780 
2781 // Return a v2f64 that contains the extended form of elements Start and Start+1
2782 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2783 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2784                                   SDValue Op, SDValue Chain) {
2785   int Mask[] = { Start, -1, Start + 1, -1 };
2786   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2787   if (Chain) {
2788     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2789     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2790   }
2791   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2792 }
2793 
2794 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2795 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2796 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2797                                             const SDLoc &DL, EVT VT,
2798                                             SDValue CmpOp0,
2799                                             SDValue CmpOp1,
2800                                             SDValue Chain) const {
2801   // There is no hardware support for v4f32 (unless we have the vector
2802   // enhancements facility 1), so extend the vector into two v2f64s
2803   // and compare those.
2804   if (CmpOp0.getValueType() == MVT::v4f32 &&
2805       !Subtarget.hasVectorEnhancements1()) {
2806     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2807     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2808     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2809     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2810     if (Chain) {
2811       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2812       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2813       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2814       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2815       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2816                             H1.getValue(1), L1.getValue(1),
2817                             HRes.getValue(1), LRes.getValue(1) };
2818       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2819       SDValue Ops[2] = { Res, NewChain };
2820       return DAG.getMergeValues(Ops, DL);
2821     }
2822     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2823     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2824     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2825   }
2826   if (Chain) {
2827     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2828     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2829   }
2830   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2831 }
2832 
2833 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2834 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2835 // floating-point comparison.  If in addition IsSignaling is true, we have
2836 // a strict signaling floating-point comparison.
2837 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2838                                                 const SDLoc &DL, EVT VT,
2839                                                 ISD::CondCode CC,
2840                                                 SDValue CmpOp0,
2841                                                 SDValue CmpOp1,
2842                                                 SDValue Chain,
2843                                                 bool IsSignaling) const {
2844   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2845   assert (!Chain || IsFP);
2846   assert (!IsSignaling || Chain);
2847   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2848                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2849   bool Invert = false;
2850   SDValue Cmp;
2851   switch (CC) {
2852     // Handle tests for order using (or (ogt y x) (oge x y)).
2853   case ISD::SETUO:
2854     Invert = true;
2855     LLVM_FALLTHROUGH;
2856   case ISD::SETO: {
2857     assert(IsFP && "Unexpected integer comparison");
2858     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2859                               DL, VT, CmpOp1, CmpOp0, Chain);
2860     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2861                               DL, VT, CmpOp0, CmpOp1, Chain);
2862     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2863     if (Chain)
2864       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2865                           LT.getValue(1), GE.getValue(1));
2866     break;
2867   }
2868 
2869     // Handle <> tests using (or (ogt y x) (ogt x y)).
2870   case ISD::SETUEQ:
2871     Invert = true;
2872     LLVM_FALLTHROUGH;
2873   case ISD::SETONE: {
2874     assert(IsFP && "Unexpected integer comparison");
2875     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2876                               DL, VT, CmpOp1, CmpOp0, Chain);
2877     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2878                               DL, VT, CmpOp0, CmpOp1, Chain);
2879     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2880     if (Chain)
2881       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2882                           LT.getValue(1), GT.getValue(1));
2883     break;
2884   }
2885 
2886     // Otherwise a single comparison is enough.  It doesn't really
2887     // matter whether we try the inversion or the swap first, since
2888     // there are no cases where both work.
2889   default:
2890     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2891       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2892     else {
2893       CC = ISD::getSetCCSwappedOperands(CC);
2894       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2895         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2896       else
2897         llvm_unreachable("Unhandled comparison");
2898     }
2899     if (Chain)
2900       Chain = Cmp.getValue(1);
2901     break;
2902   }
2903   if (Invert) {
2904     SDValue Mask =
2905       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2906     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2907   }
2908   if (Chain && Chain.getNode() != Cmp.getNode()) {
2909     SDValue Ops[2] = { Cmp, Chain };
2910     Cmp = DAG.getMergeValues(Ops, DL);
2911   }
2912   return Cmp;
2913 }
2914 
2915 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2916                                           SelectionDAG &DAG) const {
2917   SDValue CmpOp0   = Op.getOperand(0);
2918   SDValue CmpOp1   = Op.getOperand(1);
2919   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2920   SDLoc DL(Op);
2921   EVT VT = Op.getValueType();
2922   if (VT.isVector())
2923     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2924 
2925   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2926   SDValue CCReg = emitCmp(DAG, DL, C);
2927   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2928 }
2929 
2930 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2931                                                   SelectionDAG &DAG,
2932                                                   bool IsSignaling) const {
2933   SDValue Chain    = Op.getOperand(0);
2934   SDValue CmpOp0   = Op.getOperand(1);
2935   SDValue CmpOp1   = Op.getOperand(2);
2936   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2937   SDLoc DL(Op);
2938   EVT VT = Op.getNode()->getValueType(0);
2939   if (VT.isVector()) {
2940     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2941                                    Chain, IsSignaling);
2942     return Res.getValue(Op.getResNo());
2943   }
2944 
2945   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2946   SDValue CCReg = emitCmp(DAG, DL, C);
2947   CCReg->setFlags(Op->getFlags());
2948   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2949   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2950   return DAG.getMergeValues(Ops, DL);
2951 }
2952 
2953 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2954   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2955   SDValue CmpOp0   = Op.getOperand(2);
2956   SDValue CmpOp1   = Op.getOperand(3);
2957   SDValue Dest     = Op.getOperand(4);
2958   SDLoc DL(Op);
2959 
2960   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2961   SDValue CCReg = emitCmp(DAG, DL, C);
2962   return DAG.getNode(
2963       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2964       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2965       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2966 }
2967 
2968 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2969 // allowing Pos and Neg to be wider than CmpOp.
2970 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2971   return (Neg.getOpcode() == ISD::SUB &&
2972           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2973           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2974           Neg.getOperand(1) == Pos &&
2975           (Pos == CmpOp ||
2976            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2977             Pos.getOperand(0) == CmpOp)));
2978 }
2979 
2980 // Return the absolute or negative absolute of Op; IsNegative decides which.
2981 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2982                            bool IsNegative) {
2983   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
2984   if (IsNegative)
2985     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2986                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2987   return Op;
2988 }
2989 
2990 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2991                                               SelectionDAG &DAG) const {
2992   SDValue CmpOp0   = Op.getOperand(0);
2993   SDValue CmpOp1   = Op.getOperand(1);
2994   SDValue TrueOp   = Op.getOperand(2);
2995   SDValue FalseOp  = Op.getOperand(3);
2996   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2997   SDLoc DL(Op);
2998 
2999   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3000 
3001   // Check for absolute and negative-absolute selections, including those
3002   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3003   // This check supplements the one in DAGCombiner.
3004   if (C.Opcode == SystemZISD::ICMP &&
3005       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3006       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3007       C.Op1.getOpcode() == ISD::Constant &&
3008       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3009     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3010       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3011     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3012       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3013   }
3014 
3015   SDValue CCReg = emitCmp(DAG, DL, C);
3016   SDValue Ops[] = {TrueOp, FalseOp,
3017                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3018                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3019 
3020   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3021 }
3022 
3023 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3024                                                   SelectionDAG &DAG) const {
3025   SDLoc DL(Node);
3026   const GlobalValue *GV = Node->getGlobal();
3027   int64_t Offset = Node->getOffset();
3028   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3029   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3030 
3031   SDValue Result;
3032   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3033     if (isInt<32>(Offset)) {
3034       // Assign anchors at 1<<12 byte boundaries.
3035       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3036       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3037       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3038 
3039       // The offset can be folded into the address if it is aligned to a
3040       // halfword.
3041       Offset -= Anchor;
3042       if (Offset != 0 && (Offset & 1) == 0) {
3043         SDValue Full =
3044           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3045         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3046         Offset = 0;
3047       }
3048     } else {
3049       // Conservatively load a constant offset greater than 32 bits into a
3050       // register below.
3051       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3052       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3053     }
3054   } else {
3055     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3056     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3057     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3058                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3059   }
3060 
3061   // If there was a non-zero offset that we didn't fold, create an explicit
3062   // addition for it.
3063   if (Offset != 0)
3064     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3065                          DAG.getConstant(Offset, DL, PtrVT));
3066 
3067   return Result;
3068 }
3069 
3070 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3071                                                  SelectionDAG &DAG,
3072                                                  unsigned Opcode,
3073                                                  SDValue GOTOffset) const {
3074   SDLoc DL(Node);
3075   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3076   SDValue Chain = DAG.getEntryNode();
3077   SDValue Glue;
3078 
3079   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3080       CallingConv::GHC)
3081     report_fatal_error("In GHC calling convention TLS is not supported");
3082 
3083   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3084   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3085   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3086   Glue = Chain.getValue(1);
3087   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3088   Glue = Chain.getValue(1);
3089 
3090   // The first call operand is the chain and the second is the TLS symbol.
3091   SmallVector<SDValue, 8> Ops;
3092   Ops.push_back(Chain);
3093   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3094                                            Node->getValueType(0),
3095                                            0, 0));
3096 
3097   // Add argument registers to the end of the list so that they are
3098   // known live into the call.
3099   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3100   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3101 
3102   // Add a register mask operand representing the call-preserved registers.
3103   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3104   const uint32_t *Mask =
3105       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3106   assert(Mask && "Missing call preserved mask for calling convention");
3107   Ops.push_back(DAG.getRegisterMask(Mask));
3108 
3109   // Glue the call to the argument copies.
3110   Ops.push_back(Glue);
3111 
3112   // Emit the call.
3113   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3114   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3115   Glue = Chain.getValue(1);
3116 
3117   // Copy the return value from %r2.
3118   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3119 }
3120 
3121 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3122                                                   SelectionDAG &DAG) const {
3123   SDValue Chain = DAG.getEntryNode();
3124   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3125 
3126   // The high part of the thread pointer is in access register 0.
3127   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3128   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3129 
3130   // The low part of the thread pointer is in access register 1.
3131   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3132   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3133 
3134   // Merge them into a single 64-bit address.
3135   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3136                                     DAG.getConstant(32, DL, PtrVT));
3137   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3138 }
3139 
3140 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3141                                                      SelectionDAG &DAG) const {
3142   if (DAG.getTarget().useEmulatedTLS())
3143     return LowerToTLSEmulatedModel(Node, DAG);
3144   SDLoc DL(Node);
3145   const GlobalValue *GV = Node->getGlobal();
3146   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3147   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3148 
3149   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3150       CallingConv::GHC)
3151     report_fatal_error("In GHC calling convention TLS is not supported");
3152 
3153   SDValue TP = lowerThreadPointer(DL, DAG);
3154 
3155   // Get the offset of GA from the thread pointer, based on the TLS model.
3156   SDValue Offset;
3157   switch (model) {
3158     case TLSModel::GeneralDynamic: {
3159       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3160       SystemZConstantPoolValue *CPV =
3161         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3162 
3163       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3164       Offset = DAG.getLoad(
3165           PtrVT, DL, DAG.getEntryNode(), Offset,
3166           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3167 
3168       // Call __tls_get_offset to retrieve the offset.
3169       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3170       break;
3171     }
3172 
3173     case TLSModel::LocalDynamic: {
3174       // Load the GOT offset of the module ID.
3175       SystemZConstantPoolValue *CPV =
3176         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3177 
3178       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3179       Offset = DAG.getLoad(
3180           PtrVT, DL, DAG.getEntryNode(), Offset,
3181           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3182 
3183       // Call __tls_get_offset to retrieve the module base offset.
3184       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3185 
3186       // Note: The SystemZLDCleanupPass will remove redundant computations
3187       // of the module base offset.  Count total number of local-dynamic
3188       // accesses to trigger execution of that pass.
3189       SystemZMachineFunctionInfo* MFI =
3190         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3191       MFI->incNumLocalDynamicTLSAccesses();
3192 
3193       // Add the per-symbol offset.
3194       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3195 
3196       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3197       DTPOffset = DAG.getLoad(
3198           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3199           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3200 
3201       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3202       break;
3203     }
3204 
3205     case TLSModel::InitialExec: {
3206       // Load the offset from the GOT.
3207       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3208                                           SystemZII::MO_INDNTPOFF);
3209       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3210       Offset =
3211           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3212                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3213       break;
3214     }
3215 
3216     case TLSModel::LocalExec: {
3217       // Force the offset into the constant pool and load it from there.
3218       SystemZConstantPoolValue *CPV =
3219         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3220 
3221       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3222       Offset = DAG.getLoad(
3223           PtrVT, DL, DAG.getEntryNode(), Offset,
3224           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3225       break;
3226     }
3227   }
3228 
3229   // Add the base and offset together.
3230   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3231 }
3232 
3233 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3234                                                  SelectionDAG &DAG) const {
3235   SDLoc DL(Node);
3236   const BlockAddress *BA = Node->getBlockAddress();
3237   int64_t Offset = Node->getOffset();
3238   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3239 
3240   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3241   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3242   return Result;
3243 }
3244 
3245 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3246                                               SelectionDAG &DAG) const {
3247   SDLoc DL(JT);
3248   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3249   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3250 
3251   // Use LARL to load the address of the table.
3252   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3253 }
3254 
3255 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3256                                                  SelectionDAG &DAG) const {
3257   SDLoc DL(CP);
3258   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3259 
3260   SDValue Result;
3261   if (CP->isMachineConstantPoolEntry())
3262     Result =
3263         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3264   else
3265     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3266                                        CP->getOffset());
3267 
3268   // Use LARL to load the address of the constant pool entry.
3269   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3270 }
3271 
3272 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3273                                               SelectionDAG &DAG) const {
3274   auto *TFL =
3275       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3276   MachineFunction &MF = DAG.getMachineFunction();
3277   MachineFrameInfo &MFI = MF.getFrameInfo();
3278   MFI.setFrameAddressIsTaken(true);
3279 
3280   SDLoc DL(Op);
3281   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3282   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3283 
3284   // Return null if the back chain is not present.
3285   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3286   if (TFL->usePackedStack(MF) && !HasBackChain)
3287     return DAG.getConstant(0, DL, PtrVT);
3288 
3289   // By definition, the frame address is the address of the back chain.
3290   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3291   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3292 
3293   // FIXME The frontend should detect this case.
3294   if (Depth > 0) {
3295     report_fatal_error("Unsupported stack frame traversal count");
3296   }
3297 
3298   return BackChain;
3299 }
3300 
3301 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3302                                                SelectionDAG &DAG) const {
3303   MachineFunction &MF = DAG.getMachineFunction();
3304   MachineFrameInfo &MFI = MF.getFrameInfo();
3305   MFI.setReturnAddressIsTaken(true);
3306 
3307   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3308     return SDValue();
3309 
3310   SDLoc DL(Op);
3311   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3312   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3313 
3314   // FIXME The frontend should detect this case.
3315   if (Depth > 0) {
3316     report_fatal_error("Unsupported stack frame traversal count");
3317   }
3318 
3319   // Return R14D, which has the return address. Mark it an implicit live-in.
3320   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3321   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3322 }
3323 
3324 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3325                                             SelectionDAG &DAG) const {
3326   SDLoc DL(Op);
3327   SDValue In = Op.getOperand(0);
3328   EVT InVT = In.getValueType();
3329   EVT ResVT = Op.getValueType();
3330 
3331   // Convert loads directly.  This is normally done by DAGCombiner,
3332   // but we need this case for bitcasts that are created during lowering
3333   // and which are then lowered themselves.
3334   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3335     if (ISD::isNormalLoad(LoadN)) {
3336       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3337                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3338       // Update the chain uses.
3339       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3340       return NewLoad;
3341     }
3342 
3343   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3344     SDValue In64;
3345     if (Subtarget.hasHighWord()) {
3346       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3347                                        MVT::i64);
3348       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3349                                        MVT::i64, SDValue(U64, 0), In);
3350     } else {
3351       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3352       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3353                          DAG.getConstant(32, DL, MVT::i64));
3354     }
3355     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3356     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3357                                       DL, MVT::f32, Out64);
3358   }
3359   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3360     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3361     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3362                                              MVT::f64, SDValue(U64, 0), In);
3363     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3364     if (Subtarget.hasHighWord())
3365       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3366                                         MVT::i32, Out64);
3367     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3368                                 DAG.getConstant(32, DL, MVT::i64));
3369     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3370   }
3371   llvm_unreachable("Unexpected bitcast combination");
3372 }
3373 
3374 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3375                                             SelectionDAG &DAG) const {
3376   MachineFunction &MF = DAG.getMachineFunction();
3377   SystemZMachineFunctionInfo *FuncInfo =
3378     MF.getInfo<SystemZMachineFunctionInfo>();
3379   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3380 
3381   SDValue Chain   = Op.getOperand(0);
3382   SDValue Addr    = Op.getOperand(1);
3383   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3384   SDLoc DL(Op);
3385 
3386   // The initial values of each field.
3387   const unsigned NumFields = 4;
3388   SDValue Fields[NumFields] = {
3389     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3390     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3391     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3392     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3393   };
3394 
3395   // Store each field into its respective slot.
3396   SDValue MemOps[NumFields];
3397   unsigned Offset = 0;
3398   for (unsigned I = 0; I < NumFields; ++I) {
3399     SDValue FieldAddr = Addr;
3400     if (Offset != 0)
3401       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3402                               DAG.getIntPtrConstant(Offset, DL));
3403     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3404                              MachinePointerInfo(SV, Offset));
3405     Offset += 8;
3406   }
3407   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3408 }
3409 
3410 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3411                                            SelectionDAG &DAG) const {
3412   SDValue Chain      = Op.getOperand(0);
3413   SDValue DstPtr     = Op.getOperand(1);
3414   SDValue SrcPtr     = Op.getOperand(2);
3415   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3416   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3417   SDLoc DL(Op);
3418 
3419   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3420                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3421                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3422                        MachinePointerInfo(SrcSV));
3423 }
3424 
3425 SDValue SystemZTargetLowering::
3426 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3427   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3428   MachineFunction &MF = DAG.getMachineFunction();
3429   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3430   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3431 
3432   SDValue Chain = Op.getOperand(0);
3433   SDValue Size  = Op.getOperand(1);
3434   SDValue Align = Op.getOperand(2);
3435   SDLoc DL(Op);
3436 
3437   // If user has set the no alignment function attribute, ignore
3438   // alloca alignments.
3439   uint64_t AlignVal =
3440       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3441 
3442   uint64_t StackAlign = TFI->getStackAlignment();
3443   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3444   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3445 
3446   Register SPReg = getStackPointerRegisterToSaveRestore();
3447   SDValue NeededSpace = Size;
3448 
3449   // Get a reference to the stack pointer.
3450   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3451 
3452   // If we need a backchain, save it now.
3453   SDValue Backchain;
3454   if (StoreBackchain)
3455     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3456                             MachinePointerInfo());
3457 
3458   // Add extra space for alignment if needed.
3459   if (ExtraAlignSpace)
3460     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3461                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3462 
3463   // Get the new stack pointer value.
3464   SDValue NewSP;
3465   if (hasInlineStackProbe(MF)) {
3466     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3467                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3468     Chain = NewSP.getValue(1);
3469   }
3470   else {
3471     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3472     // Copy the new stack pointer back.
3473     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3474   }
3475 
3476   // The allocated data lives above the 160 bytes allocated for the standard
3477   // frame, plus any outgoing stack arguments.  We don't know how much that
3478   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3479   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3480   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3481 
3482   // Dynamically realign if needed.
3483   if (RequiredAlign > StackAlign) {
3484     Result =
3485       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3486                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3487     Result =
3488       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3489                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3490   }
3491 
3492   if (StoreBackchain)
3493     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3494                          MachinePointerInfo());
3495 
3496   SDValue Ops[2] = { Result, Chain };
3497   return DAG.getMergeValues(Ops, DL);
3498 }
3499 
3500 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3501     SDValue Op, SelectionDAG &DAG) const {
3502   SDLoc DL(Op);
3503 
3504   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3505 }
3506 
3507 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3508                                               SelectionDAG &DAG) const {
3509   EVT VT = Op.getValueType();
3510   SDLoc DL(Op);
3511   SDValue Ops[2];
3512   if (is32Bit(VT))
3513     // Just do a normal 64-bit multiplication and extract the results.
3514     // We define this so that it can be used for constant division.
3515     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3516                     Op.getOperand(1), Ops[1], Ops[0]);
3517   else if (Subtarget.hasMiscellaneousExtensions2())
3518     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3519     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3520     // return the low half first, so the results are in reverse order.
3521     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3522                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3523   else {
3524     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3525     //
3526     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3527     //
3528     // but using the fact that the upper halves are either all zeros
3529     // or all ones:
3530     //
3531     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3532     //
3533     // and grouping the right terms together since they are quicker than the
3534     // multiplication:
3535     //
3536     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3537     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3538     SDValue LL = Op.getOperand(0);
3539     SDValue RL = Op.getOperand(1);
3540     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3541     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3542     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3543     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3544     // return the low half first, so the results are in reverse order.
3545     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3546                      LL, RL, Ops[1], Ops[0]);
3547     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3548     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3549     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3550     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3551   }
3552   return DAG.getMergeValues(Ops, DL);
3553 }
3554 
3555 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3556                                               SelectionDAG &DAG) const {
3557   EVT VT = Op.getValueType();
3558   SDLoc DL(Op);
3559   SDValue Ops[2];
3560   if (is32Bit(VT))
3561     // Just do a normal 64-bit multiplication and extract the results.
3562     // We define this so that it can be used for constant division.
3563     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3564                     Op.getOperand(1), Ops[1], Ops[0]);
3565   else
3566     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3567     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3568     // return the low half first, so the results are in reverse order.
3569     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3570                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3571   return DAG.getMergeValues(Ops, DL);
3572 }
3573 
3574 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3575                                             SelectionDAG &DAG) const {
3576   SDValue Op0 = Op.getOperand(0);
3577   SDValue Op1 = Op.getOperand(1);
3578   EVT VT = Op.getValueType();
3579   SDLoc DL(Op);
3580 
3581   // We use DSGF for 32-bit division.  This means the first operand must
3582   // always be 64-bit, and the second operand should be 32-bit whenever
3583   // that is possible, to improve performance.
3584   if (is32Bit(VT))
3585     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3586   else if (DAG.ComputeNumSignBits(Op1) > 32)
3587     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3588 
3589   // DSG(F) returns the remainder in the even register and the
3590   // quotient in the odd register.
3591   SDValue Ops[2];
3592   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3593   return DAG.getMergeValues(Ops, DL);
3594 }
3595 
3596 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3597                                             SelectionDAG &DAG) const {
3598   EVT VT = Op.getValueType();
3599   SDLoc DL(Op);
3600 
3601   // DL(G) returns the remainder in the even register and the
3602   // quotient in the odd register.
3603   SDValue Ops[2];
3604   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3605                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3606   return DAG.getMergeValues(Ops, DL);
3607 }
3608 
3609 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3610   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3611 
3612   // Get the known-zero masks for each operand.
3613   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3614   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3615                         DAG.computeKnownBits(Ops[1])};
3616 
3617   // See if the upper 32 bits of one operand and the lower 32 bits of the
3618   // other are known zero.  They are the low and high operands respectively.
3619   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3620                        Known[1].Zero.getZExtValue() };
3621   unsigned High, Low;
3622   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3623     High = 1, Low = 0;
3624   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3625     High = 0, Low = 1;
3626   else
3627     return Op;
3628 
3629   SDValue LowOp = Ops[Low];
3630   SDValue HighOp = Ops[High];
3631 
3632   // If the high part is a constant, we're better off using IILH.
3633   if (HighOp.getOpcode() == ISD::Constant)
3634     return Op;
3635 
3636   // If the low part is a constant that is outside the range of LHI,
3637   // then we're better off using IILF.
3638   if (LowOp.getOpcode() == ISD::Constant) {
3639     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3640     if (!isInt<16>(Value))
3641       return Op;
3642   }
3643 
3644   // Check whether the high part is an AND that doesn't change the
3645   // high 32 bits and just masks out low bits.  We can skip it if so.
3646   if (HighOp.getOpcode() == ISD::AND &&
3647       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3648     SDValue HighOp0 = HighOp.getOperand(0);
3649     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3650     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3651       HighOp = HighOp0;
3652   }
3653 
3654   // Take advantage of the fact that all GR32 operations only change the
3655   // low 32 bits by truncating Low to an i32 and inserting it directly
3656   // using a subreg.  The interesting cases are those where the truncation
3657   // can be folded.
3658   SDLoc DL(Op);
3659   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3660   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3661                                    MVT::i64, HighOp, Low32);
3662 }
3663 
3664 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3665 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3666                                           SelectionDAG &DAG) const {
3667   SDNode *N = Op.getNode();
3668   SDValue LHS = N->getOperand(0);
3669   SDValue RHS = N->getOperand(1);
3670   SDLoc DL(N);
3671   unsigned BaseOp = 0;
3672   unsigned CCValid = 0;
3673   unsigned CCMask = 0;
3674 
3675   switch (Op.getOpcode()) {
3676   default: llvm_unreachable("Unknown instruction!");
3677   case ISD::SADDO:
3678     BaseOp = SystemZISD::SADDO;
3679     CCValid = SystemZ::CCMASK_ARITH;
3680     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3681     break;
3682   case ISD::SSUBO:
3683     BaseOp = SystemZISD::SSUBO;
3684     CCValid = SystemZ::CCMASK_ARITH;
3685     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3686     break;
3687   case ISD::UADDO:
3688     BaseOp = SystemZISD::UADDO;
3689     CCValid = SystemZ::CCMASK_LOGICAL;
3690     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3691     break;
3692   case ISD::USUBO:
3693     BaseOp = SystemZISD::USUBO;
3694     CCValid = SystemZ::CCMASK_LOGICAL;
3695     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3696     break;
3697   }
3698 
3699   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3700   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3701 
3702   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3703   if (N->getValueType(1) == MVT::i1)
3704     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3705 
3706   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3707 }
3708 
3709 static bool isAddCarryChain(SDValue Carry) {
3710   while (Carry.getOpcode() == ISD::ADDCARRY)
3711     Carry = Carry.getOperand(2);
3712   return Carry.getOpcode() == ISD::UADDO;
3713 }
3714 
3715 static bool isSubBorrowChain(SDValue Carry) {
3716   while (Carry.getOpcode() == ISD::SUBCARRY)
3717     Carry = Carry.getOperand(2);
3718   return Carry.getOpcode() == ISD::USUBO;
3719 }
3720 
3721 // Lower ADDCARRY/SUBCARRY nodes.
3722 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3723                                                 SelectionDAG &DAG) const {
3724 
3725   SDNode *N = Op.getNode();
3726   MVT VT = N->getSimpleValueType(0);
3727 
3728   // Let legalize expand this if it isn't a legal type yet.
3729   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3730     return SDValue();
3731 
3732   SDValue LHS = N->getOperand(0);
3733   SDValue RHS = N->getOperand(1);
3734   SDValue Carry = Op.getOperand(2);
3735   SDLoc DL(N);
3736   unsigned BaseOp = 0;
3737   unsigned CCValid = 0;
3738   unsigned CCMask = 0;
3739 
3740   switch (Op.getOpcode()) {
3741   default: llvm_unreachable("Unknown instruction!");
3742   case ISD::ADDCARRY:
3743     if (!isAddCarryChain(Carry))
3744       return SDValue();
3745 
3746     BaseOp = SystemZISD::ADDCARRY;
3747     CCValid = SystemZ::CCMASK_LOGICAL;
3748     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3749     break;
3750   case ISD::SUBCARRY:
3751     if (!isSubBorrowChain(Carry))
3752       return SDValue();
3753 
3754     BaseOp = SystemZISD::SUBCARRY;
3755     CCValid = SystemZ::CCMASK_LOGICAL;
3756     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3757     break;
3758   }
3759 
3760   // Set the condition code from the carry flag.
3761   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3762                       DAG.getConstant(CCValid, DL, MVT::i32),
3763                       DAG.getConstant(CCMask, DL, MVT::i32));
3764 
3765   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3766   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3767 
3768   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3769   if (N->getValueType(1) == MVT::i1)
3770     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3771 
3772   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3773 }
3774 
3775 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3776                                           SelectionDAG &DAG) const {
3777   EVT VT = Op.getValueType();
3778   SDLoc DL(Op);
3779   Op = Op.getOperand(0);
3780 
3781   // Handle vector types via VPOPCT.
3782   if (VT.isVector()) {
3783     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3784     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3785     switch (VT.getScalarSizeInBits()) {
3786     case 8:
3787       break;
3788     case 16: {
3789       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3790       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3791       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3792       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3793       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3794       break;
3795     }
3796     case 32: {
3797       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3798                                             DAG.getConstant(0, DL, MVT::i32));
3799       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3800       break;
3801     }
3802     case 64: {
3803       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3804                                             DAG.getConstant(0, DL, MVT::i32));
3805       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3806       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3807       break;
3808     }
3809     default:
3810       llvm_unreachable("Unexpected type");
3811     }
3812     return Op;
3813   }
3814 
3815   // Get the known-zero mask for the operand.
3816   KnownBits Known = DAG.computeKnownBits(Op);
3817   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3818   if (NumSignificantBits == 0)
3819     return DAG.getConstant(0, DL, VT);
3820 
3821   // Skip known-zero high parts of the operand.
3822   int64_t OrigBitSize = VT.getSizeInBits();
3823   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3824   BitSize = std::min(BitSize, OrigBitSize);
3825 
3826   // The POPCNT instruction counts the number of bits in each byte.
3827   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3828   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3829   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3830 
3831   // Add up per-byte counts in a binary tree.  All bits of Op at
3832   // position larger than BitSize remain zero throughout.
3833   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3834     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3835     if (BitSize != OrigBitSize)
3836       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3837                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3838     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3839   }
3840 
3841   // Extract overall result from high byte.
3842   if (BitSize > 8)
3843     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3844                      DAG.getConstant(BitSize - 8, DL, VT));
3845 
3846   return Op;
3847 }
3848 
3849 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3850                                                  SelectionDAG &DAG) const {
3851   SDLoc DL(Op);
3852   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3853     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3854   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3855     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3856 
3857   // The only fence that needs an instruction is a sequentially-consistent
3858   // cross-thread fence.
3859   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3860       FenceSSID == SyncScope::System) {
3861     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3862                                       Op.getOperand(0)),
3863                    0);
3864   }
3865 
3866   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3867   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3868 }
3869 
3870 // Op is an atomic load.  Lower it into a normal volatile load.
3871 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3872                                                 SelectionDAG &DAG) const {
3873   auto *Node = cast<AtomicSDNode>(Op.getNode());
3874   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3875                         Node->getChain(), Node->getBasePtr(),
3876                         Node->getMemoryVT(), Node->getMemOperand());
3877 }
3878 
3879 // Op is an atomic store.  Lower it into a normal volatile store.
3880 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3881                                                  SelectionDAG &DAG) const {
3882   auto *Node = cast<AtomicSDNode>(Op.getNode());
3883   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3884                                     Node->getBasePtr(), Node->getMemoryVT(),
3885                                     Node->getMemOperand());
3886   // We have to enforce sequential consistency by performing a
3887   // serialization operation after the store.
3888   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3889     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3890                                        MVT::Other, Chain), 0);
3891   return Chain;
3892 }
3893 
3894 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3895 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3896 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3897                                                    SelectionDAG &DAG,
3898                                                    unsigned Opcode) const {
3899   auto *Node = cast<AtomicSDNode>(Op.getNode());
3900 
3901   // 32-bit operations need no code outside the main loop.
3902   EVT NarrowVT = Node->getMemoryVT();
3903   EVT WideVT = MVT::i32;
3904   if (NarrowVT == WideVT)
3905     return Op;
3906 
3907   int64_t BitSize = NarrowVT.getSizeInBits();
3908   SDValue ChainIn = Node->getChain();
3909   SDValue Addr = Node->getBasePtr();
3910   SDValue Src2 = Node->getVal();
3911   MachineMemOperand *MMO = Node->getMemOperand();
3912   SDLoc DL(Node);
3913   EVT PtrVT = Addr.getValueType();
3914 
3915   // Convert atomic subtracts of constants into additions.
3916   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3917     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3918       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3919       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3920     }
3921 
3922   // Get the address of the containing word.
3923   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3924                                     DAG.getConstant(-4, DL, PtrVT));
3925 
3926   // Get the number of bits that the word must be rotated left in order
3927   // to bring the field to the top bits of a GR32.
3928   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3929                                  DAG.getConstant(3, DL, PtrVT));
3930   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3931 
3932   // Get the complementing shift amount, for rotating a field in the top
3933   // bits back to its proper position.
3934   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3935                                     DAG.getConstant(0, DL, WideVT), BitShift);
3936 
3937   // Extend the source operand to 32 bits and prepare it for the inner loop.
3938   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3939   // operations require the source to be shifted in advance.  (This shift
3940   // can be folded if the source is constant.)  For AND and NAND, the lower
3941   // bits must be set, while for other opcodes they should be left clear.
3942   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3943     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3944                        DAG.getConstant(32 - BitSize, DL, WideVT));
3945   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3946       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3947     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3948                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3949 
3950   // Construct the ATOMIC_LOADW_* node.
3951   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3952   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3953                     DAG.getConstant(BitSize, DL, WideVT) };
3954   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3955                                              NarrowVT, MMO);
3956 
3957   // Rotate the result of the final CS so that the field is in the lower
3958   // bits of a GR32, then truncate it.
3959   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3960                                     DAG.getConstant(BitSize, DL, WideVT));
3961   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3962 
3963   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3964   return DAG.getMergeValues(RetOps, DL);
3965 }
3966 
3967 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3968 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3969 // operations into additions.
3970 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3971                                                     SelectionDAG &DAG) const {
3972   auto *Node = cast<AtomicSDNode>(Op.getNode());
3973   EVT MemVT = Node->getMemoryVT();
3974   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3975     // A full-width operation.
3976     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3977     SDValue Src2 = Node->getVal();
3978     SDValue NegSrc2;
3979     SDLoc DL(Src2);
3980 
3981     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3982       // Use an addition if the operand is constant and either LAA(G) is
3983       // available or the negative value is in the range of A(G)FHI.
3984       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3985       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3986         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3987     } else if (Subtarget.hasInterlockedAccess1())
3988       // Use LAA(G) if available.
3989       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3990                             Src2);
3991 
3992     if (NegSrc2.getNode())
3993       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3994                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3995                            Node->getMemOperand());
3996 
3997     // Use the node as-is.
3998     return Op;
3999   }
4000 
4001   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4002 }
4003 
4004 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4005 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4006                                                     SelectionDAG &DAG) const {
4007   auto *Node = cast<AtomicSDNode>(Op.getNode());
4008   SDValue ChainIn = Node->getOperand(0);
4009   SDValue Addr = Node->getOperand(1);
4010   SDValue CmpVal = Node->getOperand(2);
4011   SDValue SwapVal = Node->getOperand(3);
4012   MachineMemOperand *MMO = Node->getMemOperand();
4013   SDLoc DL(Node);
4014 
4015   // We have native support for 32-bit and 64-bit compare and swap, but we
4016   // still need to expand extracting the "success" result from the CC.
4017   EVT NarrowVT = Node->getMemoryVT();
4018   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4019   if (NarrowVT == WideVT) {
4020     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4021     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4022     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4023                                                DL, Tys, Ops, NarrowVT, MMO);
4024     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4025                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4026 
4027     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4028     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4029     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4030     return SDValue();
4031   }
4032 
4033   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4034   // via a fullword ATOMIC_CMP_SWAPW operation.
4035   int64_t BitSize = NarrowVT.getSizeInBits();
4036   EVT PtrVT = Addr.getValueType();
4037 
4038   // Get the address of the containing word.
4039   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4040                                     DAG.getConstant(-4, DL, PtrVT));
4041 
4042   // Get the number of bits that the word must be rotated left in order
4043   // to bring the field to the top bits of a GR32.
4044   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4045                                  DAG.getConstant(3, DL, PtrVT));
4046   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4047 
4048   // Get the complementing shift amount, for rotating a field in the top
4049   // bits back to its proper position.
4050   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4051                                     DAG.getConstant(0, DL, WideVT), BitShift);
4052 
4053   // Construct the ATOMIC_CMP_SWAPW node.
4054   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4055   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4056                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4057   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4058                                              VTList, Ops, NarrowVT, MMO);
4059   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4060                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4061 
4062   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4063   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4064   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4065   return SDValue();
4066 }
4067 
4068 MachineMemOperand::Flags
4069 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4070   // Because of how we convert atomic_load and atomic_store to normal loads and
4071   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4072   // since DAGCombine hasn't been updated to account for atomic, but non
4073   // volatile loads.  (See D57601)
4074   if (auto *SI = dyn_cast<StoreInst>(&I))
4075     if (SI->isAtomic())
4076       return MachineMemOperand::MOVolatile;
4077   if (auto *LI = dyn_cast<LoadInst>(&I))
4078     if (LI->isAtomic())
4079       return MachineMemOperand::MOVolatile;
4080   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4081     if (AI->isAtomic())
4082       return MachineMemOperand::MOVolatile;
4083   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4084     if (AI->isAtomic())
4085       return MachineMemOperand::MOVolatile;
4086   return MachineMemOperand::MONone;
4087 }
4088 
4089 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4090                                               SelectionDAG &DAG) const {
4091   MachineFunction &MF = DAG.getMachineFunction();
4092   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4093   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4094     report_fatal_error("Variable-sized stack allocations are not supported "
4095                        "in GHC calling convention");
4096   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4097                             SystemZ::R15D, Op.getValueType());
4098 }
4099 
4100 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4101                                                  SelectionDAG &DAG) const {
4102   MachineFunction &MF = DAG.getMachineFunction();
4103   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4104   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4105 
4106   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4107     report_fatal_error("Variable-sized stack allocations are not supported "
4108                        "in GHC calling convention");
4109 
4110   SDValue Chain = Op.getOperand(0);
4111   SDValue NewSP = Op.getOperand(1);
4112   SDValue Backchain;
4113   SDLoc DL(Op);
4114 
4115   if (StoreBackchain) {
4116     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4117     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4118                             MachinePointerInfo());
4119   }
4120 
4121   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4122 
4123   if (StoreBackchain)
4124     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4125                          MachinePointerInfo());
4126 
4127   return Chain;
4128 }
4129 
4130 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4131                                              SelectionDAG &DAG) const {
4132   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4133   if (!IsData)
4134     // Just preserve the chain.
4135     return Op.getOperand(0);
4136 
4137   SDLoc DL(Op);
4138   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4139   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4140   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4141   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4142                    Op.getOperand(1)};
4143   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4144                                  Node->getVTList(), Ops,
4145                                  Node->getMemoryVT(), Node->getMemOperand());
4146 }
4147 
4148 // Convert condition code in CCReg to an i32 value.
4149 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4150   SDLoc DL(CCReg);
4151   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4152   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4153                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4154 }
4155 
4156 SDValue
4157 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4158                                               SelectionDAG &DAG) const {
4159   unsigned Opcode, CCValid;
4160   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4161     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4162     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4163     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4164     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4165     return SDValue();
4166   }
4167 
4168   return SDValue();
4169 }
4170 
4171 SDValue
4172 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4173                                                SelectionDAG &DAG) const {
4174   unsigned Opcode, CCValid;
4175   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4176     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4177     if (Op->getNumValues() == 1)
4178       return getCCResult(DAG, SDValue(Node, 0));
4179     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4180     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4181                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4182   }
4183 
4184   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4185   switch (Id) {
4186   case Intrinsic::thread_pointer:
4187     return lowerThreadPointer(SDLoc(Op), DAG);
4188 
4189   case Intrinsic::s390_vpdi:
4190     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4191                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4192 
4193   case Intrinsic::s390_vperm:
4194     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4195                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4196 
4197   case Intrinsic::s390_vuphb:
4198   case Intrinsic::s390_vuphh:
4199   case Intrinsic::s390_vuphf:
4200     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4201                        Op.getOperand(1));
4202 
4203   case Intrinsic::s390_vuplhb:
4204   case Intrinsic::s390_vuplhh:
4205   case Intrinsic::s390_vuplhf:
4206     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4207                        Op.getOperand(1));
4208 
4209   case Intrinsic::s390_vuplb:
4210   case Intrinsic::s390_vuplhw:
4211   case Intrinsic::s390_vuplf:
4212     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4213                        Op.getOperand(1));
4214 
4215   case Intrinsic::s390_vupllb:
4216   case Intrinsic::s390_vupllh:
4217   case Intrinsic::s390_vupllf:
4218     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4219                        Op.getOperand(1));
4220 
4221   case Intrinsic::s390_vsumb:
4222   case Intrinsic::s390_vsumh:
4223   case Intrinsic::s390_vsumgh:
4224   case Intrinsic::s390_vsumgf:
4225   case Intrinsic::s390_vsumqf:
4226   case Intrinsic::s390_vsumqg:
4227     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4228                        Op.getOperand(1), Op.getOperand(2));
4229   }
4230 
4231   return SDValue();
4232 }
4233 
4234 namespace {
4235 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4236 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4237 // Operand is the constant third operand, otherwise it is the number of
4238 // bytes in each element of the result.
4239 struct Permute {
4240   unsigned Opcode;
4241   unsigned Operand;
4242   unsigned char Bytes[SystemZ::VectorBytes];
4243 };
4244 }
4245 
4246 static const Permute PermuteForms[] = {
4247   // VMRHG
4248   { SystemZISD::MERGE_HIGH, 8,
4249     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4250   // VMRHF
4251   { SystemZISD::MERGE_HIGH, 4,
4252     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4253   // VMRHH
4254   { SystemZISD::MERGE_HIGH, 2,
4255     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4256   // VMRHB
4257   { SystemZISD::MERGE_HIGH, 1,
4258     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4259   // VMRLG
4260   { SystemZISD::MERGE_LOW, 8,
4261     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4262   // VMRLF
4263   { SystemZISD::MERGE_LOW, 4,
4264     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4265   // VMRLH
4266   { SystemZISD::MERGE_LOW, 2,
4267     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4268   // VMRLB
4269   { SystemZISD::MERGE_LOW, 1,
4270     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4271   // VPKG
4272   { SystemZISD::PACK, 4,
4273     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4274   // VPKF
4275   { SystemZISD::PACK, 2,
4276     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4277   // VPKH
4278   { SystemZISD::PACK, 1,
4279     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4280   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4281   { SystemZISD::PERMUTE_DWORDS, 4,
4282     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4283   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4284   { SystemZISD::PERMUTE_DWORDS, 1,
4285     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4286 };
4287 
4288 // Called after matching a vector shuffle against a particular pattern.
4289 // Both the original shuffle and the pattern have two vector operands.
4290 // OpNos[0] is the operand of the original shuffle that should be used for
4291 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4292 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4293 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4294 // for operands 0 and 1 of the pattern.
4295 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4296   if (OpNos[0] < 0) {
4297     if (OpNos[1] < 0)
4298       return false;
4299     OpNo0 = OpNo1 = OpNos[1];
4300   } else if (OpNos[1] < 0) {
4301     OpNo0 = OpNo1 = OpNos[0];
4302   } else {
4303     OpNo0 = OpNos[0];
4304     OpNo1 = OpNos[1];
4305   }
4306   return true;
4307 }
4308 
4309 // Bytes is a VPERM-like permute vector, except that -1 is used for
4310 // undefined bytes.  Return true if the VPERM can be implemented using P.
4311 // When returning true set OpNo0 to the VPERM operand that should be
4312 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4313 //
4314 // For example, if swapping the VPERM operands allows P to match, OpNo0
4315 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4316 // operand, but rewriting it to use two duplicated operands allows it to
4317 // match P, then OpNo0 and OpNo1 will be the same.
4318 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4319                          unsigned &OpNo0, unsigned &OpNo1) {
4320   int OpNos[] = { -1, -1 };
4321   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4322     int Elt = Bytes[I];
4323     if (Elt >= 0) {
4324       // Make sure that the two permute vectors use the same suboperand
4325       // byte number.  Only the operand numbers (the high bits) are
4326       // allowed to differ.
4327       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4328         return false;
4329       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4330       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4331       // Make sure that the operand mappings are consistent with previous
4332       // elements.
4333       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4334         return false;
4335       OpNos[ModelOpNo] = RealOpNo;
4336     }
4337   }
4338   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4339 }
4340 
4341 // As above, but search for a matching permute.
4342 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4343                                    unsigned &OpNo0, unsigned &OpNo1) {
4344   for (auto &P : PermuteForms)
4345     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4346       return &P;
4347   return nullptr;
4348 }
4349 
4350 // Bytes is a VPERM-like permute vector, except that -1 is used for
4351 // undefined bytes.  This permute is an operand of an outer permute.
4352 // See whether redistributing the -1 bytes gives a shuffle that can be
4353 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4354 // that, when applied to the result of P, gives the original permute in Bytes.
4355 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4356                                const Permute &P,
4357                                SmallVectorImpl<int> &Transform) {
4358   unsigned To = 0;
4359   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4360     int Elt = Bytes[From];
4361     if (Elt < 0)
4362       // Byte number From of the result is undefined.
4363       Transform[From] = -1;
4364     else {
4365       while (P.Bytes[To] != Elt) {
4366         To += 1;
4367         if (To == SystemZ::VectorBytes)
4368           return false;
4369       }
4370       Transform[From] = To;
4371     }
4372   }
4373   return true;
4374 }
4375 
4376 // As above, but search for a matching permute.
4377 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4378                                          SmallVectorImpl<int> &Transform) {
4379   for (auto &P : PermuteForms)
4380     if (matchDoublePermute(Bytes, P, Transform))
4381       return &P;
4382   return nullptr;
4383 }
4384 
4385 // Convert the mask of the given shuffle op into a byte-level mask,
4386 // as if it had type vNi8.
4387 static bool getVPermMask(SDValue ShuffleOp,
4388                          SmallVectorImpl<int> &Bytes) {
4389   EVT VT = ShuffleOp.getValueType();
4390   unsigned NumElements = VT.getVectorNumElements();
4391   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4392 
4393   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4394     Bytes.resize(NumElements * BytesPerElement, -1);
4395     for (unsigned I = 0; I < NumElements; ++I) {
4396       int Index = VSN->getMaskElt(I);
4397       if (Index >= 0)
4398         for (unsigned J = 0; J < BytesPerElement; ++J)
4399           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4400     }
4401     return true;
4402   }
4403   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4404       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4405     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4406     Bytes.resize(NumElements * BytesPerElement, -1);
4407     for (unsigned I = 0; I < NumElements; ++I)
4408       for (unsigned J = 0; J < BytesPerElement; ++J)
4409         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4410     return true;
4411   }
4412   return false;
4413 }
4414 
4415 // Bytes is a VPERM-like permute vector, except that -1 is used for
4416 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4417 // the result come from a contiguous sequence of bytes from one input.
4418 // Set Base to the selector for the first byte if so.
4419 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4420                             unsigned BytesPerElement, int &Base) {
4421   Base = -1;
4422   for (unsigned I = 0; I < BytesPerElement; ++I) {
4423     if (Bytes[Start + I] >= 0) {
4424       unsigned Elem = Bytes[Start + I];
4425       if (Base < 0) {
4426         Base = Elem - I;
4427         // Make sure the bytes would come from one input operand.
4428         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4429           return false;
4430       } else if (unsigned(Base) != Elem - I)
4431         return false;
4432     }
4433   }
4434   return true;
4435 }
4436 
4437 // Bytes is a VPERM-like permute vector, except that -1 is used for
4438 // undefined bytes.  Return true if it can be performed using VSLDB.
4439 // When returning true, set StartIndex to the shift amount and OpNo0
4440 // and OpNo1 to the VPERM operands that should be used as the first
4441 // and second shift operand respectively.
4442 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4443                                unsigned &StartIndex, unsigned &OpNo0,
4444                                unsigned &OpNo1) {
4445   int OpNos[] = { -1, -1 };
4446   int Shift = -1;
4447   for (unsigned I = 0; I < 16; ++I) {
4448     int Index = Bytes[I];
4449     if (Index >= 0) {
4450       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4451       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4452       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4453       if (Shift < 0)
4454         Shift = ExpectedShift;
4455       else if (Shift != ExpectedShift)
4456         return false;
4457       // Make sure that the operand mappings are consistent with previous
4458       // elements.
4459       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4460         return false;
4461       OpNos[ModelOpNo] = RealOpNo;
4462     }
4463   }
4464   StartIndex = Shift;
4465   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4466 }
4467 
4468 // Create a node that performs P on operands Op0 and Op1, casting the
4469 // operands to the appropriate type.  The type of the result is determined by P.
4470 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4471                               const Permute &P, SDValue Op0, SDValue Op1) {
4472   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4473   // elements of a PACK are twice as wide as the outputs.
4474   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4475                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4476                       P.Operand);
4477   // Cast both operands to the appropriate type.
4478   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4479                               SystemZ::VectorBytes / InBytes);
4480   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4481   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4482   SDValue Op;
4483   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4484     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4485     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4486   } else if (P.Opcode == SystemZISD::PACK) {
4487     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4488                                  SystemZ::VectorBytes / P.Operand);
4489     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4490   } else {
4491     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4492   }
4493   return Op;
4494 }
4495 
4496 static bool isZeroVector(SDValue N) {
4497   if (N->getOpcode() == ISD::BITCAST)
4498     N = N->getOperand(0);
4499   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4500     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4501       return Op->getZExtValue() == 0;
4502   return ISD::isBuildVectorAllZeros(N.getNode());
4503 }
4504 
4505 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4506 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4507   for (unsigned I = 0; I < Num ; I++)
4508     if (isZeroVector(Ops[I]))
4509       return I;
4510   return UINT32_MAX;
4511 }
4512 
4513 // Bytes is a VPERM-like permute vector, except that -1 is used for
4514 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4515 // VSLDB or VPERM.
4516 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4517                                      SDValue *Ops,
4518                                      const SmallVectorImpl<int> &Bytes) {
4519   for (unsigned I = 0; I < 2; ++I)
4520     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4521 
4522   // First see whether VSLDB can be used.
4523   unsigned StartIndex, OpNo0, OpNo1;
4524   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4525     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4526                        Ops[OpNo1],
4527                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4528 
4529   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4530   // eliminate a zero vector by reusing any zero index in the permute vector.
4531   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4532   if (ZeroVecIdx != UINT32_MAX) {
4533     bool MaskFirst = true;
4534     int ZeroIdx = -1;
4535     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4536       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4537       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4538       if (OpNo == ZeroVecIdx && I == 0) {
4539         // If the first byte is zero, use mask as first operand.
4540         ZeroIdx = 0;
4541         break;
4542       }
4543       if (OpNo != ZeroVecIdx && Byte == 0) {
4544         // If mask contains a zero, use it by placing that vector first.
4545         ZeroIdx = I + SystemZ::VectorBytes;
4546         MaskFirst = false;
4547         break;
4548       }
4549     }
4550     if (ZeroIdx != -1) {
4551       SDValue IndexNodes[SystemZ::VectorBytes];
4552       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4553         if (Bytes[I] >= 0) {
4554           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4555           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4556           if (OpNo == ZeroVecIdx)
4557             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4558           else {
4559             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4560             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4561           }
4562         } else
4563           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4564       }
4565       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4566       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4567       if (MaskFirst)
4568         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4569                            Mask);
4570       else
4571         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4572                            Mask);
4573     }
4574   }
4575 
4576   SDValue IndexNodes[SystemZ::VectorBytes];
4577   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4578     if (Bytes[I] >= 0)
4579       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4580     else
4581       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4582   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4583   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4584                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4585 }
4586 
4587 namespace {
4588 // Describes a general N-operand vector shuffle.
4589 struct GeneralShuffle {
4590   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4591   void addUndef();
4592   bool add(SDValue, unsigned);
4593   SDValue getNode(SelectionDAG &, const SDLoc &);
4594   void tryPrepareForUnpack();
4595   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4596   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4597 
4598   // The operands of the shuffle.
4599   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4600 
4601   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4602   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4603   // Bytes[I] / SystemZ::VectorBytes.
4604   SmallVector<int, SystemZ::VectorBytes> Bytes;
4605 
4606   // The type of the shuffle result.
4607   EVT VT;
4608 
4609   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4610   unsigned UnpackFromEltSize;
4611 };
4612 }
4613 
4614 // Add an extra undefined element to the shuffle.
4615 void GeneralShuffle::addUndef() {
4616   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4617   for (unsigned I = 0; I < BytesPerElement; ++I)
4618     Bytes.push_back(-1);
4619 }
4620 
4621 // Add an extra element to the shuffle, taking it from element Elem of Op.
4622 // A null Op indicates a vector input whose value will be calculated later;
4623 // there is at most one such input per shuffle and it always has the same
4624 // type as the result. Aborts and returns false if the source vector elements
4625 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4626 // LLVM they become implicitly extended, but this is rare and not optimized.
4627 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4628   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4629 
4630   // The source vector can have wider elements than the result,
4631   // either through an explicit TRUNCATE or because of type legalization.
4632   // We want the least significant part.
4633   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4634   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4635 
4636   // Return false if the source elements are smaller than their destination
4637   // elements.
4638   if (FromBytesPerElement < BytesPerElement)
4639     return false;
4640 
4641   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4642                    (FromBytesPerElement - BytesPerElement));
4643 
4644   // Look through things like shuffles and bitcasts.
4645   while (Op.getNode()) {
4646     if (Op.getOpcode() == ISD::BITCAST)
4647       Op = Op.getOperand(0);
4648     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4649       // See whether the bytes we need come from a contiguous part of one
4650       // operand.
4651       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4652       if (!getVPermMask(Op, OpBytes))
4653         break;
4654       int NewByte;
4655       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4656         break;
4657       if (NewByte < 0) {
4658         addUndef();
4659         return true;
4660       }
4661       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4662       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4663     } else if (Op.isUndef()) {
4664       addUndef();
4665       return true;
4666     } else
4667       break;
4668   }
4669 
4670   // Make sure that the source of the extraction is in Ops.
4671   unsigned OpNo = 0;
4672   for (; OpNo < Ops.size(); ++OpNo)
4673     if (Ops[OpNo] == Op)
4674       break;
4675   if (OpNo == Ops.size())
4676     Ops.push_back(Op);
4677 
4678   // Add the element to Bytes.
4679   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4680   for (unsigned I = 0; I < BytesPerElement; ++I)
4681     Bytes.push_back(Base + I);
4682 
4683   return true;
4684 }
4685 
4686 // Return SDNodes for the completed shuffle.
4687 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4688   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4689 
4690   if (Ops.size() == 0)
4691     return DAG.getUNDEF(VT);
4692 
4693   // Use a single unpack if possible as the last operation.
4694   tryPrepareForUnpack();
4695 
4696   // Make sure that there are at least two shuffle operands.
4697   if (Ops.size() == 1)
4698     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4699 
4700   // Create a tree of shuffles, deferring root node until after the loop.
4701   // Try to redistribute the undefined elements of non-root nodes so that
4702   // the non-root shuffles match something like a pack or merge, then adjust
4703   // the parent node's permute vector to compensate for the new order.
4704   // Among other things, this copes with vectors like <2 x i16> that were
4705   // padded with undefined elements during type legalization.
4706   //
4707   // In the best case this redistribution will lead to the whole tree
4708   // using packs and merges.  It should rarely be a loss in other cases.
4709   unsigned Stride = 1;
4710   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4711     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4712       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4713 
4714       // Create a mask for just these two operands.
4715       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4716       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4717         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4718         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4719         if (OpNo == I)
4720           NewBytes[J] = Byte;
4721         else if (OpNo == I + Stride)
4722           NewBytes[J] = SystemZ::VectorBytes + Byte;
4723         else
4724           NewBytes[J] = -1;
4725       }
4726       // See if it would be better to reorganize NewMask to avoid using VPERM.
4727       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4728       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4729         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4730         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4731         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4732           if (NewBytes[J] >= 0) {
4733             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4734                    "Invalid double permute");
4735             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4736           } else
4737             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4738         }
4739       } else {
4740         // Just use NewBytes on the operands.
4741         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4742         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4743           if (NewBytes[J] >= 0)
4744             Bytes[J] = I * SystemZ::VectorBytes + J;
4745       }
4746     }
4747   }
4748 
4749   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4750   if (Stride > 1) {
4751     Ops[1] = Ops[Stride];
4752     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4753       if (Bytes[I] >= int(SystemZ::VectorBytes))
4754         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4755   }
4756 
4757   // Look for an instruction that can do the permute without resorting
4758   // to VPERM.
4759   unsigned OpNo0, OpNo1;
4760   SDValue Op;
4761   if (unpackWasPrepared() && Ops[1].isUndef())
4762     Op = Ops[0];
4763   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4764     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4765   else
4766     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4767 
4768   Op = insertUnpackIfPrepared(DAG, DL, Op);
4769 
4770   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4771 }
4772 
4773 #ifndef NDEBUG
4774 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4775   dbgs() << Msg.c_str() << " { ";
4776   for (unsigned i = 0; i < Bytes.size(); i++)
4777     dbgs() << Bytes[i] << " ";
4778   dbgs() << "}\n";
4779 }
4780 #endif
4781 
4782 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4783 // after all else by removing the zero vector and the effect of the unpack on
4784 // Bytes.
4785 void GeneralShuffle::tryPrepareForUnpack() {
4786   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4787   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4788     return;
4789 
4790   // Only do this if removing the zero vector reduces the depth, otherwise
4791   // the critical path will increase with the final unpack.
4792   if (Ops.size() > 2 &&
4793       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4794     return;
4795 
4796   // Find an unpack that would allow removing the zero vector from Ops.
4797   UnpackFromEltSize = 1;
4798   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4799     bool MatchUnpack = true;
4800     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4801     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4802       unsigned ToEltSize = UnpackFromEltSize * 2;
4803       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4804       if (!IsZextByte)
4805         SrcBytes.push_back(Bytes[Elt]);
4806       if (Bytes[Elt] != -1) {
4807         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4808         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4809           MatchUnpack = false;
4810           break;
4811         }
4812       }
4813     }
4814     if (MatchUnpack) {
4815       if (Ops.size() == 2) {
4816         // Don't use unpack if a single source operand needs rearrangement.
4817         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4818           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4819             UnpackFromEltSize = UINT_MAX;
4820             return;
4821           }
4822       }
4823       break;
4824     }
4825   }
4826   if (UnpackFromEltSize > 4)
4827     return;
4828 
4829   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4830              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4831              << ".\n";
4832              dumpBytes(Bytes, "Original Bytes vector:"););
4833 
4834   // Apply the unpack in reverse to the Bytes array.
4835   unsigned B = 0;
4836   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4837     Elt += UnpackFromEltSize;
4838     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4839       Bytes[B] = Bytes[Elt];
4840   }
4841   while (B < SystemZ::VectorBytes)
4842     Bytes[B++] = -1;
4843 
4844   // Remove the zero vector from Ops
4845   Ops.erase(&Ops[ZeroVecOpNo]);
4846   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4847     if (Bytes[I] >= 0) {
4848       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4849       if (OpNo > ZeroVecOpNo)
4850         Bytes[I] -= SystemZ::VectorBytes;
4851     }
4852 
4853   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4854              dbgs() << "\n";);
4855 }
4856 
4857 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4858                                                const SDLoc &DL,
4859                                                SDValue Op) {
4860   if (!unpackWasPrepared())
4861     return Op;
4862   unsigned InBits = UnpackFromEltSize * 8;
4863   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4864                                 SystemZ::VectorBits / InBits);
4865   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4866   unsigned OutBits = InBits * 2;
4867   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4868                                SystemZ::VectorBits / OutBits);
4869   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4870 }
4871 
4872 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4873 static bool isScalarToVector(SDValue Op) {
4874   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4875     if (!Op.getOperand(I).isUndef())
4876       return false;
4877   return true;
4878 }
4879 
4880 // Return a vector of type VT that contains Value in the first element.
4881 // The other elements don't matter.
4882 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4883                                    SDValue Value) {
4884   // If we have a constant, replicate it to all elements and let the
4885   // BUILD_VECTOR lowering take care of it.
4886   if (Value.getOpcode() == ISD::Constant ||
4887       Value.getOpcode() == ISD::ConstantFP) {
4888     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4889     return DAG.getBuildVector(VT, DL, Ops);
4890   }
4891   if (Value.isUndef())
4892     return DAG.getUNDEF(VT);
4893   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4894 }
4895 
4896 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4897 // element 1.  Used for cases in which replication is cheap.
4898 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4899                                  SDValue Op0, SDValue Op1) {
4900   if (Op0.isUndef()) {
4901     if (Op1.isUndef())
4902       return DAG.getUNDEF(VT);
4903     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4904   }
4905   if (Op1.isUndef())
4906     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4907   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4908                      buildScalarToVector(DAG, DL, VT, Op0),
4909                      buildScalarToVector(DAG, DL, VT, Op1));
4910 }
4911 
4912 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4913 // vector for them.
4914 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4915                           SDValue Op1) {
4916   if (Op0.isUndef() && Op1.isUndef())
4917     return DAG.getUNDEF(MVT::v2i64);
4918   // If one of the two inputs is undefined then replicate the other one,
4919   // in order to avoid using another register unnecessarily.
4920   if (Op0.isUndef())
4921     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4922   else if (Op1.isUndef())
4923     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4924   else {
4925     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4926     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4927   }
4928   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4929 }
4930 
4931 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4932 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4933 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4934 // would benefit from this representation and return it if so.
4935 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4936                                      BuildVectorSDNode *BVN) {
4937   EVT VT = BVN->getValueType(0);
4938   unsigned NumElements = VT.getVectorNumElements();
4939 
4940   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4941   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4942   // need a BUILD_VECTOR, add an additional placeholder operand for that
4943   // BUILD_VECTOR and store its operands in ResidueOps.
4944   GeneralShuffle GS(VT);
4945   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4946   bool FoundOne = false;
4947   for (unsigned I = 0; I < NumElements; ++I) {
4948     SDValue Op = BVN->getOperand(I);
4949     if (Op.getOpcode() == ISD::TRUNCATE)
4950       Op = Op.getOperand(0);
4951     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4952         Op.getOperand(1).getOpcode() == ISD::Constant) {
4953       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4954       if (!GS.add(Op.getOperand(0), Elem))
4955         return SDValue();
4956       FoundOne = true;
4957     } else if (Op.isUndef()) {
4958       GS.addUndef();
4959     } else {
4960       if (!GS.add(SDValue(), ResidueOps.size()))
4961         return SDValue();
4962       ResidueOps.push_back(BVN->getOperand(I));
4963     }
4964   }
4965 
4966   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4967   if (!FoundOne)
4968     return SDValue();
4969 
4970   // Create the BUILD_VECTOR for the remaining elements, if any.
4971   if (!ResidueOps.empty()) {
4972     while (ResidueOps.size() < NumElements)
4973       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4974     for (auto &Op : GS.Ops) {
4975       if (!Op.getNode()) {
4976         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4977         break;
4978       }
4979     }
4980   }
4981   return GS.getNode(DAG, SDLoc(BVN));
4982 }
4983 
4984 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4985   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4986     return true;
4987   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4988     return true;
4989   return false;
4990 }
4991 
4992 // Combine GPR scalar values Elems into a vector of type VT.
4993 SDValue
4994 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4995                                    SmallVectorImpl<SDValue> &Elems) const {
4996   // See whether there is a single replicated value.
4997   SDValue Single;
4998   unsigned int NumElements = Elems.size();
4999   unsigned int Count = 0;
5000   for (auto Elem : Elems) {
5001     if (!Elem.isUndef()) {
5002       if (!Single.getNode())
5003         Single = Elem;
5004       else if (Elem != Single) {
5005         Single = SDValue();
5006         break;
5007       }
5008       Count += 1;
5009     }
5010   }
5011   // There are three cases here:
5012   //
5013   // - if the only defined element is a loaded one, the best sequence
5014   //   is a replicating load.
5015   //
5016   // - otherwise, if the only defined element is an i64 value, we will
5017   //   end up with the same VLVGP sequence regardless of whether we short-cut
5018   //   for replication or fall through to the later code.
5019   //
5020   // - otherwise, if the only defined element is an i32 or smaller value,
5021   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5022   //   This is only a win if the single defined element is used more than once.
5023   //   In other cases we're better off using a single VLVGx.
5024   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5025     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5026 
5027   // If all elements are loads, use VLREP/VLEs (below).
5028   bool AllLoads = true;
5029   for (auto Elem : Elems)
5030     if (!isVectorElementLoad(Elem)) {
5031       AllLoads = false;
5032       break;
5033     }
5034 
5035   // The best way of building a v2i64 from two i64s is to use VLVGP.
5036   if (VT == MVT::v2i64 && !AllLoads)
5037     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5038 
5039   // Use a 64-bit merge high to combine two doubles.
5040   if (VT == MVT::v2f64 && !AllLoads)
5041     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5042 
5043   // Build v4f32 values directly from the FPRs:
5044   //
5045   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5046   //         V              V         VMRHF
5047   //      <ABxx>         <CDxx>
5048   //                V                 VMRHG
5049   //              <ABCD>
5050   if (VT == MVT::v4f32 && !AllLoads) {
5051     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5052     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5053     // Avoid unnecessary undefs by reusing the other operand.
5054     if (Op01.isUndef())
5055       Op01 = Op23;
5056     else if (Op23.isUndef())
5057       Op23 = Op01;
5058     // Merging identical replications is a no-op.
5059     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5060       return Op01;
5061     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5062     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5063     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5064                              DL, MVT::v2i64, Op01, Op23);
5065     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5066   }
5067 
5068   // Collect the constant terms.
5069   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5070   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5071 
5072   unsigned NumConstants = 0;
5073   for (unsigned I = 0; I < NumElements; ++I) {
5074     SDValue Elem = Elems[I];
5075     if (Elem.getOpcode() == ISD::Constant ||
5076         Elem.getOpcode() == ISD::ConstantFP) {
5077       NumConstants += 1;
5078       Constants[I] = Elem;
5079       Done[I] = true;
5080     }
5081   }
5082   // If there was at least one constant, fill in the other elements of
5083   // Constants with undefs to get a full vector constant and use that
5084   // as the starting point.
5085   SDValue Result;
5086   SDValue ReplicatedVal;
5087   if (NumConstants > 0) {
5088     for (unsigned I = 0; I < NumElements; ++I)
5089       if (!Constants[I].getNode())
5090         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5091     Result = DAG.getBuildVector(VT, DL, Constants);
5092   } else {
5093     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5094     // avoid a false dependency on any previous contents of the vector
5095     // register.
5096 
5097     // Use a VLREP if at least one element is a load. Make sure to replicate
5098     // the load with the most elements having its value.
5099     std::map<const SDNode*, unsigned> UseCounts;
5100     SDNode *LoadMaxUses = nullptr;
5101     for (unsigned I = 0; I < NumElements; ++I)
5102       if (isVectorElementLoad(Elems[I])) {
5103         SDNode *Ld = Elems[I].getNode();
5104         UseCounts[Ld]++;
5105         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5106           LoadMaxUses = Ld;
5107       }
5108     if (LoadMaxUses != nullptr) {
5109       ReplicatedVal = SDValue(LoadMaxUses, 0);
5110       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5111     } else {
5112       // Try to use VLVGP.
5113       unsigned I1 = NumElements / 2 - 1;
5114       unsigned I2 = NumElements - 1;
5115       bool Def1 = !Elems[I1].isUndef();
5116       bool Def2 = !Elems[I2].isUndef();
5117       if (Def1 || Def2) {
5118         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5119         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5120         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5121                              joinDwords(DAG, DL, Elem1, Elem2));
5122         Done[I1] = true;
5123         Done[I2] = true;
5124       } else
5125         Result = DAG.getUNDEF(VT);
5126     }
5127   }
5128 
5129   // Use VLVGx to insert the other elements.
5130   for (unsigned I = 0; I < NumElements; ++I)
5131     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5132       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5133                            DAG.getConstant(I, DL, MVT::i32));
5134   return Result;
5135 }
5136 
5137 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5138                                                  SelectionDAG &DAG) const {
5139   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5140   SDLoc DL(Op);
5141   EVT VT = Op.getValueType();
5142 
5143   if (BVN->isConstant()) {
5144     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5145       return Op;
5146 
5147     // Fall back to loading it from memory.
5148     return SDValue();
5149   }
5150 
5151   // See if we should use shuffles to construct the vector from other vectors.
5152   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5153     return Res;
5154 
5155   // Detect SCALAR_TO_VECTOR conversions.
5156   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5157     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5158 
5159   // Otherwise use buildVector to build the vector up from GPRs.
5160   unsigned NumElements = Op.getNumOperands();
5161   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5162   for (unsigned I = 0; I < NumElements; ++I)
5163     Ops[I] = Op.getOperand(I);
5164   return buildVector(DAG, DL, VT, Ops);
5165 }
5166 
5167 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5168                                                    SelectionDAG &DAG) const {
5169   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5170   SDLoc DL(Op);
5171   EVT VT = Op.getValueType();
5172   unsigned NumElements = VT.getVectorNumElements();
5173 
5174   if (VSN->isSplat()) {
5175     SDValue Op0 = Op.getOperand(0);
5176     unsigned Index = VSN->getSplatIndex();
5177     assert(Index < VT.getVectorNumElements() &&
5178            "Splat index should be defined and in first operand");
5179     // See whether the value we're splatting is directly available as a scalar.
5180     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5181         Op0.getOpcode() == ISD::BUILD_VECTOR)
5182       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5183     // Otherwise keep it as a vector-to-vector operation.
5184     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5185                        DAG.getTargetConstant(Index, DL, MVT::i32));
5186   }
5187 
5188   GeneralShuffle GS(VT);
5189   for (unsigned I = 0; I < NumElements; ++I) {
5190     int Elt = VSN->getMaskElt(I);
5191     if (Elt < 0)
5192       GS.addUndef();
5193     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5194                      unsigned(Elt) % NumElements))
5195       return SDValue();
5196   }
5197   return GS.getNode(DAG, SDLoc(VSN));
5198 }
5199 
5200 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5201                                                      SelectionDAG &DAG) const {
5202   SDLoc DL(Op);
5203   // Just insert the scalar into element 0 of an undefined vector.
5204   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5205                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5206                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5207 }
5208 
5209 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5210                                                       SelectionDAG &DAG) const {
5211   // Handle insertions of floating-point values.
5212   SDLoc DL(Op);
5213   SDValue Op0 = Op.getOperand(0);
5214   SDValue Op1 = Op.getOperand(1);
5215   SDValue Op2 = Op.getOperand(2);
5216   EVT VT = Op.getValueType();
5217 
5218   // Insertions into constant indices of a v2f64 can be done using VPDI.
5219   // However, if the inserted value is a bitcast or a constant then it's
5220   // better to use GPRs, as below.
5221   if (VT == MVT::v2f64 &&
5222       Op1.getOpcode() != ISD::BITCAST &&
5223       Op1.getOpcode() != ISD::ConstantFP &&
5224       Op2.getOpcode() == ISD::Constant) {
5225     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5226     unsigned Mask = VT.getVectorNumElements() - 1;
5227     if (Index <= Mask)
5228       return Op;
5229   }
5230 
5231   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5232   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5233   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5234   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5235                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5236                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5237   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5238 }
5239 
5240 SDValue
5241 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5242                                                SelectionDAG &DAG) const {
5243   // Handle extractions of floating-point values.
5244   SDLoc DL(Op);
5245   SDValue Op0 = Op.getOperand(0);
5246   SDValue Op1 = Op.getOperand(1);
5247   EVT VT = Op.getValueType();
5248   EVT VecVT = Op0.getValueType();
5249 
5250   // Extractions of constant indices can be done directly.
5251   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5252     uint64_t Index = CIndexN->getZExtValue();
5253     unsigned Mask = VecVT.getVectorNumElements() - 1;
5254     if (Index <= Mask)
5255       return Op;
5256   }
5257 
5258   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5259   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5260   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5261   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5262                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5263   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5264 }
5265 
5266 SDValue SystemZTargetLowering::
5267 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5268   SDValue PackedOp = Op.getOperand(0);
5269   EVT OutVT = Op.getValueType();
5270   EVT InVT = PackedOp.getValueType();
5271   unsigned ToBits = OutVT.getScalarSizeInBits();
5272   unsigned FromBits = InVT.getScalarSizeInBits();
5273   do {
5274     FromBits *= 2;
5275     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5276                                  SystemZ::VectorBits / FromBits);
5277     PackedOp =
5278       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5279   } while (FromBits != ToBits);
5280   return PackedOp;
5281 }
5282 
5283 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5284 SDValue SystemZTargetLowering::
5285 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5286   SDValue PackedOp = Op.getOperand(0);
5287   SDLoc DL(Op);
5288   EVT OutVT = Op.getValueType();
5289   EVT InVT = PackedOp.getValueType();
5290   unsigned InNumElts = InVT.getVectorNumElements();
5291   unsigned OutNumElts = OutVT.getVectorNumElements();
5292   unsigned NumInPerOut = InNumElts / OutNumElts;
5293 
5294   SDValue ZeroVec =
5295     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5296 
5297   SmallVector<int, 16> Mask(InNumElts);
5298   unsigned ZeroVecElt = InNumElts;
5299   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5300     unsigned MaskElt = PackedElt * NumInPerOut;
5301     unsigned End = MaskElt + NumInPerOut - 1;
5302     for (; MaskElt < End; MaskElt++)
5303       Mask[MaskElt] = ZeroVecElt++;
5304     Mask[MaskElt] = PackedElt;
5305   }
5306   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5307   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5308 }
5309 
5310 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5311                                           unsigned ByScalar) const {
5312   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5313   SDValue Op0 = Op.getOperand(0);
5314   SDValue Op1 = Op.getOperand(1);
5315   SDLoc DL(Op);
5316   EVT VT = Op.getValueType();
5317   unsigned ElemBitSize = VT.getScalarSizeInBits();
5318 
5319   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5320   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5321     APInt SplatBits, SplatUndef;
5322     unsigned SplatBitSize;
5323     bool HasAnyUndefs;
5324     // Check for constant splats.  Use ElemBitSize as the minimum element
5325     // width and reject splats that need wider elements.
5326     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5327                              ElemBitSize, true) &&
5328         SplatBitSize == ElemBitSize) {
5329       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5330                                       DL, MVT::i32);
5331       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5332     }
5333     // Check for variable splats.
5334     BitVector UndefElements;
5335     SDValue Splat = BVN->getSplatValue(&UndefElements);
5336     if (Splat) {
5337       // Since i32 is the smallest legal type, we either need a no-op
5338       // or a truncation.
5339       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5340       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5341     }
5342   }
5343 
5344   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5345   // and the shift amount is directly available in a GPR.
5346   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5347     if (VSN->isSplat()) {
5348       SDValue VSNOp0 = VSN->getOperand(0);
5349       unsigned Index = VSN->getSplatIndex();
5350       assert(Index < VT.getVectorNumElements() &&
5351              "Splat index should be defined and in first operand");
5352       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5353           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5354         // Since i32 is the smallest legal type, we either need a no-op
5355         // or a truncation.
5356         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5357                                     VSNOp0.getOperand(Index));
5358         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5359       }
5360     }
5361   }
5362 
5363   // Otherwise just treat the current form as legal.
5364   return Op;
5365 }
5366 
5367 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5368                                               SelectionDAG &DAG) const {
5369   switch (Op.getOpcode()) {
5370   case ISD::FRAMEADDR:
5371     return lowerFRAMEADDR(Op, DAG);
5372   case ISD::RETURNADDR:
5373     return lowerRETURNADDR(Op, DAG);
5374   case ISD::BR_CC:
5375     return lowerBR_CC(Op, DAG);
5376   case ISD::SELECT_CC:
5377     return lowerSELECT_CC(Op, DAG);
5378   case ISD::SETCC:
5379     return lowerSETCC(Op, DAG);
5380   case ISD::STRICT_FSETCC:
5381     return lowerSTRICT_FSETCC(Op, DAG, false);
5382   case ISD::STRICT_FSETCCS:
5383     return lowerSTRICT_FSETCC(Op, DAG, true);
5384   case ISD::GlobalAddress:
5385     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5386   case ISD::GlobalTLSAddress:
5387     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5388   case ISD::BlockAddress:
5389     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5390   case ISD::JumpTable:
5391     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5392   case ISD::ConstantPool:
5393     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5394   case ISD::BITCAST:
5395     return lowerBITCAST(Op, DAG);
5396   case ISD::VASTART:
5397     return lowerVASTART(Op, DAG);
5398   case ISD::VACOPY:
5399     return lowerVACOPY(Op, DAG);
5400   case ISD::DYNAMIC_STACKALLOC:
5401     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5402   case ISD::GET_DYNAMIC_AREA_OFFSET:
5403     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5404   case ISD::SMUL_LOHI:
5405     return lowerSMUL_LOHI(Op, DAG);
5406   case ISD::UMUL_LOHI:
5407     return lowerUMUL_LOHI(Op, DAG);
5408   case ISD::SDIVREM:
5409     return lowerSDIVREM(Op, DAG);
5410   case ISD::UDIVREM:
5411     return lowerUDIVREM(Op, DAG);
5412   case ISD::SADDO:
5413   case ISD::SSUBO:
5414   case ISD::UADDO:
5415   case ISD::USUBO:
5416     return lowerXALUO(Op, DAG);
5417   case ISD::ADDCARRY:
5418   case ISD::SUBCARRY:
5419     return lowerADDSUBCARRY(Op, DAG);
5420   case ISD::OR:
5421     return lowerOR(Op, DAG);
5422   case ISD::CTPOP:
5423     return lowerCTPOP(Op, DAG);
5424   case ISD::ATOMIC_FENCE:
5425     return lowerATOMIC_FENCE(Op, DAG);
5426   case ISD::ATOMIC_SWAP:
5427     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5428   case ISD::ATOMIC_STORE:
5429     return lowerATOMIC_STORE(Op, DAG);
5430   case ISD::ATOMIC_LOAD:
5431     return lowerATOMIC_LOAD(Op, DAG);
5432   case ISD::ATOMIC_LOAD_ADD:
5433     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5434   case ISD::ATOMIC_LOAD_SUB:
5435     return lowerATOMIC_LOAD_SUB(Op, DAG);
5436   case ISD::ATOMIC_LOAD_AND:
5437     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5438   case ISD::ATOMIC_LOAD_OR:
5439     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5440   case ISD::ATOMIC_LOAD_XOR:
5441     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5442   case ISD::ATOMIC_LOAD_NAND:
5443     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5444   case ISD::ATOMIC_LOAD_MIN:
5445     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5446   case ISD::ATOMIC_LOAD_MAX:
5447     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5448   case ISD::ATOMIC_LOAD_UMIN:
5449     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5450   case ISD::ATOMIC_LOAD_UMAX:
5451     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5452   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5453     return lowerATOMIC_CMP_SWAP(Op, DAG);
5454   case ISD::STACKSAVE:
5455     return lowerSTACKSAVE(Op, DAG);
5456   case ISD::STACKRESTORE:
5457     return lowerSTACKRESTORE(Op, DAG);
5458   case ISD::PREFETCH:
5459     return lowerPREFETCH(Op, DAG);
5460   case ISD::INTRINSIC_W_CHAIN:
5461     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5462   case ISD::INTRINSIC_WO_CHAIN:
5463     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5464   case ISD::BUILD_VECTOR:
5465     return lowerBUILD_VECTOR(Op, DAG);
5466   case ISD::VECTOR_SHUFFLE:
5467     return lowerVECTOR_SHUFFLE(Op, DAG);
5468   case ISD::SCALAR_TO_VECTOR:
5469     return lowerSCALAR_TO_VECTOR(Op, DAG);
5470   case ISD::INSERT_VECTOR_ELT:
5471     return lowerINSERT_VECTOR_ELT(Op, DAG);
5472   case ISD::EXTRACT_VECTOR_ELT:
5473     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5474   case ISD::SIGN_EXTEND_VECTOR_INREG:
5475     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5476   case ISD::ZERO_EXTEND_VECTOR_INREG:
5477     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5478   case ISD::SHL:
5479     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5480   case ISD::SRL:
5481     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5482   case ISD::SRA:
5483     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5484   default:
5485     llvm_unreachable("Unexpected node to lower");
5486   }
5487 }
5488 
5489 // Lower operations with invalid operand or result types (currently used
5490 // only for 128-bit integer types).
5491 
5492 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5493   SDLoc DL(In);
5494   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5495                            DAG.getIntPtrConstant(0, DL));
5496   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5497                            DAG.getIntPtrConstant(1, DL));
5498   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5499                                     MVT::Untyped, Hi, Lo);
5500   return SDValue(Pair, 0);
5501 }
5502 
5503 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5504   SDLoc DL(In);
5505   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5506                                           DL, MVT::i64, In);
5507   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5508                                           DL, MVT::i64, In);
5509   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5510 }
5511 
5512 void
5513 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5514                                              SmallVectorImpl<SDValue> &Results,
5515                                              SelectionDAG &DAG) const {
5516   switch (N->getOpcode()) {
5517   case ISD::ATOMIC_LOAD: {
5518     SDLoc DL(N);
5519     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5520     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5521     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5522     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5523                                           DL, Tys, Ops, MVT::i128, MMO);
5524     Results.push_back(lowerGR128ToI128(DAG, Res));
5525     Results.push_back(Res.getValue(1));
5526     break;
5527   }
5528   case ISD::ATOMIC_STORE: {
5529     SDLoc DL(N);
5530     SDVTList Tys = DAG.getVTList(MVT::Other);
5531     SDValue Ops[] = { N->getOperand(0),
5532                       lowerI128ToGR128(DAG, N->getOperand(2)),
5533                       N->getOperand(1) };
5534     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5535     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5536                                           DL, Tys, Ops, MVT::i128, MMO);
5537     // We have to enforce sequential consistency by performing a
5538     // serialization operation after the store.
5539     if (cast<AtomicSDNode>(N)->getOrdering() ==
5540         AtomicOrdering::SequentiallyConsistent)
5541       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5542                                        MVT::Other, Res), 0);
5543     Results.push_back(Res);
5544     break;
5545   }
5546   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5547     SDLoc DL(N);
5548     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5549     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5550                       lowerI128ToGR128(DAG, N->getOperand(2)),
5551                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5552     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5553     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5554                                           DL, Tys, Ops, MVT::i128, MMO);
5555     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5556                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5557     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5558     Results.push_back(lowerGR128ToI128(DAG, Res));
5559     Results.push_back(Success);
5560     Results.push_back(Res.getValue(2));
5561     break;
5562   }
5563   default:
5564     llvm_unreachable("Unexpected node to lower");
5565   }
5566 }
5567 
5568 void
5569 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5570                                           SmallVectorImpl<SDValue> &Results,
5571                                           SelectionDAG &DAG) const {
5572   return LowerOperationWrapper(N, Results, DAG);
5573 }
5574 
5575 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5576 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5577   switch ((SystemZISD::NodeType)Opcode) {
5578     case SystemZISD::FIRST_NUMBER: break;
5579     OPCODE(RET_FLAG);
5580     OPCODE(CALL);
5581     OPCODE(SIBCALL);
5582     OPCODE(TLS_GDCALL);
5583     OPCODE(TLS_LDCALL);
5584     OPCODE(PCREL_WRAPPER);
5585     OPCODE(PCREL_OFFSET);
5586     OPCODE(ICMP);
5587     OPCODE(FCMP);
5588     OPCODE(STRICT_FCMP);
5589     OPCODE(STRICT_FCMPS);
5590     OPCODE(TM);
5591     OPCODE(BR_CCMASK);
5592     OPCODE(SELECT_CCMASK);
5593     OPCODE(ADJDYNALLOC);
5594     OPCODE(PROBED_ALLOCA);
5595     OPCODE(POPCNT);
5596     OPCODE(SMUL_LOHI);
5597     OPCODE(UMUL_LOHI);
5598     OPCODE(SDIVREM);
5599     OPCODE(UDIVREM);
5600     OPCODE(SADDO);
5601     OPCODE(SSUBO);
5602     OPCODE(UADDO);
5603     OPCODE(USUBO);
5604     OPCODE(ADDCARRY);
5605     OPCODE(SUBCARRY);
5606     OPCODE(GET_CCMASK);
5607     OPCODE(MVC);
5608     OPCODE(MVC_LOOP);
5609     OPCODE(NC);
5610     OPCODE(NC_LOOP);
5611     OPCODE(OC);
5612     OPCODE(OC_LOOP);
5613     OPCODE(XC);
5614     OPCODE(XC_LOOP);
5615     OPCODE(CLC);
5616     OPCODE(CLC_LOOP);
5617     OPCODE(STPCPY);
5618     OPCODE(STRCMP);
5619     OPCODE(SEARCH_STRING);
5620     OPCODE(IPM);
5621     OPCODE(MEMBARRIER);
5622     OPCODE(TBEGIN);
5623     OPCODE(TBEGIN_NOFLOAT);
5624     OPCODE(TEND);
5625     OPCODE(BYTE_MASK);
5626     OPCODE(ROTATE_MASK);
5627     OPCODE(REPLICATE);
5628     OPCODE(JOIN_DWORDS);
5629     OPCODE(SPLAT);
5630     OPCODE(MERGE_HIGH);
5631     OPCODE(MERGE_LOW);
5632     OPCODE(SHL_DOUBLE);
5633     OPCODE(PERMUTE_DWORDS);
5634     OPCODE(PERMUTE);
5635     OPCODE(PACK);
5636     OPCODE(PACKS_CC);
5637     OPCODE(PACKLS_CC);
5638     OPCODE(UNPACK_HIGH);
5639     OPCODE(UNPACKL_HIGH);
5640     OPCODE(UNPACK_LOW);
5641     OPCODE(UNPACKL_LOW);
5642     OPCODE(VSHL_BY_SCALAR);
5643     OPCODE(VSRL_BY_SCALAR);
5644     OPCODE(VSRA_BY_SCALAR);
5645     OPCODE(VSUM);
5646     OPCODE(VICMPE);
5647     OPCODE(VICMPH);
5648     OPCODE(VICMPHL);
5649     OPCODE(VICMPES);
5650     OPCODE(VICMPHS);
5651     OPCODE(VICMPHLS);
5652     OPCODE(VFCMPE);
5653     OPCODE(STRICT_VFCMPE);
5654     OPCODE(STRICT_VFCMPES);
5655     OPCODE(VFCMPH);
5656     OPCODE(STRICT_VFCMPH);
5657     OPCODE(STRICT_VFCMPHS);
5658     OPCODE(VFCMPHE);
5659     OPCODE(STRICT_VFCMPHE);
5660     OPCODE(STRICT_VFCMPHES);
5661     OPCODE(VFCMPES);
5662     OPCODE(VFCMPHS);
5663     OPCODE(VFCMPHES);
5664     OPCODE(VFTCI);
5665     OPCODE(VEXTEND);
5666     OPCODE(STRICT_VEXTEND);
5667     OPCODE(VROUND);
5668     OPCODE(STRICT_VROUND);
5669     OPCODE(VTM);
5670     OPCODE(VFAE_CC);
5671     OPCODE(VFAEZ_CC);
5672     OPCODE(VFEE_CC);
5673     OPCODE(VFEEZ_CC);
5674     OPCODE(VFENE_CC);
5675     OPCODE(VFENEZ_CC);
5676     OPCODE(VISTR_CC);
5677     OPCODE(VSTRC_CC);
5678     OPCODE(VSTRCZ_CC);
5679     OPCODE(VSTRS_CC);
5680     OPCODE(VSTRSZ_CC);
5681     OPCODE(TDC);
5682     OPCODE(ATOMIC_SWAPW);
5683     OPCODE(ATOMIC_LOADW_ADD);
5684     OPCODE(ATOMIC_LOADW_SUB);
5685     OPCODE(ATOMIC_LOADW_AND);
5686     OPCODE(ATOMIC_LOADW_OR);
5687     OPCODE(ATOMIC_LOADW_XOR);
5688     OPCODE(ATOMIC_LOADW_NAND);
5689     OPCODE(ATOMIC_LOADW_MIN);
5690     OPCODE(ATOMIC_LOADW_MAX);
5691     OPCODE(ATOMIC_LOADW_UMIN);
5692     OPCODE(ATOMIC_LOADW_UMAX);
5693     OPCODE(ATOMIC_CMP_SWAPW);
5694     OPCODE(ATOMIC_CMP_SWAP);
5695     OPCODE(ATOMIC_LOAD_128);
5696     OPCODE(ATOMIC_STORE_128);
5697     OPCODE(ATOMIC_CMP_SWAP_128);
5698     OPCODE(LRV);
5699     OPCODE(STRV);
5700     OPCODE(VLER);
5701     OPCODE(VSTER);
5702     OPCODE(PREFETCH);
5703   }
5704   return nullptr;
5705 #undef OPCODE
5706 }
5707 
5708 // Return true if VT is a vector whose elements are a whole number of bytes
5709 // in width. Also check for presence of vector support.
5710 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5711   if (!Subtarget.hasVector())
5712     return false;
5713 
5714   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5715 }
5716 
5717 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5718 // producing a result of type ResVT.  Op is a possibly bitcast version
5719 // of the input vector and Index is the index (based on type VecVT) that
5720 // should be extracted.  Return the new extraction if a simplification
5721 // was possible or if Force is true.
5722 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5723                                               EVT VecVT, SDValue Op,
5724                                               unsigned Index,
5725                                               DAGCombinerInfo &DCI,
5726                                               bool Force) const {
5727   SelectionDAG &DAG = DCI.DAG;
5728 
5729   // The number of bytes being extracted.
5730   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5731 
5732   for (;;) {
5733     unsigned Opcode = Op.getOpcode();
5734     if (Opcode == ISD::BITCAST)
5735       // Look through bitcasts.
5736       Op = Op.getOperand(0);
5737     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5738              canTreatAsByteVector(Op.getValueType())) {
5739       // Get a VPERM-like permute mask and see whether the bytes covered
5740       // by the extracted element are a contiguous sequence from one
5741       // source operand.
5742       SmallVector<int, SystemZ::VectorBytes> Bytes;
5743       if (!getVPermMask(Op, Bytes))
5744         break;
5745       int First;
5746       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5747                            BytesPerElement, First))
5748         break;
5749       if (First < 0)
5750         return DAG.getUNDEF(ResVT);
5751       // Make sure the contiguous sequence starts at a multiple of the
5752       // original element size.
5753       unsigned Byte = unsigned(First) % Bytes.size();
5754       if (Byte % BytesPerElement != 0)
5755         break;
5756       // We can get the extracted value directly from an input.
5757       Index = Byte / BytesPerElement;
5758       Op = Op.getOperand(unsigned(First) / Bytes.size());
5759       Force = true;
5760     } else if (Opcode == ISD::BUILD_VECTOR &&
5761                canTreatAsByteVector(Op.getValueType())) {
5762       // We can only optimize this case if the BUILD_VECTOR elements are
5763       // at least as wide as the extracted value.
5764       EVT OpVT = Op.getValueType();
5765       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5766       if (OpBytesPerElement < BytesPerElement)
5767         break;
5768       // Make sure that the least-significant bit of the extracted value
5769       // is the least significant bit of an input.
5770       unsigned End = (Index + 1) * BytesPerElement;
5771       if (End % OpBytesPerElement != 0)
5772         break;
5773       // We're extracting the low part of one operand of the BUILD_VECTOR.
5774       Op = Op.getOperand(End / OpBytesPerElement - 1);
5775       if (!Op.getValueType().isInteger()) {
5776         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5777         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5778         DCI.AddToWorklist(Op.getNode());
5779       }
5780       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5781       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5782       if (VT != ResVT) {
5783         DCI.AddToWorklist(Op.getNode());
5784         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5785       }
5786       return Op;
5787     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5788                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5789                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5790                canTreatAsByteVector(Op.getValueType()) &&
5791                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5792       // Make sure that only the unextended bits are significant.
5793       EVT ExtVT = Op.getValueType();
5794       EVT OpVT = Op.getOperand(0).getValueType();
5795       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5796       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5797       unsigned Byte = Index * BytesPerElement;
5798       unsigned SubByte = Byte % ExtBytesPerElement;
5799       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5800       if (SubByte < MinSubByte ||
5801           SubByte + BytesPerElement > ExtBytesPerElement)
5802         break;
5803       // Get the byte offset of the unextended element
5804       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5805       // ...then add the byte offset relative to that element.
5806       Byte += SubByte - MinSubByte;
5807       if (Byte % BytesPerElement != 0)
5808         break;
5809       Op = Op.getOperand(0);
5810       Index = Byte / BytesPerElement;
5811       Force = true;
5812     } else
5813       break;
5814   }
5815   if (Force) {
5816     if (Op.getValueType() != VecVT) {
5817       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5818       DCI.AddToWorklist(Op.getNode());
5819     }
5820     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5821                        DAG.getConstant(Index, DL, MVT::i32));
5822   }
5823   return SDValue();
5824 }
5825 
5826 // Optimize vector operations in scalar value Op on the basis that Op
5827 // is truncated to TruncVT.
5828 SDValue SystemZTargetLowering::combineTruncateExtract(
5829     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5830   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5831   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5832   // of type TruncVT.
5833   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5834       TruncVT.getSizeInBits() % 8 == 0) {
5835     SDValue Vec = Op.getOperand(0);
5836     EVT VecVT = Vec.getValueType();
5837     if (canTreatAsByteVector(VecVT)) {
5838       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5839         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5840         unsigned TruncBytes = TruncVT.getStoreSize();
5841         if (BytesPerElement % TruncBytes == 0) {
5842           // Calculate the value of Y' in the above description.  We are
5843           // splitting the original elements into Scale equal-sized pieces
5844           // and for truncation purposes want the last (least-significant)
5845           // of these pieces for IndexN.  This is easiest to do by calculating
5846           // the start index of the following element and then subtracting 1.
5847           unsigned Scale = BytesPerElement / TruncBytes;
5848           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5849 
5850           // Defer the creation of the bitcast from X to combineExtract,
5851           // which might be able to optimize the extraction.
5852           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5853                                    VecVT.getStoreSize() / TruncBytes);
5854           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5855           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5856         }
5857       }
5858     }
5859   }
5860   return SDValue();
5861 }
5862 
5863 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5864     SDNode *N, DAGCombinerInfo &DCI) const {
5865   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5866   SelectionDAG &DAG = DCI.DAG;
5867   SDValue N0 = N->getOperand(0);
5868   EVT VT = N->getValueType(0);
5869   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5870     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5871     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5872     if (TrueOp && FalseOp) {
5873       SDLoc DL(N0);
5874       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5875                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5876                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5877       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5878       // If N0 has multiple uses, change other uses as well.
5879       if (!N0.hasOneUse()) {
5880         SDValue TruncSelect =
5881           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5882         DCI.CombineTo(N0.getNode(), TruncSelect);
5883       }
5884       return NewSelect;
5885     }
5886   }
5887   return SDValue();
5888 }
5889 
5890 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5891     SDNode *N, DAGCombinerInfo &DCI) const {
5892   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5893   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5894   // into (select_cc LHS, RHS, -1, 0, COND)
5895   SelectionDAG &DAG = DCI.DAG;
5896   SDValue N0 = N->getOperand(0);
5897   EVT VT = N->getValueType(0);
5898   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5899   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5900     N0 = N0.getOperand(0);
5901   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5902     SDLoc DL(N0);
5903     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5904                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5905                       N0.getOperand(2) };
5906     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5907   }
5908   return SDValue();
5909 }
5910 
5911 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5912     SDNode *N, DAGCombinerInfo &DCI) const {
5913   // Convert (sext (ashr (shl X, C1), C2)) to
5914   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5915   // cheap as narrower ones.
5916   SelectionDAG &DAG = DCI.DAG;
5917   SDValue N0 = N->getOperand(0);
5918   EVT VT = N->getValueType(0);
5919   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5920     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5921     SDValue Inner = N0.getOperand(0);
5922     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5923       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5924         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5925         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5926         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5927         EVT ShiftVT = N0.getOperand(1).getValueType();
5928         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5929                                   Inner.getOperand(0));
5930         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5931                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5932                                                   ShiftVT));
5933         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5934                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5935       }
5936     }
5937   }
5938   return SDValue();
5939 }
5940 
5941 SDValue SystemZTargetLowering::combineMERGE(
5942     SDNode *N, DAGCombinerInfo &DCI) const {
5943   SelectionDAG &DAG = DCI.DAG;
5944   unsigned Opcode = N->getOpcode();
5945   SDValue Op0 = N->getOperand(0);
5946   SDValue Op1 = N->getOperand(1);
5947   if (Op0.getOpcode() == ISD::BITCAST)
5948     Op0 = Op0.getOperand(0);
5949   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5950     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5951     // for v4f32.
5952     if (Op1 == N->getOperand(0))
5953       return Op1;
5954     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5955     EVT VT = Op1.getValueType();
5956     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5957     if (ElemBytes <= 4) {
5958       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5959                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5960       EVT InVT = VT.changeVectorElementTypeToInteger();
5961       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5962                                    SystemZ::VectorBytes / ElemBytes / 2);
5963       if (VT != InVT) {
5964         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5965         DCI.AddToWorklist(Op1.getNode());
5966       }
5967       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5968       DCI.AddToWorklist(Op.getNode());
5969       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5970     }
5971   }
5972   return SDValue();
5973 }
5974 
5975 SDValue SystemZTargetLowering::combineLOAD(
5976     SDNode *N, DAGCombinerInfo &DCI) const {
5977   SelectionDAG &DAG = DCI.DAG;
5978   EVT LdVT = N->getValueType(0);
5979   if (LdVT.isVector() || LdVT.isInteger())
5980     return SDValue();
5981   // Transform a scalar load that is REPLICATEd as well as having other
5982   // use(s) to the form where the other use(s) use the first element of the
5983   // REPLICATE instead of the load. Otherwise instruction selection will not
5984   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5985   // point loads.
5986 
5987   SDValue Replicate;
5988   SmallVector<SDNode*, 8> OtherUses;
5989   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5990        UI != UE; ++UI) {
5991     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5992       if (Replicate)
5993         return SDValue(); // Should never happen
5994       Replicate = SDValue(*UI, 0);
5995     }
5996     else if (UI.getUse().getResNo() == 0)
5997       OtherUses.push_back(*UI);
5998   }
5999   if (!Replicate || OtherUses.empty())
6000     return SDValue();
6001 
6002   SDLoc DL(N);
6003   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6004                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6005   // Update uses of the loaded Value while preserving old chains.
6006   for (SDNode *U : OtherUses) {
6007     SmallVector<SDValue, 8> Ops;
6008     for (SDValue Op : U->ops())
6009       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6010     DAG.UpdateNodeOperands(U, Ops);
6011   }
6012   return SDValue(N, 0);
6013 }
6014 
6015 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6016   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6017     return true;
6018   if (Subtarget.hasVectorEnhancements2())
6019     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6020       return true;
6021   return false;
6022 }
6023 
6024 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6025   if (!VT.isVector() || !VT.isSimple() ||
6026       VT.getSizeInBits() != 128 ||
6027       VT.getScalarSizeInBits() % 8 != 0)
6028     return false;
6029 
6030   unsigned NumElts = VT.getVectorNumElements();
6031   for (unsigned i = 0; i < NumElts; ++i) {
6032     if (M[i] < 0) continue; // ignore UNDEF indices
6033     if ((unsigned) M[i] != NumElts - 1 - i)
6034       return false;
6035   }
6036 
6037   return true;
6038 }
6039 
6040 SDValue SystemZTargetLowering::combineSTORE(
6041     SDNode *N, DAGCombinerInfo &DCI) const {
6042   SelectionDAG &DAG = DCI.DAG;
6043   auto *SN = cast<StoreSDNode>(N);
6044   auto &Op1 = N->getOperand(1);
6045   EVT MemVT = SN->getMemoryVT();
6046   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6047   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6048   // If X has wider elements then convert it to:
6049   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6050   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6051     if (SDValue Value =
6052             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6053       DCI.AddToWorklist(Value.getNode());
6054 
6055       // Rewrite the store with the new form of stored value.
6056       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6057                                SN->getBasePtr(), SN->getMemoryVT(),
6058                                SN->getMemOperand());
6059     }
6060   }
6061   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6062   if (!SN->isTruncatingStore() &&
6063       Op1.getOpcode() == ISD::BSWAP &&
6064       Op1.getNode()->hasOneUse() &&
6065       canLoadStoreByteSwapped(Op1.getValueType())) {
6066 
6067       SDValue BSwapOp = Op1.getOperand(0);
6068 
6069       if (BSwapOp.getValueType() == MVT::i16)
6070         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6071 
6072       SDValue Ops[] = {
6073         N->getOperand(0), BSwapOp, N->getOperand(2)
6074       };
6075 
6076       return
6077         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6078                                 Ops, MemVT, SN->getMemOperand());
6079     }
6080   // Combine STORE (element-swap) into VSTER
6081   if (!SN->isTruncatingStore() &&
6082       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6083       Op1.getNode()->hasOneUse() &&
6084       Subtarget.hasVectorEnhancements2()) {
6085     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6086     ArrayRef<int> ShuffleMask = SVN->getMask();
6087     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6088       SDValue Ops[] = {
6089         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6090       };
6091 
6092       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6093                                      DAG.getVTList(MVT::Other),
6094                                      Ops, MemVT, SN->getMemOperand());
6095     }
6096   }
6097 
6098   return SDValue();
6099 }
6100 
6101 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6102     SDNode *N, DAGCombinerInfo &DCI) const {
6103   SelectionDAG &DAG = DCI.DAG;
6104   // Combine element-swap (LOAD) into VLER
6105   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6106       N->getOperand(0).hasOneUse() &&
6107       Subtarget.hasVectorEnhancements2()) {
6108     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6109     ArrayRef<int> ShuffleMask = SVN->getMask();
6110     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6111       SDValue Load = N->getOperand(0);
6112       LoadSDNode *LD = cast<LoadSDNode>(Load);
6113 
6114       // Create the element-swapping load.
6115       SDValue Ops[] = {
6116         LD->getChain(),    // Chain
6117         LD->getBasePtr()   // Ptr
6118       };
6119       SDValue ESLoad =
6120         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6121                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6122                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6123 
6124       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6125       // by the load dead.
6126       DCI.CombineTo(N, ESLoad);
6127 
6128       // Next, combine the load away, we give it a bogus result value but a real
6129       // chain result.  The result value is dead because the shuffle is dead.
6130       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6131 
6132       // Return N so it doesn't get rechecked!
6133       return SDValue(N, 0);
6134     }
6135   }
6136 
6137   return SDValue();
6138 }
6139 
6140 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6141     SDNode *N, DAGCombinerInfo &DCI) const {
6142   SelectionDAG &DAG = DCI.DAG;
6143 
6144   if (!Subtarget.hasVector())
6145     return SDValue();
6146 
6147   // Look through bitcasts that retain the number of vector elements.
6148   SDValue Op = N->getOperand(0);
6149   if (Op.getOpcode() == ISD::BITCAST &&
6150       Op.getValueType().isVector() &&
6151       Op.getOperand(0).getValueType().isVector() &&
6152       Op.getValueType().getVectorNumElements() ==
6153       Op.getOperand(0).getValueType().getVectorNumElements())
6154     Op = Op.getOperand(0);
6155 
6156   // Pull BSWAP out of a vector extraction.
6157   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6158     EVT VecVT = Op.getValueType();
6159     EVT EltVT = VecVT.getVectorElementType();
6160     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6161                      Op.getOperand(0), N->getOperand(1));
6162     DCI.AddToWorklist(Op.getNode());
6163     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6164     if (EltVT != N->getValueType(0)) {
6165       DCI.AddToWorklist(Op.getNode());
6166       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6167     }
6168     return Op;
6169   }
6170 
6171   // Try to simplify a vector extraction.
6172   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6173     SDValue Op0 = N->getOperand(0);
6174     EVT VecVT = Op0.getValueType();
6175     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6176                           IndexN->getZExtValue(), DCI, false);
6177   }
6178   return SDValue();
6179 }
6180 
6181 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6182     SDNode *N, DAGCombinerInfo &DCI) const {
6183   SelectionDAG &DAG = DCI.DAG;
6184   // (join_dwords X, X) == (replicate X)
6185   if (N->getOperand(0) == N->getOperand(1))
6186     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6187                        N->getOperand(0));
6188   return SDValue();
6189 }
6190 
6191 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6192   SDValue Chain1 = N1->getOperand(0);
6193   SDValue Chain2 = N2->getOperand(0);
6194 
6195   // Trivial case: both nodes take the same chain.
6196   if (Chain1 == Chain2)
6197     return Chain1;
6198 
6199   // FIXME - we could handle more complex cases via TokenFactor,
6200   // assuming we can verify that this would not create a cycle.
6201   return SDValue();
6202 }
6203 
6204 SDValue SystemZTargetLowering::combineFP_ROUND(
6205     SDNode *N, DAGCombinerInfo &DCI) const {
6206 
6207   if (!Subtarget.hasVector())
6208     return SDValue();
6209 
6210   // (fpround (extract_vector_elt X 0))
6211   // (fpround (extract_vector_elt X 1)) ->
6212   // (extract_vector_elt (VROUND X) 0)
6213   // (extract_vector_elt (VROUND X) 2)
6214   //
6215   // This is a special case since the target doesn't really support v2f32s.
6216   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6217   SelectionDAG &DAG = DCI.DAG;
6218   SDValue Op0 = N->getOperand(OpNo);
6219   if (N->getValueType(0) == MVT::f32 &&
6220       Op0.hasOneUse() &&
6221       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6222       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6223       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6224       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6225     SDValue Vec = Op0.getOperand(0);
6226     for (auto *U : Vec->uses()) {
6227       if (U != Op0.getNode() &&
6228           U->hasOneUse() &&
6229           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6230           U->getOperand(0) == Vec &&
6231           U->getOperand(1).getOpcode() == ISD::Constant &&
6232           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6233         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6234         if (OtherRound.getOpcode() == N->getOpcode() &&
6235             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6236             OtherRound.getValueType() == MVT::f32) {
6237           SDValue VRound, Chain;
6238           if (N->isStrictFPOpcode()) {
6239             Chain = MergeInputChains(N, OtherRound.getNode());
6240             if (!Chain)
6241               continue;
6242             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6243                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6244             Chain = VRound.getValue(1);
6245           } else
6246             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6247                                  MVT::v4f32, Vec);
6248           DCI.AddToWorklist(VRound.getNode());
6249           SDValue Extract1 =
6250             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6251                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6252           DCI.AddToWorklist(Extract1.getNode());
6253           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6254           if (Chain)
6255             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6256           SDValue Extract0 =
6257             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6258                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6259           if (Chain)
6260             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6261                                N->getVTList(), Extract0, Chain);
6262           return Extract0;
6263         }
6264       }
6265     }
6266   }
6267   return SDValue();
6268 }
6269 
6270 SDValue SystemZTargetLowering::combineFP_EXTEND(
6271     SDNode *N, DAGCombinerInfo &DCI) const {
6272 
6273   if (!Subtarget.hasVector())
6274     return SDValue();
6275 
6276   // (fpextend (extract_vector_elt X 0))
6277   // (fpextend (extract_vector_elt X 2)) ->
6278   // (extract_vector_elt (VEXTEND X) 0)
6279   // (extract_vector_elt (VEXTEND X) 1)
6280   //
6281   // This is a special case since the target doesn't really support v2f32s.
6282   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6283   SelectionDAG &DAG = DCI.DAG;
6284   SDValue Op0 = N->getOperand(OpNo);
6285   if (N->getValueType(0) == MVT::f64 &&
6286       Op0.hasOneUse() &&
6287       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6288       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6289       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6290       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6291     SDValue Vec = Op0.getOperand(0);
6292     for (auto *U : Vec->uses()) {
6293       if (U != Op0.getNode() &&
6294           U->hasOneUse() &&
6295           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6296           U->getOperand(0) == Vec &&
6297           U->getOperand(1).getOpcode() == ISD::Constant &&
6298           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6299         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6300         if (OtherExtend.getOpcode() == N->getOpcode() &&
6301             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6302             OtherExtend.getValueType() == MVT::f64) {
6303           SDValue VExtend, Chain;
6304           if (N->isStrictFPOpcode()) {
6305             Chain = MergeInputChains(N, OtherExtend.getNode());
6306             if (!Chain)
6307               continue;
6308             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6309                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6310             Chain = VExtend.getValue(1);
6311           } else
6312             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6313                                   MVT::v2f64, Vec);
6314           DCI.AddToWorklist(VExtend.getNode());
6315           SDValue Extract1 =
6316             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6317                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6318           DCI.AddToWorklist(Extract1.getNode());
6319           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6320           if (Chain)
6321             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6322           SDValue Extract0 =
6323             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6324                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6325           if (Chain)
6326             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6327                                N->getVTList(), Extract0, Chain);
6328           return Extract0;
6329         }
6330       }
6331     }
6332   }
6333   return SDValue();
6334 }
6335 
6336 SDValue SystemZTargetLowering::combineINT_TO_FP(
6337     SDNode *N, DAGCombinerInfo &DCI) const {
6338   if (DCI.Level != BeforeLegalizeTypes)
6339     return SDValue();
6340   unsigned Opcode = N->getOpcode();
6341   EVT OutVT = N->getValueType(0);
6342   SelectionDAG &DAG = DCI.DAG;
6343   SDValue Op = N->getOperand(0);
6344   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6345   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6346 
6347   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6348   // v2f64 = uint_to_fp v2i16
6349   // =>
6350   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6351   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6352     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6353                                  OutVT.getVectorNumElements());
6354     unsigned ExtOpcode =
6355       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6356     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6357     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6358   }
6359   return SDValue();
6360 }
6361 
6362 SDValue SystemZTargetLowering::combineBSWAP(
6363     SDNode *N, DAGCombinerInfo &DCI) const {
6364   SelectionDAG &DAG = DCI.DAG;
6365   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6366   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6367       N->getOperand(0).hasOneUse() &&
6368       canLoadStoreByteSwapped(N->getValueType(0))) {
6369       SDValue Load = N->getOperand(0);
6370       LoadSDNode *LD = cast<LoadSDNode>(Load);
6371 
6372       // Create the byte-swapping load.
6373       SDValue Ops[] = {
6374         LD->getChain(),    // Chain
6375         LD->getBasePtr()   // Ptr
6376       };
6377       EVT LoadVT = N->getValueType(0);
6378       if (LoadVT == MVT::i16)
6379         LoadVT = MVT::i32;
6380       SDValue BSLoad =
6381         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6382                                 DAG.getVTList(LoadVT, MVT::Other),
6383                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6384 
6385       // If this is an i16 load, insert the truncate.
6386       SDValue ResVal = BSLoad;
6387       if (N->getValueType(0) == MVT::i16)
6388         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6389 
6390       // First, combine the bswap away.  This makes the value produced by the
6391       // load dead.
6392       DCI.CombineTo(N, ResVal);
6393 
6394       // Next, combine the load away, we give it a bogus result value but a real
6395       // chain result.  The result value is dead because the bswap is dead.
6396       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6397 
6398       // Return N so it doesn't get rechecked!
6399       return SDValue(N, 0);
6400     }
6401 
6402   // Look through bitcasts that retain the number of vector elements.
6403   SDValue Op = N->getOperand(0);
6404   if (Op.getOpcode() == ISD::BITCAST &&
6405       Op.getValueType().isVector() &&
6406       Op.getOperand(0).getValueType().isVector() &&
6407       Op.getValueType().getVectorNumElements() ==
6408       Op.getOperand(0).getValueType().getVectorNumElements())
6409     Op = Op.getOperand(0);
6410 
6411   // Push BSWAP into a vector insertion if at least one side then simplifies.
6412   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6413     SDValue Vec = Op.getOperand(0);
6414     SDValue Elt = Op.getOperand(1);
6415     SDValue Idx = Op.getOperand(2);
6416 
6417     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6418         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6419         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6420         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6421         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6422          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6423       EVT VecVT = N->getValueType(0);
6424       EVT EltVT = N->getValueType(0).getVectorElementType();
6425       if (VecVT != Vec.getValueType()) {
6426         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6427         DCI.AddToWorklist(Vec.getNode());
6428       }
6429       if (EltVT != Elt.getValueType()) {
6430         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6431         DCI.AddToWorklist(Elt.getNode());
6432       }
6433       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6434       DCI.AddToWorklist(Vec.getNode());
6435       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6436       DCI.AddToWorklist(Elt.getNode());
6437       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6438                          Vec, Elt, Idx);
6439     }
6440   }
6441 
6442   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6443   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6444   if (SV && Op.hasOneUse()) {
6445     SDValue Op0 = Op.getOperand(0);
6446     SDValue Op1 = Op.getOperand(1);
6447 
6448     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6449         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6450         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6451         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6452       EVT VecVT = N->getValueType(0);
6453       if (VecVT != Op0.getValueType()) {
6454         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6455         DCI.AddToWorklist(Op0.getNode());
6456       }
6457       if (VecVT != Op1.getValueType()) {
6458         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6459         DCI.AddToWorklist(Op1.getNode());
6460       }
6461       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6462       DCI.AddToWorklist(Op0.getNode());
6463       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6464       DCI.AddToWorklist(Op1.getNode());
6465       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6466     }
6467   }
6468 
6469   return SDValue();
6470 }
6471 
6472 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6473   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6474   // set by the CCReg instruction using the CCValid / CCMask masks,
6475   // If the CCReg instruction is itself a ICMP testing the condition
6476   // code set by some other instruction, see whether we can directly
6477   // use that condition code.
6478 
6479   // Verify that we have an ICMP against some constant.
6480   if (CCValid != SystemZ::CCMASK_ICMP)
6481     return false;
6482   auto *ICmp = CCReg.getNode();
6483   if (ICmp->getOpcode() != SystemZISD::ICMP)
6484     return false;
6485   auto *CompareLHS = ICmp->getOperand(0).getNode();
6486   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6487   if (!CompareRHS)
6488     return false;
6489 
6490   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6491   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6492     // Verify that we have an appropriate mask for a EQ or NE comparison.
6493     bool Invert = false;
6494     if (CCMask == SystemZ::CCMASK_CMP_NE)
6495       Invert = !Invert;
6496     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6497       return false;
6498 
6499     // Verify that the ICMP compares against one of select values.
6500     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6501     if (!TrueVal)
6502       return false;
6503     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6504     if (!FalseVal)
6505       return false;
6506     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6507       Invert = !Invert;
6508     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6509       return false;
6510 
6511     // Compute the effective CC mask for the new branch or select.
6512     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6513     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6514     if (!NewCCValid || !NewCCMask)
6515       return false;
6516     CCValid = NewCCValid->getZExtValue();
6517     CCMask = NewCCMask->getZExtValue();
6518     if (Invert)
6519       CCMask ^= CCValid;
6520 
6521     // Return the updated CCReg link.
6522     CCReg = CompareLHS->getOperand(4);
6523     return true;
6524   }
6525 
6526   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6527   if (CompareLHS->getOpcode() == ISD::SRA) {
6528     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6529     if (!SRACount || SRACount->getZExtValue() != 30)
6530       return false;
6531     auto *SHL = CompareLHS->getOperand(0).getNode();
6532     if (SHL->getOpcode() != ISD::SHL)
6533       return false;
6534     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6535     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6536       return false;
6537     auto *IPM = SHL->getOperand(0).getNode();
6538     if (IPM->getOpcode() != SystemZISD::IPM)
6539       return false;
6540 
6541     // Avoid introducing CC spills (because SRA would clobber CC).
6542     if (!CompareLHS->hasOneUse())
6543       return false;
6544     // Verify that the ICMP compares against zero.
6545     if (CompareRHS->getZExtValue() != 0)
6546       return false;
6547 
6548     // Compute the effective CC mask for the new branch or select.
6549     CCMask = SystemZ::reverseCCMask(CCMask);
6550 
6551     // Return the updated CCReg link.
6552     CCReg = IPM->getOperand(0);
6553     return true;
6554   }
6555 
6556   return false;
6557 }
6558 
6559 SDValue SystemZTargetLowering::combineBR_CCMASK(
6560     SDNode *N, DAGCombinerInfo &DCI) const {
6561   SelectionDAG &DAG = DCI.DAG;
6562 
6563   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6564   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6565   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6566   if (!CCValid || !CCMask)
6567     return SDValue();
6568 
6569   int CCValidVal = CCValid->getZExtValue();
6570   int CCMaskVal = CCMask->getZExtValue();
6571   SDValue Chain = N->getOperand(0);
6572   SDValue CCReg = N->getOperand(4);
6573 
6574   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6575     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6576                        Chain,
6577                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6578                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6579                        N->getOperand(3), CCReg);
6580   return SDValue();
6581 }
6582 
6583 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6584     SDNode *N, DAGCombinerInfo &DCI) const {
6585   SelectionDAG &DAG = DCI.DAG;
6586 
6587   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6588   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6589   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6590   if (!CCValid || !CCMask)
6591     return SDValue();
6592 
6593   int CCValidVal = CCValid->getZExtValue();
6594   int CCMaskVal = CCMask->getZExtValue();
6595   SDValue CCReg = N->getOperand(4);
6596 
6597   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6598     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6599                        N->getOperand(0), N->getOperand(1),
6600                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6601                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6602                        CCReg);
6603   return SDValue();
6604 }
6605 
6606 
6607 SDValue SystemZTargetLowering::combineGET_CCMASK(
6608     SDNode *N, DAGCombinerInfo &DCI) const {
6609 
6610   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6611   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6612   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6613   if (!CCValid || !CCMask)
6614     return SDValue();
6615   int CCValidVal = CCValid->getZExtValue();
6616   int CCMaskVal = CCMask->getZExtValue();
6617 
6618   SDValue Select = N->getOperand(0);
6619   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6620     return SDValue();
6621 
6622   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6623   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6624   if (!SelectCCValid || !SelectCCMask)
6625     return SDValue();
6626   int SelectCCValidVal = SelectCCValid->getZExtValue();
6627   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6628 
6629   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6630   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6631   if (!TrueVal || !FalseVal)
6632     return SDValue();
6633   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6634     ;
6635   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6636     SelectCCMaskVal ^= SelectCCValidVal;
6637   else
6638     return SDValue();
6639 
6640   if (SelectCCValidVal & ~CCValidVal)
6641     return SDValue();
6642   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6643     return SDValue();
6644 
6645   return Select->getOperand(4);
6646 }
6647 
6648 SDValue SystemZTargetLowering::combineIntDIVREM(
6649     SDNode *N, DAGCombinerInfo &DCI) const {
6650   SelectionDAG &DAG = DCI.DAG;
6651   EVT VT = N->getValueType(0);
6652   // In the case where the divisor is a vector of constants a cheaper
6653   // sequence of instructions can replace the divide. BuildSDIV is called to
6654   // do this during DAG combining, but it only succeeds when it can build a
6655   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6656   // since it is not Legal but Custom it can only happen before
6657   // legalization. Therefore we must scalarize this early before Combine
6658   // 1. For widened vectors, this is already the result of type legalization.
6659   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6660       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6661     return DAG.UnrollVectorOp(N);
6662   return SDValue();
6663 }
6664 
6665 SDValue SystemZTargetLowering::combineINTRINSIC(
6666     SDNode *N, DAGCombinerInfo &DCI) const {
6667   SelectionDAG &DAG = DCI.DAG;
6668 
6669   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6670   switch (Id) {
6671   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6672   // or larger is simply a vector load.
6673   case Intrinsic::s390_vll:
6674   case Intrinsic::s390_vlrl:
6675     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6676       if (C->getZExtValue() >= 15)
6677         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6678                            N->getOperand(3), MachinePointerInfo());
6679     break;
6680   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6681   case Intrinsic::s390_vstl:
6682   case Intrinsic::s390_vstrl:
6683     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6684       if (C->getZExtValue() >= 15)
6685         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6686                             N->getOperand(4), MachinePointerInfo());
6687     break;
6688   }
6689 
6690   return SDValue();
6691 }
6692 
6693 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6694   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6695     return N->getOperand(0);
6696   return N;
6697 }
6698 
6699 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6700                                                  DAGCombinerInfo &DCI) const {
6701   switch(N->getOpcode()) {
6702   default: break;
6703   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6704   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6705   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6706   case SystemZISD::MERGE_HIGH:
6707   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6708   case ISD::LOAD:               return combineLOAD(N, DCI);
6709   case ISD::STORE:              return combineSTORE(N, DCI);
6710   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6711   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6712   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6713   case ISD::STRICT_FP_ROUND:
6714   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6715   case ISD::STRICT_FP_EXTEND:
6716   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6717   case ISD::SINT_TO_FP:
6718   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6719   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6720   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6721   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6722   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6723   case ISD::SDIV:
6724   case ISD::UDIV:
6725   case ISD::SREM:
6726   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6727   case ISD::INTRINSIC_W_CHAIN:
6728   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6729   }
6730 
6731   return SDValue();
6732 }
6733 
6734 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6735 // are for Op.
6736 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6737                                     unsigned OpNo) {
6738   EVT VT = Op.getValueType();
6739   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6740   APInt SrcDemE;
6741   unsigned Opcode = Op.getOpcode();
6742   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6743     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6744     switch (Id) {
6745     case Intrinsic::s390_vpksh:   // PACKS
6746     case Intrinsic::s390_vpksf:
6747     case Intrinsic::s390_vpksg:
6748     case Intrinsic::s390_vpkshs:  // PACKS_CC
6749     case Intrinsic::s390_vpksfs:
6750     case Intrinsic::s390_vpksgs:
6751     case Intrinsic::s390_vpklsh:  // PACKLS
6752     case Intrinsic::s390_vpklsf:
6753     case Intrinsic::s390_vpklsg:
6754     case Intrinsic::s390_vpklshs: // PACKLS_CC
6755     case Intrinsic::s390_vpklsfs:
6756     case Intrinsic::s390_vpklsgs:
6757       // VECTOR PACK truncates the elements of two source vectors into one.
6758       SrcDemE = DemandedElts;
6759       if (OpNo == 2)
6760         SrcDemE.lshrInPlace(NumElts / 2);
6761       SrcDemE = SrcDemE.trunc(NumElts / 2);
6762       break;
6763       // VECTOR UNPACK extends half the elements of the source vector.
6764     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6765     case Intrinsic::s390_vuphh:
6766     case Intrinsic::s390_vuphf:
6767     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6768     case Intrinsic::s390_vuplhh:
6769     case Intrinsic::s390_vuplhf:
6770       SrcDemE = APInt(NumElts * 2, 0);
6771       SrcDemE.insertBits(DemandedElts, 0);
6772       break;
6773     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6774     case Intrinsic::s390_vuplhw:
6775     case Intrinsic::s390_vuplf:
6776     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6777     case Intrinsic::s390_vupllh:
6778     case Intrinsic::s390_vupllf:
6779       SrcDemE = APInt(NumElts * 2, 0);
6780       SrcDemE.insertBits(DemandedElts, NumElts);
6781       break;
6782     case Intrinsic::s390_vpdi: {
6783       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6784       SrcDemE = APInt(NumElts, 0);
6785       if (!DemandedElts[OpNo - 1])
6786         break;
6787       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6788       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6789       // Demand input element 0 or 1, given by the mask bit value.
6790       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6791       break;
6792     }
6793     case Intrinsic::s390_vsldb: {
6794       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6795       assert(VT == MVT::v16i8 && "Unexpected type.");
6796       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6797       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6798       unsigned NumSrc0Els = 16 - FirstIdx;
6799       SrcDemE = APInt(NumElts, 0);
6800       if (OpNo == 1) {
6801         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6802         SrcDemE.insertBits(DemEls, FirstIdx);
6803       } else {
6804         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6805         SrcDemE.insertBits(DemEls, 0);
6806       }
6807       break;
6808     }
6809     case Intrinsic::s390_vperm:
6810       SrcDemE = APInt(NumElts, 1);
6811       break;
6812     default:
6813       llvm_unreachable("Unhandled intrinsic.");
6814       break;
6815     }
6816   } else {
6817     switch (Opcode) {
6818     case SystemZISD::JOIN_DWORDS:
6819       // Scalar operand.
6820       SrcDemE = APInt(1, 1);
6821       break;
6822     case SystemZISD::SELECT_CCMASK:
6823       SrcDemE = DemandedElts;
6824       break;
6825     default:
6826       llvm_unreachable("Unhandled opcode.");
6827       break;
6828     }
6829   }
6830   return SrcDemE;
6831 }
6832 
6833 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6834                                   const APInt &DemandedElts,
6835                                   const SelectionDAG &DAG, unsigned Depth,
6836                                   unsigned OpNo) {
6837   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6838   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6839   KnownBits LHSKnown =
6840       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6841   KnownBits RHSKnown =
6842       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6843   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6844 }
6845 
6846 void
6847 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6848                                                      KnownBits &Known,
6849                                                      const APInt &DemandedElts,
6850                                                      const SelectionDAG &DAG,
6851                                                      unsigned Depth) const {
6852   Known.resetAll();
6853 
6854   // Intrinsic CC result is returned in the two low bits.
6855   unsigned tmp0, tmp1; // not used
6856   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6857     Known.Zero.setBitsFrom(2);
6858     return;
6859   }
6860   EVT VT = Op.getValueType();
6861   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6862     return;
6863   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6864           "KnownBits does not match VT in bitwidth");
6865   assert ((!VT.isVector() ||
6866            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6867           "DemandedElts does not match VT number of elements");
6868   unsigned BitWidth = Known.getBitWidth();
6869   unsigned Opcode = Op.getOpcode();
6870   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6871     bool IsLogical = false;
6872     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6873     switch (Id) {
6874     case Intrinsic::s390_vpksh:   // PACKS
6875     case Intrinsic::s390_vpksf:
6876     case Intrinsic::s390_vpksg:
6877     case Intrinsic::s390_vpkshs:  // PACKS_CC
6878     case Intrinsic::s390_vpksfs:
6879     case Intrinsic::s390_vpksgs:
6880     case Intrinsic::s390_vpklsh:  // PACKLS
6881     case Intrinsic::s390_vpklsf:
6882     case Intrinsic::s390_vpklsg:
6883     case Intrinsic::s390_vpklshs: // PACKLS_CC
6884     case Intrinsic::s390_vpklsfs:
6885     case Intrinsic::s390_vpklsgs:
6886     case Intrinsic::s390_vpdi:
6887     case Intrinsic::s390_vsldb:
6888     case Intrinsic::s390_vperm:
6889       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6890       break;
6891     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6892     case Intrinsic::s390_vuplhh:
6893     case Intrinsic::s390_vuplhf:
6894     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6895     case Intrinsic::s390_vupllh:
6896     case Intrinsic::s390_vupllf:
6897       IsLogical = true;
6898       LLVM_FALLTHROUGH;
6899     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6900     case Intrinsic::s390_vuphh:
6901     case Intrinsic::s390_vuphf:
6902     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6903     case Intrinsic::s390_vuplhw:
6904     case Intrinsic::s390_vuplf: {
6905       SDValue SrcOp = Op.getOperand(1);
6906       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6907       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6908       if (IsLogical) {
6909         Known = Known.zext(BitWidth);
6910       } else
6911         Known = Known.sext(BitWidth);
6912       break;
6913     }
6914     default:
6915       break;
6916     }
6917   } else {
6918     switch (Opcode) {
6919     case SystemZISD::JOIN_DWORDS:
6920     case SystemZISD::SELECT_CCMASK:
6921       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6922       break;
6923     case SystemZISD::REPLICATE: {
6924       SDValue SrcOp = Op.getOperand(0);
6925       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6926       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6927         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6928       break;
6929     }
6930     default:
6931       break;
6932     }
6933   }
6934 
6935   // Known has the width of the source operand(s). Adjust if needed to match
6936   // the passed bitwidth.
6937   if (Known.getBitWidth() != BitWidth)
6938     Known = Known.anyextOrTrunc(BitWidth);
6939 }
6940 
6941 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6942                                         const SelectionDAG &DAG, unsigned Depth,
6943                                         unsigned OpNo) {
6944   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6945   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6946   if (LHS == 1) return 1; // Early out.
6947   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6948   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6949   if (RHS == 1) return 1; // Early out.
6950   unsigned Common = std::min(LHS, RHS);
6951   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6952   EVT VT = Op.getValueType();
6953   unsigned VTBits = VT.getScalarSizeInBits();
6954   if (SrcBitWidth > VTBits) { // PACK
6955     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6956     if (Common > SrcExtraBits)
6957       return (Common - SrcExtraBits);
6958     return 1;
6959   }
6960   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6961   return Common;
6962 }
6963 
6964 unsigned
6965 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6966     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6967     unsigned Depth) const {
6968   if (Op.getResNo() != 0)
6969     return 1;
6970   unsigned Opcode = Op.getOpcode();
6971   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6972     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6973     switch (Id) {
6974     case Intrinsic::s390_vpksh:   // PACKS
6975     case Intrinsic::s390_vpksf:
6976     case Intrinsic::s390_vpksg:
6977     case Intrinsic::s390_vpkshs:  // PACKS_CC
6978     case Intrinsic::s390_vpksfs:
6979     case Intrinsic::s390_vpksgs:
6980     case Intrinsic::s390_vpklsh:  // PACKLS
6981     case Intrinsic::s390_vpklsf:
6982     case Intrinsic::s390_vpklsg:
6983     case Intrinsic::s390_vpklshs: // PACKLS_CC
6984     case Intrinsic::s390_vpklsfs:
6985     case Intrinsic::s390_vpklsgs:
6986     case Intrinsic::s390_vpdi:
6987     case Intrinsic::s390_vsldb:
6988     case Intrinsic::s390_vperm:
6989       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6990     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6991     case Intrinsic::s390_vuphh:
6992     case Intrinsic::s390_vuphf:
6993     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6994     case Intrinsic::s390_vuplhw:
6995     case Intrinsic::s390_vuplf: {
6996       SDValue PackedOp = Op.getOperand(1);
6997       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6998       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6999       EVT VT = Op.getValueType();
7000       unsigned VTBits = VT.getScalarSizeInBits();
7001       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7002       return Tmp;
7003     }
7004     default:
7005       break;
7006     }
7007   } else {
7008     switch (Opcode) {
7009     case SystemZISD::SELECT_CCMASK:
7010       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7011     default:
7012       break;
7013     }
7014   }
7015 
7016   return 1;
7017 }
7018 
7019 unsigned
7020 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7021   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7022   unsigned StackAlign = TFI->getStackAlignment();
7023   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7024          "Unexpected stack alignment");
7025   // The default stack probe size is 4096 if the function has no
7026   // stack-probe-size attribute.
7027   unsigned StackProbeSize = 4096;
7028   const Function &Fn = MF.getFunction();
7029   if (Fn.hasFnAttribute("stack-probe-size"))
7030     Fn.getFnAttribute("stack-probe-size")
7031         .getValueAsString()
7032         .getAsInteger(0, StackProbeSize);
7033   // Round down to the stack alignment.
7034   StackProbeSize &= ~(StackAlign - 1);
7035   return StackProbeSize ? StackProbeSize : StackAlign;
7036 }
7037 
7038 //===----------------------------------------------------------------------===//
7039 // Custom insertion
7040 //===----------------------------------------------------------------------===//
7041 
7042 // Force base value Base into a register before MI.  Return the register.
7043 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7044                          const SystemZInstrInfo *TII) {
7045   if (Base.isReg())
7046     return Base.getReg();
7047 
7048   MachineBasicBlock *MBB = MI.getParent();
7049   MachineFunction &MF = *MBB->getParent();
7050   MachineRegisterInfo &MRI = MF.getRegInfo();
7051 
7052   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7053   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7054       .add(Base)
7055       .addImm(0)
7056       .addReg(0);
7057   return Reg;
7058 }
7059 
7060 // The CC operand of MI might be missing a kill marker because there
7061 // were multiple uses of CC, and ISel didn't know which to mark.
7062 // Figure out whether MI should have had a kill marker.
7063 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7064   // Scan forward through BB for a use/def of CC.
7065   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7066   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7067     const MachineInstr& mi = *miI;
7068     if (mi.readsRegister(SystemZ::CC))
7069       return false;
7070     if (mi.definesRegister(SystemZ::CC))
7071       break; // Should have kill-flag - update below.
7072   }
7073 
7074   // If we hit the end of the block, check whether CC is live into a
7075   // successor.
7076   if (miI == MBB->end()) {
7077     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7078       if ((*SI)->isLiveIn(SystemZ::CC))
7079         return false;
7080   }
7081 
7082   return true;
7083 }
7084 
7085 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7086 // together with other Select pseudo-opcodes into a single basic-block with
7087 // a conditional jump around it.
7088 static bool isSelectPseudo(MachineInstr &MI) {
7089   switch (MI.getOpcode()) {
7090   case SystemZ::Select32:
7091   case SystemZ::Select64:
7092   case SystemZ::SelectF32:
7093   case SystemZ::SelectF64:
7094   case SystemZ::SelectF128:
7095   case SystemZ::SelectVR32:
7096   case SystemZ::SelectVR64:
7097   case SystemZ::SelectVR128:
7098     return true;
7099 
7100   default:
7101     return false;
7102   }
7103 }
7104 
7105 // Helper function, which inserts PHI functions into SinkMBB:
7106 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7107 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7108 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7109                                  MachineBasicBlock *TrueMBB,
7110                                  MachineBasicBlock *FalseMBB,
7111                                  MachineBasicBlock *SinkMBB) {
7112   MachineFunction *MF = TrueMBB->getParent();
7113   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7114 
7115   MachineInstr *FirstMI = Selects.front();
7116   unsigned CCValid = FirstMI->getOperand(3).getImm();
7117   unsigned CCMask = FirstMI->getOperand(4).getImm();
7118 
7119   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7120 
7121   // As we are creating the PHIs, we have to be careful if there is more than
7122   // one.  Later Selects may reference the results of earlier Selects, but later
7123   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7124   // That also means that PHI construction must work forward from earlier to
7125   // later, and that the code must maintain a mapping from earlier PHI's
7126   // destination registers, and the registers that went into the PHI.
7127   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7128 
7129   for (auto MI : Selects) {
7130     Register DestReg = MI->getOperand(0).getReg();
7131     Register TrueReg = MI->getOperand(1).getReg();
7132     Register FalseReg = MI->getOperand(2).getReg();
7133 
7134     // If this Select we are generating is the opposite condition from
7135     // the jump we generated, then we have to swap the operands for the
7136     // PHI that is going to be generated.
7137     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7138       std::swap(TrueReg, FalseReg);
7139 
7140     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7141       TrueReg = RegRewriteTable[TrueReg].first;
7142 
7143     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7144       FalseReg = RegRewriteTable[FalseReg].second;
7145 
7146     DebugLoc DL = MI->getDebugLoc();
7147     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7148       .addReg(TrueReg).addMBB(TrueMBB)
7149       .addReg(FalseReg).addMBB(FalseMBB);
7150 
7151     // Add this PHI to the rewrite table.
7152     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7153   }
7154 
7155   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7156 }
7157 
7158 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7159 MachineBasicBlock *
7160 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7161                                   MachineBasicBlock *MBB) const {
7162   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7163   const SystemZInstrInfo *TII =
7164       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7165 
7166   unsigned CCValid = MI.getOperand(3).getImm();
7167   unsigned CCMask = MI.getOperand(4).getImm();
7168 
7169   // If we have a sequence of Select* pseudo instructions using the
7170   // same condition code value, we want to expand all of them into
7171   // a single pair of basic blocks using the same condition.
7172   SmallVector<MachineInstr*, 8> Selects;
7173   SmallVector<MachineInstr*, 8> DbgValues;
7174   Selects.push_back(&MI);
7175   unsigned Count = 0;
7176   for (MachineBasicBlock::iterator NextMIIt =
7177          std::next(MachineBasicBlock::iterator(MI));
7178        NextMIIt != MBB->end(); ++NextMIIt) {
7179     if (isSelectPseudo(*NextMIIt)) {
7180       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7181              "Bad CCValid operands since CC was not redefined.");
7182       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7183           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7184         Selects.push_back(&*NextMIIt);
7185         continue;
7186       }
7187       break;
7188     }
7189     if (NextMIIt->definesRegister(SystemZ::CC) ||
7190         NextMIIt->usesCustomInsertionHook())
7191       break;
7192     bool User = false;
7193     for (auto SelMI : Selects)
7194       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7195         User = true;
7196         break;
7197       }
7198     if (NextMIIt->isDebugInstr()) {
7199       if (User) {
7200         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7201         DbgValues.push_back(&*NextMIIt);
7202       }
7203     }
7204     else if (User || ++Count > 20)
7205       break;
7206   }
7207 
7208   MachineInstr *LastMI = Selects.back();
7209   bool CCKilled =
7210       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7211   MachineBasicBlock *StartMBB = MBB;
7212   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7213   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7214 
7215   // Unless CC was killed in the last Select instruction, mark it as
7216   // live-in to both FalseMBB and JoinMBB.
7217   if (!CCKilled) {
7218     FalseMBB->addLiveIn(SystemZ::CC);
7219     JoinMBB->addLiveIn(SystemZ::CC);
7220   }
7221 
7222   //  StartMBB:
7223   //   BRC CCMask, JoinMBB
7224   //   # fallthrough to FalseMBB
7225   MBB = StartMBB;
7226   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7227     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7228   MBB->addSuccessor(JoinMBB);
7229   MBB->addSuccessor(FalseMBB);
7230 
7231   //  FalseMBB:
7232   //   # fallthrough to JoinMBB
7233   MBB = FalseMBB;
7234   MBB->addSuccessor(JoinMBB);
7235 
7236   //  JoinMBB:
7237   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7238   //  ...
7239   MBB = JoinMBB;
7240   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7241   for (auto SelMI : Selects)
7242     SelMI->eraseFromParent();
7243 
7244   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7245   for (auto DbgMI : DbgValues)
7246     MBB->splice(InsertPos, StartMBB, DbgMI);
7247 
7248   return JoinMBB;
7249 }
7250 
7251 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7252 // StoreOpcode is the store to use and Invert says whether the store should
7253 // happen when the condition is false rather than true.  If a STORE ON
7254 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7255 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7256                                                         MachineBasicBlock *MBB,
7257                                                         unsigned StoreOpcode,
7258                                                         unsigned STOCOpcode,
7259                                                         bool Invert) const {
7260   const SystemZInstrInfo *TII =
7261       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7262 
7263   Register SrcReg = MI.getOperand(0).getReg();
7264   MachineOperand Base = MI.getOperand(1);
7265   int64_t Disp = MI.getOperand(2).getImm();
7266   Register IndexReg = MI.getOperand(3).getReg();
7267   unsigned CCValid = MI.getOperand(4).getImm();
7268   unsigned CCMask = MI.getOperand(5).getImm();
7269   DebugLoc DL = MI.getDebugLoc();
7270 
7271   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7272 
7273   // ISel pattern matching also adds a load memory operand of the same
7274   // address, so take special care to find the storing memory operand.
7275   MachineMemOperand *MMO = nullptr;
7276   for (auto *I : MI.memoperands())
7277     if (I->isStore()) {
7278       MMO = I;
7279       break;
7280     }
7281 
7282   // Use STOCOpcode if possible.  We could use different store patterns in
7283   // order to avoid matching the index register, but the performance trade-offs
7284   // might be more complicated in that case.
7285   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7286     if (Invert)
7287       CCMask ^= CCValid;
7288 
7289     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7290       .addReg(SrcReg)
7291       .add(Base)
7292       .addImm(Disp)
7293       .addImm(CCValid)
7294       .addImm(CCMask)
7295       .addMemOperand(MMO);
7296 
7297     MI.eraseFromParent();
7298     return MBB;
7299   }
7300 
7301   // Get the condition needed to branch around the store.
7302   if (!Invert)
7303     CCMask ^= CCValid;
7304 
7305   MachineBasicBlock *StartMBB = MBB;
7306   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7307   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7308 
7309   // Unless CC was killed in the CondStore instruction, mark it as
7310   // live-in to both FalseMBB and JoinMBB.
7311   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7312     FalseMBB->addLiveIn(SystemZ::CC);
7313     JoinMBB->addLiveIn(SystemZ::CC);
7314   }
7315 
7316   //  StartMBB:
7317   //   BRC CCMask, JoinMBB
7318   //   # fallthrough to FalseMBB
7319   MBB = StartMBB;
7320   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7321     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7322   MBB->addSuccessor(JoinMBB);
7323   MBB->addSuccessor(FalseMBB);
7324 
7325   //  FalseMBB:
7326   //   store %SrcReg, %Disp(%Index,%Base)
7327   //   # fallthrough to JoinMBB
7328   MBB = FalseMBB;
7329   BuildMI(MBB, DL, TII->get(StoreOpcode))
7330       .addReg(SrcReg)
7331       .add(Base)
7332       .addImm(Disp)
7333       .addReg(IndexReg)
7334       .addMemOperand(MMO);
7335   MBB->addSuccessor(JoinMBB);
7336 
7337   MI.eraseFromParent();
7338   return JoinMBB;
7339 }
7340 
7341 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7342 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7343 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7344 // BitSize is the width of the field in bits, or 0 if this is a partword
7345 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7346 // is one of the operands.  Invert says whether the field should be
7347 // inverted after performing BinOpcode (e.g. for NAND).
7348 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7349     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7350     unsigned BitSize, bool Invert) const {
7351   MachineFunction &MF = *MBB->getParent();
7352   const SystemZInstrInfo *TII =
7353       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7354   MachineRegisterInfo &MRI = MF.getRegInfo();
7355   bool IsSubWord = (BitSize < 32);
7356 
7357   // Extract the operands.  Base can be a register or a frame index.
7358   // Src2 can be a register or immediate.
7359   Register Dest = MI.getOperand(0).getReg();
7360   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7361   int64_t Disp = MI.getOperand(2).getImm();
7362   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7363   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7364   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7365   DebugLoc DL = MI.getDebugLoc();
7366   if (IsSubWord)
7367     BitSize = MI.getOperand(6).getImm();
7368 
7369   // Subword operations use 32-bit registers.
7370   const TargetRegisterClass *RC = (BitSize <= 32 ?
7371                                    &SystemZ::GR32BitRegClass :
7372                                    &SystemZ::GR64BitRegClass);
7373   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7374   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7375 
7376   // Get the right opcodes for the displacement.
7377   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7378   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7379   assert(LOpcode && CSOpcode && "Displacement out of range");
7380 
7381   // Create virtual registers for temporary results.
7382   Register OrigVal       = MRI.createVirtualRegister(RC);
7383   Register OldVal        = MRI.createVirtualRegister(RC);
7384   Register NewVal        = (BinOpcode || IsSubWord ?
7385                             MRI.createVirtualRegister(RC) : Src2.getReg());
7386   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7387   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7388 
7389   // Insert a basic block for the main loop.
7390   MachineBasicBlock *StartMBB = MBB;
7391   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7392   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7393 
7394   //  StartMBB:
7395   //   ...
7396   //   %OrigVal = L Disp(%Base)
7397   //   # fall through to LoopMMB
7398   MBB = StartMBB;
7399   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7400   MBB->addSuccessor(LoopMBB);
7401 
7402   //  LoopMBB:
7403   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7404   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7405   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7406   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7407   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7408   //   JNE LoopMBB
7409   //   # fall through to DoneMMB
7410   MBB = LoopMBB;
7411   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7412     .addReg(OrigVal).addMBB(StartMBB)
7413     .addReg(Dest).addMBB(LoopMBB);
7414   if (IsSubWord)
7415     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7416       .addReg(OldVal).addReg(BitShift).addImm(0);
7417   if (Invert) {
7418     // Perform the operation normally and then invert every bit of the field.
7419     Register Tmp = MRI.createVirtualRegister(RC);
7420     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7421     if (BitSize <= 32)
7422       // XILF with the upper BitSize bits set.
7423       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7424         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7425     else {
7426       // Use LCGR and add -1 to the result, which is more compact than
7427       // an XILF, XILH pair.
7428       Register Tmp2 = MRI.createVirtualRegister(RC);
7429       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7430       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7431         .addReg(Tmp2).addImm(-1);
7432     }
7433   } else if (BinOpcode)
7434     // A simply binary operation.
7435     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7436         .addReg(RotatedOldVal)
7437         .add(Src2);
7438   else if (IsSubWord)
7439     // Use RISBG to rotate Src2 into position and use it to replace the
7440     // field in RotatedOldVal.
7441     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7442       .addReg(RotatedOldVal).addReg(Src2.getReg())
7443       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7444   if (IsSubWord)
7445     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7446       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7447   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7448       .addReg(OldVal)
7449       .addReg(NewVal)
7450       .add(Base)
7451       .addImm(Disp);
7452   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7453     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7454   MBB->addSuccessor(LoopMBB);
7455   MBB->addSuccessor(DoneMBB);
7456 
7457   MI.eraseFromParent();
7458   return DoneMBB;
7459 }
7460 
7461 // Implement EmitInstrWithCustomInserter for pseudo
7462 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7463 // instruction that should be used to compare the current field with the
7464 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7465 // for when the current field should be kept.  BitSize is the width of
7466 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7467 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7468     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7469     unsigned KeepOldMask, unsigned BitSize) const {
7470   MachineFunction &MF = *MBB->getParent();
7471   const SystemZInstrInfo *TII =
7472       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7473   MachineRegisterInfo &MRI = MF.getRegInfo();
7474   bool IsSubWord = (BitSize < 32);
7475 
7476   // Extract the operands.  Base can be a register or a frame index.
7477   Register Dest = MI.getOperand(0).getReg();
7478   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7479   int64_t Disp = MI.getOperand(2).getImm();
7480   Register Src2 = MI.getOperand(3).getReg();
7481   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7482   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7483   DebugLoc DL = MI.getDebugLoc();
7484   if (IsSubWord)
7485     BitSize = MI.getOperand(6).getImm();
7486 
7487   // Subword operations use 32-bit registers.
7488   const TargetRegisterClass *RC = (BitSize <= 32 ?
7489                                    &SystemZ::GR32BitRegClass :
7490                                    &SystemZ::GR64BitRegClass);
7491   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7492   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7493 
7494   // Get the right opcodes for the displacement.
7495   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7496   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7497   assert(LOpcode && CSOpcode && "Displacement out of range");
7498 
7499   // Create virtual registers for temporary results.
7500   Register OrigVal       = MRI.createVirtualRegister(RC);
7501   Register OldVal        = MRI.createVirtualRegister(RC);
7502   Register NewVal        = MRI.createVirtualRegister(RC);
7503   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7504   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7505   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7506 
7507   // Insert 3 basic blocks for the loop.
7508   MachineBasicBlock *StartMBB  = MBB;
7509   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7510   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7511   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7512   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7513 
7514   //  StartMBB:
7515   //   ...
7516   //   %OrigVal     = L Disp(%Base)
7517   //   # fall through to LoopMMB
7518   MBB = StartMBB;
7519   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7520   MBB->addSuccessor(LoopMBB);
7521 
7522   //  LoopMBB:
7523   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7524   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7525   //   CompareOpcode %RotatedOldVal, %Src2
7526   //   BRC KeepOldMask, UpdateMBB
7527   MBB = LoopMBB;
7528   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7529     .addReg(OrigVal).addMBB(StartMBB)
7530     .addReg(Dest).addMBB(UpdateMBB);
7531   if (IsSubWord)
7532     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7533       .addReg(OldVal).addReg(BitShift).addImm(0);
7534   BuildMI(MBB, DL, TII->get(CompareOpcode))
7535     .addReg(RotatedOldVal).addReg(Src2);
7536   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7537     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7538   MBB->addSuccessor(UpdateMBB);
7539   MBB->addSuccessor(UseAltMBB);
7540 
7541   //  UseAltMBB:
7542   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7543   //   # fall through to UpdateMMB
7544   MBB = UseAltMBB;
7545   if (IsSubWord)
7546     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7547       .addReg(RotatedOldVal).addReg(Src2)
7548       .addImm(32).addImm(31 + BitSize).addImm(0);
7549   MBB->addSuccessor(UpdateMBB);
7550 
7551   //  UpdateMBB:
7552   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7553   //                        [ %RotatedAltVal, UseAltMBB ]
7554   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7555   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7556   //   JNE LoopMBB
7557   //   # fall through to DoneMMB
7558   MBB = UpdateMBB;
7559   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7560     .addReg(RotatedOldVal).addMBB(LoopMBB)
7561     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7562   if (IsSubWord)
7563     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7564       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7565   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7566       .addReg(OldVal)
7567       .addReg(NewVal)
7568       .add(Base)
7569       .addImm(Disp);
7570   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7571     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7572   MBB->addSuccessor(LoopMBB);
7573   MBB->addSuccessor(DoneMBB);
7574 
7575   MI.eraseFromParent();
7576   return DoneMBB;
7577 }
7578 
7579 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7580 // instruction MI.
7581 MachineBasicBlock *
7582 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7583                                           MachineBasicBlock *MBB) const {
7584 
7585   MachineFunction &MF = *MBB->getParent();
7586   const SystemZInstrInfo *TII =
7587       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7588   MachineRegisterInfo &MRI = MF.getRegInfo();
7589 
7590   // Extract the operands.  Base can be a register or a frame index.
7591   Register Dest = MI.getOperand(0).getReg();
7592   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7593   int64_t Disp = MI.getOperand(2).getImm();
7594   Register OrigCmpVal = MI.getOperand(3).getReg();
7595   Register OrigSwapVal = MI.getOperand(4).getReg();
7596   Register BitShift = MI.getOperand(5).getReg();
7597   Register NegBitShift = MI.getOperand(6).getReg();
7598   int64_t BitSize = MI.getOperand(7).getImm();
7599   DebugLoc DL = MI.getDebugLoc();
7600 
7601   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7602 
7603   // Get the right opcodes for the displacement.
7604   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7605   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7606   assert(LOpcode && CSOpcode && "Displacement out of range");
7607 
7608   // Create virtual registers for temporary results.
7609   Register OrigOldVal = MRI.createVirtualRegister(RC);
7610   Register OldVal = MRI.createVirtualRegister(RC);
7611   Register CmpVal = MRI.createVirtualRegister(RC);
7612   Register SwapVal = MRI.createVirtualRegister(RC);
7613   Register StoreVal = MRI.createVirtualRegister(RC);
7614   Register RetryOldVal = MRI.createVirtualRegister(RC);
7615   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7616   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7617 
7618   // Insert 2 basic blocks for the loop.
7619   MachineBasicBlock *StartMBB = MBB;
7620   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7621   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7622   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7623 
7624   //  StartMBB:
7625   //   ...
7626   //   %OrigOldVal     = L Disp(%Base)
7627   //   # fall through to LoopMMB
7628   MBB = StartMBB;
7629   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7630       .add(Base)
7631       .addImm(Disp)
7632       .addReg(0);
7633   MBB->addSuccessor(LoopMBB);
7634 
7635   //  LoopMBB:
7636   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7637   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7638   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7639   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7640   //                      ^^ The low BitSize bits contain the field
7641   //                         of interest.
7642   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7643   //                      ^^ Replace the upper 32-BitSize bits of the
7644   //                         comparison value with those that we loaded,
7645   //                         so that we can use a full word comparison.
7646   //   CR %Dest, %RetryCmpVal
7647   //   JNE DoneMBB
7648   //   # Fall through to SetMBB
7649   MBB = LoopMBB;
7650   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7651     .addReg(OrigOldVal).addMBB(StartMBB)
7652     .addReg(RetryOldVal).addMBB(SetMBB);
7653   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7654     .addReg(OrigCmpVal).addMBB(StartMBB)
7655     .addReg(RetryCmpVal).addMBB(SetMBB);
7656   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7657     .addReg(OrigSwapVal).addMBB(StartMBB)
7658     .addReg(RetrySwapVal).addMBB(SetMBB);
7659   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7660     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7661   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7662     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7663   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7664     .addReg(Dest).addReg(RetryCmpVal);
7665   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7666     .addImm(SystemZ::CCMASK_ICMP)
7667     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7668   MBB->addSuccessor(DoneMBB);
7669   MBB->addSuccessor(SetMBB);
7670 
7671   //  SetMBB:
7672   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7673   //                      ^^ Replace the upper 32-BitSize bits of the new
7674   //                         value with those that we loaded.
7675   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7676   //                      ^^ Rotate the new field to its proper position.
7677   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7678   //   JNE LoopMBB
7679   //   # fall through to ExitMMB
7680   MBB = SetMBB;
7681   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7682     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7683   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7684     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7685   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7686       .addReg(OldVal)
7687       .addReg(StoreVal)
7688       .add(Base)
7689       .addImm(Disp);
7690   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7691     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7692   MBB->addSuccessor(LoopMBB);
7693   MBB->addSuccessor(DoneMBB);
7694 
7695   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7696   // to the block after the loop.  At this point, CC may have been defined
7697   // either by the CR in LoopMBB or by the CS in SetMBB.
7698   if (!MI.registerDefIsDead(SystemZ::CC))
7699     DoneMBB->addLiveIn(SystemZ::CC);
7700 
7701   MI.eraseFromParent();
7702   return DoneMBB;
7703 }
7704 
7705 // Emit a move from two GR64s to a GR128.
7706 MachineBasicBlock *
7707 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7708                                    MachineBasicBlock *MBB) const {
7709   MachineFunction &MF = *MBB->getParent();
7710   const SystemZInstrInfo *TII =
7711       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7712   MachineRegisterInfo &MRI = MF.getRegInfo();
7713   DebugLoc DL = MI.getDebugLoc();
7714 
7715   Register Dest = MI.getOperand(0).getReg();
7716   Register Hi = MI.getOperand(1).getReg();
7717   Register Lo = MI.getOperand(2).getReg();
7718   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7719   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7720 
7721   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7722   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7723     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7724   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7725     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7726 
7727   MI.eraseFromParent();
7728   return MBB;
7729 }
7730 
7731 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7732 // if the high register of the GR128 value must be cleared or false if
7733 // it's "don't care".
7734 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7735                                                      MachineBasicBlock *MBB,
7736                                                      bool ClearEven) const {
7737   MachineFunction &MF = *MBB->getParent();
7738   const SystemZInstrInfo *TII =
7739       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7740   MachineRegisterInfo &MRI = MF.getRegInfo();
7741   DebugLoc DL = MI.getDebugLoc();
7742 
7743   Register Dest = MI.getOperand(0).getReg();
7744   Register Src = MI.getOperand(1).getReg();
7745   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7746 
7747   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7748   if (ClearEven) {
7749     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7750     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7751 
7752     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7753       .addImm(0);
7754     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7755       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7756     In128 = NewIn128;
7757   }
7758   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7759     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7760 
7761   MI.eraseFromParent();
7762   return MBB;
7763 }
7764 
7765 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7766     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7767   MachineFunction &MF = *MBB->getParent();
7768   const SystemZInstrInfo *TII =
7769       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7770   MachineRegisterInfo &MRI = MF.getRegInfo();
7771   DebugLoc DL = MI.getDebugLoc();
7772 
7773   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7774   uint64_t DestDisp = MI.getOperand(1).getImm();
7775   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7776   uint64_t SrcDisp = MI.getOperand(3).getImm();
7777   uint64_t Length = MI.getOperand(4).getImm();
7778 
7779   // When generating more than one CLC, all but the last will need to
7780   // branch to the end when a difference is found.
7781   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7782                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7783 
7784   // Check for the loop form, in which operand 5 is the trip count.
7785   if (MI.getNumExplicitOperands() > 5) {
7786     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7787 
7788     Register StartCountReg = MI.getOperand(5).getReg();
7789     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7790     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7791                               forceReg(MI, DestBase, TII));
7792 
7793     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7794     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7795     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7796                             MRI.createVirtualRegister(RC));
7797     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7798     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7799                             MRI.createVirtualRegister(RC));
7800 
7801     RC = &SystemZ::GR64BitRegClass;
7802     Register ThisCountReg = MRI.createVirtualRegister(RC);
7803     Register NextCountReg = MRI.createVirtualRegister(RC);
7804 
7805     MachineBasicBlock *StartMBB = MBB;
7806     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7807     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7808     MachineBasicBlock *NextMBB =
7809         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7810 
7811     //  StartMBB:
7812     //   # fall through to LoopMMB
7813     MBB->addSuccessor(LoopMBB);
7814 
7815     //  LoopMBB:
7816     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7817     //                      [ %NextDestReg, NextMBB ]
7818     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7819     //                     [ %NextSrcReg, NextMBB ]
7820     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7821     //                       [ %NextCountReg, NextMBB ]
7822     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7823     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7824     //   ( JLH EndMBB )
7825     //
7826     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7827     MBB = LoopMBB;
7828 
7829     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7830       .addReg(StartDestReg).addMBB(StartMBB)
7831       .addReg(NextDestReg).addMBB(NextMBB);
7832     if (!HaveSingleBase)
7833       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7834         .addReg(StartSrcReg).addMBB(StartMBB)
7835         .addReg(NextSrcReg).addMBB(NextMBB);
7836     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7837       .addReg(StartCountReg).addMBB(StartMBB)
7838       .addReg(NextCountReg).addMBB(NextMBB);
7839     if (Opcode == SystemZ::MVC)
7840       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7841         .addImm(SystemZ::PFD_WRITE)
7842         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7843     BuildMI(MBB, DL, TII->get(Opcode))
7844       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7845       .addReg(ThisSrcReg).addImm(SrcDisp);
7846     if (EndMBB) {
7847       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7848         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7849         .addMBB(EndMBB);
7850       MBB->addSuccessor(EndMBB);
7851       MBB->addSuccessor(NextMBB);
7852     }
7853 
7854     // NextMBB:
7855     //   %NextDestReg = LA 256(%ThisDestReg)
7856     //   %NextSrcReg = LA 256(%ThisSrcReg)
7857     //   %NextCountReg = AGHI %ThisCountReg, -1
7858     //   CGHI %NextCountReg, 0
7859     //   JLH LoopMBB
7860     //   # fall through to DoneMMB
7861     //
7862     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7863     MBB = NextMBB;
7864 
7865     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7866       .addReg(ThisDestReg).addImm(256).addReg(0);
7867     if (!HaveSingleBase)
7868       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7869         .addReg(ThisSrcReg).addImm(256).addReg(0);
7870     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7871       .addReg(ThisCountReg).addImm(-1);
7872     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7873       .addReg(NextCountReg).addImm(0);
7874     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7875       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7876       .addMBB(LoopMBB);
7877     MBB->addSuccessor(LoopMBB);
7878     MBB->addSuccessor(DoneMBB);
7879 
7880     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7881     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7882     Length &= 255;
7883     if (EndMBB && !Length)
7884       // If the loop handled the whole CLC range, DoneMBB will be empty with
7885       // CC live-through into EndMBB, so add it as live-in.
7886       DoneMBB->addLiveIn(SystemZ::CC);
7887     MBB = DoneMBB;
7888   }
7889   // Handle any remaining bytes with straight-line code.
7890   while (Length > 0) {
7891     uint64_t ThisLength = std::min(Length, uint64_t(256));
7892     // The previous iteration might have created out-of-range displacements.
7893     // Apply them using LAY if so.
7894     if (!isUInt<12>(DestDisp)) {
7895       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7896       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7897           .add(DestBase)
7898           .addImm(DestDisp)
7899           .addReg(0);
7900       DestBase = MachineOperand::CreateReg(Reg, false);
7901       DestDisp = 0;
7902     }
7903     if (!isUInt<12>(SrcDisp)) {
7904       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7905       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7906           .add(SrcBase)
7907           .addImm(SrcDisp)
7908           .addReg(0);
7909       SrcBase = MachineOperand::CreateReg(Reg, false);
7910       SrcDisp = 0;
7911     }
7912     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7913         .add(DestBase)
7914         .addImm(DestDisp)
7915         .addImm(ThisLength)
7916         .add(SrcBase)
7917         .addImm(SrcDisp)
7918         .setMemRefs(MI.memoperands());
7919     DestDisp += ThisLength;
7920     SrcDisp += ThisLength;
7921     Length -= ThisLength;
7922     // If there's another CLC to go, branch to the end if a difference
7923     // was found.
7924     if (EndMBB && Length > 0) {
7925       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7926       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7927         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7928         .addMBB(EndMBB);
7929       MBB->addSuccessor(EndMBB);
7930       MBB->addSuccessor(NextMBB);
7931       MBB = NextMBB;
7932     }
7933   }
7934   if (EndMBB) {
7935     MBB->addSuccessor(EndMBB);
7936     MBB = EndMBB;
7937     MBB->addLiveIn(SystemZ::CC);
7938   }
7939 
7940   MI.eraseFromParent();
7941   return MBB;
7942 }
7943 
7944 // Decompose string pseudo-instruction MI into a loop that continually performs
7945 // Opcode until CC != 3.
7946 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7947     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7948   MachineFunction &MF = *MBB->getParent();
7949   const SystemZInstrInfo *TII =
7950       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7951   MachineRegisterInfo &MRI = MF.getRegInfo();
7952   DebugLoc DL = MI.getDebugLoc();
7953 
7954   uint64_t End1Reg = MI.getOperand(0).getReg();
7955   uint64_t Start1Reg = MI.getOperand(1).getReg();
7956   uint64_t Start2Reg = MI.getOperand(2).getReg();
7957   uint64_t CharReg = MI.getOperand(3).getReg();
7958 
7959   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7960   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7961   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7962   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7963 
7964   MachineBasicBlock *StartMBB = MBB;
7965   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7966   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7967 
7968   //  StartMBB:
7969   //   # fall through to LoopMMB
7970   MBB->addSuccessor(LoopMBB);
7971 
7972   //  LoopMBB:
7973   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7974   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7975   //   R0L = %CharReg
7976   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7977   //   JO LoopMBB
7978   //   # fall through to DoneMMB
7979   //
7980   // The load of R0L can be hoisted by post-RA LICM.
7981   MBB = LoopMBB;
7982 
7983   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7984     .addReg(Start1Reg).addMBB(StartMBB)
7985     .addReg(End1Reg).addMBB(LoopMBB);
7986   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7987     .addReg(Start2Reg).addMBB(StartMBB)
7988     .addReg(End2Reg).addMBB(LoopMBB);
7989   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7990   BuildMI(MBB, DL, TII->get(Opcode))
7991     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7992     .addReg(This1Reg).addReg(This2Reg);
7993   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7994     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7995   MBB->addSuccessor(LoopMBB);
7996   MBB->addSuccessor(DoneMBB);
7997 
7998   DoneMBB->addLiveIn(SystemZ::CC);
7999 
8000   MI.eraseFromParent();
8001   return DoneMBB;
8002 }
8003 
8004 // Update TBEGIN instruction with final opcode and register clobbers.
8005 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8006     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8007     bool NoFloat) const {
8008   MachineFunction &MF = *MBB->getParent();
8009   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8010   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8011 
8012   // Update opcode.
8013   MI.setDesc(TII->get(Opcode));
8014 
8015   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8016   // Make sure to add the corresponding GRSM bits if they are missing.
8017   uint64_t Control = MI.getOperand(2).getImm();
8018   static const unsigned GPRControlBit[16] = {
8019     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8020     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8021   };
8022   Control |= GPRControlBit[15];
8023   if (TFI->hasFP(MF))
8024     Control |= GPRControlBit[11];
8025   MI.getOperand(2).setImm(Control);
8026 
8027   // Add GPR clobbers.
8028   for (int I = 0; I < 16; I++) {
8029     if ((Control & GPRControlBit[I]) == 0) {
8030       unsigned Reg = SystemZMC::GR64Regs[I];
8031       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8032     }
8033   }
8034 
8035   // Add FPR/VR clobbers.
8036   if (!NoFloat && (Control & 4) != 0) {
8037     if (Subtarget.hasVector()) {
8038       for (int I = 0; I < 32; I++) {
8039         unsigned Reg = SystemZMC::VR128Regs[I];
8040         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8041       }
8042     } else {
8043       for (int I = 0; I < 16; I++) {
8044         unsigned Reg = SystemZMC::FP64Regs[I];
8045         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8046       }
8047     }
8048   }
8049 
8050   return MBB;
8051 }
8052 
8053 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8054     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8055   MachineFunction &MF = *MBB->getParent();
8056   MachineRegisterInfo *MRI = &MF.getRegInfo();
8057   const SystemZInstrInfo *TII =
8058       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8059   DebugLoc DL = MI.getDebugLoc();
8060 
8061   Register SrcReg = MI.getOperand(0).getReg();
8062 
8063   // Create new virtual register of the same class as source.
8064   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8065   Register DstReg = MRI->createVirtualRegister(RC);
8066 
8067   // Replace pseudo with a normal load-and-test that models the def as
8068   // well.
8069   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8070     .addReg(SrcReg)
8071     .setMIFlags(MI.getFlags());
8072   MI.eraseFromParent();
8073 
8074   return MBB;
8075 }
8076 
8077 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8078     MachineInstr &MI, MachineBasicBlock *MBB) const {
8079   MachineFunction &MF = *MBB->getParent();
8080   MachineRegisterInfo *MRI = &MF.getRegInfo();
8081   const SystemZInstrInfo *TII =
8082       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8083   DebugLoc DL = MI.getDebugLoc();
8084   const unsigned ProbeSize = getStackProbeSize(MF);
8085   Register DstReg = MI.getOperand(0).getReg();
8086   Register SizeReg = MI.getOperand(2).getReg();
8087 
8088   MachineBasicBlock *StartMBB = MBB;
8089   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8090   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8091   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8092   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8093   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8094 
8095   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8096     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8097 
8098   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8099   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8100 
8101   //  LoopTestMBB
8102   //  BRC TailTestMBB
8103   //  # fallthrough to LoopBodyMBB
8104   StartMBB->addSuccessor(LoopTestMBB);
8105   MBB = LoopTestMBB;
8106   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8107     .addReg(SizeReg)
8108     .addMBB(StartMBB)
8109     .addReg(IncReg)
8110     .addMBB(LoopBodyMBB);
8111   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8112     .addReg(PHIReg)
8113     .addImm(ProbeSize);
8114   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8115     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8116     .addMBB(TailTestMBB);
8117   MBB->addSuccessor(LoopBodyMBB);
8118   MBB->addSuccessor(TailTestMBB);
8119 
8120   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8121   //  J LoopTestMBB
8122   MBB = LoopBodyMBB;
8123   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8124     .addReg(PHIReg)
8125     .addImm(ProbeSize);
8126   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8127     .addReg(SystemZ::R15D)
8128     .addImm(ProbeSize);
8129   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8130     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8131     .setMemRefs(VolLdMMO);
8132   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8133   MBB->addSuccessor(LoopTestMBB);
8134 
8135   //  TailTestMBB
8136   //  BRC DoneMBB
8137   //  # fallthrough to TailMBB
8138   MBB = TailTestMBB;
8139   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8140     .addReg(PHIReg)
8141     .addImm(0);
8142   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8143     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8144     .addMBB(DoneMBB);
8145   MBB->addSuccessor(TailMBB);
8146   MBB->addSuccessor(DoneMBB);
8147 
8148   //  TailMBB
8149   //  # fallthrough to DoneMBB
8150   MBB = TailMBB;
8151   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8152     .addReg(SystemZ::R15D)
8153     .addReg(PHIReg);
8154   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8155     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8156     .setMemRefs(VolLdMMO);
8157   MBB->addSuccessor(DoneMBB);
8158 
8159   //  DoneMBB
8160   MBB = DoneMBB;
8161   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8162     .addReg(SystemZ::R15D);
8163 
8164   MI.eraseFromParent();
8165   return DoneMBB;
8166 }
8167 
8168 SDValue SystemZTargetLowering::
8169 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8170   MachineFunction &MF = DAG.getMachineFunction();
8171   auto *TFL =
8172       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
8173   SDLoc DL(SP);
8174   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8175                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8176 }
8177 
8178 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8179     MachineInstr &MI, MachineBasicBlock *MBB) const {
8180   switch (MI.getOpcode()) {
8181   case SystemZ::Select32:
8182   case SystemZ::Select64:
8183   case SystemZ::SelectF32:
8184   case SystemZ::SelectF64:
8185   case SystemZ::SelectF128:
8186   case SystemZ::SelectVR32:
8187   case SystemZ::SelectVR64:
8188   case SystemZ::SelectVR128:
8189     return emitSelect(MI, MBB);
8190 
8191   case SystemZ::CondStore8Mux:
8192     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8193   case SystemZ::CondStore8MuxInv:
8194     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8195   case SystemZ::CondStore16Mux:
8196     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8197   case SystemZ::CondStore16MuxInv:
8198     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8199   case SystemZ::CondStore32Mux:
8200     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8201   case SystemZ::CondStore32MuxInv:
8202     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8203   case SystemZ::CondStore8:
8204     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8205   case SystemZ::CondStore8Inv:
8206     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8207   case SystemZ::CondStore16:
8208     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8209   case SystemZ::CondStore16Inv:
8210     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8211   case SystemZ::CondStore32:
8212     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8213   case SystemZ::CondStore32Inv:
8214     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8215   case SystemZ::CondStore64:
8216     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8217   case SystemZ::CondStore64Inv:
8218     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8219   case SystemZ::CondStoreF32:
8220     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8221   case SystemZ::CondStoreF32Inv:
8222     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8223   case SystemZ::CondStoreF64:
8224     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8225   case SystemZ::CondStoreF64Inv:
8226     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8227 
8228   case SystemZ::PAIR128:
8229     return emitPair128(MI, MBB);
8230   case SystemZ::AEXT128:
8231     return emitExt128(MI, MBB, false);
8232   case SystemZ::ZEXT128:
8233     return emitExt128(MI, MBB, true);
8234 
8235   case SystemZ::ATOMIC_SWAPW:
8236     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8237   case SystemZ::ATOMIC_SWAP_32:
8238     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8239   case SystemZ::ATOMIC_SWAP_64:
8240     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8241 
8242   case SystemZ::ATOMIC_LOADW_AR:
8243     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8244   case SystemZ::ATOMIC_LOADW_AFI:
8245     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8246   case SystemZ::ATOMIC_LOAD_AR:
8247     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8248   case SystemZ::ATOMIC_LOAD_AHI:
8249     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8250   case SystemZ::ATOMIC_LOAD_AFI:
8251     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8252   case SystemZ::ATOMIC_LOAD_AGR:
8253     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8254   case SystemZ::ATOMIC_LOAD_AGHI:
8255     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8256   case SystemZ::ATOMIC_LOAD_AGFI:
8257     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8258 
8259   case SystemZ::ATOMIC_LOADW_SR:
8260     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8261   case SystemZ::ATOMIC_LOAD_SR:
8262     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8263   case SystemZ::ATOMIC_LOAD_SGR:
8264     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8265 
8266   case SystemZ::ATOMIC_LOADW_NR:
8267     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8268   case SystemZ::ATOMIC_LOADW_NILH:
8269     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8270   case SystemZ::ATOMIC_LOAD_NR:
8271     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8272   case SystemZ::ATOMIC_LOAD_NILL:
8273     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8274   case SystemZ::ATOMIC_LOAD_NILH:
8275     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8276   case SystemZ::ATOMIC_LOAD_NILF:
8277     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8278   case SystemZ::ATOMIC_LOAD_NGR:
8279     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8280   case SystemZ::ATOMIC_LOAD_NILL64:
8281     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8282   case SystemZ::ATOMIC_LOAD_NILH64:
8283     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8284   case SystemZ::ATOMIC_LOAD_NIHL64:
8285     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8286   case SystemZ::ATOMIC_LOAD_NIHH64:
8287     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8288   case SystemZ::ATOMIC_LOAD_NILF64:
8289     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8290   case SystemZ::ATOMIC_LOAD_NIHF64:
8291     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8292 
8293   case SystemZ::ATOMIC_LOADW_OR:
8294     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8295   case SystemZ::ATOMIC_LOADW_OILH:
8296     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8297   case SystemZ::ATOMIC_LOAD_OR:
8298     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8299   case SystemZ::ATOMIC_LOAD_OILL:
8300     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8301   case SystemZ::ATOMIC_LOAD_OILH:
8302     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8303   case SystemZ::ATOMIC_LOAD_OILF:
8304     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8305   case SystemZ::ATOMIC_LOAD_OGR:
8306     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8307   case SystemZ::ATOMIC_LOAD_OILL64:
8308     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8309   case SystemZ::ATOMIC_LOAD_OILH64:
8310     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8311   case SystemZ::ATOMIC_LOAD_OIHL64:
8312     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8313   case SystemZ::ATOMIC_LOAD_OIHH64:
8314     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8315   case SystemZ::ATOMIC_LOAD_OILF64:
8316     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8317   case SystemZ::ATOMIC_LOAD_OIHF64:
8318     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8319 
8320   case SystemZ::ATOMIC_LOADW_XR:
8321     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8322   case SystemZ::ATOMIC_LOADW_XILF:
8323     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8324   case SystemZ::ATOMIC_LOAD_XR:
8325     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8326   case SystemZ::ATOMIC_LOAD_XILF:
8327     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8328   case SystemZ::ATOMIC_LOAD_XGR:
8329     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8330   case SystemZ::ATOMIC_LOAD_XILF64:
8331     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8332   case SystemZ::ATOMIC_LOAD_XIHF64:
8333     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8334 
8335   case SystemZ::ATOMIC_LOADW_NRi:
8336     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8337   case SystemZ::ATOMIC_LOADW_NILHi:
8338     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8339   case SystemZ::ATOMIC_LOAD_NRi:
8340     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8341   case SystemZ::ATOMIC_LOAD_NILLi:
8342     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8343   case SystemZ::ATOMIC_LOAD_NILHi:
8344     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8345   case SystemZ::ATOMIC_LOAD_NILFi:
8346     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8347   case SystemZ::ATOMIC_LOAD_NGRi:
8348     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8349   case SystemZ::ATOMIC_LOAD_NILL64i:
8350     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8351   case SystemZ::ATOMIC_LOAD_NILH64i:
8352     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8353   case SystemZ::ATOMIC_LOAD_NIHL64i:
8354     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8355   case SystemZ::ATOMIC_LOAD_NIHH64i:
8356     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8357   case SystemZ::ATOMIC_LOAD_NILF64i:
8358     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8359   case SystemZ::ATOMIC_LOAD_NIHF64i:
8360     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8361 
8362   case SystemZ::ATOMIC_LOADW_MIN:
8363     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8364                                 SystemZ::CCMASK_CMP_LE, 0);
8365   case SystemZ::ATOMIC_LOAD_MIN_32:
8366     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8367                                 SystemZ::CCMASK_CMP_LE, 32);
8368   case SystemZ::ATOMIC_LOAD_MIN_64:
8369     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8370                                 SystemZ::CCMASK_CMP_LE, 64);
8371 
8372   case SystemZ::ATOMIC_LOADW_MAX:
8373     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8374                                 SystemZ::CCMASK_CMP_GE, 0);
8375   case SystemZ::ATOMIC_LOAD_MAX_32:
8376     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8377                                 SystemZ::CCMASK_CMP_GE, 32);
8378   case SystemZ::ATOMIC_LOAD_MAX_64:
8379     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8380                                 SystemZ::CCMASK_CMP_GE, 64);
8381 
8382   case SystemZ::ATOMIC_LOADW_UMIN:
8383     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8384                                 SystemZ::CCMASK_CMP_LE, 0);
8385   case SystemZ::ATOMIC_LOAD_UMIN_32:
8386     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8387                                 SystemZ::CCMASK_CMP_LE, 32);
8388   case SystemZ::ATOMIC_LOAD_UMIN_64:
8389     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8390                                 SystemZ::CCMASK_CMP_LE, 64);
8391 
8392   case SystemZ::ATOMIC_LOADW_UMAX:
8393     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8394                                 SystemZ::CCMASK_CMP_GE, 0);
8395   case SystemZ::ATOMIC_LOAD_UMAX_32:
8396     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8397                                 SystemZ::CCMASK_CMP_GE, 32);
8398   case SystemZ::ATOMIC_LOAD_UMAX_64:
8399     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8400                                 SystemZ::CCMASK_CMP_GE, 64);
8401 
8402   case SystemZ::ATOMIC_CMP_SWAPW:
8403     return emitAtomicCmpSwapW(MI, MBB);
8404   case SystemZ::MVCSequence:
8405   case SystemZ::MVCLoop:
8406     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8407   case SystemZ::NCSequence:
8408   case SystemZ::NCLoop:
8409     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8410   case SystemZ::OCSequence:
8411   case SystemZ::OCLoop:
8412     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8413   case SystemZ::XCSequence:
8414   case SystemZ::XCLoop:
8415     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8416   case SystemZ::CLCSequence:
8417   case SystemZ::CLCLoop:
8418     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8419   case SystemZ::CLSTLoop:
8420     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8421   case SystemZ::MVSTLoop:
8422     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8423   case SystemZ::SRSTLoop:
8424     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8425   case SystemZ::TBEGIN:
8426     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8427   case SystemZ::TBEGIN_nofloat:
8428     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8429   case SystemZ::TBEGINC:
8430     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8431   case SystemZ::LTEBRCompare_VecPseudo:
8432     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8433   case SystemZ::LTDBRCompare_VecPseudo:
8434     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8435   case SystemZ::LTXBRCompare_VecPseudo:
8436     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8437 
8438   case SystemZ::PROBED_ALLOCA:
8439     return emitProbedAlloca(MI, MBB);
8440 
8441   case TargetOpcode::STACKMAP:
8442   case TargetOpcode::PATCHPOINT:
8443     return emitPatchPoint(MI, MBB);
8444 
8445   default:
8446     llvm_unreachable("Unexpected instr type to insert");
8447   }
8448 }
8449 
8450 // This is only used by the isel schedulers, and is needed only to prevent
8451 // compiler from crashing when list-ilp is used.
8452 const TargetRegisterClass *
8453 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8454   if (VT == MVT::Untyped)
8455     return &SystemZ::ADDR128BitRegClass;
8456   return TargetLowering::getRepRegClassFor(VT);
8457 }
8458