xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision d56accc7c3dcc897489b6a07834763a03b9f3d68)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Handle constrained floating-point operations.
475       setOperationAction(ISD::STRICT_FADD, VT, Legal);
476       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
477       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
478       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
479       setOperationAction(ISD::STRICT_FMA, VT, Legal);
480       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
481       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
482       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
483       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
484       if (Subtarget.hasFPExtension()) {
485         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
486         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
487         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
488         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
489         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
490       }
491     }
492   }
493 
494   // Handle floating-point vector types.
495   if (Subtarget.hasVector()) {
496     // Scalar-to-vector conversion is just a subreg.
497     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
498     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
499 
500     // Some insertions and extractions can be done directly but others
501     // need to go via integers.
502     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
503     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
504     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
505     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
506 
507     // These operations have direct equivalents.
508     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
509     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
510     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
511     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
512     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
513     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
514     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
515     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
516     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
517     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
518     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
519     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
520     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
521     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
522 
523     // Handle constrained floating-point operations.
524     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
536   }
537 
538   // The vector enhancements facility 1 has instructions for these.
539   if (Subtarget.hasVectorEnhancements1()) {
540     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
541     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
542     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
543     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
544     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
545     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
546     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
547     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
548     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
549     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
550     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
551     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
552     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
553     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
554 
555     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
556     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
557     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
558     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
559 
560     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
561     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
562     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
563     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
564 
565     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
566     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
567     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
568     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
569 
570     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
571     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
572     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
573     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
574 
575     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
576     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
577     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
578     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
579 
580     // Handle constrained floating-point operations.
581     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
593     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
594                      MVT::v4f32, MVT::v2f64 }) {
595       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
596       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
597       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
598       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
599     }
600   }
601 
602   // We only have fused f128 multiply-addition on vector registers.
603   if (!Subtarget.hasVectorEnhancements1()) {
604     setOperationAction(ISD::FMA, MVT::f128, Expand);
605     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
606   }
607 
608   // We don't have a copysign instruction on vector registers.
609   if (Subtarget.hasVectorEnhancements1())
610     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
611 
612   // Needed so that we don't try to implement f128 constant loads using
613   // a load-and-extend of a f80 constant (in cases where the constant
614   // would fit in an f80).
615   for (MVT VT : MVT::fp_valuetypes())
616     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
617 
618   // We don't have extending load instruction on vector registers.
619   if (Subtarget.hasVectorEnhancements1()) {
620     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
621     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
622   }
623 
624   // Floating-point truncation and stores need to be done separately.
625   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
626   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
627   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
628 
629   // We have 64-bit FPR<->GPR moves, but need special handling for
630   // 32-bit forms.
631   if (!Subtarget.hasVector()) {
632     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
633     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
634   }
635 
636   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
637   // structure, but VAEND is a no-op.
638   setOperationAction(ISD::VASTART, MVT::Other, Custom);
639   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
640   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
641 
642   // Codes for which we want to perform some z-specific combinations.
643   setTargetDAGCombine(ISD::ZERO_EXTEND);
644   setTargetDAGCombine(ISD::SIGN_EXTEND);
645   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
646   setTargetDAGCombine(ISD::LOAD);
647   setTargetDAGCombine(ISD::STORE);
648   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
649   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
650   setTargetDAGCombine(ISD::FP_ROUND);
651   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
652   setTargetDAGCombine(ISD::FP_EXTEND);
653   setTargetDAGCombine(ISD::SINT_TO_FP);
654   setTargetDAGCombine(ISD::UINT_TO_FP);
655   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
656   setTargetDAGCombine(ISD::BSWAP);
657   setTargetDAGCombine(ISD::SDIV);
658   setTargetDAGCombine(ISD::UDIV);
659   setTargetDAGCombine(ISD::SREM);
660   setTargetDAGCombine(ISD::UREM);
661   setTargetDAGCombine(ISD::INTRINSIC_VOID);
662   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
663 
664   // Handle intrinsics.
665   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
666   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
667 
668   // We want to use MVC in preference to even a single load/store pair.
669   MaxStoresPerMemcpy = 0;
670   MaxStoresPerMemcpyOptSize = 0;
671 
672   // The main memset sequence is a byte store followed by an MVC.
673   // Two STC or MV..I stores win over that, but the kind of fused stores
674   // generated by target-independent code don't when the byte value is
675   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
676   // than "STC;MVC".  Handle the choice in target-specific code instead.
677   MaxStoresPerMemset = 0;
678   MaxStoresPerMemsetOptSize = 0;
679 
680   // Default to having -disable-strictnode-mutation on
681   IsStrictFPEnabled = true;
682 }
683 
684 bool SystemZTargetLowering::useSoftFloat() const {
685   return Subtarget.hasSoftFloat();
686 }
687 
688 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
689                                               LLVMContext &, EVT VT) const {
690   if (!VT.isVector())
691     return MVT::i32;
692   return VT.changeVectorElementTypeToInteger();
693 }
694 
695 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
696     const MachineFunction &MF, EVT VT) const {
697   VT = VT.getScalarType();
698 
699   if (!VT.isSimple())
700     return false;
701 
702   switch (VT.getSimpleVT().SimpleTy) {
703   case MVT::f32:
704   case MVT::f64:
705     return true;
706   case MVT::f128:
707     return Subtarget.hasVectorEnhancements1();
708   default:
709     break;
710   }
711 
712   return false;
713 }
714 
715 // Return true if the constant can be generated with a vector instruction,
716 // such as VGM, VGMB or VREPI.
717 bool SystemZVectorConstantInfo::isVectorConstantLegal(
718     const SystemZSubtarget &Subtarget) {
719   const SystemZInstrInfo *TII =
720       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
721   if (!Subtarget.hasVector() ||
722       (isFP128 && !Subtarget.hasVectorEnhancements1()))
723     return false;
724 
725   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
726   // preferred way of creating all-zero and all-one vectors so give it
727   // priority over other methods below.
728   unsigned Mask = 0;
729   unsigned I = 0;
730   for (; I < SystemZ::VectorBytes; ++I) {
731     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
732     if (Byte == 0xff)
733       Mask |= 1ULL << I;
734     else if (Byte != 0)
735       break;
736   }
737   if (I == SystemZ::VectorBytes) {
738     Opcode = SystemZISD::BYTE_MASK;
739     OpVals.push_back(Mask);
740     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
741     return true;
742   }
743 
744   if (SplatBitSize > 64)
745     return false;
746 
747   auto tryValue = [&](uint64_t Value) -> bool {
748     // Try VECTOR REPLICATE IMMEDIATE
749     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
750     if (isInt<16>(SignedValue)) {
751       OpVals.push_back(((unsigned) SignedValue));
752       Opcode = SystemZISD::REPLICATE;
753       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
754                                SystemZ::VectorBits / SplatBitSize);
755       return true;
756     }
757     // Try VECTOR GENERATE MASK
758     unsigned Start, End;
759     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
760       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
761       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
762       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
763       OpVals.push_back(Start - (64 - SplatBitSize));
764       OpVals.push_back(End - (64 - SplatBitSize));
765       Opcode = SystemZISD::ROTATE_MASK;
766       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
767                                SystemZ::VectorBits / SplatBitSize);
768       return true;
769     }
770     return false;
771   };
772 
773   // First try assuming that any undefined bits above the highest set bit
774   // and below the lowest set bit are 1s.  This increases the likelihood of
775   // being able to use a sign-extended element value in VECTOR REPLICATE
776   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
777   uint64_t SplatBitsZ = SplatBits.getZExtValue();
778   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
779   uint64_t Lower =
780       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
781   uint64_t Upper =
782       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
783   if (tryValue(SplatBitsZ | Upper | Lower))
784     return true;
785 
786   // Now try assuming that any undefined bits between the first and
787   // last defined set bits are set.  This increases the chances of
788   // using a non-wraparound mask.
789   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
790   return tryValue(SplatBitsZ | Middle);
791 }
792 
793 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
794   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
795   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
796   SplatBits = FPImm.bitcastToAPInt();
797   unsigned Width = SplatBits.getBitWidth();
798   IntBits <<= (SystemZ::VectorBits - Width);
799 
800   // Find the smallest splat.
801   while (Width > 8) {
802     unsigned HalfSize = Width / 2;
803     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
804     APInt LowValue = SplatBits.trunc(HalfSize);
805 
806     // If the two halves do not match, stop here.
807     if (HighValue != LowValue || 8 > HalfSize)
808       break;
809 
810     SplatBits = HighValue;
811     Width = HalfSize;
812   }
813   SplatUndef = 0;
814   SplatBitSize = Width;
815 }
816 
817 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
818   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
819   bool HasAnyUndefs;
820 
821   // Get IntBits by finding the 128 bit splat.
822   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
823                        true);
824 
825   // Get SplatBits by finding the 8 bit or greater splat.
826   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
827                        true);
828 }
829 
830 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
831                                          bool ForCodeSize) const {
832   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
833   if (Imm.isZero() || Imm.isNegZero())
834     return true;
835 
836   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
837 }
838 
839 /// Returns true if stack probing through inline assembly is requested.
840 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
841   // If the function specifically requests inline stack probes, emit them.
842   if (MF.getFunction().hasFnAttribute("probe-stack"))
843     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
844            "inline-asm";
845   return false;
846 }
847 
848 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
849   // We can use CGFI or CLGFI.
850   return isInt<32>(Imm) || isUInt<32>(Imm);
851 }
852 
853 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
854   // We can use ALGFI or SLGFI.
855   return isUInt<32>(Imm) || isUInt<32>(-Imm);
856 }
857 
858 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
859     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
860   // Unaligned accesses should never be slower than the expanded version.
861   // We check specifically for aligned accesses in the few cases where
862   // they are required.
863   if (Fast)
864     *Fast = true;
865   return true;
866 }
867 
868 // Information about the addressing mode for a memory access.
869 struct AddressingMode {
870   // True if a long displacement is supported.
871   bool LongDisplacement;
872 
873   // True if use of index register is supported.
874   bool IndexReg;
875 
876   AddressingMode(bool LongDispl, bool IdxReg) :
877     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
878 };
879 
880 // Return the desired addressing mode for a Load which has only one use (in
881 // the same block) which is a Store.
882 static AddressingMode getLoadStoreAddrMode(bool HasVector,
883                                           Type *Ty) {
884   // With vector support a Load->Store combination may be combined to either
885   // an MVC or vector operations and it seems to work best to allow the
886   // vector addressing mode.
887   if (HasVector)
888     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
889 
890   // Otherwise only the MVC case is special.
891   bool MVC = Ty->isIntegerTy(8);
892   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
893 }
894 
895 // Return the addressing mode which seems most desirable given an LLVM
896 // Instruction pointer.
897 static AddressingMode
898 supportedAddressingMode(Instruction *I, bool HasVector) {
899   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
900     switch (II->getIntrinsicID()) {
901     default: break;
902     case Intrinsic::memset:
903     case Intrinsic::memmove:
904     case Intrinsic::memcpy:
905       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
906     }
907   }
908 
909   if (isa<LoadInst>(I) && I->hasOneUse()) {
910     auto *SingleUser = cast<Instruction>(*I->user_begin());
911     if (SingleUser->getParent() == I->getParent()) {
912       if (isa<ICmpInst>(SingleUser)) {
913         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
914           if (C->getBitWidth() <= 64 &&
915               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
916             // Comparison of memory with 16 bit signed / unsigned immediate
917             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
918       } else if (isa<StoreInst>(SingleUser))
919         // Load->Store
920         return getLoadStoreAddrMode(HasVector, I->getType());
921     }
922   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
923     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
924       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
925         // Load->Store
926         return getLoadStoreAddrMode(HasVector, LoadI->getType());
927   }
928 
929   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
930 
931     // * Use LDE instead of LE/LEY for z13 to avoid partial register
932     //   dependencies (LDE only supports small offsets).
933     // * Utilize the vector registers to hold floating point
934     //   values (vector load / store instructions only support small
935     //   offsets).
936 
937     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
938                          I->getOperand(0)->getType());
939     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
940     bool IsVectorAccess = MemAccessTy->isVectorTy();
941 
942     // A store of an extracted vector element will be combined into a VSTE type
943     // instruction.
944     if (!IsVectorAccess && isa<StoreInst>(I)) {
945       Value *DataOp = I->getOperand(0);
946       if (isa<ExtractElementInst>(DataOp))
947         IsVectorAccess = true;
948     }
949 
950     // A load which gets inserted into a vector element will be combined into a
951     // VLE type instruction.
952     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
953       User *LoadUser = *I->user_begin();
954       if (isa<InsertElementInst>(LoadUser))
955         IsVectorAccess = true;
956     }
957 
958     if (IsFPAccess || IsVectorAccess)
959       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
960   }
961 
962   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
963 }
964 
965 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
966        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
967   // Punt on globals for now, although they can be used in limited
968   // RELATIVE LONG cases.
969   if (AM.BaseGV)
970     return false;
971 
972   // Require a 20-bit signed offset.
973   if (!isInt<20>(AM.BaseOffs))
974     return false;
975 
976   AddressingMode SupportedAM(true, true);
977   if (I != nullptr)
978     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
979 
980   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
981     return false;
982 
983   if (!SupportedAM.IndexReg)
984     // No indexing allowed.
985     return AM.Scale == 0;
986   else
987     // Indexing is OK but no scale factor can be applied.
988     return AM.Scale == 0 || AM.Scale == 1;
989 }
990 
991 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
992   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
993     return false;
994   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
995   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
996   return FromBits > ToBits;
997 }
998 
999 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1000   if (!FromVT.isInteger() || !ToVT.isInteger())
1001     return false;
1002   unsigned FromBits = FromVT.getFixedSizeInBits();
1003   unsigned ToBits = ToVT.getFixedSizeInBits();
1004   return FromBits > ToBits;
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 // Inline asm support
1009 //===----------------------------------------------------------------------===//
1010 
1011 TargetLowering::ConstraintType
1012 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1013   if (Constraint.size() == 1) {
1014     switch (Constraint[0]) {
1015     case 'a': // Address register
1016     case 'd': // Data register (equivalent to 'r')
1017     case 'f': // Floating-point register
1018     case 'h': // High-part register
1019     case 'r': // General-purpose register
1020     case 'v': // Vector register
1021       return C_RegisterClass;
1022 
1023     case 'Q': // Memory with base and unsigned 12-bit displacement
1024     case 'R': // Likewise, plus an index
1025     case 'S': // Memory with base and signed 20-bit displacement
1026     case 'T': // Likewise, plus an index
1027     case 'm': // Equivalent to 'T'.
1028       return C_Memory;
1029 
1030     case 'I': // Unsigned 8-bit constant
1031     case 'J': // Unsigned 12-bit constant
1032     case 'K': // Signed 16-bit constant
1033     case 'L': // Signed 20-bit displacement (on all targets we support)
1034     case 'M': // 0x7fffffff
1035       return C_Immediate;
1036 
1037     default:
1038       break;
1039     }
1040   }
1041   return TargetLowering::getConstraintType(Constraint);
1042 }
1043 
1044 TargetLowering::ConstraintWeight SystemZTargetLowering::
1045 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1046                                const char *constraint) const {
1047   ConstraintWeight weight = CW_Invalid;
1048   Value *CallOperandVal = info.CallOperandVal;
1049   // If we don't have a value, we can't do a match,
1050   // but allow it at the lowest weight.
1051   if (!CallOperandVal)
1052     return CW_Default;
1053   Type *type = CallOperandVal->getType();
1054   // Look at the constraint type.
1055   switch (*constraint) {
1056   default:
1057     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1058     break;
1059 
1060   case 'a': // Address register
1061   case 'd': // Data register (equivalent to 'r')
1062   case 'h': // High-part register
1063   case 'r': // General-purpose register
1064     if (CallOperandVal->getType()->isIntegerTy())
1065       weight = CW_Register;
1066     break;
1067 
1068   case 'f': // Floating-point register
1069     if (type->isFloatingPointTy())
1070       weight = CW_Register;
1071     break;
1072 
1073   case 'v': // Vector register
1074     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1075         Subtarget.hasVector())
1076       weight = CW_Register;
1077     break;
1078 
1079   case 'I': // Unsigned 8-bit constant
1080     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1081       if (isUInt<8>(C->getZExtValue()))
1082         weight = CW_Constant;
1083     break;
1084 
1085   case 'J': // Unsigned 12-bit constant
1086     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1087       if (isUInt<12>(C->getZExtValue()))
1088         weight = CW_Constant;
1089     break;
1090 
1091   case 'K': // Signed 16-bit constant
1092     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1093       if (isInt<16>(C->getSExtValue()))
1094         weight = CW_Constant;
1095     break;
1096 
1097   case 'L': // Signed 20-bit displacement (on all targets we support)
1098     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1099       if (isInt<20>(C->getSExtValue()))
1100         weight = CW_Constant;
1101     break;
1102 
1103   case 'M': // 0x7fffffff
1104     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1105       if (C->getZExtValue() == 0x7fffffff)
1106         weight = CW_Constant;
1107     break;
1108   }
1109   return weight;
1110 }
1111 
1112 // Parse a "{tNNN}" register constraint for which the register type "t"
1113 // has already been verified.  MC is the class associated with "t" and
1114 // Map maps 0-based register numbers to LLVM register numbers.
1115 static std::pair<unsigned, const TargetRegisterClass *>
1116 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1117                     const unsigned *Map, unsigned Size) {
1118   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1119   if (isdigit(Constraint[2])) {
1120     unsigned Index;
1121     bool Failed =
1122         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1123     if (!Failed && Index < Size && Map[Index])
1124       return std::make_pair(Map[Index], RC);
1125   }
1126   return std::make_pair(0U, nullptr);
1127 }
1128 
1129 std::pair<unsigned, const TargetRegisterClass *>
1130 SystemZTargetLowering::getRegForInlineAsmConstraint(
1131     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1132   if (Constraint.size() == 1) {
1133     // GCC Constraint Letters
1134     switch (Constraint[0]) {
1135     default: break;
1136     case 'd': // Data register (equivalent to 'r')
1137     case 'r': // General-purpose register
1138       if (VT == MVT::i64)
1139         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1140       else if (VT == MVT::i128)
1141         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1142       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1143 
1144     case 'a': // Address register
1145       if (VT == MVT::i64)
1146         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1147       else if (VT == MVT::i128)
1148         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1149       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1150 
1151     case 'h': // High-part register (an LLVM extension)
1152       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1153 
1154     case 'f': // Floating-point register
1155       if (!useSoftFloat()) {
1156         if (VT == MVT::f64)
1157           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1158         else if (VT == MVT::f128)
1159           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1160         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1161       }
1162       break;
1163     case 'v': // Vector register
1164       if (Subtarget.hasVector()) {
1165         if (VT == MVT::f32)
1166           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1167         if (VT == MVT::f64)
1168           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1169         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1170       }
1171       break;
1172     }
1173   }
1174   if (Constraint.size() > 0 && Constraint[0] == '{') {
1175     // We need to override the default register parsing for GPRs and FPRs
1176     // because the interpretation depends on VT.  The internal names of
1177     // the registers are also different from the external names
1178     // (F0D and F0S instead of F0, etc.).
1179     if (Constraint[1] == 'r') {
1180       if (VT == MVT::i32)
1181         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1182                                    SystemZMC::GR32Regs, 16);
1183       if (VT == MVT::i128)
1184         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1185                                    SystemZMC::GR128Regs, 16);
1186       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1187                                  SystemZMC::GR64Regs, 16);
1188     }
1189     if (Constraint[1] == 'f') {
1190       if (useSoftFloat())
1191         return std::make_pair(
1192             0u, static_cast<const TargetRegisterClass *>(nullptr));
1193       if (VT == MVT::f32)
1194         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1195                                    SystemZMC::FP32Regs, 16);
1196       if (VT == MVT::f128)
1197         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1198                                    SystemZMC::FP128Regs, 16);
1199       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1200                                  SystemZMC::FP64Regs, 16);
1201     }
1202     if (Constraint[1] == 'v') {
1203       if (!Subtarget.hasVector())
1204         return std::make_pair(
1205             0u, static_cast<const TargetRegisterClass *>(nullptr));
1206       if (VT == MVT::f32)
1207         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1208                                    SystemZMC::VR32Regs, 32);
1209       if (VT == MVT::f64)
1210         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1211                                    SystemZMC::VR64Regs, 32);
1212       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1213                                  SystemZMC::VR128Regs, 32);
1214     }
1215   }
1216   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1217 }
1218 
1219 // FIXME? Maybe this could be a TableGen attribute on some registers and
1220 // this table could be generated automatically from RegInfo.
1221 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1222                                                   const MachineFunction &MF) const {
1223 
1224   Register Reg = StringSwitch<Register>(RegName)
1225                    .Case("r15", SystemZ::R15D)
1226                    .Default(0);
1227   if (Reg)
1228     return Reg;
1229   report_fatal_error("Invalid register name global variable");
1230 }
1231 
1232 void SystemZTargetLowering::
1233 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1234                              std::vector<SDValue> &Ops,
1235                              SelectionDAG &DAG) const {
1236   // Only support length 1 constraints for now.
1237   if (Constraint.length() == 1) {
1238     switch (Constraint[0]) {
1239     case 'I': // Unsigned 8-bit constant
1240       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1241         if (isUInt<8>(C->getZExtValue()))
1242           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1243                                               Op.getValueType()));
1244       return;
1245 
1246     case 'J': // Unsigned 12-bit constant
1247       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1248         if (isUInt<12>(C->getZExtValue()))
1249           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1250                                               Op.getValueType()));
1251       return;
1252 
1253     case 'K': // Signed 16-bit constant
1254       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1255         if (isInt<16>(C->getSExtValue()))
1256           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1257                                               Op.getValueType()));
1258       return;
1259 
1260     case 'L': // Signed 20-bit displacement (on all targets we support)
1261       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1262         if (isInt<20>(C->getSExtValue()))
1263           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1264                                               Op.getValueType()));
1265       return;
1266 
1267     case 'M': // 0x7fffffff
1268       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1269         if (C->getZExtValue() == 0x7fffffff)
1270           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1271                                               Op.getValueType()));
1272       return;
1273     }
1274   }
1275   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1276 }
1277 
1278 //===----------------------------------------------------------------------===//
1279 // Calling conventions
1280 //===----------------------------------------------------------------------===//
1281 
1282 #include "SystemZGenCallingConv.inc"
1283 
1284 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1285   CallingConv::ID) const {
1286   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1287                                            SystemZ::R14D, 0 };
1288   return ScratchRegs;
1289 }
1290 
1291 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1292                                                      Type *ToType) const {
1293   return isTruncateFree(FromType, ToType);
1294 }
1295 
1296 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1297   return CI->isTailCall();
1298 }
1299 
1300 // We do not yet support 128-bit single-element vector types.  If the user
1301 // attempts to use such types as function argument or return type, prefer
1302 // to error out instead of emitting code violating the ABI.
1303 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1304   if (ArgVT.isVector() && !VT.isVector())
1305     report_fatal_error("Unsupported vector argument or return type");
1306 }
1307 
1308 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1309   for (unsigned i = 0; i < Ins.size(); ++i)
1310     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1311 }
1312 
1313 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1314   for (unsigned i = 0; i < Outs.size(); ++i)
1315     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1316 }
1317 
1318 // Value is a value that has been passed to us in the location described by VA
1319 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1320 // any loads onto Chain.
1321 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1322                                    CCValAssign &VA, SDValue Chain,
1323                                    SDValue Value) {
1324   // If the argument has been promoted from a smaller type, insert an
1325   // assertion to capture this.
1326   if (VA.getLocInfo() == CCValAssign::SExt)
1327     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1328                         DAG.getValueType(VA.getValVT()));
1329   else if (VA.getLocInfo() == CCValAssign::ZExt)
1330     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1331                         DAG.getValueType(VA.getValVT()));
1332 
1333   if (VA.isExtInLoc())
1334     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1335   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1336     // If this is a short vector argument loaded from the stack,
1337     // extend from i64 to full vector size and then bitcast.
1338     assert(VA.getLocVT() == MVT::i64);
1339     assert(VA.getValVT().isVector());
1340     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1341     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1342   } else
1343     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1344   return Value;
1345 }
1346 
1347 // Value is a value of type VA.getValVT() that we need to copy into
1348 // the location described by VA.  Return a copy of Value converted to
1349 // VA.getValVT().  The caller is responsible for handling indirect values.
1350 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1351                                    CCValAssign &VA, SDValue Value) {
1352   switch (VA.getLocInfo()) {
1353   case CCValAssign::SExt:
1354     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1355   case CCValAssign::ZExt:
1356     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1357   case CCValAssign::AExt:
1358     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1359   case CCValAssign::BCvt: {
1360     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1361     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1362            VA.getValVT() == MVT::f128);
1363     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1364                             ? MVT::v2i64
1365                             : VA.getLocVT();
1366     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1367     // For ELF, this is a short vector argument to be stored to the stack,
1368     // bitcast to v2i64 and then extract first element.
1369     if (BitCastToType == MVT::v2i64)
1370       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1371                          DAG.getConstant(0, DL, MVT::i32));
1372     return Value;
1373   }
1374   case CCValAssign::Full:
1375     return Value;
1376   default:
1377     llvm_unreachable("Unhandled getLocInfo()");
1378   }
1379 }
1380 
1381 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1382   SDLoc DL(In);
1383   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1384                            DAG.getIntPtrConstant(0, DL));
1385   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1386                            DAG.getIntPtrConstant(1, DL));
1387   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1388                                     MVT::Untyped, Hi, Lo);
1389   return SDValue(Pair, 0);
1390 }
1391 
1392 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1393   SDLoc DL(In);
1394   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1395                                           DL, MVT::i64, In);
1396   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1397                                           DL, MVT::i64, In);
1398   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1399 }
1400 
1401 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1402     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1403     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1404   EVT ValueVT = Val.getValueType();
1405   assert((ValueVT != MVT::i128 ||
1406           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1407            (NumParts == 2 && PartVT == MVT::i64))) &&
1408          "Unknown handling of i128 value.");
1409   if (ValueVT == MVT::i128 && NumParts == 1) {
1410     // Inline assembly operand.
1411     Parts[0] = lowerI128ToGR128(DAG, Val);
1412     return true;
1413   }
1414   return false;
1415 }
1416 
1417 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1418     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1419     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1420   assert((ValueVT != MVT::i128 ||
1421           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1422            (NumParts == 2 && PartVT == MVT::i64))) &&
1423          "Unknown handling of i128 value.");
1424   if (ValueVT == MVT::i128 && NumParts == 1)
1425     // Inline assembly operand.
1426     return lowerGR128ToI128(DAG, Parts[0]);
1427   return SDValue();
1428 }
1429 
1430 SDValue SystemZTargetLowering::LowerFormalArguments(
1431     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1432     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1433     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1434   MachineFunction &MF = DAG.getMachineFunction();
1435   MachineFrameInfo &MFI = MF.getFrameInfo();
1436   MachineRegisterInfo &MRI = MF.getRegInfo();
1437   SystemZMachineFunctionInfo *FuncInfo =
1438       MF.getInfo<SystemZMachineFunctionInfo>();
1439   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1440   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1441 
1442   // Detect unsupported vector argument types.
1443   if (Subtarget.hasVector())
1444     VerifyVectorTypes(Ins);
1445 
1446   // Assign locations to all of the incoming arguments.
1447   SmallVector<CCValAssign, 16> ArgLocs;
1448   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1449   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1450 
1451   unsigned NumFixedGPRs = 0;
1452   unsigned NumFixedFPRs = 0;
1453   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1454     SDValue ArgValue;
1455     CCValAssign &VA = ArgLocs[I];
1456     EVT LocVT = VA.getLocVT();
1457     if (VA.isRegLoc()) {
1458       // Arguments passed in registers
1459       const TargetRegisterClass *RC;
1460       switch (LocVT.getSimpleVT().SimpleTy) {
1461       default:
1462         // Integers smaller than i64 should be promoted to i64.
1463         llvm_unreachable("Unexpected argument type");
1464       case MVT::i32:
1465         NumFixedGPRs += 1;
1466         RC = &SystemZ::GR32BitRegClass;
1467         break;
1468       case MVT::i64:
1469         NumFixedGPRs += 1;
1470         RC = &SystemZ::GR64BitRegClass;
1471         break;
1472       case MVT::f32:
1473         NumFixedFPRs += 1;
1474         RC = &SystemZ::FP32BitRegClass;
1475         break;
1476       case MVT::f64:
1477         NumFixedFPRs += 1;
1478         RC = &SystemZ::FP64BitRegClass;
1479         break;
1480       case MVT::f128:
1481         NumFixedFPRs += 2;
1482         RC = &SystemZ::FP128BitRegClass;
1483         break;
1484       case MVT::v16i8:
1485       case MVT::v8i16:
1486       case MVT::v4i32:
1487       case MVT::v2i64:
1488       case MVT::v4f32:
1489       case MVT::v2f64:
1490         RC = &SystemZ::VR128BitRegClass;
1491         break;
1492       }
1493 
1494       Register VReg = MRI.createVirtualRegister(RC);
1495       MRI.addLiveIn(VA.getLocReg(), VReg);
1496       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1497     } else {
1498       assert(VA.isMemLoc() && "Argument not register or memory");
1499 
1500       // Create the frame index object for this incoming parameter.
1501       // FIXME: Pre-include call frame size in the offset, should not
1502       // need to manually add it here.
1503       int64_t ArgSPOffset = VA.getLocMemOffset();
1504       if (Subtarget.isTargetXPLINK64()) {
1505         auto &XPRegs =
1506             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1507         ArgSPOffset += XPRegs.getCallFrameSize();
1508       }
1509       int FI =
1510           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1511 
1512       // Create the SelectionDAG nodes corresponding to a load
1513       // from this parameter.  Unpromoted ints and floats are
1514       // passed as right-justified 8-byte values.
1515       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1516       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1517         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1518                           DAG.getIntPtrConstant(4, DL));
1519       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1520                              MachinePointerInfo::getFixedStack(MF, FI));
1521     }
1522 
1523     // Convert the value of the argument register into the value that's
1524     // being passed.
1525     if (VA.getLocInfo() == CCValAssign::Indirect) {
1526       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1527                                    MachinePointerInfo()));
1528       // If the original argument was split (e.g. i128), we need
1529       // to load all parts of it here (using the same address).
1530       unsigned ArgIndex = Ins[I].OrigArgIndex;
1531       assert (Ins[I].PartOffset == 0);
1532       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1533         CCValAssign &PartVA = ArgLocs[I + 1];
1534         unsigned PartOffset = Ins[I + 1].PartOffset;
1535         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1536                                       DAG.getIntPtrConstant(PartOffset, DL));
1537         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1538                                      MachinePointerInfo()));
1539         ++I;
1540       }
1541     } else
1542       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1543   }
1544 
1545   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1546   if (IsVarArg && Subtarget.isTargetELF()) {
1547     // Save the number of non-varargs registers for later use by va_start, etc.
1548     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1549     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1550 
1551     // Likewise the address (in the form of a frame index) of where the
1552     // first stack vararg would be.  The 1-byte size here is arbitrary.
1553     int64_t StackSize = CCInfo.getNextStackOffset();
1554     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1555 
1556     // ...and a similar frame index for the caller-allocated save area
1557     // that will be used to store the incoming registers.
1558     int64_t RegSaveOffset =
1559       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1560     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1561     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1562 
1563     // Store the FPR varargs in the reserved frame slots.  (We store the
1564     // GPRs as part of the prologue.)
1565     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1566       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1567       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1568         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1569         int FI =
1570           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1571         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1572         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1573                                      &SystemZ::FP64BitRegClass);
1574         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1575         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1576                                  MachinePointerInfo::getFixedStack(MF, FI));
1577       }
1578       // Join the stores, which are independent of one another.
1579       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1580                           makeArrayRef(&MemOps[NumFixedFPRs],
1581                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1582     }
1583   }
1584 
1585   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1586   // register (R5)
1587   return Chain;
1588 }
1589 
1590 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1591                               SmallVectorImpl<CCValAssign> &ArgLocs,
1592                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1593   // Punt if there are any indirect or stack arguments, or if the call
1594   // needs the callee-saved argument register R6, or if the call uses
1595   // the callee-saved register arguments SwiftSelf and SwiftError.
1596   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1597     CCValAssign &VA = ArgLocs[I];
1598     if (VA.getLocInfo() == CCValAssign::Indirect)
1599       return false;
1600     if (!VA.isRegLoc())
1601       return false;
1602     Register Reg = VA.getLocReg();
1603     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1604       return false;
1605     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1606       return false;
1607   }
1608   return true;
1609 }
1610 
1611 SDValue
1612 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1613                                  SmallVectorImpl<SDValue> &InVals) const {
1614   SelectionDAG &DAG = CLI.DAG;
1615   SDLoc &DL = CLI.DL;
1616   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1617   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1618   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1619   SDValue Chain = CLI.Chain;
1620   SDValue Callee = CLI.Callee;
1621   bool &IsTailCall = CLI.IsTailCall;
1622   CallingConv::ID CallConv = CLI.CallConv;
1623   bool IsVarArg = CLI.IsVarArg;
1624   MachineFunction &MF = DAG.getMachineFunction();
1625   EVT PtrVT = getPointerTy(MF.getDataLayout());
1626   LLVMContext &Ctx = *DAG.getContext();
1627   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1628 
1629   // FIXME: z/OS support to be added in later.
1630   if (Subtarget.isTargetXPLINK64())
1631     IsTailCall = false;
1632 
1633   // Detect unsupported vector argument and return types.
1634   if (Subtarget.hasVector()) {
1635     VerifyVectorTypes(Outs);
1636     VerifyVectorTypes(Ins);
1637   }
1638 
1639   // Analyze the operands of the call, assigning locations to each operand.
1640   SmallVector<CCValAssign, 16> ArgLocs;
1641   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1642   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1643 
1644   // We don't support GuaranteedTailCallOpt, only automatically-detected
1645   // sibling calls.
1646   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1647     IsTailCall = false;
1648 
1649   // Get a count of how many bytes are to be pushed on the stack.
1650   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1651 
1652   if (Subtarget.isTargetXPLINK64())
1653     // Although the XPLINK specifications for AMODE64 state that minimum size
1654     // of the param area is minimum 32 bytes and no rounding is otherwise
1655     // specified, we round this area in 64 bytes increments to be compatible
1656     // with existing compilers.
1657     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1658 
1659   // Mark the start of the call.
1660   if (!IsTailCall)
1661     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1662 
1663   // Copy argument values to their designated locations.
1664   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1665   SmallVector<SDValue, 8> MemOpChains;
1666   SDValue StackPtr;
1667   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1668     CCValAssign &VA = ArgLocs[I];
1669     SDValue ArgValue = OutVals[I];
1670 
1671     if (VA.getLocInfo() == CCValAssign::Indirect) {
1672       // Store the argument in a stack slot and pass its address.
1673       unsigned ArgIndex = Outs[I].OrigArgIndex;
1674       EVT SlotVT;
1675       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1676         // Allocate the full stack space for a promoted (and split) argument.
1677         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1678         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1679         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1680         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1681         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1682       } else {
1683         SlotVT = Outs[I].ArgVT;
1684       }
1685       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1686       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1687       MemOpChains.push_back(
1688           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1689                        MachinePointerInfo::getFixedStack(MF, FI)));
1690       // If the original argument was split (e.g. i128), we need
1691       // to store all parts of it here (and pass just one address).
1692       assert (Outs[I].PartOffset == 0);
1693       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1694         SDValue PartValue = OutVals[I + 1];
1695         unsigned PartOffset = Outs[I + 1].PartOffset;
1696         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1697                                       DAG.getIntPtrConstant(PartOffset, DL));
1698         MemOpChains.push_back(
1699             DAG.getStore(Chain, DL, PartValue, Address,
1700                          MachinePointerInfo::getFixedStack(MF, FI)));
1701         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1702                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1703         ++I;
1704       }
1705       ArgValue = SpillSlot;
1706     } else
1707       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1708 
1709     if (VA.isRegLoc()) {
1710       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1711       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1712       // and low values.
1713       if (VA.getLocVT() == MVT::i128)
1714         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1715       // Queue up the argument copies and emit them at the end.
1716       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1717     } else {
1718       assert(VA.isMemLoc() && "Argument not register or memory");
1719 
1720       // Work out the address of the stack slot.  Unpromoted ints and
1721       // floats are passed as right-justified 8-byte values.
1722       if (!StackPtr.getNode())
1723         StackPtr = DAG.getCopyFromReg(Chain, DL,
1724                                       Regs->getStackPointerRegister(), PtrVT);
1725       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1726                         VA.getLocMemOffset();
1727       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1728         Offset += 4;
1729       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1730                                     DAG.getIntPtrConstant(Offset, DL));
1731 
1732       // Emit the store.
1733       MemOpChains.push_back(
1734           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1735 
1736       // Although long doubles or vectors are passed through the stack when
1737       // they are vararg (non-fixed arguments), if a long double or vector
1738       // occupies the third and fourth slot of the argument list GPR3 should
1739       // still shadow the third slot of the argument list.
1740       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1741         SDValue ShadowArgValue =
1742             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1743                         DAG.getIntPtrConstant(1, DL));
1744         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1745       }
1746     }
1747   }
1748 
1749   // Join the stores, which are independent of one another.
1750   if (!MemOpChains.empty())
1751     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1752 
1753   // Accept direct calls by converting symbolic call addresses to the
1754   // associated Target* opcodes.  Force %r1 to be used for indirect
1755   // tail calls.
1756   SDValue Glue;
1757   // FIXME: Add support for XPLINK using the ADA register.
1758   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1759     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1760     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1761   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1762     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1763     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1764   } else if (IsTailCall) {
1765     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1766     Glue = Chain.getValue(1);
1767     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1768   }
1769 
1770   // Build a sequence of copy-to-reg nodes, chained and glued together.
1771   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1772     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1773                              RegsToPass[I].second, Glue);
1774     Glue = Chain.getValue(1);
1775   }
1776 
1777   // The first call operand is the chain and the second is the target address.
1778   SmallVector<SDValue, 8> Ops;
1779   Ops.push_back(Chain);
1780   Ops.push_back(Callee);
1781 
1782   // Add argument registers to the end of the list so that they are
1783   // known live into the call.
1784   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1785     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1786                                   RegsToPass[I].second.getValueType()));
1787 
1788   // Add a register mask operand representing the call-preserved registers.
1789   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1790   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1791   assert(Mask && "Missing call preserved mask for calling convention");
1792   Ops.push_back(DAG.getRegisterMask(Mask));
1793 
1794   // Glue the call to the argument copies, if any.
1795   if (Glue.getNode())
1796     Ops.push_back(Glue);
1797 
1798   // Emit the call.
1799   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1800   if (IsTailCall)
1801     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1802   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1803   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1804   Glue = Chain.getValue(1);
1805 
1806   // Mark the end of the call, which is glued to the call itself.
1807   Chain = DAG.getCALLSEQ_END(Chain,
1808                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1809                              DAG.getConstant(0, DL, PtrVT, true),
1810                              Glue, DL);
1811   Glue = Chain.getValue(1);
1812 
1813   // Assign locations to each value returned by this call.
1814   SmallVector<CCValAssign, 16> RetLocs;
1815   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1816   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1817 
1818   // Copy all of the result registers out of their specified physreg.
1819   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1820     CCValAssign &VA = RetLocs[I];
1821 
1822     // Copy the value out, gluing the copy to the end of the call sequence.
1823     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1824                                           VA.getLocVT(), Glue);
1825     Chain = RetValue.getValue(1);
1826     Glue = RetValue.getValue(2);
1827 
1828     // Convert the value of the return register into the value that's
1829     // being returned.
1830     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1831   }
1832 
1833   return Chain;
1834 }
1835 
1836 bool SystemZTargetLowering::
1837 CanLowerReturn(CallingConv::ID CallConv,
1838                MachineFunction &MF, bool isVarArg,
1839                const SmallVectorImpl<ISD::OutputArg> &Outs,
1840                LLVMContext &Context) const {
1841   // Detect unsupported vector return types.
1842   if (Subtarget.hasVector())
1843     VerifyVectorTypes(Outs);
1844 
1845   // Special case that we cannot easily detect in RetCC_SystemZ since
1846   // i128 is not a legal type.
1847   for (auto &Out : Outs)
1848     if (Out.ArgVT == MVT::i128)
1849       return false;
1850 
1851   SmallVector<CCValAssign, 16> RetLocs;
1852   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1853   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1854 }
1855 
1856 SDValue
1857 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1858                                    bool IsVarArg,
1859                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1860                                    const SmallVectorImpl<SDValue> &OutVals,
1861                                    const SDLoc &DL, SelectionDAG &DAG) const {
1862   MachineFunction &MF = DAG.getMachineFunction();
1863 
1864   // Detect unsupported vector return types.
1865   if (Subtarget.hasVector())
1866     VerifyVectorTypes(Outs);
1867 
1868   // Assign locations to each returned value.
1869   SmallVector<CCValAssign, 16> RetLocs;
1870   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1871   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1872 
1873   // Quick exit for void returns
1874   if (RetLocs.empty())
1875     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1876 
1877   if (CallConv == CallingConv::GHC)
1878     report_fatal_error("GHC functions return void only");
1879 
1880   // Copy the result values into the output registers.
1881   SDValue Glue;
1882   SmallVector<SDValue, 4> RetOps;
1883   RetOps.push_back(Chain);
1884   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1885     CCValAssign &VA = RetLocs[I];
1886     SDValue RetValue = OutVals[I];
1887 
1888     // Make the return register live on exit.
1889     assert(VA.isRegLoc() && "Can only return in registers!");
1890 
1891     // Promote the value as required.
1892     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1893 
1894     // Chain and glue the copies together.
1895     Register Reg = VA.getLocReg();
1896     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1897     Glue = Chain.getValue(1);
1898     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1899   }
1900 
1901   // Update chain and glue.
1902   RetOps[0] = Chain;
1903   if (Glue.getNode())
1904     RetOps.push_back(Glue);
1905 
1906   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1907 }
1908 
1909 // Return true if Op is an intrinsic node with chain that returns the CC value
1910 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1911 // the mask of valid CC values if so.
1912 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1913                                       unsigned &CCValid) {
1914   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1915   switch (Id) {
1916   case Intrinsic::s390_tbegin:
1917     Opcode = SystemZISD::TBEGIN;
1918     CCValid = SystemZ::CCMASK_TBEGIN;
1919     return true;
1920 
1921   case Intrinsic::s390_tbegin_nofloat:
1922     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1923     CCValid = SystemZ::CCMASK_TBEGIN;
1924     return true;
1925 
1926   case Intrinsic::s390_tend:
1927     Opcode = SystemZISD::TEND;
1928     CCValid = SystemZ::CCMASK_TEND;
1929     return true;
1930 
1931   default:
1932     return false;
1933   }
1934 }
1935 
1936 // Return true if Op is an intrinsic node without chain that returns the
1937 // CC value as its final argument.  Provide the associated SystemZISD
1938 // opcode and the mask of valid CC values if so.
1939 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1940   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1941   switch (Id) {
1942   case Intrinsic::s390_vpkshs:
1943   case Intrinsic::s390_vpksfs:
1944   case Intrinsic::s390_vpksgs:
1945     Opcode = SystemZISD::PACKS_CC;
1946     CCValid = SystemZ::CCMASK_VCMP;
1947     return true;
1948 
1949   case Intrinsic::s390_vpklshs:
1950   case Intrinsic::s390_vpklsfs:
1951   case Intrinsic::s390_vpklsgs:
1952     Opcode = SystemZISD::PACKLS_CC;
1953     CCValid = SystemZ::CCMASK_VCMP;
1954     return true;
1955 
1956   case Intrinsic::s390_vceqbs:
1957   case Intrinsic::s390_vceqhs:
1958   case Intrinsic::s390_vceqfs:
1959   case Intrinsic::s390_vceqgs:
1960     Opcode = SystemZISD::VICMPES;
1961     CCValid = SystemZ::CCMASK_VCMP;
1962     return true;
1963 
1964   case Intrinsic::s390_vchbs:
1965   case Intrinsic::s390_vchhs:
1966   case Intrinsic::s390_vchfs:
1967   case Intrinsic::s390_vchgs:
1968     Opcode = SystemZISD::VICMPHS;
1969     CCValid = SystemZ::CCMASK_VCMP;
1970     return true;
1971 
1972   case Intrinsic::s390_vchlbs:
1973   case Intrinsic::s390_vchlhs:
1974   case Intrinsic::s390_vchlfs:
1975   case Intrinsic::s390_vchlgs:
1976     Opcode = SystemZISD::VICMPHLS;
1977     CCValid = SystemZ::CCMASK_VCMP;
1978     return true;
1979 
1980   case Intrinsic::s390_vtm:
1981     Opcode = SystemZISD::VTM;
1982     CCValid = SystemZ::CCMASK_VCMP;
1983     return true;
1984 
1985   case Intrinsic::s390_vfaebs:
1986   case Intrinsic::s390_vfaehs:
1987   case Intrinsic::s390_vfaefs:
1988     Opcode = SystemZISD::VFAE_CC;
1989     CCValid = SystemZ::CCMASK_ANY;
1990     return true;
1991 
1992   case Intrinsic::s390_vfaezbs:
1993   case Intrinsic::s390_vfaezhs:
1994   case Intrinsic::s390_vfaezfs:
1995     Opcode = SystemZISD::VFAEZ_CC;
1996     CCValid = SystemZ::CCMASK_ANY;
1997     return true;
1998 
1999   case Intrinsic::s390_vfeebs:
2000   case Intrinsic::s390_vfeehs:
2001   case Intrinsic::s390_vfeefs:
2002     Opcode = SystemZISD::VFEE_CC;
2003     CCValid = SystemZ::CCMASK_ANY;
2004     return true;
2005 
2006   case Intrinsic::s390_vfeezbs:
2007   case Intrinsic::s390_vfeezhs:
2008   case Intrinsic::s390_vfeezfs:
2009     Opcode = SystemZISD::VFEEZ_CC;
2010     CCValid = SystemZ::CCMASK_ANY;
2011     return true;
2012 
2013   case Intrinsic::s390_vfenebs:
2014   case Intrinsic::s390_vfenehs:
2015   case Intrinsic::s390_vfenefs:
2016     Opcode = SystemZISD::VFENE_CC;
2017     CCValid = SystemZ::CCMASK_ANY;
2018     return true;
2019 
2020   case Intrinsic::s390_vfenezbs:
2021   case Intrinsic::s390_vfenezhs:
2022   case Intrinsic::s390_vfenezfs:
2023     Opcode = SystemZISD::VFENEZ_CC;
2024     CCValid = SystemZ::CCMASK_ANY;
2025     return true;
2026 
2027   case Intrinsic::s390_vistrbs:
2028   case Intrinsic::s390_vistrhs:
2029   case Intrinsic::s390_vistrfs:
2030     Opcode = SystemZISD::VISTR_CC;
2031     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2032     return true;
2033 
2034   case Intrinsic::s390_vstrcbs:
2035   case Intrinsic::s390_vstrchs:
2036   case Intrinsic::s390_vstrcfs:
2037     Opcode = SystemZISD::VSTRC_CC;
2038     CCValid = SystemZ::CCMASK_ANY;
2039     return true;
2040 
2041   case Intrinsic::s390_vstrczbs:
2042   case Intrinsic::s390_vstrczhs:
2043   case Intrinsic::s390_vstrczfs:
2044     Opcode = SystemZISD::VSTRCZ_CC;
2045     CCValid = SystemZ::CCMASK_ANY;
2046     return true;
2047 
2048   case Intrinsic::s390_vstrsb:
2049   case Intrinsic::s390_vstrsh:
2050   case Intrinsic::s390_vstrsf:
2051     Opcode = SystemZISD::VSTRS_CC;
2052     CCValid = SystemZ::CCMASK_ANY;
2053     return true;
2054 
2055   case Intrinsic::s390_vstrszb:
2056   case Intrinsic::s390_vstrszh:
2057   case Intrinsic::s390_vstrszf:
2058     Opcode = SystemZISD::VSTRSZ_CC;
2059     CCValid = SystemZ::CCMASK_ANY;
2060     return true;
2061 
2062   case Intrinsic::s390_vfcedbs:
2063   case Intrinsic::s390_vfcesbs:
2064     Opcode = SystemZISD::VFCMPES;
2065     CCValid = SystemZ::CCMASK_VCMP;
2066     return true;
2067 
2068   case Intrinsic::s390_vfchdbs:
2069   case Intrinsic::s390_vfchsbs:
2070     Opcode = SystemZISD::VFCMPHS;
2071     CCValid = SystemZ::CCMASK_VCMP;
2072     return true;
2073 
2074   case Intrinsic::s390_vfchedbs:
2075   case Intrinsic::s390_vfchesbs:
2076     Opcode = SystemZISD::VFCMPHES;
2077     CCValid = SystemZ::CCMASK_VCMP;
2078     return true;
2079 
2080   case Intrinsic::s390_vftcidb:
2081   case Intrinsic::s390_vftcisb:
2082     Opcode = SystemZISD::VFTCI;
2083     CCValid = SystemZ::CCMASK_VCMP;
2084     return true;
2085 
2086   case Intrinsic::s390_tdc:
2087     Opcode = SystemZISD::TDC;
2088     CCValid = SystemZ::CCMASK_TDC;
2089     return true;
2090 
2091   default:
2092     return false;
2093   }
2094 }
2095 
2096 // Emit an intrinsic with chain and an explicit CC register result.
2097 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2098                                            unsigned Opcode) {
2099   // Copy all operands except the intrinsic ID.
2100   unsigned NumOps = Op.getNumOperands();
2101   SmallVector<SDValue, 6> Ops;
2102   Ops.reserve(NumOps - 1);
2103   Ops.push_back(Op.getOperand(0));
2104   for (unsigned I = 2; I < NumOps; ++I)
2105     Ops.push_back(Op.getOperand(I));
2106 
2107   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2108   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2109   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2110   SDValue OldChain = SDValue(Op.getNode(), 1);
2111   SDValue NewChain = SDValue(Intr.getNode(), 1);
2112   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2113   return Intr.getNode();
2114 }
2115 
2116 // Emit an intrinsic with an explicit CC register result.
2117 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2118                                    unsigned Opcode) {
2119   // Copy all operands except the intrinsic ID.
2120   unsigned NumOps = Op.getNumOperands();
2121   SmallVector<SDValue, 6> Ops;
2122   Ops.reserve(NumOps - 1);
2123   for (unsigned I = 1; I < NumOps; ++I)
2124     Ops.push_back(Op.getOperand(I));
2125 
2126   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2127   return Intr.getNode();
2128 }
2129 
2130 // CC is a comparison that will be implemented using an integer or
2131 // floating-point comparison.  Return the condition code mask for
2132 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2133 // unsigned comparisons and clear for signed ones.  In the floating-point
2134 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2135 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2136 #define CONV(X) \
2137   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2138   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2139   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2140 
2141   switch (CC) {
2142   default:
2143     llvm_unreachable("Invalid integer condition!");
2144 
2145   CONV(EQ);
2146   CONV(NE);
2147   CONV(GT);
2148   CONV(GE);
2149   CONV(LT);
2150   CONV(LE);
2151 
2152   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2153   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2154   }
2155 #undef CONV
2156 }
2157 
2158 // If C can be converted to a comparison against zero, adjust the operands
2159 // as necessary.
2160 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2161   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2162     return;
2163 
2164   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2165   if (!ConstOp1)
2166     return;
2167 
2168   int64_t Value = ConstOp1->getSExtValue();
2169   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2170       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2171       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2172       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2173     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2174     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2175   }
2176 }
2177 
2178 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2179 // adjust the operands as necessary.
2180 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2181                              Comparison &C) {
2182   // For us to make any changes, it must a comparison between a single-use
2183   // load and a constant.
2184   if (!C.Op0.hasOneUse() ||
2185       C.Op0.getOpcode() != ISD::LOAD ||
2186       C.Op1.getOpcode() != ISD::Constant)
2187     return;
2188 
2189   // We must have an 8- or 16-bit load.
2190   auto *Load = cast<LoadSDNode>(C.Op0);
2191   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2192   if ((NumBits != 8 && NumBits != 16) ||
2193       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2194     return;
2195 
2196   // The load must be an extending one and the constant must be within the
2197   // range of the unextended value.
2198   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2199   uint64_t Value = ConstOp1->getZExtValue();
2200   uint64_t Mask = (1 << NumBits) - 1;
2201   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2202     // Make sure that ConstOp1 is in range of C.Op0.
2203     int64_t SignedValue = ConstOp1->getSExtValue();
2204     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2205       return;
2206     if (C.ICmpType != SystemZICMP::SignedOnly) {
2207       // Unsigned comparison between two sign-extended values is equivalent
2208       // to unsigned comparison between two zero-extended values.
2209       Value &= Mask;
2210     } else if (NumBits == 8) {
2211       // Try to treat the comparison as unsigned, so that we can use CLI.
2212       // Adjust CCMask and Value as necessary.
2213       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2214         // Test whether the high bit of the byte is set.
2215         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2216       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2217         // Test whether the high bit of the byte is clear.
2218         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2219       else
2220         // No instruction exists for this combination.
2221         return;
2222       C.ICmpType = SystemZICMP::UnsignedOnly;
2223     }
2224   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2225     if (Value > Mask)
2226       return;
2227     // If the constant is in range, we can use any comparison.
2228     C.ICmpType = SystemZICMP::Any;
2229   } else
2230     return;
2231 
2232   // Make sure that the first operand is an i32 of the right extension type.
2233   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2234                               ISD::SEXTLOAD :
2235                               ISD::ZEXTLOAD);
2236   if (C.Op0.getValueType() != MVT::i32 ||
2237       Load->getExtensionType() != ExtType) {
2238     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2239                            Load->getBasePtr(), Load->getPointerInfo(),
2240                            Load->getMemoryVT(), Load->getAlignment(),
2241                            Load->getMemOperand()->getFlags());
2242     // Update the chain uses.
2243     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2244   }
2245 
2246   // Make sure that the second operand is an i32 with the right value.
2247   if (C.Op1.getValueType() != MVT::i32 ||
2248       Value != ConstOp1->getZExtValue())
2249     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2250 }
2251 
2252 // Return true if Op is either an unextended load, or a load suitable
2253 // for integer register-memory comparisons of type ICmpType.
2254 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2255   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2256   if (Load) {
2257     // There are no instructions to compare a register with a memory byte.
2258     if (Load->getMemoryVT() == MVT::i8)
2259       return false;
2260     // Otherwise decide on extension type.
2261     switch (Load->getExtensionType()) {
2262     case ISD::NON_EXTLOAD:
2263       return true;
2264     case ISD::SEXTLOAD:
2265       return ICmpType != SystemZICMP::UnsignedOnly;
2266     case ISD::ZEXTLOAD:
2267       return ICmpType != SystemZICMP::SignedOnly;
2268     default:
2269       break;
2270     }
2271   }
2272   return false;
2273 }
2274 
2275 // Return true if it is better to swap the operands of C.
2276 static bool shouldSwapCmpOperands(const Comparison &C) {
2277   // Leave f128 comparisons alone, since they have no memory forms.
2278   if (C.Op0.getValueType() == MVT::f128)
2279     return false;
2280 
2281   // Always keep a floating-point constant second, since comparisons with
2282   // zero can use LOAD TEST and comparisons with other constants make a
2283   // natural memory operand.
2284   if (isa<ConstantFPSDNode>(C.Op1))
2285     return false;
2286 
2287   // Never swap comparisons with zero since there are many ways to optimize
2288   // those later.
2289   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2290   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2291     return false;
2292 
2293   // Also keep natural memory operands second if the loaded value is
2294   // only used here.  Several comparisons have memory forms.
2295   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2296     return false;
2297 
2298   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2299   // In that case we generally prefer the memory to be second.
2300   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2301     // The only exceptions are when the second operand is a constant and
2302     // we can use things like CHHSI.
2303     if (!ConstOp1)
2304       return true;
2305     // The unsigned memory-immediate instructions can handle 16-bit
2306     // unsigned integers.
2307     if (C.ICmpType != SystemZICMP::SignedOnly &&
2308         isUInt<16>(ConstOp1->getZExtValue()))
2309       return false;
2310     // The signed memory-immediate instructions can handle 16-bit
2311     // signed integers.
2312     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2313         isInt<16>(ConstOp1->getSExtValue()))
2314       return false;
2315     return true;
2316   }
2317 
2318   // Try to promote the use of CGFR and CLGFR.
2319   unsigned Opcode0 = C.Op0.getOpcode();
2320   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2321     return true;
2322   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2323     return true;
2324   if (C.ICmpType != SystemZICMP::SignedOnly &&
2325       Opcode0 == ISD::AND &&
2326       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2327       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2328     return true;
2329 
2330   return false;
2331 }
2332 
2333 // Check whether C tests for equality between X and Y and whether X - Y
2334 // or Y - X is also computed.  In that case it's better to compare the
2335 // result of the subtraction against zero.
2336 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2337                                  Comparison &C) {
2338   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2339       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2340     for (SDNode *N : C.Op0->uses()) {
2341       if (N->getOpcode() == ISD::SUB &&
2342           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2343            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2344         C.Op0 = SDValue(N, 0);
2345         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2346         return;
2347       }
2348     }
2349   }
2350 }
2351 
2352 // Check whether C compares a floating-point value with zero and if that
2353 // floating-point value is also negated.  In this case we can use the
2354 // negation to set CC, so avoiding separate LOAD AND TEST and
2355 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2356 static void adjustForFNeg(Comparison &C) {
2357   // This optimization is invalid for strict comparisons, since FNEG
2358   // does not raise any exceptions.
2359   if (C.Chain)
2360     return;
2361   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2362   if (C1 && C1->isZero()) {
2363     for (SDNode *N : C.Op0->uses()) {
2364       if (N->getOpcode() == ISD::FNEG) {
2365         C.Op0 = SDValue(N, 0);
2366         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2367         return;
2368       }
2369     }
2370   }
2371 }
2372 
2373 // Check whether C compares (shl X, 32) with 0 and whether X is
2374 // also sign-extended.  In that case it is better to test the result
2375 // of the sign extension using LTGFR.
2376 //
2377 // This case is important because InstCombine transforms a comparison
2378 // with (sext (trunc X)) into a comparison with (shl X, 32).
2379 static void adjustForLTGFR(Comparison &C) {
2380   // Check for a comparison between (shl X, 32) and 0.
2381   if (C.Op0.getOpcode() == ISD::SHL &&
2382       C.Op0.getValueType() == MVT::i64 &&
2383       C.Op1.getOpcode() == ISD::Constant &&
2384       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2385     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2386     if (C1 && C1->getZExtValue() == 32) {
2387       SDValue ShlOp0 = C.Op0.getOperand(0);
2388       // See whether X has any SIGN_EXTEND_INREG uses.
2389       for (SDNode *N : ShlOp0->uses()) {
2390         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2391             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2392           C.Op0 = SDValue(N, 0);
2393           return;
2394         }
2395       }
2396     }
2397   }
2398 }
2399 
2400 // If C compares the truncation of an extending load, try to compare
2401 // the untruncated value instead.  This exposes more opportunities to
2402 // reuse CC.
2403 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2404                                Comparison &C) {
2405   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2406       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2407       C.Op1.getOpcode() == ISD::Constant &&
2408       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2409     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2410     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2411         C.Op0.getValueSizeInBits().getFixedSize()) {
2412       unsigned Type = L->getExtensionType();
2413       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2414           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2415         C.Op0 = C.Op0.getOperand(0);
2416         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2417       }
2418     }
2419   }
2420 }
2421 
2422 // Return true if shift operation N has an in-range constant shift value.
2423 // Store it in ShiftVal if so.
2424 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2425   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2426   if (!Shift)
2427     return false;
2428 
2429   uint64_t Amount = Shift->getZExtValue();
2430   if (Amount >= N.getValueSizeInBits())
2431     return false;
2432 
2433   ShiftVal = Amount;
2434   return true;
2435 }
2436 
2437 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2438 // instruction and whether the CC value is descriptive enough to handle
2439 // a comparison of type Opcode between the AND result and CmpVal.
2440 // CCMask says which comparison result is being tested and BitSize is
2441 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2442 // return the corresponding CC mask, otherwise return 0.
2443 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2444                                      uint64_t Mask, uint64_t CmpVal,
2445                                      unsigned ICmpType) {
2446   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2447 
2448   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2449   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2450       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2451     return 0;
2452 
2453   // Work out the masks for the lowest and highest bits.
2454   unsigned HighShift = 63 - countLeadingZeros(Mask);
2455   uint64_t High = uint64_t(1) << HighShift;
2456   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2457 
2458   // Signed ordered comparisons are effectively unsigned if the sign
2459   // bit is dropped.
2460   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2461 
2462   // Check for equality comparisons with 0, or the equivalent.
2463   if (CmpVal == 0) {
2464     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2465       return SystemZ::CCMASK_TM_ALL_0;
2466     if (CCMask == SystemZ::CCMASK_CMP_NE)
2467       return SystemZ::CCMASK_TM_SOME_1;
2468   }
2469   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2470     if (CCMask == SystemZ::CCMASK_CMP_LT)
2471       return SystemZ::CCMASK_TM_ALL_0;
2472     if (CCMask == SystemZ::CCMASK_CMP_GE)
2473       return SystemZ::CCMASK_TM_SOME_1;
2474   }
2475   if (EffectivelyUnsigned && CmpVal < Low) {
2476     if (CCMask == SystemZ::CCMASK_CMP_LE)
2477       return SystemZ::CCMASK_TM_ALL_0;
2478     if (CCMask == SystemZ::CCMASK_CMP_GT)
2479       return SystemZ::CCMASK_TM_SOME_1;
2480   }
2481 
2482   // Check for equality comparisons with the mask, or the equivalent.
2483   if (CmpVal == Mask) {
2484     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2485       return SystemZ::CCMASK_TM_ALL_1;
2486     if (CCMask == SystemZ::CCMASK_CMP_NE)
2487       return SystemZ::CCMASK_TM_SOME_0;
2488   }
2489   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2490     if (CCMask == SystemZ::CCMASK_CMP_GT)
2491       return SystemZ::CCMASK_TM_ALL_1;
2492     if (CCMask == SystemZ::CCMASK_CMP_LE)
2493       return SystemZ::CCMASK_TM_SOME_0;
2494   }
2495   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2496     if (CCMask == SystemZ::CCMASK_CMP_GE)
2497       return SystemZ::CCMASK_TM_ALL_1;
2498     if (CCMask == SystemZ::CCMASK_CMP_LT)
2499       return SystemZ::CCMASK_TM_SOME_0;
2500   }
2501 
2502   // Check for ordered comparisons with the top bit.
2503   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2504     if (CCMask == SystemZ::CCMASK_CMP_LE)
2505       return SystemZ::CCMASK_TM_MSB_0;
2506     if (CCMask == SystemZ::CCMASK_CMP_GT)
2507       return SystemZ::CCMASK_TM_MSB_1;
2508   }
2509   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2510     if (CCMask == SystemZ::CCMASK_CMP_LT)
2511       return SystemZ::CCMASK_TM_MSB_0;
2512     if (CCMask == SystemZ::CCMASK_CMP_GE)
2513       return SystemZ::CCMASK_TM_MSB_1;
2514   }
2515 
2516   // If there are just two bits, we can do equality checks for Low and High
2517   // as well.
2518   if (Mask == Low + High) {
2519     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2520       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2521     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2522       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2523     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2524       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2525     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2526       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2527   }
2528 
2529   // Looks like we've exhausted our options.
2530   return 0;
2531 }
2532 
2533 // See whether C can be implemented as a TEST UNDER MASK instruction.
2534 // Update the arguments with the TM version if so.
2535 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2536                                    Comparison &C) {
2537   // Check that we have a comparison with a constant.
2538   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2539   if (!ConstOp1)
2540     return;
2541   uint64_t CmpVal = ConstOp1->getZExtValue();
2542 
2543   // Check whether the nonconstant input is an AND with a constant mask.
2544   Comparison NewC(C);
2545   uint64_t MaskVal;
2546   ConstantSDNode *Mask = nullptr;
2547   if (C.Op0.getOpcode() == ISD::AND) {
2548     NewC.Op0 = C.Op0.getOperand(0);
2549     NewC.Op1 = C.Op0.getOperand(1);
2550     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2551     if (!Mask)
2552       return;
2553     MaskVal = Mask->getZExtValue();
2554   } else {
2555     // There is no instruction to compare with a 64-bit immediate
2556     // so use TMHH instead if possible.  We need an unsigned ordered
2557     // comparison with an i64 immediate.
2558     if (NewC.Op0.getValueType() != MVT::i64 ||
2559         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2560         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2561         NewC.ICmpType == SystemZICMP::SignedOnly)
2562       return;
2563     // Convert LE and GT comparisons into LT and GE.
2564     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2565         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2566       if (CmpVal == uint64_t(-1))
2567         return;
2568       CmpVal += 1;
2569       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2570     }
2571     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2572     // be masked off without changing the result.
2573     MaskVal = -(CmpVal & -CmpVal);
2574     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2575   }
2576   if (!MaskVal)
2577     return;
2578 
2579   // Check whether the combination of mask, comparison value and comparison
2580   // type are suitable.
2581   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2582   unsigned NewCCMask, ShiftVal;
2583   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2584       NewC.Op0.getOpcode() == ISD::SHL &&
2585       isSimpleShift(NewC.Op0, ShiftVal) &&
2586       (MaskVal >> ShiftVal != 0) &&
2587       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2588       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2589                                         MaskVal >> ShiftVal,
2590                                         CmpVal >> ShiftVal,
2591                                         SystemZICMP::Any))) {
2592     NewC.Op0 = NewC.Op0.getOperand(0);
2593     MaskVal >>= ShiftVal;
2594   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2595              NewC.Op0.getOpcode() == ISD::SRL &&
2596              isSimpleShift(NewC.Op0, ShiftVal) &&
2597              (MaskVal << ShiftVal != 0) &&
2598              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2599              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2600                                                MaskVal << ShiftVal,
2601                                                CmpVal << ShiftVal,
2602                                                SystemZICMP::UnsignedOnly))) {
2603     NewC.Op0 = NewC.Op0.getOperand(0);
2604     MaskVal <<= ShiftVal;
2605   } else {
2606     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2607                                      NewC.ICmpType);
2608     if (!NewCCMask)
2609       return;
2610   }
2611 
2612   // Go ahead and make the change.
2613   C.Opcode = SystemZISD::TM;
2614   C.Op0 = NewC.Op0;
2615   if (Mask && Mask->getZExtValue() == MaskVal)
2616     C.Op1 = SDValue(Mask, 0);
2617   else
2618     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2619   C.CCValid = SystemZ::CCMASK_TM;
2620   C.CCMask = NewCCMask;
2621 }
2622 
2623 // See whether the comparison argument contains a redundant AND
2624 // and remove it if so.  This sometimes happens due to the generic
2625 // BRCOND expansion.
2626 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2627                                   Comparison &C) {
2628   if (C.Op0.getOpcode() != ISD::AND)
2629     return;
2630   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2631   if (!Mask)
2632     return;
2633   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2634   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2635     return;
2636 
2637   C.Op0 = C.Op0.getOperand(0);
2638 }
2639 
2640 // Return a Comparison that tests the condition-code result of intrinsic
2641 // node Call against constant integer CC using comparison code Cond.
2642 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2643 // and CCValid is the set of possible condition-code results.
2644 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2645                                   SDValue Call, unsigned CCValid, uint64_t CC,
2646                                   ISD::CondCode Cond) {
2647   Comparison C(Call, SDValue(), SDValue());
2648   C.Opcode = Opcode;
2649   C.CCValid = CCValid;
2650   if (Cond == ISD::SETEQ)
2651     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2652     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2653   else if (Cond == ISD::SETNE)
2654     // ...and the inverse of that.
2655     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2656   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2657     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2658     // always true for CC>3.
2659     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2660   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2661     // ...and the inverse of that.
2662     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2663   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2664     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2665     // always true for CC>3.
2666     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2667   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2668     // ...and the inverse of that.
2669     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2670   else
2671     llvm_unreachable("Unexpected integer comparison type");
2672   C.CCMask &= CCValid;
2673   return C;
2674 }
2675 
2676 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2677 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2678                          ISD::CondCode Cond, const SDLoc &DL,
2679                          SDValue Chain = SDValue(),
2680                          bool IsSignaling = false) {
2681   if (CmpOp1.getOpcode() == ISD::Constant) {
2682     assert(!Chain);
2683     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2684     unsigned Opcode, CCValid;
2685     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2686         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2687         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2688       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2689     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2690         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2691         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2692       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2693   }
2694   Comparison C(CmpOp0, CmpOp1, Chain);
2695   C.CCMask = CCMaskForCondCode(Cond);
2696   if (C.Op0.getValueType().isFloatingPoint()) {
2697     C.CCValid = SystemZ::CCMASK_FCMP;
2698     if (!C.Chain)
2699       C.Opcode = SystemZISD::FCMP;
2700     else if (!IsSignaling)
2701       C.Opcode = SystemZISD::STRICT_FCMP;
2702     else
2703       C.Opcode = SystemZISD::STRICT_FCMPS;
2704     adjustForFNeg(C);
2705   } else {
2706     assert(!C.Chain);
2707     C.CCValid = SystemZ::CCMASK_ICMP;
2708     C.Opcode = SystemZISD::ICMP;
2709     // Choose the type of comparison.  Equality and inequality tests can
2710     // use either signed or unsigned comparisons.  The choice also doesn't
2711     // matter if both sign bits are known to be clear.  In those cases we
2712     // want to give the main isel code the freedom to choose whichever
2713     // form fits best.
2714     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2715         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2716         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2717       C.ICmpType = SystemZICMP::Any;
2718     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2719       C.ICmpType = SystemZICMP::UnsignedOnly;
2720     else
2721       C.ICmpType = SystemZICMP::SignedOnly;
2722     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2723     adjustForRedundantAnd(DAG, DL, C);
2724     adjustZeroCmp(DAG, DL, C);
2725     adjustSubwordCmp(DAG, DL, C);
2726     adjustForSubtraction(DAG, DL, C);
2727     adjustForLTGFR(C);
2728     adjustICmpTruncate(DAG, DL, C);
2729   }
2730 
2731   if (shouldSwapCmpOperands(C)) {
2732     std::swap(C.Op0, C.Op1);
2733     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2734   }
2735 
2736   adjustForTestUnderMask(DAG, DL, C);
2737   return C;
2738 }
2739 
2740 // Emit the comparison instruction described by C.
2741 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2742   if (!C.Op1.getNode()) {
2743     SDNode *Node;
2744     switch (C.Op0.getOpcode()) {
2745     case ISD::INTRINSIC_W_CHAIN:
2746       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2747       return SDValue(Node, 0);
2748     case ISD::INTRINSIC_WO_CHAIN:
2749       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2750       return SDValue(Node, Node->getNumValues() - 1);
2751     default:
2752       llvm_unreachable("Invalid comparison operands");
2753     }
2754   }
2755   if (C.Opcode == SystemZISD::ICMP)
2756     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2757                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2758   if (C.Opcode == SystemZISD::TM) {
2759     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2760                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2761     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2762                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2763   }
2764   if (C.Chain) {
2765     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2766     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2767   }
2768   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2769 }
2770 
2771 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2772 // 64 bits.  Extend is the extension type to use.  Store the high part
2773 // in Hi and the low part in Lo.
2774 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2775                             SDValue Op0, SDValue Op1, SDValue &Hi,
2776                             SDValue &Lo) {
2777   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2778   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2779   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2780   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2781                    DAG.getConstant(32, DL, MVT::i64));
2782   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2783   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2784 }
2785 
2786 // Lower a binary operation that produces two VT results, one in each
2787 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2788 // and Opcode performs the GR128 operation.  Store the even register result
2789 // in Even and the odd register result in Odd.
2790 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2791                              unsigned Opcode, SDValue Op0, SDValue Op1,
2792                              SDValue &Even, SDValue &Odd) {
2793   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2794   bool Is32Bit = is32Bit(VT);
2795   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2796   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2797 }
2798 
2799 // Return an i32 value that is 1 if the CC value produced by CCReg is
2800 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2801 // in CCValid, so other values can be ignored.
2802 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2803                          unsigned CCValid, unsigned CCMask) {
2804   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2805                    DAG.getConstant(0, DL, MVT::i32),
2806                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2807                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2808   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2809 }
2810 
2811 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2812 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2813 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2814 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2815 // floating-point comparisons.
2816 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2817 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2818   switch (CC) {
2819   case ISD::SETOEQ:
2820   case ISD::SETEQ:
2821     switch (Mode) {
2822     case CmpMode::Int:         return SystemZISD::VICMPE;
2823     case CmpMode::FP:          return SystemZISD::VFCMPE;
2824     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2825     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2826     }
2827     llvm_unreachable("Bad mode");
2828 
2829   case ISD::SETOGE:
2830   case ISD::SETGE:
2831     switch (Mode) {
2832     case CmpMode::Int:         return 0;
2833     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2834     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2835     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2836     }
2837     llvm_unreachable("Bad mode");
2838 
2839   case ISD::SETOGT:
2840   case ISD::SETGT:
2841     switch (Mode) {
2842     case CmpMode::Int:         return SystemZISD::VICMPH;
2843     case CmpMode::FP:          return SystemZISD::VFCMPH;
2844     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2845     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2846     }
2847     llvm_unreachable("Bad mode");
2848 
2849   case ISD::SETUGT:
2850     switch (Mode) {
2851     case CmpMode::Int:         return SystemZISD::VICMPHL;
2852     case CmpMode::FP:          return 0;
2853     case CmpMode::StrictFP:    return 0;
2854     case CmpMode::SignalingFP: return 0;
2855     }
2856     llvm_unreachable("Bad mode");
2857 
2858   default:
2859     return 0;
2860   }
2861 }
2862 
2863 // Return the SystemZISD vector comparison operation for CC or its inverse,
2864 // or 0 if neither can be done directly.  Indicate in Invert whether the
2865 // result is for the inverse of CC.  Mode is as above.
2866 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2867                                             bool &Invert) {
2868   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2869     Invert = false;
2870     return Opcode;
2871   }
2872 
2873   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2874   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2875     Invert = true;
2876     return Opcode;
2877   }
2878 
2879   return 0;
2880 }
2881 
2882 // Return a v2f64 that contains the extended form of elements Start and Start+1
2883 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2884 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2885                                   SDValue Op, SDValue Chain) {
2886   int Mask[] = { Start, -1, Start + 1, -1 };
2887   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2888   if (Chain) {
2889     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2890     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2891   }
2892   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2893 }
2894 
2895 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2896 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2897 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2898                                             const SDLoc &DL, EVT VT,
2899                                             SDValue CmpOp0,
2900                                             SDValue CmpOp1,
2901                                             SDValue Chain) const {
2902   // There is no hardware support for v4f32 (unless we have the vector
2903   // enhancements facility 1), so extend the vector into two v2f64s
2904   // and compare those.
2905   if (CmpOp0.getValueType() == MVT::v4f32 &&
2906       !Subtarget.hasVectorEnhancements1()) {
2907     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2908     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2909     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2910     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2911     if (Chain) {
2912       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2913       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2914       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2915       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2916       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2917                             H1.getValue(1), L1.getValue(1),
2918                             HRes.getValue(1), LRes.getValue(1) };
2919       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2920       SDValue Ops[2] = { Res, NewChain };
2921       return DAG.getMergeValues(Ops, DL);
2922     }
2923     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2924     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2925     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2926   }
2927   if (Chain) {
2928     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2929     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2930   }
2931   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2932 }
2933 
2934 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2935 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2936 // floating-point comparison.  If in addition IsSignaling is true, we have
2937 // a strict signaling floating-point comparison.
2938 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2939                                                 const SDLoc &DL, EVT VT,
2940                                                 ISD::CondCode CC,
2941                                                 SDValue CmpOp0,
2942                                                 SDValue CmpOp1,
2943                                                 SDValue Chain,
2944                                                 bool IsSignaling) const {
2945   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2946   assert (!Chain || IsFP);
2947   assert (!IsSignaling || Chain);
2948   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2949                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2950   bool Invert = false;
2951   SDValue Cmp;
2952   switch (CC) {
2953     // Handle tests for order using (or (ogt y x) (oge x y)).
2954   case ISD::SETUO:
2955     Invert = true;
2956     LLVM_FALLTHROUGH;
2957   case ISD::SETO: {
2958     assert(IsFP && "Unexpected integer comparison");
2959     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2960                               DL, VT, CmpOp1, CmpOp0, Chain);
2961     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2962                               DL, VT, CmpOp0, CmpOp1, Chain);
2963     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2964     if (Chain)
2965       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2966                           LT.getValue(1), GE.getValue(1));
2967     break;
2968   }
2969 
2970     // Handle <> tests using (or (ogt y x) (ogt x y)).
2971   case ISD::SETUEQ:
2972     Invert = true;
2973     LLVM_FALLTHROUGH;
2974   case ISD::SETONE: {
2975     assert(IsFP && "Unexpected integer comparison");
2976     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2977                               DL, VT, CmpOp1, CmpOp0, Chain);
2978     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2979                               DL, VT, CmpOp0, CmpOp1, Chain);
2980     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2981     if (Chain)
2982       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2983                           LT.getValue(1), GT.getValue(1));
2984     break;
2985   }
2986 
2987     // Otherwise a single comparison is enough.  It doesn't really
2988     // matter whether we try the inversion or the swap first, since
2989     // there are no cases where both work.
2990   default:
2991     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2992       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2993     else {
2994       CC = ISD::getSetCCSwappedOperands(CC);
2995       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2996         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2997       else
2998         llvm_unreachable("Unhandled comparison");
2999     }
3000     if (Chain)
3001       Chain = Cmp.getValue(1);
3002     break;
3003   }
3004   if (Invert) {
3005     SDValue Mask =
3006       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3007     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3008   }
3009   if (Chain && Chain.getNode() != Cmp.getNode()) {
3010     SDValue Ops[2] = { Cmp, Chain };
3011     Cmp = DAG.getMergeValues(Ops, DL);
3012   }
3013   return Cmp;
3014 }
3015 
3016 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3017                                           SelectionDAG &DAG) const {
3018   SDValue CmpOp0   = Op.getOperand(0);
3019   SDValue CmpOp1   = Op.getOperand(1);
3020   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3021   SDLoc DL(Op);
3022   EVT VT = Op.getValueType();
3023   if (VT.isVector())
3024     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3025 
3026   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3027   SDValue CCReg = emitCmp(DAG, DL, C);
3028   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3029 }
3030 
3031 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3032                                                   SelectionDAG &DAG,
3033                                                   bool IsSignaling) const {
3034   SDValue Chain    = Op.getOperand(0);
3035   SDValue CmpOp0   = Op.getOperand(1);
3036   SDValue CmpOp1   = Op.getOperand(2);
3037   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3038   SDLoc DL(Op);
3039   EVT VT = Op.getNode()->getValueType(0);
3040   if (VT.isVector()) {
3041     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3042                                    Chain, IsSignaling);
3043     return Res.getValue(Op.getResNo());
3044   }
3045 
3046   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3047   SDValue CCReg = emitCmp(DAG, DL, C);
3048   CCReg->setFlags(Op->getFlags());
3049   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3050   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3051   return DAG.getMergeValues(Ops, DL);
3052 }
3053 
3054 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3055   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3056   SDValue CmpOp0   = Op.getOperand(2);
3057   SDValue CmpOp1   = Op.getOperand(3);
3058   SDValue Dest     = Op.getOperand(4);
3059   SDLoc DL(Op);
3060 
3061   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3062   SDValue CCReg = emitCmp(DAG, DL, C);
3063   return DAG.getNode(
3064       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3065       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3066       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3067 }
3068 
3069 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3070 // allowing Pos and Neg to be wider than CmpOp.
3071 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3072   return (Neg.getOpcode() == ISD::SUB &&
3073           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3074           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3075           Neg.getOperand(1) == Pos &&
3076           (Pos == CmpOp ||
3077            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3078             Pos.getOperand(0) == CmpOp)));
3079 }
3080 
3081 // Return the absolute or negative absolute of Op; IsNegative decides which.
3082 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3083                            bool IsNegative) {
3084   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3085   if (IsNegative)
3086     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3087                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3088   return Op;
3089 }
3090 
3091 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3092                                               SelectionDAG &DAG) const {
3093   SDValue CmpOp0   = Op.getOperand(0);
3094   SDValue CmpOp1   = Op.getOperand(1);
3095   SDValue TrueOp   = Op.getOperand(2);
3096   SDValue FalseOp  = Op.getOperand(3);
3097   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3098   SDLoc DL(Op);
3099 
3100   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3101 
3102   // Check for absolute and negative-absolute selections, including those
3103   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3104   // This check supplements the one in DAGCombiner.
3105   if (C.Opcode == SystemZISD::ICMP &&
3106       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3107       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3108       C.Op1.getOpcode() == ISD::Constant &&
3109       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3110     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3111       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3112     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3113       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3114   }
3115 
3116   SDValue CCReg = emitCmp(DAG, DL, C);
3117   SDValue Ops[] = {TrueOp, FalseOp,
3118                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3119                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3120 
3121   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3122 }
3123 
3124 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3125                                                   SelectionDAG &DAG) const {
3126   SDLoc DL(Node);
3127   const GlobalValue *GV = Node->getGlobal();
3128   int64_t Offset = Node->getOffset();
3129   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3130   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3131 
3132   SDValue Result;
3133   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3134     if (isInt<32>(Offset)) {
3135       // Assign anchors at 1<<12 byte boundaries.
3136       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3137       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3138       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3139 
3140       // The offset can be folded into the address if it is aligned to a
3141       // halfword.
3142       Offset -= Anchor;
3143       if (Offset != 0 && (Offset & 1) == 0) {
3144         SDValue Full =
3145           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3146         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3147         Offset = 0;
3148       }
3149     } else {
3150       // Conservatively load a constant offset greater than 32 bits into a
3151       // register below.
3152       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3153       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3154     }
3155   } else {
3156     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3157     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3158     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3159                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3160   }
3161 
3162   // If there was a non-zero offset that we didn't fold, create an explicit
3163   // addition for it.
3164   if (Offset != 0)
3165     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3166                          DAG.getConstant(Offset, DL, PtrVT));
3167 
3168   return Result;
3169 }
3170 
3171 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3172                                                  SelectionDAG &DAG,
3173                                                  unsigned Opcode,
3174                                                  SDValue GOTOffset) const {
3175   SDLoc DL(Node);
3176   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3177   SDValue Chain = DAG.getEntryNode();
3178   SDValue Glue;
3179 
3180   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3181       CallingConv::GHC)
3182     report_fatal_error("In GHC calling convention TLS is not supported");
3183 
3184   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3185   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3186   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3187   Glue = Chain.getValue(1);
3188   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3189   Glue = Chain.getValue(1);
3190 
3191   // The first call operand is the chain and the second is the TLS symbol.
3192   SmallVector<SDValue, 8> Ops;
3193   Ops.push_back(Chain);
3194   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3195                                            Node->getValueType(0),
3196                                            0, 0));
3197 
3198   // Add argument registers to the end of the list so that they are
3199   // known live into the call.
3200   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3201   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3202 
3203   // Add a register mask operand representing the call-preserved registers.
3204   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3205   const uint32_t *Mask =
3206       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3207   assert(Mask && "Missing call preserved mask for calling convention");
3208   Ops.push_back(DAG.getRegisterMask(Mask));
3209 
3210   // Glue the call to the argument copies.
3211   Ops.push_back(Glue);
3212 
3213   // Emit the call.
3214   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3215   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3216   Glue = Chain.getValue(1);
3217 
3218   // Copy the return value from %r2.
3219   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3220 }
3221 
3222 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3223                                                   SelectionDAG &DAG) const {
3224   SDValue Chain = DAG.getEntryNode();
3225   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3226 
3227   // The high part of the thread pointer is in access register 0.
3228   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3229   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3230 
3231   // The low part of the thread pointer is in access register 1.
3232   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3233   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3234 
3235   // Merge them into a single 64-bit address.
3236   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3237                                     DAG.getConstant(32, DL, PtrVT));
3238   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3239 }
3240 
3241 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3242                                                      SelectionDAG &DAG) const {
3243   if (DAG.getTarget().useEmulatedTLS())
3244     return LowerToTLSEmulatedModel(Node, DAG);
3245   SDLoc DL(Node);
3246   const GlobalValue *GV = Node->getGlobal();
3247   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3248   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3249 
3250   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3251       CallingConv::GHC)
3252     report_fatal_error("In GHC calling convention TLS is not supported");
3253 
3254   SDValue TP = lowerThreadPointer(DL, DAG);
3255 
3256   // Get the offset of GA from the thread pointer, based on the TLS model.
3257   SDValue Offset;
3258   switch (model) {
3259     case TLSModel::GeneralDynamic: {
3260       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3261       SystemZConstantPoolValue *CPV =
3262         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3263 
3264       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3265       Offset = DAG.getLoad(
3266           PtrVT, DL, DAG.getEntryNode(), Offset,
3267           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3268 
3269       // Call __tls_get_offset to retrieve the offset.
3270       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3271       break;
3272     }
3273 
3274     case TLSModel::LocalDynamic: {
3275       // Load the GOT offset of the module ID.
3276       SystemZConstantPoolValue *CPV =
3277         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3278 
3279       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3280       Offset = DAG.getLoad(
3281           PtrVT, DL, DAG.getEntryNode(), Offset,
3282           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3283 
3284       // Call __tls_get_offset to retrieve the module base offset.
3285       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3286 
3287       // Note: The SystemZLDCleanupPass will remove redundant computations
3288       // of the module base offset.  Count total number of local-dynamic
3289       // accesses to trigger execution of that pass.
3290       SystemZMachineFunctionInfo* MFI =
3291         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3292       MFI->incNumLocalDynamicTLSAccesses();
3293 
3294       // Add the per-symbol offset.
3295       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3296 
3297       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3298       DTPOffset = DAG.getLoad(
3299           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3300           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3301 
3302       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3303       break;
3304     }
3305 
3306     case TLSModel::InitialExec: {
3307       // Load the offset from the GOT.
3308       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3309                                           SystemZII::MO_INDNTPOFF);
3310       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3311       Offset =
3312           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3313                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3314       break;
3315     }
3316 
3317     case TLSModel::LocalExec: {
3318       // Force the offset into the constant pool and load it from there.
3319       SystemZConstantPoolValue *CPV =
3320         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3321 
3322       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3323       Offset = DAG.getLoad(
3324           PtrVT, DL, DAG.getEntryNode(), Offset,
3325           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3326       break;
3327     }
3328   }
3329 
3330   // Add the base and offset together.
3331   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3332 }
3333 
3334 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3335                                                  SelectionDAG &DAG) const {
3336   SDLoc DL(Node);
3337   const BlockAddress *BA = Node->getBlockAddress();
3338   int64_t Offset = Node->getOffset();
3339   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3340 
3341   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3342   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3343   return Result;
3344 }
3345 
3346 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3347                                               SelectionDAG &DAG) const {
3348   SDLoc DL(JT);
3349   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3350   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3351 
3352   // Use LARL to load the address of the table.
3353   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3354 }
3355 
3356 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3357                                                  SelectionDAG &DAG) const {
3358   SDLoc DL(CP);
3359   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3360 
3361   SDValue Result;
3362   if (CP->isMachineConstantPoolEntry())
3363     Result =
3364         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3365   else
3366     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3367                                        CP->getOffset());
3368 
3369   // Use LARL to load the address of the constant pool entry.
3370   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3371 }
3372 
3373 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3374                                               SelectionDAG &DAG) const {
3375   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3376   MachineFunction &MF = DAG.getMachineFunction();
3377   MachineFrameInfo &MFI = MF.getFrameInfo();
3378   MFI.setFrameAddressIsTaken(true);
3379 
3380   SDLoc DL(Op);
3381   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3382   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3383 
3384   // By definition, the frame address is the address of the back chain.  (In
3385   // the case of packed stack without backchain, return the address where the
3386   // backchain would have been stored. This will either be an unused space or
3387   // contain a saved register).
3388   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3389   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3390 
3391   // FIXME The frontend should detect this case.
3392   if (Depth > 0) {
3393     report_fatal_error("Unsupported stack frame traversal count");
3394   }
3395 
3396   return BackChain;
3397 }
3398 
3399 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3400                                                SelectionDAG &DAG) const {
3401   MachineFunction &MF = DAG.getMachineFunction();
3402   MachineFrameInfo &MFI = MF.getFrameInfo();
3403   MFI.setReturnAddressIsTaken(true);
3404 
3405   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3406     return SDValue();
3407 
3408   SDLoc DL(Op);
3409   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3410   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3411 
3412   // FIXME The frontend should detect this case.
3413   if (Depth > 0) {
3414     report_fatal_error("Unsupported stack frame traversal count");
3415   }
3416 
3417   // Return R14D, which has the return address. Mark it an implicit live-in.
3418   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3419   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3420 }
3421 
3422 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3423                                             SelectionDAG &DAG) const {
3424   SDLoc DL(Op);
3425   SDValue In = Op.getOperand(0);
3426   EVT InVT = In.getValueType();
3427   EVT ResVT = Op.getValueType();
3428 
3429   // Convert loads directly.  This is normally done by DAGCombiner,
3430   // but we need this case for bitcasts that are created during lowering
3431   // and which are then lowered themselves.
3432   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3433     if (ISD::isNormalLoad(LoadN)) {
3434       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3435                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3436       // Update the chain uses.
3437       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3438       return NewLoad;
3439     }
3440 
3441   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3442     SDValue In64;
3443     if (Subtarget.hasHighWord()) {
3444       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3445                                        MVT::i64);
3446       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3447                                        MVT::i64, SDValue(U64, 0), In);
3448     } else {
3449       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3450       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3451                          DAG.getConstant(32, DL, MVT::i64));
3452     }
3453     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3454     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3455                                       DL, MVT::f32, Out64);
3456   }
3457   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3458     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3459     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3460                                              MVT::f64, SDValue(U64, 0), In);
3461     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3462     if (Subtarget.hasHighWord())
3463       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3464                                         MVT::i32, Out64);
3465     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3466                                 DAG.getConstant(32, DL, MVT::i64));
3467     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3468   }
3469   llvm_unreachable("Unexpected bitcast combination");
3470 }
3471 
3472 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3473                                             SelectionDAG &DAG) const {
3474   MachineFunction &MF = DAG.getMachineFunction();
3475   SystemZMachineFunctionInfo *FuncInfo =
3476     MF.getInfo<SystemZMachineFunctionInfo>();
3477   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3478 
3479   SDValue Chain   = Op.getOperand(0);
3480   SDValue Addr    = Op.getOperand(1);
3481   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3482   SDLoc DL(Op);
3483 
3484   // The initial values of each field.
3485   const unsigned NumFields = 4;
3486   SDValue Fields[NumFields] = {
3487     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3488     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3489     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3490     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3491   };
3492 
3493   // Store each field into its respective slot.
3494   SDValue MemOps[NumFields];
3495   unsigned Offset = 0;
3496   for (unsigned I = 0; I < NumFields; ++I) {
3497     SDValue FieldAddr = Addr;
3498     if (Offset != 0)
3499       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3500                               DAG.getIntPtrConstant(Offset, DL));
3501     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3502                              MachinePointerInfo(SV, Offset));
3503     Offset += 8;
3504   }
3505   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3506 }
3507 
3508 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3509                                            SelectionDAG &DAG) const {
3510   SDValue Chain      = Op.getOperand(0);
3511   SDValue DstPtr     = Op.getOperand(1);
3512   SDValue SrcPtr     = Op.getOperand(2);
3513   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3514   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3515   SDLoc DL(Op);
3516 
3517   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3518                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3519                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3520                        MachinePointerInfo(SrcSV));
3521 }
3522 
3523 SDValue SystemZTargetLowering::
3524 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3525   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3526   MachineFunction &MF = DAG.getMachineFunction();
3527   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3528   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3529 
3530   SDValue Chain = Op.getOperand(0);
3531   SDValue Size  = Op.getOperand(1);
3532   SDValue Align = Op.getOperand(2);
3533   SDLoc DL(Op);
3534 
3535   // If user has set the no alignment function attribute, ignore
3536   // alloca alignments.
3537   uint64_t AlignVal =
3538       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3539 
3540   uint64_t StackAlign = TFI->getStackAlignment();
3541   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3542   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3543 
3544   Register SPReg = getStackPointerRegisterToSaveRestore();
3545   SDValue NeededSpace = Size;
3546 
3547   // Get a reference to the stack pointer.
3548   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3549 
3550   // If we need a backchain, save it now.
3551   SDValue Backchain;
3552   if (StoreBackchain)
3553     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3554                             MachinePointerInfo());
3555 
3556   // Add extra space for alignment if needed.
3557   if (ExtraAlignSpace)
3558     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3559                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3560 
3561   // Get the new stack pointer value.
3562   SDValue NewSP;
3563   if (hasInlineStackProbe(MF)) {
3564     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3565                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3566     Chain = NewSP.getValue(1);
3567   }
3568   else {
3569     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3570     // Copy the new stack pointer back.
3571     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3572   }
3573 
3574   // The allocated data lives above the 160 bytes allocated for the standard
3575   // frame, plus any outgoing stack arguments.  We don't know how much that
3576   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3577   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3578   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3579 
3580   // Dynamically realign if needed.
3581   if (RequiredAlign > StackAlign) {
3582     Result =
3583       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3584                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3585     Result =
3586       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3587                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3588   }
3589 
3590   if (StoreBackchain)
3591     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3592                          MachinePointerInfo());
3593 
3594   SDValue Ops[2] = { Result, Chain };
3595   return DAG.getMergeValues(Ops, DL);
3596 }
3597 
3598 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3599     SDValue Op, SelectionDAG &DAG) const {
3600   SDLoc DL(Op);
3601 
3602   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3603 }
3604 
3605 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3606                                               SelectionDAG &DAG) const {
3607   EVT VT = Op.getValueType();
3608   SDLoc DL(Op);
3609   SDValue Ops[2];
3610   if (is32Bit(VT))
3611     // Just do a normal 64-bit multiplication and extract the results.
3612     // We define this so that it can be used for constant division.
3613     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3614                     Op.getOperand(1), Ops[1], Ops[0]);
3615   else if (Subtarget.hasMiscellaneousExtensions2())
3616     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3617     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3618     // return the low half first, so the results are in reverse order.
3619     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3620                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3621   else {
3622     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3623     //
3624     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3625     //
3626     // but using the fact that the upper halves are either all zeros
3627     // or all ones:
3628     //
3629     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3630     //
3631     // and grouping the right terms together since they are quicker than the
3632     // multiplication:
3633     //
3634     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3635     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3636     SDValue LL = Op.getOperand(0);
3637     SDValue RL = Op.getOperand(1);
3638     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3639     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3640     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3641     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3642     // return the low half first, so the results are in reverse order.
3643     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3644                      LL, RL, Ops[1], Ops[0]);
3645     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3646     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3647     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3648     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3649   }
3650   return DAG.getMergeValues(Ops, DL);
3651 }
3652 
3653 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3654                                               SelectionDAG &DAG) const {
3655   EVT VT = Op.getValueType();
3656   SDLoc DL(Op);
3657   SDValue Ops[2];
3658   if (is32Bit(VT))
3659     // Just do a normal 64-bit multiplication and extract the results.
3660     // We define this so that it can be used for constant division.
3661     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3662                     Op.getOperand(1), Ops[1], Ops[0]);
3663   else
3664     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3665     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3666     // return the low half first, so the results are in reverse order.
3667     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3668                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3669   return DAG.getMergeValues(Ops, DL);
3670 }
3671 
3672 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3673                                             SelectionDAG &DAG) const {
3674   SDValue Op0 = Op.getOperand(0);
3675   SDValue Op1 = Op.getOperand(1);
3676   EVT VT = Op.getValueType();
3677   SDLoc DL(Op);
3678 
3679   // We use DSGF for 32-bit division.  This means the first operand must
3680   // always be 64-bit, and the second operand should be 32-bit whenever
3681   // that is possible, to improve performance.
3682   if (is32Bit(VT))
3683     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3684   else if (DAG.ComputeNumSignBits(Op1) > 32)
3685     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3686 
3687   // DSG(F) returns the remainder in the even register and the
3688   // quotient in the odd register.
3689   SDValue Ops[2];
3690   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3691   return DAG.getMergeValues(Ops, DL);
3692 }
3693 
3694 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3695                                             SelectionDAG &DAG) const {
3696   EVT VT = Op.getValueType();
3697   SDLoc DL(Op);
3698 
3699   // DL(G) returns the remainder in the even register and the
3700   // quotient in the odd register.
3701   SDValue Ops[2];
3702   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3703                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3704   return DAG.getMergeValues(Ops, DL);
3705 }
3706 
3707 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3708   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3709 
3710   // Get the known-zero masks for each operand.
3711   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3712   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3713                         DAG.computeKnownBits(Ops[1])};
3714 
3715   // See if the upper 32 bits of one operand and the lower 32 bits of the
3716   // other are known zero.  They are the low and high operands respectively.
3717   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3718                        Known[1].Zero.getZExtValue() };
3719   unsigned High, Low;
3720   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3721     High = 1, Low = 0;
3722   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3723     High = 0, Low = 1;
3724   else
3725     return Op;
3726 
3727   SDValue LowOp = Ops[Low];
3728   SDValue HighOp = Ops[High];
3729 
3730   // If the high part is a constant, we're better off using IILH.
3731   if (HighOp.getOpcode() == ISD::Constant)
3732     return Op;
3733 
3734   // If the low part is a constant that is outside the range of LHI,
3735   // then we're better off using IILF.
3736   if (LowOp.getOpcode() == ISD::Constant) {
3737     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3738     if (!isInt<16>(Value))
3739       return Op;
3740   }
3741 
3742   // Check whether the high part is an AND that doesn't change the
3743   // high 32 bits and just masks out low bits.  We can skip it if so.
3744   if (HighOp.getOpcode() == ISD::AND &&
3745       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3746     SDValue HighOp0 = HighOp.getOperand(0);
3747     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3748     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3749       HighOp = HighOp0;
3750   }
3751 
3752   // Take advantage of the fact that all GR32 operations only change the
3753   // low 32 bits by truncating Low to an i32 and inserting it directly
3754   // using a subreg.  The interesting cases are those where the truncation
3755   // can be folded.
3756   SDLoc DL(Op);
3757   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3758   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3759                                    MVT::i64, HighOp, Low32);
3760 }
3761 
3762 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3763 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3764                                           SelectionDAG &DAG) const {
3765   SDNode *N = Op.getNode();
3766   SDValue LHS = N->getOperand(0);
3767   SDValue RHS = N->getOperand(1);
3768   SDLoc DL(N);
3769   unsigned BaseOp = 0;
3770   unsigned CCValid = 0;
3771   unsigned CCMask = 0;
3772 
3773   switch (Op.getOpcode()) {
3774   default: llvm_unreachable("Unknown instruction!");
3775   case ISD::SADDO:
3776     BaseOp = SystemZISD::SADDO;
3777     CCValid = SystemZ::CCMASK_ARITH;
3778     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3779     break;
3780   case ISD::SSUBO:
3781     BaseOp = SystemZISD::SSUBO;
3782     CCValid = SystemZ::CCMASK_ARITH;
3783     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3784     break;
3785   case ISD::UADDO:
3786     BaseOp = SystemZISD::UADDO;
3787     CCValid = SystemZ::CCMASK_LOGICAL;
3788     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3789     break;
3790   case ISD::USUBO:
3791     BaseOp = SystemZISD::USUBO;
3792     CCValid = SystemZ::CCMASK_LOGICAL;
3793     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3794     break;
3795   }
3796 
3797   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3798   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3799 
3800   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3801   if (N->getValueType(1) == MVT::i1)
3802     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3803 
3804   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3805 }
3806 
3807 static bool isAddCarryChain(SDValue Carry) {
3808   while (Carry.getOpcode() == ISD::ADDCARRY)
3809     Carry = Carry.getOperand(2);
3810   return Carry.getOpcode() == ISD::UADDO;
3811 }
3812 
3813 static bool isSubBorrowChain(SDValue Carry) {
3814   while (Carry.getOpcode() == ISD::SUBCARRY)
3815     Carry = Carry.getOperand(2);
3816   return Carry.getOpcode() == ISD::USUBO;
3817 }
3818 
3819 // Lower ADDCARRY/SUBCARRY nodes.
3820 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3821                                                 SelectionDAG &DAG) const {
3822 
3823   SDNode *N = Op.getNode();
3824   MVT VT = N->getSimpleValueType(0);
3825 
3826   // Let legalize expand this if it isn't a legal type yet.
3827   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3828     return SDValue();
3829 
3830   SDValue LHS = N->getOperand(0);
3831   SDValue RHS = N->getOperand(1);
3832   SDValue Carry = Op.getOperand(2);
3833   SDLoc DL(N);
3834   unsigned BaseOp = 0;
3835   unsigned CCValid = 0;
3836   unsigned CCMask = 0;
3837 
3838   switch (Op.getOpcode()) {
3839   default: llvm_unreachable("Unknown instruction!");
3840   case ISD::ADDCARRY:
3841     if (!isAddCarryChain(Carry))
3842       return SDValue();
3843 
3844     BaseOp = SystemZISD::ADDCARRY;
3845     CCValid = SystemZ::CCMASK_LOGICAL;
3846     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3847     break;
3848   case ISD::SUBCARRY:
3849     if (!isSubBorrowChain(Carry))
3850       return SDValue();
3851 
3852     BaseOp = SystemZISD::SUBCARRY;
3853     CCValid = SystemZ::CCMASK_LOGICAL;
3854     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3855     break;
3856   }
3857 
3858   // Set the condition code from the carry flag.
3859   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3860                       DAG.getConstant(CCValid, DL, MVT::i32),
3861                       DAG.getConstant(CCMask, DL, MVT::i32));
3862 
3863   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3864   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3865 
3866   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3867   if (N->getValueType(1) == MVT::i1)
3868     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3869 
3870   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3871 }
3872 
3873 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3874                                           SelectionDAG &DAG) const {
3875   EVT VT = Op.getValueType();
3876   SDLoc DL(Op);
3877   Op = Op.getOperand(0);
3878 
3879   // Handle vector types via VPOPCT.
3880   if (VT.isVector()) {
3881     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3882     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3883     switch (VT.getScalarSizeInBits()) {
3884     case 8:
3885       break;
3886     case 16: {
3887       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3888       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3889       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3890       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3891       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3892       break;
3893     }
3894     case 32: {
3895       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3896                                             DAG.getConstant(0, DL, MVT::i32));
3897       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3898       break;
3899     }
3900     case 64: {
3901       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3902                                             DAG.getConstant(0, DL, MVT::i32));
3903       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3904       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3905       break;
3906     }
3907     default:
3908       llvm_unreachable("Unexpected type");
3909     }
3910     return Op;
3911   }
3912 
3913   // Get the known-zero mask for the operand.
3914   KnownBits Known = DAG.computeKnownBits(Op);
3915   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3916   if (NumSignificantBits == 0)
3917     return DAG.getConstant(0, DL, VT);
3918 
3919   // Skip known-zero high parts of the operand.
3920   int64_t OrigBitSize = VT.getSizeInBits();
3921   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3922   BitSize = std::min(BitSize, OrigBitSize);
3923 
3924   // The POPCNT instruction counts the number of bits in each byte.
3925   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3926   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3927   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3928 
3929   // Add up per-byte counts in a binary tree.  All bits of Op at
3930   // position larger than BitSize remain zero throughout.
3931   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3932     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3933     if (BitSize != OrigBitSize)
3934       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3935                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3936     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3937   }
3938 
3939   // Extract overall result from high byte.
3940   if (BitSize > 8)
3941     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3942                      DAG.getConstant(BitSize - 8, DL, VT));
3943 
3944   return Op;
3945 }
3946 
3947 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3948                                                  SelectionDAG &DAG) const {
3949   SDLoc DL(Op);
3950   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3951     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3952   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3953     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3954 
3955   // The only fence that needs an instruction is a sequentially-consistent
3956   // cross-thread fence.
3957   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3958       FenceSSID == SyncScope::System) {
3959     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3960                                       Op.getOperand(0)),
3961                    0);
3962   }
3963 
3964   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3965   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3966 }
3967 
3968 // Op is an atomic load.  Lower it into a normal volatile load.
3969 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3970                                                 SelectionDAG &DAG) const {
3971   auto *Node = cast<AtomicSDNode>(Op.getNode());
3972   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3973                         Node->getChain(), Node->getBasePtr(),
3974                         Node->getMemoryVT(), Node->getMemOperand());
3975 }
3976 
3977 // Op is an atomic store.  Lower it into a normal volatile store.
3978 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3979                                                  SelectionDAG &DAG) const {
3980   auto *Node = cast<AtomicSDNode>(Op.getNode());
3981   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3982                                     Node->getBasePtr(), Node->getMemoryVT(),
3983                                     Node->getMemOperand());
3984   // We have to enforce sequential consistency by performing a
3985   // serialization operation after the store.
3986   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
3987     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3988                                        MVT::Other, Chain), 0);
3989   return Chain;
3990 }
3991 
3992 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3993 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3994 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3995                                                    SelectionDAG &DAG,
3996                                                    unsigned Opcode) const {
3997   auto *Node = cast<AtomicSDNode>(Op.getNode());
3998 
3999   // 32-bit operations need no code outside the main loop.
4000   EVT NarrowVT = Node->getMemoryVT();
4001   EVT WideVT = MVT::i32;
4002   if (NarrowVT == WideVT)
4003     return Op;
4004 
4005   int64_t BitSize = NarrowVT.getSizeInBits();
4006   SDValue ChainIn = Node->getChain();
4007   SDValue Addr = Node->getBasePtr();
4008   SDValue Src2 = Node->getVal();
4009   MachineMemOperand *MMO = Node->getMemOperand();
4010   SDLoc DL(Node);
4011   EVT PtrVT = Addr.getValueType();
4012 
4013   // Convert atomic subtracts of constants into additions.
4014   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4015     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4016       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4017       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4018     }
4019 
4020   // Get the address of the containing word.
4021   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4022                                     DAG.getConstant(-4, DL, PtrVT));
4023 
4024   // Get the number of bits that the word must be rotated left in order
4025   // to bring the field to the top bits of a GR32.
4026   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4027                                  DAG.getConstant(3, DL, PtrVT));
4028   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4029 
4030   // Get the complementing shift amount, for rotating a field in the top
4031   // bits back to its proper position.
4032   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4033                                     DAG.getConstant(0, DL, WideVT), BitShift);
4034 
4035   // Extend the source operand to 32 bits and prepare it for the inner loop.
4036   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4037   // operations require the source to be shifted in advance.  (This shift
4038   // can be folded if the source is constant.)  For AND and NAND, the lower
4039   // bits must be set, while for other opcodes they should be left clear.
4040   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4041     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4042                        DAG.getConstant(32 - BitSize, DL, WideVT));
4043   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4044       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4045     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4046                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4047 
4048   // Construct the ATOMIC_LOADW_* node.
4049   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4050   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4051                     DAG.getConstant(BitSize, DL, WideVT) };
4052   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4053                                              NarrowVT, MMO);
4054 
4055   // Rotate the result of the final CS so that the field is in the lower
4056   // bits of a GR32, then truncate it.
4057   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4058                                     DAG.getConstant(BitSize, DL, WideVT));
4059   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4060 
4061   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4062   return DAG.getMergeValues(RetOps, DL);
4063 }
4064 
4065 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4066 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4067 // operations into additions.
4068 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4069                                                     SelectionDAG &DAG) const {
4070   auto *Node = cast<AtomicSDNode>(Op.getNode());
4071   EVT MemVT = Node->getMemoryVT();
4072   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4073     // A full-width operation.
4074     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4075     SDValue Src2 = Node->getVal();
4076     SDValue NegSrc2;
4077     SDLoc DL(Src2);
4078 
4079     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4080       // Use an addition if the operand is constant and either LAA(G) is
4081       // available or the negative value is in the range of A(G)FHI.
4082       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4083       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4084         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4085     } else if (Subtarget.hasInterlockedAccess1())
4086       // Use LAA(G) if available.
4087       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4088                             Src2);
4089 
4090     if (NegSrc2.getNode())
4091       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4092                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4093                            Node->getMemOperand());
4094 
4095     // Use the node as-is.
4096     return Op;
4097   }
4098 
4099   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4100 }
4101 
4102 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4103 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4104                                                     SelectionDAG &DAG) const {
4105   auto *Node = cast<AtomicSDNode>(Op.getNode());
4106   SDValue ChainIn = Node->getOperand(0);
4107   SDValue Addr = Node->getOperand(1);
4108   SDValue CmpVal = Node->getOperand(2);
4109   SDValue SwapVal = Node->getOperand(3);
4110   MachineMemOperand *MMO = Node->getMemOperand();
4111   SDLoc DL(Node);
4112 
4113   // We have native support for 32-bit and 64-bit compare and swap, but we
4114   // still need to expand extracting the "success" result from the CC.
4115   EVT NarrowVT = Node->getMemoryVT();
4116   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4117   if (NarrowVT == WideVT) {
4118     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4119     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4120     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4121                                                DL, Tys, Ops, NarrowVT, MMO);
4122     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4123                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4124 
4125     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4126     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4127     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4128     return SDValue();
4129   }
4130 
4131   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4132   // via a fullword ATOMIC_CMP_SWAPW operation.
4133   int64_t BitSize = NarrowVT.getSizeInBits();
4134   EVT PtrVT = Addr.getValueType();
4135 
4136   // Get the address of the containing word.
4137   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4138                                     DAG.getConstant(-4, DL, PtrVT));
4139 
4140   // Get the number of bits that the word must be rotated left in order
4141   // to bring the field to the top bits of a GR32.
4142   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4143                                  DAG.getConstant(3, DL, PtrVT));
4144   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4145 
4146   // Get the complementing shift amount, for rotating a field in the top
4147   // bits back to its proper position.
4148   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4149                                     DAG.getConstant(0, DL, WideVT), BitShift);
4150 
4151   // Construct the ATOMIC_CMP_SWAPW node.
4152   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4153   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4154                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4155   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4156                                              VTList, Ops, NarrowVT, MMO);
4157   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4158                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4159 
4160   // emitAtomicCmpSwapW() will zero extend the result (original value).
4161   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4162                                 DAG.getValueType(NarrowVT));
4163   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4164   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4165   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4166   return SDValue();
4167 }
4168 
4169 MachineMemOperand::Flags
4170 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4171   // Because of how we convert atomic_load and atomic_store to normal loads and
4172   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4173   // since DAGCombine hasn't been updated to account for atomic, but non
4174   // volatile loads.  (See D57601)
4175   if (auto *SI = dyn_cast<StoreInst>(&I))
4176     if (SI->isAtomic())
4177       return MachineMemOperand::MOVolatile;
4178   if (auto *LI = dyn_cast<LoadInst>(&I))
4179     if (LI->isAtomic())
4180       return MachineMemOperand::MOVolatile;
4181   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4182     if (AI->isAtomic())
4183       return MachineMemOperand::MOVolatile;
4184   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4185     if (AI->isAtomic())
4186       return MachineMemOperand::MOVolatile;
4187   return MachineMemOperand::MONone;
4188 }
4189 
4190 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4191                                               SelectionDAG &DAG) const {
4192   MachineFunction &MF = DAG.getMachineFunction();
4193   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4194   auto *Regs = Subtarget->getSpecialRegisters();
4195   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4196     report_fatal_error("Variable-sized stack allocations are not supported "
4197                        "in GHC calling convention");
4198   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4199                             Regs->getStackPointerRegister(), Op.getValueType());
4200 }
4201 
4202 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4203                                                  SelectionDAG &DAG) const {
4204   MachineFunction &MF = DAG.getMachineFunction();
4205   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4206   auto *Regs = Subtarget->getSpecialRegisters();
4207   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4208 
4209   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4210     report_fatal_error("Variable-sized stack allocations are not supported "
4211                        "in GHC calling convention");
4212 
4213   SDValue Chain = Op.getOperand(0);
4214   SDValue NewSP = Op.getOperand(1);
4215   SDValue Backchain;
4216   SDLoc DL(Op);
4217 
4218   if (StoreBackchain) {
4219     SDValue OldSP = DAG.getCopyFromReg(
4220         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4221     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4222                             MachinePointerInfo());
4223   }
4224 
4225   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4226 
4227   if (StoreBackchain)
4228     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4229                          MachinePointerInfo());
4230 
4231   return Chain;
4232 }
4233 
4234 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4235                                              SelectionDAG &DAG) const {
4236   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4237   if (!IsData)
4238     // Just preserve the chain.
4239     return Op.getOperand(0);
4240 
4241   SDLoc DL(Op);
4242   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4243   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4244   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4245   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4246                    Op.getOperand(1)};
4247   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4248                                  Node->getVTList(), Ops,
4249                                  Node->getMemoryVT(), Node->getMemOperand());
4250 }
4251 
4252 // Convert condition code in CCReg to an i32 value.
4253 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4254   SDLoc DL(CCReg);
4255   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4256   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4257                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4258 }
4259 
4260 SDValue
4261 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4262                                               SelectionDAG &DAG) const {
4263   unsigned Opcode, CCValid;
4264   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4265     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4266     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4267     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4268     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4269     return SDValue();
4270   }
4271 
4272   return SDValue();
4273 }
4274 
4275 SDValue
4276 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4277                                                SelectionDAG &DAG) const {
4278   unsigned Opcode, CCValid;
4279   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4280     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4281     if (Op->getNumValues() == 1)
4282       return getCCResult(DAG, SDValue(Node, 0));
4283     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4284     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4285                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4286   }
4287 
4288   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4289   switch (Id) {
4290   case Intrinsic::thread_pointer:
4291     return lowerThreadPointer(SDLoc(Op), DAG);
4292 
4293   case Intrinsic::s390_vpdi:
4294     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4295                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4296 
4297   case Intrinsic::s390_vperm:
4298     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4299                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4300 
4301   case Intrinsic::s390_vuphb:
4302   case Intrinsic::s390_vuphh:
4303   case Intrinsic::s390_vuphf:
4304     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4305                        Op.getOperand(1));
4306 
4307   case Intrinsic::s390_vuplhb:
4308   case Intrinsic::s390_vuplhh:
4309   case Intrinsic::s390_vuplhf:
4310     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4311                        Op.getOperand(1));
4312 
4313   case Intrinsic::s390_vuplb:
4314   case Intrinsic::s390_vuplhw:
4315   case Intrinsic::s390_vuplf:
4316     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4317                        Op.getOperand(1));
4318 
4319   case Intrinsic::s390_vupllb:
4320   case Intrinsic::s390_vupllh:
4321   case Intrinsic::s390_vupllf:
4322     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4323                        Op.getOperand(1));
4324 
4325   case Intrinsic::s390_vsumb:
4326   case Intrinsic::s390_vsumh:
4327   case Intrinsic::s390_vsumgh:
4328   case Intrinsic::s390_vsumgf:
4329   case Intrinsic::s390_vsumqf:
4330   case Intrinsic::s390_vsumqg:
4331     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4332                        Op.getOperand(1), Op.getOperand(2));
4333   }
4334 
4335   return SDValue();
4336 }
4337 
4338 namespace {
4339 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4340 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4341 // Operand is the constant third operand, otherwise it is the number of
4342 // bytes in each element of the result.
4343 struct Permute {
4344   unsigned Opcode;
4345   unsigned Operand;
4346   unsigned char Bytes[SystemZ::VectorBytes];
4347 };
4348 }
4349 
4350 static const Permute PermuteForms[] = {
4351   // VMRHG
4352   { SystemZISD::MERGE_HIGH, 8,
4353     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4354   // VMRHF
4355   { SystemZISD::MERGE_HIGH, 4,
4356     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4357   // VMRHH
4358   { SystemZISD::MERGE_HIGH, 2,
4359     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4360   // VMRHB
4361   { SystemZISD::MERGE_HIGH, 1,
4362     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4363   // VMRLG
4364   { SystemZISD::MERGE_LOW, 8,
4365     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4366   // VMRLF
4367   { SystemZISD::MERGE_LOW, 4,
4368     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4369   // VMRLH
4370   { SystemZISD::MERGE_LOW, 2,
4371     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4372   // VMRLB
4373   { SystemZISD::MERGE_LOW, 1,
4374     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4375   // VPKG
4376   { SystemZISD::PACK, 4,
4377     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4378   // VPKF
4379   { SystemZISD::PACK, 2,
4380     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4381   // VPKH
4382   { SystemZISD::PACK, 1,
4383     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4384   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4385   { SystemZISD::PERMUTE_DWORDS, 4,
4386     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4387   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4388   { SystemZISD::PERMUTE_DWORDS, 1,
4389     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4390 };
4391 
4392 // Called after matching a vector shuffle against a particular pattern.
4393 // Both the original shuffle and the pattern have two vector operands.
4394 // OpNos[0] is the operand of the original shuffle that should be used for
4395 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4396 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4397 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4398 // for operands 0 and 1 of the pattern.
4399 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4400   if (OpNos[0] < 0) {
4401     if (OpNos[1] < 0)
4402       return false;
4403     OpNo0 = OpNo1 = OpNos[1];
4404   } else if (OpNos[1] < 0) {
4405     OpNo0 = OpNo1 = OpNos[0];
4406   } else {
4407     OpNo0 = OpNos[0];
4408     OpNo1 = OpNos[1];
4409   }
4410   return true;
4411 }
4412 
4413 // Bytes is a VPERM-like permute vector, except that -1 is used for
4414 // undefined bytes.  Return true if the VPERM can be implemented using P.
4415 // When returning true set OpNo0 to the VPERM operand that should be
4416 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4417 //
4418 // For example, if swapping the VPERM operands allows P to match, OpNo0
4419 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4420 // operand, but rewriting it to use two duplicated operands allows it to
4421 // match P, then OpNo0 and OpNo1 will be the same.
4422 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4423                          unsigned &OpNo0, unsigned &OpNo1) {
4424   int OpNos[] = { -1, -1 };
4425   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4426     int Elt = Bytes[I];
4427     if (Elt >= 0) {
4428       // Make sure that the two permute vectors use the same suboperand
4429       // byte number.  Only the operand numbers (the high bits) are
4430       // allowed to differ.
4431       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4432         return false;
4433       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4434       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4435       // Make sure that the operand mappings are consistent with previous
4436       // elements.
4437       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4438         return false;
4439       OpNos[ModelOpNo] = RealOpNo;
4440     }
4441   }
4442   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4443 }
4444 
4445 // As above, but search for a matching permute.
4446 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4447                                    unsigned &OpNo0, unsigned &OpNo1) {
4448   for (auto &P : PermuteForms)
4449     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4450       return &P;
4451   return nullptr;
4452 }
4453 
4454 // Bytes is a VPERM-like permute vector, except that -1 is used for
4455 // undefined bytes.  This permute is an operand of an outer permute.
4456 // See whether redistributing the -1 bytes gives a shuffle that can be
4457 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4458 // that, when applied to the result of P, gives the original permute in Bytes.
4459 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4460                                const Permute &P,
4461                                SmallVectorImpl<int> &Transform) {
4462   unsigned To = 0;
4463   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4464     int Elt = Bytes[From];
4465     if (Elt < 0)
4466       // Byte number From of the result is undefined.
4467       Transform[From] = -1;
4468     else {
4469       while (P.Bytes[To] != Elt) {
4470         To += 1;
4471         if (To == SystemZ::VectorBytes)
4472           return false;
4473       }
4474       Transform[From] = To;
4475     }
4476   }
4477   return true;
4478 }
4479 
4480 // As above, but search for a matching permute.
4481 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4482                                          SmallVectorImpl<int> &Transform) {
4483   for (auto &P : PermuteForms)
4484     if (matchDoublePermute(Bytes, P, Transform))
4485       return &P;
4486   return nullptr;
4487 }
4488 
4489 // Convert the mask of the given shuffle op into a byte-level mask,
4490 // as if it had type vNi8.
4491 static bool getVPermMask(SDValue ShuffleOp,
4492                          SmallVectorImpl<int> &Bytes) {
4493   EVT VT = ShuffleOp.getValueType();
4494   unsigned NumElements = VT.getVectorNumElements();
4495   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4496 
4497   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4498     Bytes.resize(NumElements * BytesPerElement, -1);
4499     for (unsigned I = 0; I < NumElements; ++I) {
4500       int Index = VSN->getMaskElt(I);
4501       if (Index >= 0)
4502         for (unsigned J = 0; J < BytesPerElement; ++J)
4503           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4504     }
4505     return true;
4506   }
4507   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4508       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4509     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4510     Bytes.resize(NumElements * BytesPerElement, -1);
4511     for (unsigned I = 0; I < NumElements; ++I)
4512       for (unsigned J = 0; J < BytesPerElement; ++J)
4513         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4514     return true;
4515   }
4516   return false;
4517 }
4518 
4519 // Bytes is a VPERM-like permute vector, except that -1 is used for
4520 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4521 // the result come from a contiguous sequence of bytes from one input.
4522 // Set Base to the selector for the first byte if so.
4523 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4524                             unsigned BytesPerElement, int &Base) {
4525   Base = -1;
4526   for (unsigned I = 0; I < BytesPerElement; ++I) {
4527     if (Bytes[Start + I] >= 0) {
4528       unsigned Elem = Bytes[Start + I];
4529       if (Base < 0) {
4530         Base = Elem - I;
4531         // Make sure the bytes would come from one input operand.
4532         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4533           return false;
4534       } else if (unsigned(Base) != Elem - I)
4535         return false;
4536     }
4537   }
4538   return true;
4539 }
4540 
4541 // Bytes is a VPERM-like permute vector, except that -1 is used for
4542 // undefined bytes.  Return true if it can be performed using VSLDB.
4543 // When returning true, set StartIndex to the shift amount and OpNo0
4544 // and OpNo1 to the VPERM operands that should be used as the first
4545 // and second shift operand respectively.
4546 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4547                                unsigned &StartIndex, unsigned &OpNo0,
4548                                unsigned &OpNo1) {
4549   int OpNos[] = { -1, -1 };
4550   int Shift = -1;
4551   for (unsigned I = 0; I < 16; ++I) {
4552     int Index = Bytes[I];
4553     if (Index >= 0) {
4554       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4555       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4556       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4557       if (Shift < 0)
4558         Shift = ExpectedShift;
4559       else if (Shift != ExpectedShift)
4560         return false;
4561       // Make sure that the operand mappings are consistent with previous
4562       // elements.
4563       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4564         return false;
4565       OpNos[ModelOpNo] = RealOpNo;
4566     }
4567   }
4568   StartIndex = Shift;
4569   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4570 }
4571 
4572 // Create a node that performs P on operands Op0 and Op1, casting the
4573 // operands to the appropriate type.  The type of the result is determined by P.
4574 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4575                               const Permute &P, SDValue Op0, SDValue Op1) {
4576   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4577   // elements of a PACK are twice as wide as the outputs.
4578   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4579                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4580                       P.Operand);
4581   // Cast both operands to the appropriate type.
4582   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4583                               SystemZ::VectorBytes / InBytes);
4584   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4585   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4586   SDValue Op;
4587   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4588     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4589     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4590   } else if (P.Opcode == SystemZISD::PACK) {
4591     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4592                                  SystemZ::VectorBytes / P.Operand);
4593     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4594   } else {
4595     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4596   }
4597   return Op;
4598 }
4599 
4600 static bool isZeroVector(SDValue N) {
4601   if (N->getOpcode() == ISD::BITCAST)
4602     N = N->getOperand(0);
4603   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4604     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4605       return Op->getZExtValue() == 0;
4606   return ISD::isBuildVectorAllZeros(N.getNode());
4607 }
4608 
4609 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4610 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4611   for (unsigned I = 0; I < Num ; I++)
4612     if (isZeroVector(Ops[I]))
4613       return I;
4614   return UINT32_MAX;
4615 }
4616 
4617 // Bytes is a VPERM-like permute vector, except that -1 is used for
4618 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4619 // VSLDB or VPERM.
4620 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4621                                      SDValue *Ops,
4622                                      const SmallVectorImpl<int> &Bytes) {
4623   for (unsigned I = 0; I < 2; ++I)
4624     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4625 
4626   // First see whether VSLDB can be used.
4627   unsigned StartIndex, OpNo0, OpNo1;
4628   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4629     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4630                        Ops[OpNo1],
4631                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4632 
4633   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4634   // eliminate a zero vector by reusing any zero index in the permute vector.
4635   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4636   if (ZeroVecIdx != UINT32_MAX) {
4637     bool MaskFirst = true;
4638     int ZeroIdx = -1;
4639     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4640       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4641       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4642       if (OpNo == ZeroVecIdx && I == 0) {
4643         // If the first byte is zero, use mask as first operand.
4644         ZeroIdx = 0;
4645         break;
4646       }
4647       if (OpNo != ZeroVecIdx && Byte == 0) {
4648         // If mask contains a zero, use it by placing that vector first.
4649         ZeroIdx = I + SystemZ::VectorBytes;
4650         MaskFirst = false;
4651         break;
4652       }
4653     }
4654     if (ZeroIdx != -1) {
4655       SDValue IndexNodes[SystemZ::VectorBytes];
4656       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4657         if (Bytes[I] >= 0) {
4658           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4659           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4660           if (OpNo == ZeroVecIdx)
4661             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4662           else {
4663             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4664             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4665           }
4666         } else
4667           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4668       }
4669       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4670       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4671       if (MaskFirst)
4672         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4673                            Mask);
4674       else
4675         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4676                            Mask);
4677     }
4678   }
4679 
4680   SDValue IndexNodes[SystemZ::VectorBytes];
4681   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4682     if (Bytes[I] >= 0)
4683       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4684     else
4685       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4686   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4687   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4688                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4689 }
4690 
4691 namespace {
4692 // Describes a general N-operand vector shuffle.
4693 struct GeneralShuffle {
4694   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4695   void addUndef();
4696   bool add(SDValue, unsigned);
4697   SDValue getNode(SelectionDAG &, const SDLoc &);
4698   void tryPrepareForUnpack();
4699   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4700   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4701 
4702   // The operands of the shuffle.
4703   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4704 
4705   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4706   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4707   // Bytes[I] / SystemZ::VectorBytes.
4708   SmallVector<int, SystemZ::VectorBytes> Bytes;
4709 
4710   // The type of the shuffle result.
4711   EVT VT;
4712 
4713   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4714   unsigned UnpackFromEltSize;
4715 };
4716 }
4717 
4718 // Add an extra undefined element to the shuffle.
4719 void GeneralShuffle::addUndef() {
4720   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4721   for (unsigned I = 0; I < BytesPerElement; ++I)
4722     Bytes.push_back(-1);
4723 }
4724 
4725 // Add an extra element to the shuffle, taking it from element Elem of Op.
4726 // A null Op indicates a vector input whose value will be calculated later;
4727 // there is at most one such input per shuffle and it always has the same
4728 // type as the result. Aborts and returns false if the source vector elements
4729 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4730 // LLVM they become implicitly extended, but this is rare and not optimized.
4731 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4732   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4733 
4734   // The source vector can have wider elements than the result,
4735   // either through an explicit TRUNCATE or because of type legalization.
4736   // We want the least significant part.
4737   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4738   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4739 
4740   // Return false if the source elements are smaller than their destination
4741   // elements.
4742   if (FromBytesPerElement < BytesPerElement)
4743     return false;
4744 
4745   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4746                    (FromBytesPerElement - BytesPerElement));
4747 
4748   // Look through things like shuffles and bitcasts.
4749   while (Op.getNode()) {
4750     if (Op.getOpcode() == ISD::BITCAST)
4751       Op = Op.getOperand(0);
4752     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4753       // See whether the bytes we need come from a contiguous part of one
4754       // operand.
4755       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4756       if (!getVPermMask(Op, OpBytes))
4757         break;
4758       int NewByte;
4759       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4760         break;
4761       if (NewByte < 0) {
4762         addUndef();
4763         return true;
4764       }
4765       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4766       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4767     } else if (Op.isUndef()) {
4768       addUndef();
4769       return true;
4770     } else
4771       break;
4772   }
4773 
4774   // Make sure that the source of the extraction is in Ops.
4775   unsigned OpNo = 0;
4776   for (; OpNo < Ops.size(); ++OpNo)
4777     if (Ops[OpNo] == Op)
4778       break;
4779   if (OpNo == Ops.size())
4780     Ops.push_back(Op);
4781 
4782   // Add the element to Bytes.
4783   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4784   for (unsigned I = 0; I < BytesPerElement; ++I)
4785     Bytes.push_back(Base + I);
4786 
4787   return true;
4788 }
4789 
4790 // Return SDNodes for the completed shuffle.
4791 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4792   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4793 
4794   if (Ops.size() == 0)
4795     return DAG.getUNDEF(VT);
4796 
4797   // Use a single unpack if possible as the last operation.
4798   tryPrepareForUnpack();
4799 
4800   // Make sure that there are at least two shuffle operands.
4801   if (Ops.size() == 1)
4802     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4803 
4804   // Create a tree of shuffles, deferring root node until after the loop.
4805   // Try to redistribute the undefined elements of non-root nodes so that
4806   // the non-root shuffles match something like a pack or merge, then adjust
4807   // the parent node's permute vector to compensate for the new order.
4808   // Among other things, this copes with vectors like <2 x i16> that were
4809   // padded with undefined elements during type legalization.
4810   //
4811   // In the best case this redistribution will lead to the whole tree
4812   // using packs and merges.  It should rarely be a loss in other cases.
4813   unsigned Stride = 1;
4814   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4815     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4816       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4817 
4818       // Create a mask for just these two operands.
4819       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4820       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4821         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4822         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4823         if (OpNo == I)
4824           NewBytes[J] = Byte;
4825         else if (OpNo == I + Stride)
4826           NewBytes[J] = SystemZ::VectorBytes + Byte;
4827         else
4828           NewBytes[J] = -1;
4829       }
4830       // See if it would be better to reorganize NewMask to avoid using VPERM.
4831       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4832       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4833         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4834         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4835         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4836           if (NewBytes[J] >= 0) {
4837             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4838                    "Invalid double permute");
4839             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4840           } else
4841             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4842         }
4843       } else {
4844         // Just use NewBytes on the operands.
4845         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4846         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4847           if (NewBytes[J] >= 0)
4848             Bytes[J] = I * SystemZ::VectorBytes + J;
4849       }
4850     }
4851   }
4852 
4853   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4854   if (Stride > 1) {
4855     Ops[1] = Ops[Stride];
4856     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4857       if (Bytes[I] >= int(SystemZ::VectorBytes))
4858         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4859   }
4860 
4861   // Look for an instruction that can do the permute without resorting
4862   // to VPERM.
4863   unsigned OpNo0, OpNo1;
4864   SDValue Op;
4865   if (unpackWasPrepared() && Ops[1].isUndef())
4866     Op = Ops[0];
4867   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4868     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4869   else
4870     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4871 
4872   Op = insertUnpackIfPrepared(DAG, DL, Op);
4873 
4874   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4875 }
4876 
4877 #ifndef NDEBUG
4878 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4879   dbgs() << Msg.c_str() << " { ";
4880   for (unsigned i = 0; i < Bytes.size(); i++)
4881     dbgs() << Bytes[i] << " ";
4882   dbgs() << "}\n";
4883 }
4884 #endif
4885 
4886 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4887 // after all else by removing the zero vector and the effect of the unpack on
4888 // Bytes.
4889 void GeneralShuffle::tryPrepareForUnpack() {
4890   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4891   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4892     return;
4893 
4894   // Only do this if removing the zero vector reduces the depth, otherwise
4895   // the critical path will increase with the final unpack.
4896   if (Ops.size() > 2 &&
4897       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4898     return;
4899 
4900   // Find an unpack that would allow removing the zero vector from Ops.
4901   UnpackFromEltSize = 1;
4902   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4903     bool MatchUnpack = true;
4904     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4905     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4906       unsigned ToEltSize = UnpackFromEltSize * 2;
4907       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4908       if (!IsZextByte)
4909         SrcBytes.push_back(Bytes[Elt]);
4910       if (Bytes[Elt] != -1) {
4911         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4912         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4913           MatchUnpack = false;
4914           break;
4915         }
4916       }
4917     }
4918     if (MatchUnpack) {
4919       if (Ops.size() == 2) {
4920         // Don't use unpack if a single source operand needs rearrangement.
4921         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4922           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4923             UnpackFromEltSize = UINT_MAX;
4924             return;
4925           }
4926       }
4927       break;
4928     }
4929   }
4930   if (UnpackFromEltSize > 4)
4931     return;
4932 
4933   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4934              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4935              << ".\n";
4936              dumpBytes(Bytes, "Original Bytes vector:"););
4937 
4938   // Apply the unpack in reverse to the Bytes array.
4939   unsigned B = 0;
4940   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4941     Elt += UnpackFromEltSize;
4942     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4943       Bytes[B] = Bytes[Elt];
4944   }
4945   while (B < SystemZ::VectorBytes)
4946     Bytes[B++] = -1;
4947 
4948   // Remove the zero vector from Ops
4949   Ops.erase(&Ops[ZeroVecOpNo]);
4950   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4951     if (Bytes[I] >= 0) {
4952       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4953       if (OpNo > ZeroVecOpNo)
4954         Bytes[I] -= SystemZ::VectorBytes;
4955     }
4956 
4957   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4958              dbgs() << "\n";);
4959 }
4960 
4961 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4962                                                const SDLoc &DL,
4963                                                SDValue Op) {
4964   if (!unpackWasPrepared())
4965     return Op;
4966   unsigned InBits = UnpackFromEltSize * 8;
4967   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4968                                 SystemZ::VectorBits / InBits);
4969   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4970   unsigned OutBits = InBits * 2;
4971   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4972                                SystemZ::VectorBits / OutBits);
4973   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4974 }
4975 
4976 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4977 static bool isScalarToVector(SDValue Op) {
4978   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4979     if (!Op.getOperand(I).isUndef())
4980       return false;
4981   return true;
4982 }
4983 
4984 // Return a vector of type VT that contains Value in the first element.
4985 // The other elements don't matter.
4986 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4987                                    SDValue Value) {
4988   // If we have a constant, replicate it to all elements and let the
4989   // BUILD_VECTOR lowering take care of it.
4990   if (Value.getOpcode() == ISD::Constant ||
4991       Value.getOpcode() == ISD::ConstantFP) {
4992     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4993     return DAG.getBuildVector(VT, DL, Ops);
4994   }
4995   if (Value.isUndef())
4996     return DAG.getUNDEF(VT);
4997   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4998 }
4999 
5000 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5001 // element 1.  Used for cases in which replication is cheap.
5002 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5003                                  SDValue Op0, SDValue Op1) {
5004   if (Op0.isUndef()) {
5005     if (Op1.isUndef())
5006       return DAG.getUNDEF(VT);
5007     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5008   }
5009   if (Op1.isUndef())
5010     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5011   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5012                      buildScalarToVector(DAG, DL, VT, Op0),
5013                      buildScalarToVector(DAG, DL, VT, Op1));
5014 }
5015 
5016 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5017 // vector for them.
5018 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5019                           SDValue Op1) {
5020   if (Op0.isUndef() && Op1.isUndef())
5021     return DAG.getUNDEF(MVT::v2i64);
5022   // If one of the two inputs is undefined then replicate the other one,
5023   // in order to avoid using another register unnecessarily.
5024   if (Op0.isUndef())
5025     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5026   else if (Op1.isUndef())
5027     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5028   else {
5029     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5030     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5031   }
5032   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5033 }
5034 
5035 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5036 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5037 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5038 // would benefit from this representation and return it if so.
5039 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5040                                      BuildVectorSDNode *BVN) {
5041   EVT VT = BVN->getValueType(0);
5042   unsigned NumElements = VT.getVectorNumElements();
5043 
5044   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5045   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5046   // need a BUILD_VECTOR, add an additional placeholder operand for that
5047   // BUILD_VECTOR and store its operands in ResidueOps.
5048   GeneralShuffle GS(VT);
5049   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5050   bool FoundOne = false;
5051   for (unsigned I = 0; I < NumElements; ++I) {
5052     SDValue Op = BVN->getOperand(I);
5053     if (Op.getOpcode() == ISD::TRUNCATE)
5054       Op = Op.getOperand(0);
5055     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5056         Op.getOperand(1).getOpcode() == ISD::Constant) {
5057       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5058       if (!GS.add(Op.getOperand(0), Elem))
5059         return SDValue();
5060       FoundOne = true;
5061     } else if (Op.isUndef()) {
5062       GS.addUndef();
5063     } else {
5064       if (!GS.add(SDValue(), ResidueOps.size()))
5065         return SDValue();
5066       ResidueOps.push_back(BVN->getOperand(I));
5067     }
5068   }
5069 
5070   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5071   if (!FoundOne)
5072     return SDValue();
5073 
5074   // Create the BUILD_VECTOR for the remaining elements, if any.
5075   if (!ResidueOps.empty()) {
5076     while (ResidueOps.size() < NumElements)
5077       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5078     for (auto &Op : GS.Ops) {
5079       if (!Op.getNode()) {
5080         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5081         break;
5082       }
5083     }
5084   }
5085   return GS.getNode(DAG, SDLoc(BVN));
5086 }
5087 
5088 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5089   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5090     return true;
5091   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5092     return true;
5093   return false;
5094 }
5095 
5096 // Combine GPR scalar values Elems into a vector of type VT.
5097 SDValue
5098 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5099                                    SmallVectorImpl<SDValue> &Elems) const {
5100   // See whether there is a single replicated value.
5101   SDValue Single;
5102   unsigned int NumElements = Elems.size();
5103   unsigned int Count = 0;
5104   for (auto Elem : Elems) {
5105     if (!Elem.isUndef()) {
5106       if (!Single.getNode())
5107         Single = Elem;
5108       else if (Elem != Single) {
5109         Single = SDValue();
5110         break;
5111       }
5112       Count += 1;
5113     }
5114   }
5115   // There are three cases here:
5116   //
5117   // - if the only defined element is a loaded one, the best sequence
5118   //   is a replicating load.
5119   //
5120   // - otherwise, if the only defined element is an i64 value, we will
5121   //   end up with the same VLVGP sequence regardless of whether we short-cut
5122   //   for replication or fall through to the later code.
5123   //
5124   // - otherwise, if the only defined element is an i32 or smaller value,
5125   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5126   //   This is only a win if the single defined element is used more than once.
5127   //   In other cases we're better off using a single VLVGx.
5128   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5129     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5130 
5131   // If all elements are loads, use VLREP/VLEs (below).
5132   bool AllLoads = true;
5133   for (auto Elem : Elems)
5134     if (!isVectorElementLoad(Elem)) {
5135       AllLoads = false;
5136       break;
5137     }
5138 
5139   // The best way of building a v2i64 from two i64s is to use VLVGP.
5140   if (VT == MVT::v2i64 && !AllLoads)
5141     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5142 
5143   // Use a 64-bit merge high to combine two doubles.
5144   if (VT == MVT::v2f64 && !AllLoads)
5145     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5146 
5147   // Build v4f32 values directly from the FPRs:
5148   //
5149   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5150   //         V              V         VMRHF
5151   //      <ABxx>         <CDxx>
5152   //                V                 VMRHG
5153   //              <ABCD>
5154   if (VT == MVT::v4f32 && !AllLoads) {
5155     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5156     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5157     // Avoid unnecessary undefs by reusing the other operand.
5158     if (Op01.isUndef())
5159       Op01 = Op23;
5160     else if (Op23.isUndef())
5161       Op23 = Op01;
5162     // Merging identical replications is a no-op.
5163     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5164       return Op01;
5165     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5166     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5167     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5168                              DL, MVT::v2i64, Op01, Op23);
5169     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5170   }
5171 
5172   // Collect the constant terms.
5173   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5174   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5175 
5176   unsigned NumConstants = 0;
5177   for (unsigned I = 0; I < NumElements; ++I) {
5178     SDValue Elem = Elems[I];
5179     if (Elem.getOpcode() == ISD::Constant ||
5180         Elem.getOpcode() == ISD::ConstantFP) {
5181       NumConstants += 1;
5182       Constants[I] = Elem;
5183       Done[I] = true;
5184     }
5185   }
5186   // If there was at least one constant, fill in the other elements of
5187   // Constants with undefs to get a full vector constant and use that
5188   // as the starting point.
5189   SDValue Result;
5190   SDValue ReplicatedVal;
5191   if (NumConstants > 0) {
5192     for (unsigned I = 0; I < NumElements; ++I)
5193       if (!Constants[I].getNode())
5194         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5195     Result = DAG.getBuildVector(VT, DL, Constants);
5196   } else {
5197     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5198     // avoid a false dependency on any previous contents of the vector
5199     // register.
5200 
5201     // Use a VLREP if at least one element is a load. Make sure to replicate
5202     // the load with the most elements having its value.
5203     std::map<const SDNode*, unsigned> UseCounts;
5204     SDNode *LoadMaxUses = nullptr;
5205     for (unsigned I = 0; I < NumElements; ++I)
5206       if (isVectorElementLoad(Elems[I])) {
5207         SDNode *Ld = Elems[I].getNode();
5208         UseCounts[Ld]++;
5209         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5210           LoadMaxUses = Ld;
5211       }
5212     if (LoadMaxUses != nullptr) {
5213       ReplicatedVal = SDValue(LoadMaxUses, 0);
5214       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5215     } else {
5216       // Try to use VLVGP.
5217       unsigned I1 = NumElements / 2 - 1;
5218       unsigned I2 = NumElements - 1;
5219       bool Def1 = !Elems[I1].isUndef();
5220       bool Def2 = !Elems[I2].isUndef();
5221       if (Def1 || Def2) {
5222         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5223         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5224         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5225                              joinDwords(DAG, DL, Elem1, Elem2));
5226         Done[I1] = true;
5227         Done[I2] = true;
5228       } else
5229         Result = DAG.getUNDEF(VT);
5230     }
5231   }
5232 
5233   // Use VLVGx to insert the other elements.
5234   for (unsigned I = 0; I < NumElements; ++I)
5235     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5236       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5237                            DAG.getConstant(I, DL, MVT::i32));
5238   return Result;
5239 }
5240 
5241 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5242                                                  SelectionDAG &DAG) const {
5243   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5244   SDLoc DL(Op);
5245   EVT VT = Op.getValueType();
5246 
5247   if (BVN->isConstant()) {
5248     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5249       return Op;
5250 
5251     // Fall back to loading it from memory.
5252     return SDValue();
5253   }
5254 
5255   // See if we should use shuffles to construct the vector from other vectors.
5256   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5257     return Res;
5258 
5259   // Detect SCALAR_TO_VECTOR conversions.
5260   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5261     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5262 
5263   // Otherwise use buildVector to build the vector up from GPRs.
5264   unsigned NumElements = Op.getNumOperands();
5265   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5266   for (unsigned I = 0; I < NumElements; ++I)
5267     Ops[I] = Op.getOperand(I);
5268   return buildVector(DAG, DL, VT, Ops);
5269 }
5270 
5271 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5272                                                    SelectionDAG &DAG) const {
5273   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5274   SDLoc DL(Op);
5275   EVT VT = Op.getValueType();
5276   unsigned NumElements = VT.getVectorNumElements();
5277 
5278   if (VSN->isSplat()) {
5279     SDValue Op0 = Op.getOperand(0);
5280     unsigned Index = VSN->getSplatIndex();
5281     assert(Index < VT.getVectorNumElements() &&
5282            "Splat index should be defined and in first operand");
5283     // See whether the value we're splatting is directly available as a scalar.
5284     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5285         Op0.getOpcode() == ISD::BUILD_VECTOR)
5286       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5287     // Otherwise keep it as a vector-to-vector operation.
5288     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5289                        DAG.getTargetConstant(Index, DL, MVT::i32));
5290   }
5291 
5292   GeneralShuffle GS(VT);
5293   for (unsigned I = 0; I < NumElements; ++I) {
5294     int Elt = VSN->getMaskElt(I);
5295     if (Elt < 0)
5296       GS.addUndef();
5297     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5298                      unsigned(Elt) % NumElements))
5299       return SDValue();
5300   }
5301   return GS.getNode(DAG, SDLoc(VSN));
5302 }
5303 
5304 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5305                                                      SelectionDAG &DAG) const {
5306   SDLoc DL(Op);
5307   // Just insert the scalar into element 0 of an undefined vector.
5308   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5309                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5310                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5311 }
5312 
5313 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5314                                                       SelectionDAG &DAG) const {
5315   // Handle insertions of floating-point values.
5316   SDLoc DL(Op);
5317   SDValue Op0 = Op.getOperand(0);
5318   SDValue Op1 = Op.getOperand(1);
5319   SDValue Op2 = Op.getOperand(2);
5320   EVT VT = Op.getValueType();
5321 
5322   // Insertions into constant indices of a v2f64 can be done using VPDI.
5323   // However, if the inserted value is a bitcast or a constant then it's
5324   // better to use GPRs, as below.
5325   if (VT == MVT::v2f64 &&
5326       Op1.getOpcode() != ISD::BITCAST &&
5327       Op1.getOpcode() != ISD::ConstantFP &&
5328       Op2.getOpcode() == ISD::Constant) {
5329     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5330     unsigned Mask = VT.getVectorNumElements() - 1;
5331     if (Index <= Mask)
5332       return Op;
5333   }
5334 
5335   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5336   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5337   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5338   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5339                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5340                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5341   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5342 }
5343 
5344 SDValue
5345 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5346                                                SelectionDAG &DAG) const {
5347   // Handle extractions of floating-point values.
5348   SDLoc DL(Op);
5349   SDValue Op0 = Op.getOperand(0);
5350   SDValue Op1 = Op.getOperand(1);
5351   EVT VT = Op.getValueType();
5352   EVT VecVT = Op0.getValueType();
5353 
5354   // Extractions of constant indices can be done directly.
5355   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5356     uint64_t Index = CIndexN->getZExtValue();
5357     unsigned Mask = VecVT.getVectorNumElements() - 1;
5358     if (Index <= Mask)
5359       return Op;
5360   }
5361 
5362   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5363   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5364   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5365   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5366                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5367   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5368 }
5369 
5370 SDValue SystemZTargetLowering::
5371 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5372   SDValue PackedOp = Op.getOperand(0);
5373   EVT OutVT = Op.getValueType();
5374   EVT InVT = PackedOp.getValueType();
5375   unsigned ToBits = OutVT.getScalarSizeInBits();
5376   unsigned FromBits = InVT.getScalarSizeInBits();
5377   do {
5378     FromBits *= 2;
5379     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5380                                  SystemZ::VectorBits / FromBits);
5381     PackedOp =
5382       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5383   } while (FromBits != ToBits);
5384   return PackedOp;
5385 }
5386 
5387 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5388 SDValue SystemZTargetLowering::
5389 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5390   SDValue PackedOp = Op.getOperand(0);
5391   SDLoc DL(Op);
5392   EVT OutVT = Op.getValueType();
5393   EVT InVT = PackedOp.getValueType();
5394   unsigned InNumElts = InVT.getVectorNumElements();
5395   unsigned OutNumElts = OutVT.getVectorNumElements();
5396   unsigned NumInPerOut = InNumElts / OutNumElts;
5397 
5398   SDValue ZeroVec =
5399     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5400 
5401   SmallVector<int, 16> Mask(InNumElts);
5402   unsigned ZeroVecElt = InNumElts;
5403   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5404     unsigned MaskElt = PackedElt * NumInPerOut;
5405     unsigned End = MaskElt + NumInPerOut - 1;
5406     for (; MaskElt < End; MaskElt++)
5407       Mask[MaskElt] = ZeroVecElt++;
5408     Mask[MaskElt] = PackedElt;
5409   }
5410   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5411   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5412 }
5413 
5414 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5415                                           unsigned ByScalar) const {
5416   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5417   SDValue Op0 = Op.getOperand(0);
5418   SDValue Op1 = Op.getOperand(1);
5419   SDLoc DL(Op);
5420   EVT VT = Op.getValueType();
5421   unsigned ElemBitSize = VT.getScalarSizeInBits();
5422 
5423   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5424   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5425     APInt SplatBits, SplatUndef;
5426     unsigned SplatBitSize;
5427     bool HasAnyUndefs;
5428     // Check for constant splats.  Use ElemBitSize as the minimum element
5429     // width and reject splats that need wider elements.
5430     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5431                              ElemBitSize, true) &&
5432         SplatBitSize == ElemBitSize) {
5433       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5434                                       DL, MVT::i32);
5435       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5436     }
5437     // Check for variable splats.
5438     BitVector UndefElements;
5439     SDValue Splat = BVN->getSplatValue(&UndefElements);
5440     if (Splat) {
5441       // Since i32 is the smallest legal type, we either need a no-op
5442       // or a truncation.
5443       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5444       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5445     }
5446   }
5447 
5448   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5449   // and the shift amount is directly available in a GPR.
5450   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5451     if (VSN->isSplat()) {
5452       SDValue VSNOp0 = VSN->getOperand(0);
5453       unsigned Index = VSN->getSplatIndex();
5454       assert(Index < VT.getVectorNumElements() &&
5455              "Splat index should be defined and in first operand");
5456       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5457           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5458         // Since i32 is the smallest legal type, we either need a no-op
5459         // or a truncation.
5460         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5461                                     VSNOp0.getOperand(Index));
5462         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5463       }
5464     }
5465   }
5466 
5467   // Otherwise just treat the current form as legal.
5468   return Op;
5469 }
5470 
5471 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5472                                               SelectionDAG &DAG) const {
5473   switch (Op.getOpcode()) {
5474   case ISD::FRAMEADDR:
5475     return lowerFRAMEADDR(Op, DAG);
5476   case ISD::RETURNADDR:
5477     return lowerRETURNADDR(Op, DAG);
5478   case ISD::BR_CC:
5479     return lowerBR_CC(Op, DAG);
5480   case ISD::SELECT_CC:
5481     return lowerSELECT_CC(Op, DAG);
5482   case ISD::SETCC:
5483     return lowerSETCC(Op, DAG);
5484   case ISD::STRICT_FSETCC:
5485     return lowerSTRICT_FSETCC(Op, DAG, false);
5486   case ISD::STRICT_FSETCCS:
5487     return lowerSTRICT_FSETCC(Op, DAG, true);
5488   case ISD::GlobalAddress:
5489     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5490   case ISD::GlobalTLSAddress:
5491     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5492   case ISD::BlockAddress:
5493     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5494   case ISD::JumpTable:
5495     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5496   case ISD::ConstantPool:
5497     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5498   case ISD::BITCAST:
5499     return lowerBITCAST(Op, DAG);
5500   case ISD::VASTART:
5501     return lowerVASTART(Op, DAG);
5502   case ISD::VACOPY:
5503     return lowerVACOPY(Op, DAG);
5504   case ISD::DYNAMIC_STACKALLOC:
5505     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5506   case ISD::GET_DYNAMIC_AREA_OFFSET:
5507     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5508   case ISD::SMUL_LOHI:
5509     return lowerSMUL_LOHI(Op, DAG);
5510   case ISD::UMUL_LOHI:
5511     return lowerUMUL_LOHI(Op, DAG);
5512   case ISD::SDIVREM:
5513     return lowerSDIVREM(Op, DAG);
5514   case ISD::UDIVREM:
5515     return lowerUDIVREM(Op, DAG);
5516   case ISD::SADDO:
5517   case ISD::SSUBO:
5518   case ISD::UADDO:
5519   case ISD::USUBO:
5520     return lowerXALUO(Op, DAG);
5521   case ISD::ADDCARRY:
5522   case ISD::SUBCARRY:
5523     return lowerADDSUBCARRY(Op, DAG);
5524   case ISD::OR:
5525     return lowerOR(Op, DAG);
5526   case ISD::CTPOP:
5527     return lowerCTPOP(Op, DAG);
5528   case ISD::ATOMIC_FENCE:
5529     return lowerATOMIC_FENCE(Op, DAG);
5530   case ISD::ATOMIC_SWAP:
5531     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5532   case ISD::ATOMIC_STORE:
5533     return lowerATOMIC_STORE(Op, DAG);
5534   case ISD::ATOMIC_LOAD:
5535     return lowerATOMIC_LOAD(Op, DAG);
5536   case ISD::ATOMIC_LOAD_ADD:
5537     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5538   case ISD::ATOMIC_LOAD_SUB:
5539     return lowerATOMIC_LOAD_SUB(Op, DAG);
5540   case ISD::ATOMIC_LOAD_AND:
5541     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5542   case ISD::ATOMIC_LOAD_OR:
5543     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5544   case ISD::ATOMIC_LOAD_XOR:
5545     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5546   case ISD::ATOMIC_LOAD_NAND:
5547     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5548   case ISD::ATOMIC_LOAD_MIN:
5549     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5550   case ISD::ATOMIC_LOAD_MAX:
5551     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5552   case ISD::ATOMIC_LOAD_UMIN:
5553     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5554   case ISD::ATOMIC_LOAD_UMAX:
5555     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5556   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5557     return lowerATOMIC_CMP_SWAP(Op, DAG);
5558   case ISD::STACKSAVE:
5559     return lowerSTACKSAVE(Op, DAG);
5560   case ISD::STACKRESTORE:
5561     return lowerSTACKRESTORE(Op, DAG);
5562   case ISD::PREFETCH:
5563     return lowerPREFETCH(Op, DAG);
5564   case ISD::INTRINSIC_W_CHAIN:
5565     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5566   case ISD::INTRINSIC_WO_CHAIN:
5567     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5568   case ISD::BUILD_VECTOR:
5569     return lowerBUILD_VECTOR(Op, DAG);
5570   case ISD::VECTOR_SHUFFLE:
5571     return lowerVECTOR_SHUFFLE(Op, DAG);
5572   case ISD::SCALAR_TO_VECTOR:
5573     return lowerSCALAR_TO_VECTOR(Op, DAG);
5574   case ISD::INSERT_VECTOR_ELT:
5575     return lowerINSERT_VECTOR_ELT(Op, DAG);
5576   case ISD::EXTRACT_VECTOR_ELT:
5577     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5578   case ISD::SIGN_EXTEND_VECTOR_INREG:
5579     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5580   case ISD::ZERO_EXTEND_VECTOR_INREG:
5581     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5582   case ISD::SHL:
5583     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5584   case ISD::SRL:
5585     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5586   case ISD::SRA:
5587     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5588   default:
5589     llvm_unreachable("Unexpected node to lower");
5590   }
5591 }
5592 
5593 // Lower operations with invalid operand or result types (currently used
5594 // only for 128-bit integer types).
5595 void
5596 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5597                                              SmallVectorImpl<SDValue> &Results,
5598                                              SelectionDAG &DAG) const {
5599   switch (N->getOpcode()) {
5600   case ISD::ATOMIC_LOAD: {
5601     SDLoc DL(N);
5602     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5603     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5604     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5605     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5606                                           DL, Tys, Ops, MVT::i128, MMO);
5607     Results.push_back(lowerGR128ToI128(DAG, Res));
5608     Results.push_back(Res.getValue(1));
5609     break;
5610   }
5611   case ISD::ATOMIC_STORE: {
5612     SDLoc DL(N);
5613     SDVTList Tys = DAG.getVTList(MVT::Other);
5614     SDValue Ops[] = { N->getOperand(0),
5615                       lowerI128ToGR128(DAG, N->getOperand(2)),
5616                       N->getOperand(1) };
5617     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5618     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5619                                           DL, Tys, Ops, MVT::i128, MMO);
5620     // We have to enforce sequential consistency by performing a
5621     // serialization operation after the store.
5622     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5623         AtomicOrdering::SequentiallyConsistent)
5624       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5625                                        MVT::Other, Res), 0);
5626     Results.push_back(Res);
5627     break;
5628   }
5629   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5630     SDLoc DL(N);
5631     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5632     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5633                       lowerI128ToGR128(DAG, N->getOperand(2)),
5634                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5635     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5636     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5637                                           DL, Tys, Ops, MVT::i128, MMO);
5638     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5639                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5640     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5641     Results.push_back(lowerGR128ToI128(DAG, Res));
5642     Results.push_back(Success);
5643     Results.push_back(Res.getValue(2));
5644     break;
5645   }
5646   case ISD::BITCAST: {
5647     SDValue Src = N->getOperand(0);
5648     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5649         !useSoftFloat()) {
5650       SDLoc DL(N);
5651       SDValue Lo, Hi;
5652       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5653         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5654         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5655                          DAG.getConstant(1, DL, MVT::i32));
5656         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5657                          DAG.getConstant(0, DL, MVT::i32));
5658       } else {
5659         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5660                "Unrecognized register class for f128.");
5661         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5662                                                   DL, MVT::f64, Src);
5663         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5664                                                   DL, MVT::f64, Src);
5665         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5666         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5667       }
5668       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5669     }
5670     break;
5671   }
5672   default:
5673     llvm_unreachable("Unexpected node to lower");
5674   }
5675 }
5676 
5677 void
5678 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5679                                           SmallVectorImpl<SDValue> &Results,
5680                                           SelectionDAG &DAG) const {
5681   return LowerOperationWrapper(N, Results, DAG);
5682 }
5683 
5684 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5685 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5686   switch ((SystemZISD::NodeType)Opcode) {
5687     case SystemZISD::FIRST_NUMBER: break;
5688     OPCODE(RET_FLAG);
5689     OPCODE(CALL);
5690     OPCODE(SIBCALL);
5691     OPCODE(TLS_GDCALL);
5692     OPCODE(TLS_LDCALL);
5693     OPCODE(PCREL_WRAPPER);
5694     OPCODE(PCREL_OFFSET);
5695     OPCODE(ICMP);
5696     OPCODE(FCMP);
5697     OPCODE(STRICT_FCMP);
5698     OPCODE(STRICT_FCMPS);
5699     OPCODE(TM);
5700     OPCODE(BR_CCMASK);
5701     OPCODE(SELECT_CCMASK);
5702     OPCODE(ADJDYNALLOC);
5703     OPCODE(PROBED_ALLOCA);
5704     OPCODE(POPCNT);
5705     OPCODE(SMUL_LOHI);
5706     OPCODE(UMUL_LOHI);
5707     OPCODE(SDIVREM);
5708     OPCODE(UDIVREM);
5709     OPCODE(SADDO);
5710     OPCODE(SSUBO);
5711     OPCODE(UADDO);
5712     OPCODE(USUBO);
5713     OPCODE(ADDCARRY);
5714     OPCODE(SUBCARRY);
5715     OPCODE(GET_CCMASK);
5716     OPCODE(MVC);
5717     OPCODE(NC);
5718     OPCODE(OC);
5719     OPCODE(XC);
5720     OPCODE(CLC);
5721     OPCODE(MEMSET_MVC);
5722     OPCODE(STPCPY);
5723     OPCODE(STRCMP);
5724     OPCODE(SEARCH_STRING);
5725     OPCODE(IPM);
5726     OPCODE(MEMBARRIER);
5727     OPCODE(TBEGIN);
5728     OPCODE(TBEGIN_NOFLOAT);
5729     OPCODE(TEND);
5730     OPCODE(BYTE_MASK);
5731     OPCODE(ROTATE_MASK);
5732     OPCODE(REPLICATE);
5733     OPCODE(JOIN_DWORDS);
5734     OPCODE(SPLAT);
5735     OPCODE(MERGE_HIGH);
5736     OPCODE(MERGE_LOW);
5737     OPCODE(SHL_DOUBLE);
5738     OPCODE(PERMUTE_DWORDS);
5739     OPCODE(PERMUTE);
5740     OPCODE(PACK);
5741     OPCODE(PACKS_CC);
5742     OPCODE(PACKLS_CC);
5743     OPCODE(UNPACK_HIGH);
5744     OPCODE(UNPACKL_HIGH);
5745     OPCODE(UNPACK_LOW);
5746     OPCODE(UNPACKL_LOW);
5747     OPCODE(VSHL_BY_SCALAR);
5748     OPCODE(VSRL_BY_SCALAR);
5749     OPCODE(VSRA_BY_SCALAR);
5750     OPCODE(VSUM);
5751     OPCODE(VICMPE);
5752     OPCODE(VICMPH);
5753     OPCODE(VICMPHL);
5754     OPCODE(VICMPES);
5755     OPCODE(VICMPHS);
5756     OPCODE(VICMPHLS);
5757     OPCODE(VFCMPE);
5758     OPCODE(STRICT_VFCMPE);
5759     OPCODE(STRICT_VFCMPES);
5760     OPCODE(VFCMPH);
5761     OPCODE(STRICT_VFCMPH);
5762     OPCODE(STRICT_VFCMPHS);
5763     OPCODE(VFCMPHE);
5764     OPCODE(STRICT_VFCMPHE);
5765     OPCODE(STRICT_VFCMPHES);
5766     OPCODE(VFCMPES);
5767     OPCODE(VFCMPHS);
5768     OPCODE(VFCMPHES);
5769     OPCODE(VFTCI);
5770     OPCODE(VEXTEND);
5771     OPCODE(STRICT_VEXTEND);
5772     OPCODE(VROUND);
5773     OPCODE(STRICT_VROUND);
5774     OPCODE(VTM);
5775     OPCODE(VFAE_CC);
5776     OPCODE(VFAEZ_CC);
5777     OPCODE(VFEE_CC);
5778     OPCODE(VFEEZ_CC);
5779     OPCODE(VFENE_CC);
5780     OPCODE(VFENEZ_CC);
5781     OPCODE(VISTR_CC);
5782     OPCODE(VSTRC_CC);
5783     OPCODE(VSTRCZ_CC);
5784     OPCODE(VSTRS_CC);
5785     OPCODE(VSTRSZ_CC);
5786     OPCODE(TDC);
5787     OPCODE(ATOMIC_SWAPW);
5788     OPCODE(ATOMIC_LOADW_ADD);
5789     OPCODE(ATOMIC_LOADW_SUB);
5790     OPCODE(ATOMIC_LOADW_AND);
5791     OPCODE(ATOMIC_LOADW_OR);
5792     OPCODE(ATOMIC_LOADW_XOR);
5793     OPCODE(ATOMIC_LOADW_NAND);
5794     OPCODE(ATOMIC_LOADW_MIN);
5795     OPCODE(ATOMIC_LOADW_MAX);
5796     OPCODE(ATOMIC_LOADW_UMIN);
5797     OPCODE(ATOMIC_LOADW_UMAX);
5798     OPCODE(ATOMIC_CMP_SWAPW);
5799     OPCODE(ATOMIC_CMP_SWAP);
5800     OPCODE(ATOMIC_LOAD_128);
5801     OPCODE(ATOMIC_STORE_128);
5802     OPCODE(ATOMIC_CMP_SWAP_128);
5803     OPCODE(LRV);
5804     OPCODE(STRV);
5805     OPCODE(VLER);
5806     OPCODE(VSTER);
5807     OPCODE(PREFETCH);
5808   }
5809   return nullptr;
5810 #undef OPCODE
5811 }
5812 
5813 // Return true if VT is a vector whose elements are a whole number of bytes
5814 // in width. Also check for presence of vector support.
5815 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5816   if (!Subtarget.hasVector())
5817     return false;
5818 
5819   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5820 }
5821 
5822 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5823 // producing a result of type ResVT.  Op is a possibly bitcast version
5824 // of the input vector and Index is the index (based on type VecVT) that
5825 // should be extracted.  Return the new extraction if a simplification
5826 // was possible or if Force is true.
5827 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5828                                               EVT VecVT, SDValue Op,
5829                                               unsigned Index,
5830                                               DAGCombinerInfo &DCI,
5831                                               bool Force) const {
5832   SelectionDAG &DAG = DCI.DAG;
5833 
5834   // The number of bytes being extracted.
5835   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5836 
5837   for (;;) {
5838     unsigned Opcode = Op.getOpcode();
5839     if (Opcode == ISD::BITCAST)
5840       // Look through bitcasts.
5841       Op = Op.getOperand(0);
5842     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5843              canTreatAsByteVector(Op.getValueType())) {
5844       // Get a VPERM-like permute mask and see whether the bytes covered
5845       // by the extracted element are a contiguous sequence from one
5846       // source operand.
5847       SmallVector<int, SystemZ::VectorBytes> Bytes;
5848       if (!getVPermMask(Op, Bytes))
5849         break;
5850       int First;
5851       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5852                            BytesPerElement, First))
5853         break;
5854       if (First < 0)
5855         return DAG.getUNDEF(ResVT);
5856       // Make sure the contiguous sequence starts at a multiple of the
5857       // original element size.
5858       unsigned Byte = unsigned(First) % Bytes.size();
5859       if (Byte % BytesPerElement != 0)
5860         break;
5861       // We can get the extracted value directly from an input.
5862       Index = Byte / BytesPerElement;
5863       Op = Op.getOperand(unsigned(First) / Bytes.size());
5864       Force = true;
5865     } else if (Opcode == ISD::BUILD_VECTOR &&
5866                canTreatAsByteVector(Op.getValueType())) {
5867       // We can only optimize this case if the BUILD_VECTOR elements are
5868       // at least as wide as the extracted value.
5869       EVT OpVT = Op.getValueType();
5870       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5871       if (OpBytesPerElement < BytesPerElement)
5872         break;
5873       // Make sure that the least-significant bit of the extracted value
5874       // is the least significant bit of an input.
5875       unsigned End = (Index + 1) * BytesPerElement;
5876       if (End % OpBytesPerElement != 0)
5877         break;
5878       // We're extracting the low part of one operand of the BUILD_VECTOR.
5879       Op = Op.getOperand(End / OpBytesPerElement - 1);
5880       if (!Op.getValueType().isInteger()) {
5881         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5882         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5883         DCI.AddToWorklist(Op.getNode());
5884       }
5885       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5886       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5887       if (VT != ResVT) {
5888         DCI.AddToWorklist(Op.getNode());
5889         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5890       }
5891       return Op;
5892     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5893                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5894                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5895                canTreatAsByteVector(Op.getValueType()) &&
5896                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5897       // Make sure that only the unextended bits are significant.
5898       EVT ExtVT = Op.getValueType();
5899       EVT OpVT = Op.getOperand(0).getValueType();
5900       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5901       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5902       unsigned Byte = Index * BytesPerElement;
5903       unsigned SubByte = Byte % ExtBytesPerElement;
5904       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5905       if (SubByte < MinSubByte ||
5906           SubByte + BytesPerElement > ExtBytesPerElement)
5907         break;
5908       // Get the byte offset of the unextended element
5909       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5910       // ...then add the byte offset relative to that element.
5911       Byte += SubByte - MinSubByte;
5912       if (Byte % BytesPerElement != 0)
5913         break;
5914       Op = Op.getOperand(0);
5915       Index = Byte / BytesPerElement;
5916       Force = true;
5917     } else
5918       break;
5919   }
5920   if (Force) {
5921     if (Op.getValueType() != VecVT) {
5922       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5923       DCI.AddToWorklist(Op.getNode());
5924     }
5925     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5926                        DAG.getConstant(Index, DL, MVT::i32));
5927   }
5928   return SDValue();
5929 }
5930 
5931 // Optimize vector operations in scalar value Op on the basis that Op
5932 // is truncated to TruncVT.
5933 SDValue SystemZTargetLowering::combineTruncateExtract(
5934     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5935   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5936   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5937   // of type TruncVT.
5938   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5939       TruncVT.getSizeInBits() % 8 == 0) {
5940     SDValue Vec = Op.getOperand(0);
5941     EVT VecVT = Vec.getValueType();
5942     if (canTreatAsByteVector(VecVT)) {
5943       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5944         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5945         unsigned TruncBytes = TruncVT.getStoreSize();
5946         if (BytesPerElement % TruncBytes == 0) {
5947           // Calculate the value of Y' in the above description.  We are
5948           // splitting the original elements into Scale equal-sized pieces
5949           // and for truncation purposes want the last (least-significant)
5950           // of these pieces for IndexN.  This is easiest to do by calculating
5951           // the start index of the following element and then subtracting 1.
5952           unsigned Scale = BytesPerElement / TruncBytes;
5953           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5954 
5955           // Defer the creation of the bitcast from X to combineExtract,
5956           // which might be able to optimize the extraction.
5957           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5958                                    VecVT.getStoreSize() / TruncBytes);
5959           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5960           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5961         }
5962       }
5963     }
5964   }
5965   return SDValue();
5966 }
5967 
5968 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5969     SDNode *N, DAGCombinerInfo &DCI) const {
5970   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5971   SelectionDAG &DAG = DCI.DAG;
5972   SDValue N0 = N->getOperand(0);
5973   EVT VT = N->getValueType(0);
5974   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5975     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5976     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5977     if (TrueOp && FalseOp) {
5978       SDLoc DL(N0);
5979       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5980                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5981                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5982       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5983       // If N0 has multiple uses, change other uses as well.
5984       if (!N0.hasOneUse()) {
5985         SDValue TruncSelect =
5986           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5987         DCI.CombineTo(N0.getNode(), TruncSelect);
5988       }
5989       return NewSelect;
5990     }
5991   }
5992   return SDValue();
5993 }
5994 
5995 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5996     SDNode *N, DAGCombinerInfo &DCI) const {
5997   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5998   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5999   // into (select_cc LHS, RHS, -1, 0, COND)
6000   SelectionDAG &DAG = DCI.DAG;
6001   SDValue N0 = N->getOperand(0);
6002   EVT VT = N->getValueType(0);
6003   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6004   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6005     N0 = N0.getOperand(0);
6006   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6007     SDLoc DL(N0);
6008     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6009                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6010                       N0.getOperand(2) };
6011     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6012   }
6013   return SDValue();
6014 }
6015 
6016 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6017     SDNode *N, DAGCombinerInfo &DCI) const {
6018   // Convert (sext (ashr (shl X, C1), C2)) to
6019   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6020   // cheap as narrower ones.
6021   SelectionDAG &DAG = DCI.DAG;
6022   SDValue N0 = N->getOperand(0);
6023   EVT VT = N->getValueType(0);
6024   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6025     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6026     SDValue Inner = N0.getOperand(0);
6027     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6028       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6029         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6030         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6031         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6032         EVT ShiftVT = N0.getOperand(1).getValueType();
6033         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6034                                   Inner.getOperand(0));
6035         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6036                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6037                                                   ShiftVT));
6038         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6039                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6040       }
6041     }
6042   }
6043   return SDValue();
6044 }
6045 
6046 SDValue SystemZTargetLowering::combineMERGE(
6047     SDNode *N, DAGCombinerInfo &DCI) const {
6048   SelectionDAG &DAG = DCI.DAG;
6049   unsigned Opcode = N->getOpcode();
6050   SDValue Op0 = N->getOperand(0);
6051   SDValue Op1 = N->getOperand(1);
6052   if (Op0.getOpcode() == ISD::BITCAST)
6053     Op0 = Op0.getOperand(0);
6054   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6055     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6056     // for v4f32.
6057     if (Op1 == N->getOperand(0))
6058       return Op1;
6059     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6060     EVT VT = Op1.getValueType();
6061     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6062     if (ElemBytes <= 4) {
6063       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6064                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6065       EVT InVT = VT.changeVectorElementTypeToInteger();
6066       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6067                                    SystemZ::VectorBytes / ElemBytes / 2);
6068       if (VT != InVT) {
6069         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6070         DCI.AddToWorklist(Op1.getNode());
6071       }
6072       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6073       DCI.AddToWorklist(Op.getNode());
6074       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6075     }
6076   }
6077   return SDValue();
6078 }
6079 
6080 SDValue SystemZTargetLowering::combineLOAD(
6081     SDNode *N, DAGCombinerInfo &DCI) const {
6082   SelectionDAG &DAG = DCI.DAG;
6083   EVT LdVT = N->getValueType(0);
6084   if (LdVT.isVector() || LdVT.isInteger())
6085     return SDValue();
6086   // Transform a scalar load that is REPLICATEd as well as having other
6087   // use(s) to the form where the other use(s) use the first element of the
6088   // REPLICATE instead of the load. Otherwise instruction selection will not
6089   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6090   // point loads.
6091 
6092   SDValue Replicate;
6093   SmallVector<SDNode*, 8> OtherUses;
6094   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6095        UI != UE; ++UI) {
6096     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6097       if (Replicate)
6098         return SDValue(); // Should never happen
6099       Replicate = SDValue(*UI, 0);
6100     }
6101     else if (UI.getUse().getResNo() == 0)
6102       OtherUses.push_back(*UI);
6103   }
6104   if (!Replicate || OtherUses.empty())
6105     return SDValue();
6106 
6107   SDLoc DL(N);
6108   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6109                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6110   // Update uses of the loaded Value while preserving old chains.
6111   for (SDNode *U : OtherUses) {
6112     SmallVector<SDValue, 8> Ops;
6113     for (SDValue Op : U->ops())
6114       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6115     DAG.UpdateNodeOperands(U, Ops);
6116   }
6117   return SDValue(N, 0);
6118 }
6119 
6120 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6121   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6122     return true;
6123   if (Subtarget.hasVectorEnhancements2())
6124     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6125       return true;
6126   return false;
6127 }
6128 
6129 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6130   if (!VT.isVector() || !VT.isSimple() ||
6131       VT.getSizeInBits() != 128 ||
6132       VT.getScalarSizeInBits() % 8 != 0)
6133     return false;
6134 
6135   unsigned NumElts = VT.getVectorNumElements();
6136   for (unsigned i = 0; i < NumElts; ++i) {
6137     if (M[i] < 0) continue; // ignore UNDEF indices
6138     if ((unsigned) M[i] != NumElts - 1 - i)
6139       return false;
6140   }
6141 
6142   return true;
6143 }
6144 
6145 SDValue SystemZTargetLowering::combineSTORE(
6146     SDNode *N, DAGCombinerInfo &DCI) const {
6147   SelectionDAG &DAG = DCI.DAG;
6148   auto *SN = cast<StoreSDNode>(N);
6149   auto &Op1 = N->getOperand(1);
6150   EVT MemVT = SN->getMemoryVT();
6151   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6152   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6153   // If X has wider elements then convert it to:
6154   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6155   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6156     if (SDValue Value =
6157             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6158       DCI.AddToWorklist(Value.getNode());
6159 
6160       // Rewrite the store with the new form of stored value.
6161       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6162                                SN->getBasePtr(), SN->getMemoryVT(),
6163                                SN->getMemOperand());
6164     }
6165   }
6166   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6167   if (!SN->isTruncatingStore() &&
6168       Op1.getOpcode() == ISD::BSWAP &&
6169       Op1.getNode()->hasOneUse() &&
6170       canLoadStoreByteSwapped(Op1.getValueType())) {
6171 
6172       SDValue BSwapOp = Op1.getOperand(0);
6173 
6174       if (BSwapOp.getValueType() == MVT::i16)
6175         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6176 
6177       SDValue Ops[] = {
6178         N->getOperand(0), BSwapOp, N->getOperand(2)
6179       };
6180 
6181       return
6182         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6183                                 Ops, MemVT, SN->getMemOperand());
6184     }
6185   // Combine STORE (element-swap) into VSTER
6186   if (!SN->isTruncatingStore() &&
6187       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6188       Op1.getNode()->hasOneUse() &&
6189       Subtarget.hasVectorEnhancements2()) {
6190     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6191     ArrayRef<int> ShuffleMask = SVN->getMask();
6192     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6193       SDValue Ops[] = {
6194         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6195       };
6196 
6197       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6198                                      DAG.getVTList(MVT::Other),
6199                                      Ops, MemVT, SN->getMemOperand());
6200     }
6201   }
6202 
6203   return SDValue();
6204 }
6205 
6206 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6207     SDNode *N, DAGCombinerInfo &DCI) const {
6208   SelectionDAG &DAG = DCI.DAG;
6209   // Combine element-swap (LOAD) into VLER
6210   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6211       N->getOperand(0).hasOneUse() &&
6212       Subtarget.hasVectorEnhancements2()) {
6213     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6214     ArrayRef<int> ShuffleMask = SVN->getMask();
6215     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6216       SDValue Load = N->getOperand(0);
6217       LoadSDNode *LD = cast<LoadSDNode>(Load);
6218 
6219       // Create the element-swapping load.
6220       SDValue Ops[] = {
6221         LD->getChain(),    // Chain
6222         LD->getBasePtr()   // Ptr
6223       };
6224       SDValue ESLoad =
6225         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6226                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6227                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6228 
6229       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6230       // by the load dead.
6231       DCI.CombineTo(N, ESLoad);
6232 
6233       // Next, combine the load away, we give it a bogus result value but a real
6234       // chain result.  The result value is dead because the shuffle is dead.
6235       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6236 
6237       // Return N so it doesn't get rechecked!
6238       return SDValue(N, 0);
6239     }
6240   }
6241 
6242   return SDValue();
6243 }
6244 
6245 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6246     SDNode *N, DAGCombinerInfo &DCI) const {
6247   SelectionDAG &DAG = DCI.DAG;
6248 
6249   if (!Subtarget.hasVector())
6250     return SDValue();
6251 
6252   // Look through bitcasts that retain the number of vector elements.
6253   SDValue Op = N->getOperand(0);
6254   if (Op.getOpcode() == ISD::BITCAST &&
6255       Op.getValueType().isVector() &&
6256       Op.getOperand(0).getValueType().isVector() &&
6257       Op.getValueType().getVectorNumElements() ==
6258       Op.getOperand(0).getValueType().getVectorNumElements())
6259     Op = Op.getOperand(0);
6260 
6261   // Pull BSWAP out of a vector extraction.
6262   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6263     EVT VecVT = Op.getValueType();
6264     EVT EltVT = VecVT.getVectorElementType();
6265     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6266                      Op.getOperand(0), N->getOperand(1));
6267     DCI.AddToWorklist(Op.getNode());
6268     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6269     if (EltVT != N->getValueType(0)) {
6270       DCI.AddToWorklist(Op.getNode());
6271       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6272     }
6273     return Op;
6274   }
6275 
6276   // Try to simplify a vector extraction.
6277   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6278     SDValue Op0 = N->getOperand(0);
6279     EVT VecVT = Op0.getValueType();
6280     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6281                           IndexN->getZExtValue(), DCI, false);
6282   }
6283   return SDValue();
6284 }
6285 
6286 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6287     SDNode *N, DAGCombinerInfo &DCI) const {
6288   SelectionDAG &DAG = DCI.DAG;
6289   // (join_dwords X, X) == (replicate X)
6290   if (N->getOperand(0) == N->getOperand(1))
6291     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6292                        N->getOperand(0));
6293   return SDValue();
6294 }
6295 
6296 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6297   SDValue Chain1 = N1->getOperand(0);
6298   SDValue Chain2 = N2->getOperand(0);
6299 
6300   // Trivial case: both nodes take the same chain.
6301   if (Chain1 == Chain2)
6302     return Chain1;
6303 
6304   // FIXME - we could handle more complex cases via TokenFactor,
6305   // assuming we can verify that this would not create a cycle.
6306   return SDValue();
6307 }
6308 
6309 SDValue SystemZTargetLowering::combineFP_ROUND(
6310     SDNode *N, DAGCombinerInfo &DCI) const {
6311 
6312   if (!Subtarget.hasVector())
6313     return SDValue();
6314 
6315   // (fpround (extract_vector_elt X 0))
6316   // (fpround (extract_vector_elt X 1)) ->
6317   // (extract_vector_elt (VROUND X) 0)
6318   // (extract_vector_elt (VROUND X) 2)
6319   //
6320   // This is a special case since the target doesn't really support v2f32s.
6321   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6322   SelectionDAG &DAG = DCI.DAG;
6323   SDValue Op0 = N->getOperand(OpNo);
6324   if (N->getValueType(0) == MVT::f32 &&
6325       Op0.hasOneUse() &&
6326       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6327       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6328       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6329       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6330     SDValue Vec = Op0.getOperand(0);
6331     for (auto *U : Vec->uses()) {
6332       if (U != Op0.getNode() &&
6333           U->hasOneUse() &&
6334           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6335           U->getOperand(0) == Vec &&
6336           U->getOperand(1).getOpcode() == ISD::Constant &&
6337           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6338         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6339         if (OtherRound.getOpcode() == N->getOpcode() &&
6340             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6341             OtherRound.getValueType() == MVT::f32) {
6342           SDValue VRound, Chain;
6343           if (N->isStrictFPOpcode()) {
6344             Chain = MergeInputChains(N, OtherRound.getNode());
6345             if (!Chain)
6346               continue;
6347             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6348                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6349             Chain = VRound.getValue(1);
6350           } else
6351             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6352                                  MVT::v4f32, Vec);
6353           DCI.AddToWorklist(VRound.getNode());
6354           SDValue Extract1 =
6355             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6356                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6357           DCI.AddToWorklist(Extract1.getNode());
6358           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6359           if (Chain)
6360             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6361           SDValue Extract0 =
6362             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6363                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6364           if (Chain)
6365             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6366                                N->getVTList(), Extract0, Chain);
6367           return Extract0;
6368         }
6369       }
6370     }
6371   }
6372   return SDValue();
6373 }
6374 
6375 SDValue SystemZTargetLowering::combineFP_EXTEND(
6376     SDNode *N, DAGCombinerInfo &DCI) const {
6377 
6378   if (!Subtarget.hasVector())
6379     return SDValue();
6380 
6381   // (fpextend (extract_vector_elt X 0))
6382   // (fpextend (extract_vector_elt X 2)) ->
6383   // (extract_vector_elt (VEXTEND X) 0)
6384   // (extract_vector_elt (VEXTEND X) 1)
6385   //
6386   // This is a special case since the target doesn't really support v2f32s.
6387   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6388   SelectionDAG &DAG = DCI.DAG;
6389   SDValue Op0 = N->getOperand(OpNo);
6390   if (N->getValueType(0) == MVT::f64 &&
6391       Op0.hasOneUse() &&
6392       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6393       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6394       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6395       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6396     SDValue Vec = Op0.getOperand(0);
6397     for (auto *U : Vec->uses()) {
6398       if (U != Op0.getNode() &&
6399           U->hasOneUse() &&
6400           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6401           U->getOperand(0) == Vec &&
6402           U->getOperand(1).getOpcode() == ISD::Constant &&
6403           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6404         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6405         if (OtherExtend.getOpcode() == N->getOpcode() &&
6406             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6407             OtherExtend.getValueType() == MVT::f64) {
6408           SDValue VExtend, Chain;
6409           if (N->isStrictFPOpcode()) {
6410             Chain = MergeInputChains(N, OtherExtend.getNode());
6411             if (!Chain)
6412               continue;
6413             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6414                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6415             Chain = VExtend.getValue(1);
6416           } else
6417             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6418                                   MVT::v2f64, Vec);
6419           DCI.AddToWorklist(VExtend.getNode());
6420           SDValue Extract1 =
6421             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6422                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6423           DCI.AddToWorklist(Extract1.getNode());
6424           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6425           if (Chain)
6426             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6427           SDValue Extract0 =
6428             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6429                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6430           if (Chain)
6431             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6432                                N->getVTList(), Extract0, Chain);
6433           return Extract0;
6434         }
6435       }
6436     }
6437   }
6438   return SDValue();
6439 }
6440 
6441 SDValue SystemZTargetLowering::combineINT_TO_FP(
6442     SDNode *N, DAGCombinerInfo &DCI) const {
6443   if (DCI.Level != BeforeLegalizeTypes)
6444     return SDValue();
6445   unsigned Opcode = N->getOpcode();
6446   EVT OutVT = N->getValueType(0);
6447   SelectionDAG &DAG = DCI.DAG;
6448   SDValue Op = N->getOperand(0);
6449   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6450   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6451 
6452   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6453   // v2f64 = uint_to_fp v2i16
6454   // =>
6455   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6456   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6457     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6458                                  OutVT.getVectorNumElements());
6459     unsigned ExtOpcode =
6460       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6461     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6462     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6463   }
6464   return SDValue();
6465 }
6466 
6467 SDValue SystemZTargetLowering::combineBSWAP(
6468     SDNode *N, DAGCombinerInfo &DCI) const {
6469   SelectionDAG &DAG = DCI.DAG;
6470   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6471   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6472       N->getOperand(0).hasOneUse() &&
6473       canLoadStoreByteSwapped(N->getValueType(0))) {
6474       SDValue Load = N->getOperand(0);
6475       LoadSDNode *LD = cast<LoadSDNode>(Load);
6476 
6477       // Create the byte-swapping load.
6478       SDValue Ops[] = {
6479         LD->getChain(),    // Chain
6480         LD->getBasePtr()   // Ptr
6481       };
6482       EVT LoadVT = N->getValueType(0);
6483       if (LoadVT == MVT::i16)
6484         LoadVT = MVT::i32;
6485       SDValue BSLoad =
6486         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6487                                 DAG.getVTList(LoadVT, MVT::Other),
6488                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6489 
6490       // If this is an i16 load, insert the truncate.
6491       SDValue ResVal = BSLoad;
6492       if (N->getValueType(0) == MVT::i16)
6493         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6494 
6495       // First, combine the bswap away.  This makes the value produced by the
6496       // load dead.
6497       DCI.CombineTo(N, ResVal);
6498 
6499       // Next, combine the load away, we give it a bogus result value but a real
6500       // chain result.  The result value is dead because the bswap is dead.
6501       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6502 
6503       // Return N so it doesn't get rechecked!
6504       return SDValue(N, 0);
6505     }
6506 
6507   // Look through bitcasts that retain the number of vector elements.
6508   SDValue Op = N->getOperand(0);
6509   if (Op.getOpcode() == ISD::BITCAST &&
6510       Op.getValueType().isVector() &&
6511       Op.getOperand(0).getValueType().isVector() &&
6512       Op.getValueType().getVectorNumElements() ==
6513       Op.getOperand(0).getValueType().getVectorNumElements())
6514     Op = Op.getOperand(0);
6515 
6516   // Push BSWAP into a vector insertion if at least one side then simplifies.
6517   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6518     SDValue Vec = Op.getOperand(0);
6519     SDValue Elt = Op.getOperand(1);
6520     SDValue Idx = Op.getOperand(2);
6521 
6522     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6523         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6524         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6525         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6526         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6527          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6528       EVT VecVT = N->getValueType(0);
6529       EVT EltVT = N->getValueType(0).getVectorElementType();
6530       if (VecVT != Vec.getValueType()) {
6531         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6532         DCI.AddToWorklist(Vec.getNode());
6533       }
6534       if (EltVT != Elt.getValueType()) {
6535         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6536         DCI.AddToWorklist(Elt.getNode());
6537       }
6538       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6539       DCI.AddToWorklist(Vec.getNode());
6540       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6541       DCI.AddToWorklist(Elt.getNode());
6542       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6543                          Vec, Elt, Idx);
6544     }
6545   }
6546 
6547   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6548   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6549   if (SV && Op.hasOneUse()) {
6550     SDValue Op0 = Op.getOperand(0);
6551     SDValue Op1 = Op.getOperand(1);
6552 
6553     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6554         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6555         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6556         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6557       EVT VecVT = N->getValueType(0);
6558       if (VecVT != Op0.getValueType()) {
6559         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6560         DCI.AddToWorklist(Op0.getNode());
6561       }
6562       if (VecVT != Op1.getValueType()) {
6563         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6564         DCI.AddToWorklist(Op1.getNode());
6565       }
6566       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6567       DCI.AddToWorklist(Op0.getNode());
6568       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6569       DCI.AddToWorklist(Op1.getNode());
6570       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6571     }
6572   }
6573 
6574   return SDValue();
6575 }
6576 
6577 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6578   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6579   // set by the CCReg instruction using the CCValid / CCMask masks,
6580   // If the CCReg instruction is itself a ICMP testing the condition
6581   // code set by some other instruction, see whether we can directly
6582   // use that condition code.
6583 
6584   // Verify that we have an ICMP against some constant.
6585   if (CCValid != SystemZ::CCMASK_ICMP)
6586     return false;
6587   auto *ICmp = CCReg.getNode();
6588   if (ICmp->getOpcode() != SystemZISD::ICMP)
6589     return false;
6590   auto *CompareLHS = ICmp->getOperand(0).getNode();
6591   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6592   if (!CompareRHS)
6593     return false;
6594 
6595   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6596   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6597     // Verify that we have an appropriate mask for a EQ or NE comparison.
6598     bool Invert = false;
6599     if (CCMask == SystemZ::CCMASK_CMP_NE)
6600       Invert = !Invert;
6601     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6602       return false;
6603 
6604     // Verify that the ICMP compares against one of select values.
6605     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6606     if (!TrueVal)
6607       return false;
6608     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6609     if (!FalseVal)
6610       return false;
6611     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6612       Invert = !Invert;
6613     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6614       return false;
6615 
6616     // Compute the effective CC mask for the new branch or select.
6617     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6618     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6619     if (!NewCCValid || !NewCCMask)
6620       return false;
6621     CCValid = NewCCValid->getZExtValue();
6622     CCMask = NewCCMask->getZExtValue();
6623     if (Invert)
6624       CCMask ^= CCValid;
6625 
6626     // Return the updated CCReg link.
6627     CCReg = CompareLHS->getOperand(4);
6628     return true;
6629   }
6630 
6631   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6632   if (CompareLHS->getOpcode() == ISD::SRA) {
6633     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6634     if (!SRACount || SRACount->getZExtValue() != 30)
6635       return false;
6636     auto *SHL = CompareLHS->getOperand(0).getNode();
6637     if (SHL->getOpcode() != ISD::SHL)
6638       return false;
6639     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6640     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6641       return false;
6642     auto *IPM = SHL->getOperand(0).getNode();
6643     if (IPM->getOpcode() != SystemZISD::IPM)
6644       return false;
6645 
6646     // Avoid introducing CC spills (because SRA would clobber CC).
6647     if (!CompareLHS->hasOneUse())
6648       return false;
6649     // Verify that the ICMP compares against zero.
6650     if (CompareRHS->getZExtValue() != 0)
6651       return false;
6652 
6653     // Compute the effective CC mask for the new branch or select.
6654     CCMask = SystemZ::reverseCCMask(CCMask);
6655 
6656     // Return the updated CCReg link.
6657     CCReg = IPM->getOperand(0);
6658     return true;
6659   }
6660 
6661   return false;
6662 }
6663 
6664 SDValue SystemZTargetLowering::combineBR_CCMASK(
6665     SDNode *N, DAGCombinerInfo &DCI) const {
6666   SelectionDAG &DAG = DCI.DAG;
6667 
6668   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6669   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6670   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6671   if (!CCValid || !CCMask)
6672     return SDValue();
6673 
6674   int CCValidVal = CCValid->getZExtValue();
6675   int CCMaskVal = CCMask->getZExtValue();
6676   SDValue Chain = N->getOperand(0);
6677   SDValue CCReg = N->getOperand(4);
6678 
6679   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6680     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6681                        Chain,
6682                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6683                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6684                        N->getOperand(3), CCReg);
6685   return SDValue();
6686 }
6687 
6688 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6689     SDNode *N, DAGCombinerInfo &DCI) const {
6690   SelectionDAG &DAG = DCI.DAG;
6691 
6692   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6693   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6694   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6695   if (!CCValid || !CCMask)
6696     return SDValue();
6697 
6698   int CCValidVal = CCValid->getZExtValue();
6699   int CCMaskVal = CCMask->getZExtValue();
6700   SDValue CCReg = N->getOperand(4);
6701 
6702   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6703     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6704                        N->getOperand(0), N->getOperand(1),
6705                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6706                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6707                        CCReg);
6708   return SDValue();
6709 }
6710 
6711 
6712 SDValue SystemZTargetLowering::combineGET_CCMASK(
6713     SDNode *N, DAGCombinerInfo &DCI) const {
6714 
6715   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6716   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6717   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6718   if (!CCValid || !CCMask)
6719     return SDValue();
6720   int CCValidVal = CCValid->getZExtValue();
6721   int CCMaskVal = CCMask->getZExtValue();
6722 
6723   SDValue Select = N->getOperand(0);
6724   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6725     return SDValue();
6726 
6727   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6728   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6729   if (!SelectCCValid || !SelectCCMask)
6730     return SDValue();
6731   int SelectCCValidVal = SelectCCValid->getZExtValue();
6732   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6733 
6734   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6735   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6736   if (!TrueVal || !FalseVal)
6737     return SDValue();
6738   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6739     ;
6740   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6741     SelectCCMaskVal ^= SelectCCValidVal;
6742   else
6743     return SDValue();
6744 
6745   if (SelectCCValidVal & ~CCValidVal)
6746     return SDValue();
6747   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6748     return SDValue();
6749 
6750   return Select->getOperand(4);
6751 }
6752 
6753 SDValue SystemZTargetLowering::combineIntDIVREM(
6754     SDNode *N, DAGCombinerInfo &DCI) const {
6755   SelectionDAG &DAG = DCI.DAG;
6756   EVT VT = N->getValueType(0);
6757   // In the case where the divisor is a vector of constants a cheaper
6758   // sequence of instructions can replace the divide. BuildSDIV is called to
6759   // do this during DAG combining, but it only succeeds when it can build a
6760   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6761   // since it is not Legal but Custom it can only happen before
6762   // legalization. Therefore we must scalarize this early before Combine
6763   // 1. For widened vectors, this is already the result of type legalization.
6764   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6765       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6766     return DAG.UnrollVectorOp(N);
6767   return SDValue();
6768 }
6769 
6770 SDValue SystemZTargetLowering::combineINTRINSIC(
6771     SDNode *N, DAGCombinerInfo &DCI) const {
6772   SelectionDAG &DAG = DCI.DAG;
6773 
6774   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6775   switch (Id) {
6776   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6777   // or larger is simply a vector load.
6778   case Intrinsic::s390_vll:
6779   case Intrinsic::s390_vlrl:
6780     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6781       if (C->getZExtValue() >= 15)
6782         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6783                            N->getOperand(3), MachinePointerInfo());
6784     break;
6785   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6786   case Intrinsic::s390_vstl:
6787   case Intrinsic::s390_vstrl:
6788     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6789       if (C->getZExtValue() >= 15)
6790         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6791                             N->getOperand(4), MachinePointerInfo());
6792     break;
6793   }
6794 
6795   return SDValue();
6796 }
6797 
6798 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6799   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6800     return N->getOperand(0);
6801   return N;
6802 }
6803 
6804 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6805                                                  DAGCombinerInfo &DCI) const {
6806   switch(N->getOpcode()) {
6807   default: break;
6808   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6809   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6810   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6811   case SystemZISD::MERGE_HIGH:
6812   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6813   case ISD::LOAD:               return combineLOAD(N, DCI);
6814   case ISD::STORE:              return combineSTORE(N, DCI);
6815   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6816   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6817   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6818   case ISD::STRICT_FP_ROUND:
6819   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6820   case ISD::STRICT_FP_EXTEND:
6821   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6822   case ISD::SINT_TO_FP:
6823   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6824   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6825   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6826   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6827   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6828   case ISD::SDIV:
6829   case ISD::UDIV:
6830   case ISD::SREM:
6831   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6832   case ISD::INTRINSIC_W_CHAIN:
6833   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6834   }
6835 
6836   return SDValue();
6837 }
6838 
6839 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6840 // are for Op.
6841 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6842                                     unsigned OpNo) {
6843   EVT VT = Op.getValueType();
6844   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6845   APInt SrcDemE;
6846   unsigned Opcode = Op.getOpcode();
6847   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6848     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6849     switch (Id) {
6850     case Intrinsic::s390_vpksh:   // PACKS
6851     case Intrinsic::s390_vpksf:
6852     case Intrinsic::s390_vpksg:
6853     case Intrinsic::s390_vpkshs:  // PACKS_CC
6854     case Intrinsic::s390_vpksfs:
6855     case Intrinsic::s390_vpksgs:
6856     case Intrinsic::s390_vpklsh:  // PACKLS
6857     case Intrinsic::s390_vpklsf:
6858     case Intrinsic::s390_vpklsg:
6859     case Intrinsic::s390_vpklshs: // PACKLS_CC
6860     case Intrinsic::s390_vpklsfs:
6861     case Intrinsic::s390_vpklsgs:
6862       // VECTOR PACK truncates the elements of two source vectors into one.
6863       SrcDemE = DemandedElts;
6864       if (OpNo == 2)
6865         SrcDemE.lshrInPlace(NumElts / 2);
6866       SrcDemE = SrcDemE.trunc(NumElts / 2);
6867       break;
6868       // VECTOR UNPACK extends half the elements of the source vector.
6869     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6870     case Intrinsic::s390_vuphh:
6871     case Intrinsic::s390_vuphf:
6872     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6873     case Intrinsic::s390_vuplhh:
6874     case Intrinsic::s390_vuplhf:
6875       SrcDemE = APInt(NumElts * 2, 0);
6876       SrcDemE.insertBits(DemandedElts, 0);
6877       break;
6878     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6879     case Intrinsic::s390_vuplhw:
6880     case Intrinsic::s390_vuplf:
6881     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6882     case Intrinsic::s390_vupllh:
6883     case Intrinsic::s390_vupllf:
6884       SrcDemE = APInt(NumElts * 2, 0);
6885       SrcDemE.insertBits(DemandedElts, NumElts);
6886       break;
6887     case Intrinsic::s390_vpdi: {
6888       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6889       SrcDemE = APInt(NumElts, 0);
6890       if (!DemandedElts[OpNo - 1])
6891         break;
6892       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6893       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6894       // Demand input element 0 or 1, given by the mask bit value.
6895       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6896       break;
6897     }
6898     case Intrinsic::s390_vsldb: {
6899       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6900       assert(VT == MVT::v16i8 && "Unexpected type.");
6901       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6902       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6903       unsigned NumSrc0Els = 16 - FirstIdx;
6904       SrcDemE = APInt(NumElts, 0);
6905       if (OpNo == 1) {
6906         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6907         SrcDemE.insertBits(DemEls, FirstIdx);
6908       } else {
6909         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6910         SrcDemE.insertBits(DemEls, 0);
6911       }
6912       break;
6913     }
6914     case Intrinsic::s390_vperm:
6915       SrcDemE = APInt(NumElts, 1);
6916       break;
6917     default:
6918       llvm_unreachable("Unhandled intrinsic.");
6919       break;
6920     }
6921   } else {
6922     switch (Opcode) {
6923     case SystemZISD::JOIN_DWORDS:
6924       // Scalar operand.
6925       SrcDemE = APInt(1, 1);
6926       break;
6927     case SystemZISD::SELECT_CCMASK:
6928       SrcDemE = DemandedElts;
6929       break;
6930     default:
6931       llvm_unreachable("Unhandled opcode.");
6932       break;
6933     }
6934   }
6935   return SrcDemE;
6936 }
6937 
6938 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6939                                   const APInt &DemandedElts,
6940                                   const SelectionDAG &DAG, unsigned Depth,
6941                                   unsigned OpNo) {
6942   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6943   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6944   KnownBits LHSKnown =
6945       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6946   KnownBits RHSKnown =
6947       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6948   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6949 }
6950 
6951 void
6952 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6953                                                      KnownBits &Known,
6954                                                      const APInt &DemandedElts,
6955                                                      const SelectionDAG &DAG,
6956                                                      unsigned Depth) const {
6957   Known.resetAll();
6958 
6959   // Intrinsic CC result is returned in the two low bits.
6960   unsigned tmp0, tmp1; // not used
6961   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6962     Known.Zero.setBitsFrom(2);
6963     return;
6964   }
6965   EVT VT = Op.getValueType();
6966   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6967     return;
6968   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6969           "KnownBits does not match VT in bitwidth");
6970   assert ((!VT.isVector() ||
6971            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6972           "DemandedElts does not match VT number of elements");
6973   unsigned BitWidth = Known.getBitWidth();
6974   unsigned Opcode = Op.getOpcode();
6975   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6976     bool IsLogical = false;
6977     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6978     switch (Id) {
6979     case Intrinsic::s390_vpksh:   // PACKS
6980     case Intrinsic::s390_vpksf:
6981     case Intrinsic::s390_vpksg:
6982     case Intrinsic::s390_vpkshs:  // PACKS_CC
6983     case Intrinsic::s390_vpksfs:
6984     case Intrinsic::s390_vpksgs:
6985     case Intrinsic::s390_vpklsh:  // PACKLS
6986     case Intrinsic::s390_vpklsf:
6987     case Intrinsic::s390_vpklsg:
6988     case Intrinsic::s390_vpklshs: // PACKLS_CC
6989     case Intrinsic::s390_vpklsfs:
6990     case Intrinsic::s390_vpklsgs:
6991     case Intrinsic::s390_vpdi:
6992     case Intrinsic::s390_vsldb:
6993     case Intrinsic::s390_vperm:
6994       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6995       break;
6996     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6997     case Intrinsic::s390_vuplhh:
6998     case Intrinsic::s390_vuplhf:
6999     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7000     case Intrinsic::s390_vupllh:
7001     case Intrinsic::s390_vupllf:
7002       IsLogical = true;
7003       LLVM_FALLTHROUGH;
7004     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7005     case Intrinsic::s390_vuphh:
7006     case Intrinsic::s390_vuphf:
7007     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7008     case Intrinsic::s390_vuplhw:
7009     case Intrinsic::s390_vuplf: {
7010       SDValue SrcOp = Op.getOperand(1);
7011       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7012       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7013       if (IsLogical) {
7014         Known = Known.zext(BitWidth);
7015       } else
7016         Known = Known.sext(BitWidth);
7017       break;
7018     }
7019     default:
7020       break;
7021     }
7022   } else {
7023     switch (Opcode) {
7024     case SystemZISD::JOIN_DWORDS:
7025     case SystemZISD::SELECT_CCMASK:
7026       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7027       break;
7028     case SystemZISD::REPLICATE: {
7029       SDValue SrcOp = Op.getOperand(0);
7030       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7031       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7032         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7033       break;
7034     }
7035     default:
7036       break;
7037     }
7038   }
7039 
7040   // Known has the width of the source operand(s). Adjust if needed to match
7041   // the passed bitwidth.
7042   if (Known.getBitWidth() != BitWidth)
7043     Known = Known.anyextOrTrunc(BitWidth);
7044 }
7045 
7046 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7047                                         const SelectionDAG &DAG, unsigned Depth,
7048                                         unsigned OpNo) {
7049   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7050   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7051   if (LHS == 1) return 1; // Early out.
7052   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7053   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7054   if (RHS == 1) return 1; // Early out.
7055   unsigned Common = std::min(LHS, RHS);
7056   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7057   EVT VT = Op.getValueType();
7058   unsigned VTBits = VT.getScalarSizeInBits();
7059   if (SrcBitWidth > VTBits) { // PACK
7060     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7061     if (Common > SrcExtraBits)
7062       return (Common - SrcExtraBits);
7063     return 1;
7064   }
7065   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7066   return Common;
7067 }
7068 
7069 unsigned
7070 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7071     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7072     unsigned Depth) const {
7073   if (Op.getResNo() != 0)
7074     return 1;
7075   unsigned Opcode = Op.getOpcode();
7076   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7077     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7078     switch (Id) {
7079     case Intrinsic::s390_vpksh:   // PACKS
7080     case Intrinsic::s390_vpksf:
7081     case Intrinsic::s390_vpksg:
7082     case Intrinsic::s390_vpkshs:  // PACKS_CC
7083     case Intrinsic::s390_vpksfs:
7084     case Intrinsic::s390_vpksgs:
7085     case Intrinsic::s390_vpklsh:  // PACKLS
7086     case Intrinsic::s390_vpklsf:
7087     case Intrinsic::s390_vpklsg:
7088     case Intrinsic::s390_vpklshs: // PACKLS_CC
7089     case Intrinsic::s390_vpklsfs:
7090     case Intrinsic::s390_vpklsgs:
7091     case Intrinsic::s390_vpdi:
7092     case Intrinsic::s390_vsldb:
7093     case Intrinsic::s390_vperm:
7094       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7095     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7096     case Intrinsic::s390_vuphh:
7097     case Intrinsic::s390_vuphf:
7098     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7099     case Intrinsic::s390_vuplhw:
7100     case Intrinsic::s390_vuplf: {
7101       SDValue PackedOp = Op.getOperand(1);
7102       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7103       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7104       EVT VT = Op.getValueType();
7105       unsigned VTBits = VT.getScalarSizeInBits();
7106       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7107       return Tmp;
7108     }
7109     default:
7110       break;
7111     }
7112   } else {
7113     switch (Opcode) {
7114     case SystemZISD::SELECT_CCMASK:
7115       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7116     default:
7117       break;
7118     }
7119   }
7120 
7121   return 1;
7122 }
7123 
7124 unsigned
7125 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7126   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7127   unsigned StackAlign = TFI->getStackAlignment();
7128   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7129          "Unexpected stack alignment");
7130   // The default stack probe size is 4096 if the function has no
7131   // stack-probe-size attribute.
7132   unsigned StackProbeSize = 4096;
7133   const Function &Fn = MF.getFunction();
7134   if (Fn.hasFnAttribute("stack-probe-size"))
7135     Fn.getFnAttribute("stack-probe-size")
7136         .getValueAsString()
7137         .getAsInteger(0, StackProbeSize);
7138   // Round down to the stack alignment.
7139   StackProbeSize &= ~(StackAlign - 1);
7140   return StackProbeSize ? StackProbeSize : StackAlign;
7141 }
7142 
7143 //===----------------------------------------------------------------------===//
7144 // Custom insertion
7145 //===----------------------------------------------------------------------===//
7146 
7147 // Force base value Base into a register before MI.  Return the register.
7148 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7149                          const SystemZInstrInfo *TII) {
7150   MachineBasicBlock *MBB = MI.getParent();
7151   MachineFunction &MF = *MBB->getParent();
7152   MachineRegisterInfo &MRI = MF.getRegInfo();
7153 
7154   if (Base.isReg()) {
7155     // Copy Base into a new virtual register to help register coalescing in
7156     // cases with multiple uses.
7157     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7158     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7159       .add(Base);
7160     return Reg;
7161   }
7162 
7163   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7164   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7165       .add(Base)
7166       .addImm(0)
7167       .addReg(0);
7168   return Reg;
7169 }
7170 
7171 // The CC operand of MI might be missing a kill marker because there
7172 // were multiple uses of CC, and ISel didn't know which to mark.
7173 // Figure out whether MI should have had a kill marker.
7174 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7175   // Scan forward through BB for a use/def of CC.
7176   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7177   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7178     const MachineInstr& mi = *miI;
7179     if (mi.readsRegister(SystemZ::CC))
7180       return false;
7181     if (mi.definesRegister(SystemZ::CC))
7182       break; // Should have kill-flag - update below.
7183   }
7184 
7185   // If we hit the end of the block, check whether CC is live into a
7186   // successor.
7187   if (miI == MBB->end()) {
7188     for (const MachineBasicBlock *Succ : MBB->successors())
7189       if (Succ->isLiveIn(SystemZ::CC))
7190         return false;
7191   }
7192 
7193   return true;
7194 }
7195 
7196 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7197 // together with other Select pseudo-opcodes into a single basic-block with
7198 // a conditional jump around it.
7199 static bool isSelectPseudo(MachineInstr &MI) {
7200   switch (MI.getOpcode()) {
7201   case SystemZ::Select32:
7202   case SystemZ::Select64:
7203   case SystemZ::SelectF32:
7204   case SystemZ::SelectF64:
7205   case SystemZ::SelectF128:
7206   case SystemZ::SelectVR32:
7207   case SystemZ::SelectVR64:
7208   case SystemZ::SelectVR128:
7209     return true;
7210 
7211   default:
7212     return false;
7213   }
7214 }
7215 
7216 // Helper function, which inserts PHI functions into SinkMBB:
7217 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7218 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7219 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7220                                  MachineBasicBlock *TrueMBB,
7221                                  MachineBasicBlock *FalseMBB,
7222                                  MachineBasicBlock *SinkMBB) {
7223   MachineFunction *MF = TrueMBB->getParent();
7224   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7225 
7226   MachineInstr *FirstMI = Selects.front();
7227   unsigned CCValid = FirstMI->getOperand(3).getImm();
7228   unsigned CCMask = FirstMI->getOperand(4).getImm();
7229 
7230   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7231 
7232   // As we are creating the PHIs, we have to be careful if there is more than
7233   // one.  Later Selects may reference the results of earlier Selects, but later
7234   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7235   // That also means that PHI construction must work forward from earlier to
7236   // later, and that the code must maintain a mapping from earlier PHI's
7237   // destination registers, and the registers that went into the PHI.
7238   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7239 
7240   for (auto MI : Selects) {
7241     Register DestReg = MI->getOperand(0).getReg();
7242     Register TrueReg = MI->getOperand(1).getReg();
7243     Register FalseReg = MI->getOperand(2).getReg();
7244 
7245     // If this Select we are generating is the opposite condition from
7246     // the jump we generated, then we have to swap the operands for the
7247     // PHI that is going to be generated.
7248     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7249       std::swap(TrueReg, FalseReg);
7250 
7251     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7252       TrueReg = RegRewriteTable[TrueReg].first;
7253 
7254     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7255       FalseReg = RegRewriteTable[FalseReg].second;
7256 
7257     DebugLoc DL = MI->getDebugLoc();
7258     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7259       .addReg(TrueReg).addMBB(TrueMBB)
7260       .addReg(FalseReg).addMBB(FalseMBB);
7261 
7262     // Add this PHI to the rewrite table.
7263     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7264   }
7265 
7266   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7267 }
7268 
7269 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7270 MachineBasicBlock *
7271 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7272                                   MachineBasicBlock *MBB) const {
7273   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7274   const SystemZInstrInfo *TII =
7275       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7276 
7277   unsigned CCValid = MI.getOperand(3).getImm();
7278   unsigned CCMask = MI.getOperand(4).getImm();
7279 
7280   // If we have a sequence of Select* pseudo instructions using the
7281   // same condition code value, we want to expand all of them into
7282   // a single pair of basic blocks using the same condition.
7283   SmallVector<MachineInstr*, 8> Selects;
7284   SmallVector<MachineInstr*, 8> DbgValues;
7285   Selects.push_back(&MI);
7286   unsigned Count = 0;
7287   for (MachineBasicBlock::iterator NextMIIt =
7288          std::next(MachineBasicBlock::iterator(MI));
7289        NextMIIt != MBB->end(); ++NextMIIt) {
7290     if (isSelectPseudo(*NextMIIt)) {
7291       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7292              "Bad CCValid operands since CC was not redefined.");
7293       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7294           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7295         Selects.push_back(&*NextMIIt);
7296         continue;
7297       }
7298       break;
7299     }
7300     if (NextMIIt->definesRegister(SystemZ::CC) ||
7301         NextMIIt->usesCustomInsertionHook())
7302       break;
7303     bool User = false;
7304     for (auto SelMI : Selects)
7305       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7306         User = true;
7307         break;
7308       }
7309     if (NextMIIt->isDebugInstr()) {
7310       if (User) {
7311         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7312         DbgValues.push_back(&*NextMIIt);
7313       }
7314     }
7315     else if (User || ++Count > 20)
7316       break;
7317   }
7318 
7319   MachineInstr *LastMI = Selects.back();
7320   bool CCKilled =
7321       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7322   MachineBasicBlock *StartMBB = MBB;
7323   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7324   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7325 
7326   // Unless CC was killed in the last Select instruction, mark it as
7327   // live-in to both FalseMBB and JoinMBB.
7328   if (!CCKilled) {
7329     FalseMBB->addLiveIn(SystemZ::CC);
7330     JoinMBB->addLiveIn(SystemZ::CC);
7331   }
7332 
7333   //  StartMBB:
7334   //   BRC CCMask, JoinMBB
7335   //   # fallthrough to FalseMBB
7336   MBB = StartMBB;
7337   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7338     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7339   MBB->addSuccessor(JoinMBB);
7340   MBB->addSuccessor(FalseMBB);
7341 
7342   //  FalseMBB:
7343   //   # fallthrough to JoinMBB
7344   MBB = FalseMBB;
7345   MBB->addSuccessor(JoinMBB);
7346 
7347   //  JoinMBB:
7348   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7349   //  ...
7350   MBB = JoinMBB;
7351   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7352   for (auto SelMI : Selects)
7353     SelMI->eraseFromParent();
7354 
7355   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7356   for (auto DbgMI : DbgValues)
7357     MBB->splice(InsertPos, StartMBB, DbgMI);
7358 
7359   return JoinMBB;
7360 }
7361 
7362 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7363 // StoreOpcode is the store to use and Invert says whether the store should
7364 // happen when the condition is false rather than true.  If a STORE ON
7365 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7366 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7367                                                         MachineBasicBlock *MBB,
7368                                                         unsigned StoreOpcode,
7369                                                         unsigned STOCOpcode,
7370                                                         bool Invert) const {
7371   const SystemZInstrInfo *TII =
7372       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7373 
7374   Register SrcReg = MI.getOperand(0).getReg();
7375   MachineOperand Base = MI.getOperand(1);
7376   int64_t Disp = MI.getOperand(2).getImm();
7377   Register IndexReg = MI.getOperand(3).getReg();
7378   unsigned CCValid = MI.getOperand(4).getImm();
7379   unsigned CCMask = MI.getOperand(5).getImm();
7380   DebugLoc DL = MI.getDebugLoc();
7381 
7382   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7383 
7384   // ISel pattern matching also adds a load memory operand of the same
7385   // address, so take special care to find the storing memory operand.
7386   MachineMemOperand *MMO = nullptr;
7387   for (auto *I : MI.memoperands())
7388     if (I->isStore()) {
7389       MMO = I;
7390       break;
7391     }
7392 
7393   // Use STOCOpcode if possible.  We could use different store patterns in
7394   // order to avoid matching the index register, but the performance trade-offs
7395   // might be more complicated in that case.
7396   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7397     if (Invert)
7398       CCMask ^= CCValid;
7399 
7400     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7401       .addReg(SrcReg)
7402       .add(Base)
7403       .addImm(Disp)
7404       .addImm(CCValid)
7405       .addImm(CCMask)
7406       .addMemOperand(MMO);
7407 
7408     MI.eraseFromParent();
7409     return MBB;
7410   }
7411 
7412   // Get the condition needed to branch around the store.
7413   if (!Invert)
7414     CCMask ^= CCValid;
7415 
7416   MachineBasicBlock *StartMBB = MBB;
7417   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7418   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7419 
7420   // Unless CC was killed in the CondStore instruction, mark it as
7421   // live-in to both FalseMBB and JoinMBB.
7422   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7423     FalseMBB->addLiveIn(SystemZ::CC);
7424     JoinMBB->addLiveIn(SystemZ::CC);
7425   }
7426 
7427   //  StartMBB:
7428   //   BRC CCMask, JoinMBB
7429   //   # fallthrough to FalseMBB
7430   MBB = StartMBB;
7431   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7432     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7433   MBB->addSuccessor(JoinMBB);
7434   MBB->addSuccessor(FalseMBB);
7435 
7436   //  FalseMBB:
7437   //   store %SrcReg, %Disp(%Index,%Base)
7438   //   # fallthrough to JoinMBB
7439   MBB = FalseMBB;
7440   BuildMI(MBB, DL, TII->get(StoreOpcode))
7441       .addReg(SrcReg)
7442       .add(Base)
7443       .addImm(Disp)
7444       .addReg(IndexReg)
7445       .addMemOperand(MMO);
7446   MBB->addSuccessor(JoinMBB);
7447 
7448   MI.eraseFromParent();
7449   return JoinMBB;
7450 }
7451 
7452 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7453 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7454 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7455 // BitSize is the width of the field in bits, or 0 if this is a partword
7456 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7457 // is one of the operands.  Invert says whether the field should be
7458 // inverted after performing BinOpcode (e.g. for NAND).
7459 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7460     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7461     unsigned BitSize, bool Invert) const {
7462   MachineFunction &MF = *MBB->getParent();
7463   const SystemZInstrInfo *TII =
7464       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7465   MachineRegisterInfo &MRI = MF.getRegInfo();
7466   bool IsSubWord = (BitSize < 32);
7467 
7468   // Extract the operands.  Base can be a register or a frame index.
7469   // Src2 can be a register or immediate.
7470   Register Dest = MI.getOperand(0).getReg();
7471   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7472   int64_t Disp = MI.getOperand(2).getImm();
7473   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7474   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7475   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7476   DebugLoc DL = MI.getDebugLoc();
7477   if (IsSubWord)
7478     BitSize = MI.getOperand(6).getImm();
7479 
7480   // Subword operations use 32-bit registers.
7481   const TargetRegisterClass *RC = (BitSize <= 32 ?
7482                                    &SystemZ::GR32BitRegClass :
7483                                    &SystemZ::GR64BitRegClass);
7484   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7485   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7486 
7487   // Get the right opcodes for the displacement.
7488   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7489   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7490   assert(LOpcode && CSOpcode && "Displacement out of range");
7491 
7492   // Create virtual registers for temporary results.
7493   Register OrigVal       = MRI.createVirtualRegister(RC);
7494   Register OldVal        = MRI.createVirtualRegister(RC);
7495   Register NewVal        = (BinOpcode || IsSubWord ?
7496                             MRI.createVirtualRegister(RC) : Src2.getReg());
7497   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7498   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7499 
7500   // Insert a basic block for the main loop.
7501   MachineBasicBlock *StartMBB = MBB;
7502   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7503   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7504 
7505   //  StartMBB:
7506   //   ...
7507   //   %OrigVal = L Disp(%Base)
7508   //   # fall through to LoopMBB
7509   MBB = StartMBB;
7510   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7511   MBB->addSuccessor(LoopMBB);
7512 
7513   //  LoopMBB:
7514   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7515   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7516   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7517   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7518   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7519   //   JNE LoopMBB
7520   //   # fall through to DoneMBB
7521   MBB = LoopMBB;
7522   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7523     .addReg(OrigVal).addMBB(StartMBB)
7524     .addReg(Dest).addMBB(LoopMBB);
7525   if (IsSubWord)
7526     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7527       .addReg(OldVal).addReg(BitShift).addImm(0);
7528   if (Invert) {
7529     // Perform the operation normally and then invert every bit of the field.
7530     Register Tmp = MRI.createVirtualRegister(RC);
7531     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7532     if (BitSize <= 32)
7533       // XILF with the upper BitSize bits set.
7534       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7535         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7536     else {
7537       // Use LCGR and add -1 to the result, which is more compact than
7538       // an XILF, XILH pair.
7539       Register Tmp2 = MRI.createVirtualRegister(RC);
7540       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7541       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7542         .addReg(Tmp2).addImm(-1);
7543     }
7544   } else if (BinOpcode)
7545     // A simply binary operation.
7546     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7547         .addReg(RotatedOldVal)
7548         .add(Src2);
7549   else if (IsSubWord)
7550     // Use RISBG to rotate Src2 into position and use it to replace the
7551     // field in RotatedOldVal.
7552     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7553       .addReg(RotatedOldVal).addReg(Src2.getReg())
7554       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7555   if (IsSubWord)
7556     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7557       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7558   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7559       .addReg(OldVal)
7560       .addReg(NewVal)
7561       .add(Base)
7562       .addImm(Disp);
7563   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7564     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7565   MBB->addSuccessor(LoopMBB);
7566   MBB->addSuccessor(DoneMBB);
7567 
7568   MI.eraseFromParent();
7569   return DoneMBB;
7570 }
7571 
7572 // Implement EmitInstrWithCustomInserter for pseudo
7573 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7574 // instruction that should be used to compare the current field with the
7575 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7576 // for when the current field should be kept.  BitSize is the width of
7577 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7578 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7579     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7580     unsigned KeepOldMask, unsigned BitSize) const {
7581   MachineFunction &MF = *MBB->getParent();
7582   const SystemZInstrInfo *TII =
7583       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7584   MachineRegisterInfo &MRI = MF.getRegInfo();
7585   bool IsSubWord = (BitSize < 32);
7586 
7587   // Extract the operands.  Base can be a register or a frame index.
7588   Register Dest = MI.getOperand(0).getReg();
7589   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7590   int64_t Disp = MI.getOperand(2).getImm();
7591   Register Src2 = MI.getOperand(3).getReg();
7592   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7593   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7594   DebugLoc DL = MI.getDebugLoc();
7595   if (IsSubWord)
7596     BitSize = MI.getOperand(6).getImm();
7597 
7598   // Subword operations use 32-bit registers.
7599   const TargetRegisterClass *RC = (BitSize <= 32 ?
7600                                    &SystemZ::GR32BitRegClass :
7601                                    &SystemZ::GR64BitRegClass);
7602   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7603   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7604 
7605   // Get the right opcodes for the displacement.
7606   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7607   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7608   assert(LOpcode && CSOpcode && "Displacement out of range");
7609 
7610   // Create virtual registers for temporary results.
7611   Register OrigVal       = MRI.createVirtualRegister(RC);
7612   Register OldVal        = MRI.createVirtualRegister(RC);
7613   Register NewVal        = MRI.createVirtualRegister(RC);
7614   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7615   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7616   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7617 
7618   // Insert 3 basic blocks for the loop.
7619   MachineBasicBlock *StartMBB  = MBB;
7620   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7621   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7622   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7623   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7624 
7625   //  StartMBB:
7626   //   ...
7627   //   %OrigVal     = L Disp(%Base)
7628   //   # fall through to LoopMBB
7629   MBB = StartMBB;
7630   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7631   MBB->addSuccessor(LoopMBB);
7632 
7633   //  LoopMBB:
7634   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7635   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7636   //   CompareOpcode %RotatedOldVal, %Src2
7637   //   BRC KeepOldMask, UpdateMBB
7638   MBB = LoopMBB;
7639   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7640     .addReg(OrigVal).addMBB(StartMBB)
7641     .addReg(Dest).addMBB(UpdateMBB);
7642   if (IsSubWord)
7643     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7644       .addReg(OldVal).addReg(BitShift).addImm(0);
7645   BuildMI(MBB, DL, TII->get(CompareOpcode))
7646     .addReg(RotatedOldVal).addReg(Src2);
7647   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7648     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7649   MBB->addSuccessor(UpdateMBB);
7650   MBB->addSuccessor(UseAltMBB);
7651 
7652   //  UseAltMBB:
7653   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7654   //   # fall through to UpdateMBB
7655   MBB = UseAltMBB;
7656   if (IsSubWord)
7657     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7658       .addReg(RotatedOldVal).addReg(Src2)
7659       .addImm(32).addImm(31 + BitSize).addImm(0);
7660   MBB->addSuccessor(UpdateMBB);
7661 
7662   //  UpdateMBB:
7663   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7664   //                        [ %RotatedAltVal, UseAltMBB ]
7665   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7666   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7667   //   JNE LoopMBB
7668   //   # fall through to DoneMBB
7669   MBB = UpdateMBB;
7670   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7671     .addReg(RotatedOldVal).addMBB(LoopMBB)
7672     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7673   if (IsSubWord)
7674     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7675       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7676   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7677       .addReg(OldVal)
7678       .addReg(NewVal)
7679       .add(Base)
7680       .addImm(Disp);
7681   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7682     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7683   MBB->addSuccessor(LoopMBB);
7684   MBB->addSuccessor(DoneMBB);
7685 
7686   MI.eraseFromParent();
7687   return DoneMBB;
7688 }
7689 
7690 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7691 // instruction MI.
7692 MachineBasicBlock *
7693 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7694                                           MachineBasicBlock *MBB) const {
7695   MachineFunction &MF = *MBB->getParent();
7696   const SystemZInstrInfo *TII =
7697       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7698   MachineRegisterInfo &MRI = MF.getRegInfo();
7699 
7700   // Extract the operands.  Base can be a register or a frame index.
7701   Register Dest = MI.getOperand(0).getReg();
7702   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7703   int64_t Disp = MI.getOperand(2).getImm();
7704   Register CmpVal = MI.getOperand(3).getReg();
7705   Register OrigSwapVal = MI.getOperand(4).getReg();
7706   Register BitShift = MI.getOperand(5).getReg();
7707   Register NegBitShift = MI.getOperand(6).getReg();
7708   int64_t BitSize = MI.getOperand(7).getImm();
7709   DebugLoc DL = MI.getDebugLoc();
7710 
7711   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7712 
7713   // Get the right opcodes for the displacement and zero-extension.
7714   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7715   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7716   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7717   assert(LOpcode && CSOpcode && "Displacement out of range");
7718 
7719   // Create virtual registers for temporary results.
7720   Register OrigOldVal = MRI.createVirtualRegister(RC);
7721   Register OldVal = MRI.createVirtualRegister(RC);
7722   Register SwapVal = MRI.createVirtualRegister(RC);
7723   Register StoreVal = MRI.createVirtualRegister(RC);
7724   Register OldValRot = MRI.createVirtualRegister(RC);
7725   Register RetryOldVal = MRI.createVirtualRegister(RC);
7726   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7727 
7728   // Insert 2 basic blocks for the loop.
7729   MachineBasicBlock *StartMBB = MBB;
7730   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7731   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7732   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7733 
7734   //  StartMBB:
7735   //   ...
7736   //   %OrigOldVal     = L Disp(%Base)
7737   //   # fall through to LoopMBB
7738   MBB = StartMBB;
7739   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7740       .add(Base)
7741       .addImm(Disp)
7742       .addReg(0);
7743   MBB->addSuccessor(LoopMBB);
7744 
7745   //  LoopMBB:
7746   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7747   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7748   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
7749   //                      ^^ The low BitSize bits contain the field
7750   //                         of interest.
7751   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7752   //                      ^^ Replace the upper 32-BitSize bits of the
7753   //                         swap value with those that we loaded and rotated.
7754   //   %Dest = LL[CH] %OldValRot
7755   //   CR %Dest, %CmpVal
7756   //   JNE DoneMBB
7757   //   # Fall through to SetMBB
7758   MBB = LoopMBB;
7759   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7760     .addReg(OrigOldVal).addMBB(StartMBB)
7761     .addReg(RetryOldVal).addMBB(SetMBB);
7762   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7763     .addReg(OrigSwapVal).addMBB(StartMBB)
7764     .addReg(RetrySwapVal).addMBB(SetMBB);
7765   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7766     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7767   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7768     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7769   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7770     .addReg(OldValRot);
7771   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7772     .addReg(Dest).addReg(CmpVal);
7773   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7774     .addImm(SystemZ::CCMASK_ICMP)
7775     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7776   MBB->addSuccessor(DoneMBB);
7777   MBB->addSuccessor(SetMBB);
7778 
7779   //  SetMBB:
7780   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7781   //                      ^^ Rotate the new field to its proper position.
7782   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
7783   //   JNE LoopMBB
7784   //   # fall through to ExitMBB
7785   MBB = SetMBB;
7786   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7787     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7788   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7789       .addReg(OldVal)
7790       .addReg(StoreVal)
7791       .add(Base)
7792       .addImm(Disp);
7793   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7794     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7795   MBB->addSuccessor(LoopMBB);
7796   MBB->addSuccessor(DoneMBB);
7797 
7798   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7799   // to the block after the loop.  At this point, CC may have been defined
7800   // either by the CR in LoopMBB or by the CS in SetMBB.
7801   if (!MI.registerDefIsDead(SystemZ::CC))
7802     DoneMBB->addLiveIn(SystemZ::CC);
7803 
7804   MI.eraseFromParent();
7805   return DoneMBB;
7806 }
7807 
7808 // Emit a move from two GR64s to a GR128.
7809 MachineBasicBlock *
7810 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7811                                    MachineBasicBlock *MBB) const {
7812   MachineFunction &MF = *MBB->getParent();
7813   const SystemZInstrInfo *TII =
7814       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7815   MachineRegisterInfo &MRI = MF.getRegInfo();
7816   DebugLoc DL = MI.getDebugLoc();
7817 
7818   Register Dest = MI.getOperand(0).getReg();
7819   Register Hi = MI.getOperand(1).getReg();
7820   Register Lo = MI.getOperand(2).getReg();
7821   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7822   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7823 
7824   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7825   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7826     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7827   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7828     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7829 
7830   MI.eraseFromParent();
7831   return MBB;
7832 }
7833 
7834 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7835 // if the high register of the GR128 value must be cleared or false if
7836 // it's "don't care".
7837 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7838                                                      MachineBasicBlock *MBB,
7839                                                      bool ClearEven) const {
7840   MachineFunction &MF = *MBB->getParent();
7841   const SystemZInstrInfo *TII =
7842       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7843   MachineRegisterInfo &MRI = MF.getRegInfo();
7844   DebugLoc DL = MI.getDebugLoc();
7845 
7846   Register Dest = MI.getOperand(0).getReg();
7847   Register Src = MI.getOperand(1).getReg();
7848   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7849 
7850   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7851   if (ClearEven) {
7852     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7853     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7854 
7855     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7856       .addImm(0);
7857     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7858       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7859     In128 = NewIn128;
7860   }
7861   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7862     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7863 
7864   MI.eraseFromParent();
7865   return MBB;
7866 }
7867 
7868 MachineBasicBlock *
7869 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
7870                                          MachineBasicBlock *MBB,
7871                                          unsigned Opcode, bool IsMemset) const {
7872   MachineFunction &MF = *MBB->getParent();
7873   const SystemZInstrInfo *TII =
7874       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7875   MachineRegisterInfo &MRI = MF.getRegInfo();
7876   DebugLoc DL = MI.getDebugLoc();
7877 
7878   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7879   uint64_t DestDisp = MI.getOperand(1).getImm();
7880   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
7881   uint64_t SrcDisp;
7882 
7883   // Fold the displacement Disp if it is out of range.
7884   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
7885     if (!isUInt<12>(Disp)) {
7886       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7887       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
7888       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
7889         .add(Base).addImm(Disp).addReg(0);
7890       Base = MachineOperand::CreateReg(Reg, false);
7891       Disp = 0;
7892     }
7893   };
7894 
7895   if (!IsMemset) {
7896     SrcBase = earlyUseOperand(MI.getOperand(2));
7897     SrcDisp = MI.getOperand(3).getImm();
7898   } else {
7899     SrcBase = DestBase;
7900     SrcDisp = DestDisp++;
7901     foldDisplIfNeeded(DestBase, DestDisp);
7902   }
7903 
7904   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
7905   bool IsImmForm = LengthMO.isImm();
7906   bool IsRegForm = !IsImmForm;
7907 
7908   // Build and insert one Opcode of Length, with special treatment for memset.
7909   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
7910                             MachineBasicBlock::iterator InsPos,
7911                             MachineOperand DBase, uint64_t DDisp,
7912                             MachineOperand SBase, uint64_t SDisp,
7913                             unsigned Length) -> void {
7914     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
7915     if (IsMemset) {
7916       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
7917       if (ByteMO.isImm())
7918         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
7919           .add(SBase).addImm(SDisp).add(ByteMO);
7920       else
7921         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
7922           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
7923       if (--Length == 0)
7924         return;
7925     }
7926     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
7927       .add(DBase).addImm(DDisp).addImm(Length)
7928       .add(SBase).addImm(SDisp)
7929       .setMemRefs(MI.memoperands());
7930   };
7931 
7932   bool NeedsLoop = false;
7933   uint64_t ImmLength = 0;
7934   Register LenAdjReg = SystemZ::NoRegister;
7935   if (IsImmForm) {
7936     ImmLength = LengthMO.getImm();
7937     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
7938     if (ImmLength == 0) {
7939       MI.eraseFromParent();
7940       return MBB;
7941     }
7942     if (Opcode == SystemZ::CLC) {
7943       if (ImmLength > 3 * 256)
7944         // A two-CLC sequence is a clear win over a loop, not least because
7945         // it needs only one branch.  A three-CLC sequence needs the same
7946         // number of branches as a loop (i.e. 2), but is shorter.  That
7947         // brings us to lengths greater than 768 bytes.  It seems relatively
7948         // likely that a difference will be found within the first 768 bytes,
7949         // so we just optimize for the smallest number of branch
7950         // instructions, in order to avoid polluting the prediction buffer
7951         // too much.
7952         NeedsLoop = true;
7953     } else if (ImmLength > 6 * 256)
7954       // The heuristic we use is to prefer loops for anything that would
7955       // require 7 or more MVCs.  With these kinds of sizes there isn't much
7956       // to choose between straight-line code and looping code, since the
7957       // time will be dominated by the MVCs themselves.
7958       NeedsLoop = true;
7959   } else {
7960     NeedsLoop = true;
7961     LenAdjReg = LengthMO.getReg();
7962   }
7963 
7964   // When generating more than one CLC, all but the last will need to
7965   // branch to the end when a difference is found.
7966   MachineBasicBlock *EndMBB =
7967       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
7968            ? SystemZ::splitBlockAfter(MI, MBB)
7969            : nullptr);
7970 
7971   if (NeedsLoop) {
7972     Register StartCountReg =
7973       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7974     if (IsImmForm) {
7975       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
7976       ImmLength &= 255;
7977     } else {
7978       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
7979         .addReg(LenAdjReg)
7980         .addReg(0)
7981         .addImm(8);
7982     }
7983 
7984     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7985     auto loadZeroAddress = [&]() -> MachineOperand {
7986       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7987       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
7988       return MachineOperand::CreateReg(Reg, false);
7989     };
7990     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
7991       DestBase = loadZeroAddress();
7992     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
7993       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
7994 
7995     MachineBasicBlock *StartMBB = nullptr;
7996     MachineBasicBlock *LoopMBB = nullptr;
7997     MachineBasicBlock *NextMBB = nullptr;
7998     MachineBasicBlock *DoneMBB = nullptr;
7999     MachineBasicBlock *AllDoneMBB = nullptr;
8000 
8001     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8002     Register StartDestReg =
8003         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8004 
8005     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8006     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8007     Register ThisDestReg =
8008         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8009     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8010     Register NextDestReg =
8011         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8012     RC = &SystemZ::GR64BitRegClass;
8013     Register ThisCountReg = MRI.createVirtualRegister(RC);
8014     Register NextCountReg = MRI.createVirtualRegister(RC);
8015 
8016     if (IsRegForm) {
8017       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8018       StartMBB = SystemZ::emitBlockAfter(MBB);
8019       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8020       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8021       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8022 
8023       //  MBB:
8024       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8025       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8026         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8027       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8028         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8029         .addMBB(AllDoneMBB);
8030       MBB->addSuccessor(AllDoneMBB);
8031       if (!IsMemset)
8032         MBB->addSuccessor(StartMBB);
8033       else {
8034         // MemsetOneCheckMBB:
8035         // # Jump to MemsetOneMBB for a memset of length 1, or
8036         // # fall thru to StartMBB.
8037         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8038         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8039         MBB->addSuccessor(MemsetOneCheckMBB);
8040         MBB = MemsetOneCheckMBB;
8041         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8042           .addReg(LenAdjReg).addImm(-1);
8043         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8044           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8045           .addMBB(MemsetOneMBB);
8046         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8047         MBB->addSuccessor(StartMBB, {90, 100});
8048 
8049         // MemsetOneMBB:
8050         // # Jump back to AllDoneMBB after a single MVI or STC.
8051         MBB = MemsetOneMBB;
8052         insertMemMemOp(MBB, MBB->end(),
8053                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8054                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8055                        1);
8056         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8057         MBB->addSuccessor(AllDoneMBB);
8058       }
8059 
8060       // StartMBB:
8061       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8062       MBB = StartMBB;
8063       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8064         .addReg(StartCountReg).addImm(0);
8065       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8066         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8067         .addMBB(DoneMBB);
8068       MBB->addSuccessor(DoneMBB);
8069       MBB->addSuccessor(LoopMBB);
8070     }
8071     else {
8072       StartMBB = MBB;
8073       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8074       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8075       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8076 
8077       //  StartMBB:
8078       //   # fall through to LoopMBB
8079       MBB->addSuccessor(LoopMBB);
8080 
8081       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8082       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8083       if (EndMBB && !ImmLength)
8084         // If the loop handled the whole CLC range, DoneMBB will be empty with
8085         // CC live-through into EndMBB, so add it as live-in.
8086         DoneMBB->addLiveIn(SystemZ::CC);
8087     }
8088 
8089     //  LoopMBB:
8090     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8091     //                      [ %NextDestReg, NextMBB ]
8092     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8093     //                     [ %NextSrcReg, NextMBB ]
8094     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8095     //                       [ %NextCountReg, NextMBB ]
8096     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8097     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8098     //   ( JLH EndMBB )
8099     //
8100     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8101     MBB = LoopMBB;
8102     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8103       .addReg(StartDestReg).addMBB(StartMBB)
8104       .addReg(NextDestReg).addMBB(NextMBB);
8105     if (!HaveSingleBase)
8106       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8107         .addReg(StartSrcReg).addMBB(StartMBB)
8108         .addReg(NextSrcReg).addMBB(NextMBB);
8109     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8110       .addReg(StartCountReg).addMBB(StartMBB)
8111       .addReg(NextCountReg).addMBB(NextMBB);
8112     if (Opcode == SystemZ::MVC)
8113       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8114         .addImm(SystemZ::PFD_WRITE)
8115         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8116     insertMemMemOp(MBB, MBB->end(),
8117                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8118                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8119     if (EndMBB) {
8120       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8121         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8122         .addMBB(EndMBB);
8123       MBB->addSuccessor(EndMBB);
8124       MBB->addSuccessor(NextMBB);
8125     }
8126 
8127     // NextMBB:
8128     //   %NextDestReg = LA 256(%ThisDestReg)
8129     //   %NextSrcReg = LA 256(%ThisSrcReg)
8130     //   %NextCountReg = AGHI %ThisCountReg, -1
8131     //   CGHI %NextCountReg, 0
8132     //   JLH LoopMBB
8133     //   # fall through to DoneMBB
8134     //
8135     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8136     MBB = NextMBB;
8137     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8138       .addReg(ThisDestReg).addImm(256).addReg(0);
8139     if (!HaveSingleBase)
8140       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8141         .addReg(ThisSrcReg).addImm(256).addReg(0);
8142     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8143       .addReg(ThisCountReg).addImm(-1);
8144     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8145       .addReg(NextCountReg).addImm(0);
8146     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8147       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8148       .addMBB(LoopMBB);
8149     MBB->addSuccessor(LoopMBB);
8150     MBB->addSuccessor(DoneMBB);
8151 
8152     MBB = DoneMBB;
8153     if (IsRegForm) {
8154       // DoneMBB:
8155       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8156       // # Use EXecute Relative Long for the remainder of the bytes. The target
8157       //   instruction of the EXRL will have a length field of 1 since 0 is an
8158       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8159       //   0xff) + 1.
8160       // # Fall through to AllDoneMBB.
8161       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8162       Register RemDestReg = HaveSingleBase ? RemSrcReg
8163         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8164       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8165         .addReg(StartDestReg).addMBB(StartMBB)
8166         .addReg(NextDestReg).addMBB(NextMBB);
8167       if (!HaveSingleBase)
8168         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8169           .addReg(StartSrcReg).addMBB(StartMBB)
8170           .addReg(NextSrcReg).addMBB(NextMBB);
8171       if (IsMemset)
8172         insertMemMemOp(MBB, MBB->end(),
8173                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
8174                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8175       MachineInstrBuilder EXRL_MIB =
8176         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8177           .addImm(Opcode)
8178           .addReg(LenAdjReg)
8179           .addReg(RemDestReg).addImm(DestDisp)
8180           .addReg(RemSrcReg).addImm(SrcDisp);
8181       MBB->addSuccessor(AllDoneMBB);
8182       MBB = AllDoneMBB;
8183       if (EndMBB) {
8184         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8185         MBB->addLiveIn(SystemZ::CC);
8186       }
8187     }
8188   }
8189 
8190   // Handle any remaining bytes with straight-line code.
8191   while (ImmLength > 0) {
8192     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8193     // The previous iteration might have created out-of-range displacements.
8194     // Apply them using LA/LAY if so.
8195     foldDisplIfNeeded(DestBase, DestDisp);
8196     foldDisplIfNeeded(SrcBase, SrcDisp);
8197     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
8198     DestDisp += ThisLength;
8199     SrcDisp += ThisLength;
8200     ImmLength -= ThisLength;
8201     // If there's another CLC to go, branch to the end if a difference
8202     // was found.
8203     if (EndMBB && ImmLength > 0) {
8204       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8205       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8206         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8207         .addMBB(EndMBB);
8208       MBB->addSuccessor(EndMBB);
8209       MBB->addSuccessor(NextMBB);
8210       MBB = NextMBB;
8211     }
8212   }
8213   if (EndMBB) {
8214     MBB->addSuccessor(EndMBB);
8215     MBB = EndMBB;
8216     MBB->addLiveIn(SystemZ::CC);
8217   }
8218 
8219   MI.eraseFromParent();
8220   return MBB;
8221 }
8222 
8223 // Decompose string pseudo-instruction MI into a loop that continually performs
8224 // Opcode until CC != 3.
8225 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8226     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8227   MachineFunction &MF = *MBB->getParent();
8228   const SystemZInstrInfo *TII =
8229       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8230   MachineRegisterInfo &MRI = MF.getRegInfo();
8231   DebugLoc DL = MI.getDebugLoc();
8232 
8233   uint64_t End1Reg = MI.getOperand(0).getReg();
8234   uint64_t Start1Reg = MI.getOperand(1).getReg();
8235   uint64_t Start2Reg = MI.getOperand(2).getReg();
8236   uint64_t CharReg = MI.getOperand(3).getReg();
8237 
8238   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8239   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8240   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8241   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8242 
8243   MachineBasicBlock *StartMBB = MBB;
8244   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8245   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8246 
8247   //  StartMBB:
8248   //   # fall through to LoopMBB
8249   MBB->addSuccessor(LoopMBB);
8250 
8251   //  LoopMBB:
8252   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8253   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8254   //   R0L = %CharReg
8255   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8256   //   JO LoopMBB
8257   //   # fall through to DoneMBB
8258   //
8259   // The load of R0L can be hoisted by post-RA LICM.
8260   MBB = LoopMBB;
8261 
8262   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8263     .addReg(Start1Reg).addMBB(StartMBB)
8264     .addReg(End1Reg).addMBB(LoopMBB);
8265   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8266     .addReg(Start2Reg).addMBB(StartMBB)
8267     .addReg(End2Reg).addMBB(LoopMBB);
8268   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8269   BuildMI(MBB, DL, TII->get(Opcode))
8270     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8271     .addReg(This1Reg).addReg(This2Reg);
8272   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8273     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8274   MBB->addSuccessor(LoopMBB);
8275   MBB->addSuccessor(DoneMBB);
8276 
8277   DoneMBB->addLiveIn(SystemZ::CC);
8278 
8279   MI.eraseFromParent();
8280   return DoneMBB;
8281 }
8282 
8283 // Update TBEGIN instruction with final opcode and register clobbers.
8284 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8285     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8286     bool NoFloat) const {
8287   MachineFunction &MF = *MBB->getParent();
8288   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8289   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8290 
8291   // Update opcode.
8292   MI.setDesc(TII->get(Opcode));
8293 
8294   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8295   // Make sure to add the corresponding GRSM bits if they are missing.
8296   uint64_t Control = MI.getOperand(2).getImm();
8297   static const unsigned GPRControlBit[16] = {
8298     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8299     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8300   };
8301   Control |= GPRControlBit[15];
8302   if (TFI->hasFP(MF))
8303     Control |= GPRControlBit[11];
8304   MI.getOperand(2).setImm(Control);
8305 
8306   // Add GPR clobbers.
8307   for (int I = 0; I < 16; I++) {
8308     if ((Control & GPRControlBit[I]) == 0) {
8309       unsigned Reg = SystemZMC::GR64Regs[I];
8310       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8311     }
8312   }
8313 
8314   // Add FPR/VR clobbers.
8315   if (!NoFloat && (Control & 4) != 0) {
8316     if (Subtarget.hasVector()) {
8317       for (unsigned Reg : SystemZMC::VR128Regs) {
8318         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8319       }
8320     } else {
8321       for (unsigned Reg : SystemZMC::FP64Regs) {
8322         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8323       }
8324     }
8325   }
8326 
8327   return MBB;
8328 }
8329 
8330 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8331     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8332   MachineFunction &MF = *MBB->getParent();
8333   MachineRegisterInfo *MRI = &MF.getRegInfo();
8334   const SystemZInstrInfo *TII =
8335       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8336   DebugLoc DL = MI.getDebugLoc();
8337 
8338   Register SrcReg = MI.getOperand(0).getReg();
8339 
8340   // Create new virtual register of the same class as source.
8341   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8342   Register DstReg = MRI->createVirtualRegister(RC);
8343 
8344   // Replace pseudo with a normal load-and-test that models the def as
8345   // well.
8346   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8347     .addReg(SrcReg)
8348     .setMIFlags(MI.getFlags());
8349   MI.eraseFromParent();
8350 
8351   return MBB;
8352 }
8353 
8354 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8355     MachineInstr &MI, MachineBasicBlock *MBB) const {
8356   MachineFunction &MF = *MBB->getParent();
8357   MachineRegisterInfo *MRI = &MF.getRegInfo();
8358   const SystemZInstrInfo *TII =
8359       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8360   DebugLoc DL = MI.getDebugLoc();
8361   const unsigned ProbeSize = getStackProbeSize(MF);
8362   Register DstReg = MI.getOperand(0).getReg();
8363   Register SizeReg = MI.getOperand(2).getReg();
8364 
8365   MachineBasicBlock *StartMBB = MBB;
8366   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8367   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8368   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8369   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8370   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8371 
8372   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8373     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8374 
8375   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8376   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8377 
8378   //  LoopTestMBB
8379   //  BRC TailTestMBB
8380   //  # fallthrough to LoopBodyMBB
8381   StartMBB->addSuccessor(LoopTestMBB);
8382   MBB = LoopTestMBB;
8383   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8384     .addReg(SizeReg)
8385     .addMBB(StartMBB)
8386     .addReg(IncReg)
8387     .addMBB(LoopBodyMBB);
8388   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8389     .addReg(PHIReg)
8390     .addImm(ProbeSize);
8391   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8392     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8393     .addMBB(TailTestMBB);
8394   MBB->addSuccessor(LoopBodyMBB);
8395   MBB->addSuccessor(TailTestMBB);
8396 
8397   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8398   //  J LoopTestMBB
8399   MBB = LoopBodyMBB;
8400   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8401     .addReg(PHIReg)
8402     .addImm(ProbeSize);
8403   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8404     .addReg(SystemZ::R15D)
8405     .addImm(ProbeSize);
8406   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8407     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8408     .setMemRefs(VolLdMMO);
8409   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8410   MBB->addSuccessor(LoopTestMBB);
8411 
8412   //  TailTestMBB
8413   //  BRC DoneMBB
8414   //  # fallthrough to TailMBB
8415   MBB = TailTestMBB;
8416   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8417     .addReg(PHIReg)
8418     .addImm(0);
8419   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8420     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8421     .addMBB(DoneMBB);
8422   MBB->addSuccessor(TailMBB);
8423   MBB->addSuccessor(DoneMBB);
8424 
8425   //  TailMBB
8426   //  # fallthrough to DoneMBB
8427   MBB = TailMBB;
8428   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8429     .addReg(SystemZ::R15D)
8430     .addReg(PHIReg);
8431   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8432     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8433     .setMemRefs(VolLdMMO);
8434   MBB->addSuccessor(DoneMBB);
8435 
8436   //  DoneMBB
8437   MBB = DoneMBB;
8438   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8439     .addReg(SystemZ::R15D);
8440 
8441   MI.eraseFromParent();
8442   return DoneMBB;
8443 }
8444 
8445 SDValue SystemZTargetLowering::
8446 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8447   MachineFunction &MF = DAG.getMachineFunction();
8448   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8449   SDLoc DL(SP);
8450   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8451                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8452 }
8453 
8454 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8455     MachineInstr &MI, MachineBasicBlock *MBB) const {
8456   switch (MI.getOpcode()) {
8457   case SystemZ::Select32:
8458   case SystemZ::Select64:
8459   case SystemZ::SelectF32:
8460   case SystemZ::SelectF64:
8461   case SystemZ::SelectF128:
8462   case SystemZ::SelectVR32:
8463   case SystemZ::SelectVR64:
8464   case SystemZ::SelectVR128:
8465     return emitSelect(MI, MBB);
8466 
8467   case SystemZ::CondStore8Mux:
8468     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8469   case SystemZ::CondStore8MuxInv:
8470     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8471   case SystemZ::CondStore16Mux:
8472     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8473   case SystemZ::CondStore16MuxInv:
8474     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8475   case SystemZ::CondStore32Mux:
8476     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8477   case SystemZ::CondStore32MuxInv:
8478     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8479   case SystemZ::CondStore8:
8480     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8481   case SystemZ::CondStore8Inv:
8482     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8483   case SystemZ::CondStore16:
8484     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8485   case SystemZ::CondStore16Inv:
8486     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8487   case SystemZ::CondStore32:
8488     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8489   case SystemZ::CondStore32Inv:
8490     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8491   case SystemZ::CondStore64:
8492     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8493   case SystemZ::CondStore64Inv:
8494     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8495   case SystemZ::CondStoreF32:
8496     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8497   case SystemZ::CondStoreF32Inv:
8498     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8499   case SystemZ::CondStoreF64:
8500     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8501   case SystemZ::CondStoreF64Inv:
8502     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8503 
8504   case SystemZ::PAIR128:
8505     return emitPair128(MI, MBB);
8506   case SystemZ::AEXT128:
8507     return emitExt128(MI, MBB, false);
8508   case SystemZ::ZEXT128:
8509     return emitExt128(MI, MBB, true);
8510 
8511   case SystemZ::ATOMIC_SWAPW:
8512     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8513   case SystemZ::ATOMIC_SWAP_32:
8514     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8515   case SystemZ::ATOMIC_SWAP_64:
8516     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8517 
8518   case SystemZ::ATOMIC_LOADW_AR:
8519     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8520   case SystemZ::ATOMIC_LOADW_AFI:
8521     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8522   case SystemZ::ATOMIC_LOAD_AR:
8523     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8524   case SystemZ::ATOMIC_LOAD_AHI:
8525     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8526   case SystemZ::ATOMIC_LOAD_AFI:
8527     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8528   case SystemZ::ATOMIC_LOAD_AGR:
8529     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8530   case SystemZ::ATOMIC_LOAD_AGHI:
8531     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8532   case SystemZ::ATOMIC_LOAD_AGFI:
8533     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8534 
8535   case SystemZ::ATOMIC_LOADW_SR:
8536     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8537   case SystemZ::ATOMIC_LOAD_SR:
8538     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8539   case SystemZ::ATOMIC_LOAD_SGR:
8540     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8541 
8542   case SystemZ::ATOMIC_LOADW_NR:
8543     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8544   case SystemZ::ATOMIC_LOADW_NILH:
8545     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8546   case SystemZ::ATOMIC_LOAD_NR:
8547     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8548   case SystemZ::ATOMIC_LOAD_NILL:
8549     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8550   case SystemZ::ATOMIC_LOAD_NILH:
8551     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8552   case SystemZ::ATOMIC_LOAD_NILF:
8553     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8554   case SystemZ::ATOMIC_LOAD_NGR:
8555     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8556   case SystemZ::ATOMIC_LOAD_NILL64:
8557     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8558   case SystemZ::ATOMIC_LOAD_NILH64:
8559     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8560   case SystemZ::ATOMIC_LOAD_NIHL64:
8561     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8562   case SystemZ::ATOMIC_LOAD_NIHH64:
8563     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8564   case SystemZ::ATOMIC_LOAD_NILF64:
8565     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8566   case SystemZ::ATOMIC_LOAD_NIHF64:
8567     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8568 
8569   case SystemZ::ATOMIC_LOADW_OR:
8570     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8571   case SystemZ::ATOMIC_LOADW_OILH:
8572     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8573   case SystemZ::ATOMIC_LOAD_OR:
8574     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8575   case SystemZ::ATOMIC_LOAD_OILL:
8576     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8577   case SystemZ::ATOMIC_LOAD_OILH:
8578     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8579   case SystemZ::ATOMIC_LOAD_OILF:
8580     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8581   case SystemZ::ATOMIC_LOAD_OGR:
8582     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8583   case SystemZ::ATOMIC_LOAD_OILL64:
8584     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8585   case SystemZ::ATOMIC_LOAD_OILH64:
8586     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8587   case SystemZ::ATOMIC_LOAD_OIHL64:
8588     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8589   case SystemZ::ATOMIC_LOAD_OIHH64:
8590     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8591   case SystemZ::ATOMIC_LOAD_OILF64:
8592     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8593   case SystemZ::ATOMIC_LOAD_OIHF64:
8594     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8595 
8596   case SystemZ::ATOMIC_LOADW_XR:
8597     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8598   case SystemZ::ATOMIC_LOADW_XILF:
8599     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8600   case SystemZ::ATOMIC_LOAD_XR:
8601     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8602   case SystemZ::ATOMIC_LOAD_XILF:
8603     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8604   case SystemZ::ATOMIC_LOAD_XGR:
8605     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8606   case SystemZ::ATOMIC_LOAD_XILF64:
8607     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8608   case SystemZ::ATOMIC_LOAD_XIHF64:
8609     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8610 
8611   case SystemZ::ATOMIC_LOADW_NRi:
8612     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8613   case SystemZ::ATOMIC_LOADW_NILHi:
8614     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8615   case SystemZ::ATOMIC_LOAD_NRi:
8616     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8617   case SystemZ::ATOMIC_LOAD_NILLi:
8618     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8619   case SystemZ::ATOMIC_LOAD_NILHi:
8620     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8621   case SystemZ::ATOMIC_LOAD_NILFi:
8622     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8623   case SystemZ::ATOMIC_LOAD_NGRi:
8624     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8625   case SystemZ::ATOMIC_LOAD_NILL64i:
8626     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8627   case SystemZ::ATOMIC_LOAD_NILH64i:
8628     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8629   case SystemZ::ATOMIC_LOAD_NIHL64i:
8630     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8631   case SystemZ::ATOMIC_LOAD_NIHH64i:
8632     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8633   case SystemZ::ATOMIC_LOAD_NILF64i:
8634     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8635   case SystemZ::ATOMIC_LOAD_NIHF64i:
8636     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8637 
8638   case SystemZ::ATOMIC_LOADW_MIN:
8639     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8640                                 SystemZ::CCMASK_CMP_LE, 0);
8641   case SystemZ::ATOMIC_LOAD_MIN_32:
8642     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8643                                 SystemZ::CCMASK_CMP_LE, 32);
8644   case SystemZ::ATOMIC_LOAD_MIN_64:
8645     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8646                                 SystemZ::CCMASK_CMP_LE, 64);
8647 
8648   case SystemZ::ATOMIC_LOADW_MAX:
8649     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8650                                 SystemZ::CCMASK_CMP_GE, 0);
8651   case SystemZ::ATOMIC_LOAD_MAX_32:
8652     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8653                                 SystemZ::CCMASK_CMP_GE, 32);
8654   case SystemZ::ATOMIC_LOAD_MAX_64:
8655     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8656                                 SystemZ::CCMASK_CMP_GE, 64);
8657 
8658   case SystemZ::ATOMIC_LOADW_UMIN:
8659     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8660                                 SystemZ::CCMASK_CMP_LE, 0);
8661   case SystemZ::ATOMIC_LOAD_UMIN_32:
8662     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8663                                 SystemZ::CCMASK_CMP_LE, 32);
8664   case SystemZ::ATOMIC_LOAD_UMIN_64:
8665     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8666                                 SystemZ::CCMASK_CMP_LE, 64);
8667 
8668   case SystemZ::ATOMIC_LOADW_UMAX:
8669     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8670                                 SystemZ::CCMASK_CMP_GE, 0);
8671   case SystemZ::ATOMIC_LOAD_UMAX_32:
8672     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8673                                 SystemZ::CCMASK_CMP_GE, 32);
8674   case SystemZ::ATOMIC_LOAD_UMAX_64:
8675     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8676                                 SystemZ::CCMASK_CMP_GE, 64);
8677 
8678   case SystemZ::ATOMIC_CMP_SWAPW:
8679     return emitAtomicCmpSwapW(MI, MBB);
8680   case SystemZ::MVCImm:
8681   case SystemZ::MVCReg:
8682     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8683   case SystemZ::NCImm:
8684     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8685   case SystemZ::OCImm:
8686     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8687   case SystemZ::XCImm:
8688   case SystemZ::XCReg:
8689     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8690   case SystemZ::CLCImm:
8691   case SystemZ::CLCReg:
8692     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8693   case SystemZ::MemsetImmImm:
8694   case SystemZ::MemsetImmReg:
8695   case SystemZ::MemsetRegImm:
8696   case SystemZ::MemsetRegReg:
8697     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
8698   case SystemZ::CLSTLoop:
8699     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8700   case SystemZ::MVSTLoop:
8701     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8702   case SystemZ::SRSTLoop:
8703     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8704   case SystemZ::TBEGIN:
8705     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8706   case SystemZ::TBEGIN_nofloat:
8707     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8708   case SystemZ::TBEGINC:
8709     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8710   case SystemZ::LTEBRCompare_VecPseudo:
8711     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8712   case SystemZ::LTDBRCompare_VecPseudo:
8713     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8714   case SystemZ::LTXBRCompare_VecPseudo:
8715     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8716 
8717   case SystemZ::PROBED_ALLOCA:
8718     return emitProbedAlloca(MI, MBB);
8719 
8720   case TargetOpcode::STACKMAP:
8721   case TargetOpcode::PATCHPOINT:
8722     return emitPatchPoint(MI, MBB);
8723 
8724   default:
8725     llvm_unreachable("Unexpected instr type to insert");
8726   }
8727 }
8728 
8729 // This is only used by the isel schedulers, and is needed only to prevent
8730 // compiler from crashing when list-ilp is used.
8731 const TargetRegisterClass *
8732 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8733   if (VT == MVT::Untyped)
8734     return &SystemZ::ADDR128BitRegClass;
8735   return TargetLowering::getRepRegClassFor(VT);
8736 }
8737