1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 // Expand individual DIV and REMs into DIVREMs. 168 setOperationAction(ISD::SDIV, VT, Expand); 169 setOperationAction(ISD::UDIV, VT, Expand); 170 setOperationAction(ISD::SREM, VT, Expand); 171 setOperationAction(ISD::UREM, VT, Expand); 172 setOperationAction(ISD::SDIVREM, VT, Custom); 173 setOperationAction(ISD::UDIVREM, VT, Custom); 174 175 // Support addition/subtraction with overflow. 176 setOperationAction(ISD::SADDO, VT, Custom); 177 setOperationAction(ISD::SSUBO, VT, Custom); 178 179 // Support addition/subtraction with carry. 180 setOperationAction(ISD::UADDO, VT, Custom); 181 setOperationAction(ISD::USUBO, VT, Custom); 182 183 // Support carry in as value rather than glue. 184 setOperationAction(ISD::ADDCARRY, VT, Custom); 185 setOperationAction(ISD::SUBCARRY, VT, Custom); 186 187 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 188 // stores, putting a serialization instruction after the stores. 189 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 190 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 191 192 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 193 // available, or if the operand is constant. 194 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 195 196 // Use POPCNT on z196 and above. 197 if (Subtarget.hasPopulationCount()) 198 setOperationAction(ISD::CTPOP, VT, Custom); 199 else 200 setOperationAction(ISD::CTPOP, VT, Expand); 201 202 // No special instructions for these. 203 setOperationAction(ISD::CTTZ, VT, Expand); 204 setOperationAction(ISD::ROTR, VT, Expand); 205 206 // Use *MUL_LOHI where possible instead of MULH*. 207 setOperationAction(ISD::MULHS, VT, Expand); 208 setOperationAction(ISD::MULHU, VT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 210 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 211 212 // Only z196 and above have native support for conversions to unsigned. 213 // On z10, promoting to i64 doesn't generate an inexact condition for 214 // values that are outside the i32 range but in the i64 range, so use 215 // the default expansion. 216 if (!Subtarget.hasFPExtension()) 217 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 218 219 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 220 // default to Expand, so need to be modified to Legal where appropriate. 221 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 222 if (Subtarget.hasFPExtension()) 223 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 224 225 // And similarly for STRICT_[SU]INT_TO_FP. 226 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 227 if (Subtarget.hasFPExtension()) 228 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 229 } 230 } 231 232 // Type legalization will convert 8- and 16-bit atomic operations into 233 // forms that operate on i32s (but still keeping the original memory VT). 234 // Lower them into full i32 operations. 235 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 246 247 // Even though i128 is not a legal type, we still need to custom lower 248 // the atomic operations in order to exploit SystemZ instructions. 249 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 250 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 251 252 // We can use the CC result of compare-and-swap to implement 253 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 254 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 255 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 257 258 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 259 260 // Traps are legal, as we will convert them to "j .+2". 261 setOperationAction(ISD::TRAP, MVT::Other, Legal); 262 263 // z10 has instructions for signed but not unsigned FP conversion. 264 // Handle unsigned 32-bit types as signed 64-bit types. 265 if (!Subtarget.hasFPExtension()) { 266 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 270 } 271 272 // We have native support for a 64-bit CTLZ, via FLOGR. 273 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 274 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 275 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 276 277 // On z15 we have native support for a 64-bit CTPOP. 278 if (Subtarget.hasMiscellaneousExtensions3()) { 279 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 280 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 281 } 282 283 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 284 setOperationAction(ISD::OR, MVT::i64, Custom); 285 286 // FIXME: Can we support these natively? 287 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 288 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 289 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 290 291 // We have native instructions for i8, i16 and i32 extensions, but not i1. 292 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 293 for (MVT VT : MVT::integer_valuetypes()) { 294 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 295 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 296 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 297 } 298 299 // Handle the various types of symbolic address. 300 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 301 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 302 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 303 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 304 setOperationAction(ISD::JumpTable, PtrVT, Custom); 305 306 // We need to handle dynamic allocations specially because of the 307 // 160-byte area at the bottom of the stack. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 309 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 310 311 // Use custom expanders so that we can force the function to use 312 // a frame pointer. 313 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 314 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 315 316 // Handle prefetches with PFD or PFDRL. 317 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 318 319 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 320 // Assume by default that all vector operations need to be expanded. 321 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 322 if (getOperationAction(Opcode, VT) == Legal) 323 setOperationAction(Opcode, VT, Expand); 324 325 // Likewise all truncating stores and extending loads. 326 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 327 setTruncStoreAction(VT, InnerVT, Expand); 328 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 329 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 330 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 331 } 332 333 if (isTypeLegal(VT)) { 334 // These operations are legal for anything that can be stored in a 335 // vector register, even if there is no native support for the format 336 // as such. In particular, we can do these for v4f32 even though there 337 // are no specific instructions for that format. 338 setOperationAction(ISD::LOAD, VT, Legal); 339 setOperationAction(ISD::STORE, VT, Legal); 340 setOperationAction(ISD::VSELECT, VT, Legal); 341 setOperationAction(ISD::BITCAST, VT, Legal); 342 setOperationAction(ISD::UNDEF, VT, Legal); 343 344 // Likewise, except that we need to replace the nodes with something 345 // more specific. 346 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 347 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 348 } 349 } 350 351 // Handle integer vector types. 352 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 353 if (isTypeLegal(VT)) { 354 // These operations have direct equivalents. 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 357 setOperationAction(ISD::ADD, VT, Legal); 358 setOperationAction(ISD::SUB, VT, Legal); 359 if (VT != MVT::v2i64) 360 setOperationAction(ISD::MUL, VT, Legal); 361 setOperationAction(ISD::AND, VT, Legal); 362 setOperationAction(ISD::OR, VT, Legal); 363 setOperationAction(ISD::XOR, VT, Legal); 364 if (Subtarget.hasVectorEnhancements1()) 365 setOperationAction(ISD::CTPOP, VT, Legal); 366 else 367 setOperationAction(ISD::CTPOP, VT, Custom); 368 setOperationAction(ISD::CTTZ, VT, Legal); 369 setOperationAction(ISD::CTLZ, VT, Legal); 370 371 // Convert a GPR scalar to a vector by inserting it into element 0. 372 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 373 374 // Use a series of unpacks for extensions. 375 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 376 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 377 378 // Detect shifts by a scalar amount and convert them into 379 // V*_BY_SCALAR. 380 setOperationAction(ISD::SHL, VT, Custom); 381 setOperationAction(ISD::SRA, VT, Custom); 382 setOperationAction(ISD::SRL, VT, Custom); 383 384 // At present ROTL isn't matched by DAGCombiner. ROTR should be 385 // converted into ROTL. 386 setOperationAction(ISD::ROTL, VT, Expand); 387 setOperationAction(ISD::ROTR, VT, Expand); 388 389 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 390 // and inverting the result as necessary. 391 setOperationAction(ISD::SETCC, VT, Custom); 392 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 393 if (Subtarget.hasVectorEnhancements1()) 394 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 395 } 396 } 397 398 if (Subtarget.hasVector()) { 399 // There should be no need to check for float types other than v2f64 400 // since <2 x f32> isn't a legal type. 401 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 408 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 409 410 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 418 } 419 420 if (Subtarget.hasVectorEnhancements2()) { 421 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 422 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 423 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 424 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 425 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 426 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 427 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 428 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 429 430 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 438 } 439 440 // Handle floating-point types. 441 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 442 I <= MVT::LAST_FP_VALUETYPE; 443 ++I) { 444 MVT VT = MVT::SimpleValueType(I); 445 if (isTypeLegal(VT)) { 446 // We can use FI for FRINT. 447 setOperationAction(ISD::FRINT, VT, Legal); 448 449 // We can use the extended form of FI for other rounding operations. 450 if (Subtarget.hasFPExtension()) { 451 setOperationAction(ISD::FNEARBYINT, VT, Legal); 452 setOperationAction(ISD::FFLOOR, VT, Legal); 453 setOperationAction(ISD::FCEIL, VT, Legal); 454 setOperationAction(ISD::FTRUNC, VT, Legal); 455 setOperationAction(ISD::FROUND, VT, Legal); 456 } 457 458 // No special instructions for these. 459 setOperationAction(ISD::FSIN, VT, Expand); 460 setOperationAction(ISD::FCOS, VT, Expand); 461 setOperationAction(ISD::FSINCOS, VT, Expand); 462 setOperationAction(ISD::FREM, VT, Expand); 463 setOperationAction(ISD::FPOW, VT, Expand); 464 465 // Handle constrained floating-point operations. 466 setOperationAction(ISD::STRICT_FADD, VT, Legal); 467 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 468 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 469 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 470 setOperationAction(ISD::STRICT_FMA, VT, Legal); 471 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 472 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 473 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 474 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 475 if (Subtarget.hasFPExtension()) { 476 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 477 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 478 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 479 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 481 } 482 } 483 } 484 485 // Handle floating-point vector types. 486 if (Subtarget.hasVector()) { 487 // Scalar-to-vector conversion is just a subreg. 488 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 489 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 490 491 // Some insertions and extractions can be done directly but others 492 // need to go via integers. 493 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 494 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 496 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 497 498 // These operations have direct equivalents. 499 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 500 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 501 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 502 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 503 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 504 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 505 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 506 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 507 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 508 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 509 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 510 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 511 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 512 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 513 514 // Handle constrained floating-point operations. 515 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 516 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 517 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 518 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 519 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 520 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 521 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 527 } 528 529 // The vector enhancements facility 1 has instructions for these. 530 if (Subtarget.hasVectorEnhancements1()) { 531 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 532 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 533 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 534 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 536 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 537 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 538 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 539 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 540 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 541 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 542 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 543 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 544 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 545 546 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 547 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 548 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 549 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 550 551 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 552 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 553 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 554 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 555 556 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 557 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 558 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 559 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 560 561 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 562 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 563 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 564 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 565 566 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 567 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 568 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 569 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 570 571 // Handle constrained floating-point operations. 572 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 573 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 574 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 575 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 576 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 577 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 578 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 584 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 585 MVT::v4f32, MVT::v2f64 }) { 586 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 587 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 588 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 589 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 590 } 591 } 592 593 // We only have fused f128 multiply-addition on vector registers. 594 if (!Subtarget.hasVectorEnhancements1()) { 595 setOperationAction(ISD::FMA, MVT::f128, Expand); 596 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 597 } 598 599 // We don't have a copysign instruction on vector registers. 600 if (Subtarget.hasVectorEnhancements1()) 601 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 602 603 // Needed so that we don't try to implement f128 constant loads using 604 // a load-and-extend of a f80 constant (in cases where the constant 605 // would fit in an f80). 606 for (MVT VT : MVT::fp_valuetypes()) 607 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 608 609 // We don't have extending load instruction on vector registers. 610 if (Subtarget.hasVectorEnhancements1()) { 611 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 612 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 613 } 614 615 // Floating-point truncation and stores need to be done separately. 616 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 617 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 618 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 619 620 // We have 64-bit FPR<->GPR moves, but need special handling for 621 // 32-bit forms. 622 if (!Subtarget.hasVector()) { 623 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 624 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 625 } 626 627 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 628 // structure, but VAEND is a no-op. 629 setOperationAction(ISD::VASTART, MVT::Other, Custom); 630 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 631 setOperationAction(ISD::VAEND, MVT::Other, Expand); 632 633 // Codes for which we want to perform some z-specific combinations. 634 setTargetDAGCombine(ISD::ZERO_EXTEND); 635 setTargetDAGCombine(ISD::SIGN_EXTEND); 636 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 637 setTargetDAGCombine(ISD::LOAD); 638 setTargetDAGCombine(ISD::STORE); 639 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 640 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 641 setTargetDAGCombine(ISD::FP_ROUND); 642 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 643 setTargetDAGCombine(ISD::FP_EXTEND); 644 setTargetDAGCombine(ISD::SINT_TO_FP); 645 setTargetDAGCombine(ISD::UINT_TO_FP); 646 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 647 setTargetDAGCombine(ISD::BSWAP); 648 setTargetDAGCombine(ISD::SDIV); 649 setTargetDAGCombine(ISD::UDIV); 650 setTargetDAGCombine(ISD::SREM); 651 setTargetDAGCombine(ISD::UREM); 652 setTargetDAGCombine(ISD::INTRINSIC_VOID); 653 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 654 655 // Handle intrinsics. 656 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 657 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 658 659 // We want to use MVC in preference to even a single load/store pair. 660 MaxStoresPerMemcpy = 0; 661 MaxStoresPerMemcpyOptSize = 0; 662 663 // The main memset sequence is a byte store followed by an MVC. 664 // Two STC or MV..I stores win over that, but the kind of fused stores 665 // generated by target-independent code don't when the byte value is 666 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 667 // than "STC;MVC". Handle the choice in target-specific code instead. 668 MaxStoresPerMemset = 0; 669 MaxStoresPerMemsetOptSize = 0; 670 671 // Default to having -disable-strictnode-mutation on 672 IsStrictFPEnabled = true; 673 } 674 675 bool SystemZTargetLowering::useSoftFloat() const { 676 return Subtarget.hasSoftFloat(); 677 } 678 679 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 680 LLVMContext &, EVT VT) const { 681 if (!VT.isVector()) 682 return MVT::i32; 683 return VT.changeVectorElementTypeToInteger(); 684 } 685 686 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 687 const MachineFunction &MF, EVT VT) const { 688 VT = VT.getScalarType(); 689 690 if (!VT.isSimple()) 691 return false; 692 693 switch (VT.getSimpleVT().SimpleTy) { 694 case MVT::f32: 695 case MVT::f64: 696 return true; 697 case MVT::f128: 698 return Subtarget.hasVectorEnhancements1(); 699 default: 700 break; 701 } 702 703 return false; 704 } 705 706 // Return true if the constant can be generated with a vector instruction, 707 // such as VGM, VGMB or VREPI. 708 bool SystemZVectorConstantInfo::isVectorConstantLegal( 709 const SystemZSubtarget &Subtarget) { 710 const SystemZInstrInfo *TII = 711 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 712 if (!Subtarget.hasVector() || 713 (isFP128 && !Subtarget.hasVectorEnhancements1())) 714 return false; 715 716 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 717 // preferred way of creating all-zero and all-one vectors so give it 718 // priority over other methods below. 719 unsigned Mask = 0; 720 unsigned I = 0; 721 for (; I < SystemZ::VectorBytes; ++I) { 722 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 723 if (Byte == 0xff) 724 Mask |= 1ULL << I; 725 else if (Byte != 0) 726 break; 727 } 728 if (I == SystemZ::VectorBytes) { 729 Opcode = SystemZISD::BYTE_MASK; 730 OpVals.push_back(Mask); 731 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 732 return true; 733 } 734 735 if (SplatBitSize > 64) 736 return false; 737 738 auto tryValue = [&](uint64_t Value) -> bool { 739 // Try VECTOR REPLICATE IMMEDIATE 740 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 741 if (isInt<16>(SignedValue)) { 742 OpVals.push_back(((unsigned) SignedValue)); 743 Opcode = SystemZISD::REPLICATE; 744 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 745 SystemZ::VectorBits / SplatBitSize); 746 return true; 747 } 748 // Try VECTOR GENERATE MASK 749 unsigned Start, End; 750 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 751 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 752 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 753 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 754 OpVals.push_back(Start - (64 - SplatBitSize)); 755 OpVals.push_back(End - (64 - SplatBitSize)); 756 Opcode = SystemZISD::ROTATE_MASK; 757 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 758 SystemZ::VectorBits / SplatBitSize); 759 return true; 760 } 761 return false; 762 }; 763 764 // First try assuming that any undefined bits above the highest set bit 765 // and below the lowest set bit are 1s. This increases the likelihood of 766 // being able to use a sign-extended element value in VECTOR REPLICATE 767 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 768 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 769 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 770 uint64_t Lower = 771 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 772 uint64_t Upper = 773 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 774 if (tryValue(SplatBitsZ | Upper | Lower)) 775 return true; 776 777 // Now try assuming that any undefined bits between the first and 778 // last defined set bits are set. This increases the chances of 779 // using a non-wraparound mask. 780 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 781 return tryValue(SplatBitsZ | Middle); 782 } 783 784 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 785 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 786 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 787 788 // Find the smallest splat. 789 SplatBits = FPImm.bitcastToAPInt(); 790 unsigned Width = SplatBits.getBitWidth(); 791 while (Width > 8) { 792 unsigned HalfSize = Width / 2; 793 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 794 APInt LowValue = SplatBits.trunc(HalfSize); 795 796 // If the two halves do not match, stop here. 797 if (HighValue != LowValue || 8 > HalfSize) 798 break; 799 800 SplatBits = HighValue; 801 Width = HalfSize; 802 } 803 SplatUndef = 0; 804 SplatBitSize = Width; 805 } 806 807 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 808 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 809 bool HasAnyUndefs; 810 811 // Get IntBits by finding the 128 bit splat. 812 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 813 true); 814 815 // Get SplatBits by finding the 8 bit or greater splat. 816 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 817 true); 818 } 819 820 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 821 bool ForCodeSize) const { 822 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 823 if (Imm.isZero() || Imm.isNegZero()) 824 return true; 825 826 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 827 } 828 829 /// Returns true if stack probing through inline assembly is requested. 830 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 831 // If the function specifically requests inline stack probes, emit them. 832 if (MF.getFunction().hasFnAttribute("probe-stack")) 833 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 834 "inline-asm"; 835 return false; 836 } 837 838 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 839 // We can use CGFI or CLGFI. 840 return isInt<32>(Imm) || isUInt<32>(Imm); 841 } 842 843 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 844 // We can use ALGFI or SLGFI. 845 return isUInt<32>(Imm) || isUInt<32>(-Imm); 846 } 847 848 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 849 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 850 // Unaligned accesses should never be slower than the expanded version. 851 // We check specifically for aligned accesses in the few cases where 852 // they are required. 853 if (Fast) 854 *Fast = true; 855 return true; 856 } 857 858 // Information about the addressing mode for a memory access. 859 struct AddressingMode { 860 // True if a long displacement is supported. 861 bool LongDisplacement; 862 863 // True if use of index register is supported. 864 bool IndexReg; 865 866 AddressingMode(bool LongDispl, bool IdxReg) : 867 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 868 }; 869 870 // Return the desired addressing mode for a Load which has only one use (in 871 // the same block) which is a Store. 872 static AddressingMode getLoadStoreAddrMode(bool HasVector, 873 Type *Ty) { 874 // With vector support a Load->Store combination may be combined to either 875 // an MVC or vector operations and it seems to work best to allow the 876 // vector addressing mode. 877 if (HasVector) 878 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 879 880 // Otherwise only the MVC case is special. 881 bool MVC = Ty->isIntegerTy(8); 882 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 883 } 884 885 // Return the addressing mode which seems most desirable given an LLVM 886 // Instruction pointer. 887 static AddressingMode 888 supportedAddressingMode(Instruction *I, bool HasVector) { 889 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 890 switch (II->getIntrinsicID()) { 891 default: break; 892 case Intrinsic::memset: 893 case Intrinsic::memmove: 894 case Intrinsic::memcpy: 895 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 896 } 897 } 898 899 if (isa<LoadInst>(I) && I->hasOneUse()) { 900 auto *SingleUser = cast<Instruction>(*I->user_begin()); 901 if (SingleUser->getParent() == I->getParent()) { 902 if (isa<ICmpInst>(SingleUser)) { 903 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 904 if (C->getBitWidth() <= 64 && 905 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 906 // Comparison of memory with 16 bit signed / unsigned immediate 907 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 908 } else if (isa<StoreInst>(SingleUser)) 909 // Load->Store 910 return getLoadStoreAddrMode(HasVector, I->getType()); 911 } 912 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 913 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 914 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 915 // Load->Store 916 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 917 } 918 919 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 920 921 // * Use LDE instead of LE/LEY for z13 to avoid partial register 922 // dependencies (LDE only supports small offsets). 923 // * Utilize the vector registers to hold floating point 924 // values (vector load / store instructions only support small 925 // offsets). 926 927 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 928 I->getOperand(0)->getType()); 929 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 930 bool IsVectorAccess = MemAccessTy->isVectorTy(); 931 932 // A store of an extracted vector element will be combined into a VSTE type 933 // instruction. 934 if (!IsVectorAccess && isa<StoreInst>(I)) { 935 Value *DataOp = I->getOperand(0); 936 if (isa<ExtractElementInst>(DataOp)) 937 IsVectorAccess = true; 938 } 939 940 // A load which gets inserted into a vector element will be combined into a 941 // VLE type instruction. 942 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 943 User *LoadUser = *I->user_begin(); 944 if (isa<InsertElementInst>(LoadUser)) 945 IsVectorAccess = true; 946 } 947 948 if (IsFPAccess || IsVectorAccess) 949 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 950 } 951 952 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 953 } 954 955 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 956 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 957 // Punt on globals for now, although they can be used in limited 958 // RELATIVE LONG cases. 959 if (AM.BaseGV) 960 return false; 961 962 // Require a 20-bit signed offset. 963 if (!isInt<20>(AM.BaseOffs)) 964 return false; 965 966 AddressingMode SupportedAM(true, true); 967 if (I != nullptr) 968 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 969 970 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 971 return false; 972 973 if (!SupportedAM.IndexReg) 974 // No indexing allowed. 975 return AM.Scale == 0; 976 else 977 // Indexing is OK but no scale factor can be applied. 978 return AM.Scale == 0 || AM.Scale == 1; 979 } 980 981 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 982 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 983 return false; 984 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 985 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 986 return FromBits > ToBits; 987 } 988 989 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 990 if (!FromVT.isInteger() || !ToVT.isInteger()) 991 return false; 992 unsigned FromBits = FromVT.getSizeInBits(); 993 unsigned ToBits = ToVT.getSizeInBits(); 994 return FromBits > ToBits; 995 } 996 997 //===----------------------------------------------------------------------===// 998 // Inline asm support 999 //===----------------------------------------------------------------------===// 1000 1001 TargetLowering::ConstraintType 1002 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1003 if (Constraint.size() == 1) { 1004 switch (Constraint[0]) { 1005 case 'a': // Address register 1006 case 'd': // Data register (equivalent to 'r') 1007 case 'f': // Floating-point register 1008 case 'h': // High-part register 1009 case 'r': // General-purpose register 1010 case 'v': // Vector register 1011 return C_RegisterClass; 1012 1013 case 'Q': // Memory with base and unsigned 12-bit displacement 1014 case 'R': // Likewise, plus an index 1015 case 'S': // Memory with base and signed 20-bit displacement 1016 case 'T': // Likewise, plus an index 1017 case 'm': // Equivalent to 'T'. 1018 return C_Memory; 1019 1020 case 'I': // Unsigned 8-bit constant 1021 case 'J': // Unsigned 12-bit constant 1022 case 'K': // Signed 16-bit constant 1023 case 'L': // Signed 20-bit displacement (on all targets we support) 1024 case 'M': // 0x7fffffff 1025 return C_Immediate; 1026 1027 default: 1028 break; 1029 } 1030 } 1031 return TargetLowering::getConstraintType(Constraint); 1032 } 1033 1034 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1035 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1036 const char *constraint) const { 1037 ConstraintWeight weight = CW_Invalid; 1038 Value *CallOperandVal = info.CallOperandVal; 1039 // If we don't have a value, we can't do a match, 1040 // but allow it at the lowest weight. 1041 if (!CallOperandVal) 1042 return CW_Default; 1043 Type *type = CallOperandVal->getType(); 1044 // Look at the constraint type. 1045 switch (*constraint) { 1046 default: 1047 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1048 break; 1049 1050 case 'a': // Address register 1051 case 'd': // Data register (equivalent to 'r') 1052 case 'h': // High-part register 1053 case 'r': // General-purpose register 1054 if (CallOperandVal->getType()->isIntegerTy()) 1055 weight = CW_Register; 1056 break; 1057 1058 case 'f': // Floating-point register 1059 if (type->isFloatingPointTy()) 1060 weight = CW_Register; 1061 break; 1062 1063 case 'v': // Vector register 1064 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1065 Subtarget.hasVector()) 1066 weight = CW_Register; 1067 break; 1068 1069 case 'I': // Unsigned 8-bit constant 1070 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1071 if (isUInt<8>(C->getZExtValue())) 1072 weight = CW_Constant; 1073 break; 1074 1075 case 'J': // Unsigned 12-bit constant 1076 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1077 if (isUInt<12>(C->getZExtValue())) 1078 weight = CW_Constant; 1079 break; 1080 1081 case 'K': // Signed 16-bit constant 1082 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1083 if (isInt<16>(C->getSExtValue())) 1084 weight = CW_Constant; 1085 break; 1086 1087 case 'L': // Signed 20-bit displacement (on all targets we support) 1088 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1089 if (isInt<20>(C->getSExtValue())) 1090 weight = CW_Constant; 1091 break; 1092 1093 case 'M': // 0x7fffffff 1094 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1095 if (C->getZExtValue() == 0x7fffffff) 1096 weight = CW_Constant; 1097 break; 1098 } 1099 return weight; 1100 } 1101 1102 // Parse a "{tNNN}" register constraint for which the register type "t" 1103 // has already been verified. MC is the class associated with "t" and 1104 // Map maps 0-based register numbers to LLVM register numbers. 1105 static std::pair<unsigned, const TargetRegisterClass *> 1106 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1107 const unsigned *Map, unsigned Size) { 1108 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1109 if (isdigit(Constraint[2])) { 1110 unsigned Index; 1111 bool Failed = 1112 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1113 if (!Failed && Index < Size && Map[Index]) 1114 return std::make_pair(Map[Index], RC); 1115 } 1116 return std::make_pair(0U, nullptr); 1117 } 1118 1119 std::pair<unsigned, const TargetRegisterClass *> 1120 SystemZTargetLowering::getRegForInlineAsmConstraint( 1121 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1122 if (Constraint.size() == 1) { 1123 // GCC Constraint Letters 1124 switch (Constraint[0]) { 1125 default: break; 1126 case 'd': // Data register (equivalent to 'r') 1127 case 'r': // General-purpose register 1128 if (VT == MVT::i64) 1129 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1130 else if (VT == MVT::i128) 1131 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1132 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1133 1134 case 'a': // Address register 1135 if (VT == MVT::i64) 1136 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1137 else if (VT == MVT::i128) 1138 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1139 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1140 1141 case 'h': // High-part register (an LLVM extension) 1142 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1143 1144 case 'f': // Floating-point register 1145 if (!useSoftFloat()) { 1146 if (VT == MVT::f64) 1147 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1148 else if (VT == MVT::f128) 1149 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1150 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1151 } 1152 break; 1153 case 'v': // Vector register 1154 if (Subtarget.hasVector()) { 1155 if (VT == MVT::f32) 1156 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1157 if (VT == MVT::f64) 1158 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1159 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1160 } 1161 break; 1162 } 1163 } 1164 if (Constraint.size() > 0 && Constraint[0] == '{') { 1165 // We need to override the default register parsing for GPRs and FPRs 1166 // because the interpretation depends on VT. The internal names of 1167 // the registers are also different from the external names 1168 // (F0D and F0S instead of F0, etc.). 1169 if (Constraint[1] == 'r') { 1170 if (VT == MVT::i32) 1171 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1172 SystemZMC::GR32Regs, 16); 1173 if (VT == MVT::i128) 1174 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1175 SystemZMC::GR128Regs, 16); 1176 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1177 SystemZMC::GR64Regs, 16); 1178 } 1179 if (Constraint[1] == 'f') { 1180 if (useSoftFloat()) 1181 return std::make_pair( 1182 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1183 if (VT == MVT::f32) 1184 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1185 SystemZMC::FP32Regs, 16); 1186 if (VT == MVT::f128) 1187 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1188 SystemZMC::FP128Regs, 16); 1189 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1190 SystemZMC::FP64Regs, 16); 1191 } 1192 if (Constraint[1] == 'v') { 1193 if (!Subtarget.hasVector()) 1194 return std::make_pair( 1195 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1196 if (VT == MVT::f32) 1197 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1198 SystemZMC::VR32Regs, 32); 1199 if (VT == MVT::f64) 1200 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1201 SystemZMC::VR64Regs, 32); 1202 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1203 SystemZMC::VR128Regs, 32); 1204 } 1205 } 1206 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1207 } 1208 1209 // FIXME? Maybe this could be a TableGen attribute on some registers and 1210 // this table could be generated automatically from RegInfo. 1211 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1212 const MachineFunction &MF) const { 1213 1214 Register Reg = StringSwitch<Register>(RegName) 1215 .Case("r15", SystemZ::R15D) 1216 .Default(0); 1217 if (Reg) 1218 return Reg; 1219 report_fatal_error("Invalid register name global variable"); 1220 } 1221 1222 void SystemZTargetLowering:: 1223 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1224 std::vector<SDValue> &Ops, 1225 SelectionDAG &DAG) const { 1226 // Only support length 1 constraints for now. 1227 if (Constraint.length() == 1) { 1228 switch (Constraint[0]) { 1229 case 'I': // Unsigned 8-bit constant 1230 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1231 if (isUInt<8>(C->getZExtValue())) 1232 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1233 Op.getValueType())); 1234 return; 1235 1236 case 'J': // Unsigned 12-bit constant 1237 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1238 if (isUInt<12>(C->getZExtValue())) 1239 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1240 Op.getValueType())); 1241 return; 1242 1243 case 'K': // Signed 16-bit constant 1244 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1245 if (isInt<16>(C->getSExtValue())) 1246 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1247 Op.getValueType())); 1248 return; 1249 1250 case 'L': // Signed 20-bit displacement (on all targets we support) 1251 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1252 if (isInt<20>(C->getSExtValue())) 1253 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1254 Op.getValueType())); 1255 return; 1256 1257 case 'M': // 0x7fffffff 1258 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1259 if (C->getZExtValue() == 0x7fffffff) 1260 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1261 Op.getValueType())); 1262 return; 1263 } 1264 } 1265 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1266 } 1267 1268 //===----------------------------------------------------------------------===// 1269 // Calling conventions 1270 //===----------------------------------------------------------------------===// 1271 1272 #include "SystemZGenCallingConv.inc" 1273 1274 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1275 CallingConv::ID) const { 1276 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1277 SystemZ::R14D, 0 }; 1278 return ScratchRegs; 1279 } 1280 1281 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1282 Type *ToType) const { 1283 return isTruncateFree(FromType, ToType); 1284 } 1285 1286 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1287 return CI->isTailCall(); 1288 } 1289 1290 // We do not yet support 128-bit single-element vector types. If the user 1291 // attempts to use such types as function argument or return type, prefer 1292 // to error out instead of emitting code violating the ABI. 1293 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1294 if (ArgVT.isVector() && !VT.isVector()) 1295 report_fatal_error("Unsupported vector argument or return type"); 1296 } 1297 1298 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1299 for (unsigned i = 0; i < Ins.size(); ++i) 1300 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1301 } 1302 1303 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1304 for (unsigned i = 0; i < Outs.size(); ++i) 1305 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1306 } 1307 1308 // Value is a value that has been passed to us in the location described by VA 1309 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1310 // any loads onto Chain. 1311 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1312 CCValAssign &VA, SDValue Chain, 1313 SDValue Value) { 1314 // If the argument has been promoted from a smaller type, insert an 1315 // assertion to capture this. 1316 if (VA.getLocInfo() == CCValAssign::SExt) 1317 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1318 DAG.getValueType(VA.getValVT())); 1319 else if (VA.getLocInfo() == CCValAssign::ZExt) 1320 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1321 DAG.getValueType(VA.getValVT())); 1322 1323 if (VA.isExtInLoc()) 1324 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1325 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1326 // If this is a short vector argument loaded from the stack, 1327 // extend from i64 to full vector size and then bitcast. 1328 assert(VA.getLocVT() == MVT::i64); 1329 assert(VA.getValVT().isVector()); 1330 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1331 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1332 } else 1333 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1334 return Value; 1335 } 1336 1337 // Value is a value of type VA.getValVT() that we need to copy into 1338 // the location described by VA. Return a copy of Value converted to 1339 // VA.getValVT(). The caller is responsible for handling indirect values. 1340 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1341 CCValAssign &VA, SDValue Value) { 1342 switch (VA.getLocInfo()) { 1343 case CCValAssign::SExt: 1344 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1345 case CCValAssign::ZExt: 1346 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1347 case CCValAssign::AExt: 1348 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1349 case CCValAssign::BCvt: 1350 // If this is a short vector argument to be stored to the stack, 1351 // bitcast to v2i64 and then extract first element. 1352 assert(VA.getLocVT() == MVT::i64); 1353 assert(VA.getValVT().isVector()); 1354 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1355 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1356 DAG.getConstant(0, DL, MVT::i32)); 1357 case CCValAssign::Full: 1358 return Value; 1359 default: 1360 llvm_unreachable("Unhandled getLocInfo()"); 1361 } 1362 } 1363 1364 SDValue SystemZTargetLowering::LowerFormalArguments( 1365 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1366 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1367 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1368 MachineFunction &MF = DAG.getMachineFunction(); 1369 MachineFrameInfo &MFI = MF.getFrameInfo(); 1370 MachineRegisterInfo &MRI = MF.getRegInfo(); 1371 SystemZMachineFunctionInfo *FuncInfo = 1372 MF.getInfo<SystemZMachineFunctionInfo>(); 1373 auto *TFL = 1374 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1375 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1376 1377 // Detect unsupported vector argument types. 1378 if (Subtarget.hasVector()) 1379 VerifyVectorTypes(Ins); 1380 1381 // Assign locations to all of the incoming arguments. 1382 SmallVector<CCValAssign, 16> ArgLocs; 1383 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1384 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1385 1386 unsigned NumFixedGPRs = 0; 1387 unsigned NumFixedFPRs = 0; 1388 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1389 SDValue ArgValue; 1390 CCValAssign &VA = ArgLocs[I]; 1391 EVT LocVT = VA.getLocVT(); 1392 if (VA.isRegLoc()) { 1393 // Arguments passed in registers 1394 const TargetRegisterClass *RC; 1395 switch (LocVT.getSimpleVT().SimpleTy) { 1396 default: 1397 // Integers smaller than i64 should be promoted to i64. 1398 llvm_unreachable("Unexpected argument type"); 1399 case MVT::i32: 1400 NumFixedGPRs += 1; 1401 RC = &SystemZ::GR32BitRegClass; 1402 break; 1403 case MVT::i64: 1404 NumFixedGPRs += 1; 1405 RC = &SystemZ::GR64BitRegClass; 1406 break; 1407 case MVT::f32: 1408 NumFixedFPRs += 1; 1409 RC = &SystemZ::FP32BitRegClass; 1410 break; 1411 case MVT::f64: 1412 NumFixedFPRs += 1; 1413 RC = &SystemZ::FP64BitRegClass; 1414 break; 1415 case MVT::v16i8: 1416 case MVT::v8i16: 1417 case MVT::v4i32: 1418 case MVT::v2i64: 1419 case MVT::v4f32: 1420 case MVT::v2f64: 1421 RC = &SystemZ::VR128BitRegClass; 1422 break; 1423 } 1424 1425 Register VReg = MRI.createVirtualRegister(RC); 1426 MRI.addLiveIn(VA.getLocReg(), VReg); 1427 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1428 } else { 1429 assert(VA.isMemLoc() && "Argument not register or memory"); 1430 1431 // Create the frame index object for this incoming parameter. 1432 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1433 VA.getLocMemOffset(), true); 1434 1435 // Create the SelectionDAG nodes corresponding to a load 1436 // from this parameter. Unpromoted ints and floats are 1437 // passed as right-justified 8-byte values. 1438 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1439 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1440 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1441 DAG.getIntPtrConstant(4, DL)); 1442 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1443 MachinePointerInfo::getFixedStack(MF, FI)); 1444 } 1445 1446 // Convert the value of the argument register into the value that's 1447 // being passed. 1448 if (VA.getLocInfo() == CCValAssign::Indirect) { 1449 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1450 MachinePointerInfo())); 1451 // If the original argument was split (e.g. i128), we need 1452 // to load all parts of it here (using the same address). 1453 unsigned ArgIndex = Ins[I].OrigArgIndex; 1454 assert (Ins[I].PartOffset == 0); 1455 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1456 CCValAssign &PartVA = ArgLocs[I + 1]; 1457 unsigned PartOffset = Ins[I + 1].PartOffset; 1458 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1459 DAG.getIntPtrConstant(PartOffset, DL)); 1460 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1461 MachinePointerInfo())); 1462 ++I; 1463 } 1464 } else 1465 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1466 } 1467 1468 if (IsVarArg) { 1469 // Save the number of non-varargs registers for later use by va_start, etc. 1470 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1471 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1472 1473 // Likewise the address (in the form of a frame index) of where the 1474 // first stack vararg would be. The 1-byte size here is arbitrary. 1475 int64_t StackSize = CCInfo.getNextStackOffset(); 1476 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1477 1478 // ...and a similar frame index for the caller-allocated save area 1479 // that will be used to store the incoming registers. 1480 int64_t RegSaveOffset = 1481 -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1482 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1483 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1484 1485 // Store the FPR varargs in the reserved frame slots. (We store the 1486 // GPRs as part of the prologue.) 1487 if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) { 1488 SDValue MemOps[SystemZ::NumArgFPRs]; 1489 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1490 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]); 1491 int FI = 1492 MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true); 1493 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1494 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1495 &SystemZ::FP64BitRegClass); 1496 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1497 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1498 MachinePointerInfo::getFixedStack(MF, FI)); 1499 } 1500 // Join the stores, which are independent of one another. 1501 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1502 makeArrayRef(&MemOps[NumFixedFPRs], 1503 SystemZ::NumArgFPRs-NumFixedFPRs)); 1504 } 1505 } 1506 1507 return Chain; 1508 } 1509 1510 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1511 SmallVectorImpl<CCValAssign> &ArgLocs, 1512 SmallVectorImpl<ISD::OutputArg> &Outs) { 1513 // Punt if there are any indirect or stack arguments, or if the call 1514 // needs the callee-saved argument register R6, or if the call uses 1515 // the callee-saved register arguments SwiftSelf and SwiftError. 1516 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1517 CCValAssign &VA = ArgLocs[I]; 1518 if (VA.getLocInfo() == CCValAssign::Indirect) 1519 return false; 1520 if (!VA.isRegLoc()) 1521 return false; 1522 Register Reg = VA.getLocReg(); 1523 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1524 return false; 1525 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1526 return false; 1527 } 1528 return true; 1529 } 1530 1531 SDValue 1532 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1533 SmallVectorImpl<SDValue> &InVals) const { 1534 SelectionDAG &DAG = CLI.DAG; 1535 SDLoc &DL = CLI.DL; 1536 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1537 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1538 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1539 SDValue Chain = CLI.Chain; 1540 SDValue Callee = CLI.Callee; 1541 bool &IsTailCall = CLI.IsTailCall; 1542 CallingConv::ID CallConv = CLI.CallConv; 1543 bool IsVarArg = CLI.IsVarArg; 1544 MachineFunction &MF = DAG.getMachineFunction(); 1545 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1546 1547 // Detect unsupported vector argument and return types. 1548 if (Subtarget.hasVector()) { 1549 VerifyVectorTypes(Outs); 1550 VerifyVectorTypes(Ins); 1551 } 1552 1553 // Analyze the operands of the call, assigning locations to each operand. 1554 SmallVector<CCValAssign, 16> ArgLocs; 1555 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1556 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1557 1558 // We don't support GuaranteedTailCallOpt, only automatically-detected 1559 // sibling calls. 1560 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1561 IsTailCall = false; 1562 1563 // Get a count of how many bytes are to be pushed on the stack. 1564 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1565 1566 // Mark the start of the call. 1567 if (!IsTailCall) 1568 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1569 1570 // Copy argument values to their designated locations. 1571 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1572 SmallVector<SDValue, 8> MemOpChains; 1573 SDValue StackPtr; 1574 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1575 CCValAssign &VA = ArgLocs[I]; 1576 SDValue ArgValue = OutVals[I]; 1577 1578 if (VA.getLocInfo() == CCValAssign::Indirect) { 1579 // Store the argument in a stack slot and pass its address. 1580 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1581 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1582 MemOpChains.push_back( 1583 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1584 MachinePointerInfo::getFixedStack(MF, FI))); 1585 // If the original argument was split (e.g. i128), we need 1586 // to store all parts of it here (and pass just one address). 1587 unsigned ArgIndex = Outs[I].OrigArgIndex; 1588 assert (Outs[I].PartOffset == 0); 1589 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1590 SDValue PartValue = OutVals[I + 1]; 1591 unsigned PartOffset = Outs[I + 1].PartOffset; 1592 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1593 DAG.getIntPtrConstant(PartOffset, DL)); 1594 MemOpChains.push_back( 1595 DAG.getStore(Chain, DL, PartValue, Address, 1596 MachinePointerInfo::getFixedStack(MF, FI))); 1597 ++I; 1598 } 1599 ArgValue = SpillSlot; 1600 } else 1601 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1602 1603 if (VA.isRegLoc()) 1604 // Queue up the argument copies and emit them at the end. 1605 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1606 else { 1607 assert(VA.isMemLoc() && "Argument not register or memory"); 1608 1609 // Work out the address of the stack slot. Unpromoted ints and 1610 // floats are passed as right-justified 8-byte values. 1611 if (!StackPtr.getNode()) 1612 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1613 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1614 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1615 Offset += 4; 1616 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1617 DAG.getIntPtrConstant(Offset, DL)); 1618 1619 // Emit the store. 1620 MemOpChains.push_back( 1621 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1622 } 1623 } 1624 1625 // Join the stores, which are independent of one another. 1626 if (!MemOpChains.empty()) 1627 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1628 1629 // Accept direct calls by converting symbolic call addresses to the 1630 // associated Target* opcodes. Force %r1 to be used for indirect 1631 // tail calls. 1632 SDValue Glue; 1633 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1634 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1635 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1636 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1637 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1638 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1639 } else if (IsTailCall) { 1640 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1641 Glue = Chain.getValue(1); 1642 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1643 } 1644 1645 // Build a sequence of copy-to-reg nodes, chained and glued together. 1646 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1647 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1648 RegsToPass[I].second, Glue); 1649 Glue = Chain.getValue(1); 1650 } 1651 1652 // The first call operand is the chain and the second is the target address. 1653 SmallVector<SDValue, 8> Ops; 1654 Ops.push_back(Chain); 1655 Ops.push_back(Callee); 1656 1657 // Add argument registers to the end of the list so that they are 1658 // known live into the call. 1659 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1660 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1661 RegsToPass[I].second.getValueType())); 1662 1663 // Add a register mask operand representing the call-preserved registers. 1664 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1665 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1666 assert(Mask && "Missing call preserved mask for calling convention"); 1667 Ops.push_back(DAG.getRegisterMask(Mask)); 1668 1669 // Glue the call to the argument copies, if any. 1670 if (Glue.getNode()) 1671 Ops.push_back(Glue); 1672 1673 // Emit the call. 1674 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1675 if (IsTailCall) 1676 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1677 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1678 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1679 Glue = Chain.getValue(1); 1680 1681 // Mark the end of the call, which is glued to the call itself. 1682 Chain = DAG.getCALLSEQ_END(Chain, 1683 DAG.getConstant(NumBytes, DL, PtrVT, true), 1684 DAG.getConstant(0, DL, PtrVT, true), 1685 Glue, DL); 1686 Glue = Chain.getValue(1); 1687 1688 // Assign locations to each value returned by this call. 1689 SmallVector<CCValAssign, 16> RetLocs; 1690 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1691 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1692 1693 // Copy all of the result registers out of their specified physreg. 1694 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1695 CCValAssign &VA = RetLocs[I]; 1696 1697 // Copy the value out, gluing the copy to the end of the call sequence. 1698 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1699 VA.getLocVT(), Glue); 1700 Chain = RetValue.getValue(1); 1701 Glue = RetValue.getValue(2); 1702 1703 // Convert the value of the return register into the value that's 1704 // being returned. 1705 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1706 } 1707 1708 return Chain; 1709 } 1710 1711 bool SystemZTargetLowering:: 1712 CanLowerReturn(CallingConv::ID CallConv, 1713 MachineFunction &MF, bool isVarArg, 1714 const SmallVectorImpl<ISD::OutputArg> &Outs, 1715 LLVMContext &Context) const { 1716 // Detect unsupported vector return types. 1717 if (Subtarget.hasVector()) 1718 VerifyVectorTypes(Outs); 1719 1720 // Special case that we cannot easily detect in RetCC_SystemZ since 1721 // i128 is not a legal type. 1722 for (auto &Out : Outs) 1723 if (Out.ArgVT == MVT::i128) 1724 return false; 1725 1726 SmallVector<CCValAssign, 16> RetLocs; 1727 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1728 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1729 } 1730 1731 SDValue 1732 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1733 bool IsVarArg, 1734 const SmallVectorImpl<ISD::OutputArg> &Outs, 1735 const SmallVectorImpl<SDValue> &OutVals, 1736 const SDLoc &DL, SelectionDAG &DAG) const { 1737 MachineFunction &MF = DAG.getMachineFunction(); 1738 1739 // Detect unsupported vector return types. 1740 if (Subtarget.hasVector()) 1741 VerifyVectorTypes(Outs); 1742 1743 // Assign locations to each returned value. 1744 SmallVector<CCValAssign, 16> RetLocs; 1745 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1746 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1747 1748 // Quick exit for void returns 1749 if (RetLocs.empty()) 1750 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1751 1752 if (CallConv == CallingConv::GHC) 1753 report_fatal_error("GHC functions return void only"); 1754 1755 // Copy the result values into the output registers. 1756 SDValue Glue; 1757 SmallVector<SDValue, 4> RetOps; 1758 RetOps.push_back(Chain); 1759 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1760 CCValAssign &VA = RetLocs[I]; 1761 SDValue RetValue = OutVals[I]; 1762 1763 // Make the return register live on exit. 1764 assert(VA.isRegLoc() && "Can only return in registers!"); 1765 1766 // Promote the value as required. 1767 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1768 1769 // Chain and glue the copies together. 1770 Register Reg = VA.getLocReg(); 1771 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1772 Glue = Chain.getValue(1); 1773 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1774 } 1775 1776 // Update chain and glue. 1777 RetOps[0] = Chain; 1778 if (Glue.getNode()) 1779 RetOps.push_back(Glue); 1780 1781 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1782 } 1783 1784 // Return true if Op is an intrinsic node with chain that returns the CC value 1785 // as its only (other) argument. Provide the associated SystemZISD opcode and 1786 // the mask of valid CC values if so. 1787 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1788 unsigned &CCValid) { 1789 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1790 switch (Id) { 1791 case Intrinsic::s390_tbegin: 1792 Opcode = SystemZISD::TBEGIN; 1793 CCValid = SystemZ::CCMASK_TBEGIN; 1794 return true; 1795 1796 case Intrinsic::s390_tbegin_nofloat: 1797 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1798 CCValid = SystemZ::CCMASK_TBEGIN; 1799 return true; 1800 1801 case Intrinsic::s390_tend: 1802 Opcode = SystemZISD::TEND; 1803 CCValid = SystemZ::CCMASK_TEND; 1804 return true; 1805 1806 default: 1807 return false; 1808 } 1809 } 1810 1811 // Return true if Op is an intrinsic node without chain that returns the 1812 // CC value as its final argument. Provide the associated SystemZISD 1813 // opcode and the mask of valid CC values if so. 1814 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1815 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1816 switch (Id) { 1817 case Intrinsic::s390_vpkshs: 1818 case Intrinsic::s390_vpksfs: 1819 case Intrinsic::s390_vpksgs: 1820 Opcode = SystemZISD::PACKS_CC; 1821 CCValid = SystemZ::CCMASK_VCMP; 1822 return true; 1823 1824 case Intrinsic::s390_vpklshs: 1825 case Intrinsic::s390_vpklsfs: 1826 case Intrinsic::s390_vpklsgs: 1827 Opcode = SystemZISD::PACKLS_CC; 1828 CCValid = SystemZ::CCMASK_VCMP; 1829 return true; 1830 1831 case Intrinsic::s390_vceqbs: 1832 case Intrinsic::s390_vceqhs: 1833 case Intrinsic::s390_vceqfs: 1834 case Intrinsic::s390_vceqgs: 1835 Opcode = SystemZISD::VICMPES; 1836 CCValid = SystemZ::CCMASK_VCMP; 1837 return true; 1838 1839 case Intrinsic::s390_vchbs: 1840 case Intrinsic::s390_vchhs: 1841 case Intrinsic::s390_vchfs: 1842 case Intrinsic::s390_vchgs: 1843 Opcode = SystemZISD::VICMPHS; 1844 CCValid = SystemZ::CCMASK_VCMP; 1845 return true; 1846 1847 case Intrinsic::s390_vchlbs: 1848 case Intrinsic::s390_vchlhs: 1849 case Intrinsic::s390_vchlfs: 1850 case Intrinsic::s390_vchlgs: 1851 Opcode = SystemZISD::VICMPHLS; 1852 CCValid = SystemZ::CCMASK_VCMP; 1853 return true; 1854 1855 case Intrinsic::s390_vtm: 1856 Opcode = SystemZISD::VTM; 1857 CCValid = SystemZ::CCMASK_VCMP; 1858 return true; 1859 1860 case Intrinsic::s390_vfaebs: 1861 case Intrinsic::s390_vfaehs: 1862 case Intrinsic::s390_vfaefs: 1863 Opcode = SystemZISD::VFAE_CC; 1864 CCValid = SystemZ::CCMASK_ANY; 1865 return true; 1866 1867 case Intrinsic::s390_vfaezbs: 1868 case Intrinsic::s390_vfaezhs: 1869 case Intrinsic::s390_vfaezfs: 1870 Opcode = SystemZISD::VFAEZ_CC; 1871 CCValid = SystemZ::CCMASK_ANY; 1872 return true; 1873 1874 case Intrinsic::s390_vfeebs: 1875 case Intrinsic::s390_vfeehs: 1876 case Intrinsic::s390_vfeefs: 1877 Opcode = SystemZISD::VFEE_CC; 1878 CCValid = SystemZ::CCMASK_ANY; 1879 return true; 1880 1881 case Intrinsic::s390_vfeezbs: 1882 case Intrinsic::s390_vfeezhs: 1883 case Intrinsic::s390_vfeezfs: 1884 Opcode = SystemZISD::VFEEZ_CC; 1885 CCValid = SystemZ::CCMASK_ANY; 1886 return true; 1887 1888 case Intrinsic::s390_vfenebs: 1889 case Intrinsic::s390_vfenehs: 1890 case Intrinsic::s390_vfenefs: 1891 Opcode = SystemZISD::VFENE_CC; 1892 CCValid = SystemZ::CCMASK_ANY; 1893 return true; 1894 1895 case Intrinsic::s390_vfenezbs: 1896 case Intrinsic::s390_vfenezhs: 1897 case Intrinsic::s390_vfenezfs: 1898 Opcode = SystemZISD::VFENEZ_CC; 1899 CCValid = SystemZ::CCMASK_ANY; 1900 return true; 1901 1902 case Intrinsic::s390_vistrbs: 1903 case Intrinsic::s390_vistrhs: 1904 case Intrinsic::s390_vistrfs: 1905 Opcode = SystemZISD::VISTR_CC; 1906 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1907 return true; 1908 1909 case Intrinsic::s390_vstrcbs: 1910 case Intrinsic::s390_vstrchs: 1911 case Intrinsic::s390_vstrcfs: 1912 Opcode = SystemZISD::VSTRC_CC; 1913 CCValid = SystemZ::CCMASK_ANY; 1914 return true; 1915 1916 case Intrinsic::s390_vstrczbs: 1917 case Intrinsic::s390_vstrczhs: 1918 case Intrinsic::s390_vstrczfs: 1919 Opcode = SystemZISD::VSTRCZ_CC; 1920 CCValid = SystemZ::CCMASK_ANY; 1921 return true; 1922 1923 case Intrinsic::s390_vstrsb: 1924 case Intrinsic::s390_vstrsh: 1925 case Intrinsic::s390_vstrsf: 1926 Opcode = SystemZISD::VSTRS_CC; 1927 CCValid = SystemZ::CCMASK_ANY; 1928 return true; 1929 1930 case Intrinsic::s390_vstrszb: 1931 case Intrinsic::s390_vstrszh: 1932 case Intrinsic::s390_vstrszf: 1933 Opcode = SystemZISD::VSTRSZ_CC; 1934 CCValid = SystemZ::CCMASK_ANY; 1935 return true; 1936 1937 case Intrinsic::s390_vfcedbs: 1938 case Intrinsic::s390_vfcesbs: 1939 Opcode = SystemZISD::VFCMPES; 1940 CCValid = SystemZ::CCMASK_VCMP; 1941 return true; 1942 1943 case Intrinsic::s390_vfchdbs: 1944 case Intrinsic::s390_vfchsbs: 1945 Opcode = SystemZISD::VFCMPHS; 1946 CCValid = SystemZ::CCMASK_VCMP; 1947 return true; 1948 1949 case Intrinsic::s390_vfchedbs: 1950 case Intrinsic::s390_vfchesbs: 1951 Opcode = SystemZISD::VFCMPHES; 1952 CCValid = SystemZ::CCMASK_VCMP; 1953 return true; 1954 1955 case Intrinsic::s390_vftcidb: 1956 case Intrinsic::s390_vftcisb: 1957 Opcode = SystemZISD::VFTCI; 1958 CCValid = SystemZ::CCMASK_VCMP; 1959 return true; 1960 1961 case Intrinsic::s390_tdc: 1962 Opcode = SystemZISD::TDC; 1963 CCValid = SystemZ::CCMASK_TDC; 1964 return true; 1965 1966 default: 1967 return false; 1968 } 1969 } 1970 1971 // Emit an intrinsic with chain and an explicit CC register result. 1972 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1973 unsigned Opcode) { 1974 // Copy all operands except the intrinsic ID. 1975 unsigned NumOps = Op.getNumOperands(); 1976 SmallVector<SDValue, 6> Ops; 1977 Ops.reserve(NumOps - 1); 1978 Ops.push_back(Op.getOperand(0)); 1979 for (unsigned I = 2; I < NumOps; ++I) 1980 Ops.push_back(Op.getOperand(I)); 1981 1982 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1983 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1984 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1985 SDValue OldChain = SDValue(Op.getNode(), 1); 1986 SDValue NewChain = SDValue(Intr.getNode(), 1); 1987 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1988 return Intr.getNode(); 1989 } 1990 1991 // Emit an intrinsic with an explicit CC register result. 1992 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1993 unsigned Opcode) { 1994 // Copy all operands except the intrinsic ID. 1995 unsigned NumOps = Op.getNumOperands(); 1996 SmallVector<SDValue, 6> Ops; 1997 Ops.reserve(NumOps - 1); 1998 for (unsigned I = 1; I < NumOps; ++I) 1999 Ops.push_back(Op.getOperand(I)); 2000 2001 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2002 return Intr.getNode(); 2003 } 2004 2005 // CC is a comparison that will be implemented using an integer or 2006 // floating-point comparison. Return the condition code mask for 2007 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2008 // unsigned comparisons and clear for signed ones. In the floating-point 2009 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2010 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2011 #define CONV(X) \ 2012 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2013 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2014 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2015 2016 switch (CC) { 2017 default: 2018 llvm_unreachable("Invalid integer condition!"); 2019 2020 CONV(EQ); 2021 CONV(NE); 2022 CONV(GT); 2023 CONV(GE); 2024 CONV(LT); 2025 CONV(LE); 2026 2027 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2028 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2029 } 2030 #undef CONV 2031 } 2032 2033 // If C can be converted to a comparison against zero, adjust the operands 2034 // as necessary. 2035 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2036 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2037 return; 2038 2039 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2040 if (!ConstOp1) 2041 return; 2042 2043 int64_t Value = ConstOp1->getSExtValue(); 2044 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2045 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2046 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2047 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2048 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2049 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2050 } 2051 } 2052 2053 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2054 // adjust the operands as necessary. 2055 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2056 Comparison &C) { 2057 // For us to make any changes, it must a comparison between a single-use 2058 // load and a constant. 2059 if (!C.Op0.hasOneUse() || 2060 C.Op0.getOpcode() != ISD::LOAD || 2061 C.Op1.getOpcode() != ISD::Constant) 2062 return; 2063 2064 // We must have an 8- or 16-bit load. 2065 auto *Load = cast<LoadSDNode>(C.Op0); 2066 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2067 if ((NumBits != 8 && NumBits != 16) || 2068 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2069 return; 2070 2071 // The load must be an extending one and the constant must be within the 2072 // range of the unextended value. 2073 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2074 uint64_t Value = ConstOp1->getZExtValue(); 2075 uint64_t Mask = (1 << NumBits) - 1; 2076 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2077 // Make sure that ConstOp1 is in range of C.Op0. 2078 int64_t SignedValue = ConstOp1->getSExtValue(); 2079 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2080 return; 2081 if (C.ICmpType != SystemZICMP::SignedOnly) { 2082 // Unsigned comparison between two sign-extended values is equivalent 2083 // to unsigned comparison between two zero-extended values. 2084 Value &= Mask; 2085 } else if (NumBits == 8) { 2086 // Try to treat the comparison as unsigned, so that we can use CLI. 2087 // Adjust CCMask and Value as necessary. 2088 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2089 // Test whether the high bit of the byte is set. 2090 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2091 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2092 // Test whether the high bit of the byte is clear. 2093 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2094 else 2095 // No instruction exists for this combination. 2096 return; 2097 C.ICmpType = SystemZICMP::UnsignedOnly; 2098 } 2099 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2100 if (Value > Mask) 2101 return; 2102 // If the constant is in range, we can use any comparison. 2103 C.ICmpType = SystemZICMP::Any; 2104 } else 2105 return; 2106 2107 // Make sure that the first operand is an i32 of the right extension type. 2108 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2109 ISD::SEXTLOAD : 2110 ISD::ZEXTLOAD); 2111 if (C.Op0.getValueType() != MVT::i32 || 2112 Load->getExtensionType() != ExtType) { 2113 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2114 Load->getBasePtr(), Load->getPointerInfo(), 2115 Load->getMemoryVT(), Load->getAlignment(), 2116 Load->getMemOperand()->getFlags()); 2117 // Update the chain uses. 2118 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2119 } 2120 2121 // Make sure that the second operand is an i32 with the right value. 2122 if (C.Op1.getValueType() != MVT::i32 || 2123 Value != ConstOp1->getZExtValue()) 2124 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2125 } 2126 2127 // Return true if Op is either an unextended load, or a load suitable 2128 // for integer register-memory comparisons of type ICmpType. 2129 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2130 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2131 if (Load) { 2132 // There are no instructions to compare a register with a memory byte. 2133 if (Load->getMemoryVT() == MVT::i8) 2134 return false; 2135 // Otherwise decide on extension type. 2136 switch (Load->getExtensionType()) { 2137 case ISD::NON_EXTLOAD: 2138 return true; 2139 case ISD::SEXTLOAD: 2140 return ICmpType != SystemZICMP::UnsignedOnly; 2141 case ISD::ZEXTLOAD: 2142 return ICmpType != SystemZICMP::SignedOnly; 2143 default: 2144 break; 2145 } 2146 } 2147 return false; 2148 } 2149 2150 // Return true if it is better to swap the operands of C. 2151 static bool shouldSwapCmpOperands(const Comparison &C) { 2152 // Leave f128 comparisons alone, since they have no memory forms. 2153 if (C.Op0.getValueType() == MVT::f128) 2154 return false; 2155 2156 // Always keep a floating-point constant second, since comparisons with 2157 // zero can use LOAD TEST and comparisons with other constants make a 2158 // natural memory operand. 2159 if (isa<ConstantFPSDNode>(C.Op1)) 2160 return false; 2161 2162 // Never swap comparisons with zero since there are many ways to optimize 2163 // those later. 2164 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2165 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2166 return false; 2167 2168 // Also keep natural memory operands second if the loaded value is 2169 // only used here. Several comparisons have memory forms. 2170 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2171 return false; 2172 2173 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2174 // In that case we generally prefer the memory to be second. 2175 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2176 // The only exceptions are when the second operand is a constant and 2177 // we can use things like CHHSI. 2178 if (!ConstOp1) 2179 return true; 2180 // The unsigned memory-immediate instructions can handle 16-bit 2181 // unsigned integers. 2182 if (C.ICmpType != SystemZICMP::SignedOnly && 2183 isUInt<16>(ConstOp1->getZExtValue())) 2184 return false; 2185 // The signed memory-immediate instructions can handle 16-bit 2186 // signed integers. 2187 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2188 isInt<16>(ConstOp1->getSExtValue())) 2189 return false; 2190 return true; 2191 } 2192 2193 // Try to promote the use of CGFR and CLGFR. 2194 unsigned Opcode0 = C.Op0.getOpcode(); 2195 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2196 return true; 2197 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2198 return true; 2199 if (C.ICmpType != SystemZICMP::SignedOnly && 2200 Opcode0 == ISD::AND && 2201 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2202 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2203 return true; 2204 2205 return false; 2206 } 2207 2208 // Check whether C tests for equality between X and Y and whether X - Y 2209 // or Y - X is also computed. In that case it's better to compare the 2210 // result of the subtraction against zero. 2211 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2212 Comparison &C) { 2213 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2214 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2215 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2216 SDNode *N = *I; 2217 if (N->getOpcode() == ISD::SUB && 2218 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2219 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2220 C.Op0 = SDValue(N, 0); 2221 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2222 return; 2223 } 2224 } 2225 } 2226 } 2227 2228 // Check whether C compares a floating-point value with zero and if that 2229 // floating-point value is also negated. In this case we can use the 2230 // negation to set CC, so avoiding separate LOAD AND TEST and 2231 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2232 static void adjustForFNeg(Comparison &C) { 2233 // This optimization is invalid for strict comparisons, since FNEG 2234 // does not raise any exceptions. 2235 if (C.Chain) 2236 return; 2237 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2238 if (C1 && C1->isZero()) { 2239 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2240 SDNode *N = *I; 2241 if (N->getOpcode() == ISD::FNEG) { 2242 C.Op0 = SDValue(N, 0); 2243 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2244 return; 2245 } 2246 } 2247 } 2248 } 2249 2250 // Check whether C compares (shl X, 32) with 0 and whether X is 2251 // also sign-extended. In that case it is better to test the result 2252 // of the sign extension using LTGFR. 2253 // 2254 // This case is important because InstCombine transforms a comparison 2255 // with (sext (trunc X)) into a comparison with (shl X, 32). 2256 static void adjustForLTGFR(Comparison &C) { 2257 // Check for a comparison between (shl X, 32) and 0. 2258 if (C.Op0.getOpcode() == ISD::SHL && 2259 C.Op0.getValueType() == MVT::i64 && 2260 C.Op1.getOpcode() == ISD::Constant && 2261 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2262 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2263 if (C1 && C1->getZExtValue() == 32) { 2264 SDValue ShlOp0 = C.Op0.getOperand(0); 2265 // See whether X has any SIGN_EXTEND_INREG uses. 2266 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2267 SDNode *N = *I; 2268 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2269 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2270 C.Op0 = SDValue(N, 0); 2271 return; 2272 } 2273 } 2274 } 2275 } 2276 } 2277 2278 // If C compares the truncation of an extending load, try to compare 2279 // the untruncated value instead. This exposes more opportunities to 2280 // reuse CC. 2281 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2282 Comparison &C) { 2283 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2284 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2285 C.Op1.getOpcode() == ISD::Constant && 2286 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2287 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2288 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2289 unsigned Type = L->getExtensionType(); 2290 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2291 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2292 C.Op0 = C.Op0.getOperand(0); 2293 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2294 } 2295 } 2296 } 2297 } 2298 2299 // Return true if shift operation N has an in-range constant shift value. 2300 // Store it in ShiftVal if so. 2301 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2302 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2303 if (!Shift) 2304 return false; 2305 2306 uint64_t Amount = Shift->getZExtValue(); 2307 if (Amount >= N.getValueSizeInBits()) 2308 return false; 2309 2310 ShiftVal = Amount; 2311 return true; 2312 } 2313 2314 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2315 // instruction and whether the CC value is descriptive enough to handle 2316 // a comparison of type Opcode between the AND result and CmpVal. 2317 // CCMask says which comparison result is being tested and BitSize is 2318 // the number of bits in the operands. If TEST UNDER MASK can be used, 2319 // return the corresponding CC mask, otherwise return 0. 2320 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2321 uint64_t Mask, uint64_t CmpVal, 2322 unsigned ICmpType) { 2323 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2324 2325 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2326 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2327 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2328 return 0; 2329 2330 // Work out the masks for the lowest and highest bits. 2331 unsigned HighShift = 63 - countLeadingZeros(Mask); 2332 uint64_t High = uint64_t(1) << HighShift; 2333 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2334 2335 // Signed ordered comparisons are effectively unsigned if the sign 2336 // bit is dropped. 2337 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2338 2339 // Check for equality comparisons with 0, or the equivalent. 2340 if (CmpVal == 0) { 2341 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2342 return SystemZ::CCMASK_TM_ALL_0; 2343 if (CCMask == SystemZ::CCMASK_CMP_NE) 2344 return SystemZ::CCMASK_TM_SOME_1; 2345 } 2346 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2347 if (CCMask == SystemZ::CCMASK_CMP_LT) 2348 return SystemZ::CCMASK_TM_ALL_0; 2349 if (CCMask == SystemZ::CCMASK_CMP_GE) 2350 return SystemZ::CCMASK_TM_SOME_1; 2351 } 2352 if (EffectivelyUnsigned && CmpVal < Low) { 2353 if (CCMask == SystemZ::CCMASK_CMP_LE) 2354 return SystemZ::CCMASK_TM_ALL_0; 2355 if (CCMask == SystemZ::CCMASK_CMP_GT) 2356 return SystemZ::CCMASK_TM_SOME_1; 2357 } 2358 2359 // Check for equality comparisons with the mask, or the equivalent. 2360 if (CmpVal == Mask) { 2361 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2362 return SystemZ::CCMASK_TM_ALL_1; 2363 if (CCMask == SystemZ::CCMASK_CMP_NE) 2364 return SystemZ::CCMASK_TM_SOME_0; 2365 } 2366 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2367 if (CCMask == SystemZ::CCMASK_CMP_GT) 2368 return SystemZ::CCMASK_TM_ALL_1; 2369 if (CCMask == SystemZ::CCMASK_CMP_LE) 2370 return SystemZ::CCMASK_TM_SOME_0; 2371 } 2372 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2373 if (CCMask == SystemZ::CCMASK_CMP_GE) 2374 return SystemZ::CCMASK_TM_ALL_1; 2375 if (CCMask == SystemZ::CCMASK_CMP_LT) 2376 return SystemZ::CCMASK_TM_SOME_0; 2377 } 2378 2379 // Check for ordered comparisons with the top bit. 2380 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2381 if (CCMask == SystemZ::CCMASK_CMP_LE) 2382 return SystemZ::CCMASK_TM_MSB_0; 2383 if (CCMask == SystemZ::CCMASK_CMP_GT) 2384 return SystemZ::CCMASK_TM_MSB_1; 2385 } 2386 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2387 if (CCMask == SystemZ::CCMASK_CMP_LT) 2388 return SystemZ::CCMASK_TM_MSB_0; 2389 if (CCMask == SystemZ::CCMASK_CMP_GE) 2390 return SystemZ::CCMASK_TM_MSB_1; 2391 } 2392 2393 // If there are just two bits, we can do equality checks for Low and High 2394 // as well. 2395 if (Mask == Low + High) { 2396 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2397 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2398 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2399 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2400 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2401 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2402 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2403 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2404 } 2405 2406 // Looks like we've exhausted our options. 2407 return 0; 2408 } 2409 2410 // See whether C can be implemented as a TEST UNDER MASK instruction. 2411 // Update the arguments with the TM version if so. 2412 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2413 Comparison &C) { 2414 // Check that we have a comparison with a constant. 2415 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2416 if (!ConstOp1) 2417 return; 2418 uint64_t CmpVal = ConstOp1->getZExtValue(); 2419 2420 // Check whether the nonconstant input is an AND with a constant mask. 2421 Comparison NewC(C); 2422 uint64_t MaskVal; 2423 ConstantSDNode *Mask = nullptr; 2424 if (C.Op0.getOpcode() == ISD::AND) { 2425 NewC.Op0 = C.Op0.getOperand(0); 2426 NewC.Op1 = C.Op0.getOperand(1); 2427 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2428 if (!Mask) 2429 return; 2430 MaskVal = Mask->getZExtValue(); 2431 } else { 2432 // There is no instruction to compare with a 64-bit immediate 2433 // so use TMHH instead if possible. We need an unsigned ordered 2434 // comparison with an i64 immediate. 2435 if (NewC.Op0.getValueType() != MVT::i64 || 2436 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2437 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2438 NewC.ICmpType == SystemZICMP::SignedOnly) 2439 return; 2440 // Convert LE and GT comparisons into LT and GE. 2441 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2442 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2443 if (CmpVal == uint64_t(-1)) 2444 return; 2445 CmpVal += 1; 2446 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2447 } 2448 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2449 // be masked off without changing the result. 2450 MaskVal = -(CmpVal & -CmpVal); 2451 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2452 } 2453 if (!MaskVal) 2454 return; 2455 2456 // Check whether the combination of mask, comparison value and comparison 2457 // type are suitable. 2458 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2459 unsigned NewCCMask, ShiftVal; 2460 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2461 NewC.Op0.getOpcode() == ISD::SHL && 2462 isSimpleShift(NewC.Op0, ShiftVal) && 2463 (MaskVal >> ShiftVal != 0) && 2464 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2465 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2466 MaskVal >> ShiftVal, 2467 CmpVal >> ShiftVal, 2468 SystemZICMP::Any))) { 2469 NewC.Op0 = NewC.Op0.getOperand(0); 2470 MaskVal >>= ShiftVal; 2471 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2472 NewC.Op0.getOpcode() == ISD::SRL && 2473 isSimpleShift(NewC.Op0, ShiftVal) && 2474 (MaskVal << ShiftVal != 0) && 2475 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2476 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2477 MaskVal << ShiftVal, 2478 CmpVal << ShiftVal, 2479 SystemZICMP::UnsignedOnly))) { 2480 NewC.Op0 = NewC.Op0.getOperand(0); 2481 MaskVal <<= ShiftVal; 2482 } else { 2483 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2484 NewC.ICmpType); 2485 if (!NewCCMask) 2486 return; 2487 } 2488 2489 // Go ahead and make the change. 2490 C.Opcode = SystemZISD::TM; 2491 C.Op0 = NewC.Op0; 2492 if (Mask && Mask->getZExtValue() == MaskVal) 2493 C.Op1 = SDValue(Mask, 0); 2494 else 2495 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2496 C.CCValid = SystemZ::CCMASK_TM; 2497 C.CCMask = NewCCMask; 2498 } 2499 2500 // See whether the comparison argument contains a redundant AND 2501 // and remove it if so. This sometimes happens due to the generic 2502 // BRCOND expansion. 2503 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2504 Comparison &C) { 2505 if (C.Op0.getOpcode() != ISD::AND) 2506 return; 2507 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2508 if (!Mask) 2509 return; 2510 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2511 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2512 return; 2513 2514 C.Op0 = C.Op0.getOperand(0); 2515 } 2516 2517 // Return a Comparison that tests the condition-code result of intrinsic 2518 // node Call against constant integer CC using comparison code Cond. 2519 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2520 // and CCValid is the set of possible condition-code results. 2521 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2522 SDValue Call, unsigned CCValid, uint64_t CC, 2523 ISD::CondCode Cond) { 2524 Comparison C(Call, SDValue(), SDValue()); 2525 C.Opcode = Opcode; 2526 C.CCValid = CCValid; 2527 if (Cond == ISD::SETEQ) 2528 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2529 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2530 else if (Cond == ISD::SETNE) 2531 // ...and the inverse of that. 2532 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2533 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2534 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2535 // always true for CC>3. 2536 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2537 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2538 // ...and the inverse of that. 2539 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2540 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2541 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2542 // always true for CC>3. 2543 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2544 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2545 // ...and the inverse of that. 2546 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2547 else 2548 llvm_unreachable("Unexpected integer comparison type"); 2549 C.CCMask &= CCValid; 2550 return C; 2551 } 2552 2553 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2554 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2555 ISD::CondCode Cond, const SDLoc &DL, 2556 SDValue Chain = SDValue(), 2557 bool IsSignaling = false) { 2558 if (CmpOp1.getOpcode() == ISD::Constant) { 2559 assert(!Chain); 2560 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2561 unsigned Opcode, CCValid; 2562 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2563 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2564 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2565 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2566 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2567 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2568 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2569 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2570 } 2571 Comparison C(CmpOp0, CmpOp1, Chain); 2572 C.CCMask = CCMaskForCondCode(Cond); 2573 if (C.Op0.getValueType().isFloatingPoint()) { 2574 C.CCValid = SystemZ::CCMASK_FCMP; 2575 if (!C.Chain) 2576 C.Opcode = SystemZISD::FCMP; 2577 else if (!IsSignaling) 2578 C.Opcode = SystemZISD::STRICT_FCMP; 2579 else 2580 C.Opcode = SystemZISD::STRICT_FCMPS; 2581 adjustForFNeg(C); 2582 } else { 2583 assert(!C.Chain); 2584 C.CCValid = SystemZ::CCMASK_ICMP; 2585 C.Opcode = SystemZISD::ICMP; 2586 // Choose the type of comparison. Equality and inequality tests can 2587 // use either signed or unsigned comparisons. The choice also doesn't 2588 // matter if both sign bits are known to be clear. In those cases we 2589 // want to give the main isel code the freedom to choose whichever 2590 // form fits best. 2591 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2592 C.CCMask == SystemZ::CCMASK_CMP_NE || 2593 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2594 C.ICmpType = SystemZICMP::Any; 2595 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2596 C.ICmpType = SystemZICMP::UnsignedOnly; 2597 else 2598 C.ICmpType = SystemZICMP::SignedOnly; 2599 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2600 adjustForRedundantAnd(DAG, DL, C); 2601 adjustZeroCmp(DAG, DL, C); 2602 adjustSubwordCmp(DAG, DL, C); 2603 adjustForSubtraction(DAG, DL, C); 2604 adjustForLTGFR(C); 2605 adjustICmpTruncate(DAG, DL, C); 2606 } 2607 2608 if (shouldSwapCmpOperands(C)) { 2609 std::swap(C.Op0, C.Op1); 2610 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2611 } 2612 2613 adjustForTestUnderMask(DAG, DL, C); 2614 return C; 2615 } 2616 2617 // Emit the comparison instruction described by C. 2618 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2619 if (!C.Op1.getNode()) { 2620 SDNode *Node; 2621 switch (C.Op0.getOpcode()) { 2622 case ISD::INTRINSIC_W_CHAIN: 2623 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2624 return SDValue(Node, 0); 2625 case ISD::INTRINSIC_WO_CHAIN: 2626 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2627 return SDValue(Node, Node->getNumValues() - 1); 2628 default: 2629 llvm_unreachable("Invalid comparison operands"); 2630 } 2631 } 2632 if (C.Opcode == SystemZISD::ICMP) 2633 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2634 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2635 if (C.Opcode == SystemZISD::TM) { 2636 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2637 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2638 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2639 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2640 } 2641 if (C.Chain) { 2642 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2643 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2644 } 2645 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2646 } 2647 2648 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2649 // 64 bits. Extend is the extension type to use. Store the high part 2650 // in Hi and the low part in Lo. 2651 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2652 SDValue Op0, SDValue Op1, SDValue &Hi, 2653 SDValue &Lo) { 2654 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2655 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2656 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2657 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2658 DAG.getConstant(32, DL, MVT::i64)); 2659 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2660 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2661 } 2662 2663 // Lower a binary operation that produces two VT results, one in each 2664 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2665 // and Opcode performs the GR128 operation. Store the even register result 2666 // in Even and the odd register result in Odd. 2667 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2668 unsigned Opcode, SDValue Op0, SDValue Op1, 2669 SDValue &Even, SDValue &Odd) { 2670 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2671 bool Is32Bit = is32Bit(VT); 2672 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2673 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2674 } 2675 2676 // Return an i32 value that is 1 if the CC value produced by CCReg is 2677 // in the mask CCMask and 0 otherwise. CC is known to have a value 2678 // in CCValid, so other values can be ignored. 2679 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2680 unsigned CCValid, unsigned CCMask) { 2681 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2682 DAG.getConstant(0, DL, MVT::i32), 2683 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2684 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2685 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2686 } 2687 2688 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2689 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2690 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2691 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2692 // floating-point comparisons. 2693 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2694 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2695 switch (CC) { 2696 case ISD::SETOEQ: 2697 case ISD::SETEQ: 2698 switch (Mode) { 2699 case CmpMode::Int: return SystemZISD::VICMPE; 2700 case CmpMode::FP: return SystemZISD::VFCMPE; 2701 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2702 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2703 } 2704 llvm_unreachable("Bad mode"); 2705 2706 case ISD::SETOGE: 2707 case ISD::SETGE: 2708 switch (Mode) { 2709 case CmpMode::Int: return 0; 2710 case CmpMode::FP: return SystemZISD::VFCMPHE; 2711 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2712 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2713 } 2714 llvm_unreachable("Bad mode"); 2715 2716 case ISD::SETOGT: 2717 case ISD::SETGT: 2718 switch (Mode) { 2719 case CmpMode::Int: return SystemZISD::VICMPH; 2720 case CmpMode::FP: return SystemZISD::VFCMPH; 2721 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2722 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2723 } 2724 llvm_unreachable("Bad mode"); 2725 2726 case ISD::SETUGT: 2727 switch (Mode) { 2728 case CmpMode::Int: return SystemZISD::VICMPHL; 2729 case CmpMode::FP: return 0; 2730 case CmpMode::StrictFP: return 0; 2731 case CmpMode::SignalingFP: return 0; 2732 } 2733 llvm_unreachable("Bad mode"); 2734 2735 default: 2736 return 0; 2737 } 2738 } 2739 2740 // Return the SystemZISD vector comparison operation for CC or its inverse, 2741 // or 0 if neither can be done directly. Indicate in Invert whether the 2742 // result is for the inverse of CC. Mode is as above. 2743 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2744 bool &Invert) { 2745 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2746 Invert = false; 2747 return Opcode; 2748 } 2749 2750 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2751 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2752 Invert = true; 2753 return Opcode; 2754 } 2755 2756 return 0; 2757 } 2758 2759 // Return a v2f64 that contains the extended form of elements Start and Start+1 2760 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2761 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2762 SDValue Op, SDValue Chain) { 2763 int Mask[] = { Start, -1, Start + 1, -1 }; 2764 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2765 if (Chain) { 2766 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2767 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2768 } 2769 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2770 } 2771 2772 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2773 // producing a result of type VT. If Chain is nonnull, return the strict form. 2774 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2775 const SDLoc &DL, EVT VT, 2776 SDValue CmpOp0, 2777 SDValue CmpOp1, 2778 SDValue Chain) const { 2779 // There is no hardware support for v4f32 (unless we have the vector 2780 // enhancements facility 1), so extend the vector into two v2f64s 2781 // and compare those. 2782 if (CmpOp0.getValueType() == MVT::v4f32 && 2783 !Subtarget.hasVectorEnhancements1()) { 2784 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2785 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2786 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2787 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2788 if (Chain) { 2789 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2790 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2791 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2792 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2793 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2794 H1.getValue(1), L1.getValue(1), 2795 HRes.getValue(1), LRes.getValue(1) }; 2796 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2797 SDValue Ops[2] = { Res, NewChain }; 2798 return DAG.getMergeValues(Ops, DL); 2799 } 2800 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2801 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2802 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2803 } 2804 if (Chain) { 2805 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2806 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2807 } 2808 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2809 } 2810 2811 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2812 // an integer mask of type VT. If Chain is nonnull, we have a strict 2813 // floating-point comparison. If in addition IsSignaling is true, we have 2814 // a strict signaling floating-point comparison. 2815 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2816 const SDLoc &DL, EVT VT, 2817 ISD::CondCode CC, 2818 SDValue CmpOp0, 2819 SDValue CmpOp1, 2820 SDValue Chain, 2821 bool IsSignaling) const { 2822 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2823 assert (!Chain || IsFP); 2824 assert (!IsSignaling || Chain); 2825 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2826 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2827 bool Invert = false; 2828 SDValue Cmp; 2829 switch (CC) { 2830 // Handle tests for order using (or (ogt y x) (oge x y)). 2831 case ISD::SETUO: 2832 Invert = true; 2833 LLVM_FALLTHROUGH; 2834 case ISD::SETO: { 2835 assert(IsFP && "Unexpected integer comparison"); 2836 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2837 DL, VT, CmpOp1, CmpOp0, Chain); 2838 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2839 DL, VT, CmpOp0, CmpOp1, Chain); 2840 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2841 if (Chain) 2842 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2843 LT.getValue(1), GE.getValue(1)); 2844 break; 2845 } 2846 2847 // Handle <> tests using (or (ogt y x) (ogt x y)). 2848 case ISD::SETUEQ: 2849 Invert = true; 2850 LLVM_FALLTHROUGH; 2851 case ISD::SETONE: { 2852 assert(IsFP && "Unexpected integer comparison"); 2853 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2854 DL, VT, CmpOp1, CmpOp0, Chain); 2855 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2856 DL, VT, CmpOp0, CmpOp1, Chain); 2857 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2858 if (Chain) 2859 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2860 LT.getValue(1), GT.getValue(1)); 2861 break; 2862 } 2863 2864 // Otherwise a single comparison is enough. It doesn't really 2865 // matter whether we try the inversion or the swap first, since 2866 // there are no cases where both work. 2867 default: 2868 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2869 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2870 else { 2871 CC = ISD::getSetCCSwappedOperands(CC); 2872 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2873 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2874 else 2875 llvm_unreachable("Unhandled comparison"); 2876 } 2877 if (Chain) 2878 Chain = Cmp.getValue(1); 2879 break; 2880 } 2881 if (Invert) { 2882 SDValue Mask = 2883 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2884 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2885 } 2886 if (Chain && Chain.getNode() != Cmp.getNode()) { 2887 SDValue Ops[2] = { Cmp, Chain }; 2888 Cmp = DAG.getMergeValues(Ops, DL); 2889 } 2890 return Cmp; 2891 } 2892 2893 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2894 SelectionDAG &DAG) const { 2895 SDValue CmpOp0 = Op.getOperand(0); 2896 SDValue CmpOp1 = Op.getOperand(1); 2897 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2898 SDLoc DL(Op); 2899 EVT VT = Op.getValueType(); 2900 if (VT.isVector()) 2901 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2902 2903 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2904 SDValue CCReg = emitCmp(DAG, DL, C); 2905 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2906 } 2907 2908 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2909 SelectionDAG &DAG, 2910 bool IsSignaling) const { 2911 SDValue Chain = Op.getOperand(0); 2912 SDValue CmpOp0 = Op.getOperand(1); 2913 SDValue CmpOp1 = Op.getOperand(2); 2914 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2915 SDLoc DL(Op); 2916 EVT VT = Op.getNode()->getValueType(0); 2917 if (VT.isVector()) { 2918 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2919 Chain, IsSignaling); 2920 return Res.getValue(Op.getResNo()); 2921 } 2922 2923 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2924 SDValue CCReg = emitCmp(DAG, DL, C); 2925 CCReg->setFlags(Op->getFlags()); 2926 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2927 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2928 return DAG.getMergeValues(Ops, DL); 2929 } 2930 2931 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2932 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2933 SDValue CmpOp0 = Op.getOperand(2); 2934 SDValue CmpOp1 = Op.getOperand(3); 2935 SDValue Dest = Op.getOperand(4); 2936 SDLoc DL(Op); 2937 2938 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2939 SDValue CCReg = emitCmp(DAG, DL, C); 2940 return DAG.getNode( 2941 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2942 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2943 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2944 } 2945 2946 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2947 // allowing Pos and Neg to be wider than CmpOp. 2948 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2949 return (Neg.getOpcode() == ISD::SUB && 2950 Neg.getOperand(0).getOpcode() == ISD::Constant && 2951 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2952 Neg.getOperand(1) == Pos && 2953 (Pos == CmpOp || 2954 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2955 Pos.getOperand(0) == CmpOp))); 2956 } 2957 2958 // Return the absolute or negative absolute of Op; IsNegative decides which. 2959 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2960 bool IsNegative) { 2961 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2962 if (IsNegative) 2963 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2964 DAG.getConstant(0, DL, Op.getValueType()), Op); 2965 return Op; 2966 } 2967 2968 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2969 SelectionDAG &DAG) const { 2970 SDValue CmpOp0 = Op.getOperand(0); 2971 SDValue CmpOp1 = Op.getOperand(1); 2972 SDValue TrueOp = Op.getOperand(2); 2973 SDValue FalseOp = Op.getOperand(3); 2974 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2975 SDLoc DL(Op); 2976 2977 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2978 2979 // Check for absolute and negative-absolute selections, including those 2980 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2981 // This check supplements the one in DAGCombiner. 2982 if (C.Opcode == SystemZISD::ICMP && 2983 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2984 C.CCMask != SystemZ::CCMASK_CMP_NE && 2985 C.Op1.getOpcode() == ISD::Constant && 2986 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2987 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2988 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2989 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2990 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2991 } 2992 2993 SDValue CCReg = emitCmp(DAG, DL, C); 2994 SDValue Ops[] = {TrueOp, FalseOp, 2995 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2996 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2997 2998 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2999 } 3000 3001 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3002 SelectionDAG &DAG) const { 3003 SDLoc DL(Node); 3004 const GlobalValue *GV = Node->getGlobal(); 3005 int64_t Offset = Node->getOffset(); 3006 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3007 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3008 3009 SDValue Result; 3010 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3011 if (isInt<32>(Offset)) { 3012 // Assign anchors at 1<<12 byte boundaries. 3013 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3014 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3015 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3016 3017 // The offset can be folded into the address if it is aligned to a 3018 // halfword. 3019 Offset -= Anchor; 3020 if (Offset != 0 && (Offset & 1) == 0) { 3021 SDValue Full = 3022 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3023 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3024 Offset = 0; 3025 } 3026 } else { 3027 // Conservatively load a constant offset greater than 32 bits into a 3028 // register below. 3029 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3030 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3031 } 3032 } else { 3033 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3034 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3035 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3036 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3037 } 3038 3039 // If there was a non-zero offset that we didn't fold, create an explicit 3040 // addition for it. 3041 if (Offset != 0) 3042 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3043 DAG.getConstant(Offset, DL, PtrVT)); 3044 3045 return Result; 3046 } 3047 3048 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3049 SelectionDAG &DAG, 3050 unsigned Opcode, 3051 SDValue GOTOffset) const { 3052 SDLoc DL(Node); 3053 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3054 SDValue Chain = DAG.getEntryNode(); 3055 SDValue Glue; 3056 3057 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3058 CallingConv::GHC) 3059 report_fatal_error("In GHC calling convention TLS is not supported"); 3060 3061 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3062 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3063 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3064 Glue = Chain.getValue(1); 3065 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3066 Glue = Chain.getValue(1); 3067 3068 // The first call operand is the chain and the second is the TLS symbol. 3069 SmallVector<SDValue, 8> Ops; 3070 Ops.push_back(Chain); 3071 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3072 Node->getValueType(0), 3073 0, 0)); 3074 3075 // Add argument registers to the end of the list so that they are 3076 // known live into the call. 3077 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3078 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3079 3080 // Add a register mask operand representing the call-preserved registers. 3081 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3082 const uint32_t *Mask = 3083 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3084 assert(Mask && "Missing call preserved mask for calling convention"); 3085 Ops.push_back(DAG.getRegisterMask(Mask)); 3086 3087 // Glue the call to the argument copies. 3088 Ops.push_back(Glue); 3089 3090 // Emit the call. 3091 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3092 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3093 Glue = Chain.getValue(1); 3094 3095 // Copy the return value from %r2. 3096 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3097 } 3098 3099 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3100 SelectionDAG &DAG) const { 3101 SDValue Chain = DAG.getEntryNode(); 3102 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3103 3104 // The high part of the thread pointer is in access register 0. 3105 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3106 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3107 3108 // The low part of the thread pointer is in access register 1. 3109 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3110 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3111 3112 // Merge them into a single 64-bit address. 3113 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3114 DAG.getConstant(32, DL, PtrVT)); 3115 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3116 } 3117 3118 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3119 SelectionDAG &DAG) const { 3120 if (DAG.getTarget().useEmulatedTLS()) 3121 return LowerToTLSEmulatedModel(Node, DAG); 3122 SDLoc DL(Node); 3123 const GlobalValue *GV = Node->getGlobal(); 3124 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3125 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3126 3127 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3128 CallingConv::GHC) 3129 report_fatal_error("In GHC calling convention TLS is not supported"); 3130 3131 SDValue TP = lowerThreadPointer(DL, DAG); 3132 3133 // Get the offset of GA from the thread pointer, based on the TLS model. 3134 SDValue Offset; 3135 switch (model) { 3136 case TLSModel::GeneralDynamic: { 3137 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3138 SystemZConstantPoolValue *CPV = 3139 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3140 3141 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3142 Offset = DAG.getLoad( 3143 PtrVT, DL, DAG.getEntryNode(), Offset, 3144 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3145 3146 // Call __tls_get_offset to retrieve the offset. 3147 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3148 break; 3149 } 3150 3151 case TLSModel::LocalDynamic: { 3152 // Load the GOT offset of the module ID. 3153 SystemZConstantPoolValue *CPV = 3154 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3155 3156 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3157 Offset = DAG.getLoad( 3158 PtrVT, DL, DAG.getEntryNode(), Offset, 3159 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3160 3161 // Call __tls_get_offset to retrieve the module base offset. 3162 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3163 3164 // Note: The SystemZLDCleanupPass will remove redundant computations 3165 // of the module base offset. Count total number of local-dynamic 3166 // accesses to trigger execution of that pass. 3167 SystemZMachineFunctionInfo* MFI = 3168 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3169 MFI->incNumLocalDynamicTLSAccesses(); 3170 3171 // Add the per-symbol offset. 3172 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3173 3174 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3175 DTPOffset = DAG.getLoad( 3176 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3177 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3178 3179 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3180 break; 3181 } 3182 3183 case TLSModel::InitialExec: { 3184 // Load the offset from the GOT. 3185 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3186 SystemZII::MO_INDNTPOFF); 3187 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3188 Offset = 3189 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3190 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3191 break; 3192 } 3193 3194 case TLSModel::LocalExec: { 3195 // Force the offset into the constant pool and load it from there. 3196 SystemZConstantPoolValue *CPV = 3197 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3198 3199 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3200 Offset = DAG.getLoad( 3201 PtrVT, DL, DAG.getEntryNode(), Offset, 3202 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3203 break; 3204 } 3205 } 3206 3207 // Add the base and offset together. 3208 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3209 } 3210 3211 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3212 SelectionDAG &DAG) const { 3213 SDLoc DL(Node); 3214 const BlockAddress *BA = Node->getBlockAddress(); 3215 int64_t Offset = Node->getOffset(); 3216 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3217 3218 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3219 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3220 return Result; 3221 } 3222 3223 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3224 SelectionDAG &DAG) const { 3225 SDLoc DL(JT); 3226 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3227 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3228 3229 // Use LARL to load the address of the table. 3230 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3231 } 3232 3233 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3234 SelectionDAG &DAG) const { 3235 SDLoc DL(CP); 3236 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3237 3238 SDValue Result; 3239 if (CP->isMachineConstantPoolEntry()) 3240 Result = 3241 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3242 else 3243 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3244 CP->getOffset()); 3245 3246 // Use LARL to load the address of the constant pool entry. 3247 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3248 } 3249 3250 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3251 SelectionDAG &DAG) const { 3252 auto *TFL = 3253 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3254 MachineFunction &MF = DAG.getMachineFunction(); 3255 MachineFrameInfo &MFI = MF.getFrameInfo(); 3256 MFI.setFrameAddressIsTaken(true); 3257 3258 SDLoc DL(Op); 3259 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3260 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3261 3262 // Return null if the back chain is not present. 3263 bool HasBackChain = MF.getFunction().hasFnAttribute("backchain"); 3264 if (TFL->usePackedStack(MF) && !HasBackChain) 3265 return DAG.getConstant(0, DL, PtrVT); 3266 3267 // By definition, the frame address is the address of the back chain. 3268 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3269 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3270 3271 // FIXME The frontend should detect this case. 3272 if (Depth > 0) { 3273 report_fatal_error("Unsupported stack frame traversal count"); 3274 } 3275 3276 return BackChain; 3277 } 3278 3279 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3280 SelectionDAG &DAG) const { 3281 MachineFunction &MF = DAG.getMachineFunction(); 3282 MachineFrameInfo &MFI = MF.getFrameInfo(); 3283 MFI.setReturnAddressIsTaken(true); 3284 3285 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3286 return SDValue(); 3287 3288 SDLoc DL(Op); 3289 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3290 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3291 3292 // FIXME The frontend should detect this case. 3293 if (Depth > 0) { 3294 report_fatal_error("Unsupported stack frame traversal count"); 3295 } 3296 3297 // Return R14D, which has the return address. Mark it an implicit live-in. 3298 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3299 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3300 } 3301 3302 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3303 SelectionDAG &DAG) const { 3304 SDLoc DL(Op); 3305 SDValue In = Op.getOperand(0); 3306 EVT InVT = In.getValueType(); 3307 EVT ResVT = Op.getValueType(); 3308 3309 // Convert loads directly. This is normally done by DAGCombiner, 3310 // but we need this case for bitcasts that are created during lowering 3311 // and which are then lowered themselves. 3312 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3313 if (ISD::isNormalLoad(LoadN)) { 3314 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3315 LoadN->getBasePtr(), LoadN->getMemOperand()); 3316 // Update the chain uses. 3317 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3318 return NewLoad; 3319 } 3320 3321 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3322 SDValue In64; 3323 if (Subtarget.hasHighWord()) { 3324 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3325 MVT::i64); 3326 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3327 MVT::i64, SDValue(U64, 0), In); 3328 } else { 3329 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3330 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3331 DAG.getConstant(32, DL, MVT::i64)); 3332 } 3333 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3334 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3335 DL, MVT::f32, Out64); 3336 } 3337 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3338 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3339 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3340 MVT::f64, SDValue(U64, 0), In); 3341 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3342 if (Subtarget.hasHighWord()) 3343 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3344 MVT::i32, Out64); 3345 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3346 DAG.getConstant(32, DL, MVT::i64)); 3347 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3348 } 3349 llvm_unreachable("Unexpected bitcast combination"); 3350 } 3351 3352 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3353 SelectionDAG &DAG) const { 3354 MachineFunction &MF = DAG.getMachineFunction(); 3355 SystemZMachineFunctionInfo *FuncInfo = 3356 MF.getInfo<SystemZMachineFunctionInfo>(); 3357 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3358 3359 SDValue Chain = Op.getOperand(0); 3360 SDValue Addr = Op.getOperand(1); 3361 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3362 SDLoc DL(Op); 3363 3364 // The initial values of each field. 3365 const unsigned NumFields = 4; 3366 SDValue Fields[NumFields] = { 3367 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3368 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3369 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3370 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3371 }; 3372 3373 // Store each field into its respective slot. 3374 SDValue MemOps[NumFields]; 3375 unsigned Offset = 0; 3376 for (unsigned I = 0; I < NumFields; ++I) { 3377 SDValue FieldAddr = Addr; 3378 if (Offset != 0) 3379 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3380 DAG.getIntPtrConstant(Offset, DL)); 3381 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3382 MachinePointerInfo(SV, Offset)); 3383 Offset += 8; 3384 } 3385 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3386 } 3387 3388 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3389 SelectionDAG &DAG) const { 3390 SDValue Chain = Op.getOperand(0); 3391 SDValue DstPtr = Op.getOperand(1); 3392 SDValue SrcPtr = Op.getOperand(2); 3393 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3394 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3395 SDLoc DL(Op); 3396 3397 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3398 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3399 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3400 MachinePointerInfo(SrcSV)); 3401 } 3402 3403 SDValue SystemZTargetLowering:: 3404 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3405 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3406 MachineFunction &MF = DAG.getMachineFunction(); 3407 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3408 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3409 3410 SDValue Chain = Op.getOperand(0); 3411 SDValue Size = Op.getOperand(1); 3412 SDValue Align = Op.getOperand(2); 3413 SDLoc DL(Op); 3414 3415 // If user has set the no alignment function attribute, ignore 3416 // alloca alignments. 3417 uint64_t AlignVal = (RealignOpt ? 3418 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3419 3420 uint64_t StackAlign = TFI->getStackAlignment(); 3421 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3422 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3423 3424 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3425 SDValue NeededSpace = Size; 3426 3427 // Get a reference to the stack pointer. 3428 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3429 3430 // If we need a backchain, save it now. 3431 SDValue Backchain; 3432 if (StoreBackchain) 3433 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3434 3435 // Add extra space for alignment if needed. 3436 if (ExtraAlignSpace) 3437 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3438 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3439 3440 // Get the new stack pointer value. 3441 SDValue NewSP; 3442 if (hasInlineStackProbe(MF)) { 3443 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3444 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3445 Chain = NewSP.getValue(1); 3446 } 3447 else { 3448 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3449 // Copy the new stack pointer back. 3450 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3451 } 3452 3453 // The allocated data lives above the 160 bytes allocated for the standard 3454 // frame, plus any outgoing stack arguments. We don't know how much that 3455 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3456 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3457 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3458 3459 // Dynamically realign if needed. 3460 if (RequiredAlign > StackAlign) { 3461 Result = 3462 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3463 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3464 Result = 3465 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3466 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3467 } 3468 3469 if (StoreBackchain) 3470 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3471 3472 SDValue Ops[2] = { Result, Chain }; 3473 return DAG.getMergeValues(Ops, DL); 3474 } 3475 3476 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3477 SDValue Op, SelectionDAG &DAG) const { 3478 SDLoc DL(Op); 3479 3480 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3481 } 3482 3483 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3484 SelectionDAG &DAG) const { 3485 EVT VT = Op.getValueType(); 3486 SDLoc DL(Op); 3487 SDValue Ops[2]; 3488 if (is32Bit(VT)) 3489 // Just do a normal 64-bit multiplication and extract the results. 3490 // We define this so that it can be used for constant division. 3491 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3492 Op.getOperand(1), Ops[1], Ops[0]); 3493 else if (Subtarget.hasMiscellaneousExtensions2()) 3494 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3495 // the high result in the even register. ISD::SMUL_LOHI is defined to 3496 // return the low half first, so the results are in reverse order. 3497 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3498 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3499 else { 3500 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3501 // 3502 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3503 // 3504 // but using the fact that the upper halves are either all zeros 3505 // or all ones: 3506 // 3507 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3508 // 3509 // and grouping the right terms together since they are quicker than the 3510 // multiplication: 3511 // 3512 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3513 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3514 SDValue LL = Op.getOperand(0); 3515 SDValue RL = Op.getOperand(1); 3516 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3517 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3518 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3519 // the high result in the even register. ISD::SMUL_LOHI is defined to 3520 // return the low half first, so the results are in reverse order. 3521 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3522 LL, RL, Ops[1], Ops[0]); 3523 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3524 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3525 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3526 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3527 } 3528 return DAG.getMergeValues(Ops, DL); 3529 } 3530 3531 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3532 SelectionDAG &DAG) const { 3533 EVT VT = Op.getValueType(); 3534 SDLoc DL(Op); 3535 SDValue Ops[2]; 3536 if (is32Bit(VT)) 3537 // Just do a normal 64-bit multiplication and extract the results. 3538 // We define this so that it can be used for constant division. 3539 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3540 Op.getOperand(1), Ops[1], Ops[0]); 3541 else 3542 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3543 // the high result in the even register. ISD::UMUL_LOHI is defined to 3544 // return the low half first, so the results are in reverse order. 3545 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3546 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3547 return DAG.getMergeValues(Ops, DL); 3548 } 3549 3550 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3551 SelectionDAG &DAG) const { 3552 SDValue Op0 = Op.getOperand(0); 3553 SDValue Op1 = Op.getOperand(1); 3554 EVT VT = Op.getValueType(); 3555 SDLoc DL(Op); 3556 3557 // We use DSGF for 32-bit division. This means the first operand must 3558 // always be 64-bit, and the second operand should be 32-bit whenever 3559 // that is possible, to improve performance. 3560 if (is32Bit(VT)) 3561 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3562 else if (DAG.ComputeNumSignBits(Op1) > 32) 3563 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3564 3565 // DSG(F) returns the remainder in the even register and the 3566 // quotient in the odd register. 3567 SDValue Ops[2]; 3568 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3569 return DAG.getMergeValues(Ops, DL); 3570 } 3571 3572 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3573 SelectionDAG &DAG) const { 3574 EVT VT = Op.getValueType(); 3575 SDLoc DL(Op); 3576 3577 // DL(G) returns the remainder in the even register and the 3578 // quotient in the odd register. 3579 SDValue Ops[2]; 3580 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3581 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3582 return DAG.getMergeValues(Ops, DL); 3583 } 3584 3585 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3586 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3587 3588 // Get the known-zero masks for each operand. 3589 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3590 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3591 DAG.computeKnownBits(Ops[1])}; 3592 3593 // See if the upper 32 bits of one operand and the lower 32 bits of the 3594 // other are known zero. They are the low and high operands respectively. 3595 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3596 Known[1].Zero.getZExtValue() }; 3597 unsigned High, Low; 3598 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3599 High = 1, Low = 0; 3600 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3601 High = 0, Low = 1; 3602 else 3603 return Op; 3604 3605 SDValue LowOp = Ops[Low]; 3606 SDValue HighOp = Ops[High]; 3607 3608 // If the high part is a constant, we're better off using IILH. 3609 if (HighOp.getOpcode() == ISD::Constant) 3610 return Op; 3611 3612 // If the low part is a constant that is outside the range of LHI, 3613 // then we're better off using IILF. 3614 if (LowOp.getOpcode() == ISD::Constant) { 3615 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3616 if (!isInt<16>(Value)) 3617 return Op; 3618 } 3619 3620 // Check whether the high part is an AND that doesn't change the 3621 // high 32 bits and just masks out low bits. We can skip it if so. 3622 if (HighOp.getOpcode() == ISD::AND && 3623 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3624 SDValue HighOp0 = HighOp.getOperand(0); 3625 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3626 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3627 HighOp = HighOp0; 3628 } 3629 3630 // Take advantage of the fact that all GR32 operations only change the 3631 // low 32 bits by truncating Low to an i32 and inserting it directly 3632 // using a subreg. The interesting cases are those where the truncation 3633 // can be folded. 3634 SDLoc DL(Op); 3635 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3636 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3637 MVT::i64, HighOp, Low32); 3638 } 3639 3640 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3641 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3642 SelectionDAG &DAG) const { 3643 SDNode *N = Op.getNode(); 3644 SDValue LHS = N->getOperand(0); 3645 SDValue RHS = N->getOperand(1); 3646 SDLoc DL(N); 3647 unsigned BaseOp = 0; 3648 unsigned CCValid = 0; 3649 unsigned CCMask = 0; 3650 3651 switch (Op.getOpcode()) { 3652 default: llvm_unreachable("Unknown instruction!"); 3653 case ISD::SADDO: 3654 BaseOp = SystemZISD::SADDO; 3655 CCValid = SystemZ::CCMASK_ARITH; 3656 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3657 break; 3658 case ISD::SSUBO: 3659 BaseOp = SystemZISD::SSUBO; 3660 CCValid = SystemZ::CCMASK_ARITH; 3661 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3662 break; 3663 case ISD::UADDO: 3664 BaseOp = SystemZISD::UADDO; 3665 CCValid = SystemZ::CCMASK_LOGICAL; 3666 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3667 break; 3668 case ISD::USUBO: 3669 BaseOp = SystemZISD::USUBO; 3670 CCValid = SystemZ::CCMASK_LOGICAL; 3671 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3672 break; 3673 } 3674 3675 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3676 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3677 3678 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3679 if (N->getValueType(1) == MVT::i1) 3680 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3681 3682 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3683 } 3684 3685 static bool isAddCarryChain(SDValue Carry) { 3686 while (Carry.getOpcode() == ISD::ADDCARRY) 3687 Carry = Carry.getOperand(2); 3688 return Carry.getOpcode() == ISD::UADDO; 3689 } 3690 3691 static bool isSubBorrowChain(SDValue Carry) { 3692 while (Carry.getOpcode() == ISD::SUBCARRY) 3693 Carry = Carry.getOperand(2); 3694 return Carry.getOpcode() == ISD::USUBO; 3695 } 3696 3697 // Lower ADDCARRY/SUBCARRY nodes. 3698 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3699 SelectionDAG &DAG) const { 3700 3701 SDNode *N = Op.getNode(); 3702 MVT VT = N->getSimpleValueType(0); 3703 3704 // Let legalize expand this if it isn't a legal type yet. 3705 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3706 return SDValue(); 3707 3708 SDValue LHS = N->getOperand(0); 3709 SDValue RHS = N->getOperand(1); 3710 SDValue Carry = Op.getOperand(2); 3711 SDLoc DL(N); 3712 unsigned BaseOp = 0; 3713 unsigned CCValid = 0; 3714 unsigned CCMask = 0; 3715 3716 switch (Op.getOpcode()) { 3717 default: llvm_unreachable("Unknown instruction!"); 3718 case ISD::ADDCARRY: 3719 if (!isAddCarryChain(Carry)) 3720 return SDValue(); 3721 3722 BaseOp = SystemZISD::ADDCARRY; 3723 CCValid = SystemZ::CCMASK_LOGICAL; 3724 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3725 break; 3726 case ISD::SUBCARRY: 3727 if (!isSubBorrowChain(Carry)) 3728 return SDValue(); 3729 3730 BaseOp = SystemZISD::SUBCARRY; 3731 CCValid = SystemZ::CCMASK_LOGICAL; 3732 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3733 break; 3734 } 3735 3736 // Set the condition code from the carry flag. 3737 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3738 DAG.getConstant(CCValid, DL, MVT::i32), 3739 DAG.getConstant(CCMask, DL, MVT::i32)); 3740 3741 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3742 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3743 3744 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3745 if (N->getValueType(1) == MVT::i1) 3746 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3747 3748 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3749 } 3750 3751 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3752 SelectionDAG &DAG) const { 3753 EVT VT = Op.getValueType(); 3754 SDLoc DL(Op); 3755 Op = Op.getOperand(0); 3756 3757 // Handle vector types via VPOPCT. 3758 if (VT.isVector()) { 3759 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3760 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3761 switch (VT.getScalarSizeInBits()) { 3762 case 8: 3763 break; 3764 case 16: { 3765 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3766 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3767 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3768 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3769 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3770 break; 3771 } 3772 case 32: { 3773 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3774 DAG.getConstant(0, DL, MVT::i32)); 3775 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3776 break; 3777 } 3778 case 64: { 3779 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3780 DAG.getConstant(0, DL, MVT::i32)); 3781 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3782 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3783 break; 3784 } 3785 default: 3786 llvm_unreachable("Unexpected type"); 3787 } 3788 return Op; 3789 } 3790 3791 // Get the known-zero mask for the operand. 3792 KnownBits Known = DAG.computeKnownBits(Op); 3793 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3794 if (NumSignificantBits == 0) 3795 return DAG.getConstant(0, DL, VT); 3796 3797 // Skip known-zero high parts of the operand. 3798 int64_t OrigBitSize = VT.getSizeInBits(); 3799 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3800 BitSize = std::min(BitSize, OrigBitSize); 3801 3802 // The POPCNT instruction counts the number of bits in each byte. 3803 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3804 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3805 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3806 3807 // Add up per-byte counts in a binary tree. All bits of Op at 3808 // position larger than BitSize remain zero throughout. 3809 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3810 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3811 if (BitSize != OrigBitSize) 3812 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3813 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3814 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3815 } 3816 3817 // Extract overall result from high byte. 3818 if (BitSize > 8) 3819 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3820 DAG.getConstant(BitSize - 8, DL, VT)); 3821 3822 return Op; 3823 } 3824 3825 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3826 SelectionDAG &DAG) const { 3827 SDLoc DL(Op); 3828 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3829 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3830 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3831 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3832 3833 // The only fence that needs an instruction is a sequentially-consistent 3834 // cross-thread fence. 3835 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3836 FenceSSID == SyncScope::System) { 3837 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3838 Op.getOperand(0)), 3839 0); 3840 } 3841 3842 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3843 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3844 } 3845 3846 // Op is an atomic load. Lower it into a normal volatile load. 3847 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3848 SelectionDAG &DAG) const { 3849 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3850 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3851 Node->getChain(), Node->getBasePtr(), 3852 Node->getMemoryVT(), Node->getMemOperand()); 3853 } 3854 3855 // Op is an atomic store. Lower it into a normal volatile store. 3856 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3857 SelectionDAG &DAG) const { 3858 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3859 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3860 Node->getBasePtr(), Node->getMemoryVT(), 3861 Node->getMemOperand()); 3862 // We have to enforce sequential consistency by performing a 3863 // serialization operation after the store. 3864 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3865 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3866 MVT::Other, Chain), 0); 3867 return Chain; 3868 } 3869 3870 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3871 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3872 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3873 SelectionDAG &DAG, 3874 unsigned Opcode) const { 3875 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3876 3877 // 32-bit operations need no code outside the main loop. 3878 EVT NarrowVT = Node->getMemoryVT(); 3879 EVT WideVT = MVT::i32; 3880 if (NarrowVT == WideVT) 3881 return Op; 3882 3883 int64_t BitSize = NarrowVT.getSizeInBits(); 3884 SDValue ChainIn = Node->getChain(); 3885 SDValue Addr = Node->getBasePtr(); 3886 SDValue Src2 = Node->getVal(); 3887 MachineMemOperand *MMO = Node->getMemOperand(); 3888 SDLoc DL(Node); 3889 EVT PtrVT = Addr.getValueType(); 3890 3891 // Convert atomic subtracts of constants into additions. 3892 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3893 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3894 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3895 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3896 } 3897 3898 // Get the address of the containing word. 3899 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3900 DAG.getConstant(-4, DL, PtrVT)); 3901 3902 // Get the number of bits that the word must be rotated left in order 3903 // to bring the field to the top bits of a GR32. 3904 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3905 DAG.getConstant(3, DL, PtrVT)); 3906 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3907 3908 // Get the complementing shift amount, for rotating a field in the top 3909 // bits back to its proper position. 3910 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3911 DAG.getConstant(0, DL, WideVT), BitShift); 3912 3913 // Extend the source operand to 32 bits and prepare it for the inner loop. 3914 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3915 // operations require the source to be shifted in advance. (This shift 3916 // can be folded if the source is constant.) For AND and NAND, the lower 3917 // bits must be set, while for other opcodes they should be left clear. 3918 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3919 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3920 DAG.getConstant(32 - BitSize, DL, WideVT)); 3921 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3922 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3923 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3924 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3925 3926 // Construct the ATOMIC_LOADW_* node. 3927 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3928 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3929 DAG.getConstant(BitSize, DL, WideVT) }; 3930 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3931 NarrowVT, MMO); 3932 3933 // Rotate the result of the final CS so that the field is in the lower 3934 // bits of a GR32, then truncate it. 3935 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3936 DAG.getConstant(BitSize, DL, WideVT)); 3937 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3938 3939 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3940 return DAG.getMergeValues(RetOps, DL); 3941 } 3942 3943 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3944 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3945 // operations into additions. 3946 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3947 SelectionDAG &DAG) const { 3948 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3949 EVT MemVT = Node->getMemoryVT(); 3950 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3951 // A full-width operation. 3952 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3953 SDValue Src2 = Node->getVal(); 3954 SDValue NegSrc2; 3955 SDLoc DL(Src2); 3956 3957 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3958 // Use an addition if the operand is constant and either LAA(G) is 3959 // available or the negative value is in the range of A(G)FHI. 3960 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3961 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3962 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3963 } else if (Subtarget.hasInterlockedAccess1()) 3964 // Use LAA(G) if available. 3965 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3966 Src2); 3967 3968 if (NegSrc2.getNode()) 3969 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3970 Node->getChain(), Node->getBasePtr(), NegSrc2, 3971 Node->getMemOperand()); 3972 3973 // Use the node as-is. 3974 return Op; 3975 } 3976 3977 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3978 } 3979 3980 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3981 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3982 SelectionDAG &DAG) const { 3983 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3984 SDValue ChainIn = Node->getOperand(0); 3985 SDValue Addr = Node->getOperand(1); 3986 SDValue CmpVal = Node->getOperand(2); 3987 SDValue SwapVal = Node->getOperand(3); 3988 MachineMemOperand *MMO = Node->getMemOperand(); 3989 SDLoc DL(Node); 3990 3991 // We have native support for 32-bit and 64-bit compare and swap, but we 3992 // still need to expand extracting the "success" result from the CC. 3993 EVT NarrowVT = Node->getMemoryVT(); 3994 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3995 if (NarrowVT == WideVT) { 3996 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3997 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3998 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3999 DL, Tys, Ops, NarrowVT, MMO); 4000 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4001 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4002 4003 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4004 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4005 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4006 return SDValue(); 4007 } 4008 4009 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4010 // via a fullword ATOMIC_CMP_SWAPW operation. 4011 int64_t BitSize = NarrowVT.getSizeInBits(); 4012 EVT PtrVT = Addr.getValueType(); 4013 4014 // Get the address of the containing word. 4015 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4016 DAG.getConstant(-4, DL, PtrVT)); 4017 4018 // Get the number of bits that the word must be rotated left in order 4019 // to bring the field to the top bits of a GR32. 4020 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4021 DAG.getConstant(3, DL, PtrVT)); 4022 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4023 4024 // Get the complementing shift amount, for rotating a field in the top 4025 // bits back to its proper position. 4026 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4027 DAG.getConstant(0, DL, WideVT), BitShift); 4028 4029 // Construct the ATOMIC_CMP_SWAPW node. 4030 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4031 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4032 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4033 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4034 VTList, Ops, NarrowVT, MMO); 4035 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4036 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4037 4038 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4039 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4040 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4041 return SDValue(); 4042 } 4043 4044 MachineMemOperand::Flags 4045 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4046 // Because of how we convert atomic_load and atomic_store to normal loads and 4047 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4048 // since DAGCombine hasn't been updated to account for atomic, but non 4049 // volatile loads. (See D57601) 4050 if (auto *SI = dyn_cast<StoreInst>(&I)) 4051 if (SI->isAtomic()) 4052 return MachineMemOperand::MOVolatile; 4053 if (auto *LI = dyn_cast<LoadInst>(&I)) 4054 if (LI->isAtomic()) 4055 return MachineMemOperand::MOVolatile; 4056 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4057 if (AI->isAtomic()) 4058 return MachineMemOperand::MOVolatile; 4059 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4060 if (AI->isAtomic()) 4061 return MachineMemOperand::MOVolatile; 4062 return MachineMemOperand::MONone; 4063 } 4064 4065 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4066 SelectionDAG &DAG) const { 4067 MachineFunction &MF = DAG.getMachineFunction(); 4068 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4069 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4070 report_fatal_error("Variable-sized stack allocations are not supported " 4071 "in GHC calling convention"); 4072 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4073 SystemZ::R15D, Op.getValueType()); 4074 } 4075 4076 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4077 SelectionDAG &DAG) const { 4078 MachineFunction &MF = DAG.getMachineFunction(); 4079 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4080 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4081 4082 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4083 report_fatal_error("Variable-sized stack allocations are not supported " 4084 "in GHC calling convention"); 4085 4086 SDValue Chain = Op.getOperand(0); 4087 SDValue NewSP = Op.getOperand(1); 4088 SDValue Backchain; 4089 SDLoc DL(Op); 4090 4091 if (StoreBackchain) { 4092 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4093 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4094 } 4095 4096 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4097 4098 if (StoreBackchain) 4099 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4100 4101 return Chain; 4102 } 4103 4104 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4105 SelectionDAG &DAG) const { 4106 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4107 if (!IsData) 4108 // Just preserve the chain. 4109 return Op.getOperand(0); 4110 4111 SDLoc DL(Op); 4112 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4113 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4114 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4115 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4116 Op.getOperand(1)}; 4117 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4118 Node->getVTList(), Ops, 4119 Node->getMemoryVT(), Node->getMemOperand()); 4120 } 4121 4122 // Convert condition code in CCReg to an i32 value. 4123 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4124 SDLoc DL(CCReg); 4125 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4126 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4127 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4128 } 4129 4130 SDValue 4131 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4132 SelectionDAG &DAG) const { 4133 unsigned Opcode, CCValid; 4134 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4135 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4136 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4137 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4138 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4139 return SDValue(); 4140 } 4141 4142 return SDValue(); 4143 } 4144 4145 SDValue 4146 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4147 SelectionDAG &DAG) const { 4148 unsigned Opcode, CCValid; 4149 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4150 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4151 if (Op->getNumValues() == 1) 4152 return getCCResult(DAG, SDValue(Node, 0)); 4153 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4154 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4155 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4156 } 4157 4158 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4159 switch (Id) { 4160 case Intrinsic::thread_pointer: 4161 return lowerThreadPointer(SDLoc(Op), DAG); 4162 4163 case Intrinsic::s390_vpdi: 4164 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4165 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4166 4167 case Intrinsic::s390_vperm: 4168 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4169 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4170 4171 case Intrinsic::s390_vuphb: 4172 case Intrinsic::s390_vuphh: 4173 case Intrinsic::s390_vuphf: 4174 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4175 Op.getOperand(1)); 4176 4177 case Intrinsic::s390_vuplhb: 4178 case Intrinsic::s390_vuplhh: 4179 case Intrinsic::s390_vuplhf: 4180 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4181 Op.getOperand(1)); 4182 4183 case Intrinsic::s390_vuplb: 4184 case Intrinsic::s390_vuplhw: 4185 case Intrinsic::s390_vuplf: 4186 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4187 Op.getOperand(1)); 4188 4189 case Intrinsic::s390_vupllb: 4190 case Intrinsic::s390_vupllh: 4191 case Intrinsic::s390_vupllf: 4192 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4193 Op.getOperand(1)); 4194 4195 case Intrinsic::s390_vsumb: 4196 case Intrinsic::s390_vsumh: 4197 case Intrinsic::s390_vsumgh: 4198 case Intrinsic::s390_vsumgf: 4199 case Intrinsic::s390_vsumqf: 4200 case Intrinsic::s390_vsumqg: 4201 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4202 Op.getOperand(1), Op.getOperand(2)); 4203 } 4204 4205 return SDValue(); 4206 } 4207 4208 namespace { 4209 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4210 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4211 // Operand is the constant third operand, otherwise it is the number of 4212 // bytes in each element of the result. 4213 struct Permute { 4214 unsigned Opcode; 4215 unsigned Operand; 4216 unsigned char Bytes[SystemZ::VectorBytes]; 4217 }; 4218 } 4219 4220 static const Permute PermuteForms[] = { 4221 // VMRHG 4222 { SystemZISD::MERGE_HIGH, 8, 4223 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4224 // VMRHF 4225 { SystemZISD::MERGE_HIGH, 4, 4226 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4227 // VMRHH 4228 { SystemZISD::MERGE_HIGH, 2, 4229 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4230 // VMRHB 4231 { SystemZISD::MERGE_HIGH, 1, 4232 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4233 // VMRLG 4234 { SystemZISD::MERGE_LOW, 8, 4235 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4236 // VMRLF 4237 { SystemZISD::MERGE_LOW, 4, 4238 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4239 // VMRLH 4240 { SystemZISD::MERGE_LOW, 2, 4241 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4242 // VMRLB 4243 { SystemZISD::MERGE_LOW, 1, 4244 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4245 // VPKG 4246 { SystemZISD::PACK, 4, 4247 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4248 // VPKF 4249 { SystemZISD::PACK, 2, 4250 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4251 // VPKH 4252 { SystemZISD::PACK, 1, 4253 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4254 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4255 { SystemZISD::PERMUTE_DWORDS, 4, 4256 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4257 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4258 { SystemZISD::PERMUTE_DWORDS, 1, 4259 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4260 }; 4261 4262 // Called after matching a vector shuffle against a particular pattern. 4263 // Both the original shuffle and the pattern have two vector operands. 4264 // OpNos[0] is the operand of the original shuffle that should be used for 4265 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4266 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4267 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4268 // for operands 0 and 1 of the pattern. 4269 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4270 if (OpNos[0] < 0) { 4271 if (OpNos[1] < 0) 4272 return false; 4273 OpNo0 = OpNo1 = OpNos[1]; 4274 } else if (OpNos[1] < 0) { 4275 OpNo0 = OpNo1 = OpNos[0]; 4276 } else { 4277 OpNo0 = OpNos[0]; 4278 OpNo1 = OpNos[1]; 4279 } 4280 return true; 4281 } 4282 4283 // Bytes is a VPERM-like permute vector, except that -1 is used for 4284 // undefined bytes. Return true if the VPERM can be implemented using P. 4285 // When returning true set OpNo0 to the VPERM operand that should be 4286 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4287 // 4288 // For example, if swapping the VPERM operands allows P to match, OpNo0 4289 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4290 // operand, but rewriting it to use two duplicated operands allows it to 4291 // match P, then OpNo0 and OpNo1 will be the same. 4292 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4293 unsigned &OpNo0, unsigned &OpNo1) { 4294 int OpNos[] = { -1, -1 }; 4295 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4296 int Elt = Bytes[I]; 4297 if (Elt >= 0) { 4298 // Make sure that the two permute vectors use the same suboperand 4299 // byte number. Only the operand numbers (the high bits) are 4300 // allowed to differ. 4301 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4302 return false; 4303 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4304 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4305 // Make sure that the operand mappings are consistent with previous 4306 // elements. 4307 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4308 return false; 4309 OpNos[ModelOpNo] = RealOpNo; 4310 } 4311 } 4312 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4313 } 4314 4315 // As above, but search for a matching permute. 4316 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4317 unsigned &OpNo0, unsigned &OpNo1) { 4318 for (auto &P : PermuteForms) 4319 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4320 return &P; 4321 return nullptr; 4322 } 4323 4324 // Bytes is a VPERM-like permute vector, except that -1 is used for 4325 // undefined bytes. This permute is an operand of an outer permute. 4326 // See whether redistributing the -1 bytes gives a shuffle that can be 4327 // implemented using P. If so, set Transform to a VPERM-like permute vector 4328 // that, when applied to the result of P, gives the original permute in Bytes. 4329 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4330 const Permute &P, 4331 SmallVectorImpl<int> &Transform) { 4332 unsigned To = 0; 4333 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4334 int Elt = Bytes[From]; 4335 if (Elt < 0) 4336 // Byte number From of the result is undefined. 4337 Transform[From] = -1; 4338 else { 4339 while (P.Bytes[To] != Elt) { 4340 To += 1; 4341 if (To == SystemZ::VectorBytes) 4342 return false; 4343 } 4344 Transform[From] = To; 4345 } 4346 } 4347 return true; 4348 } 4349 4350 // As above, but search for a matching permute. 4351 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4352 SmallVectorImpl<int> &Transform) { 4353 for (auto &P : PermuteForms) 4354 if (matchDoublePermute(Bytes, P, Transform)) 4355 return &P; 4356 return nullptr; 4357 } 4358 4359 // Convert the mask of the given shuffle op into a byte-level mask, 4360 // as if it had type vNi8. 4361 static bool getVPermMask(SDValue ShuffleOp, 4362 SmallVectorImpl<int> &Bytes) { 4363 EVT VT = ShuffleOp.getValueType(); 4364 unsigned NumElements = VT.getVectorNumElements(); 4365 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4366 4367 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4368 Bytes.resize(NumElements * BytesPerElement, -1); 4369 for (unsigned I = 0; I < NumElements; ++I) { 4370 int Index = VSN->getMaskElt(I); 4371 if (Index >= 0) 4372 for (unsigned J = 0; J < BytesPerElement; ++J) 4373 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4374 } 4375 return true; 4376 } 4377 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4378 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4379 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4380 Bytes.resize(NumElements * BytesPerElement, -1); 4381 for (unsigned I = 0; I < NumElements; ++I) 4382 for (unsigned J = 0; J < BytesPerElement; ++J) 4383 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4384 return true; 4385 } 4386 return false; 4387 } 4388 4389 // Bytes is a VPERM-like permute vector, except that -1 is used for 4390 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4391 // the result come from a contiguous sequence of bytes from one input. 4392 // Set Base to the selector for the first byte if so. 4393 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4394 unsigned BytesPerElement, int &Base) { 4395 Base = -1; 4396 for (unsigned I = 0; I < BytesPerElement; ++I) { 4397 if (Bytes[Start + I] >= 0) { 4398 unsigned Elem = Bytes[Start + I]; 4399 if (Base < 0) { 4400 Base = Elem - I; 4401 // Make sure the bytes would come from one input operand. 4402 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4403 return false; 4404 } else if (unsigned(Base) != Elem - I) 4405 return false; 4406 } 4407 } 4408 return true; 4409 } 4410 4411 // Bytes is a VPERM-like permute vector, except that -1 is used for 4412 // undefined bytes. Return true if it can be performed using VSLDB. 4413 // When returning true, set StartIndex to the shift amount and OpNo0 4414 // and OpNo1 to the VPERM operands that should be used as the first 4415 // and second shift operand respectively. 4416 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4417 unsigned &StartIndex, unsigned &OpNo0, 4418 unsigned &OpNo1) { 4419 int OpNos[] = { -1, -1 }; 4420 int Shift = -1; 4421 for (unsigned I = 0; I < 16; ++I) { 4422 int Index = Bytes[I]; 4423 if (Index >= 0) { 4424 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4425 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4426 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4427 if (Shift < 0) 4428 Shift = ExpectedShift; 4429 else if (Shift != ExpectedShift) 4430 return false; 4431 // Make sure that the operand mappings are consistent with previous 4432 // elements. 4433 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4434 return false; 4435 OpNos[ModelOpNo] = RealOpNo; 4436 } 4437 } 4438 StartIndex = Shift; 4439 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4440 } 4441 4442 // Create a node that performs P on operands Op0 and Op1, casting the 4443 // operands to the appropriate type. The type of the result is determined by P. 4444 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4445 const Permute &P, SDValue Op0, SDValue Op1) { 4446 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4447 // elements of a PACK are twice as wide as the outputs. 4448 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4449 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4450 P.Operand); 4451 // Cast both operands to the appropriate type. 4452 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4453 SystemZ::VectorBytes / InBytes); 4454 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4455 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4456 SDValue Op; 4457 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4458 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4459 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4460 } else if (P.Opcode == SystemZISD::PACK) { 4461 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4462 SystemZ::VectorBytes / P.Operand); 4463 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4464 } else { 4465 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4466 } 4467 return Op; 4468 } 4469 4470 static bool isZeroVector(SDValue N) { 4471 if (N->getOpcode() == ISD::BITCAST) 4472 N = N->getOperand(0); 4473 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4474 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4475 return Op->getZExtValue() == 0; 4476 return ISD::isBuildVectorAllZeros(N.getNode()); 4477 } 4478 4479 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4480 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4481 for (unsigned I = 0; I < Num ; I++) 4482 if (isZeroVector(Ops[I])) 4483 return I; 4484 return UINT32_MAX; 4485 } 4486 4487 // Bytes is a VPERM-like permute vector, except that -1 is used for 4488 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4489 // VSLDB or VPERM. 4490 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4491 SDValue *Ops, 4492 const SmallVectorImpl<int> &Bytes) { 4493 for (unsigned I = 0; I < 2; ++I) 4494 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4495 4496 // First see whether VSLDB can be used. 4497 unsigned StartIndex, OpNo0, OpNo1; 4498 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4499 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4500 Ops[OpNo1], 4501 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4502 4503 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4504 // eliminate a zero vector by reusing any zero index in the permute vector. 4505 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4506 if (ZeroVecIdx != UINT32_MAX) { 4507 bool MaskFirst = true; 4508 int ZeroIdx = -1; 4509 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4510 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4511 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4512 if (OpNo == ZeroVecIdx && I == 0) { 4513 // If the first byte is zero, use mask as first operand. 4514 ZeroIdx = 0; 4515 break; 4516 } 4517 if (OpNo != ZeroVecIdx && Byte == 0) { 4518 // If mask contains a zero, use it by placing that vector first. 4519 ZeroIdx = I + SystemZ::VectorBytes; 4520 MaskFirst = false; 4521 break; 4522 } 4523 } 4524 if (ZeroIdx != -1) { 4525 SDValue IndexNodes[SystemZ::VectorBytes]; 4526 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4527 if (Bytes[I] >= 0) { 4528 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4529 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4530 if (OpNo == ZeroVecIdx) 4531 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4532 else { 4533 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4534 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4535 } 4536 } else 4537 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4538 } 4539 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4540 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4541 if (MaskFirst) 4542 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4543 Mask); 4544 else 4545 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4546 Mask); 4547 } 4548 } 4549 4550 SDValue IndexNodes[SystemZ::VectorBytes]; 4551 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4552 if (Bytes[I] >= 0) 4553 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4554 else 4555 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4556 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4557 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4558 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4559 } 4560 4561 namespace { 4562 // Describes a general N-operand vector shuffle. 4563 struct GeneralShuffle { 4564 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4565 void addUndef(); 4566 bool add(SDValue, unsigned); 4567 SDValue getNode(SelectionDAG &, const SDLoc &); 4568 void tryPrepareForUnpack(); 4569 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4570 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4571 4572 // The operands of the shuffle. 4573 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4574 4575 // Index I is -1 if byte I of the result is undefined. Otherwise the 4576 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4577 // Bytes[I] / SystemZ::VectorBytes. 4578 SmallVector<int, SystemZ::VectorBytes> Bytes; 4579 4580 // The type of the shuffle result. 4581 EVT VT; 4582 4583 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4584 unsigned UnpackFromEltSize; 4585 }; 4586 } 4587 4588 // Add an extra undefined element to the shuffle. 4589 void GeneralShuffle::addUndef() { 4590 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4591 for (unsigned I = 0; I < BytesPerElement; ++I) 4592 Bytes.push_back(-1); 4593 } 4594 4595 // Add an extra element to the shuffle, taking it from element Elem of Op. 4596 // A null Op indicates a vector input whose value will be calculated later; 4597 // there is at most one such input per shuffle and it always has the same 4598 // type as the result. Aborts and returns false if the source vector elements 4599 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4600 // LLVM they become implicitly extended, but this is rare and not optimized. 4601 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4602 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4603 4604 // The source vector can have wider elements than the result, 4605 // either through an explicit TRUNCATE or because of type legalization. 4606 // We want the least significant part. 4607 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4608 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4609 4610 // Return false if the source elements are smaller than their destination 4611 // elements. 4612 if (FromBytesPerElement < BytesPerElement) 4613 return false; 4614 4615 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4616 (FromBytesPerElement - BytesPerElement)); 4617 4618 // Look through things like shuffles and bitcasts. 4619 while (Op.getNode()) { 4620 if (Op.getOpcode() == ISD::BITCAST) 4621 Op = Op.getOperand(0); 4622 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4623 // See whether the bytes we need come from a contiguous part of one 4624 // operand. 4625 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4626 if (!getVPermMask(Op, OpBytes)) 4627 break; 4628 int NewByte; 4629 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4630 break; 4631 if (NewByte < 0) { 4632 addUndef(); 4633 return true; 4634 } 4635 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4636 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4637 } else if (Op.isUndef()) { 4638 addUndef(); 4639 return true; 4640 } else 4641 break; 4642 } 4643 4644 // Make sure that the source of the extraction is in Ops. 4645 unsigned OpNo = 0; 4646 for (; OpNo < Ops.size(); ++OpNo) 4647 if (Ops[OpNo] == Op) 4648 break; 4649 if (OpNo == Ops.size()) 4650 Ops.push_back(Op); 4651 4652 // Add the element to Bytes. 4653 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4654 for (unsigned I = 0; I < BytesPerElement; ++I) 4655 Bytes.push_back(Base + I); 4656 4657 return true; 4658 } 4659 4660 // Return SDNodes for the completed shuffle. 4661 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4662 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4663 4664 if (Ops.size() == 0) 4665 return DAG.getUNDEF(VT); 4666 4667 // Use a single unpack if possible as the last operation. 4668 tryPrepareForUnpack(); 4669 4670 // Make sure that there are at least two shuffle operands. 4671 if (Ops.size() == 1) 4672 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4673 4674 // Create a tree of shuffles, deferring root node until after the loop. 4675 // Try to redistribute the undefined elements of non-root nodes so that 4676 // the non-root shuffles match something like a pack or merge, then adjust 4677 // the parent node's permute vector to compensate for the new order. 4678 // Among other things, this copes with vectors like <2 x i16> that were 4679 // padded with undefined elements during type legalization. 4680 // 4681 // In the best case this redistribution will lead to the whole tree 4682 // using packs and merges. It should rarely be a loss in other cases. 4683 unsigned Stride = 1; 4684 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4685 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4686 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4687 4688 // Create a mask for just these two operands. 4689 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4690 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4691 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4692 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4693 if (OpNo == I) 4694 NewBytes[J] = Byte; 4695 else if (OpNo == I + Stride) 4696 NewBytes[J] = SystemZ::VectorBytes + Byte; 4697 else 4698 NewBytes[J] = -1; 4699 } 4700 // See if it would be better to reorganize NewMask to avoid using VPERM. 4701 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4702 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4703 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4704 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4705 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4706 if (NewBytes[J] >= 0) { 4707 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4708 "Invalid double permute"); 4709 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4710 } else 4711 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4712 } 4713 } else { 4714 // Just use NewBytes on the operands. 4715 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4716 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4717 if (NewBytes[J] >= 0) 4718 Bytes[J] = I * SystemZ::VectorBytes + J; 4719 } 4720 } 4721 } 4722 4723 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4724 if (Stride > 1) { 4725 Ops[1] = Ops[Stride]; 4726 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4727 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4728 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4729 } 4730 4731 // Look for an instruction that can do the permute without resorting 4732 // to VPERM. 4733 unsigned OpNo0, OpNo1; 4734 SDValue Op; 4735 if (unpackWasPrepared() && Ops[1].isUndef()) 4736 Op = Ops[0]; 4737 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4738 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4739 else 4740 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4741 4742 Op = insertUnpackIfPrepared(DAG, DL, Op); 4743 4744 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4745 } 4746 4747 #ifndef NDEBUG 4748 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 4749 dbgs() << Msg.c_str() << " { "; 4750 for (unsigned i = 0; i < Bytes.size(); i++) 4751 dbgs() << Bytes[i] << " "; 4752 dbgs() << "}\n"; 4753 } 4754 #endif 4755 4756 // If the Bytes vector matches an unpack operation, prepare to do the unpack 4757 // after all else by removing the zero vector and the effect of the unpack on 4758 // Bytes. 4759 void GeneralShuffle::tryPrepareForUnpack() { 4760 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 4761 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 4762 return; 4763 4764 // Only do this if removing the zero vector reduces the depth, otherwise 4765 // the critical path will increase with the final unpack. 4766 if (Ops.size() > 2 && 4767 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 4768 return; 4769 4770 // Find an unpack that would allow removing the zero vector from Ops. 4771 UnpackFromEltSize = 1; 4772 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 4773 bool MatchUnpack = true; 4774 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 4775 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 4776 unsigned ToEltSize = UnpackFromEltSize * 2; 4777 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 4778 if (!IsZextByte) 4779 SrcBytes.push_back(Bytes[Elt]); 4780 if (Bytes[Elt] != -1) { 4781 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 4782 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 4783 MatchUnpack = false; 4784 break; 4785 } 4786 } 4787 } 4788 if (MatchUnpack) { 4789 if (Ops.size() == 2) { 4790 // Don't use unpack if a single source operand needs rearrangement. 4791 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 4792 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 4793 UnpackFromEltSize = UINT_MAX; 4794 return; 4795 } 4796 } 4797 break; 4798 } 4799 } 4800 if (UnpackFromEltSize > 4) 4801 return; 4802 4803 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 4804 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 4805 << ".\n"; 4806 dumpBytes(Bytes, "Original Bytes vector:");); 4807 4808 // Apply the unpack in reverse to the Bytes array. 4809 unsigned B = 0; 4810 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 4811 Elt += UnpackFromEltSize; 4812 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 4813 Bytes[B] = Bytes[Elt]; 4814 } 4815 while (B < SystemZ::VectorBytes) 4816 Bytes[B++] = -1; 4817 4818 // Remove the zero vector from Ops 4819 Ops.erase(&Ops[ZeroVecOpNo]); 4820 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4821 if (Bytes[I] >= 0) { 4822 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4823 if (OpNo > ZeroVecOpNo) 4824 Bytes[I] -= SystemZ::VectorBytes; 4825 } 4826 4827 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 4828 dbgs() << "\n";); 4829 } 4830 4831 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 4832 const SDLoc &DL, 4833 SDValue Op) { 4834 if (!unpackWasPrepared()) 4835 return Op; 4836 unsigned InBits = UnpackFromEltSize * 8; 4837 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 4838 SystemZ::VectorBits / InBits); 4839 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 4840 unsigned OutBits = InBits * 2; 4841 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 4842 SystemZ::VectorBits / OutBits); 4843 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 4844 } 4845 4846 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4847 static bool isScalarToVector(SDValue Op) { 4848 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4849 if (!Op.getOperand(I).isUndef()) 4850 return false; 4851 return true; 4852 } 4853 4854 // Return a vector of type VT that contains Value in the first element. 4855 // The other elements don't matter. 4856 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4857 SDValue Value) { 4858 // If we have a constant, replicate it to all elements and let the 4859 // BUILD_VECTOR lowering take care of it. 4860 if (Value.getOpcode() == ISD::Constant || 4861 Value.getOpcode() == ISD::ConstantFP) { 4862 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4863 return DAG.getBuildVector(VT, DL, Ops); 4864 } 4865 if (Value.isUndef()) 4866 return DAG.getUNDEF(VT); 4867 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4868 } 4869 4870 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4871 // element 1. Used for cases in which replication is cheap. 4872 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4873 SDValue Op0, SDValue Op1) { 4874 if (Op0.isUndef()) { 4875 if (Op1.isUndef()) 4876 return DAG.getUNDEF(VT); 4877 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4878 } 4879 if (Op1.isUndef()) 4880 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4881 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4882 buildScalarToVector(DAG, DL, VT, Op0), 4883 buildScalarToVector(DAG, DL, VT, Op1)); 4884 } 4885 4886 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4887 // vector for them. 4888 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4889 SDValue Op1) { 4890 if (Op0.isUndef() && Op1.isUndef()) 4891 return DAG.getUNDEF(MVT::v2i64); 4892 // If one of the two inputs is undefined then replicate the other one, 4893 // in order to avoid using another register unnecessarily. 4894 if (Op0.isUndef()) 4895 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4896 else if (Op1.isUndef()) 4897 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4898 else { 4899 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4900 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4901 } 4902 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4903 } 4904 4905 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4906 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4907 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4908 // would benefit from this representation and return it if so. 4909 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4910 BuildVectorSDNode *BVN) { 4911 EVT VT = BVN->getValueType(0); 4912 unsigned NumElements = VT.getVectorNumElements(); 4913 4914 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4915 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4916 // need a BUILD_VECTOR, add an additional placeholder operand for that 4917 // BUILD_VECTOR and store its operands in ResidueOps. 4918 GeneralShuffle GS(VT); 4919 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4920 bool FoundOne = false; 4921 for (unsigned I = 0; I < NumElements; ++I) { 4922 SDValue Op = BVN->getOperand(I); 4923 if (Op.getOpcode() == ISD::TRUNCATE) 4924 Op = Op.getOperand(0); 4925 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4926 Op.getOperand(1).getOpcode() == ISD::Constant) { 4927 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4928 if (!GS.add(Op.getOperand(0), Elem)) 4929 return SDValue(); 4930 FoundOne = true; 4931 } else if (Op.isUndef()) { 4932 GS.addUndef(); 4933 } else { 4934 if (!GS.add(SDValue(), ResidueOps.size())) 4935 return SDValue(); 4936 ResidueOps.push_back(BVN->getOperand(I)); 4937 } 4938 } 4939 4940 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4941 if (!FoundOne) 4942 return SDValue(); 4943 4944 // Create the BUILD_VECTOR for the remaining elements, if any. 4945 if (!ResidueOps.empty()) { 4946 while (ResidueOps.size() < NumElements) 4947 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4948 for (auto &Op : GS.Ops) { 4949 if (!Op.getNode()) { 4950 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4951 break; 4952 } 4953 } 4954 } 4955 return GS.getNode(DAG, SDLoc(BVN)); 4956 } 4957 4958 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4959 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4960 return true; 4961 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4962 return true; 4963 return false; 4964 } 4965 4966 // Combine GPR scalar values Elems into a vector of type VT. 4967 SDValue 4968 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4969 SmallVectorImpl<SDValue> &Elems) const { 4970 // See whether there is a single replicated value. 4971 SDValue Single; 4972 unsigned int NumElements = Elems.size(); 4973 unsigned int Count = 0; 4974 for (auto Elem : Elems) { 4975 if (!Elem.isUndef()) { 4976 if (!Single.getNode()) 4977 Single = Elem; 4978 else if (Elem != Single) { 4979 Single = SDValue(); 4980 break; 4981 } 4982 Count += 1; 4983 } 4984 } 4985 // There are three cases here: 4986 // 4987 // - if the only defined element is a loaded one, the best sequence 4988 // is a replicating load. 4989 // 4990 // - otherwise, if the only defined element is an i64 value, we will 4991 // end up with the same VLVGP sequence regardless of whether we short-cut 4992 // for replication or fall through to the later code. 4993 // 4994 // - otherwise, if the only defined element is an i32 or smaller value, 4995 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4996 // This is only a win if the single defined element is used more than once. 4997 // In other cases we're better off using a single VLVGx. 4998 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4999 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5000 5001 // If all elements are loads, use VLREP/VLEs (below). 5002 bool AllLoads = true; 5003 for (auto Elem : Elems) 5004 if (!isVectorElementLoad(Elem)) { 5005 AllLoads = false; 5006 break; 5007 } 5008 5009 // The best way of building a v2i64 from two i64s is to use VLVGP. 5010 if (VT == MVT::v2i64 && !AllLoads) 5011 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5012 5013 // Use a 64-bit merge high to combine two doubles. 5014 if (VT == MVT::v2f64 && !AllLoads) 5015 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5016 5017 // Build v4f32 values directly from the FPRs: 5018 // 5019 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5020 // V V VMRHF 5021 // <ABxx> <CDxx> 5022 // V VMRHG 5023 // <ABCD> 5024 if (VT == MVT::v4f32 && !AllLoads) { 5025 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5026 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5027 // Avoid unnecessary undefs by reusing the other operand. 5028 if (Op01.isUndef()) 5029 Op01 = Op23; 5030 else if (Op23.isUndef()) 5031 Op23 = Op01; 5032 // Merging identical replications is a no-op. 5033 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5034 return Op01; 5035 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5036 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5037 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5038 DL, MVT::v2i64, Op01, Op23); 5039 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5040 } 5041 5042 // Collect the constant terms. 5043 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5044 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5045 5046 unsigned NumConstants = 0; 5047 for (unsigned I = 0; I < NumElements; ++I) { 5048 SDValue Elem = Elems[I]; 5049 if (Elem.getOpcode() == ISD::Constant || 5050 Elem.getOpcode() == ISD::ConstantFP) { 5051 NumConstants += 1; 5052 Constants[I] = Elem; 5053 Done[I] = true; 5054 } 5055 } 5056 // If there was at least one constant, fill in the other elements of 5057 // Constants with undefs to get a full vector constant and use that 5058 // as the starting point. 5059 SDValue Result; 5060 SDValue ReplicatedVal; 5061 if (NumConstants > 0) { 5062 for (unsigned I = 0; I < NumElements; ++I) 5063 if (!Constants[I].getNode()) 5064 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5065 Result = DAG.getBuildVector(VT, DL, Constants); 5066 } else { 5067 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5068 // avoid a false dependency on any previous contents of the vector 5069 // register. 5070 5071 // Use a VLREP if at least one element is a load. Make sure to replicate 5072 // the load with the most elements having its value. 5073 std::map<const SDNode*, unsigned> UseCounts; 5074 SDNode *LoadMaxUses = nullptr; 5075 for (unsigned I = 0; I < NumElements; ++I) 5076 if (isVectorElementLoad(Elems[I])) { 5077 SDNode *Ld = Elems[I].getNode(); 5078 UseCounts[Ld]++; 5079 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5080 LoadMaxUses = Ld; 5081 } 5082 if (LoadMaxUses != nullptr) { 5083 ReplicatedVal = SDValue(LoadMaxUses, 0); 5084 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5085 } else { 5086 // Try to use VLVGP. 5087 unsigned I1 = NumElements / 2 - 1; 5088 unsigned I2 = NumElements - 1; 5089 bool Def1 = !Elems[I1].isUndef(); 5090 bool Def2 = !Elems[I2].isUndef(); 5091 if (Def1 || Def2) { 5092 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5093 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5094 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5095 joinDwords(DAG, DL, Elem1, Elem2)); 5096 Done[I1] = true; 5097 Done[I2] = true; 5098 } else 5099 Result = DAG.getUNDEF(VT); 5100 } 5101 } 5102 5103 // Use VLVGx to insert the other elements. 5104 for (unsigned I = 0; I < NumElements; ++I) 5105 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5106 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5107 DAG.getConstant(I, DL, MVT::i32)); 5108 return Result; 5109 } 5110 5111 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5112 SelectionDAG &DAG) const { 5113 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5114 SDLoc DL(Op); 5115 EVT VT = Op.getValueType(); 5116 5117 if (BVN->isConstant()) { 5118 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5119 return Op; 5120 5121 // Fall back to loading it from memory. 5122 return SDValue(); 5123 } 5124 5125 // See if we should use shuffles to construct the vector from other vectors. 5126 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5127 return Res; 5128 5129 // Detect SCALAR_TO_VECTOR conversions. 5130 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5131 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5132 5133 // Otherwise use buildVector to build the vector up from GPRs. 5134 unsigned NumElements = Op.getNumOperands(); 5135 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5136 for (unsigned I = 0; I < NumElements; ++I) 5137 Ops[I] = Op.getOperand(I); 5138 return buildVector(DAG, DL, VT, Ops); 5139 } 5140 5141 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5142 SelectionDAG &DAG) const { 5143 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5144 SDLoc DL(Op); 5145 EVT VT = Op.getValueType(); 5146 unsigned NumElements = VT.getVectorNumElements(); 5147 5148 if (VSN->isSplat()) { 5149 SDValue Op0 = Op.getOperand(0); 5150 unsigned Index = VSN->getSplatIndex(); 5151 assert(Index < VT.getVectorNumElements() && 5152 "Splat index should be defined and in first operand"); 5153 // See whether the value we're splatting is directly available as a scalar. 5154 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5155 Op0.getOpcode() == ISD::BUILD_VECTOR) 5156 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5157 // Otherwise keep it as a vector-to-vector operation. 5158 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5159 DAG.getTargetConstant(Index, DL, MVT::i32)); 5160 } 5161 5162 GeneralShuffle GS(VT); 5163 for (unsigned I = 0; I < NumElements; ++I) { 5164 int Elt = VSN->getMaskElt(I); 5165 if (Elt < 0) 5166 GS.addUndef(); 5167 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5168 unsigned(Elt) % NumElements)) 5169 return SDValue(); 5170 } 5171 return GS.getNode(DAG, SDLoc(VSN)); 5172 } 5173 5174 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5175 SelectionDAG &DAG) const { 5176 SDLoc DL(Op); 5177 // Just insert the scalar into element 0 of an undefined vector. 5178 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5179 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5180 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5181 } 5182 5183 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5184 SelectionDAG &DAG) const { 5185 // Handle insertions of floating-point values. 5186 SDLoc DL(Op); 5187 SDValue Op0 = Op.getOperand(0); 5188 SDValue Op1 = Op.getOperand(1); 5189 SDValue Op2 = Op.getOperand(2); 5190 EVT VT = Op.getValueType(); 5191 5192 // Insertions into constant indices of a v2f64 can be done using VPDI. 5193 // However, if the inserted value is a bitcast or a constant then it's 5194 // better to use GPRs, as below. 5195 if (VT == MVT::v2f64 && 5196 Op1.getOpcode() != ISD::BITCAST && 5197 Op1.getOpcode() != ISD::ConstantFP && 5198 Op2.getOpcode() == ISD::Constant) { 5199 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5200 unsigned Mask = VT.getVectorNumElements() - 1; 5201 if (Index <= Mask) 5202 return Op; 5203 } 5204 5205 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5206 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5207 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5208 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5209 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5210 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5211 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5212 } 5213 5214 SDValue 5215 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5216 SelectionDAG &DAG) const { 5217 // Handle extractions of floating-point values. 5218 SDLoc DL(Op); 5219 SDValue Op0 = Op.getOperand(0); 5220 SDValue Op1 = Op.getOperand(1); 5221 EVT VT = Op.getValueType(); 5222 EVT VecVT = Op0.getValueType(); 5223 5224 // Extractions of constant indices can be done directly. 5225 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5226 uint64_t Index = CIndexN->getZExtValue(); 5227 unsigned Mask = VecVT.getVectorNumElements() - 1; 5228 if (Index <= Mask) 5229 return Op; 5230 } 5231 5232 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5233 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5234 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5235 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5236 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5237 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5238 } 5239 5240 SDValue SystemZTargetLowering:: 5241 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5242 SDValue PackedOp = Op.getOperand(0); 5243 EVT OutVT = Op.getValueType(); 5244 EVT InVT = PackedOp.getValueType(); 5245 unsigned ToBits = OutVT.getScalarSizeInBits(); 5246 unsigned FromBits = InVT.getScalarSizeInBits(); 5247 do { 5248 FromBits *= 2; 5249 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5250 SystemZ::VectorBits / FromBits); 5251 PackedOp = 5252 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5253 } while (FromBits != ToBits); 5254 return PackedOp; 5255 } 5256 5257 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5258 SDValue SystemZTargetLowering:: 5259 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5260 SDValue PackedOp = Op.getOperand(0); 5261 SDLoc DL(Op); 5262 EVT OutVT = Op.getValueType(); 5263 EVT InVT = PackedOp.getValueType(); 5264 unsigned InNumElts = InVT.getVectorNumElements(); 5265 unsigned OutNumElts = OutVT.getVectorNumElements(); 5266 unsigned NumInPerOut = InNumElts / OutNumElts; 5267 5268 SDValue ZeroVec = 5269 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5270 5271 SmallVector<int, 16> Mask(InNumElts); 5272 unsigned ZeroVecElt = InNumElts; 5273 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5274 unsigned MaskElt = PackedElt * NumInPerOut; 5275 unsigned End = MaskElt + NumInPerOut - 1; 5276 for (; MaskElt < End; MaskElt++) 5277 Mask[MaskElt] = ZeroVecElt++; 5278 Mask[MaskElt] = PackedElt; 5279 } 5280 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5281 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5282 } 5283 5284 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5285 unsigned ByScalar) const { 5286 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5287 SDValue Op0 = Op.getOperand(0); 5288 SDValue Op1 = Op.getOperand(1); 5289 SDLoc DL(Op); 5290 EVT VT = Op.getValueType(); 5291 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5292 5293 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5294 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5295 APInt SplatBits, SplatUndef; 5296 unsigned SplatBitSize; 5297 bool HasAnyUndefs; 5298 // Check for constant splats. Use ElemBitSize as the minimum element 5299 // width and reject splats that need wider elements. 5300 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5301 ElemBitSize, true) && 5302 SplatBitSize == ElemBitSize) { 5303 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5304 DL, MVT::i32); 5305 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5306 } 5307 // Check for variable splats. 5308 BitVector UndefElements; 5309 SDValue Splat = BVN->getSplatValue(&UndefElements); 5310 if (Splat) { 5311 // Since i32 is the smallest legal type, we either need a no-op 5312 // or a truncation. 5313 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5314 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5315 } 5316 } 5317 5318 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5319 // and the shift amount is directly available in a GPR. 5320 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5321 if (VSN->isSplat()) { 5322 SDValue VSNOp0 = VSN->getOperand(0); 5323 unsigned Index = VSN->getSplatIndex(); 5324 assert(Index < VT.getVectorNumElements() && 5325 "Splat index should be defined and in first operand"); 5326 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5327 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5328 // Since i32 is the smallest legal type, we either need a no-op 5329 // or a truncation. 5330 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5331 VSNOp0.getOperand(Index)); 5332 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5333 } 5334 } 5335 } 5336 5337 // Otherwise just treat the current form as legal. 5338 return Op; 5339 } 5340 5341 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5342 SelectionDAG &DAG) const { 5343 switch (Op.getOpcode()) { 5344 case ISD::FRAMEADDR: 5345 return lowerFRAMEADDR(Op, DAG); 5346 case ISD::RETURNADDR: 5347 return lowerRETURNADDR(Op, DAG); 5348 case ISD::BR_CC: 5349 return lowerBR_CC(Op, DAG); 5350 case ISD::SELECT_CC: 5351 return lowerSELECT_CC(Op, DAG); 5352 case ISD::SETCC: 5353 return lowerSETCC(Op, DAG); 5354 case ISD::STRICT_FSETCC: 5355 return lowerSTRICT_FSETCC(Op, DAG, false); 5356 case ISD::STRICT_FSETCCS: 5357 return lowerSTRICT_FSETCC(Op, DAG, true); 5358 case ISD::GlobalAddress: 5359 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5360 case ISD::GlobalTLSAddress: 5361 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5362 case ISD::BlockAddress: 5363 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5364 case ISD::JumpTable: 5365 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5366 case ISD::ConstantPool: 5367 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5368 case ISD::BITCAST: 5369 return lowerBITCAST(Op, DAG); 5370 case ISD::VASTART: 5371 return lowerVASTART(Op, DAG); 5372 case ISD::VACOPY: 5373 return lowerVACOPY(Op, DAG); 5374 case ISD::DYNAMIC_STACKALLOC: 5375 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5376 case ISD::GET_DYNAMIC_AREA_OFFSET: 5377 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5378 case ISD::SMUL_LOHI: 5379 return lowerSMUL_LOHI(Op, DAG); 5380 case ISD::UMUL_LOHI: 5381 return lowerUMUL_LOHI(Op, DAG); 5382 case ISD::SDIVREM: 5383 return lowerSDIVREM(Op, DAG); 5384 case ISD::UDIVREM: 5385 return lowerUDIVREM(Op, DAG); 5386 case ISD::SADDO: 5387 case ISD::SSUBO: 5388 case ISD::UADDO: 5389 case ISD::USUBO: 5390 return lowerXALUO(Op, DAG); 5391 case ISD::ADDCARRY: 5392 case ISD::SUBCARRY: 5393 return lowerADDSUBCARRY(Op, DAG); 5394 case ISD::OR: 5395 return lowerOR(Op, DAG); 5396 case ISD::CTPOP: 5397 return lowerCTPOP(Op, DAG); 5398 case ISD::ATOMIC_FENCE: 5399 return lowerATOMIC_FENCE(Op, DAG); 5400 case ISD::ATOMIC_SWAP: 5401 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5402 case ISD::ATOMIC_STORE: 5403 return lowerATOMIC_STORE(Op, DAG); 5404 case ISD::ATOMIC_LOAD: 5405 return lowerATOMIC_LOAD(Op, DAG); 5406 case ISD::ATOMIC_LOAD_ADD: 5407 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5408 case ISD::ATOMIC_LOAD_SUB: 5409 return lowerATOMIC_LOAD_SUB(Op, DAG); 5410 case ISD::ATOMIC_LOAD_AND: 5411 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5412 case ISD::ATOMIC_LOAD_OR: 5413 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5414 case ISD::ATOMIC_LOAD_XOR: 5415 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5416 case ISD::ATOMIC_LOAD_NAND: 5417 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5418 case ISD::ATOMIC_LOAD_MIN: 5419 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5420 case ISD::ATOMIC_LOAD_MAX: 5421 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5422 case ISD::ATOMIC_LOAD_UMIN: 5423 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5424 case ISD::ATOMIC_LOAD_UMAX: 5425 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5426 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5427 return lowerATOMIC_CMP_SWAP(Op, DAG); 5428 case ISD::STACKSAVE: 5429 return lowerSTACKSAVE(Op, DAG); 5430 case ISD::STACKRESTORE: 5431 return lowerSTACKRESTORE(Op, DAG); 5432 case ISD::PREFETCH: 5433 return lowerPREFETCH(Op, DAG); 5434 case ISD::INTRINSIC_W_CHAIN: 5435 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5436 case ISD::INTRINSIC_WO_CHAIN: 5437 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5438 case ISD::BUILD_VECTOR: 5439 return lowerBUILD_VECTOR(Op, DAG); 5440 case ISD::VECTOR_SHUFFLE: 5441 return lowerVECTOR_SHUFFLE(Op, DAG); 5442 case ISD::SCALAR_TO_VECTOR: 5443 return lowerSCALAR_TO_VECTOR(Op, DAG); 5444 case ISD::INSERT_VECTOR_ELT: 5445 return lowerINSERT_VECTOR_ELT(Op, DAG); 5446 case ISD::EXTRACT_VECTOR_ELT: 5447 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5448 case ISD::SIGN_EXTEND_VECTOR_INREG: 5449 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5450 case ISD::ZERO_EXTEND_VECTOR_INREG: 5451 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5452 case ISD::SHL: 5453 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5454 case ISD::SRL: 5455 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5456 case ISD::SRA: 5457 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5458 default: 5459 llvm_unreachable("Unexpected node to lower"); 5460 } 5461 } 5462 5463 // Lower operations with invalid operand or result types (currently used 5464 // only for 128-bit integer types). 5465 5466 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5467 SDLoc DL(In); 5468 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5469 DAG.getIntPtrConstant(0, DL)); 5470 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5471 DAG.getIntPtrConstant(1, DL)); 5472 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5473 MVT::Untyped, Hi, Lo); 5474 return SDValue(Pair, 0); 5475 } 5476 5477 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5478 SDLoc DL(In); 5479 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5480 DL, MVT::i64, In); 5481 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5482 DL, MVT::i64, In); 5483 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5484 } 5485 5486 void 5487 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5488 SmallVectorImpl<SDValue> &Results, 5489 SelectionDAG &DAG) const { 5490 switch (N->getOpcode()) { 5491 case ISD::ATOMIC_LOAD: { 5492 SDLoc DL(N); 5493 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5494 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5495 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5496 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5497 DL, Tys, Ops, MVT::i128, MMO); 5498 Results.push_back(lowerGR128ToI128(DAG, Res)); 5499 Results.push_back(Res.getValue(1)); 5500 break; 5501 } 5502 case ISD::ATOMIC_STORE: { 5503 SDLoc DL(N); 5504 SDVTList Tys = DAG.getVTList(MVT::Other); 5505 SDValue Ops[] = { N->getOperand(0), 5506 lowerI128ToGR128(DAG, N->getOperand(2)), 5507 N->getOperand(1) }; 5508 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5509 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5510 DL, Tys, Ops, MVT::i128, MMO); 5511 // We have to enforce sequential consistency by performing a 5512 // serialization operation after the store. 5513 if (cast<AtomicSDNode>(N)->getOrdering() == 5514 AtomicOrdering::SequentiallyConsistent) 5515 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5516 MVT::Other, Res), 0); 5517 Results.push_back(Res); 5518 break; 5519 } 5520 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5521 SDLoc DL(N); 5522 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5523 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5524 lowerI128ToGR128(DAG, N->getOperand(2)), 5525 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5526 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5527 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5528 DL, Tys, Ops, MVT::i128, MMO); 5529 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5530 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5531 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5532 Results.push_back(lowerGR128ToI128(DAG, Res)); 5533 Results.push_back(Success); 5534 Results.push_back(Res.getValue(2)); 5535 break; 5536 } 5537 default: 5538 llvm_unreachable("Unexpected node to lower"); 5539 } 5540 } 5541 5542 void 5543 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5544 SmallVectorImpl<SDValue> &Results, 5545 SelectionDAG &DAG) const { 5546 return LowerOperationWrapper(N, Results, DAG); 5547 } 5548 5549 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5550 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5551 switch ((SystemZISD::NodeType)Opcode) { 5552 case SystemZISD::FIRST_NUMBER: break; 5553 OPCODE(RET_FLAG); 5554 OPCODE(CALL); 5555 OPCODE(SIBCALL); 5556 OPCODE(TLS_GDCALL); 5557 OPCODE(TLS_LDCALL); 5558 OPCODE(PCREL_WRAPPER); 5559 OPCODE(PCREL_OFFSET); 5560 OPCODE(IABS); 5561 OPCODE(ICMP); 5562 OPCODE(FCMP); 5563 OPCODE(STRICT_FCMP); 5564 OPCODE(STRICT_FCMPS); 5565 OPCODE(TM); 5566 OPCODE(BR_CCMASK); 5567 OPCODE(SELECT_CCMASK); 5568 OPCODE(ADJDYNALLOC); 5569 OPCODE(PROBED_ALLOCA); 5570 OPCODE(POPCNT); 5571 OPCODE(SMUL_LOHI); 5572 OPCODE(UMUL_LOHI); 5573 OPCODE(SDIVREM); 5574 OPCODE(UDIVREM); 5575 OPCODE(SADDO); 5576 OPCODE(SSUBO); 5577 OPCODE(UADDO); 5578 OPCODE(USUBO); 5579 OPCODE(ADDCARRY); 5580 OPCODE(SUBCARRY); 5581 OPCODE(GET_CCMASK); 5582 OPCODE(MVC); 5583 OPCODE(MVC_LOOP); 5584 OPCODE(NC); 5585 OPCODE(NC_LOOP); 5586 OPCODE(OC); 5587 OPCODE(OC_LOOP); 5588 OPCODE(XC); 5589 OPCODE(XC_LOOP); 5590 OPCODE(CLC); 5591 OPCODE(CLC_LOOP); 5592 OPCODE(STPCPY); 5593 OPCODE(STRCMP); 5594 OPCODE(SEARCH_STRING); 5595 OPCODE(IPM); 5596 OPCODE(MEMBARRIER); 5597 OPCODE(TBEGIN); 5598 OPCODE(TBEGIN_NOFLOAT); 5599 OPCODE(TEND); 5600 OPCODE(BYTE_MASK); 5601 OPCODE(ROTATE_MASK); 5602 OPCODE(REPLICATE); 5603 OPCODE(JOIN_DWORDS); 5604 OPCODE(SPLAT); 5605 OPCODE(MERGE_HIGH); 5606 OPCODE(MERGE_LOW); 5607 OPCODE(SHL_DOUBLE); 5608 OPCODE(PERMUTE_DWORDS); 5609 OPCODE(PERMUTE); 5610 OPCODE(PACK); 5611 OPCODE(PACKS_CC); 5612 OPCODE(PACKLS_CC); 5613 OPCODE(UNPACK_HIGH); 5614 OPCODE(UNPACKL_HIGH); 5615 OPCODE(UNPACK_LOW); 5616 OPCODE(UNPACKL_LOW); 5617 OPCODE(VSHL_BY_SCALAR); 5618 OPCODE(VSRL_BY_SCALAR); 5619 OPCODE(VSRA_BY_SCALAR); 5620 OPCODE(VSUM); 5621 OPCODE(VICMPE); 5622 OPCODE(VICMPH); 5623 OPCODE(VICMPHL); 5624 OPCODE(VICMPES); 5625 OPCODE(VICMPHS); 5626 OPCODE(VICMPHLS); 5627 OPCODE(VFCMPE); 5628 OPCODE(STRICT_VFCMPE); 5629 OPCODE(STRICT_VFCMPES); 5630 OPCODE(VFCMPH); 5631 OPCODE(STRICT_VFCMPH); 5632 OPCODE(STRICT_VFCMPHS); 5633 OPCODE(VFCMPHE); 5634 OPCODE(STRICT_VFCMPHE); 5635 OPCODE(STRICT_VFCMPHES); 5636 OPCODE(VFCMPES); 5637 OPCODE(VFCMPHS); 5638 OPCODE(VFCMPHES); 5639 OPCODE(VFTCI); 5640 OPCODE(VEXTEND); 5641 OPCODE(STRICT_VEXTEND); 5642 OPCODE(VROUND); 5643 OPCODE(STRICT_VROUND); 5644 OPCODE(VTM); 5645 OPCODE(VFAE_CC); 5646 OPCODE(VFAEZ_CC); 5647 OPCODE(VFEE_CC); 5648 OPCODE(VFEEZ_CC); 5649 OPCODE(VFENE_CC); 5650 OPCODE(VFENEZ_CC); 5651 OPCODE(VISTR_CC); 5652 OPCODE(VSTRC_CC); 5653 OPCODE(VSTRCZ_CC); 5654 OPCODE(VSTRS_CC); 5655 OPCODE(VSTRSZ_CC); 5656 OPCODE(TDC); 5657 OPCODE(ATOMIC_SWAPW); 5658 OPCODE(ATOMIC_LOADW_ADD); 5659 OPCODE(ATOMIC_LOADW_SUB); 5660 OPCODE(ATOMIC_LOADW_AND); 5661 OPCODE(ATOMIC_LOADW_OR); 5662 OPCODE(ATOMIC_LOADW_XOR); 5663 OPCODE(ATOMIC_LOADW_NAND); 5664 OPCODE(ATOMIC_LOADW_MIN); 5665 OPCODE(ATOMIC_LOADW_MAX); 5666 OPCODE(ATOMIC_LOADW_UMIN); 5667 OPCODE(ATOMIC_LOADW_UMAX); 5668 OPCODE(ATOMIC_CMP_SWAPW); 5669 OPCODE(ATOMIC_CMP_SWAP); 5670 OPCODE(ATOMIC_LOAD_128); 5671 OPCODE(ATOMIC_STORE_128); 5672 OPCODE(ATOMIC_CMP_SWAP_128); 5673 OPCODE(LRV); 5674 OPCODE(STRV); 5675 OPCODE(VLER); 5676 OPCODE(VSTER); 5677 OPCODE(PREFETCH); 5678 } 5679 return nullptr; 5680 #undef OPCODE 5681 } 5682 5683 // Return true if VT is a vector whose elements are a whole number of bytes 5684 // in width. Also check for presence of vector support. 5685 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5686 if (!Subtarget.hasVector()) 5687 return false; 5688 5689 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5690 } 5691 5692 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5693 // producing a result of type ResVT. Op is a possibly bitcast version 5694 // of the input vector and Index is the index (based on type VecVT) that 5695 // should be extracted. Return the new extraction if a simplification 5696 // was possible or if Force is true. 5697 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5698 EVT VecVT, SDValue Op, 5699 unsigned Index, 5700 DAGCombinerInfo &DCI, 5701 bool Force) const { 5702 SelectionDAG &DAG = DCI.DAG; 5703 5704 // The number of bytes being extracted. 5705 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5706 5707 for (;;) { 5708 unsigned Opcode = Op.getOpcode(); 5709 if (Opcode == ISD::BITCAST) 5710 // Look through bitcasts. 5711 Op = Op.getOperand(0); 5712 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5713 canTreatAsByteVector(Op.getValueType())) { 5714 // Get a VPERM-like permute mask and see whether the bytes covered 5715 // by the extracted element are a contiguous sequence from one 5716 // source operand. 5717 SmallVector<int, SystemZ::VectorBytes> Bytes; 5718 if (!getVPermMask(Op, Bytes)) 5719 break; 5720 int First; 5721 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5722 BytesPerElement, First)) 5723 break; 5724 if (First < 0) 5725 return DAG.getUNDEF(ResVT); 5726 // Make sure the contiguous sequence starts at a multiple of the 5727 // original element size. 5728 unsigned Byte = unsigned(First) % Bytes.size(); 5729 if (Byte % BytesPerElement != 0) 5730 break; 5731 // We can get the extracted value directly from an input. 5732 Index = Byte / BytesPerElement; 5733 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5734 Force = true; 5735 } else if (Opcode == ISD::BUILD_VECTOR && 5736 canTreatAsByteVector(Op.getValueType())) { 5737 // We can only optimize this case if the BUILD_VECTOR elements are 5738 // at least as wide as the extracted value. 5739 EVT OpVT = Op.getValueType(); 5740 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5741 if (OpBytesPerElement < BytesPerElement) 5742 break; 5743 // Make sure that the least-significant bit of the extracted value 5744 // is the least significant bit of an input. 5745 unsigned End = (Index + 1) * BytesPerElement; 5746 if (End % OpBytesPerElement != 0) 5747 break; 5748 // We're extracting the low part of one operand of the BUILD_VECTOR. 5749 Op = Op.getOperand(End / OpBytesPerElement - 1); 5750 if (!Op.getValueType().isInteger()) { 5751 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5752 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5753 DCI.AddToWorklist(Op.getNode()); 5754 } 5755 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5756 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5757 if (VT != ResVT) { 5758 DCI.AddToWorklist(Op.getNode()); 5759 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5760 } 5761 return Op; 5762 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5763 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5764 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5765 canTreatAsByteVector(Op.getValueType()) && 5766 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5767 // Make sure that only the unextended bits are significant. 5768 EVT ExtVT = Op.getValueType(); 5769 EVT OpVT = Op.getOperand(0).getValueType(); 5770 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5771 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5772 unsigned Byte = Index * BytesPerElement; 5773 unsigned SubByte = Byte % ExtBytesPerElement; 5774 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5775 if (SubByte < MinSubByte || 5776 SubByte + BytesPerElement > ExtBytesPerElement) 5777 break; 5778 // Get the byte offset of the unextended element 5779 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5780 // ...then add the byte offset relative to that element. 5781 Byte += SubByte - MinSubByte; 5782 if (Byte % BytesPerElement != 0) 5783 break; 5784 Op = Op.getOperand(0); 5785 Index = Byte / BytesPerElement; 5786 Force = true; 5787 } else 5788 break; 5789 } 5790 if (Force) { 5791 if (Op.getValueType() != VecVT) { 5792 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5793 DCI.AddToWorklist(Op.getNode()); 5794 } 5795 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5796 DAG.getConstant(Index, DL, MVT::i32)); 5797 } 5798 return SDValue(); 5799 } 5800 5801 // Optimize vector operations in scalar value Op on the basis that Op 5802 // is truncated to TruncVT. 5803 SDValue SystemZTargetLowering::combineTruncateExtract( 5804 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5805 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5806 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5807 // of type TruncVT. 5808 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5809 TruncVT.getSizeInBits() % 8 == 0) { 5810 SDValue Vec = Op.getOperand(0); 5811 EVT VecVT = Vec.getValueType(); 5812 if (canTreatAsByteVector(VecVT)) { 5813 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5814 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5815 unsigned TruncBytes = TruncVT.getStoreSize(); 5816 if (BytesPerElement % TruncBytes == 0) { 5817 // Calculate the value of Y' in the above description. We are 5818 // splitting the original elements into Scale equal-sized pieces 5819 // and for truncation purposes want the last (least-significant) 5820 // of these pieces for IndexN. This is easiest to do by calculating 5821 // the start index of the following element and then subtracting 1. 5822 unsigned Scale = BytesPerElement / TruncBytes; 5823 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5824 5825 // Defer the creation of the bitcast from X to combineExtract, 5826 // which might be able to optimize the extraction. 5827 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5828 VecVT.getStoreSize() / TruncBytes); 5829 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5830 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5831 } 5832 } 5833 } 5834 } 5835 return SDValue(); 5836 } 5837 5838 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5839 SDNode *N, DAGCombinerInfo &DCI) const { 5840 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5841 SelectionDAG &DAG = DCI.DAG; 5842 SDValue N0 = N->getOperand(0); 5843 EVT VT = N->getValueType(0); 5844 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5845 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5846 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5847 if (TrueOp && FalseOp) { 5848 SDLoc DL(N0); 5849 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5850 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5851 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5852 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5853 // If N0 has multiple uses, change other uses as well. 5854 if (!N0.hasOneUse()) { 5855 SDValue TruncSelect = 5856 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5857 DCI.CombineTo(N0.getNode(), TruncSelect); 5858 } 5859 return NewSelect; 5860 } 5861 } 5862 return SDValue(); 5863 } 5864 5865 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5866 SDNode *N, DAGCombinerInfo &DCI) const { 5867 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5868 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5869 // into (select_cc LHS, RHS, -1, 0, COND) 5870 SelectionDAG &DAG = DCI.DAG; 5871 SDValue N0 = N->getOperand(0); 5872 EVT VT = N->getValueType(0); 5873 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5874 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5875 N0 = N0.getOperand(0); 5876 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5877 SDLoc DL(N0); 5878 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5879 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5880 N0.getOperand(2) }; 5881 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5882 } 5883 return SDValue(); 5884 } 5885 5886 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5887 SDNode *N, DAGCombinerInfo &DCI) const { 5888 // Convert (sext (ashr (shl X, C1), C2)) to 5889 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5890 // cheap as narrower ones. 5891 SelectionDAG &DAG = DCI.DAG; 5892 SDValue N0 = N->getOperand(0); 5893 EVT VT = N->getValueType(0); 5894 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5895 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5896 SDValue Inner = N0.getOperand(0); 5897 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5898 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5899 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5900 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5901 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5902 EVT ShiftVT = N0.getOperand(1).getValueType(); 5903 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5904 Inner.getOperand(0)); 5905 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5906 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5907 ShiftVT)); 5908 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5909 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5910 } 5911 } 5912 } 5913 return SDValue(); 5914 } 5915 5916 SDValue SystemZTargetLowering::combineMERGE( 5917 SDNode *N, DAGCombinerInfo &DCI) const { 5918 SelectionDAG &DAG = DCI.DAG; 5919 unsigned Opcode = N->getOpcode(); 5920 SDValue Op0 = N->getOperand(0); 5921 SDValue Op1 = N->getOperand(1); 5922 if (Op0.getOpcode() == ISD::BITCAST) 5923 Op0 = Op0.getOperand(0); 5924 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5925 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5926 // for v4f32. 5927 if (Op1 == N->getOperand(0)) 5928 return Op1; 5929 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5930 EVT VT = Op1.getValueType(); 5931 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5932 if (ElemBytes <= 4) { 5933 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5934 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5935 EVT InVT = VT.changeVectorElementTypeToInteger(); 5936 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5937 SystemZ::VectorBytes / ElemBytes / 2); 5938 if (VT != InVT) { 5939 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5940 DCI.AddToWorklist(Op1.getNode()); 5941 } 5942 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5943 DCI.AddToWorklist(Op.getNode()); 5944 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5945 } 5946 } 5947 return SDValue(); 5948 } 5949 5950 SDValue SystemZTargetLowering::combineLOAD( 5951 SDNode *N, DAGCombinerInfo &DCI) const { 5952 SelectionDAG &DAG = DCI.DAG; 5953 EVT LdVT = N->getValueType(0); 5954 if (LdVT.isVector() || LdVT.isInteger()) 5955 return SDValue(); 5956 // Transform a scalar load that is REPLICATEd as well as having other 5957 // use(s) to the form where the other use(s) use the first element of the 5958 // REPLICATE instead of the load. Otherwise instruction selection will not 5959 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5960 // point loads. 5961 5962 SDValue Replicate; 5963 SmallVector<SDNode*, 8> OtherUses; 5964 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5965 UI != UE; ++UI) { 5966 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5967 if (Replicate) 5968 return SDValue(); // Should never happen 5969 Replicate = SDValue(*UI, 0); 5970 } 5971 else if (UI.getUse().getResNo() == 0) 5972 OtherUses.push_back(*UI); 5973 } 5974 if (!Replicate || OtherUses.empty()) 5975 return SDValue(); 5976 5977 SDLoc DL(N); 5978 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5979 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5980 // Update uses of the loaded Value while preserving old chains. 5981 for (SDNode *U : OtherUses) { 5982 SmallVector<SDValue, 8> Ops; 5983 for (SDValue Op : U->ops()) 5984 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5985 DAG.UpdateNodeOperands(U, Ops); 5986 } 5987 return SDValue(N, 0); 5988 } 5989 5990 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5991 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5992 return true; 5993 if (Subtarget.hasVectorEnhancements2()) 5994 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5995 return true; 5996 return false; 5997 } 5998 5999 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6000 if (!VT.isVector() || !VT.isSimple() || 6001 VT.getSizeInBits() != 128 || 6002 VT.getScalarSizeInBits() % 8 != 0) 6003 return false; 6004 6005 unsigned NumElts = VT.getVectorNumElements(); 6006 for (unsigned i = 0; i < NumElts; ++i) { 6007 if (M[i] < 0) continue; // ignore UNDEF indices 6008 if ((unsigned) M[i] != NumElts - 1 - i) 6009 return false; 6010 } 6011 6012 return true; 6013 } 6014 6015 SDValue SystemZTargetLowering::combineSTORE( 6016 SDNode *N, DAGCombinerInfo &DCI) const { 6017 SelectionDAG &DAG = DCI.DAG; 6018 auto *SN = cast<StoreSDNode>(N); 6019 auto &Op1 = N->getOperand(1); 6020 EVT MemVT = SN->getMemoryVT(); 6021 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6022 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6023 // If X has wider elements then convert it to: 6024 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6025 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6026 if (SDValue Value = 6027 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6028 DCI.AddToWorklist(Value.getNode()); 6029 6030 // Rewrite the store with the new form of stored value. 6031 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6032 SN->getBasePtr(), SN->getMemoryVT(), 6033 SN->getMemOperand()); 6034 } 6035 } 6036 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6037 if (!SN->isTruncatingStore() && 6038 Op1.getOpcode() == ISD::BSWAP && 6039 Op1.getNode()->hasOneUse() && 6040 canLoadStoreByteSwapped(Op1.getValueType())) { 6041 6042 SDValue BSwapOp = Op1.getOperand(0); 6043 6044 if (BSwapOp.getValueType() == MVT::i16) 6045 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6046 6047 SDValue Ops[] = { 6048 N->getOperand(0), BSwapOp, N->getOperand(2) 6049 }; 6050 6051 return 6052 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6053 Ops, MemVT, SN->getMemOperand()); 6054 } 6055 // Combine STORE (element-swap) into VSTER 6056 if (!SN->isTruncatingStore() && 6057 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6058 Op1.getNode()->hasOneUse() && 6059 Subtarget.hasVectorEnhancements2()) { 6060 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6061 ArrayRef<int> ShuffleMask = SVN->getMask(); 6062 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6063 SDValue Ops[] = { 6064 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6065 }; 6066 6067 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6068 DAG.getVTList(MVT::Other), 6069 Ops, MemVT, SN->getMemOperand()); 6070 } 6071 } 6072 6073 return SDValue(); 6074 } 6075 6076 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6077 SDNode *N, DAGCombinerInfo &DCI) const { 6078 SelectionDAG &DAG = DCI.DAG; 6079 // Combine element-swap (LOAD) into VLER 6080 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6081 N->getOperand(0).hasOneUse() && 6082 Subtarget.hasVectorEnhancements2()) { 6083 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6084 ArrayRef<int> ShuffleMask = SVN->getMask(); 6085 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6086 SDValue Load = N->getOperand(0); 6087 LoadSDNode *LD = cast<LoadSDNode>(Load); 6088 6089 // Create the element-swapping load. 6090 SDValue Ops[] = { 6091 LD->getChain(), // Chain 6092 LD->getBasePtr() // Ptr 6093 }; 6094 SDValue ESLoad = 6095 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6096 DAG.getVTList(LD->getValueType(0), MVT::Other), 6097 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6098 6099 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6100 // by the load dead. 6101 DCI.CombineTo(N, ESLoad); 6102 6103 // Next, combine the load away, we give it a bogus result value but a real 6104 // chain result. The result value is dead because the shuffle is dead. 6105 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6106 6107 // Return N so it doesn't get rechecked! 6108 return SDValue(N, 0); 6109 } 6110 } 6111 6112 return SDValue(); 6113 } 6114 6115 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6116 SDNode *N, DAGCombinerInfo &DCI) const { 6117 SelectionDAG &DAG = DCI.DAG; 6118 6119 if (!Subtarget.hasVector()) 6120 return SDValue(); 6121 6122 // Look through bitcasts that retain the number of vector elements. 6123 SDValue Op = N->getOperand(0); 6124 if (Op.getOpcode() == ISD::BITCAST && 6125 Op.getValueType().isVector() && 6126 Op.getOperand(0).getValueType().isVector() && 6127 Op.getValueType().getVectorNumElements() == 6128 Op.getOperand(0).getValueType().getVectorNumElements()) 6129 Op = Op.getOperand(0); 6130 6131 // Pull BSWAP out of a vector extraction. 6132 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6133 EVT VecVT = Op.getValueType(); 6134 EVT EltVT = VecVT.getVectorElementType(); 6135 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6136 Op.getOperand(0), N->getOperand(1)); 6137 DCI.AddToWorklist(Op.getNode()); 6138 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6139 if (EltVT != N->getValueType(0)) { 6140 DCI.AddToWorklist(Op.getNode()); 6141 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6142 } 6143 return Op; 6144 } 6145 6146 // Try to simplify a vector extraction. 6147 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6148 SDValue Op0 = N->getOperand(0); 6149 EVT VecVT = Op0.getValueType(); 6150 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6151 IndexN->getZExtValue(), DCI, false); 6152 } 6153 return SDValue(); 6154 } 6155 6156 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6157 SDNode *N, DAGCombinerInfo &DCI) const { 6158 SelectionDAG &DAG = DCI.DAG; 6159 // (join_dwords X, X) == (replicate X) 6160 if (N->getOperand(0) == N->getOperand(1)) 6161 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6162 N->getOperand(0)); 6163 return SDValue(); 6164 } 6165 6166 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6167 SDValue Chain1 = N1->getOperand(0); 6168 SDValue Chain2 = N2->getOperand(0); 6169 6170 // Trivial case: both nodes take the same chain. 6171 if (Chain1 == Chain2) 6172 return Chain1; 6173 6174 // FIXME - we could handle more complex cases via TokenFactor, 6175 // assuming we can verify that this would not create a cycle. 6176 return SDValue(); 6177 } 6178 6179 SDValue SystemZTargetLowering::combineFP_ROUND( 6180 SDNode *N, DAGCombinerInfo &DCI) const { 6181 6182 if (!Subtarget.hasVector()) 6183 return SDValue(); 6184 6185 // (fpround (extract_vector_elt X 0)) 6186 // (fpround (extract_vector_elt X 1)) -> 6187 // (extract_vector_elt (VROUND X) 0) 6188 // (extract_vector_elt (VROUND X) 2) 6189 // 6190 // This is a special case since the target doesn't really support v2f32s. 6191 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6192 SelectionDAG &DAG = DCI.DAG; 6193 SDValue Op0 = N->getOperand(OpNo); 6194 if (N->getValueType(0) == MVT::f32 && 6195 Op0.hasOneUse() && 6196 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6197 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6198 Op0.getOperand(1).getOpcode() == ISD::Constant && 6199 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6200 SDValue Vec = Op0.getOperand(0); 6201 for (auto *U : Vec->uses()) { 6202 if (U != Op0.getNode() && 6203 U->hasOneUse() && 6204 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6205 U->getOperand(0) == Vec && 6206 U->getOperand(1).getOpcode() == ISD::Constant && 6207 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6208 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6209 if (OtherRound.getOpcode() == N->getOpcode() && 6210 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6211 OtherRound.getValueType() == MVT::f32) { 6212 SDValue VRound, Chain; 6213 if (N->isStrictFPOpcode()) { 6214 Chain = MergeInputChains(N, OtherRound.getNode()); 6215 if (!Chain) 6216 continue; 6217 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6218 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6219 Chain = VRound.getValue(1); 6220 } else 6221 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6222 MVT::v4f32, Vec); 6223 DCI.AddToWorklist(VRound.getNode()); 6224 SDValue Extract1 = 6225 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6226 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6227 DCI.AddToWorklist(Extract1.getNode()); 6228 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6229 if (Chain) 6230 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6231 SDValue Extract0 = 6232 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6233 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6234 if (Chain) 6235 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6236 N->getVTList(), Extract0, Chain); 6237 return Extract0; 6238 } 6239 } 6240 } 6241 } 6242 return SDValue(); 6243 } 6244 6245 SDValue SystemZTargetLowering::combineFP_EXTEND( 6246 SDNode *N, DAGCombinerInfo &DCI) const { 6247 6248 if (!Subtarget.hasVector()) 6249 return SDValue(); 6250 6251 // (fpextend (extract_vector_elt X 0)) 6252 // (fpextend (extract_vector_elt X 2)) -> 6253 // (extract_vector_elt (VEXTEND X) 0) 6254 // (extract_vector_elt (VEXTEND X) 1) 6255 // 6256 // This is a special case since the target doesn't really support v2f32s. 6257 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6258 SelectionDAG &DAG = DCI.DAG; 6259 SDValue Op0 = N->getOperand(OpNo); 6260 if (N->getValueType(0) == MVT::f64 && 6261 Op0.hasOneUse() && 6262 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6263 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6264 Op0.getOperand(1).getOpcode() == ISD::Constant && 6265 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6266 SDValue Vec = Op0.getOperand(0); 6267 for (auto *U : Vec->uses()) { 6268 if (U != Op0.getNode() && 6269 U->hasOneUse() && 6270 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6271 U->getOperand(0) == Vec && 6272 U->getOperand(1).getOpcode() == ISD::Constant && 6273 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6274 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6275 if (OtherExtend.getOpcode() == N->getOpcode() && 6276 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6277 OtherExtend.getValueType() == MVT::f64) { 6278 SDValue VExtend, Chain; 6279 if (N->isStrictFPOpcode()) { 6280 Chain = MergeInputChains(N, OtherExtend.getNode()); 6281 if (!Chain) 6282 continue; 6283 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6284 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6285 Chain = VExtend.getValue(1); 6286 } else 6287 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6288 MVT::v2f64, Vec); 6289 DCI.AddToWorklist(VExtend.getNode()); 6290 SDValue Extract1 = 6291 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6292 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6293 DCI.AddToWorklist(Extract1.getNode()); 6294 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6295 if (Chain) 6296 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6297 SDValue Extract0 = 6298 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6299 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6300 if (Chain) 6301 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6302 N->getVTList(), Extract0, Chain); 6303 return Extract0; 6304 } 6305 } 6306 } 6307 } 6308 return SDValue(); 6309 } 6310 6311 SDValue SystemZTargetLowering::combineINT_TO_FP( 6312 SDNode *N, DAGCombinerInfo &DCI) const { 6313 if (DCI.Level != BeforeLegalizeTypes) 6314 return SDValue(); 6315 unsigned Opcode = N->getOpcode(); 6316 EVT OutVT = N->getValueType(0); 6317 SelectionDAG &DAG = DCI.DAG; 6318 SDValue Op = N->getOperand(0); 6319 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6320 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6321 6322 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6323 // v2f64 = uint_to_fp v2i16 6324 // => 6325 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6326 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6327 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6328 OutVT.getVectorNumElements()); 6329 unsigned ExtOpcode = 6330 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6331 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6332 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6333 } 6334 return SDValue(); 6335 } 6336 6337 SDValue SystemZTargetLowering::combineBSWAP( 6338 SDNode *N, DAGCombinerInfo &DCI) const { 6339 SelectionDAG &DAG = DCI.DAG; 6340 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6341 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6342 N->getOperand(0).hasOneUse() && 6343 canLoadStoreByteSwapped(N->getValueType(0))) { 6344 SDValue Load = N->getOperand(0); 6345 LoadSDNode *LD = cast<LoadSDNode>(Load); 6346 6347 // Create the byte-swapping load. 6348 SDValue Ops[] = { 6349 LD->getChain(), // Chain 6350 LD->getBasePtr() // Ptr 6351 }; 6352 EVT LoadVT = N->getValueType(0); 6353 if (LoadVT == MVT::i16) 6354 LoadVT = MVT::i32; 6355 SDValue BSLoad = 6356 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6357 DAG.getVTList(LoadVT, MVT::Other), 6358 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6359 6360 // If this is an i16 load, insert the truncate. 6361 SDValue ResVal = BSLoad; 6362 if (N->getValueType(0) == MVT::i16) 6363 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6364 6365 // First, combine the bswap away. This makes the value produced by the 6366 // load dead. 6367 DCI.CombineTo(N, ResVal); 6368 6369 // Next, combine the load away, we give it a bogus result value but a real 6370 // chain result. The result value is dead because the bswap is dead. 6371 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6372 6373 // Return N so it doesn't get rechecked! 6374 return SDValue(N, 0); 6375 } 6376 6377 // Look through bitcasts that retain the number of vector elements. 6378 SDValue Op = N->getOperand(0); 6379 if (Op.getOpcode() == ISD::BITCAST && 6380 Op.getValueType().isVector() && 6381 Op.getOperand(0).getValueType().isVector() && 6382 Op.getValueType().getVectorNumElements() == 6383 Op.getOperand(0).getValueType().getVectorNumElements()) 6384 Op = Op.getOperand(0); 6385 6386 // Push BSWAP into a vector insertion if at least one side then simplifies. 6387 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6388 SDValue Vec = Op.getOperand(0); 6389 SDValue Elt = Op.getOperand(1); 6390 SDValue Idx = Op.getOperand(2); 6391 6392 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6393 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6394 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6395 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6396 (canLoadStoreByteSwapped(N->getValueType(0)) && 6397 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6398 EVT VecVT = N->getValueType(0); 6399 EVT EltVT = N->getValueType(0).getVectorElementType(); 6400 if (VecVT != Vec.getValueType()) { 6401 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6402 DCI.AddToWorklist(Vec.getNode()); 6403 } 6404 if (EltVT != Elt.getValueType()) { 6405 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6406 DCI.AddToWorklist(Elt.getNode()); 6407 } 6408 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6409 DCI.AddToWorklist(Vec.getNode()); 6410 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6411 DCI.AddToWorklist(Elt.getNode()); 6412 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6413 Vec, Elt, Idx); 6414 } 6415 } 6416 6417 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6418 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6419 if (SV && Op.hasOneUse()) { 6420 SDValue Op0 = Op.getOperand(0); 6421 SDValue Op1 = Op.getOperand(1); 6422 6423 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6424 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6425 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6426 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6427 EVT VecVT = N->getValueType(0); 6428 if (VecVT != Op0.getValueType()) { 6429 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6430 DCI.AddToWorklist(Op0.getNode()); 6431 } 6432 if (VecVT != Op1.getValueType()) { 6433 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6434 DCI.AddToWorklist(Op1.getNode()); 6435 } 6436 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6437 DCI.AddToWorklist(Op0.getNode()); 6438 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6439 DCI.AddToWorklist(Op1.getNode()); 6440 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6441 } 6442 } 6443 6444 return SDValue(); 6445 } 6446 6447 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6448 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6449 // set by the CCReg instruction using the CCValid / CCMask masks, 6450 // If the CCReg instruction is itself a ICMP testing the condition 6451 // code set by some other instruction, see whether we can directly 6452 // use that condition code. 6453 6454 // Verify that we have an ICMP against some constant. 6455 if (CCValid != SystemZ::CCMASK_ICMP) 6456 return false; 6457 auto *ICmp = CCReg.getNode(); 6458 if (ICmp->getOpcode() != SystemZISD::ICMP) 6459 return false; 6460 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6461 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6462 if (!CompareRHS) 6463 return false; 6464 6465 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6466 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6467 // Verify that we have an appropriate mask for a EQ or NE comparison. 6468 bool Invert = false; 6469 if (CCMask == SystemZ::CCMASK_CMP_NE) 6470 Invert = !Invert; 6471 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6472 return false; 6473 6474 // Verify that the ICMP compares against one of select values. 6475 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6476 if (!TrueVal) 6477 return false; 6478 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6479 if (!FalseVal) 6480 return false; 6481 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6482 Invert = !Invert; 6483 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6484 return false; 6485 6486 // Compute the effective CC mask for the new branch or select. 6487 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6488 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6489 if (!NewCCValid || !NewCCMask) 6490 return false; 6491 CCValid = NewCCValid->getZExtValue(); 6492 CCMask = NewCCMask->getZExtValue(); 6493 if (Invert) 6494 CCMask ^= CCValid; 6495 6496 // Return the updated CCReg link. 6497 CCReg = CompareLHS->getOperand(4); 6498 return true; 6499 } 6500 6501 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6502 if (CompareLHS->getOpcode() == ISD::SRA) { 6503 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6504 if (!SRACount || SRACount->getZExtValue() != 30) 6505 return false; 6506 auto *SHL = CompareLHS->getOperand(0).getNode(); 6507 if (SHL->getOpcode() != ISD::SHL) 6508 return false; 6509 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6510 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6511 return false; 6512 auto *IPM = SHL->getOperand(0).getNode(); 6513 if (IPM->getOpcode() != SystemZISD::IPM) 6514 return false; 6515 6516 // Avoid introducing CC spills (because SRA would clobber CC). 6517 if (!CompareLHS->hasOneUse()) 6518 return false; 6519 // Verify that the ICMP compares against zero. 6520 if (CompareRHS->getZExtValue() != 0) 6521 return false; 6522 6523 // Compute the effective CC mask for the new branch or select. 6524 CCMask = SystemZ::reverseCCMask(CCMask); 6525 6526 // Return the updated CCReg link. 6527 CCReg = IPM->getOperand(0); 6528 return true; 6529 } 6530 6531 return false; 6532 } 6533 6534 SDValue SystemZTargetLowering::combineBR_CCMASK( 6535 SDNode *N, DAGCombinerInfo &DCI) const { 6536 SelectionDAG &DAG = DCI.DAG; 6537 6538 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6539 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6540 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6541 if (!CCValid || !CCMask) 6542 return SDValue(); 6543 6544 int CCValidVal = CCValid->getZExtValue(); 6545 int CCMaskVal = CCMask->getZExtValue(); 6546 SDValue Chain = N->getOperand(0); 6547 SDValue CCReg = N->getOperand(4); 6548 6549 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6550 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6551 Chain, 6552 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6553 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6554 N->getOperand(3), CCReg); 6555 return SDValue(); 6556 } 6557 6558 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6559 SDNode *N, DAGCombinerInfo &DCI) const { 6560 SelectionDAG &DAG = DCI.DAG; 6561 6562 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6563 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6564 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6565 if (!CCValid || !CCMask) 6566 return SDValue(); 6567 6568 int CCValidVal = CCValid->getZExtValue(); 6569 int CCMaskVal = CCMask->getZExtValue(); 6570 SDValue CCReg = N->getOperand(4); 6571 6572 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6573 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6574 N->getOperand(0), N->getOperand(1), 6575 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6576 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6577 CCReg); 6578 return SDValue(); 6579 } 6580 6581 6582 SDValue SystemZTargetLowering::combineGET_CCMASK( 6583 SDNode *N, DAGCombinerInfo &DCI) const { 6584 6585 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6586 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6587 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6588 if (!CCValid || !CCMask) 6589 return SDValue(); 6590 int CCValidVal = CCValid->getZExtValue(); 6591 int CCMaskVal = CCMask->getZExtValue(); 6592 6593 SDValue Select = N->getOperand(0); 6594 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6595 return SDValue(); 6596 6597 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6598 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6599 if (!SelectCCValid || !SelectCCMask) 6600 return SDValue(); 6601 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6602 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6603 6604 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6605 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6606 if (!TrueVal || !FalseVal) 6607 return SDValue(); 6608 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6609 ; 6610 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6611 SelectCCMaskVal ^= SelectCCValidVal; 6612 else 6613 return SDValue(); 6614 6615 if (SelectCCValidVal & ~CCValidVal) 6616 return SDValue(); 6617 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6618 return SDValue(); 6619 6620 return Select->getOperand(4); 6621 } 6622 6623 SDValue SystemZTargetLowering::combineIntDIVREM( 6624 SDNode *N, DAGCombinerInfo &DCI) const { 6625 SelectionDAG &DAG = DCI.DAG; 6626 EVT VT = N->getValueType(0); 6627 // In the case where the divisor is a vector of constants a cheaper 6628 // sequence of instructions can replace the divide. BuildSDIV is called to 6629 // do this during DAG combining, but it only succeeds when it can build a 6630 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6631 // since it is not Legal but Custom it can only happen before 6632 // legalization. Therefore we must scalarize this early before Combine 6633 // 1. For widened vectors, this is already the result of type legalization. 6634 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6635 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6636 return DAG.UnrollVectorOp(N); 6637 return SDValue(); 6638 } 6639 6640 SDValue SystemZTargetLowering::combineINTRINSIC( 6641 SDNode *N, DAGCombinerInfo &DCI) const { 6642 SelectionDAG &DAG = DCI.DAG; 6643 6644 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6645 switch (Id) { 6646 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6647 // or larger is simply a vector load. 6648 case Intrinsic::s390_vll: 6649 case Intrinsic::s390_vlrl: 6650 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6651 if (C->getZExtValue() >= 15) 6652 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6653 N->getOperand(3), MachinePointerInfo()); 6654 break; 6655 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6656 case Intrinsic::s390_vstl: 6657 case Intrinsic::s390_vstrl: 6658 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6659 if (C->getZExtValue() >= 15) 6660 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6661 N->getOperand(4), MachinePointerInfo()); 6662 break; 6663 } 6664 6665 return SDValue(); 6666 } 6667 6668 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6669 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6670 return N->getOperand(0); 6671 return N; 6672 } 6673 6674 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6675 DAGCombinerInfo &DCI) const { 6676 switch(N->getOpcode()) { 6677 default: break; 6678 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6679 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6680 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6681 case SystemZISD::MERGE_HIGH: 6682 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6683 case ISD::LOAD: return combineLOAD(N, DCI); 6684 case ISD::STORE: return combineSTORE(N, DCI); 6685 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6686 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6687 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6688 case ISD::STRICT_FP_ROUND: 6689 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6690 case ISD::STRICT_FP_EXTEND: 6691 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6692 case ISD::SINT_TO_FP: 6693 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6694 case ISD::BSWAP: return combineBSWAP(N, DCI); 6695 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6696 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6697 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6698 case ISD::SDIV: 6699 case ISD::UDIV: 6700 case ISD::SREM: 6701 case ISD::UREM: return combineIntDIVREM(N, DCI); 6702 case ISD::INTRINSIC_W_CHAIN: 6703 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6704 } 6705 6706 return SDValue(); 6707 } 6708 6709 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6710 // are for Op. 6711 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6712 unsigned OpNo) { 6713 EVT VT = Op.getValueType(); 6714 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6715 APInt SrcDemE; 6716 unsigned Opcode = Op.getOpcode(); 6717 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6718 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6719 switch (Id) { 6720 case Intrinsic::s390_vpksh: // PACKS 6721 case Intrinsic::s390_vpksf: 6722 case Intrinsic::s390_vpksg: 6723 case Intrinsic::s390_vpkshs: // PACKS_CC 6724 case Intrinsic::s390_vpksfs: 6725 case Intrinsic::s390_vpksgs: 6726 case Intrinsic::s390_vpklsh: // PACKLS 6727 case Intrinsic::s390_vpklsf: 6728 case Intrinsic::s390_vpklsg: 6729 case Intrinsic::s390_vpklshs: // PACKLS_CC 6730 case Intrinsic::s390_vpklsfs: 6731 case Intrinsic::s390_vpklsgs: 6732 // VECTOR PACK truncates the elements of two source vectors into one. 6733 SrcDemE = DemandedElts; 6734 if (OpNo == 2) 6735 SrcDemE.lshrInPlace(NumElts / 2); 6736 SrcDemE = SrcDemE.trunc(NumElts / 2); 6737 break; 6738 // VECTOR UNPACK extends half the elements of the source vector. 6739 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6740 case Intrinsic::s390_vuphh: 6741 case Intrinsic::s390_vuphf: 6742 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6743 case Intrinsic::s390_vuplhh: 6744 case Intrinsic::s390_vuplhf: 6745 SrcDemE = APInt(NumElts * 2, 0); 6746 SrcDemE.insertBits(DemandedElts, 0); 6747 break; 6748 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6749 case Intrinsic::s390_vuplhw: 6750 case Intrinsic::s390_vuplf: 6751 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6752 case Intrinsic::s390_vupllh: 6753 case Intrinsic::s390_vupllf: 6754 SrcDemE = APInt(NumElts * 2, 0); 6755 SrcDemE.insertBits(DemandedElts, NumElts); 6756 break; 6757 case Intrinsic::s390_vpdi: { 6758 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6759 SrcDemE = APInt(NumElts, 0); 6760 if (!DemandedElts[OpNo - 1]) 6761 break; 6762 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6763 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6764 // Demand input element 0 or 1, given by the mask bit value. 6765 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6766 break; 6767 } 6768 case Intrinsic::s390_vsldb: { 6769 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6770 assert(VT == MVT::v16i8 && "Unexpected type."); 6771 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6772 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6773 unsigned NumSrc0Els = 16 - FirstIdx; 6774 SrcDemE = APInt(NumElts, 0); 6775 if (OpNo == 1) { 6776 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6777 SrcDemE.insertBits(DemEls, FirstIdx); 6778 } else { 6779 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6780 SrcDemE.insertBits(DemEls, 0); 6781 } 6782 break; 6783 } 6784 case Intrinsic::s390_vperm: 6785 SrcDemE = APInt(NumElts, 1); 6786 break; 6787 default: 6788 llvm_unreachable("Unhandled intrinsic."); 6789 break; 6790 } 6791 } else { 6792 switch (Opcode) { 6793 case SystemZISD::JOIN_DWORDS: 6794 // Scalar operand. 6795 SrcDemE = APInt(1, 1); 6796 break; 6797 case SystemZISD::SELECT_CCMASK: 6798 SrcDemE = DemandedElts; 6799 break; 6800 default: 6801 llvm_unreachable("Unhandled opcode."); 6802 break; 6803 } 6804 } 6805 return SrcDemE; 6806 } 6807 6808 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6809 const APInt &DemandedElts, 6810 const SelectionDAG &DAG, unsigned Depth, 6811 unsigned OpNo) { 6812 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6813 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6814 KnownBits LHSKnown = 6815 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6816 KnownBits RHSKnown = 6817 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6818 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6819 Known.One = LHSKnown.One & RHSKnown.One; 6820 } 6821 6822 void 6823 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6824 KnownBits &Known, 6825 const APInt &DemandedElts, 6826 const SelectionDAG &DAG, 6827 unsigned Depth) const { 6828 Known.resetAll(); 6829 6830 // Intrinsic CC result is returned in the two low bits. 6831 unsigned tmp0, tmp1; // not used 6832 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6833 Known.Zero.setBitsFrom(2); 6834 return; 6835 } 6836 EVT VT = Op.getValueType(); 6837 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6838 return; 6839 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6840 "KnownBits does not match VT in bitwidth"); 6841 assert ((!VT.isVector() || 6842 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6843 "DemandedElts does not match VT number of elements"); 6844 unsigned BitWidth = Known.getBitWidth(); 6845 unsigned Opcode = Op.getOpcode(); 6846 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6847 bool IsLogical = false; 6848 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6849 switch (Id) { 6850 case Intrinsic::s390_vpksh: // PACKS 6851 case Intrinsic::s390_vpksf: 6852 case Intrinsic::s390_vpksg: 6853 case Intrinsic::s390_vpkshs: // PACKS_CC 6854 case Intrinsic::s390_vpksfs: 6855 case Intrinsic::s390_vpksgs: 6856 case Intrinsic::s390_vpklsh: // PACKLS 6857 case Intrinsic::s390_vpklsf: 6858 case Intrinsic::s390_vpklsg: 6859 case Intrinsic::s390_vpklshs: // PACKLS_CC 6860 case Intrinsic::s390_vpklsfs: 6861 case Intrinsic::s390_vpklsgs: 6862 case Intrinsic::s390_vpdi: 6863 case Intrinsic::s390_vsldb: 6864 case Intrinsic::s390_vperm: 6865 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6866 break; 6867 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6868 case Intrinsic::s390_vuplhh: 6869 case Intrinsic::s390_vuplhf: 6870 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6871 case Intrinsic::s390_vupllh: 6872 case Intrinsic::s390_vupllf: 6873 IsLogical = true; 6874 LLVM_FALLTHROUGH; 6875 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6876 case Intrinsic::s390_vuphh: 6877 case Intrinsic::s390_vuphf: 6878 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6879 case Intrinsic::s390_vuplhw: 6880 case Intrinsic::s390_vuplf: { 6881 SDValue SrcOp = Op.getOperand(1); 6882 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6883 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6884 if (IsLogical) { 6885 Known = Known.zext(BitWidth); 6886 } else 6887 Known = Known.sext(BitWidth); 6888 break; 6889 } 6890 default: 6891 break; 6892 } 6893 } else { 6894 switch (Opcode) { 6895 case SystemZISD::JOIN_DWORDS: 6896 case SystemZISD::SELECT_CCMASK: 6897 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6898 break; 6899 case SystemZISD::REPLICATE: { 6900 SDValue SrcOp = Op.getOperand(0); 6901 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6902 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6903 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6904 break; 6905 } 6906 default: 6907 break; 6908 } 6909 } 6910 6911 // Known has the width of the source operand(s). Adjust if needed to match 6912 // the passed bitwidth. 6913 if (Known.getBitWidth() != BitWidth) 6914 Known = Known.anyextOrTrunc(BitWidth); 6915 } 6916 6917 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6918 const SelectionDAG &DAG, unsigned Depth, 6919 unsigned OpNo) { 6920 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6921 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6922 if (LHS == 1) return 1; // Early out. 6923 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6924 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6925 if (RHS == 1) return 1; // Early out. 6926 unsigned Common = std::min(LHS, RHS); 6927 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6928 EVT VT = Op.getValueType(); 6929 unsigned VTBits = VT.getScalarSizeInBits(); 6930 if (SrcBitWidth > VTBits) { // PACK 6931 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6932 if (Common > SrcExtraBits) 6933 return (Common - SrcExtraBits); 6934 return 1; 6935 } 6936 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6937 return Common; 6938 } 6939 6940 unsigned 6941 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6942 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6943 unsigned Depth) const { 6944 if (Op.getResNo() != 0) 6945 return 1; 6946 unsigned Opcode = Op.getOpcode(); 6947 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6948 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6949 switch (Id) { 6950 case Intrinsic::s390_vpksh: // PACKS 6951 case Intrinsic::s390_vpksf: 6952 case Intrinsic::s390_vpksg: 6953 case Intrinsic::s390_vpkshs: // PACKS_CC 6954 case Intrinsic::s390_vpksfs: 6955 case Intrinsic::s390_vpksgs: 6956 case Intrinsic::s390_vpklsh: // PACKLS 6957 case Intrinsic::s390_vpklsf: 6958 case Intrinsic::s390_vpklsg: 6959 case Intrinsic::s390_vpklshs: // PACKLS_CC 6960 case Intrinsic::s390_vpklsfs: 6961 case Intrinsic::s390_vpklsgs: 6962 case Intrinsic::s390_vpdi: 6963 case Intrinsic::s390_vsldb: 6964 case Intrinsic::s390_vperm: 6965 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6966 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6967 case Intrinsic::s390_vuphh: 6968 case Intrinsic::s390_vuphf: 6969 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6970 case Intrinsic::s390_vuplhw: 6971 case Intrinsic::s390_vuplf: { 6972 SDValue PackedOp = Op.getOperand(1); 6973 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6974 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6975 EVT VT = Op.getValueType(); 6976 unsigned VTBits = VT.getScalarSizeInBits(); 6977 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6978 return Tmp; 6979 } 6980 default: 6981 break; 6982 } 6983 } else { 6984 switch (Opcode) { 6985 case SystemZISD::SELECT_CCMASK: 6986 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6987 default: 6988 break; 6989 } 6990 } 6991 6992 return 1; 6993 } 6994 6995 unsigned 6996 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 6997 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6998 unsigned StackAlign = TFI->getStackAlignment(); 6999 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7000 "Unexpected stack alignment"); 7001 // The default stack probe size is 4096 if the function has no 7002 // stack-probe-size attribute. 7003 unsigned StackProbeSize = 4096; 7004 const Function &Fn = MF.getFunction(); 7005 if (Fn.hasFnAttribute("stack-probe-size")) 7006 Fn.getFnAttribute("stack-probe-size") 7007 .getValueAsString() 7008 .getAsInteger(0, StackProbeSize); 7009 // Round down to the stack alignment. 7010 StackProbeSize &= ~(StackAlign - 1); 7011 return StackProbeSize ? StackProbeSize : StackAlign; 7012 } 7013 7014 //===----------------------------------------------------------------------===// 7015 // Custom insertion 7016 //===----------------------------------------------------------------------===// 7017 7018 // Force base value Base into a register before MI. Return the register. 7019 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7020 const SystemZInstrInfo *TII) { 7021 if (Base.isReg()) 7022 return Base.getReg(); 7023 7024 MachineBasicBlock *MBB = MI.getParent(); 7025 MachineFunction &MF = *MBB->getParent(); 7026 MachineRegisterInfo &MRI = MF.getRegInfo(); 7027 7028 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7029 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7030 .add(Base) 7031 .addImm(0) 7032 .addReg(0); 7033 return Reg; 7034 } 7035 7036 // The CC operand of MI might be missing a kill marker because there 7037 // were multiple uses of CC, and ISel didn't know which to mark. 7038 // Figure out whether MI should have had a kill marker. 7039 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7040 // Scan forward through BB for a use/def of CC. 7041 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7042 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7043 const MachineInstr& mi = *miI; 7044 if (mi.readsRegister(SystemZ::CC)) 7045 return false; 7046 if (mi.definesRegister(SystemZ::CC)) 7047 break; // Should have kill-flag - update below. 7048 } 7049 7050 // If we hit the end of the block, check whether CC is live into a 7051 // successor. 7052 if (miI == MBB->end()) { 7053 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 7054 if ((*SI)->isLiveIn(SystemZ::CC)) 7055 return false; 7056 } 7057 7058 return true; 7059 } 7060 7061 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7062 // together with other Select pseudo-opcodes into a single basic-block with 7063 // a conditional jump around it. 7064 static bool isSelectPseudo(MachineInstr &MI) { 7065 switch (MI.getOpcode()) { 7066 case SystemZ::Select32: 7067 case SystemZ::Select64: 7068 case SystemZ::SelectF32: 7069 case SystemZ::SelectF64: 7070 case SystemZ::SelectF128: 7071 case SystemZ::SelectVR32: 7072 case SystemZ::SelectVR64: 7073 case SystemZ::SelectVR128: 7074 return true; 7075 7076 default: 7077 return false; 7078 } 7079 } 7080 7081 // Helper function, which inserts PHI functions into SinkMBB: 7082 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7083 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7084 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7085 MachineBasicBlock *TrueMBB, 7086 MachineBasicBlock *FalseMBB, 7087 MachineBasicBlock *SinkMBB) { 7088 MachineFunction *MF = TrueMBB->getParent(); 7089 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7090 7091 MachineInstr *FirstMI = Selects.front(); 7092 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7093 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7094 7095 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7096 7097 // As we are creating the PHIs, we have to be careful if there is more than 7098 // one. Later Selects may reference the results of earlier Selects, but later 7099 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7100 // That also means that PHI construction must work forward from earlier to 7101 // later, and that the code must maintain a mapping from earlier PHI's 7102 // destination registers, and the registers that went into the PHI. 7103 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7104 7105 for (auto MI : Selects) { 7106 Register DestReg = MI->getOperand(0).getReg(); 7107 Register TrueReg = MI->getOperand(1).getReg(); 7108 Register FalseReg = MI->getOperand(2).getReg(); 7109 7110 // If this Select we are generating is the opposite condition from 7111 // the jump we generated, then we have to swap the operands for the 7112 // PHI that is going to be generated. 7113 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7114 std::swap(TrueReg, FalseReg); 7115 7116 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7117 TrueReg = RegRewriteTable[TrueReg].first; 7118 7119 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7120 FalseReg = RegRewriteTable[FalseReg].second; 7121 7122 DebugLoc DL = MI->getDebugLoc(); 7123 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7124 .addReg(TrueReg).addMBB(TrueMBB) 7125 .addReg(FalseReg).addMBB(FalseMBB); 7126 7127 // Add this PHI to the rewrite table. 7128 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7129 } 7130 7131 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7132 } 7133 7134 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7135 MachineBasicBlock * 7136 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7137 MachineBasicBlock *MBB) const { 7138 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7139 const SystemZInstrInfo *TII = 7140 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7141 7142 unsigned CCValid = MI.getOperand(3).getImm(); 7143 unsigned CCMask = MI.getOperand(4).getImm(); 7144 7145 // If we have a sequence of Select* pseudo instructions using the 7146 // same condition code value, we want to expand all of them into 7147 // a single pair of basic blocks using the same condition. 7148 SmallVector<MachineInstr*, 8> Selects; 7149 SmallVector<MachineInstr*, 8> DbgValues; 7150 Selects.push_back(&MI); 7151 unsigned Count = 0; 7152 for (MachineBasicBlock::iterator NextMIIt = 7153 std::next(MachineBasicBlock::iterator(MI)); 7154 NextMIIt != MBB->end(); ++NextMIIt) { 7155 if (isSelectPseudo(*NextMIIt)) { 7156 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7157 "Bad CCValid operands since CC was not redefined."); 7158 if (NextMIIt->getOperand(4).getImm() == CCMask || 7159 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7160 Selects.push_back(&*NextMIIt); 7161 continue; 7162 } 7163 break; 7164 } 7165 if (NextMIIt->definesRegister(SystemZ::CC) || 7166 NextMIIt->usesCustomInsertionHook()) 7167 break; 7168 bool User = false; 7169 for (auto SelMI : Selects) 7170 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7171 User = true; 7172 break; 7173 } 7174 if (NextMIIt->isDebugInstr()) { 7175 if (User) { 7176 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7177 DbgValues.push_back(&*NextMIIt); 7178 } 7179 } 7180 else if (User || ++Count > 20) 7181 break; 7182 } 7183 7184 MachineInstr *LastMI = Selects.back(); 7185 bool CCKilled = 7186 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7187 MachineBasicBlock *StartMBB = MBB; 7188 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7189 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7190 7191 // Unless CC was killed in the last Select instruction, mark it as 7192 // live-in to both FalseMBB and JoinMBB. 7193 if (!CCKilled) { 7194 FalseMBB->addLiveIn(SystemZ::CC); 7195 JoinMBB->addLiveIn(SystemZ::CC); 7196 } 7197 7198 // StartMBB: 7199 // BRC CCMask, JoinMBB 7200 // # fallthrough to FalseMBB 7201 MBB = StartMBB; 7202 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7203 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7204 MBB->addSuccessor(JoinMBB); 7205 MBB->addSuccessor(FalseMBB); 7206 7207 // FalseMBB: 7208 // # fallthrough to JoinMBB 7209 MBB = FalseMBB; 7210 MBB->addSuccessor(JoinMBB); 7211 7212 // JoinMBB: 7213 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7214 // ... 7215 MBB = JoinMBB; 7216 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7217 for (auto SelMI : Selects) 7218 SelMI->eraseFromParent(); 7219 7220 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7221 for (auto DbgMI : DbgValues) 7222 MBB->splice(InsertPos, StartMBB, DbgMI); 7223 7224 return JoinMBB; 7225 } 7226 7227 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7228 // StoreOpcode is the store to use and Invert says whether the store should 7229 // happen when the condition is false rather than true. If a STORE ON 7230 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7231 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7232 MachineBasicBlock *MBB, 7233 unsigned StoreOpcode, 7234 unsigned STOCOpcode, 7235 bool Invert) const { 7236 const SystemZInstrInfo *TII = 7237 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7238 7239 Register SrcReg = MI.getOperand(0).getReg(); 7240 MachineOperand Base = MI.getOperand(1); 7241 int64_t Disp = MI.getOperand(2).getImm(); 7242 Register IndexReg = MI.getOperand(3).getReg(); 7243 unsigned CCValid = MI.getOperand(4).getImm(); 7244 unsigned CCMask = MI.getOperand(5).getImm(); 7245 DebugLoc DL = MI.getDebugLoc(); 7246 7247 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7248 7249 // Use STOCOpcode if possible. We could use different store patterns in 7250 // order to avoid matching the index register, but the performance trade-offs 7251 // might be more complicated in that case. 7252 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7253 if (Invert) 7254 CCMask ^= CCValid; 7255 7256 // ISel pattern matching also adds a load memory operand of the same 7257 // address, so take special care to find the storing memory operand. 7258 MachineMemOperand *MMO = nullptr; 7259 for (auto *I : MI.memoperands()) 7260 if (I->isStore()) { 7261 MMO = I; 7262 break; 7263 } 7264 7265 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7266 .addReg(SrcReg) 7267 .add(Base) 7268 .addImm(Disp) 7269 .addImm(CCValid) 7270 .addImm(CCMask) 7271 .addMemOperand(MMO); 7272 7273 MI.eraseFromParent(); 7274 return MBB; 7275 } 7276 7277 // Get the condition needed to branch around the store. 7278 if (!Invert) 7279 CCMask ^= CCValid; 7280 7281 MachineBasicBlock *StartMBB = MBB; 7282 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7283 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7284 7285 // Unless CC was killed in the CondStore instruction, mark it as 7286 // live-in to both FalseMBB and JoinMBB. 7287 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7288 FalseMBB->addLiveIn(SystemZ::CC); 7289 JoinMBB->addLiveIn(SystemZ::CC); 7290 } 7291 7292 // StartMBB: 7293 // BRC CCMask, JoinMBB 7294 // # fallthrough to FalseMBB 7295 MBB = StartMBB; 7296 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7297 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7298 MBB->addSuccessor(JoinMBB); 7299 MBB->addSuccessor(FalseMBB); 7300 7301 // FalseMBB: 7302 // store %SrcReg, %Disp(%Index,%Base) 7303 // # fallthrough to JoinMBB 7304 MBB = FalseMBB; 7305 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7306 .addReg(SrcReg) 7307 .add(Base) 7308 .addImm(Disp) 7309 .addReg(IndexReg); 7310 MBB->addSuccessor(JoinMBB); 7311 7312 MI.eraseFromParent(); 7313 return JoinMBB; 7314 } 7315 7316 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7317 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7318 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7319 // BitSize is the width of the field in bits, or 0 if this is a partword 7320 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7321 // is one of the operands. Invert says whether the field should be 7322 // inverted after performing BinOpcode (e.g. for NAND). 7323 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7324 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7325 unsigned BitSize, bool Invert) const { 7326 MachineFunction &MF = *MBB->getParent(); 7327 const SystemZInstrInfo *TII = 7328 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7329 MachineRegisterInfo &MRI = MF.getRegInfo(); 7330 bool IsSubWord = (BitSize < 32); 7331 7332 // Extract the operands. Base can be a register or a frame index. 7333 // Src2 can be a register or immediate. 7334 Register Dest = MI.getOperand(0).getReg(); 7335 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7336 int64_t Disp = MI.getOperand(2).getImm(); 7337 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7338 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7339 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7340 DebugLoc DL = MI.getDebugLoc(); 7341 if (IsSubWord) 7342 BitSize = MI.getOperand(6).getImm(); 7343 7344 // Subword operations use 32-bit registers. 7345 const TargetRegisterClass *RC = (BitSize <= 32 ? 7346 &SystemZ::GR32BitRegClass : 7347 &SystemZ::GR64BitRegClass); 7348 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7349 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7350 7351 // Get the right opcodes for the displacement. 7352 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7353 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7354 assert(LOpcode && CSOpcode && "Displacement out of range"); 7355 7356 // Create virtual registers for temporary results. 7357 Register OrigVal = MRI.createVirtualRegister(RC); 7358 Register OldVal = MRI.createVirtualRegister(RC); 7359 Register NewVal = (BinOpcode || IsSubWord ? 7360 MRI.createVirtualRegister(RC) : Src2.getReg()); 7361 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7362 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7363 7364 // Insert a basic block for the main loop. 7365 MachineBasicBlock *StartMBB = MBB; 7366 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7367 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7368 7369 // StartMBB: 7370 // ... 7371 // %OrigVal = L Disp(%Base) 7372 // # fall through to LoopMMB 7373 MBB = StartMBB; 7374 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7375 MBB->addSuccessor(LoopMBB); 7376 7377 // LoopMBB: 7378 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7379 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7380 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7381 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7382 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7383 // JNE LoopMBB 7384 // # fall through to DoneMMB 7385 MBB = LoopMBB; 7386 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7387 .addReg(OrigVal).addMBB(StartMBB) 7388 .addReg(Dest).addMBB(LoopMBB); 7389 if (IsSubWord) 7390 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7391 .addReg(OldVal).addReg(BitShift).addImm(0); 7392 if (Invert) { 7393 // Perform the operation normally and then invert every bit of the field. 7394 Register Tmp = MRI.createVirtualRegister(RC); 7395 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7396 if (BitSize <= 32) 7397 // XILF with the upper BitSize bits set. 7398 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7399 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7400 else { 7401 // Use LCGR and add -1 to the result, which is more compact than 7402 // an XILF, XILH pair. 7403 Register Tmp2 = MRI.createVirtualRegister(RC); 7404 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7405 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7406 .addReg(Tmp2).addImm(-1); 7407 } 7408 } else if (BinOpcode) 7409 // A simply binary operation. 7410 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7411 .addReg(RotatedOldVal) 7412 .add(Src2); 7413 else if (IsSubWord) 7414 // Use RISBG to rotate Src2 into position and use it to replace the 7415 // field in RotatedOldVal. 7416 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7417 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7418 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7419 if (IsSubWord) 7420 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7421 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7422 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7423 .addReg(OldVal) 7424 .addReg(NewVal) 7425 .add(Base) 7426 .addImm(Disp); 7427 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7428 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7429 MBB->addSuccessor(LoopMBB); 7430 MBB->addSuccessor(DoneMBB); 7431 7432 MI.eraseFromParent(); 7433 return DoneMBB; 7434 } 7435 7436 // Implement EmitInstrWithCustomInserter for pseudo 7437 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7438 // instruction that should be used to compare the current field with the 7439 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7440 // for when the current field should be kept. BitSize is the width of 7441 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7442 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7443 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7444 unsigned KeepOldMask, unsigned BitSize) const { 7445 MachineFunction &MF = *MBB->getParent(); 7446 const SystemZInstrInfo *TII = 7447 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7448 MachineRegisterInfo &MRI = MF.getRegInfo(); 7449 bool IsSubWord = (BitSize < 32); 7450 7451 // Extract the operands. Base can be a register or a frame index. 7452 Register Dest = MI.getOperand(0).getReg(); 7453 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7454 int64_t Disp = MI.getOperand(2).getImm(); 7455 Register Src2 = MI.getOperand(3).getReg(); 7456 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7457 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7458 DebugLoc DL = MI.getDebugLoc(); 7459 if (IsSubWord) 7460 BitSize = MI.getOperand(6).getImm(); 7461 7462 // Subword operations use 32-bit registers. 7463 const TargetRegisterClass *RC = (BitSize <= 32 ? 7464 &SystemZ::GR32BitRegClass : 7465 &SystemZ::GR64BitRegClass); 7466 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7467 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7468 7469 // Get the right opcodes for the displacement. 7470 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7471 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7472 assert(LOpcode && CSOpcode && "Displacement out of range"); 7473 7474 // Create virtual registers for temporary results. 7475 Register OrigVal = MRI.createVirtualRegister(RC); 7476 Register OldVal = MRI.createVirtualRegister(RC); 7477 Register NewVal = MRI.createVirtualRegister(RC); 7478 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7479 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7480 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7481 7482 // Insert 3 basic blocks for the loop. 7483 MachineBasicBlock *StartMBB = MBB; 7484 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7485 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7486 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7487 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7488 7489 // StartMBB: 7490 // ... 7491 // %OrigVal = L Disp(%Base) 7492 // # fall through to LoopMMB 7493 MBB = StartMBB; 7494 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7495 MBB->addSuccessor(LoopMBB); 7496 7497 // LoopMBB: 7498 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7499 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7500 // CompareOpcode %RotatedOldVal, %Src2 7501 // BRC KeepOldMask, UpdateMBB 7502 MBB = LoopMBB; 7503 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7504 .addReg(OrigVal).addMBB(StartMBB) 7505 .addReg(Dest).addMBB(UpdateMBB); 7506 if (IsSubWord) 7507 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7508 .addReg(OldVal).addReg(BitShift).addImm(0); 7509 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7510 .addReg(RotatedOldVal).addReg(Src2); 7511 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7512 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7513 MBB->addSuccessor(UpdateMBB); 7514 MBB->addSuccessor(UseAltMBB); 7515 7516 // UseAltMBB: 7517 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7518 // # fall through to UpdateMMB 7519 MBB = UseAltMBB; 7520 if (IsSubWord) 7521 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7522 .addReg(RotatedOldVal).addReg(Src2) 7523 .addImm(32).addImm(31 + BitSize).addImm(0); 7524 MBB->addSuccessor(UpdateMBB); 7525 7526 // UpdateMBB: 7527 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7528 // [ %RotatedAltVal, UseAltMBB ] 7529 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7530 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7531 // JNE LoopMBB 7532 // # fall through to DoneMMB 7533 MBB = UpdateMBB; 7534 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7535 .addReg(RotatedOldVal).addMBB(LoopMBB) 7536 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7537 if (IsSubWord) 7538 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7539 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7540 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7541 .addReg(OldVal) 7542 .addReg(NewVal) 7543 .add(Base) 7544 .addImm(Disp); 7545 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7546 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7547 MBB->addSuccessor(LoopMBB); 7548 MBB->addSuccessor(DoneMBB); 7549 7550 MI.eraseFromParent(); 7551 return DoneMBB; 7552 } 7553 7554 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7555 // instruction MI. 7556 MachineBasicBlock * 7557 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7558 MachineBasicBlock *MBB) const { 7559 7560 MachineFunction &MF = *MBB->getParent(); 7561 const SystemZInstrInfo *TII = 7562 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7563 MachineRegisterInfo &MRI = MF.getRegInfo(); 7564 7565 // Extract the operands. Base can be a register or a frame index. 7566 Register Dest = MI.getOperand(0).getReg(); 7567 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7568 int64_t Disp = MI.getOperand(2).getImm(); 7569 Register OrigCmpVal = MI.getOperand(3).getReg(); 7570 Register OrigSwapVal = MI.getOperand(4).getReg(); 7571 Register BitShift = MI.getOperand(5).getReg(); 7572 Register NegBitShift = MI.getOperand(6).getReg(); 7573 int64_t BitSize = MI.getOperand(7).getImm(); 7574 DebugLoc DL = MI.getDebugLoc(); 7575 7576 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7577 7578 // Get the right opcodes for the displacement. 7579 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7580 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7581 assert(LOpcode && CSOpcode && "Displacement out of range"); 7582 7583 // Create virtual registers for temporary results. 7584 Register OrigOldVal = MRI.createVirtualRegister(RC); 7585 Register OldVal = MRI.createVirtualRegister(RC); 7586 Register CmpVal = MRI.createVirtualRegister(RC); 7587 Register SwapVal = MRI.createVirtualRegister(RC); 7588 Register StoreVal = MRI.createVirtualRegister(RC); 7589 Register RetryOldVal = MRI.createVirtualRegister(RC); 7590 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7591 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7592 7593 // Insert 2 basic blocks for the loop. 7594 MachineBasicBlock *StartMBB = MBB; 7595 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7596 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7597 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7598 7599 // StartMBB: 7600 // ... 7601 // %OrigOldVal = L Disp(%Base) 7602 // # fall through to LoopMMB 7603 MBB = StartMBB; 7604 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7605 .add(Base) 7606 .addImm(Disp) 7607 .addReg(0); 7608 MBB->addSuccessor(LoopMBB); 7609 7610 // LoopMBB: 7611 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7612 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7613 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7614 // %Dest = RLL %OldVal, BitSize(%BitShift) 7615 // ^^ The low BitSize bits contain the field 7616 // of interest. 7617 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7618 // ^^ Replace the upper 32-BitSize bits of the 7619 // comparison value with those that we loaded, 7620 // so that we can use a full word comparison. 7621 // CR %Dest, %RetryCmpVal 7622 // JNE DoneMBB 7623 // # Fall through to SetMBB 7624 MBB = LoopMBB; 7625 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7626 .addReg(OrigOldVal).addMBB(StartMBB) 7627 .addReg(RetryOldVal).addMBB(SetMBB); 7628 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7629 .addReg(OrigCmpVal).addMBB(StartMBB) 7630 .addReg(RetryCmpVal).addMBB(SetMBB); 7631 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7632 .addReg(OrigSwapVal).addMBB(StartMBB) 7633 .addReg(RetrySwapVal).addMBB(SetMBB); 7634 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7635 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7636 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7637 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7638 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7639 .addReg(Dest).addReg(RetryCmpVal); 7640 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7641 .addImm(SystemZ::CCMASK_ICMP) 7642 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7643 MBB->addSuccessor(DoneMBB); 7644 MBB->addSuccessor(SetMBB); 7645 7646 // SetMBB: 7647 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7648 // ^^ Replace the upper 32-BitSize bits of the new 7649 // value with those that we loaded. 7650 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7651 // ^^ Rotate the new field to its proper position. 7652 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7653 // JNE LoopMBB 7654 // # fall through to ExitMMB 7655 MBB = SetMBB; 7656 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7657 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7658 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7659 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7660 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7661 .addReg(OldVal) 7662 .addReg(StoreVal) 7663 .add(Base) 7664 .addImm(Disp); 7665 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7666 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7667 MBB->addSuccessor(LoopMBB); 7668 MBB->addSuccessor(DoneMBB); 7669 7670 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7671 // to the block after the loop. At this point, CC may have been defined 7672 // either by the CR in LoopMBB or by the CS in SetMBB. 7673 if (!MI.registerDefIsDead(SystemZ::CC)) 7674 DoneMBB->addLiveIn(SystemZ::CC); 7675 7676 MI.eraseFromParent(); 7677 return DoneMBB; 7678 } 7679 7680 // Emit a move from two GR64s to a GR128. 7681 MachineBasicBlock * 7682 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7683 MachineBasicBlock *MBB) const { 7684 MachineFunction &MF = *MBB->getParent(); 7685 const SystemZInstrInfo *TII = 7686 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7687 MachineRegisterInfo &MRI = MF.getRegInfo(); 7688 DebugLoc DL = MI.getDebugLoc(); 7689 7690 Register Dest = MI.getOperand(0).getReg(); 7691 Register Hi = MI.getOperand(1).getReg(); 7692 Register Lo = MI.getOperand(2).getReg(); 7693 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7694 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7695 7696 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7697 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7698 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7699 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7700 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7701 7702 MI.eraseFromParent(); 7703 return MBB; 7704 } 7705 7706 // Emit an extension from a GR64 to a GR128. ClearEven is true 7707 // if the high register of the GR128 value must be cleared or false if 7708 // it's "don't care". 7709 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7710 MachineBasicBlock *MBB, 7711 bool ClearEven) const { 7712 MachineFunction &MF = *MBB->getParent(); 7713 const SystemZInstrInfo *TII = 7714 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7715 MachineRegisterInfo &MRI = MF.getRegInfo(); 7716 DebugLoc DL = MI.getDebugLoc(); 7717 7718 Register Dest = MI.getOperand(0).getReg(); 7719 Register Src = MI.getOperand(1).getReg(); 7720 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7721 7722 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7723 if (ClearEven) { 7724 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7725 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7726 7727 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7728 .addImm(0); 7729 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7730 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7731 In128 = NewIn128; 7732 } 7733 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7734 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7735 7736 MI.eraseFromParent(); 7737 return MBB; 7738 } 7739 7740 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7741 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7742 MachineFunction &MF = *MBB->getParent(); 7743 const SystemZInstrInfo *TII = 7744 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7745 MachineRegisterInfo &MRI = MF.getRegInfo(); 7746 DebugLoc DL = MI.getDebugLoc(); 7747 7748 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7749 uint64_t DestDisp = MI.getOperand(1).getImm(); 7750 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7751 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7752 uint64_t Length = MI.getOperand(4).getImm(); 7753 7754 // When generating more than one CLC, all but the last will need to 7755 // branch to the end when a difference is found. 7756 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7757 SystemZ::splitBlockAfter(MI, MBB) : nullptr); 7758 7759 // Check for the loop form, in which operand 5 is the trip count. 7760 if (MI.getNumExplicitOperands() > 5) { 7761 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7762 7763 Register StartCountReg = MI.getOperand(5).getReg(); 7764 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7765 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7766 forceReg(MI, DestBase, TII)); 7767 7768 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7769 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7770 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7771 MRI.createVirtualRegister(RC)); 7772 Register NextSrcReg = MRI.createVirtualRegister(RC); 7773 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7774 MRI.createVirtualRegister(RC)); 7775 7776 RC = &SystemZ::GR64BitRegClass; 7777 Register ThisCountReg = MRI.createVirtualRegister(RC); 7778 Register NextCountReg = MRI.createVirtualRegister(RC); 7779 7780 MachineBasicBlock *StartMBB = MBB; 7781 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7782 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7783 MachineBasicBlock *NextMBB = 7784 (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 7785 7786 // StartMBB: 7787 // # fall through to LoopMMB 7788 MBB->addSuccessor(LoopMBB); 7789 7790 // LoopMBB: 7791 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7792 // [ %NextDestReg, NextMBB ] 7793 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7794 // [ %NextSrcReg, NextMBB ] 7795 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7796 // [ %NextCountReg, NextMBB ] 7797 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7798 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7799 // ( JLH EndMBB ) 7800 // 7801 // The prefetch is used only for MVC. The JLH is used only for CLC. 7802 MBB = LoopMBB; 7803 7804 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7805 .addReg(StartDestReg).addMBB(StartMBB) 7806 .addReg(NextDestReg).addMBB(NextMBB); 7807 if (!HaveSingleBase) 7808 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7809 .addReg(StartSrcReg).addMBB(StartMBB) 7810 .addReg(NextSrcReg).addMBB(NextMBB); 7811 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7812 .addReg(StartCountReg).addMBB(StartMBB) 7813 .addReg(NextCountReg).addMBB(NextMBB); 7814 if (Opcode == SystemZ::MVC) 7815 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7816 .addImm(SystemZ::PFD_WRITE) 7817 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7818 BuildMI(MBB, DL, TII->get(Opcode)) 7819 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7820 .addReg(ThisSrcReg).addImm(SrcDisp); 7821 if (EndMBB) { 7822 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7823 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7824 .addMBB(EndMBB); 7825 MBB->addSuccessor(EndMBB); 7826 MBB->addSuccessor(NextMBB); 7827 } 7828 7829 // NextMBB: 7830 // %NextDestReg = LA 256(%ThisDestReg) 7831 // %NextSrcReg = LA 256(%ThisSrcReg) 7832 // %NextCountReg = AGHI %ThisCountReg, -1 7833 // CGHI %NextCountReg, 0 7834 // JLH LoopMBB 7835 // # fall through to DoneMMB 7836 // 7837 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7838 MBB = NextMBB; 7839 7840 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7841 .addReg(ThisDestReg).addImm(256).addReg(0); 7842 if (!HaveSingleBase) 7843 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7844 .addReg(ThisSrcReg).addImm(256).addReg(0); 7845 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7846 .addReg(ThisCountReg).addImm(-1); 7847 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7848 .addReg(NextCountReg).addImm(0); 7849 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7850 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7851 .addMBB(LoopMBB); 7852 MBB->addSuccessor(LoopMBB); 7853 MBB->addSuccessor(DoneMBB); 7854 7855 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7856 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7857 Length &= 255; 7858 if (EndMBB && !Length) 7859 // If the loop handled the whole CLC range, DoneMBB will be empty with 7860 // CC live-through into EndMBB, so add it as live-in. 7861 DoneMBB->addLiveIn(SystemZ::CC); 7862 MBB = DoneMBB; 7863 } 7864 // Handle any remaining bytes with straight-line code. 7865 while (Length > 0) { 7866 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7867 // The previous iteration might have created out-of-range displacements. 7868 // Apply them using LAY if so. 7869 if (!isUInt<12>(DestDisp)) { 7870 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7871 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7872 .add(DestBase) 7873 .addImm(DestDisp) 7874 .addReg(0); 7875 DestBase = MachineOperand::CreateReg(Reg, false); 7876 DestDisp = 0; 7877 } 7878 if (!isUInt<12>(SrcDisp)) { 7879 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7880 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7881 .add(SrcBase) 7882 .addImm(SrcDisp) 7883 .addReg(0); 7884 SrcBase = MachineOperand::CreateReg(Reg, false); 7885 SrcDisp = 0; 7886 } 7887 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7888 .add(DestBase) 7889 .addImm(DestDisp) 7890 .addImm(ThisLength) 7891 .add(SrcBase) 7892 .addImm(SrcDisp) 7893 .setMemRefs(MI.memoperands()); 7894 DestDisp += ThisLength; 7895 SrcDisp += ThisLength; 7896 Length -= ThisLength; 7897 // If there's another CLC to go, branch to the end if a difference 7898 // was found. 7899 if (EndMBB && Length > 0) { 7900 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 7901 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7902 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7903 .addMBB(EndMBB); 7904 MBB->addSuccessor(EndMBB); 7905 MBB->addSuccessor(NextMBB); 7906 MBB = NextMBB; 7907 } 7908 } 7909 if (EndMBB) { 7910 MBB->addSuccessor(EndMBB); 7911 MBB = EndMBB; 7912 MBB->addLiveIn(SystemZ::CC); 7913 } 7914 7915 MI.eraseFromParent(); 7916 return MBB; 7917 } 7918 7919 // Decompose string pseudo-instruction MI into a loop that continually performs 7920 // Opcode until CC != 3. 7921 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7922 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7923 MachineFunction &MF = *MBB->getParent(); 7924 const SystemZInstrInfo *TII = 7925 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7926 MachineRegisterInfo &MRI = MF.getRegInfo(); 7927 DebugLoc DL = MI.getDebugLoc(); 7928 7929 uint64_t End1Reg = MI.getOperand(0).getReg(); 7930 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7931 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7932 uint64_t CharReg = MI.getOperand(3).getReg(); 7933 7934 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7935 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7936 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7937 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7938 7939 MachineBasicBlock *StartMBB = MBB; 7940 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7941 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7942 7943 // StartMBB: 7944 // # fall through to LoopMMB 7945 MBB->addSuccessor(LoopMBB); 7946 7947 // LoopMBB: 7948 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7949 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7950 // R0L = %CharReg 7951 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7952 // JO LoopMBB 7953 // # fall through to DoneMMB 7954 // 7955 // The load of R0L can be hoisted by post-RA LICM. 7956 MBB = LoopMBB; 7957 7958 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7959 .addReg(Start1Reg).addMBB(StartMBB) 7960 .addReg(End1Reg).addMBB(LoopMBB); 7961 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7962 .addReg(Start2Reg).addMBB(StartMBB) 7963 .addReg(End2Reg).addMBB(LoopMBB); 7964 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7965 BuildMI(MBB, DL, TII->get(Opcode)) 7966 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7967 .addReg(This1Reg).addReg(This2Reg); 7968 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7969 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7970 MBB->addSuccessor(LoopMBB); 7971 MBB->addSuccessor(DoneMBB); 7972 7973 DoneMBB->addLiveIn(SystemZ::CC); 7974 7975 MI.eraseFromParent(); 7976 return DoneMBB; 7977 } 7978 7979 // Update TBEGIN instruction with final opcode and register clobbers. 7980 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7981 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7982 bool NoFloat) const { 7983 MachineFunction &MF = *MBB->getParent(); 7984 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7985 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7986 7987 // Update opcode. 7988 MI.setDesc(TII->get(Opcode)); 7989 7990 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7991 // Make sure to add the corresponding GRSM bits if they are missing. 7992 uint64_t Control = MI.getOperand(2).getImm(); 7993 static const unsigned GPRControlBit[16] = { 7994 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7995 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7996 }; 7997 Control |= GPRControlBit[15]; 7998 if (TFI->hasFP(MF)) 7999 Control |= GPRControlBit[11]; 8000 MI.getOperand(2).setImm(Control); 8001 8002 // Add GPR clobbers. 8003 for (int I = 0; I < 16; I++) { 8004 if ((Control & GPRControlBit[I]) == 0) { 8005 unsigned Reg = SystemZMC::GR64Regs[I]; 8006 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8007 } 8008 } 8009 8010 // Add FPR/VR clobbers. 8011 if (!NoFloat && (Control & 4) != 0) { 8012 if (Subtarget.hasVector()) { 8013 for (int I = 0; I < 32; I++) { 8014 unsigned Reg = SystemZMC::VR128Regs[I]; 8015 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8016 } 8017 } else { 8018 for (int I = 0; I < 16; I++) { 8019 unsigned Reg = SystemZMC::FP64Regs[I]; 8020 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8021 } 8022 } 8023 } 8024 8025 return MBB; 8026 } 8027 8028 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8029 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8030 MachineFunction &MF = *MBB->getParent(); 8031 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8032 const SystemZInstrInfo *TII = 8033 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8034 DebugLoc DL = MI.getDebugLoc(); 8035 8036 Register SrcReg = MI.getOperand(0).getReg(); 8037 8038 // Create new virtual register of the same class as source. 8039 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8040 Register DstReg = MRI->createVirtualRegister(RC); 8041 8042 // Replace pseudo with a normal load-and-test that models the def as 8043 // well. 8044 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8045 .addReg(SrcReg) 8046 .setMIFlags(MI.getFlags()); 8047 MI.eraseFromParent(); 8048 8049 return MBB; 8050 } 8051 8052 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8053 MachineInstr &MI, MachineBasicBlock *MBB) const { 8054 MachineFunction &MF = *MBB->getParent(); 8055 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8056 const SystemZInstrInfo *TII = 8057 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8058 DebugLoc DL = MI.getDebugLoc(); 8059 const unsigned ProbeSize = getStackProbeSize(MF); 8060 Register DstReg = MI.getOperand(0).getReg(); 8061 Register SizeReg = MI.getOperand(2).getReg(); 8062 8063 MachineBasicBlock *StartMBB = MBB; 8064 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8065 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8066 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8067 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8068 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8069 8070 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8071 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8072 8073 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8074 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8075 8076 // LoopTestMBB 8077 // BRC TailTestMBB 8078 // # fallthrough to LoopBodyMBB 8079 StartMBB->addSuccessor(LoopTestMBB); 8080 MBB = LoopTestMBB; 8081 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8082 .addReg(SizeReg) 8083 .addMBB(StartMBB) 8084 .addReg(IncReg) 8085 .addMBB(LoopBodyMBB); 8086 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8087 .addReg(PHIReg) 8088 .addImm(ProbeSize); 8089 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8090 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8091 .addMBB(TailTestMBB); 8092 MBB->addSuccessor(LoopBodyMBB); 8093 MBB->addSuccessor(TailTestMBB); 8094 8095 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8096 // J LoopTestMBB 8097 MBB = LoopBodyMBB; 8098 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8099 .addReg(PHIReg) 8100 .addImm(ProbeSize); 8101 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8102 .addReg(SystemZ::R15D) 8103 .addImm(ProbeSize); 8104 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8105 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8106 .setMemRefs(VolLdMMO); 8107 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8108 MBB->addSuccessor(LoopTestMBB); 8109 8110 // TailTestMBB 8111 // BRC DoneMBB 8112 // # fallthrough to TailMBB 8113 MBB = TailTestMBB; 8114 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8115 .addReg(PHIReg) 8116 .addImm(0); 8117 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8118 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8119 .addMBB(DoneMBB); 8120 MBB->addSuccessor(TailMBB); 8121 MBB->addSuccessor(DoneMBB); 8122 8123 // TailMBB 8124 // # fallthrough to DoneMBB 8125 MBB = TailMBB; 8126 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8127 .addReg(SystemZ::R15D) 8128 .addReg(PHIReg); 8129 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8130 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8131 .setMemRefs(VolLdMMO); 8132 MBB->addSuccessor(DoneMBB); 8133 8134 // DoneMBB 8135 MBB = DoneMBB; 8136 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8137 .addReg(SystemZ::R15D); 8138 8139 MI.eraseFromParent(); 8140 return DoneMBB; 8141 } 8142 8143 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8144 MachineInstr &MI, MachineBasicBlock *MBB) const { 8145 switch (MI.getOpcode()) { 8146 case SystemZ::Select32: 8147 case SystemZ::Select64: 8148 case SystemZ::SelectF32: 8149 case SystemZ::SelectF64: 8150 case SystemZ::SelectF128: 8151 case SystemZ::SelectVR32: 8152 case SystemZ::SelectVR64: 8153 case SystemZ::SelectVR128: 8154 return emitSelect(MI, MBB); 8155 8156 case SystemZ::CondStore8Mux: 8157 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8158 case SystemZ::CondStore8MuxInv: 8159 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8160 case SystemZ::CondStore16Mux: 8161 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8162 case SystemZ::CondStore16MuxInv: 8163 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8164 case SystemZ::CondStore32Mux: 8165 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8166 case SystemZ::CondStore32MuxInv: 8167 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8168 case SystemZ::CondStore8: 8169 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8170 case SystemZ::CondStore8Inv: 8171 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8172 case SystemZ::CondStore16: 8173 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8174 case SystemZ::CondStore16Inv: 8175 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8176 case SystemZ::CondStore32: 8177 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8178 case SystemZ::CondStore32Inv: 8179 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8180 case SystemZ::CondStore64: 8181 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8182 case SystemZ::CondStore64Inv: 8183 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8184 case SystemZ::CondStoreF32: 8185 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8186 case SystemZ::CondStoreF32Inv: 8187 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8188 case SystemZ::CondStoreF64: 8189 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8190 case SystemZ::CondStoreF64Inv: 8191 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8192 8193 case SystemZ::PAIR128: 8194 return emitPair128(MI, MBB); 8195 case SystemZ::AEXT128: 8196 return emitExt128(MI, MBB, false); 8197 case SystemZ::ZEXT128: 8198 return emitExt128(MI, MBB, true); 8199 8200 case SystemZ::ATOMIC_SWAPW: 8201 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8202 case SystemZ::ATOMIC_SWAP_32: 8203 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8204 case SystemZ::ATOMIC_SWAP_64: 8205 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8206 8207 case SystemZ::ATOMIC_LOADW_AR: 8208 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8209 case SystemZ::ATOMIC_LOADW_AFI: 8210 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8211 case SystemZ::ATOMIC_LOAD_AR: 8212 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8213 case SystemZ::ATOMIC_LOAD_AHI: 8214 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8215 case SystemZ::ATOMIC_LOAD_AFI: 8216 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8217 case SystemZ::ATOMIC_LOAD_AGR: 8218 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8219 case SystemZ::ATOMIC_LOAD_AGHI: 8220 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8221 case SystemZ::ATOMIC_LOAD_AGFI: 8222 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8223 8224 case SystemZ::ATOMIC_LOADW_SR: 8225 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8226 case SystemZ::ATOMIC_LOAD_SR: 8227 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8228 case SystemZ::ATOMIC_LOAD_SGR: 8229 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8230 8231 case SystemZ::ATOMIC_LOADW_NR: 8232 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8233 case SystemZ::ATOMIC_LOADW_NILH: 8234 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8235 case SystemZ::ATOMIC_LOAD_NR: 8236 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8237 case SystemZ::ATOMIC_LOAD_NILL: 8238 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8239 case SystemZ::ATOMIC_LOAD_NILH: 8240 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8241 case SystemZ::ATOMIC_LOAD_NILF: 8242 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8243 case SystemZ::ATOMIC_LOAD_NGR: 8244 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8245 case SystemZ::ATOMIC_LOAD_NILL64: 8246 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8247 case SystemZ::ATOMIC_LOAD_NILH64: 8248 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8249 case SystemZ::ATOMIC_LOAD_NIHL64: 8250 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8251 case SystemZ::ATOMIC_LOAD_NIHH64: 8252 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8253 case SystemZ::ATOMIC_LOAD_NILF64: 8254 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8255 case SystemZ::ATOMIC_LOAD_NIHF64: 8256 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8257 8258 case SystemZ::ATOMIC_LOADW_OR: 8259 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8260 case SystemZ::ATOMIC_LOADW_OILH: 8261 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8262 case SystemZ::ATOMIC_LOAD_OR: 8263 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8264 case SystemZ::ATOMIC_LOAD_OILL: 8265 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8266 case SystemZ::ATOMIC_LOAD_OILH: 8267 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8268 case SystemZ::ATOMIC_LOAD_OILF: 8269 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8270 case SystemZ::ATOMIC_LOAD_OGR: 8271 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8272 case SystemZ::ATOMIC_LOAD_OILL64: 8273 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8274 case SystemZ::ATOMIC_LOAD_OILH64: 8275 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8276 case SystemZ::ATOMIC_LOAD_OIHL64: 8277 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8278 case SystemZ::ATOMIC_LOAD_OIHH64: 8279 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8280 case SystemZ::ATOMIC_LOAD_OILF64: 8281 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8282 case SystemZ::ATOMIC_LOAD_OIHF64: 8283 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8284 8285 case SystemZ::ATOMIC_LOADW_XR: 8286 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8287 case SystemZ::ATOMIC_LOADW_XILF: 8288 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8289 case SystemZ::ATOMIC_LOAD_XR: 8290 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8291 case SystemZ::ATOMIC_LOAD_XILF: 8292 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8293 case SystemZ::ATOMIC_LOAD_XGR: 8294 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8295 case SystemZ::ATOMIC_LOAD_XILF64: 8296 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8297 case SystemZ::ATOMIC_LOAD_XIHF64: 8298 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8299 8300 case SystemZ::ATOMIC_LOADW_NRi: 8301 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8302 case SystemZ::ATOMIC_LOADW_NILHi: 8303 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8304 case SystemZ::ATOMIC_LOAD_NRi: 8305 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8306 case SystemZ::ATOMIC_LOAD_NILLi: 8307 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8308 case SystemZ::ATOMIC_LOAD_NILHi: 8309 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8310 case SystemZ::ATOMIC_LOAD_NILFi: 8311 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8312 case SystemZ::ATOMIC_LOAD_NGRi: 8313 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8314 case SystemZ::ATOMIC_LOAD_NILL64i: 8315 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8316 case SystemZ::ATOMIC_LOAD_NILH64i: 8317 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8318 case SystemZ::ATOMIC_LOAD_NIHL64i: 8319 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8320 case SystemZ::ATOMIC_LOAD_NIHH64i: 8321 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8322 case SystemZ::ATOMIC_LOAD_NILF64i: 8323 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8324 case SystemZ::ATOMIC_LOAD_NIHF64i: 8325 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8326 8327 case SystemZ::ATOMIC_LOADW_MIN: 8328 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8329 SystemZ::CCMASK_CMP_LE, 0); 8330 case SystemZ::ATOMIC_LOAD_MIN_32: 8331 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8332 SystemZ::CCMASK_CMP_LE, 32); 8333 case SystemZ::ATOMIC_LOAD_MIN_64: 8334 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8335 SystemZ::CCMASK_CMP_LE, 64); 8336 8337 case SystemZ::ATOMIC_LOADW_MAX: 8338 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8339 SystemZ::CCMASK_CMP_GE, 0); 8340 case SystemZ::ATOMIC_LOAD_MAX_32: 8341 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8342 SystemZ::CCMASK_CMP_GE, 32); 8343 case SystemZ::ATOMIC_LOAD_MAX_64: 8344 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8345 SystemZ::CCMASK_CMP_GE, 64); 8346 8347 case SystemZ::ATOMIC_LOADW_UMIN: 8348 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8349 SystemZ::CCMASK_CMP_LE, 0); 8350 case SystemZ::ATOMIC_LOAD_UMIN_32: 8351 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8352 SystemZ::CCMASK_CMP_LE, 32); 8353 case SystemZ::ATOMIC_LOAD_UMIN_64: 8354 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8355 SystemZ::CCMASK_CMP_LE, 64); 8356 8357 case SystemZ::ATOMIC_LOADW_UMAX: 8358 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8359 SystemZ::CCMASK_CMP_GE, 0); 8360 case SystemZ::ATOMIC_LOAD_UMAX_32: 8361 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8362 SystemZ::CCMASK_CMP_GE, 32); 8363 case SystemZ::ATOMIC_LOAD_UMAX_64: 8364 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8365 SystemZ::CCMASK_CMP_GE, 64); 8366 8367 case SystemZ::ATOMIC_CMP_SWAPW: 8368 return emitAtomicCmpSwapW(MI, MBB); 8369 case SystemZ::MVCSequence: 8370 case SystemZ::MVCLoop: 8371 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8372 case SystemZ::NCSequence: 8373 case SystemZ::NCLoop: 8374 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8375 case SystemZ::OCSequence: 8376 case SystemZ::OCLoop: 8377 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8378 case SystemZ::XCSequence: 8379 case SystemZ::XCLoop: 8380 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8381 case SystemZ::CLCSequence: 8382 case SystemZ::CLCLoop: 8383 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8384 case SystemZ::CLSTLoop: 8385 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8386 case SystemZ::MVSTLoop: 8387 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8388 case SystemZ::SRSTLoop: 8389 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8390 case SystemZ::TBEGIN: 8391 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8392 case SystemZ::TBEGIN_nofloat: 8393 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8394 case SystemZ::TBEGINC: 8395 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8396 case SystemZ::LTEBRCompare_VecPseudo: 8397 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8398 case SystemZ::LTDBRCompare_VecPseudo: 8399 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8400 case SystemZ::LTXBRCompare_VecPseudo: 8401 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8402 8403 case SystemZ::PROBED_ALLOCA: 8404 return emitProbedAlloca(MI, MBB); 8405 8406 case TargetOpcode::STACKMAP: 8407 case TargetOpcode::PATCHPOINT: 8408 return emitPatchPoint(MI, MBB); 8409 8410 default: 8411 llvm_unreachable("Unexpected instr type to insert"); 8412 } 8413 } 8414 8415 // This is only used by the isel schedulers, and is needed only to prevent 8416 // compiler from crashing when list-ilp is used. 8417 const TargetRegisterClass * 8418 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8419 if (VT == MVT::Untyped) 8420 return &SystemZ::ADDR128BitRegClass; 8421 return TargetLowering::getRepRegClassFor(VT); 8422 } 8423