1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (Subtarget.hasVector()) { 92 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 93 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 94 } else { 95 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 96 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 97 } 98 if (Subtarget.hasVectorEnhancements1()) 99 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 100 else 101 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 102 103 if (Subtarget.hasVector()) { 104 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 105 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 110 } 111 112 // Compute derived properties from the register classes 113 computeRegisterProperties(Subtarget.getRegisterInfo()); 114 115 // Set up special registers. 116 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 117 118 // TODO: It may be better to default to latency-oriented scheduling, however 119 // LLVM's current latency-oriented scheduler can't handle physreg definitions 120 // such as SystemZ has with CC, so set this to the register-pressure 121 // scheduler, because it can. 122 setSchedulingPreference(Sched::RegPressure); 123 124 setBooleanContents(ZeroOrOneBooleanContent); 125 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 126 127 // Instructions are strings of 2-byte aligned 2-byte values. 128 setMinFunctionAlignment(Align(2)); 129 // For performance reasons we prefer 16-byte alignment. 130 setPrefFunctionAlignment(Align(16)); 131 132 // Handle operations that are handled in a similar way for all types. 133 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 134 I <= MVT::LAST_FP_VALUETYPE; 135 ++I) { 136 MVT VT = MVT::SimpleValueType(I); 137 if (isTypeLegal(VT)) { 138 // Lower SET_CC into an IPM-based sequence. 139 setOperationAction(ISD::SETCC, VT, Custom); 140 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 141 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 142 143 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 144 setOperationAction(ISD::SELECT, VT, Expand); 145 146 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 147 setOperationAction(ISD::SELECT_CC, VT, Custom); 148 setOperationAction(ISD::BR_CC, VT, Custom); 149 } 150 } 151 152 // Expand jump table branches as address arithmetic followed by an 153 // indirect jump. 154 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 155 156 // Expand BRCOND into a BR_CC (see above). 157 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 158 159 // Handle integer types. 160 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 161 I <= MVT::LAST_INTEGER_VALUETYPE; 162 ++I) { 163 MVT VT = MVT::SimpleValueType(I); 164 if (isTypeLegal(VT)) { 165 // Expand individual DIV and REMs into DIVREMs. 166 setOperationAction(ISD::SDIV, VT, Expand); 167 setOperationAction(ISD::UDIV, VT, Expand); 168 setOperationAction(ISD::SREM, VT, Expand); 169 setOperationAction(ISD::UREM, VT, Expand); 170 setOperationAction(ISD::SDIVREM, VT, Custom); 171 setOperationAction(ISD::UDIVREM, VT, Custom); 172 173 // Support addition/subtraction with overflow. 174 setOperationAction(ISD::SADDO, VT, Custom); 175 setOperationAction(ISD::SSUBO, VT, Custom); 176 177 // Support addition/subtraction with carry. 178 setOperationAction(ISD::UADDO, VT, Custom); 179 setOperationAction(ISD::USUBO, VT, Custom); 180 181 // Support carry in as value rather than glue. 182 setOperationAction(ISD::ADDCARRY, VT, Custom); 183 setOperationAction(ISD::SUBCARRY, VT, Custom); 184 185 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 186 // stores, putting a serialization instruction after the stores. 187 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 188 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 189 190 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 191 // available, or if the operand is constant. 192 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 193 194 // Use POPCNT on z196 and above. 195 if (Subtarget.hasPopulationCount()) 196 setOperationAction(ISD::CTPOP, VT, Custom); 197 else 198 setOperationAction(ISD::CTPOP, VT, Expand); 199 200 // No special instructions for these. 201 setOperationAction(ISD::CTTZ, VT, Expand); 202 setOperationAction(ISD::ROTR, VT, Expand); 203 204 // Use *MUL_LOHI where possible instead of MULH*. 205 setOperationAction(ISD::MULHS, VT, Expand); 206 setOperationAction(ISD::MULHU, VT, Expand); 207 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 208 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 209 210 // Only z196 and above have native support for conversions to unsigned. 211 // On z10, promoting to i64 doesn't generate an inexact condition for 212 // values that are outside the i32 range but in the i64 range, so use 213 // the default expansion. 214 if (!Subtarget.hasFPExtension()) 215 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 216 217 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 218 // default to Expand, so need to be modified to Legal where appropriate. 219 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 220 if (Subtarget.hasFPExtension()) 221 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 222 223 // And similarly for STRICT_[SU]INT_TO_FP. 224 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 225 if (Subtarget.hasFPExtension()) 226 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 227 } 228 } 229 230 // Type legalization will convert 8- and 16-bit atomic operations into 231 // forms that operate on i32s (but still keeping the original memory VT). 232 // Lower them into full i32 operations. 233 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 234 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 235 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 244 245 // Even though i128 is not a legal type, we still need to custom lower 246 // the atomic operations in order to exploit SystemZ instructions. 247 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 248 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 249 250 // We can use the CC result of compare-and-swap to implement 251 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 252 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 253 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 254 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 255 256 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 257 258 // Traps are legal, as we will convert them to "j .+2". 259 setOperationAction(ISD::TRAP, MVT::Other, Legal); 260 261 // z10 has instructions for signed but not unsigned FP conversion. 262 // Handle unsigned 32-bit types as signed 64-bit types. 263 if (!Subtarget.hasFPExtension()) { 264 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 265 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 266 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 267 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 268 } 269 270 // We have native support for a 64-bit CTLZ, via FLOGR. 271 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 272 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 273 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 274 275 // On z15 we have native support for a 64-bit CTPOP. 276 if (Subtarget.hasMiscellaneousExtensions3()) { 277 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 278 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 279 } 280 281 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 282 setOperationAction(ISD::OR, MVT::i64, Custom); 283 284 // FIXME: Can we support these natively? 285 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 286 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 287 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 288 289 // We have native instructions for i8, i16 and i32 extensions, but not i1. 290 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 291 for (MVT VT : MVT::integer_valuetypes()) { 292 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 293 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 294 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 295 } 296 297 // Handle the various types of symbolic address. 298 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 299 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 300 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 301 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 302 setOperationAction(ISD::JumpTable, PtrVT, Custom); 303 304 // We need to handle dynamic allocations specially because of the 305 // 160-byte area at the bottom of the stack. 306 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 307 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 308 309 // Use custom expanders so that we can force the function to use 310 // a frame pointer. 311 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 312 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 313 314 // Handle prefetches with PFD or PFDRL. 315 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 316 317 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 318 // Assume by default that all vector operations need to be expanded. 319 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 320 if (getOperationAction(Opcode, VT) == Legal) 321 setOperationAction(Opcode, VT, Expand); 322 323 // Likewise all truncating stores and extending loads. 324 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 325 setTruncStoreAction(VT, InnerVT, Expand); 326 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 327 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 328 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 329 } 330 331 if (isTypeLegal(VT)) { 332 // These operations are legal for anything that can be stored in a 333 // vector register, even if there is no native support for the format 334 // as such. In particular, we can do these for v4f32 even though there 335 // are no specific instructions for that format. 336 setOperationAction(ISD::LOAD, VT, Legal); 337 setOperationAction(ISD::STORE, VT, Legal); 338 setOperationAction(ISD::VSELECT, VT, Legal); 339 setOperationAction(ISD::BITCAST, VT, Legal); 340 setOperationAction(ISD::UNDEF, VT, Legal); 341 342 // Likewise, except that we need to replace the nodes with something 343 // more specific. 344 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 345 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 346 } 347 } 348 349 // Handle integer vector types. 350 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 351 if (isTypeLegal(VT)) { 352 // These operations have direct equivalents. 353 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 354 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 355 setOperationAction(ISD::ADD, VT, Legal); 356 setOperationAction(ISD::SUB, VT, Legal); 357 if (VT != MVT::v2i64) 358 setOperationAction(ISD::MUL, VT, Legal); 359 setOperationAction(ISD::AND, VT, Legal); 360 setOperationAction(ISD::OR, VT, Legal); 361 setOperationAction(ISD::XOR, VT, Legal); 362 if (Subtarget.hasVectorEnhancements1()) 363 setOperationAction(ISD::CTPOP, VT, Legal); 364 else 365 setOperationAction(ISD::CTPOP, VT, Custom); 366 setOperationAction(ISD::CTTZ, VT, Legal); 367 setOperationAction(ISD::CTLZ, VT, Legal); 368 369 // Convert a GPR scalar to a vector by inserting it into element 0. 370 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 371 372 // Use a series of unpacks for extensions. 373 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 374 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 375 376 // Detect shifts by a scalar amount and convert them into 377 // V*_BY_SCALAR. 378 setOperationAction(ISD::SHL, VT, Custom); 379 setOperationAction(ISD::SRA, VT, Custom); 380 setOperationAction(ISD::SRL, VT, Custom); 381 382 // At present ROTL isn't matched by DAGCombiner. ROTR should be 383 // converted into ROTL. 384 setOperationAction(ISD::ROTL, VT, Expand); 385 setOperationAction(ISD::ROTR, VT, Expand); 386 387 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 388 // and inverting the result as necessary. 389 setOperationAction(ISD::SETCC, VT, Custom); 390 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 391 if (Subtarget.hasVectorEnhancements1()) 392 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 393 } 394 } 395 396 if (Subtarget.hasVector()) { 397 // There should be no need to check for float types other than v2f64 398 // since <2 x f32> isn't a legal type. 399 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 400 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 401 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 404 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 405 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 406 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 407 408 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 409 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 410 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 413 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 414 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 416 } 417 418 if (Subtarget.hasVectorEnhancements2()) { 419 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 420 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 421 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 422 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 423 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 424 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 425 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 426 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 427 428 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 429 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 430 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 433 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 434 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 436 } 437 438 // Handle floating-point types. 439 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 440 I <= MVT::LAST_FP_VALUETYPE; 441 ++I) { 442 MVT VT = MVT::SimpleValueType(I); 443 if (isTypeLegal(VT)) { 444 // We can use FI for FRINT. 445 setOperationAction(ISD::FRINT, VT, Legal); 446 447 // We can use the extended form of FI for other rounding operations. 448 if (Subtarget.hasFPExtension()) { 449 setOperationAction(ISD::FNEARBYINT, VT, Legal); 450 setOperationAction(ISD::FFLOOR, VT, Legal); 451 setOperationAction(ISD::FCEIL, VT, Legal); 452 setOperationAction(ISD::FTRUNC, VT, Legal); 453 setOperationAction(ISD::FROUND, VT, Legal); 454 } 455 456 // No special instructions for these. 457 setOperationAction(ISD::FSIN, VT, Expand); 458 setOperationAction(ISD::FCOS, VT, Expand); 459 setOperationAction(ISD::FSINCOS, VT, Expand); 460 setOperationAction(ISD::FREM, VT, Expand); 461 setOperationAction(ISD::FPOW, VT, Expand); 462 463 // Handle constrained floating-point operations. 464 setOperationAction(ISD::STRICT_FADD, VT, Legal); 465 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 466 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 467 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 468 setOperationAction(ISD::STRICT_FMA, VT, Legal); 469 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 470 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 471 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 472 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 473 if (Subtarget.hasFPExtension()) { 474 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 475 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 476 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 477 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 478 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 479 } 480 } 481 } 482 483 // Handle floating-point vector types. 484 if (Subtarget.hasVector()) { 485 // Scalar-to-vector conversion is just a subreg. 486 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 487 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 488 489 // Some insertions and extractions can be done directly but others 490 // need to go via integers. 491 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 492 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 493 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 494 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 495 496 // These operations have direct equivalents. 497 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 498 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 499 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 500 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 501 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 502 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 503 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 504 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 505 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 506 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 507 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 508 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 509 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 510 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 511 512 // Handle constrained floating-point operations. 513 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 514 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 515 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 516 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 517 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 518 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 519 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 520 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 521 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 525 } 526 527 // The vector enhancements facility 1 has instructions for these. 528 if (Subtarget.hasVectorEnhancements1()) { 529 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 530 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 531 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 532 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 533 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 534 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 535 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 536 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 537 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 538 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 539 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 540 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 541 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 542 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 543 544 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 545 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 546 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 547 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 548 549 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 550 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 551 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 552 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 553 554 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 555 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 556 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 557 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 558 559 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 560 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 561 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 562 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 563 564 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 565 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 566 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 567 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 568 569 // Handle constrained floating-point operations. 570 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 571 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 572 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 573 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 574 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 575 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 576 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 577 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 578 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 582 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 583 MVT::v4f32, MVT::v2f64 }) { 584 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 585 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 586 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 587 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 588 } 589 } 590 591 // We only have fused f128 multiply-addition on vector registers. 592 if (!Subtarget.hasVectorEnhancements1()) { 593 setOperationAction(ISD::FMA, MVT::f128, Expand); 594 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 595 } 596 597 // We don't have a copysign instruction on vector registers. 598 if (Subtarget.hasVectorEnhancements1()) 599 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 600 601 // Needed so that we don't try to implement f128 constant loads using 602 // a load-and-extend of a f80 constant (in cases where the constant 603 // would fit in an f80). 604 for (MVT VT : MVT::fp_valuetypes()) 605 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 606 607 // We don't have extending load instruction on vector registers. 608 if (Subtarget.hasVectorEnhancements1()) { 609 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 610 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 611 } 612 613 // Floating-point truncation and stores need to be done separately. 614 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 615 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 616 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 617 618 // We have 64-bit FPR<->GPR moves, but need special handling for 619 // 32-bit forms. 620 if (!Subtarget.hasVector()) { 621 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 622 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 623 } 624 625 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 626 // structure, but VAEND is a no-op. 627 setOperationAction(ISD::VASTART, MVT::Other, Custom); 628 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 629 setOperationAction(ISD::VAEND, MVT::Other, Expand); 630 631 // Codes for which we want to perform some z-specific combinations. 632 setTargetDAGCombine(ISD::ZERO_EXTEND); 633 setTargetDAGCombine(ISD::SIGN_EXTEND); 634 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 635 setTargetDAGCombine(ISD::LOAD); 636 setTargetDAGCombine(ISD::STORE); 637 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 638 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 639 setTargetDAGCombine(ISD::FP_ROUND); 640 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 641 setTargetDAGCombine(ISD::FP_EXTEND); 642 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 643 setTargetDAGCombine(ISD::BSWAP); 644 setTargetDAGCombine(ISD::SDIV); 645 setTargetDAGCombine(ISD::UDIV); 646 setTargetDAGCombine(ISD::SREM); 647 setTargetDAGCombine(ISD::UREM); 648 649 // Handle intrinsics. 650 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 651 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 652 653 // We want to use MVC in preference to even a single load/store pair. 654 MaxStoresPerMemcpy = 0; 655 MaxStoresPerMemcpyOptSize = 0; 656 657 // The main memset sequence is a byte store followed by an MVC. 658 // Two STC or MV..I stores win over that, but the kind of fused stores 659 // generated by target-independent code don't when the byte value is 660 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 661 // than "STC;MVC". Handle the choice in target-specific code instead. 662 MaxStoresPerMemset = 0; 663 MaxStoresPerMemsetOptSize = 0; 664 665 // Default to having -disable-strictnode-mutation on 666 IsStrictFPEnabled = true; 667 } 668 669 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 670 LLVMContext &, EVT VT) const { 671 if (!VT.isVector()) 672 return MVT::i32; 673 return VT.changeVectorElementTypeToInteger(); 674 } 675 676 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 677 const MachineFunction &MF, EVT VT) const { 678 VT = VT.getScalarType(); 679 680 if (!VT.isSimple()) 681 return false; 682 683 switch (VT.getSimpleVT().SimpleTy) { 684 case MVT::f32: 685 case MVT::f64: 686 return true; 687 case MVT::f128: 688 return Subtarget.hasVectorEnhancements1(); 689 default: 690 break; 691 } 692 693 return false; 694 } 695 696 // Return true if the constant can be generated with a vector instruction, 697 // such as VGM, VGMB or VREPI. 698 bool SystemZVectorConstantInfo::isVectorConstantLegal( 699 const SystemZSubtarget &Subtarget) { 700 const SystemZInstrInfo *TII = 701 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 702 if (!Subtarget.hasVector() || 703 (isFP128 && !Subtarget.hasVectorEnhancements1())) 704 return false; 705 706 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 707 // preferred way of creating all-zero and all-one vectors so give it 708 // priority over other methods below. 709 unsigned Mask = 0; 710 unsigned I = 0; 711 for (; I < SystemZ::VectorBytes; ++I) { 712 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 713 if (Byte == 0xff) 714 Mask |= 1ULL << I; 715 else if (Byte != 0) 716 break; 717 } 718 if (I == SystemZ::VectorBytes) { 719 Opcode = SystemZISD::BYTE_MASK; 720 OpVals.push_back(Mask); 721 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 722 return true; 723 } 724 725 if (SplatBitSize > 64) 726 return false; 727 728 auto tryValue = [&](uint64_t Value) -> bool { 729 // Try VECTOR REPLICATE IMMEDIATE 730 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 731 if (isInt<16>(SignedValue)) { 732 OpVals.push_back(((unsigned) SignedValue)); 733 Opcode = SystemZISD::REPLICATE; 734 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 735 SystemZ::VectorBits / SplatBitSize); 736 return true; 737 } 738 // Try VECTOR GENERATE MASK 739 unsigned Start, End; 740 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 741 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 742 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 743 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 744 OpVals.push_back(Start - (64 - SplatBitSize)); 745 OpVals.push_back(End - (64 - SplatBitSize)); 746 Opcode = SystemZISD::ROTATE_MASK; 747 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 748 SystemZ::VectorBits / SplatBitSize); 749 return true; 750 } 751 return false; 752 }; 753 754 // First try assuming that any undefined bits above the highest set bit 755 // and below the lowest set bit are 1s. This increases the likelihood of 756 // being able to use a sign-extended element value in VECTOR REPLICATE 757 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 758 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 759 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 760 uint64_t Lower = 761 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 762 uint64_t Upper = 763 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 764 if (tryValue(SplatBitsZ | Upper | Lower)) 765 return true; 766 767 // Now try assuming that any undefined bits between the first and 768 // last defined set bits are set. This increases the chances of 769 // using a non-wraparound mask. 770 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 771 return tryValue(SplatBitsZ | Middle); 772 } 773 774 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 775 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 776 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 777 778 // Find the smallest splat. 779 SplatBits = FPImm.bitcastToAPInt(); 780 unsigned Width = SplatBits.getBitWidth(); 781 while (Width > 8) { 782 unsigned HalfSize = Width / 2; 783 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 784 APInt LowValue = SplatBits.trunc(HalfSize); 785 786 // If the two halves do not match, stop here. 787 if (HighValue != LowValue || 8 > HalfSize) 788 break; 789 790 SplatBits = HighValue; 791 Width = HalfSize; 792 } 793 SplatUndef = 0; 794 SplatBitSize = Width; 795 } 796 797 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 798 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 799 bool HasAnyUndefs; 800 801 // Get IntBits by finding the 128 bit splat. 802 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 803 true); 804 805 // Get SplatBits by finding the 8 bit or greater splat. 806 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 807 true); 808 } 809 810 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 811 bool ForCodeSize) const { 812 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 813 if (Imm.isZero() || Imm.isNegZero()) 814 return true; 815 816 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 817 } 818 819 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 820 // We can use CGFI or CLGFI. 821 return isInt<32>(Imm) || isUInt<32>(Imm); 822 } 823 824 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 825 // We can use ALGFI or SLGFI. 826 return isUInt<32>(Imm) || isUInt<32>(-Imm); 827 } 828 829 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 830 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 831 // Unaligned accesses should never be slower than the expanded version. 832 // We check specifically for aligned accesses in the few cases where 833 // they are required. 834 if (Fast) 835 *Fast = true; 836 return true; 837 } 838 839 // Information about the addressing mode for a memory access. 840 struct AddressingMode { 841 // True if a long displacement is supported. 842 bool LongDisplacement; 843 844 // True if use of index register is supported. 845 bool IndexReg; 846 847 AddressingMode(bool LongDispl, bool IdxReg) : 848 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 849 }; 850 851 // Return the desired addressing mode for a Load which has only one use (in 852 // the same block) which is a Store. 853 static AddressingMode getLoadStoreAddrMode(bool HasVector, 854 Type *Ty) { 855 // With vector support a Load->Store combination may be combined to either 856 // an MVC or vector operations and it seems to work best to allow the 857 // vector addressing mode. 858 if (HasVector) 859 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 860 861 // Otherwise only the MVC case is special. 862 bool MVC = Ty->isIntegerTy(8); 863 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 864 } 865 866 // Return the addressing mode which seems most desirable given an LLVM 867 // Instruction pointer. 868 static AddressingMode 869 supportedAddressingMode(Instruction *I, bool HasVector) { 870 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 871 switch (II->getIntrinsicID()) { 872 default: break; 873 case Intrinsic::memset: 874 case Intrinsic::memmove: 875 case Intrinsic::memcpy: 876 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 877 } 878 } 879 880 if (isa<LoadInst>(I) && I->hasOneUse()) { 881 auto *SingleUser = cast<Instruction>(*I->user_begin()); 882 if (SingleUser->getParent() == I->getParent()) { 883 if (isa<ICmpInst>(SingleUser)) { 884 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 885 if (C->getBitWidth() <= 64 && 886 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 887 // Comparison of memory with 16 bit signed / unsigned immediate 888 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 889 } else if (isa<StoreInst>(SingleUser)) 890 // Load->Store 891 return getLoadStoreAddrMode(HasVector, I->getType()); 892 } 893 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 894 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 895 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 896 // Load->Store 897 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 898 } 899 900 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 901 902 // * Use LDE instead of LE/LEY for z13 to avoid partial register 903 // dependencies (LDE only supports small offsets). 904 // * Utilize the vector registers to hold floating point 905 // values (vector load / store instructions only support small 906 // offsets). 907 908 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 909 I->getOperand(0)->getType()); 910 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 911 bool IsVectorAccess = MemAccessTy->isVectorTy(); 912 913 // A store of an extracted vector element will be combined into a VSTE type 914 // instruction. 915 if (!IsVectorAccess && isa<StoreInst>(I)) { 916 Value *DataOp = I->getOperand(0); 917 if (isa<ExtractElementInst>(DataOp)) 918 IsVectorAccess = true; 919 } 920 921 // A load which gets inserted into a vector element will be combined into a 922 // VLE type instruction. 923 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 924 User *LoadUser = *I->user_begin(); 925 if (isa<InsertElementInst>(LoadUser)) 926 IsVectorAccess = true; 927 } 928 929 if (IsFPAccess || IsVectorAccess) 930 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 931 } 932 933 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 934 } 935 936 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 937 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 938 // Punt on globals for now, although they can be used in limited 939 // RELATIVE LONG cases. 940 if (AM.BaseGV) 941 return false; 942 943 // Require a 20-bit signed offset. 944 if (!isInt<20>(AM.BaseOffs)) 945 return false; 946 947 AddressingMode SupportedAM(true, true); 948 if (I != nullptr) 949 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 950 951 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 952 return false; 953 954 if (!SupportedAM.IndexReg) 955 // No indexing allowed. 956 return AM.Scale == 0; 957 else 958 // Indexing is OK but no scale factor can be applied. 959 return AM.Scale == 0 || AM.Scale == 1; 960 } 961 962 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 963 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 964 return false; 965 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 966 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 967 return FromBits > ToBits; 968 } 969 970 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 971 if (!FromVT.isInteger() || !ToVT.isInteger()) 972 return false; 973 unsigned FromBits = FromVT.getSizeInBits(); 974 unsigned ToBits = ToVT.getSizeInBits(); 975 return FromBits > ToBits; 976 } 977 978 //===----------------------------------------------------------------------===// 979 // Inline asm support 980 //===----------------------------------------------------------------------===// 981 982 TargetLowering::ConstraintType 983 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 984 if (Constraint.size() == 1) { 985 switch (Constraint[0]) { 986 case 'a': // Address register 987 case 'd': // Data register (equivalent to 'r') 988 case 'f': // Floating-point register 989 case 'h': // High-part register 990 case 'r': // General-purpose register 991 case 'v': // Vector register 992 return C_RegisterClass; 993 994 case 'Q': // Memory with base and unsigned 12-bit displacement 995 case 'R': // Likewise, plus an index 996 case 'S': // Memory with base and signed 20-bit displacement 997 case 'T': // Likewise, plus an index 998 case 'm': // Equivalent to 'T'. 999 return C_Memory; 1000 1001 case 'I': // Unsigned 8-bit constant 1002 case 'J': // Unsigned 12-bit constant 1003 case 'K': // Signed 16-bit constant 1004 case 'L': // Signed 20-bit displacement (on all targets we support) 1005 case 'M': // 0x7fffffff 1006 return C_Immediate; 1007 1008 default: 1009 break; 1010 } 1011 } 1012 return TargetLowering::getConstraintType(Constraint); 1013 } 1014 1015 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1016 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1017 const char *constraint) const { 1018 ConstraintWeight weight = CW_Invalid; 1019 Value *CallOperandVal = info.CallOperandVal; 1020 // If we don't have a value, we can't do a match, 1021 // but allow it at the lowest weight. 1022 if (!CallOperandVal) 1023 return CW_Default; 1024 Type *type = CallOperandVal->getType(); 1025 // Look at the constraint type. 1026 switch (*constraint) { 1027 default: 1028 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1029 break; 1030 1031 case 'a': // Address register 1032 case 'd': // Data register (equivalent to 'r') 1033 case 'h': // High-part register 1034 case 'r': // General-purpose register 1035 if (CallOperandVal->getType()->isIntegerTy()) 1036 weight = CW_Register; 1037 break; 1038 1039 case 'f': // Floating-point register 1040 if (type->isFloatingPointTy()) 1041 weight = CW_Register; 1042 break; 1043 1044 case 'v': // Vector register 1045 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1046 Subtarget.hasVector()) 1047 weight = CW_Register; 1048 break; 1049 1050 case 'I': // Unsigned 8-bit constant 1051 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1052 if (isUInt<8>(C->getZExtValue())) 1053 weight = CW_Constant; 1054 break; 1055 1056 case 'J': // Unsigned 12-bit constant 1057 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1058 if (isUInt<12>(C->getZExtValue())) 1059 weight = CW_Constant; 1060 break; 1061 1062 case 'K': // Signed 16-bit constant 1063 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1064 if (isInt<16>(C->getSExtValue())) 1065 weight = CW_Constant; 1066 break; 1067 1068 case 'L': // Signed 20-bit displacement (on all targets we support) 1069 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1070 if (isInt<20>(C->getSExtValue())) 1071 weight = CW_Constant; 1072 break; 1073 1074 case 'M': // 0x7fffffff 1075 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1076 if (C->getZExtValue() == 0x7fffffff) 1077 weight = CW_Constant; 1078 break; 1079 } 1080 return weight; 1081 } 1082 1083 // Parse a "{tNNN}" register constraint for which the register type "t" 1084 // has already been verified. MC is the class associated with "t" and 1085 // Map maps 0-based register numbers to LLVM register numbers. 1086 static std::pair<unsigned, const TargetRegisterClass *> 1087 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1088 const unsigned *Map, unsigned Size) { 1089 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1090 if (isdigit(Constraint[2])) { 1091 unsigned Index; 1092 bool Failed = 1093 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1094 if (!Failed && Index < Size && Map[Index]) 1095 return std::make_pair(Map[Index], RC); 1096 } 1097 return std::make_pair(0U, nullptr); 1098 } 1099 1100 std::pair<unsigned, const TargetRegisterClass *> 1101 SystemZTargetLowering::getRegForInlineAsmConstraint( 1102 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1103 if (Constraint.size() == 1) { 1104 // GCC Constraint Letters 1105 switch (Constraint[0]) { 1106 default: break; 1107 case 'd': // Data register (equivalent to 'r') 1108 case 'r': // General-purpose register 1109 if (VT == MVT::i64) 1110 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1111 else if (VT == MVT::i128) 1112 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1113 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1114 1115 case 'a': // Address register 1116 if (VT == MVT::i64) 1117 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1118 else if (VT == MVT::i128) 1119 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1120 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1121 1122 case 'h': // High-part register (an LLVM extension) 1123 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1124 1125 case 'f': // Floating-point register 1126 if (VT == MVT::f64) 1127 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1128 else if (VT == MVT::f128) 1129 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1130 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1131 1132 case 'v': // Vector register 1133 if (Subtarget.hasVector()) { 1134 if (VT == MVT::f32) 1135 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1136 if (VT == MVT::f64) 1137 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1138 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1139 } 1140 break; 1141 } 1142 } 1143 if (Constraint.size() > 0 && Constraint[0] == '{') { 1144 // We need to override the default register parsing for GPRs and FPRs 1145 // because the interpretation depends on VT. The internal names of 1146 // the registers are also different from the external names 1147 // (F0D and F0S instead of F0, etc.). 1148 if (Constraint[1] == 'r') { 1149 if (VT == MVT::i32) 1150 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1151 SystemZMC::GR32Regs, 16); 1152 if (VT == MVT::i128) 1153 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1154 SystemZMC::GR128Regs, 16); 1155 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1156 SystemZMC::GR64Regs, 16); 1157 } 1158 if (Constraint[1] == 'f') { 1159 if (VT == MVT::f32) 1160 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1161 SystemZMC::FP32Regs, 16); 1162 if (VT == MVT::f128) 1163 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1164 SystemZMC::FP128Regs, 16); 1165 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1166 SystemZMC::FP64Regs, 16); 1167 } 1168 if (Constraint[1] == 'v') { 1169 if (VT == MVT::f32) 1170 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1171 SystemZMC::VR32Regs, 32); 1172 if (VT == MVT::f64) 1173 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1174 SystemZMC::VR64Regs, 32); 1175 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1176 SystemZMC::VR128Regs, 32); 1177 } 1178 } 1179 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1180 } 1181 1182 void SystemZTargetLowering:: 1183 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1184 std::vector<SDValue> &Ops, 1185 SelectionDAG &DAG) const { 1186 // Only support length 1 constraints for now. 1187 if (Constraint.length() == 1) { 1188 switch (Constraint[0]) { 1189 case 'I': // Unsigned 8-bit constant 1190 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1191 if (isUInt<8>(C->getZExtValue())) 1192 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1193 Op.getValueType())); 1194 return; 1195 1196 case 'J': // Unsigned 12-bit constant 1197 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1198 if (isUInt<12>(C->getZExtValue())) 1199 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1200 Op.getValueType())); 1201 return; 1202 1203 case 'K': // Signed 16-bit constant 1204 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1205 if (isInt<16>(C->getSExtValue())) 1206 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1207 Op.getValueType())); 1208 return; 1209 1210 case 'L': // Signed 20-bit displacement (on all targets we support) 1211 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1212 if (isInt<20>(C->getSExtValue())) 1213 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1214 Op.getValueType())); 1215 return; 1216 1217 case 'M': // 0x7fffffff 1218 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1219 if (C->getZExtValue() == 0x7fffffff) 1220 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1221 Op.getValueType())); 1222 return; 1223 } 1224 } 1225 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1226 } 1227 1228 //===----------------------------------------------------------------------===// 1229 // Calling conventions 1230 //===----------------------------------------------------------------------===// 1231 1232 #include "SystemZGenCallingConv.inc" 1233 1234 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1235 CallingConv::ID) const { 1236 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1237 SystemZ::R14D, 0 }; 1238 return ScratchRegs; 1239 } 1240 1241 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1242 Type *ToType) const { 1243 return isTruncateFree(FromType, ToType); 1244 } 1245 1246 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1247 return CI->isTailCall(); 1248 } 1249 1250 // We do not yet support 128-bit single-element vector types. If the user 1251 // attempts to use such types as function argument or return type, prefer 1252 // to error out instead of emitting code violating the ABI. 1253 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1254 if (ArgVT.isVector() && !VT.isVector()) 1255 report_fatal_error("Unsupported vector argument or return type"); 1256 } 1257 1258 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1259 for (unsigned i = 0; i < Ins.size(); ++i) 1260 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1261 } 1262 1263 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1264 for (unsigned i = 0; i < Outs.size(); ++i) 1265 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1266 } 1267 1268 // Value is a value that has been passed to us in the location described by VA 1269 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1270 // any loads onto Chain. 1271 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1272 CCValAssign &VA, SDValue Chain, 1273 SDValue Value) { 1274 // If the argument has been promoted from a smaller type, insert an 1275 // assertion to capture this. 1276 if (VA.getLocInfo() == CCValAssign::SExt) 1277 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1278 DAG.getValueType(VA.getValVT())); 1279 else if (VA.getLocInfo() == CCValAssign::ZExt) 1280 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1281 DAG.getValueType(VA.getValVT())); 1282 1283 if (VA.isExtInLoc()) 1284 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1285 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1286 // If this is a short vector argument loaded from the stack, 1287 // extend from i64 to full vector size and then bitcast. 1288 assert(VA.getLocVT() == MVT::i64); 1289 assert(VA.getValVT().isVector()); 1290 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1291 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1292 } else 1293 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1294 return Value; 1295 } 1296 1297 // Value is a value of type VA.getValVT() that we need to copy into 1298 // the location described by VA. Return a copy of Value converted to 1299 // VA.getValVT(). The caller is responsible for handling indirect values. 1300 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1301 CCValAssign &VA, SDValue Value) { 1302 switch (VA.getLocInfo()) { 1303 case CCValAssign::SExt: 1304 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1305 case CCValAssign::ZExt: 1306 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1307 case CCValAssign::AExt: 1308 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1309 case CCValAssign::BCvt: 1310 // If this is a short vector argument to be stored to the stack, 1311 // bitcast to v2i64 and then extract first element. 1312 assert(VA.getLocVT() == MVT::i64); 1313 assert(VA.getValVT().isVector()); 1314 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1315 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1316 DAG.getConstant(0, DL, MVT::i32)); 1317 case CCValAssign::Full: 1318 return Value; 1319 default: 1320 llvm_unreachable("Unhandled getLocInfo()"); 1321 } 1322 } 1323 1324 SDValue SystemZTargetLowering::LowerFormalArguments( 1325 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1326 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1327 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1328 MachineFunction &MF = DAG.getMachineFunction(); 1329 MachineFrameInfo &MFI = MF.getFrameInfo(); 1330 MachineRegisterInfo &MRI = MF.getRegInfo(); 1331 SystemZMachineFunctionInfo *FuncInfo = 1332 MF.getInfo<SystemZMachineFunctionInfo>(); 1333 auto *TFL = 1334 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1335 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1336 1337 // Detect unsupported vector argument types. 1338 if (Subtarget.hasVector()) 1339 VerifyVectorTypes(Ins); 1340 1341 // Assign locations to all of the incoming arguments. 1342 SmallVector<CCValAssign, 16> ArgLocs; 1343 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1344 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1345 1346 unsigned NumFixedGPRs = 0; 1347 unsigned NumFixedFPRs = 0; 1348 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1349 SDValue ArgValue; 1350 CCValAssign &VA = ArgLocs[I]; 1351 EVT LocVT = VA.getLocVT(); 1352 if (VA.isRegLoc()) { 1353 // Arguments passed in registers 1354 const TargetRegisterClass *RC; 1355 switch (LocVT.getSimpleVT().SimpleTy) { 1356 default: 1357 // Integers smaller than i64 should be promoted to i64. 1358 llvm_unreachable("Unexpected argument type"); 1359 case MVT::i32: 1360 NumFixedGPRs += 1; 1361 RC = &SystemZ::GR32BitRegClass; 1362 break; 1363 case MVT::i64: 1364 NumFixedGPRs += 1; 1365 RC = &SystemZ::GR64BitRegClass; 1366 break; 1367 case MVT::f32: 1368 NumFixedFPRs += 1; 1369 RC = &SystemZ::FP32BitRegClass; 1370 break; 1371 case MVT::f64: 1372 NumFixedFPRs += 1; 1373 RC = &SystemZ::FP64BitRegClass; 1374 break; 1375 case MVT::v16i8: 1376 case MVT::v8i16: 1377 case MVT::v4i32: 1378 case MVT::v2i64: 1379 case MVT::v4f32: 1380 case MVT::v2f64: 1381 RC = &SystemZ::VR128BitRegClass; 1382 break; 1383 } 1384 1385 Register VReg = MRI.createVirtualRegister(RC); 1386 MRI.addLiveIn(VA.getLocReg(), VReg); 1387 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1388 } else { 1389 assert(VA.isMemLoc() && "Argument not register or memory"); 1390 1391 // Create the frame index object for this incoming parameter. 1392 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1393 VA.getLocMemOffset(), true); 1394 1395 // Create the SelectionDAG nodes corresponding to a load 1396 // from this parameter. Unpromoted ints and floats are 1397 // passed as right-justified 8-byte values. 1398 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1399 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1400 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1401 DAG.getIntPtrConstant(4, DL)); 1402 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1403 MachinePointerInfo::getFixedStack(MF, FI)); 1404 } 1405 1406 // Convert the value of the argument register into the value that's 1407 // being passed. 1408 if (VA.getLocInfo() == CCValAssign::Indirect) { 1409 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1410 MachinePointerInfo())); 1411 // If the original argument was split (e.g. i128), we need 1412 // to load all parts of it here (using the same address). 1413 unsigned ArgIndex = Ins[I].OrigArgIndex; 1414 assert (Ins[I].PartOffset == 0); 1415 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1416 CCValAssign &PartVA = ArgLocs[I + 1]; 1417 unsigned PartOffset = Ins[I + 1].PartOffset; 1418 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1419 DAG.getIntPtrConstant(PartOffset, DL)); 1420 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1421 MachinePointerInfo())); 1422 ++I; 1423 } 1424 } else 1425 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1426 } 1427 1428 if (IsVarArg) { 1429 // Save the number of non-varargs registers for later use by va_start, etc. 1430 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1431 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1432 1433 // Likewise the address (in the form of a frame index) of where the 1434 // first stack vararg would be. The 1-byte size here is arbitrary. 1435 int64_t StackSize = CCInfo.getNextStackOffset(); 1436 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1437 1438 // ...and a similar frame index for the caller-allocated save area 1439 // that will be used to store the incoming registers. 1440 int64_t RegSaveOffset = -SystemZMC::CallFrameSize; 1441 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1442 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1443 1444 // Store the FPR varargs in the reserved frame slots. (We store the 1445 // GPRs as part of the prologue.) 1446 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1447 SDValue MemOps[SystemZ::NumArgFPRs]; 1448 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1449 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1450 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1451 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1452 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1453 &SystemZ::FP64BitRegClass); 1454 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1455 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1456 MachinePointerInfo::getFixedStack(MF, FI)); 1457 } 1458 // Join the stores, which are independent of one another. 1459 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1460 makeArrayRef(&MemOps[NumFixedFPRs], 1461 SystemZ::NumArgFPRs-NumFixedFPRs)); 1462 } 1463 } 1464 1465 return Chain; 1466 } 1467 1468 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1469 SmallVectorImpl<CCValAssign> &ArgLocs, 1470 SmallVectorImpl<ISD::OutputArg> &Outs) { 1471 // Punt if there are any indirect or stack arguments, or if the call 1472 // needs the callee-saved argument register R6, or if the call uses 1473 // the callee-saved register arguments SwiftSelf and SwiftError. 1474 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1475 CCValAssign &VA = ArgLocs[I]; 1476 if (VA.getLocInfo() == CCValAssign::Indirect) 1477 return false; 1478 if (!VA.isRegLoc()) 1479 return false; 1480 Register Reg = VA.getLocReg(); 1481 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1482 return false; 1483 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1484 return false; 1485 } 1486 return true; 1487 } 1488 1489 SDValue 1490 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1491 SmallVectorImpl<SDValue> &InVals) const { 1492 SelectionDAG &DAG = CLI.DAG; 1493 SDLoc &DL = CLI.DL; 1494 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1495 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1496 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1497 SDValue Chain = CLI.Chain; 1498 SDValue Callee = CLI.Callee; 1499 bool &IsTailCall = CLI.IsTailCall; 1500 CallingConv::ID CallConv = CLI.CallConv; 1501 bool IsVarArg = CLI.IsVarArg; 1502 MachineFunction &MF = DAG.getMachineFunction(); 1503 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1504 1505 // Detect unsupported vector argument and return types. 1506 if (Subtarget.hasVector()) { 1507 VerifyVectorTypes(Outs); 1508 VerifyVectorTypes(Ins); 1509 } 1510 1511 // Analyze the operands of the call, assigning locations to each operand. 1512 SmallVector<CCValAssign, 16> ArgLocs; 1513 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1514 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1515 1516 // We don't support GuaranteedTailCallOpt, only automatically-detected 1517 // sibling calls. 1518 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1519 IsTailCall = false; 1520 1521 // Get a count of how many bytes are to be pushed on the stack. 1522 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1523 1524 // Mark the start of the call. 1525 if (!IsTailCall) 1526 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1527 1528 // Copy argument values to their designated locations. 1529 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1530 SmallVector<SDValue, 8> MemOpChains; 1531 SDValue StackPtr; 1532 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1533 CCValAssign &VA = ArgLocs[I]; 1534 SDValue ArgValue = OutVals[I]; 1535 1536 if (VA.getLocInfo() == CCValAssign::Indirect) { 1537 // Store the argument in a stack slot and pass its address. 1538 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1539 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1540 MemOpChains.push_back( 1541 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1542 MachinePointerInfo::getFixedStack(MF, FI))); 1543 // If the original argument was split (e.g. i128), we need 1544 // to store all parts of it here (and pass just one address). 1545 unsigned ArgIndex = Outs[I].OrigArgIndex; 1546 assert (Outs[I].PartOffset == 0); 1547 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1548 SDValue PartValue = OutVals[I + 1]; 1549 unsigned PartOffset = Outs[I + 1].PartOffset; 1550 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1551 DAG.getIntPtrConstant(PartOffset, DL)); 1552 MemOpChains.push_back( 1553 DAG.getStore(Chain, DL, PartValue, Address, 1554 MachinePointerInfo::getFixedStack(MF, FI))); 1555 ++I; 1556 } 1557 ArgValue = SpillSlot; 1558 } else 1559 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1560 1561 if (VA.isRegLoc()) 1562 // Queue up the argument copies and emit them at the end. 1563 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1564 else { 1565 assert(VA.isMemLoc() && "Argument not register or memory"); 1566 1567 // Work out the address of the stack slot. Unpromoted ints and 1568 // floats are passed as right-justified 8-byte values. 1569 if (!StackPtr.getNode()) 1570 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1571 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1572 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1573 Offset += 4; 1574 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1575 DAG.getIntPtrConstant(Offset, DL)); 1576 1577 // Emit the store. 1578 MemOpChains.push_back( 1579 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1580 } 1581 } 1582 1583 // Join the stores, which are independent of one another. 1584 if (!MemOpChains.empty()) 1585 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1586 1587 // Accept direct calls by converting symbolic call addresses to the 1588 // associated Target* opcodes. Force %r1 to be used for indirect 1589 // tail calls. 1590 SDValue Glue; 1591 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1592 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1593 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1594 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1595 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1596 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1597 } else if (IsTailCall) { 1598 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1599 Glue = Chain.getValue(1); 1600 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1601 } 1602 1603 // Build a sequence of copy-to-reg nodes, chained and glued together. 1604 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1605 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1606 RegsToPass[I].second, Glue); 1607 Glue = Chain.getValue(1); 1608 } 1609 1610 // The first call operand is the chain and the second is the target address. 1611 SmallVector<SDValue, 8> Ops; 1612 Ops.push_back(Chain); 1613 Ops.push_back(Callee); 1614 1615 // Add argument registers to the end of the list so that they are 1616 // known live into the call. 1617 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1618 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1619 RegsToPass[I].second.getValueType())); 1620 1621 // Add a register mask operand representing the call-preserved registers. 1622 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1623 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1624 assert(Mask && "Missing call preserved mask for calling convention"); 1625 Ops.push_back(DAG.getRegisterMask(Mask)); 1626 1627 // Glue the call to the argument copies, if any. 1628 if (Glue.getNode()) 1629 Ops.push_back(Glue); 1630 1631 // Emit the call. 1632 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1633 if (IsTailCall) 1634 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1635 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1636 Glue = Chain.getValue(1); 1637 1638 // Mark the end of the call, which is glued to the call itself. 1639 Chain = DAG.getCALLSEQ_END(Chain, 1640 DAG.getConstant(NumBytes, DL, PtrVT, true), 1641 DAG.getConstant(0, DL, PtrVT, true), 1642 Glue, DL); 1643 Glue = Chain.getValue(1); 1644 1645 // Assign locations to each value returned by this call. 1646 SmallVector<CCValAssign, 16> RetLocs; 1647 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1648 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1649 1650 // Copy all of the result registers out of their specified physreg. 1651 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1652 CCValAssign &VA = RetLocs[I]; 1653 1654 // Copy the value out, gluing the copy to the end of the call sequence. 1655 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1656 VA.getLocVT(), Glue); 1657 Chain = RetValue.getValue(1); 1658 Glue = RetValue.getValue(2); 1659 1660 // Convert the value of the return register into the value that's 1661 // being returned. 1662 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1663 } 1664 1665 return Chain; 1666 } 1667 1668 bool SystemZTargetLowering:: 1669 CanLowerReturn(CallingConv::ID CallConv, 1670 MachineFunction &MF, bool isVarArg, 1671 const SmallVectorImpl<ISD::OutputArg> &Outs, 1672 LLVMContext &Context) const { 1673 // Detect unsupported vector return types. 1674 if (Subtarget.hasVector()) 1675 VerifyVectorTypes(Outs); 1676 1677 // Special case that we cannot easily detect in RetCC_SystemZ since 1678 // i128 is not a legal type. 1679 for (auto &Out : Outs) 1680 if (Out.ArgVT == MVT::i128) 1681 return false; 1682 1683 SmallVector<CCValAssign, 16> RetLocs; 1684 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1685 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1686 } 1687 1688 SDValue 1689 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1690 bool IsVarArg, 1691 const SmallVectorImpl<ISD::OutputArg> &Outs, 1692 const SmallVectorImpl<SDValue> &OutVals, 1693 const SDLoc &DL, SelectionDAG &DAG) const { 1694 MachineFunction &MF = DAG.getMachineFunction(); 1695 1696 // Detect unsupported vector return types. 1697 if (Subtarget.hasVector()) 1698 VerifyVectorTypes(Outs); 1699 1700 // Assign locations to each returned value. 1701 SmallVector<CCValAssign, 16> RetLocs; 1702 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1703 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1704 1705 // Quick exit for void returns 1706 if (RetLocs.empty()) 1707 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1708 1709 if (CallConv == CallingConv::GHC) 1710 report_fatal_error("GHC functions return void only"); 1711 1712 // Copy the result values into the output registers. 1713 SDValue Glue; 1714 SmallVector<SDValue, 4> RetOps; 1715 RetOps.push_back(Chain); 1716 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1717 CCValAssign &VA = RetLocs[I]; 1718 SDValue RetValue = OutVals[I]; 1719 1720 // Make the return register live on exit. 1721 assert(VA.isRegLoc() && "Can only return in registers!"); 1722 1723 // Promote the value as required. 1724 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1725 1726 // Chain and glue the copies together. 1727 Register Reg = VA.getLocReg(); 1728 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1729 Glue = Chain.getValue(1); 1730 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1731 } 1732 1733 // Update chain and glue. 1734 RetOps[0] = Chain; 1735 if (Glue.getNode()) 1736 RetOps.push_back(Glue); 1737 1738 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1739 } 1740 1741 // Return true if Op is an intrinsic node with chain that returns the CC value 1742 // as its only (other) argument. Provide the associated SystemZISD opcode and 1743 // the mask of valid CC values if so. 1744 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1745 unsigned &CCValid) { 1746 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1747 switch (Id) { 1748 case Intrinsic::s390_tbegin: 1749 Opcode = SystemZISD::TBEGIN; 1750 CCValid = SystemZ::CCMASK_TBEGIN; 1751 return true; 1752 1753 case Intrinsic::s390_tbegin_nofloat: 1754 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1755 CCValid = SystemZ::CCMASK_TBEGIN; 1756 return true; 1757 1758 case Intrinsic::s390_tend: 1759 Opcode = SystemZISD::TEND; 1760 CCValid = SystemZ::CCMASK_TEND; 1761 return true; 1762 1763 default: 1764 return false; 1765 } 1766 } 1767 1768 // Return true if Op is an intrinsic node without chain that returns the 1769 // CC value as its final argument. Provide the associated SystemZISD 1770 // opcode and the mask of valid CC values if so. 1771 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1772 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1773 switch (Id) { 1774 case Intrinsic::s390_vpkshs: 1775 case Intrinsic::s390_vpksfs: 1776 case Intrinsic::s390_vpksgs: 1777 Opcode = SystemZISD::PACKS_CC; 1778 CCValid = SystemZ::CCMASK_VCMP; 1779 return true; 1780 1781 case Intrinsic::s390_vpklshs: 1782 case Intrinsic::s390_vpklsfs: 1783 case Intrinsic::s390_vpklsgs: 1784 Opcode = SystemZISD::PACKLS_CC; 1785 CCValid = SystemZ::CCMASK_VCMP; 1786 return true; 1787 1788 case Intrinsic::s390_vceqbs: 1789 case Intrinsic::s390_vceqhs: 1790 case Intrinsic::s390_vceqfs: 1791 case Intrinsic::s390_vceqgs: 1792 Opcode = SystemZISD::VICMPES; 1793 CCValid = SystemZ::CCMASK_VCMP; 1794 return true; 1795 1796 case Intrinsic::s390_vchbs: 1797 case Intrinsic::s390_vchhs: 1798 case Intrinsic::s390_vchfs: 1799 case Intrinsic::s390_vchgs: 1800 Opcode = SystemZISD::VICMPHS; 1801 CCValid = SystemZ::CCMASK_VCMP; 1802 return true; 1803 1804 case Intrinsic::s390_vchlbs: 1805 case Intrinsic::s390_vchlhs: 1806 case Intrinsic::s390_vchlfs: 1807 case Intrinsic::s390_vchlgs: 1808 Opcode = SystemZISD::VICMPHLS; 1809 CCValid = SystemZ::CCMASK_VCMP; 1810 return true; 1811 1812 case Intrinsic::s390_vtm: 1813 Opcode = SystemZISD::VTM; 1814 CCValid = SystemZ::CCMASK_VCMP; 1815 return true; 1816 1817 case Intrinsic::s390_vfaebs: 1818 case Intrinsic::s390_vfaehs: 1819 case Intrinsic::s390_vfaefs: 1820 Opcode = SystemZISD::VFAE_CC; 1821 CCValid = SystemZ::CCMASK_ANY; 1822 return true; 1823 1824 case Intrinsic::s390_vfaezbs: 1825 case Intrinsic::s390_vfaezhs: 1826 case Intrinsic::s390_vfaezfs: 1827 Opcode = SystemZISD::VFAEZ_CC; 1828 CCValid = SystemZ::CCMASK_ANY; 1829 return true; 1830 1831 case Intrinsic::s390_vfeebs: 1832 case Intrinsic::s390_vfeehs: 1833 case Intrinsic::s390_vfeefs: 1834 Opcode = SystemZISD::VFEE_CC; 1835 CCValid = SystemZ::CCMASK_ANY; 1836 return true; 1837 1838 case Intrinsic::s390_vfeezbs: 1839 case Intrinsic::s390_vfeezhs: 1840 case Intrinsic::s390_vfeezfs: 1841 Opcode = SystemZISD::VFEEZ_CC; 1842 CCValid = SystemZ::CCMASK_ANY; 1843 return true; 1844 1845 case Intrinsic::s390_vfenebs: 1846 case Intrinsic::s390_vfenehs: 1847 case Intrinsic::s390_vfenefs: 1848 Opcode = SystemZISD::VFENE_CC; 1849 CCValid = SystemZ::CCMASK_ANY; 1850 return true; 1851 1852 case Intrinsic::s390_vfenezbs: 1853 case Intrinsic::s390_vfenezhs: 1854 case Intrinsic::s390_vfenezfs: 1855 Opcode = SystemZISD::VFENEZ_CC; 1856 CCValid = SystemZ::CCMASK_ANY; 1857 return true; 1858 1859 case Intrinsic::s390_vistrbs: 1860 case Intrinsic::s390_vistrhs: 1861 case Intrinsic::s390_vistrfs: 1862 Opcode = SystemZISD::VISTR_CC; 1863 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1864 return true; 1865 1866 case Intrinsic::s390_vstrcbs: 1867 case Intrinsic::s390_vstrchs: 1868 case Intrinsic::s390_vstrcfs: 1869 Opcode = SystemZISD::VSTRC_CC; 1870 CCValid = SystemZ::CCMASK_ANY; 1871 return true; 1872 1873 case Intrinsic::s390_vstrczbs: 1874 case Intrinsic::s390_vstrczhs: 1875 case Intrinsic::s390_vstrczfs: 1876 Opcode = SystemZISD::VSTRCZ_CC; 1877 CCValid = SystemZ::CCMASK_ANY; 1878 return true; 1879 1880 case Intrinsic::s390_vstrsb: 1881 case Intrinsic::s390_vstrsh: 1882 case Intrinsic::s390_vstrsf: 1883 Opcode = SystemZISD::VSTRS_CC; 1884 CCValid = SystemZ::CCMASK_ANY; 1885 return true; 1886 1887 case Intrinsic::s390_vstrszb: 1888 case Intrinsic::s390_vstrszh: 1889 case Intrinsic::s390_vstrszf: 1890 Opcode = SystemZISD::VSTRSZ_CC; 1891 CCValid = SystemZ::CCMASK_ANY; 1892 return true; 1893 1894 case Intrinsic::s390_vfcedbs: 1895 case Intrinsic::s390_vfcesbs: 1896 Opcode = SystemZISD::VFCMPES; 1897 CCValid = SystemZ::CCMASK_VCMP; 1898 return true; 1899 1900 case Intrinsic::s390_vfchdbs: 1901 case Intrinsic::s390_vfchsbs: 1902 Opcode = SystemZISD::VFCMPHS; 1903 CCValid = SystemZ::CCMASK_VCMP; 1904 return true; 1905 1906 case Intrinsic::s390_vfchedbs: 1907 case Intrinsic::s390_vfchesbs: 1908 Opcode = SystemZISD::VFCMPHES; 1909 CCValid = SystemZ::CCMASK_VCMP; 1910 return true; 1911 1912 case Intrinsic::s390_vftcidb: 1913 case Intrinsic::s390_vftcisb: 1914 Opcode = SystemZISD::VFTCI; 1915 CCValid = SystemZ::CCMASK_VCMP; 1916 return true; 1917 1918 case Intrinsic::s390_tdc: 1919 Opcode = SystemZISD::TDC; 1920 CCValid = SystemZ::CCMASK_TDC; 1921 return true; 1922 1923 default: 1924 return false; 1925 } 1926 } 1927 1928 // Emit an intrinsic with chain and an explicit CC register result. 1929 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1930 unsigned Opcode) { 1931 // Copy all operands except the intrinsic ID. 1932 unsigned NumOps = Op.getNumOperands(); 1933 SmallVector<SDValue, 6> Ops; 1934 Ops.reserve(NumOps - 1); 1935 Ops.push_back(Op.getOperand(0)); 1936 for (unsigned I = 2; I < NumOps; ++I) 1937 Ops.push_back(Op.getOperand(I)); 1938 1939 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1940 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1941 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1942 SDValue OldChain = SDValue(Op.getNode(), 1); 1943 SDValue NewChain = SDValue(Intr.getNode(), 1); 1944 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1945 return Intr.getNode(); 1946 } 1947 1948 // Emit an intrinsic with an explicit CC register result. 1949 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1950 unsigned Opcode) { 1951 // Copy all operands except the intrinsic ID. 1952 unsigned NumOps = Op.getNumOperands(); 1953 SmallVector<SDValue, 6> Ops; 1954 Ops.reserve(NumOps - 1); 1955 for (unsigned I = 1; I < NumOps; ++I) 1956 Ops.push_back(Op.getOperand(I)); 1957 1958 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1959 return Intr.getNode(); 1960 } 1961 1962 // CC is a comparison that will be implemented using an integer or 1963 // floating-point comparison. Return the condition code mask for 1964 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1965 // unsigned comparisons and clear for signed ones. In the floating-point 1966 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1967 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1968 #define CONV(X) \ 1969 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1970 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1971 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1972 1973 switch (CC) { 1974 default: 1975 llvm_unreachable("Invalid integer condition!"); 1976 1977 CONV(EQ); 1978 CONV(NE); 1979 CONV(GT); 1980 CONV(GE); 1981 CONV(LT); 1982 CONV(LE); 1983 1984 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1985 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1986 } 1987 #undef CONV 1988 } 1989 1990 // If C can be converted to a comparison against zero, adjust the operands 1991 // as necessary. 1992 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1993 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1994 return; 1995 1996 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1997 if (!ConstOp1) 1998 return; 1999 2000 int64_t Value = ConstOp1->getSExtValue(); 2001 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2002 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2003 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2004 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2005 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2006 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2007 } 2008 } 2009 2010 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2011 // adjust the operands as necessary. 2012 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2013 Comparison &C) { 2014 // For us to make any changes, it must a comparison between a single-use 2015 // load and a constant. 2016 if (!C.Op0.hasOneUse() || 2017 C.Op0.getOpcode() != ISD::LOAD || 2018 C.Op1.getOpcode() != ISD::Constant) 2019 return; 2020 2021 // We must have an 8- or 16-bit load. 2022 auto *Load = cast<LoadSDNode>(C.Op0); 2023 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 2024 if (NumBits != 8 && NumBits != 16) 2025 return; 2026 2027 // The load must be an extending one and the constant must be within the 2028 // range of the unextended value. 2029 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2030 uint64_t Value = ConstOp1->getZExtValue(); 2031 uint64_t Mask = (1 << NumBits) - 1; 2032 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2033 // Make sure that ConstOp1 is in range of C.Op0. 2034 int64_t SignedValue = ConstOp1->getSExtValue(); 2035 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2036 return; 2037 if (C.ICmpType != SystemZICMP::SignedOnly) { 2038 // Unsigned comparison between two sign-extended values is equivalent 2039 // to unsigned comparison between two zero-extended values. 2040 Value &= Mask; 2041 } else if (NumBits == 8) { 2042 // Try to treat the comparison as unsigned, so that we can use CLI. 2043 // Adjust CCMask and Value as necessary. 2044 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2045 // Test whether the high bit of the byte is set. 2046 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2047 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2048 // Test whether the high bit of the byte is clear. 2049 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2050 else 2051 // No instruction exists for this combination. 2052 return; 2053 C.ICmpType = SystemZICMP::UnsignedOnly; 2054 } 2055 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2056 if (Value > Mask) 2057 return; 2058 // If the constant is in range, we can use any comparison. 2059 C.ICmpType = SystemZICMP::Any; 2060 } else 2061 return; 2062 2063 // Make sure that the first operand is an i32 of the right extension type. 2064 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2065 ISD::SEXTLOAD : 2066 ISD::ZEXTLOAD); 2067 if (C.Op0.getValueType() != MVT::i32 || 2068 Load->getExtensionType() != ExtType) { 2069 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2070 Load->getBasePtr(), Load->getPointerInfo(), 2071 Load->getMemoryVT(), Load->getAlignment(), 2072 Load->getMemOperand()->getFlags()); 2073 // Update the chain uses. 2074 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2075 } 2076 2077 // Make sure that the second operand is an i32 with the right value. 2078 if (C.Op1.getValueType() != MVT::i32 || 2079 Value != ConstOp1->getZExtValue()) 2080 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2081 } 2082 2083 // Return true if Op is either an unextended load, or a load suitable 2084 // for integer register-memory comparisons of type ICmpType. 2085 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2086 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2087 if (Load) { 2088 // There are no instructions to compare a register with a memory byte. 2089 if (Load->getMemoryVT() == MVT::i8) 2090 return false; 2091 // Otherwise decide on extension type. 2092 switch (Load->getExtensionType()) { 2093 case ISD::NON_EXTLOAD: 2094 return true; 2095 case ISD::SEXTLOAD: 2096 return ICmpType != SystemZICMP::UnsignedOnly; 2097 case ISD::ZEXTLOAD: 2098 return ICmpType != SystemZICMP::SignedOnly; 2099 default: 2100 break; 2101 } 2102 } 2103 return false; 2104 } 2105 2106 // Return true if it is better to swap the operands of C. 2107 static bool shouldSwapCmpOperands(const Comparison &C) { 2108 // Leave f128 comparisons alone, since they have no memory forms. 2109 if (C.Op0.getValueType() == MVT::f128) 2110 return false; 2111 2112 // Always keep a floating-point constant second, since comparisons with 2113 // zero can use LOAD TEST and comparisons with other constants make a 2114 // natural memory operand. 2115 if (isa<ConstantFPSDNode>(C.Op1)) 2116 return false; 2117 2118 // Never swap comparisons with zero since there are many ways to optimize 2119 // those later. 2120 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2121 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2122 return false; 2123 2124 // Also keep natural memory operands second if the loaded value is 2125 // only used here. Several comparisons have memory forms. 2126 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2127 return false; 2128 2129 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2130 // In that case we generally prefer the memory to be second. 2131 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2132 // The only exceptions are when the second operand is a constant and 2133 // we can use things like CHHSI. 2134 if (!ConstOp1) 2135 return true; 2136 // The unsigned memory-immediate instructions can handle 16-bit 2137 // unsigned integers. 2138 if (C.ICmpType != SystemZICMP::SignedOnly && 2139 isUInt<16>(ConstOp1->getZExtValue())) 2140 return false; 2141 // The signed memory-immediate instructions can handle 16-bit 2142 // signed integers. 2143 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2144 isInt<16>(ConstOp1->getSExtValue())) 2145 return false; 2146 return true; 2147 } 2148 2149 // Try to promote the use of CGFR and CLGFR. 2150 unsigned Opcode0 = C.Op0.getOpcode(); 2151 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2152 return true; 2153 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2154 return true; 2155 if (C.ICmpType != SystemZICMP::SignedOnly && 2156 Opcode0 == ISD::AND && 2157 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2158 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2159 return true; 2160 2161 return false; 2162 } 2163 2164 // Return a version of comparison CC mask CCMask in which the LT and GT 2165 // actions are swapped. 2166 static unsigned reverseCCMask(unsigned CCMask) { 2167 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 2168 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 2169 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 2170 (CCMask & SystemZ::CCMASK_CMP_UO)); 2171 } 2172 2173 // Check whether C tests for equality between X and Y and whether X - Y 2174 // or Y - X is also computed. In that case it's better to compare the 2175 // result of the subtraction against zero. 2176 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2177 Comparison &C) { 2178 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2179 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2180 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2181 SDNode *N = *I; 2182 if (N->getOpcode() == ISD::SUB && 2183 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2184 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2185 C.Op0 = SDValue(N, 0); 2186 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2187 return; 2188 } 2189 } 2190 } 2191 } 2192 2193 // Check whether C compares a floating-point value with zero and if that 2194 // floating-point value is also negated. In this case we can use the 2195 // negation to set CC, so avoiding separate LOAD AND TEST and 2196 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2197 static void adjustForFNeg(Comparison &C) { 2198 // This optimization is invalid for strict comparisons, since FNEG 2199 // does not raise any exceptions. 2200 if (C.Chain) 2201 return; 2202 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2203 if (C1 && C1->isZero()) { 2204 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2205 SDNode *N = *I; 2206 if (N->getOpcode() == ISD::FNEG) { 2207 C.Op0 = SDValue(N, 0); 2208 C.CCMask = reverseCCMask(C.CCMask); 2209 return; 2210 } 2211 } 2212 } 2213 } 2214 2215 // Check whether C compares (shl X, 32) with 0 and whether X is 2216 // also sign-extended. In that case it is better to test the result 2217 // of the sign extension using LTGFR. 2218 // 2219 // This case is important because InstCombine transforms a comparison 2220 // with (sext (trunc X)) into a comparison with (shl X, 32). 2221 static void adjustForLTGFR(Comparison &C) { 2222 // Check for a comparison between (shl X, 32) and 0. 2223 if (C.Op0.getOpcode() == ISD::SHL && 2224 C.Op0.getValueType() == MVT::i64 && 2225 C.Op1.getOpcode() == ISD::Constant && 2226 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2227 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2228 if (C1 && C1->getZExtValue() == 32) { 2229 SDValue ShlOp0 = C.Op0.getOperand(0); 2230 // See whether X has any SIGN_EXTEND_INREG uses. 2231 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2232 SDNode *N = *I; 2233 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2234 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2235 C.Op0 = SDValue(N, 0); 2236 return; 2237 } 2238 } 2239 } 2240 } 2241 } 2242 2243 // If C compares the truncation of an extending load, try to compare 2244 // the untruncated value instead. This exposes more opportunities to 2245 // reuse CC. 2246 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2247 Comparison &C) { 2248 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2249 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2250 C.Op1.getOpcode() == ISD::Constant && 2251 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2252 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2253 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2254 unsigned Type = L->getExtensionType(); 2255 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2256 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2257 C.Op0 = C.Op0.getOperand(0); 2258 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2259 } 2260 } 2261 } 2262 } 2263 2264 // Return true if shift operation N has an in-range constant shift value. 2265 // Store it in ShiftVal if so. 2266 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2267 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2268 if (!Shift) 2269 return false; 2270 2271 uint64_t Amount = Shift->getZExtValue(); 2272 if (Amount >= N.getValueSizeInBits()) 2273 return false; 2274 2275 ShiftVal = Amount; 2276 return true; 2277 } 2278 2279 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2280 // instruction and whether the CC value is descriptive enough to handle 2281 // a comparison of type Opcode between the AND result and CmpVal. 2282 // CCMask says which comparison result is being tested and BitSize is 2283 // the number of bits in the operands. If TEST UNDER MASK can be used, 2284 // return the corresponding CC mask, otherwise return 0. 2285 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2286 uint64_t Mask, uint64_t CmpVal, 2287 unsigned ICmpType) { 2288 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2289 2290 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2291 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2292 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2293 return 0; 2294 2295 // Work out the masks for the lowest and highest bits. 2296 unsigned HighShift = 63 - countLeadingZeros(Mask); 2297 uint64_t High = uint64_t(1) << HighShift; 2298 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2299 2300 // Signed ordered comparisons are effectively unsigned if the sign 2301 // bit is dropped. 2302 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2303 2304 // Check for equality comparisons with 0, or the equivalent. 2305 if (CmpVal == 0) { 2306 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2307 return SystemZ::CCMASK_TM_ALL_0; 2308 if (CCMask == SystemZ::CCMASK_CMP_NE) 2309 return SystemZ::CCMASK_TM_SOME_1; 2310 } 2311 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2312 if (CCMask == SystemZ::CCMASK_CMP_LT) 2313 return SystemZ::CCMASK_TM_ALL_0; 2314 if (CCMask == SystemZ::CCMASK_CMP_GE) 2315 return SystemZ::CCMASK_TM_SOME_1; 2316 } 2317 if (EffectivelyUnsigned && CmpVal < Low) { 2318 if (CCMask == SystemZ::CCMASK_CMP_LE) 2319 return SystemZ::CCMASK_TM_ALL_0; 2320 if (CCMask == SystemZ::CCMASK_CMP_GT) 2321 return SystemZ::CCMASK_TM_SOME_1; 2322 } 2323 2324 // Check for equality comparisons with the mask, or the equivalent. 2325 if (CmpVal == Mask) { 2326 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2327 return SystemZ::CCMASK_TM_ALL_1; 2328 if (CCMask == SystemZ::CCMASK_CMP_NE) 2329 return SystemZ::CCMASK_TM_SOME_0; 2330 } 2331 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2332 if (CCMask == SystemZ::CCMASK_CMP_GT) 2333 return SystemZ::CCMASK_TM_ALL_1; 2334 if (CCMask == SystemZ::CCMASK_CMP_LE) 2335 return SystemZ::CCMASK_TM_SOME_0; 2336 } 2337 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2338 if (CCMask == SystemZ::CCMASK_CMP_GE) 2339 return SystemZ::CCMASK_TM_ALL_1; 2340 if (CCMask == SystemZ::CCMASK_CMP_LT) 2341 return SystemZ::CCMASK_TM_SOME_0; 2342 } 2343 2344 // Check for ordered comparisons with the top bit. 2345 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2346 if (CCMask == SystemZ::CCMASK_CMP_LE) 2347 return SystemZ::CCMASK_TM_MSB_0; 2348 if (CCMask == SystemZ::CCMASK_CMP_GT) 2349 return SystemZ::CCMASK_TM_MSB_1; 2350 } 2351 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2352 if (CCMask == SystemZ::CCMASK_CMP_LT) 2353 return SystemZ::CCMASK_TM_MSB_0; 2354 if (CCMask == SystemZ::CCMASK_CMP_GE) 2355 return SystemZ::CCMASK_TM_MSB_1; 2356 } 2357 2358 // If there are just two bits, we can do equality checks for Low and High 2359 // as well. 2360 if (Mask == Low + High) { 2361 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2362 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2363 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2364 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2365 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2366 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2367 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2368 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2369 } 2370 2371 // Looks like we've exhausted our options. 2372 return 0; 2373 } 2374 2375 // See whether C can be implemented as a TEST UNDER MASK instruction. 2376 // Update the arguments with the TM version if so. 2377 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2378 Comparison &C) { 2379 // Check that we have a comparison with a constant. 2380 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2381 if (!ConstOp1) 2382 return; 2383 uint64_t CmpVal = ConstOp1->getZExtValue(); 2384 2385 // Check whether the nonconstant input is an AND with a constant mask. 2386 Comparison NewC(C); 2387 uint64_t MaskVal; 2388 ConstantSDNode *Mask = nullptr; 2389 if (C.Op0.getOpcode() == ISD::AND) { 2390 NewC.Op0 = C.Op0.getOperand(0); 2391 NewC.Op1 = C.Op0.getOperand(1); 2392 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2393 if (!Mask) 2394 return; 2395 MaskVal = Mask->getZExtValue(); 2396 } else { 2397 // There is no instruction to compare with a 64-bit immediate 2398 // so use TMHH instead if possible. We need an unsigned ordered 2399 // comparison with an i64 immediate. 2400 if (NewC.Op0.getValueType() != MVT::i64 || 2401 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2402 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2403 NewC.ICmpType == SystemZICMP::SignedOnly) 2404 return; 2405 // Convert LE and GT comparisons into LT and GE. 2406 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2407 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2408 if (CmpVal == uint64_t(-1)) 2409 return; 2410 CmpVal += 1; 2411 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2412 } 2413 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2414 // be masked off without changing the result. 2415 MaskVal = -(CmpVal & -CmpVal); 2416 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2417 } 2418 if (!MaskVal) 2419 return; 2420 2421 // Check whether the combination of mask, comparison value and comparison 2422 // type are suitable. 2423 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2424 unsigned NewCCMask, ShiftVal; 2425 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2426 NewC.Op0.getOpcode() == ISD::SHL && 2427 isSimpleShift(NewC.Op0, ShiftVal) && 2428 (MaskVal >> ShiftVal != 0) && 2429 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2430 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2431 MaskVal >> ShiftVal, 2432 CmpVal >> ShiftVal, 2433 SystemZICMP::Any))) { 2434 NewC.Op0 = NewC.Op0.getOperand(0); 2435 MaskVal >>= ShiftVal; 2436 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2437 NewC.Op0.getOpcode() == ISD::SRL && 2438 isSimpleShift(NewC.Op0, ShiftVal) && 2439 (MaskVal << ShiftVal != 0) && 2440 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2441 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2442 MaskVal << ShiftVal, 2443 CmpVal << ShiftVal, 2444 SystemZICMP::UnsignedOnly))) { 2445 NewC.Op0 = NewC.Op0.getOperand(0); 2446 MaskVal <<= ShiftVal; 2447 } else { 2448 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2449 NewC.ICmpType); 2450 if (!NewCCMask) 2451 return; 2452 } 2453 2454 // Go ahead and make the change. 2455 C.Opcode = SystemZISD::TM; 2456 C.Op0 = NewC.Op0; 2457 if (Mask && Mask->getZExtValue() == MaskVal) 2458 C.Op1 = SDValue(Mask, 0); 2459 else 2460 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2461 C.CCValid = SystemZ::CCMASK_TM; 2462 C.CCMask = NewCCMask; 2463 } 2464 2465 // See whether the comparison argument contains a redundant AND 2466 // and remove it if so. This sometimes happens due to the generic 2467 // BRCOND expansion. 2468 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2469 Comparison &C) { 2470 if (C.Op0.getOpcode() != ISD::AND) 2471 return; 2472 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2473 if (!Mask) 2474 return; 2475 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2476 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2477 return; 2478 2479 C.Op0 = C.Op0.getOperand(0); 2480 } 2481 2482 // Return a Comparison that tests the condition-code result of intrinsic 2483 // node Call against constant integer CC using comparison code Cond. 2484 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2485 // and CCValid is the set of possible condition-code results. 2486 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2487 SDValue Call, unsigned CCValid, uint64_t CC, 2488 ISD::CondCode Cond) { 2489 Comparison C(Call, SDValue(), SDValue()); 2490 C.Opcode = Opcode; 2491 C.CCValid = CCValid; 2492 if (Cond == ISD::SETEQ) 2493 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2494 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2495 else if (Cond == ISD::SETNE) 2496 // ...and the inverse of that. 2497 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2498 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2499 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2500 // always true for CC>3. 2501 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2502 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2503 // ...and the inverse of that. 2504 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2505 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2506 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2507 // always true for CC>3. 2508 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2509 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2510 // ...and the inverse of that. 2511 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2512 else 2513 llvm_unreachable("Unexpected integer comparison type"); 2514 C.CCMask &= CCValid; 2515 return C; 2516 } 2517 2518 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2519 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2520 ISD::CondCode Cond, const SDLoc &DL, 2521 SDValue Chain = SDValue(), 2522 bool IsSignaling = false) { 2523 if (CmpOp1.getOpcode() == ISD::Constant) { 2524 assert(!Chain); 2525 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2526 unsigned Opcode, CCValid; 2527 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2528 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2529 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2530 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2531 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2532 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2533 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2534 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2535 } 2536 Comparison C(CmpOp0, CmpOp1, Chain); 2537 C.CCMask = CCMaskForCondCode(Cond); 2538 if (C.Op0.getValueType().isFloatingPoint()) { 2539 C.CCValid = SystemZ::CCMASK_FCMP; 2540 if (!C.Chain) 2541 C.Opcode = SystemZISD::FCMP; 2542 else if (!IsSignaling) 2543 C.Opcode = SystemZISD::STRICT_FCMP; 2544 else 2545 C.Opcode = SystemZISD::STRICT_FCMPS; 2546 adjustForFNeg(C); 2547 } else { 2548 assert(!C.Chain); 2549 C.CCValid = SystemZ::CCMASK_ICMP; 2550 C.Opcode = SystemZISD::ICMP; 2551 // Choose the type of comparison. Equality and inequality tests can 2552 // use either signed or unsigned comparisons. The choice also doesn't 2553 // matter if both sign bits are known to be clear. In those cases we 2554 // want to give the main isel code the freedom to choose whichever 2555 // form fits best. 2556 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2557 C.CCMask == SystemZ::CCMASK_CMP_NE || 2558 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2559 C.ICmpType = SystemZICMP::Any; 2560 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2561 C.ICmpType = SystemZICMP::UnsignedOnly; 2562 else 2563 C.ICmpType = SystemZICMP::SignedOnly; 2564 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2565 adjustForRedundantAnd(DAG, DL, C); 2566 adjustZeroCmp(DAG, DL, C); 2567 adjustSubwordCmp(DAG, DL, C); 2568 adjustForSubtraction(DAG, DL, C); 2569 adjustForLTGFR(C); 2570 adjustICmpTruncate(DAG, DL, C); 2571 } 2572 2573 if (shouldSwapCmpOperands(C)) { 2574 std::swap(C.Op0, C.Op1); 2575 C.CCMask = reverseCCMask(C.CCMask); 2576 } 2577 2578 adjustForTestUnderMask(DAG, DL, C); 2579 return C; 2580 } 2581 2582 // Emit the comparison instruction described by C. 2583 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2584 if (!C.Op1.getNode()) { 2585 SDNode *Node; 2586 switch (C.Op0.getOpcode()) { 2587 case ISD::INTRINSIC_W_CHAIN: 2588 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2589 return SDValue(Node, 0); 2590 case ISD::INTRINSIC_WO_CHAIN: 2591 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2592 return SDValue(Node, Node->getNumValues() - 1); 2593 default: 2594 llvm_unreachable("Invalid comparison operands"); 2595 } 2596 } 2597 if (C.Opcode == SystemZISD::ICMP) 2598 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2599 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2600 if (C.Opcode == SystemZISD::TM) { 2601 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2602 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2603 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2604 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2605 } 2606 if (C.Chain) { 2607 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2608 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2609 } 2610 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2611 } 2612 2613 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2614 // 64 bits. Extend is the extension type to use. Store the high part 2615 // in Hi and the low part in Lo. 2616 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2617 SDValue Op0, SDValue Op1, SDValue &Hi, 2618 SDValue &Lo) { 2619 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2620 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2621 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2622 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2623 DAG.getConstant(32, DL, MVT::i64)); 2624 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2625 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2626 } 2627 2628 // Lower a binary operation that produces two VT results, one in each 2629 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2630 // and Opcode performs the GR128 operation. Store the even register result 2631 // in Even and the odd register result in Odd. 2632 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2633 unsigned Opcode, SDValue Op0, SDValue Op1, 2634 SDValue &Even, SDValue &Odd) { 2635 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2636 bool Is32Bit = is32Bit(VT); 2637 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2638 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2639 } 2640 2641 // Return an i32 value that is 1 if the CC value produced by CCReg is 2642 // in the mask CCMask and 0 otherwise. CC is known to have a value 2643 // in CCValid, so other values can be ignored. 2644 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2645 unsigned CCValid, unsigned CCMask) { 2646 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2647 DAG.getConstant(0, DL, MVT::i32), 2648 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2649 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2650 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2651 } 2652 2653 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2654 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2655 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2656 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2657 // floating-point comparisons. 2658 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2659 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2660 switch (CC) { 2661 case ISD::SETOEQ: 2662 case ISD::SETEQ: 2663 switch (Mode) { 2664 case CmpMode::Int: return SystemZISD::VICMPE; 2665 case CmpMode::FP: return SystemZISD::VFCMPE; 2666 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2667 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2668 } 2669 llvm_unreachable("Bad mode"); 2670 2671 case ISD::SETOGE: 2672 case ISD::SETGE: 2673 switch (Mode) { 2674 case CmpMode::Int: return 0; 2675 case CmpMode::FP: return SystemZISD::VFCMPHE; 2676 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2677 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2678 } 2679 llvm_unreachable("Bad mode"); 2680 2681 case ISD::SETOGT: 2682 case ISD::SETGT: 2683 switch (Mode) { 2684 case CmpMode::Int: return SystemZISD::VICMPH; 2685 case CmpMode::FP: return SystemZISD::VFCMPH; 2686 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2687 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2688 } 2689 llvm_unreachable("Bad mode"); 2690 2691 case ISD::SETUGT: 2692 switch (Mode) { 2693 case CmpMode::Int: return SystemZISD::VICMPHL; 2694 case CmpMode::FP: return 0; 2695 case CmpMode::StrictFP: return 0; 2696 case CmpMode::SignalingFP: return 0; 2697 } 2698 llvm_unreachable("Bad mode"); 2699 2700 default: 2701 return 0; 2702 } 2703 } 2704 2705 // Return the SystemZISD vector comparison operation for CC or its inverse, 2706 // or 0 if neither can be done directly. Indicate in Invert whether the 2707 // result is for the inverse of CC. Mode is as above. 2708 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2709 bool &Invert) { 2710 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2711 Invert = false; 2712 return Opcode; 2713 } 2714 2715 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2716 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2717 Invert = true; 2718 return Opcode; 2719 } 2720 2721 return 0; 2722 } 2723 2724 // Return a v2f64 that contains the extended form of elements Start and Start+1 2725 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2726 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2727 SDValue Op, SDValue Chain) { 2728 int Mask[] = { Start, -1, Start + 1, -1 }; 2729 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2730 if (Chain) { 2731 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2732 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2733 } 2734 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2735 } 2736 2737 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2738 // producing a result of type VT. If Chain is nonnull, return the strict form. 2739 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2740 const SDLoc &DL, EVT VT, 2741 SDValue CmpOp0, 2742 SDValue CmpOp1, 2743 SDValue Chain) const { 2744 // There is no hardware support for v4f32 (unless we have the vector 2745 // enhancements facility 1), so extend the vector into two v2f64s 2746 // and compare those. 2747 if (CmpOp0.getValueType() == MVT::v4f32 && 2748 !Subtarget.hasVectorEnhancements1()) { 2749 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2750 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2751 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2752 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2753 if (Chain) { 2754 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2755 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2756 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2757 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2758 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2759 H1.getValue(1), L1.getValue(1), 2760 HRes.getValue(1), LRes.getValue(1) }; 2761 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2762 SDValue Ops[2] = { Res, NewChain }; 2763 return DAG.getMergeValues(Ops, DL); 2764 } 2765 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2766 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2767 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2768 } 2769 if (Chain) { 2770 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2771 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2772 } 2773 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2774 } 2775 2776 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2777 // an integer mask of type VT. If Chain is nonnull, we have a strict 2778 // floating-point comparison. If in addition IsSignaling is true, we have 2779 // a strict signaling floating-point comparison. 2780 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2781 const SDLoc &DL, EVT VT, 2782 ISD::CondCode CC, 2783 SDValue CmpOp0, 2784 SDValue CmpOp1, 2785 SDValue Chain, 2786 bool IsSignaling) const { 2787 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2788 assert (!Chain || IsFP); 2789 assert (!IsSignaling || Chain); 2790 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2791 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2792 bool Invert = false; 2793 SDValue Cmp; 2794 switch (CC) { 2795 // Handle tests for order using (or (ogt y x) (oge x y)). 2796 case ISD::SETUO: 2797 Invert = true; 2798 LLVM_FALLTHROUGH; 2799 case ISD::SETO: { 2800 assert(IsFP && "Unexpected integer comparison"); 2801 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2802 DL, VT, CmpOp1, CmpOp0, Chain); 2803 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2804 DL, VT, CmpOp0, CmpOp1, Chain); 2805 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2806 if (Chain) 2807 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2808 LT.getValue(1), GE.getValue(1)); 2809 break; 2810 } 2811 2812 // Handle <> tests using (or (ogt y x) (ogt x y)). 2813 case ISD::SETUEQ: 2814 Invert = true; 2815 LLVM_FALLTHROUGH; 2816 case ISD::SETONE: { 2817 assert(IsFP && "Unexpected integer comparison"); 2818 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2819 DL, VT, CmpOp1, CmpOp0, Chain); 2820 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2821 DL, VT, CmpOp0, CmpOp1, Chain); 2822 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2823 if (Chain) 2824 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2825 LT.getValue(1), GT.getValue(1)); 2826 break; 2827 } 2828 2829 // Otherwise a single comparison is enough. It doesn't really 2830 // matter whether we try the inversion or the swap first, since 2831 // there are no cases where both work. 2832 default: 2833 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2834 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2835 else { 2836 CC = ISD::getSetCCSwappedOperands(CC); 2837 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2838 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2839 else 2840 llvm_unreachable("Unhandled comparison"); 2841 } 2842 if (Chain) 2843 Chain = Cmp.getValue(1); 2844 break; 2845 } 2846 if (Invert) { 2847 SDValue Mask = 2848 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2849 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2850 } 2851 if (Chain && Chain.getNode() != Cmp.getNode()) { 2852 SDValue Ops[2] = { Cmp, Chain }; 2853 Cmp = DAG.getMergeValues(Ops, DL); 2854 } 2855 return Cmp; 2856 } 2857 2858 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2859 SelectionDAG &DAG) const { 2860 SDValue CmpOp0 = Op.getOperand(0); 2861 SDValue CmpOp1 = Op.getOperand(1); 2862 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2863 SDLoc DL(Op); 2864 EVT VT = Op.getValueType(); 2865 if (VT.isVector()) 2866 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2867 2868 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2869 SDValue CCReg = emitCmp(DAG, DL, C); 2870 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2871 } 2872 2873 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2874 SelectionDAG &DAG, 2875 bool IsSignaling) const { 2876 SDValue Chain = Op.getOperand(0); 2877 SDValue CmpOp0 = Op.getOperand(1); 2878 SDValue CmpOp1 = Op.getOperand(2); 2879 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2880 SDLoc DL(Op); 2881 EVT VT = Op.getNode()->getValueType(0); 2882 if (VT.isVector()) { 2883 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2884 Chain, IsSignaling); 2885 return Res.getValue(Op.getResNo()); 2886 } 2887 2888 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2889 SDValue CCReg = emitCmp(DAG, DL, C); 2890 CCReg->setFlags(Op->getFlags()); 2891 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2892 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2893 return DAG.getMergeValues(Ops, DL); 2894 } 2895 2896 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2897 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2898 SDValue CmpOp0 = Op.getOperand(2); 2899 SDValue CmpOp1 = Op.getOperand(3); 2900 SDValue Dest = Op.getOperand(4); 2901 SDLoc DL(Op); 2902 2903 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2904 SDValue CCReg = emitCmp(DAG, DL, C); 2905 return DAG.getNode( 2906 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2907 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2908 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2909 } 2910 2911 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2912 // allowing Pos and Neg to be wider than CmpOp. 2913 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2914 return (Neg.getOpcode() == ISD::SUB && 2915 Neg.getOperand(0).getOpcode() == ISD::Constant && 2916 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2917 Neg.getOperand(1) == Pos && 2918 (Pos == CmpOp || 2919 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2920 Pos.getOperand(0) == CmpOp))); 2921 } 2922 2923 // Return the absolute or negative absolute of Op; IsNegative decides which. 2924 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2925 bool IsNegative) { 2926 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2927 if (IsNegative) 2928 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2929 DAG.getConstant(0, DL, Op.getValueType()), Op); 2930 return Op; 2931 } 2932 2933 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2934 SelectionDAG &DAG) const { 2935 SDValue CmpOp0 = Op.getOperand(0); 2936 SDValue CmpOp1 = Op.getOperand(1); 2937 SDValue TrueOp = Op.getOperand(2); 2938 SDValue FalseOp = Op.getOperand(3); 2939 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2940 SDLoc DL(Op); 2941 2942 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2943 2944 // Check for absolute and negative-absolute selections, including those 2945 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2946 // This check supplements the one in DAGCombiner. 2947 if (C.Opcode == SystemZISD::ICMP && 2948 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2949 C.CCMask != SystemZ::CCMASK_CMP_NE && 2950 C.Op1.getOpcode() == ISD::Constant && 2951 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2952 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2953 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2954 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2955 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2956 } 2957 2958 SDValue CCReg = emitCmp(DAG, DL, C); 2959 SDValue Ops[] = {TrueOp, FalseOp, 2960 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2961 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2962 2963 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2964 } 2965 2966 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2967 SelectionDAG &DAG) const { 2968 SDLoc DL(Node); 2969 const GlobalValue *GV = Node->getGlobal(); 2970 int64_t Offset = Node->getOffset(); 2971 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2972 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2973 2974 SDValue Result; 2975 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2976 if (isInt<32>(Offset)) { 2977 // Assign anchors at 1<<12 byte boundaries. 2978 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2979 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2980 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2981 2982 // The offset can be folded into the address if it is aligned to a 2983 // halfword. 2984 Offset -= Anchor; 2985 if (Offset != 0 && (Offset & 1) == 0) { 2986 SDValue Full = 2987 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2988 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2989 Offset = 0; 2990 } 2991 } else { 2992 // Conservatively load a constant offset greater than 32 bits into a 2993 // register below. 2994 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 2995 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2996 } 2997 } else { 2998 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2999 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3000 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3001 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3002 } 3003 3004 // If there was a non-zero offset that we didn't fold, create an explicit 3005 // addition for it. 3006 if (Offset != 0) 3007 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3008 DAG.getConstant(Offset, DL, PtrVT)); 3009 3010 return Result; 3011 } 3012 3013 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3014 SelectionDAG &DAG, 3015 unsigned Opcode, 3016 SDValue GOTOffset) const { 3017 SDLoc DL(Node); 3018 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3019 SDValue Chain = DAG.getEntryNode(); 3020 SDValue Glue; 3021 3022 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3023 CallingConv::GHC) 3024 report_fatal_error("In GHC calling convention TLS is not supported"); 3025 3026 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3027 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3028 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3029 Glue = Chain.getValue(1); 3030 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3031 Glue = Chain.getValue(1); 3032 3033 // The first call operand is the chain and the second is the TLS symbol. 3034 SmallVector<SDValue, 8> Ops; 3035 Ops.push_back(Chain); 3036 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3037 Node->getValueType(0), 3038 0, 0)); 3039 3040 // Add argument registers to the end of the list so that they are 3041 // known live into the call. 3042 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3043 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3044 3045 // Add a register mask operand representing the call-preserved registers. 3046 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3047 const uint32_t *Mask = 3048 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3049 assert(Mask && "Missing call preserved mask for calling convention"); 3050 Ops.push_back(DAG.getRegisterMask(Mask)); 3051 3052 // Glue the call to the argument copies. 3053 Ops.push_back(Glue); 3054 3055 // Emit the call. 3056 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3057 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3058 Glue = Chain.getValue(1); 3059 3060 // Copy the return value from %r2. 3061 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3062 } 3063 3064 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3065 SelectionDAG &DAG) const { 3066 SDValue Chain = DAG.getEntryNode(); 3067 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3068 3069 // The high part of the thread pointer is in access register 0. 3070 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3071 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3072 3073 // The low part of the thread pointer is in access register 1. 3074 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3075 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3076 3077 // Merge them into a single 64-bit address. 3078 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3079 DAG.getConstant(32, DL, PtrVT)); 3080 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3081 } 3082 3083 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3084 SelectionDAG &DAG) const { 3085 if (DAG.getTarget().useEmulatedTLS()) 3086 return LowerToTLSEmulatedModel(Node, DAG); 3087 SDLoc DL(Node); 3088 const GlobalValue *GV = Node->getGlobal(); 3089 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3090 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3091 3092 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3093 CallingConv::GHC) 3094 report_fatal_error("In GHC calling convention TLS is not supported"); 3095 3096 SDValue TP = lowerThreadPointer(DL, DAG); 3097 3098 // Get the offset of GA from the thread pointer, based on the TLS model. 3099 SDValue Offset; 3100 switch (model) { 3101 case TLSModel::GeneralDynamic: { 3102 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3103 SystemZConstantPoolValue *CPV = 3104 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3105 3106 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3107 Offset = DAG.getLoad( 3108 PtrVT, DL, DAG.getEntryNode(), Offset, 3109 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3110 3111 // Call __tls_get_offset to retrieve the offset. 3112 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3113 break; 3114 } 3115 3116 case TLSModel::LocalDynamic: { 3117 // Load the GOT offset of the module ID. 3118 SystemZConstantPoolValue *CPV = 3119 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3120 3121 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3122 Offset = DAG.getLoad( 3123 PtrVT, DL, DAG.getEntryNode(), Offset, 3124 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3125 3126 // Call __tls_get_offset to retrieve the module base offset. 3127 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3128 3129 // Note: The SystemZLDCleanupPass will remove redundant computations 3130 // of the module base offset. Count total number of local-dynamic 3131 // accesses to trigger execution of that pass. 3132 SystemZMachineFunctionInfo* MFI = 3133 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3134 MFI->incNumLocalDynamicTLSAccesses(); 3135 3136 // Add the per-symbol offset. 3137 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3138 3139 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 3140 DTPOffset = DAG.getLoad( 3141 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3142 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3143 3144 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3145 break; 3146 } 3147 3148 case TLSModel::InitialExec: { 3149 // Load the offset from the GOT. 3150 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3151 SystemZII::MO_INDNTPOFF); 3152 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3153 Offset = 3154 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3155 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3156 break; 3157 } 3158 3159 case TLSModel::LocalExec: { 3160 // Force the offset into the constant pool and load it from there. 3161 SystemZConstantPoolValue *CPV = 3162 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3163 3164 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3165 Offset = DAG.getLoad( 3166 PtrVT, DL, DAG.getEntryNode(), Offset, 3167 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3168 break; 3169 } 3170 } 3171 3172 // Add the base and offset together. 3173 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3174 } 3175 3176 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3177 SelectionDAG &DAG) const { 3178 SDLoc DL(Node); 3179 const BlockAddress *BA = Node->getBlockAddress(); 3180 int64_t Offset = Node->getOffset(); 3181 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3182 3183 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3184 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3185 return Result; 3186 } 3187 3188 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3189 SelectionDAG &DAG) const { 3190 SDLoc DL(JT); 3191 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3192 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3193 3194 // Use LARL to load the address of the table. 3195 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3196 } 3197 3198 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3199 SelectionDAG &DAG) const { 3200 SDLoc DL(CP); 3201 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3202 3203 SDValue Result; 3204 if (CP->isMachineConstantPoolEntry()) 3205 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3206 CP->getAlignment()); 3207 else 3208 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3209 CP->getAlignment(), CP->getOffset()); 3210 3211 // Use LARL to load the address of the constant pool entry. 3212 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3213 } 3214 3215 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3216 SelectionDAG &DAG) const { 3217 MachineFunction &MF = DAG.getMachineFunction(); 3218 MachineFrameInfo &MFI = MF.getFrameInfo(); 3219 MFI.setFrameAddressIsTaken(true); 3220 3221 SDLoc DL(Op); 3222 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3223 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3224 3225 // By definition, the frame address is the address of the back chain. 3226 auto *TFL = 3227 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3228 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3229 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3230 3231 // FIXME The frontend should detect this case. 3232 if (Depth > 0) { 3233 report_fatal_error("Unsupported stack frame traversal count"); 3234 } 3235 3236 return BackChain; 3237 } 3238 3239 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3240 SelectionDAG &DAG) const { 3241 MachineFunction &MF = DAG.getMachineFunction(); 3242 MachineFrameInfo &MFI = MF.getFrameInfo(); 3243 MFI.setReturnAddressIsTaken(true); 3244 3245 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3246 return SDValue(); 3247 3248 SDLoc DL(Op); 3249 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3250 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3251 3252 // FIXME The frontend should detect this case. 3253 if (Depth > 0) { 3254 report_fatal_error("Unsupported stack frame traversal count"); 3255 } 3256 3257 // Return R14D, which has the return address. Mark it an implicit live-in. 3258 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3259 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3260 } 3261 3262 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3263 SelectionDAG &DAG) const { 3264 SDLoc DL(Op); 3265 SDValue In = Op.getOperand(0); 3266 EVT InVT = In.getValueType(); 3267 EVT ResVT = Op.getValueType(); 3268 3269 // Convert loads directly. This is normally done by DAGCombiner, 3270 // but we need this case for bitcasts that are created during lowering 3271 // and which are then lowered themselves. 3272 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3273 if (ISD::isNormalLoad(LoadN)) { 3274 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3275 LoadN->getBasePtr(), LoadN->getMemOperand()); 3276 // Update the chain uses. 3277 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3278 return NewLoad; 3279 } 3280 3281 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3282 SDValue In64; 3283 if (Subtarget.hasHighWord()) { 3284 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3285 MVT::i64); 3286 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3287 MVT::i64, SDValue(U64, 0), In); 3288 } else { 3289 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3290 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3291 DAG.getConstant(32, DL, MVT::i64)); 3292 } 3293 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3294 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3295 DL, MVT::f32, Out64); 3296 } 3297 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3298 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3299 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3300 MVT::f64, SDValue(U64, 0), In); 3301 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3302 if (Subtarget.hasHighWord()) 3303 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3304 MVT::i32, Out64); 3305 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3306 DAG.getConstant(32, DL, MVT::i64)); 3307 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3308 } 3309 llvm_unreachable("Unexpected bitcast combination"); 3310 } 3311 3312 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3313 SelectionDAG &DAG) const { 3314 MachineFunction &MF = DAG.getMachineFunction(); 3315 SystemZMachineFunctionInfo *FuncInfo = 3316 MF.getInfo<SystemZMachineFunctionInfo>(); 3317 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3318 3319 SDValue Chain = Op.getOperand(0); 3320 SDValue Addr = Op.getOperand(1); 3321 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3322 SDLoc DL(Op); 3323 3324 // The initial values of each field. 3325 const unsigned NumFields = 4; 3326 SDValue Fields[NumFields] = { 3327 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3328 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3329 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3330 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3331 }; 3332 3333 // Store each field into its respective slot. 3334 SDValue MemOps[NumFields]; 3335 unsigned Offset = 0; 3336 for (unsigned I = 0; I < NumFields; ++I) { 3337 SDValue FieldAddr = Addr; 3338 if (Offset != 0) 3339 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3340 DAG.getIntPtrConstant(Offset, DL)); 3341 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3342 MachinePointerInfo(SV, Offset)); 3343 Offset += 8; 3344 } 3345 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3346 } 3347 3348 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3349 SelectionDAG &DAG) const { 3350 SDValue Chain = Op.getOperand(0); 3351 SDValue DstPtr = Op.getOperand(1); 3352 SDValue SrcPtr = Op.getOperand(2); 3353 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3354 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3355 SDLoc DL(Op); 3356 3357 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3358 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3359 /*isTailCall*/false, 3360 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3361 } 3362 3363 SDValue SystemZTargetLowering:: 3364 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3365 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3366 MachineFunction &MF = DAG.getMachineFunction(); 3367 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3368 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3369 3370 SDValue Chain = Op.getOperand(0); 3371 SDValue Size = Op.getOperand(1); 3372 SDValue Align = Op.getOperand(2); 3373 SDLoc DL(Op); 3374 3375 // If user has set the no alignment function attribute, ignore 3376 // alloca alignments. 3377 uint64_t AlignVal = (RealignOpt ? 3378 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3379 3380 uint64_t StackAlign = TFI->getStackAlignment(); 3381 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3382 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3383 3384 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3385 SDValue NeededSpace = Size; 3386 3387 // Get a reference to the stack pointer. 3388 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3389 3390 // If we need a backchain, save it now. 3391 SDValue Backchain; 3392 if (StoreBackchain) 3393 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3394 3395 // Add extra space for alignment if needed. 3396 if (ExtraAlignSpace) 3397 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3398 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3399 3400 // Get the new stack pointer value. 3401 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3402 3403 // Copy the new stack pointer back. 3404 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3405 3406 // The allocated data lives above the 160 bytes allocated for the standard 3407 // frame, plus any outgoing stack arguments. We don't know how much that 3408 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3409 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3410 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3411 3412 // Dynamically realign if needed. 3413 if (RequiredAlign > StackAlign) { 3414 Result = 3415 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3416 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3417 Result = 3418 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3419 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3420 } 3421 3422 if (StoreBackchain) 3423 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3424 3425 SDValue Ops[2] = { Result, Chain }; 3426 return DAG.getMergeValues(Ops, DL); 3427 } 3428 3429 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3430 SDValue Op, SelectionDAG &DAG) const { 3431 SDLoc DL(Op); 3432 3433 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3434 } 3435 3436 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3437 SelectionDAG &DAG) const { 3438 EVT VT = Op.getValueType(); 3439 SDLoc DL(Op); 3440 SDValue Ops[2]; 3441 if (is32Bit(VT)) 3442 // Just do a normal 64-bit multiplication and extract the results. 3443 // We define this so that it can be used for constant division. 3444 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3445 Op.getOperand(1), Ops[1], Ops[0]); 3446 else if (Subtarget.hasMiscellaneousExtensions2()) 3447 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3448 // the high result in the even register. ISD::SMUL_LOHI is defined to 3449 // return the low half first, so the results are in reverse order. 3450 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3451 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3452 else { 3453 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3454 // 3455 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3456 // 3457 // but using the fact that the upper halves are either all zeros 3458 // or all ones: 3459 // 3460 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3461 // 3462 // and grouping the right terms together since they are quicker than the 3463 // multiplication: 3464 // 3465 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3466 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3467 SDValue LL = Op.getOperand(0); 3468 SDValue RL = Op.getOperand(1); 3469 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3470 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3471 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3472 // the high result in the even register. ISD::SMUL_LOHI is defined to 3473 // return the low half first, so the results are in reverse order. 3474 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3475 LL, RL, Ops[1], Ops[0]); 3476 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3477 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3478 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3479 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3480 } 3481 return DAG.getMergeValues(Ops, DL); 3482 } 3483 3484 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3485 SelectionDAG &DAG) const { 3486 EVT VT = Op.getValueType(); 3487 SDLoc DL(Op); 3488 SDValue Ops[2]; 3489 if (is32Bit(VT)) 3490 // Just do a normal 64-bit multiplication and extract the results. 3491 // We define this so that it can be used for constant division. 3492 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3493 Op.getOperand(1), Ops[1], Ops[0]); 3494 else 3495 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3496 // the high result in the even register. ISD::UMUL_LOHI is defined to 3497 // return the low half first, so the results are in reverse order. 3498 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3499 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3500 return DAG.getMergeValues(Ops, DL); 3501 } 3502 3503 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3504 SelectionDAG &DAG) const { 3505 SDValue Op0 = Op.getOperand(0); 3506 SDValue Op1 = Op.getOperand(1); 3507 EVT VT = Op.getValueType(); 3508 SDLoc DL(Op); 3509 3510 // We use DSGF for 32-bit division. This means the first operand must 3511 // always be 64-bit, and the second operand should be 32-bit whenever 3512 // that is possible, to improve performance. 3513 if (is32Bit(VT)) 3514 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3515 else if (DAG.ComputeNumSignBits(Op1) > 32) 3516 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3517 3518 // DSG(F) returns the remainder in the even register and the 3519 // quotient in the odd register. 3520 SDValue Ops[2]; 3521 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3522 return DAG.getMergeValues(Ops, DL); 3523 } 3524 3525 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3526 SelectionDAG &DAG) const { 3527 EVT VT = Op.getValueType(); 3528 SDLoc DL(Op); 3529 3530 // DL(G) returns the remainder in the even register and the 3531 // quotient in the odd register. 3532 SDValue Ops[2]; 3533 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3534 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3535 return DAG.getMergeValues(Ops, DL); 3536 } 3537 3538 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3539 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3540 3541 // Get the known-zero masks for each operand. 3542 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3543 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3544 DAG.computeKnownBits(Ops[1])}; 3545 3546 // See if the upper 32 bits of one operand and the lower 32 bits of the 3547 // other are known zero. They are the low and high operands respectively. 3548 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3549 Known[1].Zero.getZExtValue() }; 3550 unsigned High, Low; 3551 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3552 High = 1, Low = 0; 3553 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3554 High = 0, Low = 1; 3555 else 3556 return Op; 3557 3558 SDValue LowOp = Ops[Low]; 3559 SDValue HighOp = Ops[High]; 3560 3561 // If the high part is a constant, we're better off using IILH. 3562 if (HighOp.getOpcode() == ISD::Constant) 3563 return Op; 3564 3565 // If the low part is a constant that is outside the range of LHI, 3566 // then we're better off using IILF. 3567 if (LowOp.getOpcode() == ISD::Constant) { 3568 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3569 if (!isInt<16>(Value)) 3570 return Op; 3571 } 3572 3573 // Check whether the high part is an AND that doesn't change the 3574 // high 32 bits and just masks out low bits. We can skip it if so. 3575 if (HighOp.getOpcode() == ISD::AND && 3576 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3577 SDValue HighOp0 = HighOp.getOperand(0); 3578 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3579 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3580 HighOp = HighOp0; 3581 } 3582 3583 // Take advantage of the fact that all GR32 operations only change the 3584 // low 32 bits by truncating Low to an i32 and inserting it directly 3585 // using a subreg. The interesting cases are those where the truncation 3586 // can be folded. 3587 SDLoc DL(Op); 3588 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3589 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3590 MVT::i64, HighOp, Low32); 3591 } 3592 3593 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3594 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3595 SelectionDAG &DAG) const { 3596 SDNode *N = Op.getNode(); 3597 SDValue LHS = N->getOperand(0); 3598 SDValue RHS = N->getOperand(1); 3599 SDLoc DL(N); 3600 unsigned BaseOp = 0; 3601 unsigned CCValid = 0; 3602 unsigned CCMask = 0; 3603 3604 switch (Op.getOpcode()) { 3605 default: llvm_unreachable("Unknown instruction!"); 3606 case ISD::SADDO: 3607 BaseOp = SystemZISD::SADDO; 3608 CCValid = SystemZ::CCMASK_ARITH; 3609 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3610 break; 3611 case ISD::SSUBO: 3612 BaseOp = SystemZISD::SSUBO; 3613 CCValid = SystemZ::CCMASK_ARITH; 3614 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3615 break; 3616 case ISD::UADDO: 3617 BaseOp = SystemZISD::UADDO; 3618 CCValid = SystemZ::CCMASK_LOGICAL; 3619 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3620 break; 3621 case ISD::USUBO: 3622 BaseOp = SystemZISD::USUBO; 3623 CCValid = SystemZ::CCMASK_LOGICAL; 3624 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3625 break; 3626 } 3627 3628 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3629 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3630 3631 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3632 if (N->getValueType(1) == MVT::i1) 3633 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3634 3635 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3636 } 3637 3638 static bool isAddCarryChain(SDValue Carry) { 3639 while (Carry.getOpcode() == ISD::ADDCARRY) 3640 Carry = Carry.getOperand(2); 3641 return Carry.getOpcode() == ISD::UADDO; 3642 } 3643 3644 static bool isSubBorrowChain(SDValue Carry) { 3645 while (Carry.getOpcode() == ISD::SUBCARRY) 3646 Carry = Carry.getOperand(2); 3647 return Carry.getOpcode() == ISD::USUBO; 3648 } 3649 3650 // Lower ADDCARRY/SUBCARRY nodes. 3651 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3652 SelectionDAG &DAG) const { 3653 3654 SDNode *N = Op.getNode(); 3655 MVT VT = N->getSimpleValueType(0); 3656 3657 // Let legalize expand this if it isn't a legal type yet. 3658 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3659 return SDValue(); 3660 3661 SDValue LHS = N->getOperand(0); 3662 SDValue RHS = N->getOperand(1); 3663 SDValue Carry = Op.getOperand(2); 3664 SDLoc DL(N); 3665 unsigned BaseOp = 0; 3666 unsigned CCValid = 0; 3667 unsigned CCMask = 0; 3668 3669 switch (Op.getOpcode()) { 3670 default: llvm_unreachable("Unknown instruction!"); 3671 case ISD::ADDCARRY: 3672 if (!isAddCarryChain(Carry)) 3673 return SDValue(); 3674 3675 BaseOp = SystemZISD::ADDCARRY; 3676 CCValid = SystemZ::CCMASK_LOGICAL; 3677 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3678 break; 3679 case ISD::SUBCARRY: 3680 if (!isSubBorrowChain(Carry)) 3681 return SDValue(); 3682 3683 BaseOp = SystemZISD::SUBCARRY; 3684 CCValid = SystemZ::CCMASK_LOGICAL; 3685 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3686 break; 3687 } 3688 3689 // Set the condition code from the carry flag. 3690 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3691 DAG.getConstant(CCValid, DL, MVT::i32), 3692 DAG.getConstant(CCMask, DL, MVT::i32)); 3693 3694 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3695 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3696 3697 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3698 if (N->getValueType(1) == MVT::i1) 3699 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3700 3701 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3702 } 3703 3704 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3705 SelectionDAG &DAG) const { 3706 EVT VT = Op.getValueType(); 3707 SDLoc DL(Op); 3708 Op = Op.getOperand(0); 3709 3710 // Handle vector types via VPOPCT. 3711 if (VT.isVector()) { 3712 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3713 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3714 switch (VT.getScalarSizeInBits()) { 3715 case 8: 3716 break; 3717 case 16: { 3718 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3719 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3720 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3721 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3722 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3723 break; 3724 } 3725 case 32: { 3726 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3727 DAG.getConstant(0, DL, MVT::i32)); 3728 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3729 break; 3730 } 3731 case 64: { 3732 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3733 DAG.getConstant(0, DL, MVT::i32)); 3734 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3735 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3736 break; 3737 } 3738 default: 3739 llvm_unreachable("Unexpected type"); 3740 } 3741 return Op; 3742 } 3743 3744 // Get the known-zero mask for the operand. 3745 KnownBits Known = DAG.computeKnownBits(Op); 3746 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3747 if (NumSignificantBits == 0) 3748 return DAG.getConstant(0, DL, VT); 3749 3750 // Skip known-zero high parts of the operand. 3751 int64_t OrigBitSize = VT.getSizeInBits(); 3752 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3753 BitSize = std::min(BitSize, OrigBitSize); 3754 3755 // The POPCNT instruction counts the number of bits in each byte. 3756 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3757 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3758 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3759 3760 // Add up per-byte counts in a binary tree. All bits of Op at 3761 // position larger than BitSize remain zero throughout. 3762 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3763 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3764 if (BitSize != OrigBitSize) 3765 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3766 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3767 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3768 } 3769 3770 // Extract overall result from high byte. 3771 if (BitSize > 8) 3772 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3773 DAG.getConstant(BitSize - 8, DL, VT)); 3774 3775 return Op; 3776 } 3777 3778 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3779 SelectionDAG &DAG) const { 3780 SDLoc DL(Op); 3781 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3782 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3783 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3784 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3785 3786 // The only fence that needs an instruction is a sequentially-consistent 3787 // cross-thread fence. 3788 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3789 FenceSSID == SyncScope::System) { 3790 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3791 Op.getOperand(0)), 3792 0); 3793 } 3794 3795 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3796 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3797 } 3798 3799 // Op is an atomic load. Lower it into a normal volatile load. 3800 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3801 SelectionDAG &DAG) const { 3802 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3803 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3804 Node->getChain(), Node->getBasePtr(), 3805 Node->getMemoryVT(), Node->getMemOperand()); 3806 } 3807 3808 // Op is an atomic store. Lower it into a normal volatile store. 3809 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3810 SelectionDAG &DAG) const { 3811 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3812 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3813 Node->getBasePtr(), Node->getMemoryVT(), 3814 Node->getMemOperand()); 3815 // We have to enforce sequential consistency by performing a 3816 // serialization operation after the store. 3817 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3818 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3819 MVT::Other, Chain), 0); 3820 return Chain; 3821 } 3822 3823 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3824 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3825 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3826 SelectionDAG &DAG, 3827 unsigned Opcode) const { 3828 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3829 3830 // 32-bit operations need no code outside the main loop. 3831 EVT NarrowVT = Node->getMemoryVT(); 3832 EVT WideVT = MVT::i32; 3833 if (NarrowVT == WideVT) 3834 return Op; 3835 3836 int64_t BitSize = NarrowVT.getSizeInBits(); 3837 SDValue ChainIn = Node->getChain(); 3838 SDValue Addr = Node->getBasePtr(); 3839 SDValue Src2 = Node->getVal(); 3840 MachineMemOperand *MMO = Node->getMemOperand(); 3841 SDLoc DL(Node); 3842 EVT PtrVT = Addr.getValueType(); 3843 3844 // Convert atomic subtracts of constants into additions. 3845 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3846 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3847 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3848 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3849 } 3850 3851 // Get the address of the containing word. 3852 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3853 DAG.getConstant(-4, DL, PtrVT)); 3854 3855 // Get the number of bits that the word must be rotated left in order 3856 // to bring the field to the top bits of a GR32. 3857 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3858 DAG.getConstant(3, DL, PtrVT)); 3859 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3860 3861 // Get the complementing shift amount, for rotating a field in the top 3862 // bits back to its proper position. 3863 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3864 DAG.getConstant(0, DL, WideVT), BitShift); 3865 3866 // Extend the source operand to 32 bits and prepare it for the inner loop. 3867 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3868 // operations require the source to be shifted in advance. (This shift 3869 // can be folded if the source is constant.) For AND and NAND, the lower 3870 // bits must be set, while for other opcodes they should be left clear. 3871 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3872 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3873 DAG.getConstant(32 - BitSize, DL, WideVT)); 3874 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3875 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3876 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3877 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3878 3879 // Construct the ATOMIC_LOADW_* node. 3880 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3881 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3882 DAG.getConstant(BitSize, DL, WideVT) }; 3883 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3884 NarrowVT, MMO); 3885 3886 // Rotate the result of the final CS so that the field is in the lower 3887 // bits of a GR32, then truncate it. 3888 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3889 DAG.getConstant(BitSize, DL, WideVT)); 3890 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3891 3892 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3893 return DAG.getMergeValues(RetOps, DL); 3894 } 3895 3896 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3897 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3898 // operations into additions. 3899 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3900 SelectionDAG &DAG) const { 3901 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3902 EVT MemVT = Node->getMemoryVT(); 3903 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3904 // A full-width operation. 3905 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3906 SDValue Src2 = Node->getVal(); 3907 SDValue NegSrc2; 3908 SDLoc DL(Src2); 3909 3910 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3911 // Use an addition if the operand is constant and either LAA(G) is 3912 // available or the negative value is in the range of A(G)FHI. 3913 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3914 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3915 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3916 } else if (Subtarget.hasInterlockedAccess1()) 3917 // Use LAA(G) if available. 3918 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3919 Src2); 3920 3921 if (NegSrc2.getNode()) 3922 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3923 Node->getChain(), Node->getBasePtr(), NegSrc2, 3924 Node->getMemOperand()); 3925 3926 // Use the node as-is. 3927 return Op; 3928 } 3929 3930 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3931 } 3932 3933 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3934 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3935 SelectionDAG &DAG) const { 3936 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3937 SDValue ChainIn = Node->getOperand(0); 3938 SDValue Addr = Node->getOperand(1); 3939 SDValue CmpVal = Node->getOperand(2); 3940 SDValue SwapVal = Node->getOperand(3); 3941 MachineMemOperand *MMO = Node->getMemOperand(); 3942 SDLoc DL(Node); 3943 3944 // We have native support for 32-bit and 64-bit compare and swap, but we 3945 // still need to expand extracting the "success" result from the CC. 3946 EVT NarrowVT = Node->getMemoryVT(); 3947 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3948 if (NarrowVT == WideVT) { 3949 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3950 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3951 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3952 DL, Tys, Ops, NarrowVT, MMO); 3953 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3954 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3955 3956 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3957 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3958 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3959 return SDValue(); 3960 } 3961 3962 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3963 // via a fullword ATOMIC_CMP_SWAPW operation. 3964 int64_t BitSize = NarrowVT.getSizeInBits(); 3965 EVT PtrVT = Addr.getValueType(); 3966 3967 // Get the address of the containing word. 3968 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3969 DAG.getConstant(-4, DL, PtrVT)); 3970 3971 // Get the number of bits that the word must be rotated left in order 3972 // to bring the field to the top bits of a GR32. 3973 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3974 DAG.getConstant(3, DL, PtrVT)); 3975 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3976 3977 // Get the complementing shift amount, for rotating a field in the top 3978 // bits back to its proper position. 3979 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3980 DAG.getConstant(0, DL, WideVT), BitShift); 3981 3982 // Construct the ATOMIC_CMP_SWAPW node. 3983 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3984 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3985 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3986 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3987 VTList, Ops, NarrowVT, MMO); 3988 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3989 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3990 3991 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3992 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3993 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3994 return SDValue(); 3995 } 3996 3997 MachineMemOperand::Flags 3998 SystemZTargetLowering::getMMOFlags(const Instruction &I) const { 3999 // Because of how we convert atomic_load and atomic_store to normal loads and 4000 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4001 // since DAGCombine hasn't been updated to account for atomic, but non 4002 // volatile loads. (See D57601) 4003 if (auto *SI = dyn_cast<StoreInst>(&I)) 4004 if (SI->isAtomic()) 4005 return MachineMemOperand::MOVolatile; 4006 if (auto *LI = dyn_cast<LoadInst>(&I)) 4007 if (LI->isAtomic()) 4008 return MachineMemOperand::MOVolatile; 4009 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4010 if (AI->isAtomic()) 4011 return MachineMemOperand::MOVolatile; 4012 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4013 if (AI->isAtomic()) 4014 return MachineMemOperand::MOVolatile; 4015 return MachineMemOperand::MONone; 4016 } 4017 4018 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4019 SelectionDAG &DAG) const { 4020 MachineFunction &MF = DAG.getMachineFunction(); 4021 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4022 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4023 report_fatal_error("Variable-sized stack allocations are not supported " 4024 "in GHC calling convention"); 4025 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4026 SystemZ::R15D, Op.getValueType()); 4027 } 4028 4029 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4030 SelectionDAG &DAG) const { 4031 MachineFunction &MF = DAG.getMachineFunction(); 4032 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4033 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4034 4035 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4036 report_fatal_error("Variable-sized stack allocations are not supported " 4037 "in GHC calling convention"); 4038 4039 SDValue Chain = Op.getOperand(0); 4040 SDValue NewSP = Op.getOperand(1); 4041 SDValue Backchain; 4042 SDLoc DL(Op); 4043 4044 if (StoreBackchain) { 4045 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4046 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4047 } 4048 4049 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4050 4051 if (StoreBackchain) 4052 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4053 4054 return Chain; 4055 } 4056 4057 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4058 SelectionDAG &DAG) const { 4059 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4060 if (!IsData) 4061 // Just preserve the chain. 4062 return Op.getOperand(0); 4063 4064 SDLoc DL(Op); 4065 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4066 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4067 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4068 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4069 Op.getOperand(1)}; 4070 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4071 Node->getVTList(), Ops, 4072 Node->getMemoryVT(), Node->getMemOperand()); 4073 } 4074 4075 // Convert condition code in CCReg to an i32 value. 4076 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4077 SDLoc DL(CCReg); 4078 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4079 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4080 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4081 } 4082 4083 SDValue 4084 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4085 SelectionDAG &DAG) const { 4086 unsigned Opcode, CCValid; 4087 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4088 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4089 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4090 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4091 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4092 return SDValue(); 4093 } 4094 4095 return SDValue(); 4096 } 4097 4098 SDValue 4099 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4100 SelectionDAG &DAG) const { 4101 unsigned Opcode, CCValid; 4102 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4103 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4104 if (Op->getNumValues() == 1) 4105 return getCCResult(DAG, SDValue(Node, 0)); 4106 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4107 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4108 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4109 } 4110 4111 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4112 switch (Id) { 4113 case Intrinsic::thread_pointer: 4114 return lowerThreadPointer(SDLoc(Op), DAG); 4115 4116 case Intrinsic::s390_vpdi: 4117 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4118 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4119 4120 case Intrinsic::s390_vperm: 4121 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4122 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4123 4124 case Intrinsic::s390_vuphb: 4125 case Intrinsic::s390_vuphh: 4126 case Intrinsic::s390_vuphf: 4127 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4128 Op.getOperand(1)); 4129 4130 case Intrinsic::s390_vuplhb: 4131 case Intrinsic::s390_vuplhh: 4132 case Intrinsic::s390_vuplhf: 4133 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4134 Op.getOperand(1)); 4135 4136 case Intrinsic::s390_vuplb: 4137 case Intrinsic::s390_vuplhw: 4138 case Intrinsic::s390_vuplf: 4139 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4140 Op.getOperand(1)); 4141 4142 case Intrinsic::s390_vupllb: 4143 case Intrinsic::s390_vupllh: 4144 case Intrinsic::s390_vupllf: 4145 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4146 Op.getOperand(1)); 4147 4148 case Intrinsic::s390_vsumb: 4149 case Intrinsic::s390_vsumh: 4150 case Intrinsic::s390_vsumgh: 4151 case Intrinsic::s390_vsumgf: 4152 case Intrinsic::s390_vsumqf: 4153 case Intrinsic::s390_vsumqg: 4154 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4155 Op.getOperand(1), Op.getOperand(2)); 4156 } 4157 4158 return SDValue(); 4159 } 4160 4161 namespace { 4162 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4163 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4164 // Operand is the constant third operand, otherwise it is the number of 4165 // bytes in each element of the result. 4166 struct Permute { 4167 unsigned Opcode; 4168 unsigned Operand; 4169 unsigned char Bytes[SystemZ::VectorBytes]; 4170 }; 4171 } 4172 4173 static const Permute PermuteForms[] = { 4174 // VMRHG 4175 { SystemZISD::MERGE_HIGH, 8, 4176 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4177 // VMRHF 4178 { SystemZISD::MERGE_HIGH, 4, 4179 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4180 // VMRHH 4181 { SystemZISD::MERGE_HIGH, 2, 4182 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4183 // VMRHB 4184 { SystemZISD::MERGE_HIGH, 1, 4185 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4186 // VMRLG 4187 { SystemZISD::MERGE_LOW, 8, 4188 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4189 // VMRLF 4190 { SystemZISD::MERGE_LOW, 4, 4191 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4192 // VMRLH 4193 { SystemZISD::MERGE_LOW, 2, 4194 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4195 // VMRLB 4196 { SystemZISD::MERGE_LOW, 1, 4197 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4198 // VPKG 4199 { SystemZISD::PACK, 4, 4200 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4201 // VPKF 4202 { SystemZISD::PACK, 2, 4203 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4204 // VPKH 4205 { SystemZISD::PACK, 1, 4206 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4207 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4208 { SystemZISD::PERMUTE_DWORDS, 4, 4209 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4210 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4211 { SystemZISD::PERMUTE_DWORDS, 1, 4212 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4213 }; 4214 4215 // Called after matching a vector shuffle against a particular pattern. 4216 // Both the original shuffle and the pattern have two vector operands. 4217 // OpNos[0] is the operand of the original shuffle that should be used for 4218 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4219 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4220 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4221 // for operands 0 and 1 of the pattern. 4222 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4223 if (OpNos[0] < 0) { 4224 if (OpNos[1] < 0) 4225 return false; 4226 OpNo0 = OpNo1 = OpNos[1]; 4227 } else if (OpNos[1] < 0) { 4228 OpNo0 = OpNo1 = OpNos[0]; 4229 } else { 4230 OpNo0 = OpNos[0]; 4231 OpNo1 = OpNos[1]; 4232 } 4233 return true; 4234 } 4235 4236 // Bytes is a VPERM-like permute vector, except that -1 is used for 4237 // undefined bytes. Return true if the VPERM can be implemented using P. 4238 // When returning true set OpNo0 to the VPERM operand that should be 4239 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4240 // 4241 // For example, if swapping the VPERM operands allows P to match, OpNo0 4242 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4243 // operand, but rewriting it to use two duplicated operands allows it to 4244 // match P, then OpNo0 and OpNo1 will be the same. 4245 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4246 unsigned &OpNo0, unsigned &OpNo1) { 4247 int OpNos[] = { -1, -1 }; 4248 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4249 int Elt = Bytes[I]; 4250 if (Elt >= 0) { 4251 // Make sure that the two permute vectors use the same suboperand 4252 // byte number. Only the operand numbers (the high bits) are 4253 // allowed to differ. 4254 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4255 return false; 4256 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4257 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4258 // Make sure that the operand mappings are consistent with previous 4259 // elements. 4260 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4261 return false; 4262 OpNos[ModelOpNo] = RealOpNo; 4263 } 4264 } 4265 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4266 } 4267 4268 // As above, but search for a matching permute. 4269 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4270 unsigned &OpNo0, unsigned &OpNo1) { 4271 for (auto &P : PermuteForms) 4272 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4273 return &P; 4274 return nullptr; 4275 } 4276 4277 // Bytes is a VPERM-like permute vector, except that -1 is used for 4278 // undefined bytes. This permute is an operand of an outer permute. 4279 // See whether redistributing the -1 bytes gives a shuffle that can be 4280 // implemented using P. If so, set Transform to a VPERM-like permute vector 4281 // that, when applied to the result of P, gives the original permute in Bytes. 4282 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4283 const Permute &P, 4284 SmallVectorImpl<int> &Transform) { 4285 unsigned To = 0; 4286 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4287 int Elt = Bytes[From]; 4288 if (Elt < 0) 4289 // Byte number From of the result is undefined. 4290 Transform[From] = -1; 4291 else { 4292 while (P.Bytes[To] != Elt) { 4293 To += 1; 4294 if (To == SystemZ::VectorBytes) 4295 return false; 4296 } 4297 Transform[From] = To; 4298 } 4299 } 4300 return true; 4301 } 4302 4303 // As above, but search for a matching permute. 4304 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4305 SmallVectorImpl<int> &Transform) { 4306 for (auto &P : PermuteForms) 4307 if (matchDoublePermute(Bytes, P, Transform)) 4308 return &P; 4309 return nullptr; 4310 } 4311 4312 // Convert the mask of the given shuffle op into a byte-level mask, 4313 // as if it had type vNi8. 4314 static bool getVPermMask(SDValue ShuffleOp, 4315 SmallVectorImpl<int> &Bytes) { 4316 EVT VT = ShuffleOp.getValueType(); 4317 unsigned NumElements = VT.getVectorNumElements(); 4318 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4319 4320 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4321 Bytes.resize(NumElements * BytesPerElement, -1); 4322 for (unsigned I = 0; I < NumElements; ++I) { 4323 int Index = VSN->getMaskElt(I); 4324 if (Index >= 0) 4325 for (unsigned J = 0; J < BytesPerElement; ++J) 4326 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4327 } 4328 return true; 4329 } 4330 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4331 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4332 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4333 Bytes.resize(NumElements * BytesPerElement, -1); 4334 for (unsigned I = 0; I < NumElements; ++I) 4335 for (unsigned J = 0; J < BytesPerElement; ++J) 4336 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4337 return true; 4338 } 4339 return false; 4340 } 4341 4342 // Bytes is a VPERM-like permute vector, except that -1 is used for 4343 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4344 // the result come from a contiguous sequence of bytes from one input. 4345 // Set Base to the selector for the first byte if so. 4346 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4347 unsigned BytesPerElement, int &Base) { 4348 Base = -1; 4349 for (unsigned I = 0; I < BytesPerElement; ++I) { 4350 if (Bytes[Start + I] >= 0) { 4351 unsigned Elem = Bytes[Start + I]; 4352 if (Base < 0) { 4353 Base = Elem - I; 4354 // Make sure the bytes would come from one input operand. 4355 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4356 return false; 4357 } else if (unsigned(Base) != Elem - I) 4358 return false; 4359 } 4360 } 4361 return true; 4362 } 4363 4364 // Bytes is a VPERM-like permute vector, except that -1 is used for 4365 // undefined bytes. Return true if it can be performed using VSLDI. 4366 // When returning true, set StartIndex to the shift amount and OpNo0 4367 // and OpNo1 to the VPERM operands that should be used as the first 4368 // and second shift operand respectively. 4369 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4370 unsigned &StartIndex, unsigned &OpNo0, 4371 unsigned &OpNo1) { 4372 int OpNos[] = { -1, -1 }; 4373 int Shift = -1; 4374 for (unsigned I = 0; I < 16; ++I) { 4375 int Index = Bytes[I]; 4376 if (Index >= 0) { 4377 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4378 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4379 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4380 if (Shift < 0) 4381 Shift = ExpectedShift; 4382 else if (Shift != ExpectedShift) 4383 return false; 4384 // Make sure that the operand mappings are consistent with previous 4385 // elements. 4386 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4387 return false; 4388 OpNos[ModelOpNo] = RealOpNo; 4389 } 4390 } 4391 StartIndex = Shift; 4392 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4393 } 4394 4395 // Create a node that performs P on operands Op0 and Op1, casting the 4396 // operands to the appropriate type. The type of the result is determined by P. 4397 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4398 const Permute &P, SDValue Op0, SDValue Op1) { 4399 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4400 // elements of a PACK are twice as wide as the outputs. 4401 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4402 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4403 P.Operand); 4404 // Cast both operands to the appropriate type. 4405 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4406 SystemZ::VectorBytes / InBytes); 4407 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4408 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4409 SDValue Op; 4410 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4411 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4412 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4413 } else if (P.Opcode == SystemZISD::PACK) { 4414 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4415 SystemZ::VectorBytes / P.Operand); 4416 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4417 } else { 4418 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4419 } 4420 return Op; 4421 } 4422 4423 // Bytes is a VPERM-like permute vector, except that -1 is used for 4424 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4425 // VSLDI or VPERM. 4426 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4427 SDValue *Ops, 4428 const SmallVectorImpl<int> &Bytes) { 4429 for (unsigned I = 0; I < 2; ++I) 4430 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4431 4432 // First see whether VSLDI can be used. 4433 unsigned StartIndex, OpNo0, OpNo1; 4434 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4435 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4436 Ops[OpNo1], 4437 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4438 4439 // Fall back on VPERM. Construct an SDNode for the permute vector. 4440 SDValue IndexNodes[SystemZ::VectorBytes]; 4441 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4442 if (Bytes[I] >= 0) 4443 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4444 else 4445 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4446 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4447 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4448 } 4449 4450 namespace { 4451 // Describes a general N-operand vector shuffle. 4452 struct GeneralShuffle { 4453 GeneralShuffle(EVT vt) : VT(vt) {} 4454 void addUndef(); 4455 bool add(SDValue, unsigned); 4456 SDValue getNode(SelectionDAG &, const SDLoc &); 4457 4458 // The operands of the shuffle. 4459 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4460 4461 // Index I is -1 if byte I of the result is undefined. Otherwise the 4462 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4463 // Bytes[I] / SystemZ::VectorBytes. 4464 SmallVector<int, SystemZ::VectorBytes> Bytes; 4465 4466 // The type of the shuffle result. 4467 EVT VT; 4468 }; 4469 } 4470 4471 // Add an extra undefined element to the shuffle. 4472 void GeneralShuffle::addUndef() { 4473 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4474 for (unsigned I = 0; I < BytesPerElement; ++I) 4475 Bytes.push_back(-1); 4476 } 4477 4478 // Add an extra element to the shuffle, taking it from element Elem of Op. 4479 // A null Op indicates a vector input whose value will be calculated later; 4480 // there is at most one such input per shuffle and it always has the same 4481 // type as the result. Aborts and returns false if the source vector elements 4482 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4483 // LLVM they become implicitly extended, but this is rare and not optimized. 4484 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4485 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4486 4487 // The source vector can have wider elements than the result, 4488 // either through an explicit TRUNCATE or because of type legalization. 4489 // We want the least significant part. 4490 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4491 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4492 4493 // Return false if the source elements are smaller than their destination 4494 // elements. 4495 if (FromBytesPerElement < BytesPerElement) 4496 return false; 4497 4498 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4499 (FromBytesPerElement - BytesPerElement)); 4500 4501 // Look through things like shuffles and bitcasts. 4502 while (Op.getNode()) { 4503 if (Op.getOpcode() == ISD::BITCAST) 4504 Op = Op.getOperand(0); 4505 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4506 // See whether the bytes we need come from a contiguous part of one 4507 // operand. 4508 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4509 if (!getVPermMask(Op, OpBytes)) 4510 break; 4511 int NewByte; 4512 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4513 break; 4514 if (NewByte < 0) { 4515 addUndef(); 4516 return true; 4517 } 4518 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4519 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4520 } else if (Op.isUndef()) { 4521 addUndef(); 4522 return true; 4523 } else 4524 break; 4525 } 4526 4527 // Make sure that the source of the extraction is in Ops. 4528 unsigned OpNo = 0; 4529 for (; OpNo < Ops.size(); ++OpNo) 4530 if (Ops[OpNo] == Op) 4531 break; 4532 if (OpNo == Ops.size()) 4533 Ops.push_back(Op); 4534 4535 // Add the element to Bytes. 4536 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4537 for (unsigned I = 0; I < BytesPerElement; ++I) 4538 Bytes.push_back(Base + I); 4539 4540 return true; 4541 } 4542 4543 // Return SDNodes for the completed shuffle. 4544 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4545 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4546 4547 if (Ops.size() == 0) 4548 return DAG.getUNDEF(VT); 4549 4550 // Make sure that there are at least two shuffle operands. 4551 if (Ops.size() == 1) 4552 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4553 4554 // Create a tree of shuffles, deferring root node until after the loop. 4555 // Try to redistribute the undefined elements of non-root nodes so that 4556 // the non-root shuffles match something like a pack or merge, then adjust 4557 // the parent node's permute vector to compensate for the new order. 4558 // Among other things, this copes with vectors like <2 x i16> that were 4559 // padded with undefined elements during type legalization. 4560 // 4561 // In the best case this redistribution will lead to the whole tree 4562 // using packs and merges. It should rarely be a loss in other cases. 4563 unsigned Stride = 1; 4564 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4565 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4566 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4567 4568 // Create a mask for just these two operands. 4569 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4570 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4571 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4572 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4573 if (OpNo == I) 4574 NewBytes[J] = Byte; 4575 else if (OpNo == I + Stride) 4576 NewBytes[J] = SystemZ::VectorBytes + Byte; 4577 else 4578 NewBytes[J] = -1; 4579 } 4580 // See if it would be better to reorganize NewMask to avoid using VPERM. 4581 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4582 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4583 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4584 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4585 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4586 if (NewBytes[J] >= 0) { 4587 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4588 "Invalid double permute"); 4589 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4590 } else 4591 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4592 } 4593 } else { 4594 // Just use NewBytes on the operands. 4595 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4596 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4597 if (NewBytes[J] >= 0) 4598 Bytes[J] = I * SystemZ::VectorBytes + J; 4599 } 4600 } 4601 } 4602 4603 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4604 if (Stride > 1) { 4605 Ops[1] = Ops[Stride]; 4606 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4607 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4608 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4609 } 4610 4611 // Look for an instruction that can do the permute without resorting 4612 // to VPERM. 4613 unsigned OpNo0, OpNo1; 4614 SDValue Op; 4615 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4616 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4617 else 4618 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4619 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4620 } 4621 4622 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4623 static bool isScalarToVector(SDValue Op) { 4624 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4625 if (!Op.getOperand(I).isUndef()) 4626 return false; 4627 return true; 4628 } 4629 4630 // Return a vector of type VT that contains Value in the first element. 4631 // The other elements don't matter. 4632 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4633 SDValue Value) { 4634 // If we have a constant, replicate it to all elements and let the 4635 // BUILD_VECTOR lowering take care of it. 4636 if (Value.getOpcode() == ISD::Constant || 4637 Value.getOpcode() == ISD::ConstantFP) { 4638 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4639 return DAG.getBuildVector(VT, DL, Ops); 4640 } 4641 if (Value.isUndef()) 4642 return DAG.getUNDEF(VT); 4643 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4644 } 4645 4646 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4647 // element 1. Used for cases in which replication is cheap. 4648 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4649 SDValue Op0, SDValue Op1) { 4650 if (Op0.isUndef()) { 4651 if (Op1.isUndef()) 4652 return DAG.getUNDEF(VT); 4653 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4654 } 4655 if (Op1.isUndef()) 4656 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4657 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4658 buildScalarToVector(DAG, DL, VT, Op0), 4659 buildScalarToVector(DAG, DL, VT, Op1)); 4660 } 4661 4662 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4663 // vector for them. 4664 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4665 SDValue Op1) { 4666 if (Op0.isUndef() && Op1.isUndef()) 4667 return DAG.getUNDEF(MVT::v2i64); 4668 // If one of the two inputs is undefined then replicate the other one, 4669 // in order to avoid using another register unnecessarily. 4670 if (Op0.isUndef()) 4671 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4672 else if (Op1.isUndef()) 4673 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4674 else { 4675 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4676 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4677 } 4678 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4679 } 4680 4681 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4682 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4683 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4684 // would benefit from this representation and return it if so. 4685 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4686 BuildVectorSDNode *BVN) { 4687 EVT VT = BVN->getValueType(0); 4688 unsigned NumElements = VT.getVectorNumElements(); 4689 4690 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4691 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4692 // need a BUILD_VECTOR, add an additional placeholder operand for that 4693 // BUILD_VECTOR and store its operands in ResidueOps. 4694 GeneralShuffle GS(VT); 4695 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4696 bool FoundOne = false; 4697 for (unsigned I = 0; I < NumElements; ++I) { 4698 SDValue Op = BVN->getOperand(I); 4699 if (Op.getOpcode() == ISD::TRUNCATE) 4700 Op = Op.getOperand(0); 4701 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4702 Op.getOperand(1).getOpcode() == ISD::Constant) { 4703 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4704 if (!GS.add(Op.getOperand(0), Elem)) 4705 return SDValue(); 4706 FoundOne = true; 4707 } else if (Op.isUndef()) { 4708 GS.addUndef(); 4709 } else { 4710 if (!GS.add(SDValue(), ResidueOps.size())) 4711 return SDValue(); 4712 ResidueOps.push_back(BVN->getOperand(I)); 4713 } 4714 } 4715 4716 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4717 if (!FoundOne) 4718 return SDValue(); 4719 4720 // Create the BUILD_VECTOR for the remaining elements, if any. 4721 if (!ResidueOps.empty()) { 4722 while (ResidueOps.size() < NumElements) 4723 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4724 for (auto &Op : GS.Ops) { 4725 if (!Op.getNode()) { 4726 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4727 break; 4728 } 4729 } 4730 } 4731 return GS.getNode(DAG, SDLoc(BVN)); 4732 } 4733 4734 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4735 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4736 return true; 4737 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4738 return true; 4739 return false; 4740 } 4741 4742 // Combine GPR scalar values Elems into a vector of type VT. 4743 SDValue 4744 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4745 SmallVectorImpl<SDValue> &Elems) const { 4746 // See whether there is a single replicated value. 4747 SDValue Single; 4748 unsigned int NumElements = Elems.size(); 4749 unsigned int Count = 0; 4750 for (auto Elem : Elems) { 4751 if (!Elem.isUndef()) { 4752 if (!Single.getNode()) 4753 Single = Elem; 4754 else if (Elem != Single) { 4755 Single = SDValue(); 4756 break; 4757 } 4758 Count += 1; 4759 } 4760 } 4761 // There are three cases here: 4762 // 4763 // - if the only defined element is a loaded one, the best sequence 4764 // is a replicating load. 4765 // 4766 // - otherwise, if the only defined element is an i64 value, we will 4767 // end up with the same VLVGP sequence regardless of whether we short-cut 4768 // for replication or fall through to the later code. 4769 // 4770 // - otherwise, if the only defined element is an i32 or smaller value, 4771 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4772 // This is only a win if the single defined element is used more than once. 4773 // In other cases we're better off using a single VLVGx. 4774 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4775 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4776 4777 // If all elements are loads, use VLREP/VLEs (below). 4778 bool AllLoads = true; 4779 for (auto Elem : Elems) 4780 if (!isVectorElementLoad(Elem)) { 4781 AllLoads = false; 4782 break; 4783 } 4784 4785 // The best way of building a v2i64 from two i64s is to use VLVGP. 4786 if (VT == MVT::v2i64 && !AllLoads) 4787 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4788 4789 // Use a 64-bit merge high to combine two doubles. 4790 if (VT == MVT::v2f64 && !AllLoads) 4791 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4792 4793 // Build v4f32 values directly from the FPRs: 4794 // 4795 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4796 // V V VMRHF 4797 // <ABxx> <CDxx> 4798 // V VMRHG 4799 // <ABCD> 4800 if (VT == MVT::v4f32 && !AllLoads) { 4801 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4802 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4803 // Avoid unnecessary undefs by reusing the other operand. 4804 if (Op01.isUndef()) 4805 Op01 = Op23; 4806 else if (Op23.isUndef()) 4807 Op23 = Op01; 4808 // Merging identical replications is a no-op. 4809 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4810 return Op01; 4811 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4812 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4813 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4814 DL, MVT::v2i64, Op01, Op23); 4815 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4816 } 4817 4818 // Collect the constant terms. 4819 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4820 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4821 4822 unsigned NumConstants = 0; 4823 for (unsigned I = 0; I < NumElements; ++I) { 4824 SDValue Elem = Elems[I]; 4825 if (Elem.getOpcode() == ISD::Constant || 4826 Elem.getOpcode() == ISD::ConstantFP) { 4827 NumConstants += 1; 4828 Constants[I] = Elem; 4829 Done[I] = true; 4830 } 4831 } 4832 // If there was at least one constant, fill in the other elements of 4833 // Constants with undefs to get a full vector constant and use that 4834 // as the starting point. 4835 SDValue Result; 4836 SDValue ReplicatedVal; 4837 if (NumConstants > 0) { 4838 for (unsigned I = 0; I < NumElements; ++I) 4839 if (!Constants[I].getNode()) 4840 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4841 Result = DAG.getBuildVector(VT, DL, Constants); 4842 } else { 4843 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4844 // avoid a false dependency on any previous contents of the vector 4845 // register. 4846 4847 // Use a VLREP if at least one element is a load. Make sure to replicate 4848 // the load with the most elements having its value. 4849 std::map<const SDNode*, unsigned> UseCounts; 4850 SDNode *LoadMaxUses = nullptr; 4851 for (unsigned I = 0; I < NumElements; ++I) 4852 if (isVectorElementLoad(Elems[I])) { 4853 SDNode *Ld = Elems[I].getNode(); 4854 UseCounts[Ld]++; 4855 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4856 LoadMaxUses = Ld; 4857 } 4858 if (LoadMaxUses != nullptr) { 4859 ReplicatedVal = SDValue(LoadMaxUses, 0); 4860 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4861 } else { 4862 // Try to use VLVGP. 4863 unsigned I1 = NumElements / 2 - 1; 4864 unsigned I2 = NumElements - 1; 4865 bool Def1 = !Elems[I1].isUndef(); 4866 bool Def2 = !Elems[I2].isUndef(); 4867 if (Def1 || Def2) { 4868 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4869 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4870 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4871 joinDwords(DAG, DL, Elem1, Elem2)); 4872 Done[I1] = true; 4873 Done[I2] = true; 4874 } else 4875 Result = DAG.getUNDEF(VT); 4876 } 4877 } 4878 4879 // Use VLVGx to insert the other elements. 4880 for (unsigned I = 0; I < NumElements; ++I) 4881 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4882 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4883 DAG.getConstant(I, DL, MVT::i32)); 4884 return Result; 4885 } 4886 4887 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4888 SelectionDAG &DAG) const { 4889 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4890 SDLoc DL(Op); 4891 EVT VT = Op.getValueType(); 4892 4893 if (BVN->isConstant()) { 4894 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4895 return Op; 4896 4897 // Fall back to loading it from memory. 4898 return SDValue(); 4899 } 4900 4901 // See if we should use shuffles to construct the vector from other vectors. 4902 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4903 return Res; 4904 4905 // Detect SCALAR_TO_VECTOR conversions. 4906 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4907 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4908 4909 // Otherwise use buildVector to build the vector up from GPRs. 4910 unsigned NumElements = Op.getNumOperands(); 4911 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4912 for (unsigned I = 0; I < NumElements; ++I) 4913 Ops[I] = Op.getOperand(I); 4914 return buildVector(DAG, DL, VT, Ops); 4915 } 4916 4917 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4918 SelectionDAG &DAG) const { 4919 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4920 SDLoc DL(Op); 4921 EVT VT = Op.getValueType(); 4922 unsigned NumElements = VT.getVectorNumElements(); 4923 4924 if (VSN->isSplat()) { 4925 SDValue Op0 = Op.getOperand(0); 4926 unsigned Index = VSN->getSplatIndex(); 4927 assert(Index < VT.getVectorNumElements() && 4928 "Splat index should be defined and in first operand"); 4929 // See whether the value we're splatting is directly available as a scalar. 4930 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4931 Op0.getOpcode() == ISD::BUILD_VECTOR) 4932 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4933 // Otherwise keep it as a vector-to-vector operation. 4934 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4935 DAG.getTargetConstant(Index, DL, MVT::i32)); 4936 } 4937 4938 GeneralShuffle GS(VT); 4939 for (unsigned I = 0; I < NumElements; ++I) { 4940 int Elt = VSN->getMaskElt(I); 4941 if (Elt < 0) 4942 GS.addUndef(); 4943 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4944 unsigned(Elt) % NumElements)) 4945 return SDValue(); 4946 } 4947 return GS.getNode(DAG, SDLoc(VSN)); 4948 } 4949 4950 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4951 SelectionDAG &DAG) const { 4952 SDLoc DL(Op); 4953 // Just insert the scalar into element 0 of an undefined vector. 4954 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4955 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4956 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4957 } 4958 4959 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4960 SelectionDAG &DAG) const { 4961 // Handle insertions of floating-point values. 4962 SDLoc DL(Op); 4963 SDValue Op0 = Op.getOperand(0); 4964 SDValue Op1 = Op.getOperand(1); 4965 SDValue Op2 = Op.getOperand(2); 4966 EVT VT = Op.getValueType(); 4967 4968 // Insertions into constant indices of a v2f64 can be done using VPDI. 4969 // However, if the inserted value is a bitcast or a constant then it's 4970 // better to use GPRs, as below. 4971 if (VT == MVT::v2f64 && 4972 Op1.getOpcode() != ISD::BITCAST && 4973 Op1.getOpcode() != ISD::ConstantFP && 4974 Op2.getOpcode() == ISD::Constant) { 4975 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4976 unsigned Mask = VT.getVectorNumElements() - 1; 4977 if (Index <= Mask) 4978 return Op; 4979 } 4980 4981 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4982 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4983 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4984 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4985 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4986 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4987 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4988 } 4989 4990 SDValue 4991 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4992 SelectionDAG &DAG) const { 4993 // Handle extractions of floating-point values. 4994 SDLoc DL(Op); 4995 SDValue Op0 = Op.getOperand(0); 4996 SDValue Op1 = Op.getOperand(1); 4997 EVT VT = Op.getValueType(); 4998 EVT VecVT = Op0.getValueType(); 4999 5000 // Extractions of constant indices can be done directly. 5001 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5002 uint64_t Index = CIndexN->getZExtValue(); 5003 unsigned Mask = VecVT.getVectorNumElements() - 1; 5004 if (Index <= Mask) 5005 return Op; 5006 } 5007 5008 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5009 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5010 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5011 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5012 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5013 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5014 } 5015 5016 SDValue 5017 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 5018 unsigned UnpackHigh) const { 5019 SDValue PackedOp = Op.getOperand(0); 5020 EVT OutVT = Op.getValueType(); 5021 EVT InVT = PackedOp.getValueType(); 5022 unsigned ToBits = OutVT.getScalarSizeInBits(); 5023 unsigned FromBits = InVT.getScalarSizeInBits(); 5024 do { 5025 FromBits *= 2; 5026 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5027 SystemZ::VectorBits / FromBits); 5028 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 5029 } while (FromBits != ToBits); 5030 return PackedOp; 5031 } 5032 5033 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5034 unsigned ByScalar) const { 5035 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5036 SDValue Op0 = Op.getOperand(0); 5037 SDValue Op1 = Op.getOperand(1); 5038 SDLoc DL(Op); 5039 EVT VT = Op.getValueType(); 5040 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5041 5042 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5043 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5044 APInt SplatBits, SplatUndef; 5045 unsigned SplatBitSize; 5046 bool HasAnyUndefs; 5047 // Check for constant splats. Use ElemBitSize as the minimum element 5048 // width and reject splats that need wider elements. 5049 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5050 ElemBitSize, true) && 5051 SplatBitSize == ElemBitSize) { 5052 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5053 DL, MVT::i32); 5054 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5055 } 5056 // Check for variable splats. 5057 BitVector UndefElements; 5058 SDValue Splat = BVN->getSplatValue(&UndefElements); 5059 if (Splat) { 5060 // Since i32 is the smallest legal type, we either need a no-op 5061 // or a truncation. 5062 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5063 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5064 } 5065 } 5066 5067 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5068 // and the shift amount is directly available in a GPR. 5069 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5070 if (VSN->isSplat()) { 5071 SDValue VSNOp0 = VSN->getOperand(0); 5072 unsigned Index = VSN->getSplatIndex(); 5073 assert(Index < VT.getVectorNumElements() && 5074 "Splat index should be defined and in first operand"); 5075 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5076 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5077 // Since i32 is the smallest legal type, we either need a no-op 5078 // or a truncation. 5079 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5080 VSNOp0.getOperand(Index)); 5081 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5082 } 5083 } 5084 } 5085 5086 // Otherwise just treat the current form as legal. 5087 return Op; 5088 } 5089 5090 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5091 SelectionDAG &DAG) const { 5092 switch (Op.getOpcode()) { 5093 case ISD::FRAMEADDR: 5094 return lowerFRAMEADDR(Op, DAG); 5095 case ISD::RETURNADDR: 5096 return lowerRETURNADDR(Op, DAG); 5097 case ISD::BR_CC: 5098 return lowerBR_CC(Op, DAG); 5099 case ISD::SELECT_CC: 5100 return lowerSELECT_CC(Op, DAG); 5101 case ISD::SETCC: 5102 return lowerSETCC(Op, DAG); 5103 case ISD::STRICT_FSETCC: 5104 return lowerSTRICT_FSETCC(Op, DAG, false); 5105 case ISD::STRICT_FSETCCS: 5106 return lowerSTRICT_FSETCC(Op, DAG, true); 5107 case ISD::GlobalAddress: 5108 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5109 case ISD::GlobalTLSAddress: 5110 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5111 case ISD::BlockAddress: 5112 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5113 case ISD::JumpTable: 5114 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5115 case ISD::ConstantPool: 5116 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5117 case ISD::BITCAST: 5118 return lowerBITCAST(Op, DAG); 5119 case ISD::VASTART: 5120 return lowerVASTART(Op, DAG); 5121 case ISD::VACOPY: 5122 return lowerVACOPY(Op, DAG); 5123 case ISD::DYNAMIC_STACKALLOC: 5124 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5125 case ISD::GET_DYNAMIC_AREA_OFFSET: 5126 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5127 case ISD::SMUL_LOHI: 5128 return lowerSMUL_LOHI(Op, DAG); 5129 case ISD::UMUL_LOHI: 5130 return lowerUMUL_LOHI(Op, DAG); 5131 case ISD::SDIVREM: 5132 return lowerSDIVREM(Op, DAG); 5133 case ISD::UDIVREM: 5134 return lowerUDIVREM(Op, DAG); 5135 case ISD::SADDO: 5136 case ISD::SSUBO: 5137 case ISD::UADDO: 5138 case ISD::USUBO: 5139 return lowerXALUO(Op, DAG); 5140 case ISD::ADDCARRY: 5141 case ISD::SUBCARRY: 5142 return lowerADDSUBCARRY(Op, DAG); 5143 case ISD::OR: 5144 return lowerOR(Op, DAG); 5145 case ISD::CTPOP: 5146 return lowerCTPOP(Op, DAG); 5147 case ISD::ATOMIC_FENCE: 5148 return lowerATOMIC_FENCE(Op, DAG); 5149 case ISD::ATOMIC_SWAP: 5150 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5151 case ISD::ATOMIC_STORE: 5152 return lowerATOMIC_STORE(Op, DAG); 5153 case ISD::ATOMIC_LOAD: 5154 return lowerATOMIC_LOAD(Op, DAG); 5155 case ISD::ATOMIC_LOAD_ADD: 5156 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5157 case ISD::ATOMIC_LOAD_SUB: 5158 return lowerATOMIC_LOAD_SUB(Op, DAG); 5159 case ISD::ATOMIC_LOAD_AND: 5160 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5161 case ISD::ATOMIC_LOAD_OR: 5162 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5163 case ISD::ATOMIC_LOAD_XOR: 5164 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5165 case ISD::ATOMIC_LOAD_NAND: 5166 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5167 case ISD::ATOMIC_LOAD_MIN: 5168 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5169 case ISD::ATOMIC_LOAD_MAX: 5170 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5171 case ISD::ATOMIC_LOAD_UMIN: 5172 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5173 case ISD::ATOMIC_LOAD_UMAX: 5174 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5175 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5176 return lowerATOMIC_CMP_SWAP(Op, DAG); 5177 case ISD::STACKSAVE: 5178 return lowerSTACKSAVE(Op, DAG); 5179 case ISD::STACKRESTORE: 5180 return lowerSTACKRESTORE(Op, DAG); 5181 case ISD::PREFETCH: 5182 return lowerPREFETCH(Op, DAG); 5183 case ISD::INTRINSIC_W_CHAIN: 5184 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5185 case ISD::INTRINSIC_WO_CHAIN: 5186 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5187 case ISD::BUILD_VECTOR: 5188 return lowerBUILD_VECTOR(Op, DAG); 5189 case ISD::VECTOR_SHUFFLE: 5190 return lowerVECTOR_SHUFFLE(Op, DAG); 5191 case ISD::SCALAR_TO_VECTOR: 5192 return lowerSCALAR_TO_VECTOR(Op, DAG); 5193 case ISD::INSERT_VECTOR_ELT: 5194 return lowerINSERT_VECTOR_ELT(Op, DAG); 5195 case ISD::EXTRACT_VECTOR_ELT: 5196 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5197 case ISD::SIGN_EXTEND_VECTOR_INREG: 5198 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5199 case ISD::ZERO_EXTEND_VECTOR_INREG: 5200 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5201 case ISD::SHL: 5202 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5203 case ISD::SRL: 5204 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5205 case ISD::SRA: 5206 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5207 default: 5208 llvm_unreachable("Unexpected node to lower"); 5209 } 5210 } 5211 5212 // Lower operations with invalid operand or result types (currently used 5213 // only for 128-bit integer types). 5214 5215 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5216 SDLoc DL(In); 5217 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5218 DAG.getIntPtrConstant(0, DL)); 5219 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5220 DAG.getIntPtrConstant(1, DL)); 5221 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5222 MVT::Untyped, Hi, Lo); 5223 return SDValue(Pair, 0); 5224 } 5225 5226 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5227 SDLoc DL(In); 5228 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5229 DL, MVT::i64, In); 5230 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5231 DL, MVT::i64, In); 5232 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5233 } 5234 5235 void 5236 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5237 SmallVectorImpl<SDValue> &Results, 5238 SelectionDAG &DAG) const { 5239 switch (N->getOpcode()) { 5240 case ISD::ATOMIC_LOAD: { 5241 SDLoc DL(N); 5242 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5243 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5244 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5245 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5246 DL, Tys, Ops, MVT::i128, MMO); 5247 Results.push_back(lowerGR128ToI128(DAG, Res)); 5248 Results.push_back(Res.getValue(1)); 5249 break; 5250 } 5251 case ISD::ATOMIC_STORE: { 5252 SDLoc DL(N); 5253 SDVTList Tys = DAG.getVTList(MVT::Other); 5254 SDValue Ops[] = { N->getOperand(0), 5255 lowerI128ToGR128(DAG, N->getOperand(2)), 5256 N->getOperand(1) }; 5257 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5258 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5259 DL, Tys, Ops, MVT::i128, MMO); 5260 // We have to enforce sequential consistency by performing a 5261 // serialization operation after the store. 5262 if (cast<AtomicSDNode>(N)->getOrdering() == 5263 AtomicOrdering::SequentiallyConsistent) 5264 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5265 MVT::Other, Res), 0); 5266 Results.push_back(Res); 5267 break; 5268 } 5269 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5270 SDLoc DL(N); 5271 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5272 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5273 lowerI128ToGR128(DAG, N->getOperand(2)), 5274 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5275 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5276 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5277 DL, Tys, Ops, MVT::i128, MMO); 5278 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5279 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5280 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5281 Results.push_back(lowerGR128ToI128(DAG, Res)); 5282 Results.push_back(Success); 5283 Results.push_back(Res.getValue(2)); 5284 break; 5285 } 5286 default: 5287 llvm_unreachable("Unexpected node to lower"); 5288 } 5289 } 5290 5291 void 5292 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5293 SmallVectorImpl<SDValue> &Results, 5294 SelectionDAG &DAG) const { 5295 return LowerOperationWrapper(N, Results, DAG); 5296 } 5297 5298 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5299 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5300 switch ((SystemZISD::NodeType)Opcode) { 5301 case SystemZISD::FIRST_NUMBER: break; 5302 OPCODE(RET_FLAG); 5303 OPCODE(CALL); 5304 OPCODE(SIBCALL); 5305 OPCODE(TLS_GDCALL); 5306 OPCODE(TLS_LDCALL); 5307 OPCODE(PCREL_WRAPPER); 5308 OPCODE(PCREL_OFFSET); 5309 OPCODE(IABS); 5310 OPCODE(ICMP); 5311 OPCODE(FCMP); 5312 OPCODE(STRICT_FCMP); 5313 OPCODE(STRICT_FCMPS); 5314 OPCODE(TM); 5315 OPCODE(BR_CCMASK); 5316 OPCODE(SELECT_CCMASK); 5317 OPCODE(ADJDYNALLOC); 5318 OPCODE(POPCNT); 5319 OPCODE(SMUL_LOHI); 5320 OPCODE(UMUL_LOHI); 5321 OPCODE(SDIVREM); 5322 OPCODE(UDIVREM); 5323 OPCODE(SADDO); 5324 OPCODE(SSUBO); 5325 OPCODE(UADDO); 5326 OPCODE(USUBO); 5327 OPCODE(ADDCARRY); 5328 OPCODE(SUBCARRY); 5329 OPCODE(GET_CCMASK); 5330 OPCODE(MVC); 5331 OPCODE(MVC_LOOP); 5332 OPCODE(NC); 5333 OPCODE(NC_LOOP); 5334 OPCODE(OC); 5335 OPCODE(OC_LOOP); 5336 OPCODE(XC); 5337 OPCODE(XC_LOOP); 5338 OPCODE(CLC); 5339 OPCODE(CLC_LOOP); 5340 OPCODE(STPCPY); 5341 OPCODE(STRCMP); 5342 OPCODE(SEARCH_STRING); 5343 OPCODE(IPM); 5344 OPCODE(MEMBARRIER); 5345 OPCODE(TBEGIN); 5346 OPCODE(TBEGIN_NOFLOAT); 5347 OPCODE(TEND); 5348 OPCODE(BYTE_MASK); 5349 OPCODE(ROTATE_MASK); 5350 OPCODE(REPLICATE); 5351 OPCODE(JOIN_DWORDS); 5352 OPCODE(SPLAT); 5353 OPCODE(MERGE_HIGH); 5354 OPCODE(MERGE_LOW); 5355 OPCODE(SHL_DOUBLE); 5356 OPCODE(PERMUTE_DWORDS); 5357 OPCODE(PERMUTE); 5358 OPCODE(PACK); 5359 OPCODE(PACKS_CC); 5360 OPCODE(PACKLS_CC); 5361 OPCODE(UNPACK_HIGH); 5362 OPCODE(UNPACKL_HIGH); 5363 OPCODE(UNPACK_LOW); 5364 OPCODE(UNPACKL_LOW); 5365 OPCODE(VSHL_BY_SCALAR); 5366 OPCODE(VSRL_BY_SCALAR); 5367 OPCODE(VSRA_BY_SCALAR); 5368 OPCODE(VSUM); 5369 OPCODE(VICMPE); 5370 OPCODE(VICMPH); 5371 OPCODE(VICMPHL); 5372 OPCODE(VICMPES); 5373 OPCODE(VICMPHS); 5374 OPCODE(VICMPHLS); 5375 OPCODE(VFCMPE); 5376 OPCODE(STRICT_VFCMPE); 5377 OPCODE(STRICT_VFCMPES); 5378 OPCODE(VFCMPH); 5379 OPCODE(STRICT_VFCMPH); 5380 OPCODE(STRICT_VFCMPHS); 5381 OPCODE(VFCMPHE); 5382 OPCODE(STRICT_VFCMPHE); 5383 OPCODE(STRICT_VFCMPHES); 5384 OPCODE(VFCMPES); 5385 OPCODE(VFCMPHS); 5386 OPCODE(VFCMPHES); 5387 OPCODE(VFTCI); 5388 OPCODE(VEXTEND); 5389 OPCODE(STRICT_VEXTEND); 5390 OPCODE(VROUND); 5391 OPCODE(STRICT_VROUND); 5392 OPCODE(VTM); 5393 OPCODE(VFAE_CC); 5394 OPCODE(VFAEZ_CC); 5395 OPCODE(VFEE_CC); 5396 OPCODE(VFEEZ_CC); 5397 OPCODE(VFENE_CC); 5398 OPCODE(VFENEZ_CC); 5399 OPCODE(VISTR_CC); 5400 OPCODE(VSTRC_CC); 5401 OPCODE(VSTRCZ_CC); 5402 OPCODE(VSTRS_CC); 5403 OPCODE(VSTRSZ_CC); 5404 OPCODE(TDC); 5405 OPCODE(ATOMIC_SWAPW); 5406 OPCODE(ATOMIC_LOADW_ADD); 5407 OPCODE(ATOMIC_LOADW_SUB); 5408 OPCODE(ATOMIC_LOADW_AND); 5409 OPCODE(ATOMIC_LOADW_OR); 5410 OPCODE(ATOMIC_LOADW_XOR); 5411 OPCODE(ATOMIC_LOADW_NAND); 5412 OPCODE(ATOMIC_LOADW_MIN); 5413 OPCODE(ATOMIC_LOADW_MAX); 5414 OPCODE(ATOMIC_LOADW_UMIN); 5415 OPCODE(ATOMIC_LOADW_UMAX); 5416 OPCODE(ATOMIC_CMP_SWAPW); 5417 OPCODE(ATOMIC_CMP_SWAP); 5418 OPCODE(ATOMIC_LOAD_128); 5419 OPCODE(ATOMIC_STORE_128); 5420 OPCODE(ATOMIC_CMP_SWAP_128); 5421 OPCODE(LRV); 5422 OPCODE(STRV); 5423 OPCODE(VLER); 5424 OPCODE(VSTER); 5425 OPCODE(PREFETCH); 5426 } 5427 return nullptr; 5428 #undef OPCODE 5429 } 5430 5431 // Return true if VT is a vector whose elements are a whole number of bytes 5432 // in width. Also check for presence of vector support. 5433 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5434 if (!Subtarget.hasVector()) 5435 return false; 5436 5437 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5438 } 5439 5440 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5441 // producing a result of type ResVT. Op is a possibly bitcast version 5442 // of the input vector and Index is the index (based on type VecVT) that 5443 // should be extracted. Return the new extraction if a simplification 5444 // was possible or if Force is true. 5445 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5446 EVT VecVT, SDValue Op, 5447 unsigned Index, 5448 DAGCombinerInfo &DCI, 5449 bool Force) const { 5450 SelectionDAG &DAG = DCI.DAG; 5451 5452 // The number of bytes being extracted. 5453 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5454 5455 for (;;) { 5456 unsigned Opcode = Op.getOpcode(); 5457 if (Opcode == ISD::BITCAST) 5458 // Look through bitcasts. 5459 Op = Op.getOperand(0); 5460 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5461 canTreatAsByteVector(Op.getValueType())) { 5462 // Get a VPERM-like permute mask and see whether the bytes covered 5463 // by the extracted element are a contiguous sequence from one 5464 // source operand. 5465 SmallVector<int, SystemZ::VectorBytes> Bytes; 5466 if (!getVPermMask(Op, Bytes)) 5467 break; 5468 int First; 5469 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5470 BytesPerElement, First)) 5471 break; 5472 if (First < 0) 5473 return DAG.getUNDEF(ResVT); 5474 // Make sure the contiguous sequence starts at a multiple of the 5475 // original element size. 5476 unsigned Byte = unsigned(First) % Bytes.size(); 5477 if (Byte % BytesPerElement != 0) 5478 break; 5479 // We can get the extracted value directly from an input. 5480 Index = Byte / BytesPerElement; 5481 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5482 Force = true; 5483 } else if (Opcode == ISD::BUILD_VECTOR && 5484 canTreatAsByteVector(Op.getValueType())) { 5485 // We can only optimize this case if the BUILD_VECTOR elements are 5486 // at least as wide as the extracted value. 5487 EVT OpVT = Op.getValueType(); 5488 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5489 if (OpBytesPerElement < BytesPerElement) 5490 break; 5491 // Make sure that the least-significant bit of the extracted value 5492 // is the least significant bit of an input. 5493 unsigned End = (Index + 1) * BytesPerElement; 5494 if (End % OpBytesPerElement != 0) 5495 break; 5496 // We're extracting the low part of one operand of the BUILD_VECTOR. 5497 Op = Op.getOperand(End / OpBytesPerElement - 1); 5498 if (!Op.getValueType().isInteger()) { 5499 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5500 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5501 DCI.AddToWorklist(Op.getNode()); 5502 } 5503 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5504 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5505 if (VT != ResVT) { 5506 DCI.AddToWorklist(Op.getNode()); 5507 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5508 } 5509 return Op; 5510 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5511 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5512 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5513 canTreatAsByteVector(Op.getValueType()) && 5514 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5515 // Make sure that only the unextended bits are significant. 5516 EVT ExtVT = Op.getValueType(); 5517 EVT OpVT = Op.getOperand(0).getValueType(); 5518 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5519 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5520 unsigned Byte = Index * BytesPerElement; 5521 unsigned SubByte = Byte % ExtBytesPerElement; 5522 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5523 if (SubByte < MinSubByte || 5524 SubByte + BytesPerElement > ExtBytesPerElement) 5525 break; 5526 // Get the byte offset of the unextended element 5527 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5528 // ...then add the byte offset relative to that element. 5529 Byte += SubByte - MinSubByte; 5530 if (Byte % BytesPerElement != 0) 5531 break; 5532 Op = Op.getOperand(0); 5533 Index = Byte / BytesPerElement; 5534 Force = true; 5535 } else 5536 break; 5537 } 5538 if (Force) { 5539 if (Op.getValueType() != VecVT) { 5540 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5541 DCI.AddToWorklist(Op.getNode()); 5542 } 5543 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5544 DAG.getConstant(Index, DL, MVT::i32)); 5545 } 5546 return SDValue(); 5547 } 5548 5549 // Optimize vector operations in scalar value Op on the basis that Op 5550 // is truncated to TruncVT. 5551 SDValue SystemZTargetLowering::combineTruncateExtract( 5552 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5553 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5554 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5555 // of type TruncVT. 5556 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5557 TruncVT.getSizeInBits() % 8 == 0) { 5558 SDValue Vec = Op.getOperand(0); 5559 EVT VecVT = Vec.getValueType(); 5560 if (canTreatAsByteVector(VecVT)) { 5561 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5562 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5563 unsigned TruncBytes = TruncVT.getStoreSize(); 5564 if (BytesPerElement % TruncBytes == 0) { 5565 // Calculate the value of Y' in the above description. We are 5566 // splitting the original elements into Scale equal-sized pieces 5567 // and for truncation purposes want the last (least-significant) 5568 // of these pieces for IndexN. This is easiest to do by calculating 5569 // the start index of the following element and then subtracting 1. 5570 unsigned Scale = BytesPerElement / TruncBytes; 5571 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5572 5573 // Defer the creation of the bitcast from X to combineExtract, 5574 // which might be able to optimize the extraction. 5575 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5576 VecVT.getStoreSize() / TruncBytes); 5577 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5578 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5579 } 5580 } 5581 } 5582 } 5583 return SDValue(); 5584 } 5585 5586 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5587 SDNode *N, DAGCombinerInfo &DCI) const { 5588 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5589 SelectionDAG &DAG = DCI.DAG; 5590 SDValue N0 = N->getOperand(0); 5591 EVT VT = N->getValueType(0); 5592 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5593 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5594 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5595 if (TrueOp && FalseOp) { 5596 SDLoc DL(N0); 5597 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5598 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5599 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5600 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5601 // If N0 has multiple uses, change other uses as well. 5602 if (!N0.hasOneUse()) { 5603 SDValue TruncSelect = 5604 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5605 DCI.CombineTo(N0.getNode(), TruncSelect); 5606 } 5607 return NewSelect; 5608 } 5609 } 5610 return SDValue(); 5611 } 5612 5613 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5614 SDNode *N, DAGCombinerInfo &DCI) const { 5615 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5616 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5617 // into (select_cc LHS, RHS, -1, 0, COND) 5618 SelectionDAG &DAG = DCI.DAG; 5619 SDValue N0 = N->getOperand(0); 5620 EVT VT = N->getValueType(0); 5621 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5622 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5623 N0 = N0.getOperand(0); 5624 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5625 SDLoc DL(N0); 5626 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5627 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5628 N0.getOperand(2) }; 5629 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5630 } 5631 return SDValue(); 5632 } 5633 5634 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5635 SDNode *N, DAGCombinerInfo &DCI) const { 5636 // Convert (sext (ashr (shl X, C1), C2)) to 5637 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5638 // cheap as narrower ones. 5639 SelectionDAG &DAG = DCI.DAG; 5640 SDValue N0 = N->getOperand(0); 5641 EVT VT = N->getValueType(0); 5642 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5643 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5644 SDValue Inner = N0.getOperand(0); 5645 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5646 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5647 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5648 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5649 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5650 EVT ShiftVT = N0.getOperand(1).getValueType(); 5651 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5652 Inner.getOperand(0)); 5653 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5654 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5655 ShiftVT)); 5656 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5657 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5658 } 5659 } 5660 } 5661 return SDValue(); 5662 } 5663 5664 SDValue SystemZTargetLowering::combineMERGE( 5665 SDNode *N, DAGCombinerInfo &DCI) const { 5666 SelectionDAG &DAG = DCI.DAG; 5667 unsigned Opcode = N->getOpcode(); 5668 SDValue Op0 = N->getOperand(0); 5669 SDValue Op1 = N->getOperand(1); 5670 if (Op0.getOpcode() == ISD::BITCAST) 5671 Op0 = Op0.getOperand(0); 5672 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5673 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5674 // for v4f32. 5675 if (Op1 == N->getOperand(0)) 5676 return Op1; 5677 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5678 EVT VT = Op1.getValueType(); 5679 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5680 if (ElemBytes <= 4) { 5681 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5682 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5683 EVT InVT = VT.changeVectorElementTypeToInteger(); 5684 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5685 SystemZ::VectorBytes / ElemBytes / 2); 5686 if (VT != InVT) { 5687 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5688 DCI.AddToWorklist(Op1.getNode()); 5689 } 5690 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5691 DCI.AddToWorklist(Op.getNode()); 5692 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5693 } 5694 } 5695 return SDValue(); 5696 } 5697 5698 SDValue SystemZTargetLowering::combineLOAD( 5699 SDNode *N, DAGCombinerInfo &DCI) const { 5700 SelectionDAG &DAG = DCI.DAG; 5701 EVT LdVT = N->getValueType(0); 5702 if (LdVT.isVector() || LdVT.isInteger()) 5703 return SDValue(); 5704 // Transform a scalar load that is REPLICATEd as well as having other 5705 // use(s) to the form where the other use(s) use the first element of the 5706 // REPLICATE instead of the load. Otherwise instruction selection will not 5707 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5708 // point loads. 5709 5710 SDValue Replicate; 5711 SmallVector<SDNode*, 8> OtherUses; 5712 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5713 UI != UE; ++UI) { 5714 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5715 if (Replicate) 5716 return SDValue(); // Should never happen 5717 Replicate = SDValue(*UI, 0); 5718 } 5719 else if (UI.getUse().getResNo() == 0) 5720 OtherUses.push_back(*UI); 5721 } 5722 if (!Replicate || OtherUses.empty()) 5723 return SDValue(); 5724 5725 SDLoc DL(N); 5726 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5727 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5728 // Update uses of the loaded Value while preserving old chains. 5729 for (SDNode *U : OtherUses) { 5730 SmallVector<SDValue, 8> Ops; 5731 for (SDValue Op : U->ops()) 5732 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5733 DAG.UpdateNodeOperands(U, Ops); 5734 } 5735 return SDValue(N, 0); 5736 } 5737 5738 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5739 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5740 return true; 5741 if (Subtarget.hasVectorEnhancements2()) 5742 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5743 return true; 5744 return false; 5745 } 5746 5747 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5748 if (!VT.isVector() || !VT.isSimple() || 5749 VT.getSizeInBits() != 128 || 5750 VT.getScalarSizeInBits() % 8 != 0) 5751 return false; 5752 5753 unsigned NumElts = VT.getVectorNumElements(); 5754 for (unsigned i = 0; i < NumElts; ++i) { 5755 if (M[i] < 0) continue; // ignore UNDEF indices 5756 if ((unsigned) M[i] != NumElts - 1 - i) 5757 return false; 5758 } 5759 5760 return true; 5761 } 5762 5763 SDValue SystemZTargetLowering::combineSTORE( 5764 SDNode *N, DAGCombinerInfo &DCI) const { 5765 SelectionDAG &DAG = DCI.DAG; 5766 auto *SN = cast<StoreSDNode>(N); 5767 auto &Op1 = N->getOperand(1); 5768 EVT MemVT = SN->getMemoryVT(); 5769 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5770 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5771 // If X has wider elements then convert it to: 5772 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5773 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5774 if (SDValue Value = 5775 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5776 DCI.AddToWorklist(Value.getNode()); 5777 5778 // Rewrite the store with the new form of stored value. 5779 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5780 SN->getBasePtr(), SN->getMemoryVT(), 5781 SN->getMemOperand()); 5782 } 5783 } 5784 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5785 if (!SN->isTruncatingStore() && 5786 Op1.getOpcode() == ISD::BSWAP && 5787 Op1.getNode()->hasOneUse() && 5788 canLoadStoreByteSwapped(Op1.getValueType())) { 5789 5790 SDValue BSwapOp = Op1.getOperand(0); 5791 5792 if (BSwapOp.getValueType() == MVT::i16) 5793 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5794 5795 SDValue Ops[] = { 5796 N->getOperand(0), BSwapOp, N->getOperand(2) 5797 }; 5798 5799 return 5800 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5801 Ops, MemVT, SN->getMemOperand()); 5802 } 5803 // Combine STORE (element-swap) into VSTER 5804 if (!SN->isTruncatingStore() && 5805 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5806 Op1.getNode()->hasOneUse() && 5807 Subtarget.hasVectorEnhancements2()) { 5808 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5809 ArrayRef<int> ShuffleMask = SVN->getMask(); 5810 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5811 SDValue Ops[] = { 5812 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5813 }; 5814 5815 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5816 DAG.getVTList(MVT::Other), 5817 Ops, MemVT, SN->getMemOperand()); 5818 } 5819 } 5820 5821 return SDValue(); 5822 } 5823 5824 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5825 SDNode *N, DAGCombinerInfo &DCI) const { 5826 SelectionDAG &DAG = DCI.DAG; 5827 // Combine element-swap (LOAD) into VLER 5828 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5829 N->getOperand(0).hasOneUse() && 5830 Subtarget.hasVectorEnhancements2()) { 5831 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5832 ArrayRef<int> ShuffleMask = SVN->getMask(); 5833 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5834 SDValue Load = N->getOperand(0); 5835 LoadSDNode *LD = cast<LoadSDNode>(Load); 5836 5837 // Create the element-swapping load. 5838 SDValue Ops[] = { 5839 LD->getChain(), // Chain 5840 LD->getBasePtr() // Ptr 5841 }; 5842 SDValue ESLoad = 5843 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5844 DAG.getVTList(LD->getValueType(0), MVT::Other), 5845 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5846 5847 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5848 // by the load dead. 5849 DCI.CombineTo(N, ESLoad); 5850 5851 // Next, combine the load away, we give it a bogus result value but a real 5852 // chain result. The result value is dead because the shuffle is dead. 5853 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5854 5855 // Return N so it doesn't get rechecked! 5856 return SDValue(N, 0); 5857 } 5858 } 5859 5860 return SDValue(); 5861 } 5862 5863 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5864 SDNode *N, DAGCombinerInfo &DCI) const { 5865 SelectionDAG &DAG = DCI.DAG; 5866 5867 if (!Subtarget.hasVector()) 5868 return SDValue(); 5869 5870 // Look through bitcasts that retain the number of vector elements. 5871 SDValue Op = N->getOperand(0); 5872 if (Op.getOpcode() == ISD::BITCAST && 5873 Op.getValueType().isVector() && 5874 Op.getOperand(0).getValueType().isVector() && 5875 Op.getValueType().getVectorNumElements() == 5876 Op.getOperand(0).getValueType().getVectorNumElements()) 5877 Op = Op.getOperand(0); 5878 5879 // Pull BSWAP out of a vector extraction. 5880 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5881 EVT VecVT = Op.getValueType(); 5882 EVT EltVT = VecVT.getVectorElementType(); 5883 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5884 Op.getOperand(0), N->getOperand(1)); 5885 DCI.AddToWorklist(Op.getNode()); 5886 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5887 if (EltVT != N->getValueType(0)) { 5888 DCI.AddToWorklist(Op.getNode()); 5889 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5890 } 5891 return Op; 5892 } 5893 5894 // Try to simplify a vector extraction. 5895 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5896 SDValue Op0 = N->getOperand(0); 5897 EVT VecVT = Op0.getValueType(); 5898 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5899 IndexN->getZExtValue(), DCI, false); 5900 } 5901 return SDValue(); 5902 } 5903 5904 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5905 SDNode *N, DAGCombinerInfo &DCI) const { 5906 SelectionDAG &DAG = DCI.DAG; 5907 // (join_dwords X, X) == (replicate X) 5908 if (N->getOperand(0) == N->getOperand(1)) 5909 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5910 N->getOperand(0)); 5911 return SDValue(); 5912 } 5913 5914 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 5915 SDValue Chain1 = N1->getOperand(0); 5916 SDValue Chain2 = N2->getOperand(0); 5917 5918 // Trivial case: both nodes take the same chain. 5919 if (Chain1 == Chain2) 5920 return Chain1; 5921 5922 // FIXME - we could handle more complex cases via TokenFactor, 5923 // assuming we can verify that this would not create a cycle. 5924 return SDValue(); 5925 } 5926 5927 SDValue SystemZTargetLowering::combineFP_ROUND( 5928 SDNode *N, DAGCombinerInfo &DCI) const { 5929 5930 if (!Subtarget.hasVector()) 5931 return SDValue(); 5932 5933 // (fpround (extract_vector_elt X 0)) 5934 // (fpround (extract_vector_elt X 1)) -> 5935 // (extract_vector_elt (VROUND X) 0) 5936 // (extract_vector_elt (VROUND X) 2) 5937 // 5938 // This is a special case since the target doesn't really support v2f32s. 5939 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 5940 SelectionDAG &DAG = DCI.DAG; 5941 SDValue Op0 = N->getOperand(OpNo); 5942 if (N->getValueType(0) == MVT::f32 && 5943 Op0.hasOneUse() && 5944 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5945 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5946 Op0.getOperand(1).getOpcode() == ISD::Constant && 5947 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5948 SDValue Vec = Op0.getOperand(0); 5949 for (auto *U : Vec->uses()) { 5950 if (U != Op0.getNode() && 5951 U->hasOneUse() && 5952 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5953 U->getOperand(0) == Vec && 5954 U->getOperand(1).getOpcode() == ISD::Constant && 5955 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5956 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5957 if (OtherRound.getOpcode() == N->getOpcode() && 5958 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 5959 OtherRound.getValueType() == MVT::f32) { 5960 SDValue VRound, Chain; 5961 if (N->isStrictFPOpcode()) { 5962 Chain = MergeInputChains(N, OtherRound.getNode()); 5963 if (!Chain) 5964 continue; 5965 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 5966 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 5967 Chain = VRound.getValue(1); 5968 } else 5969 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5970 MVT::v4f32, Vec); 5971 DCI.AddToWorklist(VRound.getNode()); 5972 SDValue Extract1 = 5973 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5974 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5975 DCI.AddToWorklist(Extract1.getNode()); 5976 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5977 if (Chain) 5978 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 5979 SDValue Extract0 = 5980 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5981 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5982 if (Chain) 5983 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 5984 N->getVTList(), Extract0, Chain); 5985 return Extract0; 5986 } 5987 } 5988 } 5989 } 5990 return SDValue(); 5991 } 5992 5993 SDValue SystemZTargetLowering::combineFP_EXTEND( 5994 SDNode *N, DAGCombinerInfo &DCI) const { 5995 5996 if (!Subtarget.hasVector()) 5997 return SDValue(); 5998 5999 // (fpextend (extract_vector_elt X 0)) 6000 // (fpextend (extract_vector_elt X 2)) -> 6001 // (extract_vector_elt (VEXTEND X) 0) 6002 // (extract_vector_elt (VEXTEND X) 1) 6003 // 6004 // This is a special case since the target doesn't really support v2f32s. 6005 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6006 SelectionDAG &DAG = DCI.DAG; 6007 SDValue Op0 = N->getOperand(OpNo); 6008 if (N->getValueType(0) == MVT::f64 && 6009 Op0.hasOneUse() && 6010 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6011 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6012 Op0.getOperand(1).getOpcode() == ISD::Constant && 6013 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6014 SDValue Vec = Op0.getOperand(0); 6015 for (auto *U : Vec->uses()) { 6016 if (U != Op0.getNode() && 6017 U->hasOneUse() && 6018 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6019 U->getOperand(0) == Vec && 6020 U->getOperand(1).getOpcode() == ISD::Constant && 6021 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6022 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6023 if (OtherExtend.getOpcode() == N->getOpcode() && 6024 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6025 OtherExtend.getValueType() == MVT::f64) { 6026 SDValue VExtend, Chain; 6027 if (N->isStrictFPOpcode()) { 6028 Chain = MergeInputChains(N, OtherExtend.getNode()); 6029 if (!Chain) 6030 continue; 6031 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6032 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6033 Chain = VExtend.getValue(1); 6034 } else 6035 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6036 MVT::v2f64, Vec); 6037 DCI.AddToWorklist(VExtend.getNode()); 6038 SDValue Extract1 = 6039 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6040 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6041 DCI.AddToWorklist(Extract1.getNode()); 6042 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6043 if (Chain) 6044 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6045 SDValue Extract0 = 6046 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6047 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6048 if (Chain) 6049 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6050 N->getVTList(), Extract0, Chain); 6051 return Extract0; 6052 } 6053 } 6054 } 6055 } 6056 return SDValue(); 6057 } 6058 6059 SDValue SystemZTargetLowering::combineBSWAP( 6060 SDNode *N, DAGCombinerInfo &DCI) const { 6061 SelectionDAG &DAG = DCI.DAG; 6062 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6063 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6064 N->getOperand(0).hasOneUse() && 6065 canLoadStoreByteSwapped(N->getValueType(0))) { 6066 SDValue Load = N->getOperand(0); 6067 LoadSDNode *LD = cast<LoadSDNode>(Load); 6068 6069 // Create the byte-swapping load. 6070 SDValue Ops[] = { 6071 LD->getChain(), // Chain 6072 LD->getBasePtr() // Ptr 6073 }; 6074 EVT LoadVT = N->getValueType(0); 6075 if (LoadVT == MVT::i16) 6076 LoadVT = MVT::i32; 6077 SDValue BSLoad = 6078 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6079 DAG.getVTList(LoadVT, MVT::Other), 6080 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6081 6082 // If this is an i16 load, insert the truncate. 6083 SDValue ResVal = BSLoad; 6084 if (N->getValueType(0) == MVT::i16) 6085 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6086 6087 // First, combine the bswap away. This makes the value produced by the 6088 // load dead. 6089 DCI.CombineTo(N, ResVal); 6090 6091 // Next, combine the load away, we give it a bogus result value but a real 6092 // chain result. The result value is dead because the bswap is dead. 6093 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6094 6095 // Return N so it doesn't get rechecked! 6096 return SDValue(N, 0); 6097 } 6098 6099 // Look through bitcasts that retain the number of vector elements. 6100 SDValue Op = N->getOperand(0); 6101 if (Op.getOpcode() == ISD::BITCAST && 6102 Op.getValueType().isVector() && 6103 Op.getOperand(0).getValueType().isVector() && 6104 Op.getValueType().getVectorNumElements() == 6105 Op.getOperand(0).getValueType().getVectorNumElements()) 6106 Op = Op.getOperand(0); 6107 6108 // Push BSWAP into a vector insertion if at least one side then simplifies. 6109 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6110 SDValue Vec = Op.getOperand(0); 6111 SDValue Elt = Op.getOperand(1); 6112 SDValue Idx = Op.getOperand(2); 6113 6114 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6115 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6116 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6117 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6118 (canLoadStoreByteSwapped(N->getValueType(0)) && 6119 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6120 EVT VecVT = N->getValueType(0); 6121 EVT EltVT = N->getValueType(0).getVectorElementType(); 6122 if (VecVT != Vec.getValueType()) { 6123 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6124 DCI.AddToWorklist(Vec.getNode()); 6125 } 6126 if (EltVT != Elt.getValueType()) { 6127 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6128 DCI.AddToWorklist(Elt.getNode()); 6129 } 6130 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6131 DCI.AddToWorklist(Vec.getNode()); 6132 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6133 DCI.AddToWorklist(Elt.getNode()); 6134 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6135 Vec, Elt, Idx); 6136 } 6137 } 6138 6139 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6140 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6141 if (SV && Op.hasOneUse()) { 6142 SDValue Op0 = Op.getOperand(0); 6143 SDValue Op1 = Op.getOperand(1); 6144 6145 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6146 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6147 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6148 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6149 EVT VecVT = N->getValueType(0); 6150 if (VecVT != Op0.getValueType()) { 6151 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6152 DCI.AddToWorklist(Op0.getNode()); 6153 } 6154 if (VecVT != Op1.getValueType()) { 6155 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6156 DCI.AddToWorklist(Op1.getNode()); 6157 } 6158 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6159 DCI.AddToWorklist(Op0.getNode()); 6160 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6161 DCI.AddToWorklist(Op1.getNode()); 6162 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6163 } 6164 } 6165 6166 return SDValue(); 6167 } 6168 6169 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6170 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6171 // set by the CCReg instruction using the CCValid / CCMask masks, 6172 // If the CCReg instruction is itself a ICMP testing the condition 6173 // code set by some other instruction, see whether we can directly 6174 // use that condition code. 6175 6176 // Verify that we have an ICMP against some constant. 6177 if (CCValid != SystemZ::CCMASK_ICMP) 6178 return false; 6179 auto *ICmp = CCReg.getNode(); 6180 if (ICmp->getOpcode() != SystemZISD::ICMP) 6181 return false; 6182 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6183 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6184 if (!CompareRHS) 6185 return false; 6186 6187 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6188 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6189 // Verify that we have an appropriate mask for a EQ or NE comparison. 6190 bool Invert = false; 6191 if (CCMask == SystemZ::CCMASK_CMP_NE) 6192 Invert = !Invert; 6193 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6194 return false; 6195 6196 // Verify that the ICMP compares against one of select values. 6197 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6198 if (!TrueVal) 6199 return false; 6200 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6201 if (!FalseVal) 6202 return false; 6203 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6204 Invert = !Invert; 6205 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6206 return false; 6207 6208 // Compute the effective CC mask for the new branch or select. 6209 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6210 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6211 if (!NewCCValid || !NewCCMask) 6212 return false; 6213 CCValid = NewCCValid->getZExtValue(); 6214 CCMask = NewCCMask->getZExtValue(); 6215 if (Invert) 6216 CCMask ^= CCValid; 6217 6218 // Return the updated CCReg link. 6219 CCReg = CompareLHS->getOperand(4); 6220 return true; 6221 } 6222 6223 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6224 if (CompareLHS->getOpcode() == ISD::SRA) { 6225 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6226 if (!SRACount || SRACount->getZExtValue() != 30) 6227 return false; 6228 auto *SHL = CompareLHS->getOperand(0).getNode(); 6229 if (SHL->getOpcode() != ISD::SHL) 6230 return false; 6231 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6232 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6233 return false; 6234 auto *IPM = SHL->getOperand(0).getNode(); 6235 if (IPM->getOpcode() != SystemZISD::IPM) 6236 return false; 6237 6238 // Avoid introducing CC spills (because SRA would clobber CC). 6239 if (!CompareLHS->hasOneUse()) 6240 return false; 6241 // Verify that the ICMP compares against zero. 6242 if (CompareRHS->getZExtValue() != 0) 6243 return false; 6244 6245 // Compute the effective CC mask for the new branch or select. 6246 switch (CCMask) { 6247 case SystemZ::CCMASK_CMP_EQ: break; 6248 case SystemZ::CCMASK_CMP_NE: break; 6249 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 6250 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 6251 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 6252 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 6253 default: return false; 6254 } 6255 6256 // Return the updated CCReg link. 6257 CCReg = IPM->getOperand(0); 6258 return true; 6259 } 6260 6261 return false; 6262 } 6263 6264 SDValue SystemZTargetLowering::combineBR_CCMASK( 6265 SDNode *N, DAGCombinerInfo &DCI) const { 6266 SelectionDAG &DAG = DCI.DAG; 6267 6268 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6269 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6270 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6271 if (!CCValid || !CCMask) 6272 return SDValue(); 6273 6274 int CCValidVal = CCValid->getZExtValue(); 6275 int CCMaskVal = CCMask->getZExtValue(); 6276 SDValue Chain = N->getOperand(0); 6277 SDValue CCReg = N->getOperand(4); 6278 6279 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6280 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6281 Chain, 6282 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6283 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6284 N->getOperand(3), CCReg); 6285 return SDValue(); 6286 } 6287 6288 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6289 SDNode *N, DAGCombinerInfo &DCI) const { 6290 SelectionDAG &DAG = DCI.DAG; 6291 6292 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6293 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6294 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6295 if (!CCValid || !CCMask) 6296 return SDValue(); 6297 6298 int CCValidVal = CCValid->getZExtValue(); 6299 int CCMaskVal = CCMask->getZExtValue(); 6300 SDValue CCReg = N->getOperand(4); 6301 6302 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6303 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6304 N->getOperand(0), N->getOperand(1), 6305 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6306 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6307 CCReg); 6308 return SDValue(); 6309 } 6310 6311 6312 SDValue SystemZTargetLowering::combineGET_CCMASK( 6313 SDNode *N, DAGCombinerInfo &DCI) const { 6314 6315 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6316 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6317 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6318 if (!CCValid || !CCMask) 6319 return SDValue(); 6320 int CCValidVal = CCValid->getZExtValue(); 6321 int CCMaskVal = CCMask->getZExtValue(); 6322 6323 SDValue Select = N->getOperand(0); 6324 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6325 return SDValue(); 6326 6327 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6328 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6329 if (!SelectCCValid || !SelectCCMask) 6330 return SDValue(); 6331 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6332 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6333 6334 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6335 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6336 if (!TrueVal || !FalseVal) 6337 return SDValue(); 6338 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6339 ; 6340 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6341 SelectCCMaskVal ^= SelectCCValidVal; 6342 else 6343 return SDValue(); 6344 6345 if (SelectCCValidVal & ~CCValidVal) 6346 return SDValue(); 6347 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6348 return SDValue(); 6349 6350 return Select->getOperand(4); 6351 } 6352 6353 SDValue SystemZTargetLowering::combineIntDIVREM( 6354 SDNode *N, DAGCombinerInfo &DCI) const { 6355 SelectionDAG &DAG = DCI.DAG; 6356 EVT VT = N->getValueType(0); 6357 // In the case where the divisor is a vector of constants a cheaper 6358 // sequence of instructions can replace the divide. BuildSDIV is called to 6359 // do this during DAG combining, but it only succeeds when it can build a 6360 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6361 // since it is not Legal but Custom it can only happen before 6362 // legalization. Therefore we must scalarize this early before Combine 6363 // 1. For widened vectors, this is already the result of type legalization. 6364 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6365 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6366 return DAG.UnrollVectorOp(N); 6367 return SDValue(); 6368 } 6369 6370 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6371 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6372 return N->getOperand(0); 6373 return N; 6374 } 6375 6376 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6377 DAGCombinerInfo &DCI) const { 6378 switch(N->getOpcode()) { 6379 default: break; 6380 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6381 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6382 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6383 case SystemZISD::MERGE_HIGH: 6384 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6385 case ISD::LOAD: return combineLOAD(N, DCI); 6386 case ISD::STORE: return combineSTORE(N, DCI); 6387 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6388 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6389 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6390 case ISD::STRICT_FP_ROUND: 6391 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6392 case ISD::STRICT_FP_EXTEND: 6393 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6394 case ISD::BSWAP: return combineBSWAP(N, DCI); 6395 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6396 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6397 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6398 case ISD::SDIV: 6399 case ISD::UDIV: 6400 case ISD::SREM: 6401 case ISD::UREM: return combineIntDIVREM(N, DCI); 6402 } 6403 6404 return SDValue(); 6405 } 6406 6407 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6408 // are for Op. 6409 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6410 unsigned OpNo) { 6411 EVT VT = Op.getValueType(); 6412 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6413 APInt SrcDemE; 6414 unsigned Opcode = Op.getOpcode(); 6415 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6416 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6417 switch (Id) { 6418 case Intrinsic::s390_vpksh: // PACKS 6419 case Intrinsic::s390_vpksf: 6420 case Intrinsic::s390_vpksg: 6421 case Intrinsic::s390_vpkshs: // PACKS_CC 6422 case Intrinsic::s390_vpksfs: 6423 case Intrinsic::s390_vpksgs: 6424 case Intrinsic::s390_vpklsh: // PACKLS 6425 case Intrinsic::s390_vpklsf: 6426 case Intrinsic::s390_vpklsg: 6427 case Intrinsic::s390_vpklshs: // PACKLS_CC 6428 case Intrinsic::s390_vpklsfs: 6429 case Intrinsic::s390_vpklsgs: 6430 // VECTOR PACK truncates the elements of two source vectors into one. 6431 SrcDemE = DemandedElts; 6432 if (OpNo == 2) 6433 SrcDemE.lshrInPlace(NumElts / 2); 6434 SrcDemE = SrcDemE.trunc(NumElts / 2); 6435 break; 6436 // VECTOR UNPACK extends half the elements of the source vector. 6437 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6438 case Intrinsic::s390_vuphh: 6439 case Intrinsic::s390_vuphf: 6440 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6441 case Intrinsic::s390_vuplhh: 6442 case Intrinsic::s390_vuplhf: 6443 SrcDemE = APInt(NumElts * 2, 0); 6444 SrcDemE.insertBits(DemandedElts, 0); 6445 break; 6446 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6447 case Intrinsic::s390_vuplhw: 6448 case Intrinsic::s390_vuplf: 6449 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6450 case Intrinsic::s390_vupllh: 6451 case Intrinsic::s390_vupllf: 6452 SrcDemE = APInt(NumElts * 2, 0); 6453 SrcDemE.insertBits(DemandedElts, NumElts); 6454 break; 6455 case Intrinsic::s390_vpdi: { 6456 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6457 SrcDemE = APInt(NumElts, 0); 6458 if (!DemandedElts[OpNo - 1]) 6459 break; 6460 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6461 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6462 // Demand input element 0 or 1, given by the mask bit value. 6463 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6464 break; 6465 } 6466 case Intrinsic::s390_vsldb: { 6467 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6468 assert(VT == MVT::v16i8 && "Unexpected type."); 6469 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6470 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6471 unsigned NumSrc0Els = 16 - FirstIdx; 6472 SrcDemE = APInt(NumElts, 0); 6473 if (OpNo == 1) { 6474 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6475 SrcDemE.insertBits(DemEls, FirstIdx); 6476 } else { 6477 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6478 SrcDemE.insertBits(DemEls, 0); 6479 } 6480 break; 6481 } 6482 case Intrinsic::s390_vperm: 6483 SrcDemE = APInt(NumElts, 1); 6484 break; 6485 default: 6486 llvm_unreachable("Unhandled intrinsic."); 6487 break; 6488 } 6489 } else { 6490 switch (Opcode) { 6491 case SystemZISD::JOIN_DWORDS: 6492 // Scalar operand. 6493 SrcDemE = APInt(1, 1); 6494 break; 6495 case SystemZISD::SELECT_CCMASK: 6496 SrcDemE = DemandedElts; 6497 break; 6498 default: 6499 llvm_unreachable("Unhandled opcode."); 6500 break; 6501 } 6502 } 6503 return SrcDemE; 6504 } 6505 6506 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6507 const APInt &DemandedElts, 6508 const SelectionDAG &DAG, unsigned Depth, 6509 unsigned OpNo) { 6510 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6511 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6512 KnownBits LHSKnown = 6513 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6514 KnownBits RHSKnown = 6515 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6516 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6517 Known.One = LHSKnown.One & RHSKnown.One; 6518 } 6519 6520 void 6521 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6522 KnownBits &Known, 6523 const APInt &DemandedElts, 6524 const SelectionDAG &DAG, 6525 unsigned Depth) const { 6526 Known.resetAll(); 6527 6528 // Intrinsic CC result is returned in the two low bits. 6529 unsigned tmp0, tmp1; // not used 6530 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6531 Known.Zero.setBitsFrom(2); 6532 return; 6533 } 6534 EVT VT = Op.getValueType(); 6535 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6536 return; 6537 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6538 "KnownBits does not match VT in bitwidth"); 6539 assert ((!VT.isVector() || 6540 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6541 "DemandedElts does not match VT number of elements"); 6542 unsigned BitWidth = Known.getBitWidth(); 6543 unsigned Opcode = Op.getOpcode(); 6544 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6545 bool IsLogical = false; 6546 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6547 switch (Id) { 6548 case Intrinsic::s390_vpksh: // PACKS 6549 case Intrinsic::s390_vpksf: 6550 case Intrinsic::s390_vpksg: 6551 case Intrinsic::s390_vpkshs: // PACKS_CC 6552 case Intrinsic::s390_vpksfs: 6553 case Intrinsic::s390_vpksgs: 6554 case Intrinsic::s390_vpklsh: // PACKLS 6555 case Intrinsic::s390_vpklsf: 6556 case Intrinsic::s390_vpklsg: 6557 case Intrinsic::s390_vpklshs: // PACKLS_CC 6558 case Intrinsic::s390_vpklsfs: 6559 case Intrinsic::s390_vpklsgs: 6560 case Intrinsic::s390_vpdi: 6561 case Intrinsic::s390_vsldb: 6562 case Intrinsic::s390_vperm: 6563 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6564 break; 6565 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6566 case Intrinsic::s390_vuplhh: 6567 case Intrinsic::s390_vuplhf: 6568 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6569 case Intrinsic::s390_vupllh: 6570 case Intrinsic::s390_vupllf: 6571 IsLogical = true; 6572 LLVM_FALLTHROUGH; 6573 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6574 case Intrinsic::s390_vuphh: 6575 case Intrinsic::s390_vuphf: 6576 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6577 case Intrinsic::s390_vuplhw: 6578 case Intrinsic::s390_vuplf: { 6579 SDValue SrcOp = Op.getOperand(1); 6580 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6581 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6582 if (IsLogical) { 6583 Known = Known.zext(BitWidth, true); 6584 } else 6585 Known = Known.sext(BitWidth); 6586 break; 6587 } 6588 default: 6589 break; 6590 } 6591 } else { 6592 switch (Opcode) { 6593 case SystemZISD::JOIN_DWORDS: 6594 case SystemZISD::SELECT_CCMASK: 6595 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6596 break; 6597 case SystemZISD::REPLICATE: { 6598 SDValue SrcOp = Op.getOperand(0); 6599 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6600 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6601 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6602 break; 6603 } 6604 default: 6605 break; 6606 } 6607 } 6608 6609 // Known has the width of the source operand(s). Adjust if needed to match 6610 // the passed bitwidth. 6611 if (Known.getBitWidth() != BitWidth) 6612 Known = Known.zextOrTrunc(BitWidth, false); 6613 } 6614 6615 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6616 const SelectionDAG &DAG, unsigned Depth, 6617 unsigned OpNo) { 6618 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6619 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6620 if (LHS == 1) return 1; // Early out. 6621 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6622 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6623 if (RHS == 1) return 1; // Early out. 6624 unsigned Common = std::min(LHS, RHS); 6625 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6626 EVT VT = Op.getValueType(); 6627 unsigned VTBits = VT.getScalarSizeInBits(); 6628 if (SrcBitWidth > VTBits) { // PACK 6629 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6630 if (Common > SrcExtraBits) 6631 return (Common - SrcExtraBits); 6632 return 1; 6633 } 6634 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6635 return Common; 6636 } 6637 6638 unsigned 6639 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6640 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6641 unsigned Depth) const { 6642 if (Op.getResNo() != 0) 6643 return 1; 6644 unsigned Opcode = Op.getOpcode(); 6645 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6646 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6647 switch (Id) { 6648 case Intrinsic::s390_vpksh: // PACKS 6649 case Intrinsic::s390_vpksf: 6650 case Intrinsic::s390_vpksg: 6651 case Intrinsic::s390_vpkshs: // PACKS_CC 6652 case Intrinsic::s390_vpksfs: 6653 case Intrinsic::s390_vpksgs: 6654 case Intrinsic::s390_vpklsh: // PACKLS 6655 case Intrinsic::s390_vpklsf: 6656 case Intrinsic::s390_vpklsg: 6657 case Intrinsic::s390_vpklshs: // PACKLS_CC 6658 case Intrinsic::s390_vpklsfs: 6659 case Intrinsic::s390_vpklsgs: 6660 case Intrinsic::s390_vpdi: 6661 case Intrinsic::s390_vsldb: 6662 case Intrinsic::s390_vperm: 6663 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6664 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6665 case Intrinsic::s390_vuphh: 6666 case Intrinsic::s390_vuphf: 6667 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6668 case Intrinsic::s390_vuplhw: 6669 case Intrinsic::s390_vuplf: { 6670 SDValue PackedOp = Op.getOperand(1); 6671 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6672 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6673 EVT VT = Op.getValueType(); 6674 unsigned VTBits = VT.getScalarSizeInBits(); 6675 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6676 return Tmp; 6677 } 6678 default: 6679 break; 6680 } 6681 } else { 6682 switch (Opcode) { 6683 case SystemZISD::SELECT_CCMASK: 6684 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6685 default: 6686 break; 6687 } 6688 } 6689 6690 return 1; 6691 } 6692 6693 //===----------------------------------------------------------------------===// 6694 // Custom insertion 6695 //===----------------------------------------------------------------------===// 6696 6697 // Create a new basic block after MBB. 6698 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6699 MachineFunction &MF = *MBB->getParent(); 6700 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6701 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6702 return NewMBB; 6703 } 6704 6705 // Split MBB after MI and return the new block (the one that contains 6706 // instructions after MI). 6707 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6708 MachineBasicBlock *MBB) { 6709 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6710 NewMBB->splice(NewMBB->begin(), MBB, 6711 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6712 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6713 return NewMBB; 6714 } 6715 6716 // Split MBB before MI and return the new block (the one that contains MI). 6717 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6718 MachineBasicBlock *MBB) { 6719 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6720 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6721 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6722 return NewMBB; 6723 } 6724 6725 // Force base value Base into a register before MI. Return the register. 6726 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6727 const SystemZInstrInfo *TII) { 6728 if (Base.isReg()) 6729 return Base.getReg(); 6730 6731 MachineBasicBlock *MBB = MI.getParent(); 6732 MachineFunction &MF = *MBB->getParent(); 6733 MachineRegisterInfo &MRI = MF.getRegInfo(); 6734 6735 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6736 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6737 .add(Base) 6738 .addImm(0) 6739 .addReg(0); 6740 return Reg; 6741 } 6742 6743 // The CC operand of MI might be missing a kill marker because there 6744 // were multiple uses of CC, and ISel didn't know which to mark. 6745 // Figure out whether MI should have had a kill marker. 6746 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6747 // Scan forward through BB for a use/def of CC. 6748 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6749 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6750 const MachineInstr& mi = *miI; 6751 if (mi.readsRegister(SystemZ::CC)) 6752 return false; 6753 if (mi.definesRegister(SystemZ::CC)) 6754 break; // Should have kill-flag - update below. 6755 } 6756 6757 // If we hit the end of the block, check whether CC is live into a 6758 // successor. 6759 if (miI == MBB->end()) { 6760 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6761 if ((*SI)->isLiveIn(SystemZ::CC)) 6762 return false; 6763 } 6764 6765 return true; 6766 } 6767 6768 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6769 // together with other Select pseudo-opcodes into a single basic-block with 6770 // a conditional jump around it. 6771 static bool isSelectPseudo(MachineInstr &MI) { 6772 switch (MI.getOpcode()) { 6773 case SystemZ::Select32: 6774 case SystemZ::Select64: 6775 case SystemZ::SelectF32: 6776 case SystemZ::SelectF64: 6777 case SystemZ::SelectF128: 6778 case SystemZ::SelectVR32: 6779 case SystemZ::SelectVR64: 6780 case SystemZ::SelectVR128: 6781 return true; 6782 6783 default: 6784 return false; 6785 } 6786 } 6787 6788 // Helper function, which inserts PHI functions into SinkMBB: 6789 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6790 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6791 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6792 MachineBasicBlock *TrueMBB, 6793 MachineBasicBlock *FalseMBB, 6794 MachineBasicBlock *SinkMBB) { 6795 MachineFunction *MF = TrueMBB->getParent(); 6796 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6797 6798 MachineInstr *FirstMI = Selects.front(); 6799 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6800 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6801 6802 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6803 6804 // As we are creating the PHIs, we have to be careful if there is more than 6805 // one. Later Selects may reference the results of earlier Selects, but later 6806 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6807 // That also means that PHI construction must work forward from earlier to 6808 // later, and that the code must maintain a mapping from earlier PHI's 6809 // destination registers, and the registers that went into the PHI. 6810 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6811 6812 for (auto MI : Selects) { 6813 Register DestReg = MI->getOperand(0).getReg(); 6814 Register TrueReg = MI->getOperand(1).getReg(); 6815 Register FalseReg = MI->getOperand(2).getReg(); 6816 6817 // If this Select we are generating is the opposite condition from 6818 // the jump we generated, then we have to swap the operands for the 6819 // PHI that is going to be generated. 6820 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6821 std::swap(TrueReg, FalseReg); 6822 6823 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6824 TrueReg = RegRewriteTable[TrueReg].first; 6825 6826 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6827 FalseReg = RegRewriteTable[FalseReg].second; 6828 6829 DebugLoc DL = MI->getDebugLoc(); 6830 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6831 .addReg(TrueReg).addMBB(TrueMBB) 6832 .addReg(FalseReg).addMBB(FalseMBB); 6833 6834 // Add this PHI to the rewrite table. 6835 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6836 } 6837 6838 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6839 } 6840 6841 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6842 MachineBasicBlock * 6843 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6844 MachineBasicBlock *MBB) const { 6845 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6846 const SystemZInstrInfo *TII = 6847 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6848 6849 unsigned CCValid = MI.getOperand(3).getImm(); 6850 unsigned CCMask = MI.getOperand(4).getImm(); 6851 6852 // If we have a sequence of Select* pseudo instructions using the 6853 // same condition code value, we want to expand all of them into 6854 // a single pair of basic blocks using the same condition. 6855 SmallVector<MachineInstr*, 8> Selects; 6856 SmallVector<MachineInstr*, 8> DbgValues; 6857 Selects.push_back(&MI); 6858 unsigned Count = 0; 6859 for (MachineBasicBlock::iterator NextMIIt = 6860 std::next(MachineBasicBlock::iterator(MI)); 6861 NextMIIt != MBB->end(); ++NextMIIt) { 6862 if (isSelectPseudo(*NextMIIt)) { 6863 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6864 "Bad CCValid operands since CC was not redefined."); 6865 if (NextMIIt->getOperand(4).getImm() == CCMask || 6866 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6867 Selects.push_back(&*NextMIIt); 6868 continue; 6869 } 6870 break; 6871 } 6872 if (NextMIIt->definesRegister(SystemZ::CC) || 6873 NextMIIt->usesCustomInsertionHook()) 6874 break; 6875 bool User = false; 6876 for (auto SelMI : Selects) 6877 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6878 User = true; 6879 break; 6880 } 6881 if (NextMIIt->isDebugInstr()) { 6882 if (User) { 6883 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6884 DbgValues.push_back(&*NextMIIt); 6885 } 6886 } 6887 else if (User || ++Count > 20) 6888 break; 6889 } 6890 6891 MachineInstr *LastMI = Selects.back(); 6892 bool CCKilled = 6893 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6894 MachineBasicBlock *StartMBB = MBB; 6895 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6896 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6897 6898 // Unless CC was killed in the last Select instruction, mark it as 6899 // live-in to both FalseMBB and JoinMBB. 6900 if (!CCKilled) { 6901 FalseMBB->addLiveIn(SystemZ::CC); 6902 JoinMBB->addLiveIn(SystemZ::CC); 6903 } 6904 6905 // StartMBB: 6906 // BRC CCMask, JoinMBB 6907 // # fallthrough to FalseMBB 6908 MBB = StartMBB; 6909 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6910 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6911 MBB->addSuccessor(JoinMBB); 6912 MBB->addSuccessor(FalseMBB); 6913 6914 // FalseMBB: 6915 // # fallthrough to JoinMBB 6916 MBB = FalseMBB; 6917 MBB->addSuccessor(JoinMBB); 6918 6919 // JoinMBB: 6920 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6921 // ... 6922 MBB = JoinMBB; 6923 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6924 for (auto SelMI : Selects) 6925 SelMI->eraseFromParent(); 6926 6927 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6928 for (auto DbgMI : DbgValues) 6929 MBB->splice(InsertPos, StartMBB, DbgMI); 6930 6931 return JoinMBB; 6932 } 6933 6934 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6935 // StoreOpcode is the store to use and Invert says whether the store should 6936 // happen when the condition is false rather than true. If a STORE ON 6937 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6938 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6939 MachineBasicBlock *MBB, 6940 unsigned StoreOpcode, 6941 unsigned STOCOpcode, 6942 bool Invert) const { 6943 const SystemZInstrInfo *TII = 6944 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6945 6946 Register SrcReg = MI.getOperand(0).getReg(); 6947 MachineOperand Base = MI.getOperand(1); 6948 int64_t Disp = MI.getOperand(2).getImm(); 6949 Register IndexReg = MI.getOperand(3).getReg(); 6950 unsigned CCValid = MI.getOperand(4).getImm(); 6951 unsigned CCMask = MI.getOperand(5).getImm(); 6952 DebugLoc DL = MI.getDebugLoc(); 6953 6954 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6955 6956 // Use STOCOpcode if possible. We could use different store patterns in 6957 // order to avoid matching the index register, but the performance trade-offs 6958 // might be more complicated in that case. 6959 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6960 if (Invert) 6961 CCMask ^= CCValid; 6962 6963 // ISel pattern matching also adds a load memory operand of the same 6964 // address, so take special care to find the storing memory operand. 6965 MachineMemOperand *MMO = nullptr; 6966 for (auto *I : MI.memoperands()) 6967 if (I->isStore()) { 6968 MMO = I; 6969 break; 6970 } 6971 6972 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6973 .addReg(SrcReg) 6974 .add(Base) 6975 .addImm(Disp) 6976 .addImm(CCValid) 6977 .addImm(CCMask) 6978 .addMemOperand(MMO); 6979 6980 MI.eraseFromParent(); 6981 return MBB; 6982 } 6983 6984 // Get the condition needed to branch around the store. 6985 if (!Invert) 6986 CCMask ^= CCValid; 6987 6988 MachineBasicBlock *StartMBB = MBB; 6989 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6990 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6991 6992 // Unless CC was killed in the CondStore instruction, mark it as 6993 // live-in to both FalseMBB and JoinMBB. 6994 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6995 FalseMBB->addLiveIn(SystemZ::CC); 6996 JoinMBB->addLiveIn(SystemZ::CC); 6997 } 6998 6999 // StartMBB: 7000 // BRC CCMask, JoinMBB 7001 // # fallthrough to FalseMBB 7002 MBB = StartMBB; 7003 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7004 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7005 MBB->addSuccessor(JoinMBB); 7006 MBB->addSuccessor(FalseMBB); 7007 7008 // FalseMBB: 7009 // store %SrcReg, %Disp(%Index,%Base) 7010 // # fallthrough to JoinMBB 7011 MBB = FalseMBB; 7012 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7013 .addReg(SrcReg) 7014 .add(Base) 7015 .addImm(Disp) 7016 .addReg(IndexReg); 7017 MBB->addSuccessor(JoinMBB); 7018 7019 MI.eraseFromParent(); 7020 return JoinMBB; 7021 } 7022 7023 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7024 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7025 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7026 // BitSize is the width of the field in bits, or 0 if this is a partword 7027 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7028 // is one of the operands. Invert says whether the field should be 7029 // inverted after performing BinOpcode (e.g. for NAND). 7030 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7031 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7032 unsigned BitSize, bool Invert) const { 7033 MachineFunction &MF = *MBB->getParent(); 7034 const SystemZInstrInfo *TII = 7035 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7036 MachineRegisterInfo &MRI = MF.getRegInfo(); 7037 bool IsSubWord = (BitSize < 32); 7038 7039 // Extract the operands. Base can be a register or a frame index. 7040 // Src2 can be a register or immediate. 7041 Register Dest = MI.getOperand(0).getReg(); 7042 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7043 int64_t Disp = MI.getOperand(2).getImm(); 7044 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7045 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7046 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7047 DebugLoc DL = MI.getDebugLoc(); 7048 if (IsSubWord) 7049 BitSize = MI.getOperand(6).getImm(); 7050 7051 // Subword operations use 32-bit registers. 7052 const TargetRegisterClass *RC = (BitSize <= 32 ? 7053 &SystemZ::GR32BitRegClass : 7054 &SystemZ::GR64BitRegClass); 7055 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7056 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7057 7058 // Get the right opcodes for the displacement. 7059 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7060 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7061 assert(LOpcode && CSOpcode && "Displacement out of range"); 7062 7063 // Create virtual registers for temporary results. 7064 Register OrigVal = MRI.createVirtualRegister(RC); 7065 Register OldVal = MRI.createVirtualRegister(RC); 7066 Register NewVal = (BinOpcode || IsSubWord ? 7067 MRI.createVirtualRegister(RC) : Src2.getReg()); 7068 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7069 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7070 7071 // Insert a basic block for the main loop. 7072 MachineBasicBlock *StartMBB = MBB; 7073 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7074 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7075 7076 // StartMBB: 7077 // ... 7078 // %OrigVal = L Disp(%Base) 7079 // # fall through to LoopMMB 7080 MBB = StartMBB; 7081 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7082 MBB->addSuccessor(LoopMBB); 7083 7084 // LoopMBB: 7085 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7086 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7087 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7088 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7089 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7090 // JNE LoopMBB 7091 // # fall through to DoneMMB 7092 MBB = LoopMBB; 7093 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7094 .addReg(OrigVal).addMBB(StartMBB) 7095 .addReg(Dest).addMBB(LoopMBB); 7096 if (IsSubWord) 7097 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7098 .addReg(OldVal).addReg(BitShift).addImm(0); 7099 if (Invert) { 7100 // Perform the operation normally and then invert every bit of the field. 7101 Register Tmp = MRI.createVirtualRegister(RC); 7102 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7103 if (BitSize <= 32) 7104 // XILF with the upper BitSize bits set. 7105 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7106 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7107 else { 7108 // Use LCGR and add -1 to the result, which is more compact than 7109 // an XILF, XILH pair. 7110 Register Tmp2 = MRI.createVirtualRegister(RC); 7111 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7112 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7113 .addReg(Tmp2).addImm(-1); 7114 } 7115 } else if (BinOpcode) 7116 // A simply binary operation. 7117 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7118 .addReg(RotatedOldVal) 7119 .add(Src2); 7120 else if (IsSubWord) 7121 // Use RISBG to rotate Src2 into position and use it to replace the 7122 // field in RotatedOldVal. 7123 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7124 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7125 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7126 if (IsSubWord) 7127 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7128 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7129 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7130 .addReg(OldVal) 7131 .addReg(NewVal) 7132 .add(Base) 7133 .addImm(Disp); 7134 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7135 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7136 MBB->addSuccessor(LoopMBB); 7137 MBB->addSuccessor(DoneMBB); 7138 7139 MI.eraseFromParent(); 7140 return DoneMBB; 7141 } 7142 7143 // Implement EmitInstrWithCustomInserter for pseudo 7144 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7145 // instruction that should be used to compare the current field with the 7146 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7147 // for when the current field should be kept. BitSize is the width of 7148 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7149 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7150 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7151 unsigned KeepOldMask, unsigned BitSize) const { 7152 MachineFunction &MF = *MBB->getParent(); 7153 const SystemZInstrInfo *TII = 7154 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7155 MachineRegisterInfo &MRI = MF.getRegInfo(); 7156 bool IsSubWord = (BitSize < 32); 7157 7158 // Extract the operands. Base can be a register or a frame index. 7159 Register Dest = MI.getOperand(0).getReg(); 7160 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7161 int64_t Disp = MI.getOperand(2).getImm(); 7162 Register Src2 = MI.getOperand(3).getReg(); 7163 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7164 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7165 DebugLoc DL = MI.getDebugLoc(); 7166 if (IsSubWord) 7167 BitSize = MI.getOperand(6).getImm(); 7168 7169 // Subword operations use 32-bit registers. 7170 const TargetRegisterClass *RC = (BitSize <= 32 ? 7171 &SystemZ::GR32BitRegClass : 7172 &SystemZ::GR64BitRegClass); 7173 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7174 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7175 7176 // Get the right opcodes for the displacement. 7177 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7178 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7179 assert(LOpcode && CSOpcode && "Displacement out of range"); 7180 7181 // Create virtual registers for temporary results. 7182 Register OrigVal = MRI.createVirtualRegister(RC); 7183 Register OldVal = MRI.createVirtualRegister(RC); 7184 Register NewVal = MRI.createVirtualRegister(RC); 7185 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7186 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7187 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7188 7189 // Insert 3 basic blocks for the loop. 7190 MachineBasicBlock *StartMBB = MBB; 7191 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7192 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7193 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7194 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7195 7196 // StartMBB: 7197 // ... 7198 // %OrigVal = L Disp(%Base) 7199 // # fall through to LoopMMB 7200 MBB = StartMBB; 7201 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7202 MBB->addSuccessor(LoopMBB); 7203 7204 // LoopMBB: 7205 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7206 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7207 // CompareOpcode %RotatedOldVal, %Src2 7208 // BRC KeepOldMask, UpdateMBB 7209 MBB = LoopMBB; 7210 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7211 .addReg(OrigVal).addMBB(StartMBB) 7212 .addReg(Dest).addMBB(UpdateMBB); 7213 if (IsSubWord) 7214 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7215 .addReg(OldVal).addReg(BitShift).addImm(0); 7216 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7217 .addReg(RotatedOldVal).addReg(Src2); 7218 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7219 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7220 MBB->addSuccessor(UpdateMBB); 7221 MBB->addSuccessor(UseAltMBB); 7222 7223 // UseAltMBB: 7224 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7225 // # fall through to UpdateMMB 7226 MBB = UseAltMBB; 7227 if (IsSubWord) 7228 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7229 .addReg(RotatedOldVal).addReg(Src2) 7230 .addImm(32).addImm(31 + BitSize).addImm(0); 7231 MBB->addSuccessor(UpdateMBB); 7232 7233 // UpdateMBB: 7234 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7235 // [ %RotatedAltVal, UseAltMBB ] 7236 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7237 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7238 // JNE LoopMBB 7239 // # fall through to DoneMMB 7240 MBB = UpdateMBB; 7241 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7242 .addReg(RotatedOldVal).addMBB(LoopMBB) 7243 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7244 if (IsSubWord) 7245 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7246 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7247 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7248 .addReg(OldVal) 7249 .addReg(NewVal) 7250 .add(Base) 7251 .addImm(Disp); 7252 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7253 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7254 MBB->addSuccessor(LoopMBB); 7255 MBB->addSuccessor(DoneMBB); 7256 7257 MI.eraseFromParent(); 7258 return DoneMBB; 7259 } 7260 7261 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7262 // instruction MI. 7263 MachineBasicBlock * 7264 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7265 MachineBasicBlock *MBB) const { 7266 7267 MachineFunction &MF = *MBB->getParent(); 7268 const SystemZInstrInfo *TII = 7269 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7270 MachineRegisterInfo &MRI = MF.getRegInfo(); 7271 7272 // Extract the operands. Base can be a register or a frame index. 7273 Register Dest = MI.getOperand(0).getReg(); 7274 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7275 int64_t Disp = MI.getOperand(2).getImm(); 7276 Register OrigCmpVal = MI.getOperand(3).getReg(); 7277 Register OrigSwapVal = MI.getOperand(4).getReg(); 7278 Register BitShift = MI.getOperand(5).getReg(); 7279 Register NegBitShift = MI.getOperand(6).getReg(); 7280 int64_t BitSize = MI.getOperand(7).getImm(); 7281 DebugLoc DL = MI.getDebugLoc(); 7282 7283 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7284 7285 // Get the right opcodes for the displacement. 7286 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7287 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7288 assert(LOpcode && CSOpcode && "Displacement out of range"); 7289 7290 // Create virtual registers for temporary results. 7291 Register OrigOldVal = MRI.createVirtualRegister(RC); 7292 Register OldVal = MRI.createVirtualRegister(RC); 7293 Register CmpVal = MRI.createVirtualRegister(RC); 7294 Register SwapVal = MRI.createVirtualRegister(RC); 7295 Register StoreVal = MRI.createVirtualRegister(RC); 7296 Register RetryOldVal = MRI.createVirtualRegister(RC); 7297 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7298 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7299 7300 // Insert 2 basic blocks for the loop. 7301 MachineBasicBlock *StartMBB = MBB; 7302 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7303 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7304 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7305 7306 // StartMBB: 7307 // ... 7308 // %OrigOldVal = L Disp(%Base) 7309 // # fall through to LoopMMB 7310 MBB = StartMBB; 7311 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7312 .add(Base) 7313 .addImm(Disp) 7314 .addReg(0); 7315 MBB->addSuccessor(LoopMBB); 7316 7317 // LoopMBB: 7318 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7319 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7320 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7321 // %Dest = RLL %OldVal, BitSize(%BitShift) 7322 // ^^ The low BitSize bits contain the field 7323 // of interest. 7324 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7325 // ^^ Replace the upper 32-BitSize bits of the 7326 // comparison value with those that we loaded, 7327 // so that we can use a full word comparison. 7328 // CR %Dest, %RetryCmpVal 7329 // JNE DoneMBB 7330 // # Fall through to SetMBB 7331 MBB = LoopMBB; 7332 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7333 .addReg(OrigOldVal).addMBB(StartMBB) 7334 .addReg(RetryOldVal).addMBB(SetMBB); 7335 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7336 .addReg(OrigCmpVal).addMBB(StartMBB) 7337 .addReg(RetryCmpVal).addMBB(SetMBB); 7338 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7339 .addReg(OrigSwapVal).addMBB(StartMBB) 7340 .addReg(RetrySwapVal).addMBB(SetMBB); 7341 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7342 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7343 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7344 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7345 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7346 .addReg(Dest).addReg(RetryCmpVal); 7347 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7348 .addImm(SystemZ::CCMASK_ICMP) 7349 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7350 MBB->addSuccessor(DoneMBB); 7351 MBB->addSuccessor(SetMBB); 7352 7353 // SetMBB: 7354 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7355 // ^^ Replace the upper 32-BitSize bits of the new 7356 // value with those that we loaded. 7357 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7358 // ^^ Rotate the new field to its proper position. 7359 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7360 // JNE LoopMBB 7361 // # fall through to ExitMMB 7362 MBB = SetMBB; 7363 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7364 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7365 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7366 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7367 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7368 .addReg(OldVal) 7369 .addReg(StoreVal) 7370 .add(Base) 7371 .addImm(Disp); 7372 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7373 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7374 MBB->addSuccessor(LoopMBB); 7375 MBB->addSuccessor(DoneMBB); 7376 7377 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7378 // to the block after the loop. At this point, CC may have been defined 7379 // either by the CR in LoopMBB or by the CS in SetMBB. 7380 if (!MI.registerDefIsDead(SystemZ::CC)) 7381 DoneMBB->addLiveIn(SystemZ::CC); 7382 7383 MI.eraseFromParent(); 7384 return DoneMBB; 7385 } 7386 7387 // Emit a move from two GR64s to a GR128. 7388 MachineBasicBlock * 7389 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7390 MachineBasicBlock *MBB) const { 7391 MachineFunction &MF = *MBB->getParent(); 7392 const SystemZInstrInfo *TII = 7393 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7394 MachineRegisterInfo &MRI = MF.getRegInfo(); 7395 DebugLoc DL = MI.getDebugLoc(); 7396 7397 Register Dest = MI.getOperand(0).getReg(); 7398 Register Hi = MI.getOperand(1).getReg(); 7399 Register Lo = MI.getOperand(2).getReg(); 7400 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7401 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7402 7403 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7404 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7405 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7406 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7407 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7408 7409 MI.eraseFromParent(); 7410 return MBB; 7411 } 7412 7413 // Emit an extension from a GR64 to a GR128. ClearEven is true 7414 // if the high register of the GR128 value must be cleared or false if 7415 // it's "don't care". 7416 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7417 MachineBasicBlock *MBB, 7418 bool ClearEven) const { 7419 MachineFunction &MF = *MBB->getParent(); 7420 const SystemZInstrInfo *TII = 7421 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7422 MachineRegisterInfo &MRI = MF.getRegInfo(); 7423 DebugLoc DL = MI.getDebugLoc(); 7424 7425 Register Dest = MI.getOperand(0).getReg(); 7426 Register Src = MI.getOperand(1).getReg(); 7427 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7428 7429 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7430 if (ClearEven) { 7431 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7432 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7433 7434 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7435 .addImm(0); 7436 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7437 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7438 In128 = NewIn128; 7439 } 7440 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7441 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7442 7443 MI.eraseFromParent(); 7444 return MBB; 7445 } 7446 7447 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7448 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7449 MachineFunction &MF = *MBB->getParent(); 7450 const SystemZInstrInfo *TII = 7451 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7452 MachineRegisterInfo &MRI = MF.getRegInfo(); 7453 DebugLoc DL = MI.getDebugLoc(); 7454 7455 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7456 uint64_t DestDisp = MI.getOperand(1).getImm(); 7457 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7458 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7459 uint64_t Length = MI.getOperand(4).getImm(); 7460 7461 // When generating more than one CLC, all but the last will need to 7462 // branch to the end when a difference is found. 7463 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7464 splitBlockAfter(MI, MBB) : nullptr); 7465 7466 // Check for the loop form, in which operand 5 is the trip count. 7467 if (MI.getNumExplicitOperands() > 5) { 7468 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7469 7470 Register StartCountReg = MI.getOperand(5).getReg(); 7471 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7472 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7473 forceReg(MI, DestBase, TII)); 7474 7475 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7476 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7477 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7478 MRI.createVirtualRegister(RC)); 7479 Register NextSrcReg = MRI.createVirtualRegister(RC); 7480 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7481 MRI.createVirtualRegister(RC)); 7482 7483 RC = &SystemZ::GR64BitRegClass; 7484 Register ThisCountReg = MRI.createVirtualRegister(RC); 7485 Register NextCountReg = MRI.createVirtualRegister(RC); 7486 7487 MachineBasicBlock *StartMBB = MBB; 7488 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7489 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7490 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7491 7492 // StartMBB: 7493 // # fall through to LoopMMB 7494 MBB->addSuccessor(LoopMBB); 7495 7496 // LoopMBB: 7497 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7498 // [ %NextDestReg, NextMBB ] 7499 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7500 // [ %NextSrcReg, NextMBB ] 7501 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7502 // [ %NextCountReg, NextMBB ] 7503 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7504 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7505 // ( JLH EndMBB ) 7506 // 7507 // The prefetch is used only for MVC. The JLH is used only for CLC. 7508 MBB = LoopMBB; 7509 7510 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7511 .addReg(StartDestReg).addMBB(StartMBB) 7512 .addReg(NextDestReg).addMBB(NextMBB); 7513 if (!HaveSingleBase) 7514 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7515 .addReg(StartSrcReg).addMBB(StartMBB) 7516 .addReg(NextSrcReg).addMBB(NextMBB); 7517 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7518 .addReg(StartCountReg).addMBB(StartMBB) 7519 .addReg(NextCountReg).addMBB(NextMBB); 7520 if (Opcode == SystemZ::MVC) 7521 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7522 .addImm(SystemZ::PFD_WRITE) 7523 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7524 BuildMI(MBB, DL, TII->get(Opcode)) 7525 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7526 .addReg(ThisSrcReg).addImm(SrcDisp); 7527 if (EndMBB) { 7528 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7529 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7530 .addMBB(EndMBB); 7531 MBB->addSuccessor(EndMBB); 7532 MBB->addSuccessor(NextMBB); 7533 } 7534 7535 // NextMBB: 7536 // %NextDestReg = LA 256(%ThisDestReg) 7537 // %NextSrcReg = LA 256(%ThisSrcReg) 7538 // %NextCountReg = AGHI %ThisCountReg, -1 7539 // CGHI %NextCountReg, 0 7540 // JLH LoopMBB 7541 // # fall through to DoneMMB 7542 // 7543 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7544 MBB = NextMBB; 7545 7546 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7547 .addReg(ThisDestReg).addImm(256).addReg(0); 7548 if (!HaveSingleBase) 7549 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7550 .addReg(ThisSrcReg).addImm(256).addReg(0); 7551 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7552 .addReg(ThisCountReg).addImm(-1); 7553 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7554 .addReg(NextCountReg).addImm(0); 7555 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7556 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7557 .addMBB(LoopMBB); 7558 MBB->addSuccessor(LoopMBB); 7559 MBB->addSuccessor(DoneMBB); 7560 7561 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7562 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7563 Length &= 255; 7564 if (EndMBB && !Length) 7565 // If the loop handled the whole CLC range, DoneMBB will be empty with 7566 // CC live-through into EndMBB, so add it as live-in. 7567 DoneMBB->addLiveIn(SystemZ::CC); 7568 MBB = DoneMBB; 7569 } 7570 // Handle any remaining bytes with straight-line code. 7571 while (Length > 0) { 7572 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7573 // The previous iteration might have created out-of-range displacements. 7574 // Apply them using LAY if so. 7575 if (!isUInt<12>(DestDisp)) { 7576 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7577 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7578 .add(DestBase) 7579 .addImm(DestDisp) 7580 .addReg(0); 7581 DestBase = MachineOperand::CreateReg(Reg, false); 7582 DestDisp = 0; 7583 } 7584 if (!isUInt<12>(SrcDisp)) { 7585 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7586 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7587 .add(SrcBase) 7588 .addImm(SrcDisp) 7589 .addReg(0); 7590 SrcBase = MachineOperand::CreateReg(Reg, false); 7591 SrcDisp = 0; 7592 } 7593 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7594 .add(DestBase) 7595 .addImm(DestDisp) 7596 .addImm(ThisLength) 7597 .add(SrcBase) 7598 .addImm(SrcDisp) 7599 .setMemRefs(MI.memoperands()); 7600 DestDisp += ThisLength; 7601 SrcDisp += ThisLength; 7602 Length -= ThisLength; 7603 // If there's another CLC to go, branch to the end if a difference 7604 // was found. 7605 if (EndMBB && Length > 0) { 7606 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7607 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7608 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7609 .addMBB(EndMBB); 7610 MBB->addSuccessor(EndMBB); 7611 MBB->addSuccessor(NextMBB); 7612 MBB = NextMBB; 7613 } 7614 } 7615 if (EndMBB) { 7616 MBB->addSuccessor(EndMBB); 7617 MBB = EndMBB; 7618 MBB->addLiveIn(SystemZ::CC); 7619 } 7620 7621 MI.eraseFromParent(); 7622 return MBB; 7623 } 7624 7625 // Decompose string pseudo-instruction MI into a loop that continually performs 7626 // Opcode until CC != 3. 7627 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7628 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7629 MachineFunction &MF = *MBB->getParent(); 7630 const SystemZInstrInfo *TII = 7631 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7632 MachineRegisterInfo &MRI = MF.getRegInfo(); 7633 DebugLoc DL = MI.getDebugLoc(); 7634 7635 uint64_t End1Reg = MI.getOperand(0).getReg(); 7636 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7637 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7638 uint64_t CharReg = MI.getOperand(3).getReg(); 7639 7640 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7641 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7642 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7643 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7644 7645 MachineBasicBlock *StartMBB = MBB; 7646 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7647 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7648 7649 // StartMBB: 7650 // # fall through to LoopMMB 7651 MBB->addSuccessor(LoopMBB); 7652 7653 // LoopMBB: 7654 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7655 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7656 // R0L = %CharReg 7657 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7658 // JO LoopMBB 7659 // # fall through to DoneMMB 7660 // 7661 // The load of R0L can be hoisted by post-RA LICM. 7662 MBB = LoopMBB; 7663 7664 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7665 .addReg(Start1Reg).addMBB(StartMBB) 7666 .addReg(End1Reg).addMBB(LoopMBB); 7667 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7668 .addReg(Start2Reg).addMBB(StartMBB) 7669 .addReg(End2Reg).addMBB(LoopMBB); 7670 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7671 BuildMI(MBB, DL, TII->get(Opcode)) 7672 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7673 .addReg(This1Reg).addReg(This2Reg); 7674 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7675 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7676 MBB->addSuccessor(LoopMBB); 7677 MBB->addSuccessor(DoneMBB); 7678 7679 DoneMBB->addLiveIn(SystemZ::CC); 7680 7681 MI.eraseFromParent(); 7682 return DoneMBB; 7683 } 7684 7685 // Update TBEGIN instruction with final opcode and register clobbers. 7686 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7687 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7688 bool NoFloat) const { 7689 MachineFunction &MF = *MBB->getParent(); 7690 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7691 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7692 7693 // Update opcode. 7694 MI.setDesc(TII->get(Opcode)); 7695 7696 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7697 // Make sure to add the corresponding GRSM bits if they are missing. 7698 uint64_t Control = MI.getOperand(2).getImm(); 7699 static const unsigned GPRControlBit[16] = { 7700 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7701 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7702 }; 7703 Control |= GPRControlBit[15]; 7704 if (TFI->hasFP(MF)) 7705 Control |= GPRControlBit[11]; 7706 MI.getOperand(2).setImm(Control); 7707 7708 // Add GPR clobbers. 7709 for (int I = 0; I < 16; I++) { 7710 if ((Control & GPRControlBit[I]) == 0) { 7711 unsigned Reg = SystemZMC::GR64Regs[I]; 7712 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7713 } 7714 } 7715 7716 // Add FPR/VR clobbers. 7717 if (!NoFloat && (Control & 4) != 0) { 7718 if (Subtarget.hasVector()) { 7719 for (int I = 0; I < 32; I++) { 7720 unsigned Reg = SystemZMC::VR128Regs[I]; 7721 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7722 } 7723 } else { 7724 for (int I = 0; I < 16; I++) { 7725 unsigned Reg = SystemZMC::FP64Regs[I]; 7726 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7727 } 7728 } 7729 } 7730 7731 return MBB; 7732 } 7733 7734 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7735 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7736 MachineFunction &MF = *MBB->getParent(); 7737 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7738 const SystemZInstrInfo *TII = 7739 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7740 DebugLoc DL = MI.getDebugLoc(); 7741 7742 Register SrcReg = MI.getOperand(0).getReg(); 7743 7744 // Create new virtual register of the same class as source. 7745 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7746 Register DstReg = MRI->createVirtualRegister(RC); 7747 7748 // Replace pseudo with a normal load-and-test that models the def as 7749 // well. 7750 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7751 .addReg(SrcReg) 7752 .setMIFlags(MI.getFlags()); 7753 MI.eraseFromParent(); 7754 7755 return MBB; 7756 } 7757 7758 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7759 MachineInstr &MI, MachineBasicBlock *MBB) const { 7760 switch (MI.getOpcode()) { 7761 case SystemZ::Select32: 7762 case SystemZ::Select64: 7763 case SystemZ::SelectF32: 7764 case SystemZ::SelectF64: 7765 case SystemZ::SelectF128: 7766 case SystemZ::SelectVR32: 7767 case SystemZ::SelectVR64: 7768 case SystemZ::SelectVR128: 7769 return emitSelect(MI, MBB); 7770 7771 case SystemZ::CondStore8Mux: 7772 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7773 case SystemZ::CondStore8MuxInv: 7774 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7775 case SystemZ::CondStore16Mux: 7776 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7777 case SystemZ::CondStore16MuxInv: 7778 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7779 case SystemZ::CondStore32Mux: 7780 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7781 case SystemZ::CondStore32MuxInv: 7782 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7783 case SystemZ::CondStore8: 7784 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7785 case SystemZ::CondStore8Inv: 7786 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7787 case SystemZ::CondStore16: 7788 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7789 case SystemZ::CondStore16Inv: 7790 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7791 case SystemZ::CondStore32: 7792 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7793 case SystemZ::CondStore32Inv: 7794 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7795 case SystemZ::CondStore64: 7796 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7797 case SystemZ::CondStore64Inv: 7798 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7799 case SystemZ::CondStoreF32: 7800 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7801 case SystemZ::CondStoreF32Inv: 7802 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7803 case SystemZ::CondStoreF64: 7804 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7805 case SystemZ::CondStoreF64Inv: 7806 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7807 7808 case SystemZ::PAIR128: 7809 return emitPair128(MI, MBB); 7810 case SystemZ::AEXT128: 7811 return emitExt128(MI, MBB, false); 7812 case SystemZ::ZEXT128: 7813 return emitExt128(MI, MBB, true); 7814 7815 case SystemZ::ATOMIC_SWAPW: 7816 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7817 case SystemZ::ATOMIC_SWAP_32: 7818 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7819 case SystemZ::ATOMIC_SWAP_64: 7820 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7821 7822 case SystemZ::ATOMIC_LOADW_AR: 7823 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7824 case SystemZ::ATOMIC_LOADW_AFI: 7825 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7826 case SystemZ::ATOMIC_LOAD_AR: 7827 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7828 case SystemZ::ATOMIC_LOAD_AHI: 7829 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7830 case SystemZ::ATOMIC_LOAD_AFI: 7831 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7832 case SystemZ::ATOMIC_LOAD_AGR: 7833 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7834 case SystemZ::ATOMIC_LOAD_AGHI: 7835 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7836 case SystemZ::ATOMIC_LOAD_AGFI: 7837 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7838 7839 case SystemZ::ATOMIC_LOADW_SR: 7840 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7841 case SystemZ::ATOMIC_LOAD_SR: 7842 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7843 case SystemZ::ATOMIC_LOAD_SGR: 7844 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7845 7846 case SystemZ::ATOMIC_LOADW_NR: 7847 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7848 case SystemZ::ATOMIC_LOADW_NILH: 7849 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7850 case SystemZ::ATOMIC_LOAD_NR: 7851 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7852 case SystemZ::ATOMIC_LOAD_NILL: 7853 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7854 case SystemZ::ATOMIC_LOAD_NILH: 7855 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7856 case SystemZ::ATOMIC_LOAD_NILF: 7857 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7858 case SystemZ::ATOMIC_LOAD_NGR: 7859 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7860 case SystemZ::ATOMIC_LOAD_NILL64: 7861 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7862 case SystemZ::ATOMIC_LOAD_NILH64: 7863 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7864 case SystemZ::ATOMIC_LOAD_NIHL64: 7865 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7866 case SystemZ::ATOMIC_LOAD_NIHH64: 7867 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7868 case SystemZ::ATOMIC_LOAD_NILF64: 7869 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7870 case SystemZ::ATOMIC_LOAD_NIHF64: 7871 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7872 7873 case SystemZ::ATOMIC_LOADW_OR: 7874 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7875 case SystemZ::ATOMIC_LOADW_OILH: 7876 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7877 case SystemZ::ATOMIC_LOAD_OR: 7878 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7879 case SystemZ::ATOMIC_LOAD_OILL: 7880 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7881 case SystemZ::ATOMIC_LOAD_OILH: 7882 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7883 case SystemZ::ATOMIC_LOAD_OILF: 7884 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7885 case SystemZ::ATOMIC_LOAD_OGR: 7886 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7887 case SystemZ::ATOMIC_LOAD_OILL64: 7888 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7889 case SystemZ::ATOMIC_LOAD_OILH64: 7890 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7891 case SystemZ::ATOMIC_LOAD_OIHL64: 7892 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7893 case SystemZ::ATOMIC_LOAD_OIHH64: 7894 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7895 case SystemZ::ATOMIC_LOAD_OILF64: 7896 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7897 case SystemZ::ATOMIC_LOAD_OIHF64: 7898 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7899 7900 case SystemZ::ATOMIC_LOADW_XR: 7901 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7902 case SystemZ::ATOMIC_LOADW_XILF: 7903 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7904 case SystemZ::ATOMIC_LOAD_XR: 7905 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7906 case SystemZ::ATOMIC_LOAD_XILF: 7907 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7908 case SystemZ::ATOMIC_LOAD_XGR: 7909 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7910 case SystemZ::ATOMIC_LOAD_XILF64: 7911 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7912 case SystemZ::ATOMIC_LOAD_XIHF64: 7913 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7914 7915 case SystemZ::ATOMIC_LOADW_NRi: 7916 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7917 case SystemZ::ATOMIC_LOADW_NILHi: 7918 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7919 case SystemZ::ATOMIC_LOAD_NRi: 7920 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7921 case SystemZ::ATOMIC_LOAD_NILLi: 7922 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7923 case SystemZ::ATOMIC_LOAD_NILHi: 7924 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7925 case SystemZ::ATOMIC_LOAD_NILFi: 7926 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7927 case SystemZ::ATOMIC_LOAD_NGRi: 7928 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7929 case SystemZ::ATOMIC_LOAD_NILL64i: 7930 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7931 case SystemZ::ATOMIC_LOAD_NILH64i: 7932 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7933 case SystemZ::ATOMIC_LOAD_NIHL64i: 7934 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7935 case SystemZ::ATOMIC_LOAD_NIHH64i: 7936 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7937 case SystemZ::ATOMIC_LOAD_NILF64i: 7938 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7939 case SystemZ::ATOMIC_LOAD_NIHF64i: 7940 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7941 7942 case SystemZ::ATOMIC_LOADW_MIN: 7943 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7944 SystemZ::CCMASK_CMP_LE, 0); 7945 case SystemZ::ATOMIC_LOAD_MIN_32: 7946 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7947 SystemZ::CCMASK_CMP_LE, 32); 7948 case SystemZ::ATOMIC_LOAD_MIN_64: 7949 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7950 SystemZ::CCMASK_CMP_LE, 64); 7951 7952 case SystemZ::ATOMIC_LOADW_MAX: 7953 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7954 SystemZ::CCMASK_CMP_GE, 0); 7955 case SystemZ::ATOMIC_LOAD_MAX_32: 7956 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7957 SystemZ::CCMASK_CMP_GE, 32); 7958 case SystemZ::ATOMIC_LOAD_MAX_64: 7959 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7960 SystemZ::CCMASK_CMP_GE, 64); 7961 7962 case SystemZ::ATOMIC_LOADW_UMIN: 7963 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7964 SystemZ::CCMASK_CMP_LE, 0); 7965 case SystemZ::ATOMIC_LOAD_UMIN_32: 7966 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7967 SystemZ::CCMASK_CMP_LE, 32); 7968 case SystemZ::ATOMIC_LOAD_UMIN_64: 7969 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7970 SystemZ::CCMASK_CMP_LE, 64); 7971 7972 case SystemZ::ATOMIC_LOADW_UMAX: 7973 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7974 SystemZ::CCMASK_CMP_GE, 0); 7975 case SystemZ::ATOMIC_LOAD_UMAX_32: 7976 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7977 SystemZ::CCMASK_CMP_GE, 32); 7978 case SystemZ::ATOMIC_LOAD_UMAX_64: 7979 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7980 SystemZ::CCMASK_CMP_GE, 64); 7981 7982 case SystemZ::ATOMIC_CMP_SWAPW: 7983 return emitAtomicCmpSwapW(MI, MBB); 7984 case SystemZ::MVCSequence: 7985 case SystemZ::MVCLoop: 7986 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7987 case SystemZ::NCSequence: 7988 case SystemZ::NCLoop: 7989 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7990 case SystemZ::OCSequence: 7991 case SystemZ::OCLoop: 7992 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7993 case SystemZ::XCSequence: 7994 case SystemZ::XCLoop: 7995 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7996 case SystemZ::CLCSequence: 7997 case SystemZ::CLCLoop: 7998 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7999 case SystemZ::CLSTLoop: 8000 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8001 case SystemZ::MVSTLoop: 8002 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8003 case SystemZ::SRSTLoop: 8004 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8005 case SystemZ::TBEGIN: 8006 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8007 case SystemZ::TBEGIN_nofloat: 8008 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8009 case SystemZ::TBEGINC: 8010 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8011 case SystemZ::LTEBRCompare_VecPseudo: 8012 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8013 case SystemZ::LTDBRCompare_VecPseudo: 8014 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8015 case SystemZ::LTXBRCompare_VecPseudo: 8016 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8017 8018 case TargetOpcode::STACKMAP: 8019 case TargetOpcode::PATCHPOINT: 8020 return emitPatchPoint(MI, MBB); 8021 8022 default: 8023 llvm_unreachable("Unexpected instr type to insert"); 8024 } 8025 } 8026 8027 // This is only used by the isel schedulers, and is needed only to prevent 8028 // compiler from crashing when list-ilp is used. 8029 const TargetRegisterClass * 8030 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8031 if (VT == MVT::Untyped) 8032 return &SystemZ::ADDR128BitRegClass; 8033 return TargetLowering::getRepRegClassFor(VT); 8034 } 8035