1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 #include <optional> 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "systemz-lower" 33 34 namespace { 35 // Represents information about a comparison. 36 struct Comparison { 37 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 38 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 39 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 40 41 // The operands to the comparison. 42 SDValue Op0, Op1; 43 44 // Chain if this is a strict floating-point comparison. 45 SDValue Chain; 46 47 // The opcode that should be used to compare Op0 and Op1. 48 unsigned Opcode; 49 50 // A SystemZICMP value. Only used for integer comparisons. 51 unsigned ICmpType; 52 53 // The mask of CC values that Opcode can produce. 54 unsigned CCValid; 55 56 // The mask of CC values for which the original condition is true. 57 unsigned CCMask; 58 }; 59 } // end anonymous namespace 60 61 // Classify VT as either 32 or 64 bit. 62 static bool is32Bit(EVT VT) { 63 switch (VT.getSimpleVT().SimpleTy) { 64 case MVT::i32: 65 return true; 66 case MVT::i64: 67 return false; 68 default: 69 llvm_unreachable("Unsupported type"); 70 } 71 } 72 73 // Return a version of MachineOperand that can be safely used before the 74 // final use. 75 static MachineOperand earlyUseOperand(MachineOperand Op) { 76 if (Op.isReg()) 77 Op.setIsKill(false); 78 return Op; 79 } 80 81 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 82 const SystemZSubtarget &STI) 83 : TargetLowering(TM), Subtarget(STI) { 84 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 85 86 auto *Regs = STI.getSpecialRegisters(); 87 88 // Set up the register classes. 89 if (Subtarget.hasHighWord()) 90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 91 else 92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 93 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 94 if (!useSoftFloat()) { 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 if (Subtarget.hasVectorEnhancements1()) 103 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 104 else 105 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 106 107 if (Subtarget.hasVector()) { 108 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 113 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 114 } 115 116 if (Subtarget.hasVector()) 117 addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass); 118 } 119 120 // Compute derived properties from the register classes 121 computeRegisterProperties(Subtarget.getRegisterInfo()); 122 123 // Set up special registers. 124 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 125 126 // TODO: It may be better to default to latency-oriented scheduling, however 127 // LLVM's current latency-oriented scheduler can't handle physreg definitions 128 // such as SystemZ has with CC, so set this to the register-pressure 129 // scheduler, because it can. 130 setSchedulingPreference(Sched::RegPressure); 131 132 setBooleanContents(ZeroOrOneBooleanContent); 133 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 134 135 setMaxAtomicSizeInBitsSupported(128); 136 137 // Instructions are strings of 2-byte aligned 2-byte values. 138 setMinFunctionAlignment(Align(2)); 139 // For performance reasons we prefer 16-byte alignment. 140 setPrefFunctionAlignment(Align(16)); 141 142 // Handle operations that are handled in a similar way for all types. 143 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 144 I <= MVT::LAST_FP_VALUETYPE; 145 ++I) { 146 MVT VT = MVT::SimpleValueType(I); 147 if (isTypeLegal(VT)) { 148 // Lower SET_CC into an IPM-based sequence. 149 setOperationAction(ISD::SETCC, VT, Custom); 150 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 151 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 152 153 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 154 setOperationAction(ISD::SELECT, VT, Expand); 155 156 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 157 setOperationAction(ISD::SELECT_CC, VT, Custom); 158 setOperationAction(ISD::BR_CC, VT, Custom); 159 } 160 } 161 162 // Expand jump table branches as address arithmetic followed by an 163 // indirect jump. 164 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 165 166 // Expand BRCOND into a BR_CC (see above). 167 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 168 169 // Handle integer types except i128. 170 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 171 I <= MVT::LAST_INTEGER_VALUETYPE; 172 ++I) { 173 MVT VT = MVT::SimpleValueType(I); 174 if (isTypeLegal(VT) && VT != MVT::i128) { 175 setOperationAction(ISD::ABS, VT, Legal); 176 177 // Expand individual DIV and REMs into DIVREMs. 178 setOperationAction(ISD::SDIV, VT, Expand); 179 setOperationAction(ISD::UDIV, VT, Expand); 180 setOperationAction(ISD::SREM, VT, Expand); 181 setOperationAction(ISD::UREM, VT, Expand); 182 setOperationAction(ISD::SDIVREM, VT, Custom); 183 setOperationAction(ISD::UDIVREM, VT, Custom); 184 185 // Support addition/subtraction with overflow. 186 setOperationAction(ISD::SADDO, VT, Custom); 187 setOperationAction(ISD::SSUBO, VT, Custom); 188 189 // Support addition/subtraction with carry. 190 setOperationAction(ISD::UADDO, VT, Custom); 191 setOperationAction(ISD::USUBO, VT, Custom); 192 193 // Support carry in as value rather than glue. 194 setOperationAction(ISD::UADDO_CARRY, VT, Custom); 195 setOperationAction(ISD::USUBO_CARRY, VT, Custom); 196 197 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 198 // stores, putting a serialization instruction after the stores. 199 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 200 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 201 202 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 203 // available, or if the operand is constant. 204 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 205 206 // Use POPCNT on z196 and above. 207 if (Subtarget.hasPopulationCount()) 208 setOperationAction(ISD::CTPOP, VT, Custom); 209 else 210 setOperationAction(ISD::CTPOP, VT, Expand); 211 212 // No special instructions for these. 213 setOperationAction(ISD::CTTZ, VT, Expand); 214 setOperationAction(ISD::ROTR, VT, Expand); 215 216 // Use *MUL_LOHI where possible instead of MULH*. 217 setOperationAction(ISD::MULHS, VT, Expand); 218 setOperationAction(ISD::MULHU, VT, Expand); 219 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 220 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 221 222 // Only z196 and above have native support for conversions to unsigned. 223 // On z10, promoting to i64 doesn't generate an inexact condition for 224 // values that are outside the i32 range but in the i64 range, so use 225 // the default expansion. 226 if (!Subtarget.hasFPExtension()) 227 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 228 229 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 230 // default to Expand, so need to be modified to Legal where appropriate. 231 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 232 if (Subtarget.hasFPExtension()) 233 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 234 235 // And similarly for STRICT_[SU]INT_TO_FP. 236 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 237 if (Subtarget.hasFPExtension()) 238 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 239 } 240 } 241 242 // Handle i128 if legal. 243 if (isTypeLegal(MVT::i128)) { 244 // No special instructions for these. 245 setOperationAction(ISD::SDIVREM, MVT::i128, Expand); 246 setOperationAction(ISD::UDIVREM, MVT::i128, Expand); 247 setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand); 248 setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand); 249 setOperationAction(ISD::ROTR, MVT::i128, Expand); 250 setOperationAction(ISD::ROTL, MVT::i128, Expand); 251 setOperationAction(ISD::MUL, MVT::i128, Expand); 252 setOperationAction(ISD::MULHS, MVT::i128, Expand); 253 setOperationAction(ISD::MULHU, MVT::i128, Expand); 254 setOperationAction(ISD::SDIV, MVT::i128, Expand); 255 setOperationAction(ISD::UDIV, MVT::i128, Expand); 256 setOperationAction(ISD::SREM, MVT::i128, Expand); 257 setOperationAction(ISD::UREM, MVT::i128, Expand); 258 setOperationAction(ISD::CTLZ, MVT::i128, Expand); 259 setOperationAction(ISD::CTTZ, MVT::i128, Expand); 260 261 // Support addition/subtraction with carry. 262 setOperationAction(ISD::UADDO, MVT::i128, Custom); 263 setOperationAction(ISD::USUBO, MVT::i128, Custom); 264 setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom); 265 setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom); 266 267 // Use VPOPCT and add up partial results. 268 setOperationAction(ISD::CTPOP, MVT::i128, Custom); 269 270 // We have to use libcalls for these. 271 setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall); 272 setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall); 273 setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall); 274 setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall); 275 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall); 276 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall); 277 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall); 278 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall); 279 } 280 281 // Type legalization will convert 8- and 16-bit atomic operations into 282 // forms that operate on i32s (but still keeping the original memory VT). 283 // Lower them into full i32 operations. 284 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 285 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 286 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 287 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 288 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 289 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 290 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 291 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 292 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 293 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 294 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 295 296 // Whether or not i128 is not a legal type, we need to custom lower 297 // the atomic operations in order to exploit SystemZ instructions. 298 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 299 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 300 301 // We can use the CC result of compare-and-swap to implement 302 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 303 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 304 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 305 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 306 307 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 308 309 // Traps are legal, as we will convert them to "j .+2". 310 setOperationAction(ISD::TRAP, MVT::Other, Legal); 311 312 // z10 has instructions for signed but not unsigned FP conversion. 313 // Handle unsigned 32-bit types as signed 64-bit types. 314 if (!Subtarget.hasFPExtension()) { 315 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 316 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 317 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 318 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 319 } 320 321 // We have native support for a 64-bit CTLZ, via FLOGR. 322 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 323 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 324 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 325 326 // On z15 we have native support for a 64-bit CTPOP. 327 if (Subtarget.hasMiscellaneousExtensions3()) { 328 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 329 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 330 } 331 332 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 333 setOperationAction(ISD::OR, MVT::i64, Custom); 334 335 // Expand 128 bit shifts without using a libcall. 336 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 337 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 338 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 339 setLibcallName(RTLIB::SRL_I128, nullptr); 340 setLibcallName(RTLIB::SHL_I128, nullptr); 341 setLibcallName(RTLIB::SRA_I128, nullptr); 342 343 // Also expand 256 bit shifts if i128 is a legal type. 344 if (isTypeLegal(MVT::i128)) { 345 setOperationAction(ISD::SRL_PARTS, MVT::i128, Expand); 346 setOperationAction(ISD::SHL_PARTS, MVT::i128, Expand); 347 setOperationAction(ISD::SRA_PARTS, MVT::i128, Expand); 348 } 349 350 // Handle bitcast from fp128 to i128. 351 if (!isTypeLegal(MVT::i128)) 352 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 353 354 // We have native instructions for i8, i16 and i32 extensions, but not i1. 355 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 356 for (MVT VT : MVT::integer_valuetypes()) { 357 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 358 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 359 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 360 } 361 362 // Handle the various types of symbolic address. 363 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 364 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 365 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 366 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 367 setOperationAction(ISD::JumpTable, PtrVT, Custom); 368 369 // We need to handle dynamic allocations specially because of the 370 // 160-byte area at the bottom of the stack. 371 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 372 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 373 374 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 375 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 376 377 // Handle prefetches with PFD or PFDRL. 378 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 379 380 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 381 // Assume by default that all vector operations need to be expanded. 382 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 383 if (getOperationAction(Opcode, VT) == Legal) 384 setOperationAction(Opcode, VT, Expand); 385 386 // Likewise all truncating stores and extending loads. 387 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 388 setTruncStoreAction(VT, InnerVT, Expand); 389 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 390 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 391 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 392 } 393 394 if (isTypeLegal(VT)) { 395 // These operations are legal for anything that can be stored in a 396 // vector register, even if there is no native support for the format 397 // as such. In particular, we can do these for v4f32 even though there 398 // are no specific instructions for that format. 399 setOperationAction(ISD::LOAD, VT, Legal); 400 setOperationAction(ISD::STORE, VT, Legal); 401 setOperationAction(ISD::VSELECT, VT, Legal); 402 setOperationAction(ISD::BITCAST, VT, Legal); 403 setOperationAction(ISD::UNDEF, VT, Legal); 404 405 // Likewise, except that we need to replace the nodes with something 406 // more specific. 407 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 408 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 409 } 410 } 411 412 // Handle integer vector types. 413 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 414 if (isTypeLegal(VT)) { 415 // These operations have direct equivalents. 416 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 417 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 418 setOperationAction(ISD::ADD, VT, Legal); 419 setOperationAction(ISD::SUB, VT, Legal); 420 if (VT != MVT::v2i64) 421 setOperationAction(ISD::MUL, VT, Legal); 422 setOperationAction(ISD::ABS, VT, Legal); 423 setOperationAction(ISD::AND, VT, Legal); 424 setOperationAction(ISD::OR, VT, Legal); 425 setOperationAction(ISD::XOR, VT, Legal); 426 if (Subtarget.hasVectorEnhancements1()) 427 setOperationAction(ISD::CTPOP, VT, Legal); 428 else 429 setOperationAction(ISD::CTPOP, VT, Custom); 430 setOperationAction(ISD::CTTZ, VT, Legal); 431 setOperationAction(ISD::CTLZ, VT, Legal); 432 433 // Convert a GPR scalar to a vector by inserting it into element 0. 434 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 435 436 // Use a series of unpacks for extensions. 437 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 438 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 439 440 // Detect shifts/rotates by a scalar amount and convert them into 441 // V*_BY_SCALAR. 442 setOperationAction(ISD::SHL, VT, Custom); 443 setOperationAction(ISD::SRA, VT, Custom); 444 setOperationAction(ISD::SRL, VT, Custom); 445 setOperationAction(ISD::ROTL, VT, Custom); 446 447 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 448 // and inverting the result as necessary. 449 setOperationAction(ISD::SETCC, VT, Custom); 450 } 451 } 452 453 if (Subtarget.hasVector()) { 454 // There should be no need to check for float types other than v2f64 455 // since <2 x f32> isn't a legal type. 456 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 457 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 458 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 459 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 460 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 461 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 462 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 463 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 464 465 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 466 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 467 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 468 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 469 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 470 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 471 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 472 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 473 } 474 475 if (Subtarget.hasVectorEnhancements2()) { 476 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 477 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 478 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 479 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 480 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 481 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 482 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 483 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 484 485 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 486 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 487 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 488 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 489 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 490 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 491 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 492 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 493 } 494 495 // Handle floating-point types. 496 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 497 I <= MVT::LAST_FP_VALUETYPE; 498 ++I) { 499 MVT VT = MVT::SimpleValueType(I); 500 if (isTypeLegal(VT)) { 501 // We can use FI for FRINT. 502 setOperationAction(ISD::FRINT, VT, Legal); 503 504 // We can use the extended form of FI for other rounding operations. 505 if (Subtarget.hasFPExtension()) { 506 setOperationAction(ISD::FNEARBYINT, VT, Legal); 507 setOperationAction(ISD::FFLOOR, VT, Legal); 508 setOperationAction(ISD::FCEIL, VT, Legal); 509 setOperationAction(ISD::FTRUNC, VT, Legal); 510 setOperationAction(ISD::FROUND, VT, Legal); 511 } 512 513 // No special instructions for these. 514 setOperationAction(ISD::FSIN, VT, Expand); 515 setOperationAction(ISD::FCOS, VT, Expand); 516 setOperationAction(ISD::FSINCOS, VT, Expand); 517 setOperationAction(ISD::FREM, VT, Expand); 518 setOperationAction(ISD::FPOW, VT, Expand); 519 520 // Special treatment. 521 setOperationAction(ISD::IS_FPCLASS, VT, Custom); 522 523 // Handle constrained floating-point operations. 524 setOperationAction(ISD::STRICT_FADD, VT, Legal); 525 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 526 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 527 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 528 setOperationAction(ISD::STRICT_FMA, VT, Legal); 529 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 530 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 531 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 532 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 533 if (Subtarget.hasFPExtension()) { 534 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 535 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 536 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 537 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 538 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 539 } 540 } 541 } 542 543 // Handle floating-point vector types. 544 if (Subtarget.hasVector()) { 545 // Scalar-to-vector conversion is just a subreg. 546 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 547 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 548 549 // Some insertions and extractions can be done directly but others 550 // need to go via integers. 551 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 552 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 553 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 554 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 555 556 // These operations have direct equivalents. 557 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 558 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 559 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 560 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 561 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 562 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 563 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 564 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 565 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 566 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 567 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 568 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 569 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 570 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 571 572 // Handle constrained floating-point operations. 573 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 574 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 575 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 576 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 577 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 578 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 579 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 580 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 581 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 582 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 584 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 585 586 setOperationAction(ISD::SETCC, MVT::v2f64, Custom); 587 setOperationAction(ISD::SETCC, MVT::v4f32, Custom); 588 setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom); 589 setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom); 590 if (Subtarget.hasVectorEnhancements1()) { 591 setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom); 592 setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom); 593 } 594 } 595 596 // The vector enhancements facility 1 has instructions for these. 597 if (Subtarget.hasVectorEnhancements1()) { 598 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 599 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 600 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 601 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 602 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 603 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 604 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 605 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 606 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 607 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 608 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 609 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 610 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 611 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 612 613 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 614 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 615 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 616 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 617 618 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 619 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 620 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 621 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 622 623 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 624 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 625 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 626 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 627 628 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 629 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 630 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 631 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 632 633 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 634 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 635 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 636 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 637 638 // Handle constrained floating-point operations. 639 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 640 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 641 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 642 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 643 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 644 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 645 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 646 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 647 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 648 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 649 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 650 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 651 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 652 MVT::v4f32, MVT::v2f64 }) { 653 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 654 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 655 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 656 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 657 } 658 } 659 660 // We only have fused f128 multiply-addition on vector registers. 661 if (!Subtarget.hasVectorEnhancements1()) { 662 setOperationAction(ISD::FMA, MVT::f128, Expand); 663 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 664 } 665 666 // We don't have a copysign instruction on vector registers. 667 if (Subtarget.hasVectorEnhancements1()) 668 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 669 670 // Needed so that we don't try to implement f128 constant loads using 671 // a load-and-extend of a f80 constant (in cases where the constant 672 // would fit in an f80). 673 for (MVT VT : MVT::fp_valuetypes()) 674 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 675 676 // We don't have extending load instruction on vector registers. 677 if (Subtarget.hasVectorEnhancements1()) { 678 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 679 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 680 } 681 682 // Floating-point truncation and stores need to be done separately. 683 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 684 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 685 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 686 687 // We have 64-bit FPR<->GPR moves, but need special handling for 688 // 32-bit forms. 689 if (!Subtarget.hasVector()) { 690 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 691 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 692 } 693 694 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 695 // structure, but VAEND is a no-op. 696 setOperationAction(ISD::VASTART, MVT::Other, Custom); 697 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 698 setOperationAction(ISD::VAEND, MVT::Other, Expand); 699 700 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 701 702 // Codes for which we want to perform some z-specific combinations. 703 setTargetDAGCombine({ISD::ZERO_EXTEND, 704 ISD::SIGN_EXTEND, 705 ISD::SIGN_EXTEND_INREG, 706 ISD::LOAD, 707 ISD::STORE, 708 ISD::VECTOR_SHUFFLE, 709 ISD::EXTRACT_VECTOR_ELT, 710 ISD::FP_ROUND, 711 ISD::STRICT_FP_ROUND, 712 ISD::FP_EXTEND, 713 ISD::SINT_TO_FP, 714 ISD::UINT_TO_FP, 715 ISD::STRICT_FP_EXTEND, 716 ISD::BSWAP, 717 ISD::SDIV, 718 ISD::UDIV, 719 ISD::SREM, 720 ISD::UREM, 721 ISD::INTRINSIC_VOID, 722 ISD::INTRINSIC_W_CHAIN}); 723 724 // Handle intrinsics. 725 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 726 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 727 728 // We want to use MVC in preference to even a single load/store pair. 729 MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; 730 MaxStoresPerMemcpyOptSize = 0; 731 732 // The main memset sequence is a byte store followed by an MVC. 733 // Two STC or MV..I stores win over that, but the kind of fused stores 734 // generated by target-independent code don't when the byte value is 735 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 736 // than "STC;MVC". Handle the choice in target-specific code instead. 737 MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; 738 MaxStoresPerMemsetOptSize = 0; 739 740 // Default to having -disable-strictnode-mutation on 741 IsStrictFPEnabled = true; 742 743 if (Subtarget.isTargetzOS()) { 744 struct RTLibCallMapping { 745 RTLIB::Libcall Code; 746 const char *Name; 747 }; 748 static RTLibCallMapping RTLibCallCommon[] = { 749 #define HANDLE_LIBCALL(code, name) {RTLIB::code, name}, 750 #include "ZOSLibcallNames.def" 751 }; 752 for (auto &E : RTLibCallCommon) 753 setLibcallName(E.Code, E.Name); 754 } 755 } 756 757 bool SystemZTargetLowering::useSoftFloat() const { 758 return Subtarget.hasSoftFloat(); 759 } 760 761 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 762 LLVMContext &, EVT VT) const { 763 if (!VT.isVector()) 764 return MVT::i32; 765 return VT.changeVectorElementTypeToInteger(); 766 } 767 768 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 769 const MachineFunction &MF, EVT VT) const { 770 VT = VT.getScalarType(); 771 772 if (!VT.isSimple()) 773 return false; 774 775 switch (VT.getSimpleVT().SimpleTy) { 776 case MVT::f32: 777 case MVT::f64: 778 return true; 779 case MVT::f128: 780 return Subtarget.hasVectorEnhancements1(); 781 default: 782 break; 783 } 784 785 return false; 786 } 787 788 // Return true if the constant can be generated with a vector instruction, 789 // such as VGM, VGMB or VREPI. 790 bool SystemZVectorConstantInfo::isVectorConstantLegal( 791 const SystemZSubtarget &Subtarget) { 792 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 793 if (!Subtarget.hasVector() || 794 (isFP128 && !Subtarget.hasVectorEnhancements1())) 795 return false; 796 797 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 798 // preferred way of creating all-zero and all-one vectors so give it 799 // priority over other methods below. 800 unsigned Mask = 0; 801 unsigned I = 0; 802 for (; I < SystemZ::VectorBytes; ++I) { 803 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 804 if (Byte == 0xff) 805 Mask |= 1ULL << I; 806 else if (Byte != 0) 807 break; 808 } 809 if (I == SystemZ::VectorBytes) { 810 Opcode = SystemZISD::BYTE_MASK; 811 OpVals.push_back(Mask); 812 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 813 return true; 814 } 815 816 if (SplatBitSize > 64) 817 return false; 818 819 auto tryValue = [&](uint64_t Value) -> bool { 820 // Try VECTOR REPLICATE IMMEDIATE 821 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 822 if (isInt<16>(SignedValue)) { 823 OpVals.push_back(((unsigned) SignedValue)); 824 Opcode = SystemZISD::REPLICATE; 825 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 826 SystemZ::VectorBits / SplatBitSize); 827 return true; 828 } 829 // Try VECTOR GENERATE MASK 830 unsigned Start, End; 831 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 832 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 833 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 834 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 835 OpVals.push_back(Start - (64 - SplatBitSize)); 836 OpVals.push_back(End - (64 - SplatBitSize)); 837 Opcode = SystemZISD::ROTATE_MASK; 838 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 839 SystemZ::VectorBits / SplatBitSize); 840 return true; 841 } 842 return false; 843 }; 844 845 // First try assuming that any undefined bits above the highest set bit 846 // and below the lowest set bit are 1s. This increases the likelihood of 847 // being able to use a sign-extended element value in VECTOR REPLICATE 848 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 849 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 850 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 851 unsigned LowerBits = llvm::countr_zero(SplatBitsZ); 852 unsigned UpperBits = llvm::countl_zero(SplatBitsZ); 853 uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits); 854 uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits); 855 if (tryValue(SplatBitsZ | Upper | Lower)) 856 return true; 857 858 // Now try assuming that any undefined bits between the first and 859 // last defined set bits are set. This increases the chances of 860 // using a non-wraparound mask. 861 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 862 return tryValue(SplatBitsZ | Middle); 863 } 864 865 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { 866 if (IntImm.isSingleWord()) { 867 IntBits = APInt(128, IntImm.getZExtValue()); 868 IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); 869 } else 870 IntBits = IntImm; 871 assert(IntBits.getBitWidth() == 128 && "Unsupported APInt."); 872 873 // Find the smallest splat. 874 SplatBits = IntImm; 875 unsigned Width = SplatBits.getBitWidth(); 876 while (Width > 8) { 877 unsigned HalfSize = Width / 2; 878 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 879 APInt LowValue = SplatBits.trunc(HalfSize); 880 881 // If the two halves do not match, stop here. 882 if (HighValue != LowValue || 8 > HalfSize) 883 break; 884 885 SplatBits = HighValue; 886 Width = HalfSize; 887 } 888 SplatUndef = 0; 889 SplatBitSize = Width; 890 } 891 892 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 893 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 894 bool HasAnyUndefs; 895 896 // Get IntBits by finding the 128 bit splat. 897 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 898 true); 899 900 // Get SplatBits by finding the 8 bit or greater splat. 901 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 902 true); 903 } 904 905 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 906 bool ForCodeSize) const { 907 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 908 if (Imm.isZero() || Imm.isNegZero()) 909 return true; 910 911 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 912 } 913 914 /// Returns true if stack probing through inline assembly is requested. 915 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { 916 // If the function specifically requests inline stack probes, emit them. 917 if (MF.getFunction().hasFnAttribute("probe-stack")) 918 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 919 "inline-asm"; 920 return false; 921 } 922 923 TargetLowering::AtomicExpansionKind 924 SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 925 // Don't expand subword operations as they require special treatment. 926 if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16)) 927 return AtomicExpansionKind::None; 928 929 // Don't expand if there is a target instruction available. 930 if (Subtarget.hasInterlockedAccess1() && 931 (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) && 932 (RMW->getOperation() == AtomicRMWInst::BinOp::Add || 933 RMW->getOperation() == AtomicRMWInst::BinOp::Sub || 934 RMW->getOperation() == AtomicRMWInst::BinOp::And || 935 RMW->getOperation() == AtomicRMWInst::BinOp::Or || 936 RMW->getOperation() == AtomicRMWInst::BinOp::Xor)) 937 return AtomicExpansionKind::None; 938 939 return AtomicExpansionKind::CmpXChg; 940 } 941 942 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 943 // We can use CGFI or CLGFI. 944 return isInt<32>(Imm) || isUInt<32>(Imm); 945 } 946 947 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 948 // We can use ALGFI or SLGFI. 949 return isUInt<32>(Imm) || isUInt<32>(-Imm); 950 } 951 952 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 953 EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { 954 // Unaligned accesses should never be slower than the expanded version. 955 // We check specifically for aligned accesses in the few cases where 956 // they are required. 957 if (Fast) 958 *Fast = 1; 959 return true; 960 } 961 962 // Information about the addressing mode for a memory access. 963 struct AddressingMode { 964 // True if a long displacement is supported. 965 bool LongDisplacement; 966 967 // True if use of index register is supported. 968 bool IndexReg; 969 970 AddressingMode(bool LongDispl, bool IdxReg) : 971 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 972 }; 973 974 // Return the desired addressing mode for a Load which has only one use (in 975 // the same block) which is a Store. 976 static AddressingMode getLoadStoreAddrMode(bool HasVector, 977 Type *Ty) { 978 // With vector support a Load->Store combination may be combined to either 979 // an MVC or vector operations and it seems to work best to allow the 980 // vector addressing mode. 981 if (HasVector) 982 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 983 984 // Otherwise only the MVC case is special. 985 bool MVC = Ty->isIntegerTy(8); 986 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 987 } 988 989 // Return the addressing mode which seems most desirable given an LLVM 990 // Instruction pointer. 991 static AddressingMode 992 supportedAddressingMode(Instruction *I, bool HasVector) { 993 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 994 switch (II->getIntrinsicID()) { 995 default: break; 996 case Intrinsic::memset: 997 case Intrinsic::memmove: 998 case Intrinsic::memcpy: 999 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 1000 } 1001 } 1002 1003 if (isa<LoadInst>(I) && I->hasOneUse()) { 1004 auto *SingleUser = cast<Instruction>(*I->user_begin()); 1005 if (SingleUser->getParent() == I->getParent()) { 1006 if (isa<ICmpInst>(SingleUser)) { 1007 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 1008 if (C->getBitWidth() <= 64 && 1009 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 1010 // Comparison of memory with 16 bit signed / unsigned immediate 1011 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 1012 } else if (isa<StoreInst>(SingleUser)) 1013 // Load->Store 1014 return getLoadStoreAddrMode(HasVector, I->getType()); 1015 } 1016 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 1017 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 1018 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 1019 // Load->Store 1020 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 1021 } 1022 1023 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 1024 1025 // * Use LDE instead of LE/LEY for z13 to avoid partial register 1026 // dependencies (LDE only supports small offsets). 1027 // * Utilize the vector registers to hold floating point 1028 // values (vector load / store instructions only support small 1029 // offsets). 1030 1031 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 1032 I->getOperand(0)->getType()); 1033 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 1034 bool IsVectorAccess = MemAccessTy->isVectorTy(); 1035 1036 // A store of an extracted vector element will be combined into a VSTE type 1037 // instruction. 1038 if (!IsVectorAccess && isa<StoreInst>(I)) { 1039 Value *DataOp = I->getOperand(0); 1040 if (isa<ExtractElementInst>(DataOp)) 1041 IsVectorAccess = true; 1042 } 1043 1044 // A load which gets inserted into a vector element will be combined into a 1045 // VLE type instruction. 1046 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 1047 User *LoadUser = *I->user_begin(); 1048 if (isa<InsertElementInst>(LoadUser)) 1049 IsVectorAccess = true; 1050 } 1051 1052 if (IsFPAccess || IsVectorAccess) 1053 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 1054 } 1055 1056 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 1057 } 1058 1059 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 1060 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 1061 // Punt on globals for now, although they can be used in limited 1062 // RELATIVE LONG cases. 1063 if (AM.BaseGV) 1064 return false; 1065 1066 // Require a 20-bit signed offset. 1067 if (!isInt<20>(AM.BaseOffs)) 1068 return false; 1069 1070 bool RequireD12 = 1071 Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(128)); 1072 AddressingMode SupportedAM(!RequireD12, true); 1073 if (I != nullptr) 1074 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 1075 1076 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 1077 return false; 1078 1079 if (!SupportedAM.IndexReg) 1080 // No indexing allowed. 1081 return AM.Scale == 0; 1082 else 1083 // Indexing is OK but no scale factor can be applied. 1084 return AM.Scale == 0 || AM.Scale == 1; 1085 } 1086 1087 bool SystemZTargetLowering::findOptimalMemOpLowering( 1088 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 1089 unsigned SrcAS, const AttributeList &FuncAttributes) const { 1090 const int MVCFastLen = 16; 1091 1092 if (Limit != ~unsigned(0)) { 1093 // Don't expand Op into scalar loads/stores in these cases: 1094 if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) 1095 return false; // Small memcpy: Use MVC 1096 if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) 1097 return false; // Small memset (first byte with STC/MVI): Use MVC 1098 if (Op.isZeroMemset()) 1099 return false; // Memset zero: Use XC 1100 } 1101 1102 return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS, 1103 SrcAS, FuncAttributes); 1104 } 1105 1106 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op, 1107 const AttributeList &FuncAttributes) const { 1108 return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; 1109 } 1110 1111 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 1112 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 1113 return false; 1114 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue(); 1115 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue(); 1116 return FromBits > ToBits; 1117 } 1118 1119 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1120 if (!FromVT.isInteger() || !ToVT.isInteger()) 1121 return false; 1122 unsigned FromBits = FromVT.getFixedSizeInBits(); 1123 unsigned ToBits = ToVT.getFixedSizeInBits(); 1124 return FromBits > ToBits; 1125 } 1126 1127 //===----------------------------------------------------------------------===// 1128 // Inline asm support 1129 //===----------------------------------------------------------------------===// 1130 1131 TargetLowering::ConstraintType 1132 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1133 if (Constraint.size() == 1) { 1134 switch (Constraint[0]) { 1135 case 'a': // Address register 1136 case 'd': // Data register (equivalent to 'r') 1137 case 'f': // Floating-point register 1138 case 'h': // High-part register 1139 case 'r': // General-purpose register 1140 case 'v': // Vector register 1141 return C_RegisterClass; 1142 1143 case 'Q': // Memory with base and unsigned 12-bit displacement 1144 case 'R': // Likewise, plus an index 1145 case 'S': // Memory with base and signed 20-bit displacement 1146 case 'T': // Likewise, plus an index 1147 case 'm': // Equivalent to 'T'. 1148 return C_Memory; 1149 1150 case 'I': // Unsigned 8-bit constant 1151 case 'J': // Unsigned 12-bit constant 1152 case 'K': // Signed 16-bit constant 1153 case 'L': // Signed 20-bit displacement (on all targets we support) 1154 case 'M': // 0x7fffffff 1155 return C_Immediate; 1156 1157 default: 1158 break; 1159 } 1160 } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { 1161 switch (Constraint[1]) { 1162 case 'Q': // Address with base and unsigned 12-bit displacement 1163 case 'R': // Likewise, plus an index 1164 case 'S': // Address with base and signed 20-bit displacement 1165 case 'T': // Likewise, plus an index 1166 return C_Address; 1167 1168 default: 1169 break; 1170 } 1171 } 1172 return TargetLowering::getConstraintType(Constraint); 1173 } 1174 1175 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1176 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1177 const char *constraint) const { 1178 ConstraintWeight weight = CW_Invalid; 1179 Value *CallOperandVal = info.CallOperandVal; 1180 // If we don't have a value, we can't do a match, 1181 // but allow it at the lowest weight. 1182 if (!CallOperandVal) 1183 return CW_Default; 1184 Type *type = CallOperandVal->getType(); 1185 // Look at the constraint type. 1186 switch (*constraint) { 1187 default: 1188 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1189 break; 1190 1191 case 'a': // Address register 1192 case 'd': // Data register (equivalent to 'r') 1193 case 'h': // High-part register 1194 case 'r': // General-purpose register 1195 weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default; 1196 break; 1197 1198 case 'f': // Floating-point register 1199 if (!useSoftFloat()) 1200 weight = type->isFloatingPointTy() ? CW_Register : CW_Default; 1201 break; 1202 1203 case 'v': // Vector register 1204 if (Subtarget.hasVector()) 1205 weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register 1206 : CW_Default; 1207 break; 1208 1209 case 'I': // Unsigned 8-bit constant 1210 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1211 if (isUInt<8>(C->getZExtValue())) 1212 weight = CW_Constant; 1213 break; 1214 1215 case 'J': // Unsigned 12-bit constant 1216 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1217 if (isUInt<12>(C->getZExtValue())) 1218 weight = CW_Constant; 1219 break; 1220 1221 case 'K': // Signed 16-bit constant 1222 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1223 if (isInt<16>(C->getSExtValue())) 1224 weight = CW_Constant; 1225 break; 1226 1227 case 'L': // Signed 20-bit displacement (on all targets we support) 1228 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1229 if (isInt<20>(C->getSExtValue())) 1230 weight = CW_Constant; 1231 break; 1232 1233 case 'M': // 0x7fffffff 1234 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1235 if (C->getZExtValue() == 0x7fffffff) 1236 weight = CW_Constant; 1237 break; 1238 } 1239 return weight; 1240 } 1241 1242 // Parse a "{tNNN}" register constraint for which the register type "t" 1243 // has already been verified. MC is the class associated with "t" and 1244 // Map maps 0-based register numbers to LLVM register numbers. 1245 static std::pair<unsigned, const TargetRegisterClass *> 1246 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1247 const unsigned *Map, unsigned Size) { 1248 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1249 if (isdigit(Constraint[2])) { 1250 unsigned Index; 1251 bool Failed = 1252 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1253 if (!Failed && Index < Size && Map[Index]) 1254 return std::make_pair(Map[Index], RC); 1255 } 1256 return std::make_pair(0U, nullptr); 1257 } 1258 1259 std::pair<unsigned, const TargetRegisterClass *> 1260 SystemZTargetLowering::getRegForInlineAsmConstraint( 1261 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1262 if (Constraint.size() == 1) { 1263 // GCC Constraint Letters 1264 switch (Constraint[0]) { 1265 default: break; 1266 case 'd': // Data register (equivalent to 'r') 1267 case 'r': // General-purpose register 1268 if (VT.getSizeInBits() == 64) 1269 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1270 else if (VT.getSizeInBits() == 128) 1271 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1272 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1273 1274 case 'a': // Address register 1275 if (VT == MVT::i64) 1276 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1277 else if (VT == MVT::i128) 1278 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1279 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1280 1281 case 'h': // High-part register (an LLVM extension) 1282 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1283 1284 case 'f': // Floating-point register 1285 if (!useSoftFloat()) { 1286 if (VT.getSizeInBits() == 64) 1287 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1288 else if (VT.getSizeInBits() == 128) 1289 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1290 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1291 } 1292 break; 1293 1294 case 'v': // Vector register 1295 if (Subtarget.hasVector()) { 1296 if (VT.getSizeInBits() == 32) 1297 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1298 if (VT.getSizeInBits() == 64) 1299 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1300 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1301 } 1302 break; 1303 } 1304 } 1305 if (Constraint.size() > 0 && Constraint[0] == '{') { 1306 1307 // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal 1308 // to check the size on. 1309 auto getVTSizeInBits = [&VT]() { 1310 return VT == MVT::Other ? 0 : VT.getSizeInBits(); 1311 }; 1312 1313 // We need to override the default register parsing for GPRs and FPRs 1314 // because the interpretation depends on VT. The internal names of 1315 // the registers are also different from the external names 1316 // (F0D and F0S instead of F0, etc.). 1317 if (Constraint[1] == 'r') { 1318 if (getVTSizeInBits() == 32) 1319 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1320 SystemZMC::GR32Regs, 16); 1321 if (getVTSizeInBits() == 128) 1322 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1323 SystemZMC::GR128Regs, 16); 1324 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1325 SystemZMC::GR64Regs, 16); 1326 } 1327 if (Constraint[1] == 'f') { 1328 if (useSoftFloat()) 1329 return std::make_pair( 1330 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1331 if (getVTSizeInBits() == 32) 1332 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1333 SystemZMC::FP32Regs, 16); 1334 if (getVTSizeInBits() == 128) 1335 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1336 SystemZMC::FP128Regs, 16); 1337 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1338 SystemZMC::FP64Regs, 16); 1339 } 1340 if (Constraint[1] == 'v') { 1341 if (!Subtarget.hasVector()) 1342 return std::make_pair( 1343 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1344 if (getVTSizeInBits() == 32) 1345 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1346 SystemZMC::VR32Regs, 32); 1347 if (getVTSizeInBits() == 64) 1348 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1349 SystemZMC::VR64Regs, 32); 1350 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1351 SystemZMC::VR128Regs, 32); 1352 } 1353 } 1354 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1355 } 1356 1357 // FIXME? Maybe this could be a TableGen attribute on some registers and 1358 // this table could be generated automatically from RegInfo. 1359 Register 1360 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1361 const MachineFunction &MF) const { 1362 Register Reg = 1363 StringSwitch<Register>(RegName) 1364 .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0) 1365 .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0) 1366 .Default(0); 1367 1368 if (Reg) 1369 return Reg; 1370 report_fatal_error("Invalid register name global variable"); 1371 } 1372 1373 Register SystemZTargetLowering::getExceptionPointerRegister( 1374 const Constant *PersonalityFn) const { 1375 return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D; 1376 } 1377 1378 Register SystemZTargetLowering::getExceptionSelectorRegister( 1379 const Constant *PersonalityFn) const { 1380 return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D; 1381 } 1382 1383 void SystemZTargetLowering::LowerAsmOperandForConstraint( 1384 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 1385 SelectionDAG &DAG) const { 1386 // Only support length 1 constraints for now. 1387 if (Constraint.size() == 1) { 1388 switch (Constraint[0]) { 1389 case 'I': // Unsigned 8-bit constant 1390 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1391 if (isUInt<8>(C->getZExtValue())) 1392 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1393 Op.getValueType())); 1394 return; 1395 1396 case 'J': // Unsigned 12-bit constant 1397 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1398 if (isUInt<12>(C->getZExtValue())) 1399 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1400 Op.getValueType())); 1401 return; 1402 1403 case 'K': // Signed 16-bit constant 1404 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1405 if (isInt<16>(C->getSExtValue())) 1406 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1407 Op.getValueType())); 1408 return; 1409 1410 case 'L': // Signed 20-bit displacement (on all targets we support) 1411 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1412 if (isInt<20>(C->getSExtValue())) 1413 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1414 Op.getValueType())); 1415 return; 1416 1417 case 'M': // 0x7fffffff 1418 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1419 if (C->getZExtValue() == 0x7fffffff) 1420 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1421 Op.getValueType())); 1422 return; 1423 } 1424 } 1425 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1426 } 1427 1428 //===----------------------------------------------------------------------===// 1429 // Calling conventions 1430 //===----------------------------------------------------------------------===// 1431 1432 #include "SystemZGenCallingConv.inc" 1433 1434 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1435 CallingConv::ID) const { 1436 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1437 SystemZ::R14D, 0 }; 1438 return ScratchRegs; 1439 } 1440 1441 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1442 Type *ToType) const { 1443 return isTruncateFree(FromType, ToType); 1444 } 1445 1446 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1447 return CI->isTailCall(); 1448 } 1449 1450 // Value is a value that has been passed to us in the location described by VA 1451 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1452 // any loads onto Chain. 1453 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1454 CCValAssign &VA, SDValue Chain, 1455 SDValue Value) { 1456 // If the argument has been promoted from a smaller type, insert an 1457 // assertion to capture this. 1458 if (VA.getLocInfo() == CCValAssign::SExt) 1459 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1460 DAG.getValueType(VA.getValVT())); 1461 else if (VA.getLocInfo() == CCValAssign::ZExt) 1462 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1463 DAG.getValueType(VA.getValVT())); 1464 1465 if (VA.isExtInLoc()) 1466 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1467 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1468 // If this is a short vector argument loaded from the stack, 1469 // extend from i64 to full vector size and then bitcast. 1470 assert(VA.getLocVT() == MVT::i64); 1471 assert(VA.getValVT().isVector()); 1472 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1473 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1474 } else 1475 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1476 return Value; 1477 } 1478 1479 // Value is a value of type VA.getValVT() that we need to copy into 1480 // the location described by VA. Return a copy of Value converted to 1481 // VA.getValVT(). The caller is responsible for handling indirect values. 1482 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1483 CCValAssign &VA, SDValue Value) { 1484 switch (VA.getLocInfo()) { 1485 case CCValAssign::SExt: 1486 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1487 case CCValAssign::ZExt: 1488 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1489 case CCValAssign::AExt: 1490 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1491 case CCValAssign::BCvt: { 1492 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1493 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || 1494 VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); 1495 // For an f32 vararg we need to first promote it to an f64 and then 1496 // bitcast it to an i64. 1497 if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) 1498 Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value); 1499 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1500 ? MVT::v2i64 1501 : VA.getLocVT(); 1502 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1503 // For ELF, this is a short vector argument to be stored to the stack, 1504 // bitcast to v2i64 and then extract first element. 1505 if (BitCastToType == MVT::v2i64) 1506 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1507 DAG.getConstant(0, DL, MVT::i32)); 1508 return Value; 1509 } 1510 case CCValAssign::Full: 1511 return Value; 1512 default: 1513 llvm_unreachable("Unhandled getLocInfo()"); 1514 } 1515 } 1516 1517 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1518 SDLoc DL(In); 1519 SDValue Lo, Hi; 1520 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) { 1521 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In); 1522 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, 1523 DAG.getNode(ISD::SRL, DL, MVT::i128, In, 1524 DAG.getConstant(64, DL, MVT::i32))); 1525 } else { 1526 std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64); 1527 } 1528 1529 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1530 MVT::Untyped, Hi, Lo); 1531 return SDValue(Pair, 0); 1532 } 1533 1534 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1535 SDLoc DL(In); 1536 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1537 DL, MVT::i64, In); 1538 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1539 DL, MVT::i64, In); 1540 1541 if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) { 1542 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo); 1543 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi); 1544 Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi, 1545 DAG.getConstant(64, DL, MVT::i32)); 1546 return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi); 1547 } else { 1548 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1549 } 1550 } 1551 1552 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1553 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1554 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 1555 EVT ValueVT = Val.getValueType(); 1556 if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { 1557 // Inline assembly operand. 1558 Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val)); 1559 return true; 1560 } 1561 1562 return false; 1563 } 1564 1565 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1566 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1567 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { 1568 if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) { 1569 // Inline assembly operand. 1570 SDValue Res = lowerGR128ToI128(DAG, Parts[0]); 1571 return DAG.getBitcast(ValueVT, Res); 1572 } 1573 1574 return SDValue(); 1575 } 1576 1577 SDValue SystemZTargetLowering::LowerFormalArguments( 1578 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1579 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1580 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1581 MachineFunction &MF = DAG.getMachineFunction(); 1582 MachineFrameInfo &MFI = MF.getFrameInfo(); 1583 MachineRegisterInfo &MRI = MF.getRegInfo(); 1584 SystemZMachineFunctionInfo *FuncInfo = 1585 MF.getInfo<SystemZMachineFunctionInfo>(); 1586 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1587 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1588 1589 // Assign locations to all of the incoming arguments. 1590 SmallVector<CCValAssign, 16> ArgLocs; 1591 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1592 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1593 FuncInfo->setSizeOfFnParams(CCInfo.getStackSize()); 1594 1595 unsigned NumFixedGPRs = 0; 1596 unsigned NumFixedFPRs = 0; 1597 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1598 SDValue ArgValue; 1599 CCValAssign &VA = ArgLocs[I]; 1600 EVT LocVT = VA.getLocVT(); 1601 if (VA.isRegLoc()) { 1602 // Arguments passed in registers 1603 const TargetRegisterClass *RC; 1604 switch (LocVT.getSimpleVT().SimpleTy) { 1605 default: 1606 // Integers smaller than i64 should be promoted to i64. 1607 llvm_unreachable("Unexpected argument type"); 1608 case MVT::i32: 1609 NumFixedGPRs += 1; 1610 RC = &SystemZ::GR32BitRegClass; 1611 break; 1612 case MVT::i64: 1613 NumFixedGPRs += 1; 1614 RC = &SystemZ::GR64BitRegClass; 1615 break; 1616 case MVT::f32: 1617 NumFixedFPRs += 1; 1618 RC = &SystemZ::FP32BitRegClass; 1619 break; 1620 case MVT::f64: 1621 NumFixedFPRs += 1; 1622 RC = &SystemZ::FP64BitRegClass; 1623 break; 1624 case MVT::f128: 1625 NumFixedFPRs += 2; 1626 RC = &SystemZ::FP128BitRegClass; 1627 break; 1628 case MVT::v16i8: 1629 case MVT::v8i16: 1630 case MVT::v4i32: 1631 case MVT::v2i64: 1632 case MVT::v4f32: 1633 case MVT::v2f64: 1634 RC = &SystemZ::VR128BitRegClass; 1635 break; 1636 } 1637 1638 Register VReg = MRI.createVirtualRegister(RC); 1639 MRI.addLiveIn(VA.getLocReg(), VReg); 1640 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1641 } else { 1642 assert(VA.isMemLoc() && "Argument not register or memory"); 1643 1644 // Create the frame index object for this incoming parameter. 1645 // FIXME: Pre-include call frame size in the offset, should not 1646 // need to manually add it here. 1647 int64_t ArgSPOffset = VA.getLocMemOffset(); 1648 if (Subtarget.isTargetXPLINK64()) { 1649 auto &XPRegs = 1650 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1651 ArgSPOffset += XPRegs.getCallFrameSize(); 1652 } 1653 int FI = 1654 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1655 1656 // Create the SelectionDAG nodes corresponding to a load 1657 // from this parameter. Unpromoted ints and floats are 1658 // passed as right-justified 8-byte values. 1659 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1660 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1661 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1662 DAG.getIntPtrConstant(4, DL)); 1663 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1664 MachinePointerInfo::getFixedStack(MF, FI)); 1665 } 1666 1667 // Convert the value of the argument register into the value that's 1668 // being passed. 1669 if (VA.getLocInfo() == CCValAssign::Indirect) { 1670 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1671 MachinePointerInfo())); 1672 // If the original argument was split (e.g. i128), we need 1673 // to load all parts of it here (using the same address). 1674 unsigned ArgIndex = Ins[I].OrigArgIndex; 1675 assert (Ins[I].PartOffset == 0); 1676 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1677 CCValAssign &PartVA = ArgLocs[I + 1]; 1678 unsigned PartOffset = Ins[I + 1].PartOffset; 1679 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1680 DAG.getIntPtrConstant(PartOffset, DL)); 1681 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1682 MachinePointerInfo())); 1683 ++I; 1684 } 1685 } else 1686 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1687 } 1688 1689 if (IsVarArg && Subtarget.isTargetXPLINK64()) { 1690 // Save the number of non-varargs registers for later use by va_start, etc. 1691 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1692 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1693 1694 auto *Regs = static_cast<SystemZXPLINK64Registers *>( 1695 Subtarget.getSpecialRegisters()); 1696 1697 // Likewise the address (in the form of a frame index) of where the 1698 // first stack vararg would be. The 1-byte size here is arbitrary. 1699 // FIXME: Pre-include call frame size in the offset, should not 1700 // need to manually add it here. 1701 int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize(); 1702 int FI = MFI.CreateFixedObject(1, VarArgOffset, true); 1703 FuncInfo->setVarArgsFrameIndex(FI); 1704 } 1705 1706 if (IsVarArg && Subtarget.isTargetELF()) { 1707 // Save the number of non-varargs registers for later use by va_start, etc. 1708 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1709 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1710 1711 // Likewise the address (in the form of a frame index) of where the 1712 // first stack vararg would be. The 1-byte size here is arbitrary. 1713 int64_t VarArgsOffset = CCInfo.getStackSize(); 1714 FuncInfo->setVarArgsFrameIndex( 1715 MFI.CreateFixedObject(1, VarArgsOffset, true)); 1716 1717 // ...and a similar frame index for the caller-allocated save area 1718 // that will be used to store the incoming registers. 1719 int64_t RegSaveOffset = 1720 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1721 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1722 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1723 1724 // Store the FPR varargs in the reserved frame slots. (We store the 1725 // GPRs as part of the prologue.) 1726 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1727 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1728 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1729 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1730 int FI = 1731 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1732 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1733 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1734 &SystemZ::FP64BitRegClass); 1735 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1736 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1737 MachinePointerInfo::getFixedStack(MF, FI)); 1738 } 1739 // Join the stores, which are independent of one another. 1740 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1741 ArrayRef(&MemOps[NumFixedFPRs], 1742 SystemZ::ELFNumArgFPRs - NumFixedFPRs)); 1743 } 1744 } 1745 1746 if (Subtarget.isTargetXPLINK64()) { 1747 // Create virual register for handling incoming "ADA" special register (R5) 1748 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 1749 Register ADAvReg = MRI.createVirtualRegister(RC); 1750 auto *Regs = static_cast<SystemZXPLINK64Registers *>( 1751 Subtarget.getSpecialRegisters()); 1752 MRI.addLiveIn(Regs->getADARegister(), ADAvReg); 1753 FuncInfo->setADAVirtualRegister(ADAvReg); 1754 } 1755 return Chain; 1756 } 1757 1758 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1759 SmallVectorImpl<CCValAssign> &ArgLocs, 1760 SmallVectorImpl<ISD::OutputArg> &Outs) { 1761 // Punt if there are any indirect or stack arguments, or if the call 1762 // needs the callee-saved argument register R6, or if the call uses 1763 // the callee-saved register arguments SwiftSelf and SwiftError. 1764 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1765 CCValAssign &VA = ArgLocs[I]; 1766 if (VA.getLocInfo() == CCValAssign::Indirect) 1767 return false; 1768 if (!VA.isRegLoc()) 1769 return false; 1770 Register Reg = VA.getLocReg(); 1771 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1772 return false; 1773 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1774 return false; 1775 } 1776 return true; 1777 } 1778 1779 static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL, 1780 unsigned Offset, bool LoadAdr = false) { 1781 MachineFunction &MF = DAG.getMachineFunction(); 1782 SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>(); 1783 unsigned ADAvReg = MFI->getADAVirtualRegister(); 1784 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1785 1786 SDValue Reg = DAG.getRegister(ADAvReg, PtrVT); 1787 SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT); 1788 1789 SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs); 1790 if (!LoadAdr) 1791 Result = DAG.getLoad( 1792 PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8), 1793 MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); 1794 1795 return Result; 1796 } 1797 1798 // ADA access using Global value 1799 // Note: for functions, address of descriptor is returned 1800 static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL, 1801 EVT PtrVT) { 1802 unsigned ADAtype; 1803 bool LoadAddr = false; 1804 const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV); 1805 bool IsFunction = 1806 (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject())); 1807 bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage()); 1808 1809 if (IsFunction) { 1810 if (IsInternal) { 1811 ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC; 1812 LoadAddr = true; 1813 } else 1814 ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC; 1815 } else { 1816 ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR; 1817 } 1818 SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype); 1819 1820 return getADAEntry(DAG, Val, DL, 0, LoadAddr); 1821 } 1822 1823 static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA, 1824 SDLoc &DL, SDValue &Chain) { 1825 unsigned ADADelta = 0; // ADA offset in desc. 1826 unsigned EPADelta = 8; // EPA offset in desc. 1827 MachineFunction &MF = DAG.getMachineFunction(); 1828 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1829 1830 // XPLink calling convention. 1831 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1832 bool IsInternal = (G->getGlobal()->hasInternalLinkage() || 1833 G->getGlobal()->hasPrivateLinkage()); 1834 if (IsInternal) { 1835 SystemZMachineFunctionInfo *MFI = 1836 MF.getInfo<SystemZMachineFunctionInfo>(); 1837 unsigned ADAvReg = MFI->getADAVirtualRegister(); 1838 ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT); 1839 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1840 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1841 return true; 1842 } else { 1843 SDValue GA = DAG.getTargetGlobalAddress( 1844 G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC); 1845 ADA = getADAEntry(DAG, GA, DL, ADADelta); 1846 Callee = getADAEntry(DAG, GA, DL, EPADelta); 1847 } 1848 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1849 SDValue ES = DAG.getTargetExternalSymbol( 1850 E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC); 1851 ADA = getADAEntry(DAG, ES, DL, ADADelta); 1852 Callee = getADAEntry(DAG, ES, DL, EPADelta); 1853 } else { 1854 // Function pointer case 1855 ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee, 1856 DAG.getConstant(ADADelta, DL, PtrVT)); 1857 ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA, 1858 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1859 Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee, 1860 DAG.getConstant(EPADelta, DL, PtrVT)); 1861 Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee, 1862 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1863 } 1864 return false; 1865 } 1866 1867 SDValue 1868 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1869 SmallVectorImpl<SDValue> &InVals) const { 1870 SelectionDAG &DAG = CLI.DAG; 1871 SDLoc &DL = CLI.DL; 1872 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1873 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1874 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1875 SDValue Chain = CLI.Chain; 1876 SDValue Callee = CLI.Callee; 1877 bool &IsTailCall = CLI.IsTailCall; 1878 CallingConv::ID CallConv = CLI.CallConv; 1879 bool IsVarArg = CLI.IsVarArg; 1880 MachineFunction &MF = DAG.getMachineFunction(); 1881 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1882 LLVMContext &Ctx = *DAG.getContext(); 1883 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1884 1885 // FIXME: z/OS support to be added in later. 1886 if (Subtarget.isTargetXPLINK64()) 1887 IsTailCall = false; 1888 1889 // Analyze the operands of the call, assigning locations to each operand. 1890 SmallVector<CCValAssign, 16> ArgLocs; 1891 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1892 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1893 1894 // We don't support GuaranteedTailCallOpt, only automatically-detected 1895 // sibling calls. 1896 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1897 IsTailCall = false; 1898 1899 // Get a count of how many bytes are to be pushed on the stack. 1900 unsigned NumBytes = ArgCCInfo.getStackSize(); 1901 1902 // Mark the start of the call. 1903 if (!IsTailCall) 1904 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1905 1906 // Copy argument values to their designated locations. 1907 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1908 SmallVector<SDValue, 8> MemOpChains; 1909 SDValue StackPtr; 1910 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1911 CCValAssign &VA = ArgLocs[I]; 1912 SDValue ArgValue = OutVals[I]; 1913 1914 if (VA.getLocInfo() == CCValAssign::Indirect) { 1915 // Store the argument in a stack slot and pass its address. 1916 unsigned ArgIndex = Outs[I].OrigArgIndex; 1917 EVT SlotVT; 1918 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1919 // Allocate the full stack space for a promoted (and split) argument. 1920 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1921 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1922 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1923 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1924 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1925 } else { 1926 SlotVT = Outs[I].VT; 1927 } 1928 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1929 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1930 MemOpChains.push_back( 1931 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1932 MachinePointerInfo::getFixedStack(MF, FI))); 1933 // If the original argument was split (e.g. i128), we need 1934 // to store all parts of it here (and pass just one address). 1935 assert (Outs[I].PartOffset == 0); 1936 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1937 SDValue PartValue = OutVals[I + 1]; 1938 unsigned PartOffset = Outs[I + 1].PartOffset; 1939 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1940 DAG.getIntPtrConstant(PartOffset, DL)); 1941 MemOpChains.push_back( 1942 DAG.getStore(Chain, DL, PartValue, Address, 1943 MachinePointerInfo::getFixedStack(MF, FI))); 1944 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1945 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1946 ++I; 1947 } 1948 ArgValue = SpillSlot; 1949 } else 1950 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1951 1952 if (VA.isRegLoc()) { 1953 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1954 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1955 // and low values. 1956 if (VA.getLocVT() == MVT::i128) 1957 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1958 // Queue up the argument copies and emit them at the end. 1959 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1960 } else { 1961 assert(VA.isMemLoc() && "Argument not register or memory"); 1962 1963 // Work out the address of the stack slot. Unpromoted ints and 1964 // floats are passed as right-justified 8-byte values. 1965 if (!StackPtr.getNode()) 1966 StackPtr = DAG.getCopyFromReg(Chain, DL, 1967 Regs->getStackPointerRegister(), PtrVT); 1968 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1969 VA.getLocMemOffset(); 1970 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1971 Offset += 4; 1972 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1973 DAG.getIntPtrConstant(Offset, DL)); 1974 1975 // Emit the store. 1976 MemOpChains.push_back( 1977 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1978 1979 // Although long doubles or vectors are passed through the stack when 1980 // they are vararg (non-fixed arguments), if a long double or vector 1981 // occupies the third and fourth slot of the argument list GPR3 should 1982 // still shadow the third slot of the argument list. 1983 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1984 SDValue ShadowArgValue = 1985 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1986 DAG.getIntPtrConstant(1, DL)); 1987 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1988 } 1989 } 1990 } 1991 1992 // Join the stores, which are independent of one another. 1993 if (!MemOpChains.empty()) 1994 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1995 1996 // Accept direct calls by converting symbolic call addresses to the 1997 // associated Target* opcodes. Force %r1 to be used for indirect 1998 // tail calls. 1999 SDValue Glue; 2000 2001 if (Subtarget.isTargetXPLINK64()) { 2002 SDValue ADA; 2003 bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain); 2004 if (!IsBRASL) { 2005 unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs) 2006 ->getAddressOfCalleeRegister(); 2007 Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue); 2008 Glue = Chain.getValue(1); 2009 Callee = DAG.getRegister(CalleeReg, Callee.getValueType()); 2010 } 2011 RegsToPass.push_back(std::make_pair( 2012 static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA)); 2013 } else { 2014 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2015 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 2016 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 2017 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2018 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 2019 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 2020 } else if (IsTailCall) { 2021 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 2022 Glue = Chain.getValue(1); 2023 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 2024 } 2025 } 2026 2027 // Build a sequence of copy-to-reg nodes, chained and glued together. 2028 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 2029 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 2030 RegsToPass[I].second, Glue); 2031 Glue = Chain.getValue(1); 2032 } 2033 2034 // The first call operand is the chain and the second is the target address. 2035 SmallVector<SDValue, 8> Ops; 2036 Ops.push_back(Chain); 2037 Ops.push_back(Callee); 2038 2039 // Add argument registers to the end of the list so that they are 2040 // known live into the call. 2041 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 2042 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 2043 RegsToPass[I].second.getValueType())); 2044 2045 // Add a register mask operand representing the call-preserved registers. 2046 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2047 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 2048 assert(Mask && "Missing call preserved mask for calling convention"); 2049 Ops.push_back(DAG.getRegisterMask(Mask)); 2050 2051 // Glue the call to the argument copies, if any. 2052 if (Glue.getNode()) 2053 Ops.push_back(Glue); 2054 2055 // Emit the call. 2056 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2057 if (IsTailCall) { 2058 SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 2059 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge); 2060 return Ret; 2061 } 2062 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 2063 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 2064 Glue = Chain.getValue(1); 2065 2066 // Mark the end of the call, which is glued to the call itself. 2067 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); 2068 Glue = Chain.getValue(1); 2069 2070 // Assign locations to each value returned by this call. 2071 SmallVector<CCValAssign, 16> RetLocs; 2072 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 2073 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 2074 2075 // Copy all of the result registers out of their specified physreg. 2076 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 2077 CCValAssign &VA = RetLocs[I]; 2078 2079 // Copy the value out, gluing the copy to the end of the call sequence. 2080 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 2081 VA.getLocVT(), Glue); 2082 Chain = RetValue.getValue(1); 2083 Glue = RetValue.getValue(2); 2084 2085 // Convert the value of the return register into the value that's 2086 // being returned. 2087 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 2088 } 2089 2090 return Chain; 2091 } 2092 2093 // Generate a call taking the given operands as arguments and returning a 2094 // result of type RetVT. 2095 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 2096 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 2097 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 2098 bool DoesNotReturn, bool IsReturnValueUsed) const { 2099 TargetLowering::ArgListTy Args; 2100 Args.reserve(Ops.size()); 2101 2102 TargetLowering::ArgListEntry Entry; 2103 for (SDValue Op : Ops) { 2104 Entry.Node = Op; 2105 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2106 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 2107 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 2108 Args.push_back(Entry); 2109 } 2110 2111 SDValue Callee = 2112 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 2113 2114 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2115 TargetLowering::CallLoweringInfo CLI(DAG); 2116 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 2117 CLI.setDebugLoc(DL) 2118 .setChain(Chain) 2119 .setCallee(CallConv, RetTy, Callee, std::move(Args)) 2120 .setNoReturn(DoesNotReturn) 2121 .setDiscardResult(!IsReturnValueUsed) 2122 .setSExtResult(SignExtend) 2123 .setZExtResult(!SignExtend); 2124 return LowerCallTo(CLI); 2125 } 2126 2127 bool SystemZTargetLowering:: 2128 CanLowerReturn(CallingConv::ID CallConv, 2129 MachineFunction &MF, bool isVarArg, 2130 const SmallVectorImpl<ISD::OutputArg> &Outs, 2131 LLVMContext &Context) const { 2132 // Special case that we cannot easily detect in RetCC_SystemZ since 2133 // i128 may not be a legal type. 2134 for (auto &Out : Outs) 2135 if (Out.ArgVT == MVT::i128) 2136 return false; 2137 2138 SmallVector<CCValAssign, 16> RetLocs; 2139 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 2140 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 2141 } 2142 2143 SDValue 2144 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 2145 bool IsVarArg, 2146 const SmallVectorImpl<ISD::OutputArg> &Outs, 2147 const SmallVectorImpl<SDValue> &OutVals, 2148 const SDLoc &DL, SelectionDAG &DAG) const { 2149 MachineFunction &MF = DAG.getMachineFunction(); 2150 2151 // Assign locations to each returned value. 2152 SmallVector<CCValAssign, 16> RetLocs; 2153 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 2154 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 2155 2156 // Quick exit for void returns 2157 if (RetLocs.empty()) 2158 return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain); 2159 2160 if (CallConv == CallingConv::GHC) 2161 report_fatal_error("GHC functions return void only"); 2162 2163 // Copy the result values into the output registers. 2164 SDValue Glue; 2165 SmallVector<SDValue, 4> RetOps; 2166 RetOps.push_back(Chain); 2167 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 2168 CCValAssign &VA = RetLocs[I]; 2169 SDValue RetValue = OutVals[I]; 2170 2171 // Make the return register live on exit. 2172 assert(VA.isRegLoc() && "Can only return in registers!"); 2173 2174 // Promote the value as required. 2175 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 2176 2177 // Chain and glue the copies together. 2178 Register Reg = VA.getLocReg(); 2179 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 2180 Glue = Chain.getValue(1); 2181 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 2182 } 2183 2184 // Update chain and glue. 2185 RetOps[0] = Chain; 2186 if (Glue.getNode()) 2187 RetOps.push_back(Glue); 2188 2189 return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps); 2190 } 2191 2192 // Return true if Op is an intrinsic node with chain that returns the CC value 2193 // as its only (other) argument. Provide the associated SystemZISD opcode and 2194 // the mask of valid CC values if so. 2195 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 2196 unsigned &CCValid) { 2197 unsigned Id = Op.getConstantOperandVal(1); 2198 switch (Id) { 2199 case Intrinsic::s390_tbegin: 2200 Opcode = SystemZISD::TBEGIN; 2201 CCValid = SystemZ::CCMASK_TBEGIN; 2202 return true; 2203 2204 case Intrinsic::s390_tbegin_nofloat: 2205 Opcode = SystemZISD::TBEGIN_NOFLOAT; 2206 CCValid = SystemZ::CCMASK_TBEGIN; 2207 return true; 2208 2209 case Intrinsic::s390_tend: 2210 Opcode = SystemZISD::TEND; 2211 CCValid = SystemZ::CCMASK_TEND; 2212 return true; 2213 2214 default: 2215 return false; 2216 } 2217 } 2218 2219 // Return true if Op is an intrinsic node without chain that returns the 2220 // CC value as its final argument. Provide the associated SystemZISD 2221 // opcode and the mask of valid CC values if so. 2222 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 2223 unsigned Id = Op.getConstantOperandVal(0); 2224 switch (Id) { 2225 case Intrinsic::s390_vpkshs: 2226 case Intrinsic::s390_vpksfs: 2227 case Intrinsic::s390_vpksgs: 2228 Opcode = SystemZISD::PACKS_CC; 2229 CCValid = SystemZ::CCMASK_VCMP; 2230 return true; 2231 2232 case Intrinsic::s390_vpklshs: 2233 case Intrinsic::s390_vpklsfs: 2234 case Intrinsic::s390_vpklsgs: 2235 Opcode = SystemZISD::PACKLS_CC; 2236 CCValid = SystemZ::CCMASK_VCMP; 2237 return true; 2238 2239 case Intrinsic::s390_vceqbs: 2240 case Intrinsic::s390_vceqhs: 2241 case Intrinsic::s390_vceqfs: 2242 case Intrinsic::s390_vceqgs: 2243 Opcode = SystemZISD::VICMPES; 2244 CCValid = SystemZ::CCMASK_VCMP; 2245 return true; 2246 2247 case Intrinsic::s390_vchbs: 2248 case Intrinsic::s390_vchhs: 2249 case Intrinsic::s390_vchfs: 2250 case Intrinsic::s390_vchgs: 2251 Opcode = SystemZISD::VICMPHS; 2252 CCValid = SystemZ::CCMASK_VCMP; 2253 return true; 2254 2255 case Intrinsic::s390_vchlbs: 2256 case Intrinsic::s390_vchlhs: 2257 case Intrinsic::s390_vchlfs: 2258 case Intrinsic::s390_vchlgs: 2259 Opcode = SystemZISD::VICMPHLS; 2260 CCValid = SystemZ::CCMASK_VCMP; 2261 return true; 2262 2263 case Intrinsic::s390_vtm: 2264 Opcode = SystemZISD::VTM; 2265 CCValid = SystemZ::CCMASK_VCMP; 2266 return true; 2267 2268 case Intrinsic::s390_vfaebs: 2269 case Intrinsic::s390_vfaehs: 2270 case Intrinsic::s390_vfaefs: 2271 Opcode = SystemZISD::VFAE_CC; 2272 CCValid = SystemZ::CCMASK_ANY; 2273 return true; 2274 2275 case Intrinsic::s390_vfaezbs: 2276 case Intrinsic::s390_vfaezhs: 2277 case Intrinsic::s390_vfaezfs: 2278 Opcode = SystemZISD::VFAEZ_CC; 2279 CCValid = SystemZ::CCMASK_ANY; 2280 return true; 2281 2282 case Intrinsic::s390_vfeebs: 2283 case Intrinsic::s390_vfeehs: 2284 case Intrinsic::s390_vfeefs: 2285 Opcode = SystemZISD::VFEE_CC; 2286 CCValid = SystemZ::CCMASK_ANY; 2287 return true; 2288 2289 case Intrinsic::s390_vfeezbs: 2290 case Intrinsic::s390_vfeezhs: 2291 case Intrinsic::s390_vfeezfs: 2292 Opcode = SystemZISD::VFEEZ_CC; 2293 CCValid = SystemZ::CCMASK_ANY; 2294 return true; 2295 2296 case Intrinsic::s390_vfenebs: 2297 case Intrinsic::s390_vfenehs: 2298 case Intrinsic::s390_vfenefs: 2299 Opcode = SystemZISD::VFENE_CC; 2300 CCValid = SystemZ::CCMASK_ANY; 2301 return true; 2302 2303 case Intrinsic::s390_vfenezbs: 2304 case Intrinsic::s390_vfenezhs: 2305 case Intrinsic::s390_vfenezfs: 2306 Opcode = SystemZISD::VFENEZ_CC; 2307 CCValid = SystemZ::CCMASK_ANY; 2308 return true; 2309 2310 case Intrinsic::s390_vistrbs: 2311 case Intrinsic::s390_vistrhs: 2312 case Intrinsic::s390_vistrfs: 2313 Opcode = SystemZISD::VISTR_CC; 2314 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2315 return true; 2316 2317 case Intrinsic::s390_vstrcbs: 2318 case Intrinsic::s390_vstrchs: 2319 case Intrinsic::s390_vstrcfs: 2320 Opcode = SystemZISD::VSTRC_CC; 2321 CCValid = SystemZ::CCMASK_ANY; 2322 return true; 2323 2324 case Intrinsic::s390_vstrczbs: 2325 case Intrinsic::s390_vstrczhs: 2326 case Intrinsic::s390_vstrczfs: 2327 Opcode = SystemZISD::VSTRCZ_CC; 2328 CCValid = SystemZ::CCMASK_ANY; 2329 return true; 2330 2331 case Intrinsic::s390_vstrsb: 2332 case Intrinsic::s390_vstrsh: 2333 case Intrinsic::s390_vstrsf: 2334 Opcode = SystemZISD::VSTRS_CC; 2335 CCValid = SystemZ::CCMASK_ANY; 2336 return true; 2337 2338 case Intrinsic::s390_vstrszb: 2339 case Intrinsic::s390_vstrszh: 2340 case Intrinsic::s390_vstrszf: 2341 Opcode = SystemZISD::VSTRSZ_CC; 2342 CCValid = SystemZ::CCMASK_ANY; 2343 return true; 2344 2345 case Intrinsic::s390_vfcedbs: 2346 case Intrinsic::s390_vfcesbs: 2347 Opcode = SystemZISD::VFCMPES; 2348 CCValid = SystemZ::CCMASK_VCMP; 2349 return true; 2350 2351 case Intrinsic::s390_vfchdbs: 2352 case Intrinsic::s390_vfchsbs: 2353 Opcode = SystemZISD::VFCMPHS; 2354 CCValid = SystemZ::CCMASK_VCMP; 2355 return true; 2356 2357 case Intrinsic::s390_vfchedbs: 2358 case Intrinsic::s390_vfchesbs: 2359 Opcode = SystemZISD::VFCMPHES; 2360 CCValid = SystemZ::CCMASK_VCMP; 2361 return true; 2362 2363 case Intrinsic::s390_vftcidb: 2364 case Intrinsic::s390_vftcisb: 2365 Opcode = SystemZISD::VFTCI; 2366 CCValid = SystemZ::CCMASK_VCMP; 2367 return true; 2368 2369 case Intrinsic::s390_tdc: 2370 Opcode = SystemZISD::TDC; 2371 CCValid = SystemZ::CCMASK_TDC; 2372 return true; 2373 2374 default: 2375 return false; 2376 } 2377 } 2378 2379 // Emit an intrinsic with chain and an explicit CC register result. 2380 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2381 unsigned Opcode) { 2382 // Copy all operands except the intrinsic ID. 2383 unsigned NumOps = Op.getNumOperands(); 2384 SmallVector<SDValue, 6> Ops; 2385 Ops.reserve(NumOps - 1); 2386 Ops.push_back(Op.getOperand(0)); 2387 for (unsigned I = 2; I < NumOps; ++I) 2388 Ops.push_back(Op.getOperand(I)); 2389 2390 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2391 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2392 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2393 SDValue OldChain = SDValue(Op.getNode(), 1); 2394 SDValue NewChain = SDValue(Intr.getNode(), 1); 2395 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2396 return Intr.getNode(); 2397 } 2398 2399 // Emit an intrinsic with an explicit CC register result. 2400 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2401 unsigned Opcode) { 2402 // Copy all operands except the intrinsic ID. 2403 unsigned NumOps = Op.getNumOperands(); 2404 SmallVector<SDValue, 6> Ops; 2405 Ops.reserve(NumOps - 1); 2406 for (unsigned I = 1; I < NumOps; ++I) 2407 Ops.push_back(Op.getOperand(I)); 2408 2409 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2410 return Intr.getNode(); 2411 } 2412 2413 // CC is a comparison that will be implemented using an integer or 2414 // floating-point comparison. Return the condition code mask for 2415 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2416 // unsigned comparisons and clear for signed ones. In the floating-point 2417 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2418 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2419 #define CONV(X) \ 2420 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2421 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2422 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2423 2424 switch (CC) { 2425 default: 2426 llvm_unreachable("Invalid integer condition!"); 2427 2428 CONV(EQ); 2429 CONV(NE); 2430 CONV(GT); 2431 CONV(GE); 2432 CONV(LT); 2433 CONV(LE); 2434 2435 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2436 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2437 } 2438 #undef CONV 2439 } 2440 2441 // If C can be converted to a comparison against zero, adjust the operands 2442 // as necessary. 2443 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2444 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2445 return; 2446 2447 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2448 if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64) 2449 return; 2450 2451 int64_t Value = ConstOp1->getSExtValue(); 2452 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2453 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2454 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2455 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2456 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2457 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2458 } 2459 } 2460 2461 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2462 // adjust the operands as necessary. 2463 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2464 Comparison &C) { 2465 // For us to make any changes, it must a comparison between a single-use 2466 // load and a constant. 2467 if (!C.Op0.hasOneUse() || 2468 C.Op0.getOpcode() != ISD::LOAD || 2469 C.Op1.getOpcode() != ISD::Constant) 2470 return; 2471 2472 // We must have an 8- or 16-bit load. 2473 auto *Load = cast<LoadSDNode>(C.Op0); 2474 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2475 if ((NumBits != 8 && NumBits != 16) || 2476 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2477 return; 2478 2479 // The load must be an extending one and the constant must be within the 2480 // range of the unextended value. 2481 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2482 if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64) 2483 return; 2484 uint64_t Value = ConstOp1->getZExtValue(); 2485 uint64_t Mask = (1 << NumBits) - 1; 2486 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2487 // Make sure that ConstOp1 is in range of C.Op0. 2488 int64_t SignedValue = ConstOp1->getSExtValue(); 2489 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2490 return; 2491 if (C.ICmpType != SystemZICMP::SignedOnly) { 2492 // Unsigned comparison between two sign-extended values is equivalent 2493 // to unsigned comparison between two zero-extended values. 2494 Value &= Mask; 2495 } else if (NumBits == 8) { 2496 // Try to treat the comparison as unsigned, so that we can use CLI. 2497 // Adjust CCMask and Value as necessary. 2498 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2499 // Test whether the high bit of the byte is set. 2500 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2501 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2502 // Test whether the high bit of the byte is clear. 2503 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2504 else 2505 // No instruction exists for this combination. 2506 return; 2507 C.ICmpType = SystemZICMP::UnsignedOnly; 2508 } 2509 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2510 if (Value > Mask) 2511 return; 2512 // If the constant is in range, we can use any comparison. 2513 C.ICmpType = SystemZICMP::Any; 2514 } else 2515 return; 2516 2517 // Make sure that the first operand is an i32 of the right extension type. 2518 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2519 ISD::SEXTLOAD : 2520 ISD::ZEXTLOAD); 2521 if (C.Op0.getValueType() != MVT::i32 || 2522 Load->getExtensionType() != ExtType) { 2523 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2524 Load->getBasePtr(), Load->getPointerInfo(), 2525 Load->getMemoryVT(), Load->getAlign(), 2526 Load->getMemOperand()->getFlags()); 2527 // Update the chain uses. 2528 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2529 } 2530 2531 // Make sure that the second operand is an i32 with the right value. 2532 if (C.Op1.getValueType() != MVT::i32 || 2533 Value != ConstOp1->getZExtValue()) 2534 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2535 } 2536 2537 // Return true if Op is either an unextended load, or a load suitable 2538 // for integer register-memory comparisons of type ICmpType. 2539 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2540 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2541 if (Load) { 2542 // There are no instructions to compare a register with a memory byte. 2543 if (Load->getMemoryVT() == MVT::i8) 2544 return false; 2545 // Otherwise decide on extension type. 2546 switch (Load->getExtensionType()) { 2547 case ISD::NON_EXTLOAD: 2548 return true; 2549 case ISD::SEXTLOAD: 2550 return ICmpType != SystemZICMP::UnsignedOnly; 2551 case ISD::ZEXTLOAD: 2552 return ICmpType != SystemZICMP::SignedOnly; 2553 default: 2554 break; 2555 } 2556 } 2557 return false; 2558 } 2559 2560 // Return true if it is better to swap the operands of C. 2561 static bool shouldSwapCmpOperands(const Comparison &C) { 2562 // Leave i128 and f128 comparisons alone, since they have no memory forms. 2563 if (C.Op0.getValueType() == MVT::i128) 2564 return false; 2565 if (C.Op0.getValueType() == MVT::f128) 2566 return false; 2567 2568 // Always keep a floating-point constant second, since comparisons with 2569 // zero can use LOAD TEST and comparisons with other constants make a 2570 // natural memory operand. 2571 if (isa<ConstantFPSDNode>(C.Op1)) 2572 return false; 2573 2574 // Never swap comparisons with zero since there are many ways to optimize 2575 // those later. 2576 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2577 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2578 return false; 2579 2580 // Also keep natural memory operands second if the loaded value is 2581 // only used here. Several comparisons have memory forms. 2582 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2583 return false; 2584 2585 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2586 // In that case we generally prefer the memory to be second. 2587 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2588 // The only exceptions are when the second operand is a constant and 2589 // we can use things like CHHSI. 2590 if (!ConstOp1) 2591 return true; 2592 // The unsigned memory-immediate instructions can handle 16-bit 2593 // unsigned integers. 2594 if (C.ICmpType != SystemZICMP::SignedOnly && 2595 isUInt<16>(ConstOp1->getZExtValue())) 2596 return false; 2597 // The signed memory-immediate instructions can handle 16-bit 2598 // signed integers. 2599 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2600 isInt<16>(ConstOp1->getSExtValue())) 2601 return false; 2602 return true; 2603 } 2604 2605 // Try to promote the use of CGFR and CLGFR. 2606 unsigned Opcode0 = C.Op0.getOpcode(); 2607 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2608 return true; 2609 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2610 return true; 2611 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND && 2612 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2613 C.Op0.getConstantOperandVal(1) == 0xffffffff) 2614 return true; 2615 2616 return false; 2617 } 2618 2619 // Check whether C tests for equality between X and Y and whether X - Y 2620 // or Y - X is also computed. In that case it's better to compare the 2621 // result of the subtraction against zero. 2622 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2623 Comparison &C) { 2624 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2625 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2626 for (SDNode *N : C.Op0->uses()) { 2627 if (N->getOpcode() == ISD::SUB && 2628 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2629 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2630 // Disable the nsw and nuw flags: the backend needs to handle 2631 // overflow as well during comparison elimination. 2632 SDNodeFlags Flags = N->getFlags(); 2633 Flags.setNoSignedWrap(false); 2634 Flags.setNoUnsignedWrap(false); 2635 N->setFlags(Flags); 2636 C.Op0 = SDValue(N, 0); 2637 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2638 return; 2639 } 2640 } 2641 } 2642 } 2643 2644 // Check whether C compares a floating-point value with zero and if that 2645 // floating-point value is also negated. In this case we can use the 2646 // negation to set CC, so avoiding separate LOAD AND TEST and 2647 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2648 static void adjustForFNeg(Comparison &C) { 2649 // This optimization is invalid for strict comparisons, since FNEG 2650 // does not raise any exceptions. 2651 if (C.Chain) 2652 return; 2653 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2654 if (C1 && C1->isZero()) { 2655 for (SDNode *N : C.Op0->uses()) { 2656 if (N->getOpcode() == ISD::FNEG) { 2657 C.Op0 = SDValue(N, 0); 2658 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2659 return; 2660 } 2661 } 2662 } 2663 } 2664 2665 // Check whether C compares (shl X, 32) with 0 and whether X is 2666 // also sign-extended. In that case it is better to test the result 2667 // of the sign extension using LTGFR. 2668 // 2669 // This case is important because InstCombine transforms a comparison 2670 // with (sext (trunc X)) into a comparison with (shl X, 32). 2671 static void adjustForLTGFR(Comparison &C) { 2672 // Check for a comparison between (shl X, 32) and 0. 2673 if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 && 2674 C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) { 2675 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2676 if (C1 && C1->getZExtValue() == 32) { 2677 SDValue ShlOp0 = C.Op0.getOperand(0); 2678 // See whether X has any SIGN_EXTEND_INREG uses. 2679 for (SDNode *N : ShlOp0->uses()) { 2680 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2681 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2682 C.Op0 = SDValue(N, 0); 2683 return; 2684 } 2685 } 2686 } 2687 } 2688 } 2689 2690 // If C compares the truncation of an extending load, try to compare 2691 // the untruncated value instead. This exposes more opportunities to 2692 // reuse CC. 2693 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2694 Comparison &C) { 2695 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2696 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2697 C.Op1.getOpcode() == ISD::Constant && 2698 cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 && 2699 C.Op1->getAsZExtVal() == 0) { 2700 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2701 if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <= 2702 C.Op0.getValueSizeInBits().getFixedValue()) { 2703 unsigned Type = L->getExtensionType(); 2704 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2705 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2706 C.Op0 = C.Op0.getOperand(0); 2707 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2708 } 2709 } 2710 } 2711 } 2712 2713 // Return true if shift operation N has an in-range constant shift value. 2714 // Store it in ShiftVal if so. 2715 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2716 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2717 if (!Shift) 2718 return false; 2719 2720 uint64_t Amount = Shift->getZExtValue(); 2721 if (Amount >= N.getValueSizeInBits()) 2722 return false; 2723 2724 ShiftVal = Amount; 2725 return true; 2726 } 2727 2728 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2729 // instruction and whether the CC value is descriptive enough to handle 2730 // a comparison of type Opcode between the AND result and CmpVal. 2731 // CCMask says which comparison result is being tested and BitSize is 2732 // the number of bits in the operands. If TEST UNDER MASK can be used, 2733 // return the corresponding CC mask, otherwise return 0. 2734 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2735 uint64_t Mask, uint64_t CmpVal, 2736 unsigned ICmpType) { 2737 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2738 2739 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2740 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2741 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2742 return 0; 2743 2744 // Work out the masks for the lowest and highest bits. 2745 uint64_t High = llvm::bit_floor(Mask); 2746 uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask); 2747 2748 // Signed ordered comparisons are effectively unsigned if the sign 2749 // bit is dropped. 2750 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2751 2752 // Check for equality comparisons with 0, or the equivalent. 2753 if (CmpVal == 0) { 2754 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2755 return SystemZ::CCMASK_TM_ALL_0; 2756 if (CCMask == SystemZ::CCMASK_CMP_NE) 2757 return SystemZ::CCMASK_TM_SOME_1; 2758 } 2759 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2760 if (CCMask == SystemZ::CCMASK_CMP_LT) 2761 return SystemZ::CCMASK_TM_ALL_0; 2762 if (CCMask == SystemZ::CCMASK_CMP_GE) 2763 return SystemZ::CCMASK_TM_SOME_1; 2764 } 2765 if (EffectivelyUnsigned && CmpVal < Low) { 2766 if (CCMask == SystemZ::CCMASK_CMP_LE) 2767 return SystemZ::CCMASK_TM_ALL_0; 2768 if (CCMask == SystemZ::CCMASK_CMP_GT) 2769 return SystemZ::CCMASK_TM_SOME_1; 2770 } 2771 2772 // Check for equality comparisons with the mask, or the equivalent. 2773 if (CmpVal == Mask) { 2774 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2775 return SystemZ::CCMASK_TM_ALL_1; 2776 if (CCMask == SystemZ::CCMASK_CMP_NE) 2777 return SystemZ::CCMASK_TM_SOME_0; 2778 } 2779 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2780 if (CCMask == SystemZ::CCMASK_CMP_GT) 2781 return SystemZ::CCMASK_TM_ALL_1; 2782 if (CCMask == SystemZ::CCMASK_CMP_LE) 2783 return SystemZ::CCMASK_TM_SOME_0; 2784 } 2785 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2786 if (CCMask == SystemZ::CCMASK_CMP_GE) 2787 return SystemZ::CCMASK_TM_ALL_1; 2788 if (CCMask == SystemZ::CCMASK_CMP_LT) 2789 return SystemZ::CCMASK_TM_SOME_0; 2790 } 2791 2792 // Check for ordered comparisons with the top bit. 2793 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2794 if (CCMask == SystemZ::CCMASK_CMP_LE) 2795 return SystemZ::CCMASK_TM_MSB_0; 2796 if (CCMask == SystemZ::CCMASK_CMP_GT) 2797 return SystemZ::CCMASK_TM_MSB_1; 2798 } 2799 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2800 if (CCMask == SystemZ::CCMASK_CMP_LT) 2801 return SystemZ::CCMASK_TM_MSB_0; 2802 if (CCMask == SystemZ::CCMASK_CMP_GE) 2803 return SystemZ::CCMASK_TM_MSB_1; 2804 } 2805 2806 // If there are just two bits, we can do equality checks for Low and High 2807 // as well. 2808 if (Mask == Low + High) { 2809 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2810 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2811 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2812 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2813 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2814 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2815 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2816 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2817 } 2818 2819 // Looks like we've exhausted our options. 2820 return 0; 2821 } 2822 2823 // See whether C can be implemented as a TEST UNDER MASK instruction. 2824 // Update the arguments with the TM version if so. 2825 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2826 Comparison &C) { 2827 // Use VECTOR TEST UNDER MASK for i128 operations. 2828 if (C.Op0.getValueType() == MVT::i128) { 2829 // We can use VTM for EQ/NE comparisons of x & y against 0. 2830 if (C.Op0.getOpcode() == ISD::AND && 2831 (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2832 C.CCMask == SystemZ::CCMASK_CMP_NE)) { 2833 auto *Mask = dyn_cast<ConstantSDNode>(C.Op1); 2834 if (Mask && Mask->getAPIntValue() == 0) { 2835 C.Opcode = SystemZISD::VTM; 2836 C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1)); 2837 C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0)); 2838 C.CCValid = SystemZ::CCMASK_VCMP; 2839 if (C.CCMask == SystemZ::CCMASK_CMP_EQ) 2840 C.CCMask = SystemZ::CCMASK_VCMP_ALL; 2841 else 2842 C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid; 2843 } 2844 } 2845 return; 2846 } 2847 2848 // Check that we have a comparison with a constant. 2849 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2850 if (!ConstOp1) 2851 return; 2852 uint64_t CmpVal = ConstOp1->getZExtValue(); 2853 2854 // Check whether the nonconstant input is an AND with a constant mask. 2855 Comparison NewC(C); 2856 uint64_t MaskVal; 2857 ConstantSDNode *Mask = nullptr; 2858 if (C.Op0.getOpcode() == ISD::AND) { 2859 NewC.Op0 = C.Op0.getOperand(0); 2860 NewC.Op1 = C.Op0.getOperand(1); 2861 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2862 if (!Mask) 2863 return; 2864 MaskVal = Mask->getZExtValue(); 2865 } else { 2866 // There is no instruction to compare with a 64-bit immediate 2867 // so use TMHH instead if possible. We need an unsigned ordered 2868 // comparison with an i64 immediate. 2869 if (NewC.Op0.getValueType() != MVT::i64 || 2870 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2871 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2872 NewC.ICmpType == SystemZICMP::SignedOnly) 2873 return; 2874 // Convert LE and GT comparisons into LT and GE. 2875 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2876 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2877 if (CmpVal == uint64_t(-1)) 2878 return; 2879 CmpVal += 1; 2880 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2881 } 2882 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2883 // be masked off without changing the result. 2884 MaskVal = -(CmpVal & -CmpVal); 2885 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2886 } 2887 if (!MaskVal) 2888 return; 2889 2890 // Check whether the combination of mask, comparison value and comparison 2891 // type are suitable. 2892 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2893 unsigned NewCCMask, ShiftVal; 2894 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2895 NewC.Op0.getOpcode() == ISD::SHL && 2896 isSimpleShift(NewC.Op0, ShiftVal) && 2897 (MaskVal >> ShiftVal != 0) && 2898 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2899 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2900 MaskVal >> ShiftVal, 2901 CmpVal >> ShiftVal, 2902 SystemZICMP::Any))) { 2903 NewC.Op0 = NewC.Op0.getOperand(0); 2904 MaskVal >>= ShiftVal; 2905 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2906 NewC.Op0.getOpcode() == ISD::SRL && 2907 isSimpleShift(NewC.Op0, ShiftVal) && 2908 (MaskVal << ShiftVal != 0) && 2909 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2910 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2911 MaskVal << ShiftVal, 2912 CmpVal << ShiftVal, 2913 SystemZICMP::UnsignedOnly))) { 2914 NewC.Op0 = NewC.Op0.getOperand(0); 2915 MaskVal <<= ShiftVal; 2916 } else { 2917 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2918 NewC.ICmpType); 2919 if (!NewCCMask) 2920 return; 2921 } 2922 2923 // Go ahead and make the change. 2924 C.Opcode = SystemZISD::TM; 2925 C.Op0 = NewC.Op0; 2926 if (Mask && Mask->getZExtValue() == MaskVal) 2927 C.Op1 = SDValue(Mask, 0); 2928 else 2929 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2930 C.CCValid = SystemZ::CCMASK_TM; 2931 C.CCMask = NewCCMask; 2932 } 2933 2934 // Implement i128 comparison in vector registers. 2935 static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL, 2936 Comparison &C) { 2937 if (C.Opcode != SystemZISD::ICMP) 2938 return; 2939 if (C.Op0.getValueType() != MVT::i128) 2940 return; 2941 2942 // (In-)Equality comparisons can be implemented via VCEQGS. 2943 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2944 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2945 C.Opcode = SystemZISD::VICMPES; 2946 C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0); 2947 C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1); 2948 C.CCValid = SystemZ::CCMASK_VCMP; 2949 if (C.CCMask == SystemZ::CCMASK_CMP_EQ) 2950 C.CCMask = SystemZ::CCMASK_VCMP_ALL; 2951 else 2952 C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid; 2953 return; 2954 } 2955 2956 // Normalize other comparisons to GT. 2957 bool Swap = false, Invert = false; 2958 switch (C.CCMask) { 2959 case SystemZ::CCMASK_CMP_GT: break; 2960 case SystemZ::CCMASK_CMP_LT: Swap = true; break; 2961 case SystemZ::CCMASK_CMP_LE: Invert = true; break; 2962 case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break; 2963 default: llvm_unreachable("Invalid integer condition!"); 2964 } 2965 if (Swap) 2966 std::swap(C.Op0, C.Op1); 2967 2968 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2969 C.Opcode = SystemZISD::UCMP128HI; 2970 else 2971 C.Opcode = SystemZISD::SCMP128HI; 2972 C.CCValid = SystemZ::CCMASK_ANY; 2973 C.CCMask = SystemZ::CCMASK_1; 2974 2975 if (Invert) 2976 C.CCMask ^= C.CCValid; 2977 } 2978 2979 // See whether the comparison argument contains a redundant AND 2980 // and remove it if so. This sometimes happens due to the generic 2981 // BRCOND expansion. 2982 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2983 Comparison &C) { 2984 if (C.Op0.getOpcode() != ISD::AND) 2985 return; 2986 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2987 if (!Mask || Mask->getValueSizeInBits(0) > 64) 2988 return; 2989 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2990 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2991 return; 2992 2993 C.Op0 = C.Op0.getOperand(0); 2994 } 2995 2996 // Return a Comparison that tests the condition-code result of intrinsic 2997 // node Call against constant integer CC using comparison code Cond. 2998 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2999 // and CCValid is the set of possible condition-code results. 3000 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 3001 SDValue Call, unsigned CCValid, uint64_t CC, 3002 ISD::CondCode Cond) { 3003 Comparison C(Call, SDValue(), SDValue()); 3004 C.Opcode = Opcode; 3005 C.CCValid = CCValid; 3006 if (Cond == ISD::SETEQ) 3007 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 3008 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 3009 else if (Cond == ISD::SETNE) 3010 // ...and the inverse of that. 3011 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 3012 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 3013 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 3014 // always true for CC>3. 3015 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 3016 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 3017 // ...and the inverse of that. 3018 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 3019 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 3020 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 3021 // always true for CC>3. 3022 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 3023 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 3024 // ...and the inverse of that. 3025 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 3026 else 3027 llvm_unreachable("Unexpected integer comparison type"); 3028 C.CCMask &= CCValid; 3029 return C; 3030 } 3031 3032 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 3033 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 3034 ISD::CondCode Cond, const SDLoc &DL, 3035 SDValue Chain = SDValue(), 3036 bool IsSignaling = false) { 3037 if (CmpOp1.getOpcode() == ISD::Constant) { 3038 assert(!Chain); 3039 unsigned Opcode, CCValid; 3040 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 3041 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 3042 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 3043 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, 3044 CmpOp1->getAsZExtVal(), Cond); 3045 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 3046 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 3047 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 3048 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, 3049 CmpOp1->getAsZExtVal(), Cond); 3050 } 3051 Comparison C(CmpOp0, CmpOp1, Chain); 3052 C.CCMask = CCMaskForCondCode(Cond); 3053 if (C.Op0.getValueType().isFloatingPoint()) { 3054 C.CCValid = SystemZ::CCMASK_FCMP; 3055 if (!C.Chain) 3056 C.Opcode = SystemZISD::FCMP; 3057 else if (!IsSignaling) 3058 C.Opcode = SystemZISD::STRICT_FCMP; 3059 else 3060 C.Opcode = SystemZISD::STRICT_FCMPS; 3061 adjustForFNeg(C); 3062 } else { 3063 assert(!C.Chain); 3064 C.CCValid = SystemZ::CCMASK_ICMP; 3065 C.Opcode = SystemZISD::ICMP; 3066 // Choose the type of comparison. Equality and inequality tests can 3067 // use either signed or unsigned comparisons. The choice also doesn't 3068 // matter if both sign bits are known to be clear. In those cases we 3069 // want to give the main isel code the freedom to choose whichever 3070 // form fits best. 3071 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 3072 C.CCMask == SystemZ::CCMASK_CMP_NE || 3073 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 3074 C.ICmpType = SystemZICMP::Any; 3075 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 3076 C.ICmpType = SystemZICMP::UnsignedOnly; 3077 else 3078 C.ICmpType = SystemZICMP::SignedOnly; 3079 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 3080 adjustForRedundantAnd(DAG, DL, C); 3081 adjustZeroCmp(DAG, DL, C); 3082 adjustSubwordCmp(DAG, DL, C); 3083 adjustForSubtraction(DAG, DL, C); 3084 adjustForLTGFR(C); 3085 adjustICmpTruncate(DAG, DL, C); 3086 } 3087 3088 if (shouldSwapCmpOperands(C)) { 3089 std::swap(C.Op0, C.Op1); 3090 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 3091 } 3092 3093 adjustForTestUnderMask(DAG, DL, C); 3094 adjustICmp128(DAG, DL, C); 3095 return C; 3096 } 3097 3098 // Emit the comparison instruction described by C. 3099 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 3100 if (!C.Op1.getNode()) { 3101 SDNode *Node; 3102 switch (C.Op0.getOpcode()) { 3103 case ISD::INTRINSIC_W_CHAIN: 3104 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 3105 return SDValue(Node, 0); 3106 case ISD::INTRINSIC_WO_CHAIN: 3107 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 3108 return SDValue(Node, Node->getNumValues() - 1); 3109 default: 3110 llvm_unreachable("Invalid comparison operands"); 3111 } 3112 } 3113 if (C.Opcode == SystemZISD::ICMP) 3114 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 3115 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 3116 if (C.Opcode == SystemZISD::TM) { 3117 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 3118 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 3119 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 3120 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 3121 } 3122 if (C.Opcode == SystemZISD::VICMPES) { 3123 SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32); 3124 SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1); 3125 return SDValue(Val.getNode(), 1); 3126 } 3127 if (C.Chain) { 3128 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 3129 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 3130 } 3131 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 3132 } 3133 3134 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 3135 // 64 bits. Extend is the extension type to use. Store the high part 3136 // in Hi and the low part in Lo. 3137 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 3138 SDValue Op0, SDValue Op1, SDValue &Hi, 3139 SDValue &Lo) { 3140 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 3141 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 3142 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 3143 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 3144 DAG.getConstant(32, DL, MVT::i64)); 3145 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 3146 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 3147 } 3148 3149 // Lower a binary operation that produces two VT results, one in each 3150 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 3151 // and Opcode performs the GR128 operation. Store the even register result 3152 // in Even and the odd register result in Odd. 3153 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3154 unsigned Opcode, SDValue Op0, SDValue Op1, 3155 SDValue &Even, SDValue &Odd) { 3156 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 3157 bool Is32Bit = is32Bit(VT); 3158 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 3159 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 3160 } 3161 3162 // Return an i32 value that is 1 if the CC value produced by CCReg is 3163 // in the mask CCMask and 0 otherwise. CC is known to have a value 3164 // in CCValid, so other values can be ignored. 3165 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 3166 unsigned CCValid, unsigned CCMask) { 3167 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 3168 DAG.getConstant(0, DL, MVT::i32), 3169 DAG.getTargetConstant(CCValid, DL, MVT::i32), 3170 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 3171 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 3172 } 3173 3174 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 3175 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 3176 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 3177 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 3178 // floating-point comparisons. 3179 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 3180 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 3181 switch (CC) { 3182 case ISD::SETOEQ: 3183 case ISD::SETEQ: 3184 switch (Mode) { 3185 case CmpMode::Int: return SystemZISD::VICMPE; 3186 case CmpMode::FP: return SystemZISD::VFCMPE; 3187 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 3188 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 3189 } 3190 llvm_unreachable("Bad mode"); 3191 3192 case ISD::SETOGE: 3193 case ISD::SETGE: 3194 switch (Mode) { 3195 case CmpMode::Int: return 0; 3196 case CmpMode::FP: return SystemZISD::VFCMPHE; 3197 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 3198 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 3199 } 3200 llvm_unreachable("Bad mode"); 3201 3202 case ISD::SETOGT: 3203 case ISD::SETGT: 3204 switch (Mode) { 3205 case CmpMode::Int: return SystemZISD::VICMPH; 3206 case CmpMode::FP: return SystemZISD::VFCMPH; 3207 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 3208 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 3209 } 3210 llvm_unreachable("Bad mode"); 3211 3212 case ISD::SETUGT: 3213 switch (Mode) { 3214 case CmpMode::Int: return SystemZISD::VICMPHL; 3215 case CmpMode::FP: return 0; 3216 case CmpMode::StrictFP: return 0; 3217 case CmpMode::SignalingFP: return 0; 3218 } 3219 llvm_unreachable("Bad mode"); 3220 3221 default: 3222 return 0; 3223 } 3224 } 3225 3226 // Return the SystemZISD vector comparison operation for CC or its inverse, 3227 // or 0 if neither can be done directly. Indicate in Invert whether the 3228 // result is for the inverse of CC. Mode is as above. 3229 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 3230 bool &Invert) { 3231 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 3232 Invert = false; 3233 return Opcode; 3234 } 3235 3236 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 3237 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 3238 Invert = true; 3239 return Opcode; 3240 } 3241 3242 return 0; 3243 } 3244 3245 // Return a v2f64 that contains the extended form of elements Start and Start+1 3246 // of v4f32 value Op. If Chain is nonnull, return the strict form. 3247 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 3248 SDValue Op, SDValue Chain) { 3249 int Mask[] = { Start, -1, Start + 1, -1 }; 3250 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 3251 if (Chain) { 3252 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 3253 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 3254 } 3255 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 3256 } 3257 3258 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 3259 // producing a result of type VT. If Chain is nonnull, return the strict form. 3260 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 3261 const SDLoc &DL, EVT VT, 3262 SDValue CmpOp0, 3263 SDValue CmpOp1, 3264 SDValue Chain) const { 3265 // There is no hardware support for v4f32 (unless we have the vector 3266 // enhancements facility 1), so extend the vector into two v2f64s 3267 // and compare those. 3268 if (CmpOp0.getValueType() == MVT::v4f32 && 3269 !Subtarget.hasVectorEnhancements1()) { 3270 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 3271 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 3272 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 3273 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 3274 if (Chain) { 3275 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 3276 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 3277 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 3278 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3279 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 3280 H1.getValue(1), L1.getValue(1), 3281 HRes.getValue(1), LRes.getValue(1) }; 3282 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 3283 SDValue Ops[2] = { Res, NewChain }; 3284 return DAG.getMergeValues(Ops, DL); 3285 } 3286 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 3287 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 3288 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3289 } 3290 if (Chain) { 3291 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 3292 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 3293 } 3294 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 3295 } 3296 3297 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 3298 // an integer mask of type VT. If Chain is nonnull, we have a strict 3299 // floating-point comparison. If in addition IsSignaling is true, we have 3300 // a strict signaling floating-point comparison. 3301 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 3302 const SDLoc &DL, EVT VT, 3303 ISD::CondCode CC, 3304 SDValue CmpOp0, 3305 SDValue CmpOp1, 3306 SDValue Chain, 3307 bool IsSignaling) const { 3308 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 3309 assert (!Chain || IsFP); 3310 assert (!IsSignaling || Chain); 3311 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 3312 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 3313 bool Invert = false; 3314 SDValue Cmp; 3315 switch (CC) { 3316 // Handle tests for order using (or (ogt y x) (oge x y)). 3317 case ISD::SETUO: 3318 Invert = true; 3319 [[fallthrough]]; 3320 case ISD::SETO: { 3321 assert(IsFP && "Unexpected integer comparison"); 3322 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3323 DL, VT, CmpOp1, CmpOp0, Chain); 3324 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 3325 DL, VT, CmpOp0, CmpOp1, Chain); 3326 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 3327 if (Chain) 3328 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3329 LT.getValue(1), GE.getValue(1)); 3330 break; 3331 } 3332 3333 // Handle <> tests using (or (ogt y x) (ogt x y)). 3334 case ISD::SETUEQ: 3335 Invert = true; 3336 [[fallthrough]]; 3337 case ISD::SETONE: { 3338 assert(IsFP && "Unexpected integer comparison"); 3339 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3340 DL, VT, CmpOp1, CmpOp0, Chain); 3341 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3342 DL, VT, CmpOp0, CmpOp1, Chain); 3343 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3344 if (Chain) 3345 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3346 LT.getValue(1), GT.getValue(1)); 3347 break; 3348 } 3349 3350 // Otherwise a single comparison is enough. It doesn't really 3351 // matter whether we try the inversion or the swap first, since 3352 // there are no cases where both work. 3353 default: 3354 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3355 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 3356 else { 3357 CC = ISD::getSetCCSwappedOperands(CC); 3358 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3359 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 3360 else 3361 llvm_unreachable("Unhandled comparison"); 3362 } 3363 if (Chain) 3364 Chain = Cmp.getValue(1); 3365 break; 3366 } 3367 if (Invert) { 3368 SDValue Mask = 3369 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3370 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3371 } 3372 if (Chain && Chain.getNode() != Cmp.getNode()) { 3373 SDValue Ops[2] = { Cmp, Chain }; 3374 Cmp = DAG.getMergeValues(Ops, DL); 3375 } 3376 return Cmp; 3377 } 3378 3379 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3380 SelectionDAG &DAG) const { 3381 SDValue CmpOp0 = Op.getOperand(0); 3382 SDValue CmpOp1 = Op.getOperand(1); 3383 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3384 SDLoc DL(Op); 3385 EVT VT = Op.getValueType(); 3386 if (VT.isVector()) 3387 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3388 3389 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3390 SDValue CCReg = emitCmp(DAG, DL, C); 3391 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3392 } 3393 3394 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3395 SelectionDAG &DAG, 3396 bool IsSignaling) const { 3397 SDValue Chain = Op.getOperand(0); 3398 SDValue CmpOp0 = Op.getOperand(1); 3399 SDValue CmpOp1 = Op.getOperand(2); 3400 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3401 SDLoc DL(Op); 3402 EVT VT = Op.getNode()->getValueType(0); 3403 if (VT.isVector()) { 3404 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3405 Chain, IsSignaling); 3406 return Res.getValue(Op.getResNo()); 3407 } 3408 3409 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3410 SDValue CCReg = emitCmp(DAG, DL, C); 3411 CCReg->setFlags(Op->getFlags()); 3412 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3413 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3414 return DAG.getMergeValues(Ops, DL); 3415 } 3416 3417 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3418 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3419 SDValue CmpOp0 = Op.getOperand(2); 3420 SDValue CmpOp1 = Op.getOperand(3); 3421 SDValue Dest = Op.getOperand(4); 3422 SDLoc DL(Op); 3423 3424 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3425 SDValue CCReg = emitCmp(DAG, DL, C); 3426 return DAG.getNode( 3427 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3428 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3429 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3430 } 3431 3432 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3433 // allowing Pos and Neg to be wider than CmpOp. 3434 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3435 return (Neg.getOpcode() == ISD::SUB && 3436 Neg.getOperand(0).getOpcode() == ISD::Constant && 3437 Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos && 3438 (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND && 3439 Pos.getOperand(0) == CmpOp))); 3440 } 3441 3442 // Return the absolute or negative absolute of Op; IsNegative decides which. 3443 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3444 bool IsNegative) { 3445 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3446 if (IsNegative) 3447 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3448 DAG.getConstant(0, DL, Op.getValueType()), Op); 3449 return Op; 3450 } 3451 3452 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3453 SelectionDAG &DAG) const { 3454 SDValue CmpOp0 = Op.getOperand(0); 3455 SDValue CmpOp1 = Op.getOperand(1); 3456 SDValue TrueOp = Op.getOperand(2); 3457 SDValue FalseOp = Op.getOperand(3); 3458 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3459 SDLoc DL(Op); 3460 3461 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3462 3463 // Check for absolute and negative-absolute selections, including those 3464 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3465 // This check supplements the one in DAGCombiner. 3466 if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ && 3467 C.CCMask != SystemZ::CCMASK_CMP_NE && 3468 C.Op1.getOpcode() == ISD::Constant && 3469 cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 && 3470 C.Op1->getAsZExtVal() == 0) { 3471 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3472 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3473 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3474 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3475 } 3476 3477 SDValue CCReg = emitCmp(DAG, DL, C); 3478 SDValue Ops[] = {TrueOp, FalseOp, 3479 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3480 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3481 3482 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3483 } 3484 3485 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3486 SelectionDAG &DAG) const { 3487 SDLoc DL(Node); 3488 const GlobalValue *GV = Node->getGlobal(); 3489 int64_t Offset = Node->getOffset(); 3490 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3491 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3492 3493 SDValue Result; 3494 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3495 if (isInt<32>(Offset)) { 3496 // Assign anchors at 1<<12 byte boundaries. 3497 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3498 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3499 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3500 3501 // The offset can be folded into the address if it is aligned to a 3502 // halfword. 3503 Offset -= Anchor; 3504 if (Offset != 0 && (Offset & 1) == 0) { 3505 SDValue Full = 3506 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3507 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3508 Offset = 0; 3509 } 3510 } else { 3511 // Conservatively load a constant offset greater than 32 bits into a 3512 // register below. 3513 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3514 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3515 } 3516 } else if (Subtarget.isTargetELF()) { 3517 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3518 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3519 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3520 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3521 } else if (Subtarget.isTargetzOS()) { 3522 Result = getADAEntry(DAG, GV, DL, PtrVT); 3523 } else 3524 llvm_unreachable("Unexpected Subtarget"); 3525 3526 // If there was a non-zero offset that we didn't fold, create an explicit 3527 // addition for it. 3528 if (Offset != 0) 3529 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3530 DAG.getConstant(Offset, DL, PtrVT)); 3531 3532 return Result; 3533 } 3534 3535 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3536 SelectionDAG &DAG, 3537 unsigned Opcode, 3538 SDValue GOTOffset) const { 3539 SDLoc DL(Node); 3540 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3541 SDValue Chain = DAG.getEntryNode(); 3542 SDValue Glue; 3543 3544 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3545 CallingConv::GHC) 3546 report_fatal_error("In GHC calling convention TLS is not supported"); 3547 3548 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3549 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3550 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3551 Glue = Chain.getValue(1); 3552 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3553 Glue = Chain.getValue(1); 3554 3555 // The first call operand is the chain and the second is the TLS symbol. 3556 SmallVector<SDValue, 8> Ops; 3557 Ops.push_back(Chain); 3558 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3559 Node->getValueType(0), 3560 0, 0)); 3561 3562 // Add argument registers to the end of the list so that they are 3563 // known live into the call. 3564 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3565 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3566 3567 // Add a register mask operand representing the call-preserved registers. 3568 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3569 const uint32_t *Mask = 3570 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3571 assert(Mask && "Missing call preserved mask for calling convention"); 3572 Ops.push_back(DAG.getRegisterMask(Mask)); 3573 3574 // Glue the call to the argument copies. 3575 Ops.push_back(Glue); 3576 3577 // Emit the call. 3578 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3579 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3580 Glue = Chain.getValue(1); 3581 3582 // Copy the return value from %r2. 3583 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3584 } 3585 3586 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3587 SelectionDAG &DAG) const { 3588 SDValue Chain = DAG.getEntryNode(); 3589 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3590 3591 // The high part of the thread pointer is in access register 0. 3592 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3593 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3594 3595 // The low part of the thread pointer is in access register 1. 3596 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3597 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3598 3599 // Merge them into a single 64-bit address. 3600 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3601 DAG.getConstant(32, DL, PtrVT)); 3602 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3603 } 3604 3605 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3606 SelectionDAG &DAG) const { 3607 if (DAG.getTarget().useEmulatedTLS()) 3608 return LowerToTLSEmulatedModel(Node, DAG); 3609 SDLoc DL(Node); 3610 const GlobalValue *GV = Node->getGlobal(); 3611 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3612 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3613 3614 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3615 CallingConv::GHC) 3616 report_fatal_error("In GHC calling convention TLS is not supported"); 3617 3618 SDValue TP = lowerThreadPointer(DL, DAG); 3619 3620 // Get the offset of GA from the thread pointer, based on the TLS model. 3621 SDValue Offset; 3622 switch (model) { 3623 case TLSModel::GeneralDynamic: { 3624 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3625 SystemZConstantPoolValue *CPV = 3626 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3627 3628 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3629 Offset = DAG.getLoad( 3630 PtrVT, DL, DAG.getEntryNode(), Offset, 3631 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3632 3633 // Call __tls_get_offset to retrieve the offset. 3634 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3635 break; 3636 } 3637 3638 case TLSModel::LocalDynamic: { 3639 // Load the GOT offset of the module ID. 3640 SystemZConstantPoolValue *CPV = 3641 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3642 3643 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3644 Offset = DAG.getLoad( 3645 PtrVT, DL, DAG.getEntryNode(), Offset, 3646 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3647 3648 // Call __tls_get_offset to retrieve the module base offset. 3649 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3650 3651 // Note: The SystemZLDCleanupPass will remove redundant computations 3652 // of the module base offset. Count total number of local-dynamic 3653 // accesses to trigger execution of that pass. 3654 SystemZMachineFunctionInfo* MFI = 3655 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3656 MFI->incNumLocalDynamicTLSAccesses(); 3657 3658 // Add the per-symbol offset. 3659 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3660 3661 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3662 DTPOffset = DAG.getLoad( 3663 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3664 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3665 3666 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3667 break; 3668 } 3669 3670 case TLSModel::InitialExec: { 3671 // Load the offset from the GOT. 3672 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3673 SystemZII::MO_INDNTPOFF); 3674 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3675 Offset = 3676 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3677 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3678 break; 3679 } 3680 3681 case TLSModel::LocalExec: { 3682 // Force the offset into the constant pool and load it from there. 3683 SystemZConstantPoolValue *CPV = 3684 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3685 3686 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3687 Offset = DAG.getLoad( 3688 PtrVT, DL, DAG.getEntryNode(), Offset, 3689 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3690 break; 3691 } 3692 } 3693 3694 // Add the base and offset together. 3695 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3696 } 3697 3698 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3699 SelectionDAG &DAG) const { 3700 SDLoc DL(Node); 3701 const BlockAddress *BA = Node->getBlockAddress(); 3702 int64_t Offset = Node->getOffset(); 3703 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3704 3705 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3706 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3707 return Result; 3708 } 3709 3710 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3711 SelectionDAG &DAG) const { 3712 SDLoc DL(JT); 3713 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3714 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3715 3716 // Use LARL to load the address of the table. 3717 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3718 } 3719 3720 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3721 SelectionDAG &DAG) const { 3722 SDLoc DL(CP); 3723 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3724 3725 SDValue Result; 3726 if (CP->isMachineConstantPoolEntry()) 3727 Result = 3728 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3729 else 3730 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3731 CP->getOffset()); 3732 3733 // Use LARL to load the address of the constant pool entry. 3734 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3735 } 3736 3737 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3738 SelectionDAG &DAG) const { 3739 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3740 MachineFunction &MF = DAG.getMachineFunction(); 3741 MachineFrameInfo &MFI = MF.getFrameInfo(); 3742 MFI.setFrameAddressIsTaken(true); 3743 3744 SDLoc DL(Op); 3745 unsigned Depth = Op.getConstantOperandVal(0); 3746 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3747 3748 // By definition, the frame address is the address of the back chain. (In 3749 // the case of packed stack without backchain, return the address where the 3750 // backchain would have been stored. This will either be an unused space or 3751 // contain a saved register). 3752 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3753 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3754 3755 if (Depth > 0) { 3756 // FIXME The frontend should detect this case. 3757 if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain()) 3758 report_fatal_error("Unsupported stack frame traversal count"); 3759 3760 SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT); 3761 while (Depth--) { 3762 BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain, 3763 MachinePointerInfo()); 3764 BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset); 3765 } 3766 } 3767 3768 return BackChain; 3769 } 3770 3771 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3772 SelectionDAG &DAG) const { 3773 MachineFunction &MF = DAG.getMachineFunction(); 3774 MachineFrameInfo &MFI = MF.getFrameInfo(); 3775 MFI.setReturnAddressIsTaken(true); 3776 3777 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3778 return SDValue(); 3779 3780 SDLoc DL(Op); 3781 unsigned Depth = Op.getConstantOperandVal(0); 3782 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3783 3784 if (Depth > 0) { 3785 // FIXME The frontend should detect this case. 3786 if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain()) 3787 report_fatal_error("Unsupported stack frame traversal count"); 3788 3789 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG); 3790 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3791 int Offset = (TFL->usePackedStack(MF) ? -2 : 14) * 3792 getTargetMachine().getPointerSize(0); 3793 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr, 3794 DAG.getConstant(Offset, DL, PtrVT)); 3795 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, 3796 MachinePointerInfo()); 3797 } 3798 3799 // Return R14D, which has the return address. Mark it an implicit live-in. 3800 Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3801 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3802 } 3803 3804 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3805 SelectionDAG &DAG) const { 3806 SDLoc DL(Op); 3807 SDValue In = Op.getOperand(0); 3808 EVT InVT = In.getValueType(); 3809 EVT ResVT = Op.getValueType(); 3810 3811 // Convert loads directly. This is normally done by DAGCombiner, 3812 // but we need this case for bitcasts that are created during lowering 3813 // and which are then lowered themselves. 3814 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3815 if (ISD::isNormalLoad(LoadN)) { 3816 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3817 LoadN->getBasePtr(), LoadN->getMemOperand()); 3818 // Update the chain uses. 3819 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3820 return NewLoad; 3821 } 3822 3823 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3824 SDValue In64; 3825 if (Subtarget.hasHighWord()) { 3826 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3827 MVT::i64); 3828 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3829 MVT::i64, SDValue(U64, 0), In); 3830 } else { 3831 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3832 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3833 DAG.getConstant(32, DL, MVT::i64)); 3834 } 3835 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3836 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3837 DL, MVT::f32, Out64); 3838 } 3839 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3840 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3841 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3842 MVT::f64, SDValue(U64, 0), In); 3843 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3844 if (Subtarget.hasHighWord()) 3845 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3846 MVT::i32, Out64); 3847 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3848 DAG.getConstant(32, DL, MVT::i64)); 3849 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3850 } 3851 llvm_unreachable("Unexpected bitcast combination"); 3852 } 3853 3854 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3855 SelectionDAG &DAG) const { 3856 3857 if (Subtarget.isTargetXPLINK64()) 3858 return lowerVASTART_XPLINK(Op, DAG); 3859 else 3860 return lowerVASTART_ELF(Op, DAG); 3861 } 3862 3863 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, 3864 SelectionDAG &DAG) const { 3865 MachineFunction &MF = DAG.getMachineFunction(); 3866 SystemZMachineFunctionInfo *FuncInfo = 3867 MF.getInfo<SystemZMachineFunctionInfo>(); 3868 3869 SDLoc DL(Op); 3870 3871 // vastart just stores the address of the VarArgsFrameIndex slot into the 3872 // memory location argument. 3873 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3874 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3875 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3876 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 3877 MachinePointerInfo(SV)); 3878 } 3879 3880 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, 3881 SelectionDAG &DAG) const { 3882 MachineFunction &MF = DAG.getMachineFunction(); 3883 SystemZMachineFunctionInfo *FuncInfo = 3884 MF.getInfo<SystemZMachineFunctionInfo>(); 3885 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3886 3887 SDValue Chain = Op.getOperand(0); 3888 SDValue Addr = Op.getOperand(1); 3889 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3890 SDLoc DL(Op); 3891 3892 // The initial values of each field. 3893 const unsigned NumFields = 4; 3894 SDValue Fields[NumFields] = { 3895 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3896 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3897 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3898 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3899 }; 3900 3901 // Store each field into its respective slot. 3902 SDValue MemOps[NumFields]; 3903 unsigned Offset = 0; 3904 for (unsigned I = 0; I < NumFields; ++I) { 3905 SDValue FieldAddr = Addr; 3906 if (Offset != 0) 3907 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3908 DAG.getIntPtrConstant(Offset, DL)); 3909 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3910 MachinePointerInfo(SV, Offset)); 3911 Offset += 8; 3912 } 3913 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3914 } 3915 3916 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3917 SelectionDAG &DAG) const { 3918 SDValue Chain = Op.getOperand(0); 3919 SDValue DstPtr = Op.getOperand(1); 3920 SDValue SrcPtr = Op.getOperand(2); 3921 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3922 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3923 SDLoc DL(Op); 3924 3925 uint32_t Sz = 3926 Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; 3927 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), 3928 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3929 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3930 MachinePointerInfo(SrcSV)); 3931 } 3932 3933 SDValue 3934 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 3935 SelectionDAG &DAG) const { 3936 if (Subtarget.isTargetXPLINK64()) 3937 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 3938 else 3939 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 3940 } 3941 3942 SDValue 3943 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 3944 SelectionDAG &DAG) const { 3945 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3946 MachineFunction &MF = DAG.getMachineFunction(); 3947 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3948 SDValue Chain = Op.getOperand(0); 3949 SDValue Size = Op.getOperand(1); 3950 SDValue Align = Op.getOperand(2); 3951 SDLoc DL(Op); 3952 3953 // If user has set the no alignment function attribute, ignore 3954 // alloca alignments. 3955 uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0); 3956 3957 uint64_t StackAlign = TFI->getStackAlignment(); 3958 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3959 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3960 3961 SDValue NeededSpace = Size; 3962 3963 // Add extra space for alignment if needed. 3964 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3965 if (ExtraAlignSpace) 3966 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 3967 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3968 3969 bool IsSigned = false; 3970 bool DoesNotReturn = false; 3971 bool IsReturnValueUsed = false; 3972 EVT VT = Op.getValueType(); 3973 SDValue AllocaCall = 3974 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace), 3975 CallingConv::C, IsSigned, DL, DoesNotReturn, 3976 IsReturnValueUsed) 3977 .first; 3978 3979 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 3980 // to end of call in order to ensure it isn't broken up from the call 3981 // sequence. 3982 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 3983 Register SPReg = Regs.getStackPointerRegister(); 3984 Chain = AllocaCall.getValue(1); 3985 SDValue Glue = AllocaCall.getValue(2); 3986 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 3987 Chain = NewSPRegNode.getValue(1); 3988 3989 MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 3990 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 3991 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 3992 3993 // Dynamically realign if needed. 3994 if (ExtraAlignSpace) { 3995 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3996 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3997 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 3998 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 3999 } 4000 4001 SDValue Ops[2] = {Result, Chain}; 4002 return DAG.getMergeValues(Ops, DL); 4003 } 4004 4005 SDValue 4006 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 4007 SelectionDAG &DAG) const { 4008 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 4009 MachineFunction &MF = DAG.getMachineFunction(); 4010 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 4011 bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain(); 4012 4013 SDValue Chain = Op.getOperand(0); 4014 SDValue Size = Op.getOperand(1); 4015 SDValue Align = Op.getOperand(2); 4016 SDLoc DL(Op); 4017 4018 // If user has set the no alignment function attribute, ignore 4019 // alloca alignments. 4020 uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0); 4021 4022 uint64_t StackAlign = TFI->getStackAlignment(); 4023 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 4024 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 4025 4026 Register SPReg = getStackPointerRegisterToSaveRestore(); 4027 SDValue NeededSpace = Size; 4028 4029 // Get a reference to the stack pointer. 4030 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 4031 4032 // If we need a backchain, save it now. 4033 SDValue Backchain; 4034 if (StoreBackchain) 4035 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4036 MachinePointerInfo()); 4037 4038 // Add extra space for alignment if needed. 4039 if (ExtraAlignSpace) 4040 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 4041 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 4042 4043 // Get the new stack pointer value. 4044 SDValue NewSP; 4045 if (hasInlineStackProbe(MF)) { 4046 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 4047 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 4048 Chain = NewSP.getValue(1); 4049 } 4050 else { 4051 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 4052 // Copy the new stack pointer back. 4053 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 4054 } 4055 4056 // The allocated data lives above the 160 bytes allocated for the standard 4057 // frame, plus any outgoing stack arguments. We don't know how much that 4058 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 4059 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 4060 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 4061 4062 // Dynamically realign if needed. 4063 if (RequiredAlign > StackAlign) { 4064 Result = 4065 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 4066 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 4067 Result = 4068 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 4069 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 4070 } 4071 4072 if (StoreBackchain) 4073 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4074 MachinePointerInfo()); 4075 4076 SDValue Ops[2] = { Result, Chain }; 4077 return DAG.getMergeValues(Ops, DL); 4078 } 4079 4080 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 4081 SDValue Op, SelectionDAG &DAG) const { 4082 SDLoc DL(Op); 4083 4084 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 4085 } 4086 4087 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 4088 SelectionDAG &DAG) const { 4089 EVT VT = Op.getValueType(); 4090 SDLoc DL(Op); 4091 SDValue Ops[2]; 4092 if (is32Bit(VT)) 4093 // Just do a normal 64-bit multiplication and extract the results. 4094 // We define this so that it can be used for constant division. 4095 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 4096 Op.getOperand(1), Ops[1], Ops[0]); 4097 else if (Subtarget.hasMiscellaneousExtensions2()) 4098 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 4099 // the high result in the even register. ISD::SMUL_LOHI is defined to 4100 // return the low half first, so the results are in reverse order. 4101 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 4102 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4103 else { 4104 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 4105 // 4106 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 4107 // 4108 // but using the fact that the upper halves are either all zeros 4109 // or all ones: 4110 // 4111 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 4112 // 4113 // and grouping the right terms together since they are quicker than the 4114 // multiplication: 4115 // 4116 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 4117 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 4118 SDValue LL = Op.getOperand(0); 4119 SDValue RL = Op.getOperand(1); 4120 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 4121 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 4122 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 4123 // the high result in the even register. ISD::SMUL_LOHI is defined to 4124 // return the low half first, so the results are in reverse order. 4125 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 4126 LL, RL, Ops[1], Ops[0]); 4127 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 4128 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 4129 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 4130 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 4131 } 4132 return DAG.getMergeValues(Ops, DL); 4133 } 4134 4135 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 4136 SelectionDAG &DAG) const { 4137 EVT VT = Op.getValueType(); 4138 SDLoc DL(Op); 4139 SDValue Ops[2]; 4140 if (is32Bit(VT)) 4141 // Just do a normal 64-bit multiplication and extract the results. 4142 // We define this so that it can be used for constant division. 4143 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 4144 Op.getOperand(1), Ops[1], Ops[0]); 4145 else 4146 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 4147 // the high result in the even register. ISD::UMUL_LOHI is defined to 4148 // return the low half first, so the results are in reverse order. 4149 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 4150 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4151 return DAG.getMergeValues(Ops, DL); 4152 } 4153 4154 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 4155 SelectionDAG &DAG) const { 4156 SDValue Op0 = Op.getOperand(0); 4157 SDValue Op1 = Op.getOperand(1); 4158 EVT VT = Op.getValueType(); 4159 SDLoc DL(Op); 4160 4161 // We use DSGF for 32-bit division. This means the first operand must 4162 // always be 64-bit, and the second operand should be 32-bit whenever 4163 // that is possible, to improve performance. 4164 if (is32Bit(VT)) 4165 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 4166 else if (DAG.ComputeNumSignBits(Op1) > 32) 4167 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 4168 4169 // DSG(F) returns the remainder in the even register and the 4170 // quotient in the odd register. 4171 SDValue Ops[2]; 4172 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 4173 return DAG.getMergeValues(Ops, DL); 4174 } 4175 4176 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 4177 SelectionDAG &DAG) const { 4178 EVT VT = Op.getValueType(); 4179 SDLoc DL(Op); 4180 4181 // DL(G) returns the remainder in the even register and the 4182 // quotient in the odd register. 4183 SDValue Ops[2]; 4184 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 4185 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 4186 return DAG.getMergeValues(Ops, DL); 4187 } 4188 4189 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 4190 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 4191 4192 // Get the known-zero masks for each operand. 4193 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 4194 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 4195 DAG.computeKnownBits(Ops[1])}; 4196 4197 // See if the upper 32 bits of one operand and the lower 32 bits of the 4198 // other are known zero. They are the low and high operands respectively. 4199 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 4200 Known[1].Zero.getZExtValue() }; 4201 unsigned High, Low; 4202 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 4203 High = 1, Low = 0; 4204 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 4205 High = 0, Low = 1; 4206 else 4207 return Op; 4208 4209 SDValue LowOp = Ops[Low]; 4210 SDValue HighOp = Ops[High]; 4211 4212 // If the high part is a constant, we're better off using IILH. 4213 if (HighOp.getOpcode() == ISD::Constant) 4214 return Op; 4215 4216 // If the low part is a constant that is outside the range of LHI, 4217 // then we're better off using IILF. 4218 if (LowOp.getOpcode() == ISD::Constant) { 4219 int64_t Value = int32_t(LowOp->getAsZExtVal()); 4220 if (!isInt<16>(Value)) 4221 return Op; 4222 } 4223 4224 // Check whether the high part is an AND that doesn't change the 4225 // high 32 bits and just masks out low bits. We can skip it if so. 4226 if (HighOp.getOpcode() == ISD::AND && 4227 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 4228 SDValue HighOp0 = HighOp.getOperand(0); 4229 uint64_t Mask = HighOp.getConstantOperandVal(1); 4230 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 4231 HighOp = HighOp0; 4232 } 4233 4234 // Take advantage of the fact that all GR32 operations only change the 4235 // low 32 bits by truncating Low to an i32 and inserting it directly 4236 // using a subreg. The interesting cases are those where the truncation 4237 // can be folded. 4238 SDLoc DL(Op); 4239 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 4240 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 4241 MVT::i64, HighOp, Low32); 4242 } 4243 4244 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 4245 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 4246 SelectionDAG &DAG) const { 4247 SDNode *N = Op.getNode(); 4248 SDValue LHS = N->getOperand(0); 4249 SDValue RHS = N->getOperand(1); 4250 SDLoc DL(N); 4251 4252 if (N->getValueType(0) == MVT::i128) { 4253 unsigned BaseOp = 0; 4254 unsigned FlagOp = 0; 4255 bool IsBorrow = false; 4256 switch (Op.getOpcode()) { 4257 default: llvm_unreachable("Unknown instruction!"); 4258 case ISD::UADDO: 4259 BaseOp = ISD::ADD; 4260 FlagOp = SystemZISD::VACC; 4261 break; 4262 case ISD::USUBO: 4263 BaseOp = ISD::SUB; 4264 FlagOp = SystemZISD::VSCBI; 4265 IsBorrow = true; 4266 break; 4267 } 4268 SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS); 4269 SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS); 4270 Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag, 4271 DAG.getValueType(MVT::i1)); 4272 Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1)); 4273 if (IsBorrow) 4274 Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(), 4275 Flag, DAG.getConstant(1, DL, Flag.getValueType())); 4276 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag); 4277 } 4278 4279 unsigned BaseOp = 0; 4280 unsigned CCValid = 0; 4281 unsigned CCMask = 0; 4282 4283 switch (Op.getOpcode()) { 4284 default: llvm_unreachable("Unknown instruction!"); 4285 case ISD::SADDO: 4286 BaseOp = SystemZISD::SADDO; 4287 CCValid = SystemZ::CCMASK_ARITH; 4288 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 4289 break; 4290 case ISD::SSUBO: 4291 BaseOp = SystemZISD::SSUBO; 4292 CCValid = SystemZ::CCMASK_ARITH; 4293 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 4294 break; 4295 case ISD::UADDO: 4296 BaseOp = SystemZISD::UADDO; 4297 CCValid = SystemZ::CCMASK_LOGICAL; 4298 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 4299 break; 4300 case ISD::USUBO: 4301 BaseOp = SystemZISD::USUBO; 4302 CCValid = SystemZ::CCMASK_LOGICAL; 4303 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4304 break; 4305 } 4306 4307 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 4308 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 4309 4310 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4311 if (N->getValueType(1) == MVT::i1) 4312 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4313 4314 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4315 } 4316 4317 static bool isAddCarryChain(SDValue Carry) { 4318 while (Carry.getOpcode() == ISD::UADDO_CARRY) 4319 Carry = Carry.getOperand(2); 4320 return Carry.getOpcode() == ISD::UADDO; 4321 } 4322 4323 static bool isSubBorrowChain(SDValue Carry) { 4324 while (Carry.getOpcode() == ISD::USUBO_CARRY) 4325 Carry = Carry.getOperand(2); 4326 return Carry.getOpcode() == ISD::USUBO; 4327 } 4328 4329 // Lower UADDO_CARRY/USUBO_CARRY nodes. 4330 SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op, 4331 SelectionDAG &DAG) const { 4332 4333 SDNode *N = Op.getNode(); 4334 MVT VT = N->getSimpleValueType(0); 4335 4336 // Let legalize expand this if it isn't a legal type yet. 4337 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 4338 return SDValue(); 4339 4340 SDValue LHS = N->getOperand(0); 4341 SDValue RHS = N->getOperand(1); 4342 SDValue Carry = Op.getOperand(2); 4343 SDLoc DL(N); 4344 4345 if (VT == MVT::i128) { 4346 unsigned BaseOp = 0; 4347 unsigned FlagOp = 0; 4348 bool IsBorrow = false; 4349 switch (Op.getOpcode()) { 4350 default: llvm_unreachable("Unknown instruction!"); 4351 case ISD::UADDO_CARRY: 4352 BaseOp = SystemZISD::VAC; 4353 FlagOp = SystemZISD::VACCC; 4354 break; 4355 case ISD::USUBO_CARRY: 4356 BaseOp = SystemZISD::VSBI; 4357 FlagOp = SystemZISD::VSBCBI; 4358 IsBorrow = true; 4359 break; 4360 } 4361 if (IsBorrow) 4362 Carry = DAG.getNode(ISD::XOR, DL, Carry.getValueType(), 4363 Carry, DAG.getConstant(1, DL, Carry.getValueType())); 4364 Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128); 4365 SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry); 4366 SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry); 4367 Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag, 4368 DAG.getValueType(MVT::i1)); 4369 Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1)); 4370 if (IsBorrow) 4371 Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(), 4372 Flag, DAG.getConstant(1, DL, Flag.getValueType())); 4373 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag); 4374 } 4375 4376 unsigned BaseOp = 0; 4377 unsigned CCValid = 0; 4378 unsigned CCMask = 0; 4379 4380 switch (Op.getOpcode()) { 4381 default: llvm_unreachable("Unknown instruction!"); 4382 case ISD::UADDO_CARRY: 4383 if (!isAddCarryChain(Carry)) 4384 return SDValue(); 4385 4386 BaseOp = SystemZISD::ADDCARRY; 4387 CCValid = SystemZ::CCMASK_LOGICAL; 4388 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 4389 break; 4390 case ISD::USUBO_CARRY: 4391 if (!isSubBorrowChain(Carry)) 4392 return SDValue(); 4393 4394 BaseOp = SystemZISD::SUBCARRY; 4395 CCValid = SystemZ::CCMASK_LOGICAL; 4396 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4397 break; 4398 } 4399 4400 // Set the condition code from the carry flag. 4401 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 4402 DAG.getConstant(CCValid, DL, MVT::i32), 4403 DAG.getConstant(CCMask, DL, MVT::i32)); 4404 4405 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 4406 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 4407 4408 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4409 if (N->getValueType(1) == MVT::i1) 4410 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4411 4412 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4413 } 4414 4415 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 4416 SelectionDAG &DAG) const { 4417 EVT VT = Op.getValueType(); 4418 SDLoc DL(Op); 4419 Op = Op.getOperand(0); 4420 4421 if (VT.getScalarSizeInBits() == 128) { 4422 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op); 4423 Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op); 4424 SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL, 4425 DAG.getConstant(0, DL, MVT::i64)); 4426 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4427 return Op; 4428 } 4429 4430 // Handle vector types via VPOPCT. 4431 if (VT.isVector()) { 4432 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 4433 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 4434 switch (VT.getScalarSizeInBits()) { 4435 case 8: 4436 break; 4437 case 16: { 4438 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4439 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 4440 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 4441 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4442 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 4443 break; 4444 } 4445 case 32: { 4446 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4447 DAG.getConstant(0, DL, MVT::i32)); 4448 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4449 break; 4450 } 4451 case 64: { 4452 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4453 DAG.getConstant(0, DL, MVT::i32)); 4454 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 4455 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4456 break; 4457 } 4458 default: 4459 llvm_unreachable("Unexpected type"); 4460 } 4461 return Op; 4462 } 4463 4464 // Get the known-zero mask for the operand. 4465 KnownBits Known = DAG.computeKnownBits(Op); 4466 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 4467 if (NumSignificantBits == 0) 4468 return DAG.getConstant(0, DL, VT); 4469 4470 // Skip known-zero high parts of the operand. 4471 int64_t OrigBitSize = VT.getSizeInBits(); 4472 int64_t BitSize = llvm::bit_ceil(NumSignificantBits); 4473 BitSize = std::min(BitSize, OrigBitSize); 4474 4475 // The POPCNT instruction counts the number of bits in each byte. 4476 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 4477 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 4478 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4479 4480 // Add up per-byte counts in a binary tree. All bits of Op at 4481 // position larger than BitSize remain zero throughout. 4482 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 4483 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 4484 if (BitSize != OrigBitSize) 4485 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 4486 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 4487 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4488 } 4489 4490 // Extract overall result from high byte. 4491 if (BitSize > 8) 4492 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4493 DAG.getConstant(BitSize - 8, DL, VT)); 4494 4495 return Op; 4496 } 4497 4498 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 4499 SelectionDAG &DAG) const { 4500 SDLoc DL(Op); 4501 AtomicOrdering FenceOrdering = 4502 static_cast<AtomicOrdering>(Op.getConstantOperandVal(1)); 4503 SyncScope::ID FenceSSID = 4504 static_cast<SyncScope::ID>(Op.getConstantOperandVal(2)); 4505 4506 // The only fence that needs an instruction is a sequentially-consistent 4507 // cross-thread fence. 4508 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 4509 FenceSSID == SyncScope::System) { 4510 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 4511 Op.getOperand(0)), 4512 0); 4513 } 4514 4515 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4516 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 4517 } 4518 4519 // Op is an atomic load. Lower it into a normal volatile load. 4520 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 4521 SelectionDAG &DAG) const { 4522 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4523 if (Node->getMemoryVT() == MVT::i128) { 4524 // Use same code to handle both legal and non-legal i128 types. 4525 SmallVector<SDValue, 2> Results; 4526 LowerOperationWrapper(Node, Results, DAG); 4527 return DAG.getMergeValues(Results, SDLoc(Op)); 4528 } 4529 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 4530 Node->getChain(), Node->getBasePtr(), 4531 Node->getMemoryVT(), Node->getMemOperand()); 4532 } 4533 4534 // Op is an atomic store. Lower it into a normal volatile store. 4535 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 4536 SelectionDAG &DAG) const { 4537 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4538 if (Node->getMemoryVT() == MVT::i128) { 4539 // Use same code to handle both legal and non-legal i128 types. 4540 SmallVector<SDValue, 1> Results; 4541 LowerOperationWrapper(Node, Results, DAG); 4542 return DAG.getMergeValues(Results, SDLoc(Op)); 4543 } 4544 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 4545 Node->getBasePtr(), Node->getMemoryVT(), 4546 Node->getMemOperand()); 4547 // We have to enforce sequential consistency by performing a 4548 // serialization operation after the store. 4549 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 4550 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 4551 MVT::Other, Chain), 0); 4552 return Chain; 4553 } 4554 4555 // Prepare for a Compare And Swap for a subword operation. This needs to be 4556 // done in memory with 4 bytes at natural alignment. 4557 static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL, 4558 SDValue &AlignedAddr, SDValue &BitShift, 4559 SDValue &NegBitShift) { 4560 EVT PtrVT = Addr.getValueType(); 4561 EVT WideVT = MVT::i32; 4562 4563 // Get the address of the containing word. 4564 AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4565 DAG.getConstant(-4, DL, PtrVT)); 4566 4567 // Get the number of bits that the word must be rotated left in order 4568 // to bring the field to the top bits of a GR32. 4569 BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4570 DAG.getConstant(3, DL, PtrVT)); 4571 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4572 4573 // Get the complementing shift amount, for rotating a field in the top 4574 // bits back to its proper position. 4575 NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4576 DAG.getConstant(0, DL, WideVT), BitShift); 4577 4578 } 4579 4580 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 4581 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 4582 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 4583 SelectionDAG &DAG, 4584 unsigned Opcode) const { 4585 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4586 4587 // 32-bit operations need no special handling. 4588 EVT NarrowVT = Node->getMemoryVT(); 4589 EVT WideVT = MVT::i32; 4590 if (NarrowVT == WideVT) 4591 return Op; 4592 4593 int64_t BitSize = NarrowVT.getSizeInBits(); 4594 SDValue ChainIn = Node->getChain(); 4595 SDValue Addr = Node->getBasePtr(); 4596 SDValue Src2 = Node->getVal(); 4597 MachineMemOperand *MMO = Node->getMemOperand(); 4598 SDLoc DL(Node); 4599 4600 // Convert atomic subtracts of constants into additions. 4601 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4602 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4603 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4604 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4605 } 4606 4607 SDValue AlignedAddr, BitShift, NegBitShift; 4608 getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift); 4609 4610 // Extend the source operand to 32 bits and prepare it for the inner loop. 4611 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4612 // operations require the source to be shifted in advance. (This shift 4613 // can be folded if the source is constant.) For AND and NAND, the lower 4614 // bits must be set, while for other opcodes they should be left clear. 4615 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4616 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4617 DAG.getConstant(32 - BitSize, DL, WideVT)); 4618 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4619 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4620 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4621 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4622 4623 // Construct the ATOMIC_LOADW_* node. 4624 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4625 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4626 DAG.getConstant(BitSize, DL, WideVT) }; 4627 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4628 NarrowVT, MMO); 4629 4630 // Rotate the result of the final CS so that the field is in the lower 4631 // bits of a GR32, then truncate it. 4632 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4633 DAG.getConstant(BitSize, DL, WideVT)); 4634 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4635 4636 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4637 return DAG.getMergeValues(RetOps, DL); 4638 } 4639 4640 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations into 4641 // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions. 4642 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4643 SelectionDAG &DAG) const { 4644 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4645 EVT MemVT = Node->getMemoryVT(); 4646 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4647 // A full-width operation: negate and use LAA(G). 4648 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4649 assert(Subtarget.hasInterlockedAccess1() && 4650 "Should have been expanded by AtomicExpand pass."); 4651 SDValue Src2 = Node->getVal(); 4652 SDLoc DL(Src2); 4653 SDValue NegSrc2 = 4654 DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2); 4655 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4656 Node->getChain(), Node->getBasePtr(), NegSrc2, 4657 Node->getMemOperand()); 4658 } 4659 4660 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4661 } 4662 4663 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4664 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4665 SelectionDAG &DAG) const { 4666 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4667 SDValue ChainIn = Node->getOperand(0); 4668 SDValue Addr = Node->getOperand(1); 4669 SDValue CmpVal = Node->getOperand(2); 4670 SDValue SwapVal = Node->getOperand(3); 4671 MachineMemOperand *MMO = Node->getMemOperand(); 4672 SDLoc DL(Node); 4673 4674 if (Node->getMemoryVT() == MVT::i128) { 4675 // Use same code to handle both legal and non-legal i128 types. 4676 SmallVector<SDValue, 3> Results; 4677 LowerOperationWrapper(Node, Results, DAG); 4678 return DAG.getMergeValues(Results, DL); 4679 } 4680 4681 // We have native support for 32-bit and 64-bit compare and swap, but we 4682 // still need to expand extracting the "success" result from the CC. 4683 EVT NarrowVT = Node->getMemoryVT(); 4684 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4685 if (NarrowVT == WideVT) { 4686 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4687 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4688 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4689 DL, Tys, Ops, NarrowVT, MMO); 4690 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4691 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4692 4693 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4694 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4695 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4696 return SDValue(); 4697 } 4698 4699 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4700 // via a fullword ATOMIC_CMP_SWAPW operation. 4701 int64_t BitSize = NarrowVT.getSizeInBits(); 4702 4703 SDValue AlignedAddr, BitShift, NegBitShift; 4704 getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift); 4705 4706 // Construct the ATOMIC_CMP_SWAPW node. 4707 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4708 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4709 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4710 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4711 VTList, Ops, NarrowVT, MMO); 4712 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4713 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4714 4715 // emitAtomicCmpSwapW() will zero extend the result (original value). 4716 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4717 DAG.getValueType(NarrowVT)); 4718 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4719 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4720 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4721 return SDValue(); 4722 } 4723 4724 MachineMemOperand::Flags 4725 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4726 // Because of how we convert atomic_load and atomic_store to normal loads and 4727 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4728 // since DAGCombine hasn't been updated to account for atomic, but non 4729 // volatile loads. (See D57601) 4730 if (auto *SI = dyn_cast<StoreInst>(&I)) 4731 if (SI->isAtomic()) 4732 return MachineMemOperand::MOVolatile; 4733 if (auto *LI = dyn_cast<LoadInst>(&I)) 4734 if (LI->isAtomic()) 4735 return MachineMemOperand::MOVolatile; 4736 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4737 if (AI->isAtomic()) 4738 return MachineMemOperand::MOVolatile; 4739 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4740 if (AI->isAtomic()) 4741 return MachineMemOperand::MOVolatile; 4742 return MachineMemOperand::MONone; 4743 } 4744 4745 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4746 SelectionDAG &DAG) const { 4747 MachineFunction &MF = DAG.getMachineFunction(); 4748 auto *Regs = Subtarget.getSpecialRegisters(); 4749 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4750 report_fatal_error("Variable-sized stack allocations are not supported " 4751 "in GHC calling convention"); 4752 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4753 Regs->getStackPointerRegister(), Op.getValueType()); 4754 } 4755 4756 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4757 SelectionDAG &DAG) const { 4758 MachineFunction &MF = DAG.getMachineFunction(); 4759 auto *Regs = Subtarget.getSpecialRegisters(); 4760 bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain(); 4761 4762 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4763 report_fatal_error("Variable-sized stack allocations are not supported " 4764 "in GHC calling convention"); 4765 4766 SDValue Chain = Op.getOperand(0); 4767 SDValue NewSP = Op.getOperand(1); 4768 SDValue Backchain; 4769 SDLoc DL(Op); 4770 4771 if (StoreBackchain) { 4772 SDValue OldSP = DAG.getCopyFromReg( 4773 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4774 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4775 MachinePointerInfo()); 4776 } 4777 4778 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4779 4780 if (StoreBackchain) 4781 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4782 MachinePointerInfo()); 4783 4784 return Chain; 4785 } 4786 4787 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4788 SelectionDAG &DAG) const { 4789 bool IsData = Op.getConstantOperandVal(4); 4790 if (!IsData) 4791 // Just preserve the chain. 4792 return Op.getOperand(0); 4793 4794 SDLoc DL(Op); 4795 bool IsWrite = Op.getConstantOperandVal(2); 4796 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4797 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4798 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4799 Op.getOperand(1)}; 4800 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4801 Node->getVTList(), Ops, 4802 Node->getMemoryVT(), Node->getMemOperand()); 4803 } 4804 4805 // Convert condition code in CCReg to an i32 value. 4806 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4807 SDLoc DL(CCReg); 4808 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4809 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4810 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4811 } 4812 4813 SDValue 4814 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4815 SelectionDAG &DAG) const { 4816 unsigned Opcode, CCValid; 4817 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4818 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4819 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4820 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4821 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4822 return SDValue(); 4823 } 4824 4825 return SDValue(); 4826 } 4827 4828 SDValue 4829 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4830 SelectionDAG &DAG) const { 4831 unsigned Opcode, CCValid; 4832 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4833 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4834 if (Op->getNumValues() == 1) 4835 return getCCResult(DAG, SDValue(Node, 0)); 4836 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4837 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4838 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4839 } 4840 4841 unsigned Id = Op.getConstantOperandVal(0); 4842 switch (Id) { 4843 case Intrinsic::thread_pointer: 4844 return lowerThreadPointer(SDLoc(Op), DAG); 4845 4846 case Intrinsic::s390_vpdi: 4847 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4848 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4849 4850 case Intrinsic::s390_vperm: 4851 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4852 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4853 4854 case Intrinsic::s390_vuphb: 4855 case Intrinsic::s390_vuphh: 4856 case Intrinsic::s390_vuphf: 4857 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4858 Op.getOperand(1)); 4859 4860 case Intrinsic::s390_vuplhb: 4861 case Intrinsic::s390_vuplhh: 4862 case Intrinsic::s390_vuplhf: 4863 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4864 Op.getOperand(1)); 4865 4866 case Intrinsic::s390_vuplb: 4867 case Intrinsic::s390_vuplhw: 4868 case Intrinsic::s390_vuplf: 4869 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4870 Op.getOperand(1)); 4871 4872 case Intrinsic::s390_vupllb: 4873 case Intrinsic::s390_vupllh: 4874 case Intrinsic::s390_vupllf: 4875 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4876 Op.getOperand(1)); 4877 4878 case Intrinsic::s390_vsumb: 4879 case Intrinsic::s390_vsumh: 4880 case Intrinsic::s390_vsumgh: 4881 case Intrinsic::s390_vsumgf: 4882 case Intrinsic::s390_vsumqf: 4883 case Intrinsic::s390_vsumqg: 4884 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4885 Op.getOperand(1), Op.getOperand(2)); 4886 4887 case Intrinsic::s390_vaq: 4888 return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), 4889 Op.getOperand(1), Op.getOperand(2)); 4890 case Intrinsic::s390_vaccb: 4891 case Intrinsic::s390_vacch: 4892 case Intrinsic::s390_vaccf: 4893 case Intrinsic::s390_vaccg: 4894 case Intrinsic::s390_vaccq: 4895 return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(), 4896 Op.getOperand(1), Op.getOperand(2)); 4897 case Intrinsic::s390_vacq: 4898 return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(), 4899 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4900 case Intrinsic::s390_vacccq: 4901 return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(), 4902 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4903 4904 case Intrinsic::s390_vsq: 4905 return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), 4906 Op.getOperand(1), Op.getOperand(2)); 4907 case Intrinsic::s390_vscbib: 4908 case Intrinsic::s390_vscbih: 4909 case Intrinsic::s390_vscbif: 4910 case Intrinsic::s390_vscbig: 4911 case Intrinsic::s390_vscbiq: 4912 return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(), 4913 Op.getOperand(1), Op.getOperand(2)); 4914 case Intrinsic::s390_vsbiq: 4915 return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(), 4916 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4917 case Intrinsic::s390_vsbcbiq: 4918 return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(), 4919 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4920 } 4921 4922 return SDValue(); 4923 } 4924 4925 namespace { 4926 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4927 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4928 // Operand is the constant third operand, otherwise it is the number of 4929 // bytes in each element of the result. 4930 struct Permute { 4931 unsigned Opcode; 4932 unsigned Operand; 4933 unsigned char Bytes[SystemZ::VectorBytes]; 4934 }; 4935 } 4936 4937 static const Permute PermuteForms[] = { 4938 // VMRHG 4939 { SystemZISD::MERGE_HIGH, 8, 4940 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4941 // VMRHF 4942 { SystemZISD::MERGE_HIGH, 4, 4943 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4944 // VMRHH 4945 { SystemZISD::MERGE_HIGH, 2, 4946 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4947 // VMRHB 4948 { SystemZISD::MERGE_HIGH, 1, 4949 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4950 // VMRLG 4951 { SystemZISD::MERGE_LOW, 8, 4952 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4953 // VMRLF 4954 { SystemZISD::MERGE_LOW, 4, 4955 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4956 // VMRLH 4957 { SystemZISD::MERGE_LOW, 2, 4958 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4959 // VMRLB 4960 { SystemZISD::MERGE_LOW, 1, 4961 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4962 // VPKG 4963 { SystemZISD::PACK, 4, 4964 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4965 // VPKF 4966 { SystemZISD::PACK, 2, 4967 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4968 // VPKH 4969 { SystemZISD::PACK, 1, 4970 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4971 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4972 { SystemZISD::PERMUTE_DWORDS, 4, 4973 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4974 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4975 { SystemZISD::PERMUTE_DWORDS, 1, 4976 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4977 }; 4978 4979 // Called after matching a vector shuffle against a particular pattern. 4980 // Both the original shuffle and the pattern have two vector operands. 4981 // OpNos[0] is the operand of the original shuffle that should be used for 4982 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4983 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4984 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4985 // for operands 0 and 1 of the pattern. 4986 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4987 if (OpNos[0] < 0) { 4988 if (OpNos[1] < 0) 4989 return false; 4990 OpNo0 = OpNo1 = OpNos[1]; 4991 } else if (OpNos[1] < 0) { 4992 OpNo0 = OpNo1 = OpNos[0]; 4993 } else { 4994 OpNo0 = OpNos[0]; 4995 OpNo1 = OpNos[1]; 4996 } 4997 return true; 4998 } 4999 5000 // Bytes is a VPERM-like permute vector, except that -1 is used for 5001 // undefined bytes. Return true if the VPERM can be implemented using P. 5002 // When returning true set OpNo0 to the VPERM operand that should be 5003 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 5004 // 5005 // For example, if swapping the VPERM operands allows P to match, OpNo0 5006 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 5007 // operand, but rewriting it to use two duplicated operands allows it to 5008 // match P, then OpNo0 and OpNo1 will be the same. 5009 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 5010 unsigned &OpNo0, unsigned &OpNo1) { 5011 int OpNos[] = { -1, -1 }; 5012 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 5013 int Elt = Bytes[I]; 5014 if (Elt >= 0) { 5015 // Make sure that the two permute vectors use the same suboperand 5016 // byte number. Only the operand numbers (the high bits) are 5017 // allowed to differ. 5018 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 5019 return false; 5020 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 5021 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 5022 // Make sure that the operand mappings are consistent with previous 5023 // elements. 5024 if (OpNos[ModelOpNo] == 1 - RealOpNo) 5025 return false; 5026 OpNos[ModelOpNo] = RealOpNo; 5027 } 5028 } 5029 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 5030 } 5031 5032 // As above, but search for a matching permute. 5033 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 5034 unsigned &OpNo0, unsigned &OpNo1) { 5035 for (auto &P : PermuteForms) 5036 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 5037 return &P; 5038 return nullptr; 5039 } 5040 5041 // Bytes is a VPERM-like permute vector, except that -1 is used for 5042 // undefined bytes. This permute is an operand of an outer permute. 5043 // See whether redistributing the -1 bytes gives a shuffle that can be 5044 // implemented using P. If so, set Transform to a VPERM-like permute vector 5045 // that, when applied to the result of P, gives the original permute in Bytes. 5046 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 5047 const Permute &P, 5048 SmallVectorImpl<int> &Transform) { 5049 unsigned To = 0; 5050 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 5051 int Elt = Bytes[From]; 5052 if (Elt < 0) 5053 // Byte number From of the result is undefined. 5054 Transform[From] = -1; 5055 else { 5056 while (P.Bytes[To] != Elt) { 5057 To += 1; 5058 if (To == SystemZ::VectorBytes) 5059 return false; 5060 } 5061 Transform[From] = To; 5062 } 5063 } 5064 return true; 5065 } 5066 5067 // As above, but search for a matching permute. 5068 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 5069 SmallVectorImpl<int> &Transform) { 5070 for (auto &P : PermuteForms) 5071 if (matchDoublePermute(Bytes, P, Transform)) 5072 return &P; 5073 return nullptr; 5074 } 5075 5076 // Convert the mask of the given shuffle op into a byte-level mask, 5077 // as if it had type vNi8. 5078 static bool getVPermMask(SDValue ShuffleOp, 5079 SmallVectorImpl<int> &Bytes) { 5080 EVT VT = ShuffleOp.getValueType(); 5081 unsigned NumElements = VT.getVectorNumElements(); 5082 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5083 5084 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 5085 Bytes.resize(NumElements * BytesPerElement, -1); 5086 for (unsigned I = 0; I < NumElements; ++I) { 5087 int Index = VSN->getMaskElt(I); 5088 if (Index >= 0) 5089 for (unsigned J = 0; J < BytesPerElement; ++J) 5090 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 5091 } 5092 return true; 5093 } 5094 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 5095 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 5096 unsigned Index = ShuffleOp.getConstantOperandVal(1); 5097 Bytes.resize(NumElements * BytesPerElement, -1); 5098 for (unsigned I = 0; I < NumElements; ++I) 5099 for (unsigned J = 0; J < BytesPerElement; ++J) 5100 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 5101 return true; 5102 } 5103 return false; 5104 } 5105 5106 // Bytes is a VPERM-like permute vector, except that -1 is used for 5107 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 5108 // the result come from a contiguous sequence of bytes from one input. 5109 // Set Base to the selector for the first byte if so. 5110 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 5111 unsigned BytesPerElement, int &Base) { 5112 Base = -1; 5113 for (unsigned I = 0; I < BytesPerElement; ++I) { 5114 if (Bytes[Start + I] >= 0) { 5115 unsigned Elem = Bytes[Start + I]; 5116 if (Base < 0) { 5117 Base = Elem - I; 5118 // Make sure the bytes would come from one input operand. 5119 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 5120 return false; 5121 } else if (unsigned(Base) != Elem - I) 5122 return false; 5123 } 5124 } 5125 return true; 5126 } 5127 5128 // Bytes is a VPERM-like permute vector, except that -1 is used for 5129 // undefined bytes. Return true if it can be performed using VSLDB. 5130 // When returning true, set StartIndex to the shift amount and OpNo0 5131 // and OpNo1 to the VPERM operands that should be used as the first 5132 // and second shift operand respectively. 5133 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 5134 unsigned &StartIndex, unsigned &OpNo0, 5135 unsigned &OpNo1) { 5136 int OpNos[] = { -1, -1 }; 5137 int Shift = -1; 5138 for (unsigned I = 0; I < 16; ++I) { 5139 int Index = Bytes[I]; 5140 if (Index >= 0) { 5141 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 5142 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 5143 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 5144 if (Shift < 0) 5145 Shift = ExpectedShift; 5146 else if (Shift != ExpectedShift) 5147 return false; 5148 // Make sure that the operand mappings are consistent with previous 5149 // elements. 5150 if (OpNos[ModelOpNo] == 1 - RealOpNo) 5151 return false; 5152 OpNos[ModelOpNo] = RealOpNo; 5153 } 5154 } 5155 StartIndex = Shift; 5156 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 5157 } 5158 5159 // Create a node that performs P on operands Op0 and Op1, casting the 5160 // operands to the appropriate type. The type of the result is determined by P. 5161 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 5162 const Permute &P, SDValue Op0, SDValue Op1) { 5163 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 5164 // elements of a PACK are twice as wide as the outputs. 5165 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 5166 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 5167 P.Operand); 5168 // Cast both operands to the appropriate type. 5169 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 5170 SystemZ::VectorBytes / InBytes); 5171 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 5172 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 5173 SDValue Op; 5174 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 5175 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 5176 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 5177 } else if (P.Opcode == SystemZISD::PACK) { 5178 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 5179 SystemZ::VectorBytes / P.Operand); 5180 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 5181 } else { 5182 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 5183 } 5184 return Op; 5185 } 5186 5187 static bool isZeroVector(SDValue N) { 5188 if (N->getOpcode() == ISD::BITCAST) 5189 N = N->getOperand(0); 5190 if (N->getOpcode() == ISD::SPLAT_VECTOR) 5191 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 5192 return Op->getZExtValue() == 0; 5193 return ISD::isBuildVectorAllZeros(N.getNode()); 5194 } 5195 5196 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 5197 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 5198 for (unsigned I = 0; I < Num ; I++) 5199 if (isZeroVector(Ops[I])) 5200 return I; 5201 return UINT32_MAX; 5202 } 5203 5204 // Bytes is a VPERM-like permute vector, except that -1 is used for 5205 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 5206 // VSLDB or VPERM. 5207 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 5208 SDValue *Ops, 5209 const SmallVectorImpl<int> &Bytes) { 5210 for (unsigned I = 0; I < 2; ++I) 5211 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 5212 5213 // First see whether VSLDB can be used. 5214 unsigned StartIndex, OpNo0, OpNo1; 5215 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 5216 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 5217 Ops[OpNo1], 5218 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 5219 5220 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 5221 // eliminate a zero vector by reusing any zero index in the permute vector. 5222 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 5223 if (ZeroVecIdx != UINT32_MAX) { 5224 bool MaskFirst = true; 5225 int ZeroIdx = -1; 5226 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 5227 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5228 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 5229 if (OpNo == ZeroVecIdx && I == 0) { 5230 // If the first byte is zero, use mask as first operand. 5231 ZeroIdx = 0; 5232 break; 5233 } 5234 if (OpNo != ZeroVecIdx && Byte == 0) { 5235 // If mask contains a zero, use it by placing that vector first. 5236 ZeroIdx = I + SystemZ::VectorBytes; 5237 MaskFirst = false; 5238 break; 5239 } 5240 } 5241 if (ZeroIdx != -1) { 5242 SDValue IndexNodes[SystemZ::VectorBytes]; 5243 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 5244 if (Bytes[I] >= 0) { 5245 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5246 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 5247 if (OpNo == ZeroVecIdx) 5248 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 5249 else { 5250 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 5251 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 5252 } 5253 } else 5254 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 5255 } 5256 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 5257 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 5258 if (MaskFirst) 5259 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 5260 Mask); 5261 else 5262 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 5263 Mask); 5264 } 5265 } 5266 5267 SDValue IndexNodes[SystemZ::VectorBytes]; 5268 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5269 if (Bytes[I] >= 0) 5270 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 5271 else 5272 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 5273 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 5274 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 5275 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 5276 } 5277 5278 namespace { 5279 // Describes a general N-operand vector shuffle. 5280 struct GeneralShuffle { 5281 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 5282 void addUndef(); 5283 bool add(SDValue, unsigned); 5284 SDValue getNode(SelectionDAG &, const SDLoc &); 5285 void tryPrepareForUnpack(); 5286 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 5287 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 5288 5289 // The operands of the shuffle. 5290 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 5291 5292 // Index I is -1 if byte I of the result is undefined. Otherwise the 5293 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 5294 // Bytes[I] / SystemZ::VectorBytes. 5295 SmallVector<int, SystemZ::VectorBytes> Bytes; 5296 5297 // The type of the shuffle result. 5298 EVT VT; 5299 5300 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 5301 unsigned UnpackFromEltSize; 5302 }; 5303 } 5304 5305 // Add an extra undefined element to the shuffle. 5306 void GeneralShuffle::addUndef() { 5307 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5308 for (unsigned I = 0; I < BytesPerElement; ++I) 5309 Bytes.push_back(-1); 5310 } 5311 5312 // Add an extra element to the shuffle, taking it from element Elem of Op. 5313 // A null Op indicates a vector input whose value will be calculated later; 5314 // there is at most one such input per shuffle and it always has the same 5315 // type as the result. Aborts and returns false if the source vector elements 5316 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 5317 // LLVM they become implicitly extended, but this is rare and not optimized. 5318 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 5319 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 5320 5321 // The source vector can have wider elements than the result, 5322 // either through an explicit TRUNCATE or because of type legalization. 5323 // We want the least significant part. 5324 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 5325 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 5326 5327 // Return false if the source elements are smaller than their destination 5328 // elements. 5329 if (FromBytesPerElement < BytesPerElement) 5330 return false; 5331 5332 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 5333 (FromBytesPerElement - BytesPerElement)); 5334 5335 // Look through things like shuffles and bitcasts. 5336 while (Op.getNode()) { 5337 if (Op.getOpcode() == ISD::BITCAST) 5338 Op = Op.getOperand(0); 5339 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 5340 // See whether the bytes we need come from a contiguous part of one 5341 // operand. 5342 SmallVector<int, SystemZ::VectorBytes> OpBytes; 5343 if (!getVPermMask(Op, OpBytes)) 5344 break; 5345 int NewByte; 5346 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 5347 break; 5348 if (NewByte < 0) { 5349 addUndef(); 5350 return true; 5351 } 5352 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 5353 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 5354 } else if (Op.isUndef()) { 5355 addUndef(); 5356 return true; 5357 } else 5358 break; 5359 } 5360 5361 // Make sure that the source of the extraction is in Ops. 5362 unsigned OpNo = 0; 5363 for (; OpNo < Ops.size(); ++OpNo) 5364 if (Ops[OpNo] == Op) 5365 break; 5366 if (OpNo == Ops.size()) 5367 Ops.push_back(Op); 5368 5369 // Add the element to Bytes. 5370 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 5371 for (unsigned I = 0; I < BytesPerElement; ++I) 5372 Bytes.push_back(Base + I); 5373 5374 return true; 5375 } 5376 5377 // Return SDNodes for the completed shuffle. 5378 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 5379 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 5380 5381 if (Ops.size() == 0) 5382 return DAG.getUNDEF(VT); 5383 5384 // Use a single unpack if possible as the last operation. 5385 tryPrepareForUnpack(); 5386 5387 // Make sure that there are at least two shuffle operands. 5388 if (Ops.size() == 1) 5389 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 5390 5391 // Create a tree of shuffles, deferring root node until after the loop. 5392 // Try to redistribute the undefined elements of non-root nodes so that 5393 // the non-root shuffles match something like a pack or merge, then adjust 5394 // the parent node's permute vector to compensate for the new order. 5395 // Among other things, this copes with vectors like <2 x i16> that were 5396 // padded with undefined elements during type legalization. 5397 // 5398 // In the best case this redistribution will lead to the whole tree 5399 // using packs and merges. It should rarely be a loss in other cases. 5400 unsigned Stride = 1; 5401 for (; Stride * 2 < Ops.size(); Stride *= 2) { 5402 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 5403 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 5404 5405 // Create a mask for just these two operands. 5406 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 5407 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5408 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 5409 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 5410 if (OpNo == I) 5411 NewBytes[J] = Byte; 5412 else if (OpNo == I + Stride) 5413 NewBytes[J] = SystemZ::VectorBytes + Byte; 5414 else 5415 NewBytes[J] = -1; 5416 } 5417 // See if it would be better to reorganize NewMask to avoid using VPERM. 5418 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 5419 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 5420 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 5421 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 5422 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5423 if (NewBytes[J] >= 0) { 5424 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 5425 "Invalid double permute"); 5426 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 5427 } else 5428 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 5429 } 5430 } else { 5431 // Just use NewBytes on the operands. 5432 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 5433 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 5434 if (NewBytes[J] >= 0) 5435 Bytes[J] = I * SystemZ::VectorBytes + J; 5436 } 5437 } 5438 } 5439 5440 // Now we just have 2 inputs. Put the second operand in Ops[1]. 5441 if (Stride > 1) { 5442 Ops[1] = Ops[Stride]; 5443 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5444 if (Bytes[I] >= int(SystemZ::VectorBytes)) 5445 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 5446 } 5447 5448 // Look for an instruction that can do the permute without resorting 5449 // to VPERM. 5450 unsigned OpNo0, OpNo1; 5451 SDValue Op; 5452 if (unpackWasPrepared() && Ops[1].isUndef()) 5453 Op = Ops[0]; 5454 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 5455 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 5456 else 5457 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 5458 5459 Op = insertUnpackIfPrepared(DAG, DL, Op); 5460 5461 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5462 } 5463 5464 #ifndef NDEBUG 5465 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 5466 dbgs() << Msg.c_str() << " { "; 5467 for (unsigned i = 0; i < Bytes.size(); i++) 5468 dbgs() << Bytes[i] << " "; 5469 dbgs() << "}\n"; 5470 } 5471 #endif 5472 5473 // If the Bytes vector matches an unpack operation, prepare to do the unpack 5474 // after all else by removing the zero vector and the effect of the unpack on 5475 // Bytes. 5476 void GeneralShuffle::tryPrepareForUnpack() { 5477 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 5478 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 5479 return; 5480 5481 // Only do this if removing the zero vector reduces the depth, otherwise 5482 // the critical path will increase with the final unpack. 5483 if (Ops.size() > 2 && 5484 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 5485 return; 5486 5487 // Find an unpack that would allow removing the zero vector from Ops. 5488 UnpackFromEltSize = 1; 5489 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 5490 bool MatchUnpack = true; 5491 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 5492 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 5493 unsigned ToEltSize = UnpackFromEltSize * 2; 5494 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 5495 if (!IsZextByte) 5496 SrcBytes.push_back(Bytes[Elt]); 5497 if (Bytes[Elt] != -1) { 5498 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 5499 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 5500 MatchUnpack = false; 5501 break; 5502 } 5503 } 5504 } 5505 if (MatchUnpack) { 5506 if (Ops.size() == 2) { 5507 // Don't use unpack if a single source operand needs rearrangement. 5508 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 5509 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 5510 UnpackFromEltSize = UINT_MAX; 5511 return; 5512 } 5513 } 5514 break; 5515 } 5516 } 5517 if (UnpackFromEltSize > 4) 5518 return; 5519 5520 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 5521 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 5522 << ".\n"; 5523 dumpBytes(Bytes, "Original Bytes vector:");); 5524 5525 // Apply the unpack in reverse to the Bytes array. 5526 unsigned B = 0; 5527 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 5528 Elt += UnpackFromEltSize; 5529 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 5530 Bytes[B] = Bytes[Elt]; 5531 } 5532 while (B < SystemZ::VectorBytes) 5533 Bytes[B++] = -1; 5534 5535 // Remove the zero vector from Ops 5536 Ops.erase(&Ops[ZeroVecOpNo]); 5537 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5538 if (Bytes[I] >= 0) { 5539 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5540 if (OpNo > ZeroVecOpNo) 5541 Bytes[I] -= SystemZ::VectorBytes; 5542 } 5543 5544 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 5545 dbgs() << "\n";); 5546 } 5547 5548 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 5549 const SDLoc &DL, 5550 SDValue Op) { 5551 if (!unpackWasPrepared()) 5552 return Op; 5553 unsigned InBits = UnpackFromEltSize * 8; 5554 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 5555 SystemZ::VectorBits / InBits); 5556 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 5557 unsigned OutBits = InBits * 2; 5558 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 5559 SystemZ::VectorBits / OutBits); 5560 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 5561 } 5562 5563 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 5564 static bool isScalarToVector(SDValue Op) { 5565 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 5566 if (!Op.getOperand(I).isUndef()) 5567 return false; 5568 return true; 5569 } 5570 5571 // Return a vector of type VT that contains Value in the first element. 5572 // The other elements don't matter. 5573 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5574 SDValue Value) { 5575 // If we have a constant, replicate it to all elements and let the 5576 // BUILD_VECTOR lowering take care of it. 5577 if (Value.getOpcode() == ISD::Constant || 5578 Value.getOpcode() == ISD::ConstantFP) { 5579 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 5580 return DAG.getBuildVector(VT, DL, Ops); 5581 } 5582 if (Value.isUndef()) 5583 return DAG.getUNDEF(VT); 5584 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5585 } 5586 5587 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5588 // element 1. Used for cases in which replication is cheap. 5589 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5590 SDValue Op0, SDValue Op1) { 5591 if (Op0.isUndef()) { 5592 if (Op1.isUndef()) 5593 return DAG.getUNDEF(VT); 5594 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5595 } 5596 if (Op1.isUndef()) 5597 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5598 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5599 buildScalarToVector(DAG, DL, VT, Op0), 5600 buildScalarToVector(DAG, DL, VT, Op1)); 5601 } 5602 5603 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5604 // vector for them. 5605 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5606 SDValue Op1) { 5607 if (Op0.isUndef() && Op1.isUndef()) 5608 return DAG.getUNDEF(MVT::v2i64); 5609 // If one of the two inputs is undefined then replicate the other one, 5610 // in order to avoid using another register unnecessarily. 5611 if (Op0.isUndef()) 5612 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5613 else if (Op1.isUndef()) 5614 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5615 else { 5616 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5617 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5618 } 5619 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5620 } 5621 5622 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5623 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5624 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5625 // would benefit from this representation and return it if so. 5626 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5627 BuildVectorSDNode *BVN) { 5628 EVT VT = BVN->getValueType(0); 5629 unsigned NumElements = VT.getVectorNumElements(); 5630 5631 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5632 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5633 // need a BUILD_VECTOR, add an additional placeholder operand for that 5634 // BUILD_VECTOR and store its operands in ResidueOps. 5635 GeneralShuffle GS(VT); 5636 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5637 bool FoundOne = false; 5638 for (unsigned I = 0; I < NumElements; ++I) { 5639 SDValue Op = BVN->getOperand(I); 5640 if (Op.getOpcode() == ISD::TRUNCATE) 5641 Op = Op.getOperand(0); 5642 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5643 Op.getOperand(1).getOpcode() == ISD::Constant) { 5644 unsigned Elem = Op.getConstantOperandVal(1); 5645 if (!GS.add(Op.getOperand(0), Elem)) 5646 return SDValue(); 5647 FoundOne = true; 5648 } else if (Op.isUndef()) { 5649 GS.addUndef(); 5650 } else { 5651 if (!GS.add(SDValue(), ResidueOps.size())) 5652 return SDValue(); 5653 ResidueOps.push_back(BVN->getOperand(I)); 5654 } 5655 } 5656 5657 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5658 if (!FoundOne) 5659 return SDValue(); 5660 5661 // Create the BUILD_VECTOR for the remaining elements, if any. 5662 if (!ResidueOps.empty()) { 5663 while (ResidueOps.size() < NumElements) 5664 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5665 for (auto &Op : GS.Ops) { 5666 if (!Op.getNode()) { 5667 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5668 break; 5669 } 5670 } 5671 } 5672 return GS.getNode(DAG, SDLoc(BVN)); 5673 } 5674 5675 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5676 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5677 return true; 5678 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5679 return true; 5680 return false; 5681 } 5682 5683 // Combine GPR scalar values Elems into a vector of type VT. 5684 SDValue 5685 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5686 SmallVectorImpl<SDValue> &Elems) const { 5687 // See whether there is a single replicated value. 5688 SDValue Single; 5689 unsigned int NumElements = Elems.size(); 5690 unsigned int Count = 0; 5691 for (auto Elem : Elems) { 5692 if (!Elem.isUndef()) { 5693 if (!Single.getNode()) 5694 Single = Elem; 5695 else if (Elem != Single) { 5696 Single = SDValue(); 5697 break; 5698 } 5699 Count += 1; 5700 } 5701 } 5702 // There are three cases here: 5703 // 5704 // - if the only defined element is a loaded one, the best sequence 5705 // is a replicating load. 5706 // 5707 // - otherwise, if the only defined element is an i64 value, we will 5708 // end up with the same VLVGP sequence regardless of whether we short-cut 5709 // for replication or fall through to the later code. 5710 // 5711 // - otherwise, if the only defined element is an i32 or smaller value, 5712 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5713 // This is only a win if the single defined element is used more than once. 5714 // In other cases we're better off using a single VLVGx. 5715 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5716 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5717 5718 // If all elements are loads, use VLREP/VLEs (below). 5719 bool AllLoads = true; 5720 for (auto Elem : Elems) 5721 if (!isVectorElementLoad(Elem)) { 5722 AllLoads = false; 5723 break; 5724 } 5725 5726 // The best way of building a v2i64 from two i64s is to use VLVGP. 5727 if (VT == MVT::v2i64 && !AllLoads) 5728 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5729 5730 // Use a 64-bit merge high to combine two doubles. 5731 if (VT == MVT::v2f64 && !AllLoads) 5732 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5733 5734 // Build v4f32 values directly from the FPRs: 5735 // 5736 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5737 // V V VMRHF 5738 // <ABxx> <CDxx> 5739 // V VMRHG 5740 // <ABCD> 5741 if (VT == MVT::v4f32 && !AllLoads) { 5742 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5743 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5744 // Avoid unnecessary undefs by reusing the other operand. 5745 if (Op01.isUndef()) 5746 Op01 = Op23; 5747 else if (Op23.isUndef()) 5748 Op23 = Op01; 5749 // Merging identical replications is a no-op. 5750 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5751 return Op01; 5752 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5753 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5754 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5755 DL, MVT::v2i64, Op01, Op23); 5756 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5757 } 5758 5759 // Collect the constant terms. 5760 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5761 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5762 5763 unsigned NumConstants = 0; 5764 for (unsigned I = 0; I < NumElements; ++I) { 5765 SDValue Elem = Elems[I]; 5766 if (Elem.getOpcode() == ISD::Constant || 5767 Elem.getOpcode() == ISD::ConstantFP) { 5768 NumConstants += 1; 5769 Constants[I] = Elem; 5770 Done[I] = true; 5771 } 5772 } 5773 // If there was at least one constant, fill in the other elements of 5774 // Constants with undefs to get a full vector constant and use that 5775 // as the starting point. 5776 SDValue Result; 5777 SDValue ReplicatedVal; 5778 if (NumConstants > 0) { 5779 for (unsigned I = 0; I < NumElements; ++I) 5780 if (!Constants[I].getNode()) 5781 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5782 Result = DAG.getBuildVector(VT, DL, Constants); 5783 } else { 5784 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5785 // avoid a false dependency on any previous contents of the vector 5786 // register. 5787 5788 // Use a VLREP if at least one element is a load. Make sure to replicate 5789 // the load with the most elements having its value. 5790 std::map<const SDNode*, unsigned> UseCounts; 5791 SDNode *LoadMaxUses = nullptr; 5792 for (unsigned I = 0; I < NumElements; ++I) 5793 if (isVectorElementLoad(Elems[I])) { 5794 SDNode *Ld = Elems[I].getNode(); 5795 UseCounts[Ld]++; 5796 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5797 LoadMaxUses = Ld; 5798 } 5799 if (LoadMaxUses != nullptr) { 5800 ReplicatedVal = SDValue(LoadMaxUses, 0); 5801 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5802 } else { 5803 // Try to use VLVGP. 5804 unsigned I1 = NumElements / 2 - 1; 5805 unsigned I2 = NumElements - 1; 5806 bool Def1 = !Elems[I1].isUndef(); 5807 bool Def2 = !Elems[I2].isUndef(); 5808 if (Def1 || Def2) { 5809 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5810 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5811 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5812 joinDwords(DAG, DL, Elem1, Elem2)); 5813 Done[I1] = true; 5814 Done[I2] = true; 5815 } else 5816 Result = DAG.getUNDEF(VT); 5817 } 5818 } 5819 5820 // Use VLVGx to insert the other elements. 5821 for (unsigned I = 0; I < NumElements; ++I) 5822 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5823 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5824 DAG.getConstant(I, DL, MVT::i32)); 5825 return Result; 5826 } 5827 5828 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5829 SelectionDAG &DAG) const { 5830 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5831 SDLoc DL(Op); 5832 EVT VT = Op.getValueType(); 5833 5834 if (BVN->isConstant()) { 5835 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5836 return Op; 5837 5838 // Fall back to loading it from memory. 5839 return SDValue(); 5840 } 5841 5842 // See if we should use shuffles to construct the vector from other vectors. 5843 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5844 return Res; 5845 5846 // Detect SCALAR_TO_VECTOR conversions. 5847 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5848 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5849 5850 // Otherwise use buildVector to build the vector up from GPRs. 5851 unsigned NumElements = Op.getNumOperands(); 5852 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5853 for (unsigned I = 0; I < NumElements; ++I) 5854 Ops[I] = Op.getOperand(I); 5855 return buildVector(DAG, DL, VT, Ops); 5856 } 5857 5858 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5859 SelectionDAG &DAG) const { 5860 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5861 SDLoc DL(Op); 5862 EVT VT = Op.getValueType(); 5863 unsigned NumElements = VT.getVectorNumElements(); 5864 5865 if (VSN->isSplat()) { 5866 SDValue Op0 = Op.getOperand(0); 5867 unsigned Index = VSN->getSplatIndex(); 5868 assert(Index < VT.getVectorNumElements() && 5869 "Splat index should be defined and in first operand"); 5870 // See whether the value we're splatting is directly available as a scalar. 5871 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5872 Op0.getOpcode() == ISD::BUILD_VECTOR) 5873 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5874 // Otherwise keep it as a vector-to-vector operation. 5875 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5876 DAG.getTargetConstant(Index, DL, MVT::i32)); 5877 } 5878 5879 GeneralShuffle GS(VT); 5880 for (unsigned I = 0; I < NumElements; ++I) { 5881 int Elt = VSN->getMaskElt(I); 5882 if (Elt < 0) 5883 GS.addUndef(); 5884 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5885 unsigned(Elt) % NumElements)) 5886 return SDValue(); 5887 } 5888 return GS.getNode(DAG, SDLoc(VSN)); 5889 } 5890 5891 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5892 SelectionDAG &DAG) const { 5893 SDLoc DL(Op); 5894 // Just insert the scalar into element 0 of an undefined vector. 5895 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5896 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5897 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5898 } 5899 5900 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5901 SelectionDAG &DAG) const { 5902 // Handle insertions of floating-point values. 5903 SDLoc DL(Op); 5904 SDValue Op0 = Op.getOperand(0); 5905 SDValue Op1 = Op.getOperand(1); 5906 SDValue Op2 = Op.getOperand(2); 5907 EVT VT = Op.getValueType(); 5908 5909 // Insertions into constant indices of a v2f64 can be done using VPDI. 5910 // However, if the inserted value is a bitcast or a constant then it's 5911 // better to use GPRs, as below. 5912 if (VT == MVT::v2f64 && 5913 Op1.getOpcode() != ISD::BITCAST && 5914 Op1.getOpcode() != ISD::ConstantFP && 5915 Op2.getOpcode() == ISD::Constant) { 5916 uint64_t Index = Op2->getAsZExtVal(); 5917 unsigned Mask = VT.getVectorNumElements() - 1; 5918 if (Index <= Mask) 5919 return Op; 5920 } 5921 5922 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5923 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5924 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5925 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5926 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5927 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5928 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5929 } 5930 5931 SDValue 5932 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5933 SelectionDAG &DAG) const { 5934 // Handle extractions of floating-point values. 5935 SDLoc DL(Op); 5936 SDValue Op0 = Op.getOperand(0); 5937 SDValue Op1 = Op.getOperand(1); 5938 EVT VT = Op.getValueType(); 5939 EVT VecVT = Op0.getValueType(); 5940 5941 // Extractions of constant indices can be done directly. 5942 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5943 uint64_t Index = CIndexN->getZExtValue(); 5944 unsigned Mask = VecVT.getVectorNumElements() - 1; 5945 if (Index <= Mask) 5946 return Op; 5947 } 5948 5949 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5950 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5951 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5952 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5953 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5954 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5955 } 5956 5957 SDValue SystemZTargetLowering:: 5958 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5959 SDValue PackedOp = Op.getOperand(0); 5960 EVT OutVT = Op.getValueType(); 5961 EVT InVT = PackedOp.getValueType(); 5962 unsigned ToBits = OutVT.getScalarSizeInBits(); 5963 unsigned FromBits = InVT.getScalarSizeInBits(); 5964 do { 5965 FromBits *= 2; 5966 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5967 SystemZ::VectorBits / FromBits); 5968 PackedOp = 5969 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5970 } while (FromBits != ToBits); 5971 return PackedOp; 5972 } 5973 5974 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5975 SDValue SystemZTargetLowering:: 5976 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5977 SDValue PackedOp = Op.getOperand(0); 5978 SDLoc DL(Op); 5979 EVT OutVT = Op.getValueType(); 5980 EVT InVT = PackedOp.getValueType(); 5981 unsigned InNumElts = InVT.getVectorNumElements(); 5982 unsigned OutNumElts = OutVT.getVectorNumElements(); 5983 unsigned NumInPerOut = InNumElts / OutNumElts; 5984 5985 SDValue ZeroVec = 5986 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5987 5988 SmallVector<int, 16> Mask(InNumElts); 5989 unsigned ZeroVecElt = InNumElts; 5990 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5991 unsigned MaskElt = PackedElt * NumInPerOut; 5992 unsigned End = MaskElt + NumInPerOut - 1; 5993 for (; MaskElt < End; MaskElt++) 5994 Mask[MaskElt] = ZeroVecElt++; 5995 Mask[MaskElt] = PackedElt; 5996 } 5997 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5998 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5999 } 6000 6001 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 6002 unsigned ByScalar) const { 6003 // Look for cases where a vector shift can use the *_BY_SCALAR form. 6004 SDValue Op0 = Op.getOperand(0); 6005 SDValue Op1 = Op.getOperand(1); 6006 SDLoc DL(Op); 6007 EVT VT = Op.getValueType(); 6008 unsigned ElemBitSize = VT.getScalarSizeInBits(); 6009 6010 // See whether the shift vector is a splat represented as BUILD_VECTOR. 6011 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 6012 APInt SplatBits, SplatUndef; 6013 unsigned SplatBitSize; 6014 bool HasAnyUndefs; 6015 // Check for constant splats. Use ElemBitSize as the minimum element 6016 // width and reject splats that need wider elements. 6017 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 6018 ElemBitSize, true) && 6019 SplatBitSize == ElemBitSize) { 6020 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 6021 DL, MVT::i32); 6022 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6023 } 6024 // Check for variable splats. 6025 BitVector UndefElements; 6026 SDValue Splat = BVN->getSplatValue(&UndefElements); 6027 if (Splat) { 6028 // Since i32 is the smallest legal type, we either need a no-op 6029 // or a truncation. 6030 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 6031 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6032 } 6033 } 6034 6035 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 6036 // and the shift amount is directly available in a GPR. 6037 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 6038 if (VSN->isSplat()) { 6039 SDValue VSNOp0 = VSN->getOperand(0); 6040 unsigned Index = VSN->getSplatIndex(); 6041 assert(Index < VT.getVectorNumElements() && 6042 "Splat index should be defined and in first operand"); 6043 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 6044 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 6045 // Since i32 is the smallest legal type, we either need a no-op 6046 // or a truncation. 6047 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 6048 VSNOp0.getOperand(Index)); 6049 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 6050 } 6051 } 6052 } 6053 6054 // Otherwise just treat the current form as legal. 6055 return Op; 6056 } 6057 6058 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, 6059 SelectionDAG &DAG) const { 6060 SDLoc DL(Op); 6061 MVT ResultVT = Op.getSimpleValueType(); 6062 SDValue Arg = Op.getOperand(0); 6063 unsigned Check = Op.getConstantOperandVal(1); 6064 6065 unsigned TDCMask = 0; 6066 if (Check & fcSNan) 6067 TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; 6068 if (Check & fcQNan) 6069 TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; 6070 if (Check & fcPosInf) 6071 TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; 6072 if (Check & fcNegInf) 6073 TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; 6074 if (Check & fcPosNormal) 6075 TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; 6076 if (Check & fcNegNormal) 6077 TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; 6078 if (Check & fcPosSubnormal) 6079 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; 6080 if (Check & fcNegSubnormal) 6081 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; 6082 if (Check & fcPosZero) 6083 TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; 6084 if (Check & fcNegZero) 6085 TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; 6086 SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64); 6087 6088 SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV); 6089 return getCCResult(DAG, Intr); 6090 } 6091 6092 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 6093 SelectionDAG &DAG) const { 6094 switch (Op.getOpcode()) { 6095 case ISD::FRAMEADDR: 6096 return lowerFRAMEADDR(Op, DAG); 6097 case ISD::RETURNADDR: 6098 return lowerRETURNADDR(Op, DAG); 6099 case ISD::BR_CC: 6100 return lowerBR_CC(Op, DAG); 6101 case ISD::SELECT_CC: 6102 return lowerSELECT_CC(Op, DAG); 6103 case ISD::SETCC: 6104 return lowerSETCC(Op, DAG); 6105 case ISD::STRICT_FSETCC: 6106 return lowerSTRICT_FSETCC(Op, DAG, false); 6107 case ISD::STRICT_FSETCCS: 6108 return lowerSTRICT_FSETCC(Op, DAG, true); 6109 case ISD::GlobalAddress: 6110 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 6111 case ISD::GlobalTLSAddress: 6112 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 6113 case ISD::BlockAddress: 6114 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 6115 case ISD::JumpTable: 6116 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 6117 case ISD::ConstantPool: 6118 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 6119 case ISD::BITCAST: 6120 return lowerBITCAST(Op, DAG); 6121 case ISD::VASTART: 6122 return lowerVASTART(Op, DAG); 6123 case ISD::VACOPY: 6124 return lowerVACOPY(Op, DAG); 6125 case ISD::DYNAMIC_STACKALLOC: 6126 return lowerDYNAMIC_STACKALLOC(Op, DAG); 6127 case ISD::GET_DYNAMIC_AREA_OFFSET: 6128 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 6129 case ISD::SMUL_LOHI: 6130 return lowerSMUL_LOHI(Op, DAG); 6131 case ISD::UMUL_LOHI: 6132 return lowerUMUL_LOHI(Op, DAG); 6133 case ISD::SDIVREM: 6134 return lowerSDIVREM(Op, DAG); 6135 case ISD::UDIVREM: 6136 return lowerUDIVREM(Op, DAG); 6137 case ISD::SADDO: 6138 case ISD::SSUBO: 6139 case ISD::UADDO: 6140 case ISD::USUBO: 6141 return lowerXALUO(Op, DAG); 6142 case ISD::UADDO_CARRY: 6143 case ISD::USUBO_CARRY: 6144 return lowerUADDSUBO_CARRY(Op, DAG); 6145 case ISD::OR: 6146 return lowerOR(Op, DAG); 6147 case ISD::CTPOP: 6148 return lowerCTPOP(Op, DAG); 6149 case ISD::ATOMIC_FENCE: 6150 return lowerATOMIC_FENCE(Op, DAG); 6151 case ISD::ATOMIC_SWAP: 6152 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 6153 case ISD::ATOMIC_STORE: 6154 return lowerATOMIC_STORE(Op, DAG); 6155 case ISD::ATOMIC_LOAD: 6156 return lowerATOMIC_LOAD(Op, DAG); 6157 case ISD::ATOMIC_LOAD_ADD: 6158 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 6159 case ISD::ATOMIC_LOAD_SUB: 6160 return lowerATOMIC_LOAD_SUB(Op, DAG); 6161 case ISD::ATOMIC_LOAD_AND: 6162 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 6163 case ISD::ATOMIC_LOAD_OR: 6164 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 6165 case ISD::ATOMIC_LOAD_XOR: 6166 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 6167 case ISD::ATOMIC_LOAD_NAND: 6168 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 6169 case ISD::ATOMIC_LOAD_MIN: 6170 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 6171 case ISD::ATOMIC_LOAD_MAX: 6172 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 6173 case ISD::ATOMIC_LOAD_UMIN: 6174 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 6175 case ISD::ATOMIC_LOAD_UMAX: 6176 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 6177 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 6178 return lowerATOMIC_CMP_SWAP(Op, DAG); 6179 case ISD::STACKSAVE: 6180 return lowerSTACKSAVE(Op, DAG); 6181 case ISD::STACKRESTORE: 6182 return lowerSTACKRESTORE(Op, DAG); 6183 case ISD::PREFETCH: 6184 return lowerPREFETCH(Op, DAG); 6185 case ISD::INTRINSIC_W_CHAIN: 6186 return lowerINTRINSIC_W_CHAIN(Op, DAG); 6187 case ISD::INTRINSIC_WO_CHAIN: 6188 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 6189 case ISD::BUILD_VECTOR: 6190 return lowerBUILD_VECTOR(Op, DAG); 6191 case ISD::VECTOR_SHUFFLE: 6192 return lowerVECTOR_SHUFFLE(Op, DAG); 6193 case ISD::SCALAR_TO_VECTOR: 6194 return lowerSCALAR_TO_VECTOR(Op, DAG); 6195 case ISD::INSERT_VECTOR_ELT: 6196 return lowerINSERT_VECTOR_ELT(Op, DAG); 6197 case ISD::EXTRACT_VECTOR_ELT: 6198 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 6199 case ISD::SIGN_EXTEND_VECTOR_INREG: 6200 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 6201 case ISD::ZERO_EXTEND_VECTOR_INREG: 6202 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 6203 case ISD::SHL: 6204 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 6205 case ISD::SRL: 6206 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 6207 case ISD::SRA: 6208 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 6209 case ISD::ROTL: 6210 return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR); 6211 case ISD::IS_FPCLASS: 6212 return lowerIS_FPCLASS(Op, DAG); 6213 case ISD::GET_ROUNDING: 6214 return lowerGET_ROUNDING(Op, DAG); 6215 default: 6216 llvm_unreachable("Unexpected node to lower"); 6217 } 6218 } 6219 6220 // Lower operations with invalid operand or result types (currently used 6221 // only for 128-bit integer types). 6222 void 6223 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 6224 SmallVectorImpl<SDValue> &Results, 6225 SelectionDAG &DAG) const { 6226 switch (N->getOpcode()) { 6227 case ISD::ATOMIC_LOAD: { 6228 SDLoc DL(N); 6229 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 6230 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 6231 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6232 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 6233 DL, Tys, Ops, MVT::i128, MMO); 6234 Results.push_back(lowerGR128ToI128(DAG, Res)); 6235 Results.push_back(Res.getValue(1)); 6236 break; 6237 } 6238 case ISD::ATOMIC_STORE: { 6239 SDLoc DL(N); 6240 SDVTList Tys = DAG.getVTList(MVT::Other); 6241 SDValue Ops[] = {N->getOperand(0), lowerI128ToGR128(DAG, N->getOperand(1)), 6242 N->getOperand(2)}; 6243 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6244 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 6245 DL, Tys, Ops, MVT::i128, MMO); 6246 // We have to enforce sequential consistency by performing a 6247 // serialization operation after the store. 6248 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 6249 AtomicOrdering::SequentiallyConsistent) 6250 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 6251 MVT::Other, Res), 0); 6252 Results.push_back(Res); 6253 break; 6254 } 6255 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 6256 SDLoc DL(N); 6257 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 6258 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 6259 lowerI128ToGR128(DAG, N->getOperand(2)), 6260 lowerI128ToGR128(DAG, N->getOperand(3)) }; 6261 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 6262 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 6263 DL, Tys, Ops, MVT::i128, MMO); 6264 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 6265 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 6266 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 6267 Results.push_back(lowerGR128ToI128(DAG, Res)); 6268 Results.push_back(Success); 6269 Results.push_back(Res.getValue(2)); 6270 break; 6271 } 6272 case ISD::BITCAST: { 6273 SDValue Src = N->getOperand(0); 6274 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 6275 !useSoftFloat()) { 6276 SDLoc DL(N); 6277 SDValue Lo, Hi; 6278 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 6279 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 6280 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 6281 DAG.getConstant(1, DL, MVT::i32)); 6282 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 6283 DAG.getConstant(0, DL, MVT::i32)); 6284 } else { 6285 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 6286 "Unrecognized register class for f128."); 6287 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 6288 DL, MVT::f64, Src); 6289 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 6290 DL, MVT::f64, Src); 6291 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 6292 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 6293 } 6294 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 6295 } 6296 break; 6297 } 6298 default: 6299 llvm_unreachable("Unexpected node to lower"); 6300 } 6301 } 6302 6303 void 6304 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 6305 SmallVectorImpl<SDValue> &Results, 6306 SelectionDAG &DAG) const { 6307 return LowerOperationWrapper(N, Results, DAG); 6308 } 6309 6310 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 6311 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 6312 switch ((SystemZISD::NodeType)Opcode) { 6313 case SystemZISD::FIRST_NUMBER: break; 6314 OPCODE(RET_GLUE); 6315 OPCODE(CALL); 6316 OPCODE(SIBCALL); 6317 OPCODE(TLS_GDCALL); 6318 OPCODE(TLS_LDCALL); 6319 OPCODE(PCREL_WRAPPER); 6320 OPCODE(PCREL_OFFSET); 6321 OPCODE(ICMP); 6322 OPCODE(FCMP); 6323 OPCODE(STRICT_FCMP); 6324 OPCODE(STRICT_FCMPS); 6325 OPCODE(TM); 6326 OPCODE(BR_CCMASK); 6327 OPCODE(SELECT_CCMASK); 6328 OPCODE(ADJDYNALLOC); 6329 OPCODE(PROBED_ALLOCA); 6330 OPCODE(POPCNT); 6331 OPCODE(SMUL_LOHI); 6332 OPCODE(UMUL_LOHI); 6333 OPCODE(SDIVREM); 6334 OPCODE(UDIVREM); 6335 OPCODE(SADDO); 6336 OPCODE(SSUBO); 6337 OPCODE(UADDO); 6338 OPCODE(USUBO); 6339 OPCODE(ADDCARRY); 6340 OPCODE(SUBCARRY); 6341 OPCODE(GET_CCMASK); 6342 OPCODE(MVC); 6343 OPCODE(NC); 6344 OPCODE(OC); 6345 OPCODE(XC); 6346 OPCODE(CLC); 6347 OPCODE(MEMSET_MVC); 6348 OPCODE(STPCPY); 6349 OPCODE(STRCMP); 6350 OPCODE(SEARCH_STRING); 6351 OPCODE(IPM); 6352 OPCODE(TBEGIN); 6353 OPCODE(TBEGIN_NOFLOAT); 6354 OPCODE(TEND); 6355 OPCODE(BYTE_MASK); 6356 OPCODE(ROTATE_MASK); 6357 OPCODE(REPLICATE); 6358 OPCODE(JOIN_DWORDS); 6359 OPCODE(SPLAT); 6360 OPCODE(MERGE_HIGH); 6361 OPCODE(MERGE_LOW); 6362 OPCODE(SHL_DOUBLE); 6363 OPCODE(PERMUTE_DWORDS); 6364 OPCODE(PERMUTE); 6365 OPCODE(PACK); 6366 OPCODE(PACKS_CC); 6367 OPCODE(PACKLS_CC); 6368 OPCODE(UNPACK_HIGH); 6369 OPCODE(UNPACKL_HIGH); 6370 OPCODE(UNPACK_LOW); 6371 OPCODE(UNPACKL_LOW); 6372 OPCODE(VSHL_BY_SCALAR); 6373 OPCODE(VSRL_BY_SCALAR); 6374 OPCODE(VSRA_BY_SCALAR); 6375 OPCODE(VROTL_BY_SCALAR); 6376 OPCODE(VSUM); 6377 OPCODE(VACC); 6378 OPCODE(VSCBI); 6379 OPCODE(VAC); 6380 OPCODE(VSBI); 6381 OPCODE(VACCC); 6382 OPCODE(VSBCBI); 6383 OPCODE(VICMPE); 6384 OPCODE(VICMPH); 6385 OPCODE(VICMPHL); 6386 OPCODE(VICMPES); 6387 OPCODE(VICMPHS); 6388 OPCODE(VICMPHLS); 6389 OPCODE(VFCMPE); 6390 OPCODE(STRICT_VFCMPE); 6391 OPCODE(STRICT_VFCMPES); 6392 OPCODE(VFCMPH); 6393 OPCODE(STRICT_VFCMPH); 6394 OPCODE(STRICT_VFCMPHS); 6395 OPCODE(VFCMPHE); 6396 OPCODE(STRICT_VFCMPHE); 6397 OPCODE(STRICT_VFCMPHES); 6398 OPCODE(VFCMPES); 6399 OPCODE(VFCMPHS); 6400 OPCODE(VFCMPHES); 6401 OPCODE(VFTCI); 6402 OPCODE(VEXTEND); 6403 OPCODE(STRICT_VEXTEND); 6404 OPCODE(VROUND); 6405 OPCODE(STRICT_VROUND); 6406 OPCODE(VTM); 6407 OPCODE(SCMP128HI); 6408 OPCODE(UCMP128HI); 6409 OPCODE(VFAE_CC); 6410 OPCODE(VFAEZ_CC); 6411 OPCODE(VFEE_CC); 6412 OPCODE(VFEEZ_CC); 6413 OPCODE(VFENE_CC); 6414 OPCODE(VFENEZ_CC); 6415 OPCODE(VISTR_CC); 6416 OPCODE(VSTRC_CC); 6417 OPCODE(VSTRCZ_CC); 6418 OPCODE(VSTRS_CC); 6419 OPCODE(VSTRSZ_CC); 6420 OPCODE(TDC); 6421 OPCODE(ATOMIC_SWAPW); 6422 OPCODE(ATOMIC_LOADW_ADD); 6423 OPCODE(ATOMIC_LOADW_SUB); 6424 OPCODE(ATOMIC_LOADW_AND); 6425 OPCODE(ATOMIC_LOADW_OR); 6426 OPCODE(ATOMIC_LOADW_XOR); 6427 OPCODE(ATOMIC_LOADW_NAND); 6428 OPCODE(ATOMIC_LOADW_MIN); 6429 OPCODE(ATOMIC_LOADW_MAX); 6430 OPCODE(ATOMIC_LOADW_UMIN); 6431 OPCODE(ATOMIC_LOADW_UMAX); 6432 OPCODE(ATOMIC_CMP_SWAPW); 6433 OPCODE(ATOMIC_CMP_SWAP); 6434 OPCODE(ATOMIC_LOAD_128); 6435 OPCODE(ATOMIC_STORE_128); 6436 OPCODE(ATOMIC_CMP_SWAP_128); 6437 OPCODE(LRV); 6438 OPCODE(STRV); 6439 OPCODE(VLER); 6440 OPCODE(VSTER); 6441 OPCODE(PREFETCH); 6442 OPCODE(ADA_ENTRY); 6443 } 6444 return nullptr; 6445 #undef OPCODE 6446 } 6447 6448 // Return true if VT is a vector whose elements are a whole number of bytes 6449 // in width. Also check for presence of vector support. 6450 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 6451 if (!Subtarget.hasVector()) 6452 return false; 6453 6454 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 6455 } 6456 6457 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 6458 // producing a result of type ResVT. Op is a possibly bitcast version 6459 // of the input vector and Index is the index (based on type VecVT) that 6460 // should be extracted. Return the new extraction if a simplification 6461 // was possible or if Force is true. 6462 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 6463 EVT VecVT, SDValue Op, 6464 unsigned Index, 6465 DAGCombinerInfo &DCI, 6466 bool Force) const { 6467 SelectionDAG &DAG = DCI.DAG; 6468 6469 // The number of bytes being extracted. 6470 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6471 6472 for (;;) { 6473 unsigned Opcode = Op.getOpcode(); 6474 if (Opcode == ISD::BITCAST) 6475 // Look through bitcasts. 6476 Op = Op.getOperand(0); 6477 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 6478 canTreatAsByteVector(Op.getValueType())) { 6479 // Get a VPERM-like permute mask and see whether the bytes covered 6480 // by the extracted element are a contiguous sequence from one 6481 // source operand. 6482 SmallVector<int, SystemZ::VectorBytes> Bytes; 6483 if (!getVPermMask(Op, Bytes)) 6484 break; 6485 int First; 6486 if (!getShuffleInput(Bytes, Index * BytesPerElement, 6487 BytesPerElement, First)) 6488 break; 6489 if (First < 0) 6490 return DAG.getUNDEF(ResVT); 6491 // Make sure the contiguous sequence starts at a multiple of the 6492 // original element size. 6493 unsigned Byte = unsigned(First) % Bytes.size(); 6494 if (Byte % BytesPerElement != 0) 6495 break; 6496 // We can get the extracted value directly from an input. 6497 Index = Byte / BytesPerElement; 6498 Op = Op.getOperand(unsigned(First) / Bytes.size()); 6499 Force = true; 6500 } else if (Opcode == ISD::BUILD_VECTOR && 6501 canTreatAsByteVector(Op.getValueType())) { 6502 // We can only optimize this case if the BUILD_VECTOR elements are 6503 // at least as wide as the extracted value. 6504 EVT OpVT = Op.getValueType(); 6505 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6506 if (OpBytesPerElement < BytesPerElement) 6507 break; 6508 // Make sure that the least-significant bit of the extracted value 6509 // is the least significant bit of an input. 6510 unsigned End = (Index + 1) * BytesPerElement; 6511 if (End % OpBytesPerElement != 0) 6512 break; 6513 // We're extracting the low part of one operand of the BUILD_VECTOR. 6514 Op = Op.getOperand(End / OpBytesPerElement - 1); 6515 if (!Op.getValueType().isInteger()) { 6516 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 6517 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 6518 DCI.AddToWorklist(Op.getNode()); 6519 } 6520 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 6521 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 6522 if (VT != ResVT) { 6523 DCI.AddToWorklist(Op.getNode()); 6524 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 6525 } 6526 return Op; 6527 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 6528 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 6529 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 6530 canTreatAsByteVector(Op.getValueType()) && 6531 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 6532 // Make sure that only the unextended bits are significant. 6533 EVT ExtVT = Op.getValueType(); 6534 EVT OpVT = Op.getOperand(0).getValueType(); 6535 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 6536 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6537 unsigned Byte = Index * BytesPerElement; 6538 unsigned SubByte = Byte % ExtBytesPerElement; 6539 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 6540 if (SubByte < MinSubByte || 6541 SubByte + BytesPerElement > ExtBytesPerElement) 6542 break; 6543 // Get the byte offset of the unextended element 6544 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 6545 // ...then add the byte offset relative to that element. 6546 Byte += SubByte - MinSubByte; 6547 if (Byte % BytesPerElement != 0) 6548 break; 6549 Op = Op.getOperand(0); 6550 Index = Byte / BytesPerElement; 6551 Force = true; 6552 } else 6553 break; 6554 } 6555 if (Force) { 6556 if (Op.getValueType() != VecVT) { 6557 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 6558 DCI.AddToWorklist(Op.getNode()); 6559 } 6560 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 6561 DAG.getConstant(Index, DL, MVT::i32)); 6562 } 6563 return SDValue(); 6564 } 6565 6566 // Optimize vector operations in scalar value Op on the basis that Op 6567 // is truncated to TruncVT. 6568 SDValue SystemZTargetLowering::combineTruncateExtract( 6569 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 6570 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 6571 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 6572 // of type TruncVT. 6573 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6574 TruncVT.getSizeInBits() % 8 == 0) { 6575 SDValue Vec = Op.getOperand(0); 6576 EVT VecVT = Vec.getValueType(); 6577 if (canTreatAsByteVector(VecVT)) { 6578 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6579 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6580 unsigned TruncBytes = TruncVT.getStoreSize(); 6581 if (BytesPerElement % TruncBytes == 0) { 6582 // Calculate the value of Y' in the above description. We are 6583 // splitting the original elements into Scale equal-sized pieces 6584 // and for truncation purposes want the last (least-significant) 6585 // of these pieces for IndexN. This is easiest to do by calculating 6586 // the start index of the following element and then subtracting 1. 6587 unsigned Scale = BytesPerElement / TruncBytes; 6588 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 6589 6590 // Defer the creation of the bitcast from X to combineExtract, 6591 // which might be able to optimize the extraction. 6592 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 6593 VecVT.getStoreSize() / TruncBytes); 6594 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 6595 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 6596 } 6597 } 6598 } 6599 } 6600 return SDValue(); 6601 } 6602 6603 SDValue SystemZTargetLowering::combineZERO_EXTEND( 6604 SDNode *N, DAGCombinerInfo &DCI) const { 6605 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 6606 SelectionDAG &DAG = DCI.DAG; 6607 SDValue N0 = N->getOperand(0); 6608 EVT VT = N->getValueType(0); 6609 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 6610 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 6611 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6612 if (TrueOp && FalseOp) { 6613 SDLoc DL(N0); 6614 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 6615 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 6616 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 6617 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 6618 // If N0 has multiple uses, change other uses as well. 6619 if (!N0.hasOneUse()) { 6620 SDValue TruncSelect = 6621 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 6622 DCI.CombineTo(N0.getNode(), TruncSelect); 6623 } 6624 return NewSelect; 6625 } 6626 } 6627 // Convert (zext (xor (trunc X), C)) into (xor (trunc X), C') if the size 6628 // of the result is smaller than the size of X and all the truncated bits 6629 // of X are already zero. 6630 if (N0.getOpcode() == ISD::XOR && 6631 N0.hasOneUse() && N0.getOperand(0).hasOneUse() && 6632 N0.getOperand(0).getOpcode() == ISD::TRUNCATE && 6633 N0.getOperand(1).getOpcode() == ISD::Constant) { 6634 SDValue X = N0.getOperand(0).getOperand(0); 6635 if (VT.isScalarInteger() && VT.getSizeInBits() < X.getValueSizeInBits()) { 6636 KnownBits Known = DAG.computeKnownBits(X); 6637 APInt TruncatedBits = APInt::getBitsSet(X.getValueSizeInBits(), 6638 N0.getValueSizeInBits(), 6639 VT.getSizeInBits()); 6640 if (TruncatedBits.isSubsetOf(Known.Zero)) { 6641 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); 6642 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); 6643 return DAG.getNode(ISD::XOR, SDLoc(N0), VT, 6644 X, DAG.getConstant(Mask, SDLoc(N0), VT)); 6645 } 6646 } 6647 } 6648 return SDValue(); 6649 } 6650 6651 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6652 SDNode *N, DAGCombinerInfo &DCI) const { 6653 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6654 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6655 // into (select_cc LHS, RHS, -1, 0, COND) 6656 SelectionDAG &DAG = DCI.DAG; 6657 SDValue N0 = N->getOperand(0); 6658 EVT VT = N->getValueType(0); 6659 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6660 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6661 N0 = N0.getOperand(0); 6662 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6663 SDLoc DL(N0); 6664 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6665 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6666 N0.getOperand(2) }; 6667 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6668 } 6669 return SDValue(); 6670 } 6671 6672 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6673 SDNode *N, DAGCombinerInfo &DCI) const { 6674 // Convert (sext (ashr (shl X, C1), C2)) to 6675 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6676 // cheap as narrower ones. 6677 SelectionDAG &DAG = DCI.DAG; 6678 SDValue N0 = N->getOperand(0); 6679 EVT VT = N->getValueType(0); 6680 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6681 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6682 SDValue Inner = N0.getOperand(0); 6683 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6684 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6685 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6686 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6687 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6688 EVT ShiftVT = N0.getOperand(1).getValueType(); 6689 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6690 Inner.getOperand(0)); 6691 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6692 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6693 ShiftVT)); 6694 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6695 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6696 } 6697 } 6698 } 6699 return SDValue(); 6700 } 6701 6702 SDValue SystemZTargetLowering::combineMERGE( 6703 SDNode *N, DAGCombinerInfo &DCI) const { 6704 SelectionDAG &DAG = DCI.DAG; 6705 unsigned Opcode = N->getOpcode(); 6706 SDValue Op0 = N->getOperand(0); 6707 SDValue Op1 = N->getOperand(1); 6708 if (Op0.getOpcode() == ISD::BITCAST) 6709 Op0 = Op0.getOperand(0); 6710 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6711 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6712 // for v4f32. 6713 if (Op1 == N->getOperand(0)) 6714 return Op1; 6715 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6716 EVT VT = Op1.getValueType(); 6717 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6718 if (ElemBytes <= 4) { 6719 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6720 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6721 EVT InVT = VT.changeVectorElementTypeToInteger(); 6722 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6723 SystemZ::VectorBytes / ElemBytes / 2); 6724 if (VT != InVT) { 6725 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6726 DCI.AddToWorklist(Op1.getNode()); 6727 } 6728 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6729 DCI.AddToWorklist(Op.getNode()); 6730 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6731 } 6732 } 6733 return SDValue(); 6734 } 6735 6736 SDValue SystemZTargetLowering::combineLOAD( 6737 SDNode *N, DAGCombinerInfo &DCI) const { 6738 SelectionDAG &DAG = DCI.DAG; 6739 EVT LdVT = N->getValueType(0); 6740 SDLoc DL(N); 6741 6742 // Replace an i128 load that is used solely to move its value into GPRs 6743 // by separate loads of both halves. 6744 if (LdVT == MVT::i128) { 6745 LoadSDNode *LD = cast<LoadSDNode>(N); 6746 if (!LD->isSimple() || !ISD::isNormalLoad(LD)) 6747 return SDValue(); 6748 6749 // Scan through all users. 6750 SmallVector<std::pair<SDNode *, int>, 2> Users; 6751 int UsedElements = 0; 6752 for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); 6753 UI != UIEnd; ++UI) { 6754 // Skip the uses of the chain. 6755 if (UI.getUse().getResNo() != 0) 6756 continue; 6757 6758 // Verify every user is a TRUNCATE to i64 of the low or high half ... 6759 SDNode *User = *UI; 6760 int Index = 1; 6761 if (User->getOpcode() == ISD::SRL && 6762 User->getOperand(1).getOpcode() == ISD::Constant && 6763 User->getConstantOperandVal(1) == 64 && User->hasOneUse()) { 6764 User = *User->use_begin(); 6765 Index = 0; 6766 } 6767 if (User->getOpcode() != ISD::TRUNCATE || 6768 User->getValueType(0) != MVT::i64) 6769 return SDValue(); 6770 6771 // ... and no half is extracted twice. 6772 if (UsedElements & (1 << Index)) 6773 return SDValue(); 6774 6775 UsedElements |= 1 << Index; 6776 Users.push_back(std::make_pair(User, Index)); 6777 } 6778 6779 // Rewrite each extraction as an independent load. 6780 SmallVector<SDValue, 2> ArgChains; 6781 for (auto UserAndIndex : Users) { 6782 SDNode *User = UserAndIndex.first; 6783 unsigned Offset = User->getValueType(0).getStoreSize() * UserAndIndex.second; 6784 SDValue Ptr = 6785 DAG.getMemBasePlusOffset(LD->getBasePtr(), TypeSize::getFixed(Offset), DL); 6786 SDValue EltLoad = 6787 DAG.getLoad(User->getValueType(0), DL, LD->getChain(), Ptr, 6788 LD->getPointerInfo().getWithOffset(Offset), 6789 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 6790 LD->getAAInfo()); 6791 6792 DCI.CombineTo(User, EltLoad, true); 6793 ArgChains.push_back(EltLoad.getValue(1)); 6794 } 6795 6796 // Collect all chains via TokenFactor. 6797 SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 6798 ArgChains); 6799 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); 6800 DCI.AddToWorklist(Chain.getNode()); 6801 return SDValue(N, 0); 6802 } 6803 6804 if (LdVT.isVector() || LdVT.isInteger()) 6805 return SDValue(); 6806 // Transform a scalar load that is REPLICATEd as well as having other 6807 // use(s) to the form where the other use(s) use the first element of the 6808 // REPLICATE instead of the load. Otherwise instruction selection will not 6809 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6810 // point loads. 6811 6812 SDValue Replicate; 6813 SmallVector<SDNode*, 8> OtherUses; 6814 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6815 UI != UE; ++UI) { 6816 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6817 if (Replicate) 6818 return SDValue(); // Should never happen 6819 Replicate = SDValue(*UI, 0); 6820 } 6821 else if (UI.getUse().getResNo() == 0) 6822 OtherUses.push_back(*UI); 6823 } 6824 if (!Replicate || OtherUses.empty()) 6825 return SDValue(); 6826 6827 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6828 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6829 // Update uses of the loaded Value while preserving old chains. 6830 for (SDNode *U : OtherUses) { 6831 SmallVector<SDValue, 8> Ops; 6832 for (SDValue Op : U->ops()) 6833 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6834 DAG.UpdateNodeOperands(U, Ops); 6835 } 6836 return SDValue(N, 0); 6837 } 6838 6839 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6840 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6841 return true; 6842 if (Subtarget.hasVectorEnhancements2()) 6843 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128) 6844 return true; 6845 return false; 6846 } 6847 6848 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6849 if (!VT.isVector() || !VT.isSimple() || 6850 VT.getSizeInBits() != 128 || 6851 VT.getScalarSizeInBits() % 8 != 0) 6852 return false; 6853 6854 unsigned NumElts = VT.getVectorNumElements(); 6855 for (unsigned i = 0; i < NumElts; ++i) { 6856 if (M[i] < 0) continue; // ignore UNDEF indices 6857 if ((unsigned) M[i] != NumElts - 1 - i) 6858 return false; 6859 } 6860 6861 return true; 6862 } 6863 6864 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { 6865 for (auto *U : StoredVal->uses()) { 6866 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) { 6867 EVT CurrMemVT = ST->getMemoryVT().getScalarType(); 6868 if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) 6869 continue; 6870 } else if (isa<BuildVectorSDNode>(U)) { 6871 SDValue BuildVector = SDValue(U, 0); 6872 if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) && 6873 isOnlyUsedByStores(BuildVector, DAG)) 6874 continue; 6875 } 6876 return false; 6877 } 6878 return true; 6879 } 6880 6881 static bool isMovedFromParts(SDValue Val, SDValue &LoPart, SDValue &HiPart) { 6882 if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse()) 6883 return false; 6884 6885 SDValue Op0 = Val.getOperand(0); 6886 SDValue Op1 = Val.getOperand(1); 6887 6888 if (Op0.getOpcode() == ISD::SHL) 6889 std::swap(Op0, Op1); 6890 if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() || 6891 Op1.getOperand(1).getOpcode() != ISD::Constant || 6892 Op1.getConstantOperandVal(1) != 64) 6893 return false; 6894 Op1 = Op1.getOperand(0); 6895 6896 if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() || 6897 Op0.getOperand(0).getValueType() != MVT::i64) 6898 return false; 6899 if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() || 6900 Op1.getOperand(0).getValueType() != MVT::i64) 6901 return false; 6902 6903 LoPart = Op0.getOperand(0); 6904 HiPart = Op1.getOperand(0); 6905 return true; 6906 } 6907 6908 SDValue SystemZTargetLowering::combineSTORE( 6909 SDNode *N, DAGCombinerInfo &DCI) const { 6910 SelectionDAG &DAG = DCI.DAG; 6911 auto *SN = cast<StoreSDNode>(N); 6912 auto &Op1 = N->getOperand(1); 6913 EVT MemVT = SN->getMemoryVT(); 6914 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6915 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6916 // If X has wider elements then convert it to: 6917 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6918 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6919 if (SDValue Value = 6920 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6921 DCI.AddToWorklist(Value.getNode()); 6922 6923 // Rewrite the store with the new form of stored value. 6924 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6925 SN->getBasePtr(), SN->getMemoryVT(), 6926 SN->getMemOperand()); 6927 } 6928 } 6929 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6930 if (!SN->isTruncatingStore() && 6931 Op1.getOpcode() == ISD::BSWAP && 6932 Op1.getNode()->hasOneUse() && 6933 canLoadStoreByteSwapped(Op1.getValueType())) { 6934 6935 SDValue BSwapOp = Op1.getOperand(0); 6936 6937 if (BSwapOp.getValueType() == MVT::i16) 6938 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6939 6940 SDValue Ops[] = { 6941 N->getOperand(0), BSwapOp, N->getOperand(2) 6942 }; 6943 6944 return 6945 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6946 Ops, MemVT, SN->getMemOperand()); 6947 } 6948 // Combine STORE (element-swap) into VSTER 6949 if (!SN->isTruncatingStore() && 6950 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6951 Op1.getNode()->hasOneUse() && 6952 Subtarget.hasVectorEnhancements2()) { 6953 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6954 ArrayRef<int> ShuffleMask = SVN->getMask(); 6955 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6956 SDValue Ops[] = { 6957 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6958 }; 6959 6960 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6961 DAG.getVTList(MVT::Other), 6962 Ops, MemVT, SN->getMemOperand()); 6963 } 6964 } 6965 6966 // Transform a store of an i128 moved from GPRs into two separate stores. 6967 if (MemVT == MVT::i128 && SN->isSimple() && ISD::isNormalStore(SN)) { 6968 SDValue LoPart, HiPart; 6969 if (isMovedFromParts(Op1, LoPart, HiPart)) { 6970 SDLoc DL(SN); 6971 SDValue Chain0 = 6972 DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(), 6973 SN->getPointerInfo(), SN->getOriginalAlign(), 6974 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 6975 SDValue Chain1 = 6976 DAG.getStore(SN->getChain(), DL, LoPart, 6977 DAG.getObjectPtrOffset(DL, SN->getBasePtr(), 6978 TypeSize::getFixed(8)), 6979 SN->getPointerInfo().getWithOffset(8), 6980 SN->getOriginalAlign(), 6981 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 6982 6983 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1); 6984 } 6985 } 6986 6987 // Replicate a reg or immediate with VREP instead of scalar multiply or 6988 // immediate load. It seems best to do this during the first DAGCombine as 6989 // it is straight-forward to handle the zero-extend node in the initial 6990 // DAG, and also not worry about the keeping the new MemVT legal (e.g. when 6991 // extracting an i16 element from a v16i8 vector). 6992 if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && 6993 isOnlyUsedByStores(Op1, DAG)) { 6994 SDValue Word = SDValue(); 6995 EVT WordVT; 6996 6997 // Find a replicated immediate and return it if found in Word and its 6998 // type in WordVT. 6999 auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { 7000 // Some constants are better handled with a scalar store. 7001 if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || 7002 isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2) 7003 return; 7004 SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue())); 7005 if (VCI.isVectorConstantLegal(Subtarget) && 7006 VCI.Opcode == SystemZISD::REPLICATE) { 7007 Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32); 7008 WordVT = VCI.VecVT.getScalarType(); 7009 } 7010 }; 7011 7012 // Find a replicated register and return it if found in Word and its type 7013 // in WordVT. 7014 auto FindReplicatedReg = [&](SDValue MulOp) { 7015 EVT MulVT = MulOp.getValueType(); 7016 if (MulOp->getOpcode() == ISD::MUL && 7017 (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { 7018 // Find a zero extended value and its type. 7019 SDValue LHS = MulOp->getOperand(0); 7020 if (LHS->getOpcode() == ISD::ZERO_EXTEND) 7021 WordVT = LHS->getOperand(0).getValueType(); 7022 else if (LHS->getOpcode() == ISD::AssertZext) 7023 WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT(); 7024 else 7025 return; 7026 // Find a replicating constant, e.g. 0x00010001. 7027 if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) { 7028 SystemZVectorConstantInfo VCI( 7029 APInt(MulVT.getSizeInBits(), C->getZExtValue())); 7030 if (VCI.isVectorConstantLegal(Subtarget) && 7031 VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && 7032 WordVT == VCI.VecVT.getScalarType()) 7033 Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT); 7034 } 7035 } 7036 }; 7037 7038 if (isa<BuildVectorSDNode>(Op1) && 7039 DAG.isSplatValue(Op1, true/*AllowUndefs*/)) { 7040 SDValue SplatVal = Op1->getOperand(0); 7041 if (auto *C = dyn_cast<ConstantSDNode>(SplatVal)) 7042 FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); 7043 else 7044 FindReplicatedReg(SplatVal); 7045 } else { 7046 if (auto *C = dyn_cast<ConstantSDNode>(Op1)) 7047 FindReplicatedImm(C, MemVT.getStoreSize()); 7048 else 7049 FindReplicatedReg(Op1); 7050 } 7051 7052 if (Word != SDValue()) { 7053 assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && 7054 "Bad type handling"); 7055 unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); 7056 EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts); 7057 SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word); 7058 return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal, 7059 SN->getBasePtr(), SN->getMemOperand()); 7060 } 7061 } 7062 7063 return SDValue(); 7064 } 7065 7066 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 7067 SDNode *N, DAGCombinerInfo &DCI) const { 7068 SelectionDAG &DAG = DCI.DAG; 7069 // Combine element-swap (LOAD) into VLER 7070 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 7071 N->getOperand(0).hasOneUse() && 7072 Subtarget.hasVectorEnhancements2()) { 7073 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 7074 ArrayRef<int> ShuffleMask = SVN->getMask(); 7075 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 7076 SDValue Load = N->getOperand(0); 7077 LoadSDNode *LD = cast<LoadSDNode>(Load); 7078 7079 // Create the element-swapping load. 7080 SDValue Ops[] = { 7081 LD->getChain(), // Chain 7082 LD->getBasePtr() // Ptr 7083 }; 7084 SDValue ESLoad = 7085 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 7086 DAG.getVTList(LD->getValueType(0), MVT::Other), 7087 Ops, LD->getMemoryVT(), LD->getMemOperand()); 7088 7089 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 7090 // by the load dead. 7091 DCI.CombineTo(N, ESLoad); 7092 7093 // Next, combine the load away, we give it a bogus result value but a real 7094 // chain result. The result value is dead because the shuffle is dead. 7095 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 7096 7097 // Return N so it doesn't get rechecked! 7098 return SDValue(N, 0); 7099 } 7100 } 7101 7102 return SDValue(); 7103 } 7104 7105 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 7106 SDNode *N, DAGCombinerInfo &DCI) const { 7107 SelectionDAG &DAG = DCI.DAG; 7108 7109 if (!Subtarget.hasVector()) 7110 return SDValue(); 7111 7112 // Look through bitcasts that retain the number of vector elements. 7113 SDValue Op = N->getOperand(0); 7114 if (Op.getOpcode() == ISD::BITCAST && 7115 Op.getValueType().isVector() && 7116 Op.getOperand(0).getValueType().isVector() && 7117 Op.getValueType().getVectorNumElements() == 7118 Op.getOperand(0).getValueType().getVectorNumElements()) 7119 Op = Op.getOperand(0); 7120 7121 // Pull BSWAP out of a vector extraction. 7122 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 7123 EVT VecVT = Op.getValueType(); 7124 EVT EltVT = VecVT.getVectorElementType(); 7125 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 7126 Op.getOperand(0), N->getOperand(1)); 7127 DCI.AddToWorklist(Op.getNode()); 7128 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 7129 if (EltVT != N->getValueType(0)) { 7130 DCI.AddToWorklist(Op.getNode()); 7131 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 7132 } 7133 return Op; 7134 } 7135 7136 // Try to simplify a vector extraction. 7137 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 7138 SDValue Op0 = N->getOperand(0); 7139 EVT VecVT = Op0.getValueType(); 7140 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 7141 IndexN->getZExtValue(), DCI, false); 7142 } 7143 return SDValue(); 7144 } 7145 7146 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 7147 SDNode *N, DAGCombinerInfo &DCI) const { 7148 SelectionDAG &DAG = DCI.DAG; 7149 // (join_dwords X, X) == (replicate X) 7150 if (N->getOperand(0) == N->getOperand(1)) 7151 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 7152 N->getOperand(0)); 7153 return SDValue(); 7154 } 7155 7156 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 7157 SDValue Chain1 = N1->getOperand(0); 7158 SDValue Chain2 = N2->getOperand(0); 7159 7160 // Trivial case: both nodes take the same chain. 7161 if (Chain1 == Chain2) 7162 return Chain1; 7163 7164 // FIXME - we could handle more complex cases via TokenFactor, 7165 // assuming we can verify that this would not create a cycle. 7166 return SDValue(); 7167 } 7168 7169 SDValue SystemZTargetLowering::combineFP_ROUND( 7170 SDNode *N, DAGCombinerInfo &DCI) const { 7171 7172 if (!Subtarget.hasVector()) 7173 return SDValue(); 7174 7175 // (fpround (extract_vector_elt X 0)) 7176 // (fpround (extract_vector_elt X 1)) -> 7177 // (extract_vector_elt (VROUND X) 0) 7178 // (extract_vector_elt (VROUND X) 2) 7179 // 7180 // This is a special case since the target doesn't really support v2f32s. 7181 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 7182 SelectionDAG &DAG = DCI.DAG; 7183 SDValue Op0 = N->getOperand(OpNo); 7184 if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() && 7185 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7186 Op0.getOperand(0).getValueType() == MVT::v2f64 && 7187 Op0.getOperand(1).getOpcode() == ISD::Constant && 7188 Op0.getConstantOperandVal(1) == 0) { 7189 SDValue Vec = Op0.getOperand(0); 7190 for (auto *U : Vec->uses()) { 7191 if (U != Op0.getNode() && U->hasOneUse() && 7192 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7193 U->getOperand(0) == Vec && 7194 U->getOperand(1).getOpcode() == ISD::Constant && 7195 U->getConstantOperandVal(1) == 1) { 7196 SDValue OtherRound = SDValue(*U->use_begin(), 0); 7197 if (OtherRound.getOpcode() == N->getOpcode() && 7198 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 7199 OtherRound.getValueType() == MVT::f32) { 7200 SDValue VRound, Chain; 7201 if (N->isStrictFPOpcode()) { 7202 Chain = MergeInputChains(N, OtherRound.getNode()); 7203 if (!Chain) 7204 continue; 7205 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 7206 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 7207 Chain = VRound.getValue(1); 7208 } else 7209 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 7210 MVT::v4f32, Vec); 7211 DCI.AddToWorklist(VRound.getNode()); 7212 SDValue Extract1 = 7213 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 7214 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 7215 DCI.AddToWorklist(Extract1.getNode()); 7216 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 7217 if (Chain) 7218 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 7219 SDValue Extract0 = 7220 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 7221 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 7222 if (Chain) 7223 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 7224 N->getVTList(), Extract0, Chain); 7225 return Extract0; 7226 } 7227 } 7228 } 7229 } 7230 return SDValue(); 7231 } 7232 7233 SDValue SystemZTargetLowering::combineFP_EXTEND( 7234 SDNode *N, DAGCombinerInfo &DCI) const { 7235 7236 if (!Subtarget.hasVector()) 7237 return SDValue(); 7238 7239 // (fpextend (extract_vector_elt X 0)) 7240 // (fpextend (extract_vector_elt X 2)) -> 7241 // (extract_vector_elt (VEXTEND X) 0) 7242 // (extract_vector_elt (VEXTEND X) 1) 7243 // 7244 // This is a special case since the target doesn't really support v2f32s. 7245 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 7246 SelectionDAG &DAG = DCI.DAG; 7247 SDValue Op0 = N->getOperand(OpNo); 7248 if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() && 7249 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7250 Op0.getOperand(0).getValueType() == MVT::v4f32 && 7251 Op0.getOperand(1).getOpcode() == ISD::Constant && 7252 Op0.getConstantOperandVal(1) == 0) { 7253 SDValue Vec = Op0.getOperand(0); 7254 for (auto *U : Vec->uses()) { 7255 if (U != Op0.getNode() && U->hasOneUse() && 7256 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 7257 U->getOperand(0) == Vec && 7258 U->getOperand(1).getOpcode() == ISD::Constant && 7259 U->getConstantOperandVal(1) == 2) { 7260 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 7261 if (OtherExtend.getOpcode() == N->getOpcode() && 7262 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 7263 OtherExtend.getValueType() == MVT::f64) { 7264 SDValue VExtend, Chain; 7265 if (N->isStrictFPOpcode()) { 7266 Chain = MergeInputChains(N, OtherExtend.getNode()); 7267 if (!Chain) 7268 continue; 7269 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 7270 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 7271 Chain = VExtend.getValue(1); 7272 } else 7273 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 7274 MVT::v2f64, Vec); 7275 DCI.AddToWorklist(VExtend.getNode()); 7276 SDValue Extract1 = 7277 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 7278 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 7279 DCI.AddToWorklist(Extract1.getNode()); 7280 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 7281 if (Chain) 7282 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 7283 SDValue Extract0 = 7284 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 7285 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 7286 if (Chain) 7287 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 7288 N->getVTList(), Extract0, Chain); 7289 return Extract0; 7290 } 7291 } 7292 } 7293 } 7294 return SDValue(); 7295 } 7296 7297 SDValue SystemZTargetLowering::combineINT_TO_FP( 7298 SDNode *N, DAGCombinerInfo &DCI) const { 7299 if (DCI.Level != BeforeLegalizeTypes) 7300 return SDValue(); 7301 SelectionDAG &DAG = DCI.DAG; 7302 LLVMContext &Ctx = *DAG.getContext(); 7303 unsigned Opcode = N->getOpcode(); 7304 EVT OutVT = N->getValueType(0); 7305 Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx); 7306 SDValue Op = N->getOperand(0); 7307 unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); 7308 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 7309 7310 // Insert an extension before type-legalization to avoid scalarization, e.g.: 7311 // v2f64 = uint_to_fp v2i16 7312 // => 7313 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 7314 if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && 7315 OutScalarBits <= 64) { 7316 unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements(); 7317 EVT ExtVT = EVT::getVectorVT( 7318 Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts); 7319 unsigned ExtOpcode = 7320 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 7321 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 7322 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 7323 } 7324 return SDValue(); 7325 } 7326 7327 SDValue SystemZTargetLowering::combineBSWAP( 7328 SDNode *N, DAGCombinerInfo &DCI) const { 7329 SelectionDAG &DAG = DCI.DAG; 7330 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 7331 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 7332 N->getOperand(0).hasOneUse() && 7333 canLoadStoreByteSwapped(N->getValueType(0))) { 7334 SDValue Load = N->getOperand(0); 7335 LoadSDNode *LD = cast<LoadSDNode>(Load); 7336 7337 // Create the byte-swapping load. 7338 SDValue Ops[] = { 7339 LD->getChain(), // Chain 7340 LD->getBasePtr() // Ptr 7341 }; 7342 EVT LoadVT = N->getValueType(0); 7343 if (LoadVT == MVT::i16) 7344 LoadVT = MVT::i32; 7345 SDValue BSLoad = 7346 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 7347 DAG.getVTList(LoadVT, MVT::Other), 7348 Ops, LD->getMemoryVT(), LD->getMemOperand()); 7349 7350 // If this is an i16 load, insert the truncate. 7351 SDValue ResVal = BSLoad; 7352 if (N->getValueType(0) == MVT::i16) 7353 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 7354 7355 // First, combine the bswap away. This makes the value produced by the 7356 // load dead. 7357 DCI.CombineTo(N, ResVal); 7358 7359 // Next, combine the load away, we give it a bogus result value but a real 7360 // chain result. The result value is dead because the bswap is dead. 7361 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 7362 7363 // Return N so it doesn't get rechecked! 7364 return SDValue(N, 0); 7365 } 7366 7367 // Look through bitcasts that retain the number of vector elements. 7368 SDValue Op = N->getOperand(0); 7369 if (Op.getOpcode() == ISD::BITCAST && 7370 Op.getValueType().isVector() && 7371 Op.getOperand(0).getValueType().isVector() && 7372 Op.getValueType().getVectorNumElements() == 7373 Op.getOperand(0).getValueType().getVectorNumElements()) 7374 Op = Op.getOperand(0); 7375 7376 // Push BSWAP into a vector insertion if at least one side then simplifies. 7377 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 7378 SDValue Vec = Op.getOperand(0); 7379 SDValue Elt = Op.getOperand(1); 7380 SDValue Idx = Op.getOperand(2); 7381 7382 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 7383 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 7384 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 7385 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 7386 (canLoadStoreByteSwapped(N->getValueType(0)) && 7387 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 7388 EVT VecVT = N->getValueType(0); 7389 EVT EltVT = N->getValueType(0).getVectorElementType(); 7390 if (VecVT != Vec.getValueType()) { 7391 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 7392 DCI.AddToWorklist(Vec.getNode()); 7393 } 7394 if (EltVT != Elt.getValueType()) { 7395 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 7396 DCI.AddToWorklist(Elt.getNode()); 7397 } 7398 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 7399 DCI.AddToWorklist(Vec.getNode()); 7400 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 7401 DCI.AddToWorklist(Elt.getNode()); 7402 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 7403 Vec, Elt, Idx); 7404 } 7405 } 7406 7407 // Push BSWAP into a vector shuffle if at least one side then simplifies. 7408 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 7409 if (SV && Op.hasOneUse()) { 7410 SDValue Op0 = Op.getOperand(0); 7411 SDValue Op1 = Op.getOperand(1); 7412 7413 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 7414 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 7415 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 7416 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 7417 EVT VecVT = N->getValueType(0); 7418 if (VecVT != Op0.getValueType()) { 7419 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 7420 DCI.AddToWorklist(Op0.getNode()); 7421 } 7422 if (VecVT != Op1.getValueType()) { 7423 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 7424 DCI.AddToWorklist(Op1.getNode()); 7425 } 7426 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 7427 DCI.AddToWorklist(Op0.getNode()); 7428 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 7429 DCI.AddToWorklist(Op1.getNode()); 7430 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 7431 } 7432 } 7433 7434 return SDValue(); 7435 } 7436 7437 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 7438 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 7439 // set by the CCReg instruction using the CCValid / CCMask masks, 7440 // If the CCReg instruction is itself a ICMP testing the condition 7441 // code set by some other instruction, see whether we can directly 7442 // use that condition code. 7443 7444 // Verify that we have an ICMP against some constant. 7445 if (CCValid != SystemZ::CCMASK_ICMP) 7446 return false; 7447 auto *ICmp = CCReg.getNode(); 7448 if (ICmp->getOpcode() != SystemZISD::ICMP) 7449 return false; 7450 auto *CompareLHS = ICmp->getOperand(0).getNode(); 7451 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 7452 if (!CompareRHS) 7453 return false; 7454 7455 // Optimize the case where CompareLHS is a SELECT_CCMASK. 7456 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 7457 // Verify that we have an appropriate mask for a EQ or NE comparison. 7458 bool Invert = false; 7459 if (CCMask == SystemZ::CCMASK_CMP_NE) 7460 Invert = !Invert; 7461 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 7462 return false; 7463 7464 // Verify that the ICMP compares against one of select values. 7465 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 7466 if (!TrueVal) 7467 return false; 7468 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 7469 if (!FalseVal) 7470 return false; 7471 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 7472 Invert = !Invert; 7473 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 7474 return false; 7475 7476 // Compute the effective CC mask for the new branch or select. 7477 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 7478 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 7479 if (!NewCCValid || !NewCCMask) 7480 return false; 7481 CCValid = NewCCValid->getZExtValue(); 7482 CCMask = NewCCMask->getZExtValue(); 7483 if (Invert) 7484 CCMask ^= CCValid; 7485 7486 // Return the updated CCReg link. 7487 CCReg = CompareLHS->getOperand(4); 7488 return true; 7489 } 7490 7491 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 7492 if (CompareLHS->getOpcode() == ISD::SRA) { 7493 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 7494 if (!SRACount || SRACount->getZExtValue() != 30) 7495 return false; 7496 auto *SHL = CompareLHS->getOperand(0).getNode(); 7497 if (SHL->getOpcode() != ISD::SHL) 7498 return false; 7499 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 7500 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 7501 return false; 7502 auto *IPM = SHL->getOperand(0).getNode(); 7503 if (IPM->getOpcode() != SystemZISD::IPM) 7504 return false; 7505 7506 // Avoid introducing CC spills (because SRA would clobber CC). 7507 if (!CompareLHS->hasOneUse()) 7508 return false; 7509 // Verify that the ICMP compares against zero. 7510 if (CompareRHS->getZExtValue() != 0) 7511 return false; 7512 7513 // Compute the effective CC mask for the new branch or select. 7514 CCMask = SystemZ::reverseCCMask(CCMask); 7515 7516 // Return the updated CCReg link. 7517 CCReg = IPM->getOperand(0); 7518 return true; 7519 } 7520 7521 return false; 7522 } 7523 7524 SDValue SystemZTargetLowering::combineBR_CCMASK( 7525 SDNode *N, DAGCombinerInfo &DCI) const { 7526 SelectionDAG &DAG = DCI.DAG; 7527 7528 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 7529 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7530 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7531 if (!CCValid || !CCMask) 7532 return SDValue(); 7533 7534 int CCValidVal = CCValid->getZExtValue(); 7535 int CCMaskVal = CCMask->getZExtValue(); 7536 SDValue Chain = N->getOperand(0); 7537 SDValue CCReg = N->getOperand(4); 7538 7539 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7540 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 7541 Chain, 7542 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7543 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7544 N->getOperand(3), CCReg); 7545 return SDValue(); 7546 } 7547 7548 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 7549 SDNode *N, DAGCombinerInfo &DCI) const { 7550 SelectionDAG &DAG = DCI.DAG; 7551 7552 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 7553 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7554 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 7555 if (!CCValid || !CCMask) 7556 return SDValue(); 7557 7558 int CCValidVal = CCValid->getZExtValue(); 7559 int CCMaskVal = CCMask->getZExtValue(); 7560 SDValue CCReg = N->getOperand(4); 7561 7562 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7563 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 7564 N->getOperand(0), N->getOperand(1), 7565 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7566 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7567 CCReg); 7568 return SDValue(); 7569 } 7570 7571 7572 SDValue SystemZTargetLowering::combineGET_CCMASK( 7573 SDNode *N, DAGCombinerInfo &DCI) const { 7574 7575 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 7576 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7577 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7578 if (!CCValid || !CCMask) 7579 return SDValue(); 7580 int CCValidVal = CCValid->getZExtValue(); 7581 int CCMaskVal = CCMask->getZExtValue(); 7582 7583 SDValue Select = N->getOperand(0); 7584 if (Select->getOpcode() == ISD::TRUNCATE) 7585 Select = Select->getOperand(0); 7586 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 7587 return SDValue(); 7588 7589 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 7590 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 7591 if (!SelectCCValid || !SelectCCMask) 7592 return SDValue(); 7593 int SelectCCValidVal = SelectCCValid->getZExtValue(); 7594 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 7595 7596 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 7597 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 7598 if (!TrueVal || !FalseVal) 7599 return SDValue(); 7600 if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0) 7601 ; 7602 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1) 7603 SelectCCMaskVal ^= SelectCCValidVal; 7604 else 7605 return SDValue(); 7606 7607 if (SelectCCValidVal & ~CCValidVal) 7608 return SDValue(); 7609 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 7610 return SDValue(); 7611 7612 return Select->getOperand(4); 7613 } 7614 7615 SDValue SystemZTargetLowering::combineIntDIVREM( 7616 SDNode *N, DAGCombinerInfo &DCI) const { 7617 SelectionDAG &DAG = DCI.DAG; 7618 EVT VT = N->getValueType(0); 7619 // In the case where the divisor is a vector of constants a cheaper 7620 // sequence of instructions can replace the divide. BuildSDIV is called to 7621 // do this during DAG combining, but it only succeeds when it can build a 7622 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 7623 // since it is not Legal but Custom it can only happen before 7624 // legalization. Therefore we must scalarize this early before Combine 7625 // 1. For widened vectors, this is already the result of type legalization. 7626 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 7627 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 7628 return DAG.UnrollVectorOp(N); 7629 return SDValue(); 7630 } 7631 7632 SDValue SystemZTargetLowering::combineINTRINSIC( 7633 SDNode *N, DAGCombinerInfo &DCI) const { 7634 SelectionDAG &DAG = DCI.DAG; 7635 7636 unsigned Id = N->getConstantOperandVal(1); 7637 switch (Id) { 7638 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 7639 // or larger is simply a vector load. 7640 case Intrinsic::s390_vll: 7641 case Intrinsic::s390_vlrl: 7642 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 7643 if (C->getZExtValue() >= 15) 7644 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 7645 N->getOperand(3), MachinePointerInfo()); 7646 break; 7647 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 7648 case Intrinsic::s390_vstl: 7649 case Intrinsic::s390_vstrl: 7650 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 7651 if (C->getZExtValue() >= 15) 7652 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 7653 N->getOperand(4), MachinePointerInfo()); 7654 break; 7655 } 7656 7657 return SDValue(); 7658 } 7659 7660 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 7661 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 7662 return N->getOperand(0); 7663 return N; 7664 } 7665 7666 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 7667 DAGCombinerInfo &DCI) const { 7668 switch(N->getOpcode()) { 7669 default: break; 7670 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 7671 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 7672 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 7673 case SystemZISD::MERGE_HIGH: 7674 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 7675 case ISD::LOAD: return combineLOAD(N, DCI); 7676 case ISD::STORE: return combineSTORE(N, DCI); 7677 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 7678 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 7679 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 7680 case ISD::STRICT_FP_ROUND: 7681 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 7682 case ISD::STRICT_FP_EXTEND: 7683 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 7684 case ISD::SINT_TO_FP: 7685 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 7686 case ISD::BSWAP: return combineBSWAP(N, DCI); 7687 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 7688 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 7689 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 7690 case ISD::SDIV: 7691 case ISD::UDIV: 7692 case ISD::SREM: 7693 case ISD::UREM: return combineIntDIVREM(N, DCI); 7694 case ISD::INTRINSIC_W_CHAIN: 7695 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 7696 } 7697 7698 return SDValue(); 7699 } 7700 7701 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 7702 // are for Op. 7703 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 7704 unsigned OpNo) { 7705 EVT VT = Op.getValueType(); 7706 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 7707 APInt SrcDemE; 7708 unsigned Opcode = Op.getOpcode(); 7709 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7710 unsigned Id = Op.getConstantOperandVal(0); 7711 switch (Id) { 7712 case Intrinsic::s390_vpksh: // PACKS 7713 case Intrinsic::s390_vpksf: 7714 case Intrinsic::s390_vpksg: 7715 case Intrinsic::s390_vpkshs: // PACKS_CC 7716 case Intrinsic::s390_vpksfs: 7717 case Intrinsic::s390_vpksgs: 7718 case Intrinsic::s390_vpklsh: // PACKLS 7719 case Intrinsic::s390_vpklsf: 7720 case Intrinsic::s390_vpklsg: 7721 case Intrinsic::s390_vpklshs: // PACKLS_CC 7722 case Intrinsic::s390_vpklsfs: 7723 case Intrinsic::s390_vpklsgs: 7724 // VECTOR PACK truncates the elements of two source vectors into one. 7725 SrcDemE = DemandedElts; 7726 if (OpNo == 2) 7727 SrcDemE.lshrInPlace(NumElts / 2); 7728 SrcDemE = SrcDemE.trunc(NumElts / 2); 7729 break; 7730 // VECTOR UNPACK extends half the elements of the source vector. 7731 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7732 case Intrinsic::s390_vuphh: 7733 case Intrinsic::s390_vuphf: 7734 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7735 case Intrinsic::s390_vuplhh: 7736 case Intrinsic::s390_vuplhf: 7737 SrcDemE = APInt(NumElts * 2, 0); 7738 SrcDemE.insertBits(DemandedElts, 0); 7739 break; 7740 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7741 case Intrinsic::s390_vuplhw: 7742 case Intrinsic::s390_vuplf: 7743 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7744 case Intrinsic::s390_vupllh: 7745 case Intrinsic::s390_vupllf: 7746 SrcDemE = APInt(NumElts * 2, 0); 7747 SrcDemE.insertBits(DemandedElts, NumElts); 7748 break; 7749 case Intrinsic::s390_vpdi: { 7750 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 7751 SrcDemE = APInt(NumElts, 0); 7752 if (!DemandedElts[OpNo - 1]) 7753 break; 7754 unsigned Mask = Op.getConstantOperandVal(3); 7755 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 7756 // Demand input element 0 or 1, given by the mask bit value. 7757 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 7758 break; 7759 } 7760 case Intrinsic::s390_vsldb: { 7761 // VECTOR SHIFT LEFT DOUBLE BY BYTE 7762 assert(VT == MVT::v16i8 && "Unexpected type."); 7763 unsigned FirstIdx = Op.getConstantOperandVal(3); 7764 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 7765 unsigned NumSrc0Els = 16 - FirstIdx; 7766 SrcDemE = APInt(NumElts, 0); 7767 if (OpNo == 1) { 7768 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 7769 SrcDemE.insertBits(DemEls, FirstIdx); 7770 } else { 7771 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 7772 SrcDemE.insertBits(DemEls, 0); 7773 } 7774 break; 7775 } 7776 case Intrinsic::s390_vperm: 7777 SrcDemE = APInt(NumElts, 1); 7778 break; 7779 default: 7780 llvm_unreachable("Unhandled intrinsic."); 7781 break; 7782 } 7783 } else { 7784 switch (Opcode) { 7785 case SystemZISD::JOIN_DWORDS: 7786 // Scalar operand. 7787 SrcDemE = APInt(1, 1); 7788 break; 7789 case SystemZISD::SELECT_CCMASK: 7790 SrcDemE = DemandedElts; 7791 break; 7792 default: 7793 llvm_unreachable("Unhandled opcode."); 7794 break; 7795 } 7796 } 7797 return SrcDemE; 7798 } 7799 7800 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 7801 const APInt &DemandedElts, 7802 const SelectionDAG &DAG, unsigned Depth, 7803 unsigned OpNo) { 7804 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7805 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7806 KnownBits LHSKnown = 7807 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7808 KnownBits RHSKnown = 7809 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7810 Known = LHSKnown.intersectWith(RHSKnown); 7811 } 7812 7813 void 7814 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7815 KnownBits &Known, 7816 const APInt &DemandedElts, 7817 const SelectionDAG &DAG, 7818 unsigned Depth) const { 7819 Known.resetAll(); 7820 7821 // Intrinsic CC result is returned in the two low bits. 7822 unsigned tmp0, tmp1; // not used 7823 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 7824 Known.Zero.setBitsFrom(2); 7825 return; 7826 } 7827 EVT VT = Op.getValueType(); 7828 if (Op.getResNo() != 0 || VT == MVT::Untyped) 7829 return; 7830 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 7831 "KnownBits does not match VT in bitwidth"); 7832 assert ((!VT.isVector() || 7833 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 7834 "DemandedElts does not match VT number of elements"); 7835 unsigned BitWidth = Known.getBitWidth(); 7836 unsigned Opcode = Op.getOpcode(); 7837 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7838 bool IsLogical = false; 7839 unsigned Id = Op.getConstantOperandVal(0); 7840 switch (Id) { 7841 case Intrinsic::s390_vpksh: // PACKS 7842 case Intrinsic::s390_vpksf: 7843 case Intrinsic::s390_vpksg: 7844 case Intrinsic::s390_vpkshs: // PACKS_CC 7845 case Intrinsic::s390_vpksfs: 7846 case Intrinsic::s390_vpksgs: 7847 case Intrinsic::s390_vpklsh: // PACKLS 7848 case Intrinsic::s390_vpklsf: 7849 case Intrinsic::s390_vpklsg: 7850 case Intrinsic::s390_vpklshs: // PACKLS_CC 7851 case Intrinsic::s390_vpklsfs: 7852 case Intrinsic::s390_vpklsgs: 7853 case Intrinsic::s390_vpdi: 7854 case Intrinsic::s390_vsldb: 7855 case Intrinsic::s390_vperm: 7856 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 7857 break; 7858 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7859 case Intrinsic::s390_vuplhh: 7860 case Intrinsic::s390_vuplhf: 7861 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7862 case Intrinsic::s390_vupllh: 7863 case Intrinsic::s390_vupllf: 7864 IsLogical = true; 7865 [[fallthrough]]; 7866 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7867 case Intrinsic::s390_vuphh: 7868 case Intrinsic::s390_vuphf: 7869 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7870 case Intrinsic::s390_vuplhw: 7871 case Intrinsic::s390_vuplf: { 7872 SDValue SrcOp = Op.getOperand(1); 7873 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7874 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7875 if (IsLogical) { 7876 Known = Known.zext(BitWidth); 7877 } else 7878 Known = Known.sext(BitWidth); 7879 break; 7880 } 7881 default: 7882 break; 7883 } 7884 } else { 7885 switch (Opcode) { 7886 case SystemZISD::JOIN_DWORDS: 7887 case SystemZISD::SELECT_CCMASK: 7888 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7889 break; 7890 case SystemZISD::REPLICATE: { 7891 SDValue SrcOp = Op.getOperand(0); 7892 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7893 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7894 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7895 break; 7896 } 7897 default: 7898 break; 7899 } 7900 } 7901 7902 // Known has the width of the source operand(s). Adjust if needed to match 7903 // the passed bitwidth. 7904 if (Known.getBitWidth() != BitWidth) 7905 Known = Known.anyextOrTrunc(BitWidth); 7906 } 7907 7908 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7909 const SelectionDAG &DAG, unsigned Depth, 7910 unsigned OpNo) { 7911 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7912 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7913 if (LHS == 1) return 1; // Early out. 7914 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7915 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7916 if (RHS == 1) return 1; // Early out. 7917 unsigned Common = std::min(LHS, RHS); 7918 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7919 EVT VT = Op.getValueType(); 7920 unsigned VTBits = VT.getScalarSizeInBits(); 7921 if (SrcBitWidth > VTBits) { // PACK 7922 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7923 if (Common > SrcExtraBits) 7924 return (Common - SrcExtraBits); 7925 return 1; 7926 } 7927 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7928 return Common; 7929 } 7930 7931 unsigned 7932 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7933 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7934 unsigned Depth) const { 7935 if (Op.getResNo() != 0) 7936 return 1; 7937 unsigned Opcode = Op.getOpcode(); 7938 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7939 unsigned Id = Op.getConstantOperandVal(0); 7940 switch (Id) { 7941 case Intrinsic::s390_vpksh: // PACKS 7942 case Intrinsic::s390_vpksf: 7943 case Intrinsic::s390_vpksg: 7944 case Intrinsic::s390_vpkshs: // PACKS_CC 7945 case Intrinsic::s390_vpksfs: 7946 case Intrinsic::s390_vpksgs: 7947 case Intrinsic::s390_vpklsh: // PACKLS 7948 case Intrinsic::s390_vpklsf: 7949 case Intrinsic::s390_vpklsg: 7950 case Intrinsic::s390_vpklshs: // PACKLS_CC 7951 case Intrinsic::s390_vpklsfs: 7952 case Intrinsic::s390_vpklsgs: 7953 case Intrinsic::s390_vpdi: 7954 case Intrinsic::s390_vsldb: 7955 case Intrinsic::s390_vperm: 7956 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7957 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7958 case Intrinsic::s390_vuphh: 7959 case Intrinsic::s390_vuphf: 7960 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7961 case Intrinsic::s390_vuplhw: 7962 case Intrinsic::s390_vuplf: { 7963 SDValue PackedOp = Op.getOperand(1); 7964 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7965 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7966 EVT VT = Op.getValueType(); 7967 unsigned VTBits = VT.getScalarSizeInBits(); 7968 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7969 return Tmp; 7970 } 7971 default: 7972 break; 7973 } 7974 } else { 7975 switch (Opcode) { 7976 case SystemZISD::SELECT_CCMASK: 7977 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7978 default: 7979 break; 7980 } 7981 } 7982 7983 return 1; 7984 } 7985 7986 bool SystemZTargetLowering:: 7987 isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, 7988 const APInt &DemandedElts, const SelectionDAG &DAG, 7989 bool PoisonOnly, unsigned Depth) const { 7990 switch (Op->getOpcode()) { 7991 case SystemZISD::PCREL_WRAPPER: 7992 case SystemZISD::PCREL_OFFSET: 7993 return true; 7994 } 7995 return false; 7996 } 7997 7998 unsigned 7999 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const { 8000 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8001 unsigned StackAlign = TFI->getStackAlignment(); 8002 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 8003 "Unexpected stack alignment"); 8004 // The default stack probe size is 4096 if the function has no 8005 // stack-probe-size attribute. 8006 unsigned StackProbeSize = 8007 MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096); 8008 // Round down to the stack alignment. 8009 StackProbeSize &= ~(StackAlign - 1); 8010 return StackProbeSize ? StackProbeSize : StackAlign; 8011 } 8012 8013 //===----------------------------------------------------------------------===// 8014 // Custom insertion 8015 //===----------------------------------------------------------------------===// 8016 8017 // Force base value Base into a register before MI. Return the register. 8018 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 8019 const SystemZInstrInfo *TII) { 8020 MachineBasicBlock *MBB = MI.getParent(); 8021 MachineFunction &MF = *MBB->getParent(); 8022 MachineRegisterInfo &MRI = MF.getRegInfo(); 8023 8024 if (Base.isReg()) { 8025 // Copy Base into a new virtual register to help register coalescing in 8026 // cases with multiple uses. 8027 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8028 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 8029 .add(Base); 8030 return Reg; 8031 } 8032 8033 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8034 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 8035 .add(Base) 8036 .addImm(0) 8037 .addReg(0); 8038 return Reg; 8039 } 8040 8041 // The CC operand of MI might be missing a kill marker because there 8042 // were multiple uses of CC, and ISel didn't know which to mark. 8043 // Figure out whether MI should have had a kill marker. 8044 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 8045 // Scan forward through BB for a use/def of CC. 8046 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 8047 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 8048 const MachineInstr& mi = *miI; 8049 if (mi.readsRegister(SystemZ::CC)) 8050 return false; 8051 if (mi.definesRegister(SystemZ::CC)) 8052 break; // Should have kill-flag - update below. 8053 } 8054 8055 // If we hit the end of the block, check whether CC is live into a 8056 // successor. 8057 if (miI == MBB->end()) { 8058 for (const MachineBasicBlock *Succ : MBB->successors()) 8059 if (Succ->isLiveIn(SystemZ::CC)) 8060 return false; 8061 } 8062 8063 return true; 8064 } 8065 8066 // Return true if it is OK for this Select pseudo-opcode to be cascaded 8067 // together with other Select pseudo-opcodes into a single basic-block with 8068 // a conditional jump around it. 8069 static bool isSelectPseudo(MachineInstr &MI) { 8070 switch (MI.getOpcode()) { 8071 case SystemZ::Select32: 8072 case SystemZ::Select64: 8073 case SystemZ::Select128: 8074 case SystemZ::SelectF32: 8075 case SystemZ::SelectF64: 8076 case SystemZ::SelectF128: 8077 case SystemZ::SelectVR32: 8078 case SystemZ::SelectVR64: 8079 case SystemZ::SelectVR128: 8080 return true; 8081 8082 default: 8083 return false; 8084 } 8085 } 8086 8087 // Helper function, which inserts PHI functions into SinkMBB: 8088 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 8089 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 8090 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 8091 MachineBasicBlock *TrueMBB, 8092 MachineBasicBlock *FalseMBB, 8093 MachineBasicBlock *SinkMBB) { 8094 MachineFunction *MF = TrueMBB->getParent(); 8095 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 8096 8097 MachineInstr *FirstMI = Selects.front(); 8098 unsigned CCValid = FirstMI->getOperand(3).getImm(); 8099 unsigned CCMask = FirstMI->getOperand(4).getImm(); 8100 8101 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 8102 8103 // As we are creating the PHIs, we have to be careful if there is more than 8104 // one. Later Selects may reference the results of earlier Selects, but later 8105 // PHIs have to reference the individual true/false inputs from earlier PHIs. 8106 // That also means that PHI construction must work forward from earlier to 8107 // later, and that the code must maintain a mapping from earlier PHI's 8108 // destination registers, and the registers that went into the PHI. 8109 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 8110 8111 for (auto *MI : Selects) { 8112 Register DestReg = MI->getOperand(0).getReg(); 8113 Register TrueReg = MI->getOperand(1).getReg(); 8114 Register FalseReg = MI->getOperand(2).getReg(); 8115 8116 // If this Select we are generating is the opposite condition from 8117 // the jump we generated, then we have to swap the operands for the 8118 // PHI that is going to be generated. 8119 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 8120 std::swap(TrueReg, FalseReg); 8121 8122 if (RegRewriteTable.contains(TrueReg)) 8123 TrueReg = RegRewriteTable[TrueReg].first; 8124 8125 if (RegRewriteTable.contains(FalseReg)) 8126 FalseReg = RegRewriteTable[FalseReg].second; 8127 8128 DebugLoc DL = MI->getDebugLoc(); 8129 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 8130 .addReg(TrueReg).addMBB(TrueMBB) 8131 .addReg(FalseReg).addMBB(FalseMBB); 8132 8133 // Add this PHI to the rewrite table. 8134 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 8135 } 8136 8137 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8138 } 8139 8140 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 8141 MachineBasicBlock * 8142 SystemZTargetLowering::emitSelect(MachineInstr &MI, 8143 MachineBasicBlock *MBB) const { 8144 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 8145 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8146 8147 unsigned CCValid = MI.getOperand(3).getImm(); 8148 unsigned CCMask = MI.getOperand(4).getImm(); 8149 8150 // If we have a sequence of Select* pseudo instructions using the 8151 // same condition code value, we want to expand all of them into 8152 // a single pair of basic blocks using the same condition. 8153 SmallVector<MachineInstr*, 8> Selects; 8154 SmallVector<MachineInstr*, 8> DbgValues; 8155 Selects.push_back(&MI); 8156 unsigned Count = 0; 8157 for (MachineInstr &NextMI : llvm::make_range( 8158 std::next(MachineBasicBlock::iterator(MI)), MBB->end())) { 8159 if (isSelectPseudo(NextMI)) { 8160 assert(NextMI.getOperand(3).getImm() == CCValid && 8161 "Bad CCValid operands since CC was not redefined."); 8162 if (NextMI.getOperand(4).getImm() == CCMask || 8163 NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) { 8164 Selects.push_back(&NextMI); 8165 continue; 8166 } 8167 break; 8168 } 8169 if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook()) 8170 break; 8171 bool User = false; 8172 for (auto *SelMI : Selects) 8173 if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) { 8174 User = true; 8175 break; 8176 } 8177 if (NextMI.isDebugInstr()) { 8178 if (User) { 8179 assert(NextMI.isDebugValue() && "Unhandled debug opcode."); 8180 DbgValues.push_back(&NextMI); 8181 } 8182 } else if (User || ++Count > 20) 8183 break; 8184 } 8185 8186 MachineInstr *LastMI = Selects.back(); 8187 bool CCKilled = 8188 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 8189 MachineBasicBlock *StartMBB = MBB; 8190 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 8191 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 8192 8193 // Unless CC was killed in the last Select instruction, mark it as 8194 // live-in to both FalseMBB and JoinMBB. 8195 if (!CCKilled) { 8196 FalseMBB->addLiveIn(SystemZ::CC); 8197 JoinMBB->addLiveIn(SystemZ::CC); 8198 } 8199 8200 // StartMBB: 8201 // BRC CCMask, JoinMBB 8202 // # fallthrough to FalseMBB 8203 MBB = StartMBB; 8204 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 8205 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 8206 MBB->addSuccessor(JoinMBB); 8207 MBB->addSuccessor(FalseMBB); 8208 8209 // FalseMBB: 8210 // # fallthrough to JoinMBB 8211 MBB = FalseMBB; 8212 MBB->addSuccessor(JoinMBB); 8213 8214 // JoinMBB: 8215 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 8216 // ... 8217 MBB = JoinMBB; 8218 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 8219 for (auto *SelMI : Selects) 8220 SelMI->eraseFromParent(); 8221 8222 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 8223 for (auto *DbgMI : DbgValues) 8224 MBB->splice(InsertPos, StartMBB, DbgMI); 8225 8226 return JoinMBB; 8227 } 8228 8229 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 8230 // StoreOpcode is the store to use and Invert says whether the store should 8231 // happen when the condition is false rather than true. If a STORE ON 8232 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 8233 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 8234 MachineBasicBlock *MBB, 8235 unsigned StoreOpcode, 8236 unsigned STOCOpcode, 8237 bool Invert) const { 8238 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8239 8240 Register SrcReg = MI.getOperand(0).getReg(); 8241 MachineOperand Base = MI.getOperand(1); 8242 int64_t Disp = MI.getOperand(2).getImm(); 8243 Register IndexReg = MI.getOperand(3).getReg(); 8244 unsigned CCValid = MI.getOperand(4).getImm(); 8245 unsigned CCMask = MI.getOperand(5).getImm(); 8246 DebugLoc DL = MI.getDebugLoc(); 8247 8248 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 8249 8250 // ISel pattern matching also adds a load memory operand of the same 8251 // address, so take special care to find the storing memory operand. 8252 MachineMemOperand *MMO = nullptr; 8253 for (auto *I : MI.memoperands()) 8254 if (I->isStore()) { 8255 MMO = I; 8256 break; 8257 } 8258 8259 // Use STOCOpcode if possible. We could use different store patterns in 8260 // order to avoid matching the index register, but the performance trade-offs 8261 // might be more complicated in that case. 8262 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 8263 if (Invert) 8264 CCMask ^= CCValid; 8265 8266 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 8267 .addReg(SrcReg) 8268 .add(Base) 8269 .addImm(Disp) 8270 .addImm(CCValid) 8271 .addImm(CCMask) 8272 .addMemOperand(MMO); 8273 8274 MI.eraseFromParent(); 8275 return MBB; 8276 } 8277 8278 // Get the condition needed to branch around the store. 8279 if (!Invert) 8280 CCMask ^= CCValid; 8281 8282 MachineBasicBlock *StartMBB = MBB; 8283 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 8284 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 8285 8286 // Unless CC was killed in the CondStore instruction, mark it as 8287 // live-in to both FalseMBB and JoinMBB. 8288 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 8289 FalseMBB->addLiveIn(SystemZ::CC); 8290 JoinMBB->addLiveIn(SystemZ::CC); 8291 } 8292 8293 // StartMBB: 8294 // BRC CCMask, JoinMBB 8295 // # fallthrough to FalseMBB 8296 MBB = StartMBB; 8297 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8298 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 8299 MBB->addSuccessor(JoinMBB); 8300 MBB->addSuccessor(FalseMBB); 8301 8302 // FalseMBB: 8303 // store %SrcReg, %Disp(%Index,%Base) 8304 // # fallthrough to JoinMBB 8305 MBB = FalseMBB; 8306 BuildMI(MBB, DL, TII->get(StoreOpcode)) 8307 .addReg(SrcReg) 8308 .add(Base) 8309 .addImm(Disp) 8310 .addReg(IndexReg) 8311 .addMemOperand(MMO); 8312 MBB->addSuccessor(JoinMBB); 8313 8314 MI.eraseFromParent(); 8315 return JoinMBB; 8316 } 8317 8318 // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI. 8319 MachineBasicBlock * 8320 SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI, 8321 MachineBasicBlock *MBB, 8322 bool Unsigned) const { 8323 MachineFunction &MF = *MBB->getParent(); 8324 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8325 MachineRegisterInfo &MRI = MF.getRegInfo(); 8326 8327 // Synthetic instruction to compare 128-bit values. 8328 // Sets CC 1 if Op0 > Op1, sets a different CC otherwise. 8329 Register Op0 = MI.getOperand(0).getReg(); 8330 Register Op1 = MI.getOperand(1).getReg(); 8331 8332 MachineBasicBlock *StartMBB = MBB; 8333 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(MI, MBB); 8334 MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB); 8335 8336 // StartMBB: 8337 // 8338 // Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts. 8339 // Swap the inputs to get: 8340 // CC 1 if high(Op0) > high(Op1) 8341 // CC 2 if high(Op0) < high(Op1) 8342 // CC 0 if high(Op0) == high(Op1) 8343 // 8344 // If CC != 0, we'd done, so jump over the next instruction. 8345 // 8346 // VEC[L]G Op1, Op0 8347 // JNE JoinMBB 8348 // # fallthrough to HiEqMBB 8349 MBB = StartMBB; 8350 int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG; 8351 BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode)) 8352 .addReg(Op1).addReg(Op0); 8353 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 8354 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB); 8355 MBB->addSuccessor(JoinMBB); 8356 MBB->addSuccessor(HiEqMBB); 8357 8358 // HiEqMBB: 8359 // 8360 // Otherwise, use VECTOR COMPARE HIGH LOGICAL. 8361 // Since we already know the high parts are equal, the CC 8362 // result will only depend on the low parts: 8363 // CC 1 if low(Op0) > low(Op1) 8364 // CC 3 if low(Op0) <= low(Op1) 8365 // 8366 // VCHLGS Tmp, Op0, Op1 8367 // # fallthrough to JoinMBB 8368 MBB = HiEqMBB; 8369 Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass); 8370 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp) 8371 .addReg(Op0).addReg(Op1); 8372 MBB->addSuccessor(JoinMBB); 8373 8374 // Mark CC as live-in to JoinMBB. 8375 JoinMBB->addLiveIn(SystemZ::CC); 8376 8377 MI.eraseFromParent(); 8378 return JoinMBB; 8379 } 8380 8381 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or 8382 // ATOMIC_SWAPW instruction MI. BinOpcode is the instruction that performs 8383 // the binary operation elided by "*", or 0 for ATOMIC_SWAPW. Invert says 8384 // whether the field should be inverted after performing BinOpcode (e.g. for 8385 // NAND). 8386 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 8387 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 8388 bool Invert) const { 8389 MachineFunction &MF = *MBB->getParent(); 8390 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8391 MachineRegisterInfo &MRI = MF.getRegInfo(); 8392 8393 // Extract the operands. Base can be a register or a frame index. 8394 // Src2 can be a register or immediate. 8395 Register Dest = MI.getOperand(0).getReg(); 8396 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8397 int64_t Disp = MI.getOperand(2).getImm(); 8398 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 8399 Register BitShift = MI.getOperand(4).getReg(); 8400 Register NegBitShift = MI.getOperand(5).getReg(); 8401 unsigned BitSize = MI.getOperand(6).getImm(); 8402 DebugLoc DL = MI.getDebugLoc(); 8403 8404 // Get the right opcodes for the displacement. 8405 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8406 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8407 assert(LOpcode && CSOpcode && "Displacement out of range"); 8408 8409 // Create virtual registers for temporary results. 8410 Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8411 Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8412 Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8413 Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8414 Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8415 8416 // Insert a basic block for the main loop. 8417 MachineBasicBlock *StartMBB = MBB; 8418 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8419 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8420 8421 // StartMBB: 8422 // ... 8423 // %OrigVal = L Disp(%Base) 8424 // # fall through to LoopMBB 8425 MBB = StartMBB; 8426 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 8427 MBB->addSuccessor(LoopMBB); 8428 8429 // LoopMBB: 8430 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 8431 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 8432 // %RotatedNewVal = OP %RotatedOldVal, %Src2 8433 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 8434 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 8435 // JNE LoopMBB 8436 // # fall through to DoneMBB 8437 MBB = LoopMBB; 8438 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8439 .addReg(OrigVal).addMBB(StartMBB) 8440 .addReg(Dest).addMBB(LoopMBB); 8441 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 8442 .addReg(OldVal).addReg(BitShift).addImm(0); 8443 if (Invert) { 8444 // Perform the operation normally and then invert every bit of the field. 8445 Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8446 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 8447 // XILF with the upper BitSize bits set. 8448 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 8449 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 8450 } else if (BinOpcode) 8451 // A simply binary operation. 8452 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 8453 .addReg(RotatedOldVal) 8454 .add(Src2); 8455 else 8456 // Use RISBG to rotate Src2 into position and use it to replace the 8457 // field in RotatedOldVal. 8458 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 8459 .addReg(RotatedOldVal).addReg(Src2.getReg()) 8460 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 8461 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 8462 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 8463 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 8464 .addReg(OldVal) 8465 .addReg(NewVal) 8466 .add(Base) 8467 .addImm(Disp); 8468 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8469 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8470 MBB->addSuccessor(LoopMBB); 8471 MBB->addSuccessor(DoneMBB); 8472 8473 MI.eraseFromParent(); 8474 return DoneMBB; 8475 } 8476 8477 // Implement EmitInstrWithCustomInserter for subword pseudo 8478 // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 8479 // instruction that should be used to compare the current field with the 8480 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 8481 // for when the current field should be kept. 8482 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 8483 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 8484 unsigned KeepOldMask) const { 8485 MachineFunction &MF = *MBB->getParent(); 8486 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8487 MachineRegisterInfo &MRI = MF.getRegInfo(); 8488 8489 // Extract the operands. Base can be a register or a frame index. 8490 Register Dest = MI.getOperand(0).getReg(); 8491 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8492 int64_t Disp = MI.getOperand(2).getImm(); 8493 Register Src2 = MI.getOperand(3).getReg(); 8494 Register BitShift = MI.getOperand(4).getReg(); 8495 Register NegBitShift = MI.getOperand(5).getReg(); 8496 unsigned BitSize = MI.getOperand(6).getImm(); 8497 DebugLoc DL = MI.getDebugLoc(); 8498 8499 // Get the right opcodes for the displacement. 8500 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8501 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8502 assert(LOpcode && CSOpcode && "Displacement out of range"); 8503 8504 // Create virtual registers for temporary results. 8505 Register OrigVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8506 Register OldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8507 Register NewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8508 Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8509 Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8510 Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 8511 8512 // Insert 3 basic blocks for the loop. 8513 MachineBasicBlock *StartMBB = MBB; 8514 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8515 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8516 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 8517 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 8518 8519 // StartMBB: 8520 // ... 8521 // %OrigVal = L Disp(%Base) 8522 // # fall through to LoopMBB 8523 MBB = StartMBB; 8524 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 8525 MBB->addSuccessor(LoopMBB); 8526 8527 // LoopMBB: 8528 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 8529 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 8530 // CompareOpcode %RotatedOldVal, %Src2 8531 // BRC KeepOldMask, UpdateMBB 8532 MBB = LoopMBB; 8533 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8534 .addReg(OrigVal).addMBB(StartMBB) 8535 .addReg(Dest).addMBB(UpdateMBB); 8536 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 8537 .addReg(OldVal).addReg(BitShift).addImm(0); 8538 BuildMI(MBB, DL, TII->get(CompareOpcode)) 8539 .addReg(RotatedOldVal).addReg(Src2); 8540 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8541 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 8542 MBB->addSuccessor(UpdateMBB); 8543 MBB->addSuccessor(UseAltMBB); 8544 8545 // UseAltMBB: 8546 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 8547 // # fall through to UpdateMBB 8548 MBB = UseAltMBB; 8549 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 8550 .addReg(RotatedOldVal).addReg(Src2) 8551 .addImm(32).addImm(31 + BitSize).addImm(0); 8552 MBB->addSuccessor(UpdateMBB); 8553 8554 // UpdateMBB: 8555 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 8556 // [ %RotatedAltVal, UseAltMBB ] 8557 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 8558 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 8559 // JNE LoopMBB 8560 // # fall through to DoneMBB 8561 MBB = UpdateMBB; 8562 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 8563 .addReg(RotatedOldVal).addMBB(LoopMBB) 8564 .addReg(RotatedAltVal).addMBB(UseAltMBB); 8565 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 8566 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 8567 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 8568 .addReg(OldVal) 8569 .addReg(NewVal) 8570 .add(Base) 8571 .addImm(Disp); 8572 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8573 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8574 MBB->addSuccessor(LoopMBB); 8575 MBB->addSuccessor(DoneMBB); 8576 8577 MI.eraseFromParent(); 8578 return DoneMBB; 8579 } 8580 8581 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW 8582 // instruction MI. 8583 MachineBasicBlock * 8584 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 8585 MachineBasicBlock *MBB) const { 8586 MachineFunction &MF = *MBB->getParent(); 8587 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8588 MachineRegisterInfo &MRI = MF.getRegInfo(); 8589 8590 // Extract the operands. Base can be a register or a frame index. 8591 Register Dest = MI.getOperand(0).getReg(); 8592 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8593 int64_t Disp = MI.getOperand(2).getImm(); 8594 Register CmpVal = MI.getOperand(3).getReg(); 8595 Register OrigSwapVal = MI.getOperand(4).getReg(); 8596 Register BitShift = MI.getOperand(5).getReg(); 8597 Register NegBitShift = MI.getOperand(6).getReg(); 8598 int64_t BitSize = MI.getOperand(7).getImm(); 8599 DebugLoc DL = MI.getDebugLoc(); 8600 8601 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 8602 8603 // Get the right opcodes for the displacement and zero-extension. 8604 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8605 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8606 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 8607 assert(LOpcode && CSOpcode && "Displacement out of range"); 8608 8609 // Create virtual registers for temporary results. 8610 Register OrigOldVal = MRI.createVirtualRegister(RC); 8611 Register OldVal = MRI.createVirtualRegister(RC); 8612 Register SwapVal = MRI.createVirtualRegister(RC); 8613 Register StoreVal = MRI.createVirtualRegister(RC); 8614 Register OldValRot = MRI.createVirtualRegister(RC); 8615 Register RetryOldVal = MRI.createVirtualRegister(RC); 8616 Register RetrySwapVal = MRI.createVirtualRegister(RC); 8617 8618 // Insert 2 basic blocks for the loop. 8619 MachineBasicBlock *StartMBB = MBB; 8620 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8621 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8622 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 8623 8624 // StartMBB: 8625 // ... 8626 // %OrigOldVal = L Disp(%Base) 8627 // # fall through to LoopMBB 8628 MBB = StartMBB; 8629 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 8630 .add(Base) 8631 .addImm(Disp) 8632 .addReg(0); 8633 MBB->addSuccessor(LoopMBB); 8634 8635 // LoopMBB: 8636 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 8637 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 8638 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 8639 // ^^ The low BitSize bits contain the field 8640 // of interest. 8641 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 8642 // ^^ Replace the upper 32-BitSize bits of the 8643 // swap value with those that we loaded and rotated. 8644 // %Dest = LL[CH] %OldValRot 8645 // CR %Dest, %CmpVal 8646 // JNE DoneMBB 8647 // # Fall through to SetMBB 8648 MBB = LoopMBB; 8649 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8650 .addReg(OrigOldVal).addMBB(StartMBB) 8651 .addReg(RetryOldVal).addMBB(SetMBB); 8652 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 8653 .addReg(OrigSwapVal).addMBB(StartMBB) 8654 .addReg(RetrySwapVal).addMBB(SetMBB); 8655 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 8656 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 8657 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 8658 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 8659 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 8660 .addReg(OldValRot); 8661 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 8662 .addReg(Dest).addReg(CmpVal); 8663 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8664 .addImm(SystemZ::CCMASK_ICMP) 8665 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 8666 MBB->addSuccessor(DoneMBB); 8667 MBB->addSuccessor(SetMBB); 8668 8669 // SetMBB: 8670 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 8671 // ^^ Rotate the new field to its proper position. 8672 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 8673 // JNE LoopMBB 8674 // # fall through to ExitMBB 8675 MBB = SetMBB; 8676 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 8677 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 8678 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 8679 .addReg(OldVal) 8680 .addReg(StoreVal) 8681 .add(Base) 8682 .addImm(Disp); 8683 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8684 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8685 MBB->addSuccessor(LoopMBB); 8686 MBB->addSuccessor(DoneMBB); 8687 8688 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 8689 // to the block after the loop. At this point, CC may have been defined 8690 // either by the CR in LoopMBB or by the CS in SetMBB. 8691 if (!MI.registerDefIsDead(SystemZ::CC)) 8692 DoneMBB->addLiveIn(SystemZ::CC); 8693 8694 MI.eraseFromParent(); 8695 return DoneMBB; 8696 } 8697 8698 // Emit a move from two GR64s to a GR128. 8699 MachineBasicBlock * 8700 SystemZTargetLowering::emitPair128(MachineInstr &MI, 8701 MachineBasicBlock *MBB) const { 8702 MachineFunction &MF = *MBB->getParent(); 8703 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8704 MachineRegisterInfo &MRI = MF.getRegInfo(); 8705 DebugLoc DL = MI.getDebugLoc(); 8706 8707 Register Dest = MI.getOperand(0).getReg(); 8708 Register Hi = MI.getOperand(1).getReg(); 8709 Register Lo = MI.getOperand(2).getReg(); 8710 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8711 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8712 8713 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 8714 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 8715 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 8716 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8717 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 8718 8719 MI.eraseFromParent(); 8720 return MBB; 8721 } 8722 8723 // Emit an extension from a GR64 to a GR128. ClearEven is true 8724 // if the high register of the GR128 value must be cleared or false if 8725 // it's "don't care". 8726 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 8727 MachineBasicBlock *MBB, 8728 bool ClearEven) const { 8729 MachineFunction &MF = *MBB->getParent(); 8730 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8731 MachineRegisterInfo &MRI = MF.getRegInfo(); 8732 DebugLoc DL = MI.getDebugLoc(); 8733 8734 Register Dest = MI.getOperand(0).getReg(); 8735 Register Src = MI.getOperand(1).getReg(); 8736 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8737 8738 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 8739 if (ClearEven) { 8740 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8741 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8742 8743 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 8744 .addImm(0); 8745 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 8746 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 8747 In128 = NewIn128; 8748 } 8749 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8750 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 8751 8752 MI.eraseFromParent(); 8753 return MBB; 8754 } 8755 8756 MachineBasicBlock * 8757 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 8758 MachineBasicBlock *MBB, 8759 unsigned Opcode, bool IsMemset) const { 8760 MachineFunction &MF = *MBB->getParent(); 8761 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8762 MachineRegisterInfo &MRI = MF.getRegInfo(); 8763 DebugLoc DL = MI.getDebugLoc(); 8764 8765 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 8766 uint64_t DestDisp = MI.getOperand(1).getImm(); 8767 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 8768 uint64_t SrcDisp; 8769 8770 // Fold the displacement Disp if it is out of range. 8771 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 8772 if (!isUInt<12>(Disp)) { 8773 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8774 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 8775 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 8776 .add(Base).addImm(Disp).addReg(0); 8777 Base = MachineOperand::CreateReg(Reg, false); 8778 Disp = 0; 8779 } 8780 }; 8781 8782 if (!IsMemset) { 8783 SrcBase = earlyUseOperand(MI.getOperand(2)); 8784 SrcDisp = MI.getOperand(3).getImm(); 8785 } else { 8786 SrcBase = DestBase; 8787 SrcDisp = DestDisp++; 8788 foldDisplIfNeeded(DestBase, DestDisp); 8789 } 8790 8791 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8792 bool IsImmForm = LengthMO.isImm(); 8793 bool IsRegForm = !IsImmForm; 8794 8795 // Build and insert one Opcode of Length, with special treatment for memset. 8796 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 8797 MachineBasicBlock::iterator InsPos, 8798 MachineOperand DBase, uint64_t DDisp, 8799 MachineOperand SBase, uint64_t SDisp, 8800 unsigned Length) -> void { 8801 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 8802 if (IsMemset) { 8803 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 8804 if (ByteMO.isImm()) 8805 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 8806 .add(SBase).addImm(SDisp).add(ByteMO); 8807 else 8808 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 8809 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 8810 if (--Length == 0) 8811 return; 8812 } 8813 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 8814 .add(DBase).addImm(DDisp).addImm(Length) 8815 .add(SBase).addImm(SDisp) 8816 .setMemRefs(MI.memoperands()); 8817 }; 8818 8819 bool NeedsLoop = false; 8820 uint64_t ImmLength = 0; 8821 Register LenAdjReg = SystemZ::NoRegister; 8822 if (IsImmForm) { 8823 ImmLength = LengthMO.getImm(); 8824 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8825 if (ImmLength == 0) { 8826 MI.eraseFromParent(); 8827 return MBB; 8828 } 8829 if (Opcode == SystemZ::CLC) { 8830 if (ImmLength > 3 * 256) 8831 // A two-CLC sequence is a clear win over a loop, not least because 8832 // it needs only one branch. A three-CLC sequence needs the same 8833 // number of branches as a loop (i.e. 2), but is shorter. That 8834 // brings us to lengths greater than 768 bytes. It seems relatively 8835 // likely that a difference will be found within the first 768 bytes, 8836 // so we just optimize for the smallest number of branch 8837 // instructions, in order to avoid polluting the prediction buffer 8838 // too much. 8839 NeedsLoop = true; 8840 } else if (ImmLength > 6 * 256) 8841 // The heuristic we use is to prefer loops for anything that would 8842 // require 7 or more MVCs. With these kinds of sizes there isn't much 8843 // to choose between straight-line code and looping code, since the 8844 // time will be dominated by the MVCs themselves. 8845 NeedsLoop = true; 8846 } else { 8847 NeedsLoop = true; 8848 LenAdjReg = LengthMO.getReg(); 8849 } 8850 8851 // When generating more than one CLC, all but the last will need to 8852 // branch to the end when a difference is found. 8853 MachineBasicBlock *EndMBB = 8854 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8855 ? SystemZ::splitBlockAfter(MI, MBB) 8856 : nullptr); 8857 8858 if (NeedsLoop) { 8859 Register StartCountReg = 8860 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8861 if (IsImmForm) { 8862 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8863 ImmLength &= 255; 8864 } else { 8865 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 8866 .addReg(LenAdjReg) 8867 .addReg(0) 8868 .addImm(8); 8869 } 8870 8871 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8872 auto loadZeroAddress = [&]() -> MachineOperand { 8873 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8874 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8875 return MachineOperand::CreateReg(Reg, false); 8876 }; 8877 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8878 DestBase = loadZeroAddress(); 8879 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8880 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8881 8882 MachineBasicBlock *StartMBB = nullptr; 8883 MachineBasicBlock *LoopMBB = nullptr; 8884 MachineBasicBlock *NextMBB = nullptr; 8885 MachineBasicBlock *DoneMBB = nullptr; 8886 MachineBasicBlock *AllDoneMBB = nullptr; 8887 8888 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8889 Register StartDestReg = 8890 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8891 8892 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8893 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8894 Register ThisDestReg = 8895 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8896 Register NextSrcReg = MRI.createVirtualRegister(RC); 8897 Register NextDestReg = 8898 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8899 RC = &SystemZ::GR64BitRegClass; 8900 Register ThisCountReg = MRI.createVirtualRegister(RC); 8901 Register NextCountReg = MRI.createVirtualRegister(RC); 8902 8903 if (IsRegForm) { 8904 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8905 StartMBB = SystemZ::emitBlockAfter(MBB); 8906 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8907 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8908 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8909 8910 // MBB: 8911 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8912 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8913 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8914 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8915 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8916 .addMBB(AllDoneMBB); 8917 MBB->addSuccessor(AllDoneMBB); 8918 if (!IsMemset) 8919 MBB->addSuccessor(StartMBB); 8920 else { 8921 // MemsetOneCheckMBB: 8922 // # Jump to MemsetOneMBB for a memset of length 1, or 8923 // # fall thru to StartMBB. 8924 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8925 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8926 MBB->addSuccessor(MemsetOneCheckMBB); 8927 MBB = MemsetOneCheckMBB; 8928 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8929 .addReg(LenAdjReg).addImm(-1); 8930 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8931 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8932 .addMBB(MemsetOneMBB); 8933 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8934 MBB->addSuccessor(StartMBB, {90, 100}); 8935 8936 // MemsetOneMBB: 8937 // # Jump back to AllDoneMBB after a single MVI or STC. 8938 MBB = MemsetOneMBB; 8939 insertMemMemOp(MBB, MBB->end(), 8940 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8941 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8942 1); 8943 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8944 MBB->addSuccessor(AllDoneMBB); 8945 } 8946 8947 // StartMBB: 8948 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8949 MBB = StartMBB; 8950 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8951 .addReg(StartCountReg).addImm(0); 8952 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8953 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8954 .addMBB(DoneMBB); 8955 MBB->addSuccessor(DoneMBB); 8956 MBB->addSuccessor(LoopMBB); 8957 } 8958 else { 8959 StartMBB = MBB; 8960 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8961 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8962 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8963 8964 // StartMBB: 8965 // # fall through to LoopMBB 8966 MBB->addSuccessor(LoopMBB); 8967 8968 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8969 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8970 if (EndMBB && !ImmLength) 8971 // If the loop handled the whole CLC range, DoneMBB will be empty with 8972 // CC live-through into EndMBB, so add it as live-in. 8973 DoneMBB->addLiveIn(SystemZ::CC); 8974 } 8975 8976 // LoopMBB: 8977 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8978 // [ %NextDestReg, NextMBB ] 8979 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8980 // [ %NextSrcReg, NextMBB ] 8981 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8982 // [ %NextCountReg, NextMBB ] 8983 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8984 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8985 // ( JLH EndMBB ) 8986 // 8987 // The prefetch is used only for MVC. The JLH is used only for CLC. 8988 MBB = LoopMBB; 8989 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8990 .addReg(StartDestReg).addMBB(StartMBB) 8991 .addReg(NextDestReg).addMBB(NextMBB); 8992 if (!HaveSingleBase) 8993 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8994 .addReg(StartSrcReg).addMBB(StartMBB) 8995 .addReg(NextSrcReg).addMBB(NextMBB); 8996 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8997 .addReg(StartCountReg).addMBB(StartMBB) 8998 .addReg(NextCountReg).addMBB(NextMBB); 8999 if (Opcode == SystemZ::MVC) 9000 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 9001 .addImm(SystemZ::PFD_WRITE) 9002 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 9003 insertMemMemOp(MBB, MBB->end(), 9004 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 9005 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 9006 if (EndMBB) { 9007 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9008 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 9009 .addMBB(EndMBB); 9010 MBB->addSuccessor(EndMBB); 9011 MBB->addSuccessor(NextMBB); 9012 } 9013 9014 // NextMBB: 9015 // %NextDestReg = LA 256(%ThisDestReg) 9016 // %NextSrcReg = LA 256(%ThisSrcReg) 9017 // %NextCountReg = AGHI %ThisCountReg, -1 9018 // CGHI %NextCountReg, 0 9019 // JLH LoopMBB 9020 // # fall through to DoneMBB 9021 // 9022 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 9023 MBB = NextMBB; 9024 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 9025 .addReg(ThisDestReg).addImm(256).addReg(0); 9026 if (!HaveSingleBase) 9027 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 9028 .addReg(ThisSrcReg).addImm(256).addReg(0); 9029 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 9030 .addReg(ThisCountReg).addImm(-1); 9031 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 9032 .addReg(NextCountReg).addImm(0); 9033 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9034 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 9035 .addMBB(LoopMBB); 9036 MBB->addSuccessor(LoopMBB); 9037 MBB->addSuccessor(DoneMBB); 9038 9039 MBB = DoneMBB; 9040 if (IsRegForm) { 9041 // DoneMBB: 9042 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 9043 // # Use EXecute Relative Long for the remainder of the bytes. The target 9044 // instruction of the EXRL will have a length field of 1 since 0 is an 9045 // illegal value. The number of bytes processed becomes (%LenAdjReg & 9046 // 0xff) + 1. 9047 // # Fall through to AllDoneMBB. 9048 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9049 Register RemDestReg = HaveSingleBase ? RemSrcReg 9050 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9051 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 9052 .addReg(StartDestReg).addMBB(StartMBB) 9053 .addReg(NextDestReg).addMBB(NextMBB); 9054 if (!HaveSingleBase) 9055 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 9056 .addReg(StartSrcReg).addMBB(StartMBB) 9057 .addReg(NextSrcReg).addMBB(NextMBB); 9058 if (IsMemset) 9059 insertMemMemOp(MBB, MBB->end(), 9060 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 9061 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 9062 MachineInstrBuilder EXRL_MIB = 9063 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 9064 .addImm(Opcode) 9065 .addReg(LenAdjReg) 9066 .addReg(RemDestReg).addImm(DestDisp) 9067 .addReg(RemSrcReg).addImm(SrcDisp); 9068 MBB->addSuccessor(AllDoneMBB); 9069 MBB = AllDoneMBB; 9070 if (Opcode != SystemZ::MVC) { 9071 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 9072 if (EndMBB) 9073 MBB->addLiveIn(SystemZ::CC); 9074 } 9075 } 9076 MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 9077 } 9078 9079 // Handle any remaining bytes with straight-line code. 9080 while (ImmLength > 0) { 9081 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 9082 // The previous iteration might have created out-of-range displacements. 9083 // Apply them using LA/LAY if so. 9084 foldDisplIfNeeded(DestBase, DestDisp); 9085 foldDisplIfNeeded(SrcBase, SrcDisp); 9086 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 9087 DestDisp += ThisLength; 9088 SrcDisp += ThisLength; 9089 ImmLength -= ThisLength; 9090 // If there's another CLC to go, branch to the end if a difference 9091 // was found. 9092 if (EndMBB && ImmLength > 0) { 9093 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 9094 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9095 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 9096 .addMBB(EndMBB); 9097 MBB->addSuccessor(EndMBB); 9098 MBB->addSuccessor(NextMBB); 9099 MBB = NextMBB; 9100 } 9101 } 9102 if (EndMBB) { 9103 MBB->addSuccessor(EndMBB); 9104 MBB = EndMBB; 9105 MBB->addLiveIn(SystemZ::CC); 9106 } 9107 9108 MI.eraseFromParent(); 9109 return MBB; 9110 } 9111 9112 // Decompose string pseudo-instruction MI into a loop that continually performs 9113 // Opcode until CC != 3. 9114 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 9115 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 9116 MachineFunction &MF = *MBB->getParent(); 9117 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9118 MachineRegisterInfo &MRI = MF.getRegInfo(); 9119 DebugLoc DL = MI.getDebugLoc(); 9120 9121 uint64_t End1Reg = MI.getOperand(0).getReg(); 9122 uint64_t Start1Reg = MI.getOperand(1).getReg(); 9123 uint64_t Start2Reg = MI.getOperand(2).getReg(); 9124 uint64_t CharReg = MI.getOperand(3).getReg(); 9125 9126 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 9127 uint64_t This1Reg = MRI.createVirtualRegister(RC); 9128 uint64_t This2Reg = MRI.createVirtualRegister(RC); 9129 uint64_t End2Reg = MRI.createVirtualRegister(RC); 9130 9131 MachineBasicBlock *StartMBB = MBB; 9132 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 9133 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 9134 9135 // StartMBB: 9136 // # fall through to LoopMBB 9137 MBB->addSuccessor(LoopMBB); 9138 9139 // LoopMBB: 9140 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 9141 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 9142 // R0L = %CharReg 9143 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 9144 // JO LoopMBB 9145 // # fall through to DoneMBB 9146 // 9147 // The load of R0L can be hoisted by post-RA LICM. 9148 MBB = LoopMBB; 9149 9150 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 9151 .addReg(Start1Reg).addMBB(StartMBB) 9152 .addReg(End1Reg).addMBB(LoopMBB); 9153 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 9154 .addReg(Start2Reg).addMBB(StartMBB) 9155 .addReg(End2Reg).addMBB(LoopMBB); 9156 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 9157 BuildMI(MBB, DL, TII->get(Opcode)) 9158 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 9159 .addReg(This1Reg).addReg(This2Reg); 9160 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9161 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 9162 MBB->addSuccessor(LoopMBB); 9163 MBB->addSuccessor(DoneMBB); 9164 9165 DoneMBB->addLiveIn(SystemZ::CC); 9166 9167 MI.eraseFromParent(); 9168 return DoneMBB; 9169 } 9170 9171 // Update TBEGIN instruction with final opcode and register clobbers. 9172 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 9173 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 9174 bool NoFloat) const { 9175 MachineFunction &MF = *MBB->getParent(); 9176 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 9177 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9178 9179 // Update opcode. 9180 MI.setDesc(TII->get(Opcode)); 9181 9182 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 9183 // Make sure to add the corresponding GRSM bits if they are missing. 9184 uint64_t Control = MI.getOperand(2).getImm(); 9185 static const unsigned GPRControlBit[16] = { 9186 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 9187 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 9188 }; 9189 Control |= GPRControlBit[15]; 9190 if (TFI->hasFP(MF)) 9191 Control |= GPRControlBit[11]; 9192 MI.getOperand(2).setImm(Control); 9193 9194 // Add GPR clobbers. 9195 for (int I = 0; I < 16; I++) { 9196 if ((Control & GPRControlBit[I]) == 0) { 9197 unsigned Reg = SystemZMC::GR64Regs[I]; 9198 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9199 } 9200 } 9201 9202 // Add FPR/VR clobbers. 9203 if (!NoFloat && (Control & 4) != 0) { 9204 if (Subtarget.hasVector()) { 9205 for (unsigned Reg : SystemZMC::VR128Regs) { 9206 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9207 } 9208 } else { 9209 for (unsigned Reg : SystemZMC::FP64Regs) { 9210 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 9211 } 9212 } 9213 } 9214 9215 return MBB; 9216 } 9217 9218 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 9219 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 9220 MachineFunction &MF = *MBB->getParent(); 9221 MachineRegisterInfo *MRI = &MF.getRegInfo(); 9222 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9223 DebugLoc DL = MI.getDebugLoc(); 9224 9225 Register SrcReg = MI.getOperand(0).getReg(); 9226 9227 // Create new virtual register of the same class as source. 9228 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 9229 Register DstReg = MRI->createVirtualRegister(RC); 9230 9231 // Replace pseudo with a normal load-and-test that models the def as 9232 // well. 9233 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 9234 .addReg(SrcReg) 9235 .setMIFlags(MI.getFlags()); 9236 MI.eraseFromParent(); 9237 9238 return MBB; 9239 } 9240 9241 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 9242 MachineInstr &MI, MachineBasicBlock *MBB) const { 9243 MachineFunction &MF = *MBB->getParent(); 9244 MachineRegisterInfo *MRI = &MF.getRegInfo(); 9245 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 9246 DebugLoc DL = MI.getDebugLoc(); 9247 const unsigned ProbeSize = getStackProbeSize(MF); 9248 Register DstReg = MI.getOperand(0).getReg(); 9249 Register SizeReg = MI.getOperand(2).getReg(); 9250 9251 MachineBasicBlock *StartMBB = MBB; 9252 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 9253 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 9254 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 9255 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 9256 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 9257 9258 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 9259 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 9260 9261 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9262 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 9263 9264 // LoopTestMBB 9265 // BRC TailTestMBB 9266 // # fallthrough to LoopBodyMBB 9267 StartMBB->addSuccessor(LoopTestMBB); 9268 MBB = LoopTestMBB; 9269 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 9270 .addReg(SizeReg) 9271 .addMBB(StartMBB) 9272 .addReg(IncReg) 9273 .addMBB(LoopBodyMBB); 9274 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 9275 .addReg(PHIReg) 9276 .addImm(ProbeSize); 9277 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9278 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 9279 .addMBB(TailTestMBB); 9280 MBB->addSuccessor(LoopBodyMBB); 9281 MBB->addSuccessor(TailTestMBB); 9282 9283 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 9284 // J LoopTestMBB 9285 MBB = LoopBodyMBB; 9286 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 9287 .addReg(PHIReg) 9288 .addImm(ProbeSize); 9289 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 9290 .addReg(SystemZ::R15D) 9291 .addImm(ProbeSize); 9292 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 9293 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 9294 .setMemRefs(VolLdMMO); 9295 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 9296 MBB->addSuccessor(LoopTestMBB); 9297 9298 // TailTestMBB 9299 // BRC DoneMBB 9300 // # fallthrough to TailMBB 9301 MBB = TailTestMBB; 9302 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 9303 .addReg(PHIReg) 9304 .addImm(0); 9305 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 9306 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 9307 .addMBB(DoneMBB); 9308 MBB->addSuccessor(TailMBB); 9309 MBB->addSuccessor(DoneMBB); 9310 9311 // TailMBB 9312 // # fallthrough to DoneMBB 9313 MBB = TailMBB; 9314 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 9315 .addReg(SystemZ::R15D) 9316 .addReg(PHIReg); 9317 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 9318 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 9319 .setMemRefs(VolLdMMO); 9320 MBB->addSuccessor(DoneMBB); 9321 9322 // DoneMBB 9323 MBB = DoneMBB; 9324 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 9325 .addReg(SystemZ::R15D); 9326 9327 MI.eraseFromParent(); 9328 return DoneMBB; 9329 } 9330 9331 SDValue SystemZTargetLowering:: 9332 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 9333 MachineFunction &MF = DAG.getMachineFunction(); 9334 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 9335 SDLoc DL(SP); 9336 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 9337 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 9338 } 9339 9340 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 9341 MachineInstr &MI, MachineBasicBlock *MBB) const { 9342 switch (MI.getOpcode()) { 9343 case SystemZ::Select32: 9344 case SystemZ::Select64: 9345 case SystemZ::Select128: 9346 case SystemZ::SelectF32: 9347 case SystemZ::SelectF64: 9348 case SystemZ::SelectF128: 9349 case SystemZ::SelectVR32: 9350 case SystemZ::SelectVR64: 9351 case SystemZ::SelectVR128: 9352 return emitSelect(MI, MBB); 9353 9354 case SystemZ::CondStore8Mux: 9355 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 9356 case SystemZ::CondStore8MuxInv: 9357 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 9358 case SystemZ::CondStore16Mux: 9359 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 9360 case SystemZ::CondStore16MuxInv: 9361 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 9362 case SystemZ::CondStore32Mux: 9363 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 9364 case SystemZ::CondStore32MuxInv: 9365 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 9366 case SystemZ::CondStore8: 9367 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 9368 case SystemZ::CondStore8Inv: 9369 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 9370 case SystemZ::CondStore16: 9371 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 9372 case SystemZ::CondStore16Inv: 9373 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 9374 case SystemZ::CondStore32: 9375 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 9376 case SystemZ::CondStore32Inv: 9377 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 9378 case SystemZ::CondStore64: 9379 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 9380 case SystemZ::CondStore64Inv: 9381 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 9382 case SystemZ::CondStoreF32: 9383 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 9384 case SystemZ::CondStoreF32Inv: 9385 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 9386 case SystemZ::CondStoreF64: 9387 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 9388 case SystemZ::CondStoreF64Inv: 9389 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 9390 9391 case SystemZ::SCmp128Hi: 9392 return emitICmp128Hi(MI, MBB, false); 9393 case SystemZ::UCmp128Hi: 9394 return emitICmp128Hi(MI, MBB, true); 9395 9396 case SystemZ::PAIR128: 9397 return emitPair128(MI, MBB); 9398 case SystemZ::AEXT128: 9399 return emitExt128(MI, MBB, false); 9400 case SystemZ::ZEXT128: 9401 return emitExt128(MI, MBB, true); 9402 9403 case SystemZ::ATOMIC_SWAPW: 9404 return emitAtomicLoadBinary(MI, MBB, 0); 9405 9406 case SystemZ::ATOMIC_LOADW_AR: 9407 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR); 9408 case SystemZ::ATOMIC_LOADW_AFI: 9409 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI); 9410 9411 case SystemZ::ATOMIC_LOADW_SR: 9412 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR); 9413 9414 case SystemZ::ATOMIC_LOADW_NR: 9415 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR); 9416 case SystemZ::ATOMIC_LOADW_NILH: 9417 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH); 9418 9419 case SystemZ::ATOMIC_LOADW_OR: 9420 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR); 9421 case SystemZ::ATOMIC_LOADW_OILH: 9422 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH); 9423 9424 case SystemZ::ATOMIC_LOADW_XR: 9425 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR); 9426 case SystemZ::ATOMIC_LOADW_XILF: 9427 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF); 9428 9429 case SystemZ::ATOMIC_LOADW_NRi: 9430 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true); 9431 case SystemZ::ATOMIC_LOADW_NILHi: 9432 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true); 9433 9434 case SystemZ::ATOMIC_LOADW_MIN: 9435 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE); 9436 case SystemZ::ATOMIC_LOADW_MAX: 9437 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE); 9438 case SystemZ::ATOMIC_LOADW_UMIN: 9439 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE); 9440 case SystemZ::ATOMIC_LOADW_UMAX: 9441 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE); 9442 9443 case SystemZ::ATOMIC_CMP_SWAPW: 9444 return emitAtomicCmpSwapW(MI, MBB); 9445 case SystemZ::MVCImm: 9446 case SystemZ::MVCReg: 9447 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 9448 case SystemZ::NCImm: 9449 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 9450 case SystemZ::OCImm: 9451 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 9452 case SystemZ::XCImm: 9453 case SystemZ::XCReg: 9454 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 9455 case SystemZ::CLCImm: 9456 case SystemZ::CLCReg: 9457 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 9458 case SystemZ::MemsetImmImm: 9459 case SystemZ::MemsetImmReg: 9460 case SystemZ::MemsetRegImm: 9461 case SystemZ::MemsetRegReg: 9462 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 9463 case SystemZ::CLSTLoop: 9464 return emitStringWrapper(MI, MBB, SystemZ::CLST); 9465 case SystemZ::MVSTLoop: 9466 return emitStringWrapper(MI, MBB, SystemZ::MVST); 9467 case SystemZ::SRSTLoop: 9468 return emitStringWrapper(MI, MBB, SystemZ::SRST); 9469 case SystemZ::TBEGIN: 9470 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 9471 case SystemZ::TBEGIN_nofloat: 9472 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 9473 case SystemZ::TBEGINC: 9474 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 9475 case SystemZ::LTEBRCompare_Pseudo: 9476 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 9477 case SystemZ::LTDBRCompare_Pseudo: 9478 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 9479 case SystemZ::LTXBRCompare_Pseudo: 9480 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 9481 9482 case SystemZ::PROBED_ALLOCA: 9483 return emitProbedAlloca(MI, MBB); 9484 9485 case TargetOpcode::STACKMAP: 9486 case TargetOpcode::PATCHPOINT: 9487 return emitPatchPoint(MI, MBB); 9488 9489 default: 9490 llvm_unreachable("Unexpected instr type to insert"); 9491 } 9492 } 9493 9494 // This is only used by the isel schedulers, and is needed only to prevent 9495 // compiler from crashing when list-ilp is used. 9496 const TargetRegisterClass * 9497 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 9498 if (VT == MVT::Untyped) 9499 return &SystemZ::ADDR128BitRegClass; 9500 return TargetLowering::getRepRegClassFor(VT); 9501 } 9502 9503 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op, 9504 SelectionDAG &DAG) const { 9505 SDLoc dl(Op); 9506 /* 9507 The rounding method is in FPC Byte 3 bits 6-7, and has the following 9508 settings: 9509 00 Round to nearest 9510 01 Round to 0 9511 10 Round to +inf 9512 11 Round to -inf 9513 9514 FLT_ROUNDS, on the other hand, expects the following: 9515 -1 Undefined 9516 0 Round to 0 9517 1 Round to nearest 9518 2 Round to +inf 9519 3 Round to -inf 9520 */ 9521 9522 // Save FPC to register. 9523 SDValue Chain = Op.getOperand(0); 9524 SDValue EFPC( 9525 DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0); 9526 Chain = EFPC.getValue(1); 9527 9528 // Transform as necessary 9529 SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC, 9530 DAG.getConstant(3, dl, MVT::i32)); 9531 // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1 9532 SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, 9533 DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1, 9534 DAG.getConstant(1, dl, MVT::i32))); 9535 9536 SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2, 9537 DAG.getConstant(1, dl, MVT::i32)); 9538 RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType()); 9539 9540 return DAG.getMergeValues({RetVal, Chain}, dl); 9541 } 9542