1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 #include <optional> 29 30 using namespace llvm; 31 32 #define DEBUG_TYPE "systemz-lower" 33 34 namespace { 35 // Represents information about a comparison. 36 struct Comparison { 37 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 38 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 39 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 40 41 // The operands to the comparison. 42 SDValue Op0, Op1; 43 44 // Chain if this is a strict floating-point comparison. 45 SDValue Chain; 46 47 // The opcode that should be used to compare Op0 and Op1. 48 unsigned Opcode; 49 50 // A SystemZICMP value. Only used for integer comparisons. 51 unsigned ICmpType; 52 53 // The mask of CC values that Opcode can produce. 54 unsigned CCValid; 55 56 // The mask of CC values for which the original condition is true. 57 unsigned CCMask; 58 }; 59 } // end anonymous namespace 60 61 // Classify VT as either 32 or 64 bit. 62 static bool is32Bit(EVT VT) { 63 switch (VT.getSimpleVT().SimpleTy) { 64 case MVT::i32: 65 return true; 66 case MVT::i64: 67 return false; 68 default: 69 llvm_unreachable("Unsupported type"); 70 } 71 } 72 73 // Return a version of MachineOperand that can be safely used before the 74 // final use. 75 static MachineOperand earlyUseOperand(MachineOperand Op) { 76 if (Op.isReg()) 77 Op.setIsKill(false); 78 return Op; 79 } 80 81 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 82 const SystemZSubtarget &STI) 83 : TargetLowering(TM), Subtarget(STI) { 84 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 85 86 auto *Regs = STI.getSpecialRegisters(); 87 88 // Set up the register classes. 89 if (Subtarget.hasHighWord()) 90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 91 else 92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 93 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 94 if (!useSoftFloat()) { 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 if (Subtarget.hasVectorEnhancements1()) 103 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 104 else 105 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 106 107 if (Subtarget.hasVector()) { 108 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 113 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 114 } 115 } 116 117 // Compute derived properties from the register classes 118 computeRegisterProperties(Subtarget.getRegisterInfo()); 119 120 // Set up special registers. 121 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 122 123 // TODO: It may be better to default to latency-oriented scheduling, however 124 // LLVM's current latency-oriented scheduler can't handle physreg definitions 125 // such as SystemZ has with CC, so set this to the register-pressure 126 // scheduler, because it can. 127 setSchedulingPreference(Sched::RegPressure); 128 129 setBooleanContents(ZeroOrOneBooleanContent); 130 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 131 132 // Instructions are strings of 2-byte aligned 2-byte values. 133 setMinFunctionAlignment(Align(2)); 134 // For performance reasons we prefer 16-byte alignment. 135 setPrefFunctionAlignment(Align(16)); 136 137 // Handle operations that are handled in a similar way for all types. 138 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 139 I <= MVT::LAST_FP_VALUETYPE; 140 ++I) { 141 MVT VT = MVT::SimpleValueType(I); 142 if (isTypeLegal(VT)) { 143 // Lower SET_CC into an IPM-based sequence. 144 setOperationAction(ISD::SETCC, VT, Custom); 145 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 146 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 147 148 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 149 setOperationAction(ISD::SELECT, VT, Expand); 150 151 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 152 setOperationAction(ISD::SELECT_CC, VT, Custom); 153 setOperationAction(ISD::BR_CC, VT, Custom); 154 } 155 } 156 157 // Expand jump table branches as address arithmetic followed by an 158 // indirect jump. 159 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 160 161 // Expand BRCOND into a BR_CC (see above). 162 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 163 164 // Handle integer types. 165 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 166 I <= MVT::LAST_INTEGER_VALUETYPE; 167 ++I) { 168 MVT VT = MVT::SimpleValueType(I); 169 if (isTypeLegal(VT)) { 170 setOperationAction(ISD::ABS, VT, Legal); 171 172 // Expand individual DIV and REMs into DIVREMs. 173 setOperationAction(ISD::SDIV, VT, Expand); 174 setOperationAction(ISD::UDIV, VT, Expand); 175 setOperationAction(ISD::SREM, VT, Expand); 176 setOperationAction(ISD::UREM, VT, Expand); 177 setOperationAction(ISD::SDIVREM, VT, Custom); 178 setOperationAction(ISD::UDIVREM, VT, Custom); 179 180 // Support addition/subtraction with overflow. 181 setOperationAction(ISD::SADDO, VT, Custom); 182 setOperationAction(ISD::SSUBO, VT, Custom); 183 184 // Support addition/subtraction with carry. 185 setOperationAction(ISD::UADDO, VT, Custom); 186 setOperationAction(ISD::USUBO, VT, Custom); 187 188 // Support carry in as value rather than glue. 189 setOperationAction(ISD::ADDCARRY, VT, Custom); 190 setOperationAction(ISD::SUBCARRY, VT, Custom); 191 192 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 193 // stores, putting a serialization instruction after the stores. 194 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 195 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 196 197 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 198 // available, or if the operand is constant. 199 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 200 201 // Use POPCNT on z196 and above. 202 if (Subtarget.hasPopulationCount()) 203 setOperationAction(ISD::CTPOP, VT, Custom); 204 else 205 setOperationAction(ISD::CTPOP, VT, Expand); 206 207 // No special instructions for these. 208 setOperationAction(ISD::CTTZ, VT, Expand); 209 setOperationAction(ISD::ROTR, VT, Expand); 210 211 // Use *MUL_LOHI where possible instead of MULH*. 212 setOperationAction(ISD::MULHS, VT, Expand); 213 setOperationAction(ISD::MULHU, VT, Expand); 214 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 215 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 216 217 // Only z196 and above have native support for conversions to unsigned. 218 // On z10, promoting to i64 doesn't generate an inexact condition for 219 // values that are outside the i32 range but in the i64 range, so use 220 // the default expansion. 221 if (!Subtarget.hasFPExtension()) 222 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 223 224 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 225 // default to Expand, so need to be modified to Legal where appropriate. 226 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 227 if (Subtarget.hasFPExtension()) 228 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 229 230 // And similarly for STRICT_[SU]INT_TO_FP. 231 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 232 if (Subtarget.hasFPExtension()) 233 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 234 } 235 } 236 237 // Type legalization will convert 8- and 16-bit atomic operations into 238 // forms that operate on i32s (but still keeping the original memory VT). 239 // Lower them into full i32 operations. 240 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 246 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 248 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 249 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 250 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 251 252 // Even though i128 is not a legal type, we still need to custom lower 253 // the atomic operations in order to exploit SystemZ instructions. 254 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 255 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 256 257 // We can use the CC result of compare-and-swap to implement 258 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 259 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 260 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 261 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 262 263 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 264 265 // Traps are legal, as we will convert them to "j .+2". 266 setOperationAction(ISD::TRAP, MVT::Other, Legal); 267 268 // z10 has instructions for signed but not unsigned FP conversion. 269 // Handle unsigned 32-bit types as signed 64-bit types. 270 if (!Subtarget.hasFPExtension()) { 271 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 272 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 273 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 274 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 275 } 276 277 // We have native support for a 64-bit CTLZ, via FLOGR. 278 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 279 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 280 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 281 282 // On z15 we have native support for a 64-bit CTPOP. 283 if (Subtarget.hasMiscellaneousExtensions3()) { 284 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 285 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 286 } 287 288 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 289 setOperationAction(ISD::OR, MVT::i64, Custom); 290 291 // Expand 128 bit shifts without using a libcall. 292 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 293 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 294 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 295 setLibcallName(RTLIB::SRL_I128, nullptr); 296 setLibcallName(RTLIB::SHL_I128, nullptr); 297 setLibcallName(RTLIB::SRA_I128, nullptr); 298 299 // Handle bitcast from fp128 to i128. 300 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 301 302 // We have native instructions for i8, i16 and i32 extensions, but not i1. 303 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 304 for (MVT VT : MVT::integer_valuetypes()) { 305 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 306 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 307 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 308 } 309 310 // Handle the various types of symbolic address. 311 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 312 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 313 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 314 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 315 setOperationAction(ISD::JumpTable, PtrVT, Custom); 316 317 // We need to handle dynamic allocations specially because of the 318 // 160-byte area at the bottom of the stack. 319 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 320 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 321 322 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 323 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 324 325 // Handle prefetches with PFD or PFDRL. 326 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 327 328 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 329 // Assume by default that all vector operations need to be expanded. 330 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 331 if (getOperationAction(Opcode, VT) == Legal) 332 setOperationAction(Opcode, VT, Expand); 333 334 // Likewise all truncating stores and extending loads. 335 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 336 setTruncStoreAction(VT, InnerVT, Expand); 337 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 338 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 339 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 340 } 341 342 if (isTypeLegal(VT)) { 343 // These operations are legal for anything that can be stored in a 344 // vector register, even if there is no native support for the format 345 // as such. In particular, we can do these for v4f32 even though there 346 // are no specific instructions for that format. 347 setOperationAction(ISD::LOAD, VT, Legal); 348 setOperationAction(ISD::STORE, VT, Legal); 349 setOperationAction(ISD::VSELECT, VT, Legal); 350 setOperationAction(ISD::BITCAST, VT, Legal); 351 setOperationAction(ISD::UNDEF, VT, Legal); 352 353 // Likewise, except that we need to replace the nodes with something 354 // more specific. 355 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 356 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 357 } 358 } 359 360 // Handle integer vector types. 361 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 362 if (isTypeLegal(VT)) { 363 // These operations have direct equivalents. 364 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 365 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 366 setOperationAction(ISD::ADD, VT, Legal); 367 setOperationAction(ISD::SUB, VT, Legal); 368 if (VT != MVT::v2i64) 369 setOperationAction(ISD::MUL, VT, Legal); 370 setOperationAction(ISD::ABS, VT, Legal); 371 setOperationAction(ISD::AND, VT, Legal); 372 setOperationAction(ISD::OR, VT, Legal); 373 setOperationAction(ISD::XOR, VT, Legal); 374 if (Subtarget.hasVectorEnhancements1()) 375 setOperationAction(ISD::CTPOP, VT, Legal); 376 else 377 setOperationAction(ISD::CTPOP, VT, Custom); 378 setOperationAction(ISD::CTTZ, VT, Legal); 379 setOperationAction(ISD::CTLZ, VT, Legal); 380 381 // Convert a GPR scalar to a vector by inserting it into element 0. 382 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 383 384 // Use a series of unpacks for extensions. 385 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 386 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 387 388 // Detect shifts by a scalar amount and convert them into 389 // V*_BY_SCALAR. 390 setOperationAction(ISD::SHL, VT, Custom); 391 setOperationAction(ISD::SRA, VT, Custom); 392 setOperationAction(ISD::SRL, VT, Custom); 393 394 // At present ROTL isn't matched by DAGCombiner. ROTR should be 395 // converted into ROTL. 396 setOperationAction(ISD::ROTL, VT, Expand); 397 setOperationAction(ISD::ROTR, VT, Expand); 398 399 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 400 // and inverting the result as necessary. 401 setOperationAction(ISD::SETCC, VT, Custom); 402 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 403 if (Subtarget.hasVectorEnhancements1()) 404 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 405 } 406 } 407 408 if (Subtarget.hasVector()) { 409 // There should be no need to check for float types other than v2f64 410 // since <2 x f32> isn't a legal type. 411 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 412 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 413 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 414 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 415 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 416 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 417 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 418 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 419 420 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 421 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 422 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 423 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 424 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 425 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 426 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 427 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 428 } 429 430 if (Subtarget.hasVectorEnhancements2()) { 431 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 432 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 433 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 434 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 435 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 436 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 437 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 438 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 439 440 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 441 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 442 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 443 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 444 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 445 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 446 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 447 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 448 } 449 450 // Handle floating-point types. 451 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 452 I <= MVT::LAST_FP_VALUETYPE; 453 ++I) { 454 MVT VT = MVT::SimpleValueType(I); 455 if (isTypeLegal(VT)) { 456 // We can use FI for FRINT. 457 setOperationAction(ISD::FRINT, VT, Legal); 458 459 // We can use the extended form of FI for other rounding operations. 460 if (Subtarget.hasFPExtension()) { 461 setOperationAction(ISD::FNEARBYINT, VT, Legal); 462 setOperationAction(ISD::FFLOOR, VT, Legal); 463 setOperationAction(ISD::FCEIL, VT, Legal); 464 setOperationAction(ISD::FTRUNC, VT, Legal); 465 setOperationAction(ISD::FROUND, VT, Legal); 466 } 467 468 // No special instructions for these. 469 setOperationAction(ISD::FSIN, VT, Expand); 470 setOperationAction(ISD::FCOS, VT, Expand); 471 setOperationAction(ISD::FSINCOS, VT, Expand); 472 setOperationAction(ISD::FREM, VT, Expand); 473 setOperationAction(ISD::FPOW, VT, Expand); 474 475 // Special treatment. 476 setOperationAction(ISD::IS_FPCLASS, VT, Custom); 477 478 // Handle constrained floating-point operations. 479 setOperationAction(ISD::STRICT_FADD, VT, Legal); 480 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 481 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 482 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 483 setOperationAction(ISD::STRICT_FMA, VT, Legal); 484 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 485 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 486 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 487 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 488 if (Subtarget.hasFPExtension()) { 489 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 490 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 491 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 492 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 493 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 494 } 495 } 496 } 497 498 // Handle floating-point vector types. 499 if (Subtarget.hasVector()) { 500 // Scalar-to-vector conversion is just a subreg. 501 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 502 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 503 504 // Some insertions and extractions can be done directly but others 505 // need to go via integers. 506 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 507 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 508 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 509 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 510 511 // These operations have direct equivalents. 512 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 513 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 514 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 515 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 516 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 517 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 518 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 519 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 520 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 521 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 522 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 523 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 524 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 525 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 526 527 // Handle constrained floating-point operations. 528 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 529 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 530 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 531 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 532 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 533 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 534 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 535 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 536 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 537 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 538 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 539 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 540 } 541 542 // The vector enhancements facility 1 has instructions for these. 543 if (Subtarget.hasVectorEnhancements1()) { 544 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 545 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 546 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 547 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 548 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 549 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 550 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 551 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 552 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 553 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 554 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 555 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 556 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 557 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 558 559 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 560 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 561 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 562 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 563 564 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 565 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 566 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 567 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 568 569 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 570 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 571 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 572 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 573 574 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 575 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 576 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 577 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 578 579 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 580 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 581 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 582 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 583 584 // Handle constrained floating-point operations. 585 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 586 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 587 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 588 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 589 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 590 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 591 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 592 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 593 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 594 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 595 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 596 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 597 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 598 MVT::v4f32, MVT::v2f64 }) { 599 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 600 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 601 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 602 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 603 } 604 } 605 606 // We only have fused f128 multiply-addition on vector registers. 607 if (!Subtarget.hasVectorEnhancements1()) { 608 setOperationAction(ISD::FMA, MVT::f128, Expand); 609 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 610 } 611 612 // We don't have a copysign instruction on vector registers. 613 if (Subtarget.hasVectorEnhancements1()) 614 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 615 616 // Needed so that we don't try to implement f128 constant loads using 617 // a load-and-extend of a f80 constant (in cases where the constant 618 // would fit in an f80). 619 for (MVT VT : MVT::fp_valuetypes()) 620 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 621 622 // We don't have extending load instruction on vector registers. 623 if (Subtarget.hasVectorEnhancements1()) { 624 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 625 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 626 } 627 628 // Floating-point truncation and stores need to be done separately. 629 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 630 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 631 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 632 633 // We have 64-bit FPR<->GPR moves, but need special handling for 634 // 32-bit forms. 635 if (!Subtarget.hasVector()) { 636 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 637 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 638 } 639 640 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 641 // structure, but VAEND is a no-op. 642 setOperationAction(ISD::VASTART, MVT::Other, Custom); 643 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 644 setOperationAction(ISD::VAEND, MVT::Other, Expand); 645 646 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 647 648 // Codes for which we want to perform some z-specific combinations. 649 setTargetDAGCombine({ISD::ZERO_EXTEND, 650 ISD::SIGN_EXTEND, 651 ISD::SIGN_EXTEND_INREG, 652 ISD::LOAD, 653 ISD::STORE, 654 ISD::VECTOR_SHUFFLE, 655 ISD::EXTRACT_VECTOR_ELT, 656 ISD::FP_ROUND, 657 ISD::STRICT_FP_ROUND, 658 ISD::FP_EXTEND, 659 ISD::SINT_TO_FP, 660 ISD::UINT_TO_FP, 661 ISD::STRICT_FP_EXTEND, 662 ISD::BSWAP, 663 ISD::SDIV, 664 ISD::UDIV, 665 ISD::SREM, 666 ISD::UREM, 667 ISD::INTRINSIC_VOID, 668 ISD::INTRINSIC_W_CHAIN}); 669 670 // Handle intrinsics. 671 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 672 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 673 674 // We want to use MVC in preference to even a single load/store pair. 675 MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; 676 MaxStoresPerMemcpyOptSize = 0; 677 678 // The main memset sequence is a byte store followed by an MVC. 679 // Two STC or MV..I stores win over that, but the kind of fused stores 680 // generated by target-independent code don't when the byte value is 681 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 682 // than "STC;MVC". Handle the choice in target-specific code instead. 683 MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; 684 MaxStoresPerMemsetOptSize = 0; 685 686 // Default to having -disable-strictnode-mutation on 687 IsStrictFPEnabled = true; 688 } 689 690 bool SystemZTargetLowering::useSoftFloat() const { 691 return Subtarget.hasSoftFloat(); 692 } 693 694 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 695 LLVMContext &, EVT VT) const { 696 if (!VT.isVector()) 697 return MVT::i32; 698 return VT.changeVectorElementTypeToInteger(); 699 } 700 701 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 702 const MachineFunction &MF, EVT VT) const { 703 VT = VT.getScalarType(); 704 705 if (!VT.isSimple()) 706 return false; 707 708 switch (VT.getSimpleVT().SimpleTy) { 709 case MVT::f32: 710 case MVT::f64: 711 return true; 712 case MVT::f128: 713 return Subtarget.hasVectorEnhancements1(); 714 default: 715 break; 716 } 717 718 return false; 719 } 720 721 // Return true if the constant can be generated with a vector instruction, 722 // such as VGM, VGMB or VREPI. 723 bool SystemZVectorConstantInfo::isVectorConstantLegal( 724 const SystemZSubtarget &Subtarget) { 725 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 726 if (!Subtarget.hasVector() || 727 (isFP128 && !Subtarget.hasVectorEnhancements1())) 728 return false; 729 730 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 731 // preferred way of creating all-zero and all-one vectors so give it 732 // priority over other methods below. 733 unsigned Mask = 0; 734 unsigned I = 0; 735 for (; I < SystemZ::VectorBytes; ++I) { 736 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 737 if (Byte == 0xff) 738 Mask |= 1ULL << I; 739 else if (Byte != 0) 740 break; 741 } 742 if (I == SystemZ::VectorBytes) { 743 Opcode = SystemZISD::BYTE_MASK; 744 OpVals.push_back(Mask); 745 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 746 return true; 747 } 748 749 if (SplatBitSize > 64) 750 return false; 751 752 auto tryValue = [&](uint64_t Value) -> bool { 753 // Try VECTOR REPLICATE IMMEDIATE 754 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 755 if (isInt<16>(SignedValue)) { 756 OpVals.push_back(((unsigned) SignedValue)); 757 Opcode = SystemZISD::REPLICATE; 758 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 759 SystemZ::VectorBits / SplatBitSize); 760 return true; 761 } 762 // Try VECTOR GENERATE MASK 763 unsigned Start, End; 764 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 765 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 766 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 767 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 768 OpVals.push_back(Start - (64 - SplatBitSize)); 769 OpVals.push_back(End - (64 - SplatBitSize)); 770 Opcode = SystemZISD::ROTATE_MASK; 771 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 772 SystemZ::VectorBits / SplatBitSize); 773 return true; 774 } 775 return false; 776 }; 777 778 // First try assuming that any undefined bits above the highest set bit 779 // and below the lowest set bit are 1s. This increases the likelihood of 780 // being able to use a sign-extended element value in VECTOR REPLICATE 781 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 782 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 783 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 784 uint64_t Lower = 785 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 786 uint64_t Upper = 787 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 788 if (tryValue(SplatBitsZ | Upper | Lower)) 789 return true; 790 791 // Now try assuming that any undefined bits between the first and 792 // last defined set bits are set. This increases the chances of 793 // using a non-wraparound mask. 794 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 795 return tryValue(SplatBitsZ | Middle); 796 } 797 798 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { 799 if (IntImm.isSingleWord()) { 800 IntBits = APInt(128, IntImm.getZExtValue()); 801 IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); 802 } else 803 IntBits = IntImm; 804 assert(IntBits.getBitWidth() == 128 && "Unsupported APInt."); 805 806 // Find the smallest splat. 807 SplatBits = IntImm; 808 unsigned Width = SplatBits.getBitWidth(); 809 while (Width > 8) { 810 unsigned HalfSize = Width / 2; 811 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 812 APInt LowValue = SplatBits.trunc(HalfSize); 813 814 // If the two halves do not match, stop here. 815 if (HighValue != LowValue || 8 > HalfSize) 816 break; 817 818 SplatBits = HighValue; 819 Width = HalfSize; 820 } 821 SplatUndef = 0; 822 SplatBitSize = Width; 823 } 824 825 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 826 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 827 bool HasAnyUndefs; 828 829 // Get IntBits by finding the 128 bit splat. 830 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 831 true); 832 833 // Get SplatBits by finding the 8 bit or greater splat. 834 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 835 true); 836 } 837 838 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 839 bool ForCodeSize) const { 840 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 841 if (Imm.isZero() || Imm.isNegZero()) 842 return true; 843 844 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 845 } 846 847 /// Returns true if stack probing through inline assembly is requested. 848 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { 849 // If the function specifically requests inline stack probes, emit them. 850 if (MF.getFunction().hasFnAttribute("probe-stack")) 851 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 852 "inline-asm"; 853 return false; 854 } 855 856 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 857 // We can use CGFI or CLGFI. 858 return isInt<32>(Imm) || isUInt<32>(Imm); 859 } 860 861 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 862 // We can use ALGFI or SLGFI. 863 return isUInt<32>(Imm) || isUInt<32>(-Imm); 864 } 865 866 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 867 EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { 868 // Unaligned accesses should never be slower than the expanded version. 869 // We check specifically for aligned accesses in the few cases where 870 // they are required. 871 if (Fast) 872 *Fast = 1; 873 return true; 874 } 875 876 // Information about the addressing mode for a memory access. 877 struct AddressingMode { 878 // True if a long displacement is supported. 879 bool LongDisplacement; 880 881 // True if use of index register is supported. 882 bool IndexReg; 883 884 AddressingMode(bool LongDispl, bool IdxReg) : 885 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 886 }; 887 888 // Return the desired addressing mode for a Load which has only one use (in 889 // the same block) which is a Store. 890 static AddressingMode getLoadStoreAddrMode(bool HasVector, 891 Type *Ty) { 892 // With vector support a Load->Store combination may be combined to either 893 // an MVC or vector operations and it seems to work best to allow the 894 // vector addressing mode. 895 if (HasVector) 896 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 897 898 // Otherwise only the MVC case is special. 899 bool MVC = Ty->isIntegerTy(8); 900 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 901 } 902 903 // Return the addressing mode which seems most desirable given an LLVM 904 // Instruction pointer. 905 static AddressingMode 906 supportedAddressingMode(Instruction *I, bool HasVector) { 907 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 908 switch (II->getIntrinsicID()) { 909 default: break; 910 case Intrinsic::memset: 911 case Intrinsic::memmove: 912 case Intrinsic::memcpy: 913 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 914 } 915 } 916 917 if (isa<LoadInst>(I) && I->hasOneUse()) { 918 auto *SingleUser = cast<Instruction>(*I->user_begin()); 919 if (SingleUser->getParent() == I->getParent()) { 920 if (isa<ICmpInst>(SingleUser)) { 921 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 922 if (C->getBitWidth() <= 64 && 923 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 924 // Comparison of memory with 16 bit signed / unsigned immediate 925 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 926 } else if (isa<StoreInst>(SingleUser)) 927 // Load->Store 928 return getLoadStoreAddrMode(HasVector, I->getType()); 929 } 930 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 931 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 932 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 933 // Load->Store 934 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 935 } 936 937 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 938 939 // * Use LDE instead of LE/LEY for z13 to avoid partial register 940 // dependencies (LDE only supports small offsets). 941 // * Utilize the vector registers to hold floating point 942 // values (vector load / store instructions only support small 943 // offsets). 944 945 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 946 I->getOperand(0)->getType()); 947 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 948 bool IsVectorAccess = MemAccessTy->isVectorTy(); 949 950 // A store of an extracted vector element will be combined into a VSTE type 951 // instruction. 952 if (!IsVectorAccess && isa<StoreInst>(I)) { 953 Value *DataOp = I->getOperand(0); 954 if (isa<ExtractElementInst>(DataOp)) 955 IsVectorAccess = true; 956 } 957 958 // A load which gets inserted into a vector element will be combined into a 959 // VLE type instruction. 960 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 961 User *LoadUser = *I->user_begin(); 962 if (isa<InsertElementInst>(LoadUser)) 963 IsVectorAccess = true; 964 } 965 966 if (IsFPAccess || IsVectorAccess) 967 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 968 } 969 970 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 971 } 972 973 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 974 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 975 // Punt on globals for now, although they can be used in limited 976 // RELATIVE LONG cases. 977 if (AM.BaseGV) 978 return false; 979 980 // Require a 20-bit signed offset. 981 if (!isInt<20>(AM.BaseOffs)) 982 return false; 983 984 bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy(); 985 AddressingMode SupportedAM(!RequireD12, true); 986 if (I != nullptr) 987 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 988 989 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 990 return false; 991 992 if (!SupportedAM.IndexReg) 993 // No indexing allowed. 994 return AM.Scale == 0; 995 else 996 // Indexing is OK but no scale factor can be applied. 997 return AM.Scale == 0 || AM.Scale == 1; 998 } 999 1000 bool SystemZTargetLowering::findOptimalMemOpLowering( 1001 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 1002 unsigned SrcAS, const AttributeList &FuncAttributes) const { 1003 const int MVCFastLen = 16; 1004 1005 if (Limit != ~unsigned(0)) { 1006 // Don't expand Op into scalar loads/stores in these cases: 1007 if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) 1008 return false; // Small memcpy: Use MVC 1009 if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) 1010 return false; // Small memset (first byte with STC/MVI): Use MVC 1011 if (Op.isZeroMemset()) 1012 return false; // Memset zero: Use XC 1013 } 1014 1015 return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS, 1016 SrcAS, FuncAttributes); 1017 } 1018 1019 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op, 1020 const AttributeList &FuncAttributes) const { 1021 return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; 1022 } 1023 1024 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 1025 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 1026 return false; 1027 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue(); 1028 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue(); 1029 return FromBits > ToBits; 1030 } 1031 1032 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1033 if (!FromVT.isInteger() || !ToVT.isInteger()) 1034 return false; 1035 unsigned FromBits = FromVT.getFixedSizeInBits(); 1036 unsigned ToBits = ToVT.getFixedSizeInBits(); 1037 return FromBits > ToBits; 1038 } 1039 1040 //===----------------------------------------------------------------------===// 1041 // Inline asm support 1042 //===----------------------------------------------------------------------===// 1043 1044 TargetLowering::ConstraintType 1045 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1046 if (Constraint.size() == 1) { 1047 switch (Constraint[0]) { 1048 case 'a': // Address register 1049 case 'd': // Data register (equivalent to 'r') 1050 case 'f': // Floating-point register 1051 case 'h': // High-part register 1052 case 'r': // General-purpose register 1053 case 'v': // Vector register 1054 return C_RegisterClass; 1055 1056 case 'Q': // Memory with base and unsigned 12-bit displacement 1057 case 'R': // Likewise, plus an index 1058 case 'S': // Memory with base and signed 20-bit displacement 1059 case 'T': // Likewise, plus an index 1060 case 'm': // Equivalent to 'T'. 1061 return C_Memory; 1062 1063 case 'I': // Unsigned 8-bit constant 1064 case 'J': // Unsigned 12-bit constant 1065 case 'K': // Signed 16-bit constant 1066 case 'L': // Signed 20-bit displacement (on all targets we support) 1067 case 'M': // 0x7fffffff 1068 return C_Immediate; 1069 1070 default: 1071 break; 1072 } 1073 } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { 1074 switch (Constraint[1]) { 1075 case 'Q': // Address with base and unsigned 12-bit displacement 1076 case 'R': // Likewise, plus an index 1077 case 'S': // Address with base and signed 20-bit displacement 1078 case 'T': // Likewise, plus an index 1079 return C_Address; 1080 1081 default: 1082 break; 1083 } 1084 } 1085 return TargetLowering::getConstraintType(Constraint); 1086 } 1087 1088 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1089 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1090 const char *constraint) const { 1091 ConstraintWeight weight = CW_Invalid; 1092 Value *CallOperandVal = info.CallOperandVal; 1093 // If we don't have a value, we can't do a match, 1094 // but allow it at the lowest weight. 1095 if (!CallOperandVal) 1096 return CW_Default; 1097 Type *type = CallOperandVal->getType(); 1098 // Look at the constraint type. 1099 switch (*constraint) { 1100 default: 1101 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1102 break; 1103 1104 case 'a': // Address register 1105 case 'd': // Data register (equivalent to 'r') 1106 case 'h': // High-part register 1107 case 'r': // General-purpose register 1108 if (CallOperandVal->getType()->isIntegerTy()) 1109 weight = CW_Register; 1110 break; 1111 1112 case 'f': // Floating-point register 1113 if (type->isFloatingPointTy()) 1114 weight = CW_Register; 1115 break; 1116 1117 case 'v': // Vector register 1118 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1119 Subtarget.hasVector()) 1120 weight = CW_Register; 1121 break; 1122 1123 case 'I': // Unsigned 8-bit constant 1124 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1125 if (isUInt<8>(C->getZExtValue())) 1126 weight = CW_Constant; 1127 break; 1128 1129 case 'J': // Unsigned 12-bit constant 1130 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1131 if (isUInt<12>(C->getZExtValue())) 1132 weight = CW_Constant; 1133 break; 1134 1135 case 'K': // Signed 16-bit constant 1136 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1137 if (isInt<16>(C->getSExtValue())) 1138 weight = CW_Constant; 1139 break; 1140 1141 case 'L': // Signed 20-bit displacement (on all targets we support) 1142 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1143 if (isInt<20>(C->getSExtValue())) 1144 weight = CW_Constant; 1145 break; 1146 1147 case 'M': // 0x7fffffff 1148 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1149 if (C->getZExtValue() == 0x7fffffff) 1150 weight = CW_Constant; 1151 break; 1152 } 1153 return weight; 1154 } 1155 1156 // Parse a "{tNNN}" register constraint for which the register type "t" 1157 // has already been verified. MC is the class associated with "t" and 1158 // Map maps 0-based register numbers to LLVM register numbers. 1159 static std::pair<unsigned, const TargetRegisterClass *> 1160 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1161 const unsigned *Map, unsigned Size) { 1162 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1163 if (isdigit(Constraint[2])) { 1164 unsigned Index; 1165 bool Failed = 1166 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1167 if (!Failed && Index < Size && Map[Index]) 1168 return std::make_pair(Map[Index], RC); 1169 } 1170 return std::make_pair(0U, nullptr); 1171 } 1172 1173 std::pair<unsigned, const TargetRegisterClass *> 1174 SystemZTargetLowering::getRegForInlineAsmConstraint( 1175 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1176 if (Constraint.size() == 1) { 1177 // GCC Constraint Letters 1178 switch (Constraint[0]) { 1179 default: break; 1180 case 'd': // Data register (equivalent to 'r') 1181 case 'r': // General-purpose register 1182 if (VT == MVT::i64) 1183 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1184 else if (VT == MVT::i128) 1185 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1186 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1187 1188 case 'a': // Address register 1189 if (VT == MVT::i64) 1190 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1191 else if (VT == MVT::i128) 1192 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1193 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1194 1195 case 'h': // High-part register (an LLVM extension) 1196 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1197 1198 case 'f': // Floating-point register 1199 if (!useSoftFloat()) { 1200 if (VT == MVT::f64) 1201 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1202 else if (VT == MVT::f128) 1203 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1204 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1205 } 1206 break; 1207 case 'v': // Vector register 1208 if (Subtarget.hasVector()) { 1209 if (VT == MVT::f32) 1210 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1211 if (VT == MVT::f64) 1212 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1213 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1214 } 1215 break; 1216 } 1217 } 1218 if (Constraint.size() > 0 && Constraint[0] == '{') { 1219 // We need to override the default register parsing for GPRs and FPRs 1220 // because the interpretation depends on VT. The internal names of 1221 // the registers are also different from the external names 1222 // (F0D and F0S instead of F0, etc.). 1223 if (Constraint[1] == 'r') { 1224 if (VT == MVT::i32) 1225 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1226 SystemZMC::GR32Regs, 16); 1227 if (VT == MVT::i128) 1228 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1229 SystemZMC::GR128Regs, 16); 1230 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1231 SystemZMC::GR64Regs, 16); 1232 } 1233 if (Constraint[1] == 'f') { 1234 if (useSoftFloat()) 1235 return std::make_pair( 1236 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1237 if (VT == MVT::f32) 1238 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1239 SystemZMC::FP32Regs, 16); 1240 if (VT == MVT::f128) 1241 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1242 SystemZMC::FP128Regs, 16); 1243 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1244 SystemZMC::FP64Regs, 16); 1245 } 1246 if (Constraint[1] == 'v') { 1247 if (!Subtarget.hasVector()) 1248 return std::make_pair( 1249 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1250 if (VT == MVT::f32) 1251 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1252 SystemZMC::VR32Regs, 32); 1253 if (VT == MVT::f64) 1254 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1255 SystemZMC::VR64Regs, 32); 1256 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1257 SystemZMC::VR128Regs, 32); 1258 } 1259 } 1260 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1261 } 1262 1263 // FIXME? Maybe this could be a TableGen attribute on some registers and 1264 // this table could be generated automatically from RegInfo. 1265 Register 1266 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1267 const MachineFunction &MF) const { 1268 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 1269 1270 Register Reg = 1271 StringSwitch<Register>(RegName) 1272 .Case("r4", Subtarget->isTargetXPLINK64() ? SystemZ::R4D : 0) 1273 .Case("r15", Subtarget->isTargetELF() ? SystemZ::R15D : 0) 1274 .Default(0); 1275 1276 if (Reg) 1277 return Reg; 1278 report_fatal_error("Invalid register name global variable"); 1279 } 1280 1281 void SystemZTargetLowering:: 1282 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1283 std::vector<SDValue> &Ops, 1284 SelectionDAG &DAG) const { 1285 // Only support length 1 constraints for now. 1286 if (Constraint.length() == 1) { 1287 switch (Constraint[0]) { 1288 case 'I': // Unsigned 8-bit constant 1289 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1290 if (isUInt<8>(C->getZExtValue())) 1291 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1292 Op.getValueType())); 1293 return; 1294 1295 case 'J': // Unsigned 12-bit constant 1296 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1297 if (isUInt<12>(C->getZExtValue())) 1298 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1299 Op.getValueType())); 1300 return; 1301 1302 case 'K': // Signed 16-bit constant 1303 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1304 if (isInt<16>(C->getSExtValue())) 1305 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1306 Op.getValueType())); 1307 return; 1308 1309 case 'L': // Signed 20-bit displacement (on all targets we support) 1310 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1311 if (isInt<20>(C->getSExtValue())) 1312 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1313 Op.getValueType())); 1314 return; 1315 1316 case 'M': // 0x7fffffff 1317 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1318 if (C->getZExtValue() == 0x7fffffff) 1319 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1320 Op.getValueType())); 1321 return; 1322 } 1323 } 1324 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1325 } 1326 1327 //===----------------------------------------------------------------------===// 1328 // Calling conventions 1329 //===----------------------------------------------------------------------===// 1330 1331 #include "SystemZGenCallingConv.inc" 1332 1333 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1334 CallingConv::ID) const { 1335 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1336 SystemZ::R14D, 0 }; 1337 return ScratchRegs; 1338 } 1339 1340 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1341 Type *ToType) const { 1342 return isTruncateFree(FromType, ToType); 1343 } 1344 1345 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1346 return CI->isTailCall(); 1347 } 1348 1349 // We do not yet support 128-bit single-element vector types. If the user 1350 // attempts to use such types as function argument or return type, prefer 1351 // to error out instead of emitting code violating the ABI. 1352 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1353 if (ArgVT.isVector() && !VT.isVector()) 1354 report_fatal_error("Unsupported vector argument or return type"); 1355 } 1356 1357 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1358 for (unsigned i = 0; i < Ins.size(); ++i) 1359 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1360 } 1361 1362 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1363 for (unsigned i = 0; i < Outs.size(); ++i) 1364 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1365 } 1366 1367 // Value is a value that has been passed to us in the location described by VA 1368 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1369 // any loads onto Chain. 1370 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1371 CCValAssign &VA, SDValue Chain, 1372 SDValue Value) { 1373 // If the argument has been promoted from a smaller type, insert an 1374 // assertion to capture this. 1375 if (VA.getLocInfo() == CCValAssign::SExt) 1376 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1377 DAG.getValueType(VA.getValVT())); 1378 else if (VA.getLocInfo() == CCValAssign::ZExt) 1379 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1380 DAG.getValueType(VA.getValVT())); 1381 1382 if (VA.isExtInLoc()) 1383 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1384 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1385 // If this is a short vector argument loaded from the stack, 1386 // extend from i64 to full vector size and then bitcast. 1387 assert(VA.getLocVT() == MVT::i64); 1388 assert(VA.getValVT().isVector()); 1389 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1390 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1391 } else 1392 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1393 return Value; 1394 } 1395 1396 // Value is a value of type VA.getValVT() that we need to copy into 1397 // the location described by VA. Return a copy of Value converted to 1398 // VA.getValVT(). The caller is responsible for handling indirect values. 1399 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1400 CCValAssign &VA, SDValue Value) { 1401 switch (VA.getLocInfo()) { 1402 case CCValAssign::SExt: 1403 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1404 case CCValAssign::ZExt: 1405 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1406 case CCValAssign::AExt: 1407 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1408 case CCValAssign::BCvt: { 1409 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1410 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || 1411 VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); 1412 // For an f32 vararg we need to first promote it to an f64 and then 1413 // bitcast it to an i64. 1414 if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) 1415 Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value); 1416 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1417 ? MVT::v2i64 1418 : VA.getLocVT(); 1419 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1420 // For ELF, this is a short vector argument to be stored to the stack, 1421 // bitcast to v2i64 and then extract first element. 1422 if (BitCastToType == MVT::v2i64) 1423 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1424 DAG.getConstant(0, DL, MVT::i32)); 1425 return Value; 1426 } 1427 case CCValAssign::Full: 1428 return Value; 1429 default: 1430 llvm_unreachable("Unhandled getLocInfo()"); 1431 } 1432 } 1433 1434 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1435 SDLoc DL(In); 1436 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1437 DAG.getIntPtrConstant(0, DL)); 1438 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1439 DAG.getIntPtrConstant(1, DL)); 1440 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1441 MVT::Untyped, Hi, Lo); 1442 return SDValue(Pair, 0); 1443 } 1444 1445 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1446 SDLoc DL(In); 1447 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1448 DL, MVT::i64, In); 1449 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1450 DL, MVT::i64, In); 1451 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1452 } 1453 1454 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1455 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1456 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 1457 EVT ValueVT = Val.getValueType(); 1458 assert((ValueVT != MVT::i128 || 1459 ((NumParts == 1 && PartVT == MVT::Untyped) || 1460 (NumParts == 2 && PartVT == MVT::i64))) && 1461 "Unknown handling of i128 value."); 1462 if (ValueVT == MVT::i128 && NumParts == 1) { 1463 // Inline assembly operand. 1464 Parts[0] = lowerI128ToGR128(DAG, Val); 1465 return true; 1466 } 1467 return false; 1468 } 1469 1470 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1471 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1472 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { 1473 assert((ValueVT != MVT::i128 || 1474 ((NumParts == 1 && PartVT == MVT::Untyped) || 1475 (NumParts == 2 && PartVT == MVT::i64))) && 1476 "Unknown handling of i128 value."); 1477 if (ValueVT == MVT::i128 && NumParts == 1) 1478 // Inline assembly operand. 1479 return lowerGR128ToI128(DAG, Parts[0]); 1480 return SDValue(); 1481 } 1482 1483 SDValue SystemZTargetLowering::LowerFormalArguments( 1484 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1485 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1486 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1487 MachineFunction &MF = DAG.getMachineFunction(); 1488 MachineFrameInfo &MFI = MF.getFrameInfo(); 1489 MachineRegisterInfo &MRI = MF.getRegInfo(); 1490 SystemZMachineFunctionInfo *FuncInfo = 1491 MF.getInfo<SystemZMachineFunctionInfo>(); 1492 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1493 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1494 1495 // Detect unsupported vector argument types. 1496 if (Subtarget.hasVector()) 1497 VerifyVectorTypes(Ins); 1498 1499 // Assign locations to all of the incoming arguments. 1500 SmallVector<CCValAssign, 16> ArgLocs; 1501 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1502 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1503 1504 unsigned NumFixedGPRs = 0; 1505 unsigned NumFixedFPRs = 0; 1506 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1507 SDValue ArgValue; 1508 CCValAssign &VA = ArgLocs[I]; 1509 EVT LocVT = VA.getLocVT(); 1510 if (VA.isRegLoc()) { 1511 // Arguments passed in registers 1512 const TargetRegisterClass *RC; 1513 switch (LocVT.getSimpleVT().SimpleTy) { 1514 default: 1515 // Integers smaller than i64 should be promoted to i64. 1516 llvm_unreachable("Unexpected argument type"); 1517 case MVT::i32: 1518 NumFixedGPRs += 1; 1519 RC = &SystemZ::GR32BitRegClass; 1520 break; 1521 case MVT::i64: 1522 NumFixedGPRs += 1; 1523 RC = &SystemZ::GR64BitRegClass; 1524 break; 1525 case MVT::f32: 1526 NumFixedFPRs += 1; 1527 RC = &SystemZ::FP32BitRegClass; 1528 break; 1529 case MVT::f64: 1530 NumFixedFPRs += 1; 1531 RC = &SystemZ::FP64BitRegClass; 1532 break; 1533 case MVT::f128: 1534 NumFixedFPRs += 2; 1535 RC = &SystemZ::FP128BitRegClass; 1536 break; 1537 case MVT::v16i8: 1538 case MVT::v8i16: 1539 case MVT::v4i32: 1540 case MVT::v2i64: 1541 case MVT::v4f32: 1542 case MVT::v2f64: 1543 RC = &SystemZ::VR128BitRegClass; 1544 break; 1545 } 1546 1547 Register VReg = MRI.createVirtualRegister(RC); 1548 MRI.addLiveIn(VA.getLocReg(), VReg); 1549 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1550 } else { 1551 assert(VA.isMemLoc() && "Argument not register or memory"); 1552 1553 // Create the frame index object for this incoming parameter. 1554 // FIXME: Pre-include call frame size in the offset, should not 1555 // need to manually add it here. 1556 int64_t ArgSPOffset = VA.getLocMemOffset(); 1557 if (Subtarget.isTargetXPLINK64()) { 1558 auto &XPRegs = 1559 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1560 ArgSPOffset += XPRegs.getCallFrameSize(); 1561 } 1562 int FI = 1563 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1564 1565 // Create the SelectionDAG nodes corresponding to a load 1566 // from this parameter. Unpromoted ints and floats are 1567 // passed as right-justified 8-byte values. 1568 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1569 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1570 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1571 DAG.getIntPtrConstant(4, DL)); 1572 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1573 MachinePointerInfo::getFixedStack(MF, FI)); 1574 } 1575 1576 // Convert the value of the argument register into the value that's 1577 // being passed. 1578 if (VA.getLocInfo() == CCValAssign::Indirect) { 1579 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1580 MachinePointerInfo())); 1581 // If the original argument was split (e.g. i128), we need 1582 // to load all parts of it here (using the same address). 1583 unsigned ArgIndex = Ins[I].OrigArgIndex; 1584 assert (Ins[I].PartOffset == 0); 1585 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1586 CCValAssign &PartVA = ArgLocs[I + 1]; 1587 unsigned PartOffset = Ins[I + 1].PartOffset; 1588 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1589 DAG.getIntPtrConstant(PartOffset, DL)); 1590 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1591 MachinePointerInfo())); 1592 ++I; 1593 } 1594 } else 1595 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1596 } 1597 1598 // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. 1599 if (IsVarArg && Subtarget.isTargetELF()) { 1600 // Save the number of non-varargs registers for later use by va_start, etc. 1601 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1602 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1603 1604 // Likewise the address (in the form of a frame index) of where the 1605 // first stack vararg would be. The 1-byte size here is arbitrary. 1606 int64_t StackSize = CCInfo.getNextStackOffset(); 1607 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1608 1609 // ...and a similar frame index for the caller-allocated save area 1610 // that will be used to store the incoming registers. 1611 int64_t RegSaveOffset = 1612 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1613 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1614 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1615 1616 // Store the FPR varargs in the reserved frame slots. (We store the 1617 // GPRs as part of the prologue.) 1618 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1619 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1620 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1621 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1622 int FI = 1623 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1624 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1625 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1626 &SystemZ::FP64BitRegClass); 1627 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1628 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1629 MachinePointerInfo::getFixedStack(MF, FI)); 1630 } 1631 // Join the stores, which are independent of one another. 1632 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1633 ArrayRef(&MemOps[NumFixedFPRs], 1634 SystemZ::ELFNumArgFPRs - NumFixedFPRs)); 1635 } 1636 } 1637 1638 // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special 1639 // register (R5) 1640 return Chain; 1641 } 1642 1643 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1644 SmallVectorImpl<CCValAssign> &ArgLocs, 1645 SmallVectorImpl<ISD::OutputArg> &Outs) { 1646 // Punt if there are any indirect or stack arguments, or if the call 1647 // needs the callee-saved argument register R6, or if the call uses 1648 // the callee-saved register arguments SwiftSelf and SwiftError. 1649 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1650 CCValAssign &VA = ArgLocs[I]; 1651 if (VA.getLocInfo() == CCValAssign::Indirect) 1652 return false; 1653 if (!VA.isRegLoc()) 1654 return false; 1655 Register Reg = VA.getLocReg(); 1656 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1657 return false; 1658 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1659 return false; 1660 } 1661 return true; 1662 } 1663 1664 SDValue 1665 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1666 SmallVectorImpl<SDValue> &InVals) const { 1667 SelectionDAG &DAG = CLI.DAG; 1668 SDLoc &DL = CLI.DL; 1669 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1670 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1671 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1672 SDValue Chain = CLI.Chain; 1673 SDValue Callee = CLI.Callee; 1674 bool &IsTailCall = CLI.IsTailCall; 1675 CallingConv::ID CallConv = CLI.CallConv; 1676 bool IsVarArg = CLI.IsVarArg; 1677 MachineFunction &MF = DAG.getMachineFunction(); 1678 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1679 LLVMContext &Ctx = *DAG.getContext(); 1680 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1681 1682 // FIXME: z/OS support to be added in later. 1683 if (Subtarget.isTargetXPLINK64()) 1684 IsTailCall = false; 1685 1686 // Detect unsupported vector argument and return types. 1687 if (Subtarget.hasVector()) { 1688 VerifyVectorTypes(Outs); 1689 VerifyVectorTypes(Ins); 1690 } 1691 1692 // Analyze the operands of the call, assigning locations to each operand. 1693 SmallVector<CCValAssign, 16> ArgLocs; 1694 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1695 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1696 1697 // We don't support GuaranteedTailCallOpt, only automatically-detected 1698 // sibling calls. 1699 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1700 IsTailCall = false; 1701 1702 // Get a count of how many bytes are to be pushed on the stack. 1703 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1704 1705 if (Subtarget.isTargetXPLINK64()) 1706 // Although the XPLINK specifications for AMODE64 state that minimum size 1707 // of the param area is minimum 32 bytes and no rounding is otherwise 1708 // specified, we round this area in 64 bytes increments to be compatible 1709 // with existing compilers. 1710 NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); 1711 1712 // Mark the start of the call. 1713 if (!IsTailCall) 1714 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1715 1716 // Copy argument values to their designated locations. 1717 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1718 SmallVector<SDValue, 8> MemOpChains; 1719 SDValue StackPtr; 1720 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1721 CCValAssign &VA = ArgLocs[I]; 1722 SDValue ArgValue = OutVals[I]; 1723 1724 if (VA.getLocInfo() == CCValAssign::Indirect) { 1725 // Store the argument in a stack slot and pass its address. 1726 unsigned ArgIndex = Outs[I].OrigArgIndex; 1727 EVT SlotVT; 1728 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1729 // Allocate the full stack space for a promoted (and split) argument. 1730 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1731 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1732 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1733 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1734 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1735 } else { 1736 SlotVT = Outs[I].ArgVT; 1737 } 1738 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1739 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1740 MemOpChains.push_back( 1741 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1742 MachinePointerInfo::getFixedStack(MF, FI))); 1743 // If the original argument was split (e.g. i128), we need 1744 // to store all parts of it here (and pass just one address). 1745 assert (Outs[I].PartOffset == 0); 1746 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1747 SDValue PartValue = OutVals[I + 1]; 1748 unsigned PartOffset = Outs[I + 1].PartOffset; 1749 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1750 DAG.getIntPtrConstant(PartOffset, DL)); 1751 MemOpChains.push_back( 1752 DAG.getStore(Chain, DL, PartValue, Address, 1753 MachinePointerInfo::getFixedStack(MF, FI))); 1754 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1755 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1756 ++I; 1757 } 1758 ArgValue = SpillSlot; 1759 } else 1760 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1761 1762 if (VA.isRegLoc()) { 1763 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1764 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1765 // and low values. 1766 if (VA.getLocVT() == MVT::i128) 1767 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1768 // Queue up the argument copies and emit them at the end. 1769 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1770 } else { 1771 assert(VA.isMemLoc() && "Argument not register or memory"); 1772 1773 // Work out the address of the stack slot. Unpromoted ints and 1774 // floats are passed as right-justified 8-byte values. 1775 if (!StackPtr.getNode()) 1776 StackPtr = DAG.getCopyFromReg(Chain, DL, 1777 Regs->getStackPointerRegister(), PtrVT); 1778 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1779 VA.getLocMemOffset(); 1780 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1781 Offset += 4; 1782 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1783 DAG.getIntPtrConstant(Offset, DL)); 1784 1785 // Emit the store. 1786 MemOpChains.push_back( 1787 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1788 1789 // Although long doubles or vectors are passed through the stack when 1790 // they are vararg (non-fixed arguments), if a long double or vector 1791 // occupies the third and fourth slot of the argument list GPR3 should 1792 // still shadow the third slot of the argument list. 1793 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1794 SDValue ShadowArgValue = 1795 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1796 DAG.getIntPtrConstant(1, DL)); 1797 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1798 } 1799 } 1800 } 1801 1802 // Join the stores, which are independent of one another. 1803 if (!MemOpChains.empty()) 1804 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1805 1806 // Accept direct calls by converting symbolic call addresses to the 1807 // associated Target* opcodes. Force %r1 to be used for indirect 1808 // tail calls. 1809 SDValue Glue; 1810 // FIXME: Add support for XPLINK using the ADA register. 1811 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1812 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1813 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1814 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1815 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1816 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1817 } else if (IsTailCall) { 1818 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1819 Glue = Chain.getValue(1); 1820 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1821 } 1822 1823 // Build a sequence of copy-to-reg nodes, chained and glued together. 1824 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1825 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1826 RegsToPass[I].second, Glue); 1827 Glue = Chain.getValue(1); 1828 } 1829 1830 // The first call operand is the chain and the second is the target address. 1831 SmallVector<SDValue, 8> Ops; 1832 Ops.push_back(Chain); 1833 Ops.push_back(Callee); 1834 1835 // Add argument registers to the end of the list so that they are 1836 // known live into the call. 1837 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1838 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1839 RegsToPass[I].second.getValueType())); 1840 1841 // Add a register mask operand representing the call-preserved registers. 1842 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1843 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1844 assert(Mask && "Missing call preserved mask for calling convention"); 1845 Ops.push_back(DAG.getRegisterMask(Mask)); 1846 1847 // Glue the call to the argument copies, if any. 1848 if (Glue.getNode()) 1849 Ops.push_back(Glue); 1850 1851 // Emit the call. 1852 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1853 if (IsTailCall) 1854 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1855 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1856 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1857 Glue = Chain.getValue(1); 1858 1859 // Mark the end of the call, which is glued to the call itself. 1860 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); 1861 Glue = Chain.getValue(1); 1862 1863 // Assign locations to each value returned by this call. 1864 SmallVector<CCValAssign, 16> RetLocs; 1865 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 1866 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1867 1868 // Copy all of the result registers out of their specified physreg. 1869 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1870 CCValAssign &VA = RetLocs[I]; 1871 1872 // Copy the value out, gluing the copy to the end of the call sequence. 1873 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1874 VA.getLocVT(), Glue); 1875 Chain = RetValue.getValue(1); 1876 Glue = RetValue.getValue(2); 1877 1878 // Convert the value of the return register into the value that's 1879 // being returned. 1880 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1881 } 1882 1883 return Chain; 1884 } 1885 1886 // Generate a call taking the given operands as arguments and returning a 1887 // result of type RetVT. 1888 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 1889 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 1890 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 1891 bool DoesNotReturn, bool IsReturnValueUsed) const { 1892 TargetLowering::ArgListTy Args; 1893 Args.reserve(Ops.size()); 1894 1895 TargetLowering::ArgListEntry Entry; 1896 for (SDValue Op : Ops) { 1897 Entry.Node = Op; 1898 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1899 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1900 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1901 Args.push_back(Entry); 1902 } 1903 1904 SDValue Callee = 1905 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 1906 1907 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1908 TargetLowering::CallLoweringInfo CLI(DAG); 1909 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 1910 CLI.setDebugLoc(DL) 1911 .setChain(Chain) 1912 .setCallee(CallConv, RetTy, Callee, std::move(Args)) 1913 .setNoReturn(DoesNotReturn) 1914 .setDiscardResult(!IsReturnValueUsed) 1915 .setSExtResult(SignExtend) 1916 .setZExtResult(!SignExtend); 1917 return LowerCallTo(CLI); 1918 } 1919 1920 bool SystemZTargetLowering:: 1921 CanLowerReturn(CallingConv::ID CallConv, 1922 MachineFunction &MF, bool isVarArg, 1923 const SmallVectorImpl<ISD::OutputArg> &Outs, 1924 LLVMContext &Context) const { 1925 // Detect unsupported vector return types. 1926 if (Subtarget.hasVector()) 1927 VerifyVectorTypes(Outs); 1928 1929 // Special case that we cannot easily detect in RetCC_SystemZ since 1930 // i128 is not a legal type. 1931 for (auto &Out : Outs) 1932 if (Out.ArgVT == MVT::i128) 1933 return false; 1934 1935 SmallVector<CCValAssign, 16> RetLocs; 1936 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1937 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1938 } 1939 1940 SDValue 1941 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1942 bool IsVarArg, 1943 const SmallVectorImpl<ISD::OutputArg> &Outs, 1944 const SmallVectorImpl<SDValue> &OutVals, 1945 const SDLoc &DL, SelectionDAG &DAG) const { 1946 MachineFunction &MF = DAG.getMachineFunction(); 1947 1948 // Detect unsupported vector return types. 1949 if (Subtarget.hasVector()) 1950 VerifyVectorTypes(Outs); 1951 1952 // Assign locations to each returned value. 1953 SmallVector<CCValAssign, 16> RetLocs; 1954 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1955 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1956 1957 // Quick exit for void returns 1958 if (RetLocs.empty()) 1959 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1960 1961 if (CallConv == CallingConv::GHC) 1962 report_fatal_error("GHC functions return void only"); 1963 1964 // Copy the result values into the output registers. 1965 SDValue Glue; 1966 SmallVector<SDValue, 4> RetOps; 1967 RetOps.push_back(Chain); 1968 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1969 CCValAssign &VA = RetLocs[I]; 1970 SDValue RetValue = OutVals[I]; 1971 1972 // Make the return register live on exit. 1973 assert(VA.isRegLoc() && "Can only return in registers!"); 1974 1975 // Promote the value as required. 1976 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1977 1978 // Chain and glue the copies together. 1979 Register Reg = VA.getLocReg(); 1980 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1981 Glue = Chain.getValue(1); 1982 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1983 } 1984 1985 // Update chain and glue. 1986 RetOps[0] = Chain; 1987 if (Glue.getNode()) 1988 RetOps.push_back(Glue); 1989 1990 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1991 } 1992 1993 // Return true if Op is an intrinsic node with chain that returns the CC value 1994 // as its only (other) argument. Provide the associated SystemZISD opcode and 1995 // the mask of valid CC values if so. 1996 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1997 unsigned &CCValid) { 1998 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1999 switch (Id) { 2000 case Intrinsic::s390_tbegin: 2001 Opcode = SystemZISD::TBEGIN; 2002 CCValid = SystemZ::CCMASK_TBEGIN; 2003 return true; 2004 2005 case Intrinsic::s390_tbegin_nofloat: 2006 Opcode = SystemZISD::TBEGIN_NOFLOAT; 2007 CCValid = SystemZ::CCMASK_TBEGIN; 2008 return true; 2009 2010 case Intrinsic::s390_tend: 2011 Opcode = SystemZISD::TEND; 2012 CCValid = SystemZ::CCMASK_TEND; 2013 return true; 2014 2015 default: 2016 return false; 2017 } 2018 } 2019 2020 // Return true if Op is an intrinsic node without chain that returns the 2021 // CC value as its final argument. Provide the associated SystemZISD 2022 // opcode and the mask of valid CC values if so. 2023 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 2024 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2025 switch (Id) { 2026 case Intrinsic::s390_vpkshs: 2027 case Intrinsic::s390_vpksfs: 2028 case Intrinsic::s390_vpksgs: 2029 Opcode = SystemZISD::PACKS_CC; 2030 CCValid = SystemZ::CCMASK_VCMP; 2031 return true; 2032 2033 case Intrinsic::s390_vpklshs: 2034 case Intrinsic::s390_vpklsfs: 2035 case Intrinsic::s390_vpklsgs: 2036 Opcode = SystemZISD::PACKLS_CC; 2037 CCValid = SystemZ::CCMASK_VCMP; 2038 return true; 2039 2040 case Intrinsic::s390_vceqbs: 2041 case Intrinsic::s390_vceqhs: 2042 case Intrinsic::s390_vceqfs: 2043 case Intrinsic::s390_vceqgs: 2044 Opcode = SystemZISD::VICMPES; 2045 CCValid = SystemZ::CCMASK_VCMP; 2046 return true; 2047 2048 case Intrinsic::s390_vchbs: 2049 case Intrinsic::s390_vchhs: 2050 case Intrinsic::s390_vchfs: 2051 case Intrinsic::s390_vchgs: 2052 Opcode = SystemZISD::VICMPHS; 2053 CCValid = SystemZ::CCMASK_VCMP; 2054 return true; 2055 2056 case Intrinsic::s390_vchlbs: 2057 case Intrinsic::s390_vchlhs: 2058 case Intrinsic::s390_vchlfs: 2059 case Intrinsic::s390_vchlgs: 2060 Opcode = SystemZISD::VICMPHLS; 2061 CCValid = SystemZ::CCMASK_VCMP; 2062 return true; 2063 2064 case Intrinsic::s390_vtm: 2065 Opcode = SystemZISD::VTM; 2066 CCValid = SystemZ::CCMASK_VCMP; 2067 return true; 2068 2069 case Intrinsic::s390_vfaebs: 2070 case Intrinsic::s390_vfaehs: 2071 case Intrinsic::s390_vfaefs: 2072 Opcode = SystemZISD::VFAE_CC; 2073 CCValid = SystemZ::CCMASK_ANY; 2074 return true; 2075 2076 case Intrinsic::s390_vfaezbs: 2077 case Intrinsic::s390_vfaezhs: 2078 case Intrinsic::s390_vfaezfs: 2079 Opcode = SystemZISD::VFAEZ_CC; 2080 CCValid = SystemZ::CCMASK_ANY; 2081 return true; 2082 2083 case Intrinsic::s390_vfeebs: 2084 case Intrinsic::s390_vfeehs: 2085 case Intrinsic::s390_vfeefs: 2086 Opcode = SystemZISD::VFEE_CC; 2087 CCValid = SystemZ::CCMASK_ANY; 2088 return true; 2089 2090 case Intrinsic::s390_vfeezbs: 2091 case Intrinsic::s390_vfeezhs: 2092 case Intrinsic::s390_vfeezfs: 2093 Opcode = SystemZISD::VFEEZ_CC; 2094 CCValid = SystemZ::CCMASK_ANY; 2095 return true; 2096 2097 case Intrinsic::s390_vfenebs: 2098 case Intrinsic::s390_vfenehs: 2099 case Intrinsic::s390_vfenefs: 2100 Opcode = SystemZISD::VFENE_CC; 2101 CCValid = SystemZ::CCMASK_ANY; 2102 return true; 2103 2104 case Intrinsic::s390_vfenezbs: 2105 case Intrinsic::s390_vfenezhs: 2106 case Intrinsic::s390_vfenezfs: 2107 Opcode = SystemZISD::VFENEZ_CC; 2108 CCValid = SystemZ::CCMASK_ANY; 2109 return true; 2110 2111 case Intrinsic::s390_vistrbs: 2112 case Intrinsic::s390_vistrhs: 2113 case Intrinsic::s390_vistrfs: 2114 Opcode = SystemZISD::VISTR_CC; 2115 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2116 return true; 2117 2118 case Intrinsic::s390_vstrcbs: 2119 case Intrinsic::s390_vstrchs: 2120 case Intrinsic::s390_vstrcfs: 2121 Opcode = SystemZISD::VSTRC_CC; 2122 CCValid = SystemZ::CCMASK_ANY; 2123 return true; 2124 2125 case Intrinsic::s390_vstrczbs: 2126 case Intrinsic::s390_vstrczhs: 2127 case Intrinsic::s390_vstrczfs: 2128 Opcode = SystemZISD::VSTRCZ_CC; 2129 CCValid = SystemZ::CCMASK_ANY; 2130 return true; 2131 2132 case Intrinsic::s390_vstrsb: 2133 case Intrinsic::s390_vstrsh: 2134 case Intrinsic::s390_vstrsf: 2135 Opcode = SystemZISD::VSTRS_CC; 2136 CCValid = SystemZ::CCMASK_ANY; 2137 return true; 2138 2139 case Intrinsic::s390_vstrszb: 2140 case Intrinsic::s390_vstrszh: 2141 case Intrinsic::s390_vstrszf: 2142 Opcode = SystemZISD::VSTRSZ_CC; 2143 CCValid = SystemZ::CCMASK_ANY; 2144 return true; 2145 2146 case Intrinsic::s390_vfcedbs: 2147 case Intrinsic::s390_vfcesbs: 2148 Opcode = SystemZISD::VFCMPES; 2149 CCValid = SystemZ::CCMASK_VCMP; 2150 return true; 2151 2152 case Intrinsic::s390_vfchdbs: 2153 case Intrinsic::s390_vfchsbs: 2154 Opcode = SystemZISD::VFCMPHS; 2155 CCValid = SystemZ::CCMASK_VCMP; 2156 return true; 2157 2158 case Intrinsic::s390_vfchedbs: 2159 case Intrinsic::s390_vfchesbs: 2160 Opcode = SystemZISD::VFCMPHES; 2161 CCValid = SystemZ::CCMASK_VCMP; 2162 return true; 2163 2164 case Intrinsic::s390_vftcidb: 2165 case Intrinsic::s390_vftcisb: 2166 Opcode = SystemZISD::VFTCI; 2167 CCValid = SystemZ::CCMASK_VCMP; 2168 return true; 2169 2170 case Intrinsic::s390_tdc: 2171 Opcode = SystemZISD::TDC; 2172 CCValid = SystemZ::CCMASK_TDC; 2173 return true; 2174 2175 default: 2176 return false; 2177 } 2178 } 2179 2180 // Emit an intrinsic with chain and an explicit CC register result. 2181 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2182 unsigned Opcode) { 2183 // Copy all operands except the intrinsic ID. 2184 unsigned NumOps = Op.getNumOperands(); 2185 SmallVector<SDValue, 6> Ops; 2186 Ops.reserve(NumOps - 1); 2187 Ops.push_back(Op.getOperand(0)); 2188 for (unsigned I = 2; I < NumOps; ++I) 2189 Ops.push_back(Op.getOperand(I)); 2190 2191 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2192 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2193 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2194 SDValue OldChain = SDValue(Op.getNode(), 1); 2195 SDValue NewChain = SDValue(Intr.getNode(), 1); 2196 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2197 return Intr.getNode(); 2198 } 2199 2200 // Emit an intrinsic with an explicit CC register result. 2201 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2202 unsigned Opcode) { 2203 // Copy all operands except the intrinsic ID. 2204 unsigned NumOps = Op.getNumOperands(); 2205 SmallVector<SDValue, 6> Ops; 2206 Ops.reserve(NumOps - 1); 2207 for (unsigned I = 1; I < NumOps; ++I) 2208 Ops.push_back(Op.getOperand(I)); 2209 2210 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2211 return Intr.getNode(); 2212 } 2213 2214 // CC is a comparison that will be implemented using an integer or 2215 // floating-point comparison. Return the condition code mask for 2216 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2217 // unsigned comparisons and clear for signed ones. In the floating-point 2218 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2219 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2220 #define CONV(X) \ 2221 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2222 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2223 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2224 2225 switch (CC) { 2226 default: 2227 llvm_unreachable("Invalid integer condition!"); 2228 2229 CONV(EQ); 2230 CONV(NE); 2231 CONV(GT); 2232 CONV(GE); 2233 CONV(LT); 2234 CONV(LE); 2235 2236 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2237 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2238 } 2239 #undef CONV 2240 } 2241 2242 // If C can be converted to a comparison against zero, adjust the operands 2243 // as necessary. 2244 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2245 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2246 return; 2247 2248 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2249 if (!ConstOp1) 2250 return; 2251 2252 int64_t Value = ConstOp1->getSExtValue(); 2253 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2254 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2255 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2256 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2257 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2258 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2259 } 2260 } 2261 2262 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2263 // adjust the operands as necessary. 2264 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2265 Comparison &C) { 2266 // For us to make any changes, it must a comparison between a single-use 2267 // load and a constant. 2268 if (!C.Op0.hasOneUse() || 2269 C.Op0.getOpcode() != ISD::LOAD || 2270 C.Op1.getOpcode() != ISD::Constant) 2271 return; 2272 2273 // We must have an 8- or 16-bit load. 2274 auto *Load = cast<LoadSDNode>(C.Op0); 2275 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2276 if ((NumBits != 8 && NumBits != 16) || 2277 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2278 return; 2279 2280 // The load must be an extending one and the constant must be within the 2281 // range of the unextended value. 2282 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2283 uint64_t Value = ConstOp1->getZExtValue(); 2284 uint64_t Mask = (1 << NumBits) - 1; 2285 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2286 // Make sure that ConstOp1 is in range of C.Op0. 2287 int64_t SignedValue = ConstOp1->getSExtValue(); 2288 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2289 return; 2290 if (C.ICmpType != SystemZICMP::SignedOnly) { 2291 // Unsigned comparison between two sign-extended values is equivalent 2292 // to unsigned comparison between two zero-extended values. 2293 Value &= Mask; 2294 } else if (NumBits == 8) { 2295 // Try to treat the comparison as unsigned, so that we can use CLI. 2296 // Adjust CCMask and Value as necessary. 2297 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2298 // Test whether the high bit of the byte is set. 2299 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2300 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2301 // Test whether the high bit of the byte is clear. 2302 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2303 else 2304 // No instruction exists for this combination. 2305 return; 2306 C.ICmpType = SystemZICMP::UnsignedOnly; 2307 } 2308 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2309 if (Value > Mask) 2310 return; 2311 // If the constant is in range, we can use any comparison. 2312 C.ICmpType = SystemZICMP::Any; 2313 } else 2314 return; 2315 2316 // Make sure that the first operand is an i32 of the right extension type. 2317 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2318 ISD::SEXTLOAD : 2319 ISD::ZEXTLOAD); 2320 if (C.Op0.getValueType() != MVT::i32 || 2321 Load->getExtensionType() != ExtType) { 2322 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2323 Load->getBasePtr(), Load->getPointerInfo(), 2324 Load->getMemoryVT(), Load->getAlign(), 2325 Load->getMemOperand()->getFlags()); 2326 // Update the chain uses. 2327 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2328 } 2329 2330 // Make sure that the second operand is an i32 with the right value. 2331 if (C.Op1.getValueType() != MVT::i32 || 2332 Value != ConstOp1->getZExtValue()) 2333 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2334 } 2335 2336 // Return true if Op is either an unextended load, or a load suitable 2337 // for integer register-memory comparisons of type ICmpType. 2338 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2339 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2340 if (Load) { 2341 // There are no instructions to compare a register with a memory byte. 2342 if (Load->getMemoryVT() == MVT::i8) 2343 return false; 2344 // Otherwise decide on extension type. 2345 switch (Load->getExtensionType()) { 2346 case ISD::NON_EXTLOAD: 2347 return true; 2348 case ISD::SEXTLOAD: 2349 return ICmpType != SystemZICMP::UnsignedOnly; 2350 case ISD::ZEXTLOAD: 2351 return ICmpType != SystemZICMP::SignedOnly; 2352 default: 2353 break; 2354 } 2355 } 2356 return false; 2357 } 2358 2359 // Return true if it is better to swap the operands of C. 2360 static bool shouldSwapCmpOperands(const Comparison &C) { 2361 // Leave f128 comparisons alone, since they have no memory forms. 2362 if (C.Op0.getValueType() == MVT::f128) 2363 return false; 2364 2365 // Always keep a floating-point constant second, since comparisons with 2366 // zero can use LOAD TEST and comparisons with other constants make a 2367 // natural memory operand. 2368 if (isa<ConstantFPSDNode>(C.Op1)) 2369 return false; 2370 2371 // Never swap comparisons with zero since there are many ways to optimize 2372 // those later. 2373 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2374 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2375 return false; 2376 2377 // Also keep natural memory operands second if the loaded value is 2378 // only used here. Several comparisons have memory forms. 2379 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2380 return false; 2381 2382 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2383 // In that case we generally prefer the memory to be second. 2384 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2385 // The only exceptions are when the second operand is a constant and 2386 // we can use things like CHHSI. 2387 if (!ConstOp1) 2388 return true; 2389 // The unsigned memory-immediate instructions can handle 16-bit 2390 // unsigned integers. 2391 if (C.ICmpType != SystemZICMP::SignedOnly && 2392 isUInt<16>(ConstOp1->getZExtValue())) 2393 return false; 2394 // The signed memory-immediate instructions can handle 16-bit 2395 // signed integers. 2396 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2397 isInt<16>(ConstOp1->getSExtValue())) 2398 return false; 2399 return true; 2400 } 2401 2402 // Try to promote the use of CGFR and CLGFR. 2403 unsigned Opcode0 = C.Op0.getOpcode(); 2404 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2405 return true; 2406 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2407 return true; 2408 if (C.ICmpType != SystemZICMP::SignedOnly && 2409 Opcode0 == ISD::AND && 2410 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2411 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2412 return true; 2413 2414 return false; 2415 } 2416 2417 // Check whether C tests for equality between X and Y and whether X - Y 2418 // or Y - X is also computed. In that case it's better to compare the 2419 // result of the subtraction against zero. 2420 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2421 Comparison &C) { 2422 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2423 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2424 for (SDNode *N : C.Op0->uses()) { 2425 if (N->getOpcode() == ISD::SUB && 2426 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2427 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2428 C.Op0 = SDValue(N, 0); 2429 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2430 return; 2431 } 2432 } 2433 } 2434 } 2435 2436 // Check whether C compares a floating-point value with zero and if that 2437 // floating-point value is also negated. In this case we can use the 2438 // negation to set CC, so avoiding separate LOAD AND TEST and 2439 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2440 static void adjustForFNeg(Comparison &C) { 2441 // This optimization is invalid for strict comparisons, since FNEG 2442 // does not raise any exceptions. 2443 if (C.Chain) 2444 return; 2445 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2446 if (C1 && C1->isZero()) { 2447 for (SDNode *N : C.Op0->uses()) { 2448 if (N->getOpcode() == ISD::FNEG) { 2449 C.Op0 = SDValue(N, 0); 2450 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2451 return; 2452 } 2453 } 2454 } 2455 } 2456 2457 // Check whether C compares (shl X, 32) with 0 and whether X is 2458 // also sign-extended. In that case it is better to test the result 2459 // of the sign extension using LTGFR. 2460 // 2461 // This case is important because InstCombine transforms a comparison 2462 // with (sext (trunc X)) into a comparison with (shl X, 32). 2463 static void adjustForLTGFR(Comparison &C) { 2464 // Check for a comparison between (shl X, 32) and 0. 2465 if (C.Op0.getOpcode() == ISD::SHL && 2466 C.Op0.getValueType() == MVT::i64 && 2467 C.Op1.getOpcode() == ISD::Constant && 2468 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2469 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2470 if (C1 && C1->getZExtValue() == 32) { 2471 SDValue ShlOp0 = C.Op0.getOperand(0); 2472 // See whether X has any SIGN_EXTEND_INREG uses. 2473 for (SDNode *N : ShlOp0->uses()) { 2474 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2475 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2476 C.Op0 = SDValue(N, 0); 2477 return; 2478 } 2479 } 2480 } 2481 } 2482 } 2483 2484 // If C compares the truncation of an extending load, try to compare 2485 // the untruncated value instead. This exposes more opportunities to 2486 // reuse CC. 2487 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2488 Comparison &C) { 2489 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2490 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2491 C.Op1.getOpcode() == ISD::Constant && 2492 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2493 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2494 if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <= 2495 C.Op0.getValueSizeInBits().getFixedValue()) { 2496 unsigned Type = L->getExtensionType(); 2497 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2498 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2499 C.Op0 = C.Op0.getOperand(0); 2500 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2501 } 2502 } 2503 } 2504 } 2505 2506 // Return true if shift operation N has an in-range constant shift value. 2507 // Store it in ShiftVal if so. 2508 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2509 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2510 if (!Shift) 2511 return false; 2512 2513 uint64_t Amount = Shift->getZExtValue(); 2514 if (Amount >= N.getValueSizeInBits()) 2515 return false; 2516 2517 ShiftVal = Amount; 2518 return true; 2519 } 2520 2521 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2522 // instruction and whether the CC value is descriptive enough to handle 2523 // a comparison of type Opcode between the AND result and CmpVal. 2524 // CCMask says which comparison result is being tested and BitSize is 2525 // the number of bits in the operands. If TEST UNDER MASK can be used, 2526 // return the corresponding CC mask, otherwise return 0. 2527 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2528 uint64_t Mask, uint64_t CmpVal, 2529 unsigned ICmpType) { 2530 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2531 2532 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2533 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2534 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2535 return 0; 2536 2537 // Work out the masks for the lowest and highest bits. 2538 unsigned HighShift = 63 - countLeadingZeros(Mask); 2539 uint64_t High = uint64_t(1) << HighShift; 2540 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2541 2542 // Signed ordered comparisons are effectively unsigned if the sign 2543 // bit is dropped. 2544 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2545 2546 // Check for equality comparisons with 0, or the equivalent. 2547 if (CmpVal == 0) { 2548 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2549 return SystemZ::CCMASK_TM_ALL_0; 2550 if (CCMask == SystemZ::CCMASK_CMP_NE) 2551 return SystemZ::CCMASK_TM_SOME_1; 2552 } 2553 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2554 if (CCMask == SystemZ::CCMASK_CMP_LT) 2555 return SystemZ::CCMASK_TM_ALL_0; 2556 if (CCMask == SystemZ::CCMASK_CMP_GE) 2557 return SystemZ::CCMASK_TM_SOME_1; 2558 } 2559 if (EffectivelyUnsigned && CmpVal < Low) { 2560 if (CCMask == SystemZ::CCMASK_CMP_LE) 2561 return SystemZ::CCMASK_TM_ALL_0; 2562 if (CCMask == SystemZ::CCMASK_CMP_GT) 2563 return SystemZ::CCMASK_TM_SOME_1; 2564 } 2565 2566 // Check for equality comparisons with the mask, or the equivalent. 2567 if (CmpVal == Mask) { 2568 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2569 return SystemZ::CCMASK_TM_ALL_1; 2570 if (CCMask == SystemZ::CCMASK_CMP_NE) 2571 return SystemZ::CCMASK_TM_SOME_0; 2572 } 2573 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2574 if (CCMask == SystemZ::CCMASK_CMP_GT) 2575 return SystemZ::CCMASK_TM_ALL_1; 2576 if (CCMask == SystemZ::CCMASK_CMP_LE) 2577 return SystemZ::CCMASK_TM_SOME_0; 2578 } 2579 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2580 if (CCMask == SystemZ::CCMASK_CMP_GE) 2581 return SystemZ::CCMASK_TM_ALL_1; 2582 if (CCMask == SystemZ::CCMASK_CMP_LT) 2583 return SystemZ::CCMASK_TM_SOME_0; 2584 } 2585 2586 // Check for ordered comparisons with the top bit. 2587 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2588 if (CCMask == SystemZ::CCMASK_CMP_LE) 2589 return SystemZ::CCMASK_TM_MSB_0; 2590 if (CCMask == SystemZ::CCMASK_CMP_GT) 2591 return SystemZ::CCMASK_TM_MSB_1; 2592 } 2593 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2594 if (CCMask == SystemZ::CCMASK_CMP_LT) 2595 return SystemZ::CCMASK_TM_MSB_0; 2596 if (CCMask == SystemZ::CCMASK_CMP_GE) 2597 return SystemZ::CCMASK_TM_MSB_1; 2598 } 2599 2600 // If there are just two bits, we can do equality checks for Low and High 2601 // as well. 2602 if (Mask == Low + High) { 2603 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2604 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2605 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2606 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2607 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2608 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2609 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2610 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2611 } 2612 2613 // Looks like we've exhausted our options. 2614 return 0; 2615 } 2616 2617 // See whether C can be implemented as a TEST UNDER MASK instruction. 2618 // Update the arguments with the TM version if so. 2619 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2620 Comparison &C) { 2621 // Check that we have a comparison with a constant. 2622 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2623 if (!ConstOp1) 2624 return; 2625 uint64_t CmpVal = ConstOp1->getZExtValue(); 2626 2627 // Check whether the nonconstant input is an AND with a constant mask. 2628 Comparison NewC(C); 2629 uint64_t MaskVal; 2630 ConstantSDNode *Mask = nullptr; 2631 if (C.Op0.getOpcode() == ISD::AND) { 2632 NewC.Op0 = C.Op0.getOperand(0); 2633 NewC.Op1 = C.Op0.getOperand(1); 2634 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2635 if (!Mask) 2636 return; 2637 MaskVal = Mask->getZExtValue(); 2638 } else { 2639 // There is no instruction to compare with a 64-bit immediate 2640 // so use TMHH instead if possible. We need an unsigned ordered 2641 // comparison with an i64 immediate. 2642 if (NewC.Op0.getValueType() != MVT::i64 || 2643 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2644 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2645 NewC.ICmpType == SystemZICMP::SignedOnly) 2646 return; 2647 // Convert LE and GT comparisons into LT and GE. 2648 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2649 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2650 if (CmpVal == uint64_t(-1)) 2651 return; 2652 CmpVal += 1; 2653 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2654 } 2655 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2656 // be masked off without changing the result. 2657 MaskVal = -(CmpVal & -CmpVal); 2658 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2659 } 2660 if (!MaskVal) 2661 return; 2662 2663 // Check whether the combination of mask, comparison value and comparison 2664 // type are suitable. 2665 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2666 unsigned NewCCMask, ShiftVal; 2667 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2668 NewC.Op0.getOpcode() == ISD::SHL && 2669 isSimpleShift(NewC.Op0, ShiftVal) && 2670 (MaskVal >> ShiftVal != 0) && 2671 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2672 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2673 MaskVal >> ShiftVal, 2674 CmpVal >> ShiftVal, 2675 SystemZICMP::Any))) { 2676 NewC.Op0 = NewC.Op0.getOperand(0); 2677 MaskVal >>= ShiftVal; 2678 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2679 NewC.Op0.getOpcode() == ISD::SRL && 2680 isSimpleShift(NewC.Op0, ShiftVal) && 2681 (MaskVal << ShiftVal != 0) && 2682 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2683 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2684 MaskVal << ShiftVal, 2685 CmpVal << ShiftVal, 2686 SystemZICMP::UnsignedOnly))) { 2687 NewC.Op0 = NewC.Op0.getOperand(0); 2688 MaskVal <<= ShiftVal; 2689 } else { 2690 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2691 NewC.ICmpType); 2692 if (!NewCCMask) 2693 return; 2694 } 2695 2696 // Go ahead and make the change. 2697 C.Opcode = SystemZISD::TM; 2698 C.Op0 = NewC.Op0; 2699 if (Mask && Mask->getZExtValue() == MaskVal) 2700 C.Op1 = SDValue(Mask, 0); 2701 else 2702 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2703 C.CCValid = SystemZ::CCMASK_TM; 2704 C.CCMask = NewCCMask; 2705 } 2706 2707 // See whether the comparison argument contains a redundant AND 2708 // and remove it if so. This sometimes happens due to the generic 2709 // BRCOND expansion. 2710 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2711 Comparison &C) { 2712 if (C.Op0.getOpcode() != ISD::AND) 2713 return; 2714 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2715 if (!Mask) 2716 return; 2717 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2718 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2719 return; 2720 2721 C.Op0 = C.Op0.getOperand(0); 2722 } 2723 2724 // Return a Comparison that tests the condition-code result of intrinsic 2725 // node Call against constant integer CC using comparison code Cond. 2726 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2727 // and CCValid is the set of possible condition-code results. 2728 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2729 SDValue Call, unsigned CCValid, uint64_t CC, 2730 ISD::CondCode Cond) { 2731 Comparison C(Call, SDValue(), SDValue()); 2732 C.Opcode = Opcode; 2733 C.CCValid = CCValid; 2734 if (Cond == ISD::SETEQ) 2735 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2736 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2737 else if (Cond == ISD::SETNE) 2738 // ...and the inverse of that. 2739 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2740 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2741 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2742 // always true for CC>3. 2743 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2744 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2745 // ...and the inverse of that. 2746 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2747 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2748 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2749 // always true for CC>3. 2750 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2751 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2752 // ...and the inverse of that. 2753 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2754 else 2755 llvm_unreachable("Unexpected integer comparison type"); 2756 C.CCMask &= CCValid; 2757 return C; 2758 } 2759 2760 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2761 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2762 ISD::CondCode Cond, const SDLoc &DL, 2763 SDValue Chain = SDValue(), 2764 bool IsSignaling = false) { 2765 if (CmpOp1.getOpcode() == ISD::Constant) { 2766 assert(!Chain); 2767 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2768 unsigned Opcode, CCValid; 2769 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2770 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2771 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2772 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2773 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2774 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2775 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2776 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2777 } 2778 Comparison C(CmpOp0, CmpOp1, Chain); 2779 C.CCMask = CCMaskForCondCode(Cond); 2780 if (C.Op0.getValueType().isFloatingPoint()) { 2781 C.CCValid = SystemZ::CCMASK_FCMP; 2782 if (!C.Chain) 2783 C.Opcode = SystemZISD::FCMP; 2784 else if (!IsSignaling) 2785 C.Opcode = SystemZISD::STRICT_FCMP; 2786 else 2787 C.Opcode = SystemZISD::STRICT_FCMPS; 2788 adjustForFNeg(C); 2789 } else { 2790 assert(!C.Chain); 2791 C.CCValid = SystemZ::CCMASK_ICMP; 2792 C.Opcode = SystemZISD::ICMP; 2793 // Choose the type of comparison. Equality and inequality tests can 2794 // use either signed or unsigned comparisons. The choice also doesn't 2795 // matter if both sign bits are known to be clear. In those cases we 2796 // want to give the main isel code the freedom to choose whichever 2797 // form fits best. 2798 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2799 C.CCMask == SystemZ::CCMASK_CMP_NE || 2800 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2801 C.ICmpType = SystemZICMP::Any; 2802 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2803 C.ICmpType = SystemZICMP::UnsignedOnly; 2804 else 2805 C.ICmpType = SystemZICMP::SignedOnly; 2806 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2807 adjustForRedundantAnd(DAG, DL, C); 2808 adjustZeroCmp(DAG, DL, C); 2809 adjustSubwordCmp(DAG, DL, C); 2810 adjustForSubtraction(DAG, DL, C); 2811 adjustForLTGFR(C); 2812 adjustICmpTruncate(DAG, DL, C); 2813 } 2814 2815 if (shouldSwapCmpOperands(C)) { 2816 std::swap(C.Op0, C.Op1); 2817 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2818 } 2819 2820 adjustForTestUnderMask(DAG, DL, C); 2821 return C; 2822 } 2823 2824 // Emit the comparison instruction described by C. 2825 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2826 if (!C.Op1.getNode()) { 2827 SDNode *Node; 2828 switch (C.Op0.getOpcode()) { 2829 case ISD::INTRINSIC_W_CHAIN: 2830 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2831 return SDValue(Node, 0); 2832 case ISD::INTRINSIC_WO_CHAIN: 2833 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2834 return SDValue(Node, Node->getNumValues() - 1); 2835 default: 2836 llvm_unreachable("Invalid comparison operands"); 2837 } 2838 } 2839 if (C.Opcode == SystemZISD::ICMP) 2840 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2841 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2842 if (C.Opcode == SystemZISD::TM) { 2843 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2844 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2845 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2846 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2847 } 2848 if (C.Chain) { 2849 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2850 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2851 } 2852 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2853 } 2854 2855 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2856 // 64 bits. Extend is the extension type to use. Store the high part 2857 // in Hi and the low part in Lo. 2858 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2859 SDValue Op0, SDValue Op1, SDValue &Hi, 2860 SDValue &Lo) { 2861 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2862 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2863 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2864 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2865 DAG.getConstant(32, DL, MVT::i64)); 2866 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2867 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2868 } 2869 2870 // Lower a binary operation that produces two VT results, one in each 2871 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2872 // and Opcode performs the GR128 operation. Store the even register result 2873 // in Even and the odd register result in Odd. 2874 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2875 unsigned Opcode, SDValue Op0, SDValue Op1, 2876 SDValue &Even, SDValue &Odd) { 2877 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2878 bool Is32Bit = is32Bit(VT); 2879 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2880 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2881 } 2882 2883 // Return an i32 value that is 1 if the CC value produced by CCReg is 2884 // in the mask CCMask and 0 otherwise. CC is known to have a value 2885 // in CCValid, so other values can be ignored. 2886 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2887 unsigned CCValid, unsigned CCMask) { 2888 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2889 DAG.getConstant(0, DL, MVT::i32), 2890 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2891 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2892 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2893 } 2894 2895 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2896 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2897 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2898 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2899 // floating-point comparisons. 2900 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2901 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2902 switch (CC) { 2903 case ISD::SETOEQ: 2904 case ISD::SETEQ: 2905 switch (Mode) { 2906 case CmpMode::Int: return SystemZISD::VICMPE; 2907 case CmpMode::FP: return SystemZISD::VFCMPE; 2908 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2909 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2910 } 2911 llvm_unreachable("Bad mode"); 2912 2913 case ISD::SETOGE: 2914 case ISD::SETGE: 2915 switch (Mode) { 2916 case CmpMode::Int: return 0; 2917 case CmpMode::FP: return SystemZISD::VFCMPHE; 2918 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2919 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2920 } 2921 llvm_unreachable("Bad mode"); 2922 2923 case ISD::SETOGT: 2924 case ISD::SETGT: 2925 switch (Mode) { 2926 case CmpMode::Int: return SystemZISD::VICMPH; 2927 case CmpMode::FP: return SystemZISD::VFCMPH; 2928 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2929 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2930 } 2931 llvm_unreachable("Bad mode"); 2932 2933 case ISD::SETUGT: 2934 switch (Mode) { 2935 case CmpMode::Int: return SystemZISD::VICMPHL; 2936 case CmpMode::FP: return 0; 2937 case CmpMode::StrictFP: return 0; 2938 case CmpMode::SignalingFP: return 0; 2939 } 2940 llvm_unreachable("Bad mode"); 2941 2942 default: 2943 return 0; 2944 } 2945 } 2946 2947 // Return the SystemZISD vector comparison operation for CC or its inverse, 2948 // or 0 if neither can be done directly. Indicate in Invert whether the 2949 // result is for the inverse of CC. Mode is as above. 2950 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2951 bool &Invert) { 2952 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2953 Invert = false; 2954 return Opcode; 2955 } 2956 2957 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2958 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2959 Invert = true; 2960 return Opcode; 2961 } 2962 2963 return 0; 2964 } 2965 2966 // Return a v2f64 that contains the extended form of elements Start and Start+1 2967 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2968 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2969 SDValue Op, SDValue Chain) { 2970 int Mask[] = { Start, -1, Start + 1, -1 }; 2971 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2972 if (Chain) { 2973 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2974 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2975 } 2976 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2977 } 2978 2979 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2980 // producing a result of type VT. If Chain is nonnull, return the strict form. 2981 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2982 const SDLoc &DL, EVT VT, 2983 SDValue CmpOp0, 2984 SDValue CmpOp1, 2985 SDValue Chain) const { 2986 // There is no hardware support for v4f32 (unless we have the vector 2987 // enhancements facility 1), so extend the vector into two v2f64s 2988 // and compare those. 2989 if (CmpOp0.getValueType() == MVT::v4f32 && 2990 !Subtarget.hasVectorEnhancements1()) { 2991 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2992 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2993 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2994 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2995 if (Chain) { 2996 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2997 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2998 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2999 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3000 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 3001 H1.getValue(1), L1.getValue(1), 3002 HRes.getValue(1), LRes.getValue(1) }; 3003 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 3004 SDValue Ops[2] = { Res, NewChain }; 3005 return DAG.getMergeValues(Ops, DL); 3006 } 3007 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 3008 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 3009 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3010 } 3011 if (Chain) { 3012 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 3013 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 3014 } 3015 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 3016 } 3017 3018 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 3019 // an integer mask of type VT. If Chain is nonnull, we have a strict 3020 // floating-point comparison. If in addition IsSignaling is true, we have 3021 // a strict signaling floating-point comparison. 3022 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 3023 const SDLoc &DL, EVT VT, 3024 ISD::CondCode CC, 3025 SDValue CmpOp0, 3026 SDValue CmpOp1, 3027 SDValue Chain, 3028 bool IsSignaling) const { 3029 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 3030 assert (!Chain || IsFP); 3031 assert (!IsSignaling || Chain); 3032 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 3033 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 3034 bool Invert = false; 3035 SDValue Cmp; 3036 switch (CC) { 3037 // Handle tests for order using (or (ogt y x) (oge x y)). 3038 case ISD::SETUO: 3039 Invert = true; 3040 [[fallthrough]]; 3041 case ISD::SETO: { 3042 assert(IsFP && "Unexpected integer comparison"); 3043 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3044 DL, VT, CmpOp1, CmpOp0, Chain); 3045 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 3046 DL, VT, CmpOp0, CmpOp1, Chain); 3047 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 3048 if (Chain) 3049 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3050 LT.getValue(1), GE.getValue(1)); 3051 break; 3052 } 3053 3054 // Handle <> tests using (or (ogt y x) (ogt x y)). 3055 case ISD::SETUEQ: 3056 Invert = true; 3057 [[fallthrough]]; 3058 case ISD::SETONE: { 3059 assert(IsFP && "Unexpected integer comparison"); 3060 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3061 DL, VT, CmpOp1, CmpOp0, Chain); 3062 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3063 DL, VT, CmpOp0, CmpOp1, Chain); 3064 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3065 if (Chain) 3066 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3067 LT.getValue(1), GT.getValue(1)); 3068 break; 3069 } 3070 3071 // Otherwise a single comparison is enough. It doesn't really 3072 // matter whether we try the inversion or the swap first, since 3073 // there are no cases where both work. 3074 default: 3075 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3076 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 3077 else { 3078 CC = ISD::getSetCCSwappedOperands(CC); 3079 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3080 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 3081 else 3082 llvm_unreachable("Unhandled comparison"); 3083 } 3084 if (Chain) 3085 Chain = Cmp.getValue(1); 3086 break; 3087 } 3088 if (Invert) { 3089 SDValue Mask = 3090 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3091 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3092 } 3093 if (Chain && Chain.getNode() != Cmp.getNode()) { 3094 SDValue Ops[2] = { Cmp, Chain }; 3095 Cmp = DAG.getMergeValues(Ops, DL); 3096 } 3097 return Cmp; 3098 } 3099 3100 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3101 SelectionDAG &DAG) const { 3102 SDValue CmpOp0 = Op.getOperand(0); 3103 SDValue CmpOp1 = Op.getOperand(1); 3104 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3105 SDLoc DL(Op); 3106 EVT VT = Op.getValueType(); 3107 if (VT.isVector()) 3108 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3109 3110 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3111 SDValue CCReg = emitCmp(DAG, DL, C); 3112 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3113 } 3114 3115 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3116 SelectionDAG &DAG, 3117 bool IsSignaling) const { 3118 SDValue Chain = Op.getOperand(0); 3119 SDValue CmpOp0 = Op.getOperand(1); 3120 SDValue CmpOp1 = Op.getOperand(2); 3121 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3122 SDLoc DL(Op); 3123 EVT VT = Op.getNode()->getValueType(0); 3124 if (VT.isVector()) { 3125 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3126 Chain, IsSignaling); 3127 return Res.getValue(Op.getResNo()); 3128 } 3129 3130 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3131 SDValue CCReg = emitCmp(DAG, DL, C); 3132 CCReg->setFlags(Op->getFlags()); 3133 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3134 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3135 return DAG.getMergeValues(Ops, DL); 3136 } 3137 3138 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3139 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3140 SDValue CmpOp0 = Op.getOperand(2); 3141 SDValue CmpOp1 = Op.getOperand(3); 3142 SDValue Dest = Op.getOperand(4); 3143 SDLoc DL(Op); 3144 3145 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3146 SDValue CCReg = emitCmp(DAG, DL, C); 3147 return DAG.getNode( 3148 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3149 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3150 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3151 } 3152 3153 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3154 // allowing Pos and Neg to be wider than CmpOp. 3155 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3156 return (Neg.getOpcode() == ISD::SUB && 3157 Neg.getOperand(0).getOpcode() == ISD::Constant && 3158 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 3159 Neg.getOperand(1) == Pos && 3160 (Pos == CmpOp || 3161 (Pos.getOpcode() == ISD::SIGN_EXTEND && 3162 Pos.getOperand(0) == CmpOp))); 3163 } 3164 3165 // Return the absolute or negative absolute of Op; IsNegative decides which. 3166 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3167 bool IsNegative) { 3168 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3169 if (IsNegative) 3170 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3171 DAG.getConstant(0, DL, Op.getValueType()), Op); 3172 return Op; 3173 } 3174 3175 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3176 SelectionDAG &DAG) const { 3177 SDValue CmpOp0 = Op.getOperand(0); 3178 SDValue CmpOp1 = Op.getOperand(1); 3179 SDValue TrueOp = Op.getOperand(2); 3180 SDValue FalseOp = Op.getOperand(3); 3181 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3182 SDLoc DL(Op); 3183 3184 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3185 3186 // Check for absolute and negative-absolute selections, including those 3187 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3188 // This check supplements the one in DAGCombiner. 3189 if (C.Opcode == SystemZISD::ICMP && 3190 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3191 C.CCMask != SystemZ::CCMASK_CMP_NE && 3192 C.Op1.getOpcode() == ISD::Constant && 3193 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3194 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3195 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3196 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3197 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3198 } 3199 3200 SDValue CCReg = emitCmp(DAG, DL, C); 3201 SDValue Ops[] = {TrueOp, FalseOp, 3202 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3203 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3204 3205 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3206 } 3207 3208 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3209 SelectionDAG &DAG) const { 3210 SDLoc DL(Node); 3211 const GlobalValue *GV = Node->getGlobal(); 3212 int64_t Offset = Node->getOffset(); 3213 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3214 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3215 3216 SDValue Result; 3217 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3218 if (isInt<32>(Offset)) { 3219 // Assign anchors at 1<<12 byte boundaries. 3220 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3221 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3222 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3223 3224 // The offset can be folded into the address if it is aligned to a 3225 // halfword. 3226 Offset -= Anchor; 3227 if (Offset != 0 && (Offset & 1) == 0) { 3228 SDValue Full = 3229 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3230 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3231 Offset = 0; 3232 } 3233 } else { 3234 // Conservatively load a constant offset greater than 32 bits into a 3235 // register below. 3236 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3237 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3238 } 3239 } else { 3240 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3241 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3242 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3243 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3244 } 3245 3246 // If there was a non-zero offset that we didn't fold, create an explicit 3247 // addition for it. 3248 if (Offset != 0) 3249 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3250 DAG.getConstant(Offset, DL, PtrVT)); 3251 3252 return Result; 3253 } 3254 3255 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3256 SelectionDAG &DAG, 3257 unsigned Opcode, 3258 SDValue GOTOffset) const { 3259 SDLoc DL(Node); 3260 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3261 SDValue Chain = DAG.getEntryNode(); 3262 SDValue Glue; 3263 3264 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3265 CallingConv::GHC) 3266 report_fatal_error("In GHC calling convention TLS is not supported"); 3267 3268 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3269 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3270 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3271 Glue = Chain.getValue(1); 3272 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3273 Glue = Chain.getValue(1); 3274 3275 // The first call operand is the chain and the second is the TLS symbol. 3276 SmallVector<SDValue, 8> Ops; 3277 Ops.push_back(Chain); 3278 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3279 Node->getValueType(0), 3280 0, 0)); 3281 3282 // Add argument registers to the end of the list so that they are 3283 // known live into the call. 3284 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3285 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3286 3287 // Add a register mask operand representing the call-preserved registers. 3288 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3289 const uint32_t *Mask = 3290 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3291 assert(Mask && "Missing call preserved mask for calling convention"); 3292 Ops.push_back(DAG.getRegisterMask(Mask)); 3293 3294 // Glue the call to the argument copies. 3295 Ops.push_back(Glue); 3296 3297 // Emit the call. 3298 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3299 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3300 Glue = Chain.getValue(1); 3301 3302 // Copy the return value from %r2. 3303 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3304 } 3305 3306 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3307 SelectionDAG &DAG) const { 3308 SDValue Chain = DAG.getEntryNode(); 3309 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3310 3311 // The high part of the thread pointer is in access register 0. 3312 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3313 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3314 3315 // The low part of the thread pointer is in access register 1. 3316 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3317 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3318 3319 // Merge them into a single 64-bit address. 3320 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3321 DAG.getConstant(32, DL, PtrVT)); 3322 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3323 } 3324 3325 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3326 SelectionDAG &DAG) const { 3327 if (DAG.getTarget().useEmulatedTLS()) 3328 return LowerToTLSEmulatedModel(Node, DAG); 3329 SDLoc DL(Node); 3330 const GlobalValue *GV = Node->getGlobal(); 3331 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3332 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3333 3334 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3335 CallingConv::GHC) 3336 report_fatal_error("In GHC calling convention TLS is not supported"); 3337 3338 SDValue TP = lowerThreadPointer(DL, DAG); 3339 3340 // Get the offset of GA from the thread pointer, based on the TLS model. 3341 SDValue Offset; 3342 switch (model) { 3343 case TLSModel::GeneralDynamic: { 3344 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3345 SystemZConstantPoolValue *CPV = 3346 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3347 3348 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3349 Offset = DAG.getLoad( 3350 PtrVT, DL, DAG.getEntryNode(), Offset, 3351 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3352 3353 // Call __tls_get_offset to retrieve the offset. 3354 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3355 break; 3356 } 3357 3358 case TLSModel::LocalDynamic: { 3359 // Load the GOT offset of the module ID. 3360 SystemZConstantPoolValue *CPV = 3361 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3362 3363 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3364 Offset = DAG.getLoad( 3365 PtrVT, DL, DAG.getEntryNode(), Offset, 3366 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3367 3368 // Call __tls_get_offset to retrieve the module base offset. 3369 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3370 3371 // Note: The SystemZLDCleanupPass will remove redundant computations 3372 // of the module base offset. Count total number of local-dynamic 3373 // accesses to trigger execution of that pass. 3374 SystemZMachineFunctionInfo* MFI = 3375 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3376 MFI->incNumLocalDynamicTLSAccesses(); 3377 3378 // Add the per-symbol offset. 3379 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3380 3381 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3382 DTPOffset = DAG.getLoad( 3383 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3384 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3385 3386 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3387 break; 3388 } 3389 3390 case TLSModel::InitialExec: { 3391 // Load the offset from the GOT. 3392 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3393 SystemZII::MO_INDNTPOFF); 3394 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3395 Offset = 3396 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3397 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3398 break; 3399 } 3400 3401 case TLSModel::LocalExec: { 3402 // Force the offset into the constant pool and load it from there. 3403 SystemZConstantPoolValue *CPV = 3404 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3405 3406 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3407 Offset = DAG.getLoad( 3408 PtrVT, DL, DAG.getEntryNode(), Offset, 3409 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3410 break; 3411 } 3412 } 3413 3414 // Add the base and offset together. 3415 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3416 } 3417 3418 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3419 SelectionDAG &DAG) const { 3420 SDLoc DL(Node); 3421 const BlockAddress *BA = Node->getBlockAddress(); 3422 int64_t Offset = Node->getOffset(); 3423 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3424 3425 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3426 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3427 return Result; 3428 } 3429 3430 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3431 SelectionDAG &DAG) const { 3432 SDLoc DL(JT); 3433 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3434 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3435 3436 // Use LARL to load the address of the table. 3437 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3438 } 3439 3440 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3441 SelectionDAG &DAG) const { 3442 SDLoc DL(CP); 3443 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3444 3445 SDValue Result; 3446 if (CP->isMachineConstantPoolEntry()) 3447 Result = 3448 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3449 else 3450 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3451 CP->getOffset()); 3452 3453 // Use LARL to load the address of the constant pool entry. 3454 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3455 } 3456 3457 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3458 SelectionDAG &DAG) const { 3459 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3460 MachineFunction &MF = DAG.getMachineFunction(); 3461 MachineFrameInfo &MFI = MF.getFrameInfo(); 3462 MFI.setFrameAddressIsTaken(true); 3463 3464 SDLoc DL(Op); 3465 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3466 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3467 3468 // By definition, the frame address is the address of the back chain. (In 3469 // the case of packed stack without backchain, return the address where the 3470 // backchain would have been stored. This will either be an unused space or 3471 // contain a saved register). 3472 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3473 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3474 3475 // FIXME The frontend should detect this case. 3476 if (Depth > 0) { 3477 report_fatal_error("Unsupported stack frame traversal count"); 3478 } 3479 3480 return BackChain; 3481 } 3482 3483 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3484 SelectionDAG &DAG) const { 3485 MachineFunction &MF = DAG.getMachineFunction(); 3486 MachineFrameInfo &MFI = MF.getFrameInfo(); 3487 MFI.setReturnAddressIsTaken(true); 3488 3489 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3490 return SDValue(); 3491 3492 SDLoc DL(Op); 3493 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3494 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3495 3496 // FIXME The frontend should detect this case. 3497 if (Depth > 0) { 3498 report_fatal_error("Unsupported stack frame traversal count"); 3499 } 3500 3501 // Return R14D, which has the return address. Mark it an implicit live-in. 3502 Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3503 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3504 } 3505 3506 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3507 SelectionDAG &DAG) const { 3508 SDLoc DL(Op); 3509 SDValue In = Op.getOperand(0); 3510 EVT InVT = In.getValueType(); 3511 EVT ResVT = Op.getValueType(); 3512 3513 // Convert loads directly. This is normally done by DAGCombiner, 3514 // but we need this case for bitcasts that are created during lowering 3515 // and which are then lowered themselves. 3516 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3517 if (ISD::isNormalLoad(LoadN)) { 3518 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3519 LoadN->getBasePtr(), LoadN->getMemOperand()); 3520 // Update the chain uses. 3521 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3522 return NewLoad; 3523 } 3524 3525 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3526 SDValue In64; 3527 if (Subtarget.hasHighWord()) { 3528 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3529 MVT::i64); 3530 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3531 MVT::i64, SDValue(U64, 0), In); 3532 } else { 3533 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3534 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3535 DAG.getConstant(32, DL, MVT::i64)); 3536 } 3537 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3538 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3539 DL, MVT::f32, Out64); 3540 } 3541 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3542 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3543 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3544 MVT::f64, SDValue(U64, 0), In); 3545 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3546 if (Subtarget.hasHighWord()) 3547 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3548 MVT::i32, Out64); 3549 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3550 DAG.getConstant(32, DL, MVT::i64)); 3551 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3552 } 3553 llvm_unreachable("Unexpected bitcast combination"); 3554 } 3555 3556 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3557 SelectionDAG &DAG) const { 3558 3559 if (Subtarget.isTargetXPLINK64()) 3560 return lowerVASTART_XPLINK(Op, DAG); 3561 else 3562 return lowerVASTART_ELF(Op, DAG); 3563 } 3564 3565 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, 3566 SelectionDAG &DAG) const { 3567 MachineFunction &MF = DAG.getMachineFunction(); 3568 SystemZMachineFunctionInfo *FuncInfo = 3569 MF.getInfo<SystemZMachineFunctionInfo>(); 3570 3571 SDLoc DL(Op); 3572 3573 // vastart just stores the address of the VarArgsFrameIndex slot into the 3574 // memory location argument. 3575 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3576 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3577 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3578 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 3579 MachinePointerInfo(SV)); 3580 } 3581 3582 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, 3583 SelectionDAG &DAG) const { 3584 MachineFunction &MF = DAG.getMachineFunction(); 3585 SystemZMachineFunctionInfo *FuncInfo = 3586 MF.getInfo<SystemZMachineFunctionInfo>(); 3587 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3588 3589 SDValue Chain = Op.getOperand(0); 3590 SDValue Addr = Op.getOperand(1); 3591 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3592 SDLoc DL(Op); 3593 3594 // The initial values of each field. 3595 const unsigned NumFields = 4; 3596 SDValue Fields[NumFields] = { 3597 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3598 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3599 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3600 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3601 }; 3602 3603 // Store each field into its respective slot. 3604 SDValue MemOps[NumFields]; 3605 unsigned Offset = 0; 3606 for (unsigned I = 0; I < NumFields; ++I) { 3607 SDValue FieldAddr = Addr; 3608 if (Offset != 0) 3609 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3610 DAG.getIntPtrConstant(Offset, DL)); 3611 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3612 MachinePointerInfo(SV, Offset)); 3613 Offset += 8; 3614 } 3615 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3616 } 3617 3618 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3619 SelectionDAG &DAG) const { 3620 SDValue Chain = Op.getOperand(0); 3621 SDValue DstPtr = Op.getOperand(1); 3622 SDValue SrcPtr = Op.getOperand(2); 3623 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3624 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3625 SDLoc DL(Op); 3626 3627 uint32_t Sz = 3628 Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; 3629 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), 3630 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3631 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3632 MachinePointerInfo(SrcSV)); 3633 } 3634 3635 SDValue 3636 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 3637 SelectionDAG &DAG) const { 3638 if (Subtarget.isTargetXPLINK64()) 3639 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 3640 else 3641 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 3642 } 3643 3644 SDValue 3645 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 3646 SelectionDAG &DAG) const { 3647 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3648 MachineFunction &MF = DAG.getMachineFunction(); 3649 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3650 SDValue Chain = Op.getOperand(0); 3651 SDValue Size = Op.getOperand(1); 3652 SDValue Align = Op.getOperand(2); 3653 SDLoc DL(Op); 3654 3655 // If user has set the no alignment function attribute, ignore 3656 // alloca alignments. 3657 uint64_t AlignVal = 3658 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3659 3660 uint64_t StackAlign = TFI->getStackAlignment(); 3661 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3662 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3663 3664 SDValue NeededSpace = Size; 3665 3666 // Add extra space for alignment if needed. 3667 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3668 if (ExtraAlignSpace) 3669 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 3670 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3671 3672 bool IsSigned = false; 3673 bool DoesNotReturn = false; 3674 bool IsReturnValueUsed = false; 3675 EVT VT = Op.getValueType(); 3676 SDValue AllocaCall = 3677 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace), 3678 CallingConv::C, IsSigned, DL, DoesNotReturn, 3679 IsReturnValueUsed) 3680 .first; 3681 3682 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 3683 // to end of call in order to ensure it isn't broken up from the call 3684 // sequence. 3685 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 3686 Register SPReg = Regs.getStackPointerRegister(); 3687 Chain = AllocaCall.getValue(1); 3688 SDValue Glue = AllocaCall.getValue(2); 3689 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 3690 Chain = NewSPRegNode.getValue(1); 3691 3692 MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 3693 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 3694 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 3695 3696 // Dynamically realign if needed. 3697 if (ExtraAlignSpace) { 3698 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3699 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3700 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 3701 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 3702 } 3703 3704 SDValue Ops[2] = {Result, Chain}; 3705 return DAG.getMergeValues(Ops, DL); 3706 } 3707 3708 SDValue 3709 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 3710 SelectionDAG &DAG) const { 3711 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3712 MachineFunction &MF = DAG.getMachineFunction(); 3713 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3714 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3715 3716 SDValue Chain = Op.getOperand(0); 3717 SDValue Size = Op.getOperand(1); 3718 SDValue Align = Op.getOperand(2); 3719 SDLoc DL(Op); 3720 3721 // If user has set the no alignment function attribute, ignore 3722 // alloca alignments. 3723 uint64_t AlignVal = 3724 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3725 3726 uint64_t StackAlign = TFI->getStackAlignment(); 3727 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3728 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3729 3730 Register SPReg = getStackPointerRegisterToSaveRestore(); 3731 SDValue NeededSpace = Size; 3732 3733 // Get a reference to the stack pointer. 3734 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3735 3736 // If we need a backchain, save it now. 3737 SDValue Backchain; 3738 if (StoreBackchain) 3739 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3740 MachinePointerInfo()); 3741 3742 // Add extra space for alignment if needed. 3743 if (ExtraAlignSpace) 3744 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3745 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3746 3747 // Get the new stack pointer value. 3748 SDValue NewSP; 3749 if (hasInlineStackProbe(MF)) { 3750 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3751 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3752 Chain = NewSP.getValue(1); 3753 } 3754 else { 3755 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3756 // Copy the new stack pointer back. 3757 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3758 } 3759 3760 // The allocated data lives above the 160 bytes allocated for the standard 3761 // frame, plus any outgoing stack arguments. We don't know how much that 3762 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3763 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3764 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3765 3766 // Dynamically realign if needed. 3767 if (RequiredAlign > StackAlign) { 3768 Result = 3769 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3770 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3771 Result = 3772 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3773 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3774 } 3775 3776 if (StoreBackchain) 3777 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3778 MachinePointerInfo()); 3779 3780 SDValue Ops[2] = { Result, Chain }; 3781 return DAG.getMergeValues(Ops, DL); 3782 } 3783 3784 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3785 SDValue Op, SelectionDAG &DAG) const { 3786 SDLoc DL(Op); 3787 3788 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3789 } 3790 3791 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3792 SelectionDAG &DAG) const { 3793 EVT VT = Op.getValueType(); 3794 SDLoc DL(Op); 3795 SDValue Ops[2]; 3796 if (is32Bit(VT)) 3797 // Just do a normal 64-bit multiplication and extract the results. 3798 // We define this so that it can be used for constant division. 3799 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3800 Op.getOperand(1), Ops[1], Ops[0]); 3801 else if (Subtarget.hasMiscellaneousExtensions2()) 3802 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3803 // the high result in the even register. ISD::SMUL_LOHI is defined to 3804 // return the low half first, so the results are in reverse order. 3805 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3806 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3807 else { 3808 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3809 // 3810 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3811 // 3812 // but using the fact that the upper halves are either all zeros 3813 // or all ones: 3814 // 3815 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3816 // 3817 // and grouping the right terms together since they are quicker than the 3818 // multiplication: 3819 // 3820 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3821 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3822 SDValue LL = Op.getOperand(0); 3823 SDValue RL = Op.getOperand(1); 3824 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3825 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3826 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3827 // the high result in the even register. ISD::SMUL_LOHI is defined to 3828 // return the low half first, so the results are in reverse order. 3829 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3830 LL, RL, Ops[1], Ops[0]); 3831 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3832 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3833 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3834 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3835 } 3836 return DAG.getMergeValues(Ops, DL); 3837 } 3838 3839 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3840 SelectionDAG &DAG) const { 3841 EVT VT = Op.getValueType(); 3842 SDLoc DL(Op); 3843 SDValue Ops[2]; 3844 if (is32Bit(VT)) 3845 // Just do a normal 64-bit multiplication and extract the results. 3846 // We define this so that it can be used for constant division. 3847 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3848 Op.getOperand(1), Ops[1], Ops[0]); 3849 else 3850 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3851 // the high result in the even register. ISD::UMUL_LOHI is defined to 3852 // return the low half first, so the results are in reverse order. 3853 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3854 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3855 return DAG.getMergeValues(Ops, DL); 3856 } 3857 3858 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3859 SelectionDAG &DAG) const { 3860 SDValue Op0 = Op.getOperand(0); 3861 SDValue Op1 = Op.getOperand(1); 3862 EVT VT = Op.getValueType(); 3863 SDLoc DL(Op); 3864 3865 // We use DSGF for 32-bit division. This means the first operand must 3866 // always be 64-bit, and the second operand should be 32-bit whenever 3867 // that is possible, to improve performance. 3868 if (is32Bit(VT)) 3869 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3870 else if (DAG.ComputeNumSignBits(Op1) > 32) 3871 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3872 3873 // DSG(F) returns the remainder in the even register and the 3874 // quotient in the odd register. 3875 SDValue Ops[2]; 3876 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3877 return DAG.getMergeValues(Ops, DL); 3878 } 3879 3880 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3881 SelectionDAG &DAG) const { 3882 EVT VT = Op.getValueType(); 3883 SDLoc DL(Op); 3884 3885 // DL(G) returns the remainder in the even register and the 3886 // quotient in the odd register. 3887 SDValue Ops[2]; 3888 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3889 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3890 return DAG.getMergeValues(Ops, DL); 3891 } 3892 3893 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3894 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3895 3896 // Get the known-zero masks for each operand. 3897 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3898 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3899 DAG.computeKnownBits(Ops[1])}; 3900 3901 // See if the upper 32 bits of one operand and the lower 32 bits of the 3902 // other are known zero. They are the low and high operands respectively. 3903 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3904 Known[1].Zero.getZExtValue() }; 3905 unsigned High, Low; 3906 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3907 High = 1, Low = 0; 3908 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3909 High = 0, Low = 1; 3910 else 3911 return Op; 3912 3913 SDValue LowOp = Ops[Low]; 3914 SDValue HighOp = Ops[High]; 3915 3916 // If the high part is a constant, we're better off using IILH. 3917 if (HighOp.getOpcode() == ISD::Constant) 3918 return Op; 3919 3920 // If the low part is a constant that is outside the range of LHI, 3921 // then we're better off using IILF. 3922 if (LowOp.getOpcode() == ISD::Constant) { 3923 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3924 if (!isInt<16>(Value)) 3925 return Op; 3926 } 3927 3928 // Check whether the high part is an AND that doesn't change the 3929 // high 32 bits and just masks out low bits. We can skip it if so. 3930 if (HighOp.getOpcode() == ISD::AND && 3931 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3932 SDValue HighOp0 = HighOp.getOperand(0); 3933 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3934 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3935 HighOp = HighOp0; 3936 } 3937 3938 // Take advantage of the fact that all GR32 operations only change the 3939 // low 32 bits by truncating Low to an i32 and inserting it directly 3940 // using a subreg. The interesting cases are those where the truncation 3941 // can be folded. 3942 SDLoc DL(Op); 3943 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3944 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3945 MVT::i64, HighOp, Low32); 3946 } 3947 3948 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3949 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3950 SelectionDAG &DAG) const { 3951 SDNode *N = Op.getNode(); 3952 SDValue LHS = N->getOperand(0); 3953 SDValue RHS = N->getOperand(1); 3954 SDLoc DL(N); 3955 unsigned BaseOp = 0; 3956 unsigned CCValid = 0; 3957 unsigned CCMask = 0; 3958 3959 switch (Op.getOpcode()) { 3960 default: llvm_unreachable("Unknown instruction!"); 3961 case ISD::SADDO: 3962 BaseOp = SystemZISD::SADDO; 3963 CCValid = SystemZ::CCMASK_ARITH; 3964 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3965 break; 3966 case ISD::SSUBO: 3967 BaseOp = SystemZISD::SSUBO; 3968 CCValid = SystemZ::CCMASK_ARITH; 3969 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3970 break; 3971 case ISD::UADDO: 3972 BaseOp = SystemZISD::UADDO; 3973 CCValid = SystemZ::CCMASK_LOGICAL; 3974 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3975 break; 3976 case ISD::USUBO: 3977 BaseOp = SystemZISD::USUBO; 3978 CCValid = SystemZ::CCMASK_LOGICAL; 3979 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3980 break; 3981 } 3982 3983 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3984 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3985 3986 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3987 if (N->getValueType(1) == MVT::i1) 3988 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3989 3990 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3991 } 3992 3993 static bool isAddCarryChain(SDValue Carry) { 3994 while (Carry.getOpcode() == ISD::ADDCARRY) 3995 Carry = Carry.getOperand(2); 3996 return Carry.getOpcode() == ISD::UADDO; 3997 } 3998 3999 static bool isSubBorrowChain(SDValue Carry) { 4000 while (Carry.getOpcode() == ISD::SUBCARRY) 4001 Carry = Carry.getOperand(2); 4002 return Carry.getOpcode() == ISD::USUBO; 4003 } 4004 4005 // Lower ADDCARRY/SUBCARRY nodes. 4006 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 4007 SelectionDAG &DAG) const { 4008 4009 SDNode *N = Op.getNode(); 4010 MVT VT = N->getSimpleValueType(0); 4011 4012 // Let legalize expand this if it isn't a legal type yet. 4013 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 4014 return SDValue(); 4015 4016 SDValue LHS = N->getOperand(0); 4017 SDValue RHS = N->getOperand(1); 4018 SDValue Carry = Op.getOperand(2); 4019 SDLoc DL(N); 4020 unsigned BaseOp = 0; 4021 unsigned CCValid = 0; 4022 unsigned CCMask = 0; 4023 4024 switch (Op.getOpcode()) { 4025 default: llvm_unreachable("Unknown instruction!"); 4026 case ISD::ADDCARRY: 4027 if (!isAddCarryChain(Carry)) 4028 return SDValue(); 4029 4030 BaseOp = SystemZISD::ADDCARRY; 4031 CCValid = SystemZ::CCMASK_LOGICAL; 4032 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 4033 break; 4034 case ISD::SUBCARRY: 4035 if (!isSubBorrowChain(Carry)) 4036 return SDValue(); 4037 4038 BaseOp = SystemZISD::SUBCARRY; 4039 CCValid = SystemZ::CCMASK_LOGICAL; 4040 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4041 break; 4042 } 4043 4044 // Set the condition code from the carry flag. 4045 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 4046 DAG.getConstant(CCValid, DL, MVT::i32), 4047 DAG.getConstant(CCMask, DL, MVT::i32)); 4048 4049 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 4050 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 4051 4052 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4053 if (N->getValueType(1) == MVT::i1) 4054 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4055 4056 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4057 } 4058 4059 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 4060 SelectionDAG &DAG) const { 4061 EVT VT = Op.getValueType(); 4062 SDLoc DL(Op); 4063 Op = Op.getOperand(0); 4064 4065 // Handle vector types via VPOPCT. 4066 if (VT.isVector()) { 4067 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 4068 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 4069 switch (VT.getScalarSizeInBits()) { 4070 case 8: 4071 break; 4072 case 16: { 4073 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4074 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 4075 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 4076 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4077 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 4078 break; 4079 } 4080 case 32: { 4081 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4082 DAG.getConstant(0, DL, MVT::i32)); 4083 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4084 break; 4085 } 4086 case 64: { 4087 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4088 DAG.getConstant(0, DL, MVT::i32)); 4089 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 4090 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4091 break; 4092 } 4093 default: 4094 llvm_unreachable("Unexpected type"); 4095 } 4096 return Op; 4097 } 4098 4099 // Get the known-zero mask for the operand. 4100 KnownBits Known = DAG.computeKnownBits(Op); 4101 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 4102 if (NumSignificantBits == 0) 4103 return DAG.getConstant(0, DL, VT); 4104 4105 // Skip known-zero high parts of the operand. 4106 int64_t OrigBitSize = VT.getSizeInBits(); 4107 int64_t BitSize = llvm::bit_ceil(NumSignificantBits); 4108 BitSize = std::min(BitSize, OrigBitSize); 4109 4110 // The POPCNT instruction counts the number of bits in each byte. 4111 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 4112 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 4113 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4114 4115 // Add up per-byte counts in a binary tree. All bits of Op at 4116 // position larger than BitSize remain zero throughout. 4117 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 4118 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 4119 if (BitSize != OrigBitSize) 4120 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 4121 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 4122 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4123 } 4124 4125 // Extract overall result from high byte. 4126 if (BitSize > 8) 4127 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4128 DAG.getConstant(BitSize - 8, DL, VT)); 4129 4130 return Op; 4131 } 4132 4133 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 4134 SelectionDAG &DAG) const { 4135 SDLoc DL(Op); 4136 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 4137 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 4138 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 4139 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 4140 4141 // The only fence that needs an instruction is a sequentially-consistent 4142 // cross-thread fence. 4143 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 4144 FenceSSID == SyncScope::System) { 4145 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 4146 Op.getOperand(0)), 4147 0); 4148 } 4149 4150 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4151 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 4152 } 4153 4154 // Op is an atomic load. Lower it into a normal volatile load. 4155 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 4156 SelectionDAG &DAG) const { 4157 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4158 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 4159 Node->getChain(), Node->getBasePtr(), 4160 Node->getMemoryVT(), Node->getMemOperand()); 4161 } 4162 4163 // Op is an atomic store. Lower it into a normal volatile store. 4164 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 4165 SelectionDAG &DAG) const { 4166 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4167 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 4168 Node->getBasePtr(), Node->getMemoryVT(), 4169 Node->getMemOperand()); 4170 // We have to enforce sequential consistency by performing a 4171 // serialization operation after the store. 4172 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 4173 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 4174 MVT::Other, Chain), 0); 4175 return Chain; 4176 } 4177 4178 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 4179 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 4180 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 4181 SelectionDAG &DAG, 4182 unsigned Opcode) const { 4183 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4184 4185 // 32-bit operations need no code outside the main loop. 4186 EVT NarrowVT = Node->getMemoryVT(); 4187 EVT WideVT = MVT::i32; 4188 if (NarrowVT == WideVT) 4189 return Op; 4190 4191 int64_t BitSize = NarrowVT.getSizeInBits(); 4192 SDValue ChainIn = Node->getChain(); 4193 SDValue Addr = Node->getBasePtr(); 4194 SDValue Src2 = Node->getVal(); 4195 MachineMemOperand *MMO = Node->getMemOperand(); 4196 SDLoc DL(Node); 4197 EVT PtrVT = Addr.getValueType(); 4198 4199 // Convert atomic subtracts of constants into additions. 4200 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4201 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4202 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4203 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4204 } 4205 4206 // Get the address of the containing word. 4207 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4208 DAG.getConstant(-4, DL, PtrVT)); 4209 4210 // Get the number of bits that the word must be rotated left in order 4211 // to bring the field to the top bits of a GR32. 4212 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4213 DAG.getConstant(3, DL, PtrVT)); 4214 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4215 4216 // Get the complementing shift amount, for rotating a field in the top 4217 // bits back to its proper position. 4218 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4219 DAG.getConstant(0, DL, WideVT), BitShift); 4220 4221 // Extend the source operand to 32 bits and prepare it for the inner loop. 4222 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4223 // operations require the source to be shifted in advance. (This shift 4224 // can be folded if the source is constant.) For AND and NAND, the lower 4225 // bits must be set, while for other opcodes they should be left clear. 4226 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4227 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4228 DAG.getConstant(32 - BitSize, DL, WideVT)); 4229 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4230 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4231 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4232 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4233 4234 // Construct the ATOMIC_LOADW_* node. 4235 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4236 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4237 DAG.getConstant(BitSize, DL, WideVT) }; 4238 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4239 NarrowVT, MMO); 4240 4241 // Rotate the result of the final CS so that the field is in the lower 4242 // bits of a GR32, then truncate it. 4243 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4244 DAG.getConstant(BitSize, DL, WideVT)); 4245 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4246 4247 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4248 return DAG.getMergeValues(RetOps, DL); 4249 } 4250 4251 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 4252 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 4253 // operations into additions. 4254 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4255 SelectionDAG &DAG) const { 4256 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4257 EVT MemVT = Node->getMemoryVT(); 4258 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4259 // A full-width operation. 4260 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4261 SDValue Src2 = Node->getVal(); 4262 SDValue NegSrc2; 4263 SDLoc DL(Src2); 4264 4265 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 4266 // Use an addition if the operand is constant and either LAA(G) is 4267 // available or the negative value is in the range of A(G)FHI. 4268 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 4269 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 4270 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 4271 } else if (Subtarget.hasInterlockedAccess1()) 4272 // Use LAA(G) if available. 4273 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 4274 Src2); 4275 4276 if (NegSrc2.getNode()) 4277 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4278 Node->getChain(), Node->getBasePtr(), NegSrc2, 4279 Node->getMemOperand()); 4280 4281 // Use the node as-is. 4282 return Op; 4283 } 4284 4285 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4286 } 4287 4288 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4289 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4290 SelectionDAG &DAG) const { 4291 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4292 SDValue ChainIn = Node->getOperand(0); 4293 SDValue Addr = Node->getOperand(1); 4294 SDValue CmpVal = Node->getOperand(2); 4295 SDValue SwapVal = Node->getOperand(3); 4296 MachineMemOperand *MMO = Node->getMemOperand(); 4297 SDLoc DL(Node); 4298 4299 // We have native support for 32-bit and 64-bit compare and swap, but we 4300 // still need to expand extracting the "success" result from the CC. 4301 EVT NarrowVT = Node->getMemoryVT(); 4302 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4303 if (NarrowVT == WideVT) { 4304 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4305 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4306 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4307 DL, Tys, Ops, NarrowVT, MMO); 4308 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4309 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4310 4311 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4312 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4313 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4314 return SDValue(); 4315 } 4316 4317 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4318 // via a fullword ATOMIC_CMP_SWAPW operation. 4319 int64_t BitSize = NarrowVT.getSizeInBits(); 4320 EVT PtrVT = Addr.getValueType(); 4321 4322 // Get the address of the containing word. 4323 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4324 DAG.getConstant(-4, DL, PtrVT)); 4325 4326 // Get the number of bits that the word must be rotated left in order 4327 // to bring the field to the top bits of a GR32. 4328 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4329 DAG.getConstant(3, DL, PtrVT)); 4330 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4331 4332 // Get the complementing shift amount, for rotating a field in the top 4333 // bits back to its proper position. 4334 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4335 DAG.getConstant(0, DL, WideVT), BitShift); 4336 4337 // Construct the ATOMIC_CMP_SWAPW node. 4338 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4339 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4340 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4341 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4342 VTList, Ops, NarrowVT, MMO); 4343 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4344 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4345 4346 // emitAtomicCmpSwapW() will zero extend the result (original value). 4347 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4348 DAG.getValueType(NarrowVT)); 4349 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4350 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4351 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4352 return SDValue(); 4353 } 4354 4355 MachineMemOperand::Flags 4356 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4357 // Because of how we convert atomic_load and atomic_store to normal loads and 4358 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4359 // since DAGCombine hasn't been updated to account for atomic, but non 4360 // volatile loads. (See D57601) 4361 if (auto *SI = dyn_cast<StoreInst>(&I)) 4362 if (SI->isAtomic()) 4363 return MachineMemOperand::MOVolatile; 4364 if (auto *LI = dyn_cast<LoadInst>(&I)) 4365 if (LI->isAtomic()) 4366 return MachineMemOperand::MOVolatile; 4367 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4368 if (AI->isAtomic()) 4369 return MachineMemOperand::MOVolatile; 4370 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4371 if (AI->isAtomic()) 4372 return MachineMemOperand::MOVolatile; 4373 return MachineMemOperand::MONone; 4374 } 4375 4376 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4377 SelectionDAG &DAG) const { 4378 MachineFunction &MF = DAG.getMachineFunction(); 4379 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4380 auto *Regs = Subtarget->getSpecialRegisters(); 4381 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4382 report_fatal_error("Variable-sized stack allocations are not supported " 4383 "in GHC calling convention"); 4384 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4385 Regs->getStackPointerRegister(), Op.getValueType()); 4386 } 4387 4388 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4389 SelectionDAG &DAG) const { 4390 MachineFunction &MF = DAG.getMachineFunction(); 4391 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4392 auto *Regs = Subtarget->getSpecialRegisters(); 4393 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4394 4395 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4396 report_fatal_error("Variable-sized stack allocations are not supported " 4397 "in GHC calling convention"); 4398 4399 SDValue Chain = Op.getOperand(0); 4400 SDValue NewSP = Op.getOperand(1); 4401 SDValue Backchain; 4402 SDLoc DL(Op); 4403 4404 if (StoreBackchain) { 4405 SDValue OldSP = DAG.getCopyFromReg( 4406 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4407 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4408 MachinePointerInfo()); 4409 } 4410 4411 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4412 4413 if (StoreBackchain) 4414 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4415 MachinePointerInfo()); 4416 4417 return Chain; 4418 } 4419 4420 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4421 SelectionDAG &DAG) const { 4422 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4423 if (!IsData) 4424 // Just preserve the chain. 4425 return Op.getOperand(0); 4426 4427 SDLoc DL(Op); 4428 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4429 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4430 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4431 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4432 Op.getOperand(1)}; 4433 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4434 Node->getVTList(), Ops, 4435 Node->getMemoryVT(), Node->getMemOperand()); 4436 } 4437 4438 // Convert condition code in CCReg to an i32 value. 4439 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4440 SDLoc DL(CCReg); 4441 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4442 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4443 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4444 } 4445 4446 SDValue 4447 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4448 SelectionDAG &DAG) const { 4449 unsigned Opcode, CCValid; 4450 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4451 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4452 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4453 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4454 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4455 return SDValue(); 4456 } 4457 4458 return SDValue(); 4459 } 4460 4461 SDValue 4462 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4463 SelectionDAG &DAG) const { 4464 unsigned Opcode, CCValid; 4465 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4466 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4467 if (Op->getNumValues() == 1) 4468 return getCCResult(DAG, SDValue(Node, 0)); 4469 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4470 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4471 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4472 } 4473 4474 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4475 switch (Id) { 4476 case Intrinsic::thread_pointer: 4477 return lowerThreadPointer(SDLoc(Op), DAG); 4478 4479 case Intrinsic::s390_vpdi: 4480 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4481 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4482 4483 case Intrinsic::s390_vperm: 4484 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4485 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4486 4487 case Intrinsic::s390_vuphb: 4488 case Intrinsic::s390_vuphh: 4489 case Intrinsic::s390_vuphf: 4490 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4491 Op.getOperand(1)); 4492 4493 case Intrinsic::s390_vuplhb: 4494 case Intrinsic::s390_vuplhh: 4495 case Intrinsic::s390_vuplhf: 4496 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4497 Op.getOperand(1)); 4498 4499 case Intrinsic::s390_vuplb: 4500 case Intrinsic::s390_vuplhw: 4501 case Intrinsic::s390_vuplf: 4502 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4503 Op.getOperand(1)); 4504 4505 case Intrinsic::s390_vupllb: 4506 case Intrinsic::s390_vupllh: 4507 case Intrinsic::s390_vupllf: 4508 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4509 Op.getOperand(1)); 4510 4511 case Intrinsic::s390_vsumb: 4512 case Intrinsic::s390_vsumh: 4513 case Intrinsic::s390_vsumgh: 4514 case Intrinsic::s390_vsumgf: 4515 case Intrinsic::s390_vsumqf: 4516 case Intrinsic::s390_vsumqg: 4517 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4518 Op.getOperand(1), Op.getOperand(2)); 4519 } 4520 4521 return SDValue(); 4522 } 4523 4524 namespace { 4525 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4526 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4527 // Operand is the constant third operand, otherwise it is the number of 4528 // bytes in each element of the result. 4529 struct Permute { 4530 unsigned Opcode; 4531 unsigned Operand; 4532 unsigned char Bytes[SystemZ::VectorBytes]; 4533 }; 4534 } 4535 4536 static const Permute PermuteForms[] = { 4537 // VMRHG 4538 { SystemZISD::MERGE_HIGH, 8, 4539 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4540 // VMRHF 4541 { SystemZISD::MERGE_HIGH, 4, 4542 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4543 // VMRHH 4544 { SystemZISD::MERGE_HIGH, 2, 4545 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4546 // VMRHB 4547 { SystemZISD::MERGE_HIGH, 1, 4548 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4549 // VMRLG 4550 { SystemZISD::MERGE_LOW, 8, 4551 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4552 // VMRLF 4553 { SystemZISD::MERGE_LOW, 4, 4554 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4555 // VMRLH 4556 { SystemZISD::MERGE_LOW, 2, 4557 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4558 // VMRLB 4559 { SystemZISD::MERGE_LOW, 1, 4560 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4561 // VPKG 4562 { SystemZISD::PACK, 4, 4563 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4564 // VPKF 4565 { SystemZISD::PACK, 2, 4566 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4567 // VPKH 4568 { SystemZISD::PACK, 1, 4569 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4570 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4571 { SystemZISD::PERMUTE_DWORDS, 4, 4572 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4573 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4574 { SystemZISD::PERMUTE_DWORDS, 1, 4575 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4576 }; 4577 4578 // Called after matching a vector shuffle against a particular pattern. 4579 // Both the original shuffle and the pattern have two vector operands. 4580 // OpNos[0] is the operand of the original shuffle that should be used for 4581 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4582 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4583 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4584 // for operands 0 and 1 of the pattern. 4585 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4586 if (OpNos[0] < 0) { 4587 if (OpNos[1] < 0) 4588 return false; 4589 OpNo0 = OpNo1 = OpNos[1]; 4590 } else if (OpNos[1] < 0) { 4591 OpNo0 = OpNo1 = OpNos[0]; 4592 } else { 4593 OpNo0 = OpNos[0]; 4594 OpNo1 = OpNos[1]; 4595 } 4596 return true; 4597 } 4598 4599 // Bytes is a VPERM-like permute vector, except that -1 is used for 4600 // undefined bytes. Return true if the VPERM can be implemented using P. 4601 // When returning true set OpNo0 to the VPERM operand that should be 4602 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4603 // 4604 // For example, if swapping the VPERM operands allows P to match, OpNo0 4605 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4606 // operand, but rewriting it to use two duplicated operands allows it to 4607 // match P, then OpNo0 and OpNo1 will be the same. 4608 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4609 unsigned &OpNo0, unsigned &OpNo1) { 4610 int OpNos[] = { -1, -1 }; 4611 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4612 int Elt = Bytes[I]; 4613 if (Elt >= 0) { 4614 // Make sure that the two permute vectors use the same suboperand 4615 // byte number. Only the operand numbers (the high bits) are 4616 // allowed to differ. 4617 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4618 return false; 4619 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4620 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4621 // Make sure that the operand mappings are consistent with previous 4622 // elements. 4623 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4624 return false; 4625 OpNos[ModelOpNo] = RealOpNo; 4626 } 4627 } 4628 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4629 } 4630 4631 // As above, but search for a matching permute. 4632 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4633 unsigned &OpNo0, unsigned &OpNo1) { 4634 for (auto &P : PermuteForms) 4635 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4636 return &P; 4637 return nullptr; 4638 } 4639 4640 // Bytes is a VPERM-like permute vector, except that -1 is used for 4641 // undefined bytes. This permute is an operand of an outer permute. 4642 // See whether redistributing the -1 bytes gives a shuffle that can be 4643 // implemented using P. If so, set Transform to a VPERM-like permute vector 4644 // that, when applied to the result of P, gives the original permute in Bytes. 4645 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4646 const Permute &P, 4647 SmallVectorImpl<int> &Transform) { 4648 unsigned To = 0; 4649 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4650 int Elt = Bytes[From]; 4651 if (Elt < 0) 4652 // Byte number From of the result is undefined. 4653 Transform[From] = -1; 4654 else { 4655 while (P.Bytes[To] != Elt) { 4656 To += 1; 4657 if (To == SystemZ::VectorBytes) 4658 return false; 4659 } 4660 Transform[From] = To; 4661 } 4662 } 4663 return true; 4664 } 4665 4666 // As above, but search for a matching permute. 4667 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4668 SmallVectorImpl<int> &Transform) { 4669 for (auto &P : PermuteForms) 4670 if (matchDoublePermute(Bytes, P, Transform)) 4671 return &P; 4672 return nullptr; 4673 } 4674 4675 // Convert the mask of the given shuffle op into a byte-level mask, 4676 // as if it had type vNi8. 4677 static bool getVPermMask(SDValue ShuffleOp, 4678 SmallVectorImpl<int> &Bytes) { 4679 EVT VT = ShuffleOp.getValueType(); 4680 unsigned NumElements = VT.getVectorNumElements(); 4681 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4682 4683 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4684 Bytes.resize(NumElements * BytesPerElement, -1); 4685 for (unsigned I = 0; I < NumElements; ++I) { 4686 int Index = VSN->getMaskElt(I); 4687 if (Index >= 0) 4688 for (unsigned J = 0; J < BytesPerElement; ++J) 4689 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4690 } 4691 return true; 4692 } 4693 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4694 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4695 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4696 Bytes.resize(NumElements * BytesPerElement, -1); 4697 for (unsigned I = 0; I < NumElements; ++I) 4698 for (unsigned J = 0; J < BytesPerElement; ++J) 4699 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4700 return true; 4701 } 4702 return false; 4703 } 4704 4705 // Bytes is a VPERM-like permute vector, except that -1 is used for 4706 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4707 // the result come from a contiguous sequence of bytes from one input. 4708 // Set Base to the selector for the first byte if so. 4709 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4710 unsigned BytesPerElement, int &Base) { 4711 Base = -1; 4712 for (unsigned I = 0; I < BytesPerElement; ++I) { 4713 if (Bytes[Start + I] >= 0) { 4714 unsigned Elem = Bytes[Start + I]; 4715 if (Base < 0) { 4716 Base = Elem - I; 4717 // Make sure the bytes would come from one input operand. 4718 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4719 return false; 4720 } else if (unsigned(Base) != Elem - I) 4721 return false; 4722 } 4723 } 4724 return true; 4725 } 4726 4727 // Bytes is a VPERM-like permute vector, except that -1 is used for 4728 // undefined bytes. Return true if it can be performed using VSLDB. 4729 // When returning true, set StartIndex to the shift amount and OpNo0 4730 // and OpNo1 to the VPERM operands that should be used as the first 4731 // and second shift operand respectively. 4732 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4733 unsigned &StartIndex, unsigned &OpNo0, 4734 unsigned &OpNo1) { 4735 int OpNos[] = { -1, -1 }; 4736 int Shift = -1; 4737 for (unsigned I = 0; I < 16; ++I) { 4738 int Index = Bytes[I]; 4739 if (Index >= 0) { 4740 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4741 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4742 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4743 if (Shift < 0) 4744 Shift = ExpectedShift; 4745 else if (Shift != ExpectedShift) 4746 return false; 4747 // Make sure that the operand mappings are consistent with previous 4748 // elements. 4749 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4750 return false; 4751 OpNos[ModelOpNo] = RealOpNo; 4752 } 4753 } 4754 StartIndex = Shift; 4755 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4756 } 4757 4758 // Create a node that performs P on operands Op0 and Op1, casting the 4759 // operands to the appropriate type. The type of the result is determined by P. 4760 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4761 const Permute &P, SDValue Op0, SDValue Op1) { 4762 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4763 // elements of a PACK are twice as wide as the outputs. 4764 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4765 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4766 P.Operand); 4767 // Cast both operands to the appropriate type. 4768 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4769 SystemZ::VectorBytes / InBytes); 4770 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4771 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4772 SDValue Op; 4773 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4774 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4775 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4776 } else if (P.Opcode == SystemZISD::PACK) { 4777 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4778 SystemZ::VectorBytes / P.Operand); 4779 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4780 } else { 4781 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4782 } 4783 return Op; 4784 } 4785 4786 static bool isZeroVector(SDValue N) { 4787 if (N->getOpcode() == ISD::BITCAST) 4788 N = N->getOperand(0); 4789 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4790 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4791 return Op->getZExtValue() == 0; 4792 return ISD::isBuildVectorAllZeros(N.getNode()); 4793 } 4794 4795 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4796 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4797 for (unsigned I = 0; I < Num ; I++) 4798 if (isZeroVector(Ops[I])) 4799 return I; 4800 return UINT32_MAX; 4801 } 4802 4803 // Bytes is a VPERM-like permute vector, except that -1 is used for 4804 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4805 // VSLDB or VPERM. 4806 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4807 SDValue *Ops, 4808 const SmallVectorImpl<int> &Bytes) { 4809 for (unsigned I = 0; I < 2; ++I) 4810 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4811 4812 // First see whether VSLDB can be used. 4813 unsigned StartIndex, OpNo0, OpNo1; 4814 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4815 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4816 Ops[OpNo1], 4817 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4818 4819 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4820 // eliminate a zero vector by reusing any zero index in the permute vector. 4821 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4822 if (ZeroVecIdx != UINT32_MAX) { 4823 bool MaskFirst = true; 4824 int ZeroIdx = -1; 4825 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4826 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4827 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4828 if (OpNo == ZeroVecIdx && I == 0) { 4829 // If the first byte is zero, use mask as first operand. 4830 ZeroIdx = 0; 4831 break; 4832 } 4833 if (OpNo != ZeroVecIdx && Byte == 0) { 4834 // If mask contains a zero, use it by placing that vector first. 4835 ZeroIdx = I + SystemZ::VectorBytes; 4836 MaskFirst = false; 4837 break; 4838 } 4839 } 4840 if (ZeroIdx != -1) { 4841 SDValue IndexNodes[SystemZ::VectorBytes]; 4842 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4843 if (Bytes[I] >= 0) { 4844 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4845 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4846 if (OpNo == ZeroVecIdx) 4847 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4848 else { 4849 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4850 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4851 } 4852 } else 4853 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4854 } 4855 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4856 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4857 if (MaskFirst) 4858 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4859 Mask); 4860 else 4861 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4862 Mask); 4863 } 4864 } 4865 4866 SDValue IndexNodes[SystemZ::VectorBytes]; 4867 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4868 if (Bytes[I] >= 0) 4869 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4870 else 4871 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4872 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4873 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4874 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4875 } 4876 4877 namespace { 4878 // Describes a general N-operand vector shuffle. 4879 struct GeneralShuffle { 4880 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4881 void addUndef(); 4882 bool add(SDValue, unsigned); 4883 SDValue getNode(SelectionDAG &, const SDLoc &); 4884 void tryPrepareForUnpack(); 4885 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4886 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4887 4888 // The operands of the shuffle. 4889 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4890 4891 // Index I is -1 if byte I of the result is undefined. Otherwise the 4892 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4893 // Bytes[I] / SystemZ::VectorBytes. 4894 SmallVector<int, SystemZ::VectorBytes> Bytes; 4895 4896 // The type of the shuffle result. 4897 EVT VT; 4898 4899 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4900 unsigned UnpackFromEltSize; 4901 }; 4902 } 4903 4904 // Add an extra undefined element to the shuffle. 4905 void GeneralShuffle::addUndef() { 4906 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4907 for (unsigned I = 0; I < BytesPerElement; ++I) 4908 Bytes.push_back(-1); 4909 } 4910 4911 // Add an extra element to the shuffle, taking it from element Elem of Op. 4912 // A null Op indicates a vector input whose value will be calculated later; 4913 // there is at most one such input per shuffle and it always has the same 4914 // type as the result. Aborts and returns false if the source vector elements 4915 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4916 // LLVM they become implicitly extended, but this is rare and not optimized. 4917 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4918 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4919 4920 // The source vector can have wider elements than the result, 4921 // either through an explicit TRUNCATE or because of type legalization. 4922 // We want the least significant part. 4923 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4924 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4925 4926 // Return false if the source elements are smaller than their destination 4927 // elements. 4928 if (FromBytesPerElement < BytesPerElement) 4929 return false; 4930 4931 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4932 (FromBytesPerElement - BytesPerElement)); 4933 4934 // Look through things like shuffles and bitcasts. 4935 while (Op.getNode()) { 4936 if (Op.getOpcode() == ISD::BITCAST) 4937 Op = Op.getOperand(0); 4938 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4939 // See whether the bytes we need come from a contiguous part of one 4940 // operand. 4941 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4942 if (!getVPermMask(Op, OpBytes)) 4943 break; 4944 int NewByte; 4945 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4946 break; 4947 if (NewByte < 0) { 4948 addUndef(); 4949 return true; 4950 } 4951 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4952 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4953 } else if (Op.isUndef()) { 4954 addUndef(); 4955 return true; 4956 } else 4957 break; 4958 } 4959 4960 // Make sure that the source of the extraction is in Ops. 4961 unsigned OpNo = 0; 4962 for (; OpNo < Ops.size(); ++OpNo) 4963 if (Ops[OpNo] == Op) 4964 break; 4965 if (OpNo == Ops.size()) 4966 Ops.push_back(Op); 4967 4968 // Add the element to Bytes. 4969 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4970 for (unsigned I = 0; I < BytesPerElement; ++I) 4971 Bytes.push_back(Base + I); 4972 4973 return true; 4974 } 4975 4976 // Return SDNodes for the completed shuffle. 4977 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4978 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4979 4980 if (Ops.size() == 0) 4981 return DAG.getUNDEF(VT); 4982 4983 // Use a single unpack if possible as the last operation. 4984 tryPrepareForUnpack(); 4985 4986 // Make sure that there are at least two shuffle operands. 4987 if (Ops.size() == 1) 4988 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4989 4990 // Create a tree of shuffles, deferring root node until after the loop. 4991 // Try to redistribute the undefined elements of non-root nodes so that 4992 // the non-root shuffles match something like a pack or merge, then adjust 4993 // the parent node's permute vector to compensate for the new order. 4994 // Among other things, this copes with vectors like <2 x i16> that were 4995 // padded with undefined elements during type legalization. 4996 // 4997 // In the best case this redistribution will lead to the whole tree 4998 // using packs and merges. It should rarely be a loss in other cases. 4999 unsigned Stride = 1; 5000 for (; Stride * 2 < Ops.size(); Stride *= 2) { 5001 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 5002 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 5003 5004 // Create a mask for just these two operands. 5005 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 5006 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5007 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 5008 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 5009 if (OpNo == I) 5010 NewBytes[J] = Byte; 5011 else if (OpNo == I + Stride) 5012 NewBytes[J] = SystemZ::VectorBytes + Byte; 5013 else 5014 NewBytes[J] = -1; 5015 } 5016 // See if it would be better to reorganize NewMask to avoid using VPERM. 5017 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 5018 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 5019 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 5020 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 5021 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 5022 if (NewBytes[J] >= 0) { 5023 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 5024 "Invalid double permute"); 5025 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 5026 } else 5027 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 5028 } 5029 } else { 5030 // Just use NewBytes on the operands. 5031 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 5032 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 5033 if (NewBytes[J] >= 0) 5034 Bytes[J] = I * SystemZ::VectorBytes + J; 5035 } 5036 } 5037 } 5038 5039 // Now we just have 2 inputs. Put the second operand in Ops[1]. 5040 if (Stride > 1) { 5041 Ops[1] = Ops[Stride]; 5042 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5043 if (Bytes[I] >= int(SystemZ::VectorBytes)) 5044 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 5045 } 5046 5047 // Look for an instruction that can do the permute without resorting 5048 // to VPERM. 5049 unsigned OpNo0, OpNo1; 5050 SDValue Op; 5051 if (unpackWasPrepared() && Ops[1].isUndef()) 5052 Op = Ops[0]; 5053 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 5054 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 5055 else 5056 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 5057 5058 Op = insertUnpackIfPrepared(DAG, DL, Op); 5059 5060 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5061 } 5062 5063 #ifndef NDEBUG 5064 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 5065 dbgs() << Msg.c_str() << " { "; 5066 for (unsigned i = 0; i < Bytes.size(); i++) 5067 dbgs() << Bytes[i] << " "; 5068 dbgs() << "}\n"; 5069 } 5070 #endif 5071 5072 // If the Bytes vector matches an unpack operation, prepare to do the unpack 5073 // after all else by removing the zero vector and the effect of the unpack on 5074 // Bytes. 5075 void GeneralShuffle::tryPrepareForUnpack() { 5076 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 5077 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 5078 return; 5079 5080 // Only do this if removing the zero vector reduces the depth, otherwise 5081 // the critical path will increase with the final unpack. 5082 if (Ops.size() > 2 && 5083 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 5084 return; 5085 5086 // Find an unpack that would allow removing the zero vector from Ops. 5087 UnpackFromEltSize = 1; 5088 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 5089 bool MatchUnpack = true; 5090 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 5091 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 5092 unsigned ToEltSize = UnpackFromEltSize * 2; 5093 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 5094 if (!IsZextByte) 5095 SrcBytes.push_back(Bytes[Elt]); 5096 if (Bytes[Elt] != -1) { 5097 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 5098 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 5099 MatchUnpack = false; 5100 break; 5101 } 5102 } 5103 } 5104 if (MatchUnpack) { 5105 if (Ops.size() == 2) { 5106 // Don't use unpack if a single source operand needs rearrangement. 5107 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 5108 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 5109 UnpackFromEltSize = UINT_MAX; 5110 return; 5111 } 5112 } 5113 break; 5114 } 5115 } 5116 if (UnpackFromEltSize > 4) 5117 return; 5118 5119 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 5120 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 5121 << ".\n"; 5122 dumpBytes(Bytes, "Original Bytes vector:");); 5123 5124 // Apply the unpack in reverse to the Bytes array. 5125 unsigned B = 0; 5126 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 5127 Elt += UnpackFromEltSize; 5128 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 5129 Bytes[B] = Bytes[Elt]; 5130 } 5131 while (B < SystemZ::VectorBytes) 5132 Bytes[B++] = -1; 5133 5134 // Remove the zero vector from Ops 5135 Ops.erase(&Ops[ZeroVecOpNo]); 5136 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5137 if (Bytes[I] >= 0) { 5138 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5139 if (OpNo > ZeroVecOpNo) 5140 Bytes[I] -= SystemZ::VectorBytes; 5141 } 5142 5143 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 5144 dbgs() << "\n";); 5145 } 5146 5147 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 5148 const SDLoc &DL, 5149 SDValue Op) { 5150 if (!unpackWasPrepared()) 5151 return Op; 5152 unsigned InBits = UnpackFromEltSize * 8; 5153 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 5154 SystemZ::VectorBits / InBits); 5155 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 5156 unsigned OutBits = InBits * 2; 5157 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 5158 SystemZ::VectorBits / OutBits); 5159 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 5160 } 5161 5162 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 5163 static bool isScalarToVector(SDValue Op) { 5164 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 5165 if (!Op.getOperand(I).isUndef()) 5166 return false; 5167 return true; 5168 } 5169 5170 // Return a vector of type VT that contains Value in the first element. 5171 // The other elements don't matter. 5172 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5173 SDValue Value) { 5174 // If we have a constant, replicate it to all elements and let the 5175 // BUILD_VECTOR lowering take care of it. 5176 if (Value.getOpcode() == ISD::Constant || 5177 Value.getOpcode() == ISD::ConstantFP) { 5178 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 5179 return DAG.getBuildVector(VT, DL, Ops); 5180 } 5181 if (Value.isUndef()) 5182 return DAG.getUNDEF(VT); 5183 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5184 } 5185 5186 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5187 // element 1. Used for cases in which replication is cheap. 5188 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5189 SDValue Op0, SDValue Op1) { 5190 if (Op0.isUndef()) { 5191 if (Op1.isUndef()) 5192 return DAG.getUNDEF(VT); 5193 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5194 } 5195 if (Op1.isUndef()) 5196 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5197 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5198 buildScalarToVector(DAG, DL, VT, Op0), 5199 buildScalarToVector(DAG, DL, VT, Op1)); 5200 } 5201 5202 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5203 // vector for them. 5204 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5205 SDValue Op1) { 5206 if (Op0.isUndef() && Op1.isUndef()) 5207 return DAG.getUNDEF(MVT::v2i64); 5208 // If one of the two inputs is undefined then replicate the other one, 5209 // in order to avoid using another register unnecessarily. 5210 if (Op0.isUndef()) 5211 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5212 else if (Op1.isUndef()) 5213 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5214 else { 5215 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5216 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5217 } 5218 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5219 } 5220 5221 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5222 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5223 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5224 // would benefit from this representation and return it if so. 5225 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5226 BuildVectorSDNode *BVN) { 5227 EVT VT = BVN->getValueType(0); 5228 unsigned NumElements = VT.getVectorNumElements(); 5229 5230 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5231 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5232 // need a BUILD_VECTOR, add an additional placeholder operand for that 5233 // BUILD_VECTOR and store its operands in ResidueOps. 5234 GeneralShuffle GS(VT); 5235 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5236 bool FoundOne = false; 5237 for (unsigned I = 0; I < NumElements; ++I) { 5238 SDValue Op = BVN->getOperand(I); 5239 if (Op.getOpcode() == ISD::TRUNCATE) 5240 Op = Op.getOperand(0); 5241 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5242 Op.getOperand(1).getOpcode() == ISD::Constant) { 5243 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5244 if (!GS.add(Op.getOperand(0), Elem)) 5245 return SDValue(); 5246 FoundOne = true; 5247 } else if (Op.isUndef()) { 5248 GS.addUndef(); 5249 } else { 5250 if (!GS.add(SDValue(), ResidueOps.size())) 5251 return SDValue(); 5252 ResidueOps.push_back(BVN->getOperand(I)); 5253 } 5254 } 5255 5256 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5257 if (!FoundOne) 5258 return SDValue(); 5259 5260 // Create the BUILD_VECTOR for the remaining elements, if any. 5261 if (!ResidueOps.empty()) { 5262 while (ResidueOps.size() < NumElements) 5263 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5264 for (auto &Op : GS.Ops) { 5265 if (!Op.getNode()) { 5266 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5267 break; 5268 } 5269 } 5270 } 5271 return GS.getNode(DAG, SDLoc(BVN)); 5272 } 5273 5274 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5275 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5276 return true; 5277 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5278 return true; 5279 return false; 5280 } 5281 5282 // Combine GPR scalar values Elems into a vector of type VT. 5283 SDValue 5284 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5285 SmallVectorImpl<SDValue> &Elems) const { 5286 // See whether there is a single replicated value. 5287 SDValue Single; 5288 unsigned int NumElements = Elems.size(); 5289 unsigned int Count = 0; 5290 for (auto Elem : Elems) { 5291 if (!Elem.isUndef()) { 5292 if (!Single.getNode()) 5293 Single = Elem; 5294 else if (Elem != Single) { 5295 Single = SDValue(); 5296 break; 5297 } 5298 Count += 1; 5299 } 5300 } 5301 // There are three cases here: 5302 // 5303 // - if the only defined element is a loaded one, the best sequence 5304 // is a replicating load. 5305 // 5306 // - otherwise, if the only defined element is an i64 value, we will 5307 // end up with the same VLVGP sequence regardless of whether we short-cut 5308 // for replication or fall through to the later code. 5309 // 5310 // - otherwise, if the only defined element is an i32 or smaller value, 5311 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5312 // This is only a win if the single defined element is used more than once. 5313 // In other cases we're better off using a single VLVGx. 5314 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5315 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5316 5317 // If all elements are loads, use VLREP/VLEs (below). 5318 bool AllLoads = true; 5319 for (auto Elem : Elems) 5320 if (!isVectorElementLoad(Elem)) { 5321 AllLoads = false; 5322 break; 5323 } 5324 5325 // The best way of building a v2i64 from two i64s is to use VLVGP. 5326 if (VT == MVT::v2i64 && !AllLoads) 5327 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5328 5329 // Use a 64-bit merge high to combine two doubles. 5330 if (VT == MVT::v2f64 && !AllLoads) 5331 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5332 5333 // Build v4f32 values directly from the FPRs: 5334 // 5335 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5336 // V V VMRHF 5337 // <ABxx> <CDxx> 5338 // V VMRHG 5339 // <ABCD> 5340 if (VT == MVT::v4f32 && !AllLoads) { 5341 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5342 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5343 // Avoid unnecessary undefs by reusing the other operand. 5344 if (Op01.isUndef()) 5345 Op01 = Op23; 5346 else if (Op23.isUndef()) 5347 Op23 = Op01; 5348 // Merging identical replications is a no-op. 5349 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5350 return Op01; 5351 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5352 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5353 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5354 DL, MVT::v2i64, Op01, Op23); 5355 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5356 } 5357 5358 // Collect the constant terms. 5359 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5360 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5361 5362 unsigned NumConstants = 0; 5363 for (unsigned I = 0; I < NumElements; ++I) { 5364 SDValue Elem = Elems[I]; 5365 if (Elem.getOpcode() == ISD::Constant || 5366 Elem.getOpcode() == ISD::ConstantFP) { 5367 NumConstants += 1; 5368 Constants[I] = Elem; 5369 Done[I] = true; 5370 } 5371 } 5372 // If there was at least one constant, fill in the other elements of 5373 // Constants with undefs to get a full vector constant and use that 5374 // as the starting point. 5375 SDValue Result; 5376 SDValue ReplicatedVal; 5377 if (NumConstants > 0) { 5378 for (unsigned I = 0; I < NumElements; ++I) 5379 if (!Constants[I].getNode()) 5380 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5381 Result = DAG.getBuildVector(VT, DL, Constants); 5382 } else { 5383 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5384 // avoid a false dependency on any previous contents of the vector 5385 // register. 5386 5387 // Use a VLREP if at least one element is a load. Make sure to replicate 5388 // the load with the most elements having its value. 5389 std::map<const SDNode*, unsigned> UseCounts; 5390 SDNode *LoadMaxUses = nullptr; 5391 for (unsigned I = 0; I < NumElements; ++I) 5392 if (isVectorElementLoad(Elems[I])) { 5393 SDNode *Ld = Elems[I].getNode(); 5394 UseCounts[Ld]++; 5395 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5396 LoadMaxUses = Ld; 5397 } 5398 if (LoadMaxUses != nullptr) { 5399 ReplicatedVal = SDValue(LoadMaxUses, 0); 5400 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5401 } else { 5402 // Try to use VLVGP. 5403 unsigned I1 = NumElements / 2 - 1; 5404 unsigned I2 = NumElements - 1; 5405 bool Def1 = !Elems[I1].isUndef(); 5406 bool Def2 = !Elems[I2].isUndef(); 5407 if (Def1 || Def2) { 5408 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5409 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5410 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5411 joinDwords(DAG, DL, Elem1, Elem2)); 5412 Done[I1] = true; 5413 Done[I2] = true; 5414 } else 5415 Result = DAG.getUNDEF(VT); 5416 } 5417 } 5418 5419 // Use VLVGx to insert the other elements. 5420 for (unsigned I = 0; I < NumElements; ++I) 5421 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5422 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5423 DAG.getConstant(I, DL, MVT::i32)); 5424 return Result; 5425 } 5426 5427 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5428 SelectionDAG &DAG) const { 5429 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5430 SDLoc DL(Op); 5431 EVT VT = Op.getValueType(); 5432 5433 if (BVN->isConstant()) { 5434 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5435 return Op; 5436 5437 // Fall back to loading it from memory. 5438 return SDValue(); 5439 } 5440 5441 // See if we should use shuffles to construct the vector from other vectors. 5442 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5443 return Res; 5444 5445 // Detect SCALAR_TO_VECTOR conversions. 5446 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5447 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5448 5449 // Otherwise use buildVector to build the vector up from GPRs. 5450 unsigned NumElements = Op.getNumOperands(); 5451 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5452 for (unsigned I = 0; I < NumElements; ++I) 5453 Ops[I] = Op.getOperand(I); 5454 return buildVector(DAG, DL, VT, Ops); 5455 } 5456 5457 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5458 SelectionDAG &DAG) const { 5459 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5460 SDLoc DL(Op); 5461 EVT VT = Op.getValueType(); 5462 unsigned NumElements = VT.getVectorNumElements(); 5463 5464 if (VSN->isSplat()) { 5465 SDValue Op0 = Op.getOperand(0); 5466 unsigned Index = VSN->getSplatIndex(); 5467 assert(Index < VT.getVectorNumElements() && 5468 "Splat index should be defined and in first operand"); 5469 // See whether the value we're splatting is directly available as a scalar. 5470 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5471 Op0.getOpcode() == ISD::BUILD_VECTOR) 5472 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5473 // Otherwise keep it as a vector-to-vector operation. 5474 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5475 DAG.getTargetConstant(Index, DL, MVT::i32)); 5476 } 5477 5478 GeneralShuffle GS(VT); 5479 for (unsigned I = 0; I < NumElements; ++I) { 5480 int Elt = VSN->getMaskElt(I); 5481 if (Elt < 0) 5482 GS.addUndef(); 5483 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5484 unsigned(Elt) % NumElements)) 5485 return SDValue(); 5486 } 5487 return GS.getNode(DAG, SDLoc(VSN)); 5488 } 5489 5490 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5491 SelectionDAG &DAG) const { 5492 SDLoc DL(Op); 5493 // Just insert the scalar into element 0 of an undefined vector. 5494 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5495 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5496 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5497 } 5498 5499 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5500 SelectionDAG &DAG) const { 5501 // Handle insertions of floating-point values. 5502 SDLoc DL(Op); 5503 SDValue Op0 = Op.getOperand(0); 5504 SDValue Op1 = Op.getOperand(1); 5505 SDValue Op2 = Op.getOperand(2); 5506 EVT VT = Op.getValueType(); 5507 5508 // Insertions into constant indices of a v2f64 can be done using VPDI. 5509 // However, if the inserted value is a bitcast or a constant then it's 5510 // better to use GPRs, as below. 5511 if (VT == MVT::v2f64 && 5512 Op1.getOpcode() != ISD::BITCAST && 5513 Op1.getOpcode() != ISD::ConstantFP && 5514 Op2.getOpcode() == ISD::Constant) { 5515 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5516 unsigned Mask = VT.getVectorNumElements() - 1; 5517 if (Index <= Mask) 5518 return Op; 5519 } 5520 5521 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5522 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5523 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5524 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5525 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5526 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5527 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5528 } 5529 5530 SDValue 5531 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5532 SelectionDAG &DAG) const { 5533 // Handle extractions of floating-point values. 5534 SDLoc DL(Op); 5535 SDValue Op0 = Op.getOperand(0); 5536 SDValue Op1 = Op.getOperand(1); 5537 EVT VT = Op.getValueType(); 5538 EVT VecVT = Op0.getValueType(); 5539 5540 // Extractions of constant indices can be done directly. 5541 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5542 uint64_t Index = CIndexN->getZExtValue(); 5543 unsigned Mask = VecVT.getVectorNumElements() - 1; 5544 if (Index <= Mask) 5545 return Op; 5546 } 5547 5548 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5549 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5550 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5551 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5552 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5553 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5554 } 5555 5556 SDValue SystemZTargetLowering:: 5557 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5558 SDValue PackedOp = Op.getOperand(0); 5559 EVT OutVT = Op.getValueType(); 5560 EVT InVT = PackedOp.getValueType(); 5561 unsigned ToBits = OutVT.getScalarSizeInBits(); 5562 unsigned FromBits = InVT.getScalarSizeInBits(); 5563 do { 5564 FromBits *= 2; 5565 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5566 SystemZ::VectorBits / FromBits); 5567 PackedOp = 5568 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5569 } while (FromBits != ToBits); 5570 return PackedOp; 5571 } 5572 5573 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5574 SDValue SystemZTargetLowering:: 5575 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5576 SDValue PackedOp = Op.getOperand(0); 5577 SDLoc DL(Op); 5578 EVT OutVT = Op.getValueType(); 5579 EVT InVT = PackedOp.getValueType(); 5580 unsigned InNumElts = InVT.getVectorNumElements(); 5581 unsigned OutNumElts = OutVT.getVectorNumElements(); 5582 unsigned NumInPerOut = InNumElts / OutNumElts; 5583 5584 SDValue ZeroVec = 5585 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5586 5587 SmallVector<int, 16> Mask(InNumElts); 5588 unsigned ZeroVecElt = InNumElts; 5589 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5590 unsigned MaskElt = PackedElt * NumInPerOut; 5591 unsigned End = MaskElt + NumInPerOut - 1; 5592 for (; MaskElt < End; MaskElt++) 5593 Mask[MaskElt] = ZeroVecElt++; 5594 Mask[MaskElt] = PackedElt; 5595 } 5596 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5597 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5598 } 5599 5600 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5601 unsigned ByScalar) const { 5602 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5603 SDValue Op0 = Op.getOperand(0); 5604 SDValue Op1 = Op.getOperand(1); 5605 SDLoc DL(Op); 5606 EVT VT = Op.getValueType(); 5607 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5608 5609 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5610 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5611 APInt SplatBits, SplatUndef; 5612 unsigned SplatBitSize; 5613 bool HasAnyUndefs; 5614 // Check for constant splats. Use ElemBitSize as the minimum element 5615 // width and reject splats that need wider elements. 5616 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5617 ElemBitSize, true) && 5618 SplatBitSize == ElemBitSize) { 5619 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5620 DL, MVT::i32); 5621 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5622 } 5623 // Check for variable splats. 5624 BitVector UndefElements; 5625 SDValue Splat = BVN->getSplatValue(&UndefElements); 5626 if (Splat) { 5627 // Since i32 is the smallest legal type, we either need a no-op 5628 // or a truncation. 5629 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5630 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5631 } 5632 } 5633 5634 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5635 // and the shift amount is directly available in a GPR. 5636 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5637 if (VSN->isSplat()) { 5638 SDValue VSNOp0 = VSN->getOperand(0); 5639 unsigned Index = VSN->getSplatIndex(); 5640 assert(Index < VT.getVectorNumElements() && 5641 "Splat index should be defined and in first operand"); 5642 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5643 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5644 // Since i32 is the smallest legal type, we either need a no-op 5645 // or a truncation. 5646 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5647 VSNOp0.getOperand(Index)); 5648 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5649 } 5650 } 5651 } 5652 5653 // Otherwise just treat the current form as legal. 5654 return Op; 5655 } 5656 5657 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, 5658 SelectionDAG &DAG) const { 5659 SDLoc DL(Op); 5660 MVT ResultVT = Op.getSimpleValueType(); 5661 SDValue Arg = Op.getOperand(0); 5662 auto CNode = cast<ConstantSDNode>(Op.getOperand(1)); 5663 unsigned Check = CNode->getZExtValue(); 5664 5665 unsigned TDCMask = 0; 5666 if (Check & fcSNan) 5667 TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; 5668 if (Check & fcQNan) 5669 TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; 5670 if (Check & fcPosInf) 5671 TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; 5672 if (Check & fcNegInf) 5673 TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; 5674 if (Check & fcPosNormal) 5675 TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; 5676 if (Check & fcNegNormal) 5677 TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; 5678 if (Check & fcPosSubnormal) 5679 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; 5680 if (Check & fcNegSubnormal) 5681 TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; 5682 if (Check & fcPosZero) 5683 TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; 5684 if (Check & fcNegZero) 5685 TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; 5686 SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64); 5687 5688 SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV); 5689 return getCCResult(DAG, Intr); 5690 } 5691 5692 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5693 SelectionDAG &DAG) const { 5694 switch (Op.getOpcode()) { 5695 case ISD::FRAMEADDR: 5696 return lowerFRAMEADDR(Op, DAG); 5697 case ISD::RETURNADDR: 5698 return lowerRETURNADDR(Op, DAG); 5699 case ISD::BR_CC: 5700 return lowerBR_CC(Op, DAG); 5701 case ISD::SELECT_CC: 5702 return lowerSELECT_CC(Op, DAG); 5703 case ISD::SETCC: 5704 return lowerSETCC(Op, DAG); 5705 case ISD::STRICT_FSETCC: 5706 return lowerSTRICT_FSETCC(Op, DAG, false); 5707 case ISD::STRICT_FSETCCS: 5708 return lowerSTRICT_FSETCC(Op, DAG, true); 5709 case ISD::GlobalAddress: 5710 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5711 case ISD::GlobalTLSAddress: 5712 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5713 case ISD::BlockAddress: 5714 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5715 case ISD::JumpTable: 5716 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5717 case ISD::ConstantPool: 5718 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5719 case ISD::BITCAST: 5720 return lowerBITCAST(Op, DAG); 5721 case ISD::VASTART: 5722 return lowerVASTART(Op, DAG); 5723 case ISD::VACOPY: 5724 return lowerVACOPY(Op, DAG); 5725 case ISD::DYNAMIC_STACKALLOC: 5726 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5727 case ISD::GET_DYNAMIC_AREA_OFFSET: 5728 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5729 case ISD::SMUL_LOHI: 5730 return lowerSMUL_LOHI(Op, DAG); 5731 case ISD::UMUL_LOHI: 5732 return lowerUMUL_LOHI(Op, DAG); 5733 case ISD::SDIVREM: 5734 return lowerSDIVREM(Op, DAG); 5735 case ISD::UDIVREM: 5736 return lowerUDIVREM(Op, DAG); 5737 case ISD::SADDO: 5738 case ISD::SSUBO: 5739 case ISD::UADDO: 5740 case ISD::USUBO: 5741 return lowerXALUO(Op, DAG); 5742 case ISD::ADDCARRY: 5743 case ISD::SUBCARRY: 5744 return lowerADDSUBCARRY(Op, DAG); 5745 case ISD::OR: 5746 return lowerOR(Op, DAG); 5747 case ISD::CTPOP: 5748 return lowerCTPOP(Op, DAG); 5749 case ISD::ATOMIC_FENCE: 5750 return lowerATOMIC_FENCE(Op, DAG); 5751 case ISD::ATOMIC_SWAP: 5752 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5753 case ISD::ATOMIC_STORE: 5754 return lowerATOMIC_STORE(Op, DAG); 5755 case ISD::ATOMIC_LOAD: 5756 return lowerATOMIC_LOAD(Op, DAG); 5757 case ISD::ATOMIC_LOAD_ADD: 5758 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5759 case ISD::ATOMIC_LOAD_SUB: 5760 return lowerATOMIC_LOAD_SUB(Op, DAG); 5761 case ISD::ATOMIC_LOAD_AND: 5762 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5763 case ISD::ATOMIC_LOAD_OR: 5764 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5765 case ISD::ATOMIC_LOAD_XOR: 5766 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5767 case ISD::ATOMIC_LOAD_NAND: 5768 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5769 case ISD::ATOMIC_LOAD_MIN: 5770 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5771 case ISD::ATOMIC_LOAD_MAX: 5772 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5773 case ISD::ATOMIC_LOAD_UMIN: 5774 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5775 case ISD::ATOMIC_LOAD_UMAX: 5776 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5777 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5778 return lowerATOMIC_CMP_SWAP(Op, DAG); 5779 case ISD::STACKSAVE: 5780 return lowerSTACKSAVE(Op, DAG); 5781 case ISD::STACKRESTORE: 5782 return lowerSTACKRESTORE(Op, DAG); 5783 case ISD::PREFETCH: 5784 return lowerPREFETCH(Op, DAG); 5785 case ISD::INTRINSIC_W_CHAIN: 5786 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5787 case ISD::INTRINSIC_WO_CHAIN: 5788 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5789 case ISD::BUILD_VECTOR: 5790 return lowerBUILD_VECTOR(Op, DAG); 5791 case ISD::VECTOR_SHUFFLE: 5792 return lowerVECTOR_SHUFFLE(Op, DAG); 5793 case ISD::SCALAR_TO_VECTOR: 5794 return lowerSCALAR_TO_VECTOR(Op, DAG); 5795 case ISD::INSERT_VECTOR_ELT: 5796 return lowerINSERT_VECTOR_ELT(Op, DAG); 5797 case ISD::EXTRACT_VECTOR_ELT: 5798 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5799 case ISD::SIGN_EXTEND_VECTOR_INREG: 5800 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5801 case ISD::ZERO_EXTEND_VECTOR_INREG: 5802 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5803 case ISD::SHL: 5804 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5805 case ISD::SRL: 5806 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5807 case ISD::SRA: 5808 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5809 case ISD::IS_FPCLASS: 5810 return lowerIS_FPCLASS(Op, DAG); 5811 case ISD::GET_ROUNDING: 5812 return lowerGET_ROUNDING(Op, DAG); 5813 default: 5814 llvm_unreachable("Unexpected node to lower"); 5815 } 5816 } 5817 5818 // Lower operations with invalid operand or result types (currently used 5819 // only for 128-bit integer types). 5820 void 5821 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5822 SmallVectorImpl<SDValue> &Results, 5823 SelectionDAG &DAG) const { 5824 switch (N->getOpcode()) { 5825 case ISD::ATOMIC_LOAD: { 5826 SDLoc DL(N); 5827 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5828 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5829 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5830 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5831 DL, Tys, Ops, MVT::i128, MMO); 5832 Results.push_back(lowerGR128ToI128(DAG, Res)); 5833 Results.push_back(Res.getValue(1)); 5834 break; 5835 } 5836 case ISD::ATOMIC_STORE: { 5837 SDLoc DL(N); 5838 SDVTList Tys = DAG.getVTList(MVT::Other); 5839 SDValue Ops[] = { N->getOperand(0), 5840 lowerI128ToGR128(DAG, N->getOperand(2)), 5841 N->getOperand(1) }; 5842 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5843 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5844 DL, Tys, Ops, MVT::i128, MMO); 5845 // We have to enforce sequential consistency by performing a 5846 // serialization operation after the store. 5847 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 5848 AtomicOrdering::SequentiallyConsistent) 5849 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5850 MVT::Other, Res), 0); 5851 Results.push_back(Res); 5852 break; 5853 } 5854 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5855 SDLoc DL(N); 5856 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5857 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5858 lowerI128ToGR128(DAG, N->getOperand(2)), 5859 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5860 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5861 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5862 DL, Tys, Ops, MVT::i128, MMO); 5863 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5864 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5865 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5866 Results.push_back(lowerGR128ToI128(DAG, Res)); 5867 Results.push_back(Success); 5868 Results.push_back(Res.getValue(2)); 5869 break; 5870 } 5871 case ISD::BITCAST: { 5872 SDValue Src = N->getOperand(0); 5873 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 5874 !useSoftFloat()) { 5875 SDLoc DL(N); 5876 SDValue Lo, Hi; 5877 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 5878 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 5879 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5880 DAG.getConstant(1, DL, MVT::i32)); 5881 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5882 DAG.getConstant(0, DL, MVT::i32)); 5883 } else { 5884 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 5885 "Unrecognized register class for f128."); 5886 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5887 DL, MVT::f64, Src); 5888 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5889 DL, MVT::f64, Src); 5890 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 5891 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 5892 } 5893 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 5894 } 5895 break; 5896 } 5897 default: 5898 llvm_unreachable("Unexpected node to lower"); 5899 } 5900 } 5901 5902 void 5903 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5904 SmallVectorImpl<SDValue> &Results, 5905 SelectionDAG &DAG) const { 5906 return LowerOperationWrapper(N, Results, DAG); 5907 } 5908 5909 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5910 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5911 switch ((SystemZISD::NodeType)Opcode) { 5912 case SystemZISD::FIRST_NUMBER: break; 5913 OPCODE(RET_FLAG); 5914 OPCODE(CALL); 5915 OPCODE(SIBCALL); 5916 OPCODE(TLS_GDCALL); 5917 OPCODE(TLS_LDCALL); 5918 OPCODE(PCREL_WRAPPER); 5919 OPCODE(PCREL_OFFSET); 5920 OPCODE(ICMP); 5921 OPCODE(FCMP); 5922 OPCODE(STRICT_FCMP); 5923 OPCODE(STRICT_FCMPS); 5924 OPCODE(TM); 5925 OPCODE(BR_CCMASK); 5926 OPCODE(SELECT_CCMASK); 5927 OPCODE(ADJDYNALLOC); 5928 OPCODE(PROBED_ALLOCA); 5929 OPCODE(POPCNT); 5930 OPCODE(SMUL_LOHI); 5931 OPCODE(UMUL_LOHI); 5932 OPCODE(SDIVREM); 5933 OPCODE(UDIVREM); 5934 OPCODE(SADDO); 5935 OPCODE(SSUBO); 5936 OPCODE(UADDO); 5937 OPCODE(USUBO); 5938 OPCODE(ADDCARRY); 5939 OPCODE(SUBCARRY); 5940 OPCODE(GET_CCMASK); 5941 OPCODE(MVC); 5942 OPCODE(NC); 5943 OPCODE(OC); 5944 OPCODE(XC); 5945 OPCODE(CLC); 5946 OPCODE(MEMSET_MVC); 5947 OPCODE(STPCPY); 5948 OPCODE(STRCMP); 5949 OPCODE(SEARCH_STRING); 5950 OPCODE(IPM); 5951 OPCODE(TBEGIN); 5952 OPCODE(TBEGIN_NOFLOAT); 5953 OPCODE(TEND); 5954 OPCODE(BYTE_MASK); 5955 OPCODE(ROTATE_MASK); 5956 OPCODE(REPLICATE); 5957 OPCODE(JOIN_DWORDS); 5958 OPCODE(SPLAT); 5959 OPCODE(MERGE_HIGH); 5960 OPCODE(MERGE_LOW); 5961 OPCODE(SHL_DOUBLE); 5962 OPCODE(PERMUTE_DWORDS); 5963 OPCODE(PERMUTE); 5964 OPCODE(PACK); 5965 OPCODE(PACKS_CC); 5966 OPCODE(PACKLS_CC); 5967 OPCODE(UNPACK_HIGH); 5968 OPCODE(UNPACKL_HIGH); 5969 OPCODE(UNPACK_LOW); 5970 OPCODE(UNPACKL_LOW); 5971 OPCODE(VSHL_BY_SCALAR); 5972 OPCODE(VSRL_BY_SCALAR); 5973 OPCODE(VSRA_BY_SCALAR); 5974 OPCODE(VSUM); 5975 OPCODE(VICMPE); 5976 OPCODE(VICMPH); 5977 OPCODE(VICMPHL); 5978 OPCODE(VICMPES); 5979 OPCODE(VICMPHS); 5980 OPCODE(VICMPHLS); 5981 OPCODE(VFCMPE); 5982 OPCODE(STRICT_VFCMPE); 5983 OPCODE(STRICT_VFCMPES); 5984 OPCODE(VFCMPH); 5985 OPCODE(STRICT_VFCMPH); 5986 OPCODE(STRICT_VFCMPHS); 5987 OPCODE(VFCMPHE); 5988 OPCODE(STRICT_VFCMPHE); 5989 OPCODE(STRICT_VFCMPHES); 5990 OPCODE(VFCMPES); 5991 OPCODE(VFCMPHS); 5992 OPCODE(VFCMPHES); 5993 OPCODE(VFTCI); 5994 OPCODE(VEXTEND); 5995 OPCODE(STRICT_VEXTEND); 5996 OPCODE(VROUND); 5997 OPCODE(STRICT_VROUND); 5998 OPCODE(VTM); 5999 OPCODE(VFAE_CC); 6000 OPCODE(VFAEZ_CC); 6001 OPCODE(VFEE_CC); 6002 OPCODE(VFEEZ_CC); 6003 OPCODE(VFENE_CC); 6004 OPCODE(VFENEZ_CC); 6005 OPCODE(VISTR_CC); 6006 OPCODE(VSTRC_CC); 6007 OPCODE(VSTRCZ_CC); 6008 OPCODE(VSTRS_CC); 6009 OPCODE(VSTRSZ_CC); 6010 OPCODE(TDC); 6011 OPCODE(ATOMIC_SWAPW); 6012 OPCODE(ATOMIC_LOADW_ADD); 6013 OPCODE(ATOMIC_LOADW_SUB); 6014 OPCODE(ATOMIC_LOADW_AND); 6015 OPCODE(ATOMIC_LOADW_OR); 6016 OPCODE(ATOMIC_LOADW_XOR); 6017 OPCODE(ATOMIC_LOADW_NAND); 6018 OPCODE(ATOMIC_LOADW_MIN); 6019 OPCODE(ATOMIC_LOADW_MAX); 6020 OPCODE(ATOMIC_LOADW_UMIN); 6021 OPCODE(ATOMIC_LOADW_UMAX); 6022 OPCODE(ATOMIC_CMP_SWAPW); 6023 OPCODE(ATOMIC_CMP_SWAP); 6024 OPCODE(ATOMIC_LOAD_128); 6025 OPCODE(ATOMIC_STORE_128); 6026 OPCODE(ATOMIC_CMP_SWAP_128); 6027 OPCODE(LRV); 6028 OPCODE(STRV); 6029 OPCODE(VLER); 6030 OPCODE(VSTER); 6031 OPCODE(PREFETCH); 6032 } 6033 return nullptr; 6034 #undef OPCODE 6035 } 6036 6037 // Return true if VT is a vector whose elements are a whole number of bytes 6038 // in width. Also check for presence of vector support. 6039 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 6040 if (!Subtarget.hasVector()) 6041 return false; 6042 6043 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 6044 } 6045 6046 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 6047 // producing a result of type ResVT. Op is a possibly bitcast version 6048 // of the input vector and Index is the index (based on type VecVT) that 6049 // should be extracted. Return the new extraction if a simplification 6050 // was possible or if Force is true. 6051 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 6052 EVT VecVT, SDValue Op, 6053 unsigned Index, 6054 DAGCombinerInfo &DCI, 6055 bool Force) const { 6056 SelectionDAG &DAG = DCI.DAG; 6057 6058 // The number of bytes being extracted. 6059 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6060 6061 for (;;) { 6062 unsigned Opcode = Op.getOpcode(); 6063 if (Opcode == ISD::BITCAST) 6064 // Look through bitcasts. 6065 Op = Op.getOperand(0); 6066 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 6067 canTreatAsByteVector(Op.getValueType())) { 6068 // Get a VPERM-like permute mask and see whether the bytes covered 6069 // by the extracted element are a contiguous sequence from one 6070 // source operand. 6071 SmallVector<int, SystemZ::VectorBytes> Bytes; 6072 if (!getVPermMask(Op, Bytes)) 6073 break; 6074 int First; 6075 if (!getShuffleInput(Bytes, Index * BytesPerElement, 6076 BytesPerElement, First)) 6077 break; 6078 if (First < 0) 6079 return DAG.getUNDEF(ResVT); 6080 // Make sure the contiguous sequence starts at a multiple of the 6081 // original element size. 6082 unsigned Byte = unsigned(First) % Bytes.size(); 6083 if (Byte % BytesPerElement != 0) 6084 break; 6085 // We can get the extracted value directly from an input. 6086 Index = Byte / BytesPerElement; 6087 Op = Op.getOperand(unsigned(First) / Bytes.size()); 6088 Force = true; 6089 } else if (Opcode == ISD::BUILD_VECTOR && 6090 canTreatAsByteVector(Op.getValueType())) { 6091 // We can only optimize this case if the BUILD_VECTOR elements are 6092 // at least as wide as the extracted value. 6093 EVT OpVT = Op.getValueType(); 6094 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6095 if (OpBytesPerElement < BytesPerElement) 6096 break; 6097 // Make sure that the least-significant bit of the extracted value 6098 // is the least significant bit of an input. 6099 unsigned End = (Index + 1) * BytesPerElement; 6100 if (End % OpBytesPerElement != 0) 6101 break; 6102 // We're extracting the low part of one operand of the BUILD_VECTOR. 6103 Op = Op.getOperand(End / OpBytesPerElement - 1); 6104 if (!Op.getValueType().isInteger()) { 6105 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 6106 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 6107 DCI.AddToWorklist(Op.getNode()); 6108 } 6109 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 6110 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 6111 if (VT != ResVT) { 6112 DCI.AddToWorklist(Op.getNode()); 6113 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 6114 } 6115 return Op; 6116 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 6117 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 6118 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 6119 canTreatAsByteVector(Op.getValueType()) && 6120 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 6121 // Make sure that only the unextended bits are significant. 6122 EVT ExtVT = Op.getValueType(); 6123 EVT OpVT = Op.getOperand(0).getValueType(); 6124 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 6125 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6126 unsigned Byte = Index * BytesPerElement; 6127 unsigned SubByte = Byte % ExtBytesPerElement; 6128 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 6129 if (SubByte < MinSubByte || 6130 SubByte + BytesPerElement > ExtBytesPerElement) 6131 break; 6132 // Get the byte offset of the unextended element 6133 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 6134 // ...then add the byte offset relative to that element. 6135 Byte += SubByte - MinSubByte; 6136 if (Byte % BytesPerElement != 0) 6137 break; 6138 Op = Op.getOperand(0); 6139 Index = Byte / BytesPerElement; 6140 Force = true; 6141 } else 6142 break; 6143 } 6144 if (Force) { 6145 if (Op.getValueType() != VecVT) { 6146 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 6147 DCI.AddToWorklist(Op.getNode()); 6148 } 6149 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 6150 DAG.getConstant(Index, DL, MVT::i32)); 6151 } 6152 return SDValue(); 6153 } 6154 6155 // Optimize vector operations in scalar value Op on the basis that Op 6156 // is truncated to TruncVT. 6157 SDValue SystemZTargetLowering::combineTruncateExtract( 6158 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 6159 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 6160 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 6161 // of type TruncVT. 6162 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6163 TruncVT.getSizeInBits() % 8 == 0) { 6164 SDValue Vec = Op.getOperand(0); 6165 EVT VecVT = Vec.getValueType(); 6166 if (canTreatAsByteVector(VecVT)) { 6167 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6168 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6169 unsigned TruncBytes = TruncVT.getStoreSize(); 6170 if (BytesPerElement % TruncBytes == 0) { 6171 // Calculate the value of Y' in the above description. We are 6172 // splitting the original elements into Scale equal-sized pieces 6173 // and for truncation purposes want the last (least-significant) 6174 // of these pieces for IndexN. This is easiest to do by calculating 6175 // the start index of the following element and then subtracting 1. 6176 unsigned Scale = BytesPerElement / TruncBytes; 6177 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 6178 6179 // Defer the creation of the bitcast from X to combineExtract, 6180 // which might be able to optimize the extraction. 6181 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 6182 VecVT.getStoreSize() / TruncBytes); 6183 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 6184 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 6185 } 6186 } 6187 } 6188 } 6189 return SDValue(); 6190 } 6191 6192 SDValue SystemZTargetLowering::combineZERO_EXTEND( 6193 SDNode *N, DAGCombinerInfo &DCI) const { 6194 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 6195 SelectionDAG &DAG = DCI.DAG; 6196 SDValue N0 = N->getOperand(0); 6197 EVT VT = N->getValueType(0); 6198 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 6199 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 6200 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6201 if (TrueOp && FalseOp) { 6202 SDLoc DL(N0); 6203 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 6204 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 6205 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 6206 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 6207 // If N0 has multiple uses, change other uses as well. 6208 if (!N0.hasOneUse()) { 6209 SDValue TruncSelect = 6210 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 6211 DCI.CombineTo(N0.getNode(), TruncSelect); 6212 } 6213 return NewSelect; 6214 } 6215 } 6216 return SDValue(); 6217 } 6218 6219 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6220 SDNode *N, DAGCombinerInfo &DCI) const { 6221 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6222 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6223 // into (select_cc LHS, RHS, -1, 0, COND) 6224 SelectionDAG &DAG = DCI.DAG; 6225 SDValue N0 = N->getOperand(0); 6226 EVT VT = N->getValueType(0); 6227 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6228 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6229 N0 = N0.getOperand(0); 6230 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6231 SDLoc DL(N0); 6232 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6233 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6234 N0.getOperand(2) }; 6235 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6236 } 6237 return SDValue(); 6238 } 6239 6240 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6241 SDNode *N, DAGCombinerInfo &DCI) const { 6242 // Convert (sext (ashr (shl X, C1), C2)) to 6243 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6244 // cheap as narrower ones. 6245 SelectionDAG &DAG = DCI.DAG; 6246 SDValue N0 = N->getOperand(0); 6247 EVT VT = N->getValueType(0); 6248 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6249 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6250 SDValue Inner = N0.getOperand(0); 6251 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6252 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6253 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6254 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6255 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6256 EVT ShiftVT = N0.getOperand(1).getValueType(); 6257 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6258 Inner.getOperand(0)); 6259 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6260 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6261 ShiftVT)); 6262 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6263 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6264 } 6265 } 6266 } 6267 return SDValue(); 6268 } 6269 6270 SDValue SystemZTargetLowering::combineMERGE( 6271 SDNode *N, DAGCombinerInfo &DCI) const { 6272 SelectionDAG &DAG = DCI.DAG; 6273 unsigned Opcode = N->getOpcode(); 6274 SDValue Op0 = N->getOperand(0); 6275 SDValue Op1 = N->getOperand(1); 6276 if (Op0.getOpcode() == ISD::BITCAST) 6277 Op0 = Op0.getOperand(0); 6278 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6279 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6280 // for v4f32. 6281 if (Op1 == N->getOperand(0)) 6282 return Op1; 6283 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6284 EVT VT = Op1.getValueType(); 6285 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6286 if (ElemBytes <= 4) { 6287 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6288 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6289 EVT InVT = VT.changeVectorElementTypeToInteger(); 6290 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6291 SystemZ::VectorBytes / ElemBytes / 2); 6292 if (VT != InVT) { 6293 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6294 DCI.AddToWorklist(Op1.getNode()); 6295 } 6296 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6297 DCI.AddToWorklist(Op.getNode()); 6298 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6299 } 6300 } 6301 return SDValue(); 6302 } 6303 6304 SDValue SystemZTargetLowering::combineLOAD( 6305 SDNode *N, DAGCombinerInfo &DCI) const { 6306 SelectionDAG &DAG = DCI.DAG; 6307 EVT LdVT = N->getValueType(0); 6308 if (LdVT.isVector() || LdVT.isInteger()) 6309 return SDValue(); 6310 // Transform a scalar load that is REPLICATEd as well as having other 6311 // use(s) to the form where the other use(s) use the first element of the 6312 // REPLICATE instead of the load. Otherwise instruction selection will not 6313 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6314 // point loads. 6315 6316 SDValue Replicate; 6317 SmallVector<SDNode*, 8> OtherUses; 6318 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6319 UI != UE; ++UI) { 6320 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6321 if (Replicate) 6322 return SDValue(); // Should never happen 6323 Replicate = SDValue(*UI, 0); 6324 } 6325 else if (UI.getUse().getResNo() == 0) 6326 OtherUses.push_back(*UI); 6327 } 6328 if (!Replicate || OtherUses.empty()) 6329 return SDValue(); 6330 6331 SDLoc DL(N); 6332 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6333 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6334 // Update uses of the loaded Value while preserving old chains. 6335 for (SDNode *U : OtherUses) { 6336 SmallVector<SDValue, 8> Ops; 6337 for (SDValue Op : U->ops()) 6338 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6339 DAG.UpdateNodeOperands(U, Ops); 6340 } 6341 return SDValue(N, 0); 6342 } 6343 6344 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6345 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6346 return true; 6347 if (Subtarget.hasVectorEnhancements2()) 6348 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 6349 return true; 6350 return false; 6351 } 6352 6353 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6354 if (!VT.isVector() || !VT.isSimple() || 6355 VT.getSizeInBits() != 128 || 6356 VT.getScalarSizeInBits() % 8 != 0) 6357 return false; 6358 6359 unsigned NumElts = VT.getVectorNumElements(); 6360 for (unsigned i = 0; i < NumElts; ++i) { 6361 if (M[i] < 0) continue; // ignore UNDEF indices 6362 if ((unsigned) M[i] != NumElts - 1 - i) 6363 return false; 6364 } 6365 6366 return true; 6367 } 6368 6369 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { 6370 for (auto *U : StoredVal->uses()) { 6371 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) { 6372 EVT CurrMemVT = ST->getMemoryVT().getScalarType(); 6373 if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) 6374 continue; 6375 } else if (isa<BuildVectorSDNode>(U)) { 6376 SDValue BuildVector = SDValue(U, 0); 6377 if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) && 6378 isOnlyUsedByStores(BuildVector, DAG)) 6379 continue; 6380 } 6381 return false; 6382 } 6383 return true; 6384 } 6385 6386 SDValue SystemZTargetLowering::combineSTORE( 6387 SDNode *N, DAGCombinerInfo &DCI) const { 6388 SelectionDAG &DAG = DCI.DAG; 6389 auto *SN = cast<StoreSDNode>(N); 6390 auto &Op1 = N->getOperand(1); 6391 EVT MemVT = SN->getMemoryVT(); 6392 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6393 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6394 // If X has wider elements then convert it to: 6395 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6396 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6397 if (SDValue Value = 6398 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6399 DCI.AddToWorklist(Value.getNode()); 6400 6401 // Rewrite the store with the new form of stored value. 6402 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6403 SN->getBasePtr(), SN->getMemoryVT(), 6404 SN->getMemOperand()); 6405 } 6406 } 6407 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6408 if (!SN->isTruncatingStore() && 6409 Op1.getOpcode() == ISD::BSWAP && 6410 Op1.getNode()->hasOneUse() && 6411 canLoadStoreByteSwapped(Op1.getValueType())) { 6412 6413 SDValue BSwapOp = Op1.getOperand(0); 6414 6415 if (BSwapOp.getValueType() == MVT::i16) 6416 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6417 6418 SDValue Ops[] = { 6419 N->getOperand(0), BSwapOp, N->getOperand(2) 6420 }; 6421 6422 return 6423 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6424 Ops, MemVT, SN->getMemOperand()); 6425 } 6426 // Combine STORE (element-swap) into VSTER 6427 if (!SN->isTruncatingStore() && 6428 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6429 Op1.getNode()->hasOneUse() && 6430 Subtarget.hasVectorEnhancements2()) { 6431 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6432 ArrayRef<int> ShuffleMask = SVN->getMask(); 6433 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6434 SDValue Ops[] = { 6435 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6436 }; 6437 6438 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6439 DAG.getVTList(MVT::Other), 6440 Ops, MemVT, SN->getMemOperand()); 6441 } 6442 } 6443 6444 // Replicate a reg or immediate with VREP instead of scalar multiply or 6445 // immediate load. It seems best to do this during the first DAGCombine as 6446 // it is straight-forward to handle the zero-extend node in the initial 6447 // DAG, and also not worry about the keeping the new MemVT legal (e.g. when 6448 // extracting an i16 element from a v16i8 vector). 6449 if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && 6450 isOnlyUsedByStores(Op1, DAG)) { 6451 SDValue Word = SDValue(); 6452 EVT WordVT; 6453 6454 // Find a replicated immediate and return it if found in Word and its 6455 // type in WordVT. 6456 auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { 6457 // Some constants are better handled with a scalar store. 6458 if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || 6459 isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2) 6460 return; 6461 SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue())); 6462 if (VCI.isVectorConstantLegal(Subtarget) && 6463 VCI.Opcode == SystemZISD::REPLICATE) { 6464 Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32); 6465 WordVT = VCI.VecVT.getScalarType(); 6466 } 6467 }; 6468 6469 // Find a replicated register and return it if found in Word and its type 6470 // in WordVT. 6471 auto FindReplicatedReg = [&](SDValue MulOp) { 6472 EVT MulVT = MulOp.getValueType(); 6473 if (MulOp->getOpcode() == ISD::MUL && 6474 (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { 6475 // Find a zero extended value and its type. 6476 SDValue LHS = MulOp->getOperand(0); 6477 if (LHS->getOpcode() == ISD::ZERO_EXTEND) 6478 WordVT = LHS->getOperand(0).getValueType(); 6479 else if (LHS->getOpcode() == ISD::AssertZext) 6480 WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT(); 6481 else 6482 return; 6483 // Find a replicating constant, e.g. 0x00010001. 6484 if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) { 6485 SystemZVectorConstantInfo VCI( 6486 APInt(MulVT.getSizeInBits(), C->getZExtValue())); 6487 if (VCI.isVectorConstantLegal(Subtarget) && 6488 VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && 6489 WordVT == VCI.VecVT.getScalarType()) 6490 Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT); 6491 } 6492 } 6493 }; 6494 6495 if (isa<BuildVectorSDNode>(Op1) && 6496 DAG.isSplatValue(Op1, true/*AllowUndefs*/)) { 6497 SDValue SplatVal = Op1->getOperand(0); 6498 if (auto *C = dyn_cast<ConstantSDNode>(SplatVal)) 6499 FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); 6500 else 6501 FindReplicatedReg(SplatVal); 6502 } else { 6503 if (auto *C = dyn_cast<ConstantSDNode>(Op1)) 6504 FindReplicatedImm(C, MemVT.getStoreSize()); 6505 else 6506 FindReplicatedReg(Op1); 6507 } 6508 6509 if (Word != SDValue()) { 6510 assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && 6511 "Bad type handling"); 6512 unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); 6513 EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts); 6514 SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word); 6515 return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal, 6516 SN->getBasePtr(), SN->getMemOperand()); 6517 } 6518 } 6519 6520 return SDValue(); 6521 } 6522 6523 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6524 SDNode *N, DAGCombinerInfo &DCI) const { 6525 SelectionDAG &DAG = DCI.DAG; 6526 // Combine element-swap (LOAD) into VLER 6527 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6528 N->getOperand(0).hasOneUse() && 6529 Subtarget.hasVectorEnhancements2()) { 6530 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6531 ArrayRef<int> ShuffleMask = SVN->getMask(); 6532 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6533 SDValue Load = N->getOperand(0); 6534 LoadSDNode *LD = cast<LoadSDNode>(Load); 6535 6536 // Create the element-swapping load. 6537 SDValue Ops[] = { 6538 LD->getChain(), // Chain 6539 LD->getBasePtr() // Ptr 6540 }; 6541 SDValue ESLoad = 6542 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6543 DAG.getVTList(LD->getValueType(0), MVT::Other), 6544 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6545 6546 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6547 // by the load dead. 6548 DCI.CombineTo(N, ESLoad); 6549 6550 // Next, combine the load away, we give it a bogus result value but a real 6551 // chain result. The result value is dead because the shuffle is dead. 6552 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6553 6554 // Return N so it doesn't get rechecked! 6555 return SDValue(N, 0); 6556 } 6557 } 6558 6559 return SDValue(); 6560 } 6561 6562 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6563 SDNode *N, DAGCombinerInfo &DCI) const { 6564 SelectionDAG &DAG = DCI.DAG; 6565 6566 if (!Subtarget.hasVector()) 6567 return SDValue(); 6568 6569 // Look through bitcasts that retain the number of vector elements. 6570 SDValue Op = N->getOperand(0); 6571 if (Op.getOpcode() == ISD::BITCAST && 6572 Op.getValueType().isVector() && 6573 Op.getOperand(0).getValueType().isVector() && 6574 Op.getValueType().getVectorNumElements() == 6575 Op.getOperand(0).getValueType().getVectorNumElements()) 6576 Op = Op.getOperand(0); 6577 6578 // Pull BSWAP out of a vector extraction. 6579 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6580 EVT VecVT = Op.getValueType(); 6581 EVT EltVT = VecVT.getVectorElementType(); 6582 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6583 Op.getOperand(0), N->getOperand(1)); 6584 DCI.AddToWorklist(Op.getNode()); 6585 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6586 if (EltVT != N->getValueType(0)) { 6587 DCI.AddToWorklist(Op.getNode()); 6588 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6589 } 6590 return Op; 6591 } 6592 6593 // Try to simplify a vector extraction. 6594 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6595 SDValue Op0 = N->getOperand(0); 6596 EVT VecVT = Op0.getValueType(); 6597 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6598 IndexN->getZExtValue(), DCI, false); 6599 } 6600 return SDValue(); 6601 } 6602 6603 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6604 SDNode *N, DAGCombinerInfo &DCI) const { 6605 SelectionDAG &DAG = DCI.DAG; 6606 // (join_dwords X, X) == (replicate X) 6607 if (N->getOperand(0) == N->getOperand(1)) 6608 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6609 N->getOperand(0)); 6610 return SDValue(); 6611 } 6612 6613 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6614 SDValue Chain1 = N1->getOperand(0); 6615 SDValue Chain2 = N2->getOperand(0); 6616 6617 // Trivial case: both nodes take the same chain. 6618 if (Chain1 == Chain2) 6619 return Chain1; 6620 6621 // FIXME - we could handle more complex cases via TokenFactor, 6622 // assuming we can verify that this would not create a cycle. 6623 return SDValue(); 6624 } 6625 6626 SDValue SystemZTargetLowering::combineFP_ROUND( 6627 SDNode *N, DAGCombinerInfo &DCI) const { 6628 6629 if (!Subtarget.hasVector()) 6630 return SDValue(); 6631 6632 // (fpround (extract_vector_elt X 0)) 6633 // (fpround (extract_vector_elt X 1)) -> 6634 // (extract_vector_elt (VROUND X) 0) 6635 // (extract_vector_elt (VROUND X) 2) 6636 // 6637 // This is a special case since the target doesn't really support v2f32s. 6638 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6639 SelectionDAG &DAG = DCI.DAG; 6640 SDValue Op0 = N->getOperand(OpNo); 6641 if (N->getValueType(0) == MVT::f32 && 6642 Op0.hasOneUse() && 6643 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6644 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6645 Op0.getOperand(1).getOpcode() == ISD::Constant && 6646 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6647 SDValue Vec = Op0.getOperand(0); 6648 for (auto *U : Vec->uses()) { 6649 if (U != Op0.getNode() && 6650 U->hasOneUse() && 6651 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6652 U->getOperand(0) == Vec && 6653 U->getOperand(1).getOpcode() == ISD::Constant && 6654 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6655 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6656 if (OtherRound.getOpcode() == N->getOpcode() && 6657 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6658 OtherRound.getValueType() == MVT::f32) { 6659 SDValue VRound, Chain; 6660 if (N->isStrictFPOpcode()) { 6661 Chain = MergeInputChains(N, OtherRound.getNode()); 6662 if (!Chain) 6663 continue; 6664 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6665 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6666 Chain = VRound.getValue(1); 6667 } else 6668 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6669 MVT::v4f32, Vec); 6670 DCI.AddToWorklist(VRound.getNode()); 6671 SDValue Extract1 = 6672 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6673 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6674 DCI.AddToWorklist(Extract1.getNode()); 6675 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6676 if (Chain) 6677 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6678 SDValue Extract0 = 6679 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6680 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6681 if (Chain) 6682 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6683 N->getVTList(), Extract0, Chain); 6684 return Extract0; 6685 } 6686 } 6687 } 6688 } 6689 return SDValue(); 6690 } 6691 6692 SDValue SystemZTargetLowering::combineFP_EXTEND( 6693 SDNode *N, DAGCombinerInfo &DCI) const { 6694 6695 if (!Subtarget.hasVector()) 6696 return SDValue(); 6697 6698 // (fpextend (extract_vector_elt X 0)) 6699 // (fpextend (extract_vector_elt X 2)) -> 6700 // (extract_vector_elt (VEXTEND X) 0) 6701 // (extract_vector_elt (VEXTEND X) 1) 6702 // 6703 // This is a special case since the target doesn't really support v2f32s. 6704 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6705 SelectionDAG &DAG = DCI.DAG; 6706 SDValue Op0 = N->getOperand(OpNo); 6707 if (N->getValueType(0) == MVT::f64 && 6708 Op0.hasOneUse() && 6709 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6710 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6711 Op0.getOperand(1).getOpcode() == ISD::Constant && 6712 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6713 SDValue Vec = Op0.getOperand(0); 6714 for (auto *U : Vec->uses()) { 6715 if (U != Op0.getNode() && 6716 U->hasOneUse() && 6717 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6718 U->getOperand(0) == Vec && 6719 U->getOperand(1).getOpcode() == ISD::Constant && 6720 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6721 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6722 if (OtherExtend.getOpcode() == N->getOpcode() && 6723 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6724 OtherExtend.getValueType() == MVT::f64) { 6725 SDValue VExtend, Chain; 6726 if (N->isStrictFPOpcode()) { 6727 Chain = MergeInputChains(N, OtherExtend.getNode()); 6728 if (!Chain) 6729 continue; 6730 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6731 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6732 Chain = VExtend.getValue(1); 6733 } else 6734 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6735 MVT::v2f64, Vec); 6736 DCI.AddToWorklist(VExtend.getNode()); 6737 SDValue Extract1 = 6738 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6739 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6740 DCI.AddToWorklist(Extract1.getNode()); 6741 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6742 if (Chain) 6743 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6744 SDValue Extract0 = 6745 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6746 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6747 if (Chain) 6748 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6749 N->getVTList(), Extract0, Chain); 6750 return Extract0; 6751 } 6752 } 6753 } 6754 } 6755 return SDValue(); 6756 } 6757 6758 SDValue SystemZTargetLowering::combineINT_TO_FP( 6759 SDNode *N, DAGCombinerInfo &DCI) const { 6760 if (DCI.Level != BeforeLegalizeTypes) 6761 return SDValue(); 6762 SelectionDAG &DAG = DCI.DAG; 6763 LLVMContext &Ctx = *DAG.getContext(); 6764 unsigned Opcode = N->getOpcode(); 6765 EVT OutVT = N->getValueType(0); 6766 Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx); 6767 SDValue Op = N->getOperand(0); 6768 unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); 6769 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6770 6771 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6772 // v2f64 = uint_to_fp v2i16 6773 // => 6774 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6775 if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && 6776 OutScalarBits <= 64) { 6777 unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements(); 6778 EVT ExtVT = EVT::getVectorVT( 6779 Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts); 6780 unsigned ExtOpcode = 6781 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6782 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6783 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6784 } 6785 return SDValue(); 6786 } 6787 6788 SDValue SystemZTargetLowering::combineBSWAP( 6789 SDNode *N, DAGCombinerInfo &DCI) const { 6790 SelectionDAG &DAG = DCI.DAG; 6791 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6792 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6793 N->getOperand(0).hasOneUse() && 6794 canLoadStoreByteSwapped(N->getValueType(0))) { 6795 SDValue Load = N->getOperand(0); 6796 LoadSDNode *LD = cast<LoadSDNode>(Load); 6797 6798 // Create the byte-swapping load. 6799 SDValue Ops[] = { 6800 LD->getChain(), // Chain 6801 LD->getBasePtr() // Ptr 6802 }; 6803 EVT LoadVT = N->getValueType(0); 6804 if (LoadVT == MVT::i16) 6805 LoadVT = MVT::i32; 6806 SDValue BSLoad = 6807 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6808 DAG.getVTList(LoadVT, MVT::Other), 6809 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6810 6811 // If this is an i16 load, insert the truncate. 6812 SDValue ResVal = BSLoad; 6813 if (N->getValueType(0) == MVT::i16) 6814 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6815 6816 // First, combine the bswap away. This makes the value produced by the 6817 // load dead. 6818 DCI.CombineTo(N, ResVal); 6819 6820 // Next, combine the load away, we give it a bogus result value but a real 6821 // chain result. The result value is dead because the bswap is dead. 6822 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6823 6824 // Return N so it doesn't get rechecked! 6825 return SDValue(N, 0); 6826 } 6827 6828 // Look through bitcasts that retain the number of vector elements. 6829 SDValue Op = N->getOperand(0); 6830 if (Op.getOpcode() == ISD::BITCAST && 6831 Op.getValueType().isVector() && 6832 Op.getOperand(0).getValueType().isVector() && 6833 Op.getValueType().getVectorNumElements() == 6834 Op.getOperand(0).getValueType().getVectorNumElements()) 6835 Op = Op.getOperand(0); 6836 6837 // Push BSWAP into a vector insertion if at least one side then simplifies. 6838 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6839 SDValue Vec = Op.getOperand(0); 6840 SDValue Elt = Op.getOperand(1); 6841 SDValue Idx = Op.getOperand(2); 6842 6843 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6844 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6845 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6846 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6847 (canLoadStoreByteSwapped(N->getValueType(0)) && 6848 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6849 EVT VecVT = N->getValueType(0); 6850 EVT EltVT = N->getValueType(0).getVectorElementType(); 6851 if (VecVT != Vec.getValueType()) { 6852 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6853 DCI.AddToWorklist(Vec.getNode()); 6854 } 6855 if (EltVT != Elt.getValueType()) { 6856 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6857 DCI.AddToWorklist(Elt.getNode()); 6858 } 6859 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6860 DCI.AddToWorklist(Vec.getNode()); 6861 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6862 DCI.AddToWorklist(Elt.getNode()); 6863 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6864 Vec, Elt, Idx); 6865 } 6866 } 6867 6868 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6869 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6870 if (SV && Op.hasOneUse()) { 6871 SDValue Op0 = Op.getOperand(0); 6872 SDValue Op1 = Op.getOperand(1); 6873 6874 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6875 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6876 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6877 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6878 EVT VecVT = N->getValueType(0); 6879 if (VecVT != Op0.getValueType()) { 6880 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6881 DCI.AddToWorklist(Op0.getNode()); 6882 } 6883 if (VecVT != Op1.getValueType()) { 6884 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6885 DCI.AddToWorklist(Op1.getNode()); 6886 } 6887 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6888 DCI.AddToWorklist(Op0.getNode()); 6889 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6890 DCI.AddToWorklist(Op1.getNode()); 6891 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6892 } 6893 } 6894 6895 return SDValue(); 6896 } 6897 6898 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6899 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6900 // set by the CCReg instruction using the CCValid / CCMask masks, 6901 // If the CCReg instruction is itself a ICMP testing the condition 6902 // code set by some other instruction, see whether we can directly 6903 // use that condition code. 6904 6905 // Verify that we have an ICMP against some constant. 6906 if (CCValid != SystemZ::CCMASK_ICMP) 6907 return false; 6908 auto *ICmp = CCReg.getNode(); 6909 if (ICmp->getOpcode() != SystemZISD::ICMP) 6910 return false; 6911 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6912 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6913 if (!CompareRHS) 6914 return false; 6915 6916 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6917 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6918 // Verify that we have an appropriate mask for a EQ or NE comparison. 6919 bool Invert = false; 6920 if (CCMask == SystemZ::CCMASK_CMP_NE) 6921 Invert = !Invert; 6922 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6923 return false; 6924 6925 // Verify that the ICMP compares against one of select values. 6926 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6927 if (!TrueVal) 6928 return false; 6929 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6930 if (!FalseVal) 6931 return false; 6932 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6933 Invert = !Invert; 6934 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6935 return false; 6936 6937 // Compute the effective CC mask for the new branch or select. 6938 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6939 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6940 if (!NewCCValid || !NewCCMask) 6941 return false; 6942 CCValid = NewCCValid->getZExtValue(); 6943 CCMask = NewCCMask->getZExtValue(); 6944 if (Invert) 6945 CCMask ^= CCValid; 6946 6947 // Return the updated CCReg link. 6948 CCReg = CompareLHS->getOperand(4); 6949 return true; 6950 } 6951 6952 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6953 if (CompareLHS->getOpcode() == ISD::SRA) { 6954 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6955 if (!SRACount || SRACount->getZExtValue() != 30) 6956 return false; 6957 auto *SHL = CompareLHS->getOperand(0).getNode(); 6958 if (SHL->getOpcode() != ISD::SHL) 6959 return false; 6960 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6961 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6962 return false; 6963 auto *IPM = SHL->getOperand(0).getNode(); 6964 if (IPM->getOpcode() != SystemZISD::IPM) 6965 return false; 6966 6967 // Avoid introducing CC spills (because SRA would clobber CC). 6968 if (!CompareLHS->hasOneUse()) 6969 return false; 6970 // Verify that the ICMP compares against zero. 6971 if (CompareRHS->getZExtValue() != 0) 6972 return false; 6973 6974 // Compute the effective CC mask for the new branch or select. 6975 CCMask = SystemZ::reverseCCMask(CCMask); 6976 6977 // Return the updated CCReg link. 6978 CCReg = IPM->getOperand(0); 6979 return true; 6980 } 6981 6982 return false; 6983 } 6984 6985 SDValue SystemZTargetLowering::combineBR_CCMASK( 6986 SDNode *N, DAGCombinerInfo &DCI) const { 6987 SelectionDAG &DAG = DCI.DAG; 6988 6989 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6990 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6991 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6992 if (!CCValid || !CCMask) 6993 return SDValue(); 6994 6995 int CCValidVal = CCValid->getZExtValue(); 6996 int CCMaskVal = CCMask->getZExtValue(); 6997 SDValue Chain = N->getOperand(0); 6998 SDValue CCReg = N->getOperand(4); 6999 7000 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7001 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 7002 Chain, 7003 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7004 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7005 N->getOperand(3), CCReg); 7006 return SDValue(); 7007 } 7008 7009 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 7010 SDNode *N, DAGCombinerInfo &DCI) const { 7011 SelectionDAG &DAG = DCI.DAG; 7012 7013 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 7014 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7015 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 7016 if (!CCValid || !CCMask) 7017 return SDValue(); 7018 7019 int CCValidVal = CCValid->getZExtValue(); 7020 int CCMaskVal = CCMask->getZExtValue(); 7021 SDValue CCReg = N->getOperand(4); 7022 7023 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 7024 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 7025 N->getOperand(0), N->getOperand(1), 7026 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 7027 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 7028 CCReg); 7029 return SDValue(); 7030 } 7031 7032 7033 SDValue SystemZTargetLowering::combineGET_CCMASK( 7034 SDNode *N, DAGCombinerInfo &DCI) const { 7035 7036 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 7037 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 7038 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 7039 if (!CCValid || !CCMask) 7040 return SDValue(); 7041 int CCValidVal = CCValid->getZExtValue(); 7042 int CCMaskVal = CCMask->getZExtValue(); 7043 7044 SDValue Select = N->getOperand(0); 7045 if (Select->getOpcode() == ISD::TRUNCATE) 7046 Select = Select->getOperand(0); 7047 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 7048 return SDValue(); 7049 7050 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 7051 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 7052 if (!SelectCCValid || !SelectCCMask) 7053 return SDValue(); 7054 int SelectCCValidVal = SelectCCValid->getZExtValue(); 7055 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 7056 7057 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 7058 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 7059 if (!TrueVal || !FalseVal) 7060 return SDValue(); 7061 if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0) 7062 ; 7063 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1) 7064 SelectCCMaskVal ^= SelectCCValidVal; 7065 else 7066 return SDValue(); 7067 7068 if (SelectCCValidVal & ~CCValidVal) 7069 return SDValue(); 7070 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 7071 return SDValue(); 7072 7073 return Select->getOperand(4); 7074 } 7075 7076 SDValue SystemZTargetLowering::combineIntDIVREM( 7077 SDNode *N, DAGCombinerInfo &DCI) const { 7078 SelectionDAG &DAG = DCI.DAG; 7079 EVT VT = N->getValueType(0); 7080 // In the case where the divisor is a vector of constants a cheaper 7081 // sequence of instructions can replace the divide. BuildSDIV is called to 7082 // do this during DAG combining, but it only succeeds when it can build a 7083 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 7084 // since it is not Legal but Custom it can only happen before 7085 // legalization. Therefore we must scalarize this early before Combine 7086 // 1. For widened vectors, this is already the result of type legalization. 7087 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 7088 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 7089 return DAG.UnrollVectorOp(N); 7090 return SDValue(); 7091 } 7092 7093 SDValue SystemZTargetLowering::combineINTRINSIC( 7094 SDNode *N, DAGCombinerInfo &DCI) const { 7095 SelectionDAG &DAG = DCI.DAG; 7096 7097 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 7098 switch (Id) { 7099 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 7100 // or larger is simply a vector load. 7101 case Intrinsic::s390_vll: 7102 case Intrinsic::s390_vlrl: 7103 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 7104 if (C->getZExtValue() >= 15) 7105 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 7106 N->getOperand(3), MachinePointerInfo()); 7107 break; 7108 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 7109 case Intrinsic::s390_vstl: 7110 case Intrinsic::s390_vstrl: 7111 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 7112 if (C->getZExtValue() >= 15) 7113 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 7114 N->getOperand(4), MachinePointerInfo()); 7115 break; 7116 } 7117 7118 return SDValue(); 7119 } 7120 7121 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 7122 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 7123 return N->getOperand(0); 7124 return N; 7125 } 7126 7127 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 7128 DAGCombinerInfo &DCI) const { 7129 switch(N->getOpcode()) { 7130 default: break; 7131 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 7132 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 7133 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 7134 case SystemZISD::MERGE_HIGH: 7135 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 7136 case ISD::LOAD: return combineLOAD(N, DCI); 7137 case ISD::STORE: return combineSTORE(N, DCI); 7138 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 7139 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 7140 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 7141 case ISD::STRICT_FP_ROUND: 7142 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 7143 case ISD::STRICT_FP_EXTEND: 7144 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 7145 case ISD::SINT_TO_FP: 7146 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 7147 case ISD::BSWAP: return combineBSWAP(N, DCI); 7148 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 7149 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 7150 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 7151 case ISD::SDIV: 7152 case ISD::UDIV: 7153 case ISD::SREM: 7154 case ISD::UREM: return combineIntDIVREM(N, DCI); 7155 case ISD::INTRINSIC_W_CHAIN: 7156 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 7157 } 7158 7159 return SDValue(); 7160 } 7161 7162 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 7163 // are for Op. 7164 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 7165 unsigned OpNo) { 7166 EVT VT = Op.getValueType(); 7167 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 7168 APInt SrcDemE; 7169 unsigned Opcode = Op.getOpcode(); 7170 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7171 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7172 switch (Id) { 7173 case Intrinsic::s390_vpksh: // PACKS 7174 case Intrinsic::s390_vpksf: 7175 case Intrinsic::s390_vpksg: 7176 case Intrinsic::s390_vpkshs: // PACKS_CC 7177 case Intrinsic::s390_vpksfs: 7178 case Intrinsic::s390_vpksgs: 7179 case Intrinsic::s390_vpklsh: // PACKLS 7180 case Intrinsic::s390_vpklsf: 7181 case Intrinsic::s390_vpklsg: 7182 case Intrinsic::s390_vpklshs: // PACKLS_CC 7183 case Intrinsic::s390_vpklsfs: 7184 case Intrinsic::s390_vpklsgs: 7185 // VECTOR PACK truncates the elements of two source vectors into one. 7186 SrcDemE = DemandedElts; 7187 if (OpNo == 2) 7188 SrcDemE.lshrInPlace(NumElts / 2); 7189 SrcDemE = SrcDemE.trunc(NumElts / 2); 7190 break; 7191 // VECTOR UNPACK extends half the elements of the source vector. 7192 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7193 case Intrinsic::s390_vuphh: 7194 case Intrinsic::s390_vuphf: 7195 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7196 case Intrinsic::s390_vuplhh: 7197 case Intrinsic::s390_vuplhf: 7198 SrcDemE = APInt(NumElts * 2, 0); 7199 SrcDemE.insertBits(DemandedElts, 0); 7200 break; 7201 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7202 case Intrinsic::s390_vuplhw: 7203 case Intrinsic::s390_vuplf: 7204 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7205 case Intrinsic::s390_vupllh: 7206 case Intrinsic::s390_vupllf: 7207 SrcDemE = APInt(NumElts * 2, 0); 7208 SrcDemE.insertBits(DemandedElts, NumElts); 7209 break; 7210 case Intrinsic::s390_vpdi: { 7211 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 7212 SrcDemE = APInt(NumElts, 0); 7213 if (!DemandedElts[OpNo - 1]) 7214 break; 7215 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7216 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 7217 // Demand input element 0 or 1, given by the mask bit value. 7218 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 7219 break; 7220 } 7221 case Intrinsic::s390_vsldb: { 7222 // VECTOR SHIFT LEFT DOUBLE BY BYTE 7223 assert(VT == MVT::v16i8 && "Unexpected type."); 7224 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7225 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 7226 unsigned NumSrc0Els = 16 - FirstIdx; 7227 SrcDemE = APInt(NumElts, 0); 7228 if (OpNo == 1) { 7229 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 7230 SrcDemE.insertBits(DemEls, FirstIdx); 7231 } else { 7232 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 7233 SrcDemE.insertBits(DemEls, 0); 7234 } 7235 break; 7236 } 7237 case Intrinsic::s390_vperm: 7238 SrcDemE = APInt(NumElts, 1); 7239 break; 7240 default: 7241 llvm_unreachable("Unhandled intrinsic."); 7242 break; 7243 } 7244 } else { 7245 switch (Opcode) { 7246 case SystemZISD::JOIN_DWORDS: 7247 // Scalar operand. 7248 SrcDemE = APInt(1, 1); 7249 break; 7250 case SystemZISD::SELECT_CCMASK: 7251 SrcDemE = DemandedElts; 7252 break; 7253 default: 7254 llvm_unreachable("Unhandled opcode."); 7255 break; 7256 } 7257 } 7258 return SrcDemE; 7259 } 7260 7261 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 7262 const APInt &DemandedElts, 7263 const SelectionDAG &DAG, unsigned Depth, 7264 unsigned OpNo) { 7265 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7266 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7267 KnownBits LHSKnown = 7268 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7269 KnownBits RHSKnown = 7270 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7271 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 7272 } 7273 7274 void 7275 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7276 KnownBits &Known, 7277 const APInt &DemandedElts, 7278 const SelectionDAG &DAG, 7279 unsigned Depth) const { 7280 Known.resetAll(); 7281 7282 // Intrinsic CC result is returned in the two low bits. 7283 unsigned tmp0, tmp1; // not used 7284 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 7285 Known.Zero.setBitsFrom(2); 7286 return; 7287 } 7288 EVT VT = Op.getValueType(); 7289 if (Op.getResNo() != 0 || VT == MVT::Untyped) 7290 return; 7291 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 7292 "KnownBits does not match VT in bitwidth"); 7293 assert ((!VT.isVector() || 7294 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 7295 "DemandedElts does not match VT number of elements"); 7296 unsigned BitWidth = Known.getBitWidth(); 7297 unsigned Opcode = Op.getOpcode(); 7298 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7299 bool IsLogical = false; 7300 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7301 switch (Id) { 7302 case Intrinsic::s390_vpksh: // PACKS 7303 case Intrinsic::s390_vpksf: 7304 case Intrinsic::s390_vpksg: 7305 case Intrinsic::s390_vpkshs: // PACKS_CC 7306 case Intrinsic::s390_vpksfs: 7307 case Intrinsic::s390_vpksgs: 7308 case Intrinsic::s390_vpklsh: // PACKLS 7309 case Intrinsic::s390_vpklsf: 7310 case Intrinsic::s390_vpklsg: 7311 case Intrinsic::s390_vpklshs: // PACKLS_CC 7312 case Intrinsic::s390_vpklsfs: 7313 case Intrinsic::s390_vpklsgs: 7314 case Intrinsic::s390_vpdi: 7315 case Intrinsic::s390_vsldb: 7316 case Intrinsic::s390_vperm: 7317 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 7318 break; 7319 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7320 case Intrinsic::s390_vuplhh: 7321 case Intrinsic::s390_vuplhf: 7322 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7323 case Intrinsic::s390_vupllh: 7324 case Intrinsic::s390_vupllf: 7325 IsLogical = true; 7326 [[fallthrough]]; 7327 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7328 case Intrinsic::s390_vuphh: 7329 case Intrinsic::s390_vuphf: 7330 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7331 case Intrinsic::s390_vuplhw: 7332 case Intrinsic::s390_vuplf: { 7333 SDValue SrcOp = Op.getOperand(1); 7334 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7335 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7336 if (IsLogical) { 7337 Known = Known.zext(BitWidth); 7338 } else 7339 Known = Known.sext(BitWidth); 7340 break; 7341 } 7342 default: 7343 break; 7344 } 7345 } else { 7346 switch (Opcode) { 7347 case SystemZISD::JOIN_DWORDS: 7348 case SystemZISD::SELECT_CCMASK: 7349 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7350 break; 7351 case SystemZISD::REPLICATE: { 7352 SDValue SrcOp = Op.getOperand(0); 7353 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7354 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7355 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7356 break; 7357 } 7358 default: 7359 break; 7360 } 7361 } 7362 7363 // Known has the width of the source operand(s). Adjust if needed to match 7364 // the passed bitwidth. 7365 if (Known.getBitWidth() != BitWidth) 7366 Known = Known.anyextOrTrunc(BitWidth); 7367 } 7368 7369 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7370 const SelectionDAG &DAG, unsigned Depth, 7371 unsigned OpNo) { 7372 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7373 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7374 if (LHS == 1) return 1; // Early out. 7375 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7376 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7377 if (RHS == 1) return 1; // Early out. 7378 unsigned Common = std::min(LHS, RHS); 7379 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7380 EVT VT = Op.getValueType(); 7381 unsigned VTBits = VT.getScalarSizeInBits(); 7382 if (SrcBitWidth > VTBits) { // PACK 7383 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7384 if (Common > SrcExtraBits) 7385 return (Common - SrcExtraBits); 7386 return 1; 7387 } 7388 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7389 return Common; 7390 } 7391 7392 unsigned 7393 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7394 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7395 unsigned Depth) const { 7396 if (Op.getResNo() != 0) 7397 return 1; 7398 unsigned Opcode = Op.getOpcode(); 7399 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7400 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7401 switch (Id) { 7402 case Intrinsic::s390_vpksh: // PACKS 7403 case Intrinsic::s390_vpksf: 7404 case Intrinsic::s390_vpksg: 7405 case Intrinsic::s390_vpkshs: // PACKS_CC 7406 case Intrinsic::s390_vpksfs: 7407 case Intrinsic::s390_vpksgs: 7408 case Intrinsic::s390_vpklsh: // PACKLS 7409 case Intrinsic::s390_vpklsf: 7410 case Intrinsic::s390_vpklsg: 7411 case Intrinsic::s390_vpklshs: // PACKLS_CC 7412 case Intrinsic::s390_vpklsfs: 7413 case Intrinsic::s390_vpklsgs: 7414 case Intrinsic::s390_vpdi: 7415 case Intrinsic::s390_vsldb: 7416 case Intrinsic::s390_vperm: 7417 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7418 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7419 case Intrinsic::s390_vuphh: 7420 case Intrinsic::s390_vuphf: 7421 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7422 case Intrinsic::s390_vuplhw: 7423 case Intrinsic::s390_vuplf: { 7424 SDValue PackedOp = Op.getOperand(1); 7425 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7426 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7427 EVT VT = Op.getValueType(); 7428 unsigned VTBits = VT.getScalarSizeInBits(); 7429 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7430 return Tmp; 7431 } 7432 default: 7433 break; 7434 } 7435 } else { 7436 switch (Opcode) { 7437 case SystemZISD::SELECT_CCMASK: 7438 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7439 default: 7440 break; 7441 } 7442 } 7443 7444 return 1; 7445 } 7446 7447 unsigned 7448 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const { 7449 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7450 unsigned StackAlign = TFI->getStackAlignment(); 7451 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7452 "Unexpected stack alignment"); 7453 // The default stack probe size is 4096 if the function has no 7454 // stack-probe-size attribute. 7455 unsigned StackProbeSize = 7456 MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096); 7457 // Round down to the stack alignment. 7458 StackProbeSize &= ~(StackAlign - 1); 7459 return StackProbeSize ? StackProbeSize : StackAlign; 7460 } 7461 7462 //===----------------------------------------------------------------------===// 7463 // Custom insertion 7464 //===----------------------------------------------------------------------===// 7465 7466 // Force base value Base into a register before MI. Return the register. 7467 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7468 const SystemZInstrInfo *TII) { 7469 MachineBasicBlock *MBB = MI.getParent(); 7470 MachineFunction &MF = *MBB->getParent(); 7471 MachineRegisterInfo &MRI = MF.getRegInfo(); 7472 7473 if (Base.isReg()) { 7474 // Copy Base into a new virtual register to help register coalescing in 7475 // cases with multiple uses. 7476 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7477 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7478 .add(Base); 7479 return Reg; 7480 } 7481 7482 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7483 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7484 .add(Base) 7485 .addImm(0) 7486 .addReg(0); 7487 return Reg; 7488 } 7489 7490 // The CC operand of MI might be missing a kill marker because there 7491 // were multiple uses of CC, and ISel didn't know which to mark. 7492 // Figure out whether MI should have had a kill marker. 7493 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7494 // Scan forward through BB for a use/def of CC. 7495 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7496 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7497 const MachineInstr& mi = *miI; 7498 if (mi.readsRegister(SystemZ::CC)) 7499 return false; 7500 if (mi.definesRegister(SystemZ::CC)) 7501 break; // Should have kill-flag - update below. 7502 } 7503 7504 // If we hit the end of the block, check whether CC is live into a 7505 // successor. 7506 if (miI == MBB->end()) { 7507 for (const MachineBasicBlock *Succ : MBB->successors()) 7508 if (Succ->isLiveIn(SystemZ::CC)) 7509 return false; 7510 } 7511 7512 return true; 7513 } 7514 7515 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7516 // together with other Select pseudo-opcodes into a single basic-block with 7517 // a conditional jump around it. 7518 static bool isSelectPseudo(MachineInstr &MI) { 7519 switch (MI.getOpcode()) { 7520 case SystemZ::Select32: 7521 case SystemZ::Select64: 7522 case SystemZ::SelectF32: 7523 case SystemZ::SelectF64: 7524 case SystemZ::SelectF128: 7525 case SystemZ::SelectVR32: 7526 case SystemZ::SelectVR64: 7527 case SystemZ::SelectVR128: 7528 return true; 7529 7530 default: 7531 return false; 7532 } 7533 } 7534 7535 // Helper function, which inserts PHI functions into SinkMBB: 7536 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7537 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7538 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7539 MachineBasicBlock *TrueMBB, 7540 MachineBasicBlock *FalseMBB, 7541 MachineBasicBlock *SinkMBB) { 7542 MachineFunction *MF = TrueMBB->getParent(); 7543 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7544 7545 MachineInstr *FirstMI = Selects.front(); 7546 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7547 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7548 7549 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7550 7551 // As we are creating the PHIs, we have to be careful if there is more than 7552 // one. Later Selects may reference the results of earlier Selects, but later 7553 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7554 // That also means that PHI construction must work forward from earlier to 7555 // later, and that the code must maintain a mapping from earlier PHI's 7556 // destination registers, and the registers that went into the PHI. 7557 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7558 7559 for (auto *MI : Selects) { 7560 Register DestReg = MI->getOperand(0).getReg(); 7561 Register TrueReg = MI->getOperand(1).getReg(); 7562 Register FalseReg = MI->getOperand(2).getReg(); 7563 7564 // If this Select we are generating is the opposite condition from 7565 // the jump we generated, then we have to swap the operands for the 7566 // PHI that is going to be generated. 7567 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7568 std::swap(TrueReg, FalseReg); 7569 7570 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7571 TrueReg = RegRewriteTable[TrueReg].first; 7572 7573 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7574 FalseReg = RegRewriteTable[FalseReg].second; 7575 7576 DebugLoc DL = MI->getDebugLoc(); 7577 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7578 .addReg(TrueReg).addMBB(TrueMBB) 7579 .addReg(FalseReg).addMBB(FalseMBB); 7580 7581 // Add this PHI to the rewrite table. 7582 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7583 } 7584 7585 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7586 } 7587 7588 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7589 MachineBasicBlock * 7590 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7591 MachineBasicBlock *MBB) const { 7592 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7593 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7594 7595 unsigned CCValid = MI.getOperand(3).getImm(); 7596 unsigned CCMask = MI.getOperand(4).getImm(); 7597 7598 // If we have a sequence of Select* pseudo instructions using the 7599 // same condition code value, we want to expand all of them into 7600 // a single pair of basic blocks using the same condition. 7601 SmallVector<MachineInstr*, 8> Selects; 7602 SmallVector<MachineInstr*, 8> DbgValues; 7603 Selects.push_back(&MI); 7604 unsigned Count = 0; 7605 for (MachineInstr &NextMI : llvm::make_range( 7606 std::next(MachineBasicBlock::iterator(MI)), MBB->end())) { 7607 if (isSelectPseudo(NextMI)) { 7608 assert(NextMI.getOperand(3).getImm() == CCValid && 7609 "Bad CCValid operands since CC was not redefined."); 7610 if (NextMI.getOperand(4).getImm() == CCMask || 7611 NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) { 7612 Selects.push_back(&NextMI); 7613 continue; 7614 } 7615 break; 7616 } 7617 if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook()) 7618 break; 7619 bool User = false; 7620 for (auto *SelMI : Selects) 7621 if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7622 User = true; 7623 break; 7624 } 7625 if (NextMI.isDebugInstr()) { 7626 if (User) { 7627 assert(NextMI.isDebugValue() && "Unhandled debug opcode."); 7628 DbgValues.push_back(&NextMI); 7629 } 7630 } else if (User || ++Count > 20) 7631 break; 7632 } 7633 7634 MachineInstr *LastMI = Selects.back(); 7635 bool CCKilled = 7636 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7637 MachineBasicBlock *StartMBB = MBB; 7638 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7639 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7640 7641 // Unless CC was killed in the last Select instruction, mark it as 7642 // live-in to both FalseMBB and JoinMBB. 7643 if (!CCKilled) { 7644 FalseMBB->addLiveIn(SystemZ::CC); 7645 JoinMBB->addLiveIn(SystemZ::CC); 7646 } 7647 7648 // StartMBB: 7649 // BRC CCMask, JoinMBB 7650 // # fallthrough to FalseMBB 7651 MBB = StartMBB; 7652 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7653 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7654 MBB->addSuccessor(JoinMBB); 7655 MBB->addSuccessor(FalseMBB); 7656 7657 // FalseMBB: 7658 // # fallthrough to JoinMBB 7659 MBB = FalseMBB; 7660 MBB->addSuccessor(JoinMBB); 7661 7662 // JoinMBB: 7663 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7664 // ... 7665 MBB = JoinMBB; 7666 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7667 for (auto *SelMI : Selects) 7668 SelMI->eraseFromParent(); 7669 7670 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7671 for (auto *DbgMI : DbgValues) 7672 MBB->splice(InsertPos, StartMBB, DbgMI); 7673 7674 return JoinMBB; 7675 } 7676 7677 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7678 // StoreOpcode is the store to use and Invert says whether the store should 7679 // happen when the condition is false rather than true. If a STORE ON 7680 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7681 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7682 MachineBasicBlock *MBB, 7683 unsigned StoreOpcode, 7684 unsigned STOCOpcode, 7685 bool Invert) const { 7686 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7687 7688 Register SrcReg = MI.getOperand(0).getReg(); 7689 MachineOperand Base = MI.getOperand(1); 7690 int64_t Disp = MI.getOperand(2).getImm(); 7691 Register IndexReg = MI.getOperand(3).getReg(); 7692 unsigned CCValid = MI.getOperand(4).getImm(); 7693 unsigned CCMask = MI.getOperand(5).getImm(); 7694 DebugLoc DL = MI.getDebugLoc(); 7695 7696 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7697 7698 // ISel pattern matching also adds a load memory operand of the same 7699 // address, so take special care to find the storing memory operand. 7700 MachineMemOperand *MMO = nullptr; 7701 for (auto *I : MI.memoperands()) 7702 if (I->isStore()) { 7703 MMO = I; 7704 break; 7705 } 7706 7707 // Use STOCOpcode if possible. We could use different store patterns in 7708 // order to avoid matching the index register, but the performance trade-offs 7709 // might be more complicated in that case. 7710 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7711 if (Invert) 7712 CCMask ^= CCValid; 7713 7714 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7715 .addReg(SrcReg) 7716 .add(Base) 7717 .addImm(Disp) 7718 .addImm(CCValid) 7719 .addImm(CCMask) 7720 .addMemOperand(MMO); 7721 7722 MI.eraseFromParent(); 7723 return MBB; 7724 } 7725 7726 // Get the condition needed to branch around the store. 7727 if (!Invert) 7728 CCMask ^= CCValid; 7729 7730 MachineBasicBlock *StartMBB = MBB; 7731 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7732 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7733 7734 // Unless CC was killed in the CondStore instruction, mark it as 7735 // live-in to both FalseMBB and JoinMBB. 7736 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7737 FalseMBB->addLiveIn(SystemZ::CC); 7738 JoinMBB->addLiveIn(SystemZ::CC); 7739 } 7740 7741 // StartMBB: 7742 // BRC CCMask, JoinMBB 7743 // # fallthrough to FalseMBB 7744 MBB = StartMBB; 7745 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7746 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7747 MBB->addSuccessor(JoinMBB); 7748 MBB->addSuccessor(FalseMBB); 7749 7750 // FalseMBB: 7751 // store %SrcReg, %Disp(%Index,%Base) 7752 // # fallthrough to JoinMBB 7753 MBB = FalseMBB; 7754 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7755 .addReg(SrcReg) 7756 .add(Base) 7757 .addImm(Disp) 7758 .addReg(IndexReg) 7759 .addMemOperand(MMO); 7760 MBB->addSuccessor(JoinMBB); 7761 7762 MI.eraseFromParent(); 7763 return JoinMBB; 7764 } 7765 7766 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7767 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7768 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7769 // BitSize is the width of the field in bits, or 0 if this is a partword 7770 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7771 // is one of the operands. Invert says whether the field should be 7772 // inverted after performing BinOpcode (e.g. for NAND). 7773 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7774 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7775 unsigned BitSize, bool Invert) const { 7776 MachineFunction &MF = *MBB->getParent(); 7777 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7778 MachineRegisterInfo &MRI = MF.getRegInfo(); 7779 bool IsSubWord = (BitSize < 32); 7780 7781 // Extract the operands. Base can be a register or a frame index. 7782 // Src2 can be a register or immediate. 7783 Register Dest = MI.getOperand(0).getReg(); 7784 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7785 int64_t Disp = MI.getOperand(2).getImm(); 7786 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7787 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7788 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7789 DebugLoc DL = MI.getDebugLoc(); 7790 if (IsSubWord) 7791 BitSize = MI.getOperand(6).getImm(); 7792 7793 // Subword operations use 32-bit registers. 7794 const TargetRegisterClass *RC = (BitSize <= 32 ? 7795 &SystemZ::GR32BitRegClass : 7796 &SystemZ::GR64BitRegClass); 7797 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7798 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7799 7800 // Get the right opcodes for the displacement. 7801 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7802 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7803 assert(LOpcode && CSOpcode && "Displacement out of range"); 7804 7805 // Create virtual registers for temporary results. 7806 Register OrigVal = MRI.createVirtualRegister(RC); 7807 Register OldVal = MRI.createVirtualRegister(RC); 7808 Register NewVal = (BinOpcode || IsSubWord ? 7809 MRI.createVirtualRegister(RC) : Src2.getReg()); 7810 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7811 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7812 7813 // Insert a basic block for the main loop. 7814 MachineBasicBlock *StartMBB = MBB; 7815 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7816 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7817 7818 // StartMBB: 7819 // ... 7820 // %OrigVal = L Disp(%Base) 7821 // # fall through to LoopMBB 7822 MBB = StartMBB; 7823 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7824 MBB->addSuccessor(LoopMBB); 7825 7826 // LoopMBB: 7827 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7828 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7829 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7830 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7831 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7832 // JNE LoopMBB 7833 // # fall through to DoneMBB 7834 MBB = LoopMBB; 7835 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7836 .addReg(OrigVal).addMBB(StartMBB) 7837 .addReg(Dest).addMBB(LoopMBB); 7838 if (IsSubWord) 7839 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7840 .addReg(OldVal).addReg(BitShift).addImm(0); 7841 if (Invert) { 7842 // Perform the operation normally and then invert every bit of the field. 7843 Register Tmp = MRI.createVirtualRegister(RC); 7844 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7845 if (BitSize <= 32) 7846 // XILF with the upper BitSize bits set. 7847 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7848 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7849 else { 7850 // Use LCGR and add -1 to the result, which is more compact than 7851 // an XILF, XILH pair. 7852 Register Tmp2 = MRI.createVirtualRegister(RC); 7853 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7854 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7855 .addReg(Tmp2).addImm(-1); 7856 } 7857 } else if (BinOpcode) 7858 // A simply binary operation. 7859 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7860 .addReg(RotatedOldVal) 7861 .add(Src2); 7862 else if (IsSubWord) 7863 // Use RISBG to rotate Src2 into position and use it to replace the 7864 // field in RotatedOldVal. 7865 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7866 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7867 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7868 if (IsSubWord) 7869 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7870 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7871 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7872 .addReg(OldVal) 7873 .addReg(NewVal) 7874 .add(Base) 7875 .addImm(Disp); 7876 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7877 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7878 MBB->addSuccessor(LoopMBB); 7879 MBB->addSuccessor(DoneMBB); 7880 7881 MI.eraseFromParent(); 7882 return DoneMBB; 7883 } 7884 7885 // Implement EmitInstrWithCustomInserter for pseudo 7886 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7887 // instruction that should be used to compare the current field with the 7888 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7889 // for when the current field should be kept. BitSize is the width of 7890 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7891 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7892 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7893 unsigned KeepOldMask, unsigned BitSize) const { 7894 MachineFunction &MF = *MBB->getParent(); 7895 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7896 MachineRegisterInfo &MRI = MF.getRegInfo(); 7897 bool IsSubWord = (BitSize < 32); 7898 7899 // Extract the operands. Base can be a register or a frame index. 7900 Register Dest = MI.getOperand(0).getReg(); 7901 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7902 int64_t Disp = MI.getOperand(2).getImm(); 7903 Register Src2 = MI.getOperand(3).getReg(); 7904 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7905 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7906 DebugLoc DL = MI.getDebugLoc(); 7907 if (IsSubWord) 7908 BitSize = MI.getOperand(6).getImm(); 7909 7910 // Subword operations use 32-bit registers. 7911 const TargetRegisterClass *RC = (BitSize <= 32 ? 7912 &SystemZ::GR32BitRegClass : 7913 &SystemZ::GR64BitRegClass); 7914 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7915 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7916 7917 // Get the right opcodes for the displacement. 7918 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7919 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7920 assert(LOpcode && CSOpcode && "Displacement out of range"); 7921 7922 // Create virtual registers for temporary results. 7923 Register OrigVal = MRI.createVirtualRegister(RC); 7924 Register OldVal = MRI.createVirtualRegister(RC); 7925 Register NewVal = MRI.createVirtualRegister(RC); 7926 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7927 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7928 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7929 7930 // Insert 3 basic blocks for the loop. 7931 MachineBasicBlock *StartMBB = MBB; 7932 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7933 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7934 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7935 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7936 7937 // StartMBB: 7938 // ... 7939 // %OrigVal = L Disp(%Base) 7940 // # fall through to LoopMBB 7941 MBB = StartMBB; 7942 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7943 MBB->addSuccessor(LoopMBB); 7944 7945 // LoopMBB: 7946 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7947 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7948 // CompareOpcode %RotatedOldVal, %Src2 7949 // BRC KeepOldMask, UpdateMBB 7950 MBB = LoopMBB; 7951 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7952 .addReg(OrigVal).addMBB(StartMBB) 7953 .addReg(Dest).addMBB(UpdateMBB); 7954 if (IsSubWord) 7955 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7956 .addReg(OldVal).addReg(BitShift).addImm(0); 7957 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7958 .addReg(RotatedOldVal).addReg(Src2); 7959 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7960 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7961 MBB->addSuccessor(UpdateMBB); 7962 MBB->addSuccessor(UseAltMBB); 7963 7964 // UseAltMBB: 7965 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7966 // # fall through to UpdateMBB 7967 MBB = UseAltMBB; 7968 if (IsSubWord) 7969 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7970 .addReg(RotatedOldVal).addReg(Src2) 7971 .addImm(32).addImm(31 + BitSize).addImm(0); 7972 MBB->addSuccessor(UpdateMBB); 7973 7974 // UpdateMBB: 7975 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7976 // [ %RotatedAltVal, UseAltMBB ] 7977 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7978 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7979 // JNE LoopMBB 7980 // # fall through to DoneMBB 7981 MBB = UpdateMBB; 7982 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7983 .addReg(RotatedOldVal).addMBB(LoopMBB) 7984 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7985 if (IsSubWord) 7986 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7987 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7988 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7989 .addReg(OldVal) 7990 .addReg(NewVal) 7991 .add(Base) 7992 .addImm(Disp); 7993 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7994 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7995 MBB->addSuccessor(LoopMBB); 7996 MBB->addSuccessor(DoneMBB); 7997 7998 MI.eraseFromParent(); 7999 return DoneMBB; 8000 } 8001 8002 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 8003 // instruction MI. 8004 MachineBasicBlock * 8005 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 8006 MachineBasicBlock *MBB) const { 8007 MachineFunction &MF = *MBB->getParent(); 8008 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8009 MachineRegisterInfo &MRI = MF.getRegInfo(); 8010 8011 // Extract the operands. Base can be a register or a frame index. 8012 Register Dest = MI.getOperand(0).getReg(); 8013 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 8014 int64_t Disp = MI.getOperand(2).getImm(); 8015 Register CmpVal = MI.getOperand(3).getReg(); 8016 Register OrigSwapVal = MI.getOperand(4).getReg(); 8017 Register BitShift = MI.getOperand(5).getReg(); 8018 Register NegBitShift = MI.getOperand(6).getReg(); 8019 int64_t BitSize = MI.getOperand(7).getImm(); 8020 DebugLoc DL = MI.getDebugLoc(); 8021 8022 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 8023 8024 // Get the right opcodes for the displacement and zero-extension. 8025 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 8026 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8027 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 8028 assert(LOpcode && CSOpcode && "Displacement out of range"); 8029 8030 // Create virtual registers for temporary results. 8031 Register OrigOldVal = MRI.createVirtualRegister(RC); 8032 Register OldVal = MRI.createVirtualRegister(RC); 8033 Register SwapVal = MRI.createVirtualRegister(RC); 8034 Register StoreVal = MRI.createVirtualRegister(RC); 8035 Register OldValRot = MRI.createVirtualRegister(RC); 8036 Register RetryOldVal = MRI.createVirtualRegister(RC); 8037 Register RetrySwapVal = MRI.createVirtualRegister(RC); 8038 8039 // Insert 2 basic blocks for the loop. 8040 MachineBasicBlock *StartMBB = MBB; 8041 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8042 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8043 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 8044 8045 // StartMBB: 8046 // ... 8047 // %OrigOldVal = L Disp(%Base) 8048 // # fall through to LoopMBB 8049 MBB = StartMBB; 8050 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 8051 .add(Base) 8052 .addImm(Disp) 8053 .addReg(0); 8054 MBB->addSuccessor(LoopMBB); 8055 8056 // LoopMBB: 8057 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 8058 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 8059 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 8060 // ^^ The low BitSize bits contain the field 8061 // of interest. 8062 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 8063 // ^^ Replace the upper 32-BitSize bits of the 8064 // swap value with those that we loaded and rotated. 8065 // %Dest = LL[CH] %OldValRot 8066 // CR %Dest, %CmpVal 8067 // JNE DoneMBB 8068 // # Fall through to SetMBB 8069 MBB = LoopMBB; 8070 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 8071 .addReg(OrigOldVal).addMBB(StartMBB) 8072 .addReg(RetryOldVal).addMBB(SetMBB); 8073 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 8074 .addReg(OrigSwapVal).addMBB(StartMBB) 8075 .addReg(RetrySwapVal).addMBB(SetMBB); 8076 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 8077 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 8078 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 8079 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 8080 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 8081 .addReg(OldValRot); 8082 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 8083 .addReg(Dest).addReg(CmpVal); 8084 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8085 .addImm(SystemZ::CCMASK_ICMP) 8086 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 8087 MBB->addSuccessor(DoneMBB); 8088 MBB->addSuccessor(SetMBB); 8089 8090 // SetMBB: 8091 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 8092 // ^^ Rotate the new field to its proper position. 8093 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 8094 // JNE LoopMBB 8095 // # fall through to ExitMBB 8096 MBB = SetMBB; 8097 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 8098 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 8099 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 8100 .addReg(OldVal) 8101 .addReg(StoreVal) 8102 .add(Base) 8103 .addImm(Disp); 8104 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8105 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 8106 MBB->addSuccessor(LoopMBB); 8107 MBB->addSuccessor(DoneMBB); 8108 8109 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 8110 // to the block after the loop. At this point, CC may have been defined 8111 // either by the CR in LoopMBB or by the CS in SetMBB. 8112 if (!MI.registerDefIsDead(SystemZ::CC)) 8113 DoneMBB->addLiveIn(SystemZ::CC); 8114 8115 MI.eraseFromParent(); 8116 return DoneMBB; 8117 } 8118 8119 // Emit a move from two GR64s to a GR128. 8120 MachineBasicBlock * 8121 SystemZTargetLowering::emitPair128(MachineInstr &MI, 8122 MachineBasicBlock *MBB) const { 8123 MachineFunction &MF = *MBB->getParent(); 8124 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8125 MachineRegisterInfo &MRI = MF.getRegInfo(); 8126 DebugLoc DL = MI.getDebugLoc(); 8127 8128 Register Dest = MI.getOperand(0).getReg(); 8129 Register Hi = MI.getOperand(1).getReg(); 8130 Register Lo = MI.getOperand(2).getReg(); 8131 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8132 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8133 8134 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 8135 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 8136 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 8137 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8138 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 8139 8140 MI.eraseFromParent(); 8141 return MBB; 8142 } 8143 8144 // Emit an extension from a GR64 to a GR128. ClearEven is true 8145 // if the high register of the GR128 value must be cleared or false if 8146 // it's "don't care". 8147 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 8148 MachineBasicBlock *MBB, 8149 bool ClearEven) const { 8150 MachineFunction &MF = *MBB->getParent(); 8151 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8152 MachineRegisterInfo &MRI = MF.getRegInfo(); 8153 DebugLoc DL = MI.getDebugLoc(); 8154 8155 Register Dest = MI.getOperand(0).getReg(); 8156 Register Src = MI.getOperand(1).getReg(); 8157 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8158 8159 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 8160 if (ClearEven) { 8161 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8162 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8163 8164 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 8165 .addImm(0); 8166 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 8167 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 8168 In128 = NewIn128; 8169 } 8170 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8171 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 8172 8173 MI.eraseFromParent(); 8174 return MBB; 8175 } 8176 8177 MachineBasicBlock * 8178 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 8179 MachineBasicBlock *MBB, 8180 unsigned Opcode, bool IsMemset) const { 8181 MachineFunction &MF = *MBB->getParent(); 8182 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8183 MachineRegisterInfo &MRI = MF.getRegInfo(); 8184 DebugLoc DL = MI.getDebugLoc(); 8185 8186 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 8187 uint64_t DestDisp = MI.getOperand(1).getImm(); 8188 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 8189 uint64_t SrcDisp; 8190 8191 // Fold the displacement Disp if it is out of range. 8192 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 8193 if (!isUInt<12>(Disp)) { 8194 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8195 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 8196 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 8197 .add(Base).addImm(Disp).addReg(0); 8198 Base = MachineOperand::CreateReg(Reg, false); 8199 Disp = 0; 8200 } 8201 }; 8202 8203 if (!IsMemset) { 8204 SrcBase = earlyUseOperand(MI.getOperand(2)); 8205 SrcDisp = MI.getOperand(3).getImm(); 8206 } else { 8207 SrcBase = DestBase; 8208 SrcDisp = DestDisp++; 8209 foldDisplIfNeeded(DestBase, DestDisp); 8210 } 8211 8212 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8213 bool IsImmForm = LengthMO.isImm(); 8214 bool IsRegForm = !IsImmForm; 8215 8216 // Build and insert one Opcode of Length, with special treatment for memset. 8217 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 8218 MachineBasicBlock::iterator InsPos, 8219 MachineOperand DBase, uint64_t DDisp, 8220 MachineOperand SBase, uint64_t SDisp, 8221 unsigned Length) -> void { 8222 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 8223 if (IsMemset) { 8224 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 8225 if (ByteMO.isImm()) 8226 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 8227 .add(SBase).addImm(SDisp).add(ByteMO); 8228 else 8229 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 8230 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 8231 if (--Length == 0) 8232 return; 8233 } 8234 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 8235 .add(DBase).addImm(DDisp).addImm(Length) 8236 .add(SBase).addImm(SDisp) 8237 .setMemRefs(MI.memoperands()); 8238 }; 8239 8240 bool NeedsLoop = false; 8241 uint64_t ImmLength = 0; 8242 Register LenAdjReg = SystemZ::NoRegister; 8243 if (IsImmForm) { 8244 ImmLength = LengthMO.getImm(); 8245 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8246 if (ImmLength == 0) { 8247 MI.eraseFromParent(); 8248 return MBB; 8249 } 8250 if (Opcode == SystemZ::CLC) { 8251 if (ImmLength > 3 * 256) 8252 // A two-CLC sequence is a clear win over a loop, not least because 8253 // it needs only one branch. A three-CLC sequence needs the same 8254 // number of branches as a loop (i.e. 2), but is shorter. That 8255 // brings us to lengths greater than 768 bytes. It seems relatively 8256 // likely that a difference will be found within the first 768 bytes, 8257 // so we just optimize for the smallest number of branch 8258 // instructions, in order to avoid polluting the prediction buffer 8259 // too much. 8260 NeedsLoop = true; 8261 } else if (ImmLength > 6 * 256) 8262 // The heuristic we use is to prefer loops for anything that would 8263 // require 7 or more MVCs. With these kinds of sizes there isn't much 8264 // to choose between straight-line code and looping code, since the 8265 // time will be dominated by the MVCs themselves. 8266 NeedsLoop = true; 8267 } else { 8268 NeedsLoop = true; 8269 LenAdjReg = LengthMO.getReg(); 8270 } 8271 8272 // When generating more than one CLC, all but the last will need to 8273 // branch to the end when a difference is found. 8274 MachineBasicBlock *EndMBB = 8275 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8276 ? SystemZ::splitBlockAfter(MI, MBB) 8277 : nullptr); 8278 8279 if (NeedsLoop) { 8280 Register StartCountReg = 8281 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8282 if (IsImmForm) { 8283 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8284 ImmLength &= 255; 8285 } else { 8286 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 8287 .addReg(LenAdjReg) 8288 .addReg(0) 8289 .addImm(8); 8290 } 8291 8292 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8293 auto loadZeroAddress = [&]() -> MachineOperand { 8294 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8295 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8296 return MachineOperand::CreateReg(Reg, false); 8297 }; 8298 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8299 DestBase = loadZeroAddress(); 8300 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8301 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8302 8303 MachineBasicBlock *StartMBB = nullptr; 8304 MachineBasicBlock *LoopMBB = nullptr; 8305 MachineBasicBlock *NextMBB = nullptr; 8306 MachineBasicBlock *DoneMBB = nullptr; 8307 MachineBasicBlock *AllDoneMBB = nullptr; 8308 8309 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8310 Register StartDestReg = 8311 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8312 8313 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8314 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8315 Register ThisDestReg = 8316 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8317 Register NextSrcReg = MRI.createVirtualRegister(RC); 8318 Register NextDestReg = 8319 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8320 RC = &SystemZ::GR64BitRegClass; 8321 Register ThisCountReg = MRI.createVirtualRegister(RC); 8322 Register NextCountReg = MRI.createVirtualRegister(RC); 8323 8324 if (IsRegForm) { 8325 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8326 StartMBB = SystemZ::emitBlockAfter(MBB); 8327 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8328 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8329 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8330 8331 // MBB: 8332 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8333 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8334 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8335 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8336 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8337 .addMBB(AllDoneMBB); 8338 MBB->addSuccessor(AllDoneMBB); 8339 if (!IsMemset) 8340 MBB->addSuccessor(StartMBB); 8341 else { 8342 // MemsetOneCheckMBB: 8343 // # Jump to MemsetOneMBB for a memset of length 1, or 8344 // # fall thru to StartMBB. 8345 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8346 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8347 MBB->addSuccessor(MemsetOneCheckMBB); 8348 MBB = MemsetOneCheckMBB; 8349 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8350 .addReg(LenAdjReg).addImm(-1); 8351 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8352 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8353 .addMBB(MemsetOneMBB); 8354 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8355 MBB->addSuccessor(StartMBB, {90, 100}); 8356 8357 // MemsetOneMBB: 8358 // # Jump back to AllDoneMBB after a single MVI or STC. 8359 MBB = MemsetOneMBB; 8360 insertMemMemOp(MBB, MBB->end(), 8361 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8362 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8363 1); 8364 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8365 MBB->addSuccessor(AllDoneMBB); 8366 } 8367 8368 // StartMBB: 8369 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8370 MBB = StartMBB; 8371 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8372 .addReg(StartCountReg).addImm(0); 8373 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8374 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8375 .addMBB(DoneMBB); 8376 MBB->addSuccessor(DoneMBB); 8377 MBB->addSuccessor(LoopMBB); 8378 } 8379 else { 8380 StartMBB = MBB; 8381 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8382 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8383 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8384 8385 // StartMBB: 8386 // # fall through to LoopMBB 8387 MBB->addSuccessor(LoopMBB); 8388 8389 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8390 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8391 if (EndMBB && !ImmLength) 8392 // If the loop handled the whole CLC range, DoneMBB will be empty with 8393 // CC live-through into EndMBB, so add it as live-in. 8394 DoneMBB->addLiveIn(SystemZ::CC); 8395 } 8396 8397 // LoopMBB: 8398 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8399 // [ %NextDestReg, NextMBB ] 8400 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8401 // [ %NextSrcReg, NextMBB ] 8402 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8403 // [ %NextCountReg, NextMBB ] 8404 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8405 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8406 // ( JLH EndMBB ) 8407 // 8408 // The prefetch is used only for MVC. The JLH is used only for CLC. 8409 MBB = LoopMBB; 8410 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8411 .addReg(StartDestReg).addMBB(StartMBB) 8412 .addReg(NextDestReg).addMBB(NextMBB); 8413 if (!HaveSingleBase) 8414 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8415 .addReg(StartSrcReg).addMBB(StartMBB) 8416 .addReg(NextSrcReg).addMBB(NextMBB); 8417 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8418 .addReg(StartCountReg).addMBB(StartMBB) 8419 .addReg(NextCountReg).addMBB(NextMBB); 8420 if (Opcode == SystemZ::MVC) 8421 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 8422 .addImm(SystemZ::PFD_WRITE) 8423 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 8424 insertMemMemOp(MBB, MBB->end(), 8425 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 8426 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 8427 if (EndMBB) { 8428 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8429 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8430 .addMBB(EndMBB); 8431 MBB->addSuccessor(EndMBB); 8432 MBB->addSuccessor(NextMBB); 8433 } 8434 8435 // NextMBB: 8436 // %NextDestReg = LA 256(%ThisDestReg) 8437 // %NextSrcReg = LA 256(%ThisSrcReg) 8438 // %NextCountReg = AGHI %ThisCountReg, -1 8439 // CGHI %NextCountReg, 0 8440 // JLH LoopMBB 8441 // # fall through to DoneMBB 8442 // 8443 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 8444 MBB = NextMBB; 8445 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 8446 .addReg(ThisDestReg).addImm(256).addReg(0); 8447 if (!HaveSingleBase) 8448 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 8449 .addReg(ThisSrcReg).addImm(256).addReg(0); 8450 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 8451 .addReg(ThisCountReg).addImm(-1); 8452 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8453 .addReg(NextCountReg).addImm(0); 8454 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8455 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8456 .addMBB(LoopMBB); 8457 MBB->addSuccessor(LoopMBB); 8458 MBB->addSuccessor(DoneMBB); 8459 8460 MBB = DoneMBB; 8461 if (IsRegForm) { 8462 // DoneMBB: 8463 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 8464 // # Use EXecute Relative Long for the remainder of the bytes. The target 8465 // instruction of the EXRL will have a length field of 1 since 0 is an 8466 // illegal value. The number of bytes processed becomes (%LenAdjReg & 8467 // 0xff) + 1. 8468 // # Fall through to AllDoneMBB. 8469 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8470 Register RemDestReg = HaveSingleBase ? RemSrcReg 8471 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8472 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 8473 .addReg(StartDestReg).addMBB(StartMBB) 8474 .addReg(NextDestReg).addMBB(NextMBB); 8475 if (!HaveSingleBase) 8476 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 8477 .addReg(StartSrcReg).addMBB(StartMBB) 8478 .addReg(NextSrcReg).addMBB(NextMBB); 8479 if (IsMemset) 8480 insertMemMemOp(MBB, MBB->end(), 8481 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 8482 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 8483 MachineInstrBuilder EXRL_MIB = 8484 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 8485 .addImm(Opcode) 8486 .addReg(LenAdjReg) 8487 .addReg(RemDestReg).addImm(DestDisp) 8488 .addReg(RemSrcReg).addImm(SrcDisp); 8489 MBB->addSuccessor(AllDoneMBB); 8490 MBB = AllDoneMBB; 8491 if (Opcode != SystemZ::MVC) { 8492 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 8493 if (EndMBB) 8494 MBB->addLiveIn(SystemZ::CC); 8495 } 8496 } 8497 MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8498 } 8499 8500 // Handle any remaining bytes with straight-line code. 8501 while (ImmLength > 0) { 8502 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 8503 // The previous iteration might have created out-of-range displacements. 8504 // Apply them using LA/LAY if so. 8505 foldDisplIfNeeded(DestBase, DestDisp); 8506 foldDisplIfNeeded(SrcBase, SrcDisp); 8507 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 8508 DestDisp += ThisLength; 8509 SrcDisp += ThisLength; 8510 ImmLength -= ThisLength; 8511 // If there's another CLC to go, branch to the end if a difference 8512 // was found. 8513 if (EndMBB && ImmLength > 0) { 8514 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 8515 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8516 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8517 .addMBB(EndMBB); 8518 MBB->addSuccessor(EndMBB); 8519 MBB->addSuccessor(NextMBB); 8520 MBB = NextMBB; 8521 } 8522 } 8523 if (EndMBB) { 8524 MBB->addSuccessor(EndMBB); 8525 MBB = EndMBB; 8526 MBB->addLiveIn(SystemZ::CC); 8527 } 8528 8529 MI.eraseFromParent(); 8530 return MBB; 8531 } 8532 8533 // Decompose string pseudo-instruction MI into a loop that continually performs 8534 // Opcode until CC != 3. 8535 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 8536 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8537 MachineFunction &MF = *MBB->getParent(); 8538 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8539 MachineRegisterInfo &MRI = MF.getRegInfo(); 8540 DebugLoc DL = MI.getDebugLoc(); 8541 8542 uint64_t End1Reg = MI.getOperand(0).getReg(); 8543 uint64_t Start1Reg = MI.getOperand(1).getReg(); 8544 uint64_t Start2Reg = MI.getOperand(2).getReg(); 8545 uint64_t CharReg = MI.getOperand(3).getReg(); 8546 8547 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 8548 uint64_t This1Reg = MRI.createVirtualRegister(RC); 8549 uint64_t This2Reg = MRI.createVirtualRegister(RC); 8550 uint64_t End2Reg = MRI.createVirtualRegister(RC); 8551 8552 MachineBasicBlock *StartMBB = MBB; 8553 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8554 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8555 8556 // StartMBB: 8557 // # fall through to LoopMBB 8558 MBB->addSuccessor(LoopMBB); 8559 8560 // LoopMBB: 8561 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 8562 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 8563 // R0L = %CharReg 8564 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 8565 // JO LoopMBB 8566 // # fall through to DoneMBB 8567 // 8568 // The load of R0L can be hoisted by post-RA LICM. 8569 MBB = LoopMBB; 8570 8571 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 8572 .addReg(Start1Reg).addMBB(StartMBB) 8573 .addReg(End1Reg).addMBB(LoopMBB); 8574 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 8575 .addReg(Start2Reg).addMBB(StartMBB) 8576 .addReg(End2Reg).addMBB(LoopMBB); 8577 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 8578 BuildMI(MBB, DL, TII->get(Opcode)) 8579 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 8580 .addReg(This1Reg).addReg(This2Reg); 8581 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8582 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 8583 MBB->addSuccessor(LoopMBB); 8584 MBB->addSuccessor(DoneMBB); 8585 8586 DoneMBB->addLiveIn(SystemZ::CC); 8587 8588 MI.eraseFromParent(); 8589 return DoneMBB; 8590 } 8591 8592 // Update TBEGIN instruction with final opcode and register clobbers. 8593 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 8594 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 8595 bool NoFloat) const { 8596 MachineFunction &MF = *MBB->getParent(); 8597 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8598 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8599 8600 // Update opcode. 8601 MI.setDesc(TII->get(Opcode)); 8602 8603 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 8604 // Make sure to add the corresponding GRSM bits if they are missing. 8605 uint64_t Control = MI.getOperand(2).getImm(); 8606 static const unsigned GPRControlBit[16] = { 8607 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 8608 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 8609 }; 8610 Control |= GPRControlBit[15]; 8611 if (TFI->hasFP(MF)) 8612 Control |= GPRControlBit[11]; 8613 MI.getOperand(2).setImm(Control); 8614 8615 // Add GPR clobbers. 8616 for (int I = 0; I < 16; I++) { 8617 if ((Control & GPRControlBit[I]) == 0) { 8618 unsigned Reg = SystemZMC::GR64Regs[I]; 8619 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8620 } 8621 } 8622 8623 // Add FPR/VR clobbers. 8624 if (!NoFloat && (Control & 4) != 0) { 8625 if (Subtarget.hasVector()) { 8626 for (unsigned Reg : SystemZMC::VR128Regs) { 8627 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8628 } 8629 } else { 8630 for (unsigned Reg : SystemZMC::FP64Regs) { 8631 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8632 } 8633 } 8634 } 8635 8636 return MBB; 8637 } 8638 8639 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8640 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8641 MachineFunction &MF = *MBB->getParent(); 8642 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8643 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8644 DebugLoc DL = MI.getDebugLoc(); 8645 8646 Register SrcReg = MI.getOperand(0).getReg(); 8647 8648 // Create new virtual register of the same class as source. 8649 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8650 Register DstReg = MRI->createVirtualRegister(RC); 8651 8652 // Replace pseudo with a normal load-and-test that models the def as 8653 // well. 8654 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8655 .addReg(SrcReg) 8656 .setMIFlags(MI.getFlags()); 8657 MI.eraseFromParent(); 8658 8659 return MBB; 8660 } 8661 8662 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8663 MachineInstr &MI, MachineBasicBlock *MBB) const { 8664 MachineFunction &MF = *MBB->getParent(); 8665 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8666 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8667 DebugLoc DL = MI.getDebugLoc(); 8668 const unsigned ProbeSize = getStackProbeSize(MF); 8669 Register DstReg = MI.getOperand(0).getReg(); 8670 Register SizeReg = MI.getOperand(2).getReg(); 8671 8672 MachineBasicBlock *StartMBB = MBB; 8673 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8674 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8675 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8676 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8677 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8678 8679 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8680 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8681 8682 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8683 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8684 8685 // LoopTestMBB 8686 // BRC TailTestMBB 8687 // # fallthrough to LoopBodyMBB 8688 StartMBB->addSuccessor(LoopTestMBB); 8689 MBB = LoopTestMBB; 8690 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8691 .addReg(SizeReg) 8692 .addMBB(StartMBB) 8693 .addReg(IncReg) 8694 .addMBB(LoopBodyMBB); 8695 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8696 .addReg(PHIReg) 8697 .addImm(ProbeSize); 8698 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8699 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8700 .addMBB(TailTestMBB); 8701 MBB->addSuccessor(LoopBodyMBB); 8702 MBB->addSuccessor(TailTestMBB); 8703 8704 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8705 // J LoopTestMBB 8706 MBB = LoopBodyMBB; 8707 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8708 .addReg(PHIReg) 8709 .addImm(ProbeSize); 8710 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8711 .addReg(SystemZ::R15D) 8712 .addImm(ProbeSize); 8713 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8714 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8715 .setMemRefs(VolLdMMO); 8716 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8717 MBB->addSuccessor(LoopTestMBB); 8718 8719 // TailTestMBB 8720 // BRC DoneMBB 8721 // # fallthrough to TailMBB 8722 MBB = TailTestMBB; 8723 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8724 .addReg(PHIReg) 8725 .addImm(0); 8726 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8727 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8728 .addMBB(DoneMBB); 8729 MBB->addSuccessor(TailMBB); 8730 MBB->addSuccessor(DoneMBB); 8731 8732 // TailMBB 8733 // # fallthrough to DoneMBB 8734 MBB = TailMBB; 8735 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8736 .addReg(SystemZ::R15D) 8737 .addReg(PHIReg); 8738 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8739 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8740 .setMemRefs(VolLdMMO); 8741 MBB->addSuccessor(DoneMBB); 8742 8743 // DoneMBB 8744 MBB = DoneMBB; 8745 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8746 .addReg(SystemZ::R15D); 8747 8748 MI.eraseFromParent(); 8749 return DoneMBB; 8750 } 8751 8752 SDValue SystemZTargetLowering:: 8753 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8754 MachineFunction &MF = DAG.getMachineFunction(); 8755 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 8756 SDLoc DL(SP); 8757 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8758 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8759 } 8760 8761 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8762 MachineInstr &MI, MachineBasicBlock *MBB) const { 8763 switch (MI.getOpcode()) { 8764 case SystemZ::Select32: 8765 case SystemZ::Select64: 8766 case SystemZ::SelectF32: 8767 case SystemZ::SelectF64: 8768 case SystemZ::SelectF128: 8769 case SystemZ::SelectVR32: 8770 case SystemZ::SelectVR64: 8771 case SystemZ::SelectVR128: 8772 return emitSelect(MI, MBB); 8773 8774 case SystemZ::CondStore8Mux: 8775 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8776 case SystemZ::CondStore8MuxInv: 8777 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8778 case SystemZ::CondStore16Mux: 8779 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8780 case SystemZ::CondStore16MuxInv: 8781 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8782 case SystemZ::CondStore32Mux: 8783 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8784 case SystemZ::CondStore32MuxInv: 8785 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8786 case SystemZ::CondStore8: 8787 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8788 case SystemZ::CondStore8Inv: 8789 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8790 case SystemZ::CondStore16: 8791 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8792 case SystemZ::CondStore16Inv: 8793 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8794 case SystemZ::CondStore32: 8795 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8796 case SystemZ::CondStore32Inv: 8797 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8798 case SystemZ::CondStore64: 8799 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8800 case SystemZ::CondStore64Inv: 8801 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8802 case SystemZ::CondStoreF32: 8803 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8804 case SystemZ::CondStoreF32Inv: 8805 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8806 case SystemZ::CondStoreF64: 8807 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8808 case SystemZ::CondStoreF64Inv: 8809 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8810 8811 case SystemZ::PAIR128: 8812 return emitPair128(MI, MBB); 8813 case SystemZ::AEXT128: 8814 return emitExt128(MI, MBB, false); 8815 case SystemZ::ZEXT128: 8816 return emitExt128(MI, MBB, true); 8817 8818 case SystemZ::ATOMIC_SWAPW: 8819 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8820 case SystemZ::ATOMIC_SWAP_32: 8821 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8822 case SystemZ::ATOMIC_SWAP_64: 8823 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8824 8825 case SystemZ::ATOMIC_LOADW_AR: 8826 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8827 case SystemZ::ATOMIC_LOADW_AFI: 8828 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8829 case SystemZ::ATOMIC_LOAD_AR: 8830 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8831 case SystemZ::ATOMIC_LOAD_AHI: 8832 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8833 case SystemZ::ATOMIC_LOAD_AFI: 8834 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8835 case SystemZ::ATOMIC_LOAD_AGR: 8836 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8837 case SystemZ::ATOMIC_LOAD_AGHI: 8838 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8839 case SystemZ::ATOMIC_LOAD_AGFI: 8840 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8841 8842 case SystemZ::ATOMIC_LOADW_SR: 8843 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8844 case SystemZ::ATOMIC_LOAD_SR: 8845 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8846 case SystemZ::ATOMIC_LOAD_SGR: 8847 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8848 8849 case SystemZ::ATOMIC_LOADW_NR: 8850 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8851 case SystemZ::ATOMIC_LOADW_NILH: 8852 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8853 case SystemZ::ATOMIC_LOAD_NR: 8854 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8855 case SystemZ::ATOMIC_LOAD_NILL: 8856 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8857 case SystemZ::ATOMIC_LOAD_NILH: 8858 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8859 case SystemZ::ATOMIC_LOAD_NILF: 8860 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8861 case SystemZ::ATOMIC_LOAD_NGR: 8862 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8863 case SystemZ::ATOMIC_LOAD_NILL64: 8864 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8865 case SystemZ::ATOMIC_LOAD_NILH64: 8866 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8867 case SystemZ::ATOMIC_LOAD_NIHL64: 8868 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8869 case SystemZ::ATOMIC_LOAD_NIHH64: 8870 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8871 case SystemZ::ATOMIC_LOAD_NILF64: 8872 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8873 case SystemZ::ATOMIC_LOAD_NIHF64: 8874 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8875 8876 case SystemZ::ATOMIC_LOADW_OR: 8877 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8878 case SystemZ::ATOMIC_LOADW_OILH: 8879 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8880 case SystemZ::ATOMIC_LOAD_OR: 8881 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8882 case SystemZ::ATOMIC_LOAD_OILL: 8883 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8884 case SystemZ::ATOMIC_LOAD_OILH: 8885 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8886 case SystemZ::ATOMIC_LOAD_OILF: 8887 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8888 case SystemZ::ATOMIC_LOAD_OGR: 8889 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8890 case SystemZ::ATOMIC_LOAD_OILL64: 8891 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8892 case SystemZ::ATOMIC_LOAD_OILH64: 8893 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8894 case SystemZ::ATOMIC_LOAD_OIHL64: 8895 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8896 case SystemZ::ATOMIC_LOAD_OIHH64: 8897 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8898 case SystemZ::ATOMIC_LOAD_OILF64: 8899 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8900 case SystemZ::ATOMIC_LOAD_OIHF64: 8901 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8902 8903 case SystemZ::ATOMIC_LOADW_XR: 8904 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8905 case SystemZ::ATOMIC_LOADW_XILF: 8906 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8907 case SystemZ::ATOMIC_LOAD_XR: 8908 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8909 case SystemZ::ATOMIC_LOAD_XILF: 8910 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8911 case SystemZ::ATOMIC_LOAD_XGR: 8912 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8913 case SystemZ::ATOMIC_LOAD_XILF64: 8914 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8915 case SystemZ::ATOMIC_LOAD_XIHF64: 8916 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8917 8918 case SystemZ::ATOMIC_LOADW_NRi: 8919 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8920 case SystemZ::ATOMIC_LOADW_NILHi: 8921 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8922 case SystemZ::ATOMIC_LOAD_NRi: 8923 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8924 case SystemZ::ATOMIC_LOAD_NILLi: 8925 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8926 case SystemZ::ATOMIC_LOAD_NILHi: 8927 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8928 case SystemZ::ATOMIC_LOAD_NILFi: 8929 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8930 case SystemZ::ATOMIC_LOAD_NGRi: 8931 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8932 case SystemZ::ATOMIC_LOAD_NILL64i: 8933 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8934 case SystemZ::ATOMIC_LOAD_NILH64i: 8935 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8936 case SystemZ::ATOMIC_LOAD_NIHL64i: 8937 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8938 case SystemZ::ATOMIC_LOAD_NIHH64i: 8939 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8940 case SystemZ::ATOMIC_LOAD_NILF64i: 8941 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8942 case SystemZ::ATOMIC_LOAD_NIHF64i: 8943 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8944 8945 case SystemZ::ATOMIC_LOADW_MIN: 8946 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8947 SystemZ::CCMASK_CMP_LE, 0); 8948 case SystemZ::ATOMIC_LOAD_MIN_32: 8949 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8950 SystemZ::CCMASK_CMP_LE, 32); 8951 case SystemZ::ATOMIC_LOAD_MIN_64: 8952 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8953 SystemZ::CCMASK_CMP_LE, 64); 8954 8955 case SystemZ::ATOMIC_LOADW_MAX: 8956 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8957 SystemZ::CCMASK_CMP_GE, 0); 8958 case SystemZ::ATOMIC_LOAD_MAX_32: 8959 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8960 SystemZ::CCMASK_CMP_GE, 32); 8961 case SystemZ::ATOMIC_LOAD_MAX_64: 8962 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8963 SystemZ::CCMASK_CMP_GE, 64); 8964 8965 case SystemZ::ATOMIC_LOADW_UMIN: 8966 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8967 SystemZ::CCMASK_CMP_LE, 0); 8968 case SystemZ::ATOMIC_LOAD_UMIN_32: 8969 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8970 SystemZ::CCMASK_CMP_LE, 32); 8971 case SystemZ::ATOMIC_LOAD_UMIN_64: 8972 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8973 SystemZ::CCMASK_CMP_LE, 64); 8974 8975 case SystemZ::ATOMIC_LOADW_UMAX: 8976 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8977 SystemZ::CCMASK_CMP_GE, 0); 8978 case SystemZ::ATOMIC_LOAD_UMAX_32: 8979 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8980 SystemZ::CCMASK_CMP_GE, 32); 8981 case SystemZ::ATOMIC_LOAD_UMAX_64: 8982 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8983 SystemZ::CCMASK_CMP_GE, 64); 8984 8985 case SystemZ::ATOMIC_CMP_SWAPW: 8986 return emitAtomicCmpSwapW(MI, MBB); 8987 case SystemZ::MVCImm: 8988 case SystemZ::MVCReg: 8989 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8990 case SystemZ::NCImm: 8991 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8992 case SystemZ::OCImm: 8993 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8994 case SystemZ::XCImm: 8995 case SystemZ::XCReg: 8996 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8997 case SystemZ::CLCImm: 8998 case SystemZ::CLCReg: 8999 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 9000 case SystemZ::MemsetImmImm: 9001 case SystemZ::MemsetImmReg: 9002 case SystemZ::MemsetRegImm: 9003 case SystemZ::MemsetRegReg: 9004 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 9005 case SystemZ::CLSTLoop: 9006 return emitStringWrapper(MI, MBB, SystemZ::CLST); 9007 case SystemZ::MVSTLoop: 9008 return emitStringWrapper(MI, MBB, SystemZ::MVST); 9009 case SystemZ::SRSTLoop: 9010 return emitStringWrapper(MI, MBB, SystemZ::SRST); 9011 case SystemZ::TBEGIN: 9012 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 9013 case SystemZ::TBEGIN_nofloat: 9014 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 9015 case SystemZ::TBEGINC: 9016 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 9017 case SystemZ::LTEBRCompare_VecPseudo: 9018 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 9019 case SystemZ::LTDBRCompare_VecPseudo: 9020 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 9021 case SystemZ::LTXBRCompare_VecPseudo: 9022 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 9023 9024 case SystemZ::PROBED_ALLOCA: 9025 return emitProbedAlloca(MI, MBB); 9026 9027 case TargetOpcode::STACKMAP: 9028 case TargetOpcode::PATCHPOINT: 9029 return emitPatchPoint(MI, MBB); 9030 9031 default: 9032 llvm_unreachable("Unexpected instr type to insert"); 9033 } 9034 } 9035 9036 // This is only used by the isel schedulers, and is needed only to prevent 9037 // compiler from crashing when list-ilp is used. 9038 const TargetRegisterClass * 9039 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 9040 if (VT == MVT::Untyped) 9041 return &SystemZ::ADDR128BitRegClass; 9042 return TargetLowering::getRepRegClassFor(VT); 9043 } 9044 9045 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op, 9046 SelectionDAG &DAG) const { 9047 SDLoc dl(Op); 9048 /* 9049 The rounding method is in FPC Byte 3 bits 6-7, and has the following 9050 settings: 9051 00 Round to nearest 9052 01 Round to 0 9053 10 Round to +inf 9054 11 Round to -inf 9055 9056 FLT_ROUNDS, on the other hand, expects the following: 9057 -1 Undefined 9058 0 Round to 0 9059 1 Round to nearest 9060 2 Round to +inf 9061 3 Round to -inf 9062 */ 9063 9064 // Save FPC to register. 9065 SDValue Chain = Op.getOperand(0); 9066 SDValue EFPC( 9067 DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0); 9068 Chain = EFPC.getValue(1); 9069 9070 // Transform as necessary 9071 SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC, 9072 DAG.getConstant(3, dl, MVT::i32)); 9073 // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1 9074 SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, 9075 DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1, 9076 DAG.getConstant(1, dl, MVT::i32))); 9077 9078 SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2, 9079 DAG.getConstant(1, dl, MVT::i32)); 9080 RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType()); 9081 9082 return DAG.getMergeValues({RetVal, Chain}, dl); 9083 } 9084