1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include <cctype> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "systemz-lower" 31 32 namespace { 33 // Represents information about a comparison. 34 struct Comparison { 35 Comparison(SDValue Op0In, SDValue Op1In) 36 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 37 38 // The operands to the comparison. 39 SDValue Op0, Op1; 40 41 // The opcode that should be used to compare Op0 and Op1. 42 unsigned Opcode; 43 44 // A SystemZICMP value. Only used for integer comparisons. 45 unsigned ICmpType; 46 47 // The mask of CC values that Opcode can produce. 48 unsigned CCValid; 49 50 // The mask of CC values for which the original condition is true. 51 unsigned CCMask; 52 }; 53 } // end anonymous namespace 54 55 // Classify VT as either 32 or 64 bit. 56 static bool is32Bit(EVT VT) { 57 switch (VT.getSimpleVT().SimpleTy) { 58 case MVT::i32: 59 return true; 60 case MVT::i64: 61 return false; 62 default: 63 llvm_unreachable("Unsupported type"); 64 } 65 } 66 67 // Return a version of MachineOperand that can be safely used before the 68 // final use. 69 static MachineOperand earlyUseOperand(MachineOperand Op) { 70 if (Op.isReg()) 71 Op.setIsKill(false); 72 return Op; 73 } 74 75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 76 const SystemZSubtarget &STI) 77 : TargetLowering(TM), Subtarget(STI) { 78 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 79 80 // Set up the register classes. 81 if (Subtarget.hasHighWord()) 82 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 83 else 84 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 85 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 86 if (Subtarget.hasVector()) { 87 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 88 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 89 } else { 90 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 91 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 92 } 93 if (Subtarget.hasVectorEnhancements1()) 94 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 95 else 96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 97 98 if (Subtarget.hasVector()) { 99 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 100 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 105 } 106 107 // Compute derived properties from the register classes 108 computeRegisterProperties(Subtarget.getRegisterInfo()); 109 110 // Set up special registers. 111 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 112 113 // TODO: It may be better to default to latency-oriented scheduling, however 114 // LLVM's current latency-oriented scheduler can't handle physreg definitions 115 // such as SystemZ has with CC, so set this to the register-pressure 116 // scheduler, because it can. 117 setSchedulingPreference(Sched::RegPressure); 118 119 setBooleanContents(ZeroOrOneBooleanContent); 120 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 121 122 // Instructions are strings of 2-byte aligned 2-byte values. 123 setMinFunctionAlignment(Align(2)); 124 // For performance reasons we prefer 16-byte alignment. 125 setPrefFunctionAlignment(Align(16)); 126 127 // Handle operations that are handled in a similar way for all types. 128 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 129 I <= MVT::LAST_FP_VALUETYPE; 130 ++I) { 131 MVT VT = MVT::SimpleValueType(I); 132 if (isTypeLegal(VT)) { 133 // Lower SET_CC into an IPM-based sequence. 134 setOperationAction(ISD::SETCC, VT, Custom); 135 136 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 137 setOperationAction(ISD::SELECT, VT, Expand); 138 139 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 140 setOperationAction(ISD::SELECT_CC, VT, Custom); 141 setOperationAction(ISD::BR_CC, VT, Custom); 142 } 143 } 144 145 // Expand jump table branches as address arithmetic followed by an 146 // indirect jump. 147 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 148 149 // Expand BRCOND into a BR_CC (see above). 150 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 151 152 // Handle integer types. 153 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 154 I <= MVT::LAST_INTEGER_VALUETYPE; 155 ++I) { 156 MVT VT = MVT::SimpleValueType(I); 157 if (isTypeLegal(VT)) { 158 // Expand individual DIV and REMs into DIVREMs. 159 setOperationAction(ISD::SDIV, VT, Expand); 160 setOperationAction(ISD::UDIV, VT, Expand); 161 setOperationAction(ISD::SREM, VT, Expand); 162 setOperationAction(ISD::UREM, VT, Expand); 163 setOperationAction(ISD::SDIVREM, VT, Custom); 164 setOperationAction(ISD::UDIVREM, VT, Custom); 165 166 // Support addition/subtraction with overflow. 167 setOperationAction(ISD::SADDO, VT, Custom); 168 setOperationAction(ISD::SSUBO, VT, Custom); 169 170 // Support addition/subtraction with carry. 171 setOperationAction(ISD::UADDO, VT, Custom); 172 setOperationAction(ISD::USUBO, VT, Custom); 173 174 // Support carry in as value rather than glue. 175 setOperationAction(ISD::ADDCARRY, VT, Custom); 176 setOperationAction(ISD::SUBCARRY, VT, Custom); 177 178 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 179 // stores, putting a serialization instruction after the stores. 180 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 181 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 182 183 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 184 // available, or if the operand is constant. 185 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 186 187 // Use POPCNT on z196 and above. 188 if (Subtarget.hasPopulationCount()) 189 setOperationAction(ISD::CTPOP, VT, Custom); 190 else 191 setOperationAction(ISD::CTPOP, VT, Expand); 192 193 // No special instructions for these. 194 setOperationAction(ISD::CTTZ, VT, Expand); 195 setOperationAction(ISD::ROTR, VT, Expand); 196 197 // Use *MUL_LOHI where possible instead of MULH*. 198 setOperationAction(ISD::MULHS, VT, Expand); 199 setOperationAction(ISD::MULHU, VT, Expand); 200 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 201 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 202 203 // Only z196 and above have native support for conversions to unsigned. 204 // On z10, promoting to i64 doesn't generate an inexact condition for 205 // values that are outside the i32 range but in the i64 range, so use 206 // the default expansion. 207 if (!Subtarget.hasFPExtension()) 208 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 209 210 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 211 // default to Expand, so need to be modified to Legal where appropriate. 212 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 213 if (Subtarget.hasFPExtension()) 214 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 215 } 216 } 217 218 // Type legalization will convert 8- and 16-bit atomic operations into 219 // forms that operate on i32s (but still keeping the original memory VT). 220 // Lower them into full i32 operations. 221 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 226 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 227 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 228 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 229 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 230 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 231 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 232 233 // Even though i128 is not a legal type, we still need to custom lower 234 // the atomic operations in order to exploit SystemZ instructions. 235 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 236 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 237 238 // We can use the CC result of compare-and-swap to implement 239 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 240 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 242 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 243 244 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 245 246 // Traps are legal, as we will convert them to "j .+2". 247 setOperationAction(ISD::TRAP, MVT::Other, Legal); 248 249 // z10 has instructions for signed but not unsigned FP conversion. 250 // Handle unsigned 32-bit types as signed 64-bit types. 251 if (!Subtarget.hasFPExtension()) { 252 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 253 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 254 } 255 256 // We have native support for a 64-bit CTLZ, via FLOGR. 257 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 258 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 259 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 260 261 // On z15 we have native support for a 64-bit CTPOP. 262 if (Subtarget.hasMiscellaneousExtensions3()) { 263 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 264 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 265 } 266 267 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 268 setOperationAction(ISD::OR, MVT::i64, Custom); 269 270 // FIXME: Can we support these natively? 271 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 272 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 273 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 274 275 // We have native instructions for i8, i16 and i32 extensions, but not i1. 276 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 277 for (MVT VT : MVT::integer_valuetypes()) { 278 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 279 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 281 } 282 283 // Handle the various types of symbolic address. 284 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 285 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 286 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 287 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 288 setOperationAction(ISD::JumpTable, PtrVT, Custom); 289 290 // We need to handle dynamic allocations specially because of the 291 // 160-byte area at the bottom of the stack. 292 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 293 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 294 295 // Use custom expanders so that we can force the function to use 296 // a frame pointer. 297 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 298 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 299 300 // Handle prefetches with PFD or PFDRL. 301 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 302 303 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 304 // Assume by default that all vector operations need to be expanded. 305 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 306 if (getOperationAction(Opcode, VT) == Legal) 307 setOperationAction(Opcode, VT, Expand); 308 309 // Likewise all truncating stores and extending loads. 310 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 311 setTruncStoreAction(VT, InnerVT, Expand); 312 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 313 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 314 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 315 } 316 317 if (isTypeLegal(VT)) { 318 // These operations are legal for anything that can be stored in a 319 // vector register, even if there is no native support for the format 320 // as such. In particular, we can do these for v4f32 even though there 321 // are no specific instructions for that format. 322 setOperationAction(ISD::LOAD, VT, Legal); 323 setOperationAction(ISD::STORE, VT, Legal); 324 setOperationAction(ISD::VSELECT, VT, Legal); 325 setOperationAction(ISD::BITCAST, VT, Legal); 326 setOperationAction(ISD::UNDEF, VT, Legal); 327 328 // Likewise, except that we need to replace the nodes with something 329 // more specific. 330 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 331 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 332 } 333 } 334 335 // Handle integer vector types. 336 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 337 if (isTypeLegal(VT)) { 338 // These operations have direct equivalents. 339 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 340 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 341 setOperationAction(ISD::ADD, VT, Legal); 342 setOperationAction(ISD::SUB, VT, Legal); 343 if (VT != MVT::v2i64) 344 setOperationAction(ISD::MUL, VT, Legal); 345 setOperationAction(ISD::AND, VT, Legal); 346 setOperationAction(ISD::OR, VT, Legal); 347 setOperationAction(ISD::XOR, VT, Legal); 348 if (Subtarget.hasVectorEnhancements1()) 349 setOperationAction(ISD::CTPOP, VT, Legal); 350 else 351 setOperationAction(ISD::CTPOP, VT, Custom); 352 setOperationAction(ISD::CTTZ, VT, Legal); 353 setOperationAction(ISD::CTLZ, VT, Legal); 354 355 // Convert a GPR scalar to a vector by inserting it into element 0. 356 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 357 358 // Use a series of unpacks for extensions. 359 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 360 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 361 362 // Detect shifts by a scalar amount and convert them into 363 // V*_BY_SCALAR. 364 setOperationAction(ISD::SHL, VT, Custom); 365 setOperationAction(ISD::SRA, VT, Custom); 366 setOperationAction(ISD::SRL, VT, Custom); 367 368 // At present ROTL isn't matched by DAGCombiner. ROTR should be 369 // converted into ROTL. 370 setOperationAction(ISD::ROTL, VT, Expand); 371 setOperationAction(ISD::ROTR, VT, Expand); 372 373 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 374 // and inverting the result as necessary. 375 setOperationAction(ISD::SETCC, VT, Custom); 376 } 377 } 378 379 if (Subtarget.hasVector()) { 380 // There should be no need to check for float types other than v2f64 381 // since <2 x f32> isn't a legal type. 382 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 383 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 384 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 385 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 386 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 387 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 388 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 389 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 390 391 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 392 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 393 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 394 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 395 } 396 397 if (Subtarget.hasVectorEnhancements2()) { 398 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 399 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 400 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 401 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 402 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 403 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 404 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 405 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 406 407 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 408 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 409 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 410 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 411 } 412 413 // Handle floating-point types. 414 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 415 I <= MVT::LAST_FP_VALUETYPE; 416 ++I) { 417 MVT VT = MVT::SimpleValueType(I); 418 if (isTypeLegal(VT)) { 419 // We can use FI for FRINT. 420 setOperationAction(ISD::FRINT, VT, Legal); 421 422 // We can use the extended form of FI for other rounding operations. 423 if (Subtarget.hasFPExtension()) { 424 setOperationAction(ISD::FNEARBYINT, VT, Legal); 425 setOperationAction(ISD::FFLOOR, VT, Legal); 426 setOperationAction(ISD::FCEIL, VT, Legal); 427 setOperationAction(ISD::FTRUNC, VT, Legal); 428 setOperationAction(ISD::FROUND, VT, Legal); 429 } 430 431 // No special instructions for these. 432 setOperationAction(ISD::FSIN, VT, Expand); 433 setOperationAction(ISD::FCOS, VT, Expand); 434 setOperationAction(ISD::FSINCOS, VT, Expand); 435 setOperationAction(ISD::FREM, VT, Expand); 436 setOperationAction(ISD::FPOW, VT, Expand); 437 438 // Handle constrained floating-point operations. 439 setOperationAction(ISD::STRICT_FADD, VT, Legal); 440 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 441 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 442 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 443 setOperationAction(ISD::STRICT_FMA, VT, Legal); 444 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 445 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 446 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 447 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 448 if (Subtarget.hasFPExtension()) { 449 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 450 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 451 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 452 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 453 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 454 } 455 } 456 } 457 458 // Handle floating-point vector types. 459 if (Subtarget.hasVector()) { 460 // Scalar-to-vector conversion is just a subreg. 461 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 462 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 463 464 // Some insertions and extractions can be done directly but others 465 // need to go via integers. 466 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 467 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 468 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 469 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 470 471 // These operations have direct equivalents. 472 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 473 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 474 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 475 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 476 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 477 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 478 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 479 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 480 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 481 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 482 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 483 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 484 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 485 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 486 487 // Handle constrained floating-point operations. 488 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 489 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 490 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 491 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 492 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 493 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 494 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 495 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 496 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 497 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 498 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 499 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 500 } 501 502 // The vector enhancements facility 1 has instructions for these. 503 if (Subtarget.hasVectorEnhancements1()) { 504 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 505 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 506 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 507 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 508 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 509 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 510 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 511 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 512 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 513 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 514 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 515 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 516 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 517 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 518 519 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 520 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 521 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 522 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 523 524 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 525 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 526 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 527 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 528 529 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 530 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 531 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 532 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 533 534 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 536 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 537 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 538 539 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 540 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 541 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 542 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 543 544 // Handle constrained floating-point operations. 545 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 546 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 547 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 548 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 549 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 550 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 551 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 552 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 553 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 554 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 555 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 556 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 557 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 558 MVT::v4f32, MVT::v2f64 }) { 559 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 560 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 561 } 562 } 563 564 // We have fused multiply-addition for f32 and f64 but not f128. 565 setOperationAction(ISD::FMA, MVT::f32, Legal); 566 setOperationAction(ISD::FMA, MVT::f64, Legal); 567 if (Subtarget.hasVectorEnhancements1()) 568 setOperationAction(ISD::FMA, MVT::f128, Legal); 569 else 570 setOperationAction(ISD::FMA, MVT::f128, Expand); 571 572 // We don't have a copysign instruction on vector registers. 573 if (Subtarget.hasVectorEnhancements1()) 574 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 575 576 // Needed so that we don't try to implement f128 constant loads using 577 // a load-and-extend of a f80 constant (in cases where the constant 578 // would fit in an f80). 579 for (MVT VT : MVT::fp_valuetypes()) 580 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 581 582 // We don't have extending load instruction on vector registers. 583 if (Subtarget.hasVectorEnhancements1()) { 584 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 585 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 586 } 587 588 // Floating-point truncation and stores need to be done separately. 589 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 590 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 591 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 592 593 // We have 64-bit FPR<->GPR moves, but need special handling for 594 // 32-bit forms. 595 if (!Subtarget.hasVector()) { 596 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 597 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 598 } 599 600 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 601 // structure, but VAEND is a no-op. 602 setOperationAction(ISD::VASTART, MVT::Other, Custom); 603 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 604 setOperationAction(ISD::VAEND, MVT::Other, Expand); 605 606 // Codes for which we want to perform some z-specific combinations. 607 setTargetDAGCombine(ISD::ZERO_EXTEND); 608 setTargetDAGCombine(ISD::SIGN_EXTEND); 609 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 610 setTargetDAGCombine(ISD::LOAD); 611 setTargetDAGCombine(ISD::STORE); 612 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 613 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 614 setTargetDAGCombine(ISD::FP_ROUND); 615 setTargetDAGCombine(ISD::FP_EXTEND); 616 setTargetDAGCombine(ISD::BSWAP); 617 setTargetDAGCombine(ISD::SDIV); 618 setTargetDAGCombine(ISD::UDIV); 619 setTargetDAGCombine(ISD::SREM); 620 setTargetDAGCombine(ISD::UREM); 621 622 // Handle intrinsics. 623 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 624 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 625 626 // We want to use MVC in preference to even a single load/store pair. 627 MaxStoresPerMemcpy = 0; 628 MaxStoresPerMemcpyOptSize = 0; 629 630 // The main memset sequence is a byte store followed by an MVC. 631 // Two STC or MV..I stores win over that, but the kind of fused stores 632 // generated by target-independent code don't when the byte value is 633 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 634 // than "STC;MVC". Handle the choice in target-specific code instead. 635 MaxStoresPerMemset = 0; 636 MaxStoresPerMemsetOptSize = 0; 637 } 638 639 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 640 LLVMContext &, EVT VT) const { 641 if (!VT.isVector()) 642 return MVT::i32; 643 return VT.changeVectorElementTypeToInteger(); 644 } 645 646 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 647 VT = VT.getScalarType(); 648 649 if (!VT.isSimple()) 650 return false; 651 652 switch (VT.getSimpleVT().SimpleTy) { 653 case MVT::f32: 654 case MVT::f64: 655 return true; 656 case MVT::f128: 657 return Subtarget.hasVectorEnhancements1(); 658 default: 659 break; 660 } 661 662 return false; 663 } 664 665 // Return true if the constant can be generated with a vector instruction, 666 // such as VGM, VGMB or VREPI. 667 bool SystemZVectorConstantInfo::isVectorConstantLegal( 668 const SystemZSubtarget &Subtarget) { 669 const SystemZInstrInfo *TII = 670 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 671 if (!Subtarget.hasVector() || 672 (isFP128 && !Subtarget.hasVectorEnhancements1())) 673 return false; 674 675 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 676 // preferred way of creating all-zero and all-one vectors so give it 677 // priority over other methods below. 678 unsigned Mask = 0; 679 unsigned I = 0; 680 for (; I < SystemZ::VectorBytes; ++I) { 681 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 682 if (Byte == 0xff) 683 Mask |= 1ULL << I; 684 else if (Byte != 0) 685 break; 686 } 687 if (I == SystemZ::VectorBytes) { 688 Opcode = SystemZISD::BYTE_MASK; 689 OpVals.push_back(Mask); 690 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 691 return true; 692 } 693 694 if (SplatBitSize > 64) 695 return false; 696 697 auto tryValue = [&](uint64_t Value) -> bool { 698 // Try VECTOR REPLICATE IMMEDIATE 699 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 700 if (isInt<16>(SignedValue)) { 701 OpVals.push_back(((unsigned) SignedValue)); 702 Opcode = SystemZISD::REPLICATE; 703 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 704 SystemZ::VectorBits / SplatBitSize); 705 return true; 706 } 707 // Try VECTOR GENERATE MASK 708 unsigned Start, End; 709 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 710 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 711 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 712 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 713 OpVals.push_back(Start - (64 - SplatBitSize)); 714 OpVals.push_back(End - (64 - SplatBitSize)); 715 Opcode = SystemZISD::ROTATE_MASK; 716 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 717 SystemZ::VectorBits / SplatBitSize); 718 return true; 719 } 720 return false; 721 }; 722 723 // First try assuming that any undefined bits above the highest set bit 724 // and below the lowest set bit are 1s. This increases the likelihood of 725 // being able to use a sign-extended element value in VECTOR REPLICATE 726 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 727 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 728 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 729 uint64_t Lower = 730 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 731 uint64_t Upper = 732 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 733 if (tryValue(SplatBitsZ | Upper | Lower)) 734 return true; 735 736 // Now try assuming that any undefined bits between the first and 737 // last defined set bits are set. This increases the chances of 738 // using a non-wraparound mask. 739 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 740 return tryValue(SplatBitsZ | Middle); 741 } 742 743 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 744 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 745 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 746 747 // Find the smallest splat. 748 SplatBits = FPImm.bitcastToAPInt(); 749 unsigned Width = SplatBits.getBitWidth(); 750 while (Width > 8) { 751 unsigned HalfSize = Width / 2; 752 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 753 APInt LowValue = SplatBits.trunc(HalfSize); 754 755 // If the two halves do not match, stop here. 756 if (HighValue != LowValue || 8 > HalfSize) 757 break; 758 759 SplatBits = HighValue; 760 Width = HalfSize; 761 } 762 SplatUndef = 0; 763 SplatBitSize = Width; 764 } 765 766 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 767 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 768 bool HasAnyUndefs; 769 770 // Get IntBits by finding the 128 bit splat. 771 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 772 true); 773 774 // Get SplatBits by finding the 8 bit or greater splat. 775 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 776 true); 777 } 778 779 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 780 bool ForCodeSize) const { 781 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 782 if (Imm.isZero() || Imm.isNegZero()) 783 return true; 784 785 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 786 } 787 788 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 789 // We can use CGFI or CLGFI. 790 return isInt<32>(Imm) || isUInt<32>(Imm); 791 } 792 793 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 794 // We can use ALGFI or SLGFI. 795 return isUInt<32>(Imm) || isUInt<32>(-Imm); 796 } 797 798 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 799 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 800 // Unaligned accesses should never be slower than the expanded version. 801 // We check specifically for aligned accesses in the few cases where 802 // they are required. 803 if (Fast) 804 *Fast = true; 805 return true; 806 } 807 808 // Information about the addressing mode for a memory access. 809 struct AddressingMode { 810 // True if a long displacement is supported. 811 bool LongDisplacement; 812 813 // True if use of index register is supported. 814 bool IndexReg; 815 816 AddressingMode(bool LongDispl, bool IdxReg) : 817 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 818 }; 819 820 // Return the desired addressing mode for a Load which has only one use (in 821 // the same block) which is a Store. 822 static AddressingMode getLoadStoreAddrMode(bool HasVector, 823 Type *Ty) { 824 // With vector support a Load->Store combination may be combined to either 825 // an MVC or vector operations and it seems to work best to allow the 826 // vector addressing mode. 827 if (HasVector) 828 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 829 830 // Otherwise only the MVC case is special. 831 bool MVC = Ty->isIntegerTy(8); 832 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 833 } 834 835 // Return the addressing mode which seems most desirable given an LLVM 836 // Instruction pointer. 837 static AddressingMode 838 supportedAddressingMode(Instruction *I, bool HasVector) { 839 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 840 switch (II->getIntrinsicID()) { 841 default: break; 842 case Intrinsic::memset: 843 case Intrinsic::memmove: 844 case Intrinsic::memcpy: 845 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 846 } 847 } 848 849 if (isa<LoadInst>(I) && I->hasOneUse()) { 850 auto *SingleUser = cast<Instruction>(*I->user_begin()); 851 if (SingleUser->getParent() == I->getParent()) { 852 if (isa<ICmpInst>(SingleUser)) { 853 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 854 if (C->getBitWidth() <= 64 && 855 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 856 // Comparison of memory with 16 bit signed / unsigned immediate 857 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 858 } else if (isa<StoreInst>(SingleUser)) 859 // Load->Store 860 return getLoadStoreAddrMode(HasVector, I->getType()); 861 } 862 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 863 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 864 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 865 // Load->Store 866 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 867 } 868 869 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 870 871 // * Use LDE instead of LE/LEY for z13 to avoid partial register 872 // dependencies (LDE only supports small offsets). 873 // * Utilize the vector registers to hold floating point 874 // values (vector load / store instructions only support small 875 // offsets). 876 877 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 878 I->getOperand(0)->getType()); 879 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 880 bool IsVectorAccess = MemAccessTy->isVectorTy(); 881 882 // A store of an extracted vector element will be combined into a VSTE type 883 // instruction. 884 if (!IsVectorAccess && isa<StoreInst>(I)) { 885 Value *DataOp = I->getOperand(0); 886 if (isa<ExtractElementInst>(DataOp)) 887 IsVectorAccess = true; 888 } 889 890 // A load which gets inserted into a vector element will be combined into a 891 // VLE type instruction. 892 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 893 User *LoadUser = *I->user_begin(); 894 if (isa<InsertElementInst>(LoadUser)) 895 IsVectorAccess = true; 896 } 897 898 if (IsFPAccess || IsVectorAccess) 899 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 900 } 901 902 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 903 } 904 905 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 906 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 907 // Punt on globals for now, although they can be used in limited 908 // RELATIVE LONG cases. 909 if (AM.BaseGV) 910 return false; 911 912 // Require a 20-bit signed offset. 913 if (!isInt<20>(AM.BaseOffs)) 914 return false; 915 916 AddressingMode SupportedAM(true, true); 917 if (I != nullptr) 918 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 919 920 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 921 return false; 922 923 if (!SupportedAM.IndexReg) 924 // No indexing allowed. 925 return AM.Scale == 0; 926 else 927 // Indexing is OK but no scale factor can be applied. 928 return AM.Scale == 0 || AM.Scale == 1; 929 } 930 931 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 932 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 933 return false; 934 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 935 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 936 return FromBits > ToBits; 937 } 938 939 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 940 if (!FromVT.isInteger() || !ToVT.isInteger()) 941 return false; 942 unsigned FromBits = FromVT.getSizeInBits(); 943 unsigned ToBits = ToVT.getSizeInBits(); 944 return FromBits > ToBits; 945 } 946 947 //===----------------------------------------------------------------------===// 948 // Inline asm support 949 //===----------------------------------------------------------------------===// 950 951 TargetLowering::ConstraintType 952 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 953 if (Constraint.size() == 1) { 954 switch (Constraint[0]) { 955 case 'a': // Address register 956 case 'd': // Data register (equivalent to 'r') 957 case 'f': // Floating-point register 958 case 'h': // High-part register 959 case 'r': // General-purpose register 960 case 'v': // Vector register 961 return C_RegisterClass; 962 963 case 'Q': // Memory with base and unsigned 12-bit displacement 964 case 'R': // Likewise, plus an index 965 case 'S': // Memory with base and signed 20-bit displacement 966 case 'T': // Likewise, plus an index 967 case 'm': // Equivalent to 'T'. 968 return C_Memory; 969 970 case 'I': // Unsigned 8-bit constant 971 case 'J': // Unsigned 12-bit constant 972 case 'K': // Signed 16-bit constant 973 case 'L': // Signed 20-bit displacement (on all targets we support) 974 case 'M': // 0x7fffffff 975 return C_Immediate; 976 977 default: 978 break; 979 } 980 } 981 return TargetLowering::getConstraintType(Constraint); 982 } 983 984 TargetLowering::ConstraintWeight SystemZTargetLowering:: 985 getSingleConstraintMatchWeight(AsmOperandInfo &info, 986 const char *constraint) const { 987 ConstraintWeight weight = CW_Invalid; 988 Value *CallOperandVal = info.CallOperandVal; 989 // If we don't have a value, we can't do a match, 990 // but allow it at the lowest weight. 991 if (!CallOperandVal) 992 return CW_Default; 993 Type *type = CallOperandVal->getType(); 994 // Look at the constraint type. 995 switch (*constraint) { 996 default: 997 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 998 break; 999 1000 case 'a': // Address register 1001 case 'd': // Data register (equivalent to 'r') 1002 case 'h': // High-part register 1003 case 'r': // General-purpose register 1004 if (CallOperandVal->getType()->isIntegerTy()) 1005 weight = CW_Register; 1006 break; 1007 1008 case 'f': // Floating-point register 1009 if (type->isFloatingPointTy()) 1010 weight = CW_Register; 1011 break; 1012 1013 case 'v': // Vector register 1014 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1015 Subtarget.hasVector()) 1016 weight = CW_Register; 1017 break; 1018 1019 case 'I': // Unsigned 8-bit constant 1020 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1021 if (isUInt<8>(C->getZExtValue())) 1022 weight = CW_Constant; 1023 break; 1024 1025 case 'J': // Unsigned 12-bit constant 1026 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1027 if (isUInt<12>(C->getZExtValue())) 1028 weight = CW_Constant; 1029 break; 1030 1031 case 'K': // Signed 16-bit constant 1032 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1033 if (isInt<16>(C->getSExtValue())) 1034 weight = CW_Constant; 1035 break; 1036 1037 case 'L': // Signed 20-bit displacement (on all targets we support) 1038 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1039 if (isInt<20>(C->getSExtValue())) 1040 weight = CW_Constant; 1041 break; 1042 1043 case 'M': // 0x7fffffff 1044 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1045 if (C->getZExtValue() == 0x7fffffff) 1046 weight = CW_Constant; 1047 break; 1048 } 1049 return weight; 1050 } 1051 1052 // Parse a "{tNNN}" register constraint for which the register type "t" 1053 // has already been verified. MC is the class associated with "t" and 1054 // Map maps 0-based register numbers to LLVM register numbers. 1055 static std::pair<unsigned, const TargetRegisterClass *> 1056 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1057 const unsigned *Map, unsigned Size) { 1058 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1059 if (isdigit(Constraint[2])) { 1060 unsigned Index; 1061 bool Failed = 1062 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1063 if (!Failed && Index < Size && Map[Index]) 1064 return std::make_pair(Map[Index], RC); 1065 } 1066 return std::make_pair(0U, nullptr); 1067 } 1068 1069 std::pair<unsigned, const TargetRegisterClass *> 1070 SystemZTargetLowering::getRegForInlineAsmConstraint( 1071 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1072 if (Constraint.size() == 1) { 1073 // GCC Constraint Letters 1074 switch (Constraint[0]) { 1075 default: break; 1076 case 'd': // Data register (equivalent to 'r') 1077 case 'r': // General-purpose register 1078 if (VT == MVT::i64) 1079 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1080 else if (VT == MVT::i128) 1081 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1082 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1083 1084 case 'a': // Address register 1085 if (VT == MVT::i64) 1086 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1087 else if (VT == MVT::i128) 1088 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1089 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1090 1091 case 'h': // High-part register (an LLVM extension) 1092 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1093 1094 case 'f': // Floating-point register 1095 if (VT == MVT::f64) 1096 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1097 else if (VT == MVT::f128) 1098 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1099 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1100 1101 case 'v': // Vector register 1102 if (Subtarget.hasVector()) { 1103 if (VT == MVT::f32) 1104 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1105 if (VT == MVT::f64) 1106 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1107 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1108 } 1109 break; 1110 } 1111 } 1112 if (Constraint.size() > 0 && Constraint[0] == '{') { 1113 // We need to override the default register parsing for GPRs and FPRs 1114 // because the interpretation depends on VT. The internal names of 1115 // the registers are also different from the external names 1116 // (F0D and F0S instead of F0, etc.). 1117 if (Constraint[1] == 'r') { 1118 if (VT == MVT::i32) 1119 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1120 SystemZMC::GR32Regs, 16); 1121 if (VT == MVT::i128) 1122 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1123 SystemZMC::GR128Regs, 16); 1124 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1125 SystemZMC::GR64Regs, 16); 1126 } 1127 if (Constraint[1] == 'f') { 1128 if (VT == MVT::f32) 1129 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1130 SystemZMC::FP32Regs, 16); 1131 if (VT == MVT::f128) 1132 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1133 SystemZMC::FP128Regs, 16); 1134 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1135 SystemZMC::FP64Regs, 16); 1136 } 1137 if (Constraint[1] == 'v') { 1138 if (VT == MVT::f32) 1139 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1140 SystemZMC::VR32Regs, 32); 1141 if (VT == MVT::f64) 1142 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1143 SystemZMC::VR64Regs, 32); 1144 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1145 SystemZMC::VR128Regs, 32); 1146 } 1147 } 1148 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1149 } 1150 1151 void SystemZTargetLowering:: 1152 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1153 std::vector<SDValue> &Ops, 1154 SelectionDAG &DAG) const { 1155 // Only support length 1 constraints for now. 1156 if (Constraint.length() == 1) { 1157 switch (Constraint[0]) { 1158 case 'I': // Unsigned 8-bit constant 1159 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1160 if (isUInt<8>(C->getZExtValue())) 1161 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1162 Op.getValueType())); 1163 return; 1164 1165 case 'J': // Unsigned 12-bit constant 1166 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1167 if (isUInt<12>(C->getZExtValue())) 1168 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1169 Op.getValueType())); 1170 return; 1171 1172 case 'K': // Signed 16-bit constant 1173 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1174 if (isInt<16>(C->getSExtValue())) 1175 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1176 Op.getValueType())); 1177 return; 1178 1179 case 'L': // Signed 20-bit displacement (on all targets we support) 1180 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1181 if (isInt<20>(C->getSExtValue())) 1182 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1183 Op.getValueType())); 1184 return; 1185 1186 case 'M': // 0x7fffffff 1187 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1188 if (C->getZExtValue() == 0x7fffffff) 1189 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1190 Op.getValueType())); 1191 return; 1192 } 1193 } 1194 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1195 } 1196 1197 //===----------------------------------------------------------------------===// 1198 // Calling conventions 1199 //===----------------------------------------------------------------------===// 1200 1201 #include "SystemZGenCallingConv.inc" 1202 1203 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1204 CallingConv::ID) const { 1205 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1206 SystemZ::R14D, 0 }; 1207 return ScratchRegs; 1208 } 1209 1210 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1211 Type *ToType) const { 1212 return isTruncateFree(FromType, ToType); 1213 } 1214 1215 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1216 return CI->isTailCall(); 1217 } 1218 1219 // We do not yet support 128-bit single-element vector types. If the user 1220 // attempts to use such types as function argument or return type, prefer 1221 // to error out instead of emitting code violating the ABI. 1222 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1223 if (ArgVT.isVector() && !VT.isVector()) 1224 report_fatal_error("Unsupported vector argument or return type"); 1225 } 1226 1227 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1228 for (unsigned i = 0; i < Ins.size(); ++i) 1229 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1230 } 1231 1232 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1233 for (unsigned i = 0; i < Outs.size(); ++i) 1234 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1235 } 1236 1237 // Value is a value that has been passed to us in the location described by VA 1238 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1239 // any loads onto Chain. 1240 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1241 CCValAssign &VA, SDValue Chain, 1242 SDValue Value) { 1243 // If the argument has been promoted from a smaller type, insert an 1244 // assertion to capture this. 1245 if (VA.getLocInfo() == CCValAssign::SExt) 1246 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1247 DAG.getValueType(VA.getValVT())); 1248 else if (VA.getLocInfo() == CCValAssign::ZExt) 1249 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1250 DAG.getValueType(VA.getValVT())); 1251 1252 if (VA.isExtInLoc()) 1253 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1254 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1255 // If this is a short vector argument loaded from the stack, 1256 // extend from i64 to full vector size and then bitcast. 1257 assert(VA.getLocVT() == MVT::i64); 1258 assert(VA.getValVT().isVector()); 1259 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1260 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1261 } else 1262 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1263 return Value; 1264 } 1265 1266 // Value is a value of type VA.getValVT() that we need to copy into 1267 // the location described by VA. Return a copy of Value converted to 1268 // VA.getValVT(). The caller is responsible for handling indirect values. 1269 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1270 CCValAssign &VA, SDValue Value) { 1271 switch (VA.getLocInfo()) { 1272 case CCValAssign::SExt: 1273 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1274 case CCValAssign::ZExt: 1275 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1276 case CCValAssign::AExt: 1277 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1278 case CCValAssign::BCvt: 1279 // If this is a short vector argument to be stored to the stack, 1280 // bitcast to v2i64 and then extract first element. 1281 assert(VA.getLocVT() == MVT::i64); 1282 assert(VA.getValVT().isVector()); 1283 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1284 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1285 DAG.getConstant(0, DL, MVT::i32)); 1286 case CCValAssign::Full: 1287 return Value; 1288 default: 1289 llvm_unreachable("Unhandled getLocInfo()"); 1290 } 1291 } 1292 1293 SDValue SystemZTargetLowering::LowerFormalArguments( 1294 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1295 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1296 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1297 MachineFunction &MF = DAG.getMachineFunction(); 1298 MachineFrameInfo &MFI = MF.getFrameInfo(); 1299 MachineRegisterInfo &MRI = MF.getRegInfo(); 1300 SystemZMachineFunctionInfo *FuncInfo = 1301 MF.getInfo<SystemZMachineFunctionInfo>(); 1302 auto *TFL = 1303 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1304 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1305 1306 // Detect unsupported vector argument types. 1307 if (Subtarget.hasVector()) 1308 VerifyVectorTypes(Ins); 1309 1310 // Assign locations to all of the incoming arguments. 1311 SmallVector<CCValAssign, 16> ArgLocs; 1312 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1313 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1314 1315 unsigned NumFixedGPRs = 0; 1316 unsigned NumFixedFPRs = 0; 1317 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1318 SDValue ArgValue; 1319 CCValAssign &VA = ArgLocs[I]; 1320 EVT LocVT = VA.getLocVT(); 1321 if (VA.isRegLoc()) { 1322 // Arguments passed in registers 1323 const TargetRegisterClass *RC; 1324 switch (LocVT.getSimpleVT().SimpleTy) { 1325 default: 1326 // Integers smaller than i64 should be promoted to i64. 1327 llvm_unreachable("Unexpected argument type"); 1328 case MVT::i32: 1329 NumFixedGPRs += 1; 1330 RC = &SystemZ::GR32BitRegClass; 1331 break; 1332 case MVT::i64: 1333 NumFixedGPRs += 1; 1334 RC = &SystemZ::GR64BitRegClass; 1335 break; 1336 case MVT::f32: 1337 NumFixedFPRs += 1; 1338 RC = &SystemZ::FP32BitRegClass; 1339 break; 1340 case MVT::f64: 1341 NumFixedFPRs += 1; 1342 RC = &SystemZ::FP64BitRegClass; 1343 break; 1344 case MVT::v16i8: 1345 case MVT::v8i16: 1346 case MVT::v4i32: 1347 case MVT::v2i64: 1348 case MVT::v4f32: 1349 case MVT::v2f64: 1350 RC = &SystemZ::VR128BitRegClass; 1351 break; 1352 } 1353 1354 Register VReg = MRI.createVirtualRegister(RC); 1355 MRI.addLiveIn(VA.getLocReg(), VReg); 1356 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1357 } else { 1358 assert(VA.isMemLoc() && "Argument not register or memory"); 1359 1360 // Create the frame index object for this incoming parameter. 1361 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1362 VA.getLocMemOffset(), true); 1363 1364 // Create the SelectionDAG nodes corresponding to a load 1365 // from this parameter. Unpromoted ints and floats are 1366 // passed as right-justified 8-byte values. 1367 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1368 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1369 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1370 DAG.getIntPtrConstant(4, DL)); 1371 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1372 MachinePointerInfo::getFixedStack(MF, FI)); 1373 } 1374 1375 // Convert the value of the argument register into the value that's 1376 // being passed. 1377 if (VA.getLocInfo() == CCValAssign::Indirect) { 1378 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1379 MachinePointerInfo())); 1380 // If the original argument was split (e.g. i128), we need 1381 // to load all parts of it here (using the same address). 1382 unsigned ArgIndex = Ins[I].OrigArgIndex; 1383 assert (Ins[I].PartOffset == 0); 1384 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1385 CCValAssign &PartVA = ArgLocs[I + 1]; 1386 unsigned PartOffset = Ins[I + 1].PartOffset; 1387 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1388 DAG.getIntPtrConstant(PartOffset, DL)); 1389 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1390 MachinePointerInfo())); 1391 ++I; 1392 } 1393 } else 1394 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1395 } 1396 1397 if (IsVarArg) { 1398 // Save the number of non-varargs registers for later use by va_start, etc. 1399 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1400 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1401 1402 // Likewise the address (in the form of a frame index) of where the 1403 // first stack vararg would be. The 1-byte size here is arbitrary. 1404 int64_t StackSize = CCInfo.getNextStackOffset(); 1405 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1406 1407 // ...and a similar frame index for the caller-allocated save area 1408 // that will be used to store the incoming registers. 1409 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1410 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1411 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1412 1413 // Store the FPR varargs in the reserved frame slots. (We store the 1414 // GPRs as part of the prologue.) 1415 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1416 SDValue MemOps[SystemZ::NumArgFPRs]; 1417 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1418 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1419 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1420 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1421 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1422 &SystemZ::FP64BitRegClass); 1423 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1424 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1425 MachinePointerInfo::getFixedStack(MF, FI)); 1426 } 1427 // Join the stores, which are independent of one another. 1428 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1429 makeArrayRef(&MemOps[NumFixedFPRs], 1430 SystemZ::NumArgFPRs-NumFixedFPRs)); 1431 } 1432 } 1433 1434 return Chain; 1435 } 1436 1437 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1438 SmallVectorImpl<CCValAssign> &ArgLocs, 1439 SmallVectorImpl<ISD::OutputArg> &Outs) { 1440 // Punt if there are any indirect or stack arguments, or if the call 1441 // needs the callee-saved argument register R6, or if the call uses 1442 // the callee-saved register arguments SwiftSelf and SwiftError. 1443 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1444 CCValAssign &VA = ArgLocs[I]; 1445 if (VA.getLocInfo() == CCValAssign::Indirect) 1446 return false; 1447 if (!VA.isRegLoc()) 1448 return false; 1449 Register Reg = VA.getLocReg(); 1450 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1451 return false; 1452 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1453 return false; 1454 } 1455 return true; 1456 } 1457 1458 SDValue 1459 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1460 SmallVectorImpl<SDValue> &InVals) const { 1461 SelectionDAG &DAG = CLI.DAG; 1462 SDLoc &DL = CLI.DL; 1463 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1464 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1465 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1466 SDValue Chain = CLI.Chain; 1467 SDValue Callee = CLI.Callee; 1468 bool &IsTailCall = CLI.IsTailCall; 1469 CallingConv::ID CallConv = CLI.CallConv; 1470 bool IsVarArg = CLI.IsVarArg; 1471 MachineFunction &MF = DAG.getMachineFunction(); 1472 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1473 1474 // Detect unsupported vector argument and return types. 1475 if (Subtarget.hasVector()) { 1476 VerifyVectorTypes(Outs); 1477 VerifyVectorTypes(Ins); 1478 } 1479 1480 // Analyze the operands of the call, assigning locations to each operand. 1481 SmallVector<CCValAssign, 16> ArgLocs; 1482 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1483 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1484 1485 // We don't support GuaranteedTailCallOpt, only automatically-detected 1486 // sibling calls. 1487 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1488 IsTailCall = false; 1489 1490 // Get a count of how many bytes are to be pushed on the stack. 1491 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1492 1493 // Mark the start of the call. 1494 if (!IsTailCall) 1495 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1496 1497 // Copy argument values to their designated locations. 1498 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1499 SmallVector<SDValue, 8> MemOpChains; 1500 SDValue StackPtr; 1501 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1502 CCValAssign &VA = ArgLocs[I]; 1503 SDValue ArgValue = OutVals[I]; 1504 1505 if (VA.getLocInfo() == CCValAssign::Indirect) { 1506 // Store the argument in a stack slot and pass its address. 1507 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1508 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1509 MemOpChains.push_back( 1510 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1511 MachinePointerInfo::getFixedStack(MF, FI))); 1512 // If the original argument was split (e.g. i128), we need 1513 // to store all parts of it here (and pass just one address). 1514 unsigned ArgIndex = Outs[I].OrigArgIndex; 1515 assert (Outs[I].PartOffset == 0); 1516 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1517 SDValue PartValue = OutVals[I + 1]; 1518 unsigned PartOffset = Outs[I + 1].PartOffset; 1519 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1520 DAG.getIntPtrConstant(PartOffset, DL)); 1521 MemOpChains.push_back( 1522 DAG.getStore(Chain, DL, PartValue, Address, 1523 MachinePointerInfo::getFixedStack(MF, FI))); 1524 ++I; 1525 } 1526 ArgValue = SpillSlot; 1527 } else 1528 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1529 1530 if (VA.isRegLoc()) 1531 // Queue up the argument copies and emit them at the end. 1532 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1533 else { 1534 assert(VA.isMemLoc() && "Argument not register or memory"); 1535 1536 // Work out the address of the stack slot. Unpromoted ints and 1537 // floats are passed as right-justified 8-byte values. 1538 if (!StackPtr.getNode()) 1539 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1540 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1541 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1542 Offset += 4; 1543 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1544 DAG.getIntPtrConstant(Offset, DL)); 1545 1546 // Emit the store. 1547 MemOpChains.push_back( 1548 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1549 } 1550 } 1551 1552 // Join the stores, which are independent of one another. 1553 if (!MemOpChains.empty()) 1554 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1555 1556 // Accept direct calls by converting symbolic call addresses to the 1557 // associated Target* opcodes. Force %r1 to be used for indirect 1558 // tail calls. 1559 SDValue Glue; 1560 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1561 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1562 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1563 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1564 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1565 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1566 } else if (IsTailCall) { 1567 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1568 Glue = Chain.getValue(1); 1569 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1570 } 1571 1572 // Build a sequence of copy-to-reg nodes, chained and glued together. 1573 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1574 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1575 RegsToPass[I].second, Glue); 1576 Glue = Chain.getValue(1); 1577 } 1578 1579 // The first call operand is the chain and the second is the target address. 1580 SmallVector<SDValue, 8> Ops; 1581 Ops.push_back(Chain); 1582 Ops.push_back(Callee); 1583 1584 // Add argument registers to the end of the list so that they are 1585 // known live into the call. 1586 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1587 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1588 RegsToPass[I].second.getValueType())); 1589 1590 // Add a register mask operand representing the call-preserved registers. 1591 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1592 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1593 assert(Mask && "Missing call preserved mask for calling convention"); 1594 Ops.push_back(DAG.getRegisterMask(Mask)); 1595 1596 // Glue the call to the argument copies, if any. 1597 if (Glue.getNode()) 1598 Ops.push_back(Glue); 1599 1600 // Emit the call. 1601 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1602 if (IsTailCall) 1603 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1604 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1605 Glue = Chain.getValue(1); 1606 1607 // Mark the end of the call, which is glued to the call itself. 1608 Chain = DAG.getCALLSEQ_END(Chain, 1609 DAG.getConstant(NumBytes, DL, PtrVT, true), 1610 DAG.getConstant(0, DL, PtrVT, true), 1611 Glue, DL); 1612 Glue = Chain.getValue(1); 1613 1614 // Assign locations to each value returned by this call. 1615 SmallVector<CCValAssign, 16> RetLocs; 1616 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1617 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1618 1619 // Copy all of the result registers out of their specified physreg. 1620 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1621 CCValAssign &VA = RetLocs[I]; 1622 1623 // Copy the value out, gluing the copy to the end of the call sequence. 1624 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1625 VA.getLocVT(), Glue); 1626 Chain = RetValue.getValue(1); 1627 Glue = RetValue.getValue(2); 1628 1629 // Convert the value of the return register into the value that's 1630 // being returned. 1631 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1632 } 1633 1634 return Chain; 1635 } 1636 1637 bool SystemZTargetLowering:: 1638 CanLowerReturn(CallingConv::ID CallConv, 1639 MachineFunction &MF, bool isVarArg, 1640 const SmallVectorImpl<ISD::OutputArg> &Outs, 1641 LLVMContext &Context) const { 1642 // Detect unsupported vector return types. 1643 if (Subtarget.hasVector()) 1644 VerifyVectorTypes(Outs); 1645 1646 // Special case that we cannot easily detect in RetCC_SystemZ since 1647 // i128 is not a legal type. 1648 for (auto &Out : Outs) 1649 if (Out.ArgVT == MVT::i128) 1650 return false; 1651 1652 SmallVector<CCValAssign, 16> RetLocs; 1653 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1654 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1655 } 1656 1657 SDValue 1658 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1659 bool IsVarArg, 1660 const SmallVectorImpl<ISD::OutputArg> &Outs, 1661 const SmallVectorImpl<SDValue> &OutVals, 1662 const SDLoc &DL, SelectionDAG &DAG) const { 1663 MachineFunction &MF = DAG.getMachineFunction(); 1664 1665 // Detect unsupported vector return types. 1666 if (Subtarget.hasVector()) 1667 VerifyVectorTypes(Outs); 1668 1669 // Assign locations to each returned value. 1670 SmallVector<CCValAssign, 16> RetLocs; 1671 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1672 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1673 1674 // Quick exit for void returns 1675 if (RetLocs.empty()) 1676 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1677 1678 // Copy the result values into the output registers. 1679 SDValue Glue; 1680 SmallVector<SDValue, 4> RetOps; 1681 RetOps.push_back(Chain); 1682 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1683 CCValAssign &VA = RetLocs[I]; 1684 SDValue RetValue = OutVals[I]; 1685 1686 // Make the return register live on exit. 1687 assert(VA.isRegLoc() && "Can only return in registers!"); 1688 1689 // Promote the value as required. 1690 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1691 1692 // Chain and glue the copies together. 1693 Register Reg = VA.getLocReg(); 1694 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1695 Glue = Chain.getValue(1); 1696 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1697 } 1698 1699 // Update chain and glue. 1700 RetOps[0] = Chain; 1701 if (Glue.getNode()) 1702 RetOps.push_back(Glue); 1703 1704 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1705 } 1706 1707 // Return true if Op is an intrinsic node with chain that returns the CC value 1708 // as its only (other) argument. Provide the associated SystemZISD opcode and 1709 // the mask of valid CC values if so. 1710 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1711 unsigned &CCValid) { 1712 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1713 switch (Id) { 1714 case Intrinsic::s390_tbegin: 1715 Opcode = SystemZISD::TBEGIN; 1716 CCValid = SystemZ::CCMASK_TBEGIN; 1717 return true; 1718 1719 case Intrinsic::s390_tbegin_nofloat: 1720 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1721 CCValid = SystemZ::CCMASK_TBEGIN; 1722 return true; 1723 1724 case Intrinsic::s390_tend: 1725 Opcode = SystemZISD::TEND; 1726 CCValid = SystemZ::CCMASK_TEND; 1727 return true; 1728 1729 default: 1730 return false; 1731 } 1732 } 1733 1734 // Return true if Op is an intrinsic node without chain that returns the 1735 // CC value as its final argument. Provide the associated SystemZISD 1736 // opcode and the mask of valid CC values if so. 1737 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1738 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1739 switch (Id) { 1740 case Intrinsic::s390_vpkshs: 1741 case Intrinsic::s390_vpksfs: 1742 case Intrinsic::s390_vpksgs: 1743 Opcode = SystemZISD::PACKS_CC; 1744 CCValid = SystemZ::CCMASK_VCMP; 1745 return true; 1746 1747 case Intrinsic::s390_vpklshs: 1748 case Intrinsic::s390_vpklsfs: 1749 case Intrinsic::s390_vpklsgs: 1750 Opcode = SystemZISD::PACKLS_CC; 1751 CCValid = SystemZ::CCMASK_VCMP; 1752 return true; 1753 1754 case Intrinsic::s390_vceqbs: 1755 case Intrinsic::s390_vceqhs: 1756 case Intrinsic::s390_vceqfs: 1757 case Intrinsic::s390_vceqgs: 1758 Opcode = SystemZISD::VICMPES; 1759 CCValid = SystemZ::CCMASK_VCMP; 1760 return true; 1761 1762 case Intrinsic::s390_vchbs: 1763 case Intrinsic::s390_vchhs: 1764 case Intrinsic::s390_vchfs: 1765 case Intrinsic::s390_vchgs: 1766 Opcode = SystemZISD::VICMPHS; 1767 CCValid = SystemZ::CCMASK_VCMP; 1768 return true; 1769 1770 case Intrinsic::s390_vchlbs: 1771 case Intrinsic::s390_vchlhs: 1772 case Intrinsic::s390_vchlfs: 1773 case Intrinsic::s390_vchlgs: 1774 Opcode = SystemZISD::VICMPHLS; 1775 CCValid = SystemZ::CCMASK_VCMP; 1776 return true; 1777 1778 case Intrinsic::s390_vtm: 1779 Opcode = SystemZISD::VTM; 1780 CCValid = SystemZ::CCMASK_VCMP; 1781 return true; 1782 1783 case Intrinsic::s390_vfaebs: 1784 case Intrinsic::s390_vfaehs: 1785 case Intrinsic::s390_vfaefs: 1786 Opcode = SystemZISD::VFAE_CC; 1787 CCValid = SystemZ::CCMASK_ANY; 1788 return true; 1789 1790 case Intrinsic::s390_vfaezbs: 1791 case Intrinsic::s390_vfaezhs: 1792 case Intrinsic::s390_vfaezfs: 1793 Opcode = SystemZISD::VFAEZ_CC; 1794 CCValid = SystemZ::CCMASK_ANY; 1795 return true; 1796 1797 case Intrinsic::s390_vfeebs: 1798 case Intrinsic::s390_vfeehs: 1799 case Intrinsic::s390_vfeefs: 1800 Opcode = SystemZISD::VFEE_CC; 1801 CCValid = SystemZ::CCMASK_ANY; 1802 return true; 1803 1804 case Intrinsic::s390_vfeezbs: 1805 case Intrinsic::s390_vfeezhs: 1806 case Intrinsic::s390_vfeezfs: 1807 Opcode = SystemZISD::VFEEZ_CC; 1808 CCValid = SystemZ::CCMASK_ANY; 1809 return true; 1810 1811 case Intrinsic::s390_vfenebs: 1812 case Intrinsic::s390_vfenehs: 1813 case Intrinsic::s390_vfenefs: 1814 Opcode = SystemZISD::VFENE_CC; 1815 CCValid = SystemZ::CCMASK_ANY; 1816 return true; 1817 1818 case Intrinsic::s390_vfenezbs: 1819 case Intrinsic::s390_vfenezhs: 1820 case Intrinsic::s390_vfenezfs: 1821 Opcode = SystemZISD::VFENEZ_CC; 1822 CCValid = SystemZ::CCMASK_ANY; 1823 return true; 1824 1825 case Intrinsic::s390_vistrbs: 1826 case Intrinsic::s390_vistrhs: 1827 case Intrinsic::s390_vistrfs: 1828 Opcode = SystemZISD::VISTR_CC; 1829 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1830 return true; 1831 1832 case Intrinsic::s390_vstrcbs: 1833 case Intrinsic::s390_vstrchs: 1834 case Intrinsic::s390_vstrcfs: 1835 Opcode = SystemZISD::VSTRC_CC; 1836 CCValid = SystemZ::CCMASK_ANY; 1837 return true; 1838 1839 case Intrinsic::s390_vstrczbs: 1840 case Intrinsic::s390_vstrczhs: 1841 case Intrinsic::s390_vstrczfs: 1842 Opcode = SystemZISD::VSTRCZ_CC; 1843 CCValid = SystemZ::CCMASK_ANY; 1844 return true; 1845 1846 case Intrinsic::s390_vstrsb: 1847 case Intrinsic::s390_vstrsh: 1848 case Intrinsic::s390_vstrsf: 1849 Opcode = SystemZISD::VSTRS_CC; 1850 CCValid = SystemZ::CCMASK_ANY; 1851 return true; 1852 1853 case Intrinsic::s390_vstrszb: 1854 case Intrinsic::s390_vstrszh: 1855 case Intrinsic::s390_vstrszf: 1856 Opcode = SystemZISD::VSTRSZ_CC; 1857 CCValid = SystemZ::CCMASK_ANY; 1858 return true; 1859 1860 case Intrinsic::s390_vfcedbs: 1861 case Intrinsic::s390_vfcesbs: 1862 Opcode = SystemZISD::VFCMPES; 1863 CCValid = SystemZ::CCMASK_VCMP; 1864 return true; 1865 1866 case Intrinsic::s390_vfchdbs: 1867 case Intrinsic::s390_vfchsbs: 1868 Opcode = SystemZISD::VFCMPHS; 1869 CCValid = SystemZ::CCMASK_VCMP; 1870 return true; 1871 1872 case Intrinsic::s390_vfchedbs: 1873 case Intrinsic::s390_vfchesbs: 1874 Opcode = SystemZISD::VFCMPHES; 1875 CCValid = SystemZ::CCMASK_VCMP; 1876 return true; 1877 1878 case Intrinsic::s390_vftcidb: 1879 case Intrinsic::s390_vftcisb: 1880 Opcode = SystemZISD::VFTCI; 1881 CCValid = SystemZ::CCMASK_VCMP; 1882 return true; 1883 1884 case Intrinsic::s390_tdc: 1885 Opcode = SystemZISD::TDC; 1886 CCValid = SystemZ::CCMASK_TDC; 1887 return true; 1888 1889 default: 1890 return false; 1891 } 1892 } 1893 1894 // Emit an intrinsic with chain and an explicit CC register result. 1895 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1896 unsigned Opcode) { 1897 // Copy all operands except the intrinsic ID. 1898 unsigned NumOps = Op.getNumOperands(); 1899 SmallVector<SDValue, 6> Ops; 1900 Ops.reserve(NumOps - 1); 1901 Ops.push_back(Op.getOperand(0)); 1902 for (unsigned I = 2; I < NumOps; ++I) 1903 Ops.push_back(Op.getOperand(I)); 1904 1905 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1906 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1907 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1908 SDValue OldChain = SDValue(Op.getNode(), 1); 1909 SDValue NewChain = SDValue(Intr.getNode(), 1); 1910 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1911 return Intr.getNode(); 1912 } 1913 1914 // Emit an intrinsic with an explicit CC register result. 1915 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1916 unsigned Opcode) { 1917 // Copy all operands except the intrinsic ID. 1918 unsigned NumOps = Op.getNumOperands(); 1919 SmallVector<SDValue, 6> Ops; 1920 Ops.reserve(NumOps - 1); 1921 for (unsigned I = 1; I < NumOps; ++I) 1922 Ops.push_back(Op.getOperand(I)); 1923 1924 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1925 return Intr.getNode(); 1926 } 1927 1928 // CC is a comparison that will be implemented using an integer or 1929 // floating-point comparison. Return the condition code mask for 1930 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1931 // unsigned comparisons and clear for signed ones. In the floating-point 1932 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1933 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1934 #define CONV(X) \ 1935 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1936 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1937 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1938 1939 switch (CC) { 1940 default: 1941 llvm_unreachable("Invalid integer condition!"); 1942 1943 CONV(EQ); 1944 CONV(NE); 1945 CONV(GT); 1946 CONV(GE); 1947 CONV(LT); 1948 CONV(LE); 1949 1950 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1951 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1952 } 1953 #undef CONV 1954 } 1955 1956 // If C can be converted to a comparison against zero, adjust the operands 1957 // as necessary. 1958 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1959 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1960 return; 1961 1962 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1963 if (!ConstOp1) 1964 return; 1965 1966 int64_t Value = ConstOp1->getSExtValue(); 1967 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1968 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1969 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1970 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1971 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1972 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1973 } 1974 } 1975 1976 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1977 // adjust the operands as necessary. 1978 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1979 Comparison &C) { 1980 // For us to make any changes, it must a comparison between a single-use 1981 // load and a constant. 1982 if (!C.Op0.hasOneUse() || 1983 C.Op0.getOpcode() != ISD::LOAD || 1984 C.Op1.getOpcode() != ISD::Constant) 1985 return; 1986 1987 // We must have an 8- or 16-bit load. 1988 auto *Load = cast<LoadSDNode>(C.Op0); 1989 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1990 if (NumBits != 8 && NumBits != 16) 1991 return; 1992 1993 // The load must be an extending one and the constant must be within the 1994 // range of the unextended value. 1995 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1996 uint64_t Value = ConstOp1->getZExtValue(); 1997 uint64_t Mask = (1 << NumBits) - 1; 1998 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1999 // Make sure that ConstOp1 is in range of C.Op0. 2000 int64_t SignedValue = ConstOp1->getSExtValue(); 2001 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2002 return; 2003 if (C.ICmpType != SystemZICMP::SignedOnly) { 2004 // Unsigned comparison between two sign-extended values is equivalent 2005 // to unsigned comparison between two zero-extended values. 2006 Value &= Mask; 2007 } else if (NumBits == 8) { 2008 // Try to treat the comparison as unsigned, so that we can use CLI. 2009 // Adjust CCMask and Value as necessary. 2010 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2011 // Test whether the high bit of the byte is set. 2012 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2013 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2014 // Test whether the high bit of the byte is clear. 2015 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2016 else 2017 // No instruction exists for this combination. 2018 return; 2019 C.ICmpType = SystemZICMP::UnsignedOnly; 2020 } 2021 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2022 if (Value > Mask) 2023 return; 2024 // If the constant is in range, we can use any comparison. 2025 C.ICmpType = SystemZICMP::Any; 2026 } else 2027 return; 2028 2029 // Make sure that the first operand is an i32 of the right extension type. 2030 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2031 ISD::SEXTLOAD : 2032 ISD::ZEXTLOAD); 2033 if (C.Op0.getValueType() != MVT::i32 || 2034 Load->getExtensionType() != ExtType) { 2035 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2036 Load->getBasePtr(), Load->getPointerInfo(), 2037 Load->getMemoryVT(), Load->getAlignment(), 2038 Load->getMemOperand()->getFlags()); 2039 // Update the chain uses. 2040 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2041 } 2042 2043 // Make sure that the second operand is an i32 with the right value. 2044 if (C.Op1.getValueType() != MVT::i32 || 2045 Value != ConstOp1->getZExtValue()) 2046 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2047 } 2048 2049 // Return true if Op is either an unextended load, or a load suitable 2050 // for integer register-memory comparisons of type ICmpType. 2051 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2052 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2053 if (Load) { 2054 // There are no instructions to compare a register with a memory byte. 2055 if (Load->getMemoryVT() == MVT::i8) 2056 return false; 2057 // Otherwise decide on extension type. 2058 switch (Load->getExtensionType()) { 2059 case ISD::NON_EXTLOAD: 2060 return true; 2061 case ISD::SEXTLOAD: 2062 return ICmpType != SystemZICMP::UnsignedOnly; 2063 case ISD::ZEXTLOAD: 2064 return ICmpType != SystemZICMP::SignedOnly; 2065 default: 2066 break; 2067 } 2068 } 2069 return false; 2070 } 2071 2072 // Return true if it is better to swap the operands of C. 2073 static bool shouldSwapCmpOperands(const Comparison &C) { 2074 // Leave f128 comparisons alone, since they have no memory forms. 2075 if (C.Op0.getValueType() == MVT::f128) 2076 return false; 2077 2078 // Always keep a floating-point constant second, since comparisons with 2079 // zero can use LOAD TEST and comparisons with other constants make a 2080 // natural memory operand. 2081 if (isa<ConstantFPSDNode>(C.Op1)) 2082 return false; 2083 2084 // Never swap comparisons with zero since there are many ways to optimize 2085 // those later. 2086 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2087 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2088 return false; 2089 2090 // Also keep natural memory operands second if the loaded value is 2091 // only used here. Several comparisons have memory forms. 2092 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2093 return false; 2094 2095 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2096 // In that case we generally prefer the memory to be second. 2097 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2098 // The only exceptions are when the second operand is a constant and 2099 // we can use things like CHHSI. 2100 if (!ConstOp1) 2101 return true; 2102 // The unsigned memory-immediate instructions can handle 16-bit 2103 // unsigned integers. 2104 if (C.ICmpType != SystemZICMP::SignedOnly && 2105 isUInt<16>(ConstOp1->getZExtValue())) 2106 return false; 2107 // The signed memory-immediate instructions can handle 16-bit 2108 // signed integers. 2109 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2110 isInt<16>(ConstOp1->getSExtValue())) 2111 return false; 2112 return true; 2113 } 2114 2115 // Try to promote the use of CGFR and CLGFR. 2116 unsigned Opcode0 = C.Op0.getOpcode(); 2117 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2118 return true; 2119 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2120 return true; 2121 if (C.ICmpType != SystemZICMP::SignedOnly && 2122 Opcode0 == ISD::AND && 2123 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2124 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2125 return true; 2126 2127 return false; 2128 } 2129 2130 // Return a version of comparison CC mask CCMask in which the LT and GT 2131 // actions are swapped. 2132 static unsigned reverseCCMask(unsigned CCMask) { 2133 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 2134 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 2135 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 2136 (CCMask & SystemZ::CCMASK_CMP_UO)); 2137 } 2138 2139 // Check whether C tests for equality between X and Y and whether X - Y 2140 // or Y - X is also computed. In that case it's better to compare the 2141 // result of the subtraction against zero. 2142 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2143 Comparison &C) { 2144 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2145 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2146 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2147 SDNode *N = *I; 2148 if (N->getOpcode() == ISD::SUB && 2149 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2150 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2151 C.Op0 = SDValue(N, 0); 2152 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2153 return; 2154 } 2155 } 2156 } 2157 } 2158 2159 // Check whether C compares a floating-point value with zero and if that 2160 // floating-point value is also negated. In this case we can use the 2161 // negation to set CC, so avoiding separate LOAD AND TEST and 2162 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2163 static void adjustForFNeg(Comparison &C) { 2164 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2165 if (C1 && C1->isZero()) { 2166 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2167 SDNode *N = *I; 2168 if (N->getOpcode() == ISD::FNEG) { 2169 C.Op0 = SDValue(N, 0); 2170 C.CCMask = reverseCCMask(C.CCMask); 2171 return; 2172 } 2173 } 2174 } 2175 } 2176 2177 // Check whether C compares (shl X, 32) with 0 and whether X is 2178 // also sign-extended. In that case it is better to test the result 2179 // of the sign extension using LTGFR. 2180 // 2181 // This case is important because InstCombine transforms a comparison 2182 // with (sext (trunc X)) into a comparison with (shl X, 32). 2183 static void adjustForLTGFR(Comparison &C) { 2184 // Check for a comparison between (shl X, 32) and 0. 2185 if (C.Op0.getOpcode() == ISD::SHL && 2186 C.Op0.getValueType() == MVT::i64 && 2187 C.Op1.getOpcode() == ISD::Constant && 2188 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2189 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2190 if (C1 && C1->getZExtValue() == 32) { 2191 SDValue ShlOp0 = C.Op0.getOperand(0); 2192 // See whether X has any SIGN_EXTEND_INREG uses. 2193 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2194 SDNode *N = *I; 2195 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2196 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2197 C.Op0 = SDValue(N, 0); 2198 return; 2199 } 2200 } 2201 } 2202 } 2203 } 2204 2205 // If C compares the truncation of an extending load, try to compare 2206 // the untruncated value instead. This exposes more opportunities to 2207 // reuse CC. 2208 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2209 Comparison &C) { 2210 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2211 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2212 C.Op1.getOpcode() == ISD::Constant && 2213 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2214 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2215 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2216 unsigned Type = L->getExtensionType(); 2217 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2218 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2219 C.Op0 = C.Op0.getOperand(0); 2220 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2221 } 2222 } 2223 } 2224 } 2225 2226 // Return true if shift operation N has an in-range constant shift value. 2227 // Store it in ShiftVal if so. 2228 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2229 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2230 if (!Shift) 2231 return false; 2232 2233 uint64_t Amount = Shift->getZExtValue(); 2234 if (Amount >= N.getValueSizeInBits()) 2235 return false; 2236 2237 ShiftVal = Amount; 2238 return true; 2239 } 2240 2241 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2242 // instruction and whether the CC value is descriptive enough to handle 2243 // a comparison of type Opcode between the AND result and CmpVal. 2244 // CCMask says which comparison result is being tested and BitSize is 2245 // the number of bits in the operands. If TEST UNDER MASK can be used, 2246 // return the corresponding CC mask, otherwise return 0. 2247 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2248 uint64_t Mask, uint64_t CmpVal, 2249 unsigned ICmpType) { 2250 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2251 2252 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2253 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2254 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2255 return 0; 2256 2257 // Work out the masks for the lowest and highest bits. 2258 unsigned HighShift = 63 - countLeadingZeros(Mask); 2259 uint64_t High = uint64_t(1) << HighShift; 2260 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2261 2262 // Signed ordered comparisons are effectively unsigned if the sign 2263 // bit is dropped. 2264 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2265 2266 // Check for equality comparisons with 0, or the equivalent. 2267 if (CmpVal == 0) { 2268 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2269 return SystemZ::CCMASK_TM_ALL_0; 2270 if (CCMask == SystemZ::CCMASK_CMP_NE) 2271 return SystemZ::CCMASK_TM_SOME_1; 2272 } 2273 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2274 if (CCMask == SystemZ::CCMASK_CMP_LT) 2275 return SystemZ::CCMASK_TM_ALL_0; 2276 if (CCMask == SystemZ::CCMASK_CMP_GE) 2277 return SystemZ::CCMASK_TM_SOME_1; 2278 } 2279 if (EffectivelyUnsigned && CmpVal < Low) { 2280 if (CCMask == SystemZ::CCMASK_CMP_LE) 2281 return SystemZ::CCMASK_TM_ALL_0; 2282 if (CCMask == SystemZ::CCMASK_CMP_GT) 2283 return SystemZ::CCMASK_TM_SOME_1; 2284 } 2285 2286 // Check for equality comparisons with the mask, or the equivalent. 2287 if (CmpVal == Mask) { 2288 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2289 return SystemZ::CCMASK_TM_ALL_1; 2290 if (CCMask == SystemZ::CCMASK_CMP_NE) 2291 return SystemZ::CCMASK_TM_SOME_0; 2292 } 2293 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2294 if (CCMask == SystemZ::CCMASK_CMP_GT) 2295 return SystemZ::CCMASK_TM_ALL_1; 2296 if (CCMask == SystemZ::CCMASK_CMP_LE) 2297 return SystemZ::CCMASK_TM_SOME_0; 2298 } 2299 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2300 if (CCMask == SystemZ::CCMASK_CMP_GE) 2301 return SystemZ::CCMASK_TM_ALL_1; 2302 if (CCMask == SystemZ::CCMASK_CMP_LT) 2303 return SystemZ::CCMASK_TM_SOME_0; 2304 } 2305 2306 // Check for ordered comparisons with the top bit. 2307 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2308 if (CCMask == SystemZ::CCMASK_CMP_LE) 2309 return SystemZ::CCMASK_TM_MSB_0; 2310 if (CCMask == SystemZ::CCMASK_CMP_GT) 2311 return SystemZ::CCMASK_TM_MSB_1; 2312 } 2313 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2314 if (CCMask == SystemZ::CCMASK_CMP_LT) 2315 return SystemZ::CCMASK_TM_MSB_0; 2316 if (CCMask == SystemZ::CCMASK_CMP_GE) 2317 return SystemZ::CCMASK_TM_MSB_1; 2318 } 2319 2320 // If there are just two bits, we can do equality checks for Low and High 2321 // as well. 2322 if (Mask == Low + High) { 2323 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2324 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2325 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2326 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2327 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2328 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2329 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2330 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2331 } 2332 2333 // Looks like we've exhausted our options. 2334 return 0; 2335 } 2336 2337 // See whether C can be implemented as a TEST UNDER MASK instruction. 2338 // Update the arguments with the TM version if so. 2339 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2340 Comparison &C) { 2341 // Check that we have a comparison with a constant. 2342 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2343 if (!ConstOp1) 2344 return; 2345 uint64_t CmpVal = ConstOp1->getZExtValue(); 2346 2347 // Check whether the nonconstant input is an AND with a constant mask. 2348 Comparison NewC(C); 2349 uint64_t MaskVal; 2350 ConstantSDNode *Mask = nullptr; 2351 if (C.Op0.getOpcode() == ISD::AND) { 2352 NewC.Op0 = C.Op0.getOperand(0); 2353 NewC.Op1 = C.Op0.getOperand(1); 2354 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2355 if (!Mask) 2356 return; 2357 MaskVal = Mask->getZExtValue(); 2358 } else { 2359 // There is no instruction to compare with a 64-bit immediate 2360 // so use TMHH instead if possible. We need an unsigned ordered 2361 // comparison with an i64 immediate. 2362 if (NewC.Op0.getValueType() != MVT::i64 || 2363 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2364 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2365 NewC.ICmpType == SystemZICMP::SignedOnly) 2366 return; 2367 // Convert LE and GT comparisons into LT and GE. 2368 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2369 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2370 if (CmpVal == uint64_t(-1)) 2371 return; 2372 CmpVal += 1; 2373 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2374 } 2375 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2376 // be masked off without changing the result. 2377 MaskVal = -(CmpVal & -CmpVal); 2378 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2379 } 2380 if (!MaskVal) 2381 return; 2382 2383 // Check whether the combination of mask, comparison value and comparison 2384 // type are suitable. 2385 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2386 unsigned NewCCMask, ShiftVal; 2387 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2388 NewC.Op0.getOpcode() == ISD::SHL && 2389 isSimpleShift(NewC.Op0, ShiftVal) && 2390 (MaskVal >> ShiftVal != 0) && 2391 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2392 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2393 MaskVal >> ShiftVal, 2394 CmpVal >> ShiftVal, 2395 SystemZICMP::Any))) { 2396 NewC.Op0 = NewC.Op0.getOperand(0); 2397 MaskVal >>= ShiftVal; 2398 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2399 NewC.Op0.getOpcode() == ISD::SRL && 2400 isSimpleShift(NewC.Op0, ShiftVal) && 2401 (MaskVal << ShiftVal != 0) && 2402 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2403 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2404 MaskVal << ShiftVal, 2405 CmpVal << ShiftVal, 2406 SystemZICMP::UnsignedOnly))) { 2407 NewC.Op0 = NewC.Op0.getOperand(0); 2408 MaskVal <<= ShiftVal; 2409 } else { 2410 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2411 NewC.ICmpType); 2412 if (!NewCCMask) 2413 return; 2414 } 2415 2416 // Go ahead and make the change. 2417 C.Opcode = SystemZISD::TM; 2418 C.Op0 = NewC.Op0; 2419 if (Mask && Mask->getZExtValue() == MaskVal) 2420 C.Op1 = SDValue(Mask, 0); 2421 else 2422 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2423 C.CCValid = SystemZ::CCMASK_TM; 2424 C.CCMask = NewCCMask; 2425 } 2426 2427 // See whether the comparison argument contains a redundant AND 2428 // and remove it if so. This sometimes happens due to the generic 2429 // BRCOND expansion. 2430 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2431 Comparison &C) { 2432 if (C.Op0.getOpcode() != ISD::AND) 2433 return; 2434 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2435 if (!Mask) 2436 return; 2437 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2438 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2439 return; 2440 2441 C.Op0 = C.Op0.getOperand(0); 2442 } 2443 2444 // Return a Comparison that tests the condition-code result of intrinsic 2445 // node Call against constant integer CC using comparison code Cond. 2446 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2447 // and CCValid is the set of possible condition-code results. 2448 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2449 SDValue Call, unsigned CCValid, uint64_t CC, 2450 ISD::CondCode Cond) { 2451 Comparison C(Call, SDValue()); 2452 C.Opcode = Opcode; 2453 C.CCValid = CCValid; 2454 if (Cond == ISD::SETEQ) 2455 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2456 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2457 else if (Cond == ISD::SETNE) 2458 // ...and the inverse of that. 2459 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2460 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2461 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2462 // always true for CC>3. 2463 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2464 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2465 // ...and the inverse of that. 2466 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2467 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2468 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2469 // always true for CC>3. 2470 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2471 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2472 // ...and the inverse of that. 2473 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2474 else 2475 llvm_unreachable("Unexpected integer comparison type"); 2476 C.CCMask &= CCValid; 2477 return C; 2478 } 2479 2480 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2481 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2482 ISD::CondCode Cond, const SDLoc &DL) { 2483 if (CmpOp1.getOpcode() == ISD::Constant) { 2484 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2485 unsigned Opcode, CCValid; 2486 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2487 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2488 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2489 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2490 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2491 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2492 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2493 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2494 } 2495 Comparison C(CmpOp0, CmpOp1); 2496 C.CCMask = CCMaskForCondCode(Cond); 2497 if (C.Op0.getValueType().isFloatingPoint()) { 2498 C.CCValid = SystemZ::CCMASK_FCMP; 2499 C.Opcode = SystemZISD::FCMP; 2500 adjustForFNeg(C); 2501 } else { 2502 C.CCValid = SystemZ::CCMASK_ICMP; 2503 C.Opcode = SystemZISD::ICMP; 2504 // Choose the type of comparison. Equality and inequality tests can 2505 // use either signed or unsigned comparisons. The choice also doesn't 2506 // matter if both sign bits are known to be clear. In those cases we 2507 // want to give the main isel code the freedom to choose whichever 2508 // form fits best. 2509 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2510 C.CCMask == SystemZ::CCMASK_CMP_NE || 2511 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2512 C.ICmpType = SystemZICMP::Any; 2513 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2514 C.ICmpType = SystemZICMP::UnsignedOnly; 2515 else 2516 C.ICmpType = SystemZICMP::SignedOnly; 2517 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2518 adjustForRedundantAnd(DAG, DL, C); 2519 adjustZeroCmp(DAG, DL, C); 2520 adjustSubwordCmp(DAG, DL, C); 2521 adjustForSubtraction(DAG, DL, C); 2522 adjustForLTGFR(C); 2523 adjustICmpTruncate(DAG, DL, C); 2524 } 2525 2526 if (shouldSwapCmpOperands(C)) { 2527 std::swap(C.Op0, C.Op1); 2528 C.CCMask = reverseCCMask(C.CCMask); 2529 } 2530 2531 adjustForTestUnderMask(DAG, DL, C); 2532 return C; 2533 } 2534 2535 // Emit the comparison instruction described by C. 2536 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2537 if (!C.Op1.getNode()) { 2538 SDNode *Node; 2539 switch (C.Op0.getOpcode()) { 2540 case ISD::INTRINSIC_W_CHAIN: 2541 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2542 return SDValue(Node, 0); 2543 case ISD::INTRINSIC_WO_CHAIN: 2544 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2545 return SDValue(Node, Node->getNumValues() - 1); 2546 default: 2547 llvm_unreachable("Invalid comparison operands"); 2548 } 2549 } 2550 if (C.Opcode == SystemZISD::ICMP) 2551 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2552 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2553 if (C.Opcode == SystemZISD::TM) { 2554 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2555 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2556 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2557 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2558 } 2559 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2560 } 2561 2562 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2563 // 64 bits. Extend is the extension type to use. Store the high part 2564 // in Hi and the low part in Lo. 2565 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2566 SDValue Op0, SDValue Op1, SDValue &Hi, 2567 SDValue &Lo) { 2568 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2569 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2570 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2571 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2572 DAG.getConstant(32, DL, MVT::i64)); 2573 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2574 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2575 } 2576 2577 // Lower a binary operation that produces two VT results, one in each 2578 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2579 // and Opcode performs the GR128 operation. Store the even register result 2580 // in Even and the odd register result in Odd. 2581 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2582 unsigned Opcode, SDValue Op0, SDValue Op1, 2583 SDValue &Even, SDValue &Odd) { 2584 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2585 bool Is32Bit = is32Bit(VT); 2586 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2587 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2588 } 2589 2590 // Return an i32 value that is 1 if the CC value produced by CCReg is 2591 // in the mask CCMask and 0 otherwise. CC is known to have a value 2592 // in CCValid, so other values can be ignored. 2593 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2594 unsigned CCValid, unsigned CCMask) { 2595 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2596 DAG.getConstant(0, DL, MVT::i32), 2597 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2598 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2599 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2600 } 2601 2602 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2603 // be done directly. IsFP is true if CC is for a floating-point rather than 2604 // integer comparison. 2605 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2606 switch (CC) { 2607 case ISD::SETOEQ: 2608 case ISD::SETEQ: 2609 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2610 2611 case ISD::SETOGE: 2612 case ISD::SETGE: 2613 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2614 2615 case ISD::SETOGT: 2616 case ISD::SETGT: 2617 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2618 2619 case ISD::SETUGT: 2620 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2621 2622 default: 2623 return 0; 2624 } 2625 } 2626 2627 // Return the SystemZISD vector comparison operation for CC or its inverse, 2628 // or 0 if neither can be done directly. Indicate in Invert whether the 2629 // result is for the inverse of CC. IsFP is true if CC is for a 2630 // floating-point rather than integer comparison. 2631 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2632 bool &Invert) { 2633 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2634 Invert = false; 2635 return Opcode; 2636 } 2637 2638 CC = ISD::getSetCCInverse(CC, !IsFP); 2639 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2640 Invert = true; 2641 return Opcode; 2642 } 2643 2644 return 0; 2645 } 2646 2647 // Return a v2f64 that contains the extended form of elements Start and Start+1 2648 // of v4f32 value Op. 2649 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2650 SDValue Op) { 2651 int Mask[] = { Start, -1, Start + 1, -1 }; 2652 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2653 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2654 } 2655 2656 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2657 // producing a result of type VT. 2658 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2659 const SDLoc &DL, EVT VT, 2660 SDValue CmpOp0, 2661 SDValue CmpOp1) const { 2662 // There is no hardware support for v4f32 (unless we have the vector 2663 // enhancements facility 1), so extend the vector into two v2f64s 2664 // and compare those. 2665 if (CmpOp0.getValueType() == MVT::v4f32 && 2666 !Subtarget.hasVectorEnhancements1()) { 2667 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2668 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2669 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2670 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2671 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2672 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2673 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2674 } 2675 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2676 } 2677 2678 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2679 // an integer mask of type VT. 2680 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2681 const SDLoc &DL, EVT VT, 2682 ISD::CondCode CC, 2683 SDValue CmpOp0, 2684 SDValue CmpOp1) const { 2685 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2686 bool Invert = false; 2687 SDValue Cmp; 2688 switch (CC) { 2689 // Handle tests for order using (or (ogt y x) (oge x y)). 2690 case ISD::SETUO: 2691 Invert = true; 2692 LLVM_FALLTHROUGH; 2693 case ISD::SETO: { 2694 assert(IsFP && "Unexpected integer comparison"); 2695 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2696 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2697 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2698 break; 2699 } 2700 2701 // Handle <> tests using (or (ogt y x) (ogt x y)). 2702 case ISD::SETUEQ: 2703 Invert = true; 2704 LLVM_FALLTHROUGH; 2705 case ISD::SETONE: { 2706 assert(IsFP && "Unexpected integer comparison"); 2707 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2708 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2709 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2710 break; 2711 } 2712 2713 // Otherwise a single comparison is enough. It doesn't really 2714 // matter whether we try the inversion or the swap first, since 2715 // there are no cases where both work. 2716 default: 2717 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2718 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2719 else { 2720 CC = ISD::getSetCCSwappedOperands(CC); 2721 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2722 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2723 else 2724 llvm_unreachable("Unhandled comparison"); 2725 } 2726 break; 2727 } 2728 if (Invert) { 2729 SDValue Mask = 2730 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2731 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2732 } 2733 return Cmp; 2734 } 2735 2736 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2737 SelectionDAG &DAG) const { 2738 SDValue CmpOp0 = Op.getOperand(0); 2739 SDValue CmpOp1 = Op.getOperand(1); 2740 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2741 SDLoc DL(Op); 2742 EVT VT = Op.getValueType(); 2743 if (VT.isVector()) 2744 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2745 2746 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2747 SDValue CCReg = emitCmp(DAG, DL, C); 2748 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2749 } 2750 2751 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2752 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2753 SDValue CmpOp0 = Op.getOperand(2); 2754 SDValue CmpOp1 = Op.getOperand(3); 2755 SDValue Dest = Op.getOperand(4); 2756 SDLoc DL(Op); 2757 2758 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2759 SDValue CCReg = emitCmp(DAG, DL, C); 2760 return DAG.getNode( 2761 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2762 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2763 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2764 } 2765 2766 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2767 // allowing Pos and Neg to be wider than CmpOp. 2768 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2769 return (Neg.getOpcode() == ISD::SUB && 2770 Neg.getOperand(0).getOpcode() == ISD::Constant && 2771 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2772 Neg.getOperand(1) == Pos && 2773 (Pos == CmpOp || 2774 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2775 Pos.getOperand(0) == CmpOp))); 2776 } 2777 2778 // Return the absolute or negative absolute of Op; IsNegative decides which. 2779 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2780 bool IsNegative) { 2781 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2782 if (IsNegative) 2783 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2784 DAG.getConstant(0, DL, Op.getValueType()), Op); 2785 return Op; 2786 } 2787 2788 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2789 SelectionDAG &DAG) const { 2790 SDValue CmpOp0 = Op.getOperand(0); 2791 SDValue CmpOp1 = Op.getOperand(1); 2792 SDValue TrueOp = Op.getOperand(2); 2793 SDValue FalseOp = Op.getOperand(3); 2794 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2795 SDLoc DL(Op); 2796 2797 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2798 2799 // Check for absolute and negative-absolute selections, including those 2800 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2801 // This check supplements the one in DAGCombiner. 2802 if (C.Opcode == SystemZISD::ICMP && 2803 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2804 C.CCMask != SystemZ::CCMASK_CMP_NE && 2805 C.Op1.getOpcode() == ISD::Constant && 2806 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2807 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2808 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2809 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2810 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2811 } 2812 2813 SDValue CCReg = emitCmp(DAG, DL, C); 2814 SDValue Ops[] = {TrueOp, FalseOp, 2815 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2816 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2817 2818 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2819 } 2820 2821 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2822 SelectionDAG &DAG) const { 2823 SDLoc DL(Node); 2824 const GlobalValue *GV = Node->getGlobal(); 2825 int64_t Offset = Node->getOffset(); 2826 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2827 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2828 2829 SDValue Result; 2830 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2831 // Assign anchors at 1<<12 byte boundaries. 2832 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2833 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2834 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2835 2836 // The offset can be folded into the address if it is aligned to a halfword. 2837 Offset -= Anchor; 2838 if (Offset != 0 && (Offset & 1) == 0) { 2839 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2840 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2841 Offset = 0; 2842 } 2843 } else { 2844 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2845 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2846 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2847 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2848 } 2849 2850 // If there was a non-zero offset that we didn't fold, create an explicit 2851 // addition for it. 2852 if (Offset != 0) 2853 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2854 DAG.getConstant(Offset, DL, PtrVT)); 2855 2856 return Result; 2857 } 2858 2859 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2860 SelectionDAG &DAG, 2861 unsigned Opcode, 2862 SDValue GOTOffset) const { 2863 SDLoc DL(Node); 2864 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2865 SDValue Chain = DAG.getEntryNode(); 2866 SDValue Glue; 2867 2868 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2869 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2870 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2871 Glue = Chain.getValue(1); 2872 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2873 Glue = Chain.getValue(1); 2874 2875 // The first call operand is the chain and the second is the TLS symbol. 2876 SmallVector<SDValue, 8> Ops; 2877 Ops.push_back(Chain); 2878 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2879 Node->getValueType(0), 2880 0, 0)); 2881 2882 // Add argument registers to the end of the list so that they are 2883 // known live into the call. 2884 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2885 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2886 2887 // Add a register mask operand representing the call-preserved registers. 2888 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2889 const uint32_t *Mask = 2890 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2891 assert(Mask && "Missing call preserved mask for calling convention"); 2892 Ops.push_back(DAG.getRegisterMask(Mask)); 2893 2894 // Glue the call to the argument copies. 2895 Ops.push_back(Glue); 2896 2897 // Emit the call. 2898 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2899 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2900 Glue = Chain.getValue(1); 2901 2902 // Copy the return value from %r2. 2903 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2904 } 2905 2906 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2907 SelectionDAG &DAG) const { 2908 SDValue Chain = DAG.getEntryNode(); 2909 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2910 2911 // The high part of the thread pointer is in access register 0. 2912 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2913 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2914 2915 // The low part of the thread pointer is in access register 1. 2916 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2917 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2918 2919 // Merge them into a single 64-bit address. 2920 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2921 DAG.getConstant(32, DL, PtrVT)); 2922 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2923 } 2924 2925 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2926 SelectionDAG &DAG) const { 2927 if (DAG.getTarget().useEmulatedTLS()) 2928 return LowerToTLSEmulatedModel(Node, DAG); 2929 SDLoc DL(Node); 2930 const GlobalValue *GV = Node->getGlobal(); 2931 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2932 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2933 2934 SDValue TP = lowerThreadPointer(DL, DAG); 2935 2936 // Get the offset of GA from the thread pointer, based on the TLS model. 2937 SDValue Offset; 2938 switch (model) { 2939 case TLSModel::GeneralDynamic: { 2940 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2941 SystemZConstantPoolValue *CPV = 2942 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2943 2944 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2945 Offset = DAG.getLoad( 2946 PtrVT, DL, DAG.getEntryNode(), Offset, 2947 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2948 2949 // Call __tls_get_offset to retrieve the offset. 2950 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2951 break; 2952 } 2953 2954 case TLSModel::LocalDynamic: { 2955 // Load the GOT offset of the module ID. 2956 SystemZConstantPoolValue *CPV = 2957 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2958 2959 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2960 Offset = DAG.getLoad( 2961 PtrVT, DL, DAG.getEntryNode(), Offset, 2962 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2963 2964 // Call __tls_get_offset to retrieve the module base offset. 2965 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2966 2967 // Note: The SystemZLDCleanupPass will remove redundant computations 2968 // of the module base offset. Count total number of local-dynamic 2969 // accesses to trigger execution of that pass. 2970 SystemZMachineFunctionInfo* MFI = 2971 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2972 MFI->incNumLocalDynamicTLSAccesses(); 2973 2974 // Add the per-symbol offset. 2975 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2976 2977 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2978 DTPOffset = DAG.getLoad( 2979 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2980 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2981 2982 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2983 break; 2984 } 2985 2986 case TLSModel::InitialExec: { 2987 // Load the offset from the GOT. 2988 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2989 SystemZII::MO_INDNTPOFF); 2990 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2991 Offset = 2992 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2993 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2994 break; 2995 } 2996 2997 case TLSModel::LocalExec: { 2998 // Force the offset into the constant pool and load it from there. 2999 SystemZConstantPoolValue *CPV = 3000 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3001 3002 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3003 Offset = DAG.getLoad( 3004 PtrVT, DL, DAG.getEntryNode(), Offset, 3005 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3006 break; 3007 } 3008 } 3009 3010 // Add the base and offset together. 3011 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3012 } 3013 3014 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3015 SelectionDAG &DAG) const { 3016 SDLoc DL(Node); 3017 const BlockAddress *BA = Node->getBlockAddress(); 3018 int64_t Offset = Node->getOffset(); 3019 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3020 3021 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3022 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3023 return Result; 3024 } 3025 3026 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3027 SelectionDAG &DAG) const { 3028 SDLoc DL(JT); 3029 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3030 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3031 3032 // Use LARL to load the address of the table. 3033 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3034 } 3035 3036 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3037 SelectionDAG &DAG) const { 3038 SDLoc DL(CP); 3039 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3040 3041 SDValue Result; 3042 if (CP->isMachineConstantPoolEntry()) 3043 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3044 CP->getAlignment()); 3045 else 3046 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3047 CP->getAlignment(), CP->getOffset()); 3048 3049 // Use LARL to load the address of the constant pool entry. 3050 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3051 } 3052 3053 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3054 SelectionDAG &DAG) const { 3055 MachineFunction &MF = DAG.getMachineFunction(); 3056 MachineFrameInfo &MFI = MF.getFrameInfo(); 3057 MFI.setFrameAddressIsTaken(true); 3058 3059 SDLoc DL(Op); 3060 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3061 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3062 3063 // If the back chain frame index has not been allocated yet, do so. 3064 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 3065 int BackChainIdx = FI->getFramePointerSaveIndex(); 3066 if (!BackChainIdx) { 3067 // By definition, the frame address is the address of the back chain. 3068 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 3069 FI->setFramePointerSaveIndex(BackChainIdx); 3070 } 3071 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3072 3073 // FIXME The frontend should detect this case. 3074 if (Depth > 0) { 3075 report_fatal_error("Unsupported stack frame traversal count"); 3076 } 3077 3078 return BackChain; 3079 } 3080 3081 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3082 SelectionDAG &DAG) const { 3083 MachineFunction &MF = DAG.getMachineFunction(); 3084 MachineFrameInfo &MFI = MF.getFrameInfo(); 3085 MFI.setReturnAddressIsTaken(true); 3086 3087 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3088 return SDValue(); 3089 3090 SDLoc DL(Op); 3091 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3092 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3093 3094 // FIXME The frontend should detect this case. 3095 if (Depth > 0) { 3096 report_fatal_error("Unsupported stack frame traversal count"); 3097 } 3098 3099 // Return R14D, which has the return address. Mark it an implicit live-in. 3100 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3101 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3102 } 3103 3104 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3105 SelectionDAG &DAG) const { 3106 SDLoc DL(Op); 3107 SDValue In = Op.getOperand(0); 3108 EVT InVT = In.getValueType(); 3109 EVT ResVT = Op.getValueType(); 3110 3111 // Convert loads directly. This is normally done by DAGCombiner, 3112 // but we need this case for bitcasts that are created during lowering 3113 // and which are then lowered themselves. 3114 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3115 if (ISD::isNormalLoad(LoadN)) { 3116 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3117 LoadN->getBasePtr(), LoadN->getMemOperand()); 3118 // Update the chain uses. 3119 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3120 return NewLoad; 3121 } 3122 3123 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3124 SDValue In64; 3125 if (Subtarget.hasHighWord()) { 3126 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3127 MVT::i64); 3128 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3129 MVT::i64, SDValue(U64, 0), In); 3130 } else { 3131 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3132 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3133 DAG.getConstant(32, DL, MVT::i64)); 3134 } 3135 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3136 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3137 DL, MVT::f32, Out64); 3138 } 3139 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3140 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3141 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3142 MVT::f64, SDValue(U64, 0), In); 3143 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3144 if (Subtarget.hasHighWord()) 3145 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3146 MVT::i32, Out64); 3147 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3148 DAG.getConstant(32, DL, MVT::i64)); 3149 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3150 } 3151 llvm_unreachable("Unexpected bitcast combination"); 3152 } 3153 3154 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3155 SelectionDAG &DAG) const { 3156 MachineFunction &MF = DAG.getMachineFunction(); 3157 SystemZMachineFunctionInfo *FuncInfo = 3158 MF.getInfo<SystemZMachineFunctionInfo>(); 3159 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3160 3161 SDValue Chain = Op.getOperand(0); 3162 SDValue Addr = Op.getOperand(1); 3163 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3164 SDLoc DL(Op); 3165 3166 // The initial values of each field. 3167 const unsigned NumFields = 4; 3168 SDValue Fields[NumFields] = { 3169 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3170 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3171 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3172 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3173 }; 3174 3175 // Store each field into its respective slot. 3176 SDValue MemOps[NumFields]; 3177 unsigned Offset = 0; 3178 for (unsigned I = 0; I < NumFields; ++I) { 3179 SDValue FieldAddr = Addr; 3180 if (Offset != 0) 3181 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3182 DAG.getIntPtrConstant(Offset, DL)); 3183 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3184 MachinePointerInfo(SV, Offset)); 3185 Offset += 8; 3186 } 3187 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3188 } 3189 3190 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3191 SelectionDAG &DAG) const { 3192 SDValue Chain = Op.getOperand(0); 3193 SDValue DstPtr = Op.getOperand(1); 3194 SDValue SrcPtr = Op.getOperand(2); 3195 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3196 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3197 SDLoc DL(Op); 3198 3199 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3200 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3201 /*isTailCall*/false, 3202 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3203 } 3204 3205 SDValue SystemZTargetLowering:: 3206 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3207 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3208 MachineFunction &MF = DAG.getMachineFunction(); 3209 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3210 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3211 3212 SDValue Chain = Op.getOperand(0); 3213 SDValue Size = Op.getOperand(1); 3214 SDValue Align = Op.getOperand(2); 3215 SDLoc DL(Op); 3216 3217 // If user has set the no alignment function attribute, ignore 3218 // alloca alignments. 3219 uint64_t AlignVal = (RealignOpt ? 3220 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3221 3222 uint64_t StackAlign = TFI->getStackAlignment(); 3223 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3224 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3225 3226 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3227 SDValue NeededSpace = Size; 3228 3229 // Get a reference to the stack pointer. 3230 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3231 3232 // If we need a backchain, save it now. 3233 SDValue Backchain; 3234 if (StoreBackchain) 3235 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3236 3237 // Add extra space for alignment if needed. 3238 if (ExtraAlignSpace) 3239 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3240 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3241 3242 // Get the new stack pointer value. 3243 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3244 3245 // Copy the new stack pointer back. 3246 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3247 3248 // The allocated data lives above the 160 bytes allocated for the standard 3249 // frame, plus any outgoing stack arguments. We don't know how much that 3250 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3251 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3252 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3253 3254 // Dynamically realign if needed. 3255 if (RequiredAlign > StackAlign) { 3256 Result = 3257 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3258 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3259 Result = 3260 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3261 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3262 } 3263 3264 if (StoreBackchain) 3265 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3266 3267 SDValue Ops[2] = { Result, Chain }; 3268 return DAG.getMergeValues(Ops, DL); 3269 } 3270 3271 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3272 SDValue Op, SelectionDAG &DAG) const { 3273 SDLoc DL(Op); 3274 3275 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3276 } 3277 3278 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3279 SelectionDAG &DAG) const { 3280 EVT VT = Op.getValueType(); 3281 SDLoc DL(Op); 3282 SDValue Ops[2]; 3283 if (is32Bit(VT)) 3284 // Just do a normal 64-bit multiplication and extract the results. 3285 // We define this so that it can be used for constant division. 3286 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3287 Op.getOperand(1), Ops[1], Ops[0]); 3288 else if (Subtarget.hasMiscellaneousExtensions2()) 3289 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3290 // the high result in the even register. ISD::SMUL_LOHI is defined to 3291 // return the low half first, so the results are in reverse order. 3292 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3293 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3294 else { 3295 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3296 // 3297 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3298 // 3299 // but using the fact that the upper halves are either all zeros 3300 // or all ones: 3301 // 3302 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3303 // 3304 // and grouping the right terms together since they are quicker than the 3305 // multiplication: 3306 // 3307 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3308 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3309 SDValue LL = Op.getOperand(0); 3310 SDValue RL = Op.getOperand(1); 3311 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3312 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3313 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3314 // the high result in the even register. ISD::SMUL_LOHI is defined to 3315 // return the low half first, so the results are in reverse order. 3316 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3317 LL, RL, Ops[1], Ops[0]); 3318 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3319 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3320 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3321 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3322 } 3323 return DAG.getMergeValues(Ops, DL); 3324 } 3325 3326 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3327 SelectionDAG &DAG) const { 3328 EVT VT = Op.getValueType(); 3329 SDLoc DL(Op); 3330 SDValue Ops[2]; 3331 if (is32Bit(VT)) 3332 // Just do a normal 64-bit multiplication and extract the results. 3333 // We define this so that it can be used for constant division. 3334 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3335 Op.getOperand(1), Ops[1], Ops[0]); 3336 else 3337 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3338 // the high result in the even register. ISD::UMUL_LOHI is defined to 3339 // return the low half first, so the results are in reverse order. 3340 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3341 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3342 return DAG.getMergeValues(Ops, DL); 3343 } 3344 3345 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3346 SelectionDAG &DAG) const { 3347 SDValue Op0 = Op.getOperand(0); 3348 SDValue Op1 = Op.getOperand(1); 3349 EVT VT = Op.getValueType(); 3350 SDLoc DL(Op); 3351 3352 // We use DSGF for 32-bit division. This means the first operand must 3353 // always be 64-bit, and the second operand should be 32-bit whenever 3354 // that is possible, to improve performance. 3355 if (is32Bit(VT)) 3356 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3357 else if (DAG.ComputeNumSignBits(Op1) > 32) 3358 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3359 3360 // DSG(F) returns the remainder in the even register and the 3361 // quotient in the odd register. 3362 SDValue Ops[2]; 3363 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3364 return DAG.getMergeValues(Ops, DL); 3365 } 3366 3367 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3368 SelectionDAG &DAG) const { 3369 EVT VT = Op.getValueType(); 3370 SDLoc DL(Op); 3371 3372 // DL(G) returns the remainder in the even register and the 3373 // quotient in the odd register. 3374 SDValue Ops[2]; 3375 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3376 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3377 return DAG.getMergeValues(Ops, DL); 3378 } 3379 3380 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3381 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3382 3383 // Get the known-zero masks for each operand. 3384 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3385 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3386 DAG.computeKnownBits(Ops[1])}; 3387 3388 // See if the upper 32 bits of one operand and the lower 32 bits of the 3389 // other are known zero. They are the low and high operands respectively. 3390 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3391 Known[1].Zero.getZExtValue() }; 3392 unsigned High, Low; 3393 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3394 High = 1, Low = 0; 3395 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3396 High = 0, Low = 1; 3397 else 3398 return Op; 3399 3400 SDValue LowOp = Ops[Low]; 3401 SDValue HighOp = Ops[High]; 3402 3403 // If the high part is a constant, we're better off using IILH. 3404 if (HighOp.getOpcode() == ISD::Constant) 3405 return Op; 3406 3407 // If the low part is a constant that is outside the range of LHI, 3408 // then we're better off using IILF. 3409 if (LowOp.getOpcode() == ISD::Constant) { 3410 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3411 if (!isInt<16>(Value)) 3412 return Op; 3413 } 3414 3415 // Check whether the high part is an AND that doesn't change the 3416 // high 32 bits and just masks out low bits. We can skip it if so. 3417 if (HighOp.getOpcode() == ISD::AND && 3418 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3419 SDValue HighOp0 = HighOp.getOperand(0); 3420 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3421 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3422 HighOp = HighOp0; 3423 } 3424 3425 // Take advantage of the fact that all GR32 operations only change the 3426 // low 32 bits by truncating Low to an i32 and inserting it directly 3427 // using a subreg. The interesting cases are those where the truncation 3428 // can be folded. 3429 SDLoc DL(Op); 3430 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3431 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3432 MVT::i64, HighOp, Low32); 3433 } 3434 3435 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3436 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3437 SelectionDAG &DAG) const { 3438 SDNode *N = Op.getNode(); 3439 SDValue LHS = N->getOperand(0); 3440 SDValue RHS = N->getOperand(1); 3441 SDLoc DL(N); 3442 unsigned BaseOp = 0; 3443 unsigned CCValid = 0; 3444 unsigned CCMask = 0; 3445 3446 switch (Op.getOpcode()) { 3447 default: llvm_unreachable("Unknown instruction!"); 3448 case ISD::SADDO: 3449 BaseOp = SystemZISD::SADDO; 3450 CCValid = SystemZ::CCMASK_ARITH; 3451 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3452 break; 3453 case ISD::SSUBO: 3454 BaseOp = SystemZISD::SSUBO; 3455 CCValid = SystemZ::CCMASK_ARITH; 3456 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3457 break; 3458 case ISD::UADDO: 3459 BaseOp = SystemZISD::UADDO; 3460 CCValid = SystemZ::CCMASK_LOGICAL; 3461 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3462 break; 3463 case ISD::USUBO: 3464 BaseOp = SystemZISD::USUBO; 3465 CCValid = SystemZ::CCMASK_LOGICAL; 3466 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3467 break; 3468 } 3469 3470 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3471 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3472 3473 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3474 if (N->getValueType(1) == MVT::i1) 3475 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3476 3477 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3478 } 3479 3480 static bool isAddCarryChain(SDValue Carry) { 3481 while (Carry.getOpcode() == ISD::ADDCARRY) 3482 Carry = Carry.getOperand(2); 3483 return Carry.getOpcode() == ISD::UADDO; 3484 } 3485 3486 static bool isSubBorrowChain(SDValue Carry) { 3487 while (Carry.getOpcode() == ISD::SUBCARRY) 3488 Carry = Carry.getOperand(2); 3489 return Carry.getOpcode() == ISD::USUBO; 3490 } 3491 3492 // Lower ADDCARRY/SUBCARRY nodes. 3493 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3494 SelectionDAG &DAG) const { 3495 3496 SDNode *N = Op.getNode(); 3497 MVT VT = N->getSimpleValueType(0); 3498 3499 // Let legalize expand this if it isn't a legal type yet. 3500 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3501 return SDValue(); 3502 3503 SDValue LHS = N->getOperand(0); 3504 SDValue RHS = N->getOperand(1); 3505 SDValue Carry = Op.getOperand(2); 3506 SDLoc DL(N); 3507 unsigned BaseOp = 0; 3508 unsigned CCValid = 0; 3509 unsigned CCMask = 0; 3510 3511 switch (Op.getOpcode()) { 3512 default: llvm_unreachable("Unknown instruction!"); 3513 case ISD::ADDCARRY: 3514 if (!isAddCarryChain(Carry)) 3515 return SDValue(); 3516 3517 BaseOp = SystemZISD::ADDCARRY; 3518 CCValid = SystemZ::CCMASK_LOGICAL; 3519 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3520 break; 3521 case ISD::SUBCARRY: 3522 if (!isSubBorrowChain(Carry)) 3523 return SDValue(); 3524 3525 BaseOp = SystemZISD::SUBCARRY; 3526 CCValid = SystemZ::CCMASK_LOGICAL; 3527 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3528 break; 3529 } 3530 3531 // Set the condition code from the carry flag. 3532 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3533 DAG.getConstant(CCValid, DL, MVT::i32), 3534 DAG.getConstant(CCMask, DL, MVT::i32)); 3535 3536 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3537 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3538 3539 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3540 if (N->getValueType(1) == MVT::i1) 3541 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3542 3543 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3544 } 3545 3546 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3547 SelectionDAG &DAG) const { 3548 EVT VT = Op.getValueType(); 3549 SDLoc DL(Op); 3550 Op = Op.getOperand(0); 3551 3552 // Handle vector types via VPOPCT. 3553 if (VT.isVector()) { 3554 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3555 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3556 switch (VT.getScalarSizeInBits()) { 3557 case 8: 3558 break; 3559 case 16: { 3560 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3561 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3562 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3563 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3564 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3565 break; 3566 } 3567 case 32: { 3568 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3569 DAG.getConstant(0, DL, MVT::i32)); 3570 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3571 break; 3572 } 3573 case 64: { 3574 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3575 DAG.getConstant(0, DL, MVT::i32)); 3576 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3577 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3578 break; 3579 } 3580 default: 3581 llvm_unreachable("Unexpected type"); 3582 } 3583 return Op; 3584 } 3585 3586 // Get the known-zero mask for the operand. 3587 KnownBits Known = DAG.computeKnownBits(Op); 3588 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3589 if (NumSignificantBits == 0) 3590 return DAG.getConstant(0, DL, VT); 3591 3592 // Skip known-zero high parts of the operand. 3593 int64_t OrigBitSize = VT.getSizeInBits(); 3594 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3595 BitSize = std::min(BitSize, OrigBitSize); 3596 3597 // The POPCNT instruction counts the number of bits in each byte. 3598 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3599 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3600 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3601 3602 // Add up per-byte counts in a binary tree. All bits of Op at 3603 // position larger than BitSize remain zero throughout. 3604 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3605 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3606 if (BitSize != OrigBitSize) 3607 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3608 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3609 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3610 } 3611 3612 // Extract overall result from high byte. 3613 if (BitSize > 8) 3614 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3615 DAG.getConstant(BitSize - 8, DL, VT)); 3616 3617 return Op; 3618 } 3619 3620 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3621 SelectionDAG &DAG) const { 3622 SDLoc DL(Op); 3623 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3624 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3625 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3626 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3627 3628 // The only fence that needs an instruction is a sequentially-consistent 3629 // cross-thread fence. 3630 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3631 FenceSSID == SyncScope::System) { 3632 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3633 Op.getOperand(0)), 3634 0); 3635 } 3636 3637 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3638 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3639 } 3640 3641 // Op is an atomic load. Lower it into a normal volatile load. 3642 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3643 SelectionDAG &DAG) const { 3644 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3645 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3646 Node->getChain(), Node->getBasePtr(), 3647 Node->getMemoryVT(), Node->getMemOperand()); 3648 } 3649 3650 // Op is an atomic store. Lower it into a normal volatile store. 3651 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3652 SelectionDAG &DAG) const { 3653 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3654 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3655 Node->getBasePtr(), Node->getMemoryVT(), 3656 Node->getMemOperand()); 3657 // We have to enforce sequential consistency by performing a 3658 // serialization operation after the store. 3659 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3660 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3661 MVT::Other, Chain), 0); 3662 return Chain; 3663 } 3664 3665 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3666 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3667 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3668 SelectionDAG &DAG, 3669 unsigned Opcode) const { 3670 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3671 3672 // 32-bit operations need no code outside the main loop. 3673 EVT NarrowVT = Node->getMemoryVT(); 3674 EVT WideVT = MVT::i32; 3675 if (NarrowVT == WideVT) 3676 return Op; 3677 3678 int64_t BitSize = NarrowVT.getSizeInBits(); 3679 SDValue ChainIn = Node->getChain(); 3680 SDValue Addr = Node->getBasePtr(); 3681 SDValue Src2 = Node->getVal(); 3682 MachineMemOperand *MMO = Node->getMemOperand(); 3683 SDLoc DL(Node); 3684 EVT PtrVT = Addr.getValueType(); 3685 3686 // Convert atomic subtracts of constants into additions. 3687 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3688 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3689 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3690 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3691 } 3692 3693 // Get the address of the containing word. 3694 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3695 DAG.getConstant(-4, DL, PtrVT)); 3696 3697 // Get the number of bits that the word must be rotated left in order 3698 // to bring the field to the top bits of a GR32. 3699 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3700 DAG.getConstant(3, DL, PtrVT)); 3701 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3702 3703 // Get the complementing shift amount, for rotating a field in the top 3704 // bits back to its proper position. 3705 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3706 DAG.getConstant(0, DL, WideVT), BitShift); 3707 3708 // Extend the source operand to 32 bits and prepare it for the inner loop. 3709 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3710 // operations require the source to be shifted in advance. (This shift 3711 // can be folded if the source is constant.) For AND and NAND, the lower 3712 // bits must be set, while for other opcodes they should be left clear. 3713 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3714 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3715 DAG.getConstant(32 - BitSize, DL, WideVT)); 3716 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3717 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3718 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3719 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3720 3721 // Construct the ATOMIC_LOADW_* node. 3722 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3723 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3724 DAG.getConstant(BitSize, DL, WideVT) }; 3725 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3726 NarrowVT, MMO); 3727 3728 // Rotate the result of the final CS so that the field is in the lower 3729 // bits of a GR32, then truncate it. 3730 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3731 DAG.getConstant(BitSize, DL, WideVT)); 3732 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3733 3734 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3735 return DAG.getMergeValues(RetOps, DL); 3736 } 3737 3738 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3739 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3740 // operations into additions. 3741 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3742 SelectionDAG &DAG) const { 3743 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3744 EVT MemVT = Node->getMemoryVT(); 3745 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3746 // A full-width operation. 3747 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3748 SDValue Src2 = Node->getVal(); 3749 SDValue NegSrc2; 3750 SDLoc DL(Src2); 3751 3752 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3753 // Use an addition if the operand is constant and either LAA(G) is 3754 // available or the negative value is in the range of A(G)FHI. 3755 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3756 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3757 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3758 } else if (Subtarget.hasInterlockedAccess1()) 3759 // Use LAA(G) if available. 3760 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3761 Src2); 3762 3763 if (NegSrc2.getNode()) 3764 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3765 Node->getChain(), Node->getBasePtr(), NegSrc2, 3766 Node->getMemOperand()); 3767 3768 // Use the node as-is. 3769 return Op; 3770 } 3771 3772 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3773 } 3774 3775 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3776 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3777 SelectionDAG &DAG) const { 3778 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3779 SDValue ChainIn = Node->getOperand(0); 3780 SDValue Addr = Node->getOperand(1); 3781 SDValue CmpVal = Node->getOperand(2); 3782 SDValue SwapVal = Node->getOperand(3); 3783 MachineMemOperand *MMO = Node->getMemOperand(); 3784 SDLoc DL(Node); 3785 3786 // We have native support for 32-bit and 64-bit compare and swap, but we 3787 // still need to expand extracting the "success" result from the CC. 3788 EVT NarrowVT = Node->getMemoryVT(); 3789 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3790 if (NarrowVT == WideVT) { 3791 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3792 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3793 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3794 DL, Tys, Ops, NarrowVT, MMO); 3795 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3796 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3797 3798 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3799 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3800 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3801 return SDValue(); 3802 } 3803 3804 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3805 // via a fullword ATOMIC_CMP_SWAPW operation. 3806 int64_t BitSize = NarrowVT.getSizeInBits(); 3807 EVT PtrVT = Addr.getValueType(); 3808 3809 // Get the address of the containing word. 3810 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3811 DAG.getConstant(-4, DL, PtrVT)); 3812 3813 // Get the number of bits that the word must be rotated left in order 3814 // to bring the field to the top bits of a GR32. 3815 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3816 DAG.getConstant(3, DL, PtrVT)); 3817 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3818 3819 // Get the complementing shift amount, for rotating a field in the top 3820 // bits back to its proper position. 3821 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3822 DAG.getConstant(0, DL, WideVT), BitShift); 3823 3824 // Construct the ATOMIC_CMP_SWAPW node. 3825 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3826 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3827 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3828 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3829 VTList, Ops, NarrowVT, MMO); 3830 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3831 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3832 3833 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3834 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3835 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3836 return SDValue(); 3837 } 3838 3839 MachineMemOperand::Flags 3840 SystemZTargetLowering::getMMOFlags(const Instruction &I) const { 3841 // Because of how we convert atomic_load and atomic_store to normal loads and 3842 // stores in the DAG, we need to ensure that the MMOs are marked volatile 3843 // since DAGCombine hasn't been updated to account for atomic, but non 3844 // volatile loads. (See D57601) 3845 if (auto *SI = dyn_cast<StoreInst>(&I)) 3846 if (SI->isAtomic()) 3847 return MachineMemOperand::MOVolatile; 3848 if (auto *LI = dyn_cast<LoadInst>(&I)) 3849 if (LI->isAtomic()) 3850 return MachineMemOperand::MOVolatile; 3851 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 3852 if (AI->isAtomic()) 3853 return MachineMemOperand::MOVolatile; 3854 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 3855 if (AI->isAtomic()) 3856 return MachineMemOperand::MOVolatile; 3857 return MachineMemOperand::MONone; 3858 } 3859 3860 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3861 SelectionDAG &DAG) const { 3862 MachineFunction &MF = DAG.getMachineFunction(); 3863 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3864 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3865 SystemZ::R15D, Op.getValueType()); 3866 } 3867 3868 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3869 SelectionDAG &DAG) const { 3870 MachineFunction &MF = DAG.getMachineFunction(); 3871 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3872 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3873 3874 SDValue Chain = Op.getOperand(0); 3875 SDValue NewSP = Op.getOperand(1); 3876 SDValue Backchain; 3877 SDLoc DL(Op); 3878 3879 if (StoreBackchain) { 3880 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3881 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3882 } 3883 3884 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3885 3886 if (StoreBackchain) 3887 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3888 3889 return Chain; 3890 } 3891 3892 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3893 SelectionDAG &DAG) const { 3894 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3895 if (!IsData) 3896 // Just preserve the chain. 3897 return Op.getOperand(0); 3898 3899 SDLoc DL(Op); 3900 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3901 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3902 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3903 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 3904 Op.getOperand(1)}; 3905 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3906 Node->getVTList(), Ops, 3907 Node->getMemoryVT(), Node->getMemOperand()); 3908 } 3909 3910 // Convert condition code in CCReg to an i32 value. 3911 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3912 SDLoc DL(CCReg); 3913 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3914 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3915 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3916 } 3917 3918 SDValue 3919 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3920 SelectionDAG &DAG) const { 3921 unsigned Opcode, CCValid; 3922 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3923 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3924 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3925 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3926 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3927 return SDValue(); 3928 } 3929 3930 return SDValue(); 3931 } 3932 3933 SDValue 3934 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3935 SelectionDAG &DAG) const { 3936 unsigned Opcode, CCValid; 3937 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3938 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3939 if (Op->getNumValues() == 1) 3940 return getCCResult(DAG, SDValue(Node, 0)); 3941 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3942 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3943 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3944 } 3945 3946 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3947 switch (Id) { 3948 case Intrinsic::thread_pointer: 3949 return lowerThreadPointer(SDLoc(Op), DAG); 3950 3951 case Intrinsic::s390_vpdi: 3952 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3953 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3954 3955 case Intrinsic::s390_vperm: 3956 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3957 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3958 3959 case Intrinsic::s390_vuphb: 3960 case Intrinsic::s390_vuphh: 3961 case Intrinsic::s390_vuphf: 3962 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3963 Op.getOperand(1)); 3964 3965 case Intrinsic::s390_vuplhb: 3966 case Intrinsic::s390_vuplhh: 3967 case Intrinsic::s390_vuplhf: 3968 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3969 Op.getOperand(1)); 3970 3971 case Intrinsic::s390_vuplb: 3972 case Intrinsic::s390_vuplhw: 3973 case Intrinsic::s390_vuplf: 3974 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3975 Op.getOperand(1)); 3976 3977 case Intrinsic::s390_vupllb: 3978 case Intrinsic::s390_vupllh: 3979 case Intrinsic::s390_vupllf: 3980 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3981 Op.getOperand(1)); 3982 3983 case Intrinsic::s390_vsumb: 3984 case Intrinsic::s390_vsumh: 3985 case Intrinsic::s390_vsumgh: 3986 case Intrinsic::s390_vsumgf: 3987 case Intrinsic::s390_vsumqf: 3988 case Intrinsic::s390_vsumqg: 3989 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3990 Op.getOperand(1), Op.getOperand(2)); 3991 } 3992 3993 return SDValue(); 3994 } 3995 3996 namespace { 3997 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3998 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3999 // Operand is the constant third operand, otherwise it is the number of 4000 // bytes in each element of the result. 4001 struct Permute { 4002 unsigned Opcode; 4003 unsigned Operand; 4004 unsigned char Bytes[SystemZ::VectorBytes]; 4005 }; 4006 } 4007 4008 static const Permute PermuteForms[] = { 4009 // VMRHG 4010 { SystemZISD::MERGE_HIGH, 8, 4011 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4012 // VMRHF 4013 { SystemZISD::MERGE_HIGH, 4, 4014 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4015 // VMRHH 4016 { SystemZISD::MERGE_HIGH, 2, 4017 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4018 // VMRHB 4019 { SystemZISD::MERGE_HIGH, 1, 4020 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4021 // VMRLG 4022 { SystemZISD::MERGE_LOW, 8, 4023 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4024 // VMRLF 4025 { SystemZISD::MERGE_LOW, 4, 4026 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4027 // VMRLH 4028 { SystemZISD::MERGE_LOW, 2, 4029 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4030 // VMRLB 4031 { SystemZISD::MERGE_LOW, 1, 4032 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4033 // VPKG 4034 { SystemZISD::PACK, 4, 4035 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4036 // VPKF 4037 { SystemZISD::PACK, 2, 4038 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4039 // VPKH 4040 { SystemZISD::PACK, 1, 4041 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4042 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4043 { SystemZISD::PERMUTE_DWORDS, 4, 4044 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4045 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4046 { SystemZISD::PERMUTE_DWORDS, 1, 4047 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4048 }; 4049 4050 // Called after matching a vector shuffle against a particular pattern. 4051 // Both the original shuffle and the pattern have two vector operands. 4052 // OpNos[0] is the operand of the original shuffle that should be used for 4053 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4054 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4055 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4056 // for operands 0 and 1 of the pattern. 4057 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4058 if (OpNos[0] < 0) { 4059 if (OpNos[1] < 0) 4060 return false; 4061 OpNo0 = OpNo1 = OpNos[1]; 4062 } else if (OpNos[1] < 0) { 4063 OpNo0 = OpNo1 = OpNos[0]; 4064 } else { 4065 OpNo0 = OpNos[0]; 4066 OpNo1 = OpNos[1]; 4067 } 4068 return true; 4069 } 4070 4071 // Bytes is a VPERM-like permute vector, except that -1 is used for 4072 // undefined bytes. Return true if the VPERM can be implemented using P. 4073 // When returning true set OpNo0 to the VPERM operand that should be 4074 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4075 // 4076 // For example, if swapping the VPERM operands allows P to match, OpNo0 4077 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4078 // operand, but rewriting it to use two duplicated operands allows it to 4079 // match P, then OpNo0 and OpNo1 will be the same. 4080 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4081 unsigned &OpNo0, unsigned &OpNo1) { 4082 int OpNos[] = { -1, -1 }; 4083 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4084 int Elt = Bytes[I]; 4085 if (Elt >= 0) { 4086 // Make sure that the two permute vectors use the same suboperand 4087 // byte number. Only the operand numbers (the high bits) are 4088 // allowed to differ. 4089 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4090 return false; 4091 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4092 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4093 // Make sure that the operand mappings are consistent with previous 4094 // elements. 4095 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4096 return false; 4097 OpNos[ModelOpNo] = RealOpNo; 4098 } 4099 } 4100 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4101 } 4102 4103 // As above, but search for a matching permute. 4104 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4105 unsigned &OpNo0, unsigned &OpNo1) { 4106 for (auto &P : PermuteForms) 4107 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4108 return &P; 4109 return nullptr; 4110 } 4111 4112 // Bytes is a VPERM-like permute vector, except that -1 is used for 4113 // undefined bytes. This permute is an operand of an outer permute. 4114 // See whether redistributing the -1 bytes gives a shuffle that can be 4115 // implemented using P. If so, set Transform to a VPERM-like permute vector 4116 // that, when applied to the result of P, gives the original permute in Bytes. 4117 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4118 const Permute &P, 4119 SmallVectorImpl<int> &Transform) { 4120 unsigned To = 0; 4121 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4122 int Elt = Bytes[From]; 4123 if (Elt < 0) 4124 // Byte number From of the result is undefined. 4125 Transform[From] = -1; 4126 else { 4127 while (P.Bytes[To] != Elt) { 4128 To += 1; 4129 if (To == SystemZ::VectorBytes) 4130 return false; 4131 } 4132 Transform[From] = To; 4133 } 4134 } 4135 return true; 4136 } 4137 4138 // As above, but search for a matching permute. 4139 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4140 SmallVectorImpl<int> &Transform) { 4141 for (auto &P : PermuteForms) 4142 if (matchDoublePermute(Bytes, P, Transform)) 4143 return &P; 4144 return nullptr; 4145 } 4146 4147 // Convert the mask of the given shuffle op into a byte-level mask, 4148 // as if it had type vNi8. 4149 static bool getVPermMask(SDValue ShuffleOp, 4150 SmallVectorImpl<int> &Bytes) { 4151 EVT VT = ShuffleOp.getValueType(); 4152 unsigned NumElements = VT.getVectorNumElements(); 4153 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4154 4155 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4156 Bytes.resize(NumElements * BytesPerElement, -1); 4157 for (unsigned I = 0; I < NumElements; ++I) { 4158 int Index = VSN->getMaskElt(I); 4159 if (Index >= 0) 4160 for (unsigned J = 0; J < BytesPerElement; ++J) 4161 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4162 } 4163 return true; 4164 } 4165 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4166 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4167 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4168 Bytes.resize(NumElements * BytesPerElement, -1); 4169 for (unsigned I = 0; I < NumElements; ++I) 4170 for (unsigned J = 0; J < BytesPerElement; ++J) 4171 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4172 return true; 4173 } 4174 return false; 4175 } 4176 4177 // Bytes is a VPERM-like permute vector, except that -1 is used for 4178 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4179 // the result come from a contiguous sequence of bytes from one input. 4180 // Set Base to the selector for the first byte if so. 4181 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4182 unsigned BytesPerElement, int &Base) { 4183 Base = -1; 4184 for (unsigned I = 0; I < BytesPerElement; ++I) { 4185 if (Bytes[Start + I] >= 0) { 4186 unsigned Elem = Bytes[Start + I]; 4187 if (Base < 0) { 4188 Base = Elem - I; 4189 // Make sure the bytes would come from one input operand. 4190 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4191 return false; 4192 } else if (unsigned(Base) != Elem - I) 4193 return false; 4194 } 4195 } 4196 return true; 4197 } 4198 4199 // Bytes is a VPERM-like permute vector, except that -1 is used for 4200 // undefined bytes. Return true if it can be performed using VSLDI. 4201 // When returning true, set StartIndex to the shift amount and OpNo0 4202 // and OpNo1 to the VPERM operands that should be used as the first 4203 // and second shift operand respectively. 4204 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4205 unsigned &StartIndex, unsigned &OpNo0, 4206 unsigned &OpNo1) { 4207 int OpNos[] = { -1, -1 }; 4208 int Shift = -1; 4209 for (unsigned I = 0; I < 16; ++I) { 4210 int Index = Bytes[I]; 4211 if (Index >= 0) { 4212 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4213 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4214 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4215 if (Shift < 0) 4216 Shift = ExpectedShift; 4217 else if (Shift != ExpectedShift) 4218 return false; 4219 // Make sure that the operand mappings are consistent with previous 4220 // elements. 4221 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4222 return false; 4223 OpNos[ModelOpNo] = RealOpNo; 4224 } 4225 } 4226 StartIndex = Shift; 4227 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4228 } 4229 4230 // Create a node that performs P on operands Op0 and Op1, casting the 4231 // operands to the appropriate type. The type of the result is determined by P. 4232 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4233 const Permute &P, SDValue Op0, SDValue Op1) { 4234 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4235 // elements of a PACK are twice as wide as the outputs. 4236 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4237 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4238 P.Operand); 4239 // Cast both operands to the appropriate type. 4240 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4241 SystemZ::VectorBytes / InBytes); 4242 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4243 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4244 SDValue Op; 4245 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4246 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4247 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4248 } else if (P.Opcode == SystemZISD::PACK) { 4249 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4250 SystemZ::VectorBytes / P.Operand); 4251 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4252 } else { 4253 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4254 } 4255 return Op; 4256 } 4257 4258 // Bytes is a VPERM-like permute vector, except that -1 is used for 4259 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4260 // VSLDI or VPERM. 4261 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4262 SDValue *Ops, 4263 const SmallVectorImpl<int> &Bytes) { 4264 for (unsigned I = 0; I < 2; ++I) 4265 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4266 4267 // First see whether VSLDI can be used. 4268 unsigned StartIndex, OpNo0, OpNo1; 4269 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4270 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4271 Ops[OpNo1], 4272 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4273 4274 // Fall back on VPERM. Construct an SDNode for the permute vector. 4275 SDValue IndexNodes[SystemZ::VectorBytes]; 4276 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4277 if (Bytes[I] >= 0) 4278 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4279 else 4280 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4281 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4282 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4283 } 4284 4285 namespace { 4286 // Describes a general N-operand vector shuffle. 4287 struct GeneralShuffle { 4288 GeneralShuffle(EVT vt) : VT(vt) {} 4289 void addUndef(); 4290 bool add(SDValue, unsigned); 4291 SDValue getNode(SelectionDAG &, const SDLoc &); 4292 4293 // The operands of the shuffle. 4294 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4295 4296 // Index I is -1 if byte I of the result is undefined. Otherwise the 4297 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4298 // Bytes[I] / SystemZ::VectorBytes. 4299 SmallVector<int, SystemZ::VectorBytes> Bytes; 4300 4301 // The type of the shuffle result. 4302 EVT VT; 4303 }; 4304 } 4305 4306 // Add an extra undefined element to the shuffle. 4307 void GeneralShuffle::addUndef() { 4308 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4309 for (unsigned I = 0; I < BytesPerElement; ++I) 4310 Bytes.push_back(-1); 4311 } 4312 4313 // Add an extra element to the shuffle, taking it from element Elem of Op. 4314 // A null Op indicates a vector input whose value will be calculated later; 4315 // there is at most one such input per shuffle and it always has the same 4316 // type as the result. Aborts and returns false if the source vector elements 4317 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4318 // LLVM they become implicitly extended, but this is rare and not optimized. 4319 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4320 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4321 4322 // The source vector can have wider elements than the result, 4323 // either through an explicit TRUNCATE or because of type legalization. 4324 // We want the least significant part. 4325 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4326 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4327 4328 // Return false if the source elements are smaller than their destination 4329 // elements. 4330 if (FromBytesPerElement < BytesPerElement) 4331 return false; 4332 4333 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4334 (FromBytesPerElement - BytesPerElement)); 4335 4336 // Look through things like shuffles and bitcasts. 4337 while (Op.getNode()) { 4338 if (Op.getOpcode() == ISD::BITCAST) 4339 Op = Op.getOperand(0); 4340 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4341 // See whether the bytes we need come from a contiguous part of one 4342 // operand. 4343 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4344 if (!getVPermMask(Op, OpBytes)) 4345 break; 4346 int NewByte; 4347 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4348 break; 4349 if (NewByte < 0) { 4350 addUndef(); 4351 return true; 4352 } 4353 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4354 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4355 } else if (Op.isUndef()) { 4356 addUndef(); 4357 return true; 4358 } else 4359 break; 4360 } 4361 4362 // Make sure that the source of the extraction is in Ops. 4363 unsigned OpNo = 0; 4364 for (; OpNo < Ops.size(); ++OpNo) 4365 if (Ops[OpNo] == Op) 4366 break; 4367 if (OpNo == Ops.size()) 4368 Ops.push_back(Op); 4369 4370 // Add the element to Bytes. 4371 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4372 for (unsigned I = 0; I < BytesPerElement; ++I) 4373 Bytes.push_back(Base + I); 4374 4375 return true; 4376 } 4377 4378 // Return SDNodes for the completed shuffle. 4379 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4380 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4381 4382 if (Ops.size() == 0) 4383 return DAG.getUNDEF(VT); 4384 4385 // Make sure that there are at least two shuffle operands. 4386 if (Ops.size() == 1) 4387 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4388 4389 // Create a tree of shuffles, deferring root node until after the loop. 4390 // Try to redistribute the undefined elements of non-root nodes so that 4391 // the non-root shuffles match something like a pack or merge, then adjust 4392 // the parent node's permute vector to compensate for the new order. 4393 // Among other things, this copes with vectors like <2 x i16> that were 4394 // padded with undefined elements during type legalization. 4395 // 4396 // In the best case this redistribution will lead to the whole tree 4397 // using packs and merges. It should rarely be a loss in other cases. 4398 unsigned Stride = 1; 4399 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4400 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4401 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4402 4403 // Create a mask for just these two operands. 4404 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4405 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4406 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4407 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4408 if (OpNo == I) 4409 NewBytes[J] = Byte; 4410 else if (OpNo == I + Stride) 4411 NewBytes[J] = SystemZ::VectorBytes + Byte; 4412 else 4413 NewBytes[J] = -1; 4414 } 4415 // See if it would be better to reorganize NewMask to avoid using VPERM. 4416 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4417 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4418 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4419 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4420 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4421 if (NewBytes[J] >= 0) { 4422 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4423 "Invalid double permute"); 4424 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4425 } else 4426 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4427 } 4428 } else { 4429 // Just use NewBytes on the operands. 4430 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4431 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4432 if (NewBytes[J] >= 0) 4433 Bytes[J] = I * SystemZ::VectorBytes + J; 4434 } 4435 } 4436 } 4437 4438 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4439 if (Stride > 1) { 4440 Ops[1] = Ops[Stride]; 4441 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4442 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4443 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4444 } 4445 4446 // Look for an instruction that can do the permute without resorting 4447 // to VPERM. 4448 unsigned OpNo0, OpNo1; 4449 SDValue Op; 4450 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4451 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4452 else 4453 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4454 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4455 } 4456 4457 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4458 static bool isScalarToVector(SDValue Op) { 4459 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4460 if (!Op.getOperand(I).isUndef()) 4461 return false; 4462 return true; 4463 } 4464 4465 // Return a vector of type VT that contains Value in the first element. 4466 // The other elements don't matter. 4467 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4468 SDValue Value) { 4469 // If we have a constant, replicate it to all elements and let the 4470 // BUILD_VECTOR lowering take care of it. 4471 if (Value.getOpcode() == ISD::Constant || 4472 Value.getOpcode() == ISD::ConstantFP) { 4473 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4474 return DAG.getBuildVector(VT, DL, Ops); 4475 } 4476 if (Value.isUndef()) 4477 return DAG.getUNDEF(VT); 4478 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4479 } 4480 4481 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4482 // element 1. Used for cases in which replication is cheap. 4483 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4484 SDValue Op0, SDValue Op1) { 4485 if (Op0.isUndef()) { 4486 if (Op1.isUndef()) 4487 return DAG.getUNDEF(VT); 4488 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4489 } 4490 if (Op1.isUndef()) 4491 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4492 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4493 buildScalarToVector(DAG, DL, VT, Op0), 4494 buildScalarToVector(DAG, DL, VT, Op1)); 4495 } 4496 4497 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4498 // vector for them. 4499 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4500 SDValue Op1) { 4501 if (Op0.isUndef() && Op1.isUndef()) 4502 return DAG.getUNDEF(MVT::v2i64); 4503 // If one of the two inputs is undefined then replicate the other one, 4504 // in order to avoid using another register unnecessarily. 4505 if (Op0.isUndef()) 4506 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4507 else if (Op1.isUndef()) 4508 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4509 else { 4510 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4511 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4512 } 4513 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4514 } 4515 4516 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4517 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4518 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4519 // would benefit from this representation and return it if so. 4520 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4521 BuildVectorSDNode *BVN) { 4522 EVT VT = BVN->getValueType(0); 4523 unsigned NumElements = VT.getVectorNumElements(); 4524 4525 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4526 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4527 // need a BUILD_VECTOR, add an additional placeholder operand for that 4528 // BUILD_VECTOR and store its operands in ResidueOps. 4529 GeneralShuffle GS(VT); 4530 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4531 bool FoundOne = false; 4532 for (unsigned I = 0; I < NumElements; ++I) { 4533 SDValue Op = BVN->getOperand(I); 4534 if (Op.getOpcode() == ISD::TRUNCATE) 4535 Op = Op.getOperand(0); 4536 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4537 Op.getOperand(1).getOpcode() == ISD::Constant) { 4538 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4539 if (!GS.add(Op.getOperand(0), Elem)) 4540 return SDValue(); 4541 FoundOne = true; 4542 } else if (Op.isUndef()) { 4543 GS.addUndef(); 4544 } else { 4545 if (!GS.add(SDValue(), ResidueOps.size())) 4546 return SDValue(); 4547 ResidueOps.push_back(BVN->getOperand(I)); 4548 } 4549 } 4550 4551 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4552 if (!FoundOne) 4553 return SDValue(); 4554 4555 // Create the BUILD_VECTOR for the remaining elements, if any. 4556 if (!ResidueOps.empty()) { 4557 while (ResidueOps.size() < NumElements) 4558 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4559 for (auto &Op : GS.Ops) { 4560 if (!Op.getNode()) { 4561 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4562 break; 4563 } 4564 } 4565 } 4566 return GS.getNode(DAG, SDLoc(BVN)); 4567 } 4568 4569 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4570 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4571 return true; 4572 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4573 return true; 4574 return false; 4575 } 4576 4577 // Combine GPR scalar values Elems into a vector of type VT. 4578 SDValue 4579 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4580 SmallVectorImpl<SDValue> &Elems) const { 4581 // See whether there is a single replicated value. 4582 SDValue Single; 4583 unsigned int NumElements = Elems.size(); 4584 unsigned int Count = 0; 4585 for (auto Elem : Elems) { 4586 if (!Elem.isUndef()) { 4587 if (!Single.getNode()) 4588 Single = Elem; 4589 else if (Elem != Single) { 4590 Single = SDValue(); 4591 break; 4592 } 4593 Count += 1; 4594 } 4595 } 4596 // There are three cases here: 4597 // 4598 // - if the only defined element is a loaded one, the best sequence 4599 // is a replicating load. 4600 // 4601 // - otherwise, if the only defined element is an i64 value, we will 4602 // end up with the same VLVGP sequence regardless of whether we short-cut 4603 // for replication or fall through to the later code. 4604 // 4605 // - otherwise, if the only defined element is an i32 or smaller value, 4606 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4607 // This is only a win if the single defined element is used more than once. 4608 // In other cases we're better off using a single VLVGx. 4609 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4610 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4611 4612 // If all elements are loads, use VLREP/VLEs (below). 4613 bool AllLoads = true; 4614 for (auto Elem : Elems) 4615 if (!isVectorElementLoad(Elem)) { 4616 AllLoads = false; 4617 break; 4618 } 4619 4620 // The best way of building a v2i64 from two i64s is to use VLVGP. 4621 if (VT == MVT::v2i64 && !AllLoads) 4622 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4623 4624 // Use a 64-bit merge high to combine two doubles. 4625 if (VT == MVT::v2f64 && !AllLoads) 4626 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4627 4628 // Build v4f32 values directly from the FPRs: 4629 // 4630 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4631 // V V VMRHF 4632 // <ABxx> <CDxx> 4633 // V VMRHG 4634 // <ABCD> 4635 if (VT == MVT::v4f32 && !AllLoads) { 4636 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4637 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4638 // Avoid unnecessary undefs by reusing the other operand. 4639 if (Op01.isUndef()) 4640 Op01 = Op23; 4641 else if (Op23.isUndef()) 4642 Op23 = Op01; 4643 // Merging identical replications is a no-op. 4644 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4645 return Op01; 4646 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4647 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4648 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4649 DL, MVT::v2i64, Op01, Op23); 4650 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4651 } 4652 4653 // Collect the constant terms. 4654 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4655 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4656 4657 unsigned NumConstants = 0; 4658 for (unsigned I = 0; I < NumElements; ++I) { 4659 SDValue Elem = Elems[I]; 4660 if (Elem.getOpcode() == ISD::Constant || 4661 Elem.getOpcode() == ISD::ConstantFP) { 4662 NumConstants += 1; 4663 Constants[I] = Elem; 4664 Done[I] = true; 4665 } 4666 } 4667 // If there was at least one constant, fill in the other elements of 4668 // Constants with undefs to get a full vector constant and use that 4669 // as the starting point. 4670 SDValue Result; 4671 SDValue ReplicatedVal; 4672 if (NumConstants > 0) { 4673 for (unsigned I = 0; I < NumElements; ++I) 4674 if (!Constants[I].getNode()) 4675 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4676 Result = DAG.getBuildVector(VT, DL, Constants); 4677 } else { 4678 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4679 // avoid a false dependency on any previous contents of the vector 4680 // register. 4681 4682 // Use a VLREP if at least one element is a load. Make sure to replicate 4683 // the load with the most elements having its value. 4684 std::map<const SDNode*, unsigned> UseCounts; 4685 SDNode *LoadMaxUses = nullptr; 4686 for (unsigned I = 0; I < NumElements; ++I) 4687 if (isVectorElementLoad(Elems[I])) { 4688 SDNode *Ld = Elems[I].getNode(); 4689 UseCounts[Ld]++; 4690 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4691 LoadMaxUses = Ld; 4692 } 4693 if (LoadMaxUses != nullptr) { 4694 ReplicatedVal = SDValue(LoadMaxUses, 0); 4695 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4696 } else { 4697 // Try to use VLVGP. 4698 unsigned I1 = NumElements / 2 - 1; 4699 unsigned I2 = NumElements - 1; 4700 bool Def1 = !Elems[I1].isUndef(); 4701 bool Def2 = !Elems[I2].isUndef(); 4702 if (Def1 || Def2) { 4703 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4704 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4705 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4706 joinDwords(DAG, DL, Elem1, Elem2)); 4707 Done[I1] = true; 4708 Done[I2] = true; 4709 } else 4710 Result = DAG.getUNDEF(VT); 4711 } 4712 } 4713 4714 // Use VLVGx to insert the other elements. 4715 for (unsigned I = 0; I < NumElements; ++I) 4716 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4717 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4718 DAG.getConstant(I, DL, MVT::i32)); 4719 return Result; 4720 } 4721 4722 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4723 SelectionDAG &DAG) const { 4724 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4725 SDLoc DL(Op); 4726 EVT VT = Op.getValueType(); 4727 4728 if (BVN->isConstant()) { 4729 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4730 return Op; 4731 4732 // Fall back to loading it from memory. 4733 return SDValue(); 4734 } 4735 4736 // See if we should use shuffles to construct the vector from other vectors. 4737 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4738 return Res; 4739 4740 // Detect SCALAR_TO_VECTOR conversions. 4741 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4742 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4743 4744 // Otherwise use buildVector to build the vector up from GPRs. 4745 unsigned NumElements = Op.getNumOperands(); 4746 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4747 for (unsigned I = 0; I < NumElements; ++I) 4748 Ops[I] = Op.getOperand(I); 4749 return buildVector(DAG, DL, VT, Ops); 4750 } 4751 4752 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4753 SelectionDAG &DAG) const { 4754 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4755 SDLoc DL(Op); 4756 EVT VT = Op.getValueType(); 4757 unsigned NumElements = VT.getVectorNumElements(); 4758 4759 if (VSN->isSplat()) { 4760 SDValue Op0 = Op.getOperand(0); 4761 unsigned Index = VSN->getSplatIndex(); 4762 assert(Index < VT.getVectorNumElements() && 4763 "Splat index should be defined and in first operand"); 4764 // See whether the value we're splatting is directly available as a scalar. 4765 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4766 Op0.getOpcode() == ISD::BUILD_VECTOR) 4767 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4768 // Otherwise keep it as a vector-to-vector operation. 4769 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4770 DAG.getTargetConstant(Index, DL, MVT::i32)); 4771 } 4772 4773 GeneralShuffle GS(VT); 4774 for (unsigned I = 0; I < NumElements; ++I) { 4775 int Elt = VSN->getMaskElt(I); 4776 if (Elt < 0) 4777 GS.addUndef(); 4778 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4779 unsigned(Elt) % NumElements)) 4780 return SDValue(); 4781 } 4782 return GS.getNode(DAG, SDLoc(VSN)); 4783 } 4784 4785 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4786 SelectionDAG &DAG) const { 4787 SDLoc DL(Op); 4788 // Just insert the scalar into element 0 of an undefined vector. 4789 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4790 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4791 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4792 } 4793 4794 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4795 SelectionDAG &DAG) const { 4796 // Handle insertions of floating-point values. 4797 SDLoc DL(Op); 4798 SDValue Op0 = Op.getOperand(0); 4799 SDValue Op1 = Op.getOperand(1); 4800 SDValue Op2 = Op.getOperand(2); 4801 EVT VT = Op.getValueType(); 4802 4803 // Insertions into constant indices of a v2f64 can be done using VPDI. 4804 // However, if the inserted value is a bitcast or a constant then it's 4805 // better to use GPRs, as below. 4806 if (VT == MVT::v2f64 && 4807 Op1.getOpcode() != ISD::BITCAST && 4808 Op1.getOpcode() != ISD::ConstantFP && 4809 Op2.getOpcode() == ISD::Constant) { 4810 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4811 unsigned Mask = VT.getVectorNumElements() - 1; 4812 if (Index <= Mask) 4813 return Op; 4814 } 4815 4816 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4817 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4818 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4819 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4820 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4821 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4822 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4823 } 4824 4825 SDValue 4826 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4827 SelectionDAG &DAG) const { 4828 // Handle extractions of floating-point values. 4829 SDLoc DL(Op); 4830 SDValue Op0 = Op.getOperand(0); 4831 SDValue Op1 = Op.getOperand(1); 4832 EVT VT = Op.getValueType(); 4833 EVT VecVT = Op0.getValueType(); 4834 4835 // Extractions of constant indices can be done directly. 4836 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4837 uint64_t Index = CIndexN->getZExtValue(); 4838 unsigned Mask = VecVT.getVectorNumElements() - 1; 4839 if (Index <= Mask) 4840 return Op; 4841 } 4842 4843 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4844 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4845 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4846 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4847 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4848 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4849 } 4850 4851 SDValue 4852 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4853 unsigned UnpackHigh) const { 4854 SDValue PackedOp = Op.getOperand(0); 4855 EVT OutVT = Op.getValueType(); 4856 EVT InVT = PackedOp.getValueType(); 4857 unsigned ToBits = OutVT.getScalarSizeInBits(); 4858 unsigned FromBits = InVT.getScalarSizeInBits(); 4859 do { 4860 FromBits *= 2; 4861 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4862 SystemZ::VectorBits / FromBits); 4863 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4864 } while (FromBits != ToBits); 4865 return PackedOp; 4866 } 4867 4868 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4869 unsigned ByScalar) const { 4870 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4871 SDValue Op0 = Op.getOperand(0); 4872 SDValue Op1 = Op.getOperand(1); 4873 SDLoc DL(Op); 4874 EVT VT = Op.getValueType(); 4875 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4876 4877 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4878 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4879 APInt SplatBits, SplatUndef; 4880 unsigned SplatBitSize; 4881 bool HasAnyUndefs; 4882 // Check for constant splats. Use ElemBitSize as the minimum element 4883 // width and reject splats that need wider elements. 4884 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4885 ElemBitSize, true) && 4886 SplatBitSize == ElemBitSize) { 4887 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4888 DL, MVT::i32); 4889 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4890 } 4891 // Check for variable splats. 4892 BitVector UndefElements; 4893 SDValue Splat = BVN->getSplatValue(&UndefElements); 4894 if (Splat) { 4895 // Since i32 is the smallest legal type, we either need a no-op 4896 // or a truncation. 4897 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4898 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4899 } 4900 } 4901 4902 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4903 // and the shift amount is directly available in a GPR. 4904 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4905 if (VSN->isSplat()) { 4906 SDValue VSNOp0 = VSN->getOperand(0); 4907 unsigned Index = VSN->getSplatIndex(); 4908 assert(Index < VT.getVectorNumElements() && 4909 "Splat index should be defined and in first operand"); 4910 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4911 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4912 // Since i32 is the smallest legal type, we either need a no-op 4913 // or a truncation. 4914 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4915 VSNOp0.getOperand(Index)); 4916 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4917 } 4918 } 4919 } 4920 4921 // Otherwise just treat the current form as legal. 4922 return Op; 4923 } 4924 4925 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4926 SelectionDAG &DAG) const { 4927 switch (Op.getOpcode()) { 4928 case ISD::FRAMEADDR: 4929 return lowerFRAMEADDR(Op, DAG); 4930 case ISD::RETURNADDR: 4931 return lowerRETURNADDR(Op, DAG); 4932 case ISD::BR_CC: 4933 return lowerBR_CC(Op, DAG); 4934 case ISD::SELECT_CC: 4935 return lowerSELECT_CC(Op, DAG); 4936 case ISD::SETCC: 4937 return lowerSETCC(Op, DAG); 4938 case ISD::GlobalAddress: 4939 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4940 case ISD::GlobalTLSAddress: 4941 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4942 case ISD::BlockAddress: 4943 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4944 case ISD::JumpTable: 4945 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4946 case ISD::ConstantPool: 4947 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4948 case ISD::BITCAST: 4949 return lowerBITCAST(Op, DAG); 4950 case ISD::VASTART: 4951 return lowerVASTART(Op, DAG); 4952 case ISD::VACOPY: 4953 return lowerVACOPY(Op, DAG); 4954 case ISD::DYNAMIC_STACKALLOC: 4955 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4956 case ISD::GET_DYNAMIC_AREA_OFFSET: 4957 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4958 case ISD::SMUL_LOHI: 4959 return lowerSMUL_LOHI(Op, DAG); 4960 case ISD::UMUL_LOHI: 4961 return lowerUMUL_LOHI(Op, DAG); 4962 case ISD::SDIVREM: 4963 return lowerSDIVREM(Op, DAG); 4964 case ISD::UDIVREM: 4965 return lowerUDIVREM(Op, DAG); 4966 case ISD::SADDO: 4967 case ISD::SSUBO: 4968 case ISD::UADDO: 4969 case ISD::USUBO: 4970 return lowerXALUO(Op, DAG); 4971 case ISD::ADDCARRY: 4972 case ISD::SUBCARRY: 4973 return lowerADDSUBCARRY(Op, DAG); 4974 case ISD::OR: 4975 return lowerOR(Op, DAG); 4976 case ISD::CTPOP: 4977 return lowerCTPOP(Op, DAG); 4978 case ISD::ATOMIC_FENCE: 4979 return lowerATOMIC_FENCE(Op, DAG); 4980 case ISD::ATOMIC_SWAP: 4981 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4982 case ISD::ATOMIC_STORE: 4983 return lowerATOMIC_STORE(Op, DAG); 4984 case ISD::ATOMIC_LOAD: 4985 return lowerATOMIC_LOAD(Op, DAG); 4986 case ISD::ATOMIC_LOAD_ADD: 4987 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4988 case ISD::ATOMIC_LOAD_SUB: 4989 return lowerATOMIC_LOAD_SUB(Op, DAG); 4990 case ISD::ATOMIC_LOAD_AND: 4991 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4992 case ISD::ATOMIC_LOAD_OR: 4993 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4994 case ISD::ATOMIC_LOAD_XOR: 4995 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4996 case ISD::ATOMIC_LOAD_NAND: 4997 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4998 case ISD::ATOMIC_LOAD_MIN: 4999 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5000 case ISD::ATOMIC_LOAD_MAX: 5001 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5002 case ISD::ATOMIC_LOAD_UMIN: 5003 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5004 case ISD::ATOMIC_LOAD_UMAX: 5005 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5006 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5007 return lowerATOMIC_CMP_SWAP(Op, DAG); 5008 case ISD::STACKSAVE: 5009 return lowerSTACKSAVE(Op, DAG); 5010 case ISD::STACKRESTORE: 5011 return lowerSTACKRESTORE(Op, DAG); 5012 case ISD::PREFETCH: 5013 return lowerPREFETCH(Op, DAG); 5014 case ISD::INTRINSIC_W_CHAIN: 5015 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5016 case ISD::INTRINSIC_WO_CHAIN: 5017 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5018 case ISD::BUILD_VECTOR: 5019 return lowerBUILD_VECTOR(Op, DAG); 5020 case ISD::VECTOR_SHUFFLE: 5021 return lowerVECTOR_SHUFFLE(Op, DAG); 5022 case ISD::SCALAR_TO_VECTOR: 5023 return lowerSCALAR_TO_VECTOR(Op, DAG); 5024 case ISD::INSERT_VECTOR_ELT: 5025 return lowerINSERT_VECTOR_ELT(Op, DAG); 5026 case ISD::EXTRACT_VECTOR_ELT: 5027 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5028 case ISD::SIGN_EXTEND_VECTOR_INREG: 5029 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5030 case ISD::ZERO_EXTEND_VECTOR_INREG: 5031 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5032 case ISD::SHL: 5033 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5034 case ISD::SRL: 5035 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5036 case ISD::SRA: 5037 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5038 default: 5039 llvm_unreachable("Unexpected node to lower"); 5040 } 5041 } 5042 5043 // Lower operations with invalid operand or result types (currently used 5044 // only for 128-bit integer types). 5045 5046 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5047 SDLoc DL(In); 5048 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5049 DAG.getIntPtrConstant(0, DL)); 5050 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5051 DAG.getIntPtrConstant(1, DL)); 5052 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5053 MVT::Untyped, Hi, Lo); 5054 return SDValue(Pair, 0); 5055 } 5056 5057 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5058 SDLoc DL(In); 5059 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5060 DL, MVT::i64, In); 5061 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5062 DL, MVT::i64, In); 5063 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5064 } 5065 5066 void 5067 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5068 SmallVectorImpl<SDValue> &Results, 5069 SelectionDAG &DAG) const { 5070 switch (N->getOpcode()) { 5071 case ISD::ATOMIC_LOAD: { 5072 SDLoc DL(N); 5073 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5074 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5075 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5076 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5077 DL, Tys, Ops, MVT::i128, MMO); 5078 Results.push_back(lowerGR128ToI128(DAG, Res)); 5079 Results.push_back(Res.getValue(1)); 5080 break; 5081 } 5082 case ISD::ATOMIC_STORE: { 5083 SDLoc DL(N); 5084 SDVTList Tys = DAG.getVTList(MVT::Other); 5085 SDValue Ops[] = { N->getOperand(0), 5086 lowerI128ToGR128(DAG, N->getOperand(2)), 5087 N->getOperand(1) }; 5088 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5089 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5090 DL, Tys, Ops, MVT::i128, MMO); 5091 // We have to enforce sequential consistency by performing a 5092 // serialization operation after the store. 5093 if (cast<AtomicSDNode>(N)->getOrdering() == 5094 AtomicOrdering::SequentiallyConsistent) 5095 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5096 MVT::Other, Res), 0); 5097 Results.push_back(Res); 5098 break; 5099 } 5100 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5101 SDLoc DL(N); 5102 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5103 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5104 lowerI128ToGR128(DAG, N->getOperand(2)), 5105 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5106 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5107 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5108 DL, Tys, Ops, MVT::i128, MMO); 5109 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5110 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5111 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5112 Results.push_back(lowerGR128ToI128(DAG, Res)); 5113 Results.push_back(Success); 5114 Results.push_back(Res.getValue(2)); 5115 break; 5116 } 5117 default: 5118 llvm_unreachable("Unexpected node to lower"); 5119 } 5120 } 5121 5122 void 5123 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5124 SmallVectorImpl<SDValue> &Results, 5125 SelectionDAG &DAG) const { 5126 return LowerOperationWrapper(N, Results, DAG); 5127 } 5128 5129 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5130 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5131 switch ((SystemZISD::NodeType)Opcode) { 5132 case SystemZISD::FIRST_NUMBER: break; 5133 OPCODE(RET_FLAG); 5134 OPCODE(CALL); 5135 OPCODE(SIBCALL); 5136 OPCODE(TLS_GDCALL); 5137 OPCODE(TLS_LDCALL); 5138 OPCODE(PCREL_WRAPPER); 5139 OPCODE(PCREL_OFFSET); 5140 OPCODE(IABS); 5141 OPCODE(ICMP); 5142 OPCODE(FCMP); 5143 OPCODE(TM); 5144 OPCODE(BR_CCMASK); 5145 OPCODE(SELECT_CCMASK); 5146 OPCODE(ADJDYNALLOC); 5147 OPCODE(POPCNT); 5148 OPCODE(SMUL_LOHI); 5149 OPCODE(UMUL_LOHI); 5150 OPCODE(SDIVREM); 5151 OPCODE(UDIVREM); 5152 OPCODE(SADDO); 5153 OPCODE(SSUBO); 5154 OPCODE(UADDO); 5155 OPCODE(USUBO); 5156 OPCODE(ADDCARRY); 5157 OPCODE(SUBCARRY); 5158 OPCODE(GET_CCMASK); 5159 OPCODE(MVC); 5160 OPCODE(MVC_LOOP); 5161 OPCODE(NC); 5162 OPCODE(NC_LOOP); 5163 OPCODE(OC); 5164 OPCODE(OC_LOOP); 5165 OPCODE(XC); 5166 OPCODE(XC_LOOP); 5167 OPCODE(CLC); 5168 OPCODE(CLC_LOOP); 5169 OPCODE(STPCPY); 5170 OPCODE(STRCMP); 5171 OPCODE(SEARCH_STRING); 5172 OPCODE(IPM); 5173 OPCODE(MEMBARRIER); 5174 OPCODE(TBEGIN); 5175 OPCODE(TBEGIN_NOFLOAT); 5176 OPCODE(TEND); 5177 OPCODE(BYTE_MASK); 5178 OPCODE(ROTATE_MASK); 5179 OPCODE(REPLICATE); 5180 OPCODE(JOIN_DWORDS); 5181 OPCODE(SPLAT); 5182 OPCODE(MERGE_HIGH); 5183 OPCODE(MERGE_LOW); 5184 OPCODE(SHL_DOUBLE); 5185 OPCODE(PERMUTE_DWORDS); 5186 OPCODE(PERMUTE); 5187 OPCODE(PACK); 5188 OPCODE(PACKS_CC); 5189 OPCODE(PACKLS_CC); 5190 OPCODE(UNPACK_HIGH); 5191 OPCODE(UNPACKL_HIGH); 5192 OPCODE(UNPACK_LOW); 5193 OPCODE(UNPACKL_LOW); 5194 OPCODE(VSHL_BY_SCALAR); 5195 OPCODE(VSRL_BY_SCALAR); 5196 OPCODE(VSRA_BY_SCALAR); 5197 OPCODE(VSUM); 5198 OPCODE(VICMPE); 5199 OPCODE(VICMPH); 5200 OPCODE(VICMPHL); 5201 OPCODE(VICMPES); 5202 OPCODE(VICMPHS); 5203 OPCODE(VICMPHLS); 5204 OPCODE(VFCMPE); 5205 OPCODE(VFCMPH); 5206 OPCODE(VFCMPHE); 5207 OPCODE(VFCMPES); 5208 OPCODE(VFCMPHS); 5209 OPCODE(VFCMPHES); 5210 OPCODE(VFTCI); 5211 OPCODE(VEXTEND); 5212 OPCODE(VROUND); 5213 OPCODE(VTM); 5214 OPCODE(VFAE_CC); 5215 OPCODE(VFAEZ_CC); 5216 OPCODE(VFEE_CC); 5217 OPCODE(VFEEZ_CC); 5218 OPCODE(VFENE_CC); 5219 OPCODE(VFENEZ_CC); 5220 OPCODE(VISTR_CC); 5221 OPCODE(VSTRC_CC); 5222 OPCODE(VSTRCZ_CC); 5223 OPCODE(VSTRS_CC); 5224 OPCODE(VSTRSZ_CC); 5225 OPCODE(TDC); 5226 OPCODE(ATOMIC_SWAPW); 5227 OPCODE(ATOMIC_LOADW_ADD); 5228 OPCODE(ATOMIC_LOADW_SUB); 5229 OPCODE(ATOMIC_LOADW_AND); 5230 OPCODE(ATOMIC_LOADW_OR); 5231 OPCODE(ATOMIC_LOADW_XOR); 5232 OPCODE(ATOMIC_LOADW_NAND); 5233 OPCODE(ATOMIC_LOADW_MIN); 5234 OPCODE(ATOMIC_LOADW_MAX); 5235 OPCODE(ATOMIC_LOADW_UMIN); 5236 OPCODE(ATOMIC_LOADW_UMAX); 5237 OPCODE(ATOMIC_CMP_SWAPW); 5238 OPCODE(ATOMIC_CMP_SWAP); 5239 OPCODE(ATOMIC_LOAD_128); 5240 OPCODE(ATOMIC_STORE_128); 5241 OPCODE(ATOMIC_CMP_SWAP_128); 5242 OPCODE(LRV); 5243 OPCODE(STRV); 5244 OPCODE(VLER); 5245 OPCODE(VSTER); 5246 OPCODE(PREFETCH); 5247 } 5248 return nullptr; 5249 #undef OPCODE 5250 } 5251 5252 // Return true if VT is a vector whose elements are a whole number of bytes 5253 // in width. Also check for presence of vector support. 5254 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5255 if (!Subtarget.hasVector()) 5256 return false; 5257 5258 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5259 } 5260 5261 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5262 // producing a result of type ResVT. Op is a possibly bitcast version 5263 // of the input vector and Index is the index (based on type VecVT) that 5264 // should be extracted. Return the new extraction if a simplification 5265 // was possible or if Force is true. 5266 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5267 EVT VecVT, SDValue Op, 5268 unsigned Index, 5269 DAGCombinerInfo &DCI, 5270 bool Force) const { 5271 SelectionDAG &DAG = DCI.DAG; 5272 5273 // The number of bytes being extracted. 5274 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5275 5276 for (;;) { 5277 unsigned Opcode = Op.getOpcode(); 5278 if (Opcode == ISD::BITCAST) 5279 // Look through bitcasts. 5280 Op = Op.getOperand(0); 5281 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5282 canTreatAsByteVector(Op.getValueType())) { 5283 // Get a VPERM-like permute mask and see whether the bytes covered 5284 // by the extracted element are a contiguous sequence from one 5285 // source operand. 5286 SmallVector<int, SystemZ::VectorBytes> Bytes; 5287 if (!getVPermMask(Op, Bytes)) 5288 break; 5289 int First; 5290 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5291 BytesPerElement, First)) 5292 break; 5293 if (First < 0) 5294 return DAG.getUNDEF(ResVT); 5295 // Make sure the contiguous sequence starts at a multiple of the 5296 // original element size. 5297 unsigned Byte = unsigned(First) % Bytes.size(); 5298 if (Byte % BytesPerElement != 0) 5299 break; 5300 // We can get the extracted value directly from an input. 5301 Index = Byte / BytesPerElement; 5302 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5303 Force = true; 5304 } else if (Opcode == ISD::BUILD_VECTOR && 5305 canTreatAsByteVector(Op.getValueType())) { 5306 // We can only optimize this case if the BUILD_VECTOR elements are 5307 // at least as wide as the extracted value. 5308 EVT OpVT = Op.getValueType(); 5309 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5310 if (OpBytesPerElement < BytesPerElement) 5311 break; 5312 // Make sure that the least-significant bit of the extracted value 5313 // is the least significant bit of an input. 5314 unsigned End = (Index + 1) * BytesPerElement; 5315 if (End % OpBytesPerElement != 0) 5316 break; 5317 // We're extracting the low part of one operand of the BUILD_VECTOR. 5318 Op = Op.getOperand(End / OpBytesPerElement - 1); 5319 if (!Op.getValueType().isInteger()) { 5320 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5321 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5322 DCI.AddToWorklist(Op.getNode()); 5323 } 5324 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5325 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5326 if (VT != ResVT) { 5327 DCI.AddToWorklist(Op.getNode()); 5328 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5329 } 5330 return Op; 5331 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5332 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5333 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5334 canTreatAsByteVector(Op.getValueType()) && 5335 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5336 // Make sure that only the unextended bits are significant. 5337 EVT ExtVT = Op.getValueType(); 5338 EVT OpVT = Op.getOperand(0).getValueType(); 5339 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5340 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5341 unsigned Byte = Index * BytesPerElement; 5342 unsigned SubByte = Byte % ExtBytesPerElement; 5343 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5344 if (SubByte < MinSubByte || 5345 SubByte + BytesPerElement > ExtBytesPerElement) 5346 break; 5347 // Get the byte offset of the unextended element 5348 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5349 // ...then add the byte offset relative to that element. 5350 Byte += SubByte - MinSubByte; 5351 if (Byte % BytesPerElement != 0) 5352 break; 5353 Op = Op.getOperand(0); 5354 Index = Byte / BytesPerElement; 5355 Force = true; 5356 } else 5357 break; 5358 } 5359 if (Force) { 5360 if (Op.getValueType() != VecVT) { 5361 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5362 DCI.AddToWorklist(Op.getNode()); 5363 } 5364 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5365 DAG.getConstant(Index, DL, MVT::i32)); 5366 } 5367 return SDValue(); 5368 } 5369 5370 // Optimize vector operations in scalar value Op on the basis that Op 5371 // is truncated to TruncVT. 5372 SDValue SystemZTargetLowering::combineTruncateExtract( 5373 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5374 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5375 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5376 // of type TruncVT. 5377 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5378 TruncVT.getSizeInBits() % 8 == 0) { 5379 SDValue Vec = Op.getOperand(0); 5380 EVT VecVT = Vec.getValueType(); 5381 if (canTreatAsByteVector(VecVT)) { 5382 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5383 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5384 unsigned TruncBytes = TruncVT.getStoreSize(); 5385 if (BytesPerElement % TruncBytes == 0) { 5386 // Calculate the value of Y' in the above description. We are 5387 // splitting the original elements into Scale equal-sized pieces 5388 // and for truncation purposes want the last (least-significant) 5389 // of these pieces for IndexN. This is easiest to do by calculating 5390 // the start index of the following element and then subtracting 1. 5391 unsigned Scale = BytesPerElement / TruncBytes; 5392 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5393 5394 // Defer the creation of the bitcast from X to combineExtract, 5395 // which might be able to optimize the extraction. 5396 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5397 VecVT.getStoreSize() / TruncBytes); 5398 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5399 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5400 } 5401 } 5402 } 5403 } 5404 return SDValue(); 5405 } 5406 5407 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5408 SDNode *N, DAGCombinerInfo &DCI) const { 5409 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5410 SelectionDAG &DAG = DCI.DAG; 5411 SDValue N0 = N->getOperand(0); 5412 EVT VT = N->getValueType(0); 5413 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5414 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5415 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5416 if (TrueOp && FalseOp) { 5417 SDLoc DL(N0); 5418 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5419 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5420 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5421 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5422 // If N0 has multiple uses, change other uses as well. 5423 if (!N0.hasOneUse()) { 5424 SDValue TruncSelect = 5425 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5426 DCI.CombineTo(N0.getNode(), TruncSelect); 5427 } 5428 return NewSelect; 5429 } 5430 } 5431 return SDValue(); 5432 } 5433 5434 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5435 SDNode *N, DAGCombinerInfo &DCI) const { 5436 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5437 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5438 // into (select_cc LHS, RHS, -1, 0, COND) 5439 SelectionDAG &DAG = DCI.DAG; 5440 SDValue N0 = N->getOperand(0); 5441 EVT VT = N->getValueType(0); 5442 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5443 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5444 N0 = N0.getOperand(0); 5445 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5446 SDLoc DL(N0); 5447 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5448 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5449 N0.getOperand(2) }; 5450 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5451 } 5452 return SDValue(); 5453 } 5454 5455 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5456 SDNode *N, DAGCombinerInfo &DCI) const { 5457 // Convert (sext (ashr (shl X, C1), C2)) to 5458 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5459 // cheap as narrower ones. 5460 SelectionDAG &DAG = DCI.DAG; 5461 SDValue N0 = N->getOperand(0); 5462 EVT VT = N->getValueType(0); 5463 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5464 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5465 SDValue Inner = N0.getOperand(0); 5466 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5467 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5468 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5469 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5470 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5471 EVT ShiftVT = N0.getOperand(1).getValueType(); 5472 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5473 Inner.getOperand(0)); 5474 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5475 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5476 ShiftVT)); 5477 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5478 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5479 } 5480 } 5481 } 5482 return SDValue(); 5483 } 5484 5485 SDValue SystemZTargetLowering::combineMERGE( 5486 SDNode *N, DAGCombinerInfo &DCI) const { 5487 SelectionDAG &DAG = DCI.DAG; 5488 unsigned Opcode = N->getOpcode(); 5489 SDValue Op0 = N->getOperand(0); 5490 SDValue Op1 = N->getOperand(1); 5491 if (Op0.getOpcode() == ISD::BITCAST) 5492 Op0 = Op0.getOperand(0); 5493 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5494 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5495 // for v4f32. 5496 if (Op1 == N->getOperand(0)) 5497 return Op1; 5498 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5499 EVT VT = Op1.getValueType(); 5500 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5501 if (ElemBytes <= 4) { 5502 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5503 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5504 EVT InVT = VT.changeVectorElementTypeToInteger(); 5505 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5506 SystemZ::VectorBytes / ElemBytes / 2); 5507 if (VT != InVT) { 5508 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5509 DCI.AddToWorklist(Op1.getNode()); 5510 } 5511 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5512 DCI.AddToWorklist(Op.getNode()); 5513 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5514 } 5515 } 5516 return SDValue(); 5517 } 5518 5519 SDValue SystemZTargetLowering::combineLOAD( 5520 SDNode *N, DAGCombinerInfo &DCI) const { 5521 SelectionDAG &DAG = DCI.DAG; 5522 EVT LdVT = N->getValueType(0); 5523 if (LdVT.isVector() || LdVT.isInteger()) 5524 return SDValue(); 5525 // Transform a scalar load that is REPLICATEd as well as having other 5526 // use(s) to the form where the other use(s) use the first element of the 5527 // REPLICATE instead of the load. Otherwise instruction selection will not 5528 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5529 // point loads. 5530 5531 SDValue Replicate; 5532 SmallVector<SDNode*, 8> OtherUses; 5533 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5534 UI != UE; ++UI) { 5535 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5536 if (Replicate) 5537 return SDValue(); // Should never happen 5538 Replicate = SDValue(*UI, 0); 5539 } 5540 else if (UI.getUse().getResNo() == 0) 5541 OtherUses.push_back(*UI); 5542 } 5543 if (!Replicate || OtherUses.empty()) 5544 return SDValue(); 5545 5546 SDLoc DL(N); 5547 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5548 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5549 // Update uses of the loaded Value while preserving old chains. 5550 for (SDNode *U : OtherUses) { 5551 SmallVector<SDValue, 8> Ops; 5552 for (SDValue Op : U->ops()) 5553 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5554 DAG.UpdateNodeOperands(U, Ops); 5555 } 5556 return SDValue(N, 0); 5557 } 5558 5559 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5560 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5561 return true; 5562 if (Subtarget.hasVectorEnhancements2()) 5563 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5564 return true; 5565 return false; 5566 } 5567 5568 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5569 if (!VT.isVector() || !VT.isSimple() || 5570 VT.getSizeInBits() != 128 || 5571 VT.getScalarSizeInBits() % 8 != 0) 5572 return false; 5573 5574 unsigned NumElts = VT.getVectorNumElements(); 5575 for (unsigned i = 0; i < NumElts; ++i) { 5576 if (M[i] < 0) continue; // ignore UNDEF indices 5577 if ((unsigned) M[i] != NumElts - 1 - i) 5578 return false; 5579 } 5580 5581 return true; 5582 } 5583 5584 SDValue SystemZTargetLowering::combineSTORE( 5585 SDNode *N, DAGCombinerInfo &DCI) const { 5586 SelectionDAG &DAG = DCI.DAG; 5587 auto *SN = cast<StoreSDNode>(N); 5588 auto &Op1 = N->getOperand(1); 5589 EVT MemVT = SN->getMemoryVT(); 5590 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5591 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5592 // If X has wider elements then convert it to: 5593 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5594 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5595 if (SDValue Value = 5596 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5597 DCI.AddToWorklist(Value.getNode()); 5598 5599 // Rewrite the store with the new form of stored value. 5600 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5601 SN->getBasePtr(), SN->getMemoryVT(), 5602 SN->getMemOperand()); 5603 } 5604 } 5605 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5606 if (!SN->isTruncatingStore() && 5607 Op1.getOpcode() == ISD::BSWAP && 5608 Op1.getNode()->hasOneUse() && 5609 canLoadStoreByteSwapped(Op1.getValueType())) { 5610 5611 SDValue BSwapOp = Op1.getOperand(0); 5612 5613 if (BSwapOp.getValueType() == MVT::i16) 5614 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5615 5616 SDValue Ops[] = { 5617 N->getOperand(0), BSwapOp, N->getOperand(2) 5618 }; 5619 5620 return 5621 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5622 Ops, MemVT, SN->getMemOperand()); 5623 } 5624 // Combine STORE (element-swap) into VSTER 5625 if (!SN->isTruncatingStore() && 5626 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5627 Op1.getNode()->hasOneUse() && 5628 Subtarget.hasVectorEnhancements2()) { 5629 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5630 ArrayRef<int> ShuffleMask = SVN->getMask(); 5631 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5632 SDValue Ops[] = { 5633 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5634 }; 5635 5636 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5637 DAG.getVTList(MVT::Other), 5638 Ops, MemVT, SN->getMemOperand()); 5639 } 5640 } 5641 5642 return SDValue(); 5643 } 5644 5645 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5646 SDNode *N, DAGCombinerInfo &DCI) const { 5647 SelectionDAG &DAG = DCI.DAG; 5648 // Combine element-swap (LOAD) into VLER 5649 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5650 N->getOperand(0).hasOneUse() && 5651 Subtarget.hasVectorEnhancements2()) { 5652 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5653 ArrayRef<int> ShuffleMask = SVN->getMask(); 5654 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5655 SDValue Load = N->getOperand(0); 5656 LoadSDNode *LD = cast<LoadSDNode>(Load); 5657 5658 // Create the element-swapping load. 5659 SDValue Ops[] = { 5660 LD->getChain(), // Chain 5661 LD->getBasePtr() // Ptr 5662 }; 5663 SDValue ESLoad = 5664 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5665 DAG.getVTList(LD->getValueType(0), MVT::Other), 5666 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5667 5668 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5669 // by the load dead. 5670 DCI.CombineTo(N, ESLoad); 5671 5672 // Next, combine the load away, we give it a bogus result value but a real 5673 // chain result. The result value is dead because the shuffle is dead. 5674 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5675 5676 // Return N so it doesn't get rechecked! 5677 return SDValue(N, 0); 5678 } 5679 } 5680 5681 return SDValue(); 5682 } 5683 5684 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5685 SDNode *N, DAGCombinerInfo &DCI) const { 5686 SelectionDAG &DAG = DCI.DAG; 5687 5688 if (!Subtarget.hasVector()) 5689 return SDValue(); 5690 5691 // Look through bitcasts that retain the number of vector elements. 5692 SDValue Op = N->getOperand(0); 5693 if (Op.getOpcode() == ISD::BITCAST && 5694 Op.getValueType().isVector() && 5695 Op.getOperand(0).getValueType().isVector() && 5696 Op.getValueType().getVectorNumElements() == 5697 Op.getOperand(0).getValueType().getVectorNumElements()) 5698 Op = Op.getOperand(0); 5699 5700 // Pull BSWAP out of a vector extraction. 5701 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5702 EVT VecVT = Op.getValueType(); 5703 EVT EltVT = VecVT.getVectorElementType(); 5704 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5705 Op.getOperand(0), N->getOperand(1)); 5706 DCI.AddToWorklist(Op.getNode()); 5707 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5708 if (EltVT != N->getValueType(0)) { 5709 DCI.AddToWorklist(Op.getNode()); 5710 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5711 } 5712 return Op; 5713 } 5714 5715 // Try to simplify a vector extraction. 5716 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5717 SDValue Op0 = N->getOperand(0); 5718 EVT VecVT = Op0.getValueType(); 5719 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5720 IndexN->getZExtValue(), DCI, false); 5721 } 5722 return SDValue(); 5723 } 5724 5725 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5726 SDNode *N, DAGCombinerInfo &DCI) const { 5727 SelectionDAG &DAG = DCI.DAG; 5728 // (join_dwords X, X) == (replicate X) 5729 if (N->getOperand(0) == N->getOperand(1)) 5730 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5731 N->getOperand(0)); 5732 return SDValue(); 5733 } 5734 5735 SDValue SystemZTargetLowering::combineFP_ROUND( 5736 SDNode *N, DAGCombinerInfo &DCI) const { 5737 5738 if (!Subtarget.hasVector()) 5739 return SDValue(); 5740 5741 // (fpround (extract_vector_elt X 0)) 5742 // (fpround (extract_vector_elt X 1)) -> 5743 // (extract_vector_elt (VROUND X) 0) 5744 // (extract_vector_elt (VROUND X) 2) 5745 // 5746 // This is a special case since the target doesn't really support v2f32s. 5747 SelectionDAG &DAG = DCI.DAG; 5748 SDValue Op0 = N->getOperand(0); 5749 if (N->getValueType(0) == MVT::f32 && 5750 Op0.hasOneUse() && 5751 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5752 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5753 Op0.getOperand(1).getOpcode() == ISD::Constant && 5754 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5755 SDValue Vec = Op0.getOperand(0); 5756 for (auto *U : Vec->uses()) { 5757 if (U != Op0.getNode() && 5758 U->hasOneUse() && 5759 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5760 U->getOperand(0) == Vec && 5761 U->getOperand(1).getOpcode() == ISD::Constant && 5762 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5763 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5764 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5765 OtherRound.getOperand(0) == SDValue(U, 0) && 5766 OtherRound.getValueType() == MVT::f32) { 5767 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5768 MVT::v4f32, Vec); 5769 DCI.AddToWorklist(VRound.getNode()); 5770 SDValue Extract1 = 5771 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5772 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5773 DCI.AddToWorklist(Extract1.getNode()); 5774 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5775 SDValue Extract0 = 5776 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5777 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5778 return Extract0; 5779 } 5780 } 5781 } 5782 } 5783 return SDValue(); 5784 } 5785 5786 SDValue SystemZTargetLowering::combineFP_EXTEND( 5787 SDNode *N, DAGCombinerInfo &DCI) const { 5788 5789 if (!Subtarget.hasVector()) 5790 return SDValue(); 5791 5792 // (fpextend (extract_vector_elt X 0)) 5793 // (fpextend (extract_vector_elt X 2)) -> 5794 // (extract_vector_elt (VEXTEND X) 0) 5795 // (extract_vector_elt (VEXTEND X) 1) 5796 // 5797 // This is a special case since the target doesn't really support v2f32s. 5798 SelectionDAG &DAG = DCI.DAG; 5799 SDValue Op0 = N->getOperand(0); 5800 if (N->getValueType(0) == MVT::f64 && 5801 Op0.hasOneUse() && 5802 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5803 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5804 Op0.getOperand(1).getOpcode() == ISD::Constant && 5805 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5806 SDValue Vec = Op0.getOperand(0); 5807 for (auto *U : Vec->uses()) { 5808 if (U != Op0.getNode() && 5809 U->hasOneUse() && 5810 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5811 U->getOperand(0) == Vec && 5812 U->getOperand(1).getOpcode() == ISD::Constant && 5813 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5814 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5815 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5816 OtherExtend.getOperand(0) == SDValue(U, 0) && 5817 OtherExtend.getValueType() == MVT::f64) { 5818 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5819 MVT::v2f64, Vec); 5820 DCI.AddToWorklist(VExtend.getNode()); 5821 SDValue Extract1 = 5822 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5823 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5824 DCI.AddToWorklist(Extract1.getNode()); 5825 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5826 SDValue Extract0 = 5827 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5828 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5829 return Extract0; 5830 } 5831 } 5832 } 5833 } 5834 return SDValue(); 5835 } 5836 5837 SDValue SystemZTargetLowering::combineBSWAP( 5838 SDNode *N, DAGCombinerInfo &DCI) const { 5839 SelectionDAG &DAG = DCI.DAG; 5840 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 5841 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5842 N->getOperand(0).hasOneUse() && 5843 canLoadStoreByteSwapped(N->getValueType(0))) { 5844 SDValue Load = N->getOperand(0); 5845 LoadSDNode *LD = cast<LoadSDNode>(Load); 5846 5847 // Create the byte-swapping load. 5848 SDValue Ops[] = { 5849 LD->getChain(), // Chain 5850 LD->getBasePtr() // Ptr 5851 }; 5852 EVT LoadVT = N->getValueType(0); 5853 if (LoadVT == MVT::i16) 5854 LoadVT = MVT::i32; 5855 SDValue BSLoad = 5856 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5857 DAG.getVTList(LoadVT, MVT::Other), 5858 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5859 5860 // If this is an i16 load, insert the truncate. 5861 SDValue ResVal = BSLoad; 5862 if (N->getValueType(0) == MVT::i16) 5863 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5864 5865 // First, combine the bswap away. This makes the value produced by the 5866 // load dead. 5867 DCI.CombineTo(N, ResVal); 5868 5869 // Next, combine the load away, we give it a bogus result value but a real 5870 // chain result. The result value is dead because the bswap is dead. 5871 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5872 5873 // Return N so it doesn't get rechecked! 5874 return SDValue(N, 0); 5875 } 5876 5877 // Look through bitcasts that retain the number of vector elements. 5878 SDValue Op = N->getOperand(0); 5879 if (Op.getOpcode() == ISD::BITCAST && 5880 Op.getValueType().isVector() && 5881 Op.getOperand(0).getValueType().isVector() && 5882 Op.getValueType().getVectorNumElements() == 5883 Op.getOperand(0).getValueType().getVectorNumElements()) 5884 Op = Op.getOperand(0); 5885 5886 // Push BSWAP into a vector insertion if at least one side then simplifies. 5887 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 5888 SDValue Vec = Op.getOperand(0); 5889 SDValue Elt = Op.getOperand(1); 5890 SDValue Idx = Op.getOperand(2); 5891 5892 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 5893 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 5894 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 5895 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 5896 (canLoadStoreByteSwapped(N->getValueType(0)) && 5897 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 5898 EVT VecVT = N->getValueType(0); 5899 EVT EltVT = N->getValueType(0).getVectorElementType(); 5900 if (VecVT != Vec.getValueType()) { 5901 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 5902 DCI.AddToWorklist(Vec.getNode()); 5903 } 5904 if (EltVT != Elt.getValueType()) { 5905 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 5906 DCI.AddToWorklist(Elt.getNode()); 5907 } 5908 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 5909 DCI.AddToWorklist(Vec.getNode()); 5910 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 5911 DCI.AddToWorklist(Elt.getNode()); 5912 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 5913 Vec, Elt, Idx); 5914 } 5915 } 5916 5917 // Push BSWAP into a vector shuffle if at least one side then simplifies. 5918 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 5919 if (SV && Op.hasOneUse()) { 5920 SDValue Op0 = Op.getOperand(0); 5921 SDValue Op1 = Op.getOperand(1); 5922 5923 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 5924 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 5925 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 5926 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 5927 EVT VecVT = N->getValueType(0); 5928 if (VecVT != Op0.getValueType()) { 5929 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 5930 DCI.AddToWorklist(Op0.getNode()); 5931 } 5932 if (VecVT != Op1.getValueType()) { 5933 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 5934 DCI.AddToWorklist(Op1.getNode()); 5935 } 5936 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 5937 DCI.AddToWorklist(Op0.getNode()); 5938 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 5939 DCI.AddToWorklist(Op1.getNode()); 5940 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 5941 } 5942 } 5943 5944 return SDValue(); 5945 } 5946 5947 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5948 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5949 // set by the CCReg instruction using the CCValid / CCMask masks, 5950 // If the CCReg instruction is itself a ICMP testing the condition 5951 // code set by some other instruction, see whether we can directly 5952 // use that condition code. 5953 5954 // Verify that we have an ICMP against some constant. 5955 if (CCValid != SystemZ::CCMASK_ICMP) 5956 return false; 5957 auto *ICmp = CCReg.getNode(); 5958 if (ICmp->getOpcode() != SystemZISD::ICMP) 5959 return false; 5960 auto *CompareLHS = ICmp->getOperand(0).getNode(); 5961 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5962 if (!CompareRHS) 5963 return false; 5964 5965 // Optimize the case where CompareLHS is a SELECT_CCMASK. 5966 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 5967 // Verify that we have an appropriate mask for a EQ or NE comparison. 5968 bool Invert = false; 5969 if (CCMask == SystemZ::CCMASK_CMP_NE) 5970 Invert = !Invert; 5971 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 5972 return false; 5973 5974 // Verify that the ICMP compares against one of select values. 5975 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 5976 if (!TrueVal) 5977 return false; 5978 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 5979 if (!FalseVal) 5980 return false; 5981 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 5982 Invert = !Invert; 5983 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 5984 return false; 5985 5986 // Compute the effective CC mask for the new branch or select. 5987 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 5988 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 5989 if (!NewCCValid || !NewCCMask) 5990 return false; 5991 CCValid = NewCCValid->getZExtValue(); 5992 CCMask = NewCCMask->getZExtValue(); 5993 if (Invert) 5994 CCMask ^= CCValid; 5995 5996 // Return the updated CCReg link. 5997 CCReg = CompareLHS->getOperand(4); 5998 return true; 5999 } 6000 6001 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6002 if (CompareLHS->getOpcode() == ISD::SRA) { 6003 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6004 if (!SRACount || SRACount->getZExtValue() != 30) 6005 return false; 6006 auto *SHL = CompareLHS->getOperand(0).getNode(); 6007 if (SHL->getOpcode() != ISD::SHL) 6008 return false; 6009 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6010 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6011 return false; 6012 auto *IPM = SHL->getOperand(0).getNode(); 6013 if (IPM->getOpcode() != SystemZISD::IPM) 6014 return false; 6015 6016 // Avoid introducing CC spills (because SRA would clobber CC). 6017 if (!CompareLHS->hasOneUse()) 6018 return false; 6019 // Verify that the ICMP compares against zero. 6020 if (CompareRHS->getZExtValue() != 0) 6021 return false; 6022 6023 // Compute the effective CC mask for the new branch or select. 6024 switch (CCMask) { 6025 case SystemZ::CCMASK_CMP_EQ: break; 6026 case SystemZ::CCMASK_CMP_NE: break; 6027 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 6028 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 6029 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 6030 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 6031 default: return false; 6032 } 6033 6034 // Return the updated CCReg link. 6035 CCReg = IPM->getOperand(0); 6036 return true; 6037 } 6038 6039 return false; 6040 } 6041 6042 SDValue SystemZTargetLowering::combineBR_CCMASK( 6043 SDNode *N, DAGCombinerInfo &DCI) const { 6044 SelectionDAG &DAG = DCI.DAG; 6045 6046 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6047 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6048 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6049 if (!CCValid || !CCMask) 6050 return SDValue(); 6051 6052 int CCValidVal = CCValid->getZExtValue(); 6053 int CCMaskVal = CCMask->getZExtValue(); 6054 SDValue Chain = N->getOperand(0); 6055 SDValue CCReg = N->getOperand(4); 6056 6057 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6058 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6059 Chain, 6060 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6061 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6062 N->getOperand(3), CCReg); 6063 return SDValue(); 6064 } 6065 6066 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6067 SDNode *N, DAGCombinerInfo &DCI) const { 6068 SelectionDAG &DAG = DCI.DAG; 6069 6070 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6071 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6072 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6073 if (!CCValid || !CCMask) 6074 return SDValue(); 6075 6076 int CCValidVal = CCValid->getZExtValue(); 6077 int CCMaskVal = CCMask->getZExtValue(); 6078 SDValue CCReg = N->getOperand(4); 6079 6080 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6081 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6082 N->getOperand(0), N->getOperand(1), 6083 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6084 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6085 CCReg); 6086 return SDValue(); 6087 } 6088 6089 6090 SDValue SystemZTargetLowering::combineGET_CCMASK( 6091 SDNode *N, DAGCombinerInfo &DCI) const { 6092 6093 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6094 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6095 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6096 if (!CCValid || !CCMask) 6097 return SDValue(); 6098 int CCValidVal = CCValid->getZExtValue(); 6099 int CCMaskVal = CCMask->getZExtValue(); 6100 6101 SDValue Select = N->getOperand(0); 6102 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6103 return SDValue(); 6104 6105 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6106 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6107 if (!SelectCCValid || !SelectCCMask) 6108 return SDValue(); 6109 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6110 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6111 6112 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6113 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6114 if (!TrueVal || !FalseVal) 6115 return SDValue(); 6116 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6117 ; 6118 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6119 SelectCCMaskVal ^= SelectCCValidVal; 6120 else 6121 return SDValue(); 6122 6123 if (SelectCCValidVal & ~CCValidVal) 6124 return SDValue(); 6125 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6126 return SDValue(); 6127 6128 return Select->getOperand(4); 6129 } 6130 6131 SDValue SystemZTargetLowering::combineIntDIVREM( 6132 SDNode *N, DAGCombinerInfo &DCI) const { 6133 SelectionDAG &DAG = DCI.DAG; 6134 EVT VT = N->getValueType(0); 6135 // In the case where the divisor is a vector of constants a cheaper 6136 // sequence of instructions can replace the divide. BuildSDIV is called to 6137 // do this during DAG combining, but it only succeeds when it can build a 6138 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6139 // since it is not Legal but Custom it can only happen before 6140 // legalization. Therefore we must scalarize this early before Combine 6141 // 1. For widened vectors, this is already the result of type legalization. 6142 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6143 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6144 return DAG.UnrollVectorOp(N); 6145 return SDValue(); 6146 } 6147 6148 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6149 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6150 return N->getOperand(0); 6151 return N; 6152 } 6153 6154 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6155 DAGCombinerInfo &DCI) const { 6156 switch(N->getOpcode()) { 6157 default: break; 6158 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6159 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6160 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6161 case SystemZISD::MERGE_HIGH: 6162 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6163 case ISD::LOAD: return combineLOAD(N, DCI); 6164 case ISD::STORE: return combineSTORE(N, DCI); 6165 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6166 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6167 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6168 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6169 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6170 case ISD::BSWAP: return combineBSWAP(N, DCI); 6171 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6172 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6173 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6174 case ISD::SDIV: 6175 case ISD::UDIV: 6176 case ISD::SREM: 6177 case ISD::UREM: return combineIntDIVREM(N, DCI); 6178 } 6179 6180 return SDValue(); 6181 } 6182 6183 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6184 // are for Op. 6185 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6186 unsigned OpNo) { 6187 EVT VT = Op.getValueType(); 6188 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6189 APInt SrcDemE; 6190 unsigned Opcode = Op.getOpcode(); 6191 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6192 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6193 switch (Id) { 6194 case Intrinsic::s390_vpksh: // PACKS 6195 case Intrinsic::s390_vpksf: 6196 case Intrinsic::s390_vpksg: 6197 case Intrinsic::s390_vpkshs: // PACKS_CC 6198 case Intrinsic::s390_vpksfs: 6199 case Intrinsic::s390_vpksgs: 6200 case Intrinsic::s390_vpklsh: // PACKLS 6201 case Intrinsic::s390_vpklsf: 6202 case Intrinsic::s390_vpklsg: 6203 case Intrinsic::s390_vpklshs: // PACKLS_CC 6204 case Intrinsic::s390_vpklsfs: 6205 case Intrinsic::s390_vpklsgs: 6206 // VECTOR PACK truncates the elements of two source vectors into one. 6207 SrcDemE = DemandedElts; 6208 if (OpNo == 2) 6209 SrcDemE.lshrInPlace(NumElts / 2); 6210 SrcDemE = SrcDemE.trunc(NumElts / 2); 6211 break; 6212 // VECTOR UNPACK extends half the elements of the source vector. 6213 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6214 case Intrinsic::s390_vuphh: 6215 case Intrinsic::s390_vuphf: 6216 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6217 case Intrinsic::s390_vuplhh: 6218 case Intrinsic::s390_vuplhf: 6219 SrcDemE = APInt(NumElts * 2, 0); 6220 SrcDemE.insertBits(DemandedElts, 0); 6221 break; 6222 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6223 case Intrinsic::s390_vuplhw: 6224 case Intrinsic::s390_vuplf: 6225 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6226 case Intrinsic::s390_vupllh: 6227 case Intrinsic::s390_vupllf: 6228 SrcDemE = APInt(NumElts * 2, 0); 6229 SrcDemE.insertBits(DemandedElts, NumElts); 6230 break; 6231 case Intrinsic::s390_vpdi: { 6232 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6233 SrcDemE = APInt(NumElts, 0); 6234 if (!DemandedElts[OpNo - 1]) 6235 break; 6236 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6237 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6238 // Demand input element 0 or 1, given by the mask bit value. 6239 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6240 break; 6241 } 6242 case Intrinsic::s390_vsldb: { 6243 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6244 assert(VT == MVT::v16i8 && "Unexpected type."); 6245 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6246 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6247 unsigned NumSrc0Els = 16 - FirstIdx; 6248 SrcDemE = APInt(NumElts, 0); 6249 if (OpNo == 1) { 6250 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6251 SrcDemE.insertBits(DemEls, FirstIdx); 6252 } else { 6253 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6254 SrcDemE.insertBits(DemEls, 0); 6255 } 6256 break; 6257 } 6258 case Intrinsic::s390_vperm: 6259 SrcDemE = APInt(NumElts, 1); 6260 break; 6261 default: 6262 llvm_unreachable("Unhandled intrinsic."); 6263 break; 6264 } 6265 } else { 6266 switch (Opcode) { 6267 case SystemZISD::JOIN_DWORDS: 6268 // Scalar operand. 6269 SrcDemE = APInt(1, 1); 6270 break; 6271 case SystemZISD::SELECT_CCMASK: 6272 SrcDemE = DemandedElts; 6273 break; 6274 default: 6275 llvm_unreachable("Unhandled opcode."); 6276 break; 6277 } 6278 } 6279 return SrcDemE; 6280 } 6281 6282 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6283 const APInt &DemandedElts, 6284 const SelectionDAG &DAG, unsigned Depth, 6285 unsigned OpNo) { 6286 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6287 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6288 KnownBits LHSKnown = 6289 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6290 KnownBits RHSKnown = 6291 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6292 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6293 Known.One = LHSKnown.One & RHSKnown.One; 6294 } 6295 6296 void 6297 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6298 KnownBits &Known, 6299 const APInt &DemandedElts, 6300 const SelectionDAG &DAG, 6301 unsigned Depth) const { 6302 Known.resetAll(); 6303 6304 // Intrinsic CC result is returned in the two low bits. 6305 unsigned tmp0, tmp1; // not used 6306 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6307 Known.Zero.setBitsFrom(2); 6308 return; 6309 } 6310 EVT VT = Op.getValueType(); 6311 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6312 return; 6313 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6314 "KnownBits does not match VT in bitwidth"); 6315 assert ((!VT.isVector() || 6316 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6317 "DemandedElts does not match VT number of elements"); 6318 unsigned BitWidth = Known.getBitWidth(); 6319 unsigned Opcode = Op.getOpcode(); 6320 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6321 bool IsLogical = false; 6322 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6323 switch (Id) { 6324 case Intrinsic::s390_vpksh: // PACKS 6325 case Intrinsic::s390_vpksf: 6326 case Intrinsic::s390_vpksg: 6327 case Intrinsic::s390_vpkshs: // PACKS_CC 6328 case Intrinsic::s390_vpksfs: 6329 case Intrinsic::s390_vpksgs: 6330 case Intrinsic::s390_vpklsh: // PACKLS 6331 case Intrinsic::s390_vpklsf: 6332 case Intrinsic::s390_vpklsg: 6333 case Intrinsic::s390_vpklshs: // PACKLS_CC 6334 case Intrinsic::s390_vpklsfs: 6335 case Intrinsic::s390_vpklsgs: 6336 case Intrinsic::s390_vpdi: 6337 case Intrinsic::s390_vsldb: 6338 case Intrinsic::s390_vperm: 6339 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6340 break; 6341 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6342 case Intrinsic::s390_vuplhh: 6343 case Intrinsic::s390_vuplhf: 6344 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6345 case Intrinsic::s390_vupllh: 6346 case Intrinsic::s390_vupllf: 6347 IsLogical = true; 6348 LLVM_FALLTHROUGH; 6349 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6350 case Intrinsic::s390_vuphh: 6351 case Intrinsic::s390_vuphf: 6352 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6353 case Intrinsic::s390_vuplhw: 6354 case Intrinsic::s390_vuplf: { 6355 SDValue SrcOp = Op.getOperand(1); 6356 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6357 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6358 if (IsLogical) { 6359 Known = Known.zext(BitWidth, true); 6360 } else 6361 Known = Known.sext(BitWidth); 6362 break; 6363 } 6364 default: 6365 break; 6366 } 6367 } else { 6368 switch (Opcode) { 6369 case SystemZISD::JOIN_DWORDS: 6370 case SystemZISD::SELECT_CCMASK: 6371 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6372 break; 6373 case SystemZISD::REPLICATE: { 6374 SDValue SrcOp = Op.getOperand(0); 6375 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6376 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6377 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6378 break; 6379 } 6380 default: 6381 break; 6382 } 6383 } 6384 6385 // Known has the width of the source operand(s). Adjust if needed to match 6386 // the passed bitwidth. 6387 if (Known.getBitWidth() != BitWidth) 6388 Known = Known.zextOrTrunc(BitWidth, false); 6389 } 6390 6391 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6392 const SelectionDAG &DAG, unsigned Depth, 6393 unsigned OpNo) { 6394 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6395 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6396 if (LHS == 1) return 1; // Early out. 6397 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6398 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6399 if (RHS == 1) return 1; // Early out. 6400 unsigned Common = std::min(LHS, RHS); 6401 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6402 EVT VT = Op.getValueType(); 6403 unsigned VTBits = VT.getScalarSizeInBits(); 6404 if (SrcBitWidth > VTBits) { // PACK 6405 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6406 if (Common > SrcExtraBits) 6407 return (Common - SrcExtraBits); 6408 return 1; 6409 } 6410 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6411 return Common; 6412 } 6413 6414 unsigned 6415 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6416 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6417 unsigned Depth) const { 6418 if (Op.getResNo() != 0) 6419 return 1; 6420 unsigned Opcode = Op.getOpcode(); 6421 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6422 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6423 switch (Id) { 6424 case Intrinsic::s390_vpksh: // PACKS 6425 case Intrinsic::s390_vpksf: 6426 case Intrinsic::s390_vpksg: 6427 case Intrinsic::s390_vpkshs: // PACKS_CC 6428 case Intrinsic::s390_vpksfs: 6429 case Intrinsic::s390_vpksgs: 6430 case Intrinsic::s390_vpklsh: // PACKLS 6431 case Intrinsic::s390_vpklsf: 6432 case Intrinsic::s390_vpklsg: 6433 case Intrinsic::s390_vpklshs: // PACKLS_CC 6434 case Intrinsic::s390_vpklsfs: 6435 case Intrinsic::s390_vpklsgs: 6436 case Intrinsic::s390_vpdi: 6437 case Intrinsic::s390_vsldb: 6438 case Intrinsic::s390_vperm: 6439 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6440 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6441 case Intrinsic::s390_vuphh: 6442 case Intrinsic::s390_vuphf: 6443 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6444 case Intrinsic::s390_vuplhw: 6445 case Intrinsic::s390_vuplf: { 6446 SDValue PackedOp = Op.getOperand(1); 6447 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6448 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6449 EVT VT = Op.getValueType(); 6450 unsigned VTBits = VT.getScalarSizeInBits(); 6451 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6452 return Tmp; 6453 } 6454 default: 6455 break; 6456 } 6457 } else { 6458 switch (Opcode) { 6459 case SystemZISD::SELECT_CCMASK: 6460 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6461 default: 6462 break; 6463 } 6464 } 6465 6466 return 1; 6467 } 6468 6469 //===----------------------------------------------------------------------===// 6470 // Custom insertion 6471 //===----------------------------------------------------------------------===// 6472 6473 // Create a new basic block after MBB. 6474 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6475 MachineFunction &MF = *MBB->getParent(); 6476 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6477 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6478 return NewMBB; 6479 } 6480 6481 // Split MBB after MI and return the new block (the one that contains 6482 // instructions after MI). 6483 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6484 MachineBasicBlock *MBB) { 6485 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6486 NewMBB->splice(NewMBB->begin(), MBB, 6487 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6488 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6489 return NewMBB; 6490 } 6491 6492 // Split MBB before MI and return the new block (the one that contains MI). 6493 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6494 MachineBasicBlock *MBB) { 6495 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6496 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6497 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6498 return NewMBB; 6499 } 6500 6501 // Force base value Base into a register before MI. Return the register. 6502 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6503 const SystemZInstrInfo *TII) { 6504 if (Base.isReg()) 6505 return Base.getReg(); 6506 6507 MachineBasicBlock *MBB = MI.getParent(); 6508 MachineFunction &MF = *MBB->getParent(); 6509 MachineRegisterInfo &MRI = MF.getRegInfo(); 6510 6511 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6512 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6513 .add(Base) 6514 .addImm(0) 6515 .addReg(0); 6516 return Reg; 6517 } 6518 6519 // The CC operand of MI might be missing a kill marker because there 6520 // were multiple uses of CC, and ISel didn't know which to mark. 6521 // Figure out whether MI should have had a kill marker. 6522 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6523 // Scan forward through BB for a use/def of CC. 6524 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6525 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6526 const MachineInstr& mi = *miI; 6527 if (mi.readsRegister(SystemZ::CC)) 6528 return false; 6529 if (mi.definesRegister(SystemZ::CC)) 6530 break; // Should have kill-flag - update below. 6531 } 6532 6533 // If we hit the end of the block, check whether CC is live into a 6534 // successor. 6535 if (miI == MBB->end()) { 6536 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6537 if ((*SI)->isLiveIn(SystemZ::CC)) 6538 return false; 6539 } 6540 6541 return true; 6542 } 6543 6544 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6545 // together with other Select pseudo-opcodes into a single basic-block with 6546 // a conditional jump around it. 6547 static bool isSelectPseudo(MachineInstr &MI) { 6548 switch (MI.getOpcode()) { 6549 case SystemZ::Select32: 6550 case SystemZ::Select64: 6551 case SystemZ::SelectF32: 6552 case SystemZ::SelectF64: 6553 case SystemZ::SelectF128: 6554 case SystemZ::SelectVR32: 6555 case SystemZ::SelectVR64: 6556 case SystemZ::SelectVR128: 6557 return true; 6558 6559 default: 6560 return false; 6561 } 6562 } 6563 6564 // Helper function, which inserts PHI functions into SinkMBB: 6565 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6566 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6567 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6568 MachineBasicBlock *TrueMBB, 6569 MachineBasicBlock *FalseMBB, 6570 MachineBasicBlock *SinkMBB) { 6571 MachineFunction *MF = TrueMBB->getParent(); 6572 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6573 6574 MachineInstr *FirstMI = Selects.front(); 6575 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6576 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6577 6578 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6579 6580 // As we are creating the PHIs, we have to be careful if there is more than 6581 // one. Later Selects may reference the results of earlier Selects, but later 6582 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6583 // That also means that PHI construction must work forward from earlier to 6584 // later, and that the code must maintain a mapping from earlier PHI's 6585 // destination registers, and the registers that went into the PHI. 6586 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6587 6588 for (auto MI : Selects) { 6589 Register DestReg = MI->getOperand(0).getReg(); 6590 Register TrueReg = MI->getOperand(1).getReg(); 6591 Register FalseReg = MI->getOperand(2).getReg(); 6592 6593 // If this Select we are generating is the opposite condition from 6594 // the jump we generated, then we have to swap the operands for the 6595 // PHI that is going to be generated. 6596 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6597 std::swap(TrueReg, FalseReg); 6598 6599 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6600 TrueReg = RegRewriteTable[TrueReg].first; 6601 6602 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6603 FalseReg = RegRewriteTable[FalseReg].second; 6604 6605 DebugLoc DL = MI->getDebugLoc(); 6606 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6607 .addReg(TrueReg).addMBB(TrueMBB) 6608 .addReg(FalseReg).addMBB(FalseMBB); 6609 6610 // Add this PHI to the rewrite table. 6611 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6612 } 6613 6614 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6615 } 6616 6617 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6618 MachineBasicBlock * 6619 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6620 MachineBasicBlock *MBB) const { 6621 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6622 const SystemZInstrInfo *TII = 6623 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6624 6625 unsigned CCValid = MI.getOperand(3).getImm(); 6626 unsigned CCMask = MI.getOperand(4).getImm(); 6627 6628 // If we have a sequence of Select* pseudo instructions using the 6629 // same condition code value, we want to expand all of them into 6630 // a single pair of basic blocks using the same condition. 6631 SmallVector<MachineInstr*, 8> Selects; 6632 SmallVector<MachineInstr*, 8> DbgValues; 6633 Selects.push_back(&MI); 6634 unsigned Count = 0; 6635 for (MachineBasicBlock::iterator NextMIIt = 6636 std::next(MachineBasicBlock::iterator(MI)); 6637 NextMIIt != MBB->end(); ++NextMIIt) { 6638 if (NextMIIt->definesRegister(SystemZ::CC)) 6639 break; 6640 if (isSelectPseudo(*NextMIIt)) { 6641 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6642 "Bad CCValid operands since CC was not redefined."); 6643 if (NextMIIt->getOperand(4).getImm() == CCMask || 6644 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6645 Selects.push_back(&*NextMIIt); 6646 continue; 6647 } 6648 break; 6649 } 6650 bool User = false; 6651 for (auto SelMI : Selects) 6652 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6653 User = true; 6654 break; 6655 } 6656 if (NextMIIt->isDebugInstr()) { 6657 if (User) { 6658 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6659 DbgValues.push_back(&*NextMIIt); 6660 } 6661 } 6662 else if (User || ++Count > 20) 6663 break; 6664 } 6665 6666 MachineInstr *LastMI = Selects.back(); 6667 bool CCKilled = 6668 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6669 MachineBasicBlock *StartMBB = MBB; 6670 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6671 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6672 6673 // Unless CC was killed in the last Select instruction, mark it as 6674 // live-in to both FalseMBB and JoinMBB. 6675 if (!CCKilled) { 6676 FalseMBB->addLiveIn(SystemZ::CC); 6677 JoinMBB->addLiveIn(SystemZ::CC); 6678 } 6679 6680 // StartMBB: 6681 // BRC CCMask, JoinMBB 6682 // # fallthrough to FalseMBB 6683 MBB = StartMBB; 6684 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6685 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6686 MBB->addSuccessor(JoinMBB); 6687 MBB->addSuccessor(FalseMBB); 6688 6689 // FalseMBB: 6690 // # fallthrough to JoinMBB 6691 MBB = FalseMBB; 6692 MBB->addSuccessor(JoinMBB); 6693 6694 // JoinMBB: 6695 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6696 // ... 6697 MBB = JoinMBB; 6698 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6699 for (auto SelMI : Selects) 6700 SelMI->eraseFromParent(); 6701 6702 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6703 for (auto DbgMI : DbgValues) 6704 MBB->splice(InsertPos, StartMBB, DbgMI); 6705 6706 return JoinMBB; 6707 } 6708 6709 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6710 // StoreOpcode is the store to use and Invert says whether the store should 6711 // happen when the condition is false rather than true. If a STORE ON 6712 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6713 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6714 MachineBasicBlock *MBB, 6715 unsigned StoreOpcode, 6716 unsigned STOCOpcode, 6717 bool Invert) const { 6718 const SystemZInstrInfo *TII = 6719 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6720 6721 Register SrcReg = MI.getOperand(0).getReg(); 6722 MachineOperand Base = MI.getOperand(1); 6723 int64_t Disp = MI.getOperand(2).getImm(); 6724 Register IndexReg = MI.getOperand(3).getReg(); 6725 unsigned CCValid = MI.getOperand(4).getImm(); 6726 unsigned CCMask = MI.getOperand(5).getImm(); 6727 DebugLoc DL = MI.getDebugLoc(); 6728 6729 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6730 6731 // Use STOCOpcode if possible. We could use different store patterns in 6732 // order to avoid matching the index register, but the performance trade-offs 6733 // might be more complicated in that case. 6734 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6735 if (Invert) 6736 CCMask ^= CCValid; 6737 6738 // ISel pattern matching also adds a load memory operand of the same 6739 // address, so take special care to find the storing memory operand. 6740 MachineMemOperand *MMO = nullptr; 6741 for (auto *I : MI.memoperands()) 6742 if (I->isStore()) { 6743 MMO = I; 6744 break; 6745 } 6746 6747 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6748 .addReg(SrcReg) 6749 .add(Base) 6750 .addImm(Disp) 6751 .addImm(CCValid) 6752 .addImm(CCMask) 6753 .addMemOperand(MMO); 6754 6755 MI.eraseFromParent(); 6756 return MBB; 6757 } 6758 6759 // Get the condition needed to branch around the store. 6760 if (!Invert) 6761 CCMask ^= CCValid; 6762 6763 MachineBasicBlock *StartMBB = MBB; 6764 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6765 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6766 6767 // Unless CC was killed in the CondStore instruction, mark it as 6768 // live-in to both FalseMBB and JoinMBB. 6769 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6770 FalseMBB->addLiveIn(SystemZ::CC); 6771 JoinMBB->addLiveIn(SystemZ::CC); 6772 } 6773 6774 // StartMBB: 6775 // BRC CCMask, JoinMBB 6776 // # fallthrough to FalseMBB 6777 MBB = StartMBB; 6778 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6779 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6780 MBB->addSuccessor(JoinMBB); 6781 MBB->addSuccessor(FalseMBB); 6782 6783 // FalseMBB: 6784 // store %SrcReg, %Disp(%Index,%Base) 6785 // # fallthrough to JoinMBB 6786 MBB = FalseMBB; 6787 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6788 .addReg(SrcReg) 6789 .add(Base) 6790 .addImm(Disp) 6791 .addReg(IndexReg); 6792 MBB->addSuccessor(JoinMBB); 6793 6794 MI.eraseFromParent(); 6795 return JoinMBB; 6796 } 6797 6798 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6799 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6800 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6801 // BitSize is the width of the field in bits, or 0 if this is a partword 6802 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6803 // is one of the operands. Invert says whether the field should be 6804 // inverted after performing BinOpcode (e.g. for NAND). 6805 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6806 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6807 unsigned BitSize, bool Invert) const { 6808 MachineFunction &MF = *MBB->getParent(); 6809 const SystemZInstrInfo *TII = 6810 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6811 MachineRegisterInfo &MRI = MF.getRegInfo(); 6812 bool IsSubWord = (BitSize < 32); 6813 6814 // Extract the operands. Base can be a register or a frame index. 6815 // Src2 can be a register or immediate. 6816 Register Dest = MI.getOperand(0).getReg(); 6817 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6818 int64_t Disp = MI.getOperand(2).getImm(); 6819 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6820 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 6821 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 6822 DebugLoc DL = MI.getDebugLoc(); 6823 if (IsSubWord) 6824 BitSize = MI.getOperand(6).getImm(); 6825 6826 // Subword operations use 32-bit registers. 6827 const TargetRegisterClass *RC = (BitSize <= 32 ? 6828 &SystemZ::GR32BitRegClass : 6829 &SystemZ::GR64BitRegClass); 6830 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6831 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6832 6833 // Get the right opcodes for the displacement. 6834 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6835 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6836 assert(LOpcode && CSOpcode && "Displacement out of range"); 6837 6838 // Create virtual registers for temporary results. 6839 Register OrigVal = MRI.createVirtualRegister(RC); 6840 Register OldVal = MRI.createVirtualRegister(RC); 6841 Register NewVal = (BinOpcode || IsSubWord ? 6842 MRI.createVirtualRegister(RC) : Src2.getReg()); 6843 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6844 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6845 6846 // Insert a basic block for the main loop. 6847 MachineBasicBlock *StartMBB = MBB; 6848 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6849 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6850 6851 // StartMBB: 6852 // ... 6853 // %OrigVal = L Disp(%Base) 6854 // # fall through to LoopMMB 6855 MBB = StartMBB; 6856 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6857 MBB->addSuccessor(LoopMBB); 6858 6859 // LoopMBB: 6860 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6861 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6862 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6863 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6864 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6865 // JNE LoopMBB 6866 // # fall through to DoneMMB 6867 MBB = LoopMBB; 6868 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6869 .addReg(OrigVal).addMBB(StartMBB) 6870 .addReg(Dest).addMBB(LoopMBB); 6871 if (IsSubWord) 6872 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6873 .addReg(OldVal).addReg(BitShift).addImm(0); 6874 if (Invert) { 6875 // Perform the operation normally and then invert every bit of the field. 6876 Register Tmp = MRI.createVirtualRegister(RC); 6877 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6878 if (BitSize <= 32) 6879 // XILF with the upper BitSize bits set. 6880 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6881 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6882 else { 6883 // Use LCGR and add -1 to the result, which is more compact than 6884 // an XILF, XILH pair. 6885 Register Tmp2 = MRI.createVirtualRegister(RC); 6886 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6887 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6888 .addReg(Tmp2).addImm(-1); 6889 } 6890 } else if (BinOpcode) 6891 // A simply binary operation. 6892 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6893 .addReg(RotatedOldVal) 6894 .add(Src2); 6895 else if (IsSubWord) 6896 // Use RISBG to rotate Src2 into position and use it to replace the 6897 // field in RotatedOldVal. 6898 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6899 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6900 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6901 if (IsSubWord) 6902 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6903 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6904 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6905 .addReg(OldVal) 6906 .addReg(NewVal) 6907 .add(Base) 6908 .addImm(Disp); 6909 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6910 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6911 MBB->addSuccessor(LoopMBB); 6912 MBB->addSuccessor(DoneMBB); 6913 6914 MI.eraseFromParent(); 6915 return DoneMBB; 6916 } 6917 6918 // Implement EmitInstrWithCustomInserter for pseudo 6919 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6920 // instruction that should be used to compare the current field with the 6921 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6922 // for when the current field should be kept. BitSize is the width of 6923 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6924 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6925 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6926 unsigned KeepOldMask, unsigned BitSize) const { 6927 MachineFunction &MF = *MBB->getParent(); 6928 const SystemZInstrInfo *TII = 6929 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6930 MachineRegisterInfo &MRI = MF.getRegInfo(); 6931 bool IsSubWord = (BitSize < 32); 6932 6933 // Extract the operands. Base can be a register or a frame index. 6934 Register Dest = MI.getOperand(0).getReg(); 6935 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6936 int64_t Disp = MI.getOperand(2).getImm(); 6937 Register Src2 = MI.getOperand(3).getReg(); 6938 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 6939 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 6940 DebugLoc DL = MI.getDebugLoc(); 6941 if (IsSubWord) 6942 BitSize = MI.getOperand(6).getImm(); 6943 6944 // Subword operations use 32-bit registers. 6945 const TargetRegisterClass *RC = (BitSize <= 32 ? 6946 &SystemZ::GR32BitRegClass : 6947 &SystemZ::GR64BitRegClass); 6948 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6949 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6950 6951 // Get the right opcodes for the displacement. 6952 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6953 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6954 assert(LOpcode && CSOpcode && "Displacement out of range"); 6955 6956 // Create virtual registers for temporary results. 6957 Register OrigVal = MRI.createVirtualRegister(RC); 6958 Register OldVal = MRI.createVirtualRegister(RC); 6959 Register NewVal = MRI.createVirtualRegister(RC); 6960 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6961 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6962 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6963 6964 // Insert 3 basic blocks for the loop. 6965 MachineBasicBlock *StartMBB = MBB; 6966 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6967 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6968 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 6969 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 6970 6971 // StartMBB: 6972 // ... 6973 // %OrigVal = L Disp(%Base) 6974 // # fall through to LoopMMB 6975 MBB = StartMBB; 6976 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6977 MBB->addSuccessor(LoopMBB); 6978 6979 // LoopMBB: 6980 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 6981 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6982 // CompareOpcode %RotatedOldVal, %Src2 6983 // BRC KeepOldMask, UpdateMBB 6984 MBB = LoopMBB; 6985 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6986 .addReg(OrigVal).addMBB(StartMBB) 6987 .addReg(Dest).addMBB(UpdateMBB); 6988 if (IsSubWord) 6989 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6990 .addReg(OldVal).addReg(BitShift).addImm(0); 6991 BuildMI(MBB, DL, TII->get(CompareOpcode)) 6992 .addReg(RotatedOldVal).addReg(Src2); 6993 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6994 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 6995 MBB->addSuccessor(UpdateMBB); 6996 MBB->addSuccessor(UseAltMBB); 6997 6998 // UseAltMBB: 6999 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7000 // # fall through to UpdateMMB 7001 MBB = UseAltMBB; 7002 if (IsSubWord) 7003 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7004 .addReg(RotatedOldVal).addReg(Src2) 7005 .addImm(32).addImm(31 + BitSize).addImm(0); 7006 MBB->addSuccessor(UpdateMBB); 7007 7008 // UpdateMBB: 7009 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7010 // [ %RotatedAltVal, UseAltMBB ] 7011 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7012 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7013 // JNE LoopMBB 7014 // # fall through to DoneMMB 7015 MBB = UpdateMBB; 7016 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7017 .addReg(RotatedOldVal).addMBB(LoopMBB) 7018 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7019 if (IsSubWord) 7020 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7021 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7022 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7023 .addReg(OldVal) 7024 .addReg(NewVal) 7025 .add(Base) 7026 .addImm(Disp); 7027 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7028 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7029 MBB->addSuccessor(LoopMBB); 7030 MBB->addSuccessor(DoneMBB); 7031 7032 MI.eraseFromParent(); 7033 return DoneMBB; 7034 } 7035 7036 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7037 // instruction MI. 7038 MachineBasicBlock * 7039 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7040 MachineBasicBlock *MBB) const { 7041 7042 MachineFunction &MF = *MBB->getParent(); 7043 const SystemZInstrInfo *TII = 7044 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7045 MachineRegisterInfo &MRI = MF.getRegInfo(); 7046 7047 // Extract the operands. Base can be a register or a frame index. 7048 Register Dest = MI.getOperand(0).getReg(); 7049 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7050 int64_t Disp = MI.getOperand(2).getImm(); 7051 Register OrigCmpVal = MI.getOperand(3).getReg(); 7052 Register OrigSwapVal = MI.getOperand(4).getReg(); 7053 Register BitShift = MI.getOperand(5).getReg(); 7054 Register NegBitShift = MI.getOperand(6).getReg(); 7055 int64_t BitSize = MI.getOperand(7).getImm(); 7056 DebugLoc DL = MI.getDebugLoc(); 7057 7058 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7059 7060 // Get the right opcodes for the displacement. 7061 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7062 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7063 assert(LOpcode && CSOpcode && "Displacement out of range"); 7064 7065 // Create virtual registers for temporary results. 7066 Register OrigOldVal = MRI.createVirtualRegister(RC); 7067 Register OldVal = MRI.createVirtualRegister(RC); 7068 Register CmpVal = MRI.createVirtualRegister(RC); 7069 Register SwapVal = MRI.createVirtualRegister(RC); 7070 Register StoreVal = MRI.createVirtualRegister(RC); 7071 Register RetryOldVal = MRI.createVirtualRegister(RC); 7072 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7073 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7074 7075 // Insert 2 basic blocks for the loop. 7076 MachineBasicBlock *StartMBB = MBB; 7077 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7078 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7079 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7080 7081 // StartMBB: 7082 // ... 7083 // %OrigOldVal = L Disp(%Base) 7084 // # fall through to LoopMMB 7085 MBB = StartMBB; 7086 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7087 .add(Base) 7088 .addImm(Disp) 7089 .addReg(0); 7090 MBB->addSuccessor(LoopMBB); 7091 7092 // LoopMBB: 7093 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7094 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7095 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7096 // %Dest = RLL %OldVal, BitSize(%BitShift) 7097 // ^^ The low BitSize bits contain the field 7098 // of interest. 7099 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7100 // ^^ Replace the upper 32-BitSize bits of the 7101 // comparison value with those that we loaded, 7102 // so that we can use a full word comparison. 7103 // CR %Dest, %RetryCmpVal 7104 // JNE DoneMBB 7105 // # Fall through to SetMBB 7106 MBB = LoopMBB; 7107 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7108 .addReg(OrigOldVal).addMBB(StartMBB) 7109 .addReg(RetryOldVal).addMBB(SetMBB); 7110 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7111 .addReg(OrigCmpVal).addMBB(StartMBB) 7112 .addReg(RetryCmpVal).addMBB(SetMBB); 7113 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7114 .addReg(OrigSwapVal).addMBB(StartMBB) 7115 .addReg(RetrySwapVal).addMBB(SetMBB); 7116 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7117 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7118 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7119 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7120 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7121 .addReg(Dest).addReg(RetryCmpVal); 7122 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7123 .addImm(SystemZ::CCMASK_ICMP) 7124 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7125 MBB->addSuccessor(DoneMBB); 7126 MBB->addSuccessor(SetMBB); 7127 7128 // SetMBB: 7129 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7130 // ^^ Replace the upper 32-BitSize bits of the new 7131 // value with those that we loaded. 7132 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7133 // ^^ Rotate the new field to its proper position. 7134 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7135 // JNE LoopMBB 7136 // # fall through to ExitMMB 7137 MBB = SetMBB; 7138 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7139 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7140 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7141 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7142 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7143 .addReg(OldVal) 7144 .addReg(StoreVal) 7145 .add(Base) 7146 .addImm(Disp); 7147 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7148 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7149 MBB->addSuccessor(LoopMBB); 7150 MBB->addSuccessor(DoneMBB); 7151 7152 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7153 // to the block after the loop. At this point, CC may have been defined 7154 // either by the CR in LoopMBB or by the CS in SetMBB. 7155 if (!MI.registerDefIsDead(SystemZ::CC)) 7156 DoneMBB->addLiveIn(SystemZ::CC); 7157 7158 MI.eraseFromParent(); 7159 return DoneMBB; 7160 } 7161 7162 // Emit a move from two GR64s to a GR128. 7163 MachineBasicBlock * 7164 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7165 MachineBasicBlock *MBB) const { 7166 MachineFunction &MF = *MBB->getParent(); 7167 const SystemZInstrInfo *TII = 7168 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7169 MachineRegisterInfo &MRI = MF.getRegInfo(); 7170 DebugLoc DL = MI.getDebugLoc(); 7171 7172 Register Dest = MI.getOperand(0).getReg(); 7173 Register Hi = MI.getOperand(1).getReg(); 7174 Register Lo = MI.getOperand(2).getReg(); 7175 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7176 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7177 7178 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7179 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7180 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7181 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7182 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7183 7184 MI.eraseFromParent(); 7185 return MBB; 7186 } 7187 7188 // Emit an extension from a GR64 to a GR128. ClearEven is true 7189 // if the high register of the GR128 value must be cleared or false if 7190 // it's "don't care". 7191 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7192 MachineBasicBlock *MBB, 7193 bool ClearEven) const { 7194 MachineFunction &MF = *MBB->getParent(); 7195 const SystemZInstrInfo *TII = 7196 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7197 MachineRegisterInfo &MRI = MF.getRegInfo(); 7198 DebugLoc DL = MI.getDebugLoc(); 7199 7200 Register Dest = MI.getOperand(0).getReg(); 7201 Register Src = MI.getOperand(1).getReg(); 7202 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7203 7204 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7205 if (ClearEven) { 7206 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7207 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7208 7209 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7210 .addImm(0); 7211 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7212 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7213 In128 = NewIn128; 7214 } 7215 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7216 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7217 7218 MI.eraseFromParent(); 7219 return MBB; 7220 } 7221 7222 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7223 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7224 MachineFunction &MF = *MBB->getParent(); 7225 const SystemZInstrInfo *TII = 7226 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7227 MachineRegisterInfo &MRI = MF.getRegInfo(); 7228 DebugLoc DL = MI.getDebugLoc(); 7229 7230 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7231 uint64_t DestDisp = MI.getOperand(1).getImm(); 7232 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7233 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7234 uint64_t Length = MI.getOperand(4).getImm(); 7235 7236 // When generating more than one CLC, all but the last will need to 7237 // branch to the end when a difference is found. 7238 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7239 splitBlockAfter(MI, MBB) : nullptr); 7240 7241 // Check for the loop form, in which operand 5 is the trip count. 7242 if (MI.getNumExplicitOperands() > 5) { 7243 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7244 7245 Register StartCountReg = MI.getOperand(5).getReg(); 7246 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7247 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7248 forceReg(MI, DestBase, TII)); 7249 7250 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7251 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7252 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7253 MRI.createVirtualRegister(RC)); 7254 Register NextSrcReg = MRI.createVirtualRegister(RC); 7255 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7256 MRI.createVirtualRegister(RC)); 7257 7258 RC = &SystemZ::GR64BitRegClass; 7259 Register ThisCountReg = MRI.createVirtualRegister(RC); 7260 Register NextCountReg = MRI.createVirtualRegister(RC); 7261 7262 MachineBasicBlock *StartMBB = MBB; 7263 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7264 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7265 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7266 7267 // StartMBB: 7268 // # fall through to LoopMMB 7269 MBB->addSuccessor(LoopMBB); 7270 7271 // LoopMBB: 7272 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7273 // [ %NextDestReg, NextMBB ] 7274 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7275 // [ %NextSrcReg, NextMBB ] 7276 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7277 // [ %NextCountReg, NextMBB ] 7278 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7279 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7280 // ( JLH EndMBB ) 7281 // 7282 // The prefetch is used only for MVC. The JLH is used only for CLC. 7283 MBB = LoopMBB; 7284 7285 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7286 .addReg(StartDestReg).addMBB(StartMBB) 7287 .addReg(NextDestReg).addMBB(NextMBB); 7288 if (!HaveSingleBase) 7289 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7290 .addReg(StartSrcReg).addMBB(StartMBB) 7291 .addReg(NextSrcReg).addMBB(NextMBB); 7292 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7293 .addReg(StartCountReg).addMBB(StartMBB) 7294 .addReg(NextCountReg).addMBB(NextMBB); 7295 if (Opcode == SystemZ::MVC) 7296 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7297 .addImm(SystemZ::PFD_WRITE) 7298 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7299 BuildMI(MBB, DL, TII->get(Opcode)) 7300 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7301 .addReg(ThisSrcReg).addImm(SrcDisp); 7302 if (EndMBB) { 7303 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7304 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7305 .addMBB(EndMBB); 7306 MBB->addSuccessor(EndMBB); 7307 MBB->addSuccessor(NextMBB); 7308 } 7309 7310 // NextMBB: 7311 // %NextDestReg = LA 256(%ThisDestReg) 7312 // %NextSrcReg = LA 256(%ThisSrcReg) 7313 // %NextCountReg = AGHI %ThisCountReg, -1 7314 // CGHI %NextCountReg, 0 7315 // JLH LoopMBB 7316 // # fall through to DoneMMB 7317 // 7318 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7319 MBB = NextMBB; 7320 7321 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7322 .addReg(ThisDestReg).addImm(256).addReg(0); 7323 if (!HaveSingleBase) 7324 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7325 .addReg(ThisSrcReg).addImm(256).addReg(0); 7326 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7327 .addReg(ThisCountReg).addImm(-1); 7328 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7329 .addReg(NextCountReg).addImm(0); 7330 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7331 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7332 .addMBB(LoopMBB); 7333 MBB->addSuccessor(LoopMBB); 7334 MBB->addSuccessor(DoneMBB); 7335 7336 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7337 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7338 Length &= 255; 7339 if (EndMBB && !Length) 7340 // If the loop handled the whole CLC range, DoneMBB will be empty with 7341 // CC live-through into EndMBB, so add it as live-in. 7342 DoneMBB->addLiveIn(SystemZ::CC); 7343 MBB = DoneMBB; 7344 } 7345 // Handle any remaining bytes with straight-line code. 7346 while (Length > 0) { 7347 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7348 // The previous iteration might have created out-of-range displacements. 7349 // Apply them using LAY if so. 7350 if (!isUInt<12>(DestDisp)) { 7351 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7352 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7353 .add(DestBase) 7354 .addImm(DestDisp) 7355 .addReg(0); 7356 DestBase = MachineOperand::CreateReg(Reg, false); 7357 DestDisp = 0; 7358 } 7359 if (!isUInt<12>(SrcDisp)) { 7360 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7361 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7362 .add(SrcBase) 7363 .addImm(SrcDisp) 7364 .addReg(0); 7365 SrcBase = MachineOperand::CreateReg(Reg, false); 7366 SrcDisp = 0; 7367 } 7368 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7369 .add(DestBase) 7370 .addImm(DestDisp) 7371 .addImm(ThisLength) 7372 .add(SrcBase) 7373 .addImm(SrcDisp) 7374 .setMemRefs(MI.memoperands()); 7375 DestDisp += ThisLength; 7376 SrcDisp += ThisLength; 7377 Length -= ThisLength; 7378 // If there's another CLC to go, branch to the end if a difference 7379 // was found. 7380 if (EndMBB && Length > 0) { 7381 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7382 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7383 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7384 .addMBB(EndMBB); 7385 MBB->addSuccessor(EndMBB); 7386 MBB->addSuccessor(NextMBB); 7387 MBB = NextMBB; 7388 } 7389 } 7390 if (EndMBB) { 7391 MBB->addSuccessor(EndMBB); 7392 MBB = EndMBB; 7393 MBB->addLiveIn(SystemZ::CC); 7394 } 7395 7396 MI.eraseFromParent(); 7397 return MBB; 7398 } 7399 7400 // Decompose string pseudo-instruction MI into a loop that continually performs 7401 // Opcode until CC != 3. 7402 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7403 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7404 MachineFunction &MF = *MBB->getParent(); 7405 const SystemZInstrInfo *TII = 7406 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7407 MachineRegisterInfo &MRI = MF.getRegInfo(); 7408 DebugLoc DL = MI.getDebugLoc(); 7409 7410 uint64_t End1Reg = MI.getOperand(0).getReg(); 7411 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7412 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7413 uint64_t CharReg = MI.getOperand(3).getReg(); 7414 7415 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7416 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7417 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7418 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7419 7420 MachineBasicBlock *StartMBB = MBB; 7421 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7422 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7423 7424 // StartMBB: 7425 // # fall through to LoopMMB 7426 MBB->addSuccessor(LoopMBB); 7427 7428 // LoopMBB: 7429 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7430 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7431 // R0L = %CharReg 7432 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7433 // JO LoopMBB 7434 // # fall through to DoneMMB 7435 // 7436 // The load of R0L can be hoisted by post-RA LICM. 7437 MBB = LoopMBB; 7438 7439 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7440 .addReg(Start1Reg).addMBB(StartMBB) 7441 .addReg(End1Reg).addMBB(LoopMBB); 7442 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7443 .addReg(Start2Reg).addMBB(StartMBB) 7444 .addReg(End2Reg).addMBB(LoopMBB); 7445 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7446 BuildMI(MBB, DL, TII->get(Opcode)) 7447 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7448 .addReg(This1Reg).addReg(This2Reg); 7449 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7450 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7451 MBB->addSuccessor(LoopMBB); 7452 MBB->addSuccessor(DoneMBB); 7453 7454 DoneMBB->addLiveIn(SystemZ::CC); 7455 7456 MI.eraseFromParent(); 7457 return DoneMBB; 7458 } 7459 7460 // Update TBEGIN instruction with final opcode and register clobbers. 7461 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7462 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7463 bool NoFloat) const { 7464 MachineFunction &MF = *MBB->getParent(); 7465 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7466 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7467 7468 // Update opcode. 7469 MI.setDesc(TII->get(Opcode)); 7470 7471 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7472 // Make sure to add the corresponding GRSM bits if they are missing. 7473 uint64_t Control = MI.getOperand(2).getImm(); 7474 static const unsigned GPRControlBit[16] = { 7475 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7476 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7477 }; 7478 Control |= GPRControlBit[15]; 7479 if (TFI->hasFP(MF)) 7480 Control |= GPRControlBit[11]; 7481 MI.getOperand(2).setImm(Control); 7482 7483 // Add GPR clobbers. 7484 for (int I = 0; I < 16; I++) { 7485 if ((Control & GPRControlBit[I]) == 0) { 7486 unsigned Reg = SystemZMC::GR64Regs[I]; 7487 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7488 } 7489 } 7490 7491 // Add FPR/VR clobbers. 7492 if (!NoFloat && (Control & 4) != 0) { 7493 if (Subtarget.hasVector()) { 7494 for (int I = 0; I < 32; I++) { 7495 unsigned Reg = SystemZMC::VR128Regs[I]; 7496 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7497 } 7498 } else { 7499 for (int I = 0; I < 16; I++) { 7500 unsigned Reg = SystemZMC::FP64Regs[I]; 7501 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7502 } 7503 } 7504 } 7505 7506 return MBB; 7507 } 7508 7509 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7510 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7511 MachineFunction &MF = *MBB->getParent(); 7512 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7513 const SystemZInstrInfo *TII = 7514 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7515 DebugLoc DL = MI.getDebugLoc(); 7516 7517 Register SrcReg = MI.getOperand(0).getReg(); 7518 7519 // Create new virtual register of the same class as source. 7520 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7521 Register DstReg = MRI->createVirtualRegister(RC); 7522 7523 // Replace pseudo with a normal load-and-test that models the def as 7524 // well. 7525 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7526 .addReg(SrcReg); 7527 MI.eraseFromParent(); 7528 7529 return MBB; 7530 } 7531 7532 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7533 MachineInstr &MI, MachineBasicBlock *MBB) const { 7534 switch (MI.getOpcode()) { 7535 case SystemZ::Select32: 7536 case SystemZ::Select64: 7537 case SystemZ::SelectF32: 7538 case SystemZ::SelectF64: 7539 case SystemZ::SelectF128: 7540 case SystemZ::SelectVR32: 7541 case SystemZ::SelectVR64: 7542 case SystemZ::SelectVR128: 7543 return emitSelect(MI, MBB); 7544 7545 case SystemZ::CondStore8Mux: 7546 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7547 case SystemZ::CondStore8MuxInv: 7548 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7549 case SystemZ::CondStore16Mux: 7550 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7551 case SystemZ::CondStore16MuxInv: 7552 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7553 case SystemZ::CondStore32Mux: 7554 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7555 case SystemZ::CondStore32MuxInv: 7556 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7557 case SystemZ::CondStore8: 7558 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7559 case SystemZ::CondStore8Inv: 7560 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7561 case SystemZ::CondStore16: 7562 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7563 case SystemZ::CondStore16Inv: 7564 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7565 case SystemZ::CondStore32: 7566 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7567 case SystemZ::CondStore32Inv: 7568 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7569 case SystemZ::CondStore64: 7570 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7571 case SystemZ::CondStore64Inv: 7572 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7573 case SystemZ::CondStoreF32: 7574 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7575 case SystemZ::CondStoreF32Inv: 7576 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7577 case SystemZ::CondStoreF64: 7578 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7579 case SystemZ::CondStoreF64Inv: 7580 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7581 7582 case SystemZ::PAIR128: 7583 return emitPair128(MI, MBB); 7584 case SystemZ::AEXT128: 7585 return emitExt128(MI, MBB, false); 7586 case SystemZ::ZEXT128: 7587 return emitExt128(MI, MBB, true); 7588 7589 case SystemZ::ATOMIC_SWAPW: 7590 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7591 case SystemZ::ATOMIC_SWAP_32: 7592 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7593 case SystemZ::ATOMIC_SWAP_64: 7594 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7595 7596 case SystemZ::ATOMIC_LOADW_AR: 7597 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7598 case SystemZ::ATOMIC_LOADW_AFI: 7599 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7600 case SystemZ::ATOMIC_LOAD_AR: 7601 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7602 case SystemZ::ATOMIC_LOAD_AHI: 7603 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7604 case SystemZ::ATOMIC_LOAD_AFI: 7605 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7606 case SystemZ::ATOMIC_LOAD_AGR: 7607 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7608 case SystemZ::ATOMIC_LOAD_AGHI: 7609 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7610 case SystemZ::ATOMIC_LOAD_AGFI: 7611 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7612 7613 case SystemZ::ATOMIC_LOADW_SR: 7614 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7615 case SystemZ::ATOMIC_LOAD_SR: 7616 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7617 case SystemZ::ATOMIC_LOAD_SGR: 7618 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7619 7620 case SystemZ::ATOMIC_LOADW_NR: 7621 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7622 case SystemZ::ATOMIC_LOADW_NILH: 7623 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7624 case SystemZ::ATOMIC_LOAD_NR: 7625 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7626 case SystemZ::ATOMIC_LOAD_NILL: 7627 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7628 case SystemZ::ATOMIC_LOAD_NILH: 7629 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7630 case SystemZ::ATOMIC_LOAD_NILF: 7631 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7632 case SystemZ::ATOMIC_LOAD_NGR: 7633 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7634 case SystemZ::ATOMIC_LOAD_NILL64: 7635 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7636 case SystemZ::ATOMIC_LOAD_NILH64: 7637 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7638 case SystemZ::ATOMIC_LOAD_NIHL64: 7639 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7640 case SystemZ::ATOMIC_LOAD_NIHH64: 7641 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7642 case SystemZ::ATOMIC_LOAD_NILF64: 7643 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7644 case SystemZ::ATOMIC_LOAD_NIHF64: 7645 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7646 7647 case SystemZ::ATOMIC_LOADW_OR: 7648 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7649 case SystemZ::ATOMIC_LOADW_OILH: 7650 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7651 case SystemZ::ATOMIC_LOAD_OR: 7652 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7653 case SystemZ::ATOMIC_LOAD_OILL: 7654 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7655 case SystemZ::ATOMIC_LOAD_OILH: 7656 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7657 case SystemZ::ATOMIC_LOAD_OILF: 7658 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7659 case SystemZ::ATOMIC_LOAD_OGR: 7660 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7661 case SystemZ::ATOMIC_LOAD_OILL64: 7662 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7663 case SystemZ::ATOMIC_LOAD_OILH64: 7664 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7665 case SystemZ::ATOMIC_LOAD_OIHL64: 7666 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7667 case SystemZ::ATOMIC_LOAD_OIHH64: 7668 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7669 case SystemZ::ATOMIC_LOAD_OILF64: 7670 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7671 case SystemZ::ATOMIC_LOAD_OIHF64: 7672 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7673 7674 case SystemZ::ATOMIC_LOADW_XR: 7675 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7676 case SystemZ::ATOMIC_LOADW_XILF: 7677 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7678 case SystemZ::ATOMIC_LOAD_XR: 7679 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7680 case SystemZ::ATOMIC_LOAD_XILF: 7681 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7682 case SystemZ::ATOMIC_LOAD_XGR: 7683 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7684 case SystemZ::ATOMIC_LOAD_XILF64: 7685 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7686 case SystemZ::ATOMIC_LOAD_XIHF64: 7687 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7688 7689 case SystemZ::ATOMIC_LOADW_NRi: 7690 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7691 case SystemZ::ATOMIC_LOADW_NILHi: 7692 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7693 case SystemZ::ATOMIC_LOAD_NRi: 7694 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7695 case SystemZ::ATOMIC_LOAD_NILLi: 7696 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7697 case SystemZ::ATOMIC_LOAD_NILHi: 7698 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7699 case SystemZ::ATOMIC_LOAD_NILFi: 7700 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7701 case SystemZ::ATOMIC_LOAD_NGRi: 7702 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7703 case SystemZ::ATOMIC_LOAD_NILL64i: 7704 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7705 case SystemZ::ATOMIC_LOAD_NILH64i: 7706 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7707 case SystemZ::ATOMIC_LOAD_NIHL64i: 7708 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7709 case SystemZ::ATOMIC_LOAD_NIHH64i: 7710 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7711 case SystemZ::ATOMIC_LOAD_NILF64i: 7712 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7713 case SystemZ::ATOMIC_LOAD_NIHF64i: 7714 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7715 7716 case SystemZ::ATOMIC_LOADW_MIN: 7717 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7718 SystemZ::CCMASK_CMP_LE, 0); 7719 case SystemZ::ATOMIC_LOAD_MIN_32: 7720 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7721 SystemZ::CCMASK_CMP_LE, 32); 7722 case SystemZ::ATOMIC_LOAD_MIN_64: 7723 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7724 SystemZ::CCMASK_CMP_LE, 64); 7725 7726 case SystemZ::ATOMIC_LOADW_MAX: 7727 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7728 SystemZ::CCMASK_CMP_GE, 0); 7729 case SystemZ::ATOMIC_LOAD_MAX_32: 7730 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7731 SystemZ::CCMASK_CMP_GE, 32); 7732 case SystemZ::ATOMIC_LOAD_MAX_64: 7733 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7734 SystemZ::CCMASK_CMP_GE, 64); 7735 7736 case SystemZ::ATOMIC_LOADW_UMIN: 7737 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7738 SystemZ::CCMASK_CMP_LE, 0); 7739 case SystemZ::ATOMIC_LOAD_UMIN_32: 7740 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7741 SystemZ::CCMASK_CMP_LE, 32); 7742 case SystemZ::ATOMIC_LOAD_UMIN_64: 7743 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7744 SystemZ::CCMASK_CMP_LE, 64); 7745 7746 case SystemZ::ATOMIC_LOADW_UMAX: 7747 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7748 SystemZ::CCMASK_CMP_GE, 0); 7749 case SystemZ::ATOMIC_LOAD_UMAX_32: 7750 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7751 SystemZ::CCMASK_CMP_GE, 32); 7752 case SystemZ::ATOMIC_LOAD_UMAX_64: 7753 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7754 SystemZ::CCMASK_CMP_GE, 64); 7755 7756 case SystemZ::ATOMIC_CMP_SWAPW: 7757 return emitAtomicCmpSwapW(MI, MBB); 7758 case SystemZ::MVCSequence: 7759 case SystemZ::MVCLoop: 7760 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7761 case SystemZ::NCSequence: 7762 case SystemZ::NCLoop: 7763 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7764 case SystemZ::OCSequence: 7765 case SystemZ::OCLoop: 7766 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7767 case SystemZ::XCSequence: 7768 case SystemZ::XCLoop: 7769 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7770 case SystemZ::CLCSequence: 7771 case SystemZ::CLCLoop: 7772 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7773 case SystemZ::CLSTLoop: 7774 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7775 case SystemZ::MVSTLoop: 7776 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7777 case SystemZ::SRSTLoop: 7778 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7779 case SystemZ::TBEGIN: 7780 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7781 case SystemZ::TBEGIN_nofloat: 7782 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7783 case SystemZ::TBEGINC: 7784 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7785 case SystemZ::LTEBRCompare_VecPseudo: 7786 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7787 case SystemZ::LTDBRCompare_VecPseudo: 7788 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7789 case SystemZ::LTXBRCompare_VecPseudo: 7790 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7791 7792 case TargetOpcode::STACKMAP: 7793 case TargetOpcode::PATCHPOINT: 7794 return emitPatchPoint(MI, MBB); 7795 7796 default: 7797 llvm_unreachable("Unexpected instr type to insert"); 7798 } 7799 } 7800 7801 // This is only used by the isel schedulers, and is needed only to prevent 7802 // compiler from crashing when list-ilp is used. 7803 const TargetRegisterClass * 7804 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7805 if (VT == MVT::Untyped) 7806 return &SystemZ::ADDR128BitRegClass; 7807 return TargetLowering::getRepRegClassFor(VT); 7808 } 7809