xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       setOperationAction(ISD::ABS, VT, Legal);
168 
169       // Expand individual DIV and REMs into DIVREMs.
170       setOperationAction(ISD::SDIV, VT, Expand);
171       setOperationAction(ISD::UDIV, VT, Expand);
172       setOperationAction(ISD::SREM, VT, Expand);
173       setOperationAction(ISD::UREM, VT, Expand);
174       setOperationAction(ISD::SDIVREM, VT, Custom);
175       setOperationAction(ISD::UDIVREM, VT, Custom);
176 
177       // Support addition/subtraction with overflow.
178       setOperationAction(ISD::SADDO, VT, Custom);
179       setOperationAction(ISD::SSUBO, VT, Custom);
180 
181       // Support addition/subtraction with carry.
182       setOperationAction(ISD::UADDO, VT, Custom);
183       setOperationAction(ISD::USUBO, VT, Custom);
184 
185       // Support carry in as value rather than glue.
186       setOperationAction(ISD::ADDCARRY, VT, Custom);
187       setOperationAction(ISD::SUBCARRY, VT, Custom);
188 
189       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
190       // stores, putting a serialization instruction after the stores.
191       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
192       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
193 
194       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
195       // available, or if the operand is constant.
196       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
197 
198       // Use POPCNT on z196 and above.
199       if (Subtarget.hasPopulationCount())
200         setOperationAction(ISD::CTPOP, VT, Custom);
201       else
202         setOperationAction(ISD::CTPOP, VT, Expand);
203 
204       // No special instructions for these.
205       setOperationAction(ISD::CTTZ,            VT, Expand);
206       setOperationAction(ISD::ROTR,            VT, Expand);
207 
208       // Use *MUL_LOHI where possible instead of MULH*.
209       setOperationAction(ISD::MULHS, VT, Expand);
210       setOperationAction(ISD::MULHU, VT, Expand);
211       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
212       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
213 
214       // Only z196 and above have native support for conversions to unsigned.
215       // On z10, promoting to i64 doesn't generate an inexact condition for
216       // values that are outside the i32 range but in the i64 range, so use
217       // the default expansion.
218       if (!Subtarget.hasFPExtension())
219         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
220 
221       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
222       // default to Expand, so need to be modified to Legal where appropriate.
223       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
224       if (Subtarget.hasFPExtension())
225         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
226 
227       // And similarly for STRICT_[SU]INT_TO_FP.
228       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229       if (Subtarget.hasFPExtension())
230         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
231     }
232   }
233 
234   // Type legalization will convert 8- and 16-bit atomic operations into
235   // forms that operate on i32s (but still keeping the original memory VT).
236   // Lower them into full i32 operations.
237   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
248 
249   // Even though i128 is not a legal type, we still need to custom lower
250   // the atomic operations in order to exploit SystemZ instructions.
251   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
252   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
253 
254   // We can use the CC result of compare-and-swap to implement
255   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
257   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
259 
260   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
261 
262   // Traps are legal, as we will convert them to "j .+2".
263   setOperationAction(ISD::TRAP, MVT::Other, Legal);
264 
265   // z10 has instructions for signed but not unsigned FP conversion.
266   // Handle unsigned 32-bit types as signed 64-bit types.
267   if (!Subtarget.hasFPExtension()) {
268     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
272   }
273 
274   // We have native support for a 64-bit CTLZ, via FLOGR.
275   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
276   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
277   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
278 
279   // On z15 we have native support for a 64-bit CTPOP.
280   if (Subtarget.hasMiscellaneousExtensions3()) {
281     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
282     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
283   }
284 
285   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
286   setOperationAction(ISD::OR, MVT::i64, Custom);
287 
288   // FIXME: Can we support these natively?
289   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
290   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
291   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
292 
293   // We have native instructions for i8, i16 and i32 extensions, but not i1.
294   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
295   for (MVT VT : MVT::integer_valuetypes()) {
296     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
297     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
298     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
299   }
300 
301   // Handle the various types of symbolic address.
302   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
303   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
304   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
305   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
306   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
307 
308   // We need to handle dynamic allocations specially because of the
309   // 160-byte area at the bottom of the stack.
310   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
311   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
312 
313   // Use custom expanders so that we can force the function to use
314   // a frame pointer.
315   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
316   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
317 
318   // Handle prefetches with PFD or PFDRL.
319   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
320 
321   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
322     // Assume by default that all vector operations need to be expanded.
323     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
324       if (getOperationAction(Opcode, VT) == Legal)
325         setOperationAction(Opcode, VT, Expand);
326 
327     // Likewise all truncating stores and extending loads.
328     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
329       setTruncStoreAction(VT, InnerVT, Expand);
330       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
331       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
332       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
333     }
334 
335     if (isTypeLegal(VT)) {
336       // These operations are legal for anything that can be stored in a
337       // vector register, even if there is no native support for the format
338       // as such.  In particular, we can do these for v4f32 even though there
339       // are no specific instructions for that format.
340       setOperationAction(ISD::LOAD, VT, Legal);
341       setOperationAction(ISD::STORE, VT, Legal);
342       setOperationAction(ISD::VSELECT, VT, Legal);
343       setOperationAction(ISD::BITCAST, VT, Legal);
344       setOperationAction(ISD::UNDEF, VT, Legal);
345 
346       // Likewise, except that we need to replace the nodes with something
347       // more specific.
348       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
349       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
350     }
351   }
352 
353   // Handle integer vector types.
354   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
355     if (isTypeLegal(VT)) {
356       // These operations have direct equivalents.
357       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
358       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
359       setOperationAction(ISD::ADD, VT, Legal);
360       setOperationAction(ISD::SUB, VT, Legal);
361       if (VT != MVT::v2i64)
362         setOperationAction(ISD::MUL, VT, Legal);
363       setOperationAction(ISD::ABS, VT, Legal);
364       setOperationAction(ISD::AND, VT, Legal);
365       setOperationAction(ISD::OR, VT, Legal);
366       setOperationAction(ISD::XOR, VT, Legal);
367       if (Subtarget.hasVectorEnhancements1())
368         setOperationAction(ISD::CTPOP, VT, Legal);
369       else
370         setOperationAction(ISD::CTPOP, VT, Custom);
371       setOperationAction(ISD::CTTZ, VT, Legal);
372       setOperationAction(ISD::CTLZ, VT, Legal);
373 
374       // Convert a GPR scalar to a vector by inserting it into element 0.
375       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
376 
377       // Use a series of unpacks for extensions.
378       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
379       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
380 
381       // Detect shifts by a scalar amount and convert them into
382       // V*_BY_SCALAR.
383       setOperationAction(ISD::SHL, VT, Custom);
384       setOperationAction(ISD::SRA, VT, Custom);
385       setOperationAction(ISD::SRL, VT, Custom);
386 
387       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
388       // converted into ROTL.
389       setOperationAction(ISD::ROTL, VT, Expand);
390       setOperationAction(ISD::ROTR, VT, Expand);
391 
392       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
393       // and inverting the result as necessary.
394       setOperationAction(ISD::SETCC, VT, Custom);
395       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
396       if (Subtarget.hasVectorEnhancements1())
397         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
398     }
399   }
400 
401   if (Subtarget.hasVector()) {
402     // There should be no need to check for float types other than v2f64
403     // since <2 x f32> isn't a legal type.
404     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
405     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
406     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
407     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
408     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
409     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
410     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
411     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
412 
413     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
414     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
415     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
416     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
417     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
418     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
419     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
421   }
422 
423   if (Subtarget.hasVectorEnhancements2()) {
424     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
425     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
426     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
427     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
428     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
429     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
430     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
431     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
432 
433     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
434     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
435     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
436     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
437     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
438     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
439     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
441   }
442 
443   // Handle floating-point types.
444   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
445        I <= MVT::LAST_FP_VALUETYPE;
446        ++I) {
447     MVT VT = MVT::SimpleValueType(I);
448     if (isTypeLegal(VT)) {
449       // We can use FI for FRINT.
450       setOperationAction(ISD::FRINT, VT, Legal);
451 
452       // We can use the extended form of FI for other rounding operations.
453       if (Subtarget.hasFPExtension()) {
454         setOperationAction(ISD::FNEARBYINT, VT, Legal);
455         setOperationAction(ISD::FFLOOR, VT, Legal);
456         setOperationAction(ISD::FCEIL, VT, Legal);
457         setOperationAction(ISD::FTRUNC, VT, Legal);
458         setOperationAction(ISD::FROUND, VT, Legal);
459       }
460 
461       // No special instructions for these.
462       setOperationAction(ISD::FSIN, VT, Expand);
463       setOperationAction(ISD::FCOS, VT, Expand);
464       setOperationAction(ISD::FSINCOS, VT, Expand);
465       setOperationAction(ISD::FREM, VT, Expand);
466       setOperationAction(ISD::FPOW, VT, Expand);
467 
468       // Handle constrained floating-point operations.
469       setOperationAction(ISD::STRICT_FADD, VT, Legal);
470       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
471       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
472       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
473       setOperationAction(ISD::STRICT_FMA, VT, Legal);
474       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
475       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
476       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
477       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
478       if (Subtarget.hasFPExtension()) {
479         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
480         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
481         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
482         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
483         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
484       }
485     }
486   }
487 
488   // Handle floating-point vector types.
489   if (Subtarget.hasVector()) {
490     // Scalar-to-vector conversion is just a subreg.
491     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
492     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
493 
494     // Some insertions and extractions can be done directly but others
495     // need to go via integers.
496     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
497     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
498     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
499     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
500 
501     // These operations have direct equivalents.
502     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
503     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
504     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
505     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
506     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
507     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
508     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
509     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
510     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
511     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
512     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
513     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
514     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
515     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
516 
517     // Handle constrained floating-point operations.
518     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
530   }
531 
532   // The vector enhancements facility 1 has instructions for these.
533   if (Subtarget.hasVectorEnhancements1()) {
534     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
535     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
536     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
537     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
538     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
539     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
540     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
541     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
542     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
543     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
544     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
545     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
546     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
547     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
548 
549     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
550     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
551     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
552     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
553 
554     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
555     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
556     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
557     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
558 
559     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
560     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
561     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
562     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
563 
564     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
565     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
566     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
567     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
568 
569     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
570     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
571     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
572     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
573 
574     // Handle constrained floating-point operations.
575     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
587     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
588                      MVT::v4f32, MVT::v2f64 }) {
589       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
590       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
591       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
592       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
593     }
594   }
595 
596   // We only have fused f128 multiply-addition on vector registers.
597   if (!Subtarget.hasVectorEnhancements1()) {
598     setOperationAction(ISD::FMA, MVT::f128, Expand);
599     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
600   }
601 
602   // We don't have a copysign instruction on vector registers.
603   if (Subtarget.hasVectorEnhancements1())
604     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
605 
606   // Needed so that we don't try to implement f128 constant loads using
607   // a load-and-extend of a f80 constant (in cases where the constant
608   // would fit in an f80).
609   for (MVT VT : MVT::fp_valuetypes())
610     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
611 
612   // We don't have extending load instruction on vector registers.
613   if (Subtarget.hasVectorEnhancements1()) {
614     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
615     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
616   }
617 
618   // Floating-point truncation and stores need to be done separately.
619   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
620   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
621   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
622 
623   // We have 64-bit FPR<->GPR moves, but need special handling for
624   // 32-bit forms.
625   if (!Subtarget.hasVector()) {
626     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
627     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
628   }
629 
630   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
631   // structure, but VAEND is a no-op.
632   setOperationAction(ISD::VASTART, MVT::Other, Custom);
633   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
634   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
635 
636   // Codes for which we want to perform some z-specific combinations.
637   setTargetDAGCombine(ISD::ZERO_EXTEND);
638   setTargetDAGCombine(ISD::SIGN_EXTEND);
639   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
640   setTargetDAGCombine(ISD::LOAD);
641   setTargetDAGCombine(ISD::STORE);
642   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
643   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
644   setTargetDAGCombine(ISD::FP_ROUND);
645   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
646   setTargetDAGCombine(ISD::FP_EXTEND);
647   setTargetDAGCombine(ISD::SINT_TO_FP);
648   setTargetDAGCombine(ISD::UINT_TO_FP);
649   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
650   setTargetDAGCombine(ISD::BSWAP);
651   setTargetDAGCombine(ISD::SDIV);
652   setTargetDAGCombine(ISD::UDIV);
653   setTargetDAGCombine(ISD::SREM);
654   setTargetDAGCombine(ISD::UREM);
655   setTargetDAGCombine(ISD::INTRINSIC_VOID);
656   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
657 
658   // Handle intrinsics.
659   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
660   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
661 
662   // We want to use MVC in preference to even a single load/store pair.
663   MaxStoresPerMemcpy = 0;
664   MaxStoresPerMemcpyOptSize = 0;
665 
666   // The main memset sequence is a byte store followed by an MVC.
667   // Two STC or MV..I stores win over that, but the kind of fused stores
668   // generated by target-independent code don't when the byte value is
669   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
670   // than "STC;MVC".  Handle the choice in target-specific code instead.
671   MaxStoresPerMemset = 0;
672   MaxStoresPerMemsetOptSize = 0;
673 
674   // Default to having -disable-strictnode-mutation on
675   IsStrictFPEnabled = true;
676 }
677 
678 bool SystemZTargetLowering::useSoftFloat() const {
679   return Subtarget.hasSoftFloat();
680 }
681 
682 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
683                                               LLVMContext &, EVT VT) const {
684   if (!VT.isVector())
685     return MVT::i32;
686   return VT.changeVectorElementTypeToInteger();
687 }
688 
689 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
690     const MachineFunction &MF, EVT VT) const {
691   VT = VT.getScalarType();
692 
693   if (!VT.isSimple())
694     return false;
695 
696   switch (VT.getSimpleVT().SimpleTy) {
697   case MVT::f32:
698   case MVT::f64:
699     return true;
700   case MVT::f128:
701     return Subtarget.hasVectorEnhancements1();
702   default:
703     break;
704   }
705 
706   return false;
707 }
708 
709 // Return true if the constant can be generated with a vector instruction,
710 // such as VGM, VGMB or VREPI.
711 bool SystemZVectorConstantInfo::isVectorConstantLegal(
712     const SystemZSubtarget &Subtarget) {
713   const SystemZInstrInfo *TII =
714       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
715   if (!Subtarget.hasVector() ||
716       (isFP128 && !Subtarget.hasVectorEnhancements1()))
717     return false;
718 
719   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
720   // preferred way of creating all-zero and all-one vectors so give it
721   // priority over other methods below.
722   unsigned Mask = 0;
723   unsigned I = 0;
724   for (; I < SystemZ::VectorBytes; ++I) {
725     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
726     if (Byte == 0xff)
727       Mask |= 1ULL << I;
728     else if (Byte != 0)
729       break;
730   }
731   if (I == SystemZ::VectorBytes) {
732     Opcode = SystemZISD::BYTE_MASK;
733     OpVals.push_back(Mask);
734     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
735     return true;
736   }
737 
738   if (SplatBitSize > 64)
739     return false;
740 
741   auto tryValue = [&](uint64_t Value) -> bool {
742     // Try VECTOR REPLICATE IMMEDIATE
743     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
744     if (isInt<16>(SignedValue)) {
745       OpVals.push_back(((unsigned) SignedValue));
746       Opcode = SystemZISD::REPLICATE;
747       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
748                                SystemZ::VectorBits / SplatBitSize);
749       return true;
750     }
751     // Try VECTOR GENERATE MASK
752     unsigned Start, End;
753     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
754       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
755       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
756       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
757       OpVals.push_back(Start - (64 - SplatBitSize));
758       OpVals.push_back(End - (64 - SplatBitSize));
759       Opcode = SystemZISD::ROTATE_MASK;
760       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
761                                SystemZ::VectorBits / SplatBitSize);
762       return true;
763     }
764     return false;
765   };
766 
767   // First try assuming that any undefined bits above the highest set bit
768   // and below the lowest set bit are 1s.  This increases the likelihood of
769   // being able to use a sign-extended element value in VECTOR REPLICATE
770   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
771   uint64_t SplatBitsZ = SplatBits.getZExtValue();
772   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
773   uint64_t Lower =
774       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
775   uint64_t Upper =
776       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
777   if (tryValue(SplatBitsZ | Upper | Lower))
778     return true;
779 
780   // Now try assuming that any undefined bits between the first and
781   // last defined set bits are set.  This increases the chances of
782   // using a non-wraparound mask.
783   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
784   return tryValue(SplatBitsZ | Middle);
785 }
786 
787 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
788   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
789   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
790   SplatBits = FPImm.bitcastToAPInt();
791   unsigned Width = SplatBits.getBitWidth();
792   IntBits <<= (SystemZ::VectorBits - Width);
793 
794   // Find the smallest splat.
795   while (Width > 8) {
796     unsigned HalfSize = Width / 2;
797     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
798     APInt LowValue = SplatBits.trunc(HalfSize);
799 
800     // If the two halves do not match, stop here.
801     if (HighValue != LowValue || 8 > HalfSize)
802       break;
803 
804     SplatBits = HighValue;
805     Width = HalfSize;
806   }
807   SplatUndef = 0;
808   SplatBitSize = Width;
809 }
810 
811 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
812   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
813   bool HasAnyUndefs;
814 
815   // Get IntBits by finding the 128 bit splat.
816   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
817                        true);
818 
819   // Get SplatBits by finding the 8 bit or greater splat.
820   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
821                        true);
822 }
823 
824 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
825                                          bool ForCodeSize) const {
826   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
827   if (Imm.isZero() || Imm.isNegZero())
828     return true;
829 
830   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
831 }
832 
833 /// Returns true if stack probing through inline assembly is requested.
834 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
835   // If the function specifically requests inline stack probes, emit them.
836   if (MF.getFunction().hasFnAttribute("probe-stack"))
837     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
838            "inline-asm";
839   return false;
840 }
841 
842 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
843   // We can use CGFI or CLGFI.
844   return isInt<32>(Imm) || isUInt<32>(Imm);
845 }
846 
847 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
848   // We can use ALGFI or SLGFI.
849   return isUInt<32>(Imm) || isUInt<32>(-Imm);
850 }
851 
852 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
853     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
854   // Unaligned accesses should never be slower than the expanded version.
855   // We check specifically for aligned accesses in the few cases where
856   // they are required.
857   if (Fast)
858     *Fast = true;
859   return true;
860 }
861 
862 // Information about the addressing mode for a memory access.
863 struct AddressingMode {
864   // True if a long displacement is supported.
865   bool LongDisplacement;
866 
867   // True if use of index register is supported.
868   bool IndexReg;
869 
870   AddressingMode(bool LongDispl, bool IdxReg) :
871     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
872 };
873 
874 // Return the desired addressing mode for a Load which has only one use (in
875 // the same block) which is a Store.
876 static AddressingMode getLoadStoreAddrMode(bool HasVector,
877                                           Type *Ty) {
878   // With vector support a Load->Store combination may be combined to either
879   // an MVC or vector operations and it seems to work best to allow the
880   // vector addressing mode.
881   if (HasVector)
882     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
883 
884   // Otherwise only the MVC case is special.
885   bool MVC = Ty->isIntegerTy(8);
886   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
887 }
888 
889 // Return the addressing mode which seems most desirable given an LLVM
890 // Instruction pointer.
891 static AddressingMode
892 supportedAddressingMode(Instruction *I, bool HasVector) {
893   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
894     switch (II->getIntrinsicID()) {
895     default: break;
896     case Intrinsic::memset:
897     case Intrinsic::memmove:
898     case Intrinsic::memcpy:
899       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
900     }
901   }
902 
903   if (isa<LoadInst>(I) && I->hasOneUse()) {
904     auto *SingleUser = cast<Instruction>(*I->user_begin());
905     if (SingleUser->getParent() == I->getParent()) {
906       if (isa<ICmpInst>(SingleUser)) {
907         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
908           if (C->getBitWidth() <= 64 &&
909               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
910             // Comparison of memory with 16 bit signed / unsigned immediate
911             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
912       } else if (isa<StoreInst>(SingleUser))
913         // Load->Store
914         return getLoadStoreAddrMode(HasVector, I->getType());
915     }
916   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
917     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
918       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
919         // Load->Store
920         return getLoadStoreAddrMode(HasVector, LoadI->getType());
921   }
922 
923   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
924 
925     // * Use LDE instead of LE/LEY for z13 to avoid partial register
926     //   dependencies (LDE only supports small offsets).
927     // * Utilize the vector registers to hold floating point
928     //   values (vector load / store instructions only support small
929     //   offsets).
930 
931     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
932                          I->getOperand(0)->getType());
933     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
934     bool IsVectorAccess = MemAccessTy->isVectorTy();
935 
936     // A store of an extracted vector element will be combined into a VSTE type
937     // instruction.
938     if (!IsVectorAccess && isa<StoreInst>(I)) {
939       Value *DataOp = I->getOperand(0);
940       if (isa<ExtractElementInst>(DataOp))
941         IsVectorAccess = true;
942     }
943 
944     // A load which gets inserted into a vector element will be combined into a
945     // VLE type instruction.
946     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
947       User *LoadUser = *I->user_begin();
948       if (isa<InsertElementInst>(LoadUser))
949         IsVectorAccess = true;
950     }
951 
952     if (IsFPAccess || IsVectorAccess)
953       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
954   }
955 
956   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
957 }
958 
959 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
960        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
961   // Punt on globals for now, although they can be used in limited
962   // RELATIVE LONG cases.
963   if (AM.BaseGV)
964     return false;
965 
966   // Require a 20-bit signed offset.
967   if (!isInt<20>(AM.BaseOffs))
968     return false;
969 
970   AddressingMode SupportedAM(true, true);
971   if (I != nullptr)
972     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
973 
974   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
975     return false;
976 
977   if (!SupportedAM.IndexReg)
978     // No indexing allowed.
979     return AM.Scale == 0;
980   else
981     // Indexing is OK but no scale factor can be applied.
982     return AM.Scale == 0 || AM.Scale == 1;
983 }
984 
985 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
986   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
987     return false;
988   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
989   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
990   return FromBits > ToBits;
991 }
992 
993 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
994   if (!FromVT.isInteger() || !ToVT.isInteger())
995     return false;
996   unsigned FromBits = FromVT.getFixedSizeInBits();
997   unsigned ToBits = ToVT.getFixedSizeInBits();
998   return FromBits > ToBits;
999 }
1000 
1001 //===----------------------------------------------------------------------===//
1002 // Inline asm support
1003 //===----------------------------------------------------------------------===//
1004 
1005 TargetLowering::ConstraintType
1006 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1007   if (Constraint.size() == 1) {
1008     switch (Constraint[0]) {
1009     case 'a': // Address register
1010     case 'd': // Data register (equivalent to 'r')
1011     case 'f': // Floating-point register
1012     case 'h': // High-part register
1013     case 'r': // General-purpose register
1014     case 'v': // Vector register
1015       return C_RegisterClass;
1016 
1017     case 'Q': // Memory with base and unsigned 12-bit displacement
1018     case 'R': // Likewise, plus an index
1019     case 'S': // Memory with base and signed 20-bit displacement
1020     case 'T': // Likewise, plus an index
1021     case 'm': // Equivalent to 'T'.
1022       return C_Memory;
1023 
1024     case 'I': // Unsigned 8-bit constant
1025     case 'J': // Unsigned 12-bit constant
1026     case 'K': // Signed 16-bit constant
1027     case 'L': // Signed 20-bit displacement (on all targets we support)
1028     case 'M': // 0x7fffffff
1029       return C_Immediate;
1030 
1031     default:
1032       break;
1033     }
1034   }
1035   return TargetLowering::getConstraintType(Constraint);
1036 }
1037 
1038 TargetLowering::ConstraintWeight SystemZTargetLowering::
1039 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1040                                const char *constraint) const {
1041   ConstraintWeight weight = CW_Invalid;
1042   Value *CallOperandVal = info.CallOperandVal;
1043   // If we don't have a value, we can't do a match,
1044   // but allow it at the lowest weight.
1045   if (!CallOperandVal)
1046     return CW_Default;
1047   Type *type = CallOperandVal->getType();
1048   // Look at the constraint type.
1049   switch (*constraint) {
1050   default:
1051     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1052     break;
1053 
1054   case 'a': // Address register
1055   case 'd': // Data register (equivalent to 'r')
1056   case 'h': // High-part register
1057   case 'r': // General-purpose register
1058     if (CallOperandVal->getType()->isIntegerTy())
1059       weight = CW_Register;
1060     break;
1061 
1062   case 'f': // Floating-point register
1063     if (type->isFloatingPointTy())
1064       weight = CW_Register;
1065     break;
1066 
1067   case 'v': // Vector register
1068     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1069         Subtarget.hasVector())
1070       weight = CW_Register;
1071     break;
1072 
1073   case 'I': // Unsigned 8-bit constant
1074     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1075       if (isUInt<8>(C->getZExtValue()))
1076         weight = CW_Constant;
1077     break;
1078 
1079   case 'J': // Unsigned 12-bit constant
1080     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1081       if (isUInt<12>(C->getZExtValue()))
1082         weight = CW_Constant;
1083     break;
1084 
1085   case 'K': // Signed 16-bit constant
1086     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1087       if (isInt<16>(C->getSExtValue()))
1088         weight = CW_Constant;
1089     break;
1090 
1091   case 'L': // Signed 20-bit displacement (on all targets we support)
1092     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1093       if (isInt<20>(C->getSExtValue()))
1094         weight = CW_Constant;
1095     break;
1096 
1097   case 'M': // 0x7fffffff
1098     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1099       if (C->getZExtValue() == 0x7fffffff)
1100         weight = CW_Constant;
1101     break;
1102   }
1103   return weight;
1104 }
1105 
1106 // Parse a "{tNNN}" register constraint for which the register type "t"
1107 // has already been verified.  MC is the class associated with "t" and
1108 // Map maps 0-based register numbers to LLVM register numbers.
1109 static std::pair<unsigned, const TargetRegisterClass *>
1110 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1111                     const unsigned *Map, unsigned Size) {
1112   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1113   if (isdigit(Constraint[2])) {
1114     unsigned Index;
1115     bool Failed =
1116         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1117     if (!Failed && Index < Size && Map[Index])
1118       return std::make_pair(Map[Index], RC);
1119   }
1120   return std::make_pair(0U, nullptr);
1121 }
1122 
1123 std::pair<unsigned, const TargetRegisterClass *>
1124 SystemZTargetLowering::getRegForInlineAsmConstraint(
1125     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1126   if (Constraint.size() == 1) {
1127     // GCC Constraint Letters
1128     switch (Constraint[0]) {
1129     default: break;
1130     case 'd': // Data register (equivalent to 'r')
1131     case 'r': // General-purpose register
1132       if (VT == MVT::i64)
1133         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1134       else if (VT == MVT::i128)
1135         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1136       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1137 
1138     case 'a': // Address register
1139       if (VT == MVT::i64)
1140         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1141       else if (VT == MVT::i128)
1142         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1143       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1144 
1145     case 'h': // High-part register (an LLVM extension)
1146       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1147 
1148     case 'f': // Floating-point register
1149       if (!useSoftFloat()) {
1150         if (VT == MVT::f64)
1151           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1152         else if (VT == MVT::f128)
1153           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1154         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1155       }
1156       break;
1157     case 'v': // Vector register
1158       if (Subtarget.hasVector()) {
1159         if (VT == MVT::f32)
1160           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1161         if (VT == MVT::f64)
1162           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1163         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1164       }
1165       break;
1166     }
1167   }
1168   if (Constraint.size() > 0 && Constraint[0] == '{') {
1169     // We need to override the default register parsing for GPRs and FPRs
1170     // because the interpretation depends on VT.  The internal names of
1171     // the registers are also different from the external names
1172     // (F0D and F0S instead of F0, etc.).
1173     if (Constraint[1] == 'r') {
1174       if (VT == MVT::i32)
1175         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1176                                    SystemZMC::GR32Regs, 16);
1177       if (VT == MVT::i128)
1178         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1179                                    SystemZMC::GR128Regs, 16);
1180       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1181                                  SystemZMC::GR64Regs, 16);
1182     }
1183     if (Constraint[1] == 'f') {
1184       if (useSoftFloat())
1185         return std::make_pair(
1186             0u, static_cast<const TargetRegisterClass *>(nullptr));
1187       if (VT == MVT::f32)
1188         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1189                                    SystemZMC::FP32Regs, 16);
1190       if (VT == MVT::f128)
1191         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1192                                    SystemZMC::FP128Regs, 16);
1193       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1194                                  SystemZMC::FP64Regs, 16);
1195     }
1196     if (Constraint[1] == 'v') {
1197       if (!Subtarget.hasVector())
1198         return std::make_pair(
1199             0u, static_cast<const TargetRegisterClass *>(nullptr));
1200       if (VT == MVT::f32)
1201         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1202                                    SystemZMC::VR32Regs, 32);
1203       if (VT == MVT::f64)
1204         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1205                                    SystemZMC::VR64Regs, 32);
1206       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1207                                  SystemZMC::VR128Regs, 32);
1208     }
1209   }
1210   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1211 }
1212 
1213 // FIXME? Maybe this could be a TableGen attribute on some registers and
1214 // this table could be generated automatically from RegInfo.
1215 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1216                                                   const MachineFunction &MF) const {
1217 
1218   Register Reg = StringSwitch<Register>(RegName)
1219                    .Case("r15", SystemZ::R15D)
1220                    .Default(0);
1221   if (Reg)
1222     return Reg;
1223   report_fatal_error("Invalid register name global variable");
1224 }
1225 
1226 void SystemZTargetLowering::
1227 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1228                              std::vector<SDValue> &Ops,
1229                              SelectionDAG &DAG) const {
1230   // Only support length 1 constraints for now.
1231   if (Constraint.length() == 1) {
1232     switch (Constraint[0]) {
1233     case 'I': // Unsigned 8-bit constant
1234       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1235         if (isUInt<8>(C->getZExtValue()))
1236           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1237                                               Op.getValueType()));
1238       return;
1239 
1240     case 'J': // Unsigned 12-bit constant
1241       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1242         if (isUInt<12>(C->getZExtValue()))
1243           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1244                                               Op.getValueType()));
1245       return;
1246 
1247     case 'K': // Signed 16-bit constant
1248       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1249         if (isInt<16>(C->getSExtValue()))
1250           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1251                                               Op.getValueType()));
1252       return;
1253 
1254     case 'L': // Signed 20-bit displacement (on all targets we support)
1255       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1256         if (isInt<20>(C->getSExtValue()))
1257           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1258                                               Op.getValueType()));
1259       return;
1260 
1261     case 'M': // 0x7fffffff
1262       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1263         if (C->getZExtValue() == 0x7fffffff)
1264           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1265                                               Op.getValueType()));
1266       return;
1267     }
1268   }
1269   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1270 }
1271 
1272 //===----------------------------------------------------------------------===//
1273 // Calling conventions
1274 //===----------------------------------------------------------------------===//
1275 
1276 #include "SystemZGenCallingConv.inc"
1277 
1278 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1279   CallingConv::ID) const {
1280   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1281                                            SystemZ::R14D, 0 };
1282   return ScratchRegs;
1283 }
1284 
1285 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1286                                                      Type *ToType) const {
1287   return isTruncateFree(FromType, ToType);
1288 }
1289 
1290 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1291   return CI->isTailCall();
1292 }
1293 
1294 // We do not yet support 128-bit single-element vector types.  If the user
1295 // attempts to use such types as function argument or return type, prefer
1296 // to error out instead of emitting code violating the ABI.
1297 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1298   if (ArgVT.isVector() && !VT.isVector())
1299     report_fatal_error("Unsupported vector argument or return type");
1300 }
1301 
1302 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1303   for (unsigned i = 0; i < Ins.size(); ++i)
1304     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1305 }
1306 
1307 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1308   for (unsigned i = 0; i < Outs.size(); ++i)
1309     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1310 }
1311 
1312 // Value is a value that has been passed to us in the location described by VA
1313 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1314 // any loads onto Chain.
1315 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1316                                    CCValAssign &VA, SDValue Chain,
1317                                    SDValue Value) {
1318   // If the argument has been promoted from a smaller type, insert an
1319   // assertion to capture this.
1320   if (VA.getLocInfo() == CCValAssign::SExt)
1321     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1322                         DAG.getValueType(VA.getValVT()));
1323   else if (VA.getLocInfo() == CCValAssign::ZExt)
1324     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1325                         DAG.getValueType(VA.getValVT()));
1326 
1327   if (VA.isExtInLoc())
1328     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1329   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1330     // If this is a short vector argument loaded from the stack,
1331     // extend from i64 to full vector size and then bitcast.
1332     assert(VA.getLocVT() == MVT::i64);
1333     assert(VA.getValVT().isVector());
1334     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1335     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1336   } else
1337     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1338   return Value;
1339 }
1340 
1341 // Value is a value of type VA.getValVT() that we need to copy into
1342 // the location described by VA.  Return a copy of Value converted to
1343 // VA.getValVT().  The caller is responsible for handling indirect values.
1344 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1345                                    CCValAssign &VA, SDValue Value) {
1346   switch (VA.getLocInfo()) {
1347   case CCValAssign::SExt:
1348     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1349   case CCValAssign::ZExt:
1350     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1351   case CCValAssign::AExt:
1352     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1353   case CCValAssign::BCvt:
1354     // If this is a short vector argument to be stored to the stack,
1355     // bitcast to v2i64 and then extract first element.
1356     assert(VA.getLocVT() == MVT::i64);
1357     assert(VA.getValVT().isVector());
1358     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1359     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1360                        DAG.getConstant(0, DL, MVT::i32));
1361   case CCValAssign::Full:
1362     return Value;
1363   default:
1364     llvm_unreachable("Unhandled getLocInfo()");
1365   }
1366 }
1367 
1368 SDValue SystemZTargetLowering::LowerFormalArguments(
1369     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1370     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1371     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1372   MachineFunction &MF = DAG.getMachineFunction();
1373   MachineFrameInfo &MFI = MF.getFrameInfo();
1374   MachineRegisterInfo &MRI = MF.getRegInfo();
1375   SystemZMachineFunctionInfo *FuncInfo =
1376       MF.getInfo<SystemZMachineFunctionInfo>();
1377   auto *TFL =
1378       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1379   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1380 
1381   // Detect unsupported vector argument types.
1382   if (Subtarget.hasVector())
1383     VerifyVectorTypes(Ins);
1384 
1385   // Assign locations to all of the incoming arguments.
1386   SmallVector<CCValAssign, 16> ArgLocs;
1387   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1388   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1389 
1390   unsigned NumFixedGPRs = 0;
1391   unsigned NumFixedFPRs = 0;
1392   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1393     SDValue ArgValue;
1394     CCValAssign &VA = ArgLocs[I];
1395     EVT LocVT = VA.getLocVT();
1396     if (VA.isRegLoc()) {
1397       // Arguments passed in registers
1398       const TargetRegisterClass *RC;
1399       switch (LocVT.getSimpleVT().SimpleTy) {
1400       default:
1401         // Integers smaller than i64 should be promoted to i64.
1402         llvm_unreachable("Unexpected argument type");
1403       case MVT::i32:
1404         NumFixedGPRs += 1;
1405         RC = &SystemZ::GR32BitRegClass;
1406         break;
1407       case MVT::i64:
1408         NumFixedGPRs += 1;
1409         RC = &SystemZ::GR64BitRegClass;
1410         break;
1411       case MVT::f32:
1412         NumFixedFPRs += 1;
1413         RC = &SystemZ::FP32BitRegClass;
1414         break;
1415       case MVT::f64:
1416         NumFixedFPRs += 1;
1417         RC = &SystemZ::FP64BitRegClass;
1418         break;
1419       case MVT::v16i8:
1420       case MVT::v8i16:
1421       case MVT::v4i32:
1422       case MVT::v2i64:
1423       case MVT::v4f32:
1424       case MVT::v2f64:
1425         RC = &SystemZ::VR128BitRegClass;
1426         break;
1427       }
1428 
1429       Register VReg = MRI.createVirtualRegister(RC);
1430       MRI.addLiveIn(VA.getLocReg(), VReg);
1431       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1432     } else {
1433       assert(VA.isMemLoc() && "Argument not register or memory");
1434 
1435       // Create the frame index object for this incoming parameter.
1436       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1437                                      VA.getLocMemOffset(), true);
1438 
1439       // Create the SelectionDAG nodes corresponding to a load
1440       // from this parameter.  Unpromoted ints and floats are
1441       // passed as right-justified 8-byte values.
1442       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1443       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1444         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1445                           DAG.getIntPtrConstant(4, DL));
1446       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1447                              MachinePointerInfo::getFixedStack(MF, FI));
1448     }
1449 
1450     // Convert the value of the argument register into the value that's
1451     // being passed.
1452     if (VA.getLocInfo() == CCValAssign::Indirect) {
1453       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1454                                    MachinePointerInfo()));
1455       // If the original argument was split (e.g. i128), we need
1456       // to load all parts of it here (using the same address).
1457       unsigned ArgIndex = Ins[I].OrigArgIndex;
1458       assert (Ins[I].PartOffset == 0);
1459       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1460         CCValAssign &PartVA = ArgLocs[I + 1];
1461         unsigned PartOffset = Ins[I + 1].PartOffset;
1462         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1463                                       DAG.getIntPtrConstant(PartOffset, DL));
1464         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1465                                      MachinePointerInfo()));
1466         ++I;
1467       }
1468     } else
1469       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1470   }
1471 
1472   if (IsVarArg) {
1473     // Save the number of non-varargs registers for later use by va_start, etc.
1474     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1475     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1476 
1477     // Likewise the address (in the form of a frame index) of where the
1478     // first stack vararg would be.  The 1-byte size here is arbitrary.
1479     int64_t StackSize = CCInfo.getNextStackOffset();
1480     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1481 
1482     // ...and a similar frame index for the caller-allocated save area
1483     // that will be used to store the incoming registers.
1484     int64_t RegSaveOffset =
1485       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1486     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1487     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1488 
1489     // Store the FPR varargs in the reserved frame slots.  (We store the
1490     // GPRs as part of the prologue.)
1491     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1492       SDValue MemOps[SystemZ::NumArgFPRs];
1493       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1494         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1495         int FI =
1496           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1497         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1498         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1499                                      &SystemZ::FP64BitRegClass);
1500         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1501         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1502                                  MachinePointerInfo::getFixedStack(MF, FI));
1503       }
1504       // Join the stores, which are independent of one another.
1505       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1506                           makeArrayRef(&MemOps[NumFixedFPRs],
1507                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1508     }
1509   }
1510 
1511   return Chain;
1512 }
1513 
1514 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1515                               SmallVectorImpl<CCValAssign> &ArgLocs,
1516                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1517   // Punt if there are any indirect or stack arguments, or if the call
1518   // needs the callee-saved argument register R6, or if the call uses
1519   // the callee-saved register arguments SwiftSelf and SwiftError.
1520   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1521     CCValAssign &VA = ArgLocs[I];
1522     if (VA.getLocInfo() == CCValAssign::Indirect)
1523       return false;
1524     if (!VA.isRegLoc())
1525       return false;
1526     Register Reg = VA.getLocReg();
1527     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1528       return false;
1529     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1530       return false;
1531   }
1532   return true;
1533 }
1534 
1535 SDValue
1536 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1537                                  SmallVectorImpl<SDValue> &InVals) const {
1538   SelectionDAG &DAG = CLI.DAG;
1539   SDLoc &DL = CLI.DL;
1540   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1541   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1542   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1543   SDValue Chain = CLI.Chain;
1544   SDValue Callee = CLI.Callee;
1545   bool &IsTailCall = CLI.IsTailCall;
1546   CallingConv::ID CallConv = CLI.CallConv;
1547   bool IsVarArg = CLI.IsVarArg;
1548   MachineFunction &MF = DAG.getMachineFunction();
1549   EVT PtrVT = getPointerTy(MF.getDataLayout());
1550 
1551   // Detect unsupported vector argument and return types.
1552   if (Subtarget.hasVector()) {
1553     VerifyVectorTypes(Outs);
1554     VerifyVectorTypes(Ins);
1555   }
1556 
1557   // Analyze the operands of the call, assigning locations to each operand.
1558   SmallVector<CCValAssign, 16> ArgLocs;
1559   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1560   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1561 
1562   // We don't support GuaranteedTailCallOpt, only automatically-detected
1563   // sibling calls.
1564   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1565     IsTailCall = false;
1566 
1567   // Get a count of how many bytes are to be pushed on the stack.
1568   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1569 
1570   // Mark the start of the call.
1571   if (!IsTailCall)
1572     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1573 
1574   // Copy argument values to their designated locations.
1575   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1576   SmallVector<SDValue, 8> MemOpChains;
1577   SDValue StackPtr;
1578   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1579     CCValAssign &VA = ArgLocs[I];
1580     SDValue ArgValue = OutVals[I];
1581 
1582     if (VA.getLocInfo() == CCValAssign::Indirect) {
1583       // Store the argument in a stack slot and pass its address.
1584       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1585       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1586       MemOpChains.push_back(
1587           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1588                        MachinePointerInfo::getFixedStack(MF, FI)));
1589       // If the original argument was split (e.g. i128), we need
1590       // to store all parts of it here (and pass just one address).
1591       unsigned ArgIndex = Outs[I].OrigArgIndex;
1592       assert (Outs[I].PartOffset == 0);
1593       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1594         SDValue PartValue = OutVals[I + 1];
1595         unsigned PartOffset = Outs[I + 1].PartOffset;
1596         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1597                                       DAG.getIntPtrConstant(PartOffset, DL));
1598         MemOpChains.push_back(
1599             DAG.getStore(Chain, DL, PartValue, Address,
1600                          MachinePointerInfo::getFixedStack(MF, FI)));
1601         ++I;
1602       }
1603       ArgValue = SpillSlot;
1604     } else
1605       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1606 
1607     if (VA.isRegLoc())
1608       // Queue up the argument copies and emit them at the end.
1609       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1610     else {
1611       assert(VA.isMemLoc() && "Argument not register or memory");
1612 
1613       // Work out the address of the stack slot.  Unpromoted ints and
1614       // floats are passed as right-justified 8-byte values.
1615       if (!StackPtr.getNode())
1616         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1617       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1618       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1619         Offset += 4;
1620       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1621                                     DAG.getIntPtrConstant(Offset, DL));
1622 
1623       // Emit the store.
1624       MemOpChains.push_back(
1625           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1626     }
1627   }
1628 
1629   // Join the stores, which are independent of one another.
1630   if (!MemOpChains.empty())
1631     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1632 
1633   // Accept direct calls by converting symbolic call addresses to the
1634   // associated Target* opcodes.  Force %r1 to be used for indirect
1635   // tail calls.
1636   SDValue Glue;
1637   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1638     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1639     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1640   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1641     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1642     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1643   } else if (IsTailCall) {
1644     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1645     Glue = Chain.getValue(1);
1646     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1647   }
1648 
1649   // Build a sequence of copy-to-reg nodes, chained and glued together.
1650   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1651     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1652                              RegsToPass[I].second, Glue);
1653     Glue = Chain.getValue(1);
1654   }
1655 
1656   // The first call operand is the chain and the second is the target address.
1657   SmallVector<SDValue, 8> Ops;
1658   Ops.push_back(Chain);
1659   Ops.push_back(Callee);
1660 
1661   // Add argument registers to the end of the list so that they are
1662   // known live into the call.
1663   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1664     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1665                                   RegsToPass[I].second.getValueType()));
1666 
1667   // Add a register mask operand representing the call-preserved registers.
1668   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1669   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1670   assert(Mask && "Missing call preserved mask for calling convention");
1671   Ops.push_back(DAG.getRegisterMask(Mask));
1672 
1673   // Glue the call to the argument copies, if any.
1674   if (Glue.getNode())
1675     Ops.push_back(Glue);
1676 
1677   // Emit the call.
1678   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1679   if (IsTailCall)
1680     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1681   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1682   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1683   Glue = Chain.getValue(1);
1684 
1685   // Mark the end of the call, which is glued to the call itself.
1686   Chain = DAG.getCALLSEQ_END(Chain,
1687                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1688                              DAG.getConstant(0, DL, PtrVT, true),
1689                              Glue, DL);
1690   Glue = Chain.getValue(1);
1691 
1692   // Assign locations to each value returned by this call.
1693   SmallVector<CCValAssign, 16> RetLocs;
1694   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1695   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1696 
1697   // Copy all of the result registers out of their specified physreg.
1698   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1699     CCValAssign &VA = RetLocs[I];
1700 
1701     // Copy the value out, gluing the copy to the end of the call sequence.
1702     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1703                                           VA.getLocVT(), Glue);
1704     Chain = RetValue.getValue(1);
1705     Glue = RetValue.getValue(2);
1706 
1707     // Convert the value of the return register into the value that's
1708     // being returned.
1709     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1710   }
1711 
1712   return Chain;
1713 }
1714 
1715 bool SystemZTargetLowering::
1716 CanLowerReturn(CallingConv::ID CallConv,
1717                MachineFunction &MF, bool isVarArg,
1718                const SmallVectorImpl<ISD::OutputArg> &Outs,
1719                LLVMContext &Context) const {
1720   // Detect unsupported vector return types.
1721   if (Subtarget.hasVector())
1722     VerifyVectorTypes(Outs);
1723 
1724   // Special case that we cannot easily detect in RetCC_SystemZ since
1725   // i128 is not a legal type.
1726   for (auto &Out : Outs)
1727     if (Out.ArgVT == MVT::i128)
1728       return false;
1729 
1730   SmallVector<CCValAssign, 16> RetLocs;
1731   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1732   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1733 }
1734 
1735 SDValue
1736 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1737                                    bool IsVarArg,
1738                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1739                                    const SmallVectorImpl<SDValue> &OutVals,
1740                                    const SDLoc &DL, SelectionDAG &DAG) const {
1741   MachineFunction &MF = DAG.getMachineFunction();
1742 
1743   // Detect unsupported vector return types.
1744   if (Subtarget.hasVector())
1745     VerifyVectorTypes(Outs);
1746 
1747   // Assign locations to each returned value.
1748   SmallVector<CCValAssign, 16> RetLocs;
1749   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1750   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1751 
1752   // Quick exit for void returns
1753   if (RetLocs.empty())
1754     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1755 
1756   if (CallConv == CallingConv::GHC)
1757     report_fatal_error("GHC functions return void only");
1758 
1759   // Copy the result values into the output registers.
1760   SDValue Glue;
1761   SmallVector<SDValue, 4> RetOps;
1762   RetOps.push_back(Chain);
1763   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1764     CCValAssign &VA = RetLocs[I];
1765     SDValue RetValue = OutVals[I];
1766 
1767     // Make the return register live on exit.
1768     assert(VA.isRegLoc() && "Can only return in registers!");
1769 
1770     // Promote the value as required.
1771     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1772 
1773     // Chain and glue the copies together.
1774     Register Reg = VA.getLocReg();
1775     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1776     Glue = Chain.getValue(1);
1777     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1778   }
1779 
1780   // Update chain and glue.
1781   RetOps[0] = Chain;
1782   if (Glue.getNode())
1783     RetOps.push_back(Glue);
1784 
1785   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1786 }
1787 
1788 // Return true if Op is an intrinsic node with chain that returns the CC value
1789 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1790 // the mask of valid CC values if so.
1791 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1792                                       unsigned &CCValid) {
1793   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1794   switch (Id) {
1795   case Intrinsic::s390_tbegin:
1796     Opcode = SystemZISD::TBEGIN;
1797     CCValid = SystemZ::CCMASK_TBEGIN;
1798     return true;
1799 
1800   case Intrinsic::s390_tbegin_nofloat:
1801     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1802     CCValid = SystemZ::CCMASK_TBEGIN;
1803     return true;
1804 
1805   case Intrinsic::s390_tend:
1806     Opcode = SystemZISD::TEND;
1807     CCValid = SystemZ::CCMASK_TEND;
1808     return true;
1809 
1810   default:
1811     return false;
1812   }
1813 }
1814 
1815 // Return true if Op is an intrinsic node without chain that returns the
1816 // CC value as its final argument.  Provide the associated SystemZISD
1817 // opcode and the mask of valid CC values if so.
1818 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1819   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1820   switch (Id) {
1821   case Intrinsic::s390_vpkshs:
1822   case Intrinsic::s390_vpksfs:
1823   case Intrinsic::s390_vpksgs:
1824     Opcode = SystemZISD::PACKS_CC;
1825     CCValid = SystemZ::CCMASK_VCMP;
1826     return true;
1827 
1828   case Intrinsic::s390_vpklshs:
1829   case Intrinsic::s390_vpklsfs:
1830   case Intrinsic::s390_vpklsgs:
1831     Opcode = SystemZISD::PACKLS_CC;
1832     CCValid = SystemZ::CCMASK_VCMP;
1833     return true;
1834 
1835   case Intrinsic::s390_vceqbs:
1836   case Intrinsic::s390_vceqhs:
1837   case Intrinsic::s390_vceqfs:
1838   case Intrinsic::s390_vceqgs:
1839     Opcode = SystemZISD::VICMPES;
1840     CCValid = SystemZ::CCMASK_VCMP;
1841     return true;
1842 
1843   case Intrinsic::s390_vchbs:
1844   case Intrinsic::s390_vchhs:
1845   case Intrinsic::s390_vchfs:
1846   case Intrinsic::s390_vchgs:
1847     Opcode = SystemZISD::VICMPHS;
1848     CCValid = SystemZ::CCMASK_VCMP;
1849     return true;
1850 
1851   case Intrinsic::s390_vchlbs:
1852   case Intrinsic::s390_vchlhs:
1853   case Intrinsic::s390_vchlfs:
1854   case Intrinsic::s390_vchlgs:
1855     Opcode = SystemZISD::VICMPHLS;
1856     CCValid = SystemZ::CCMASK_VCMP;
1857     return true;
1858 
1859   case Intrinsic::s390_vtm:
1860     Opcode = SystemZISD::VTM;
1861     CCValid = SystemZ::CCMASK_VCMP;
1862     return true;
1863 
1864   case Intrinsic::s390_vfaebs:
1865   case Intrinsic::s390_vfaehs:
1866   case Intrinsic::s390_vfaefs:
1867     Opcode = SystemZISD::VFAE_CC;
1868     CCValid = SystemZ::CCMASK_ANY;
1869     return true;
1870 
1871   case Intrinsic::s390_vfaezbs:
1872   case Intrinsic::s390_vfaezhs:
1873   case Intrinsic::s390_vfaezfs:
1874     Opcode = SystemZISD::VFAEZ_CC;
1875     CCValid = SystemZ::CCMASK_ANY;
1876     return true;
1877 
1878   case Intrinsic::s390_vfeebs:
1879   case Intrinsic::s390_vfeehs:
1880   case Intrinsic::s390_vfeefs:
1881     Opcode = SystemZISD::VFEE_CC;
1882     CCValid = SystemZ::CCMASK_ANY;
1883     return true;
1884 
1885   case Intrinsic::s390_vfeezbs:
1886   case Intrinsic::s390_vfeezhs:
1887   case Intrinsic::s390_vfeezfs:
1888     Opcode = SystemZISD::VFEEZ_CC;
1889     CCValid = SystemZ::CCMASK_ANY;
1890     return true;
1891 
1892   case Intrinsic::s390_vfenebs:
1893   case Intrinsic::s390_vfenehs:
1894   case Intrinsic::s390_vfenefs:
1895     Opcode = SystemZISD::VFENE_CC;
1896     CCValid = SystemZ::CCMASK_ANY;
1897     return true;
1898 
1899   case Intrinsic::s390_vfenezbs:
1900   case Intrinsic::s390_vfenezhs:
1901   case Intrinsic::s390_vfenezfs:
1902     Opcode = SystemZISD::VFENEZ_CC;
1903     CCValid = SystemZ::CCMASK_ANY;
1904     return true;
1905 
1906   case Intrinsic::s390_vistrbs:
1907   case Intrinsic::s390_vistrhs:
1908   case Intrinsic::s390_vistrfs:
1909     Opcode = SystemZISD::VISTR_CC;
1910     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1911     return true;
1912 
1913   case Intrinsic::s390_vstrcbs:
1914   case Intrinsic::s390_vstrchs:
1915   case Intrinsic::s390_vstrcfs:
1916     Opcode = SystemZISD::VSTRC_CC;
1917     CCValid = SystemZ::CCMASK_ANY;
1918     return true;
1919 
1920   case Intrinsic::s390_vstrczbs:
1921   case Intrinsic::s390_vstrczhs:
1922   case Intrinsic::s390_vstrczfs:
1923     Opcode = SystemZISD::VSTRCZ_CC;
1924     CCValid = SystemZ::CCMASK_ANY;
1925     return true;
1926 
1927   case Intrinsic::s390_vstrsb:
1928   case Intrinsic::s390_vstrsh:
1929   case Intrinsic::s390_vstrsf:
1930     Opcode = SystemZISD::VSTRS_CC;
1931     CCValid = SystemZ::CCMASK_ANY;
1932     return true;
1933 
1934   case Intrinsic::s390_vstrszb:
1935   case Intrinsic::s390_vstrszh:
1936   case Intrinsic::s390_vstrszf:
1937     Opcode = SystemZISD::VSTRSZ_CC;
1938     CCValid = SystemZ::CCMASK_ANY;
1939     return true;
1940 
1941   case Intrinsic::s390_vfcedbs:
1942   case Intrinsic::s390_vfcesbs:
1943     Opcode = SystemZISD::VFCMPES;
1944     CCValid = SystemZ::CCMASK_VCMP;
1945     return true;
1946 
1947   case Intrinsic::s390_vfchdbs:
1948   case Intrinsic::s390_vfchsbs:
1949     Opcode = SystemZISD::VFCMPHS;
1950     CCValid = SystemZ::CCMASK_VCMP;
1951     return true;
1952 
1953   case Intrinsic::s390_vfchedbs:
1954   case Intrinsic::s390_vfchesbs:
1955     Opcode = SystemZISD::VFCMPHES;
1956     CCValid = SystemZ::CCMASK_VCMP;
1957     return true;
1958 
1959   case Intrinsic::s390_vftcidb:
1960   case Intrinsic::s390_vftcisb:
1961     Opcode = SystemZISD::VFTCI;
1962     CCValid = SystemZ::CCMASK_VCMP;
1963     return true;
1964 
1965   case Intrinsic::s390_tdc:
1966     Opcode = SystemZISD::TDC;
1967     CCValid = SystemZ::CCMASK_TDC;
1968     return true;
1969 
1970   default:
1971     return false;
1972   }
1973 }
1974 
1975 // Emit an intrinsic with chain and an explicit CC register result.
1976 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1977                                            unsigned Opcode) {
1978   // Copy all operands except the intrinsic ID.
1979   unsigned NumOps = Op.getNumOperands();
1980   SmallVector<SDValue, 6> Ops;
1981   Ops.reserve(NumOps - 1);
1982   Ops.push_back(Op.getOperand(0));
1983   for (unsigned I = 2; I < NumOps; ++I)
1984     Ops.push_back(Op.getOperand(I));
1985 
1986   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1987   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1988   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1989   SDValue OldChain = SDValue(Op.getNode(), 1);
1990   SDValue NewChain = SDValue(Intr.getNode(), 1);
1991   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1992   return Intr.getNode();
1993 }
1994 
1995 // Emit an intrinsic with an explicit CC register result.
1996 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1997                                    unsigned Opcode) {
1998   // Copy all operands except the intrinsic ID.
1999   unsigned NumOps = Op.getNumOperands();
2000   SmallVector<SDValue, 6> Ops;
2001   Ops.reserve(NumOps - 1);
2002   for (unsigned I = 1; I < NumOps; ++I)
2003     Ops.push_back(Op.getOperand(I));
2004 
2005   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2006   return Intr.getNode();
2007 }
2008 
2009 // CC is a comparison that will be implemented using an integer or
2010 // floating-point comparison.  Return the condition code mask for
2011 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2012 // unsigned comparisons and clear for signed ones.  In the floating-point
2013 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2014 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2015 #define CONV(X) \
2016   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2017   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2018   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2019 
2020   switch (CC) {
2021   default:
2022     llvm_unreachable("Invalid integer condition!");
2023 
2024   CONV(EQ);
2025   CONV(NE);
2026   CONV(GT);
2027   CONV(GE);
2028   CONV(LT);
2029   CONV(LE);
2030 
2031   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2032   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2033   }
2034 #undef CONV
2035 }
2036 
2037 // If C can be converted to a comparison against zero, adjust the operands
2038 // as necessary.
2039 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2040   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2041     return;
2042 
2043   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2044   if (!ConstOp1)
2045     return;
2046 
2047   int64_t Value = ConstOp1->getSExtValue();
2048   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2049       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2050       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2051       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2052     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2053     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2054   }
2055 }
2056 
2057 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2058 // adjust the operands as necessary.
2059 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2060                              Comparison &C) {
2061   // For us to make any changes, it must a comparison between a single-use
2062   // load and a constant.
2063   if (!C.Op0.hasOneUse() ||
2064       C.Op0.getOpcode() != ISD::LOAD ||
2065       C.Op1.getOpcode() != ISD::Constant)
2066     return;
2067 
2068   // We must have an 8- or 16-bit load.
2069   auto *Load = cast<LoadSDNode>(C.Op0);
2070   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2071   if ((NumBits != 8 && NumBits != 16) ||
2072       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2073     return;
2074 
2075   // The load must be an extending one and the constant must be within the
2076   // range of the unextended value.
2077   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2078   uint64_t Value = ConstOp1->getZExtValue();
2079   uint64_t Mask = (1 << NumBits) - 1;
2080   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2081     // Make sure that ConstOp1 is in range of C.Op0.
2082     int64_t SignedValue = ConstOp1->getSExtValue();
2083     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2084       return;
2085     if (C.ICmpType != SystemZICMP::SignedOnly) {
2086       // Unsigned comparison between two sign-extended values is equivalent
2087       // to unsigned comparison between two zero-extended values.
2088       Value &= Mask;
2089     } else if (NumBits == 8) {
2090       // Try to treat the comparison as unsigned, so that we can use CLI.
2091       // Adjust CCMask and Value as necessary.
2092       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2093         // Test whether the high bit of the byte is set.
2094         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2095       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2096         // Test whether the high bit of the byte is clear.
2097         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2098       else
2099         // No instruction exists for this combination.
2100         return;
2101       C.ICmpType = SystemZICMP::UnsignedOnly;
2102     }
2103   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2104     if (Value > Mask)
2105       return;
2106     // If the constant is in range, we can use any comparison.
2107     C.ICmpType = SystemZICMP::Any;
2108   } else
2109     return;
2110 
2111   // Make sure that the first operand is an i32 of the right extension type.
2112   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2113                               ISD::SEXTLOAD :
2114                               ISD::ZEXTLOAD);
2115   if (C.Op0.getValueType() != MVT::i32 ||
2116       Load->getExtensionType() != ExtType) {
2117     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2118                            Load->getBasePtr(), Load->getPointerInfo(),
2119                            Load->getMemoryVT(), Load->getAlignment(),
2120                            Load->getMemOperand()->getFlags());
2121     // Update the chain uses.
2122     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2123   }
2124 
2125   // Make sure that the second operand is an i32 with the right value.
2126   if (C.Op1.getValueType() != MVT::i32 ||
2127       Value != ConstOp1->getZExtValue())
2128     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2129 }
2130 
2131 // Return true if Op is either an unextended load, or a load suitable
2132 // for integer register-memory comparisons of type ICmpType.
2133 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2134   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2135   if (Load) {
2136     // There are no instructions to compare a register with a memory byte.
2137     if (Load->getMemoryVT() == MVT::i8)
2138       return false;
2139     // Otherwise decide on extension type.
2140     switch (Load->getExtensionType()) {
2141     case ISD::NON_EXTLOAD:
2142       return true;
2143     case ISD::SEXTLOAD:
2144       return ICmpType != SystemZICMP::UnsignedOnly;
2145     case ISD::ZEXTLOAD:
2146       return ICmpType != SystemZICMP::SignedOnly;
2147     default:
2148       break;
2149     }
2150   }
2151   return false;
2152 }
2153 
2154 // Return true if it is better to swap the operands of C.
2155 static bool shouldSwapCmpOperands(const Comparison &C) {
2156   // Leave f128 comparisons alone, since they have no memory forms.
2157   if (C.Op0.getValueType() == MVT::f128)
2158     return false;
2159 
2160   // Always keep a floating-point constant second, since comparisons with
2161   // zero can use LOAD TEST and comparisons with other constants make a
2162   // natural memory operand.
2163   if (isa<ConstantFPSDNode>(C.Op1))
2164     return false;
2165 
2166   // Never swap comparisons with zero since there are many ways to optimize
2167   // those later.
2168   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2169   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2170     return false;
2171 
2172   // Also keep natural memory operands second if the loaded value is
2173   // only used here.  Several comparisons have memory forms.
2174   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2175     return false;
2176 
2177   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2178   // In that case we generally prefer the memory to be second.
2179   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2180     // The only exceptions are when the second operand is a constant and
2181     // we can use things like CHHSI.
2182     if (!ConstOp1)
2183       return true;
2184     // The unsigned memory-immediate instructions can handle 16-bit
2185     // unsigned integers.
2186     if (C.ICmpType != SystemZICMP::SignedOnly &&
2187         isUInt<16>(ConstOp1->getZExtValue()))
2188       return false;
2189     // The signed memory-immediate instructions can handle 16-bit
2190     // signed integers.
2191     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2192         isInt<16>(ConstOp1->getSExtValue()))
2193       return false;
2194     return true;
2195   }
2196 
2197   // Try to promote the use of CGFR and CLGFR.
2198   unsigned Opcode0 = C.Op0.getOpcode();
2199   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2200     return true;
2201   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2202     return true;
2203   if (C.ICmpType != SystemZICMP::SignedOnly &&
2204       Opcode0 == ISD::AND &&
2205       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2206       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2207     return true;
2208 
2209   return false;
2210 }
2211 
2212 // Check whether C tests for equality between X and Y and whether X - Y
2213 // or Y - X is also computed.  In that case it's better to compare the
2214 // result of the subtraction against zero.
2215 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2216                                  Comparison &C) {
2217   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2218       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2219     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2220       SDNode *N = *I;
2221       if (N->getOpcode() == ISD::SUB &&
2222           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2223            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2224         C.Op0 = SDValue(N, 0);
2225         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2226         return;
2227       }
2228     }
2229   }
2230 }
2231 
2232 // Check whether C compares a floating-point value with zero and if that
2233 // floating-point value is also negated.  In this case we can use the
2234 // negation to set CC, so avoiding separate LOAD AND TEST and
2235 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2236 static void adjustForFNeg(Comparison &C) {
2237   // This optimization is invalid for strict comparisons, since FNEG
2238   // does not raise any exceptions.
2239   if (C.Chain)
2240     return;
2241   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2242   if (C1 && C1->isZero()) {
2243     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2244       SDNode *N = *I;
2245       if (N->getOpcode() == ISD::FNEG) {
2246         C.Op0 = SDValue(N, 0);
2247         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2248         return;
2249       }
2250     }
2251   }
2252 }
2253 
2254 // Check whether C compares (shl X, 32) with 0 and whether X is
2255 // also sign-extended.  In that case it is better to test the result
2256 // of the sign extension using LTGFR.
2257 //
2258 // This case is important because InstCombine transforms a comparison
2259 // with (sext (trunc X)) into a comparison with (shl X, 32).
2260 static void adjustForLTGFR(Comparison &C) {
2261   // Check for a comparison between (shl X, 32) and 0.
2262   if (C.Op0.getOpcode() == ISD::SHL &&
2263       C.Op0.getValueType() == MVT::i64 &&
2264       C.Op1.getOpcode() == ISD::Constant &&
2265       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2266     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2267     if (C1 && C1->getZExtValue() == 32) {
2268       SDValue ShlOp0 = C.Op0.getOperand(0);
2269       // See whether X has any SIGN_EXTEND_INREG uses.
2270       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2271         SDNode *N = *I;
2272         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2273             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2274           C.Op0 = SDValue(N, 0);
2275           return;
2276         }
2277       }
2278     }
2279   }
2280 }
2281 
2282 // If C compares the truncation of an extending load, try to compare
2283 // the untruncated value instead.  This exposes more opportunities to
2284 // reuse CC.
2285 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2286                                Comparison &C) {
2287   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2288       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2289       C.Op1.getOpcode() == ISD::Constant &&
2290       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2291     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2292     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2293         C.Op0.getValueSizeInBits().getFixedSize()) {
2294       unsigned Type = L->getExtensionType();
2295       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2296           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2297         C.Op0 = C.Op0.getOperand(0);
2298         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2299       }
2300     }
2301   }
2302 }
2303 
2304 // Return true if shift operation N has an in-range constant shift value.
2305 // Store it in ShiftVal if so.
2306 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2307   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2308   if (!Shift)
2309     return false;
2310 
2311   uint64_t Amount = Shift->getZExtValue();
2312   if (Amount >= N.getValueSizeInBits())
2313     return false;
2314 
2315   ShiftVal = Amount;
2316   return true;
2317 }
2318 
2319 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2320 // instruction and whether the CC value is descriptive enough to handle
2321 // a comparison of type Opcode between the AND result and CmpVal.
2322 // CCMask says which comparison result is being tested and BitSize is
2323 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2324 // return the corresponding CC mask, otherwise return 0.
2325 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2326                                      uint64_t Mask, uint64_t CmpVal,
2327                                      unsigned ICmpType) {
2328   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2329 
2330   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2331   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2332       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2333     return 0;
2334 
2335   // Work out the masks for the lowest and highest bits.
2336   unsigned HighShift = 63 - countLeadingZeros(Mask);
2337   uint64_t High = uint64_t(1) << HighShift;
2338   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2339 
2340   // Signed ordered comparisons are effectively unsigned if the sign
2341   // bit is dropped.
2342   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2343 
2344   // Check for equality comparisons with 0, or the equivalent.
2345   if (CmpVal == 0) {
2346     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2347       return SystemZ::CCMASK_TM_ALL_0;
2348     if (CCMask == SystemZ::CCMASK_CMP_NE)
2349       return SystemZ::CCMASK_TM_SOME_1;
2350   }
2351   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2352     if (CCMask == SystemZ::CCMASK_CMP_LT)
2353       return SystemZ::CCMASK_TM_ALL_0;
2354     if (CCMask == SystemZ::CCMASK_CMP_GE)
2355       return SystemZ::CCMASK_TM_SOME_1;
2356   }
2357   if (EffectivelyUnsigned && CmpVal < Low) {
2358     if (CCMask == SystemZ::CCMASK_CMP_LE)
2359       return SystemZ::CCMASK_TM_ALL_0;
2360     if (CCMask == SystemZ::CCMASK_CMP_GT)
2361       return SystemZ::CCMASK_TM_SOME_1;
2362   }
2363 
2364   // Check for equality comparisons with the mask, or the equivalent.
2365   if (CmpVal == Mask) {
2366     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2367       return SystemZ::CCMASK_TM_ALL_1;
2368     if (CCMask == SystemZ::CCMASK_CMP_NE)
2369       return SystemZ::CCMASK_TM_SOME_0;
2370   }
2371   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2372     if (CCMask == SystemZ::CCMASK_CMP_GT)
2373       return SystemZ::CCMASK_TM_ALL_1;
2374     if (CCMask == SystemZ::CCMASK_CMP_LE)
2375       return SystemZ::CCMASK_TM_SOME_0;
2376   }
2377   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2378     if (CCMask == SystemZ::CCMASK_CMP_GE)
2379       return SystemZ::CCMASK_TM_ALL_1;
2380     if (CCMask == SystemZ::CCMASK_CMP_LT)
2381       return SystemZ::CCMASK_TM_SOME_0;
2382   }
2383 
2384   // Check for ordered comparisons with the top bit.
2385   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2386     if (CCMask == SystemZ::CCMASK_CMP_LE)
2387       return SystemZ::CCMASK_TM_MSB_0;
2388     if (CCMask == SystemZ::CCMASK_CMP_GT)
2389       return SystemZ::CCMASK_TM_MSB_1;
2390   }
2391   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2392     if (CCMask == SystemZ::CCMASK_CMP_LT)
2393       return SystemZ::CCMASK_TM_MSB_0;
2394     if (CCMask == SystemZ::CCMASK_CMP_GE)
2395       return SystemZ::CCMASK_TM_MSB_1;
2396   }
2397 
2398   // If there are just two bits, we can do equality checks for Low and High
2399   // as well.
2400   if (Mask == Low + High) {
2401     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2402       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2403     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2404       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2405     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2406       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2407     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2408       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2409   }
2410 
2411   // Looks like we've exhausted our options.
2412   return 0;
2413 }
2414 
2415 // See whether C can be implemented as a TEST UNDER MASK instruction.
2416 // Update the arguments with the TM version if so.
2417 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2418                                    Comparison &C) {
2419   // Check that we have a comparison with a constant.
2420   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2421   if (!ConstOp1)
2422     return;
2423   uint64_t CmpVal = ConstOp1->getZExtValue();
2424 
2425   // Check whether the nonconstant input is an AND with a constant mask.
2426   Comparison NewC(C);
2427   uint64_t MaskVal;
2428   ConstantSDNode *Mask = nullptr;
2429   if (C.Op0.getOpcode() == ISD::AND) {
2430     NewC.Op0 = C.Op0.getOperand(0);
2431     NewC.Op1 = C.Op0.getOperand(1);
2432     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2433     if (!Mask)
2434       return;
2435     MaskVal = Mask->getZExtValue();
2436   } else {
2437     // There is no instruction to compare with a 64-bit immediate
2438     // so use TMHH instead if possible.  We need an unsigned ordered
2439     // comparison with an i64 immediate.
2440     if (NewC.Op0.getValueType() != MVT::i64 ||
2441         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2442         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2443         NewC.ICmpType == SystemZICMP::SignedOnly)
2444       return;
2445     // Convert LE and GT comparisons into LT and GE.
2446     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2447         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2448       if (CmpVal == uint64_t(-1))
2449         return;
2450       CmpVal += 1;
2451       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2452     }
2453     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2454     // be masked off without changing the result.
2455     MaskVal = -(CmpVal & -CmpVal);
2456     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2457   }
2458   if (!MaskVal)
2459     return;
2460 
2461   // Check whether the combination of mask, comparison value and comparison
2462   // type are suitable.
2463   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2464   unsigned NewCCMask, ShiftVal;
2465   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2466       NewC.Op0.getOpcode() == ISD::SHL &&
2467       isSimpleShift(NewC.Op0, ShiftVal) &&
2468       (MaskVal >> ShiftVal != 0) &&
2469       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2470       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2471                                         MaskVal >> ShiftVal,
2472                                         CmpVal >> ShiftVal,
2473                                         SystemZICMP::Any))) {
2474     NewC.Op0 = NewC.Op0.getOperand(0);
2475     MaskVal >>= ShiftVal;
2476   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2477              NewC.Op0.getOpcode() == ISD::SRL &&
2478              isSimpleShift(NewC.Op0, ShiftVal) &&
2479              (MaskVal << ShiftVal != 0) &&
2480              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2481              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2482                                                MaskVal << ShiftVal,
2483                                                CmpVal << ShiftVal,
2484                                                SystemZICMP::UnsignedOnly))) {
2485     NewC.Op0 = NewC.Op0.getOperand(0);
2486     MaskVal <<= ShiftVal;
2487   } else {
2488     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2489                                      NewC.ICmpType);
2490     if (!NewCCMask)
2491       return;
2492   }
2493 
2494   // Go ahead and make the change.
2495   C.Opcode = SystemZISD::TM;
2496   C.Op0 = NewC.Op0;
2497   if (Mask && Mask->getZExtValue() == MaskVal)
2498     C.Op1 = SDValue(Mask, 0);
2499   else
2500     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2501   C.CCValid = SystemZ::CCMASK_TM;
2502   C.CCMask = NewCCMask;
2503 }
2504 
2505 // See whether the comparison argument contains a redundant AND
2506 // and remove it if so.  This sometimes happens due to the generic
2507 // BRCOND expansion.
2508 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2509                                   Comparison &C) {
2510   if (C.Op0.getOpcode() != ISD::AND)
2511     return;
2512   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2513   if (!Mask)
2514     return;
2515   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2516   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2517     return;
2518 
2519   C.Op0 = C.Op0.getOperand(0);
2520 }
2521 
2522 // Return a Comparison that tests the condition-code result of intrinsic
2523 // node Call against constant integer CC using comparison code Cond.
2524 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2525 // and CCValid is the set of possible condition-code results.
2526 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2527                                   SDValue Call, unsigned CCValid, uint64_t CC,
2528                                   ISD::CondCode Cond) {
2529   Comparison C(Call, SDValue(), SDValue());
2530   C.Opcode = Opcode;
2531   C.CCValid = CCValid;
2532   if (Cond == ISD::SETEQ)
2533     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2534     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2535   else if (Cond == ISD::SETNE)
2536     // ...and the inverse of that.
2537     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2538   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2539     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2540     // always true for CC>3.
2541     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2542   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2543     // ...and the inverse of that.
2544     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2545   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2546     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2547     // always true for CC>3.
2548     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2549   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2550     // ...and the inverse of that.
2551     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2552   else
2553     llvm_unreachable("Unexpected integer comparison type");
2554   C.CCMask &= CCValid;
2555   return C;
2556 }
2557 
2558 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2559 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2560                          ISD::CondCode Cond, const SDLoc &DL,
2561                          SDValue Chain = SDValue(),
2562                          bool IsSignaling = false) {
2563   if (CmpOp1.getOpcode() == ISD::Constant) {
2564     assert(!Chain);
2565     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2566     unsigned Opcode, CCValid;
2567     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2568         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2569         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2570       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2571     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2572         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2573         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2574       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2575   }
2576   Comparison C(CmpOp0, CmpOp1, Chain);
2577   C.CCMask = CCMaskForCondCode(Cond);
2578   if (C.Op0.getValueType().isFloatingPoint()) {
2579     C.CCValid = SystemZ::CCMASK_FCMP;
2580     if (!C.Chain)
2581       C.Opcode = SystemZISD::FCMP;
2582     else if (!IsSignaling)
2583       C.Opcode = SystemZISD::STRICT_FCMP;
2584     else
2585       C.Opcode = SystemZISD::STRICT_FCMPS;
2586     adjustForFNeg(C);
2587   } else {
2588     assert(!C.Chain);
2589     C.CCValid = SystemZ::CCMASK_ICMP;
2590     C.Opcode = SystemZISD::ICMP;
2591     // Choose the type of comparison.  Equality and inequality tests can
2592     // use either signed or unsigned comparisons.  The choice also doesn't
2593     // matter if both sign bits are known to be clear.  In those cases we
2594     // want to give the main isel code the freedom to choose whichever
2595     // form fits best.
2596     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2597         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2598         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2599       C.ICmpType = SystemZICMP::Any;
2600     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2601       C.ICmpType = SystemZICMP::UnsignedOnly;
2602     else
2603       C.ICmpType = SystemZICMP::SignedOnly;
2604     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2605     adjustForRedundantAnd(DAG, DL, C);
2606     adjustZeroCmp(DAG, DL, C);
2607     adjustSubwordCmp(DAG, DL, C);
2608     adjustForSubtraction(DAG, DL, C);
2609     adjustForLTGFR(C);
2610     adjustICmpTruncate(DAG, DL, C);
2611   }
2612 
2613   if (shouldSwapCmpOperands(C)) {
2614     std::swap(C.Op0, C.Op1);
2615     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2616   }
2617 
2618   adjustForTestUnderMask(DAG, DL, C);
2619   return C;
2620 }
2621 
2622 // Emit the comparison instruction described by C.
2623 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2624   if (!C.Op1.getNode()) {
2625     SDNode *Node;
2626     switch (C.Op0.getOpcode()) {
2627     case ISD::INTRINSIC_W_CHAIN:
2628       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2629       return SDValue(Node, 0);
2630     case ISD::INTRINSIC_WO_CHAIN:
2631       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2632       return SDValue(Node, Node->getNumValues() - 1);
2633     default:
2634       llvm_unreachable("Invalid comparison operands");
2635     }
2636   }
2637   if (C.Opcode == SystemZISD::ICMP)
2638     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2639                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2640   if (C.Opcode == SystemZISD::TM) {
2641     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2642                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2643     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2644                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2645   }
2646   if (C.Chain) {
2647     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2648     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2649   }
2650   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2651 }
2652 
2653 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2654 // 64 bits.  Extend is the extension type to use.  Store the high part
2655 // in Hi and the low part in Lo.
2656 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2657                             SDValue Op0, SDValue Op1, SDValue &Hi,
2658                             SDValue &Lo) {
2659   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2660   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2661   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2662   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2663                    DAG.getConstant(32, DL, MVT::i64));
2664   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2665   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2666 }
2667 
2668 // Lower a binary operation that produces two VT results, one in each
2669 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2670 // and Opcode performs the GR128 operation.  Store the even register result
2671 // in Even and the odd register result in Odd.
2672 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2673                              unsigned Opcode, SDValue Op0, SDValue Op1,
2674                              SDValue &Even, SDValue &Odd) {
2675   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2676   bool Is32Bit = is32Bit(VT);
2677   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2678   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2679 }
2680 
2681 // Return an i32 value that is 1 if the CC value produced by CCReg is
2682 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2683 // in CCValid, so other values can be ignored.
2684 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2685                          unsigned CCValid, unsigned CCMask) {
2686   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2687                    DAG.getConstant(0, DL, MVT::i32),
2688                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2689                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2690   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2691 }
2692 
2693 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2694 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2695 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2696 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2697 // floating-point comparisons.
2698 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2699 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2700   switch (CC) {
2701   case ISD::SETOEQ:
2702   case ISD::SETEQ:
2703     switch (Mode) {
2704     case CmpMode::Int:         return SystemZISD::VICMPE;
2705     case CmpMode::FP:          return SystemZISD::VFCMPE;
2706     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2707     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2708     }
2709     llvm_unreachable("Bad mode");
2710 
2711   case ISD::SETOGE:
2712   case ISD::SETGE:
2713     switch (Mode) {
2714     case CmpMode::Int:         return 0;
2715     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2716     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2717     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2718     }
2719     llvm_unreachable("Bad mode");
2720 
2721   case ISD::SETOGT:
2722   case ISD::SETGT:
2723     switch (Mode) {
2724     case CmpMode::Int:         return SystemZISD::VICMPH;
2725     case CmpMode::FP:          return SystemZISD::VFCMPH;
2726     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2727     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2728     }
2729     llvm_unreachable("Bad mode");
2730 
2731   case ISD::SETUGT:
2732     switch (Mode) {
2733     case CmpMode::Int:         return SystemZISD::VICMPHL;
2734     case CmpMode::FP:          return 0;
2735     case CmpMode::StrictFP:    return 0;
2736     case CmpMode::SignalingFP: return 0;
2737     }
2738     llvm_unreachable("Bad mode");
2739 
2740   default:
2741     return 0;
2742   }
2743 }
2744 
2745 // Return the SystemZISD vector comparison operation for CC or its inverse,
2746 // or 0 if neither can be done directly.  Indicate in Invert whether the
2747 // result is for the inverse of CC.  Mode is as above.
2748 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2749                                             bool &Invert) {
2750   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2751     Invert = false;
2752     return Opcode;
2753   }
2754 
2755   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2756   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2757     Invert = true;
2758     return Opcode;
2759   }
2760 
2761   return 0;
2762 }
2763 
2764 // Return a v2f64 that contains the extended form of elements Start and Start+1
2765 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2766 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2767                                   SDValue Op, SDValue Chain) {
2768   int Mask[] = { Start, -1, Start + 1, -1 };
2769   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2770   if (Chain) {
2771     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2772     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2773   }
2774   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2775 }
2776 
2777 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2778 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2779 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2780                                             const SDLoc &DL, EVT VT,
2781                                             SDValue CmpOp0,
2782                                             SDValue CmpOp1,
2783                                             SDValue Chain) const {
2784   // There is no hardware support for v4f32 (unless we have the vector
2785   // enhancements facility 1), so extend the vector into two v2f64s
2786   // and compare those.
2787   if (CmpOp0.getValueType() == MVT::v4f32 &&
2788       !Subtarget.hasVectorEnhancements1()) {
2789     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2790     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2791     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2792     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2793     if (Chain) {
2794       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2795       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2796       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2797       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2798       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2799                             H1.getValue(1), L1.getValue(1),
2800                             HRes.getValue(1), LRes.getValue(1) };
2801       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2802       SDValue Ops[2] = { Res, NewChain };
2803       return DAG.getMergeValues(Ops, DL);
2804     }
2805     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2806     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2807     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2808   }
2809   if (Chain) {
2810     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2811     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2812   }
2813   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2814 }
2815 
2816 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2817 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2818 // floating-point comparison.  If in addition IsSignaling is true, we have
2819 // a strict signaling floating-point comparison.
2820 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2821                                                 const SDLoc &DL, EVT VT,
2822                                                 ISD::CondCode CC,
2823                                                 SDValue CmpOp0,
2824                                                 SDValue CmpOp1,
2825                                                 SDValue Chain,
2826                                                 bool IsSignaling) const {
2827   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2828   assert (!Chain || IsFP);
2829   assert (!IsSignaling || Chain);
2830   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2831                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2832   bool Invert = false;
2833   SDValue Cmp;
2834   switch (CC) {
2835     // Handle tests for order using (or (ogt y x) (oge x y)).
2836   case ISD::SETUO:
2837     Invert = true;
2838     LLVM_FALLTHROUGH;
2839   case ISD::SETO: {
2840     assert(IsFP && "Unexpected integer comparison");
2841     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2842                               DL, VT, CmpOp1, CmpOp0, Chain);
2843     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2844                               DL, VT, CmpOp0, CmpOp1, Chain);
2845     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2846     if (Chain)
2847       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2848                           LT.getValue(1), GE.getValue(1));
2849     break;
2850   }
2851 
2852     // Handle <> tests using (or (ogt y x) (ogt x y)).
2853   case ISD::SETUEQ:
2854     Invert = true;
2855     LLVM_FALLTHROUGH;
2856   case ISD::SETONE: {
2857     assert(IsFP && "Unexpected integer comparison");
2858     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2859                               DL, VT, CmpOp1, CmpOp0, Chain);
2860     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2861                               DL, VT, CmpOp0, CmpOp1, Chain);
2862     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2863     if (Chain)
2864       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2865                           LT.getValue(1), GT.getValue(1));
2866     break;
2867   }
2868 
2869     // Otherwise a single comparison is enough.  It doesn't really
2870     // matter whether we try the inversion or the swap first, since
2871     // there are no cases where both work.
2872   default:
2873     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2874       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2875     else {
2876       CC = ISD::getSetCCSwappedOperands(CC);
2877       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2878         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2879       else
2880         llvm_unreachable("Unhandled comparison");
2881     }
2882     if (Chain)
2883       Chain = Cmp.getValue(1);
2884     break;
2885   }
2886   if (Invert) {
2887     SDValue Mask =
2888       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2889     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2890   }
2891   if (Chain && Chain.getNode() != Cmp.getNode()) {
2892     SDValue Ops[2] = { Cmp, Chain };
2893     Cmp = DAG.getMergeValues(Ops, DL);
2894   }
2895   return Cmp;
2896 }
2897 
2898 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2899                                           SelectionDAG &DAG) const {
2900   SDValue CmpOp0   = Op.getOperand(0);
2901   SDValue CmpOp1   = Op.getOperand(1);
2902   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2903   SDLoc DL(Op);
2904   EVT VT = Op.getValueType();
2905   if (VT.isVector())
2906     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2907 
2908   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2909   SDValue CCReg = emitCmp(DAG, DL, C);
2910   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2911 }
2912 
2913 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2914                                                   SelectionDAG &DAG,
2915                                                   bool IsSignaling) const {
2916   SDValue Chain    = Op.getOperand(0);
2917   SDValue CmpOp0   = Op.getOperand(1);
2918   SDValue CmpOp1   = Op.getOperand(2);
2919   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2920   SDLoc DL(Op);
2921   EVT VT = Op.getNode()->getValueType(0);
2922   if (VT.isVector()) {
2923     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2924                                    Chain, IsSignaling);
2925     return Res.getValue(Op.getResNo());
2926   }
2927 
2928   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2929   SDValue CCReg = emitCmp(DAG, DL, C);
2930   CCReg->setFlags(Op->getFlags());
2931   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2932   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2933   return DAG.getMergeValues(Ops, DL);
2934 }
2935 
2936 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2937   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2938   SDValue CmpOp0   = Op.getOperand(2);
2939   SDValue CmpOp1   = Op.getOperand(3);
2940   SDValue Dest     = Op.getOperand(4);
2941   SDLoc DL(Op);
2942 
2943   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2944   SDValue CCReg = emitCmp(DAG, DL, C);
2945   return DAG.getNode(
2946       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2947       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2948       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2949 }
2950 
2951 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2952 // allowing Pos and Neg to be wider than CmpOp.
2953 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2954   return (Neg.getOpcode() == ISD::SUB &&
2955           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2956           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2957           Neg.getOperand(1) == Pos &&
2958           (Pos == CmpOp ||
2959            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2960             Pos.getOperand(0) == CmpOp)));
2961 }
2962 
2963 // Return the absolute or negative absolute of Op; IsNegative decides which.
2964 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2965                            bool IsNegative) {
2966   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
2967   if (IsNegative)
2968     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2969                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2970   return Op;
2971 }
2972 
2973 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2974                                               SelectionDAG &DAG) const {
2975   SDValue CmpOp0   = Op.getOperand(0);
2976   SDValue CmpOp1   = Op.getOperand(1);
2977   SDValue TrueOp   = Op.getOperand(2);
2978   SDValue FalseOp  = Op.getOperand(3);
2979   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2980   SDLoc DL(Op);
2981 
2982   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2983 
2984   // Check for absolute and negative-absolute selections, including those
2985   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2986   // This check supplements the one in DAGCombiner.
2987   if (C.Opcode == SystemZISD::ICMP &&
2988       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2989       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2990       C.Op1.getOpcode() == ISD::Constant &&
2991       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2992     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2993       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2994     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2995       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2996   }
2997 
2998   SDValue CCReg = emitCmp(DAG, DL, C);
2999   SDValue Ops[] = {TrueOp, FalseOp,
3000                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3001                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3002 
3003   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3004 }
3005 
3006 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3007                                                   SelectionDAG &DAG) const {
3008   SDLoc DL(Node);
3009   const GlobalValue *GV = Node->getGlobal();
3010   int64_t Offset = Node->getOffset();
3011   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3012   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3013 
3014   SDValue Result;
3015   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3016     if (isInt<32>(Offset)) {
3017       // Assign anchors at 1<<12 byte boundaries.
3018       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3019       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3020       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3021 
3022       // The offset can be folded into the address if it is aligned to a
3023       // halfword.
3024       Offset -= Anchor;
3025       if (Offset != 0 && (Offset & 1) == 0) {
3026         SDValue Full =
3027           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3028         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3029         Offset = 0;
3030       }
3031     } else {
3032       // Conservatively load a constant offset greater than 32 bits into a
3033       // register below.
3034       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3035       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3036     }
3037   } else {
3038     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3039     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3040     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3041                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3042   }
3043 
3044   // If there was a non-zero offset that we didn't fold, create an explicit
3045   // addition for it.
3046   if (Offset != 0)
3047     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3048                          DAG.getConstant(Offset, DL, PtrVT));
3049 
3050   return Result;
3051 }
3052 
3053 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3054                                                  SelectionDAG &DAG,
3055                                                  unsigned Opcode,
3056                                                  SDValue GOTOffset) const {
3057   SDLoc DL(Node);
3058   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3059   SDValue Chain = DAG.getEntryNode();
3060   SDValue Glue;
3061 
3062   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3063       CallingConv::GHC)
3064     report_fatal_error("In GHC calling convention TLS is not supported");
3065 
3066   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3067   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3068   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3069   Glue = Chain.getValue(1);
3070   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3071   Glue = Chain.getValue(1);
3072 
3073   // The first call operand is the chain and the second is the TLS symbol.
3074   SmallVector<SDValue, 8> Ops;
3075   Ops.push_back(Chain);
3076   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3077                                            Node->getValueType(0),
3078                                            0, 0));
3079 
3080   // Add argument registers to the end of the list so that they are
3081   // known live into the call.
3082   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3083   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3084 
3085   // Add a register mask operand representing the call-preserved registers.
3086   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3087   const uint32_t *Mask =
3088       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3089   assert(Mask && "Missing call preserved mask for calling convention");
3090   Ops.push_back(DAG.getRegisterMask(Mask));
3091 
3092   // Glue the call to the argument copies.
3093   Ops.push_back(Glue);
3094 
3095   // Emit the call.
3096   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3097   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3098   Glue = Chain.getValue(1);
3099 
3100   // Copy the return value from %r2.
3101   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3102 }
3103 
3104 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3105                                                   SelectionDAG &DAG) const {
3106   SDValue Chain = DAG.getEntryNode();
3107   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3108 
3109   // The high part of the thread pointer is in access register 0.
3110   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3111   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3112 
3113   // The low part of the thread pointer is in access register 1.
3114   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3115   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3116 
3117   // Merge them into a single 64-bit address.
3118   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3119                                     DAG.getConstant(32, DL, PtrVT));
3120   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3121 }
3122 
3123 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3124                                                      SelectionDAG &DAG) const {
3125   if (DAG.getTarget().useEmulatedTLS())
3126     return LowerToTLSEmulatedModel(Node, DAG);
3127   SDLoc DL(Node);
3128   const GlobalValue *GV = Node->getGlobal();
3129   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3130   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3131 
3132   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3133       CallingConv::GHC)
3134     report_fatal_error("In GHC calling convention TLS is not supported");
3135 
3136   SDValue TP = lowerThreadPointer(DL, DAG);
3137 
3138   // Get the offset of GA from the thread pointer, based on the TLS model.
3139   SDValue Offset;
3140   switch (model) {
3141     case TLSModel::GeneralDynamic: {
3142       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3143       SystemZConstantPoolValue *CPV =
3144         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3145 
3146       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3147       Offset = DAG.getLoad(
3148           PtrVT, DL, DAG.getEntryNode(), Offset,
3149           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3150 
3151       // Call __tls_get_offset to retrieve the offset.
3152       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3153       break;
3154     }
3155 
3156     case TLSModel::LocalDynamic: {
3157       // Load the GOT offset of the module ID.
3158       SystemZConstantPoolValue *CPV =
3159         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3160 
3161       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3162       Offset = DAG.getLoad(
3163           PtrVT, DL, DAG.getEntryNode(), Offset,
3164           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3165 
3166       // Call __tls_get_offset to retrieve the module base offset.
3167       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3168 
3169       // Note: The SystemZLDCleanupPass will remove redundant computations
3170       // of the module base offset.  Count total number of local-dynamic
3171       // accesses to trigger execution of that pass.
3172       SystemZMachineFunctionInfo* MFI =
3173         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3174       MFI->incNumLocalDynamicTLSAccesses();
3175 
3176       // Add the per-symbol offset.
3177       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3178 
3179       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3180       DTPOffset = DAG.getLoad(
3181           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3182           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3183 
3184       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3185       break;
3186     }
3187 
3188     case TLSModel::InitialExec: {
3189       // Load the offset from the GOT.
3190       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3191                                           SystemZII::MO_INDNTPOFF);
3192       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3193       Offset =
3194           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3195                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3196       break;
3197     }
3198 
3199     case TLSModel::LocalExec: {
3200       // Force the offset into the constant pool and load it from there.
3201       SystemZConstantPoolValue *CPV =
3202         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3203 
3204       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3205       Offset = DAG.getLoad(
3206           PtrVT, DL, DAG.getEntryNode(), Offset,
3207           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3208       break;
3209     }
3210   }
3211 
3212   // Add the base and offset together.
3213   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3214 }
3215 
3216 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3217                                                  SelectionDAG &DAG) const {
3218   SDLoc DL(Node);
3219   const BlockAddress *BA = Node->getBlockAddress();
3220   int64_t Offset = Node->getOffset();
3221   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3222 
3223   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3224   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3225   return Result;
3226 }
3227 
3228 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3229                                               SelectionDAG &DAG) const {
3230   SDLoc DL(JT);
3231   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3232   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3233 
3234   // Use LARL to load the address of the table.
3235   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3236 }
3237 
3238 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3239                                                  SelectionDAG &DAG) const {
3240   SDLoc DL(CP);
3241   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3242 
3243   SDValue Result;
3244   if (CP->isMachineConstantPoolEntry())
3245     Result =
3246         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3247   else
3248     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3249                                        CP->getOffset());
3250 
3251   // Use LARL to load the address of the constant pool entry.
3252   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3253 }
3254 
3255 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3256                                               SelectionDAG &DAG) const {
3257   auto *TFL =
3258       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3259   MachineFunction &MF = DAG.getMachineFunction();
3260   MachineFrameInfo &MFI = MF.getFrameInfo();
3261   MFI.setFrameAddressIsTaken(true);
3262 
3263   SDLoc DL(Op);
3264   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3265   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3266 
3267   // Return null if the back chain is not present.
3268   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3269   if (TFL->usePackedStack(MF) && !HasBackChain)
3270     return DAG.getConstant(0, DL, PtrVT);
3271 
3272   // By definition, the frame address is the address of the back chain.
3273   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3274   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3275 
3276   // FIXME The frontend should detect this case.
3277   if (Depth > 0) {
3278     report_fatal_error("Unsupported stack frame traversal count");
3279   }
3280 
3281   return BackChain;
3282 }
3283 
3284 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3285                                                SelectionDAG &DAG) const {
3286   MachineFunction &MF = DAG.getMachineFunction();
3287   MachineFrameInfo &MFI = MF.getFrameInfo();
3288   MFI.setReturnAddressIsTaken(true);
3289 
3290   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3291     return SDValue();
3292 
3293   SDLoc DL(Op);
3294   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3295   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3296 
3297   // FIXME The frontend should detect this case.
3298   if (Depth > 0) {
3299     report_fatal_error("Unsupported stack frame traversal count");
3300   }
3301 
3302   // Return R14D, which has the return address. Mark it an implicit live-in.
3303   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3304   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3305 }
3306 
3307 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3308                                             SelectionDAG &DAG) const {
3309   SDLoc DL(Op);
3310   SDValue In = Op.getOperand(0);
3311   EVT InVT = In.getValueType();
3312   EVT ResVT = Op.getValueType();
3313 
3314   // Convert loads directly.  This is normally done by DAGCombiner,
3315   // but we need this case for bitcasts that are created during lowering
3316   // and which are then lowered themselves.
3317   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3318     if (ISD::isNormalLoad(LoadN)) {
3319       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3320                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3321       // Update the chain uses.
3322       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3323       return NewLoad;
3324     }
3325 
3326   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3327     SDValue In64;
3328     if (Subtarget.hasHighWord()) {
3329       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3330                                        MVT::i64);
3331       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3332                                        MVT::i64, SDValue(U64, 0), In);
3333     } else {
3334       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3335       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3336                          DAG.getConstant(32, DL, MVT::i64));
3337     }
3338     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3339     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3340                                       DL, MVT::f32, Out64);
3341   }
3342   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3343     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3344     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3345                                              MVT::f64, SDValue(U64, 0), In);
3346     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3347     if (Subtarget.hasHighWord())
3348       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3349                                         MVT::i32, Out64);
3350     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3351                                 DAG.getConstant(32, DL, MVT::i64));
3352     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3353   }
3354   llvm_unreachable("Unexpected bitcast combination");
3355 }
3356 
3357 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3358                                             SelectionDAG &DAG) const {
3359   MachineFunction &MF = DAG.getMachineFunction();
3360   SystemZMachineFunctionInfo *FuncInfo =
3361     MF.getInfo<SystemZMachineFunctionInfo>();
3362   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3363 
3364   SDValue Chain   = Op.getOperand(0);
3365   SDValue Addr    = Op.getOperand(1);
3366   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3367   SDLoc DL(Op);
3368 
3369   // The initial values of each field.
3370   const unsigned NumFields = 4;
3371   SDValue Fields[NumFields] = {
3372     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3373     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3374     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3375     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3376   };
3377 
3378   // Store each field into its respective slot.
3379   SDValue MemOps[NumFields];
3380   unsigned Offset = 0;
3381   for (unsigned I = 0; I < NumFields; ++I) {
3382     SDValue FieldAddr = Addr;
3383     if (Offset != 0)
3384       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3385                               DAG.getIntPtrConstant(Offset, DL));
3386     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3387                              MachinePointerInfo(SV, Offset));
3388     Offset += 8;
3389   }
3390   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3391 }
3392 
3393 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3394                                            SelectionDAG &DAG) const {
3395   SDValue Chain      = Op.getOperand(0);
3396   SDValue DstPtr     = Op.getOperand(1);
3397   SDValue SrcPtr     = Op.getOperand(2);
3398   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3399   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3400   SDLoc DL(Op);
3401 
3402   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3403                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3404                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3405                        MachinePointerInfo(SrcSV));
3406 }
3407 
3408 SDValue SystemZTargetLowering::
3409 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3410   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3411   MachineFunction &MF = DAG.getMachineFunction();
3412   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3413   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3414 
3415   SDValue Chain = Op.getOperand(0);
3416   SDValue Size  = Op.getOperand(1);
3417   SDValue Align = Op.getOperand(2);
3418   SDLoc DL(Op);
3419 
3420   // If user has set the no alignment function attribute, ignore
3421   // alloca alignments.
3422   uint64_t AlignVal =
3423       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3424 
3425   uint64_t StackAlign = TFI->getStackAlignment();
3426   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3427   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3428 
3429   Register SPReg = getStackPointerRegisterToSaveRestore();
3430   SDValue NeededSpace = Size;
3431 
3432   // Get a reference to the stack pointer.
3433   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3434 
3435   // If we need a backchain, save it now.
3436   SDValue Backchain;
3437   if (StoreBackchain)
3438     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3439                             MachinePointerInfo());
3440 
3441   // Add extra space for alignment if needed.
3442   if (ExtraAlignSpace)
3443     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3444                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3445 
3446   // Get the new stack pointer value.
3447   SDValue NewSP;
3448   if (hasInlineStackProbe(MF)) {
3449     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3450                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3451     Chain = NewSP.getValue(1);
3452   }
3453   else {
3454     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3455     // Copy the new stack pointer back.
3456     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3457   }
3458 
3459   // The allocated data lives above the 160 bytes allocated for the standard
3460   // frame, plus any outgoing stack arguments.  We don't know how much that
3461   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3462   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3463   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3464 
3465   // Dynamically realign if needed.
3466   if (RequiredAlign > StackAlign) {
3467     Result =
3468       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3469                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3470     Result =
3471       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3472                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3473   }
3474 
3475   if (StoreBackchain)
3476     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3477                          MachinePointerInfo());
3478 
3479   SDValue Ops[2] = { Result, Chain };
3480   return DAG.getMergeValues(Ops, DL);
3481 }
3482 
3483 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3484     SDValue Op, SelectionDAG &DAG) const {
3485   SDLoc DL(Op);
3486 
3487   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3488 }
3489 
3490 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3491                                               SelectionDAG &DAG) const {
3492   EVT VT = Op.getValueType();
3493   SDLoc DL(Op);
3494   SDValue Ops[2];
3495   if (is32Bit(VT))
3496     // Just do a normal 64-bit multiplication and extract the results.
3497     // We define this so that it can be used for constant division.
3498     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3499                     Op.getOperand(1), Ops[1], Ops[0]);
3500   else if (Subtarget.hasMiscellaneousExtensions2())
3501     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3502     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3503     // return the low half first, so the results are in reverse order.
3504     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3505                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3506   else {
3507     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3508     //
3509     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3510     //
3511     // but using the fact that the upper halves are either all zeros
3512     // or all ones:
3513     //
3514     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3515     //
3516     // and grouping the right terms together since they are quicker than the
3517     // multiplication:
3518     //
3519     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3520     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3521     SDValue LL = Op.getOperand(0);
3522     SDValue RL = Op.getOperand(1);
3523     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3524     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3525     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3526     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3527     // return the low half first, so the results are in reverse order.
3528     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3529                      LL, RL, Ops[1], Ops[0]);
3530     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3531     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3532     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3533     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3534   }
3535   return DAG.getMergeValues(Ops, DL);
3536 }
3537 
3538 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3539                                               SelectionDAG &DAG) const {
3540   EVT VT = Op.getValueType();
3541   SDLoc DL(Op);
3542   SDValue Ops[2];
3543   if (is32Bit(VT))
3544     // Just do a normal 64-bit multiplication and extract the results.
3545     // We define this so that it can be used for constant division.
3546     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3547                     Op.getOperand(1), Ops[1], Ops[0]);
3548   else
3549     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3550     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3551     // return the low half first, so the results are in reverse order.
3552     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3553                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3554   return DAG.getMergeValues(Ops, DL);
3555 }
3556 
3557 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3558                                             SelectionDAG &DAG) const {
3559   SDValue Op0 = Op.getOperand(0);
3560   SDValue Op1 = Op.getOperand(1);
3561   EVT VT = Op.getValueType();
3562   SDLoc DL(Op);
3563 
3564   // We use DSGF for 32-bit division.  This means the first operand must
3565   // always be 64-bit, and the second operand should be 32-bit whenever
3566   // that is possible, to improve performance.
3567   if (is32Bit(VT))
3568     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3569   else if (DAG.ComputeNumSignBits(Op1) > 32)
3570     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3571 
3572   // DSG(F) returns the remainder in the even register and the
3573   // quotient in the odd register.
3574   SDValue Ops[2];
3575   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3576   return DAG.getMergeValues(Ops, DL);
3577 }
3578 
3579 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3580                                             SelectionDAG &DAG) const {
3581   EVT VT = Op.getValueType();
3582   SDLoc DL(Op);
3583 
3584   // DL(G) returns the remainder in the even register and the
3585   // quotient in the odd register.
3586   SDValue Ops[2];
3587   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3588                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3589   return DAG.getMergeValues(Ops, DL);
3590 }
3591 
3592 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3593   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3594 
3595   // Get the known-zero masks for each operand.
3596   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3597   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3598                         DAG.computeKnownBits(Ops[1])};
3599 
3600   // See if the upper 32 bits of one operand and the lower 32 bits of the
3601   // other are known zero.  They are the low and high operands respectively.
3602   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3603                        Known[1].Zero.getZExtValue() };
3604   unsigned High, Low;
3605   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3606     High = 1, Low = 0;
3607   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3608     High = 0, Low = 1;
3609   else
3610     return Op;
3611 
3612   SDValue LowOp = Ops[Low];
3613   SDValue HighOp = Ops[High];
3614 
3615   // If the high part is a constant, we're better off using IILH.
3616   if (HighOp.getOpcode() == ISD::Constant)
3617     return Op;
3618 
3619   // If the low part is a constant that is outside the range of LHI,
3620   // then we're better off using IILF.
3621   if (LowOp.getOpcode() == ISD::Constant) {
3622     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3623     if (!isInt<16>(Value))
3624       return Op;
3625   }
3626 
3627   // Check whether the high part is an AND that doesn't change the
3628   // high 32 bits and just masks out low bits.  We can skip it if so.
3629   if (HighOp.getOpcode() == ISD::AND &&
3630       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3631     SDValue HighOp0 = HighOp.getOperand(0);
3632     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3633     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3634       HighOp = HighOp0;
3635   }
3636 
3637   // Take advantage of the fact that all GR32 operations only change the
3638   // low 32 bits by truncating Low to an i32 and inserting it directly
3639   // using a subreg.  The interesting cases are those where the truncation
3640   // can be folded.
3641   SDLoc DL(Op);
3642   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3643   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3644                                    MVT::i64, HighOp, Low32);
3645 }
3646 
3647 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3648 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3649                                           SelectionDAG &DAG) const {
3650   SDNode *N = Op.getNode();
3651   SDValue LHS = N->getOperand(0);
3652   SDValue RHS = N->getOperand(1);
3653   SDLoc DL(N);
3654   unsigned BaseOp = 0;
3655   unsigned CCValid = 0;
3656   unsigned CCMask = 0;
3657 
3658   switch (Op.getOpcode()) {
3659   default: llvm_unreachable("Unknown instruction!");
3660   case ISD::SADDO:
3661     BaseOp = SystemZISD::SADDO;
3662     CCValid = SystemZ::CCMASK_ARITH;
3663     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3664     break;
3665   case ISD::SSUBO:
3666     BaseOp = SystemZISD::SSUBO;
3667     CCValid = SystemZ::CCMASK_ARITH;
3668     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3669     break;
3670   case ISD::UADDO:
3671     BaseOp = SystemZISD::UADDO;
3672     CCValid = SystemZ::CCMASK_LOGICAL;
3673     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3674     break;
3675   case ISD::USUBO:
3676     BaseOp = SystemZISD::USUBO;
3677     CCValid = SystemZ::CCMASK_LOGICAL;
3678     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3679     break;
3680   }
3681 
3682   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3683   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3684 
3685   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3686   if (N->getValueType(1) == MVT::i1)
3687     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3688 
3689   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3690 }
3691 
3692 static bool isAddCarryChain(SDValue Carry) {
3693   while (Carry.getOpcode() == ISD::ADDCARRY)
3694     Carry = Carry.getOperand(2);
3695   return Carry.getOpcode() == ISD::UADDO;
3696 }
3697 
3698 static bool isSubBorrowChain(SDValue Carry) {
3699   while (Carry.getOpcode() == ISD::SUBCARRY)
3700     Carry = Carry.getOperand(2);
3701   return Carry.getOpcode() == ISD::USUBO;
3702 }
3703 
3704 // Lower ADDCARRY/SUBCARRY nodes.
3705 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3706                                                 SelectionDAG &DAG) const {
3707 
3708   SDNode *N = Op.getNode();
3709   MVT VT = N->getSimpleValueType(0);
3710 
3711   // Let legalize expand this if it isn't a legal type yet.
3712   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3713     return SDValue();
3714 
3715   SDValue LHS = N->getOperand(0);
3716   SDValue RHS = N->getOperand(1);
3717   SDValue Carry = Op.getOperand(2);
3718   SDLoc DL(N);
3719   unsigned BaseOp = 0;
3720   unsigned CCValid = 0;
3721   unsigned CCMask = 0;
3722 
3723   switch (Op.getOpcode()) {
3724   default: llvm_unreachable("Unknown instruction!");
3725   case ISD::ADDCARRY:
3726     if (!isAddCarryChain(Carry))
3727       return SDValue();
3728 
3729     BaseOp = SystemZISD::ADDCARRY;
3730     CCValid = SystemZ::CCMASK_LOGICAL;
3731     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3732     break;
3733   case ISD::SUBCARRY:
3734     if (!isSubBorrowChain(Carry))
3735       return SDValue();
3736 
3737     BaseOp = SystemZISD::SUBCARRY;
3738     CCValid = SystemZ::CCMASK_LOGICAL;
3739     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3740     break;
3741   }
3742 
3743   // Set the condition code from the carry flag.
3744   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3745                       DAG.getConstant(CCValid, DL, MVT::i32),
3746                       DAG.getConstant(CCMask, DL, MVT::i32));
3747 
3748   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3749   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3750 
3751   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3752   if (N->getValueType(1) == MVT::i1)
3753     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3754 
3755   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3756 }
3757 
3758 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3759                                           SelectionDAG &DAG) const {
3760   EVT VT = Op.getValueType();
3761   SDLoc DL(Op);
3762   Op = Op.getOperand(0);
3763 
3764   // Handle vector types via VPOPCT.
3765   if (VT.isVector()) {
3766     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3767     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3768     switch (VT.getScalarSizeInBits()) {
3769     case 8:
3770       break;
3771     case 16: {
3772       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3773       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3774       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3775       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3776       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3777       break;
3778     }
3779     case 32: {
3780       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3781                                             DAG.getConstant(0, DL, MVT::i32));
3782       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3783       break;
3784     }
3785     case 64: {
3786       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3787                                             DAG.getConstant(0, DL, MVT::i32));
3788       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3789       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3790       break;
3791     }
3792     default:
3793       llvm_unreachable("Unexpected type");
3794     }
3795     return Op;
3796   }
3797 
3798   // Get the known-zero mask for the operand.
3799   KnownBits Known = DAG.computeKnownBits(Op);
3800   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3801   if (NumSignificantBits == 0)
3802     return DAG.getConstant(0, DL, VT);
3803 
3804   // Skip known-zero high parts of the operand.
3805   int64_t OrigBitSize = VT.getSizeInBits();
3806   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3807   BitSize = std::min(BitSize, OrigBitSize);
3808 
3809   // The POPCNT instruction counts the number of bits in each byte.
3810   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3811   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3812   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3813 
3814   // Add up per-byte counts in a binary tree.  All bits of Op at
3815   // position larger than BitSize remain zero throughout.
3816   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3817     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3818     if (BitSize != OrigBitSize)
3819       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3820                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3821     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3822   }
3823 
3824   // Extract overall result from high byte.
3825   if (BitSize > 8)
3826     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3827                      DAG.getConstant(BitSize - 8, DL, VT));
3828 
3829   return Op;
3830 }
3831 
3832 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3833                                                  SelectionDAG &DAG) const {
3834   SDLoc DL(Op);
3835   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3836     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3837   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3838     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3839 
3840   // The only fence that needs an instruction is a sequentially-consistent
3841   // cross-thread fence.
3842   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3843       FenceSSID == SyncScope::System) {
3844     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3845                                       Op.getOperand(0)),
3846                    0);
3847   }
3848 
3849   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3850   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3851 }
3852 
3853 // Op is an atomic load.  Lower it into a normal volatile load.
3854 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3855                                                 SelectionDAG &DAG) const {
3856   auto *Node = cast<AtomicSDNode>(Op.getNode());
3857   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3858                         Node->getChain(), Node->getBasePtr(),
3859                         Node->getMemoryVT(), Node->getMemOperand());
3860 }
3861 
3862 // Op is an atomic store.  Lower it into a normal volatile store.
3863 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3864                                                  SelectionDAG &DAG) const {
3865   auto *Node = cast<AtomicSDNode>(Op.getNode());
3866   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3867                                     Node->getBasePtr(), Node->getMemoryVT(),
3868                                     Node->getMemOperand());
3869   // We have to enforce sequential consistency by performing a
3870   // serialization operation after the store.
3871   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3872     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3873                                        MVT::Other, Chain), 0);
3874   return Chain;
3875 }
3876 
3877 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3878 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3879 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3880                                                    SelectionDAG &DAG,
3881                                                    unsigned Opcode) const {
3882   auto *Node = cast<AtomicSDNode>(Op.getNode());
3883 
3884   // 32-bit operations need no code outside the main loop.
3885   EVT NarrowVT = Node->getMemoryVT();
3886   EVT WideVT = MVT::i32;
3887   if (NarrowVT == WideVT)
3888     return Op;
3889 
3890   int64_t BitSize = NarrowVT.getSizeInBits();
3891   SDValue ChainIn = Node->getChain();
3892   SDValue Addr = Node->getBasePtr();
3893   SDValue Src2 = Node->getVal();
3894   MachineMemOperand *MMO = Node->getMemOperand();
3895   SDLoc DL(Node);
3896   EVT PtrVT = Addr.getValueType();
3897 
3898   // Convert atomic subtracts of constants into additions.
3899   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3900     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3901       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3902       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3903     }
3904 
3905   // Get the address of the containing word.
3906   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3907                                     DAG.getConstant(-4, DL, PtrVT));
3908 
3909   // Get the number of bits that the word must be rotated left in order
3910   // to bring the field to the top bits of a GR32.
3911   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3912                                  DAG.getConstant(3, DL, PtrVT));
3913   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3914 
3915   // Get the complementing shift amount, for rotating a field in the top
3916   // bits back to its proper position.
3917   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3918                                     DAG.getConstant(0, DL, WideVT), BitShift);
3919 
3920   // Extend the source operand to 32 bits and prepare it for the inner loop.
3921   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3922   // operations require the source to be shifted in advance.  (This shift
3923   // can be folded if the source is constant.)  For AND and NAND, the lower
3924   // bits must be set, while for other opcodes they should be left clear.
3925   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3926     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3927                        DAG.getConstant(32 - BitSize, DL, WideVT));
3928   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3929       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3930     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3931                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3932 
3933   // Construct the ATOMIC_LOADW_* node.
3934   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3935   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3936                     DAG.getConstant(BitSize, DL, WideVT) };
3937   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3938                                              NarrowVT, MMO);
3939 
3940   // Rotate the result of the final CS so that the field is in the lower
3941   // bits of a GR32, then truncate it.
3942   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3943                                     DAG.getConstant(BitSize, DL, WideVT));
3944   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3945 
3946   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3947   return DAG.getMergeValues(RetOps, DL);
3948 }
3949 
3950 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3951 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3952 // operations into additions.
3953 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3954                                                     SelectionDAG &DAG) const {
3955   auto *Node = cast<AtomicSDNode>(Op.getNode());
3956   EVT MemVT = Node->getMemoryVT();
3957   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3958     // A full-width operation.
3959     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3960     SDValue Src2 = Node->getVal();
3961     SDValue NegSrc2;
3962     SDLoc DL(Src2);
3963 
3964     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3965       // Use an addition if the operand is constant and either LAA(G) is
3966       // available or the negative value is in the range of A(G)FHI.
3967       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3968       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3969         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3970     } else if (Subtarget.hasInterlockedAccess1())
3971       // Use LAA(G) if available.
3972       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3973                             Src2);
3974 
3975     if (NegSrc2.getNode())
3976       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3977                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3978                            Node->getMemOperand());
3979 
3980     // Use the node as-is.
3981     return Op;
3982   }
3983 
3984   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3985 }
3986 
3987 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3988 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3989                                                     SelectionDAG &DAG) const {
3990   auto *Node = cast<AtomicSDNode>(Op.getNode());
3991   SDValue ChainIn = Node->getOperand(0);
3992   SDValue Addr = Node->getOperand(1);
3993   SDValue CmpVal = Node->getOperand(2);
3994   SDValue SwapVal = Node->getOperand(3);
3995   MachineMemOperand *MMO = Node->getMemOperand();
3996   SDLoc DL(Node);
3997 
3998   // We have native support for 32-bit and 64-bit compare and swap, but we
3999   // still need to expand extracting the "success" result from the CC.
4000   EVT NarrowVT = Node->getMemoryVT();
4001   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4002   if (NarrowVT == WideVT) {
4003     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4004     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4005     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4006                                                DL, Tys, Ops, NarrowVT, MMO);
4007     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4008                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4009 
4010     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4011     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4012     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4013     return SDValue();
4014   }
4015 
4016   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4017   // via a fullword ATOMIC_CMP_SWAPW operation.
4018   int64_t BitSize = NarrowVT.getSizeInBits();
4019   EVT PtrVT = Addr.getValueType();
4020 
4021   // Get the address of the containing word.
4022   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4023                                     DAG.getConstant(-4, DL, PtrVT));
4024 
4025   // Get the number of bits that the word must be rotated left in order
4026   // to bring the field to the top bits of a GR32.
4027   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4028                                  DAG.getConstant(3, DL, PtrVT));
4029   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4030 
4031   // Get the complementing shift amount, for rotating a field in the top
4032   // bits back to its proper position.
4033   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4034                                     DAG.getConstant(0, DL, WideVT), BitShift);
4035 
4036   // Construct the ATOMIC_CMP_SWAPW node.
4037   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4038   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4039                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4040   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4041                                              VTList, Ops, NarrowVT, MMO);
4042   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4043                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4044 
4045   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4046   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4047   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4048   return SDValue();
4049 }
4050 
4051 MachineMemOperand::Flags
4052 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4053   // Because of how we convert atomic_load and atomic_store to normal loads and
4054   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4055   // since DAGCombine hasn't been updated to account for atomic, but non
4056   // volatile loads.  (See D57601)
4057   if (auto *SI = dyn_cast<StoreInst>(&I))
4058     if (SI->isAtomic())
4059       return MachineMemOperand::MOVolatile;
4060   if (auto *LI = dyn_cast<LoadInst>(&I))
4061     if (LI->isAtomic())
4062       return MachineMemOperand::MOVolatile;
4063   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4064     if (AI->isAtomic())
4065       return MachineMemOperand::MOVolatile;
4066   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4067     if (AI->isAtomic())
4068       return MachineMemOperand::MOVolatile;
4069   return MachineMemOperand::MONone;
4070 }
4071 
4072 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4073                                               SelectionDAG &DAG) const {
4074   MachineFunction &MF = DAG.getMachineFunction();
4075   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4076   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4077     report_fatal_error("Variable-sized stack allocations are not supported "
4078                        "in GHC calling convention");
4079   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4080                             SystemZ::R15D, Op.getValueType());
4081 }
4082 
4083 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4084                                                  SelectionDAG &DAG) const {
4085   MachineFunction &MF = DAG.getMachineFunction();
4086   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4087   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4088 
4089   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4090     report_fatal_error("Variable-sized stack allocations are not supported "
4091                        "in GHC calling convention");
4092 
4093   SDValue Chain = Op.getOperand(0);
4094   SDValue NewSP = Op.getOperand(1);
4095   SDValue Backchain;
4096   SDLoc DL(Op);
4097 
4098   if (StoreBackchain) {
4099     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4100     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4101                             MachinePointerInfo());
4102   }
4103 
4104   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4105 
4106   if (StoreBackchain)
4107     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4108                          MachinePointerInfo());
4109 
4110   return Chain;
4111 }
4112 
4113 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4114                                              SelectionDAG &DAG) const {
4115   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4116   if (!IsData)
4117     // Just preserve the chain.
4118     return Op.getOperand(0);
4119 
4120   SDLoc DL(Op);
4121   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4122   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4123   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4124   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4125                    Op.getOperand(1)};
4126   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4127                                  Node->getVTList(), Ops,
4128                                  Node->getMemoryVT(), Node->getMemOperand());
4129 }
4130 
4131 // Convert condition code in CCReg to an i32 value.
4132 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4133   SDLoc DL(CCReg);
4134   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4135   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4136                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4137 }
4138 
4139 SDValue
4140 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4141                                               SelectionDAG &DAG) const {
4142   unsigned Opcode, CCValid;
4143   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4144     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4145     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4146     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4147     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4148     return SDValue();
4149   }
4150 
4151   return SDValue();
4152 }
4153 
4154 SDValue
4155 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4156                                                SelectionDAG &DAG) const {
4157   unsigned Opcode, CCValid;
4158   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4159     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4160     if (Op->getNumValues() == 1)
4161       return getCCResult(DAG, SDValue(Node, 0));
4162     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4163     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4164                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4165   }
4166 
4167   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4168   switch (Id) {
4169   case Intrinsic::thread_pointer:
4170     return lowerThreadPointer(SDLoc(Op), DAG);
4171 
4172   case Intrinsic::s390_vpdi:
4173     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4174                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4175 
4176   case Intrinsic::s390_vperm:
4177     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4178                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4179 
4180   case Intrinsic::s390_vuphb:
4181   case Intrinsic::s390_vuphh:
4182   case Intrinsic::s390_vuphf:
4183     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4184                        Op.getOperand(1));
4185 
4186   case Intrinsic::s390_vuplhb:
4187   case Intrinsic::s390_vuplhh:
4188   case Intrinsic::s390_vuplhf:
4189     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4190                        Op.getOperand(1));
4191 
4192   case Intrinsic::s390_vuplb:
4193   case Intrinsic::s390_vuplhw:
4194   case Intrinsic::s390_vuplf:
4195     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4196                        Op.getOperand(1));
4197 
4198   case Intrinsic::s390_vupllb:
4199   case Intrinsic::s390_vupllh:
4200   case Intrinsic::s390_vupllf:
4201     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4202                        Op.getOperand(1));
4203 
4204   case Intrinsic::s390_vsumb:
4205   case Intrinsic::s390_vsumh:
4206   case Intrinsic::s390_vsumgh:
4207   case Intrinsic::s390_vsumgf:
4208   case Intrinsic::s390_vsumqf:
4209   case Intrinsic::s390_vsumqg:
4210     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4211                        Op.getOperand(1), Op.getOperand(2));
4212   }
4213 
4214   return SDValue();
4215 }
4216 
4217 namespace {
4218 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4219 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4220 // Operand is the constant third operand, otherwise it is the number of
4221 // bytes in each element of the result.
4222 struct Permute {
4223   unsigned Opcode;
4224   unsigned Operand;
4225   unsigned char Bytes[SystemZ::VectorBytes];
4226 };
4227 }
4228 
4229 static const Permute PermuteForms[] = {
4230   // VMRHG
4231   { SystemZISD::MERGE_HIGH, 8,
4232     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4233   // VMRHF
4234   { SystemZISD::MERGE_HIGH, 4,
4235     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4236   // VMRHH
4237   { SystemZISD::MERGE_HIGH, 2,
4238     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4239   // VMRHB
4240   { SystemZISD::MERGE_HIGH, 1,
4241     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4242   // VMRLG
4243   { SystemZISD::MERGE_LOW, 8,
4244     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4245   // VMRLF
4246   { SystemZISD::MERGE_LOW, 4,
4247     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4248   // VMRLH
4249   { SystemZISD::MERGE_LOW, 2,
4250     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4251   // VMRLB
4252   { SystemZISD::MERGE_LOW, 1,
4253     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4254   // VPKG
4255   { SystemZISD::PACK, 4,
4256     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4257   // VPKF
4258   { SystemZISD::PACK, 2,
4259     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4260   // VPKH
4261   { SystemZISD::PACK, 1,
4262     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4263   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4264   { SystemZISD::PERMUTE_DWORDS, 4,
4265     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4266   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4267   { SystemZISD::PERMUTE_DWORDS, 1,
4268     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4269 };
4270 
4271 // Called after matching a vector shuffle against a particular pattern.
4272 // Both the original shuffle and the pattern have two vector operands.
4273 // OpNos[0] is the operand of the original shuffle that should be used for
4274 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4275 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4276 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4277 // for operands 0 and 1 of the pattern.
4278 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4279   if (OpNos[0] < 0) {
4280     if (OpNos[1] < 0)
4281       return false;
4282     OpNo0 = OpNo1 = OpNos[1];
4283   } else if (OpNos[1] < 0) {
4284     OpNo0 = OpNo1 = OpNos[0];
4285   } else {
4286     OpNo0 = OpNos[0];
4287     OpNo1 = OpNos[1];
4288   }
4289   return true;
4290 }
4291 
4292 // Bytes is a VPERM-like permute vector, except that -1 is used for
4293 // undefined bytes.  Return true if the VPERM can be implemented using P.
4294 // When returning true set OpNo0 to the VPERM operand that should be
4295 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4296 //
4297 // For example, if swapping the VPERM operands allows P to match, OpNo0
4298 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4299 // operand, but rewriting it to use two duplicated operands allows it to
4300 // match P, then OpNo0 and OpNo1 will be the same.
4301 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4302                          unsigned &OpNo0, unsigned &OpNo1) {
4303   int OpNos[] = { -1, -1 };
4304   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4305     int Elt = Bytes[I];
4306     if (Elt >= 0) {
4307       // Make sure that the two permute vectors use the same suboperand
4308       // byte number.  Only the operand numbers (the high bits) are
4309       // allowed to differ.
4310       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4311         return false;
4312       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4313       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4314       // Make sure that the operand mappings are consistent with previous
4315       // elements.
4316       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4317         return false;
4318       OpNos[ModelOpNo] = RealOpNo;
4319     }
4320   }
4321   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4322 }
4323 
4324 // As above, but search for a matching permute.
4325 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4326                                    unsigned &OpNo0, unsigned &OpNo1) {
4327   for (auto &P : PermuteForms)
4328     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4329       return &P;
4330   return nullptr;
4331 }
4332 
4333 // Bytes is a VPERM-like permute vector, except that -1 is used for
4334 // undefined bytes.  This permute is an operand of an outer permute.
4335 // See whether redistributing the -1 bytes gives a shuffle that can be
4336 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4337 // that, when applied to the result of P, gives the original permute in Bytes.
4338 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4339                                const Permute &P,
4340                                SmallVectorImpl<int> &Transform) {
4341   unsigned To = 0;
4342   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4343     int Elt = Bytes[From];
4344     if (Elt < 0)
4345       // Byte number From of the result is undefined.
4346       Transform[From] = -1;
4347     else {
4348       while (P.Bytes[To] != Elt) {
4349         To += 1;
4350         if (To == SystemZ::VectorBytes)
4351           return false;
4352       }
4353       Transform[From] = To;
4354     }
4355   }
4356   return true;
4357 }
4358 
4359 // As above, but search for a matching permute.
4360 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4361                                          SmallVectorImpl<int> &Transform) {
4362   for (auto &P : PermuteForms)
4363     if (matchDoublePermute(Bytes, P, Transform))
4364       return &P;
4365   return nullptr;
4366 }
4367 
4368 // Convert the mask of the given shuffle op into a byte-level mask,
4369 // as if it had type vNi8.
4370 static bool getVPermMask(SDValue ShuffleOp,
4371                          SmallVectorImpl<int> &Bytes) {
4372   EVT VT = ShuffleOp.getValueType();
4373   unsigned NumElements = VT.getVectorNumElements();
4374   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4375 
4376   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4377     Bytes.resize(NumElements * BytesPerElement, -1);
4378     for (unsigned I = 0; I < NumElements; ++I) {
4379       int Index = VSN->getMaskElt(I);
4380       if (Index >= 0)
4381         for (unsigned J = 0; J < BytesPerElement; ++J)
4382           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4383     }
4384     return true;
4385   }
4386   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4387       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4388     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4389     Bytes.resize(NumElements * BytesPerElement, -1);
4390     for (unsigned I = 0; I < NumElements; ++I)
4391       for (unsigned J = 0; J < BytesPerElement; ++J)
4392         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4393     return true;
4394   }
4395   return false;
4396 }
4397 
4398 // Bytes is a VPERM-like permute vector, except that -1 is used for
4399 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4400 // the result come from a contiguous sequence of bytes from one input.
4401 // Set Base to the selector for the first byte if so.
4402 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4403                             unsigned BytesPerElement, int &Base) {
4404   Base = -1;
4405   for (unsigned I = 0; I < BytesPerElement; ++I) {
4406     if (Bytes[Start + I] >= 0) {
4407       unsigned Elem = Bytes[Start + I];
4408       if (Base < 0) {
4409         Base = Elem - I;
4410         // Make sure the bytes would come from one input operand.
4411         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4412           return false;
4413       } else if (unsigned(Base) != Elem - I)
4414         return false;
4415     }
4416   }
4417   return true;
4418 }
4419 
4420 // Bytes is a VPERM-like permute vector, except that -1 is used for
4421 // undefined bytes.  Return true if it can be performed using VSLDB.
4422 // When returning true, set StartIndex to the shift amount and OpNo0
4423 // and OpNo1 to the VPERM operands that should be used as the first
4424 // and second shift operand respectively.
4425 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4426                                unsigned &StartIndex, unsigned &OpNo0,
4427                                unsigned &OpNo1) {
4428   int OpNos[] = { -1, -1 };
4429   int Shift = -1;
4430   for (unsigned I = 0; I < 16; ++I) {
4431     int Index = Bytes[I];
4432     if (Index >= 0) {
4433       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4434       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4435       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4436       if (Shift < 0)
4437         Shift = ExpectedShift;
4438       else if (Shift != ExpectedShift)
4439         return false;
4440       // Make sure that the operand mappings are consistent with previous
4441       // elements.
4442       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4443         return false;
4444       OpNos[ModelOpNo] = RealOpNo;
4445     }
4446   }
4447   StartIndex = Shift;
4448   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4449 }
4450 
4451 // Create a node that performs P on operands Op0 and Op1, casting the
4452 // operands to the appropriate type.  The type of the result is determined by P.
4453 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4454                               const Permute &P, SDValue Op0, SDValue Op1) {
4455   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4456   // elements of a PACK are twice as wide as the outputs.
4457   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4458                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4459                       P.Operand);
4460   // Cast both operands to the appropriate type.
4461   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4462                               SystemZ::VectorBytes / InBytes);
4463   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4464   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4465   SDValue Op;
4466   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4467     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4468     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4469   } else if (P.Opcode == SystemZISD::PACK) {
4470     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4471                                  SystemZ::VectorBytes / P.Operand);
4472     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4473   } else {
4474     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4475   }
4476   return Op;
4477 }
4478 
4479 static bool isZeroVector(SDValue N) {
4480   if (N->getOpcode() == ISD::BITCAST)
4481     N = N->getOperand(0);
4482   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4483     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4484       return Op->getZExtValue() == 0;
4485   return ISD::isBuildVectorAllZeros(N.getNode());
4486 }
4487 
4488 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4489 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4490   for (unsigned I = 0; I < Num ; I++)
4491     if (isZeroVector(Ops[I]))
4492       return I;
4493   return UINT32_MAX;
4494 }
4495 
4496 // Bytes is a VPERM-like permute vector, except that -1 is used for
4497 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4498 // VSLDB or VPERM.
4499 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4500                                      SDValue *Ops,
4501                                      const SmallVectorImpl<int> &Bytes) {
4502   for (unsigned I = 0; I < 2; ++I)
4503     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4504 
4505   // First see whether VSLDB can be used.
4506   unsigned StartIndex, OpNo0, OpNo1;
4507   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4508     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4509                        Ops[OpNo1],
4510                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4511 
4512   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4513   // eliminate a zero vector by reusing any zero index in the permute vector.
4514   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4515   if (ZeroVecIdx != UINT32_MAX) {
4516     bool MaskFirst = true;
4517     int ZeroIdx = -1;
4518     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4519       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4520       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4521       if (OpNo == ZeroVecIdx && I == 0) {
4522         // If the first byte is zero, use mask as first operand.
4523         ZeroIdx = 0;
4524         break;
4525       }
4526       if (OpNo != ZeroVecIdx && Byte == 0) {
4527         // If mask contains a zero, use it by placing that vector first.
4528         ZeroIdx = I + SystemZ::VectorBytes;
4529         MaskFirst = false;
4530         break;
4531       }
4532     }
4533     if (ZeroIdx != -1) {
4534       SDValue IndexNodes[SystemZ::VectorBytes];
4535       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4536         if (Bytes[I] >= 0) {
4537           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4538           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4539           if (OpNo == ZeroVecIdx)
4540             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4541           else {
4542             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4543             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4544           }
4545         } else
4546           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4547       }
4548       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4549       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4550       if (MaskFirst)
4551         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4552                            Mask);
4553       else
4554         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4555                            Mask);
4556     }
4557   }
4558 
4559   SDValue IndexNodes[SystemZ::VectorBytes];
4560   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4561     if (Bytes[I] >= 0)
4562       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4563     else
4564       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4565   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4566   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4567                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4568 }
4569 
4570 namespace {
4571 // Describes a general N-operand vector shuffle.
4572 struct GeneralShuffle {
4573   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4574   void addUndef();
4575   bool add(SDValue, unsigned);
4576   SDValue getNode(SelectionDAG &, const SDLoc &);
4577   void tryPrepareForUnpack();
4578   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4579   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4580 
4581   // The operands of the shuffle.
4582   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4583 
4584   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4585   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4586   // Bytes[I] / SystemZ::VectorBytes.
4587   SmallVector<int, SystemZ::VectorBytes> Bytes;
4588 
4589   // The type of the shuffle result.
4590   EVT VT;
4591 
4592   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4593   unsigned UnpackFromEltSize;
4594 };
4595 }
4596 
4597 // Add an extra undefined element to the shuffle.
4598 void GeneralShuffle::addUndef() {
4599   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4600   for (unsigned I = 0; I < BytesPerElement; ++I)
4601     Bytes.push_back(-1);
4602 }
4603 
4604 // Add an extra element to the shuffle, taking it from element Elem of Op.
4605 // A null Op indicates a vector input whose value will be calculated later;
4606 // there is at most one such input per shuffle and it always has the same
4607 // type as the result. Aborts and returns false if the source vector elements
4608 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4609 // LLVM they become implicitly extended, but this is rare and not optimized.
4610 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4611   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4612 
4613   // The source vector can have wider elements than the result,
4614   // either through an explicit TRUNCATE or because of type legalization.
4615   // We want the least significant part.
4616   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4617   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4618 
4619   // Return false if the source elements are smaller than their destination
4620   // elements.
4621   if (FromBytesPerElement < BytesPerElement)
4622     return false;
4623 
4624   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4625                    (FromBytesPerElement - BytesPerElement));
4626 
4627   // Look through things like shuffles and bitcasts.
4628   while (Op.getNode()) {
4629     if (Op.getOpcode() == ISD::BITCAST)
4630       Op = Op.getOperand(0);
4631     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4632       // See whether the bytes we need come from a contiguous part of one
4633       // operand.
4634       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4635       if (!getVPermMask(Op, OpBytes))
4636         break;
4637       int NewByte;
4638       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4639         break;
4640       if (NewByte < 0) {
4641         addUndef();
4642         return true;
4643       }
4644       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4645       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4646     } else if (Op.isUndef()) {
4647       addUndef();
4648       return true;
4649     } else
4650       break;
4651   }
4652 
4653   // Make sure that the source of the extraction is in Ops.
4654   unsigned OpNo = 0;
4655   for (; OpNo < Ops.size(); ++OpNo)
4656     if (Ops[OpNo] == Op)
4657       break;
4658   if (OpNo == Ops.size())
4659     Ops.push_back(Op);
4660 
4661   // Add the element to Bytes.
4662   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4663   for (unsigned I = 0; I < BytesPerElement; ++I)
4664     Bytes.push_back(Base + I);
4665 
4666   return true;
4667 }
4668 
4669 // Return SDNodes for the completed shuffle.
4670 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4671   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4672 
4673   if (Ops.size() == 0)
4674     return DAG.getUNDEF(VT);
4675 
4676   // Use a single unpack if possible as the last operation.
4677   tryPrepareForUnpack();
4678 
4679   // Make sure that there are at least two shuffle operands.
4680   if (Ops.size() == 1)
4681     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4682 
4683   // Create a tree of shuffles, deferring root node until after the loop.
4684   // Try to redistribute the undefined elements of non-root nodes so that
4685   // the non-root shuffles match something like a pack or merge, then adjust
4686   // the parent node's permute vector to compensate for the new order.
4687   // Among other things, this copes with vectors like <2 x i16> that were
4688   // padded with undefined elements during type legalization.
4689   //
4690   // In the best case this redistribution will lead to the whole tree
4691   // using packs and merges.  It should rarely be a loss in other cases.
4692   unsigned Stride = 1;
4693   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4694     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4695       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4696 
4697       // Create a mask for just these two operands.
4698       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4699       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4700         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4701         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4702         if (OpNo == I)
4703           NewBytes[J] = Byte;
4704         else if (OpNo == I + Stride)
4705           NewBytes[J] = SystemZ::VectorBytes + Byte;
4706         else
4707           NewBytes[J] = -1;
4708       }
4709       // See if it would be better to reorganize NewMask to avoid using VPERM.
4710       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4711       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4712         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4713         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4714         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4715           if (NewBytes[J] >= 0) {
4716             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4717                    "Invalid double permute");
4718             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4719           } else
4720             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4721         }
4722       } else {
4723         // Just use NewBytes on the operands.
4724         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4725         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4726           if (NewBytes[J] >= 0)
4727             Bytes[J] = I * SystemZ::VectorBytes + J;
4728       }
4729     }
4730   }
4731 
4732   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4733   if (Stride > 1) {
4734     Ops[1] = Ops[Stride];
4735     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4736       if (Bytes[I] >= int(SystemZ::VectorBytes))
4737         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4738   }
4739 
4740   // Look for an instruction that can do the permute without resorting
4741   // to VPERM.
4742   unsigned OpNo0, OpNo1;
4743   SDValue Op;
4744   if (unpackWasPrepared() && Ops[1].isUndef())
4745     Op = Ops[0];
4746   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4747     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4748   else
4749     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4750 
4751   Op = insertUnpackIfPrepared(DAG, DL, Op);
4752 
4753   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4754 }
4755 
4756 #ifndef NDEBUG
4757 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4758   dbgs() << Msg.c_str() << " { ";
4759   for (unsigned i = 0; i < Bytes.size(); i++)
4760     dbgs() << Bytes[i] << " ";
4761   dbgs() << "}\n";
4762 }
4763 #endif
4764 
4765 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4766 // after all else by removing the zero vector and the effect of the unpack on
4767 // Bytes.
4768 void GeneralShuffle::tryPrepareForUnpack() {
4769   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4770   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4771     return;
4772 
4773   // Only do this if removing the zero vector reduces the depth, otherwise
4774   // the critical path will increase with the final unpack.
4775   if (Ops.size() > 2 &&
4776       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4777     return;
4778 
4779   // Find an unpack that would allow removing the zero vector from Ops.
4780   UnpackFromEltSize = 1;
4781   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4782     bool MatchUnpack = true;
4783     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4784     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4785       unsigned ToEltSize = UnpackFromEltSize * 2;
4786       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4787       if (!IsZextByte)
4788         SrcBytes.push_back(Bytes[Elt]);
4789       if (Bytes[Elt] != -1) {
4790         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4791         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4792           MatchUnpack = false;
4793           break;
4794         }
4795       }
4796     }
4797     if (MatchUnpack) {
4798       if (Ops.size() == 2) {
4799         // Don't use unpack if a single source operand needs rearrangement.
4800         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4801           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4802             UnpackFromEltSize = UINT_MAX;
4803             return;
4804           }
4805       }
4806       break;
4807     }
4808   }
4809   if (UnpackFromEltSize > 4)
4810     return;
4811 
4812   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4813              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4814              << ".\n";
4815              dumpBytes(Bytes, "Original Bytes vector:"););
4816 
4817   // Apply the unpack in reverse to the Bytes array.
4818   unsigned B = 0;
4819   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4820     Elt += UnpackFromEltSize;
4821     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4822       Bytes[B] = Bytes[Elt];
4823   }
4824   while (B < SystemZ::VectorBytes)
4825     Bytes[B++] = -1;
4826 
4827   // Remove the zero vector from Ops
4828   Ops.erase(&Ops[ZeroVecOpNo]);
4829   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4830     if (Bytes[I] >= 0) {
4831       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4832       if (OpNo > ZeroVecOpNo)
4833         Bytes[I] -= SystemZ::VectorBytes;
4834     }
4835 
4836   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4837              dbgs() << "\n";);
4838 }
4839 
4840 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4841                                                const SDLoc &DL,
4842                                                SDValue Op) {
4843   if (!unpackWasPrepared())
4844     return Op;
4845   unsigned InBits = UnpackFromEltSize * 8;
4846   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4847                                 SystemZ::VectorBits / InBits);
4848   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4849   unsigned OutBits = InBits * 2;
4850   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4851                                SystemZ::VectorBits / OutBits);
4852   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4853 }
4854 
4855 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4856 static bool isScalarToVector(SDValue Op) {
4857   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4858     if (!Op.getOperand(I).isUndef())
4859       return false;
4860   return true;
4861 }
4862 
4863 // Return a vector of type VT that contains Value in the first element.
4864 // The other elements don't matter.
4865 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4866                                    SDValue Value) {
4867   // If we have a constant, replicate it to all elements and let the
4868   // BUILD_VECTOR lowering take care of it.
4869   if (Value.getOpcode() == ISD::Constant ||
4870       Value.getOpcode() == ISD::ConstantFP) {
4871     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4872     return DAG.getBuildVector(VT, DL, Ops);
4873   }
4874   if (Value.isUndef())
4875     return DAG.getUNDEF(VT);
4876   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4877 }
4878 
4879 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4880 // element 1.  Used for cases in which replication is cheap.
4881 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4882                                  SDValue Op0, SDValue Op1) {
4883   if (Op0.isUndef()) {
4884     if (Op1.isUndef())
4885       return DAG.getUNDEF(VT);
4886     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4887   }
4888   if (Op1.isUndef())
4889     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4890   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4891                      buildScalarToVector(DAG, DL, VT, Op0),
4892                      buildScalarToVector(DAG, DL, VT, Op1));
4893 }
4894 
4895 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4896 // vector for them.
4897 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4898                           SDValue Op1) {
4899   if (Op0.isUndef() && Op1.isUndef())
4900     return DAG.getUNDEF(MVT::v2i64);
4901   // If one of the two inputs is undefined then replicate the other one,
4902   // in order to avoid using another register unnecessarily.
4903   if (Op0.isUndef())
4904     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4905   else if (Op1.isUndef())
4906     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4907   else {
4908     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4909     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4910   }
4911   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4912 }
4913 
4914 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4915 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4916 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4917 // would benefit from this representation and return it if so.
4918 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4919                                      BuildVectorSDNode *BVN) {
4920   EVT VT = BVN->getValueType(0);
4921   unsigned NumElements = VT.getVectorNumElements();
4922 
4923   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4924   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4925   // need a BUILD_VECTOR, add an additional placeholder operand for that
4926   // BUILD_VECTOR and store its operands in ResidueOps.
4927   GeneralShuffle GS(VT);
4928   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4929   bool FoundOne = false;
4930   for (unsigned I = 0; I < NumElements; ++I) {
4931     SDValue Op = BVN->getOperand(I);
4932     if (Op.getOpcode() == ISD::TRUNCATE)
4933       Op = Op.getOperand(0);
4934     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4935         Op.getOperand(1).getOpcode() == ISD::Constant) {
4936       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4937       if (!GS.add(Op.getOperand(0), Elem))
4938         return SDValue();
4939       FoundOne = true;
4940     } else if (Op.isUndef()) {
4941       GS.addUndef();
4942     } else {
4943       if (!GS.add(SDValue(), ResidueOps.size()))
4944         return SDValue();
4945       ResidueOps.push_back(BVN->getOperand(I));
4946     }
4947   }
4948 
4949   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4950   if (!FoundOne)
4951     return SDValue();
4952 
4953   // Create the BUILD_VECTOR for the remaining elements, if any.
4954   if (!ResidueOps.empty()) {
4955     while (ResidueOps.size() < NumElements)
4956       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4957     for (auto &Op : GS.Ops) {
4958       if (!Op.getNode()) {
4959         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4960         break;
4961       }
4962     }
4963   }
4964   return GS.getNode(DAG, SDLoc(BVN));
4965 }
4966 
4967 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4968   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4969     return true;
4970   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4971     return true;
4972   return false;
4973 }
4974 
4975 // Combine GPR scalar values Elems into a vector of type VT.
4976 SDValue
4977 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4978                                    SmallVectorImpl<SDValue> &Elems) const {
4979   // See whether there is a single replicated value.
4980   SDValue Single;
4981   unsigned int NumElements = Elems.size();
4982   unsigned int Count = 0;
4983   for (auto Elem : Elems) {
4984     if (!Elem.isUndef()) {
4985       if (!Single.getNode())
4986         Single = Elem;
4987       else if (Elem != Single) {
4988         Single = SDValue();
4989         break;
4990       }
4991       Count += 1;
4992     }
4993   }
4994   // There are three cases here:
4995   //
4996   // - if the only defined element is a loaded one, the best sequence
4997   //   is a replicating load.
4998   //
4999   // - otherwise, if the only defined element is an i64 value, we will
5000   //   end up with the same VLVGP sequence regardless of whether we short-cut
5001   //   for replication or fall through to the later code.
5002   //
5003   // - otherwise, if the only defined element is an i32 or smaller value,
5004   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5005   //   This is only a win if the single defined element is used more than once.
5006   //   In other cases we're better off using a single VLVGx.
5007   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5008     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5009 
5010   // If all elements are loads, use VLREP/VLEs (below).
5011   bool AllLoads = true;
5012   for (auto Elem : Elems)
5013     if (!isVectorElementLoad(Elem)) {
5014       AllLoads = false;
5015       break;
5016     }
5017 
5018   // The best way of building a v2i64 from two i64s is to use VLVGP.
5019   if (VT == MVT::v2i64 && !AllLoads)
5020     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5021 
5022   // Use a 64-bit merge high to combine two doubles.
5023   if (VT == MVT::v2f64 && !AllLoads)
5024     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5025 
5026   // Build v4f32 values directly from the FPRs:
5027   //
5028   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5029   //         V              V         VMRHF
5030   //      <ABxx>         <CDxx>
5031   //                V                 VMRHG
5032   //              <ABCD>
5033   if (VT == MVT::v4f32 && !AllLoads) {
5034     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5035     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5036     // Avoid unnecessary undefs by reusing the other operand.
5037     if (Op01.isUndef())
5038       Op01 = Op23;
5039     else if (Op23.isUndef())
5040       Op23 = Op01;
5041     // Merging identical replications is a no-op.
5042     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5043       return Op01;
5044     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5045     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5046     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5047                              DL, MVT::v2i64, Op01, Op23);
5048     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5049   }
5050 
5051   // Collect the constant terms.
5052   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5053   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5054 
5055   unsigned NumConstants = 0;
5056   for (unsigned I = 0; I < NumElements; ++I) {
5057     SDValue Elem = Elems[I];
5058     if (Elem.getOpcode() == ISD::Constant ||
5059         Elem.getOpcode() == ISD::ConstantFP) {
5060       NumConstants += 1;
5061       Constants[I] = Elem;
5062       Done[I] = true;
5063     }
5064   }
5065   // If there was at least one constant, fill in the other elements of
5066   // Constants with undefs to get a full vector constant and use that
5067   // as the starting point.
5068   SDValue Result;
5069   SDValue ReplicatedVal;
5070   if (NumConstants > 0) {
5071     for (unsigned I = 0; I < NumElements; ++I)
5072       if (!Constants[I].getNode())
5073         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5074     Result = DAG.getBuildVector(VT, DL, Constants);
5075   } else {
5076     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5077     // avoid a false dependency on any previous contents of the vector
5078     // register.
5079 
5080     // Use a VLREP if at least one element is a load. Make sure to replicate
5081     // the load with the most elements having its value.
5082     std::map<const SDNode*, unsigned> UseCounts;
5083     SDNode *LoadMaxUses = nullptr;
5084     for (unsigned I = 0; I < NumElements; ++I)
5085       if (isVectorElementLoad(Elems[I])) {
5086         SDNode *Ld = Elems[I].getNode();
5087         UseCounts[Ld]++;
5088         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5089           LoadMaxUses = Ld;
5090       }
5091     if (LoadMaxUses != nullptr) {
5092       ReplicatedVal = SDValue(LoadMaxUses, 0);
5093       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5094     } else {
5095       // Try to use VLVGP.
5096       unsigned I1 = NumElements / 2 - 1;
5097       unsigned I2 = NumElements - 1;
5098       bool Def1 = !Elems[I1].isUndef();
5099       bool Def2 = !Elems[I2].isUndef();
5100       if (Def1 || Def2) {
5101         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5102         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5103         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5104                              joinDwords(DAG, DL, Elem1, Elem2));
5105         Done[I1] = true;
5106         Done[I2] = true;
5107       } else
5108         Result = DAG.getUNDEF(VT);
5109     }
5110   }
5111 
5112   // Use VLVGx to insert the other elements.
5113   for (unsigned I = 0; I < NumElements; ++I)
5114     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5115       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5116                            DAG.getConstant(I, DL, MVT::i32));
5117   return Result;
5118 }
5119 
5120 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5121                                                  SelectionDAG &DAG) const {
5122   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5123   SDLoc DL(Op);
5124   EVT VT = Op.getValueType();
5125 
5126   if (BVN->isConstant()) {
5127     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5128       return Op;
5129 
5130     // Fall back to loading it from memory.
5131     return SDValue();
5132   }
5133 
5134   // See if we should use shuffles to construct the vector from other vectors.
5135   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5136     return Res;
5137 
5138   // Detect SCALAR_TO_VECTOR conversions.
5139   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5140     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5141 
5142   // Otherwise use buildVector to build the vector up from GPRs.
5143   unsigned NumElements = Op.getNumOperands();
5144   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5145   for (unsigned I = 0; I < NumElements; ++I)
5146     Ops[I] = Op.getOperand(I);
5147   return buildVector(DAG, DL, VT, Ops);
5148 }
5149 
5150 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5151                                                    SelectionDAG &DAG) const {
5152   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5153   SDLoc DL(Op);
5154   EVT VT = Op.getValueType();
5155   unsigned NumElements = VT.getVectorNumElements();
5156 
5157   if (VSN->isSplat()) {
5158     SDValue Op0 = Op.getOperand(0);
5159     unsigned Index = VSN->getSplatIndex();
5160     assert(Index < VT.getVectorNumElements() &&
5161            "Splat index should be defined and in first operand");
5162     // See whether the value we're splatting is directly available as a scalar.
5163     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5164         Op0.getOpcode() == ISD::BUILD_VECTOR)
5165       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5166     // Otherwise keep it as a vector-to-vector operation.
5167     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5168                        DAG.getTargetConstant(Index, DL, MVT::i32));
5169   }
5170 
5171   GeneralShuffle GS(VT);
5172   for (unsigned I = 0; I < NumElements; ++I) {
5173     int Elt = VSN->getMaskElt(I);
5174     if (Elt < 0)
5175       GS.addUndef();
5176     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5177                      unsigned(Elt) % NumElements))
5178       return SDValue();
5179   }
5180   return GS.getNode(DAG, SDLoc(VSN));
5181 }
5182 
5183 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5184                                                      SelectionDAG &DAG) const {
5185   SDLoc DL(Op);
5186   // Just insert the scalar into element 0 of an undefined vector.
5187   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5188                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5189                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5190 }
5191 
5192 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5193                                                       SelectionDAG &DAG) const {
5194   // Handle insertions of floating-point values.
5195   SDLoc DL(Op);
5196   SDValue Op0 = Op.getOperand(0);
5197   SDValue Op1 = Op.getOperand(1);
5198   SDValue Op2 = Op.getOperand(2);
5199   EVT VT = Op.getValueType();
5200 
5201   // Insertions into constant indices of a v2f64 can be done using VPDI.
5202   // However, if the inserted value is a bitcast or a constant then it's
5203   // better to use GPRs, as below.
5204   if (VT == MVT::v2f64 &&
5205       Op1.getOpcode() != ISD::BITCAST &&
5206       Op1.getOpcode() != ISD::ConstantFP &&
5207       Op2.getOpcode() == ISD::Constant) {
5208     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5209     unsigned Mask = VT.getVectorNumElements() - 1;
5210     if (Index <= Mask)
5211       return Op;
5212   }
5213 
5214   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5215   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5216   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5217   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5218                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5219                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5220   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5221 }
5222 
5223 SDValue
5224 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5225                                                SelectionDAG &DAG) const {
5226   // Handle extractions of floating-point values.
5227   SDLoc DL(Op);
5228   SDValue Op0 = Op.getOperand(0);
5229   SDValue Op1 = Op.getOperand(1);
5230   EVT VT = Op.getValueType();
5231   EVT VecVT = Op0.getValueType();
5232 
5233   // Extractions of constant indices can be done directly.
5234   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5235     uint64_t Index = CIndexN->getZExtValue();
5236     unsigned Mask = VecVT.getVectorNumElements() - 1;
5237     if (Index <= Mask)
5238       return Op;
5239   }
5240 
5241   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5242   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5243   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5244   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5245                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5246   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5247 }
5248 
5249 SDValue SystemZTargetLowering::
5250 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5251   SDValue PackedOp = Op.getOperand(0);
5252   EVT OutVT = Op.getValueType();
5253   EVT InVT = PackedOp.getValueType();
5254   unsigned ToBits = OutVT.getScalarSizeInBits();
5255   unsigned FromBits = InVT.getScalarSizeInBits();
5256   do {
5257     FromBits *= 2;
5258     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5259                                  SystemZ::VectorBits / FromBits);
5260     PackedOp =
5261       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5262   } while (FromBits != ToBits);
5263   return PackedOp;
5264 }
5265 
5266 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5267 SDValue SystemZTargetLowering::
5268 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5269   SDValue PackedOp = Op.getOperand(0);
5270   SDLoc DL(Op);
5271   EVT OutVT = Op.getValueType();
5272   EVT InVT = PackedOp.getValueType();
5273   unsigned InNumElts = InVT.getVectorNumElements();
5274   unsigned OutNumElts = OutVT.getVectorNumElements();
5275   unsigned NumInPerOut = InNumElts / OutNumElts;
5276 
5277   SDValue ZeroVec =
5278     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5279 
5280   SmallVector<int, 16> Mask(InNumElts);
5281   unsigned ZeroVecElt = InNumElts;
5282   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5283     unsigned MaskElt = PackedElt * NumInPerOut;
5284     unsigned End = MaskElt + NumInPerOut - 1;
5285     for (; MaskElt < End; MaskElt++)
5286       Mask[MaskElt] = ZeroVecElt++;
5287     Mask[MaskElt] = PackedElt;
5288   }
5289   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5290   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5291 }
5292 
5293 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5294                                           unsigned ByScalar) const {
5295   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5296   SDValue Op0 = Op.getOperand(0);
5297   SDValue Op1 = Op.getOperand(1);
5298   SDLoc DL(Op);
5299   EVT VT = Op.getValueType();
5300   unsigned ElemBitSize = VT.getScalarSizeInBits();
5301 
5302   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5303   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5304     APInt SplatBits, SplatUndef;
5305     unsigned SplatBitSize;
5306     bool HasAnyUndefs;
5307     // Check for constant splats.  Use ElemBitSize as the minimum element
5308     // width and reject splats that need wider elements.
5309     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5310                              ElemBitSize, true) &&
5311         SplatBitSize == ElemBitSize) {
5312       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5313                                       DL, MVT::i32);
5314       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5315     }
5316     // Check for variable splats.
5317     BitVector UndefElements;
5318     SDValue Splat = BVN->getSplatValue(&UndefElements);
5319     if (Splat) {
5320       // Since i32 is the smallest legal type, we either need a no-op
5321       // or a truncation.
5322       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5323       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5324     }
5325   }
5326 
5327   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5328   // and the shift amount is directly available in a GPR.
5329   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5330     if (VSN->isSplat()) {
5331       SDValue VSNOp0 = VSN->getOperand(0);
5332       unsigned Index = VSN->getSplatIndex();
5333       assert(Index < VT.getVectorNumElements() &&
5334              "Splat index should be defined and in first operand");
5335       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5336           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5337         // Since i32 is the smallest legal type, we either need a no-op
5338         // or a truncation.
5339         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5340                                     VSNOp0.getOperand(Index));
5341         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5342       }
5343     }
5344   }
5345 
5346   // Otherwise just treat the current form as legal.
5347   return Op;
5348 }
5349 
5350 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5351                                               SelectionDAG &DAG) const {
5352   switch (Op.getOpcode()) {
5353   case ISD::FRAMEADDR:
5354     return lowerFRAMEADDR(Op, DAG);
5355   case ISD::RETURNADDR:
5356     return lowerRETURNADDR(Op, DAG);
5357   case ISD::BR_CC:
5358     return lowerBR_CC(Op, DAG);
5359   case ISD::SELECT_CC:
5360     return lowerSELECT_CC(Op, DAG);
5361   case ISD::SETCC:
5362     return lowerSETCC(Op, DAG);
5363   case ISD::STRICT_FSETCC:
5364     return lowerSTRICT_FSETCC(Op, DAG, false);
5365   case ISD::STRICT_FSETCCS:
5366     return lowerSTRICT_FSETCC(Op, DAG, true);
5367   case ISD::GlobalAddress:
5368     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5369   case ISD::GlobalTLSAddress:
5370     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5371   case ISD::BlockAddress:
5372     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5373   case ISD::JumpTable:
5374     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5375   case ISD::ConstantPool:
5376     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5377   case ISD::BITCAST:
5378     return lowerBITCAST(Op, DAG);
5379   case ISD::VASTART:
5380     return lowerVASTART(Op, DAG);
5381   case ISD::VACOPY:
5382     return lowerVACOPY(Op, DAG);
5383   case ISD::DYNAMIC_STACKALLOC:
5384     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5385   case ISD::GET_DYNAMIC_AREA_OFFSET:
5386     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5387   case ISD::SMUL_LOHI:
5388     return lowerSMUL_LOHI(Op, DAG);
5389   case ISD::UMUL_LOHI:
5390     return lowerUMUL_LOHI(Op, DAG);
5391   case ISD::SDIVREM:
5392     return lowerSDIVREM(Op, DAG);
5393   case ISD::UDIVREM:
5394     return lowerUDIVREM(Op, DAG);
5395   case ISD::SADDO:
5396   case ISD::SSUBO:
5397   case ISD::UADDO:
5398   case ISD::USUBO:
5399     return lowerXALUO(Op, DAG);
5400   case ISD::ADDCARRY:
5401   case ISD::SUBCARRY:
5402     return lowerADDSUBCARRY(Op, DAG);
5403   case ISD::OR:
5404     return lowerOR(Op, DAG);
5405   case ISD::CTPOP:
5406     return lowerCTPOP(Op, DAG);
5407   case ISD::ATOMIC_FENCE:
5408     return lowerATOMIC_FENCE(Op, DAG);
5409   case ISD::ATOMIC_SWAP:
5410     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5411   case ISD::ATOMIC_STORE:
5412     return lowerATOMIC_STORE(Op, DAG);
5413   case ISD::ATOMIC_LOAD:
5414     return lowerATOMIC_LOAD(Op, DAG);
5415   case ISD::ATOMIC_LOAD_ADD:
5416     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5417   case ISD::ATOMIC_LOAD_SUB:
5418     return lowerATOMIC_LOAD_SUB(Op, DAG);
5419   case ISD::ATOMIC_LOAD_AND:
5420     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5421   case ISD::ATOMIC_LOAD_OR:
5422     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5423   case ISD::ATOMIC_LOAD_XOR:
5424     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5425   case ISD::ATOMIC_LOAD_NAND:
5426     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5427   case ISD::ATOMIC_LOAD_MIN:
5428     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5429   case ISD::ATOMIC_LOAD_MAX:
5430     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5431   case ISD::ATOMIC_LOAD_UMIN:
5432     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5433   case ISD::ATOMIC_LOAD_UMAX:
5434     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5435   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5436     return lowerATOMIC_CMP_SWAP(Op, DAG);
5437   case ISD::STACKSAVE:
5438     return lowerSTACKSAVE(Op, DAG);
5439   case ISD::STACKRESTORE:
5440     return lowerSTACKRESTORE(Op, DAG);
5441   case ISD::PREFETCH:
5442     return lowerPREFETCH(Op, DAG);
5443   case ISD::INTRINSIC_W_CHAIN:
5444     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5445   case ISD::INTRINSIC_WO_CHAIN:
5446     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5447   case ISD::BUILD_VECTOR:
5448     return lowerBUILD_VECTOR(Op, DAG);
5449   case ISD::VECTOR_SHUFFLE:
5450     return lowerVECTOR_SHUFFLE(Op, DAG);
5451   case ISD::SCALAR_TO_VECTOR:
5452     return lowerSCALAR_TO_VECTOR(Op, DAG);
5453   case ISD::INSERT_VECTOR_ELT:
5454     return lowerINSERT_VECTOR_ELT(Op, DAG);
5455   case ISD::EXTRACT_VECTOR_ELT:
5456     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5457   case ISD::SIGN_EXTEND_VECTOR_INREG:
5458     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5459   case ISD::ZERO_EXTEND_VECTOR_INREG:
5460     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5461   case ISD::SHL:
5462     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5463   case ISD::SRL:
5464     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5465   case ISD::SRA:
5466     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5467   default:
5468     llvm_unreachable("Unexpected node to lower");
5469   }
5470 }
5471 
5472 // Lower operations with invalid operand or result types (currently used
5473 // only for 128-bit integer types).
5474 
5475 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5476   SDLoc DL(In);
5477   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5478                            DAG.getIntPtrConstant(0, DL));
5479   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5480                            DAG.getIntPtrConstant(1, DL));
5481   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5482                                     MVT::Untyped, Hi, Lo);
5483   return SDValue(Pair, 0);
5484 }
5485 
5486 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5487   SDLoc DL(In);
5488   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5489                                           DL, MVT::i64, In);
5490   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5491                                           DL, MVT::i64, In);
5492   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5493 }
5494 
5495 void
5496 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5497                                              SmallVectorImpl<SDValue> &Results,
5498                                              SelectionDAG &DAG) const {
5499   switch (N->getOpcode()) {
5500   case ISD::ATOMIC_LOAD: {
5501     SDLoc DL(N);
5502     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5503     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5504     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5505     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5506                                           DL, Tys, Ops, MVT::i128, MMO);
5507     Results.push_back(lowerGR128ToI128(DAG, Res));
5508     Results.push_back(Res.getValue(1));
5509     break;
5510   }
5511   case ISD::ATOMIC_STORE: {
5512     SDLoc DL(N);
5513     SDVTList Tys = DAG.getVTList(MVT::Other);
5514     SDValue Ops[] = { N->getOperand(0),
5515                       lowerI128ToGR128(DAG, N->getOperand(2)),
5516                       N->getOperand(1) };
5517     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5518     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5519                                           DL, Tys, Ops, MVT::i128, MMO);
5520     // We have to enforce sequential consistency by performing a
5521     // serialization operation after the store.
5522     if (cast<AtomicSDNode>(N)->getOrdering() ==
5523         AtomicOrdering::SequentiallyConsistent)
5524       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5525                                        MVT::Other, Res), 0);
5526     Results.push_back(Res);
5527     break;
5528   }
5529   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5530     SDLoc DL(N);
5531     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5532     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5533                       lowerI128ToGR128(DAG, N->getOperand(2)),
5534                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5535     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5536     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5537                                           DL, Tys, Ops, MVT::i128, MMO);
5538     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5539                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5540     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5541     Results.push_back(lowerGR128ToI128(DAG, Res));
5542     Results.push_back(Success);
5543     Results.push_back(Res.getValue(2));
5544     break;
5545   }
5546   default:
5547     llvm_unreachable("Unexpected node to lower");
5548   }
5549 }
5550 
5551 void
5552 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5553                                           SmallVectorImpl<SDValue> &Results,
5554                                           SelectionDAG &DAG) const {
5555   return LowerOperationWrapper(N, Results, DAG);
5556 }
5557 
5558 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5559 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5560   switch ((SystemZISD::NodeType)Opcode) {
5561     case SystemZISD::FIRST_NUMBER: break;
5562     OPCODE(RET_FLAG);
5563     OPCODE(CALL);
5564     OPCODE(SIBCALL);
5565     OPCODE(TLS_GDCALL);
5566     OPCODE(TLS_LDCALL);
5567     OPCODE(PCREL_WRAPPER);
5568     OPCODE(PCREL_OFFSET);
5569     OPCODE(ICMP);
5570     OPCODE(FCMP);
5571     OPCODE(STRICT_FCMP);
5572     OPCODE(STRICT_FCMPS);
5573     OPCODE(TM);
5574     OPCODE(BR_CCMASK);
5575     OPCODE(SELECT_CCMASK);
5576     OPCODE(ADJDYNALLOC);
5577     OPCODE(PROBED_ALLOCA);
5578     OPCODE(POPCNT);
5579     OPCODE(SMUL_LOHI);
5580     OPCODE(UMUL_LOHI);
5581     OPCODE(SDIVREM);
5582     OPCODE(UDIVREM);
5583     OPCODE(SADDO);
5584     OPCODE(SSUBO);
5585     OPCODE(UADDO);
5586     OPCODE(USUBO);
5587     OPCODE(ADDCARRY);
5588     OPCODE(SUBCARRY);
5589     OPCODE(GET_CCMASK);
5590     OPCODE(MVC);
5591     OPCODE(MVC_LOOP);
5592     OPCODE(NC);
5593     OPCODE(NC_LOOP);
5594     OPCODE(OC);
5595     OPCODE(OC_LOOP);
5596     OPCODE(XC);
5597     OPCODE(XC_LOOP);
5598     OPCODE(CLC);
5599     OPCODE(CLC_LOOP);
5600     OPCODE(STPCPY);
5601     OPCODE(STRCMP);
5602     OPCODE(SEARCH_STRING);
5603     OPCODE(IPM);
5604     OPCODE(MEMBARRIER);
5605     OPCODE(TBEGIN);
5606     OPCODE(TBEGIN_NOFLOAT);
5607     OPCODE(TEND);
5608     OPCODE(BYTE_MASK);
5609     OPCODE(ROTATE_MASK);
5610     OPCODE(REPLICATE);
5611     OPCODE(JOIN_DWORDS);
5612     OPCODE(SPLAT);
5613     OPCODE(MERGE_HIGH);
5614     OPCODE(MERGE_LOW);
5615     OPCODE(SHL_DOUBLE);
5616     OPCODE(PERMUTE_DWORDS);
5617     OPCODE(PERMUTE);
5618     OPCODE(PACK);
5619     OPCODE(PACKS_CC);
5620     OPCODE(PACKLS_CC);
5621     OPCODE(UNPACK_HIGH);
5622     OPCODE(UNPACKL_HIGH);
5623     OPCODE(UNPACK_LOW);
5624     OPCODE(UNPACKL_LOW);
5625     OPCODE(VSHL_BY_SCALAR);
5626     OPCODE(VSRL_BY_SCALAR);
5627     OPCODE(VSRA_BY_SCALAR);
5628     OPCODE(VSUM);
5629     OPCODE(VICMPE);
5630     OPCODE(VICMPH);
5631     OPCODE(VICMPHL);
5632     OPCODE(VICMPES);
5633     OPCODE(VICMPHS);
5634     OPCODE(VICMPHLS);
5635     OPCODE(VFCMPE);
5636     OPCODE(STRICT_VFCMPE);
5637     OPCODE(STRICT_VFCMPES);
5638     OPCODE(VFCMPH);
5639     OPCODE(STRICT_VFCMPH);
5640     OPCODE(STRICT_VFCMPHS);
5641     OPCODE(VFCMPHE);
5642     OPCODE(STRICT_VFCMPHE);
5643     OPCODE(STRICT_VFCMPHES);
5644     OPCODE(VFCMPES);
5645     OPCODE(VFCMPHS);
5646     OPCODE(VFCMPHES);
5647     OPCODE(VFTCI);
5648     OPCODE(VEXTEND);
5649     OPCODE(STRICT_VEXTEND);
5650     OPCODE(VROUND);
5651     OPCODE(STRICT_VROUND);
5652     OPCODE(VTM);
5653     OPCODE(VFAE_CC);
5654     OPCODE(VFAEZ_CC);
5655     OPCODE(VFEE_CC);
5656     OPCODE(VFEEZ_CC);
5657     OPCODE(VFENE_CC);
5658     OPCODE(VFENEZ_CC);
5659     OPCODE(VISTR_CC);
5660     OPCODE(VSTRC_CC);
5661     OPCODE(VSTRCZ_CC);
5662     OPCODE(VSTRS_CC);
5663     OPCODE(VSTRSZ_CC);
5664     OPCODE(TDC);
5665     OPCODE(ATOMIC_SWAPW);
5666     OPCODE(ATOMIC_LOADW_ADD);
5667     OPCODE(ATOMIC_LOADW_SUB);
5668     OPCODE(ATOMIC_LOADW_AND);
5669     OPCODE(ATOMIC_LOADW_OR);
5670     OPCODE(ATOMIC_LOADW_XOR);
5671     OPCODE(ATOMIC_LOADW_NAND);
5672     OPCODE(ATOMIC_LOADW_MIN);
5673     OPCODE(ATOMIC_LOADW_MAX);
5674     OPCODE(ATOMIC_LOADW_UMIN);
5675     OPCODE(ATOMIC_LOADW_UMAX);
5676     OPCODE(ATOMIC_CMP_SWAPW);
5677     OPCODE(ATOMIC_CMP_SWAP);
5678     OPCODE(ATOMIC_LOAD_128);
5679     OPCODE(ATOMIC_STORE_128);
5680     OPCODE(ATOMIC_CMP_SWAP_128);
5681     OPCODE(LRV);
5682     OPCODE(STRV);
5683     OPCODE(VLER);
5684     OPCODE(VSTER);
5685     OPCODE(PREFETCH);
5686   }
5687   return nullptr;
5688 #undef OPCODE
5689 }
5690 
5691 // Return true if VT is a vector whose elements are a whole number of bytes
5692 // in width. Also check for presence of vector support.
5693 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5694   if (!Subtarget.hasVector())
5695     return false;
5696 
5697   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5698 }
5699 
5700 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5701 // producing a result of type ResVT.  Op is a possibly bitcast version
5702 // of the input vector and Index is the index (based on type VecVT) that
5703 // should be extracted.  Return the new extraction if a simplification
5704 // was possible or if Force is true.
5705 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5706                                               EVT VecVT, SDValue Op,
5707                                               unsigned Index,
5708                                               DAGCombinerInfo &DCI,
5709                                               bool Force) const {
5710   SelectionDAG &DAG = DCI.DAG;
5711 
5712   // The number of bytes being extracted.
5713   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5714 
5715   for (;;) {
5716     unsigned Opcode = Op.getOpcode();
5717     if (Opcode == ISD::BITCAST)
5718       // Look through bitcasts.
5719       Op = Op.getOperand(0);
5720     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5721              canTreatAsByteVector(Op.getValueType())) {
5722       // Get a VPERM-like permute mask and see whether the bytes covered
5723       // by the extracted element are a contiguous sequence from one
5724       // source operand.
5725       SmallVector<int, SystemZ::VectorBytes> Bytes;
5726       if (!getVPermMask(Op, Bytes))
5727         break;
5728       int First;
5729       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5730                            BytesPerElement, First))
5731         break;
5732       if (First < 0)
5733         return DAG.getUNDEF(ResVT);
5734       // Make sure the contiguous sequence starts at a multiple of the
5735       // original element size.
5736       unsigned Byte = unsigned(First) % Bytes.size();
5737       if (Byte % BytesPerElement != 0)
5738         break;
5739       // We can get the extracted value directly from an input.
5740       Index = Byte / BytesPerElement;
5741       Op = Op.getOperand(unsigned(First) / Bytes.size());
5742       Force = true;
5743     } else if (Opcode == ISD::BUILD_VECTOR &&
5744                canTreatAsByteVector(Op.getValueType())) {
5745       // We can only optimize this case if the BUILD_VECTOR elements are
5746       // at least as wide as the extracted value.
5747       EVT OpVT = Op.getValueType();
5748       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5749       if (OpBytesPerElement < BytesPerElement)
5750         break;
5751       // Make sure that the least-significant bit of the extracted value
5752       // is the least significant bit of an input.
5753       unsigned End = (Index + 1) * BytesPerElement;
5754       if (End % OpBytesPerElement != 0)
5755         break;
5756       // We're extracting the low part of one operand of the BUILD_VECTOR.
5757       Op = Op.getOperand(End / OpBytesPerElement - 1);
5758       if (!Op.getValueType().isInteger()) {
5759         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5760         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5761         DCI.AddToWorklist(Op.getNode());
5762       }
5763       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5764       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5765       if (VT != ResVT) {
5766         DCI.AddToWorklist(Op.getNode());
5767         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5768       }
5769       return Op;
5770     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5771                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5772                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5773                canTreatAsByteVector(Op.getValueType()) &&
5774                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5775       // Make sure that only the unextended bits are significant.
5776       EVT ExtVT = Op.getValueType();
5777       EVT OpVT = Op.getOperand(0).getValueType();
5778       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5779       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5780       unsigned Byte = Index * BytesPerElement;
5781       unsigned SubByte = Byte % ExtBytesPerElement;
5782       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5783       if (SubByte < MinSubByte ||
5784           SubByte + BytesPerElement > ExtBytesPerElement)
5785         break;
5786       // Get the byte offset of the unextended element
5787       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5788       // ...then add the byte offset relative to that element.
5789       Byte += SubByte - MinSubByte;
5790       if (Byte % BytesPerElement != 0)
5791         break;
5792       Op = Op.getOperand(0);
5793       Index = Byte / BytesPerElement;
5794       Force = true;
5795     } else
5796       break;
5797   }
5798   if (Force) {
5799     if (Op.getValueType() != VecVT) {
5800       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5801       DCI.AddToWorklist(Op.getNode());
5802     }
5803     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5804                        DAG.getConstant(Index, DL, MVT::i32));
5805   }
5806   return SDValue();
5807 }
5808 
5809 // Optimize vector operations in scalar value Op on the basis that Op
5810 // is truncated to TruncVT.
5811 SDValue SystemZTargetLowering::combineTruncateExtract(
5812     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5813   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5814   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5815   // of type TruncVT.
5816   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5817       TruncVT.getSizeInBits() % 8 == 0) {
5818     SDValue Vec = Op.getOperand(0);
5819     EVT VecVT = Vec.getValueType();
5820     if (canTreatAsByteVector(VecVT)) {
5821       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5822         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5823         unsigned TruncBytes = TruncVT.getStoreSize();
5824         if (BytesPerElement % TruncBytes == 0) {
5825           // Calculate the value of Y' in the above description.  We are
5826           // splitting the original elements into Scale equal-sized pieces
5827           // and for truncation purposes want the last (least-significant)
5828           // of these pieces for IndexN.  This is easiest to do by calculating
5829           // the start index of the following element and then subtracting 1.
5830           unsigned Scale = BytesPerElement / TruncBytes;
5831           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5832 
5833           // Defer the creation of the bitcast from X to combineExtract,
5834           // which might be able to optimize the extraction.
5835           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5836                                    VecVT.getStoreSize() / TruncBytes);
5837           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5838           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5839         }
5840       }
5841     }
5842   }
5843   return SDValue();
5844 }
5845 
5846 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5847     SDNode *N, DAGCombinerInfo &DCI) const {
5848   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5849   SelectionDAG &DAG = DCI.DAG;
5850   SDValue N0 = N->getOperand(0);
5851   EVT VT = N->getValueType(0);
5852   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5853     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5854     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5855     if (TrueOp && FalseOp) {
5856       SDLoc DL(N0);
5857       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5858                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5859                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5860       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5861       // If N0 has multiple uses, change other uses as well.
5862       if (!N0.hasOneUse()) {
5863         SDValue TruncSelect =
5864           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5865         DCI.CombineTo(N0.getNode(), TruncSelect);
5866       }
5867       return NewSelect;
5868     }
5869   }
5870   return SDValue();
5871 }
5872 
5873 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5874     SDNode *N, DAGCombinerInfo &DCI) const {
5875   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5876   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5877   // into (select_cc LHS, RHS, -1, 0, COND)
5878   SelectionDAG &DAG = DCI.DAG;
5879   SDValue N0 = N->getOperand(0);
5880   EVT VT = N->getValueType(0);
5881   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5882   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5883     N0 = N0.getOperand(0);
5884   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5885     SDLoc DL(N0);
5886     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5887                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5888                       N0.getOperand(2) };
5889     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5890   }
5891   return SDValue();
5892 }
5893 
5894 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5895     SDNode *N, DAGCombinerInfo &DCI) const {
5896   // Convert (sext (ashr (shl X, C1), C2)) to
5897   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5898   // cheap as narrower ones.
5899   SelectionDAG &DAG = DCI.DAG;
5900   SDValue N0 = N->getOperand(0);
5901   EVT VT = N->getValueType(0);
5902   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5903     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5904     SDValue Inner = N0.getOperand(0);
5905     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5906       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5907         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5908         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5909         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5910         EVT ShiftVT = N0.getOperand(1).getValueType();
5911         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5912                                   Inner.getOperand(0));
5913         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5914                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5915                                                   ShiftVT));
5916         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5917                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5918       }
5919     }
5920   }
5921   return SDValue();
5922 }
5923 
5924 SDValue SystemZTargetLowering::combineMERGE(
5925     SDNode *N, DAGCombinerInfo &DCI) const {
5926   SelectionDAG &DAG = DCI.DAG;
5927   unsigned Opcode = N->getOpcode();
5928   SDValue Op0 = N->getOperand(0);
5929   SDValue Op1 = N->getOperand(1);
5930   if (Op0.getOpcode() == ISD::BITCAST)
5931     Op0 = Op0.getOperand(0);
5932   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5933     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5934     // for v4f32.
5935     if (Op1 == N->getOperand(0))
5936       return Op1;
5937     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5938     EVT VT = Op1.getValueType();
5939     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5940     if (ElemBytes <= 4) {
5941       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5942                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5943       EVT InVT = VT.changeVectorElementTypeToInteger();
5944       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5945                                    SystemZ::VectorBytes / ElemBytes / 2);
5946       if (VT != InVT) {
5947         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5948         DCI.AddToWorklist(Op1.getNode());
5949       }
5950       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5951       DCI.AddToWorklist(Op.getNode());
5952       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5953     }
5954   }
5955   return SDValue();
5956 }
5957 
5958 SDValue SystemZTargetLowering::combineLOAD(
5959     SDNode *N, DAGCombinerInfo &DCI) const {
5960   SelectionDAG &DAG = DCI.DAG;
5961   EVT LdVT = N->getValueType(0);
5962   if (LdVT.isVector() || LdVT.isInteger())
5963     return SDValue();
5964   // Transform a scalar load that is REPLICATEd as well as having other
5965   // use(s) to the form where the other use(s) use the first element of the
5966   // REPLICATE instead of the load. Otherwise instruction selection will not
5967   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5968   // point loads.
5969 
5970   SDValue Replicate;
5971   SmallVector<SDNode*, 8> OtherUses;
5972   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5973        UI != UE; ++UI) {
5974     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5975       if (Replicate)
5976         return SDValue(); // Should never happen
5977       Replicate = SDValue(*UI, 0);
5978     }
5979     else if (UI.getUse().getResNo() == 0)
5980       OtherUses.push_back(*UI);
5981   }
5982   if (!Replicate || OtherUses.empty())
5983     return SDValue();
5984 
5985   SDLoc DL(N);
5986   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5987                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5988   // Update uses of the loaded Value while preserving old chains.
5989   for (SDNode *U : OtherUses) {
5990     SmallVector<SDValue, 8> Ops;
5991     for (SDValue Op : U->ops())
5992       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5993     DAG.UpdateNodeOperands(U, Ops);
5994   }
5995   return SDValue(N, 0);
5996 }
5997 
5998 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5999   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6000     return true;
6001   if (Subtarget.hasVectorEnhancements2())
6002     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6003       return true;
6004   return false;
6005 }
6006 
6007 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6008   if (!VT.isVector() || !VT.isSimple() ||
6009       VT.getSizeInBits() != 128 ||
6010       VT.getScalarSizeInBits() % 8 != 0)
6011     return false;
6012 
6013   unsigned NumElts = VT.getVectorNumElements();
6014   for (unsigned i = 0; i < NumElts; ++i) {
6015     if (M[i] < 0) continue; // ignore UNDEF indices
6016     if ((unsigned) M[i] != NumElts - 1 - i)
6017       return false;
6018   }
6019 
6020   return true;
6021 }
6022 
6023 SDValue SystemZTargetLowering::combineSTORE(
6024     SDNode *N, DAGCombinerInfo &DCI) const {
6025   SelectionDAG &DAG = DCI.DAG;
6026   auto *SN = cast<StoreSDNode>(N);
6027   auto &Op1 = N->getOperand(1);
6028   EVT MemVT = SN->getMemoryVT();
6029   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6030   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6031   // If X has wider elements then convert it to:
6032   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6033   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6034     if (SDValue Value =
6035             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6036       DCI.AddToWorklist(Value.getNode());
6037 
6038       // Rewrite the store with the new form of stored value.
6039       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6040                                SN->getBasePtr(), SN->getMemoryVT(),
6041                                SN->getMemOperand());
6042     }
6043   }
6044   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6045   if (!SN->isTruncatingStore() &&
6046       Op1.getOpcode() == ISD::BSWAP &&
6047       Op1.getNode()->hasOneUse() &&
6048       canLoadStoreByteSwapped(Op1.getValueType())) {
6049 
6050       SDValue BSwapOp = Op1.getOperand(0);
6051 
6052       if (BSwapOp.getValueType() == MVT::i16)
6053         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6054 
6055       SDValue Ops[] = {
6056         N->getOperand(0), BSwapOp, N->getOperand(2)
6057       };
6058 
6059       return
6060         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6061                                 Ops, MemVT, SN->getMemOperand());
6062     }
6063   // Combine STORE (element-swap) into VSTER
6064   if (!SN->isTruncatingStore() &&
6065       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6066       Op1.getNode()->hasOneUse() &&
6067       Subtarget.hasVectorEnhancements2()) {
6068     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6069     ArrayRef<int> ShuffleMask = SVN->getMask();
6070     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6071       SDValue Ops[] = {
6072         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6073       };
6074 
6075       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6076                                      DAG.getVTList(MVT::Other),
6077                                      Ops, MemVT, SN->getMemOperand());
6078     }
6079   }
6080 
6081   return SDValue();
6082 }
6083 
6084 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6085     SDNode *N, DAGCombinerInfo &DCI) const {
6086   SelectionDAG &DAG = DCI.DAG;
6087   // Combine element-swap (LOAD) into VLER
6088   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6089       N->getOperand(0).hasOneUse() &&
6090       Subtarget.hasVectorEnhancements2()) {
6091     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6092     ArrayRef<int> ShuffleMask = SVN->getMask();
6093     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6094       SDValue Load = N->getOperand(0);
6095       LoadSDNode *LD = cast<LoadSDNode>(Load);
6096 
6097       // Create the element-swapping load.
6098       SDValue Ops[] = {
6099         LD->getChain(),    // Chain
6100         LD->getBasePtr()   // Ptr
6101       };
6102       SDValue ESLoad =
6103         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6104                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6105                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6106 
6107       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6108       // by the load dead.
6109       DCI.CombineTo(N, ESLoad);
6110 
6111       // Next, combine the load away, we give it a bogus result value but a real
6112       // chain result.  The result value is dead because the shuffle is dead.
6113       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6114 
6115       // Return N so it doesn't get rechecked!
6116       return SDValue(N, 0);
6117     }
6118   }
6119 
6120   return SDValue();
6121 }
6122 
6123 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6124     SDNode *N, DAGCombinerInfo &DCI) const {
6125   SelectionDAG &DAG = DCI.DAG;
6126 
6127   if (!Subtarget.hasVector())
6128     return SDValue();
6129 
6130   // Look through bitcasts that retain the number of vector elements.
6131   SDValue Op = N->getOperand(0);
6132   if (Op.getOpcode() == ISD::BITCAST &&
6133       Op.getValueType().isVector() &&
6134       Op.getOperand(0).getValueType().isVector() &&
6135       Op.getValueType().getVectorNumElements() ==
6136       Op.getOperand(0).getValueType().getVectorNumElements())
6137     Op = Op.getOperand(0);
6138 
6139   // Pull BSWAP out of a vector extraction.
6140   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6141     EVT VecVT = Op.getValueType();
6142     EVT EltVT = VecVT.getVectorElementType();
6143     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6144                      Op.getOperand(0), N->getOperand(1));
6145     DCI.AddToWorklist(Op.getNode());
6146     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6147     if (EltVT != N->getValueType(0)) {
6148       DCI.AddToWorklist(Op.getNode());
6149       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6150     }
6151     return Op;
6152   }
6153 
6154   // Try to simplify a vector extraction.
6155   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6156     SDValue Op0 = N->getOperand(0);
6157     EVT VecVT = Op0.getValueType();
6158     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6159                           IndexN->getZExtValue(), DCI, false);
6160   }
6161   return SDValue();
6162 }
6163 
6164 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6165     SDNode *N, DAGCombinerInfo &DCI) const {
6166   SelectionDAG &DAG = DCI.DAG;
6167   // (join_dwords X, X) == (replicate X)
6168   if (N->getOperand(0) == N->getOperand(1))
6169     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6170                        N->getOperand(0));
6171   return SDValue();
6172 }
6173 
6174 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6175   SDValue Chain1 = N1->getOperand(0);
6176   SDValue Chain2 = N2->getOperand(0);
6177 
6178   // Trivial case: both nodes take the same chain.
6179   if (Chain1 == Chain2)
6180     return Chain1;
6181 
6182   // FIXME - we could handle more complex cases via TokenFactor,
6183   // assuming we can verify that this would not create a cycle.
6184   return SDValue();
6185 }
6186 
6187 SDValue SystemZTargetLowering::combineFP_ROUND(
6188     SDNode *N, DAGCombinerInfo &DCI) const {
6189 
6190   if (!Subtarget.hasVector())
6191     return SDValue();
6192 
6193   // (fpround (extract_vector_elt X 0))
6194   // (fpround (extract_vector_elt X 1)) ->
6195   // (extract_vector_elt (VROUND X) 0)
6196   // (extract_vector_elt (VROUND X) 2)
6197   //
6198   // This is a special case since the target doesn't really support v2f32s.
6199   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6200   SelectionDAG &DAG = DCI.DAG;
6201   SDValue Op0 = N->getOperand(OpNo);
6202   if (N->getValueType(0) == MVT::f32 &&
6203       Op0.hasOneUse() &&
6204       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6205       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6206       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6207       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6208     SDValue Vec = Op0.getOperand(0);
6209     for (auto *U : Vec->uses()) {
6210       if (U != Op0.getNode() &&
6211           U->hasOneUse() &&
6212           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6213           U->getOperand(0) == Vec &&
6214           U->getOperand(1).getOpcode() == ISD::Constant &&
6215           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6216         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6217         if (OtherRound.getOpcode() == N->getOpcode() &&
6218             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6219             OtherRound.getValueType() == MVT::f32) {
6220           SDValue VRound, Chain;
6221           if (N->isStrictFPOpcode()) {
6222             Chain = MergeInputChains(N, OtherRound.getNode());
6223             if (!Chain)
6224               continue;
6225             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6226                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6227             Chain = VRound.getValue(1);
6228           } else
6229             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6230                                  MVT::v4f32, Vec);
6231           DCI.AddToWorklist(VRound.getNode());
6232           SDValue Extract1 =
6233             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6234                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6235           DCI.AddToWorklist(Extract1.getNode());
6236           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6237           if (Chain)
6238             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6239           SDValue Extract0 =
6240             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6241                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6242           if (Chain)
6243             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6244                                N->getVTList(), Extract0, Chain);
6245           return Extract0;
6246         }
6247       }
6248     }
6249   }
6250   return SDValue();
6251 }
6252 
6253 SDValue SystemZTargetLowering::combineFP_EXTEND(
6254     SDNode *N, DAGCombinerInfo &DCI) const {
6255 
6256   if (!Subtarget.hasVector())
6257     return SDValue();
6258 
6259   // (fpextend (extract_vector_elt X 0))
6260   // (fpextend (extract_vector_elt X 2)) ->
6261   // (extract_vector_elt (VEXTEND X) 0)
6262   // (extract_vector_elt (VEXTEND X) 1)
6263   //
6264   // This is a special case since the target doesn't really support v2f32s.
6265   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6266   SelectionDAG &DAG = DCI.DAG;
6267   SDValue Op0 = N->getOperand(OpNo);
6268   if (N->getValueType(0) == MVT::f64 &&
6269       Op0.hasOneUse() &&
6270       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6271       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6272       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6273       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6274     SDValue Vec = Op0.getOperand(0);
6275     for (auto *U : Vec->uses()) {
6276       if (U != Op0.getNode() &&
6277           U->hasOneUse() &&
6278           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6279           U->getOperand(0) == Vec &&
6280           U->getOperand(1).getOpcode() == ISD::Constant &&
6281           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6282         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6283         if (OtherExtend.getOpcode() == N->getOpcode() &&
6284             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6285             OtherExtend.getValueType() == MVT::f64) {
6286           SDValue VExtend, Chain;
6287           if (N->isStrictFPOpcode()) {
6288             Chain = MergeInputChains(N, OtherExtend.getNode());
6289             if (!Chain)
6290               continue;
6291             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6292                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6293             Chain = VExtend.getValue(1);
6294           } else
6295             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6296                                   MVT::v2f64, Vec);
6297           DCI.AddToWorklist(VExtend.getNode());
6298           SDValue Extract1 =
6299             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6300                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6301           DCI.AddToWorklist(Extract1.getNode());
6302           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6303           if (Chain)
6304             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6305           SDValue Extract0 =
6306             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6307                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6308           if (Chain)
6309             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6310                                N->getVTList(), Extract0, Chain);
6311           return Extract0;
6312         }
6313       }
6314     }
6315   }
6316   return SDValue();
6317 }
6318 
6319 SDValue SystemZTargetLowering::combineINT_TO_FP(
6320     SDNode *N, DAGCombinerInfo &DCI) const {
6321   if (DCI.Level != BeforeLegalizeTypes)
6322     return SDValue();
6323   unsigned Opcode = N->getOpcode();
6324   EVT OutVT = N->getValueType(0);
6325   SelectionDAG &DAG = DCI.DAG;
6326   SDValue Op = N->getOperand(0);
6327   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6328   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6329 
6330   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6331   // v2f64 = uint_to_fp v2i16
6332   // =>
6333   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6334   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6335     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6336                                  OutVT.getVectorNumElements());
6337     unsigned ExtOpcode =
6338       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6339     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6340     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6341   }
6342   return SDValue();
6343 }
6344 
6345 SDValue SystemZTargetLowering::combineBSWAP(
6346     SDNode *N, DAGCombinerInfo &DCI) const {
6347   SelectionDAG &DAG = DCI.DAG;
6348   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6349   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6350       N->getOperand(0).hasOneUse() &&
6351       canLoadStoreByteSwapped(N->getValueType(0))) {
6352       SDValue Load = N->getOperand(0);
6353       LoadSDNode *LD = cast<LoadSDNode>(Load);
6354 
6355       // Create the byte-swapping load.
6356       SDValue Ops[] = {
6357         LD->getChain(),    // Chain
6358         LD->getBasePtr()   // Ptr
6359       };
6360       EVT LoadVT = N->getValueType(0);
6361       if (LoadVT == MVT::i16)
6362         LoadVT = MVT::i32;
6363       SDValue BSLoad =
6364         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6365                                 DAG.getVTList(LoadVT, MVT::Other),
6366                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6367 
6368       // If this is an i16 load, insert the truncate.
6369       SDValue ResVal = BSLoad;
6370       if (N->getValueType(0) == MVT::i16)
6371         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6372 
6373       // First, combine the bswap away.  This makes the value produced by the
6374       // load dead.
6375       DCI.CombineTo(N, ResVal);
6376 
6377       // Next, combine the load away, we give it a bogus result value but a real
6378       // chain result.  The result value is dead because the bswap is dead.
6379       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6380 
6381       // Return N so it doesn't get rechecked!
6382       return SDValue(N, 0);
6383     }
6384 
6385   // Look through bitcasts that retain the number of vector elements.
6386   SDValue Op = N->getOperand(0);
6387   if (Op.getOpcode() == ISD::BITCAST &&
6388       Op.getValueType().isVector() &&
6389       Op.getOperand(0).getValueType().isVector() &&
6390       Op.getValueType().getVectorNumElements() ==
6391       Op.getOperand(0).getValueType().getVectorNumElements())
6392     Op = Op.getOperand(0);
6393 
6394   // Push BSWAP into a vector insertion if at least one side then simplifies.
6395   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6396     SDValue Vec = Op.getOperand(0);
6397     SDValue Elt = Op.getOperand(1);
6398     SDValue Idx = Op.getOperand(2);
6399 
6400     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6401         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6402         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6403         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6404         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6405          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6406       EVT VecVT = N->getValueType(0);
6407       EVT EltVT = N->getValueType(0).getVectorElementType();
6408       if (VecVT != Vec.getValueType()) {
6409         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6410         DCI.AddToWorklist(Vec.getNode());
6411       }
6412       if (EltVT != Elt.getValueType()) {
6413         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6414         DCI.AddToWorklist(Elt.getNode());
6415       }
6416       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6417       DCI.AddToWorklist(Vec.getNode());
6418       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6419       DCI.AddToWorklist(Elt.getNode());
6420       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6421                          Vec, Elt, Idx);
6422     }
6423   }
6424 
6425   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6426   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6427   if (SV && Op.hasOneUse()) {
6428     SDValue Op0 = Op.getOperand(0);
6429     SDValue Op1 = Op.getOperand(1);
6430 
6431     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6432         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6433         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6434         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6435       EVT VecVT = N->getValueType(0);
6436       if (VecVT != Op0.getValueType()) {
6437         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6438         DCI.AddToWorklist(Op0.getNode());
6439       }
6440       if (VecVT != Op1.getValueType()) {
6441         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6442         DCI.AddToWorklist(Op1.getNode());
6443       }
6444       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6445       DCI.AddToWorklist(Op0.getNode());
6446       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6447       DCI.AddToWorklist(Op1.getNode());
6448       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6449     }
6450   }
6451 
6452   return SDValue();
6453 }
6454 
6455 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6456   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6457   // set by the CCReg instruction using the CCValid / CCMask masks,
6458   // If the CCReg instruction is itself a ICMP testing the condition
6459   // code set by some other instruction, see whether we can directly
6460   // use that condition code.
6461 
6462   // Verify that we have an ICMP against some constant.
6463   if (CCValid != SystemZ::CCMASK_ICMP)
6464     return false;
6465   auto *ICmp = CCReg.getNode();
6466   if (ICmp->getOpcode() != SystemZISD::ICMP)
6467     return false;
6468   auto *CompareLHS = ICmp->getOperand(0).getNode();
6469   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6470   if (!CompareRHS)
6471     return false;
6472 
6473   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6474   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6475     // Verify that we have an appropriate mask for a EQ or NE comparison.
6476     bool Invert = false;
6477     if (CCMask == SystemZ::CCMASK_CMP_NE)
6478       Invert = !Invert;
6479     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6480       return false;
6481 
6482     // Verify that the ICMP compares against one of select values.
6483     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6484     if (!TrueVal)
6485       return false;
6486     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6487     if (!FalseVal)
6488       return false;
6489     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6490       Invert = !Invert;
6491     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6492       return false;
6493 
6494     // Compute the effective CC mask for the new branch or select.
6495     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6496     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6497     if (!NewCCValid || !NewCCMask)
6498       return false;
6499     CCValid = NewCCValid->getZExtValue();
6500     CCMask = NewCCMask->getZExtValue();
6501     if (Invert)
6502       CCMask ^= CCValid;
6503 
6504     // Return the updated CCReg link.
6505     CCReg = CompareLHS->getOperand(4);
6506     return true;
6507   }
6508 
6509   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6510   if (CompareLHS->getOpcode() == ISD::SRA) {
6511     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6512     if (!SRACount || SRACount->getZExtValue() != 30)
6513       return false;
6514     auto *SHL = CompareLHS->getOperand(0).getNode();
6515     if (SHL->getOpcode() != ISD::SHL)
6516       return false;
6517     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6518     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6519       return false;
6520     auto *IPM = SHL->getOperand(0).getNode();
6521     if (IPM->getOpcode() != SystemZISD::IPM)
6522       return false;
6523 
6524     // Avoid introducing CC spills (because SRA would clobber CC).
6525     if (!CompareLHS->hasOneUse())
6526       return false;
6527     // Verify that the ICMP compares against zero.
6528     if (CompareRHS->getZExtValue() != 0)
6529       return false;
6530 
6531     // Compute the effective CC mask for the new branch or select.
6532     CCMask = SystemZ::reverseCCMask(CCMask);
6533 
6534     // Return the updated CCReg link.
6535     CCReg = IPM->getOperand(0);
6536     return true;
6537   }
6538 
6539   return false;
6540 }
6541 
6542 SDValue SystemZTargetLowering::combineBR_CCMASK(
6543     SDNode *N, DAGCombinerInfo &DCI) const {
6544   SelectionDAG &DAG = DCI.DAG;
6545 
6546   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6547   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6548   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6549   if (!CCValid || !CCMask)
6550     return SDValue();
6551 
6552   int CCValidVal = CCValid->getZExtValue();
6553   int CCMaskVal = CCMask->getZExtValue();
6554   SDValue Chain = N->getOperand(0);
6555   SDValue CCReg = N->getOperand(4);
6556 
6557   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6558     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6559                        Chain,
6560                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6561                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6562                        N->getOperand(3), CCReg);
6563   return SDValue();
6564 }
6565 
6566 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6567     SDNode *N, DAGCombinerInfo &DCI) const {
6568   SelectionDAG &DAG = DCI.DAG;
6569 
6570   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6571   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6572   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6573   if (!CCValid || !CCMask)
6574     return SDValue();
6575 
6576   int CCValidVal = CCValid->getZExtValue();
6577   int CCMaskVal = CCMask->getZExtValue();
6578   SDValue CCReg = N->getOperand(4);
6579 
6580   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6581     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6582                        N->getOperand(0), N->getOperand(1),
6583                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6584                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6585                        CCReg);
6586   return SDValue();
6587 }
6588 
6589 
6590 SDValue SystemZTargetLowering::combineGET_CCMASK(
6591     SDNode *N, DAGCombinerInfo &DCI) const {
6592 
6593   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6594   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6595   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6596   if (!CCValid || !CCMask)
6597     return SDValue();
6598   int CCValidVal = CCValid->getZExtValue();
6599   int CCMaskVal = CCMask->getZExtValue();
6600 
6601   SDValue Select = N->getOperand(0);
6602   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6603     return SDValue();
6604 
6605   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6606   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6607   if (!SelectCCValid || !SelectCCMask)
6608     return SDValue();
6609   int SelectCCValidVal = SelectCCValid->getZExtValue();
6610   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6611 
6612   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6613   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6614   if (!TrueVal || !FalseVal)
6615     return SDValue();
6616   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6617     ;
6618   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6619     SelectCCMaskVal ^= SelectCCValidVal;
6620   else
6621     return SDValue();
6622 
6623   if (SelectCCValidVal & ~CCValidVal)
6624     return SDValue();
6625   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6626     return SDValue();
6627 
6628   return Select->getOperand(4);
6629 }
6630 
6631 SDValue SystemZTargetLowering::combineIntDIVREM(
6632     SDNode *N, DAGCombinerInfo &DCI) const {
6633   SelectionDAG &DAG = DCI.DAG;
6634   EVT VT = N->getValueType(0);
6635   // In the case where the divisor is a vector of constants a cheaper
6636   // sequence of instructions can replace the divide. BuildSDIV is called to
6637   // do this during DAG combining, but it only succeeds when it can build a
6638   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6639   // since it is not Legal but Custom it can only happen before
6640   // legalization. Therefore we must scalarize this early before Combine
6641   // 1. For widened vectors, this is already the result of type legalization.
6642   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6643       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6644     return DAG.UnrollVectorOp(N);
6645   return SDValue();
6646 }
6647 
6648 SDValue SystemZTargetLowering::combineINTRINSIC(
6649     SDNode *N, DAGCombinerInfo &DCI) const {
6650   SelectionDAG &DAG = DCI.DAG;
6651 
6652   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6653   switch (Id) {
6654   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6655   // or larger is simply a vector load.
6656   case Intrinsic::s390_vll:
6657   case Intrinsic::s390_vlrl:
6658     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6659       if (C->getZExtValue() >= 15)
6660         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6661                            N->getOperand(3), MachinePointerInfo());
6662     break;
6663   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6664   case Intrinsic::s390_vstl:
6665   case Intrinsic::s390_vstrl:
6666     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6667       if (C->getZExtValue() >= 15)
6668         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6669                             N->getOperand(4), MachinePointerInfo());
6670     break;
6671   }
6672 
6673   return SDValue();
6674 }
6675 
6676 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6677   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6678     return N->getOperand(0);
6679   return N;
6680 }
6681 
6682 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6683                                                  DAGCombinerInfo &DCI) const {
6684   switch(N->getOpcode()) {
6685   default: break;
6686   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6687   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6688   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6689   case SystemZISD::MERGE_HIGH:
6690   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6691   case ISD::LOAD:               return combineLOAD(N, DCI);
6692   case ISD::STORE:              return combineSTORE(N, DCI);
6693   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6694   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6695   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6696   case ISD::STRICT_FP_ROUND:
6697   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6698   case ISD::STRICT_FP_EXTEND:
6699   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6700   case ISD::SINT_TO_FP:
6701   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6702   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6703   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6704   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6705   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6706   case ISD::SDIV:
6707   case ISD::UDIV:
6708   case ISD::SREM:
6709   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6710   case ISD::INTRINSIC_W_CHAIN:
6711   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6712   }
6713 
6714   return SDValue();
6715 }
6716 
6717 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6718 // are for Op.
6719 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6720                                     unsigned OpNo) {
6721   EVT VT = Op.getValueType();
6722   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6723   APInt SrcDemE;
6724   unsigned Opcode = Op.getOpcode();
6725   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6726     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6727     switch (Id) {
6728     case Intrinsic::s390_vpksh:   // PACKS
6729     case Intrinsic::s390_vpksf:
6730     case Intrinsic::s390_vpksg:
6731     case Intrinsic::s390_vpkshs:  // PACKS_CC
6732     case Intrinsic::s390_vpksfs:
6733     case Intrinsic::s390_vpksgs:
6734     case Intrinsic::s390_vpklsh:  // PACKLS
6735     case Intrinsic::s390_vpklsf:
6736     case Intrinsic::s390_vpklsg:
6737     case Intrinsic::s390_vpklshs: // PACKLS_CC
6738     case Intrinsic::s390_vpklsfs:
6739     case Intrinsic::s390_vpklsgs:
6740       // VECTOR PACK truncates the elements of two source vectors into one.
6741       SrcDemE = DemandedElts;
6742       if (OpNo == 2)
6743         SrcDemE.lshrInPlace(NumElts / 2);
6744       SrcDemE = SrcDemE.trunc(NumElts / 2);
6745       break;
6746       // VECTOR UNPACK extends half the elements of the source vector.
6747     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6748     case Intrinsic::s390_vuphh:
6749     case Intrinsic::s390_vuphf:
6750     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6751     case Intrinsic::s390_vuplhh:
6752     case Intrinsic::s390_vuplhf:
6753       SrcDemE = APInt(NumElts * 2, 0);
6754       SrcDemE.insertBits(DemandedElts, 0);
6755       break;
6756     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6757     case Intrinsic::s390_vuplhw:
6758     case Intrinsic::s390_vuplf:
6759     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6760     case Intrinsic::s390_vupllh:
6761     case Intrinsic::s390_vupllf:
6762       SrcDemE = APInt(NumElts * 2, 0);
6763       SrcDemE.insertBits(DemandedElts, NumElts);
6764       break;
6765     case Intrinsic::s390_vpdi: {
6766       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6767       SrcDemE = APInt(NumElts, 0);
6768       if (!DemandedElts[OpNo - 1])
6769         break;
6770       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6771       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6772       // Demand input element 0 or 1, given by the mask bit value.
6773       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6774       break;
6775     }
6776     case Intrinsic::s390_vsldb: {
6777       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6778       assert(VT == MVT::v16i8 && "Unexpected type.");
6779       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6780       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6781       unsigned NumSrc0Els = 16 - FirstIdx;
6782       SrcDemE = APInt(NumElts, 0);
6783       if (OpNo == 1) {
6784         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6785         SrcDemE.insertBits(DemEls, FirstIdx);
6786       } else {
6787         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6788         SrcDemE.insertBits(DemEls, 0);
6789       }
6790       break;
6791     }
6792     case Intrinsic::s390_vperm:
6793       SrcDemE = APInt(NumElts, 1);
6794       break;
6795     default:
6796       llvm_unreachable("Unhandled intrinsic.");
6797       break;
6798     }
6799   } else {
6800     switch (Opcode) {
6801     case SystemZISD::JOIN_DWORDS:
6802       // Scalar operand.
6803       SrcDemE = APInt(1, 1);
6804       break;
6805     case SystemZISD::SELECT_CCMASK:
6806       SrcDemE = DemandedElts;
6807       break;
6808     default:
6809       llvm_unreachable("Unhandled opcode.");
6810       break;
6811     }
6812   }
6813   return SrcDemE;
6814 }
6815 
6816 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6817                                   const APInt &DemandedElts,
6818                                   const SelectionDAG &DAG, unsigned Depth,
6819                                   unsigned OpNo) {
6820   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6821   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6822   KnownBits LHSKnown =
6823       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6824   KnownBits RHSKnown =
6825       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6826   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6827 }
6828 
6829 void
6830 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6831                                                      KnownBits &Known,
6832                                                      const APInt &DemandedElts,
6833                                                      const SelectionDAG &DAG,
6834                                                      unsigned Depth) const {
6835   Known.resetAll();
6836 
6837   // Intrinsic CC result is returned in the two low bits.
6838   unsigned tmp0, tmp1; // not used
6839   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6840     Known.Zero.setBitsFrom(2);
6841     return;
6842   }
6843   EVT VT = Op.getValueType();
6844   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6845     return;
6846   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6847           "KnownBits does not match VT in bitwidth");
6848   assert ((!VT.isVector() ||
6849            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6850           "DemandedElts does not match VT number of elements");
6851   unsigned BitWidth = Known.getBitWidth();
6852   unsigned Opcode = Op.getOpcode();
6853   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6854     bool IsLogical = false;
6855     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6856     switch (Id) {
6857     case Intrinsic::s390_vpksh:   // PACKS
6858     case Intrinsic::s390_vpksf:
6859     case Intrinsic::s390_vpksg:
6860     case Intrinsic::s390_vpkshs:  // PACKS_CC
6861     case Intrinsic::s390_vpksfs:
6862     case Intrinsic::s390_vpksgs:
6863     case Intrinsic::s390_vpklsh:  // PACKLS
6864     case Intrinsic::s390_vpklsf:
6865     case Intrinsic::s390_vpklsg:
6866     case Intrinsic::s390_vpklshs: // PACKLS_CC
6867     case Intrinsic::s390_vpklsfs:
6868     case Intrinsic::s390_vpklsgs:
6869     case Intrinsic::s390_vpdi:
6870     case Intrinsic::s390_vsldb:
6871     case Intrinsic::s390_vperm:
6872       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6873       break;
6874     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6875     case Intrinsic::s390_vuplhh:
6876     case Intrinsic::s390_vuplhf:
6877     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6878     case Intrinsic::s390_vupllh:
6879     case Intrinsic::s390_vupllf:
6880       IsLogical = true;
6881       LLVM_FALLTHROUGH;
6882     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6883     case Intrinsic::s390_vuphh:
6884     case Intrinsic::s390_vuphf:
6885     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6886     case Intrinsic::s390_vuplhw:
6887     case Intrinsic::s390_vuplf: {
6888       SDValue SrcOp = Op.getOperand(1);
6889       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6890       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6891       if (IsLogical) {
6892         Known = Known.zext(BitWidth);
6893       } else
6894         Known = Known.sext(BitWidth);
6895       break;
6896     }
6897     default:
6898       break;
6899     }
6900   } else {
6901     switch (Opcode) {
6902     case SystemZISD::JOIN_DWORDS:
6903     case SystemZISD::SELECT_CCMASK:
6904       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6905       break;
6906     case SystemZISD::REPLICATE: {
6907       SDValue SrcOp = Op.getOperand(0);
6908       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6909       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6910         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6911       break;
6912     }
6913     default:
6914       break;
6915     }
6916   }
6917 
6918   // Known has the width of the source operand(s). Adjust if needed to match
6919   // the passed bitwidth.
6920   if (Known.getBitWidth() != BitWidth)
6921     Known = Known.anyextOrTrunc(BitWidth);
6922 }
6923 
6924 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6925                                         const SelectionDAG &DAG, unsigned Depth,
6926                                         unsigned OpNo) {
6927   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6928   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6929   if (LHS == 1) return 1; // Early out.
6930   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6931   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6932   if (RHS == 1) return 1; // Early out.
6933   unsigned Common = std::min(LHS, RHS);
6934   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6935   EVT VT = Op.getValueType();
6936   unsigned VTBits = VT.getScalarSizeInBits();
6937   if (SrcBitWidth > VTBits) { // PACK
6938     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6939     if (Common > SrcExtraBits)
6940       return (Common - SrcExtraBits);
6941     return 1;
6942   }
6943   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6944   return Common;
6945 }
6946 
6947 unsigned
6948 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6949     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6950     unsigned Depth) const {
6951   if (Op.getResNo() != 0)
6952     return 1;
6953   unsigned Opcode = Op.getOpcode();
6954   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6955     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6956     switch (Id) {
6957     case Intrinsic::s390_vpksh:   // PACKS
6958     case Intrinsic::s390_vpksf:
6959     case Intrinsic::s390_vpksg:
6960     case Intrinsic::s390_vpkshs:  // PACKS_CC
6961     case Intrinsic::s390_vpksfs:
6962     case Intrinsic::s390_vpksgs:
6963     case Intrinsic::s390_vpklsh:  // PACKLS
6964     case Intrinsic::s390_vpklsf:
6965     case Intrinsic::s390_vpklsg:
6966     case Intrinsic::s390_vpklshs: // PACKLS_CC
6967     case Intrinsic::s390_vpklsfs:
6968     case Intrinsic::s390_vpklsgs:
6969     case Intrinsic::s390_vpdi:
6970     case Intrinsic::s390_vsldb:
6971     case Intrinsic::s390_vperm:
6972       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6973     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6974     case Intrinsic::s390_vuphh:
6975     case Intrinsic::s390_vuphf:
6976     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6977     case Intrinsic::s390_vuplhw:
6978     case Intrinsic::s390_vuplf: {
6979       SDValue PackedOp = Op.getOperand(1);
6980       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6981       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6982       EVT VT = Op.getValueType();
6983       unsigned VTBits = VT.getScalarSizeInBits();
6984       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6985       return Tmp;
6986     }
6987     default:
6988       break;
6989     }
6990   } else {
6991     switch (Opcode) {
6992     case SystemZISD::SELECT_CCMASK:
6993       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6994     default:
6995       break;
6996     }
6997   }
6998 
6999   return 1;
7000 }
7001 
7002 unsigned
7003 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7004   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7005   unsigned StackAlign = TFI->getStackAlignment();
7006   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7007          "Unexpected stack alignment");
7008   // The default stack probe size is 4096 if the function has no
7009   // stack-probe-size attribute.
7010   unsigned StackProbeSize = 4096;
7011   const Function &Fn = MF.getFunction();
7012   if (Fn.hasFnAttribute("stack-probe-size"))
7013     Fn.getFnAttribute("stack-probe-size")
7014         .getValueAsString()
7015         .getAsInteger(0, StackProbeSize);
7016   // Round down to the stack alignment.
7017   StackProbeSize &= ~(StackAlign - 1);
7018   return StackProbeSize ? StackProbeSize : StackAlign;
7019 }
7020 
7021 //===----------------------------------------------------------------------===//
7022 // Custom insertion
7023 //===----------------------------------------------------------------------===//
7024 
7025 // Force base value Base into a register before MI.  Return the register.
7026 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7027                          const SystemZInstrInfo *TII) {
7028   if (Base.isReg())
7029     return Base.getReg();
7030 
7031   MachineBasicBlock *MBB = MI.getParent();
7032   MachineFunction &MF = *MBB->getParent();
7033   MachineRegisterInfo &MRI = MF.getRegInfo();
7034 
7035   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7036   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7037       .add(Base)
7038       .addImm(0)
7039       .addReg(0);
7040   return Reg;
7041 }
7042 
7043 // The CC operand of MI might be missing a kill marker because there
7044 // were multiple uses of CC, and ISel didn't know which to mark.
7045 // Figure out whether MI should have had a kill marker.
7046 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7047   // Scan forward through BB for a use/def of CC.
7048   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7049   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7050     const MachineInstr& mi = *miI;
7051     if (mi.readsRegister(SystemZ::CC))
7052       return false;
7053     if (mi.definesRegister(SystemZ::CC))
7054       break; // Should have kill-flag - update below.
7055   }
7056 
7057   // If we hit the end of the block, check whether CC is live into a
7058   // successor.
7059   if (miI == MBB->end()) {
7060     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7061       if ((*SI)->isLiveIn(SystemZ::CC))
7062         return false;
7063   }
7064 
7065   return true;
7066 }
7067 
7068 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7069 // together with other Select pseudo-opcodes into a single basic-block with
7070 // a conditional jump around it.
7071 static bool isSelectPseudo(MachineInstr &MI) {
7072   switch (MI.getOpcode()) {
7073   case SystemZ::Select32:
7074   case SystemZ::Select64:
7075   case SystemZ::SelectF32:
7076   case SystemZ::SelectF64:
7077   case SystemZ::SelectF128:
7078   case SystemZ::SelectVR32:
7079   case SystemZ::SelectVR64:
7080   case SystemZ::SelectVR128:
7081     return true;
7082 
7083   default:
7084     return false;
7085   }
7086 }
7087 
7088 // Helper function, which inserts PHI functions into SinkMBB:
7089 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7090 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7091 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7092                                  MachineBasicBlock *TrueMBB,
7093                                  MachineBasicBlock *FalseMBB,
7094                                  MachineBasicBlock *SinkMBB) {
7095   MachineFunction *MF = TrueMBB->getParent();
7096   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7097 
7098   MachineInstr *FirstMI = Selects.front();
7099   unsigned CCValid = FirstMI->getOperand(3).getImm();
7100   unsigned CCMask = FirstMI->getOperand(4).getImm();
7101 
7102   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7103 
7104   // As we are creating the PHIs, we have to be careful if there is more than
7105   // one.  Later Selects may reference the results of earlier Selects, but later
7106   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7107   // That also means that PHI construction must work forward from earlier to
7108   // later, and that the code must maintain a mapping from earlier PHI's
7109   // destination registers, and the registers that went into the PHI.
7110   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7111 
7112   for (auto MI : Selects) {
7113     Register DestReg = MI->getOperand(0).getReg();
7114     Register TrueReg = MI->getOperand(1).getReg();
7115     Register FalseReg = MI->getOperand(2).getReg();
7116 
7117     // If this Select we are generating is the opposite condition from
7118     // the jump we generated, then we have to swap the operands for the
7119     // PHI that is going to be generated.
7120     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7121       std::swap(TrueReg, FalseReg);
7122 
7123     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7124       TrueReg = RegRewriteTable[TrueReg].first;
7125 
7126     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7127       FalseReg = RegRewriteTable[FalseReg].second;
7128 
7129     DebugLoc DL = MI->getDebugLoc();
7130     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7131       .addReg(TrueReg).addMBB(TrueMBB)
7132       .addReg(FalseReg).addMBB(FalseMBB);
7133 
7134     // Add this PHI to the rewrite table.
7135     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7136   }
7137 
7138   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7139 }
7140 
7141 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7142 MachineBasicBlock *
7143 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7144                                   MachineBasicBlock *MBB) const {
7145   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7146   const SystemZInstrInfo *TII =
7147       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7148 
7149   unsigned CCValid = MI.getOperand(3).getImm();
7150   unsigned CCMask = MI.getOperand(4).getImm();
7151 
7152   // If we have a sequence of Select* pseudo instructions using the
7153   // same condition code value, we want to expand all of them into
7154   // a single pair of basic blocks using the same condition.
7155   SmallVector<MachineInstr*, 8> Selects;
7156   SmallVector<MachineInstr*, 8> DbgValues;
7157   Selects.push_back(&MI);
7158   unsigned Count = 0;
7159   for (MachineBasicBlock::iterator NextMIIt =
7160          std::next(MachineBasicBlock::iterator(MI));
7161        NextMIIt != MBB->end(); ++NextMIIt) {
7162     if (isSelectPseudo(*NextMIIt)) {
7163       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7164              "Bad CCValid operands since CC was not redefined.");
7165       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7166           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7167         Selects.push_back(&*NextMIIt);
7168         continue;
7169       }
7170       break;
7171     }
7172     if (NextMIIt->definesRegister(SystemZ::CC) ||
7173         NextMIIt->usesCustomInsertionHook())
7174       break;
7175     bool User = false;
7176     for (auto SelMI : Selects)
7177       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7178         User = true;
7179         break;
7180       }
7181     if (NextMIIt->isDebugInstr()) {
7182       if (User) {
7183         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7184         DbgValues.push_back(&*NextMIIt);
7185       }
7186     }
7187     else if (User || ++Count > 20)
7188       break;
7189   }
7190 
7191   MachineInstr *LastMI = Selects.back();
7192   bool CCKilled =
7193       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7194   MachineBasicBlock *StartMBB = MBB;
7195   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7196   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7197 
7198   // Unless CC was killed in the last Select instruction, mark it as
7199   // live-in to both FalseMBB and JoinMBB.
7200   if (!CCKilled) {
7201     FalseMBB->addLiveIn(SystemZ::CC);
7202     JoinMBB->addLiveIn(SystemZ::CC);
7203   }
7204 
7205   //  StartMBB:
7206   //   BRC CCMask, JoinMBB
7207   //   # fallthrough to FalseMBB
7208   MBB = StartMBB;
7209   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7210     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7211   MBB->addSuccessor(JoinMBB);
7212   MBB->addSuccessor(FalseMBB);
7213 
7214   //  FalseMBB:
7215   //   # fallthrough to JoinMBB
7216   MBB = FalseMBB;
7217   MBB->addSuccessor(JoinMBB);
7218 
7219   //  JoinMBB:
7220   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7221   //  ...
7222   MBB = JoinMBB;
7223   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7224   for (auto SelMI : Selects)
7225     SelMI->eraseFromParent();
7226 
7227   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7228   for (auto DbgMI : DbgValues)
7229     MBB->splice(InsertPos, StartMBB, DbgMI);
7230 
7231   return JoinMBB;
7232 }
7233 
7234 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7235 // StoreOpcode is the store to use and Invert says whether the store should
7236 // happen when the condition is false rather than true.  If a STORE ON
7237 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7238 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7239                                                         MachineBasicBlock *MBB,
7240                                                         unsigned StoreOpcode,
7241                                                         unsigned STOCOpcode,
7242                                                         bool Invert) const {
7243   const SystemZInstrInfo *TII =
7244       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7245 
7246   Register SrcReg = MI.getOperand(0).getReg();
7247   MachineOperand Base = MI.getOperand(1);
7248   int64_t Disp = MI.getOperand(2).getImm();
7249   Register IndexReg = MI.getOperand(3).getReg();
7250   unsigned CCValid = MI.getOperand(4).getImm();
7251   unsigned CCMask = MI.getOperand(5).getImm();
7252   DebugLoc DL = MI.getDebugLoc();
7253 
7254   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7255 
7256   // ISel pattern matching also adds a load memory operand of the same
7257   // address, so take special care to find the storing memory operand.
7258   MachineMemOperand *MMO = nullptr;
7259   for (auto *I : MI.memoperands())
7260     if (I->isStore()) {
7261       MMO = I;
7262       break;
7263     }
7264 
7265   // Use STOCOpcode if possible.  We could use different store patterns in
7266   // order to avoid matching the index register, but the performance trade-offs
7267   // might be more complicated in that case.
7268   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7269     if (Invert)
7270       CCMask ^= CCValid;
7271 
7272     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7273       .addReg(SrcReg)
7274       .add(Base)
7275       .addImm(Disp)
7276       .addImm(CCValid)
7277       .addImm(CCMask)
7278       .addMemOperand(MMO);
7279 
7280     MI.eraseFromParent();
7281     return MBB;
7282   }
7283 
7284   // Get the condition needed to branch around the store.
7285   if (!Invert)
7286     CCMask ^= CCValid;
7287 
7288   MachineBasicBlock *StartMBB = MBB;
7289   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7290   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7291 
7292   // Unless CC was killed in the CondStore instruction, mark it as
7293   // live-in to both FalseMBB and JoinMBB.
7294   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7295     FalseMBB->addLiveIn(SystemZ::CC);
7296     JoinMBB->addLiveIn(SystemZ::CC);
7297   }
7298 
7299   //  StartMBB:
7300   //   BRC CCMask, JoinMBB
7301   //   # fallthrough to FalseMBB
7302   MBB = StartMBB;
7303   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7304     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7305   MBB->addSuccessor(JoinMBB);
7306   MBB->addSuccessor(FalseMBB);
7307 
7308   //  FalseMBB:
7309   //   store %SrcReg, %Disp(%Index,%Base)
7310   //   # fallthrough to JoinMBB
7311   MBB = FalseMBB;
7312   BuildMI(MBB, DL, TII->get(StoreOpcode))
7313       .addReg(SrcReg)
7314       .add(Base)
7315       .addImm(Disp)
7316       .addReg(IndexReg)
7317       .addMemOperand(MMO);
7318   MBB->addSuccessor(JoinMBB);
7319 
7320   MI.eraseFromParent();
7321   return JoinMBB;
7322 }
7323 
7324 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7325 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7326 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7327 // BitSize is the width of the field in bits, or 0 if this is a partword
7328 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7329 // is one of the operands.  Invert says whether the field should be
7330 // inverted after performing BinOpcode (e.g. for NAND).
7331 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7332     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7333     unsigned BitSize, bool Invert) const {
7334   MachineFunction &MF = *MBB->getParent();
7335   const SystemZInstrInfo *TII =
7336       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7337   MachineRegisterInfo &MRI = MF.getRegInfo();
7338   bool IsSubWord = (BitSize < 32);
7339 
7340   // Extract the operands.  Base can be a register or a frame index.
7341   // Src2 can be a register or immediate.
7342   Register Dest = MI.getOperand(0).getReg();
7343   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7344   int64_t Disp = MI.getOperand(2).getImm();
7345   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7346   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7347   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7348   DebugLoc DL = MI.getDebugLoc();
7349   if (IsSubWord)
7350     BitSize = MI.getOperand(6).getImm();
7351 
7352   // Subword operations use 32-bit registers.
7353   const TargetRegisterClass *RC = (BitSize <= 32 ?
7354                                    &SystemZ::GR32BitRegClass :
7355                                    &SystemZ::GR64BitRegClass);
7356   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7357   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7358 
7359   // Get the right opcodes for the displacement.
7360   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7361   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7362   assert(LOpcode && CSOpcode && "Displacement out of range");
7363 
7364   // Create virtual registers for temporary results.
7365   Register OrigVal       = MRI.createVirtualRegister(RC);
7366   Register OldVal        = MRI.createVirtualRegister(RC);
7367   Register NewVal        = (BinOpcode || IsSubWord ?
7368                             MRI.createVirtualRegister(RC) : Src2.getReg());
7369   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7370   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7371 
7372   // Insert a basic block for the main loop.
7373   MachineBasicBlock *StartMBB = MBB;
7374   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7375   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7376 
7377   //  StartMBB:
7378   //   ...
7379   //   %OrigVal = L Disp(%Base)
7380   //   # fall through to LoopMMB
7381   MBB = StartMBB;
7382   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7383   MBB->addSuccessor(LoopMBB);
7384 
7385   //  LoopMBB:
7386   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7387   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7388   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7389   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7390   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7391   //   JNE LoopMBB
7392   //   # fall through to DoneMMB
7393   MBB = LoopMBB;
7394   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7395     .addReg(OrigVal).addMBB(StartMBB)
7396     .addReg(Dest).addMBB(LoopMBB);
7397   if (IsSubWord)
7398     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7399       .addReg(OldVal).addReg(BitShift).addImm(0);
7400   if (Invert) {
7401     // Perform the operation normally and then invert every bit of the field.
7402     Register Tmp = MRI.createVirtualRegister(RC);
7403     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7404     if (BitSize <= 32)
7405       // XILF with the upper BitSize bits set.
7406       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7407         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7408     else {
7409       // Use LCGR and add -1 to the result, which is more compact than
7410       // an XILF, XILH pair.
7411       Register Tmp2 = MRI.createVirtualRegister(RC);
7412       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7413       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7414         .addReg(Tmp2).addImm(-1);
7415     }
7416   } else if (BinOpcode)
7417     // A simply binary operation.
7418     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7419         .addReg(RotatedOldVal)
7420         .add(Src2);
7421   else if (IsSubWord)
7422     // Use RISBG to rotate Src2 into position and use it to replace the
7423     // field in RotatedOldVal.
7424     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7425       .addReg(RotatedOldVal).addReg(Src2.getReg())
7426       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7427   if (IsSubWord)
7428     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7429       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7430   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7431       .addReg(OldVal)
7432       .addReg(NewVal)
7433       .add(Base)
7434       .addImm(Disp);
7435   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7436     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7437   MBB->addSuccessor(LoopMBB);
7438   MBB->addSuccessor(DoneMBB);
7439 
7440   MI.eraseFromParent();
7441   return DoneMBB;
7442 }
7443 
7444 // Implement EmitInstrWithCustomInserter for pseudo
7445 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7446 // instruction that should be used to compare the current field with the
7447 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7448 // for when the current field should be kept.  BitSize is the width of
7449 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7450 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7451     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7452     unsigned KeepOldMask, unsigned BitSize) const {
7453   MachineFunction &MF = *MBB->getParent();
7454   const SystemZInstrInfo *TII =
7455       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7456   MachineRegisterInfo &MRI = MF.getRegInfo();
7457   bool IsSubWord = (BitSize < 32);
7458 
7459   // Extract the operands.  Base can be a register or a frame index.
7460   Register Dest = MI.getOperand(0).getReg();
7461   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7462   int64_t Disp = MI.getOperand(2).getImm();
7463   Register Src2 = MI.getOperand(3).getReg();
7464   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7465   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7466   DebugLoc DL = MI.getDebugLoc();
7467   if (IsSubWord)
7468     BitSize = MI.getOperand(6).getImm();
7469 
7470   // Subword operations use 32-bit registers.
7471   const TargetRegisterClass *RC = (BitSize <= 32 ?
7472                                    &SystemZ::GR32BitRegClass :
7473                                    &SystemZ::GR64BitRegClass);
7474   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7475   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7476 
7477   // Get the right opcodes for the displacement.
7478   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7479   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7480   assert(LOpcode && CSOpcode && "Displacement out of range");
7481 
7482   // Create virtual registers for temporary results.
7483   Register OrigVal       = MRI.createVirtualRegister(RC);
7484   Register OldVal        = MRI.createVirtualRegister(RC);
7485   Register NewVal        = MRI.createVirtualRegister(RC);
7486   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7487   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7488   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7489 
7490   // Insert 3 basic blocks for the loop.
7491   MachineBasicBlock *StartMBB  = MBB;
7492   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7493   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7494   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7495   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7496 
7497   //  StartMBB:
7498   //   ...
7499   //   %OrigVal     = L Disp(%Base)
7500   //   # fall through to LoopMMB
7501   MBB = StartMBB;
7502   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7503   MBB->addSuccessor(LoopMBB);
7504 
7505   //  LoopMBB:
7506   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7507   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7508   //   CompareOpcode %RotatedOldVal, %Src2
7509   //   BRC KeepOldMask, UpdateMBB
7510   MBB = LoopMBB;
7511   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7512     .addReg(OrigVal).addMBB(StartMBB)
7513     .addReg(Dest).addMBB(UpdateMBB);
7514   if (IsSubWord)
7515     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7516       .addReg(OldVal).addReg(BitShift).addImm(0);
7517   BuildMI(MBB, DL, TII->get(CompareOpcode))
7518     .addReg(RotatedOldVal).addReg(Src2);
7519   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7520     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7521   MBB->addSuccessor(UpdateMBB);
7522   MBB->addSuccessor(UseAltMBB);
7523 
7524   //  UseAltMBB:
7525   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7526   //   # fall through to UpdateMMB
7527   MBB = UseAltMBB;
7528   if (IsSubWord)
7529     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7530       .addReg(RotatedOldVal).addReg(Src2)
7531       .addImm(32).addImm(31 + BitSize).addImm(0);
7532   MBB->addSuccessor(UpdateMBB);
7533 
7534   //  UpdateMBB:
7535   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7536   //                        [ %RotatedAltVal, UseAltMBB ]
7537   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7538   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7539   //   JNE LoopMBB
7540   //   # fall through to DoneMMB
7541   MBB = UpdateMBB;
7542   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7543     .addReg(RotatedOldVal).addMBB(LoopMBB)
7544     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7545   if (IsSubWord)
7546     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7547       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7548   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7549       .addReg(OldVal)
7550       .addReg(NewVal)
7551       .add(Base)
7552       .addImm(Disp);
7553   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7554     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7555   MBB->addSuccessor(LoopMBB);
7556   MBB->addSuccessor(DoneMBB);
7557 
7558   MI.eraseFromParent();
7559   return DoneMBB;
7560 }
7561 
7562 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7563 // instruction MI.
7564 MachineBasicBlock *
7565 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7566                                           MachineBasicBlock *MBB) const {
7567 
7568   MachineFunction &MF = *MBB->getParent();
7569   const SystemZInstrInfo *TII =
7570       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7571   MachineRegisterInfo &MRI = MF.getRegInfo();
7572 
7573   // Extract the operands.  Base can be a register or a frame index.
7574   Register Dest = MI.getOperand(0).getReg();
7575   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7576   int64_t Disp = MI.getOperand(2).getImm();
7577   Register OrigCmpVal = MI.getOperand(3).getReg();
7578   Register OrigSwapVal = MI.getOperand(4).getReg();
7579   Register BitShift = MI.getOperand(5).getReg();
7580   Register NegBitShift = MI.getOperand(6).getReg();
7581   int64_t BitSize = MI.getOperand(7).getImm();
7582   DebugLoc DL = MI.getDebugLoc();
7583 
7584   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7585 
7586   // Get the right opcodes for the displacement.
7587   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7588   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7589   assert(LOpcode && CSOpcode && "Displacement out of range");
7590 
7591   // Create virtual registers for temporary results.
7592   Register OrigOldVal = MRI.createVirtualRegister(RC);
7593   Register OldVal = MRI.createVirtualRegister(RC);
7594   Register CmpVal = MRI.createVirtualRegister(RC);
7595   Register SwapVal = MRI.createVirtualRegister(RC);
7596   Register StoreVal = MRI.createVirtualRegister(RC);
7597   Register RetryOldVal = MRI.createVirtualRegister(RC);
7598   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7599   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7600 
7601   // Insert 2 basic blocks for the loop.
7602   MachineBasicBlock *StartMBB = MBB;
7603   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7604   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7605   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7606 
7607   //  StartMBB:
7608   //   ...
7609   //   %OrigOldVal     = L Disp(%Base)
7610   //   # fall through to LoopMMB
7611   MBB = StartMBB;
7612   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7613       .add(Base)
7614       .addImm(Disp)
7615       .addReg(0);
7616   MBB->addSuccessor(LoopMBB);
7617 
7618   //  LoopMBB:
7619   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7620   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7621   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7622   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7623   //                      ^^ The low BitSize bits contain the field
7624   //                         of interest.
7625   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7626   //                      ^^ Replace the upper 32-BitSize bits of the
7627   //                         comparison value with those that we loaded,
7628   //                         so that we can use a full word comparison.
7629   //   CR %Dest, %RetryCmpVal
7630   //   JNE DoneMBB
7631   //   # Fall through to SetMBB
7632   MBB = LoopMBB;
7633   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7634     .addReg(OrigOldVal).addMBB(StartMBB)
7635     .addReg(RetryOldVal).addMBB(SetMBB);
7636   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7637     .addReg(OrigCmpVal).addMBB(StartMBB)
7638     .addReg(RetryCmpVal).addMBB(SetMBB);
7639   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7640     .addReg(OrigSwapVal).addMBB(StartMBB)
7641     .addReg(RetrySwapVal).addMBB(SetMBB);
7642   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7643     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7644   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7645     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7646   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7647     .addReg(Dest).addReg(RetryCmpVal);
7648   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7649     .addImm(SystemZ::CCMASK_ICMP)
7650     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7651   MBB->addSuccessor(DoneMBB);
7652   MBB->addSuccessor(SetMBB);
7653 
7654   //  SetMBB:
7655   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7656   //                      ^^ Replace the upper 32-BitSize bits of the new
7657   //                         value with those that we loaded.
7658   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7659   //                      ^^ Rotate the new field to its proper position.
7660   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7661   //   JNE LoopMBB
7662   //   # fall through to ExitMMB
7663   MBB = SetMBB;
7664   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7665     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7666   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7667     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7668   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7669       .addReg(OldVal)
7670       .addReg(StoreVal)
7671       .add(Base)
7672       .addImm(Disp);
7673   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7674     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7675   MBB->addSuccessor(LoopMBB);
7676   MBB->addSuccessor(DoneMBB);
7677 
7678   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7679   // to the block after the loop.  At this point, CC may have been defined
7680   // either by the CR in LoopMBB or by the CS in SetMBB.
7681   if (!MI.registerDefIsDead(SystemZ::CC))
7682     DoneMBB->addLiveIn(SystemZ::CC);
7683 
7684   MI.eraseFromParent();
7685   return DoneMBB;
7686 }
7687 
7688 // Emit a move from two GR64s to a GR128.
7689 MachineBasicBlock *
7690 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7691                                    MachineBasicBlock *MBB) const {
7692   MachineFunction &MF = *MBB->getParent();
7693   const SystemZInstrInfo *TII =
7694       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7695   MachineRegisterInfo &MRI = MF.getRegInfo();
7696   DebugLoc DL = MI.getDebugLoc();
7697 
7698   Register Dest = MI.getOperand(0).getReg();
7699   Register Hi = MI.getOperand(1).getReg();
7700   Register Lo = MI.getOperand(2).getReg();
7701   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7702   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7703 
7704   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7705   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7706     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7707   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7708     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7709 
7710   MI.eraseFromParent();
7711   return MBB;
7712 }
7713 
7714 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7715 // if the high register of the GR128 value must be cleared or false if
7716 // it's "don't care".
7717 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7718                                                      MachineBasicBlock *MBB,
7719                                                      bool ClearEven) const {
7720   MachineFunction &MF = *MBB->getParent();
7721   const SystemZInstrInfo *TII =
7722       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7723   MachineRegisterInfo &MRI = MF.getRegInfo();
7724   DebugLoc DL = MI.getDebugLoc();
7725 
7726   Register Dest = MI.getOperand(0).getReg();
7727   Register Src = MI.getOperand(1).getReg();
7728   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7729 
7730   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7731   if (ClearEven) {
7732     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7733     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7734 
7735     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7736       .addImm(0);
7737     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7738       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7739     In128 = NewIn128;
7740   }
7741   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7742     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7743 
7744   MI.eraseFromParent();
7745   return MBB;
7746 }
7747 
7748 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7749     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7750   MachineFunction &MF = *MBB->getParent();
7751   const SystemZInstrInfo *TII =
7752       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7753   MachineRegisterInfo &MRI = MF.getRegInfo();
7754   DebugLoc DL = MI.getDebugLoc();
7755 
7756   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7757   uint64_t DestDisp = MI.getOperand(1).getImm();
7758   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7759   uint64_t SrcDisp = MI.getOperand(3).getImm();
7760   uint64_t Length = MI.getOperand(4).getImm();
7761 
7762   // When generating more than one CLC, all but the last will need to
7763   // branch to the end when a difference is found.
7764   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7765                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7766 
7767   // Check for the loop form, in which operand 5 is the trip count.
7768   if (MI.getNumExplicitOperands() > 5) {
7769     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7770 
7771     Register StartCountReg = MI.getOperand(5).getReg();
7772     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7773     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7774                               forceReg(MI, DestBase, TII));
7775 
7776     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7777     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7778     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7779                             MRI.createVirtualRegister(RC));
7780     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7781     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7782                             MRI.createVirtualRegister(RC));
7783 
7784     RC = &SystemZ::GR64BitRegClass;
7785     Register ThisCountReg = MRI.createVirtualRegister(RC);
7786     Register NextCountReg = MRI.createVirtualRegister(RC);
7787 
7788     MachineBasicBlock *StartMBB = MBB;
7789     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7790     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7791     MachineBasicBlock *NextMBB =
7792         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7793 
7794     //  StartMBB:
7795     //   # fall through to LoopMMB
7796     MBB->addSuccessor(LoopMBB);
7797 
7798     //  LoopMBB:
7799     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7800     //                      [ %NextDestReg, NextMBB ]
7801     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7802     //                     [ %NextSrcReg, NextMBB ]
7803     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7804     //                       [ %NextCountReg, NextMBB ]
7805     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7806     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7807     //   ( JLH EndMBB )
7808     //
7809     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7810     MBB = LoopMBB;
7811 
7812     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7813       .addReg(StartDestReg).addMBB(StartMBB)
7814       .addReg(NextDestReg).addMBB(NextMBB);
7815     if (!HaveSingleBase)
7816       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7817         .addReg(StartSrcReg).addMBB(StartMBB)
7818         .addReg(NextSrcReg).addMBB(NextMBB);
7819     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7820       .addReg(StartCountReg).addMBB(StartMBB)
7821       .addReg(NextCountReg).addMBB(NextMBB);
7822     if (Opcode == SystemZ::MVC)
7823       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7824         .addImm(SystemZ::PFD_WRITE)
7825         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7826     BuildMI(MBB, DL, TII->get(Opcode))
7827       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7828       .addReg(ThisSrcReg).addImm(SrcDisp);
7829     if (EndMBB) {
7830       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7831         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7832         .addMBB(EndMBB);
7833       MBB->addSuccessor(EndMBB);
7834       MBB->addSuccessor(NextMBB);
7835     }
7836 
7837     // NextMBB:
7838     //   %NextDestReg = LA 256(%ThisDestReg)
7839     //   %NextSrcReg = LA 256(%ThisSrcReg)
7840     //   %NextCountReg = AGHI %ThisCountReg, -1
7841     //   CGHI %NextCountReg, 0
7842     //   JLH LoopMBB
7843     //   # fall through to DoneMMB
7844     //
7845     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7846     MBB = NextMBB;
7847 
7848     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7849       .addReg(ThisDestReg).addImm(256).addReg(0);
7850     if (!HaveSingleBase)
7851       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7852         .addReg(ThisSrcReg).addImm(256).addReg(0);
7853     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7854       .addReg(ThisCountReg).addImm(-1);
7855     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7856       .addReg(NextCountReg).addImm(0);
7857     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7858       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7859       .addMBB(LoopMBB);
7860     MBB->addSuccessor(LoopMBB);
7861     MBB->addSuccessor(DoneMBB);
7862 
7863     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7864     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7865     Length &= 255;
7866     if (EndMBB && !Length)
7867       // If the loop handled the whole CLC range, DoneMBB will be empty with
7868       // CC live-through into EndMBB, so add it as live-in.
7869       DoneMBB->addLiveIn(SystemZ::CC);
7870     MBB = DoneMBB;
7871   }
7872   // Handle any remaining bytes with straight-line code.
7873   while (Length > 0) {
7874     uint64_t ThisLength = std::min(Length, uint64_t(256));
7875     // The previous iteration might have created out-of-range displacements.
7876     // Apply them using LAY if so.
7877     if (!isUInt<12>(DestDisp)) {
7878       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7879       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7880           .add(DestBase)
7881           .addImm(DestDisp)
7882           .addReg(0);
7883       DestBase = MachineOperand::CreateReg(Reg, false);
7884       DestDisp = 0;
7885     }
7886     if (!isUInt<12>(SrcDisp)) {
7887       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7888       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7889           .add(SrcBase)
7890           .addImm(SrcDisp)
7891           .addReg(0);
7892       SrcBase = MachineOperand::CreateReg(Reg, false);
7893       SrcDisp = 0;
7894     }
7895     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7896         .add(DestBase)
7897         .addImm(DestDisp)
7898         .addImm(ThisLength)
7899         .add(SrcBase)
7900         .addImm(SrcDisp)
7901         .setMemRefs(MI.memoperands());
7902     DestDisp += ThisLength;
7903     SrcDisp += ThisLength;
7904     Length -= ThisLength;
7905     // If there's another CLC to go, branch to the end if a difference
7906     // was found.
7907     if (EndMBB && Length > 0) {
7908       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7909       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7910         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7911         .addMBB(EndMBB);
7912       MBB->addSuccessor(EndMBB);
7913       MBB->addSuccessor(NextMBB);
7914       MBB = NextMBB;
7915     }
7916   }
7917   if (EndMBB) {
7918     MBB->addSuccessor(EndMBB);
7919     MBB = EndMBB;
7920     MBB->addLiveIn(SystemZ::CC);
7921   }
7922 
7923   MI.eraseFromParent();
7924   return MBB;
7925 }
7926 
7927 // Decompose string pseudo-instruction MI into a loop that continually performs
7928 // Opcode until CC != 3.
7929 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7930     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7931   MachineFunction &MF = *MBB->getParent();
7932   const SystemZInstrInfo *TII =
7933       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7934   MachineRegisterInfo &MRI = MF.getRegInfo();
7935   DebugLoc DL = MI.getDebugLoc();
7936 
7937   uint64_t End1Reg = MI.getOperand(0).getReg();
7938   uint64_t Start1Reg = MI.getOperand(1).getReg();
7939   uint64_t Start2Reg = MI.getOperand(2).getReg();
7940   uint64_t CharReg = MI.getOperand(3).getReg();
7941 
7942   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7943   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7944   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7945   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7946 
7947   MachineBasicBlock *StartMBB = MBB;
7948   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7949   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7950 
7951   //  StartMBB:
7952   //   # fall through to LoopMMB
7953   MBB->addSuccessor(LoopMBB);
7954 
7955   //  LoopMBB:
7956   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7957   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7958   //   R0L = %CharReg
7959   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7960   //   JO LoopMBB
7961   //   # fall through to DoneMMB
7962   //
7963   // The load of R0L can be hoisted by post-RA LICM.
7964   MBB = LoopMBB;
7965 
7966   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7967     .addReg(Start1Reg).addMBB(StartMBB)
7968     .addReg(End1Reg).addMBB(LoopMBB);
7969   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7970     .addReg(Start2Reg).addMBB(StartMBB)
7971     .addReg(End2Reg).addMBB(LoopMBB);
7972   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7973   BuildMI(MBB, DL, TII->get(Opcode))
7974     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7975     .addReg(This1Reg).addReg(This2Reg);
7976   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7977     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7978   MBB->addSuccessor(LoopMBB);
7979   MBB->addSuccessor(DoneMBB);
7980 
7981   DoneMBB->addLiveIn(SystemZ::CC);
7982 
7983   MI.eraseFromParent();
7984   return DoneMBB;
7985 }
7986 
7987 // Update TBEGIN instruction with final opcode and register clobbers.
7988 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7989     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7990     bool NoFloat) const {
7991   MachineFunction &MF = *MBB->getParent();
7992   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7993   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7994 
7995   // Update opcode.
7996   MI.setDesc(TII->get(Opcode));
7997 
7998   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7999   // Make sure to add the corresponding GRSM bits if they are missing.
8000   uint64_t Control = MI.getOperand(2).getImm();
8001   static const unsigned GPRControlBit[16] = {
8002     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8003     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8004   };
8005   Control |= GPRControlBit[15];
8006   if (TFI->hasFP(MF))
8007     Control |= GPRControlBit[11];
8008   MI.getOperand(2).setImm(Control);
8009 
8010   // Add GPR clobbers.
8011   for (int I = 0; I < 16; I++) {
8012     if ((Control & GPRControlBit[I]) == 0) {
8013       unsigned Reg = SystemZMC::GR64Regs[I];
8014       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8015     }
8016   }
8017 
8018   // Add FPR/VR clobbers.
8019   if (!NoFloat && (Control & 4) != 0) {
8020     if (Subtarget.hasVector()) {
8021       for (int I = 0; I < 32; I++) {
8022         unsigned Reg = SystemZMC::VR128Regs[I];
8023         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8024       }
8025     } else {
8026       for (int I = 0; I < 16; I++) {
8027         unsigned Reg = SystemZMC::FP64Regs[I];
8028         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8029       }
8030     }
8031   }
8032 
8033   return MBB;
8034 }
8035 
8036 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8037     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8038   MachineFunction &MF = *MBB->getParent();
8039   MachineRegisterInfo *MRI = &MF.getRegInfo();
8040   const SystemZInstrInfo *TII =
8041       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8042   DebugLoc DL = MI.getDebugLoc();
8043 
8044   Register SrcReg = MI.getOperand(0).getReg();
8045 
8046   // Create new virtual register of the same class as source.
8047   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8048   Register DstReg = MRI->createVirtualRegister(RC);
8049 
8050   // Replace pseudo with a normal load-and-test that models the def as
8051   // well.
8052   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8053     .addReg(SrcReg)
8054     .setMIFlags(MI.getFlags());
8055   MI.eraseFromParent();
8056 
8057   return MBB;
8058 }
8059 
8060 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8061     MachineInstr &MI, MachineBasicBlock *MBB) const {
8062   MachineFunction &MF = *MBB->getParent();
8063   MachineRegisterInfo *MRI = &MF.getRegInfo();
8064   const SystemZInstrInfo *TII =
8065       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8066   DebugLoc DL = MI.getDebugLoc();
8067   const unsigned ProbeSize = getStackProbeSize(MF);
8068   Register DstReg = MI.getOperand(0).getReg();
8069   Register SizeReg = MI.getOperand(2).getReg();
8070 
8071   MachineBasicBlock *StartMBB = MBB;
8072   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8073   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8074   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8075   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8076   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8077 
8078   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8079     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8080 
8081   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8082   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8083 
8084   //  LoopTestMBB
8085   //  BRC TailTestMBB
8086   //  # fallthrough to LoopBodyMBB
8087   StartMBB->addSuccessor(LoopTestMBB);
8088   MBB = LoopTestMBB;
8089   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8090     .addReg(SizeReg)
8091     .addMBB(StartMBB)
8092     .addReg(IncReg)
8093     .addMBB(LoopBodyMBB);
8094   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8095     .addReg(PHIReg)
8096     .addImm(ProbeSize);
8097   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8098     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8099     .addMBB(TailTestMBB);
8100   MBB->addSuccessor(LoopBodyMBB);
8101   MBB->addSuccessor(TailTestMBB);
8102 
8103   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8104   //  J LoopTestMBB
8105   MBB = LoopBodyMBB;
8106   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8107     .addReg(PHIReg)
8108     .addImm(ProbeSize);
8109   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8110     .addReg(SystemZ::R15D)
8111     .addImm(ProbeSize);
8112   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8113     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8114     .setMemRefs(VolLdMMO);
8115   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8116   MBB->addSuccessor(LoopTestMBB);
8117 
8118   //  TailTestMBB
8119   //  BRC DoneMBB
8120   //  # fallthrough to TailMBB
8121   MBB = TailTestMBB;
8122   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8123     .addReg(PHIReg)
8124     .addImm(0);
8125   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8126     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8127     .addMBB(DoneMBB);
8128   MBB->addSuccessor(TailMBB);
8129   MBB->addSuccessor(DoneMBB);
8130 
8131   //  TailMBB
8132   //  # fallthrough to DoneMBB
8133   MBB = TailMBB;
8134   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8135     .addReg(SystemZ::R15D)
8136     .addReg(PHIReg);
8137   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8138     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8139     .setMemRefs(VolLdMMO);
8140   MBB->addSuccessor(DoneMBB);
8141 
8142   //  DoneMBB
8143   MBB = DoneMBB;
8144   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8145     .addReg(SystemZ::R15D);
8146 
8147   MI.eraseFromParent();
8148   return DoneMBB;
8149 }
8150 
8151 SDValue SystemZTargetLowering::
8152 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8153   MachineFunction &MF = DAG.getMachineFunction();
8154   auto *TFL =
8155       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
8156   SDLoc DL(SP);
8157   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8158                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8159 }
8160 
8161 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8162     MachineInstr &MI, MachineBasicBlock *MBB) const {
8163   switch (MI.getOpcode()) {
8164   case SystemZ::Select32:
8165   case SystemZ::Select64:
8166   case SystemZ::SelectF32:
8167   case SystemZ::SelectF64:
8168   case SystemZ::SelectF128:
8169   case SystemZ::SelectVR32:
8170   case SystemZ::SelectVR64:
8171   case SystemZ::SelectVR128:
8172     return emitSelect(MI, MBB);
8173 
8174   case SystemZ::CondStore8Mux:
8175     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8176   case SystemZ::CondStore8MuxInv:
8177     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8178   case SystemZ::CondStore16Mux:
8179     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8180   case SystemZ::CondStore16MuxInv:
8181     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8182   case SystemZ::CondStore32Mux:
8183     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8184   case SystemZ::CondStore32MuxInv:
8185     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8186   case SystemZ::CondStore8:
8187     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8188   case SystemZ::CondStore8Inv:
8189     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8190   case SystemZ::CondStore16:
8191     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8192   case SystemZ::CondStore16Inv:
8193     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8194   case SystemZ::CondStore32:
8195     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8196   case SystemZ::CondStore32Inv:
8197     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8198   case SystemZ::CondStore64:
8199     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8200   case SystemZ::CondStore64Inv:
8201     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8202   case SystemZ::CondStoreF32:
8203     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8204   case SystemZ::CondStoreF32Inv:
8205     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8206   case SystemZ::CondStoreF64:
8207     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8208   case SystemZ::CondStoreF64Inv:
8209     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8210 
8211   case SystemZ::PAIR128:
8212     return emitPair128(MI, MBB);
8213   case SystemZ::AEXT128:
8214     return emitExt128(MI, MBB, false);
8215   case SystemZ::ZEXT128:
8216     return emitExt128(MI, MBB, true);
8217 
8218   case SystemZ::ATOMIC_SWAPW:
8219     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8220   case SystemZ::ATOMIC_SWAP_32:
8221     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8222   case SystemZ::ATOMIC_SWAP_64:
8223     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8224 
8225   case SystemZ::ATOMIC_LOADW_AR:
8226     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8227   case SystemZ::ATOMIC_LOADW_AFI:
8228     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8229   case SystemZ::ATOMIC_LOAD_AR:
8230     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8231   case SystemZ::ATOMIC_LOAD_AHI:
8232     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8233   case SystemZ::ATOMIC_LOAD_AFI:
8234     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8235   case SystemZ::ATOMIC_LOAD_AGR:
8236     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8237   case SystemZ::ATOMIC_LOAD_AGHI:
8238     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8239   case SystemZ::ATOMIC_LOAD_AGFI:
8240     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8241 
8242   case SystemZ::ATOMIC_LOADW_SR:
8243     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8244   case SystemZ::ATOMIC_LOAD_SR:
8245     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8246   case SystemZ::ATOMIC_LOAD_SGR:
8247     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8248 
8249   case SystemZ::ATOMIC_LOADW_NR:
8250     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8251   case SystemZ::ATOMIC_LOADW_NILH:
8252     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8253   case SystemZ::ATOMIC_LOAD_NR:
8254     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8255   case SystemZ::ATOMIC_LOAD_NILL:
8256     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8257   case SystemZ::ATOMIC_LOAD_NILH:
8258     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8259   case SystemZ::ATOMIC_LOAD_NILF:
8260     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8261   case SystemZ::ATOMIC_LOAD_NGR:
8262     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8263   case SystemZ::ATOMIC_LOAD_NILL64:
8264     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8265   case SystemZ::ATOMIC_LOAD_NILH64:
8266     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8267   case SystemZ::ATOMIC_LOAD_NIHL64:
8268     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8269   case SystemZ::ATOMIC_LOAD_NIHH64:
8270     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8271   case SystemZ::ATOMIC_LOAD_NILF64:
8272     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8273   case SystemZ::ATOMIC_LOAD_NIHF64:
8274     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8275 
8276   case SystemZ::ATOMIC_LOADW_OR:
8277     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8278   case SystemZ::ATOMIC_LOADW_OILH:
8279     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8280   case SystemZ::ATOMIC_LOAD_OR:
8281     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8282   case SystemZ::ATOMIC_LOAD_OILL:
8283     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8284   case SystemZ::ATOMIC_LOAD_OILH:
8285     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8286   case SystemZ::ATOMIC_LOAD_OILF:
8287     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8288   case SystemZ::ATOMIC_LOAD_OGR:
8289     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8290   case SystemZ::ATOMIC_LOAD_OILL64:
8291     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8292   case SystemZ::ATOMIC_LOAD_OILH64:
8293     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8294   case SystemZ::ATOMIC_LOAD_OIHL64:
8295     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8296   case SystemZ::ATOMIC_LOAD_OIHH64:
8297     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8298   case SystemZ::ATOMIC_LOAD_OILF64:
8299     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8300   case SystemZ::ATOMIC_LOAD_OIHF64:
8301     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8302 
8303   case SystemZ::ATOMIC_LOADW_XR:
8304     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8305   case SystemZ::ATOMIC_LOADW_XILF:
8306     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8307   case SystemZ::ATOMIC_LOAD_XR:
8308     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8309   case SystemZ::ATOMIC_LOAD_XILF:
8310     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8311   case SystemZ::ATOMIC_LOAD_XGR:
8312     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8313   case SystemZ::ATOMIC_LOAD_XILF64:
8314     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8315   case SystemZ::ATOMIC_LOAD_XIHF64:
8316     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8317 
8318   case SystemZ::ATOMIC_LOADW_NRi:
8319     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8320   case SystemZ::ATOMIC_LOADW_NILHi:
8321     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8322   case SystemZ::ATOMIC_LOAD_NRi:
8323     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8324   case SystemZ::ATOMIC_LOAD_NILLi:
8325     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8326   case SystemZ::ATOMIC_LOAD_NILHi:
8327     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8328   case SystemZ::ATOMIC_LOAD_NILFi:
8329     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8330   case SystemZ::ATOMIC_LOAD_NGRi:
8331     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8332   case SystemZ::ATOMIC_LOAD_NILL64i:
8333     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8334   case SystemZ::ATOMIC_LOAD_NILH64i:
8335     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8336   case SystemZ::ATOMIC_LOAD_NIHL64i:
8337     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8338   case SystemZ::ATOMIC_LOAD_NIHH64i:
8339     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8340   case SystemZ::ATOMIC_LOAD_NILF64i:
8341     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8342   case SystemZ::ATOMIC_LOAD_NIHF64i:
8343     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8344 
8345   case SystemZ::ATOMIC_LOADW_MIN:
8346     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8347                                 SystemZ::CCMASK_CMP_LE, 0);
8348   case SystemZ::ATOMIC_LOAD_MIN_32:
8349     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8350                                 SystemZ::CCMASK_CMP_LE, 32);
8351   case SystemZ::ATOMIC_LOAD_MIN_64:
8352     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8353                                 SystemZ::CCMASK_CMP_LE, 64);
8354 
8355   case SystemZ::ATOMIC_LOADW_MAX:
8356     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8357                                 SystemZ::CCMASK_CMP_GE, 0);
8358   case SystemZ::ATOMIC_LOAD_MAX_32:
8359     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8360                                 SystemZ::CCMASK_CMP_GE, 32);
8361   case SystemZ::ATOMIC_LOAD_MAX_64:
8362     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8363                                 SystemZ::CCMASK_CMP_GE, 64);
8364 
8365   case SystemZ::ATOMIC_LOADW_UMIN:
8366     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8367                                 SystemZ::CCMASK_CMP_LE, 0);
8368   case SystemZ::ATOMIC_LOAD_UMIN_32:
8369     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8370                                 SystemZ::CCMASK_CMP_LE, 32);
8371   case SystemZ::ATOMIC_LOAD_UMIN_64:
8372     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8373                                 SystemZ::CCMASK_CMP_LE, 64);
8374 
8375   case SystemZ::ATOMIC_LOADW_UMAX:
8376     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8377                                 SystemZ::CCMASK_CMP_GE, 0);
8378   case SystemZ::ATOMIC_LOAD_UMAX_32:
8379     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8380                                 SystemZ::CCMASK_CMP_GE, 32);
8381   case SystemZ::ATOMIC_LOAD_UMAX_64:
8382     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8383                                 SystemZ::CCMASK_CMP_GE, 64);
8384 
8385   case SystemZ::ATOMIC_CMP_SWAPW:
8386     return emitAtomicCmpSwapW(MI, MBB);
8387   case SystemZ::MVCSequence:
8388   case SystemZ::MVCLoop:
8389     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8390   case SystemZ::NCSequence:
8391   case SystemZ::NCLoop:
8392     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8393   case SystemZ::OCSequence:
8394   case SystemZ::OCLoop:
8395     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8396   case SystemZ::XCSequence:
8397   case SystemZ::XCLoop:
8398     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8399   case SystemZ::CLCSequence:
8400   case SystemZ::CLCLoop:
8401     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8402   case SystemZ::CLSTLoop:
8403     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8404   case SystemZ::MVSTLoop:
8405     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8406   case SystemZ::SRSTLoop:
8407     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8408   case SystemZ::TBEGIN:
8409     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8410   case SystemZ::TBEGIN_nofloat:
8411     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8412   case SystemZ::TBEGINC:
8413     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8414   case SystemZ::LTEBRCompare_VecPseudo:
8415     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8416   case SystemZ::LTDBRCompare_VecPseudo:
8417     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8418   case SystemZ::LTXBRCompare_VecPseudo:
8419     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8420 
8421   case SystemZ::PROBED_ALLOCA:
8422     return emitProbedAlloca(MI, MBB);
8423 
8424   case TargetOpcode::STACKMAP:
8425   case TargetOpcode::PATCHPOINT:
8426     return emitPatchPoint(MI, MBB);
8427 
8428   default:
8429     llvm_unreachable("Unexpected instr type to insert");
8430   }
8431 }
8432 
8433 // This is only used by the isel schedulers, and is needed only to prevent
8434 // compiler from crashing when list-ilp is used.
8435 const TargetRegisterClass *
8436 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8437   if (VT == MVT::Untyped)
8438     return &SystemZ::ADDR128BitRegClass;
8439   return TargetLowering::getRepRegClassFor(VT);
8440 }
8441