xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   // Use custom expanders so that we can force the function to use
322   // a frame pointer.
323   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
324   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
325 
326   // Handle prefetches with PFD or PFDRL.
327   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
328 
329   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
330     // Assume by default that all vector operations need to be expanded.
331     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
332       if (getOperationAction(Opcode, VT) == Legal)
333         setOperationAction(Opcode, VT, Expand);
334 
335     // Likewise all truncating stores and extending loads.
336     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
337       setTruncStoreAction(VT, InnerVT, Expand);
338       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
339       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
340       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
341     }
342 
343     if (isTypeLegal(VT)) {
344       // These operations are legal for anything that can be stored in a
345       // vector register, even if there is no native support for the format
346       // as such.  In particular, we can do these for v4f32 even though there
347       // are no specific instructions for that format.
348       setOperationAction(ISD::LOAD, VT, Legal);
349       setOperationAction(ISD::STORE, VT, Legal);
350       setOperationAction(ISD::VSELECT, VT, Legal);
351       setOperationAction(ISD::BITCAST, VT, Legal);
352       setOperationAction(ISD::UNDEF, VT, Legal);
353 
354       // Likewise, except that we need to replace the nodes with something
355       // more specific.
356       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
357       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
358     }
359   }
360 
361   // Handle integer vector types.
362   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
363     if (isTypeLegal(VT)) {
364       // These operations have direct equivalents.
365       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
366       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
367       setOperationAction(ISD::ADD, VT, Legal);
368       setOperationAction(ISD::SUB, VT, Legal);
369       if (VT != MVT::v2i64)
370         setOperationAction(ISD::MUL, VT, Legal);
371       setOperationAction(ISD::ABS, VT, Legal);
372       setOperationAction(ISD::AND, VT, Legal);
373       setOperationAction(ISD::OR, VT, Legal);
374       setOperationAction(ISD::XOR, VT, Legal);
375       if (Subtarget.hasVectorEnhancements1())
376         setOperationAction(ISD::CTPOP, VT, Legal);
377       else
378         setOperationAction(ISD::CTPOP, VT, Custom);
379       setOperationAction(ISD::CTTZ, VT, Legal);
380       setOperationAction(ISD::CTLZ, VT, Legal);
381 
382       // Convert a GPR scalar to a vector by inserting it into element 0.
383       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
384 
385       // Use a series of unpacks for extensions.
386       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
387       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
388 
389       // Detect shifts by a scalar amount and convert them into
390       // V*_BY_SCALAR.
391       setOperationAction(ISD::SHL, VT, Custom);
392       setOperationAction(ISD::SRA, VT, Custom);
393       setOperationAction(ISD::SRL, VT, Custom);
394 
395       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
396       // converted into ROTL.
397       setOperationAction(ISD::ROTL, VT, Expand);
398       setOperationAction(ISD::ROTR, VT, Expand);
399 
400       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
401       // and inverting the result as necessary.
402       setOperationAction(ISD::SETCC, VT, Custom);
403       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
404       if (Subtarget.hasVectorEnhancements1())
405         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
406     }
407   }
408 
409   if (Subtarget.hasVector()) {
410     // There should be no need to check for float types other than v2f64
411     // since <2 x f32> isn't a legal type.
412     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
415     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
416     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
418     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
419     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
420 
421     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
427     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
428     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
429   }
430 
431   if (Subtarget.hasVectorEnhancements2()) {
432     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
435     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
436     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
438     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
439     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
440 
441     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
447     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
448     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
449   }
450 
451   // Handle floating-point types.
452   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
453        I <= MVT::LAST_FP_VALUETYPE;
454        ++I) {
455     MVT VT = MVT::SimpleValueType(I);
456     if (isTypeLegal(VT)) {
457       // We can use FI for FRINT.
458       setOperationAction(ISD::FRINT, VT, Legal);
459 
460       // We can use the extended form of FI for other rounding operations.
461       if (Subtarget.hasFPExtension()) {
462         setOperationAction(ISD::FNEARBYINT, VT, Legal);
463         setOperationAction(ISD::FFLOOR, VT, Legal);
464         setOperationAction(ISD::FCEIL, VT, Legal);
465         setOperationAction(ISD::FTRUNC, VT, Legal);
466         setOperationAction(ISD::FROUND, VT, Legal);
467       }
468 
469       // No special instructions for these.
470       setOperationAction(ISD::FSIN, VT, Expand);
471       setOperationAction(ISD::FCOS, VT, Expand);
472       setOperationAction(ISD::FSINCOS, VT, Expand);
473       setOperationAction(ISD::FREM, VT, Expand);
474       setOperationAction(ISD::FPOW, VT, Expand);
475 
476       // Handle constrained floating-point operations.
477       setOperationAction(ISD::STRICT_FADD, VT, Legal);
478       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
479       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
480       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
481       setOperationAction(ISD::STRICT_FMA, VT, Legal);
482       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
483       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
484       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
485       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
486       if (Subtarget.hasFPExtension()) {
487         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
488         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
489         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
490         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
491         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
492       }
493     }
494   }
495 
496   // Handle floating-point vector types.
497   if (Subtarget.hasVector()) {
498     // Scalar-to-vector conversion is just a subreg.
499     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
500     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
501 
502     // Some insertions and extractions can be done directly but others
503     // need to go via integers.
504     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
505     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
506     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
507     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
508 
509     // These operations have direct equivalents.
510     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
511     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
512     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
513     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
514     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
515     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
516     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
517     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
518     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
519     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
520     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
521     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
522     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
523     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
524 
525     // Handle constrained floating-point operations.
526     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
536     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
537     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
538   }
539 
540   // The vector enhancements facility 1 has instructions for these.
541   if (Subtarget.hasVectorEnhancements1()) {
542     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
543     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
544     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
545     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
546     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
547     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
548     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
549     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
550     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
551     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
553     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
554     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
555     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
556 
557     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
558     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
559     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
560     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
561 
562     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
563     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
564     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
565     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
566 
567     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
568     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
569     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
570     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
571 
572     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
573     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
574     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
575     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
576 
577     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
578     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
579     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
580     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
581 
582     // Handle constrained floating-point operations.
583     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
593     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
594     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
595     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
596                      MVT::v4f32, MVT::v2f64 }) {
597       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
598       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
599       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
600       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
601     }
602   }
603 
604   // We only have fused f128 multiply-addition on vector registers.
605   if (!Subtarget.hasVectorEnhancements1()) {
606     setOperationAction(ISD::FMA, MVT::f128, Expand);
607     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
608   }
609 
610   // We don't have a copysign instruction on vector registers.
611   if (Subtarget.hasVectorEnhancements1())
612     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
613 
614   // Needed so that we don't try to implement f128 constant loads using
615   // a load-and-extend of a f80 constant (in cases where the constant
616   // would fit in an f80).
617   for (MVT VT : MVT::fp_valuetypes())
618     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
619 
620   // We don't have extending load instruction on vector registers.
621   if (Subtarget.hasVectorEnhancements1()) {
622     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
623     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
624   }
625 
626   // Floating-point truncation and stores need to be done separately.
627   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
628   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
629   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
630 
631   // We have 64-bit FPR<->GPR moves, but need special handling for
632   // 32-bit forms.
633   if (!Subtarget.hasVector()) {
634     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
635     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
636   }
637 
638   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
639   // structure, but VAEND is a no-op.
640   setOperationAction(ISD::VASTART, MVT::Other, Custom);
641   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
642   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
643 
644   // Codes for which we want to perform some z-specific combinations.
645   setTargetDAGCombine(ISD::ZERO_EXTEND);
646   setTargetDAGCombine(ISD::SIGN_EXTEND);
647   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
648   setTargetDAGCombine(ISD::LOAD);
649   setTargetDAGCombine(ISD::STORE);
650   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
651   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
652   setTargetDAGCombine(ISD::FP_ROUND);
653   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
654   setTargetDAGCombine(ISD::FP_EXTEND);
655   setTargetDAGCombine(ISD::SINT_TO_FP);
656   setTargetDAGCombine(ISD::UINT_TO_FP);
657   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
658   setTargetDAGCombine(ISD::BSWAP);
659   setTargetDAGCombine(ISD::SDIV);
660   setTargetDAGCombine(ISD::UDIV);
661   setTargetDAGCombine(ISD::SREM);
662   setTargetDAGCombine(ISD::UREM);
663   setTargetDAGCombine(ISD::INTRINSIC_VOID);
664   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
665 
666   // Handle intrinsics.
667   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
668   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
669 
670   // We want to use MVC in preference to even a single load/store pair.
671   MaxStoresPerMemcpy = 0;
672   MaxStoresPerMemcpyOptSize = 0;
673 
674   // The main memset sequence is a byte store followed by an MVC.
675   // Two STC or MV..I stores win over that, but the kind of fused stores
676   // generated by target-independent code don't when the byte value is
677   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
678   // than "STC;MVC".  Handle the choice in target-specific code instead.
679   MaxStoresPerMemset = 0;
680   MaxStoresPerMemsetOptSize = 0;
681 
682   // Default to having -disable-strictnode-mutation on
683   IsStrictFPEnabled = true;
684 }
685 
686 bool SystemZTargetLowering::useSoftFloat() const {
687   return Subtarget.hasSoftFloat();
688 }
689 
690 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
691                                               LLVMContext &, EVT VT) const {
692   if (!VT.isVector())
693     return MVT::i32;
694   return VT.changeVectorElementTypeToInteger();
695 }
696 
697 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
698     const MachineFunction &MF, EVT VT) const {
699   VT = VT.getScalarType();
700 
701   if (!VT.isSimple())
702     return false;
703 
704   switch (VT.getSimpleVT().SimpleTy) {
705   case MVT::f32:
706   case MVT::f64:
707     return true;
708   case MVT::f128:
709     return Subtarget.hasVectorEnhancements1();
710   default:
711     break;
712   }
713 
714   return false;
715 }
716 
717 // Return true if the constant can be generated with a vector instruction,
718 // such as VGM, VGMB or VREPI.
719 bool SystemZVectorConstantInfo::isVectorConstantLegal(
720     const SystemZSubtarget &Subtarget) {
721   const SystemZInstrInfo *TII =
722       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
723   if (!Subtarget.hasVector() ||
724       (isFP128 && !Subtarget.hasVectorEnhancements1()))
725     return false;
726 
727   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
728   // preferred way of creating all-zero and all-one vectors so give it
729   // priority over other methods below.
730   unsigned Mask = 0;
731   unsigned I = 0;
732   for (; I < SystemZ::VectorBytes; ++I) {
733     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
734     if (Byte == 0xff)
735       Mask |= 1ULL << I;
736     else if (Byte != 0)
737       break;
738   }
739   if (I == SystemZ::VectorBytes) {
740     Opcode = SystemZISD::BYTE_MASK;
741     OpVals.push_back(Mask);
742     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
743     return true;
744   }
745 
746   if (SplatBitSize > 64)
747     return false;
748 
749   auto tryValue = [&](uint64_t Value) -> bool {
750     // Try VECTOR REPLICATE IMMEDIATE
751     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
752     if (isInt<16>(SignedValue)) {
753       OpVals.push_back(((unsigned) SignedValue));
754       Opcode = SystemZISD::REPLICATE;
755       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
756                                SystemZ::VectorBits / SplatBitSize);
757       return true;
758     }
759     // Try VECTOR GENERATE MASK
760     unsigned Start, End;
761     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
762       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
763       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
764       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
765       OpVals.push_back(Start - (64 - SplatBitSize));
766       OpVals.push_back(End - (64 - SplatBitSize));
767       Opcode = SystemZISD::ROTATE_MASK;
768       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
769                                SystemZ::VectorBits / SplatBitSize);
770       return true;
771     }
772     return false;
773   };
774 
775   // First try assuming that any undefined bits above the highest set bit
776   // and below the lowest set bit are 1s.  This increases the likelihood of
777   // being able to use a sign-extended element value in VECTOR REPLICATE
778   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
779   uint64_t SplatBitsZ = SplatBits.getZExtValue();
780   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
781   uint64_t Lower =
782       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
783   uint64_t Upper =
784       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
785   if (tryValue(SplatBitsZ | Upper | Lower))
786     return true;
787 
788   // Now try assuming that any undefined bits between the first and
789   // last defined set bits are set.  This increases the chances of
790   // using a non-wraparound mask.
791   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
792   return tryValue(SplatBitsZ | Middle);
793 }
794 
795 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
796   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
797   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
798   SplatBits = FPImm.bitcastToAPInt();
799   unsigned Width = SplatBits.getBitWidth();
800   IntBits <<= (SystemZ::VectorBits - Width);
801 
802   // Find the smallest splat.
803   while (Width > 8) {
804     unsigned HalfSize = Width / 2;
805     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
806     APInt LowValue = SplatBits.trunc(HalfSize);
807 
808     // If the two halves do not match, stop here.
809     if (HighValue != LowValue || 8 > HalfSize)
810       break;
811 
812     SplatBits = HighValue;
813     Width = HalfSize;
814   }
815   SplatUndef = 0;
816   SplatBitSize = Width;
817 }
818 
819 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
820   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
821   bool HasAnyUndefs;
822 
823   // Get IntBits by finding the 128 bit splat.
824   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
825                        true);
826 
827   // Get SplatBits by finding the 8 bit or greater splat.
828   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
829                        true);
830 }
831 
832 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
833                                          bool ForCodeSize) const {
834   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
835   if (Imm.isZero() || Imm.isNegZero())
836     return true;
837 
838   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
839 }
840 
841 /// Returns true if stack probing through inline assembly is requested.
842 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
843   // If the function specifically requests inline stack probes, emit them.
844   if (MF.getFunction().hasFnAttribute("probe-stack"))
845     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
846            "inline-asm";
847   return false;
848 }
849 
850 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
851   // We can use CGFI or CLGFI.
852   return isInt<32>(Imm) || isUInt<32>(Imm);
853 }
854 
855 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
856   // We can use ALGFI or SLGFI.
857   return isUInt<32>(Imm) || isUInt<32>(-Imm);
858 }
859 
860 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
861     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
862   // Unaligned accesses should never be slower than the expanded version.
863   // We check specifically for aligned accesses in the few cases where
864   // they are required.
865   if (Fast)
866     *Fast = true;
867   return true;
868 }
869 
870 // Information about the addressing mode for a memory access.
871 struct AddressingMode {
872   // True if a long displacement is supported.
873   bool LongDisplacement;
874 
875   // True if use of index register is supported.
876   bool IndexReg;
877 
878   AddressingMode(bool LongDispl, bool IdxReg) :
879     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
880 };
881 
882 // Return the desired addressing mode for a Load which has only one use (in
883 // the same block) which is a Store.
884 static AddressingMode getLoadStoreAddrMode(bool HasVector,
885                                           Type *Ty) {
886   // With vector support a Load->Store combination may be combined to either
887   // an MVC or vector operations and it seems to work best to allow the
888   // vector addressing mode.
889   if (HasVector)
890     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
891 
892   // Otherwise only the MVC case is special.
893   bool MVC = Ty->isIntegerTy(8);
894   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
895 }
896 
897 // Return the addressing mode which seems most desirable given an LLVM
898 // Instruction pointer.
899 static AddressingMode
900 supportedAddressingMode(Instruction *I, bool HasVector) {
901   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
902     switch (II->getIntrinsicID()) {
903     default: break;
904     case Intrinsic::memset:
905     case Intrinsic::memmove:
906     case Intrinsic::memcpy:
907       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
908     }
909   }
910 
911   if (isa<LoadInst>(I) && I->hasOneUse()) {
912     auto *SingleUser = cast<Instruction>(*I->user_begin());
913     if (SingleUser->getParent() == I->getParent()) {
914       if (isa<ICmpInst>(SingleUser)) {
915         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
916           if (C->getBitWidth() <= 64 &&
917               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
918             // Comparison of memory with 16 bit signed / unsigned immediate
919             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
920       } else if (isa<StoreInst>(SingleUser))
921         // Load->Store
922         return getLoadStoreAddrMode(HasVector, I->getType());
923     }
924   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
925     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
926       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
927         // Load->Store
928         return getLoadStoreAddrMode(HasVector, LoadI->getType());
929   }
930 
931   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
932 
933     // * Use LDE instead of LE/LEY for z13 to avoid partial register
934     //   dependencies (LDE only supports small offsets).
935     // * Utilize the vector registers to hold floating point
936     //   values (vector load / store instructions only support small
937     //   offsets).
938 
939     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
940                          I->getOperand(0)->getType());
941     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
942     bool IsVectorAccess = MemAccessTy->isVectorTy();
943 
944     // A store of an extracted vector element will be combined into a VSTE type
945     // instruction.
946     if (!IsVectorAccess && isa<StoreInst>(I)) {
947       Value *DataOp = I->getOperand(0);
948       if (isa<ExtractElementInst>(DataOp))
949         IsVectorAccess = true;
950     }
951 
952     // A load which gets inserted into a vector element will be combined into a
953     // VLE type instruction.
954     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
955       User *LoadUser = *I->user_begin();
956       if (isa<InsertElementInst>(LoadUser))
957         IsVectorAccess = true;
958     }
959 
960     if (IsFPAccess || IsVectorAccess)
961       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
962   }
963 
964   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
965 }
966 
967 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
968        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
969   // Punt on globals for now, although they can be used in limited
970   // RELATIVE LONG cases.
971   if (AM.BaseGV)
972     return false;
973 
974   // Require a 20-bit signed offset.
975   if (!isInt<20>(AM.BaseOffs))
976     return false;
977 
978   AddressingMode SupportedAM(true, true);
979   if (I != nullptr)
980     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
981 
982   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
983     return false;
984 
985   if (!SupportedAM.IndexReg)
986     // No indexing allowed.
987     return AM.Scale == 0;
988   else
989     // Indexing is OK but no scale factor can be applied.
990     return AM.Scale == 0 || AM.Scale == 1;
991 }
992 
993 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
994   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
995     return false;
996   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
997   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
998   return FromBits > ToBits;
999 }
1000 
1001 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1002   if (!FromVT.isInteger() || !ToVT.isInteger())
1003     return false;
1004   unsigned FromBits = FromVT.getFixedSizeInBits();
1005   unsigned ToBits = ToVT.getFixedSizeInBits();
1006   return FromBits > ToBits;
1007 }
1008 
1009 //===----------------------------------------------------------------------===//
1010 // Inline asm support
1011 //===----------------------------------------------------------------------===//
1012 
1013 TargetLowering::ConstraintType
1014 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1015   if (Constraint.size() == 1) {
1016     switch (Constraint[0]) {
1017     case 'a': // Address register
1018     case 'd': // Data register (equivalent to 'r')
1019     case 'f': // Floating-point register
1020     case 'h': // High-part register
1021     case 'r': // General-purpose register
1022     case 'v': // Vector register
1023       return C_RegisterClass;
1024 
1025     case 'Q': // Memory with base and unsigned 12-bit displacement
1026     case 'R': // Likewise, plus an index
1027     case 'S': // Memory with base and signed 20-bit displacement
1028     case 'T': // Likewise, plus an index
1029     case 'm': // Equivalent to 'T'.
1030       return C_Memory;
1031 
1032     case 'I': // Unsigned 8-bit constant
1033     case 'J': // Unsigned 12-bit constant
1034     case 'K': // Signed 16-bit constant
1035     case 'L': // Signed 20-bit displacement (on all targets we support)
1036     case 'M': // 0x7fffffff
1037       return C_Immediate;
1038 
1039     default:
1040       break;
1041     }
1042   }
1043   return TargetLowering::getConstraintType(Constraint);
1044 }
1045 
1046 TargetLowering::ConstraintWeight SystemZTargetLowering::
1047 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1048                                const char *constraint) const {
1049   ConstraintWeight weight = CW_Invalid;
1050   Value *CallOperandVal = info.CallOperandVal;
1051   // If we don't have a value, we can't do a match,
1052   // but allow it at the lowest weight.
1053   if (!CallOperandVal)
1054     return CW_Default;
1055   Type *type = CallOperandVal->getType();
1056   // Look at the constraint type.
1057   switch (*constraint) {
1058   default:
1059     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1060     break;
1061 
1062   case 'a': // Address register
1063   case 'd': // Data register (equivalent to 'r')
1064   case 'h': // High-part register
1065   case 'r': // General-purpose register
1066     if (CallOperandVal->getType()->isIntegerTy())
1067       weight = CW_Register;
1068     break;
1069 
1070   case 'f': // Floating-point register
1071     if (type->isFloatingPointTy())
1072       weight = CW_Register;
1073     break;
1074 
1075   case 'v': // Vector register
1076     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1077         Subtarget.hasVector())
1078       weight = CW_Register;
1079     break;
1080 
1081   case 'I': // Unsigned 8-bit constant
1082     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1083       if (isUInt<8>(C->getZExtValue()))
1084         weight = CW_Constant;
1085     break;
1086 
1087   case 'J': // Unsigned 12-bit constant
1088     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1089       if (isUInt<12>(C->getZExtValue()))
1090         weight = CW_Constant;
1091     break;
1092 
1093   case 'K': // Signed 16-bit constant
1094     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1095       if (isInt<16>(C->getSExtValue()))
1096         weight = CW_Constant;
1097     break;
1098 
1099   case 'L': // Signed 20-bit displacement (on all targets we support)
1100     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1101       if (isInt<20>(C->getSExtValue()))
1102         weight = CW_Constant;
1103     break;
1104 
1105   case 'M': // 0x7fffffff
1106     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1107       if (C->getZExtValue() == 0x7fffffff)
1108         weight = CW_Constant;
1109     break;
1110   }
1111   return weight;
1112 }
1113 
1114 // Parse a "{tNNN}" register constraint for which the register type "t"
1115 // has already been verified.  MC is the class associated with "t" and
1116 // Map maps 0-based register numbers to LLVM register numbers.
1117 static std::pair<unsigned, const TargetRegisterClass *>
1118 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1119                     const unsigned *Map, unsigned Size) {
1120   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1121   if (isdigit(Constraint[2])) {
1122     unsigned Index;
1123     bool Failed =
1124         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1125     if (!Failed && Index < Size && Map[Index])
1126       return std::make_pair(Map[Index], RC);
1127   }
1128   return std::make_pair(0U, nullptr);
1129 }
1130 
1131 std::pair<unsigned, const TargetRegisterClass *>
1132 SystemZTargetLowering::getRegForInlineAsmConstraint(
1133     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1134   if (Constraint.size() == 1) {
1135     // GCC Constraint Letters
1136     switch (Constraint[0]) {
1137     default: break;
1138     case 'd': // Data register (equivalent to 'r')
1139     case 'r': // General-purpose register
1140       if (VT == MVT::i64)
1141         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1142       else if (VT == MVT::i128)
1143         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1144       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1145 
1146     case 'a': // Address register
1147       if (VT == MVT::i64)
1148         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1149       else if (VT == MVT::i128)
1150         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1151       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1152 
1153     case 'h': // High-part register (an LLVM extension)
1154       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1155 
1156     case 'f': // Floating-point register
1157       if (!useSoftFloat()) {
1158         if (VT == MVT::f64)
1159           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1160         else if (VT == MVT::f128)
1161           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1162         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1163       }
1164       break;
1165     case 'v': // Vector register
1166       if (Subtarget.hasVector()) {
1167         if (VT == MVT::f32)
1168           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1169         if (VT == MVT::f64)
1170           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1171         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1172       }
1173       break;
1174     }
1175   }
1176   if (Constraint.size() > 0 && Constraint[0] == '{') {
1177     // We need to override the default register parsing for GPRs and FPRs
1178     // because the interpretation depends on VT.  The internal names of
1179     // the registers are also different from the external names
1180     // (F0D and F0S instead of F0, etc.).
1181     if (Constraint[1] == 'r') {
1182       if (VT == MVT::i32)
1183         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1184                                    SystemZMC::GR32Regs, 16);
1185       if (VT == MVT::i128)
1186         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1187                                    SystemZMC::GR128Regs, 16);
1188       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1189                                  SystemZMC::GR64Regs, 16);
1190     }
1191     if (Constraint[1] == 'f') {
1192       if (useSoftFloat())
1193         return std::make_pair(
1194             0u, static_cast<const TargetRegisterClass *>(nullptr));
1195       if (VT == MVT::f32)
1196         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1197                                    SystemZMC::FP32Regs, 16);
1198       if (VT == MVT::f128)
1199         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1200                                    SystemZMC::FP128Regs, 16);
1201       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1202                                  SystemZMC::FP64Regs, 16);
1203     }
1204     if (Constraint[1] == 'v') {
1205       if (!Subtarget.hasVector())
1206         return std::make_pair(
1207             0u, static_cast<const TargetRegisterClass *>(nullptr));
1208       if (VT == MVT::f32)
1209         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1210                                    SystemZMC::VR32Regs, 32);
1211       if (VT == MVT::f64)
1212         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1213                                    SystemZMC::VR64Regs, 32);
1214       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1215                                  SystemZMC::VR128Regs, 32);
1216     }
1217   }
1218   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1219 }
1220 
1221 // FIXME? Maybe this could be a TableGen attribute on some registers and
1222 // this table could be generated automatically from RegInfo.
1223 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1224                                                   const MachineFunction &MF) const {
1225 
1226   Register Reg = StringSwitch<Register>(RegName)
1227                    .Case("r15", SystemZ::R15D)
1228                    .Default(0);
1229   if (Reg)
1230     return Reg;
1231   report_fatal_error("Invalid register name global variable");
1232 }
1233 
1234 void SystemZTargetLowering::
1235 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1236                              std::vector<SDValue> &Ops,
1237                              SelectionDAG &DAG) const {
1238   // Only support length 1 constraints for now.
1239   if (Constraint.length() == 1) {
1240     switch (Constraint[0]) {
1241     case 'I': // Unsigned 8-bit constant
1242       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1243         if (isUInt<8>(C->getZExtValue()))
1244           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1245                                               Op.getValueType()));
1246       return;
1247 
1248     case 'J': // Unsigned 12-bit constant
1249       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1250         if (isUInt<12>(C->getZExtValue()))
1251           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1252                                               Op.getValueType()));
1253       return;
1254 
1255     case 'K': // Signed 16-bit constant
1256       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1257         if (isInt<16>(C->getSExtValue()))
1258           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1259                                               Op.getValueType()));
1260       return;
1261 
1262     case 'L': // Signed 20-bit displacement (on all targets we support)
1263       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1264         if (isInt<20>(C->getSExtValue()))
1265           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1266                                               Op.getValueType()));
1267       return;
1268 
1269     case 'M': // 0x7fffffff
1270       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1271         if (C->getZExtValue() == 0x7fffffff)
1272           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1273                                               Op.getValueType()));
1274       return;
1275     }
1276   }
1277   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 // Calling conventions
1282 //===----------------------------------------------------------------------===//
1283 
1284 #include "SystemZGenCallingConv.inc"
1285 
1286 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1287   CallingConv::ID) const {
1288   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1289                                            SystemZ::R14D, 0 };
1290   return ScratchRegs;
1291 }
1292 
1293 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1294                                                      Type *ToType) const {
1295   return isTruncateFree(FromType, ToType);
1296 }
1297 
1298 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1299   return CI->isTailCall();
1300 }
1301 
1302 // We do not yet support 128-bit single-element vector types.  If the user
1303 // attempts to use such types as function argument or return type, prefer
1304 // to error out instead of emitting code violating the ABI.
1305 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1306   if (ArgVT.isVector() && !VT.isVector())
1307     report_fatal_error("Unsupported vector argument or return type");
1308 }
1309 
1310 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1311   for (unsigned i = 0; i < Ins.size(); ++i)
1312     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1313 }
1314 
1315 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1316   for (unsigned i = 0; i < Outs.size(); ++i)
1317     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1318 }
1319 
1320 // Value is a value that has been passed to us in the location described by VA
1321 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1322 // any loads onto Chain.
1323 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1324                                    CCValAssign &VA, SDValue Chain,
1325                                    SDValue Value) {
1326   // If the argument has been promoted from a smaller type, insert an
1327   // assertion to capture this.
1328   if (VA.getLocInfo() == CCValAssign::SExt)
1329     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1330                         DAG.getValueType(VA.getValVT()));
1331   else if (VA.getLocInfo() == CCValAssign::ZExt)
1332     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1333                         DAG.getValueType(VA.getValVT()));
1334 
1335   if (VA.isExtInLoc())
1336     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1337   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1338     // If this is a short vector argument loaded from the stack,
1339     // extend from i64 to full vector size and then bitcast.
1340     assert(VA.getLocVT() == MVT::i64);
1341     assert(VA.getValVT().isVector());
1342     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1343     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1344   } else
1345     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1346   return Value;
1347 }
1348 
1349 // Value is a value of type VA.getValVT() that we need to copy into
1350 // the location described by VA.  Return a copy of Value converted to
1351 // VA.getValVT().  The caller is responsible for handling indirect values.
1352 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1353                                    CCValAssign &VA, SDValue Value) {
1354   switch (VA.getLocInfo()) {
1355   case CCValAssign::SExt:
1356     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1357   case CCValAssign::ZExt:
1358     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1359   case CCValAssign::AExt:
1360     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1361   case CCValAssign::BCvt: {
1362     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1363     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1364            VA.getValVT() == MVT::f128);
1365     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1366                             ? MVT::v2i64
1367                             : VA.getLocVT();
1368     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1369     // For ELF, this is a short vector argument to be stored to the stack,
1370     // bitcast to v2i64 and then extract first element.
1371     if (BitCastToType == MVT::v2i64)
1372       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1373                          DAG.getConstant(0, DL, MVT::i32));
1374     return Value;
1375   }
1376   case CCValAssign::Full:
1377     return Value;
1378   default:
1379     llvm_unreachable("Unhandled getLocInfo()");
1380   }
1381 }
1382 
1383 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1384   SDLoc DL(In);
1385   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1386                            DAG.getIntPtrConstant(0, DL));
1387   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1388                            DAG.getIntPtrConstant(1, DL));
1389   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1390                                     MVT::Untyped, Hi, Lo);
1391   return SDValue(Pair, 0);
1392 }
1393 
1394 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1395   SDLoc DL(In);
1396   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1397                                           DL, MVT::i64, In);
1398   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1399                                           DL, MVT::i64, In);
1400   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1401 }
1402 
1403 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1404     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1405     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1406   EVT ValueVT = Val.getValueType();
1407   assert((ValueVT != MVT::i128 ||
1408           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1409            (NumParts == 2 && PartVT == MVT::i64))) &&
1410          "Unknown handling of i128 value.");
1411   if (ValueVT == MVT::i128 && NumParts == 1) {
1412     // Inline assembly operand.
1413     Parts[0] = lowerI128ToGR128(DAG, Val);
1414     return true;
1415   }
1416   return false;
1417 }
1418 
1419 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1420     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1421     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1422   assert((ValueVT != MVT::i128 ||
1423           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1424            (NumParts == 2 && PartVT == MVT::i64))) &&
1425          "Unknown handling of i128 value.");
1426   if (ValueVT == MVT::i128 && NumParts == 1)
1427     // Inline assembly operand.
1428     return lowerGR128ToI128(DAG, Parts[0]);
1429   return SDValue();
1430 }
1431 
1432 SDValue SystemZTargetLowering::LowerFormalArguments(
1433     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1434     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1435     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1436   MachineFunction &MF = DAG.getMachineFunction();
1437   MachineFrameInfo &MFI = MF.getFrameInfo();
1438   MachineRegisterInfo &MRI = MF.getRegInfo();
1439   SystemZMachineFunctionInfo *FuncInfo =
1440       MF.getInfo<SystemZMachineFunctionInfo>();
1441   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1442   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1443 
1444   // Detect unsupported vector argument types.
1445   if (Subtarget.hasVector())
1446     VerifyVectorTypes(Ins);
1447 
1448   // Assign locations to all of the incoming arguments.
1449   SmallVector<CCValAssign, 16> ArgLocs;
1450   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1451   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1452 
1453   unsigned NumFixedGPRs = 0;
1454   unsigned NumFixedFPRs = 0;
1455   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1456     SDValue ArgValue;
1457     CCValAssign &VA = ArgLocs[I];
1458     EVT LocVT = VA.getLocVT();
1459     if (VA.isRegLoc()) {
1460       // Arguments passed in registers
1461       const TargetRegisterClass *RC;
1462       switch (LocVT.getSimpleVT().SimpleTy) {
1463       default:
1464         // Integers smaller than i64 should be promoted to i64.
1465         llvm_unreachable("Unexpected argument type");
1466       case MVT::i32:
1467         NumFixedGPRs += 1;
1468         RC = &SystemZ::GR32BitRegClass;
1469         break;
1470       case MVT::i64:
1471         NumFixedGPRs += 1;
1472         RC = &SystemZ::GR64BitRegClass;
1473         break;
1474       case MVT::f32:
1475         NumFixedFPRs += 1;
1476         RC = &SystemZ::FP32BitRegClass;
1477         break;
1478       case MVT::f64:
1479         NumFixedFPRs += 1;
1480         RC = &SystemZ::FP64BitRegClass;
1481         break;
1482       case MVT::f128:
1483         NumFixedFPRs += 2;
1484         RC = &SystemZ::FP128BitRegClass;
1485         break;
1486       case MVT::v16i8:
1487       case MVT::v8i16:
1488       case MVT::v4i32:
1489       case MVT::v2i64:
1490       case MVT::v4f32:
1491       case MVT::v2f64:
1492         RC = &SystemZ::VR128BitRegClass;
1493         break;
1494       }
1495 
1496       Register VReg = MRI.createVirtualRegister(RC);
1497       MRI.addLiveIn(VA.getLocReg(), VReg);
1498       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1499     } else {
1500       assert(VA.isMemLoc() && "Argument not register or memory");
1501 
1502       // Create the frame index object for this incoming parameter.
1503       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1504                                      VA.getLocMemOffset(), true);
1505 
1506       // Create the SelectionDAG nodes corresponding to a load
1507       // from this parameter.  Unpromoted ints and floats are
1508       // passed as right-justified 8-byte values.
1509       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1510       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1511         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1512                           DAG.getIntPtrConstant(4, DL));
1513       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1514                              MachinePointerInfo::getFixedStack(MF, FI));
1515     }
1516 
1517     // Convert the value of the argument register into the value that's
1518     // being passed.
1519     if (VA.getLocInfo() == CCValAssign::Indirect) {
1520       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1521                                    MachinePointerInfo()));
1522       // If the original argument was split (e.g. i128), we need
1523       // to load all parts of it here (using the same address).
1524       unsigned ArgIndex = Ins[I].OrigArgIndex;
1525       assert (Ins[I].PartOffset == 0);
1526       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1527         CCValAssign &PartVA = ArgLocs[I + 1];
1528         unsigned PartOffset = Ins[I + 1].PartOffset;
1529         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1530                                       DAG.getIntPtrConstant(PartOffset, DL));
1531         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1532                                      MachinePointerInfo()));
1533         ++I;
1534       }
1535     } else
1536       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1537   }
1538 
1539   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1540   if (IsVarArg && Subtarget.isTargetELF()) {
1541     // Save the number of non-varargs registers for later use by va_start, etc.
1542     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1543     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1544 
1545     // Likewise the address (in the form of a frame index) of where the
1546     // first stack vararg would be.  The 1-byte size here is arbitrary.
1547     int64_t StackSize = CCInfo.getNextStackOffset();
1548     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1549 
1550     // ...and a similar frame index for the caller-allocated save area
1551     // that will be used to store the incoming registers.
1552     int64_t RegSaveOffset =
1553       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1554     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1555     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1556 
1557     // Store the FPR varargs in the reserved frame slots.  (We store the
1558     // GPRs as part of the prologue.)
1559     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1560       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1561       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1562         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1563         int FI =
1564           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1565         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1566         unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1567                                      &SystemZ::FP64BitRegClass);
1568         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1569         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1570                                  MachinePointerInfo::getFixedStack(MF, FI));
1571       }
1572       // Join the stores, which are independent of one another.
1573       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1574                           makeArrayRef(&MemOps[NumFixedFPRs],
1575                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1576     }
1577   }
1578 
1579   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1580   // register (R5)
1581   return Chain;
1582 }
1583 
1584 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1585                               SmallVectorImpl<CCValAssign> &ArgLocs,
1586                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1587   // Punt if there are any indirect or stack arguments, or if the call
1588   // needs the callee-saved argument register R6, or if the call uses
1589   // the callee-saved register arguments SwiftSelf and SwiftError.
1590   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1591     CCValAssign &VA = ArgLocs[I];
1592     if (VA.getLocInfo() == CCValAssign::Indirect)
1593       return false;
1594     if (!VA.isRegLoc())
1595       return false;
1596     Register Reg = VA.getLocReg();
1597     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1598       return false;
1599     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1600       return false;
1601   }
1602   return true;
1603 }
1604 
1605 SDValue
1606 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1607                                  SmallVectorImpl<SDValue> &InVals) const {
1608   SelectionDAG &DAG = CLI.DAG;
1609   SDLoc &DL = CLI.DL;
1610   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1611   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1612   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1613   SDValue Chain = CLI.Chain;
1614   SDValue Callee = CLI.Callee;
1615   bool &IsTailCall = CLI.IsTailCall;
1616   CallingConv::ID CallConv = CLI.CallConv;
1617   bool IsVarArg = CLI.IsVarArg;
1618   MachineFunction &MF = DAG.getMachineFunction();
1619   EVT PtrVT = getPointerTy(MF.getDataLayout());
1620   LLVMContext &Ctx = *DAG.getContext();
1621   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1622 
1623   // FIXME: z/OS support to be added in later.
1624   if (Subtarget.isTargetXPLINK64())
1625     IsTailCall = false;
1626 
1627   // Detect unsupported vector argument and return types.
1628   if (Subtarget.hasVector()) {
1629     VerifyVectorTypes(Outs);
1630     VerifyVectorTypes(Ins);
1631   }
1632 
1633   // Analyze the operands of the call, assigning locations to each operand.
1634   SmallVector<CCValAssign, 16> ArgLocs;
1635   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1636   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1637 
1638   // We don't support GuaranteedTailCallOpt, only automatically-detected
1639   // sibling calls.
1640   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1641     IsTailCall = false;
1642 
1643   // Get a count of how many bytes are to be pushed on the stack.
1644   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1645 
1646   if (Subtarget.isTargetXPLINK64())
1647     // Although the XPLINK specifications for AMODE64 state that minimum size
1648     // of the param area is minimum 32 bytes and no rounding is otherwise
1649     // specified, we round this area in 64 bytes increments to be compatible
1650     // with existing compilers.
1651     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1652 
1653   // Mark the start of the call.
1654   if (!IsTailCall)
1655     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1656 
1657   // Copy argument values to their designated locations.
1658   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1659   SmallVector<SDValue, 8> MemOpChains;
1660   SDValue StackPtr;
1661   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1662     CCValAssign &VA = ArgLocs[I];
1663     SDValue ArgValue = OutVals[I];
1664 
1665     if (VA.getLocInfo() == CCValAssign::Indirect) {
1666       // Store the argument in a stack slot and pass its address.
1667       unsigned ArgIndex = Outs[I].OrigArgIndex;
1668       EVT SlotVT;
1669       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1670         // Allocate the full stack space for a promoted (and split) argument.
1671         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1672         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1673         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1674         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1675         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1676       } else {
1677         SlotVT = Outs[I].ArgVT;
1678       }
1679       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1680       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1681       MemOpChains.push_back(
1682           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1683                        MachinePointerInfo::getFixedStack(MF, FI)));
1684       // If the original argument was split (e.g. i128), we need
1685       // to store all parts of it here (and pass just one address).
1686       assert (Outs[I].PartOffset == 0);
1687       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1688         SDValue PartValue = OutVals[I + 1];
1689         unsigned PartOffset = Outs[I + 1].PartOffset;
1690         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1691                                       DAG.getIntPtrConstant(PartOffset, DL));
1692         MemOpChains.push_back(
1693             DAG.getStore(Chain, DL, PartValue, Address,
1694                          MachinePointerInfo::getFixedStack(MF, FI)));
1695         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1696                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1697         ++I;
1698       }
1699       ArgValue = SpillSlot;
1700     } else
1701       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1702 
1703     if (VA.isRegLoc()) {
1704       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1705       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1706       // and low values.
1707       if (VA.getLocVT() == MVT::i128)
1708         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1709       // Queue up the argument copies and emit them at the end.
1710       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1711     } else {
1712       assert(VA.isMemLoc() && "Argument not register or memory");
1713 
1714       // Work out the address of the stack slot.  Unpromoted ints and
1715       // floats are passed as right-justified 8-byte values.
1716       if (!StackPtr.getNode())
1717         StackPtr = DAG.getCopyFromReg(Chain, DL,
1718                                       Regs->getStackPointerRegister(), PtrVT);
1719       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1720                         VA.getLocMemOffset();
1721       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1722         Offset += 4;
1723       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1724                                     DAG.getIntPtrConstant(Offset, DL));
1725 
1726       // Emit the store.
1727       MemOpChains.push_back(
1728           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1729 
1730       // Although long doubles or vectors are passed through the stack when
1731       // they are vararg (non-fixed arguments), if a long double or vector
1732       // occupies the third and fourth slot of the argument list GPR3 should
1733       // still shadow the third slot of the argument list.
1734       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1735         SDValue ShadowArgValue =
1736             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1737                         DAG.getIntPtrConstant(1, DL));
1738         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1739       }
1740     }
1741   }
1742 
1743   // Join the stores, which are independent of one another.
1744   if (!MemOpChains.empty())
1745     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1746 
1747   // Accept direct calls by converting symbolic call addresses to the
1748   // associated Target* opcodes.  Force %r1 to be used for indirect
1749   // tail calls.
1750   SDValue Glue;
1751   // FIXME: Add support for XPLINK using the ADA register.
1752   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1753     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1754     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1755   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1756     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1757     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1758   } else if (IsTailCall) {
1759     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1760     Glue = Chain.getValue(1);
1761     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1762   }
1763 
1764   // Build a sequence of copy-to-reg nodes, chained and glued together.
1765   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1766     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1767                              RegsToPass[I].second, Glue);
1768     Glue = Chain.getValue(1);
1769   }
1770 
1771   // The first call operand is the chain and the second is the target address.
1772   SmallVector<SDValue, 8> Ops;
1773   Ops.push_back(Chain);
1774   Ops.push_back(Callee);
1775 
1776   // Add argument registers to the end of the list so that they are
1777   // known live into the call.
1778   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1779     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1780                                   RegsToPass[I].second.getValueType()));
1781 
1782   // Add a register mask operand representing the call-preserved registers.
1783   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1784   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1785   assert(Mask && "Missing call preserved mask for calling convention");
1786   Ops.push_back(DAG.getRegisterMask(Mask));
1787 
1788   // Glue the call to the argument copies, if any.
1789   if (Glue.getNode())
1790     Ops.push_back(Glue);
1791 
1792   // Emit the call.
1793   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1794   if (IsTailCall)
1795     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1796   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1797   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1798   Glue = Chain.getValue(1);
1799 
1800   // Mark the end of the call, which is glued to the call itself.
1801   Chain = DAG.getCALLSEQ_END(Chain,
1802                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1803                              DAG.getConstant(0, DL, PtrVT, true),
1804                              Glue, DL);
1805   Glue = Chain.getValue(1);
1806 
1807   // Assign locations to each value returned by this call.
1808   SmallVector<CCValAssign, 16> RetLocs;
1809   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1810   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1811 
1812   // Copy all of the result registers out of their specified physreg.
1813   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1814     CCValAssign &VA = RetLocs[I];
1815 
1816     // Copy the value out, gluing the copy to the end of the call sequence.
1817     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1818                                           VA.getLocVT(), Glue);
1819     Chain = RetValue.getValue(1);
1820     Glue = RetValue.getValue(2);
1821 
1822     // Convert the value of the return register into the value that's
1823     // being returned.
1824     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1825   }
1826 
1827   return Chain;
1828 }
1829 
1830 bool SystemZTargetLowering::
1831 CanLowerReturn(CallingConv::ID CallConv,
1832                MachineFunction &MF, bool isVarArg,
1833                const SmallVectorImpl<ISD::OutputArg> &Outs,
1834                LLVMContext &Context) const {
1835   // Detect unsupported vector return types.
1836   if (Subtarget.hasVector())
1837     VerifyVectorTypes(Outs);
1838 
1839   // Special case that we cannot easily detect in RetCC_SystemZ since
1840   // i128 is not a legal type.
1841   for (auto &Out : Outs)
1842     if (Out.ArgVT == MVT::i128)
1843       return false;
1844 
1845   SmallVector<CCValAssign, 16> RetLocs;
1846   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1847   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1848 }
1849 
1850 SDValue
1851 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1852                                    bool IsVarArg,
1853                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1854                                    const SmallVectorImpl<SDValue> &OutVals,
1855                                    const SDLoc &DL, SelectionDAG &DAG) const {
1856   MachineFunction &MF = DAG.getMachineFunction();
1857 
1858   // Detect unsupported vector return types.
1859   if (Subtarget.hasVector())
1860     VerifyVectorTypes(Outs);
1861 
1862   // Assign locations to each returned value.
1863   SmallVector<CCValAssign, 16> RetLocs;
1864   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1865   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1866 
1867   // Quick exit for void returns
1868   if (RetLocs.empty())
1869     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1870 
1871   if (CallConv == CallingConv::GHC)
1872     report_fatal_error("GHC functions return void only");
1873 
1874   // Copy the result values into the output registers.
1875   SDValue Glue;
1876   SmallVector<SDValue, 4> RetOps;
1877   RetOps.push_back(Chain);
1878   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1879     CCValAssign &VA = RetLocs[I];
1880     SDValue RetValue = OutVals[I];
1881 
1882     // Make the return register live on exit.
1883     assert(VA.isRegLoc() && "Can only return in registers!");
1884 
1885     // Promote the value as required.
1886     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1887 
1888     // Chain and glue the copies together.
1889     Register Reg = VA.getLocReg();
1890     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1891     Glue = Chain.getValue(1);
1892     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1893   }
1894 
1895   // Update chain and glue.
1896   RetOps[0] = Chain;
1897   if (Glue.getNode())
1898     RetOps.push_back(Glue);
1899 
1900   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1901 }
1902 
1903 // Return true if Op is an intrinsic node with chain that returns the CC value
1904 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1905 // the mask of valid CC values if so.
1906 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1907                                       unsigned &CCValid) {
1908   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1909   switch (Id) {
1910   case Intrinsic::s390_tbegin:
1911     Opcode = SystemZISD::TBEGIN;
1912     CCValid = SystemZ::CCMASK_TBEGIN;
1913     return true;
1914 
1915   case Intrinsic::s390_tbegin_nofloat:
1916     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1917     CCValid = SystemZ::CCMASK_TBEGIN;
1918     return true;
1919 
1920   case Intrinsic::s390_tend:
1921     Opcode = SystemZISD::TEND;
1922     CCValid = SystemZ::CCMASK_TEND;
1923     return true;
1924 
1925   default:
1926     return false;
1927   }
1928 }
1929 
1930 // Return true if Op is an intrinsic node without chain that returns the
1931 // CC value as its final argument.  Provide the associated SystemZISD
1932 // opcode and the mask of valid CC values if so.
1933 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1934   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1935   switch (Id) {
1936   case Intrinsic::s390_vpkshs:
1937   case Intrinsic::s390_vpksfs:
1938   case Intrinsic::s390_vpksgs:
1939     Opcode = SystemZISD::PACKS_CC;
1940     CCValid = SystemZ::CCMASK_VCMP;
1941     return true;
1942 
1943   case Intrinsic::s390_vpklshs:
1944   case Intrinsic::s390_vpklsfs:
1945   case Intrinsic::s390_vpklsgs:
1946     Opcode = SystemZISD::PACKLS_CC;
1947     CCValid = SystemZ::CCMASK_VCMP;
1948     return true;
1949 
1950   case Intrinsic::s390_vceqbs:
1951   case Intrinsic::s390_vceqhs:
1952   case Intrinsic::s390_vceqfs:
1953   case Intrinsic::s390_vceqgs:
1954     Opcode = SystemZISD::VICMPES;
1955     CCValid = SystemZ::CCMASK_VCMP;
1956     return true;
1957 
1958   case Intrinsic::s390_vchbs:
1959   case Intrinsic::s390_vchhs:
1960   case Intrinsic::s390_vchfs:
1961   case Intrinsic::s390_vchgs:
1962     Opcode = SystemZISD::VICMPHS;
1963     CCValid = SystemZ::CCMASK_VCMP;
1964     return true;
1965 
1966   case Intrinsic::s390_vchlbs:
1967   case Intrinsic::s390_vchlhs:
1968   case Intrinsic::s390_vchlfs:
1969   case Intrinsic::s390_vchlgs:
1970     Opcode = SystemZISD::VICMPHLS;
1971     CCValid = SystemZ::CCMASK_VCMP;
1972     return true;
1973 
1974   case Intrinsic::s390_vtm:
1975     Opcode = SystemZISD::VTM;
1976     CCValid = SystemZ::CCMASK_VCMP;
1977     return true;
1978 
1979   case Intrinsic::s390_vfaebs:
1980   case Intrinsic::s390_vfaehs:
1981   case Intrinsic::s390_vfaefs:
1982     Opcode = SystemZISD::VFAE_CC;
1983     CCValid = SystemZ::CCMASK_ANY;
1984     return true;
1985 
1986   case Intrinsic::s390_vfaezbs:
1987   case Intrinsic::s390_vfaezhs:
1988   case Intrinsic::s390_vfaezfs:
1989     Opcode = SystemZISD::VFAEZ_CC;
1990     CCValid = SystemZ::CCMASK_ANY;
1991     return true;
1992 
1993   case Intrinsic::s390_vfeebs:
1994   case Intrinsic::s390_vfeehs:
1995   case Intrinsic::s390_vfeefs:
1996     Opcode = SystemZISD::VFEE_CC;
1997     CCValid = SystemZ::CCMASK_ANY;
1998     return true;
1999 
2000   case Intrinsic::s390_vfeezbs:
2001   case Intrinsic::s390_vfeezhs:
2002   case Intrinsic::s390_vfeezfs:
2003     Opcode = SystemZISD::VFEEZ_CC;
2004     CCValid = SystemZ::CCMASK_ANY;
2005     return true;
2006 
2007   case Intrinsic::s390_vfenebs:
2008   case Intrinsic::s390_vfenehs:
2009   case Intrinsic::s390_vfenefs:
2010     Opcode = SystemZISD::VFENE_CC;
2011     CCValid = SystemZ::CCMASK_ANY;
2012     return true;
2013 
2014   case Intrinsic::s390_vfenezbs:
2015   case Intrinsic::s390_vfenezhs:
2016   case Intrinsic::s390_vfenezfs:
2017     Opcode = SystemZISD::VFENEZ_CC;
2018     CCValid = SystemZ::CCMASK_ANY;
2019     return true;
2020 
2021   case Intrinsic::s390_vistrbs:
2022   case Intrinsic::s390_vistrhs:
2023   case Intrinsic::s390_vistrfs:
2024     Opcode = SystemZISD::VISTR_CC;
2025     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2026     return true;
2027 
2028   case Intrinsic::s390_vstrcbs:
2029   case Intrinsic::s390_vstrchs:
2030   case Intrinsic::s390_vstrcfs:
2031     Opcode = SystemZISD::VSTRC_CC;
2032     CCValid = SystemZ::CCMASK_ANY;
2033     return true;
2034 
2035   case Intrinsic::s390_vstrczbs:
2036   case Intrinsic::s390_vstrczhs:
2037   case Intrinsic::s390_vstrczfs:
2038     Opcode = SystemZISD::VSTRCZ_CC;
2039     CCValid = SystemZ::CCMASK_ANY;
2040     return true;
2041 
2042   case Intrinsic::s390_vstrsb:
2043   case Intrinsic::s390_vstrsh:
2044   case Intrinsic::s390_vstrsf:
2045     Opcode = SystemZISD::VSTRS_CC;
2046     CCValid = SystemZ::CCMASK_ANY;
2047     return true;
2048 
2049   case Intrinsic::s390_vstrszb:
2050   case Intrinsic::s390_vstrszh:
2051   case Intrinsic::s390_vstrszf:
2052     Opcode = SystemZISD::VSTRSZ_CC;
2053     CCValid = SystemZ::CCMASK_ANY;
2054     return true;
2055 
2056   case Intrinsic::s390_vfcedbs:
2057   case Intrinsic::s390_vfcesbs:
2058     Opcode = SystemZISD::VFCMPES;
2059     CCValid = SystemZ::CCMASK_VCMP;
2060     return true;
2061 
2062   case Intrinsic::s390_vfchdbs:
2063   case Intrinsic::s390_vfchsbs:
2064     Opcode = SystemZISD::VFCMPHS;
2065     CCValid = SystemZ::CCMASK_VCMP;
2066     return true;
2067 
2068   case Intrinsic::s390_vfchedbs:
2069   case Intrinsic::s390_vfchesbs:
2070     Opcode = SystemZISD::VFCMPHES;
2071     CCValid = SystemZ::CCMASK_VCMP;
2072     return true;
2073 
2074   case Intrinsic::s390_vftcidb:
2075   case Intrinsic::s390_vftcisb:
2076     Opcode = SystemZISD::VFTCI;
2077     CCValid = SystemZ::CCMASK_VCMP;
2078     return true;
2079 
2080   case Intrinsic::s390_tdc:
2081     Opcode = SystemZISD::TDC;
2082     CCValid = SystemZ::CCMASK_TDC;
2083     return true;
2084 
2085   default:
2086     return false;
2087   }
2088 }
2089 
2090 // Emit an intrinsic with chain and an explicit CC register result.
2091 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2092                                            unsigned Opcode) {
2093   // Copy all operands except the intrinsic ID.
2094   unsigned NumOps = Op.getNumOperands();
2095   SmallVector<SDValue, 6> Ops;
2096   Ops.reserve(NumOps - 1);
2097   Ops.push_back(Op.getOperand(0));
2098   for (unsigned I = 2; I < NumOps; ++I)
2099     Ops.push_back(Op.getOperand(I));
2100 
2101   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2102   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2103   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2104   SDValue OldChain = SDValue(Op.getNode(), 1);
2105   SDValue NewChain = SDValue(Intr.getNode(), 1);
2106   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2107   return Intr.getNode();
2108 }
2109 
2110 // Emit an intrinsic with an explicit CC register result.
2111 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2112                                    unsigned Opcode) {
2113   // Copy all operands except the intrinsic ID.
2114   unsigned NumOps = Op.getNumOperands();
2115   SmallVector<SDValue, 6> Ops;
2116   Ops.reserve(NumOps - 1);
2117   for (unsigned I = 1; I < NumOps; ++I)
2118     Ops.push_back(Op.getOperand(I));
2119 
2120   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2121   return Intr.getNode();
2122 }
2123 
2124 // CC is a comparison that will be implemented using an integer or
2125 // floating-point comparison.  Return the condition code mask for
2126 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2127 // unsigned comparisons and clear for signed ones.  In the floating-point
2128 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2129 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2130 #define CONV(X) \
2131   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2132   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2133   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2134 
2135   switch (CC) {
2136   default:
2137     llvm_unreachable("Invalid integer condition!");
2138 
2139   CONV(EQ);
2140   CONV(NE);
2141   CONV(GT);
2142   CONV(GE);
2143   CONV(LT);
2144   CONV(LE);
2145 
2146   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2147   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2148   }
2149 #undef CONV
2150 }
2151 
2152 // If C can be converted to a comparison against zero, adjust the operands
2153 // as necessary.
2154 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2155   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2156     return;
2157 
2158   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2159   if (!ConstOp1)
2160     return;
2161 
2162   int64_t Value = ConstOp1->getSExtValue();
2163   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2164       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2165       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2166       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2167     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2168     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2169   }
2170 }
2171 
2172 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2173 // adjust the operands as necessary.
2174 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2175                              Comparison &C) {
2176   // For us to make any changes, it must a comparison between a single-use
2177   // load and a constant.
2178   if (!C.Op0.hasOneUse() ||
2179       C.Op0.getOpcode() != ISD::LOAD ||
2180       C.Op1.getOpcode() != ISD::Constant)
2181     return;
2182 
2183   // We must have an 8- or 16-bit load.
2184   auto *Load = cast<LoadSDNode>(C.Op0);
2185   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2186   if ((NumBits != 8 && NumBits != 16) ||
2187       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2188     return;
2189 
2190   // The load must be an extending one and the constant must be within the
2191   // range of the unextended value.
2192   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2193   uint64_t Value = ConstOp1->getZExtValue();
2194   uint64_t Mask = (1 << NumBits) - 1;
2195   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2196     // Make sure that ConstOp1 is in range of C.Op0.
2197     int64_t SignedValue = ConstOp1->getSExtValue();
2198     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2199       return;
2200     if (C.ICmpType != SystemZICMP::SignedOnly) {
2201       // Unsigned comparison between two sign-extended values is equivalent
2202       // to unsigned comparison between two zero-extended values.
2203       Value &= Mask;
2204     } else if (NumBits == 8) {
2205       // Try to treat the comparison as unsigned, so that we can use CLI.
2206       // Adjust CCMask and Value as necessary.
2207       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2208         // Test whether the high bit of the byte is set.
2209         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2210       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2211         // Test whether the high bit of the byte is clear.
2212         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2213       else
2214         // No instruction exists for this combination.
2215         return;
2216       C.ICmpType = SystemZICMP::UnsignedOnly;
2217     }
2218   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2219     if (Value > Mask)
2220       return;
2221     // If the constant is in range, we can use any comparison.
2222     C.ICmpType = SystemZICMP::Any;
2223   } else
2224     return;
2225 
2226   // Make sure that the first operand is an i32 of the right extension type.
2227   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2228                               ISD::SEXTLOAD :
2229                               ISD::ZEXTLOAD);
2230   if (C.Op0.getValueType() != MVT::i32 ||
2231       Load->getExtensionType() != ExtType) {
2232     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2233                            Load->getBasePtr(), Load->getPointerInfo(),
2234                            Load->getMemoryVT(), Load->getAlignment(),
2235                            Load->getMemOperand()->getFlags());
2236     // Update the chain uses.
2237     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2238   }
2239 
2240   // Make sure that the second operand is an i32 with the right value.
2241   if (C.Op1.getValueType() != MVT::i32 ||
2242       Value != ConstOp1->getZExtValue())
2243     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2244 }
2245 
2246 // Return true if Op is either an unextended load, or a load suitable
2247 // for integer register-memory comparisons of type ICmpType.
2248 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2249   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2250   if (Load) {
2251     // There are no instructions to compare a register with a memory byte.
2252     if (Load->getMemoryVT() == MVT::i8)
2253       return false;
2254     // Otherwise decide on extension type.
2255     switch (Load->getExtensionType()) {
2256     case ISD::NON_EXTLOAD:
2257       return true;
2258     case ISD::SEXTLOAD:
2259       return ICmpType != SystemZICMP::UnsignedOnly;
2260     case ISD::ZEXTLOAD:
2261       return ICmpType != SystemZICMP::SignedOnly;
2262     default:
2263       break;
2264     }
2265   }
2266   return false;
2267 }
2268 
2269 // Return true if it is better to swap the operands of C.
2270 static bool shouldSwapCmpOperands(const Comparison &C) {
2271   // Leave f128 comparisons alone, since they have no memory forms.
2272   if (C.Op0.getValueType() == MVT::f128)
2273     return false;
2274 
2275   // Always keep a floating-point constant second, since comparisons with
2276   // zero can use LOAD TEST and comparisons with other constants make a
2277   // natural memory operand.
2278   if (isa<ConstantFPSDNode>(C.Op1))
2279     return false;
2280 
2281   // Never swap comparisons with zero since there are many ways to optimize
2282   // those later.
2283   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2284   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2285     return false;
2286 
2287   // Also keep natural memory operands second if the loaded value is
2288   // only used here.  Several comparisons have memory forms.
2289   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2290     return false;
2291 
2292   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2293   // In that case we generally prefer the memory to be second.
2294   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2295     // The only exceptions are when the second operand is a constant and
2296     // we can use things like CHHSI.
2297     if (!ConstOp1)
2298       return true;
2299     // The unsigned memory-immediate instructions can handle 16-bit
2300     // unsigned integers.
2301     if (C.ICmpType != SystemZICMP::SignedOnly &&
2302         isUInt<16>(ConstOp1->getZExtValue()))
2303       return false;
2304     // The signed memory-immediate instructions can handle 16-bit
2305     // signed integers.
2306     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2307         isInt<16>(ConstOp1->getSExtValue()))
2308       return false;
2309     return true;
2310   }
2311 
2312   // Try to promote the use of CGFR and CLGFR.
2313   unsigned Opcode0 = C.Op0.getOpcode();
2314   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2315     return true;
2316   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2317     return true;
2318   if (C.ICmpType != SystemZICMP::SignedOnly &&
2319       Opcode0 == ISD::AND &&
2320       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2321       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2322     return true;
2323 
2324   return false;
2325 }
2326 
2327 // Check whether C tests for equality between X and Y and whether X - Y
2328 // or Y - X is also computed.  In that case it's better to compare the
2329 // result of the subtraction against zero.
2330 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2331                                  Comparison &C) {
2332   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2333       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2334     for (SDNode *N : C.Op0->uses()) {
2335       if (N->getOpcode() == ISD::SUB &&
2336           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2337            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2338         C.Op0 = SDValue(N, 0);
2339         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2340         return;
2341       }
2342     }
2343   }
2344 }
2345 
2346 // Check whether C compares a floating-point value with zero and if that
2347 // floating-point value is also negated.  In this case we can use the
2348 // negation to set CC, so avoiding separate LOAD AND TEST and
2349 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2350 static void adjustForFNeg(Comparison &C) {
2351   // This optimization is invalid for strict comparisons, since FNEG
2352   // does not raise any exceptions.
2353   if (C.Chain)
2354     return;
2355   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2356   if (C1 && C1->isZero()) {
2357     for (SDNode *N : C.Op0->uses()) {
2358       if (N->getOpcode() == ISD::FNEG) {
2359         C.Op0 = SDValue(N, 0);
2360         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2361         return;
2362       }
2363     }
2364   }
2365 }
2366 
2367 // Check whether C compares (shl X, 32) with 0 and whether X is
2368 // also sign-extended.  In that case it is better to test the result
2369 // of the sign extension using LTGFR.
2370 //
2371 // This case is important because InstCombine transforms a comparison
2372 // with (sext (trunc X)) into a comparison with (shl X, 32).
2373 static void adjustForLTGFR(Comparison &C) {
2374   // Check for a comparison between (shl X, 32) and 0.
2375   if (C.Op0.getOpcode() == ISD::SHL &&
2376       C.Op0.getValueType() == MVT::i64 &&
2377       C.Op1.getOpcode() == ISD::Constant &&
2378       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2379     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2380     if (C1 && C1->getZExtValue() == 32) {
2381       SDValue ShlOp0 = C.Op0.getOperand(0);
2382       // See whether X has any SIGN_EXTEND_INREG uses.
2383       for (SDNode *N : ShlOp0->uses()) {
2384         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2385             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2386           C.Op0 = SDValue(N, 0);
2387           return;
2388         }
2389       }
2390     }
2391   }
2392 }
2393 
2394 // If C compares the truncation of an extending load, try to compare
2395 // the untruncated value instead.  This exposes more opportunities to
2396 // reuse CC.
2397 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2398                                Comparison &C) {
2399   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2400       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2401       C.Op1.getOpcode() == ISD::Constant &&
2402       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2403     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2404     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2405         C.Op0.getValueSizeInBits().getFixedSize()) {
2406       unsigned Type = L->getExtensionType();
2407       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2408           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2409         C.Op0 = C.Op0.getOperand(0);
2410         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2411       }
2412     }
2413   }
2414 }
2415 
2416 // Return true if shift operation N has an in-range constant shift value.
2417 // Store it in ShiftVal if so.
2418 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2419   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2420   if (!Shift)
2421     return false;
2422 
2423   uint64_t Amount = Shift->getZExtValue();
2424   if (Amount >= N.getValueSizeInBits())
2425     return false;
2426 
2427   ShiftVal = Amount;
2428   return true;
2429 }
2430 
2431 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2432 // instruction and whether the CC value is descriptive enough to handle
2433 // a comparison of type Opcode between the AND result and CmpVal.
2434 // CCMask says which comparison result is being tested and BitSize is
2435 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2436 // return the corresponding CC mask, otherwise return 0.
2437 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2438                                      uint64_t Mask, uint64_t CmpVal,
2439                                      unsigned ICmpType) {
2440   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2441 
2442   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2443   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2444       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2445     return 0;
2446 
2447   // Work out the masks for the lowest and highest bits.
2448   unsigned HighShift = 63 - countLeadingZeros(Mask);
2449   uint64_t High = uint64_t(1) << HighShift;
2450   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2451 
2452   // Signed ordered comparisons are effectively unsigned if the sign
2453   // bit is dropped.
2454   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2455 
2456   // Check for equality comparisons with 0, or the equivalent.
2457   if (CmpVal == 0) {
2458     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2459       return SystemZ::CCMASK_TM_ALL_0;
2460     if (CCMask == SystemZ::CCMASK_CMP_NE)
2461       return SystemZ::CCMASK_TM_SOME_1;
2462   }
2463   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2464     if (CCMask == SystemZ::CCMASK_CMP_LT)
2465       return SystemZ::CCMASK_TM_ALL_0;
2466     if (CCMask == SystemZ::CCMASK_CMP_GE)
2467       return SystemZ::CCMASK_TM_SOME_1;
2468   }
2469   if (EffectivelyUnsigned && CmpVal < Low) {
2470     if (CCMask == SystemZ::CCMASK_CMP_LE)
2471       return SystemZ::CCMASK_TM_ALL_0;
2472     if (CCMask == SystemZ::CCMASK_CMP_GT)
2473       return SystemZ::CCMASK_TM_SOME_1;
2474   }
2475 
2476   // Check for equality comparisons with the mask, or the equivalent.
2477   if (CmpVal == Mask) {
2478     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2479       return SystemZ::CCMASK_TM_ALL_1;
2480     if (CCMask == SystemZ::CCMASK_CMP_NE)
2481       return SystemZ::CCMASK_TM_SOME_0;
2482   }
2483   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2484     if (CCMask == SystemZ::CCMASK_CMP_GT)
2485       return SystemZ::CCMASK_TM_ALL_1;
2486     if (CCMask == SystemZ::CCMASK_CMP_LE)
2487       return SystemZ::CCMASK_TM_SOME_0;
2488   }
2489   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2490     if (CCMask == SystemZ::CCMASK_CMP_GE)
2491       return SystemZ::CCMASK_TM_ALL_1;
2492     if (CCMask == SystemZ::CCMASK_CMP_LT)
2493       return SystemZ::CCMASK_TM_SOME_0;
2494   }
2495 
2496   // Check for ordered comparisons with the top bit.
2497   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2498     if (CCMask == SystemZ::CCMASK_CMP_LE)
2499       return SystemZ::CCMASK_TM_MSB_0;
2500     if (CCMask == SystemZ::CCMASK_CMP_GT)
2501       return SystemZ::CCMASK_TM_MSB_1;
2502   }
2503   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2504     if (CCMask == SystemZ::CCMASK_CMP_LT)
2505       return SystemZ::CCMASK_TM_MSB_0;
2506     if (CCMask == SystemZ::CCMASK_CMP_GE)
2507       return SystemZ::CCMASK_TM_MSB_1;
2508   }
2509 
2510   // If there are just two bits, we can do equality checks for Low and High
2511   // as well.
2512   if (Mask == Low + High) {
2513     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2514       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2515     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2516       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2517     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2518       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2519     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2520       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2521   }
2522 
2523   // Looks like we've exhausted our options.
2524   return 0;
2525 }
2526 
2527 // See whether C can be implemented as a TEST UNDER MASK instruction.
2528 // Update the arguments with the TM version if so.
2529 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2530                                    Comparison &C) {
2531   // Check that we have a comparison with a constant.
2532   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2533   if (!ConstOp1)
2534     return;
2535   uint64_t CmpVal = ConstOp1->getZExtValue();
2536 
2537   // Check whether the nonconstant input is an AND with a constant mask.
2538   Comparison NewC(C);
2539   uint64_t MaskVal;
2540   ConstantSDNode *Mask = nullptr;
2541   if (C.Op0.getOpcode() == ISD::AND) {
2542     NewC.Op0 = C.Op0.getOperand(0);
2543     NewC.Op1 = C.Op0.getOperand(1);
2544     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2545     if (!Mask)
2546       return;
2547     MaskVal = Mask->getZExtValue();
2548   } else {
2549     // There is no instruction to compare with a 64-bit immediate
2550     // so use TMHH instead if possible.  We need an unsigned ordered
2551     // comparison with an i64 immediate.
2552     if (NewC.Op0.getValueType() != MVT::i64 ||
2553         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2554         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2555         NewC.ICmpType == SystemZICMP::SignedOnly)
2556       return;
2557     // Convert LE and GT comparisons into LT and GE.
2558     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2559         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2560       if (CmpVal == uint64_t(-1))
2561         return;
2562       CmpVal += 1;
2563       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2564     }
2565     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2566     // be masked off without changing the result.
2567     MaskVal = -(CmpVal & -CmpVal);
2568     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2569   }
2570   if (!MaskVal)
2571     return;
2572 
2573   // Check whether the combination of mask, comparison value and comparison
2574   // type are suitable.
2575   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2576   unsigned NewCCMask, ShiftVal;
2577   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2578       NewC.Op0.getOpcode() == ISD::SHL &&
2579       isSimpleShift(NewC.Op0, ShiftVal) &&
2580       (MaskVal >> ShiftVal != 0) &&
2581       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2582       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2583                                         MaskVal >> ShiftVal,
2584                                         CmpVal >> ShiftVal,
2585                                         SystemZICMP::Any))) {
2586     NewC.Op0 = NewC.Op0.getOperand(0);
2587     MaskVal >>= ShiftVal;
2588   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2589              NewC.Op0.getOpcode() == ISD::SRL &&
2590              isSimpleShift(NewC.Op0, ShiftVal) &&
2591              (MaskVal << ShiftVal != 0) &&
2592              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2593              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2594                                                MaskVal << ShiftVal,
2595                                                CmpVal << ShiftVal,
2596                                                SystemZICMP::UnsignedOnly))) {
2597     NewC.Op0 = NewC.Op0.getOperand(0);
2598     MaskVal <<= ShiftVal;
2599   } else {
2600     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2601                                      NewC.ICmpType);
2602     if (!NewCCMask)
2603       return;
2604   }
2605 
2606   // Go ahead and make the change.
2607   C.Opcode = SystemZISD::TM;
2608   C.Op0 = NewC.Op0;
2609   if (Mask && Mask->getZExtValue() == MaskVal)
2610     C.Op1 = SDValue(Mask, 0);
2611   else
2612     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2613   C.CCValid = SystemZ::CCMASK_TM;
2614   C.CCMask = NewCCMask;
2615 }
2616 
2617 // See whether the comparison argument contains a redundant AND
2618 // and remove it if so.  This sometimes happens due to the generic
2619 // BRCOND expansion.
2620 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2621                                   Comparison &C) {
2622   if (C.Op0.getOpcode() != ISD::AND)
2623     return;
2624   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2625   if (!Mask)
2626     return;
2627   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2628   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2629     return;
2630 
2631   C.Op0 = C.Op0.getOperand(0);
2632 }
2633 
2634 // Return a Comparison that tests the condition-code result of intrinsic
2635 // node Call against constant integer CC using comparison code Cond.
2636 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2637 // and CCValid is the set of possible condition-code results.
2638 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2639                                   SDValue Call, unsigned CCValid, uint64_t CC,
2640                                   ISD::CondCode Cond) {
2641   Comparison C(Call, SDValue(), SDValue());
2642   C.Opcode = Opcode;
2643   C.CCValid = CCValid;
2644   if (Cond == ISD::SETEQ)
2645     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2646     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2647   else if (Cond == ISD::SETNE)
2648     // ...and the inverse of that.
2649     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2650   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2651     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2652     // always true for CC>3.
2653     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2654   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2655     // ...and the inverse of that.
2656     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2657   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2658     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2659     // always true for CC>3.
2660     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2661   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2662     // ...and the inverse of that.
2663     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2664   else
2665     llvm_unreachable("Unexpected integer comparison type");
2666   C.CCMask &= CCValid;
2667   return C;
2668 }
2669 
2670 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2671 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2672                          ISD::CondCode Cond, const SDLoc &DL,
2673                          SDValue Chain = SDValue(),
2674                          bool IsSignaling = false) {
2675   if (CmpOp1.getOpcode() == ISD::Constant) {
2676     assert(!Chain);
2677     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2678     unsigned Opcode, CCValid;
2679     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2680         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2681         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2682       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2683     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2684         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2685         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2686       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2687   }
2688   Comparison C(CmpOp0, CmpOp1, Chain);
2689   C.CCMask = CCMaskForCondCode(Cond);
2690   if (C.Op0.getValueType().isFloatingPoint()) {
2691     C.CCValid = SystemZ::CCMASK_FCMP;
2692     if (!C.Chain)
2693       C.Opcode = SystemZISD::FCMP;
2694     else if (!IsSignaling)
2695       C.Opcode = SystemZISD::STRICT_FCMP;
2696     else
2697       C.Opcode = SystemZISD::STRICT_FCMPS;
2698     adjustForFNeg(C);
2699   } else {
2700     assert(!C.Chain);
2701     C.CCValid = SystemZ::CCMASK_ICMP;
2702     C.Opcode = SystemZISD::ICMP;
2703     // Choose the type of comparison.  Equality and inequality tests can
2704     // use either signed or unsigned comparisons.  The choice also doesn't
2705     // matter if both sign bits are known to be clear.  In those cases we
2706     // want to give the main isel code the freedom to choose whichever
2707     // form fits best.
2708     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2709         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2710         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2711       C.ICmpType = SystemZICMP::Any;
2712     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2713       C.ICmpType = SystemZICMP::UnsignedOnly;
2714     else
2715       C.ICmpType = SystemZICMP::SignedOnly;
2716     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2717     adjustForRedundantAnd(DAG, DL, C);
2718     adjustZeroCmp(DAG, DL, C);
2719     adjustSubwordCmp(DAG, DL, C);
2720     adjustForSubtraction(DAG, DL, C);
2721     adjustForLTGFR(C);
2722     adjustICmpTruncate(DAG, DL, C);
2723   }
2724 
2725   if (shouldSwapCmpOperands(C)) {
2726     std::swap(C.Op0, C.Op1);
2727     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2728   }
2729 
2730   adjustForTestUnderMask(DAG, DL, C);
2731   return C;
2732 }
2733 
2734 // Emit the comparison instruction described by C.
2735 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2736   if (!C.Op1.getNode()) {
2737     SDNode *Node;
2738     switch (C.Op0.getOpcode()) {
2739     case ISD::INTRINSIC_W_CHAIN:
2740       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2741       return SDValue(Node, 0);
2742     case ISD::INTRINSIC_WO_CHAIN:
2743       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2744       return SDValue(Node, Node->getNumValues() - 1);
2745     default:
2746       llvm_unreachable("Invalid comparison operands");
2747     }
2748   }
2749   if (C.Opcode == SystemZISD::ICMP)
2750     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2751                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2752   if (C.Opcode == SystemZISD::TM) {
2753     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2754                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2755     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2756                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2757   }
2758   if (C.Chain) {
2759     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2760     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2761   }
2762   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2763 }
2764 
2765 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2766 // 64 bits.  Extend is the extension type to use.  Store the high part
2767 // in Hi and the low part in Lo.
2768 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2769                             SDValue Op0, SDValue Op1, SDValue &Hi,
2770                             SDValue &Lo) {
2771   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2772   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2773   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2774   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2775                    DAG.getConstant(32, DL, MVT::i64));
2776   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2777   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2778 }
2779 
2780 // Lower a binary operation that produces two VT results, one in each
2781 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2782 // and Opcode performs the GR128 operation.  Store the even register result
2783 // in Even and the odd register result in Odd.
2784 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2785                              unsigned Opcode, SDValue Op0, SDValue Op1,
2786                              SDValue &Even, SDValue &Odd) {
2787   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2788   bool Is32Bit = is32Bit(VT);
2789   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2790   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2791 }
2792 
2793 // Return an i32 value that is 1 if the CC value produced by CCReg is
2794 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2795 // in CCValid, so other values can be ignored.
2796 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2797                          unsigned CCValid, unsigned CCMask) {
2798   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2799                    DAG.getConstant(0, DL, MVT::i32),
2800                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2801                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2802   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2803 }
2804 
2805 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2806 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2807 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2808 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2809 // floating-point comparisons.
2810 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2811 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2812   switch (CC) {
2813   case ISD::SETOEQ:
2814   case ISD::SETEQ:
2815     switch (Mode) {
2816     case CmpMode::Int:         return SystemZISD::VICMPE;
2817     case CmpMode::FP:          return SystemZISD::VFCMPE;
2818     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2819     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2820     }
2821     llvm_unreachable("Bad mode");
2822 
2823   case ISD::SETOGE:
2824   case ISD::SETGE:
2825     switch (Mode) {
2826     case CmpMode::Int:         return 0;
2827     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2828     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2829     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2830     }
2831     llvm_unreachable("Bad mode");
2832 
2833   case ISD::SETOGT:
2834   case ISD::SETGT:
2835     switch (Mode) {
2836     case CmpMode::Int:         return SystemZISD::VICMPH;
2837     case CmpMode::FP:          return SystemZISD::VFCMPH;
2838     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2839     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2840     }
2841     llvm_unreachable("Bad mode");
2842 
2843   case ISD::SETUGT:
2844     switch (Mode) {
2845     case CmpMode::Int:         return SystemZISD::VICMPHL;
2846     case CmpMode::FP:          return 0;
2847     case CmpMode::StrictFP:    return 0;
2848     case CmpMode::SignalingFP: return 0;
2849     }
2850     llvm_unreachable("Bad mode");
2851 
2852   default:
2853     return 0;
2854   }
2855 }
2856 
2857 // Return the SystemZISD vector comparison operation for CC or its inverse,
2858 // or 0 if neither can be done directly.  Indicate in Invert whether the
2859 // result is for the inverse of CC.  Mode is as above.
2860 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2861                                             bool &Invert) {
2862   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2863     Invert = false;
2864     return Opcode;
2865   }
2866 
2867   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2868   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2869     Invert = true;
2870     return Opcode;
2871   }
2872 
2873   return 0;
2874 }
2875 
2876 // Return a v2f64 that contains the extended form of elements Start and Start+1
2877 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2878 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2879                                   SDValue Op, SDValue Chain) {
2880   int Mask[] = { Start, -1, Start + 1, -1 };
2881   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2882   if (Chain) {
2883     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2884     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2885   }
2886   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2887 }
2888 
2889 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2890 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2891 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2892                                             const SDLoc &DL, EVT VT,
2893                                             SDValue CmpOp0,
2894                                             SDValue CmpOp1,
2895                                             SDValue Chain) const {
2896   // There is no hardware support for v4f32 (unless we have the vector
2897   // enhancements facility 1), so extend the vector into two v2f64s
2898   // and compare those.
2899   if (CmpOp0.getValueType() == MVT::v4f32 &&
2900       !Subtarget.hasVectorEnhancements1()) {
2901     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2902     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2903     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2904     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2905     if (Chain) {
2906       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2907       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2908       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2909       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2910       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2911                             H1.getValue(1), L1.getValue(1),
2912                             HRes.getValue(1), LRes.getValue(1) };
2913       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2914       SDValue Ops[2] = { Res, NewChain };
2915       return DAG.getMergeValues(Ops, DL);
2916     }
2917     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2918     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2919     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2920   }
2921   if (Chain) {
2922     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2923     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2924   }
2925   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2926 }
2927 
2928 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2929 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2930 // floating-point comparison.  If in addition IsSignaling is true, we have
2931 // a strict signaling floating-point comparison.
2932 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2933                                                 const SDLoc &DL, EVT VT,
2934                                                 ISD::CondCode CC,
2935                                                 SDValue CmpOp0,
2936                                                 SDValue CmpOp1,
2937                                                 SDValue Chain,
2938                                                 bool IsSignaling) const {
2939   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2940   assert (!Chain || IsFP);
2941   assert (!IsSignaling || Chain);
2942   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2943                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2944   bool Invert = false;
2945   SDValue Cmp;
2946   switch (CC) {
2947     // Handle tests for order using (or (ogt y x) (oge x y)).
2948   case ISD::SETUO:
2949     Invert = true;
2950     LLVM_FALLTHROUGH;
2951   case ISD::SETO: {
2952     assert(IsFP && "Unexpected integer comparison");
2953     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2954                               DL, VT, CmpOp1, CmpOp0, Chain);
2955     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2956                               DL, VT, CmpOp0, CmpOp1, Chain);
2957     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2958     if (Chain)
2959       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2960                           LT.getValue(1), GE.getValue(1));
2961     break;
2962   }
2963 
2964     // Handle <> tests using (or (ogt y x) (ogt x y)).
2965   case ISD::SETUEQ:
2966     Invert = true;
2967     LLVM_FALLTHROUGH;
2968   case ISD::SETONE: {
2969     assert(IsFP && "Unexpected integer comparison");
2970     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2971                               DL, VT, CmpOp1, CmpOp0, Chain);
2972     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2973                               DL, VT, CmpOp0, CmpOp1, Chain);
2974     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2975     if (Chain)
2976       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2977                           LT.getValue(1), GT.getValue(1));
2978     break;
2979   }
2980 
2981     // Otherwise a single comparison is enough.  It doesn't really
2982     // matter whether we try the inversion or the swap first, since
2983     // there are no cases where both work.
2984   default:
2985     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2986       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2987     else {
2988       CC = ISD::getSetCCSwappedOperands(CC);
2989       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2990         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2991       else
2992         llvm_unreachable("Unhandled comparison");
2993     }
2994     if (Chain)
2995       Chain = Cmp.getValue(1);
2996     break;
2997   }
2998   if (Invert) {
2999     SDValue Mask =
3000       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3001     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3002   }
3003   if (Chain && Chain.getNode() != Cmp.getNode()) {
3004     SDValue Ops[2] = { Cmp, Chain };
3005     Cmp = DAG.getMergeValues(Ops, DL);
3006   }
3007   return Cmp;
3008 }
3009 
3010 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3011                                           SelectionDAG &DAG) const {
3012   SDValue CmpOp0   = Op.getOperand(0);
3013   SDValue CmpOp1   = Op.getOperand(1);
3014   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3015   SDLoc DL(Op);
3016   EVT VT = Op.getValueType();
3017   if (VT.isVector())
3018     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3019 
3020   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3021   SDValue CCReg = emitCmp(DAG, DL, C);
3022   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3023 }
3024 
3025 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3026                                                   SelectionDAG &DAG,
3027                                                   bool IsSignaling) const {
3028   SDValue Chain    = Op.getOperand(0);
3029   SDValue CmpOp0   = Op.getOperand(1);
3030   SDValue CmpOp1   = Op.getOperand(2);
3031   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3032   SDLoc DL(Op);
3033   EVT VT = Op.getNode()->getValueType(0);
3034   if (VT.isVector()) {
3035     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3036                                    Chain, IsSignaling);
3037     return Res.getValue(Op.getResNo());
3038   }
3039 
3040   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3041   SDValue CCReg = emitCmp(DAG, DL, C);
3042   CCReg->setFlags(Op->getFlags());
3043   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3044   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3045   return DAG.getMergeValues(Ops, DL);
3046 }
3047 
3048 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3049   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3050   SDValue CmpOp0   = Op.getOperand(2);
3051   SDValue CmpOp1   = Op.getOperand(3);
3052   SDValue Dest     = Op.getOperand(4);
3053   SDLoc DL(Op);
3054 
3055   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3056   SDValue CCReg = emitCmp(DAG, DL, C);
3057   return DAG.getNode(
3058       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3059       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3060       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3061 }
3062 
3063 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3064 // allowing Pos and Neg to be wider than CmpOp.
3065 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3066   return (Neg.getOpcode() == ISD::SUB &&
3067           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3068           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3069           Neg.getOperand(1) == Pos &&
3070           (Pos == CmpOp ||
3071            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3072             Pos.getOperand(0) == CmpOp)));
3073 }
3074 
3075 // Return the absolute or negative absolute of Op; IsNegative decides which.
3076 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3077                            bool IsNegative) {
3078   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3079   if (IsNegative)
3080     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3081                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3082   return Op;
3083 }
3084 
3085 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3086                                               SelectionDAG &DAG) const {
3087   SDValue CmpOp0   = Op.getOperand(0);
3088   SDValue CmpOp1   = Op.getOperand(1);
3089   SDValue TrueOp   = Op.getOperand(2);
3090   SDValue FalseOp  = Op.getOperand(3);
3091   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3092   SDLoc DL(Op);
3093 
3094   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3095 
3096   // Check for absolute and negative-absolute selections, including those
3097   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3098   // This check supplements the one in DAGCombiner.
3099   if (C.Opcode == SystemZISD::ICMP &&
3100       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3101       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3102       C.Op1.getOpcode() == ISD::Constant &&
3103       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3104     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3105       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3106     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3107       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3108   }
3109 
3110   SDValue CCReg = emitCmp(DAG, DL, C);
3111   SDValue Ops[] = {TrueOp, FalseOp,
3112                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3113                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3114 
3115   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3116 }
3117 
3118 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3119                                                   SelectionDAG &DAG) const {
3120   SDLoc DL(Node);
3121   const GlobalValue *GV = Node->getGlobal();
3122   int64_t Offset = Node->getOffset();
3123   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3124   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3125 
3126   SDValue Result;
3127   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3128     if (isInt<32>(Offset)) {
3129       // Assign anchors at 1<<12 byte boundaries.
3130       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3131       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3132       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3133 
3134       // The offset can be folded into the address if it is aligned to a
3135       // halfword.
3136       Offset -= Anchor;
3137       if (Offset != 0 && (Offset & 1) == 0) {
3138         SDValue Full =
3139           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3140         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3141         Offset = 0;
3142       }
3143     } else {
3144       // Conservatively load a constant offset greater than 32 bits into a
3145       // register below.
3146       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3147       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3148     }
3149   } else {
3150     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3151     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3152     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3153                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3154   }
3155 
3156   // If there was a non-zero offset that we didn't fold, create an explicit
3157   // addition for it.
3158   if (Offset != 0)
3159     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3160                          DAG.getConstant(Offset, DL, PtrVT));
3161 
3162   return Result;
3163 }
3164 
3165 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3166                                                  SelectionDAG &DAG,
3167                                                  unsigned Opcode,
3168                                                  SDValue GOTOffset) const {
3169   SDLoc DL(Node);
3170   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3171   SDValue Chain = DAG.getEntryNode();
3172   SDValue Glue;
3173 
3174   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3175       CallingConv::GHC)
3176     report_fatal_error("In GHC calling convention TLS is not supported");
3177 
3178   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3179   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3180   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3181   Glue = Chain.getValue(1);
3182   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3183   Glue = Chain.getValue(1);
3184 
3185   // The first call operand is the chain and the second is the TLS symbol.
3186   SmallVector<SDValue, 8> Ops;
3187   Ops.push_back(Chain);
3188   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3189                                            Node->getValueType(0),
3190                                            0, 0));
3191 
3192   // Add argument registers to the end of the list so that they are
3193   // known live into the call.
3194   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3195   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3196 
3197   // Add a register mask operand representing the call-preserved registers.
3198   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3199   const uint32_t *Mask =
3200       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3201   assert(Mask && "Missing call preserved mask for calling convention");
3202   Ops.push_back(DAG.getRegisterMask(Mask));
3203 
3204   // Glue the call to the argument copies.
3205   Ops.push_back(Glue);
3206 
3207   // Emit the call.
3208   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3209   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3210   Glue = Chain.getValue(1);
3211 
3212   // Copy the return value from %r2.
3213   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3214 }
3215 
3216 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3217                                                   SelectionDAG &DAG) const {
3218   SDValue Chain = DAG.getEntryNode();
3219   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3220 
3221   // The high part of the thread pointer is in access register 0.
3222   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3223   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3224 
3225   // The low part of the thread pointer is in access register 1.
3226   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3227   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3228 
3229   // Merge them into a single 64-bit address.
3230   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3231                                     DAG.getConstant(32, DL, PtrVT));
3232   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3233 }
3234 
3235 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3236                                                      SelectionDAG &DAG) const {
3237   if (DAG.getTarget().useEmulatedTLS())
3238     return LowerToTLSEmulatedModel(Node, DAG);
3239   SDLoc DL(Node);
3240   const GlobalValue *GV = Node->getGlobal();
3241   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3242   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3243 
3244   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3245       CallingConv::GHC)
3246     report_fatal_error("In GHC calling convention TLS is not supported");
3247 
3248   SDValue TP = lowerThreadPointer(DL, DAG);
3249 
3250   // Get the offset of GA from the thread pointer, based on the TLS model.
3251   SDValue Offset;
3252   switch (model) {
3253     case TLSModel::GeneralDynamic: {
3254       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3255       SystemZConstantPoolValue *CPV =
3256         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3257 
3258       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3259       Offset = DAG.getLoad(
3260           PtrVT, DL, DAG.getEntryNode(), Offset,
3261           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3262 
3263       // Call __tls_get_offset to retrieve the offset.
3264       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3265       break;
3266     }
3267 
3268     case TLSModel::LocalDynamic: {
3269       // Load the GOT offset of the module ID.
3270       SystemZConstantPoolValue *CPV =
3271         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3272 
3273       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3274       Offset = DAG.getLoad(
3275           PtrVT, DL, DAG.getEntryNode(), Offset,
3276           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3277 
3278       // Call __tls_get_offset to retrieve the module base offset.
3279       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3280 
3281       // Note: The SystemZLDCleanupPass will remove redundant computations
3282       // of the module base offset.  Count total number of local-dynamic
3283       // accesses to trigger execution of that pass.
3284       SystemZMachineFunctionInfo* MFI =
3285         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3286       MFI->incNumLocalDynamicTLSAccesses();
3287 
3288       // Add the per-symbol offset.
3289       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3290 
3291       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3292       DTPOffset = DAG.getLoad(
3293           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3294           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3295 
3296       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3297       break;
3298     }
3299 
3300     case TLSModel::InitialExec: {
3301       // Load the offset from the GOT.
3302       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3303                                           SystemZII::MO_INDNTPOFF);
3304       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3305       Offset =
3306           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3307                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3308       break;
3309     }
3310 
3311     case TLSModel::LocalExec: {
3312       // Force the offset into the constant pool and load it from there.
3313       SystemZConstantPoolValue *CPV =
3314         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3315 
3316       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3317       Offset = DAG.getLoad(
3318           PtrVT, DL, DAG.getEntryNode(), Offset,
3319           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3320       break;
3321     }
3322   }
3323 
3324   // Add the base and offset together.
3325   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3326 }
3327 
3328 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3329                                                  SelectionDAG &DAG) const {
3330   SDLoc DL(Node);
3331   const BlockAddress *BA = Node->getBlockAddress();
3332   int64_t Offset = Node->getOffset();
3333   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3334 
3335   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3336   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3337   return Result;
3338 }
3339 
3340 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3341                                               SelectionDAG &DAG) const {
3342   SDLoc DL(JT);
3343   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3344   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3345 
3346   // Use LARL to load the address of the table.
3347   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3348 }
3349 
3350 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3351                                                  SelectionDAG &DAG) const {
3352   SDLoc DL(CP);
3353   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3354 
3355   SDValue Result;
3356   if (CP->isMachineConstantPoolEntry())
3357     Result =
3358         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3359   else
3360     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3361                                        CP->getOffset());
3362 
3363   // Use LARL to load the address of the constant pool entry.
3364   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3365 }
3366 
3367 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3368                                               SelectionDAG &DAG) const {
3369   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3370   MachineFunction &MF = DAG.getMachineFunction();
3371   MachineFrameInfo &MFI = MF.getFrameInfo();
3372   MFI.setFrameAddressIsTaken(true);
3373 
3374   SDLoc DL(Op);
3375   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3376   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3377 
3378   // By definition, the frame address is the address of the back chain.  (In
3379   // the case of packed stack without backchain, return the address where the
3380   // backchain would have been stored. This will either be an unused space or
3381   // contain a saved register).
3382   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3383   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3384 
3385   // FIXME The frontend should detect this case.
3386   if (Depth > 0) {
3387     report_fatal_error("Unsupported stack frame traversal count");
3388   }
3389 
3390   return BackChain;
3391 }
3392 
3393 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3394                                                SelectionDAG &DAG) const {
3395   MachineFunction &MF = DAG.getMachineFunction();
3396   MachineFrameInfo &MFI = MF.getFrameInfo();
3397   MFI.setReturnAddressIsTaken(true);
3398 
3399   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3400     return SDValue();
3401 
3402   SDLoc DL(Op);
3403   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3404   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3405 
3406   // FIXME The frontend should detect this case.
3407   if (Depth > 0) {
3408     report_fatal_error("Unsupported stack frame traversal count");
3409   }
3410 
3411   // Return R14D, which has the return address. Mark it an implicit live-in.
3412   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3413   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3414 }
3415 
3416 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3417                                             SelectionDAG &DAG) const {
3418   SDLoc DL(Op);
3419   SDValue In = Op.getOperand(0);
3420   EVT InVT = In.getValueType();
3421   EVT ResVT = Op.getValueType();
3422 
3423   // Convert loads directly.  This is normally done by DAGCombiner,
3424   // but we need this case for bitcasts that are created during lowering
3425   // and which are then lowered themselves.
3426   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3427     if (ISD::isNormalLoad(LoadN)) {
3428       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3429                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3430       // Update the chain uses.
3431       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3432       return NewLoad;
3433     }
3434 
3435   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3436     SDValue In64;
3437     if (Subtarget.hasHighWord()) {
3438       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3439                                        MVT::i64);
3440       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3441                                        MVT::i64, SDValue(U64, 0), In);
3442     } else {
3443       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3444       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3445                          DAG.getConstant(32, DL, MVT::i64));
3446     }
3447     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3448     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3449                                       DL, MVT::f32, Out64);
3450   }
3451   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3452     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3453     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3454                                              MVT::f64, SDValue(U64, 0), In);
3455     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3456     if (Subtarget.hasHighWord())
3457       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3458                                         MVT::i32, Out64);
3459     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3460                                 DAG.getConstant(32, DL, MVT::i64));
3461     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3462   }
3463   llvm_unreachable("Unexpected bitcast combination");
3464 }
3465 
3466 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3467                                             SelectionDAG &DAG) const {
3468   MachineFunction &MF = DAG.getMachineFunction();
3469   SystemZMachineFunctionInfo *FuncInfo =
3470     MF.getInfo<SystemZMachineFunctionInfo>();
3471   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3472 
3473   SDValue Chain   = Op.getOperand(0);
3474   SDValue Addr    = Op.getOperand(1);
3475   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3476   SDLoc DL(Op);
3477 
3478   // The initial values of each field.
3479   const unsigned NumFields = 4;
3480   SDValue Fields[NumFields] = {
3481     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3482     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3483     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3484     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3485   };
3486 
3487   // Store each field into its respective slot.
3488   SDValue MemOps[NumFields];
3489   unsigned Offset = 0;
3490   for (unsigned I = 0; I < NumFields; ++I) {
3491     SDValue FieldAddr = Addr;
3492     if (Offset != 0)
3493       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3494                               DAG.getIntPtrConstant(Offset, DL));
3495     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3496                              MachinePointerInfo(SV, Offset));
3497     Offset += 8;
3498   }
3499   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3500 }
3501 
3502 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3503                                            SelectionDAG &DAG) const {
3504   SDValue Chain      = Op.getOperand(0);
3505   SDValue DstPtr     = Op.getOperand(1);
3506   SDValue SrcPtr     = Op.getOperand(2);
3507   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3508   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3509   SDLoc DL(Op);
3510 
3511   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3512                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3513                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3514                        MachinePointerInfo(SrcSV));
3515 }
3516 
3517 SDValue SystemZTargetLowering::
3518 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3519   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3520   MachineFunction &MF = DAG.getMachineFunction();
3521   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3522   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3523 
3524   SDValue Chain = Op.getOperand(0);
3525   SDValue Size  = Op.getOperand(1);
3526   SDValue Align = Op.getOperand(2);
3527   SDLoc DL(Op);
3528 
3529   // If user has set the no alignment function attribute, ignore
3530   // alloca alignments.
3531   uint64_t AlignVal =
3532       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3533 
3534   uint64_t StackAlign = TFI->getStackAlignment();
3535   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3536   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3537 
3538   Register SPReg = getStackPointerRegisterToSaveRestore();
3539   SDValue NeededSpace = Size;
3540 
3541   // Get a reference to the stack pointer.
3542   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3543 
3544   // If we need a backchain, save it now.
3545   SDValue Backchain;
3546   if (StoreBackchain)
3547     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3548                             MachinePointerInfo());
3549 
3550   // Add extra space for alignment if needed.
3551   if (ExtraAlignSpace)
3552     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3553                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3554 
3555   // Get the new stack pointer value.
3556   SDValue NewSP;
3557   if (hasInlineStackProbe(MF)) {
3558     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3559                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3560     Chain = NewSP.getValue(1);
3561   }
3562   else {
3563     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3564     // Copy the new stack pointer back.
3565     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3566   }
3567 
3568   // The allocated data lives above the 160 bytes allocated for the standard
3569   // frame, plus any outgoing stack arguments.  We don't know how much that
3570   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3571   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3572   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3573 
3574   // Dynamically realign if needed.
3575   if (RequiredAlign > StackAlign) {
3576     Result =
3577       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3578                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3579     Result =
3580       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3581                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3582   }
3583 
3584   if (StoreBackchain)
3585     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3586                          MachinePointerInfo());
3587 
3588   SDValue Ops[2] = { Result, Chain };
3589   return DAG.getMergeValues(Ops, DL);
3590 }
3591 
3592 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3593     SDValue Op, SelectionDAG &DAG) const {
3594   SDLoc DL(Op);
3595 
3596   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3597 }
3598 
3599 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3600                                               SelectionDAG &DAG) const {
3601   EVT VT = Op.getValueType();
3602   SDLoc DL(Op);
3603   SDValue Ops[2];
3604   if (is32Bit(VT))
3605     // Just do a normal 64-bit multiplication and extract the results.
3606     // We define this so that it can be used for constant division.
3607     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3608                     Op.getOperand(1), Ops[1], Ops[0]);
3609   else if (Subtarget.hasMiscellaneousExtensions2())
3610     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3611     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3612     // return the low half first, so the results are in reverse order.
3613     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3614                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3615   else {
3616     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3617     //
3618     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3619     //
3620     // but using the fact that the upper halves are either all zeros
3621     // or all ones:
3622     //
3623     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3624     //
3625     // and grouping the right terms together since they are quicker than the
3626     // multiplication:
3627     //
3628     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3629     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3630     SDValue LL = Op.getOperand(0);
3631     SDValue RL = Op.getOperand(1);
3632     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3633     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3634     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3635     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3636     // return the low half first, so the results are in reverse order.
3637     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3638                      LL, RL, Ops[1], Ops[0]);
3639     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3640     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3641     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3642     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3643   }
3644   return DAG.getMergeValues(Ops, DL);
3645 }
3646 
3647 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3648                                               SelectionDAG &DAG) const {
3649   EVT VT = Op.getValueType();
3650   SDLoc DL(Op);
3651   SDValue Ops[2];
3652   if (is32Bit(VT))
3653     // Just do a normal 64-bit multiplication and extract the results.
3654     // We define this so that it can be used for constant division.
3655     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3656                     Op.getOperand(1), Ops[1], Ops[0]);
3657   else
3658     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3659     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3660     // return the low half first, so the results are in reverse order.
3661     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3662                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3663   return DAG.getMergeValues(Ops, DL);
3664 }
3665 
3666 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3667                                             SelectionDAG &DAG) const {
3668   SDValue Op0 = Op.getOperand(0);
3669   SDValue Op1 = Op.getOperand(1);
3670   EVT VT = Op.getValueType();
3671   SDLoc DL(Op);
3672 
3673   // We use DSGF for 32-bit division.  This means the first operand must
3674   // always be 64-bit, and the second operand should be 32-bit whenever
3675   // that is possible, to improve performance.
3676   if (is32Bit(VT))
3677     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3678   else if (DAG.ComputeNumSignBits(Op1) > 32)
3679     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3680 
3681   // DSG(F) returns the remainder in the even register and the
3682   // quotient in the odd register.
3683   SDValue Ops[2];
3684   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3685   return DAG.getMergeValues(Ops, DL);
3686 }
3687 
3688 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3689                                             SelectionDAG &DAG) const {
3690   EVT VT = Op.getValueType();
3691   SDLoc DL(Op);
3692 
3693   // DL(G) returns the remainder in the even register and the
3694   // quotient in the odd register.
3695   SDValue Ops[2];
3696   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3697                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3698   return DAG.getMergeValues(Ops, DL);
3699 }
3700 
3701 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3702   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3703 
3704   // Get the known-zero masks for each operand.
3705   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3706   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3707                         DAG.computeKnownBits(Ops[1])};
3708 
3709   // See if the upper 32 bits of one operand and the lower 32 bits of the
3710   // other are known zero.  They are the low and high operands respectively.
3711   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3712                        Known[1].Zero.getZExtValue() };
3713   unsigned High, Low;
3714   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3715     High = 1, Low = 0;
3716   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3717     High = 0, Low = 1;
3718   else
3719     return Op;
3720 
3721   SDValue LowOp = Ops[Low];
3722   SDValue HighOp = Ops[High];
3723 
3724   // If the high part is a constant, we're better off using IILH.
3725   if (HighOp.getOpcode() == ISD::Constant)
3726     return Op;
3727 
3728   // If the low part is a constant that is outside the range of LHI,
3729   // then we're better off using IILF.
3730   if (LowOp.getOpcode() == ISD::Constant) {
3731     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3732     if (!isInt<16>(Value))
3733       return Op;
3734   }
3735 
3736   // Check whether the high part is an AND that doesn't change the
3737   // high 32 bits and just masks out low bits.  We can skip it if so.
3738   if (HighOp.getOpcode() == ISD::AND &&
3739       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3740     SDValue HighOp0 = HighOp.getOperand(0);
3741     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3742     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3743       HighOp = HighOp0;
3744   }
3745 
3746   // Take advantage of the fact that all GR32 operations only change the
3747   // low 32 bits by truncating Low to an i32 and inserting it directly
3748   // using a subreg.  The interesting cases are those where the truncation
3749   // can be folded.
3750   SDLoc DL(Op);
3751   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3752   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3753                                    MVT::i64, HighOp, Low32);
3754 }
3755 
3756 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3757 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3758                                           SelectionDAG &DAG) const {
3759   SDNode *N = Op.getNode();
3760   SDValue LHS = N->getOperand(0);
3761   SDValue RHS = N->getOperand(1);
3762   SDLoc DL(N);
3763   unsigned BaseOp = 0;
3764   unsigned CCValid = 0;
3765   unsigned CCMask = 0;
3766 
3767   switch (Op.getOpcode()) {
3768   default: llvm_unreachable("Unknown instruction!");
3769   case ISD::SADDO:
3770     BaseOp = SystemZISD::SADDO;
3771     CCValid = SystemZ::CCMASK_ARITH;
3772     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3773     break;
3774   case ISD::SSUBO:
3775     BaseOp = SystemZISD::SSUBO;
3776     CCValid = SystemZ::CCMASK_ARITH;
3777     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3778     break;
3779   case ISD::UADDO:
3780     BaseOp = SystemZISD::UADDO;
3781     CCValid = SystemZ::CCMASK_LOGICAL;
3782     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3783     break;
3784   case ISD::USUBO:
3785     BaseOp = SystemZISD::USUBO;
3786     CCValid = SystemZ::CCMASK_LOGICAL;
3787     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3788     break;
3789   }
3790 
3791   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3792   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3793 
3794   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3795   if (N->getValueType(1) == MVT::i1)
3796     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3797 
3798   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3799 }
3800 
3801 static bool isAddCarryChain(SDValue Carry) {
3802   while (Carry.getOpcode() == ISD::ADDCARRY)
3803     Carry = Carry.getOperand(2);
3804   return Carry.getOpcode() == ISD::UADDO;
3805 }
3806 
3807 static bool isSubBorrowChain(SDValue Carry) {
3808   while (Carry.getOpcode() == ISD::SUBCARRY)
3809     Carry = Carry.getOperand(2);
3810   return Carry.getOpcode() == ISD::USUBO;
3811 }
3812 
3813 // Lower ADDCARRY/SUBCARRY nodes.
3814 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3815                                                 SelectionDAG &DAG) const {
3816 
3817   SDNode *N = Op.getNode();
3818   MVT VT = N->getSimpleValueType(0);
3819 
3820   // Let legalize expand this if it isn't a legal type yet.
3821   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3822     return SDValue();
3823 
3824   SDValue LHS = N->getOperand(0);
3825   SDValue RHS = N->getOperand(1);
3826   SDValue Carry = Op.getOperand(2);
3827   SDLoc DL(N);
3828   unsigned BaseOp = 0;
3829   unsigned CCValid = 0;
3830   unsigned CCMask = 0;
3831 
3832   switch (Op.getOpcode()) {
3833   default: llvm_unreachable("Unknown instruction!");
3834   case ISD::ADDCARRY:
3835     if (!isAddCarryChain(Carry))
3836       return SDValue();
3837 
3838     BaseOp = SystemZISD::ADDCARRY;
3839     CCValid = SystemZ::CCMASK_LOGICAL;
3840     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3841     break;
3842   case ISD::SUBCARRY:
3843     if (!isSubBorrowChain(Carry))
3844       return SDValue();
3845 
3846     BaseOp = SystemZISD::SUBCARRY;
3847     CCValid = SystemZ::CCMASK_LOGICAL;
3848     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3849     break;
3850   }
3851 
3852   // Set the condition code from the carry flag.
3853   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3854                       DAG.getConstant(CCValid, DL, MVT::i32),
3855                       DAG.getConstant(CCMask, DL, MVT::i32));
3856 
3857   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3858   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3859 
3860   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3861   if (N->getValueType(1) == MVT::i1)
3862     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3863 
3864   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3865 }
3866 
3867 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3868                                           SelectionDAG &DAG) const {
3869   EVT VT = Op.getValueType();
3870   SDLoc DL(Op);
3871   Op = Op.getOperand(0);
3872 
3873   // Handle vector types via VPOPCT.
3874   if (VT.isVector()) {
3875     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3876     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3877     switch (VT.getScalarSizeInBits()) {
3878     case 8:
3879       break;
3880     case 16: {
3881       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3882       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3883       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3884       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3885       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3886       break;
3887     }
3888     case 32: {
3889       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3890                                             DAG.getConstant(0, DL, MVT::i32));
3891       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3892       break;
3893     }
3894     case 64: {
3895       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3896                                             DAG.getConstant(0, DL, MVT::i32));
3897       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3898       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3899       break;
3900     }
3901     default:
3902       llvm_unreachable("Unexpected type");
3903     }
3904     return Op;
3905   }
3906 
3907   // Get the known-zero mask for the operand.
3908   KnownBits Known = DAG.computeKnownBits(Op);
3909   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3910   if (NumSignificantBits == 0)
3911     return DAG.getConstant(0, DL, VT);
3912 
3913   // Skip known-zero high parts of the operand.
3914   int64_t OrigBitSize = VT.getSizeInBits();
3915   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3916   BitSize = std::min(BitSize, OrigBitSize);
3917 
3918   // The POPCNT instruction counts the number of bits in each byte.
3919   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3920   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3921   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3922 
3923   // Add up per-byte counts in a binary tree.  All bits of Op at
3924   // position larger than BitSize remain zero throughout.
3925   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3926     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3927     if (BitSize != OrigBitSize)
3928       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3929                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3930     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3931   }
3932 
3933   // Extract overall result from high byte.
3934   if (BitSize > 8)
3935     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3936                      DAG.getConstant(BitSize - 8, DL, VT));
3937 
3938   return Op;
3939 }
3940 
3941 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3942                                                  SelectionDAG &DAG) const {
3943   SDLoc DL(Op);
3944   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3945     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3946   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3947     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3948 
3949   // The only fence that needs an instruction is a sequentially-consistent
3950   // cross-thread fence.
3951   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3952       FenceSSID == SyncScope::System) {
3953     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3954                                       Op.getOperand(0)),
3955                    0);
3956   }
3957 
3958   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3959   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3960 }
3961 
3962 // Op is an atomic load.  Lower it into a normal volatile load.
3963 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3964                                                 SelectionDAG &DAG) const {
3965   auto *Node = cast<AtomicSDNode>(Op.getNode());
3966   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3967                         Node->getChain(), Node->getBasePtr(),
3968                         Node->getMemoryVT(), Node->getMemOperand());
3969 }
3970 
3971 // Op is an atomic store.  Lower it into a normal volatile store.
3972 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3973                                                  SelectionDAG &DAG) const {
3974   auto *Node = cast<AtomicSDNode>(Op.getNode());
3975   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3976                                     Node->getBasePtr(), Node->getMemoryVT(),
3977                                     Node->getMemOperand());
3978   // We have to enforce sequential consistency by performing a
3979   // serialization operation after the store.
3980   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
3981     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3982                                        MVT::Other, Chain), 0);
3983   return Chain;
3984 }
3985 
3986 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3987 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3988 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3989                                                    SelectionDAG &DAG,
3990                                                    unsigned Opcode) const {
3991   auto *Node = cast<AtomicSDNode>(Op.getNode());
3992 
3993   // 32-bit operations need no code outside the main loop.
3994   EVT NarrowVT = Node->getMemoryVT();
3995   EVT WideVT = MVT::i32;
3996   if (NarrowVT == WideVT)
3997     return Op;
3998 
3999   int64_t BitSize = NarrowVT.getSizeInBits();
4000   SDValue ChainIn = Node->getChain();
4001   SDValue Addr = Node->getBasePtr();
4002   SDValue Src2 = Node->getVal();
4003   MachineMemOperand *MMO = Node->getMemOperand();
4004   SDLoc DL(Node);
4005   EVT PtrVT = Addr.getValueType();
4006 
4007   // Convert atomic subtracts of constants into additions.
4008   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4009     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4010       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4011       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4012     }
4013 
4014   // Get the address of the containing word.
4015   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4016                                     DAG.getConstant(-4, DL, PtrVT));
4017 
4018   // Get the number of bits that the word must be rotated left in order
4019   // to bring the field to the top bits of a GR32.
4020   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4021                                  DAG.getConstant(3, DL, PtrVT));
4022   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4023 
4024   // Get the complementing shift amount, for rotating a field in the top
4025   // bits back to its proper position.
4026   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4027                                     DAG.getConstant(0, DL, WideVT), BitShift);
4028 
4029   // Extend the source operand to 32 bits and prepare it for the inner loop.
4030   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4031   // operations require the source to be shifted in advance.  (This shift
4032   // can be folded if the source is constant.)  For AND and NAND, the lower
4033   // bits must be set, while for other opcodes they should be left clear.
4034   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4035     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4036                        DAG.getConstant(32 - BitSize, DL, WideVT));
4037   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4038       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4039     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4040                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4041 
4042   // Construct the ATOMIC_LOADW_* node.
4043   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4044   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4045                     DAG.getConstant(BitSize, DL, WideVT) };
4046   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4047                                              NarrowVT, MMO);
4048 
4049   // Rotate the result of the final CS so that the field is in the lower
4050   // bits of a GR32, then truncate it.
4051   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4052                                     DAG.getConstant(BitSize, DL, WideVT));
4053   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4054 
4055   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4056   return DAG.getMergeValues(RetOps, DL);
4057 }
4058 
4059 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4060 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4061 // operations into additions.
4062 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4063                                                     SelectionDAG &DAG) const {
4064   auto *Node = cast<AtomicSDNode>(Op.getNode());
4065   EVT MemVT = Node->getMemoryVT();
4066   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4067     // A full-width operation.
4068     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4069     SDValue Src2 = Node->getVal();
4070     SDValue NegSrc2;
4071     SDLoc DL(Src2);
4072 
4073     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4074       // Use an addition if the operand is constant and either LAA(G) is
4075       // available or the negative value is in the range of A(G)FHI.
4076       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4077       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4078         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4079     } else if (Subtarget.hasInterlockedAccess1())
4080       // Use LAA(G) if available.
4081       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4082                             Src2);
4083 
4084     if (NegSrc2.getNode())
4085       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4086                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4087                            Node->getMemOperand());
4088 
4089     // Use the node as-is.
4090     return Op;
4091   }
4092 
4093   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4094 }
4095 
4096 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4097 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4098                                                     SelectionDAG &DAG) const {
4099   auto *Node = cast<AtomicSDNode>(Op.getNode());
4100   SDValue ChainIn = Node->getOperand(0);
4101   SDValue Addr = Node->getOperand(1);
4102   SDValue CmpVal = Node->getOperand(2);
4103   SDValue SwapVal = Node->getOperand(3);
4104   MachineMemOperand *MMO = Node->getMemOperand();
4105   SDLoc DL(Node);
4106 
4107   // We have native support for 32-bit and 64-bit compare and swap, but we
4108   // still need to expand extracting the "success" result from the CC.
4109   EVT NarrowVT = Node->getMemoryVT();
4110   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4111   if (NarrowVT == WideVT) {
4112     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4113     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4114     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4115                                                DL, Tys, Ops, NarrowVT, MMO);
4116     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4117                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4118 
4119     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4120     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4121     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4122     return SDValue();
4123   }
4124 
4125   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4126   // via a fullword ATOMIC_CMP_SWAPW operation.
4127   int64_t BitSize = NarrowVT.getSizeInBits();
4128   EVT PtrVT = Addr.getValueType();
4129 
4130   // Get the address of the containing word.
4131   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4132                                     DAG.getConstant(-4, DL, PtrVT));
4133 
4134   // Get the number of bits that the word must be rotated left in order
4135   // to bring the field to the top bits of a GR32.
4136   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4137                                  DAG.getConstant(3, DL, PtrVT));
4138   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4139 
4140   // Get the complementing shift amount, for rotating a field in the top
4141   // bits back to its proper position.
4142   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4143                                     DAG.getConstant(0, DL, WideVT), BitShift);
4144 
4145   // Construct the ATOMIC_CMP_SWAPW node.
4146   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4147   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4148                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4149   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4150                                              VTList, Ops, NarrowVT, MMO);
4151   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4152                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4153 
4154   // emitAtomicCmpSwapW() will zero extend the result (original value).
4155   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4156                                 DAG.getValueType(NarrowVT));
4157   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4158   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4159   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4160   return SDValue();
4161 }
4162 
4163 MachineMemOperand::Flags
4164 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4165   // Because of how we convert atomic_load and atomic_store to normal loads and
4166   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4167   // since DAGCombine hasn't been updated to account for atomic, but non
4168   // volatile loads.  (See D57601)
4169   if (auto *SI = dyn_cast<StoreInst>(&I))
4170     if (SI->isAtomic())
4171       return MachineMemOperand::MOVolatile;
4172   if (auto *LI = dyn_cast<LoadInst>(&I))
4173     if (LI->isAtomic())
4174       return MachineMemOperand::MOVolatile;
4175   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4176     if (AI->isAtomic())
4177       return MachineMemOperand::MOVolatile;
4178   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4179     if (AI->isAtomic())
4180       return MachineMemOperand::MOVolatile;
4181   return MachineMemOperand::MONone;
4182 }
4183 
4184 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4185                                               SelectionDAG &DAG) const {
4186   MachineFunction &MF = DAG.getMachineFunction();
4187   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4188   auto *Regs = Subtarget->getSpecialRegisters();
4189   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4190   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4191     report_fatal_error("Variable-sized stack allocations are not supported "
4192                        "in GHC calling convention");
4193   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4194                             Regs->getStackPointerRegister(), Op.getValueType());
4195 }
4196 
4197 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4198                                                  SelectionDAG &DAG) const {
4199   MachineFunction &MF = DAG.getMachineFunction();
4200   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4201   auto *Regs = Subtarget->getSpecialRegisters();
4202   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4203   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4204 
4205   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4206     report_fatal_error("Variable-sized stack allocations are not supported "
4207                        "in GHC calling convention");
4208 
4209   SDValue Chain = Op.getOperand(0);
4210   SDValue NewSP = Op.getOperand(1);
4211   SDValue Backchain;
4212   SDLoc DL(Op);
4213 
4214   if (StoreBackchain) {
4215     SDValue OldSP = DAG.getCopyFromReg(
4216         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4217     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4218                             MachinePointerInfo());
4219   }
4220 
4221   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4222 
4223   if (StoreBackchain)
4224     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4225                          MachinePointerInfo());
4226 
4227   return Chain;
4228 }
4229 
4230 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4231                                              SelectionDAG &DAG) const {
4232   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4233   if (!IsData)
4234     // Just preserve the chain.
4235     return Op.getOperand(0);
4236 
4237   SDLoc DL(Op);
4238   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4239   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4240   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4241   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4242                    Op.getOperand(1)};
4243   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4244                                  Node->getVTList(), Ops,
4245                                  Node->getMemoryVT(), Node->getMemOperand());
4246 }
4247 
4248 // Convert condition code in CCReg to an i32 value.
4249 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4250   SDLoc DL(CCReg);
4251   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4252   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4253                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4254 }
4255 
4256 SDValue
4257 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4258                                               SelectionDAG &DAG) const {
4259   unsigned Opcode, CCValid;
4260   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4261     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4262     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4263     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4264     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4265     return SDValue();
4266   }
4267 
4268   return SDValue();
4269 }
4270 
4271 SDValue
4272 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4273                                                SelectionDAG &DAG) const {
4274   unsigned Opcode, CCValid;
4275   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4276     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4277     if (Op->getNumValues() == 1)
4278       return getCCResult(DAG, SDValue(Node, 0));
4279     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4280     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4281                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4282   }
4283 
4284   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4285   switch (Id) {
4286   case Intrinsic::thread_pointer:
4287     return lowerThreadPointer(SDLoc(Op), DAG);
4288 
4289   case Intrinsic::s390_vpdi:
4290     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4291                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4292 
4293   case Intrinsic::s390_vperm:
4294     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4295                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4296 
4297   case Intrinsic::s390_vuphb:
4298   case Intrinsic::s390_vuphh:
4299   case Intrinsic::s390_vuphf:
4300     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4301                        Op.getOperand(1));
4302 
4303   case Intrinsic::s390_vuplhb:
4304   case Intrinsic::s390_vuplhh:
4305   case Intrinsic::s390_vuplhf:
4306     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4307                        Op.getOperand(1));
4308 
4309   case Intrinsic::s390_vuplb:
4310   case Intrinsic::s390_vuplhw:
4311   case Intrinsic::s390_vuplf:
4312     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4313                        Op.getOperand(1));
4314 
4315   case Intrinsic::s390_vupllb:
4316   case Intrinsic::s390_vupllh:
4317   case Intrinsic::s390_vupllf:
4318     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4319                        Op.getOperand(1));
4320 
4321   case Intrinsic::s390_vsumb:
4322   case Intrinsic::s390_vsumh:
4323   case Intrinsic::s390_vsumgh:
4324   case Intrinsic::s390_vsumgf:
4325   case Intrinsic::s390_vsumqf:
4326   case Intrinsic::s390_vsumqg:
4327     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4328                        Op.getOperand(1), Op.getOperand(2));
4329   }
4330 
4331   return SDValue();
4332 }
4333 
4334 namespace {
4335 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4336 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4337 // Operand is the constant third operand, otherwise it is the number of
4338 // bytes in each element of the result.
4339 struct Permute {
4340   unsigned Opcode;
4341   unsigned Operand;
4342   unsigned char Bytes[SystemZ::VectorBytes];
4343 };
4344 }
4345 
4346 static const Permute PermuteForms[] = {
4347   // VMRHG
4348   { SystemZISD::MERGE_HIGH, 8,
4349     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4350   // VMRHF
4351   { SystemZISD::MERGE_HIGH, 4,
4352     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4353   // VMRHH
4354   { SystemZISD::MERGE_HIGH, 2,
4355     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4356   // VMRHB
4357   { SystemZISD::MERGE_HIGH, 1,
4358     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4359   // VMRLG
4360   { SystemZISD::MERGE_LOW, 8,
4361     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4362   // VMRLF
4363   { SystemZISD::MERGE_LOW, 4,
4364     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4365   // VMRLH
4366   { SystemZISD::MERGE_LOW, 2,
4367     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4368   // VMRLB
4369   { SystemZISD::MERGE_LOW, 1,
4370     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4371   // VPKG
4372   { SystemZISD::PACK, 4,
4373     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4374   // VPKF
4375   { SystemZISD::PACK, 2,
4376     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4377   // VPKH
4378   { SystemZISD::PACK, 1,
4379     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4380   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4381   { SystemZISD::PERMUTE_DWORDS, 4,
4382     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4383   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4384   { SystemZISD::PERMUTE_DWORDS, 1,
4385     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4386 };
4387 
4388 // Called after matching a vector shuffle against a particular pattern.
4389 // Both the original shuffle and the pattern have two vector operands.
4390 // OpNos[0] is the operand of the original shuffle that should be used for
4391 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4392 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4393 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4394 // for operands 0 and 1 of the pattern.
4395 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4396   if (OpNos[0] < 0) {
4397     if (OpNos[1] < 0)
4398       return false;
4399     OpNo0 = OpNo1 = OpNos[1];
4400   } else if (OpNos[1] < 0) {
4401     OpNo0 = OpNo1 = OpNos[0];
4402   } else {
4403     OpNo0 = OpNos[0];
4404     OpNo1 = OpNos[1];
4405   }
4406   return true;
4407 }
4408 
4409 // Bytes is a VPERM-like permute vector, except that -1 is used for
4410 // undefined bytes.  Return true if the VPERM can be implemented using P.
4411 // When returning true set OpNo0 to the VPERM operand that should be
4412 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4413 //
4414 // For example, if swapping the VPERM operands allows P to match, OpNo0
4415 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4416 // operand, but rewriting it to use two duplicated operands allows it to
4417 // match P, then OpNo0 and OpNo1 will be the same.
4418 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4419                          unsigned &OpNo0, unsigned &OpNo1) {
4420   int OpNos[] = { -1, -1 };
4421   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4422     int Elt = Bytes[I];
4423     if (Elt >= 0) {
4424       // Make sure that the two permute vectors use the same suboperand
4425       // byte number.  Only the operand numbers (the high bits) are
4426       // allowed to differ.
4427       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4428         return false;
4429       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4430       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4431       // Make sure that the operand mappings are consistent with previous
4432       // elements.
4433       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4434         return false;
4435       OpNos[ModelOpNo] = RealOpNo;
4436     }
4437   }
4438   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4439 }
4440 
4441 // As above, but search for a matching permute.
4442 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4443                                    unsigned &OpNo0, unsigned &OpNo1) {
4444   for (auto &P : PermuteForms)
4445     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4446       return &P;
4447   return nullptr;
4448 }
4449 
4450 // Bytes is a VPERM-like permute vector, except that -1 is used for
4451 // undefined bytes.  This permute is an operand of an outer permute.
4452 // See whether redistributing the -1 bytes gives a shuffle that can be
4453 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4454 // that, when applied to the result of P, gives the original permute in Bytes.
4455 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4456                                const Permute &P,
4457                                SmallVectorImpl<int> &Transform) {
4458   unsigned To = 0;
4459   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4460     int Elt = Bytes[From];
4461     if (Elt < 0)
4462       // Byte number From of the result is undefined.
4463       Transform[From] = -1;
4464     else {
4465       while (P.Bytes[To] != Elt) {
4466         To += 1;
4467         if (To == SystemZ::VectorBytes)
4468           return false;
4469       }
4470       Transform[From] = To;
4471     }
4472   }
4473   return true;
4474 }
4475 
4476 // As above, but search for a matching permute.
4477 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4478                                          SmallVectorImpl<int> &Transform) {
4479   for (auto &P : PermuteForms)
4480     if (matchDoublePermute(Bytes, P, Transform))
4481       return &P;
4482   return nullptr;
4483 }
4484 
4485 // Convert the mask of the given shuffle op into a byte-level mask,
4486 // as if it had type vNi8.
4487 static bool getVPermMask(SDValue ShuffleOp,
4488                          SmallVectorImpl<int> &Bytes) {
4489   EVT VT = ShuffleOp.getValueType();
4490   unsigned NumElements = VT.getVectorNumElements();
4491   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4492 
4493   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4494     Bytes.resize(NumElements * BytesPerElement, -1);
4495     for (unsigned I = 0; I < NumElements; ++I) {
4496       int Index = VSN->getMaskElt(I);
4497       if (Index >= 0)
4498         for (unsigned J = 0; J < BytesPerElement; ++J)
4499           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4500     }
4501     return true;
4502   }
4503   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4504       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4505     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4506     Bytes.resize(NumElements * BytesPerElement, -1);
4507     for (unsigned I = 0; I < NumElements; ++I)
4508       for (unsigned J = 0; J < BytesPerElement; ++J)
4509         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4510     return true;
4511   }
4512   return false;
4513 }
4514 
4515 // Bytes is a VPERM-like permute vector, except that -1 is used for
4516 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4517 // the result come from a contiguous sequence of bytes from one input.
4518 // Set Base to the selector for the first byte if so.
4519 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4520                             unsigned BytesPerElement, int &Base) {
4521   Base = -1;
4522   for (unsigned I = 0; I < BytesPerElement; ++I) {
4523     if (Bytes[Start + I] >= 0) {
4524       unsigned Elem = Bytes[Start + I];
4525       if (Base < 0) {
4526         Base = Elem - I;
4527         // Make sure the bytes would come from one input operand.
4528         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4529           return false;
4530       } else if (unsigned(Base) != Elem - I)
4531         return false;
4532     }
4533   }
4534   return true;
4535 }
4536 
4537 // Bytes is a VPERM-like permute vector, except that -1 is used for
4538 // undefined bytes.  Return true if it can be performed using VSLDB.
4539 // When returning true, set StartIndex to the shift amount and OpNo0
4540 // and OpNo1 to the VPERM operands that should be used as the first
4541 // and second shift operand respectively.
4542 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4543                                unsigned &StartIndex, unsigned &OpNo0,
4544                                unsigned &OpNo1) {
4545   int OpNos[] = { -1, -1 };
4546   int Shift = -1;
4547   for (unsigned I = 0; I < 16; ++I) {
4548     int Index = Bytes[I];
4549     if (Index >= 0) {
4550       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4551       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4552       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4553       if (Shift < 0)
4554         Shift = ExpectedShift;
4555       else if (Shift != ExpectedShift)
4556         return false;
4557       // Make sure that the operand mappings are consistent with previous
4558       // elements.
4559       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4560         return false;
4561       OpNos[ModelOpNo] = RealOpNo;
4562     }
4563   }
4564   StartIndex = Shift;
4565   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4566 }
4567 
4568 // Create a node that performs P on operands Op0 and Op1, casting the
4569 // operands to the appropriate type.  The type of the result is determined by P.
4570 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4571                               const Permute &P, SDValue Op0, SDValue Op1) {
4572   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4573   // elements of a PACK are twice as wide as the outputs.
4574   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4575                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4576                       P.Operand);
4577   // Cast both operands to the appropriate type.
4578   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4579                               SystemZ::VectorBytes / InBytes);
4580   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4581   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4582   SDValue Op;
4583   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4584     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4585     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4586   } else if (P.Opcode == SystemZISD::PACK) {
4587     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4588                                  SystemZ::VectorBytes / P.Operand);
4589     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4590   } else {
4591     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4592   }
4593   return Op;
4594 }
4595 
4596 static bool isZeroVector(SDValue N) {
4597   if (N->getOpcode() == ISD::BITCAST)
4598     N = N->getOperand(0);
4599   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4600     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4601       return Op->getZExtValue() == 0;
4602   return ISD::isBuildVectorAllZeros(N.getNode());
4603 }
4604 
4605 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4606 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4607   for (unsigned I = 0; I < Num ; I++)
4608     if (isZeroVector(Ops[I]))
4609       return I;
4610   return UINT32_MAX;
4611 }
4612 
4613 // Bytes is a VPERM-like permute vector, except that -1 is used for
4614 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4615 // VSLDB or VPERM.
4616 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4617                                      SDValue *Ops,
4618                                      const SmallVectorImpl<int> &Bytes) {
4619   for (unsigned I = 0; I < 2; ++I)
4620     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4621 
4622   // First see whether VSLDB can be used.
4623   unsigned StartIndex, OpNo0, OpNo1;
4624   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4625     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4626                        Ops[OpNo1],
4627                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4628 
4629   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4630   // eliminate a zero vector by reusing any zero index in the permute vector.
4631   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4632   if (ZeroVecIdx != UINT32_MAX) {
4633     bool MaskFirst = true;
4634     int ZeroIdx = -1;
4635     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4636       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4637       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4638       if (OpNo == ZeroVecIdx && I == 0) {
4639         // If the first byte is zero, use mask as first operand.
4640         ZeroIdx = 0;
4641         break;
4642       }
4643       if (OpNo != ZeroVecIdx && Byte == 0) {
4644         // If mask contains a zero, use it by placing that vector first.
4645         ZeroIdx = I + SystemZ::VectorBytes;
4646         MaskFirst = false;
4647         break;
4648       }
4649     }
4650     if (ZeroIdx != -1) {
4651       SDValue IndexNodes[SystemZ::VectorBytes];
4652       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4653         if (Bytes[I] >= 0) {
4654           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4655           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4656           if (OpNo == ZeroVecIdx)
4657             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4658           else {
4659             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4660             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4661           }
4662         } else
4663           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4664       }
4665       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4666       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4667       if (MaskFirst)
4668         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4669                            Mask);
4670       else
4671         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4672                            Mask);
4673     }
4674   }
4675 
4676   SDValue IndexNodes[SystemZ::VectorBytes];
4677   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4678     if (Bytes[I] >= 0)
4679       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4680     else
4681       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4682   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4683   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4684                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4685 }
4686 
4687 namespace {
4688 // Describes a general N-operand vector shuffle.
4689 struct GeneralShuffle {
4690   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4691   void addUndef();
4692   bool add(SDValue, unsigned);
4693   SDValue getNode(SelectionDAG &, const SDLoc &);
4694   void tryPrepareForUnpack();
4695   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4696   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4697 
4698   // The operands of the shuffle.
4699   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4700 
4701   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4702   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4703   // Bytes[I] / SystemZ::VectorBytes.
4704   SmallVector<int, SystemZ::VectorBytes> Bytes;
4705 
4706   // The type of the shuffle result.
4707   EVT VT;
4708 
4709   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4710   unsigned UnpackFromEltSize;
4711 };
4712 }
4713 
4714 // Add an extra undefined element to the shuffle.
4715 void GeneralShuffle::addUndef() {
4716   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4717   for (unsigned I = 0; I < BytesPerElement; ++I)
4718     Bytes.push_back(-1);
4719 }
4720 
4721 // Add an extra element to the shuffle, taking it from element Elem of Op.
4722 // A null Op indicates a vector input whose value will be calculated later;
4723 // there is at most one such input per shuffle and it always has the same
4724 // type as the result. Aborts and returns false if the source vector elements
4725 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4726 // LLVM they become implicitly extended, but this is rare and not optimized.
4727 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4728   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4729 
4730   // The source vector can have wider elements than the result,
4731   // either through an explicit TRUNCATE or because of type legalization.
4732   // We want the least significant part.
4733   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4734   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4735 
4736   // Return false if the source elements are smaller than their destination
4737   // elements.
4738   if (FromBytesPerElement < BytesPerElement)
4739     return false;
4740 
4741   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4742                    (FromBytesPerElement - BytesPerElement));
4743 
4744   // Look through things like shuffles and bitcasts.
4745   while (Op.getNode()) {
4746     if (Op.getOpcode() == ISD::BITCAST)
4747       Op = Op.getOperand(0);
4748     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4749       // See whether the bytes we need come from a contiguous part of one
4750       // operand.
4751       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4752       if (!getVPermMask(Op, OpBytes))
4753         break;
4754       int NewByte;
4755       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4756         break;
4757       if (NewByte < 0) {
4758         addUndef();
4759         return true;
4760       }
4761       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4762       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4763     } else if (Op.isUndef()) {
4764       addUndef();
4765       return true;
4766     } else
4767       break;
4768   }
4769 
4770   // Make sure that the source of the extraction is in Ops.
4771   unsigned OpNo = 0;
4772   for (; OpNo < Ops.size(); ++OpNo)
4773     if (Ops[OpNo] == Op)
4774       break;
4775   if (OpNo == Ops.size())
4776     Ops.push_back(Op);
4777 
4778   // Add the element to Bytes.
4779   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4780   for (unsigned I = 0; I < BytesPerElement; ++I)
4781     Bytes.push_back(Base + I);
4782 
4783   return true;
4784 }
4785 
4786 // Return SDNodes for the completed shuffle.
4787 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4788   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4789 
4790   if (Ops.size() == 0)
4791     return DAG.getUNDEF(VT);
4792 
4793   // Use a single unpack if possible as the last operation.
4794   tryPrepareForUnpack();
4795 
4796   // Make sure that there are at least two shuffle operands.
4797   if (Ops.size() == 1)
4798     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4799 
4800   // Create a tree of shuffles, deferring root node until after the loop.
4801   // Try to redistribute the undefined elements of non-root nodes so that
4802   // the non-root shuffles match something like a pack or merge, then adjust
4803   // the parent node's permute vector to compensate for the new order.
4804   // Among other things, this copes with vectors like <2 x i16> that were
4805   // padded with undefined elements during type legalization.
4806   //
4807   // In the best case this redistribution will lead to the whole tree
4808   // using packs and merges.  It should rarely be a loss in other cases.
4809   unsigned Stride = 1;
4810   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4811     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4812       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4813 
4814       // Create a mask for just these two operands.
4815       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4816       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4817         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4818         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4819         if (OpNo == I)
4820           NewBytes[J] = Byte;
4821         else if (OpNo == I + Stride)
4822           NewBytes[J] = SystemZ::VectorBytes + Byte;
4823         else
4824           NewBytes[J] = -1;
4825       }
4826       // See if it would be better to reorganize NewMask to avoid using VPERM.
4827       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4828       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4829         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4830         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4831         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4832           if (NewBytes[J] >= 0) {
4833             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4834                    "Invalid double permute");
4835             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4836           } else
4837             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4838         }
4839       } else {
4840         // Just use NewBytes on the operands.
4841         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4842         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4843           if (NewBytes[J] >= 0)
4844             Bytes[J] = I * SystemZ::VectorBytes + J;
4845       }
4846     }
4847   }
4848 
4849   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4850   if (Stride > 1) {
4851     Ops[1] = Ops[Stride];
4852     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4853       if (Bytes[I] >= int(SystemZ::VectorBytes))
4854         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4855   }
4856 
4857   // Look for an instruction that can do the permute without resorting
4858   // to VPERM.
4859   unsigned OpNo0, OpNo1;
4860   SDValue Op;
4861   if (unpackWasPrepared() && Ops[1].isUndef())
4862     Op = Ops[0];
4863   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4864     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4865   else
4866     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4867 
4868   Op = insertUnpackIfPrepared(DAG, DL, Op);
4869 
4870   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4871 }
4872 
4873 #ifndef NDEBUG
4874 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4875   dbgs() << Msg.c_str() << " { ";
4876   for (unsigned i = 0; i < Bytes.size(); i++)
4877     dbgs() << Bytes[i] << " ";
4878   dbgs() << "}\n";
4879 }
4880 #endif
4881 
4882 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4883 // after all else by removing the zero vector and the effect of the unpack on
4884 // Bytes.
4885 void GeneralShuffle::tryPrepareForUnpack() {
4886   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4887   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4888     return;
4889 
4890   // Only do this if removing the zero vector reduces the depth, otherwise
4891   // the critical path will increase with the final unpack.
4892   if (Ops.size() > 2 &&
4893       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4894     return;
4895 
4896   // Find an unpack that would allow removing the zero vector from Ops.
4897   UnpackFromEltSize = 1;
4898   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4899     bool MatchUnpack = true;
4900     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4901     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4902       unsigned ToEltSize = UnpackFromEltSize * 2;
4903       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4904       if (!IsZextByte)
4905         SrcBytes.push_back(Bytes[Elt]);
4906       if (Bytes[Elt] != -1) {
4907         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4908         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4909           MatchUnpack = false;
4910           break;
4911         }
4912       }
4913     }
4914     if (MatchUnpack) {
4915       if (Ops.size() == 2) {
4916         // Don't use unpack if a single source operand needs rearrangement.
4917         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4918           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4919             UnpackFromEltSize = UINT_MAX;
4920             return;
4921           }
4922       }
4923       break;
4924     }
4925   }
4926   if (UnpackFromEltSize > 4)
4927     return;
4928 
4929   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4930              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4931              << ".\n";
4932              dumpBytes(Bytes, "Original Bytes vector:"););
4933 
4934   // Apply the unpack in reverse to the Bytes array.
4935   unsigned B = 0;
4936   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4937     Elt += UnpackFromEltSize;
4938     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4939       Bytes[B] = Bytes[Elt];
4940   }
4941   while (B < SystemZ::VectorBytes)
4942     Bytes[B++] = -1;
4943 
4944   // Remove the zero vector from Ops
4945   Ops.erase(&Ops[ZeroVecOpNo]);
4946   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4947     if (Bytes[I] >= 0) {
4948       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4949       if (OpNo > ZeroVecOpNo)
4950         Bytes[I] -= SystemZ::VectorBytes;
4951     }
4952 
4953   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4954              dbgs() << "\n";);
4955 }
4956 
4957 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4958                                                const SDLoc &DL,
4959                                                SDValue Op) {
4960   if (!unpackWasPrepared())
4961     return Op;
4962   unsigned InBits = UnpackFromEltSize * 8;
4963   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4964                                 SystemZ::VectorBits / InBits);
4965   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4966   unsigned OutBits = InBits * 2;
4967   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4968                                SystemZ::VectorBits / OutBits);
4969   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4970 }
4971 
4972 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4973 static bool isScalarToVector(SDValue Op) {
4974   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4975     if (!Op.getOperand(I).isUndef())
4976       return false;
4977   return true;
4978 }
4979 
4980 // Return a vector of type VT that contains Value in the first element.
4981 // The other elements don't matter.
4982 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4983                                    SDValue Value) {
4984   // If we have a constant, replicate it to all elements and let the
4985   // BUILD_VECTOR lowering take care of it.
4986   if (Value.getOpcode() == ISD::Constant ||
4987       Value.getOpcode() == ISD::ConstantFP) {
4988     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4989     return DAG.getBuildVector(VT, DL, Ops);
4990   }
4991   if (Value.isUndef())
4992     return DAG.getUNDEF(VT);
4993   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4994 }
4995 
4996 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4997 // element 1.  Used for cases in which replication is cheap.
4998 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4999                                  SDValue Op0, SDValue Op1) {
5000   if (Op0.isUndef()) {
5001     if (Op1.isUndef())
5002       return DAG.getUNDEF(VT);
5003     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5004   }
5005   if (Op1.isUndef())
5006     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5007   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5008                      buildScalarToVector(DAG, DL, VT, Op0),
5009                      buildScalarToVector(DAG, DL, VT, Op1));
5010 }
5011 
5012 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5013 // vector for them.
5014 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5015                           SDValue Op1) {
5016   if (Op0.isUndef() && Op1.isUndef())
5017     return DAG.getUNDEF(MVT::v2i64);
5018   // If one of the two inputs is undefined then replicate the other one,
5019   // in order to avoid using another register unnecessarily.
5020   if (Op0.isUndef())
5021     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5022   else if (Op1.isUndef())
5023     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5024   else {
5025     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5026     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5027   }
5028   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5029 }
5030 
5031 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5032 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5033 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5034 // would benefit from this representation and return it if so.
5035 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5036                                      BuildVectorSDNode *BVN) {
5037   EVT VT = BVN->getValueType(0);
5038   unsigned NumElements = VT.getVectorNumElements();
5039 
5040   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5041   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5042   // need a BUILD_VECTOR, add an additional placeholder operand for that
5043   // BUILD_VECTOR and store its operands in ResidueOps.
5044   GeneralShuffle GS(VT);
5045   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5046   bool FoundOne = false;
5047   for (unsigned I = 0; I < NumElements; ++I) {
5048     SDValue Op = BVN->getOperand(I);
5049     if (Op.getOpcode() == ISD::TRUNCATE)
5050       Op = Op.getOperand(0);
5051     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5052         Op.getOperand(1).getOpcode() == ISD::Constant) {
5053       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5054       if (!GS.add(Op.getOperand(0), Elem))
5055         return SDValue();
5056       FoundOne = true;
5057     } else if (Op.isUndef()) {
5058       GS.addUndef();
5059     } else {
5060       if (!GS.add(SDValue(), ResidueOps.size()))
5061         return SDValue();
5062       ResidueOps.push_back(BVN->getOperand(I));
5063     }
5064   }
5065 
5066   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5067   if (!FoundOne)
5068     return SDValue();
5069 
5070   // Create the BUILD_VECTOR for the remaining elements, if any.
5071   if (!ResidueOps.empty()) {
5072     while (ResidueOps.size() < NumElements)
5073       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5074     for (auto &Op : GS.Ops) {
5075       if (!Op.getNode()) {
5076         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5077         break;
5078       }
5079     }
5080   }
5081   return GS.getNode(DAG, SDLoc(BVN));
5082 }
5083 
5084 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5085   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5086     return true;
5087   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5088     return true;
5089   return false;
5090 }
5091 
5092 // Combine GPR scalar values Elems into a vector of type VT.
5093 SDValue
5094 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5095                                    SmallVectorImpl<SDValue> &Elems) const {
5096   // See whether there is a single replicated value.
5097   SDValue Single;
5098   unsigned int NumElements = Elems.size();
5099   unsigned int Count = 0;
5100   for (auto Elem : Elems) {
5101     if (!Elem.isUndef()) {
5102       if (!Single.getNode())
5103         Single = Elem;
5104       else if (Elem != Single) {
5105         Single = SDValue();
5106         break;
5107       }
5108       Count += 1;
5109     }
5110   }
5111   // There are three cases here:
5112   //
5113   // - if the only defined element is a loaded one, the best sequence
5114   //   is a replicating load.
5115   //
5116   // - otherwise, if the only defined element is an i64 value, we will
5117   //   end up with the same VLVGP sequence regardless of whether we short-cut
5118   //   for replication or fall through to the later code.
5119   //
5120   // - otherwise, if the only defined element is an i32 or smaller value,
5121   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5122   //   This is only a win if the single defined element is used more than once.
5123   //   In other cases we're better off using a single VLVGx.
5124   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5125     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5126 
5127   // If all elements are loads, use VLREP/VLEs (below).
5128   bool AllLoads = true;
5129   for (auto Elem : Elems)
5130     if (!isVectorElementLoad(Elem)) {
5131       AllLoads = false;
5132       break;
5133     }
5134 
5135   // The best way of building a v2i64 from two i64s is to use VLVGP.
5136   if (VT == MVT::v2i64 && !AllLoads)
5137     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5138 
5139   // Use a 64-bit merge high to combine two doubles.
5140   if (VT == MVT::v2f64 && !AllLoads)
5141     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5142 
5143   // Build v4f32 values directly from the FPRs:
5144   //
5145   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5146   //         V              V         VMRHF
5147   //      <ABxx>         <CDxx>
5148   //                V                 VMRHG
5149   //              <ABCD>
5150   if (VT == MVT::v4f32 && !AllLoads) {
5151     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5152     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5153     // Avoid unnecessary undefs by reusing the other operand.
5154     if (Op01.isUndef())
5155       Op01 = Op23;
5156     else if (Op23.isUndef())
5157       Op23 = Op01;
5158     // Merging identical replications is a no-op.
5159     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5160       return Op01;
5161     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5162     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5163     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5164                              DL, MVT::v2i64, Op01, Op23);
5165     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5166   }
5167 
5168   // Collect the constant terms.
5169   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5170   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5171 
5172   unsigned NumConstants = 0;
5173   for (unsigned I = 0; I < NumElements; ++I) {
5174     SDValue Elem = Elems[I];
5175     if (Elem.getOpcode() == ISD::Constant ||
5176         Elem.getOpcode() == ISD::ConstantFP) {
5177       NumConstants += 1;
5178       Constants[I] = Elem;
5179       Done[I] = true;
5180     }
5181   }
5182   // If there was at least one constant, fill in the other elements of
5183   // Constants with undefs to get a full vector constant and use that
5184   // as the starting point.
5185   SDValue Result;
5186   SDValue ReplicatedVal;
5187   if (NumConstants > 0) {
5188     for (unsigned I = 0; I < NumElements; ++I)
5189       if (!Constants[I].getNode())
5190         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5191     Result = DAG.getBuildVector(VT, DL, Constants);
5192   } else {
5193     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5194     // avoid a false dependency on any previous contents of the vector
5195     // register.
5196 
5197     // Use a VLREP if at least one element is a load. Make sure to replicate
5198     // the load with the most elements having its value.
5199     std::map<const SDNode*, unsigned> UseCounts;
5200     SDNode *LoadMaxUses = nullptr;
5201     for (unsigned I = 0; I < NumElements; ++I)
5202       if (isVectorElementLoad(Elems[I])) {
5203         SDNode *Ld = Elems[I].getNode();
5204         UseCounts[Ld]++;
5205         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5206           LoadMaxUses = Ld;
5207       }
5208     if (LoadMaxUses != nullptr) {
5209       ReplicatedVal = SDValue(LoadMaxUses, 0);
5210       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5211     } else {
5212       // Try to use VLVGP.
5213       unsigned I1 = NumElements / 2 - 1;
5214       unsigned I2 = NumElements - 1;
5215       bool Def1 = !Elems[I1].isUndef();
5216       bool Def2 = !Elems[I2].isUndef();
5217       if (Def1 || Def2) {
5218         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5219         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5220         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5221                              joinDwords(DAG, DL, Elem1, Elem2));
5222         Done[I1] = true;
5223         Done[I2] = true;
5224       } else
5225         Result = DAG.getUNDEF(VT);
5226     }
5227   }
5228 
5229   // Use VLVGx to insert the other elements.
5230   for (unsigned I = 0; I < NumElements; ++I)
5231     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5232       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5233                            DAG.getConstant(I, DL, MVT::i32));
5234   return Result;
5235 }
5236 
5237 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5238                                                  SelectionDAG &DAG) const {
5239   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5240   SDLoc DL(Op);
5241   EVT VT = Op.getValueType();
5242 
5243   if (BVN->isConstant()) {
5244     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5245       return Op;
5246 
5247     // Fall back to loading it from memory.
5248     return SDValue();
5249   }
5250 
5251   // See if we should use shuffles to construct the vector from other vectors.
5252   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5253     return Res;
5254 
5255   // Detect SCALAR_TO_VECTOR conversions.
5256   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5257     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5258 
5259   // Otherwise use buildVector to build the vector up from GPRs.
5260   unsigned NumElements = Op.getNumOperands();
5261   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5262   for (unsigned I = 0; I < NumElements; ++I)
5263     Ops[I] = Op.getOperand(I);
5264   return buildVector(DAG, DL, VT, Ops);
5265 }
5266 
5267 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5268                                                    SelectionDAG &DAG) const {
5269   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5270   SDLoc DL(Op);
5271   EVT VT = Op.getValueType();
5272   unsigned NumElements = VT.getVectorNumElements();
5273 
5274   if (VSN->isSplat()) {
5275     SDValue Op0 = Op.getOperand(0);
5276     unsigned Index = VSN->getSplatIndex();
5277     assert(Index < VT.getVectorNumElements() &&
5278            "Splat index should be defined and in first operand");
5279     // See whether the value we're splatting is directly available as a scalar.
5280     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5281         Op0.getOpcode() == ISD::BUILD_VECTOR)
5282       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5283     // Otherwise keep it as a vector-to-vector operation.
5284     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5285                        DAG.getTargetConstant(Index, DL, MVT::i32));
5286   }
5287 
5288   GeneralShuffle GS(VT);
5289   for (unsigned I = 0; I < NumElements; ++I) {
5290     int Elt = VSN->getMaskElt(I);
5291     if (Elt < 0)
5292       GS.addUndef();
5293     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5294                      unsigned(Elt) % NumElements))
5295       return SDValue();
5296   }
5297   return GS.getNode(DAG, SDLoc(VSN));
5298 }
5299 
5300 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5301                                                      SelectionDAG &DAG) const {
5302   SDLoc DL(Op);
5303   // Just insert the scalar into element 0 of an undefined vector.
5304   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5305                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5306                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5307 }
5308 
5309 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5310                                                       SelectionDAG &DAG) const {
5311   // Handle insertions of floating-point values.
5312   SDLoc DL(Op);
5313   SDValue Op0 = Op.getOperand(0);
5314   SDValue Op1 = Op.getOperand(1);
5315   SDValue Op2 = Op.getOperand(2);
5316   EVT VT = Op.getValueType();
5317 
5318   // Insertions into constant indices of a v2f64 can be done using VPDI.
5319   // However, if the inserted value is a bitcast or a constant then it's
5320   // better to use GPRs, as below.
5321   if (VT == MVT::v2f64 &&
5322       Op1.getOpcode() != ISD::BITCAST &&
5323       Op1.getOpcode() != ISD::ConstantFP &&
5324       Op2.getOpcode() == ISD::Constant) {
5325     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5326     unsigned Mask = VT.getVectorNumElements() - 1;
5327     if (Index <= Mask)
5328       return Op;
5329   }
5330 
5331   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5332   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5333   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5334   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5335                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5336                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5337   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5338 }
5339 
5340 SDValue
5341 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5342                                                SelectionDAG &DAG) const {
5343   // Handle extractions of floating-point values.
5344   SDLoc DL(Op);
5345   SDValue Op0 = Op.getOperand(0);
5346   SDValue Op1 = Op.getOperand(1);
5347   EVT VT = Op.getValueType();
5348   EVT VecVT = Op0.getValueType();
5349 
5350   // Extractions of constant indices can be done directly.
5351   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5352     uint64_t Index = CIndexN->getZExtValue();
5353     unsigned Mask = VecVT.getVectorNumElements() - 1;
5354     if (Index <= Mask)
5355       return Op;
5356   }
5357 
5358   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5359   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5360   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5361   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5362                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5363   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5364 }
5365 
5366 SDValue SystemZTargetLowering::
5367 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5368   SDValue PackedOp = Op.getOperand(0);
5369   EVT OutVT = Op.getValueType();
5370   EVT InVT = PackedOp.getValueType();
5371   unsigned ToBits = OutVT.getScalarSizeInBits();
5372   unsigned FromBits = InVT.getScalarSizeInBits();
5373   do {
5374     FromBits *= 2;
5375     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5376                                  SystemZ::VectorBits / FromBits);
5377     PackedOp =
5378       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5379   } while (FromBits != ToBits);
5380   return PackedOp;
5381 }
5382 
5383 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5384 SDValue SystemZTargetLowering::
5385 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5386   SDValue PackedOp = Op.getOperand(0);
5387   SDLoc DL(Op);
5388   EVT OutVT = Op.getValueType();
5389   EVT InVT = PackedOp.getValueType();
5390   unsigned InNumElts = InVT.getVectorNumElements();
5391   unsigned OutNumElts = OutVT.getVectorNumElements();
5392   unsigned NumInPerOut = InNumElts / OutNumElts;
5393 
5394   SDValue ZeroVec =
5395     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5396 
5397   SmallVector<int, 16> Mask(InNumElts);
5398   unsigned ZeroVecElt = InNumElts;
5399   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5400     unsigned MaskElt = PackedElt * NumInPerOut;
5401     unsigned End = MaskElt + NumInPerOut - 1;
5402     for (; MaskElt < End; MaskElt++)
5403       Mask[MaskElt] = ZeroVecElt++;
5404     Mask[MaskElt] = PackedElt;
5405   }
5406   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5407   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5408 }
5409 
5410 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5411                                           unsigned ByScalar) const {
5412   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5413   SDValue Op0 = Op.getOperand(0);
5414   SDValue Op1 = Op.getOperand(1);
5415   SDLoc DL(Op);
5416   EVT VT = Op.getValueType();
5417   unsigned ElemBitSize = VT.getScalarSizeInBits();
5418 
5419   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5420   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5421     APInt SplatBits, SplatUndef;
5422     unsigned SplatBitSize;
5423     bool HasAnyUndefs;
5424     // Check for constant splats.  Use ElemBitSize as the minimum element
5425     // width and reject splats that need wider elements.
5426     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5427                              ElemBitSize, true) &&
5428         SplatBitSize == ElemBitSize) {
5429       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5430                                       DL, MVT::i32);
5431       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5432     }
5433     // Check for variable splats.
5434     BitVector UndefElements;
5435     SDValue Splat = BVN->getSplatValue(&UndefElements);
5436     if (Splat) {
5437       // Since i32 is the smallest legal type, we either need a no-op
5438       // or a truncation.
5439       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5440       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5441     }
5442   }
5443 
5444   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5445   // and the shift amount is directly available in a GPR.
5446   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5447     if (VSN->isSplat()) {
5448       SDValue VSNOp0 = VSN->getOperand(0);
5449       unsigned Index = VSN->getSplatIndex();
5450       assert(Index < VT.getVectorNumElements() &&
5451              "Splat index should be defined and in first operand");
5452       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5453           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5454         // Since i32 is the smallest legal type, we either need a no-op
5455         // or a truncation.
5456         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5457                                     VSNOp0.getOperand(Index));
5458         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5459       }
5460     }
5461   }
5462 
5463   // Otherwise just treat the current form as legal.
5464   return Op;
5465 }
5466 
5467 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5468                                               SelectionDAG &DAG) const {
5469   switch (Op.getOpcode()) {
5470   case ISD::FRAMEADDR:
5471     return lowerFRAMEADDR(Op, DAG);
5472   case ISD::RETURNADDR:
5473     return lowerRETURNADDR(Op, DAG);
5474   case ISD::BR_CC:
5475     return lowerBR_CC(Op, DAG);
5476   case ISD::SELECT_CC:
5477     return lowerSELECT_CC(Op, DAG);
5478   case ISD::SETCC:
5479     return lowerSETCC(Op, DAG);
5480   case ISD::STRICT_FSETCC:
5481     return lowerSTRICT_FSETCC(Op, DAG, false);
5482   case ISD::STRICT_FSETCCS:
5483     return lowerSTRICT_FSETCC(Op, DAG, true);
5484   case ISD::GlobalAddress:
5485     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5486   case ISD::GlobalTLSAddress:
5487     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5488   case ISD::BlockAddress:
5489     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5490   case ISD::JumpTable:
5491     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5492   case ISD::ConstantPool:
5493     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5494   case ISD::BITCAST:
5495     return lowerBITCAST(Op, DAG);
5496   case ISD::VASTART:
5497     return lowerVASTART(Op, DAG);
5498   case ISD::VACOPY:
5499     return lowerVACOPY(Op, DAG);
5500   case ISD::DYNAMIC_STACKALLOC:
5501     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5502   case ISD::GET_DYNAMIC_AREA_OFFSET:
5503     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5504   case ISD::SMUL_LOHI:
5505     return lowerSMUL_LOHI(Op, DAG);
5506   case ISD::UMUL_LOHI:
5507     return lowerUMUL_LOHI(Op, DAG);
5508   case ISD::SDIVREM:
5509     return lowerSDIVREM(Op, DAG);
5510   case ISD::UDIVREM:
5511     return lowerUDIVREM(Op, DAG);
5512   case ISD::SADDO:
5513   case ISD::SSUBO:
5514   case ISD::UADDO:
5515   case ISD::USUBO:
5516     return lowerXALUO(Op, DAG);
5517   case ISD::ADDCARRY:
5518   case ISD::SUBCARRY:
5519     return lowerADDSUBCARRY(Op, DAG);
5520   case ISD::OR:
5521     return lowerOR(Op, DAG);
5522   case ISD::CTPOP:
5523     return lowerCTPOP(Op, DAG);
5524   case ISD::ATOMIC_FENCE:
5525     return lowerATOMIC_FENCE(Op, DAG);
5526   case ISD::ATOMIC_SWAP:
5527     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5528   case ISD::ATOMIC_STORE:
5529     return lowerATOMIC_STORE(Op, DAG);
5530   case ISD::ATOMIC_LOAD:
5531     return lowerATOMIC_LOAD(Op, DAG);
5532   case ISD::ATOMIC_LOAD_ADD:
5533     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5534   case ISD::ATOMIC_LOAD_SUB:
5535     return lowerATOMIC_LOAD_SUB(Op, DAG);
5536   case ISD::ATOMIC_LOAD_AND:
5537     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5538   case ISD::ATOMIC_LOAD_OR:
5539     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5540   case ISD::ATOMIC_LOAD_XOR:
5541     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5542   case ISD::ATOMIC_LOAD_NAND:
5543     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5544   case ISD::ATOMIC_LOAD_MIN:
5545     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5546   case ISD::ATOMIC_LOAD_MAX:
5547     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5548   case ISD::ATOMIC_LOAD_UMIN:
5549     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5550   case ISD::ATOMIC_LOAD_UMAX:
5551     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5552   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5553     return lowerATOMIC_CMP_SWAP(Op, DAG);
5554   case ISD::STACKSAVE:
5555     return lowerSTACKSAVE(Op, DAG);
5556   case ISD::STACKRESTORE:
5557     return lowerSTACKRESTORE(Op, DAG);
5558   case ISD::PREFETCH:
5559     return lowerPREFETCH(Op, DAG);
5560   case ISD::INTRINSIC_W_CHAIN:
5561     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5562   case ISD::INTRINSIC_WO_CHAIN:
5563     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5564   case ISD::BUILD_VECTOR:
5565     return lowerBUILD_VECTOR(Op, DAG);
5566   case ISD::VECTOR_SHUFFLE:
5567     return lowerVECTOR_SHUFFLE(Op, DAG);
5568   case ISD::SCALAR_TO_VECTOR:
5569     return lowerSCALAR_TO_VECTOR(Op, DAG);
5570   case ISD::INSERT_VECTOR_ELT:
5571     return lowerINSERT_VECTOR_ELT(Op, DAG);
5572   case ISD::EXTRACT_VECTOR_ELT:
5573     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5574   case ISD::SIGN_EXTEND_VECTOR_INREG:
5575     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5576   case ISD::ZERO_EXTEND_VECTOR_INREG:
5577     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5578   case ISD::SHL:
5579     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5580   case ISD::SRL:
5581     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5582   case ISD::SRA:
5583     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5584   default:
5585     llvm_unreachable("Unexpected node to lower");
5586   }
5587 }
5588 
5589 // Lower operations with invalid operand or result types (currently used
5590 // only for 128-bit integer types).
5591 void
5592 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5593                                              SmallVectorImpl<SDValue> &Results,
5594                                              SelectionDAG &DAG) const {
5595   switch (N->getOpcode()) {
5596   case ISD::ATOMIC_LOAD: {
5597     SDLoc DL(N);
5598     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5599     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5600     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5601     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5602                                           DL, Tys, Ops, MVT::i128, MMO);
5603     Results.push_back(lowerGR128ToI128(DAG, Res));
5604     Results.push_back(Res.getValue(1));
5605     break;
5606   }
5607   case ISD::ATOMIC_STORE: {
5608     SDLoc DL(N);
5609     SDVTList Tys = DAG.getVTList(MVT::Other);
5610     SDValue Ops[] = { N->getOperand(0),
5611                       lowerI128ToGR128(DAG, N->getOperand(2)),
5612                       N->getOperand(1) };
5613     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5614     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5615                                           DL, Tys, Ops, MVT::i128, MMO);
5616     // We have to enforce sequential consistency by performing a
5617     // serialization operation after the store.
5618     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5619         AtomicOrdering::SequentiallyConsistent)
5620       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5621                                        MVT::Other, Res), 0);
5622     Results.push_back(Res);
5623     break;
5624   }
5625   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5626     SDLoc DL(N);
5627     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5628     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5629                       lowerI128ToGR128(DAG, N->getOperand(2)),
5630                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5631     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5632     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5633                                           DL, Tys, Ops, MVT::i128, MMO);
5634     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5635                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5636     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5637     Results.push_back(lowerGR128ToI128(DAG, Res));
5638     Results.push_back(Success);
5639     Results.push_back(Res.getValue(2));
5640     break;
5641   }
5642   case ISD::BITCAST: {
5643     SDValue Src = N->getOperand(0);
5644     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5645         !useSoftFloat()) {
5646       SDLoc DL(N);
5647       SDValue Lo, Hi;
5648       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5649         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5650         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5651                          DAG.getConstant(1, DL, MVT::i32));
5652         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5653                          DAG.getConstant(0, DL, MVT::i32));
5654       } else {
5655         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5656                "Unrecognized register class for f128.");
5657         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5658                                                   DL, MVT::f64, Src);
5659         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5660                                                   DL, MVT::f64, Src);
5661         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5662         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5663       }
5664       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5665     }
5666     break;
5667   }
5668   default:
5669     llvm_unreachable("Unexpected node to lower");
5670   }
5671 }
5672 
5673 void
5674 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5675                                           SmallVectorImpl<SDValue> &Results,
5676                                           SelectionDAG &DAG) const {
5677   return LowerOperationWrapper(N, Results, DAG);
5678 }
5679 
5680 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5681 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5682   switch ((SystemZISD::NodeType)Opcode) {
5683     case SystemZISD::FIRST_NUMBER: break;
5684     OPCODE(RET_FLAG);
5685     OPCODE(CALL);
5686     OPCODE(SIBCALL);
5687     OPCODE(TLS_GDCALL);
5688     OPCODE(TLS_LDCALL);
5689     OPCODE(PCREL_WRAPPER);
5690     OPCODE(PCREL_OFFSET);
5691     OPCODE(ICMP);
5692     OPCODE(FCMP);
5693     OPCODE(STRICT_FCMP);
5694     OPCODE(STRICT_FCMPS);
5695     OPCODE(TM);
5696     OPCODE(BR_CCMASK);
5697     OPCODE(SELECT_CCMASK);
5698     OPCODE(ADJDYNALLOC);
5699     OPCODE(PROBED_ALLOCA);
5700     OPCODE(POPCNT);
5701     OPCODE(SMUL_LOHI);
5702     OPCODE(UMUL_LOHI);
5703     OPCODE(SDIVREM);
5704     OPCODE(UDIVREM);
5705     OPCODE(SADDO);
5706     OPCODE(SSUBO);
5707     OPCODE(UADDO);
5708     OPCODE(USUBO);
5709     OPCODE(ADDCARRY);
5710     OPCODE(SUBCARRY);
5711     OPCODE(GET_CCMASK);
5712     OPCODE(MVC);
5713     OPCODE(NC);
5714     OPCODE(OC);
5715     OPCODE(XC);
5716     OPCODE(CLC);
5717     OPCODE(STPCPY);
5718     OPCODE(STRCMP);
5719     OPCODE(SEARCH_STRING);
5720     OPCODE(IPM);
5721     OPCODE(MEMBARRIER);
5722     OPCODE(TBEGIN);
5723     OPCODE(TBEGIN_NOFLOAT);
5724     OPCODE(TEND);
5725     OPCODE(BYTE_MASK);
5726     OPCODE(ROTATE_MASK);
5727     OPCODE(REPLICATE);
5728     OPCODE(JOIN_DWORDS);
5729     OPCODE(SPLAT);
5730     OPCODE(MERGE_HIGH);
5731     OPCODE(MERGE_LOW);
5732     OPCODE(SHL_DOUBLE);
5733     OPCODE(PERMUTE_DWORDS);
5734     OPCODE(PERMUTE);
5735     OPCODE(PACK);
5736     OPCODE(PACKS_CC);
5737     OPCODE(PACKLS_CC);
5738     OPCODE(UNPACK_HIGH);
5739     OPCODE(UNPACKL_HIGH);
5740     OPCODE(UNPACK_LOW);
5741     OPCODE(UNPACKL_LOW);
5742     OPCODE(VSHL_BY_SCALAR);
5743     OPCODE(VSRL_BY_SCALAR);
5744     OPCODE(VSRA_BY_SCALAR);
5745     OPCODE(VSUM);
5746     OPCODE(VICMPE);
5747     OPCODE(VICMPH);
5748     OPCODE(VICMPHL);
5749     OPCODE(VICMPES);
5750     OPCODE(VICMPHS);
5751     OPCODE(VICMPHLS);
5752     OPCODE(VFCMPE);
5753     OPCODE(STRICT_VFCMPE);
5754     OPCODE(STRICT_VFCMPES);
5755     OPCODE(VFCMPH);
5756     OPCODE(STRICT_VFCMPH);
5757     OPCODE(STRICT_VFCMPHS);
5758     OPCODE(VFCMPHE);
5759     OPCODE(STRICT_VFCMPHE);
5760     OPCODE(STRICT_VFCMPHES);
5761     OPCODE(VFCMPES);
5762     OPCODE(VFCMPHS);
5763     OPCODE(VFCMPHES);
5764     OPCODE(VFTCI);
5765     OPCODE(VEXTEND);
5766     OPCODE(STRICT_VEXTEND);
5767     OPCODE(VROUND);
5768     OPCODE(STRICT_VROUND);
5769     OPCODE(VTM);
5770     OPCODE(VFAE_CC);
5771     OPCODE(VFAEZ_CC);
5772     OPCODE(VFEE_CC);
5773     OPCODE(VFEEZ_CC);
5774     OPCODE(VFENE_CC);
5775     OPCODE(VFENEZ_CC);
5776     OPCODE(VISTR_CC);
5777     OPCODE(VSTRC_CC);
5778     OPCODE(VSTRCZ_CC);
5779     OPCODE(VSTRS_CC);
5780     OPCODE(VSTRSZ_CC);
5781     OPCODE(TDC);
5782     OPCODE(ATOMIC_SWAPW);
5783     OPCODE(ATOMIC_LOADW_ADD);
5784     OPCODE(ATOMIC_LOADW_SUB);
5785     OPCODE(ATOMIC_LOADW_AND);
5786     OPCODE(ATOMIC_LOADW_OR);
5787     OPCODE(ATOMIC_LOADW_XOR);
5788     OPCODE(ATOMIC_LOADW_NAND);
5789     OPCODE(ATOMIC_LOADW_MIN);
5790     OPCODE(ATOMIC_LOADW_MAX);
5791     OPCODE(ATOMIC_LOADW_UMIN);
5792     OPCODE(ATOMIC_LOADW_UMAX);
5793     OPCODE(ATOMIC_CMP_SWAPW);
5794     OPCODE(ATOMIC_CMP_SWAP);
5795     OPCODE(ATOMIC_LOAD_128);
5796     OPCODE(ATOMIC_STORE_128);
5797     OPCODE(ATOMIC_CMP_SWAP_128);
5798     OPCODE(LRV);
5799     OPCODE(STRV);
5800     OPCODE(VLER);
5801     OPCODE(VSTER);
5802     OPCODE(PREFETCH);
5803   }
5804   return nullptr;
5805 #undef OPCODE
5806 }
5807 
5808 // Return true if VT is a vector whose elements are a whole number of bytes
5809 // in width. Also check for presence of vector support.
5810 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5811   if (!Subtarget.hasVector())
5812     return false;
5813 
5814   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5815 }
5816 
5817 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5818 // producing a result of type ResVT.  Op is a possibly bitcast version
5819 // of the input vector and Index is the index (based on type VecVT) that
5820 // should be extracted.  Return the new extraction if a simplification
5821 // was possible or if Force is true.
5822 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5823                                               EVT VecVT, SDValue Op,
5824                                               unsigned Index,
5825                                               DAGCombinerInfo &DCI,
5826                                               bool Force) const {
5827   SelectionDAG &DAG = DCI.DAG;
5828 
5829   // The number of bytes being extracted.
5830   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5831 
5832   for (;;) {
5833     unsigned Opcode = Op.getOpcode();
5834     if (Opcode == ISD::BITCAST)
5835       // Look through bitcasts.
5836       Op = Op.getOperand(0);
5837     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5838              canTreatAsByteVector(Op.getValueType())) {
5839       // Get a VPERM-like permute mask and see whether the bytes covered
5840       // by the extracted element are a contiguous sequence from one
5841       // source operand.
5842       SmallVector<int, SystemZ::VectorBytes> Bytes;
5843       if (!getVPermMask(Op, Bytes))
5844         break;
5845       int First;
5846       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5847                            BytesPerElement, First))
5848         break;
5849       if (First < 0)
5850         return DAG.getUNDEF(ResVT);
5851       // Make sure the contiguous sequence starts at a multiple of the
5852       // original element size.
5853       unsigned Byte = unsigned(First) % Bytes.size();
5854       if (Byte % BytesPerElement != 0)
5855         break;
5856       // We can get the extracted value directly from an input.
5857       Index = Byte / BytesPerElement;
5858       Op = Op.getOperand(unsigned(First) / Bytes.size());
5859       Force = true;
5860     } else if (Opcode == ISD::BUILD_VECTOR &&
5861                canTreatAsByteVector(Op.getValueType())) {
5862       // We can only optimize this case if the BUILD_VECTOR elements are
5863       // at least as wide as the extracted value.
5864       EVT OpVT = Op.getValueType();
5865       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5866       if (OpBytesPerElement < BytesPerElement)
5867         break;
5868       // Make sure that the least-significant bit of the extracted value
5869       // is the least significant bit of an input.
5870       unsigned End = (Index + 1) * BytesPerElement;
5871       if (End % OpBytesPerElement != 0)
5872         break;
5873       // We're extracting the low part of one operand of the BUILD_VECTOR.
5874       Op = Op.getOperand(End / OpBytesPerElement - 1);
5875       if (!Op.getValueType().isInteger()) {
5876         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5877         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5878         DCI.AddToWorklist(Op.getNode());
5879       }
5880       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5881       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5882       if (VT != ResVT) {
5883         DCI.AddToWorklist(Op.getNode());
5884         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5885       }
5886       return Op;
5887     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5888                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5889                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5890                canTreatAsByteVector(Op.getValueType()) &&
5891                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5892       // Make sure that only the unextended bits are significant.
5893       EVT ExtVT = Op.getValueType();
5894       EVT OpVT = Op.getOperand(0).getValueType();
5895       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5896       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5897       unsigned Byte = Index * BytesPerElement;
5898       unsigned SubByte = Byte % ExtBytesPerElement;
5899       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5900       if (SubByte < MinSubByte ||
5901           SubByte + BytesPerElement > ExtBytesPerElement)
5902         break;
5903       // Get the byte offset of the unextended element
5904       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5905       // ...then add the byte offset relative to that element.
5906       Byte += SubByte - MinSubByte;
5907       if (Byte % BytesPerElement != 0)
5908         break;
5909       Op = Op.getOperand(0);
5910       Index = Byte / BytesPerElement;
5911       Force = true;
5912     } else
5913       break;
5914   }
5915   if (Force) {
5916     if (Op.getValueType() != VecVT) {
5917       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5918       DCI.AddToWorklist(Op.getNode());
5919     }
5920     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5921                        DAG.getConstant(Index, DL, MVT::i32));
5922   }
5923   return SDValue();
5924 }
5925 
5926 // Optimize vector operations in scalar value Op on the basis that Op
5927 // is truncated to TruncVT.
5928 SDValue SystemZTargetLowering::combineTruncateExtract(
5929     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5930   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5931   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5932   // of type TruncVT.
5933   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5934       TruncVT.getSizeInBits() % 8 == 0) {
5935     SDValue Vec = Op.getOperand(0);
5936     EVT VecVT = Vec.getValueType();
5937     if (canTreatAsByteVector(VecVT)) {
5938       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5939         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5940         unsigned TruncBytes = TruncVT.getStoreSize();
5941         if (BytesPerElement % TruncBytes == 0) {
5942           // Calculate the value of Y' in the above description.  We are
5943           // splitting the original elements into Scale equal-sized pieces
5944           // and for truncation purposes want the last (least-significant)
5945           // of these pieces for IndexN.  This is easiest to do by calculating
5946           // the start index of the following element and then subtracting 1.
5947           unsigned Scale = BytesPerElement / TruncBytes;
5948           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5949 
5950           // Defer the creation of the bitcast from X to combineExtract,
5951           // which might be able to optimize the extraction.
5952           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5953                                    VecVT.getStoreSize() / TruncBytes);
5954           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5955           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5956         }
5957       }
5958     }
5959   }
5960   return SDValue();
5961 }
5962 
5963 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5964     SDNode *N, DAGCombinerInfo &DCI) const {
5965   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5966   SelectionDAG &DAG = DCI.DAG;
5967   SDValue N0 = N->getOperand(0);
5968   EVT VT = N->getValueType(0);
5969   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5970     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5971     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5972     if (TrueOp && FalseOp) {
5973       SDLoc DL(N0);
5974       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5975                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5976                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5977       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5978       // If N0 has multiple uses, change other uses as well.
5979       if (!N0.hasOneUse()) {
5980         SDValue TruncSelect =
5981           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5982         DCI.CombineTo(N0.getNode(), TruncSelect);
5983       }
5984       return NewSelect;
5985     }
5986   }
5987   return SDValue();
5988 }
5989 
5990 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5991     SDNode *N, DAGCombinerInfo &DCI) const {
5992   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5993   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5994   // into (select_cc LHS, RHS, -1, 0, COND)
5995   SelectionDAG &DAG = DCI.DAG;
5996   SDValue N0 = N->getOperand(0);
5997   EVT VT = N->getValueType(0);
5998   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5999   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6000     N0 = N0.getOperand(0);
6001   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6002     SDLoc DL(N0);
6003     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6004                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6005                       N0.getOperand(2) };
6006     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6007   }
6008   return SDValue();
6009 }
6010 
6011 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6012     SDNode *N, DAGCombinerInfo &DCI) const {
6013   // Convert (sext (ashr (shl X, C1), C2)) to
6014   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6015   // cheap as narrower ones.
6016   SelectionDAG &DAG = DCI.DAG;
6017   SDValue N0 = N->getOperand(0);
6018   EVT VT = N->getValueType(0);
6019   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6020     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6021     SDValue Inner = N0.getOperand(0);
6022     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6023       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6024         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6025         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6026         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6027         EVT ShiftVT = N0.getOperand(1).getValueType();
6028         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6029                                   Inner.getOperand(0));
6030         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6031                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6032                                                   ShiftVT));
6033         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6034                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6035       }
6036     }
6037   }
6038   return SDValue();
6039 }
6040 
6041 SDValue SystemZTargetLowering::combineMERGE(
6042     SDNode *N, DAGCombinerInfo &DCI) const {
6043   SelectionDAG &DAG = DCI.DAG;
6044   unsigned Opcode = N->getOpcode();
6045   SDValue Op0 = N->getOperand(0);
6046   SDValue Op1 = N->getOperand(1);
6047   if (Op0.getOpcode() == ISD::BITCAST)
6048     Op0 = Op0.getOperand(0);
6049   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6050     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6051     // for v4f32.
6052     if (Op1 == N->getOperand(0))
6053       return Op1;
6054     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6055     EVT VT = Op1.getValueType();
6056     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6057     if (ElemBytes <= 4) {
6058       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6059                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6060       EVT InVT = VT.changeVectorElementTypeToInteger();
6061       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6062                                    SystemZ::VectorBytes / ElemBytes / 2);
6063       if (VT != InVT) {
6064         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6065         DCI.AddToWorklist(Op1.getNode());
6066       }
6067       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6068       DCI.AddToWorklist(Op.getNode());
6069       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6070     }
6071   }
6072   return SDValue();
6073 }
6074 
6075 SDValue SystemZTargetLowering::combineLOAD(
6076     SDNode *N, DAGCombinerInfo &DCI) const {
6077   SelectionDAG &DAG = DCI.DAG;
6078   EVT LdVT = N->getValueType(0);
6079   if (LdVT.isVector() || LdVT.isInteger())
6080     return SDValue();
6081   // Transform a scalar load that is REPLICATEd as well as having other
6082   // use(s) to the form where the other use(s) use the first element of the
6083   // REPLICATE instead of the load. Otherwise instruction selection will not
6084   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6085   // point loads.
6086 
6087   SDValue Replicate;
6088   SmallVector<SDNode*, 8> OtherUses;
6089   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6090        UI != UE; ++UI) {
6091     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6092       if (Replicate)
6093         return SDValue(); // Should never happen
6094       Replicate = SDValue(*UI, 0);
6095     }
6096     else if (UI.getUse().getResNo() == 0)
6097       OtherUses.push_back(*UI);
6098   }
6099   if (!Replicate || OtherUses.empty())
6100     return SDValue();
6101 
6102   SDLoc DL(N);
6103   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6104                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6105   // Update uses of the loaded Value while preserving old chains.
6106   for (SDNode *U : OtherUses) {
6107     SmallVector<SDValue, 8> Ops;
6108     for (SDValue Op : U->ops())
6109       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6110     DAG.UpdateNodeOperands(U, Ops);
6111   }
6112   return SDValue(N, 0);
6113 }
6114 
6115 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6116   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6117     return true;
6118   if (Subtarget.hasVectorEnhancements2())
6119     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6120       return true;
6121   return false;
6122 }
6123 
6124 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6125   if (!VT.isVector() || !VT.isSimple() ||
6126       VT.getSizeInBits() != 128 ||
6127       VT.getScalarSizeInBits() % 8 != 0)
6128     return false;
6129 
6130   unsigned NumElts = VT.getVectorNumElements();
6131   for (unsigned i = 0; i < NumElts; ++i) {
6132     if (M[i] < 0) continue; // ignore UNDEF indices
6133     if ((unsigned) M[i] != NumElts - 1 - i)
6134       return false;
6135   }
6136 
6137   return true;
6138 }
6139 
6140 SDValue SystemZTargetLowering::combineSTORE(
6141     SDNode *N, DAGCombinerInfo &DCI) const {
6142   SelectionDAG &DAG = DCI.DAG;
6143   auto *SN = cast<StoreSDNode>(N);
6144   auto &Op1 = N->getOperand(1);
6145   EVT MemVT = SN->getMemoryVT();
6146   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6147   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6148   // If X has wider elements then convert it to:
6149   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6150   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6151     if (SDValue Value =
6152             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6153       DCI.AddToWorklist(Value.getNode());
6154 
6155       // Rewrite the store with the new form of stored value.
6156       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6157                                SN->getBasePtr(), SN->getMemoryVT(),
6158                                SN->getMemOperand());
6159     }
6160   }
6161   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6162   if (!SN->isTruncatingStore() &&
6163       Op1.getOpcode() == ISD::BSWAP &&
6164       Op1.getNode()->hasOneUse() &&
6165       canLoadStoreByteSwapped(Op1.getValueType())) {
6166 
6167       SDValue BSwapOp = Op1.getOperand(0);
6168 
6169       if (BSwapOp.getValueType() == MVT::i16)
6170         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6171 
6172       SDValue Ops[] = {
6173         N->getOperand(0), BSwapOp, N->getOperand(2)
6174       };
6175 
6176       return
6177         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6178                                 Ops, MemVT, SN->getMemOperand());
6179     }
6180   // Combine STORE (element-swap) into VSTER
6181   if (!SN->isTruncatingStore() &&
6182       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6183       Op1.getNode()->hasOneUse() &&
6184       Subtarget.hasVectorEnhancements2()) {
6185     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6186     ArrayRef<int> ShuffleMask = SVN->getMask();
6187     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6188       SDValue Ops[] = {
6189         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6190       };
6191 
6192       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6193                                      DAG.getVTList(MVT::Other),
6194                                      Ops, MemVT, SN->getMemOperand());
6195     }
6196   }
6197 
6198   return SDValue();
6199 }
6200 
6201 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6202     SDNode *N, DAGCombinerInfo &DCI) const {
6203   SelectionDAG &DAG = DCI.DAG;
6204   // Combine element-swap (LOAD) into VLER
6205   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6206       N->getOperand(0).hasOneUse() &&
6207       Subtarget.hasVectorEnhancements2()) {
6208     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6209     ArrayRef<int> ShuffleMask = SVN->getMask();
6210     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6211       SDValue Load = N->getOperand(0);
6212       LoadSDNode *LD = cast<LoadSDNode>(Load);
6213 
6214       // Create the element-swapping load.
6215       SDValue Ops[] = {
6216         LD->getChain(),    // Chain
6217         LD->getBasePtr()   // Ptr
6218       };
6219       SDValue ESLoad =
6220         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6221                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6222                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6223 
6224       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6225       // by the load dead.
6226       DCI.CombineTo(N, ESLoad);
6227 
6228       // Next, combine the load away, we give it a bogus result value but a real
6229       // chain result.  The result value is dead because the shuffle is dead.
6230       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6231 
6232       // Return N so it doesn't get rechecked!
6233       return SDValue(N, 0);
6234     }
6235   }
6236 
6237   return SDValue();
6238 }
6239 
6240 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6241     SDNode *N, DAGCombinerInfo &DCI) const {
6242   SelectionDAG &DAG = DCI.DAG;
6243 
6244   if (!Subtarget.hasVector())
6245     return SDValue();
6246 
6247   // Look through bitcasts that retain the number of vector elements.
6248   SDValue Op = N->getOperand(0);
6249   if (Op.getOpcode() == ISD::BITCAST &&
6250       Op.getValueType().isVector() &&
6251       Op.getOperand(0).getValueType().isVector() &&
6252       Op.getValueType().getVectorNumElements() ==
6253       Op.getOperand(0).getValueType().getVectorNumElements())
6254     Op = Op.getOperand(0);
6255 
6256   // Pull BSWAP out of a vector extraction.
6257   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6258     EVT VecVT = Op.getValueType();
6259     EVT EltVT = VecVT.getVectorElementType();
6260     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6261                      Op.getOperand(0), N->getOperand(1));
6262     DCI.AddToWorklist(Op.getNode());
6263     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6264     if (EltVT != N->getValueType(0)) {
6265       DCI.AddToWorklist(Op.getNode());
6266       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6267     }
6268     return Op;
6269   }
6270 
6271   // Try to simplify a vector extraction.
6272   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6273     SDValue Op0 = N->getOperand(0);
6274     EVT VecVT = Op0.getValueType();
6275     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6276                           IndexN->getZExtValue(), DCI, false);
6277   }
6278   return SDValue();
6279 }
6280 
6281 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6282     SDNode *N, DAGCombinerInfo &DCI) const {
6283   SelectionDAG &DAG = DCI.DAG;
6284   // (join_dwords X, X) == (replicate X)
6285   if (N->getOperand(0) == N->getOperand(1))
6286     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6287                        N->getOperand(0));
6288   return SDValue();
6289 }
6290 
6291 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6292   SDValue Chain1 = N1->getOperand(0);
6293   SDValue Chain2 = N2->getOperand(0);
6294 
6295   // Trivial case: both nodes take the same chain.
6296   if (Chain1 == Chain2)
6297     return Chain1;
6298 
6299   // FIXME - we could handle more complex cases via TokenFactor,
6300   // assuming we can verify that this would not create a cycle.
6301   return SDValue();
6302 }
6303 
6304 SDValue SystemZTargetLowering::combineFP_ROUND(
6305     SDNode *N, DAGCombinerInfo &DCI) const {
6306 
6307   if (!Subtarget.hasVector())
6308     return SDValue();
6309 
6310   // (fpround (extract_vector_elt X 0))
6311   // (fpround (extract_vector_elt X 1)) ->
6312   // (extract_vector_elt (VROUND X) 0)
6313   // (extract_vector_elt (VROUND X) 2)
6314   //
6315   // This is a special case since the target doesn't really support v2f32s.
6316   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6317   SelectionDAG &DAG = DCI.DAG;
6318   SDValue Op0 = N->getOperand(OpNo);
6319   if (N->getValueType(0) == MVT::f32 &&
6320       Op0.hasOneUse() &&
6321       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6322       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6323       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6324       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6325     SDValue Vec = Op0.getOperand(0);
6326     for (auto *U : Vec->uses()) {
6327       if (U != Op0.getNode() &&
6328           U->hasOneUse() &&
6329           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6330           U->getOperand(0) == Vec &&
6331           U->getOperand(1).getOpcode() == ISD::Constant &&
6332           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6333         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6334         if (OtherRound.getOpcode() == N->getOpcode() &&
6335             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6336             OtherRound.getValueType() == MVT::f32) {
6337           SDValue VRound, Chain;
6338           if (N->isStrictFPOpcode()) {
6339             Chain = MergeInputChains(N, OtherRound.getNode());
6340             if (!Chain)
6341               continue;
6342             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6343                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6344             Chain = VRound.getValue(1);
6345           } else
6346             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6347                                  MVT::v4f32, Vec);
6348           DCI.AddToWorklist(VRound.getNode());
6349           SDValue Extract1 =
6350             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6351                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6352           DCI.AddToWorklist(Extract1.getNode());
6353           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6354           if (Chain)
6355             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6356           SDValue Extract0 =
6357             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6358                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6359           if (Chain)
6360             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6361                                N->getVTList(), Extract0, Chain);
6362           return Extract0;
6363         }
6364       }
6365     }
6366   }
6367   return SDValue();
6368 }
6369 
6370 SDValue SystemZTargetLowering::combineFP_EXTEND(
6371     SDNode *N, DAGCombinerInfo &DCI) const {
6372 
6373   if (!Subtarget.hasVector())
6374     return SDValue();
6375 
6376   // (fpextend (extract_vector_elt X 0))
6377   // (fpextend (extract_vector_elt X 2)) ->
6378   // (extract_vector_elt (VEXTEND X) 0)
6379   // (extract_vector_elt (VEXTEND X) 1)
6380   //
6381   // This is a special case since the target doesn't really support v2f32s.
6382   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6383   SelectionDAG &DAG = DCI.DAG;
6384   SDValue Op0 = N->getOperand(OpNo);
6385   if (N->getValueType(0) == MVT::f64 &&
6386       Op0.hasOneUse() &&
6387       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6388       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6389       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6390       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6391     SDValue Vec = Op0.getOperand(0);
6392     for (auto *U : Vec->uses()) {
6393       if (U != Op0.getNode() &&
6394           U->hasOneUse() &&
6395           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6396           U->getOperand(0) == Vec &&
6397           U->getOperand(1).getOpcode() == ISD::Constant &&
6398           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6399         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6400         if (OtherExtend.getOpcode() == N->getOpcode() &&
6401             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6402             OtherExtend.getValueType() == MVT::f64) {
6403           SDValue VExtend, Chain;
6404           if (N->isStrictFPOpcode()) {
6405             Chain = MergeInputChains(N, OtherExtend.getNode());
6406             if (!Chain)
6407               continue;
6408             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6409                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6410             Chain = VExtend.getValue(1);
6411           } else
6412             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6413                                   MVT::v2f64, Vec);
6414           DCI.AddToWorklist(VExtend.getNode());
6415           SDValue Extract1 =
6416             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6417                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6418           DCI.AddToWorklist(Extract1.getNode());
6419           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6420           if (Chain)
6421             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6422           SDValue Extract0 =
6423             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6424                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6425           if (Chain)
6426             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6427                                N->getVTList(), Extract0, Chain);
6428           return Extract0;
6429         }
6430       }
6431     }
6432   }
6433   return SDValue();
6434 }
6435 
6436 SDValue SystemZTargetLowering::combineINT_TO_FP(
6437     SDNode *N, DAGCombinerInfo &DCI) const {
6438   if (DCI.Level != BeforeLegalizeTypes)
6439     return SDValue();
6440   unsigned Opcode = N->getOpcode();
6441   EVT OutVT = N->getValueType(0);
6442   SelectionDAG &DAG = DCI.DAG;
6443   SDValue Op = N->getOperand(0);
6444   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6445   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6446 
6447   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6448   // v2f64 = uint_to_fp v2i16
6449   // =>
6450   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6451   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6452     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6453                                  OutVT.getVectorNumElements());
6454     unsigned ExtOpcode =
6455       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6456     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6457     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6458   }
6459   return SDValue();
6460 }
6461 
6462 SDValue SystemZTargetLowering::combineBSWAP(
6463     SDNode *N, DAGCombinerInfo &DCI) const {
6464   SelectionDAG &DAG = DCI.DAG;
6465   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6466   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6467       N->getOperand(0).hasOneUse() &&
6468       canLoadStoreByteSwapped(N->getValueType(0))) {
6469       SDValue Load = N->getOperand(0);
6470       LoadSDNode *LD = cast<LoadSDNode>(Load);
6471 
6472       // Create the byte-swapping load.
6473       SDValue Ops[] = {
6474         LD->getChain(),    // Chain
6475         LD->getBasePtr()   // Ptr
6476       };
6477       EVT LoadVT = N->getValueType(0);
6478       if (LoadVT == MVT::i16)
6479         LoadVT = MVT::i32;
6480       SDValue BSLoad =
6481         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6482                                 DAG.getVTList(LoadVT, MVT::Other),
6483                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6484 
6485       // If this is an i16 load, insert the truncate.
6486       SDValue ResVal = BSLoad;
6487       if (N->getValueType(0) == MVT::i16)
6488         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6489 
6490       // First, combine the bswap away.  This makes the value produced by the
6491       // load dead.
6492       DCI.CombineTo(N, ResVal);
6493 
6494       // Next, combine the load away, we give it a bogus result value but a real
6495       // chain result.  The result value is dead because the bswap is dead.
6496       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6497 
6498       // Return N so it doesn't get rechecked!
6499       return SDValue(N, 0);
6500     }
6501 
6502   // Look through bitcasts that retain the number of vector elements.
6503   SDValue Op = N->getOperand(0);
6504   if (Op.getOpcode() == ISD::BITCAST &&
6505       Op.getValueType().isVector() &&
6506       Op.getOperand(0).getValueType().isVector() &&
6507       Op.getValueType().getVectorNumElements() ==
6508       Op.getOperand(0).getValueType().getVectorNumElements())
6509     Op = Op.getOperand(0);
6510 
6511   // Push BSWAP into a vector insertion if at least one side then simplifies.
6512   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6513     SDValue Vec = Op.getOperand(0);
6514     SDValue Elt = Op.getOperand(1);
6515     SDValue Idx = Op.getOperand(2);
6516 
6517     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6518         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6519         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6520         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6521         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6522          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6523       EVT VecVT = N->getValueType(0);
6524       EVT EltVT = N->getValueType(0).getVectorElementType();
6525       if (VecVT != Vec.getValueType()) {
6526         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6527         DCI.AddToWorklist(Vec.getNode());
6528       }
6529       if (EltVT != Elt.getValueType()) {
6530         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6531         DCI.AddToWorklist(Elt.getNode());
6532       }
6533       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6534       DCI.AddToWorklist(Vec.getNode());
6535       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6536       DCI.AddToWorklist(Elt.getNode());
6537       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6538                          Vec, Elt, Idx);
6539     }
6540   }
6541 
6542   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6543   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6544   if (SV && Op.hasOneUse()) {
6545     SDValue Op0 = Op.getOperand(0);
6546     SDValue Op1 = Op.getOperand(1);
6547 
6548     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6549         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6550         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6551         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6552       EVT VecVT = N->getValueType(0);
6553       if (VecVT != Op0.getValueType()) {
6554         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6555         DCI.AddToWorklist(Op0.getNode());
6556       }
6557       if (VecVT != Op1.getValueType()) {
6558         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6559         DCI.AddToWorklist(Op1.getNode());
6560       }
6561       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6562       DCI.AddToWorklist(Op0.getNode());
6563       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6564       DCI.AddToWorklist(Op1.getNode());
6565       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6566     }
6567   }
6568 
6569   return SDValue();
6570 }
6571 
6572 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6573   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6574   // set by the CCReg instruction using the CCValid / CCMask masks,
6575   // If the CCReg instruction is itself a ICMP testing the condition
6576   // code set by some other instruction, see whether we can directly
6577   // use that condition code.
6578 
6579   // Verify that we have an ICMP against some constant.
6580   if (CCValid != SystemZ::CCMASK_ICMP)
6581     return false;
6582   auto *ICmp = CCReg.getNode();
6583   if (ICmp->getOpcode() != SystemZISD::ICMP)
6584     return false;
6585   auto *CompareLHS = ICmp->getOperand(0).getNode();
6586   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6587   if (!CompareRHS)
6588     return false;
6589 
6590   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6591   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6592     // Verify that we have an appropriate mask for a EQ or NE comparison.
6593     bool Invert = false;
6594     if (CCMask == SystemZ::CCMASK_CMP_NE)
6595       Invert = !Invert;
6596     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6597       return false;
6598 
6599     // Verify that the ICMP compares against one of select values.
6600     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6601     if (!TrueVal)
6602       return false;
6603     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6604     if (!FalseVal)
6605       return false;
6606     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6607       Invert = !Invert;
6608     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6609       return false;
6610 
6611     // Compute the effective CC mask for the new branch or select.
6612     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6613     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6614     if (!NewCCValid || !NewCCMask)
6615       return false;
6616     CCValid = NewCCValid->getZExtValue();
6617     CCMask = NewCCMask->getZExtValue();
6618     if (Invert)
6619       CCMask ^= CCValid;
6620 
6621     // Return the updated CCReg link.
6622     CCReg = CompareLHS->getOperand(4);
6623     return true;
6624   }
6625 
6626   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6627   if (CompareLHS->getOpcode() == ISD::SRA) {
6628     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6629     if (!SRACount || SRACount->getZExtValue() != 30)
6630       return false;
6631     auto *SHL = CompareLHS->getOperand(0).getNode();
6632     if (SHL->getOpcode() != ISD::SHL)
6633       return false;
6634     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6635     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6636       return false;
6637     auto *IPM = SHL->getOperand(0).getNode();
6638     if (IPM->getOpcode() != SystemZISD::IPM)
6639       return false;
6640 
6641     // Avoid introducing CC spills (because SRA would clobber CC).
6642     if (!CompareLHS->hasOneUse())
6643       return false;
6644     // Verify that the ICMP compares against zero.
6645     if (CompareRHS->getZExtValue() != 0)
6646       return false;
6647 
6648     // Compute the effective CC mask for the new branch or select.
6649     CCMask = SystemZ::reverseCCMask(CCMask);
6650 
6651     // Return the updated CCReg link.
6652     CCReg = IPM->getOperand(0);
6653     return true;
6654   }
6655 
6656   return false;
6657 }
6658 
6659 SDValue SystemZTargetLowering::combineBR_CCMASK(
6660     SDNode *N, DAGCombinerInfo &DCI) const {
6661   SelectionDAG &DAG = DCI.DAG;
6662 
6663   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6664   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6665   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6666   if (!CCValid || !CCMask)
6667     return SDValue();
6668 
6669   int CCValidVal = CCValid->getZExtValue();
6670   int CCMaskVal = CCMask->getZExtValue();
6671   SDValue Chain = N->getOperand(0);
6672   SDValue CCReg = N->getOperand(4);
6673 
6674   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6675     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6676                        Chain,
6677                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6678                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6679                        N->getOperand(3), CCReg);
6680   return SDValue();
6681 }
6682 
6683 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6684     SDNode *N, DAGCombinerInfo &DCI) const {
6685   SelectionDAG &DAG = DCI.DAG;
6686 
6687   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6688   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6689   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6690   if (!CCValid || !CCMask)
6691     return SDValue();
6692 
6693   int CCValidVal = CCValid->getZExtValue();
6694   int CCMaskVal = CCMask->getZExtValue();
6695   SDValue CCReg = N->getOperand(4);
6696 
6697   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6698     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6699                        N->getOperand(0), N->getOperand(1),
6700                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6701                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6702                        CCReg);
6703   return SDValue();
6704 }
6705 
6706 
6707 SDValue SystemZTargetLowering::combineGET_CCMASK(
6708     SDNode *N, DAGCombinerInfo &DCI) const {
6709 
6710   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6711   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6712   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6713   if (!CCValid || !CCMask)
6714     return SDValue();
6715   int CCValidVal = CCValid->getZExtValue();
6716   int CCMaskVal = CCMask->getZExtValue();
6717 
6718   SDValue Select = N->getOperand(0);
6719   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6720     return SDValue();
6721 
6722   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6723   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6724   if (!SelectCCValid || !SelectCCMask)
6725     return SDValue();
6726   int SelectCCValidVal = SelectCCValid->getZExtValue();
6727   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6728 
6729   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6730   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6731   if (!TrueVal || !FalseVal)
6732     return SDValue();
6733   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6734     ;
6735   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6736     SelectCCMaskVal ^= SelectCCValidVal;
6737   else
6738     return SDValue();
6739 
6740   if (SelectCCValidVal & ~CCValidVal)
6741     return SDValue();
6742   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6743     return SDValue();
6744 
6745   return Select->getOperand(4);
6746 }
6747 
6748 SDValue SystemZTargetLowering::combineIntDIVREM(
6749     SDNode *N, DAGCombinerInfo &DCI) const {
6750   SelectionDAG &DAG = DCI.DAG;
6751   EVT VT = N->getValueType(0);
6752   // In the case where the divisor is a vector of constants a cheaper
6753   // sequence of instructions can replace the divide. BuildSDIV is called to
6754   // do this during DAG combining, but it only succeeds when it can build a
6755   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6756   // since it is not Legal but Custom it can only happen before
6757   // legalization. Therefore we must scalarize this early before Combine
6758   // 1. For widened vectors, this is already the result of type legalization.
6759   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6760       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6761     return DAG.UnrollVectorOp(N);
6762   return SDValue();
6763 }
6764 
6765 SDValue SystemZTargetLowering::combineINTRINSIC(
6766     SDNode *N, DAGCombinerInfo &DCI) const {
6767   SelectionDAG &DAG = DCI.DAG;
6768 
6769   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6770   switch (Id) {
6771   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6772   // or larger is simply a vector load.
6773   case Intrinsic::s390_vll:
6774   case Intrinsic::s390_vlrl:
6775     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6776       if (C->getZExtValue() >= 15)
6777         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6778                            N->getOperand(3), MachinePointerInfo());
6779     break;
6780   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6781   case Intrinsic::s390_vstl:
6782   case Intrinsic::s390_vstrl:
6783     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6784       if (C->getZExtValue() >= 15)
6785         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6786                             N->getOperand(4), MachinePointerInfo());
6787     break;
6788   }
6789 
6790   return SDValue();
6791 }
6792 
6793 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6794   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6795     return N->getOperand(0);
6796   return N;
6797 }
6798 
6799 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6800                                                  DAGCombinerInfo &DCI) const {
6801   switch(N->getOpcode()) {
6802   default: break;
6803   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6804   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6805   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6806   case SystemZISD::MERGE_HIGH:
6807   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6808   case ISD::LOAD:               return combineLOAD(N, DCI);
6809   case ISD::STORE:              return combineSTORE(N, DCI);
6810   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6811   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6812   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6813   case ISD::STRICT_FP_ROUND:
6814   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6815   case ISD::STRICT_FP_EXTEND:
6816   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6817   case ISD::SINT_TO_FP:
6818   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6819   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6820   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6821   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6822   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6823   case ISD::SDIV:
6824   case ISD::UDIV:
6825   case ISD::SREM:
6826   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6827   case ISD::INTRINSIC_W_CHAIN:
6828   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6829   }
6830 
6831   return SDValue();
6832 }
6833 
6834 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6835 // are for Op.
6836 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6837                                     unsigned OpNo) {
6838   EVT VT = Op.getValueType();
6839   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6840   APInt SrcDemE;
6841   unsigned Opcode = Op.getOpcode();
6842   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6843     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6844     switch (Id) {
6845     case Intrinsic::s390_vpksh:   // PACKS
6846     case Intrinsic::s390_vpksf:
6847     case Intrinsic::s390_vpksg:
6848     case Intrinsic::s390_vpkshs:  // PACKS_CC
6849     case Intrinsic::s390_vpksfs:
6850     case Intrinsic::s390_vpksgs:
6851     case Intrinsic::s390_vpklsh:  // PACKLS
6852     case Intrinsic::s390_vpklsf:
6853     case Intrinsic::s390_vpklsg:
6854     case Intrinsic::s390_vpklshs: // PACKLS_CC
6855     case Intrinsic::s390_vpklsfs:
6856     case Intrinsic::s390_vpklsgs:
6857       // VECTOR PACK truncates the elements of two source vectors into one.
6858       SrcDemE = DemandedElts;
6859       if (OpNo == 2)
6860         SrcDemE.lshrInPlace(NumElts / 2);
6861       SrcDemE = SrcDemE.trunc(NumElts / 2);
6862       break;
6863       // VECTOR UNPACK extends half the elements of the source vector.
6864     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6865     case Intrinsic::s390_vuphh:
6866     case Intrinsic::s390_vuphf:
6867     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6868     case Intrinsic::s390_vuplhh:
6869     case Intrinsic::s390_vuplhf:
6870       SrcDemE = APInt(NumElts * 2, 0);
6871       SrcDemE.insertBits(DemandedElts, 0);
6872       break;
6873     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6874     case Intrinsic::s390_vuplhw:
6875     case Intrinsic::s390_vuplf:
6876     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6877     case Intrinsic::s390_vupllh:
6878     case Intrinsic::s390_vupllf:
6879       SrcDemE = APInt(NumElts * 2, 0);
6880       SrcDemE.insertBits(DemandedElts, NumElts);
6881       break;
6882     case Intrinsic::s390_vpdi: {
6883       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6884       SrcDemE = APInt(NumElts, 0);
6885       if (!DemandedElts[OpNo - 1])
6886         break;
6887       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6888       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6889       // Demand input element 0 or 1, given by the mask bit value.
6890       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6891       break;
6892     }
6893     case Intrinsic::s390_vsldb: {
6894       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6895       assert(VT == MVT::v16i8 && "Unexpected type.");
6896       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6897       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6898       unsigned NumSrc0Els = 16 - FirstIdx;
6899       SrcDemE = APInt(NumElts, 0);
6900       if (OpNo == 1) {
6901         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6902         SrcDemE.insertBits(DemEls, FirstIdx);
6903       } else {
6904         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6905         SrcDemE.insertBits(DemEls, 0);
6906       }
6907       break;
6908     }
6909     case Intrinsic::s390_vperm:
6910       SrcDemE = APInt(NumElts, 1);
6911       break;
6912     default:
6913       llvm_unreachable("Unhandled intrinsic.");
6914       break;
6915     }
6916   } else {
6917     switch (Opcode) {
6918     case SystemZISD::JOIN_DWORDS:
6919       // Scalar operand.
6920       SrcDemE = APInt(1, 1);
6921       break;
6922     case SystemZISD::SELECT_CCMASK:
6923       SrcDemE = DemandedElts;
6924       break;
6925     default:
6926       llvm_unreachable("Unhandled opcode.");
6927       break;
6928     }
6929   }
6930   return SrcDemE;
6931 }
6932 
6933 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6934                                   const APInt &DemandedElts,
6935                                   const SelectionDAG &DAG, unsigned Depth,
6936                                   unsigned OpNo) {
6937   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6938   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6939   KnownBits LHSKnown =
6940       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6941   KnownBits RHSKnown =
6942       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6943   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6944 }
6945 
6946 void
6947 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6948                                                      KnownBits &Known,
6949                                                      const APInt &DemandedElts,
6950                                                      const SelectionDAG &DAG,
6951                                                      unsigned Depth) const {
6952   Known.resetAll();
6953 
6954   // Intrinsic CC result is returned in the two low bits.
6955   unsigned tmp0, tmp1; // not used
6956   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6957     Known.Zero.setBitsFrom(2);
6958     return;
6959   }
6960   EVT VT = Op.getValueType();
6961   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6962     return;
6963   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6964           "KnownBits does not match VT in bitwidth");
6965   assert ((!VT.isVector() ||
6966            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6967           "DemandedElts does not match VT number of elements");
6968   unsigned BitWidth = Known.getBitWidth();
6969   unsigned Opcode = Op.getOpcode();
6970   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6971     bool IsLogical = false;
6972     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6973     switch (Id) {
6974     case Intrinsic::s390_vpksh:   // PACKS
6975     case Intrinsic::s390_vpksf:
6976     case Intrinsic::s390_vpksg:
6977     case Intrinsic::s390_vpkshs:  // PACKS_CC
6978     case Intrinsic::s390_vpksfs:
6979     case Intrinsic::s390_vpksgs:
6980     case Intrinsic::s390_vpklsh:  // PACKLS
6981     case Intrinsic::s390_vpklsf:
6982     case Intrinsic::s390_vpklsg:
6983     case Intrinsic::s390_vpklshs: // PACKLS_CC
6984     case Intrinsic::s390_vpklsfs:
6985     case Intrinsic::s390_vpklsgs:
6986     case Intrinsic::s390_vpdi:
6987     case Intrinsic::s390_vsldb:
6988     case Intrinsic::s390_vperm:
6989       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6990       break;
6991     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6992     case Intrinsic::s390_vuplhh:
6993     case Intrinsic::s390_vuplhf:
6994     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6995     case Intrinsic::s390_vupllh:
6996     case Intrinsic::s390_vupllf:
6997       IsLogical = true;
6998       LLVM_FALLTHROUGH;
6999     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7000     case Intrinsic::s390_vuphh:
7001     case Intrinsic::s390_vuphf:
7002     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7003     case Intrinsic::s390_vuplhw:
7004     case Intrinsic::s390_vuplf: {
7005       SDValue SrcOp = Op.getOperand(1);
7006       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7007       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7008       if (IsLogical) {
7009         Known = Known.zext(BitWidth);
7010       } else
7011         Known = Known.sext(BitWidth);
7012       break;
7013     }
7014     default:
7015       break;
7016     }
7017   } else {
7018     switch (Opcode) {
7019     case SystemZISD::JOIN_DWORDS:
7020     case SystemZISD::SELECT_CCMASK:
7021       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7022       break;
7023     case SystemZISD::REPLICATE: {
7024       SDValue SrcOp = Op.getOperand(0);
7025       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7026       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7027         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7028       break;
7029     }
7030     default:
7031       break;
7032     }
7033   }
7034 
7035   // Known has the width of the source operand(s). Adjust if needed to match
7036   // the passed bitwidth.
7037   if (Known.getBitWidth() != BitWidth)
7038     Known = Known.anyextOrTrunc(BitWidth);
7039 }
7040 
7041 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7042                                         const SelectionDAG &DAG, unsigned Depth,
7043                                         unsigned OpNo) {
7044   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7045   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7046   if (LHS == 1) return 1; // Early out.
7047   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7048   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7049   if (RHS == 1) return 1; // Early out.
7050   unsigned Common = std::min(LHS, RHS);
7051   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7052   EVT VT = Op.getValueType();
7053   unsigned VTBits = VT.getScalarSizeInBits();
7054   if (SrcBitWidth > VTBits) { // PACK
7055     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7056     if (Common > SrcExtraBits)
7057       return (Common - SrcExtraBits);
7058     return 1;
7059   }
7060   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7061   return Common;
7062 }
7063 
7064 unsigned
7065 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7066     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7067     unsigned Depth) const {
7068   if (Op.getResNo() != 0)
7069     return 1;
7070   unsigned Opcode = Op.getOpcode();
7071   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7072     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7073     switch (Id) {
7074     case Intrinsic::s390_vpksh:   // PACKS
7075     case Intrinsic::s390_vpksf:
7076     case Intrinsic::s390_vpksg:
7077     case Intrinsic::s390_vpkshs:  // PACKS_CC
7078     case Intrinsic::s390_vpksfs:
7079     case Intrinsic::s390_vpksgs:
7080     case Intrinsic::s390_vpklsh:  // PACKLS
7081     case Intrinsic::s390_vpklsf:
7082     case Intrinsic::s390_vpklsg:
7083     case Intrinsic::s390_vpklshs: // PACKLS_CC
7084     case Intrinsic::s390_vpklsfs:
7085     case Intrinsic::s390_vpklsgs:
7086     case Intrinsic::s390_vpdi:
7087     case Intrinsic::s390_vsldb:
7088     case Intrinsic::s390_vperm:
7089       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7090     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7091     case Intrinsic::s390_vuphh:
7092     case Intrinsic::s390_vuphf:
7093     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7094     case Intrinsic::s390_vuplhw:
7095     case Intrinsic::s390_vuplf: {
7096       SDValue PackedOp = Op.getOperand(1);
7097       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7098       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7099       EVT VT = Op.getValueType();
7100       unsigned VTBits = VT.getScalarSizeInBits();
7101       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7102       return Tmp;
7103     }
7104     default:
7105       break;
7106     }
7107   } else {
7108     switch (Opcode) {
7109     case SystemZISD::SELECT_CCMASK:
7110       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7111     default:
7112       break;
7113     }
7114   }
7115 
7116   return 1;
7117 }
7118 
7119 unsigned
7120 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7121   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7122   unsigned StackAlign = TFI->getStackAlignment();
7123   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7124          "Unexpected stack alignment");
7125   // The default stack probe size is 4096 if the function has no
7126   // stack-probe-size attribute.
7127   unsigned StackProbeSize = 4096;
7128   const Function &Fn = MF.getFunction();
7129   if (Fn.hasFnAttribute("stack-probe-size"))
7130     Fn.getFnAttribute("stack-probe-size")
7131         .getValueAsString()
7132         .getAsInteger(0, StackProbeSize);
7133   // Round down to the stack alignment.
7134   StackProbeSize &= ~(StackAlign - 1);
7135   return StackProbeSize ? StackProbeSize : StackAlign;
7136 }
7137 
7138 //===----------------------------------------------------------------------===//
7139 // Custom insertion
7140 //===----------------------------------------------------------------------===//
7141 
7142 // Force base value Base into a register before MI.  Return the register.
7143 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7144                          const SystemZInstrInfo *TII) {
7145   MachineBasicBlock *MBB = MI.getParent();
7146   MachineFunction &MF = *MBB->getParent();
7147   MachineRegisterInfo &MRI = MF.getRegInfo();
7148 
7149   if (Base.isReg()) {
7150     // Copy Base into a new virtual register to help register coalescing in
7151     // cases with multiple uses.
7152     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7153     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7154       .add(Base);
7155     return Reg;
7156   }
7157 
7158   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7159   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7160       .add(Base)
7161       .addImm(0)
7162       .addReg(0);
7163   return Reg;
7164 }
7165 
7166 // The CC operand of MI might be missing a kill marker because there
7167 // were multiple uses of CC, and ISel didn't know which to mark.
7168 // Figure out whether MI should have had a kill marker.
7169 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7170   // Scan forward through BB for a use/def of CC.
7171   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7172   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7173     const MachineInstr& mi = *miI;
7174     if (mi.readsRegister(SystemZ::CC))
7175       return false;
7176     if (mi.definesRegister(SystemZ::CC))
7177       break; // Should have kill-flag - update below.
7178   }
7179 
7180   // If we hit the end of the block, check whether CC is live into a
7181   // successor.
7182   if (miI == MBB->end()) {
7183     for (const MachineBasicBlock *Succ : MBB->successors())
7184       if (Succ->isLiveIn(SystemZ::CC))
7185         return false;
7186   }
7187 
7188   return true;
7189 }
7190 
7191 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7192 // together with other Select pseudo-opcodes into a single basic-block with
7193 // a conditional jump around it.
7194 static bool isSelectPseudo(MachineInstr &MI) {
7195   switch (MI.getOpcode()) {
7196   case SystemZ::Select32:
7197   case SystemZ::Select64:
7198   case SystemZ::SelectF32:
7199   case SystemZ::SelectF64:
7200   case SystemZ::SelectF128:
7201   case SystemZ::SelectVR32:
7202   case SystemZ::SelectVR64:
7203   case SystemZ::SelectVR128:
7204     return true;
7205 
7206   default:
7207     return false;
7208   }
7209 }
7210 
7211 // Helper function, which inserts PHI functions into SinkMBB:
7212 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7213 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7214 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7215                                  MachineBasicBlock *TrueMBB,
7216                                  MachineBasicBlock *FalseMBB,
7217                                  MachineBasicBlock *SinkMBB) {
7218   MachineFunction *MF = TrueMBB->getParent();
7219   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7220 
7221   MachineInstr *FirstMI = Selects.front();
7222   unsigned CCValid = FirstMI->getOperand(3).getImm();
7223   unsigned CCMask = FirstMI->getOperand(4).getImm();
7224 
7225   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7226 
7227   // As we are creating the PHIs, we have to be careful if there is more than
7228   // one.  Later Selects may reference the results of earlier Selects, but later
7229   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7230   // That also means that PHI construction must work forward from earlier to
7231   // later, and that the code must maintain a mapping from earlier PHI's
7232   // destination registers, and the registers that went into the PHI.
7233   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7234 
7235   for (auto MI : Selects) {
7236     Register DestReg = MI->getOperand(0).getReg();
7237     Register TrueReg = MI->getOperand(1).getReg();
7238     Register FalseReg = MI->getOperand(2).getReg();
7239 
7240     // If this Select we are generating is the opposite condition from
7241     // the jump we generated, then we have to swap the operands for the
7242     // PHI that is going to be generated.
7243     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7244       std::swap(TrueReg, FalseReg);
7245 
7246     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7247       TrueReg = RegRewriteTable[TrueReg].first;
7248 
7249     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7250       FalseReg = RegRewriteTable[FalseReg].second;
7251 
7252     DebugLoc DL = MI->getDebugLoc();
7253     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7254       .addReg(TrueReg).addMBB(TrueMBB)
7255       .addReg(FalseReg).addMBB(FalseMBB);
7256 
7257     // Add this PHI to the rewrite table.
7258     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7259   }
7260 
7261   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7262 }
7263 
7264 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7265 MachineBasicBlock *
7266 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7267                                   MachineBasicBlock *MBB) const {
7268   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7269   const SystemZInstrInfo *TII =
7270       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7271 
7272   unsigned CCValid = MI.getOperand(3).getImm();
7273   unsigned CCMask = MI.getOperand(4).getImm();
7274 
7275   // If we have a sequence of Select* pseudo instructions using the
7276   // same condition code value, we want to expand all of them into
7277   // a single pair of basic blocks using the same condition.
7278   SmallVector<MachineInstr*, 8> Selects;
7279   SmallVector<MachineInstr*, 8> DbgValues;
7280   Selects.push_back(&MI);
7281   unsigned Count = 0;
7282   for (MachineBasicBlock::iterator NextMIIt =
7283          std::next(MachineBasicBlock::iterator(MI));
7284        NextMIIt != MBB->end(); ++NextMIIt) {
7285     if (isSelectPseudo(*NextMIIt)) {
7286       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7287              "Bad CCValid operands since CC was not redefined.");
7288       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7289           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7290         Selects.push_back(&*NextMIIt);
7291         continue;
7292       }
7293       break;
7294     }
7295     if (NextMIIt->definesRegister(SystemZ::CC) ||
7296         NextMIIt->usesCustomInsertionHook())
7297       break;
7298     bool User = false;
7299     for (auto SelMI : Selects)
7300       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7301         User = true;
7302         break;
7303       }
7304     if (NextMIIt->isDebugInstr()) {
7305       if (User) {
7306         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7307         DbgValues.push_back(&*NextMIIt);
7308       }
7309     }
7310     else if (User || ++Count > 20)
7311       break;
7312   }
7313 
7314   MachineInstr *LastMI = Selects.back();
7315   bool CCKilled =
7316       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7317   MachineBasicBlock *StartMBB = MBB;
7318   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7319   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7320 
7321   // Unless CC was killed in the last Select instruction, mark it as
7322   // live-in to both FalseMBB and JoinMBB.
7323   if (!CCKilled) {
7324     FalseMBB->addLiveIn(SystemZ::CC);
7325     JoinMBB->addLiveIn(SystemZ::CC);
7326   }
7327 
7328   //  StartMBB:
7329   //   BRC CCMask, JoinMBB
7330   //   # fallthrough to FalseMBB
7331   MBB = StartMBB;
7332   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7333     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7334   MBB->addSuccessor(JoinMBB);
7335   MBB->addSuccessor(FalseMBB);
7336 
7337   //  FalseMBB:
7338   //   # fallthrough to JoinMBB
7339   MBB = FalseMBB;
7340   MBB->addSuccessor(JoinMBB);
7341 
7342   //  JoinMBB:
7343   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7344   //  ...
7345   MBB = JoinMBB;
7346   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7347   for (auto SelMI : Selects)
7348     SelMI->eraseFromParent();
7349 
7350   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7351   for (auto DbgMI : DbgValues)
7352     MBB->splice(InsertPos, StartMBB, DbgMI);
7353 
7354   return JoinMBB;
7355 }
7356 
7357 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7358 // StoreOpcode is the store to use and Invert says whether the store should
7359 // happen when the condition is false rather than true.  If a STORE ON
7360 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7361 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7362                                                         MachineBasicBlock *MBB,
7363                                                         unsigned StoreOpcode,
7364                                                         unsigned STOCOpcode,
7365                                                         bool Invert) const {
7366   const SystemZInstrInfo *TII =
7367       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7368 
7369   Register SrcReg = MI.getOperand(0).getReg();
7370   MachineOperand Base = MI.getOperand(1);
7371   int64_t Disp = MI.getOperand(2).getImm();
7372   Register IndexReg = MI.getOperand(3).getReg();
7373   unsigned CCValid = MI.getOperand(4).getImm();
7374   unsigned CCMask = MI.getOperand(5).getImm();
7375   DebugLoc DL = MI.getDebugLoc();
7376 
7377   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7378 
7379   // ISel pattern matching also adds a load memory operand of the same
7380   // address, so take special care to find the storing memory operand.
7381   MachineMemOperand *MMO = nullptr;
7382   for (auto *I : MI.memoperands())
7383     if (I->isStore()) {
7384       MMO = I;
7385       break;
7386     }
7387 
7388   // Use STOCOpcode if possible.  We could use different store patterns in
7389   // order to avoid matching the index register, but the performance trade-offs
7390   // might be more complicated in that case.
7391   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7392     if (Invert)
7393       CCMask ^= CCValid;
7394 
7395     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7396       .addReg(SrcReg)
7397       .add(Base)
7398       .addImm(Disp)
7399       .addImm(CCValid)
7400       .addImm(CCMask)
7401       .addMemOperand(MMO);
7402 
7403     MI.eraseFromParent();
7404     return MBB;
7405   }
7406 
7407   // Get the condition needed to branch around the store.
7408   if (!Invert)
7409     CCMask ^= CCValid;
7410 
7411   MachineBasicBlock *StartMBB = MBB;
7412   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7413   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7414 
7415   // Unless CC was killed in the CondStore instruction, mark it as
7416   // live-in to both FalseMBB and JoinMBB.
7417   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7418     FalseMBB->addLiveIn(SystemZ::CC);
7419     JoinMBB->addLiveIn(SystemZ::CC);
7420   }
7421 
7422   //  StartMBB:
7423   //   BRC CCMask, JoinMBB
7424   //   # fallthrough to FalseMBB
7425   MBB = StartMBB;
7426   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7427     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7428   MBB->addSuccessor(JoinMBB);
7429   MBB->addSuccessor(FalseMBB);
7430 
7431   //  FalseMBB:
7432   //   store %SrcReg, %Disp(%Index,%Base)
7433   //   # fallthrough to JoinMBB
7434   MBB = FalseMBB;
7435   BuildMI(MBB, DL, TII->get(StoreOpcode))
7436       .addReg(SrcReg)
7437       .add(Base)
7438       .addImm(Disp)
7439       .addReg(IndexReg)
7440       .addMemOperand(MMO);
7441   MBB->addSuccessor(JoinMBB);
7442 
7443   MI.eraseFromParent();
7444   return JoinMBB;
7445 }
7446 
7447 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7448 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7449 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7450 // BitSize is the width of the field in bits, or 0 if this is a partword
7451 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7452 // is one of the operands.  Invert says whether the field should be
7453 // inverted after performing BinOpcode (e.g. for NAND).
7454 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7455     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7456     unsigned BitSize, bool Invert) const {
7457   MachineFunction &MF = *MBB->getParent();
7458   const SystemZInstrInfo *TII =
7459       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7460   MachineRegisterInfo &MRI = MF.getRegInfo();
7461   bool IsSubWord = (BitSize < 32);
7462 
7463   // Extract the operands.  Base can be a register or a frame index.
7464   // Src2 can be a register or immediate.
7465   Register Dest = MI.getOperand(0).getReg();
7466   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7467   int64_t Disp = MI.getOperand(2).getImm();
7468   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7469   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7470   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7471   DebugLoc DL = MI.getDebugLoc();
7472   if (IsSubWord)
7473     BitSize = MI.getOperand(6).getImm();
7474 
7475   // Subword operations use 32-bit registers.
7476   const TargetRegisterClass *RC = (BitSize <= 32 ?
7477                                    &SystemZ::GR32BitRegClass :
7478                                    &SystemZ::GR64BitRegClass);
7479   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7480   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7481 
7482   // Get the right opcodes for the displacement.
7483   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7484   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7485   assert(LOpcode && CSOpcode && "Displacement out of range");
7486 
7487   // Create virtual registers for temporary results.
7488   Register OrigVal       = MRI.createVirtualRegister(RC);
7489   Register OldVal        = MRI.createVirtualRegister(RC);
7490   Register NewVal        = (BinOpcode || IsSubWord ?
7491                             MRI.createVirtualRegister(RC) : Src2.getReg());
7492   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7493   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7494 
7495   // Insert a basic block for the main loop.
7496   MachineBasicBlock *StartMBB = MBB;
7497   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7498   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7499 
7500   //  StartMBB:
7501   //   ...
7502   //   %OrigVal = L Disp(%Base)
7503   //   # fall through to LoopMBB
7504   MBB = StartMBB;
7505   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7506   MBB->addSuccessor(LoopMBB);
7507 
7508   //  LoopMBB:
7509   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7510   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7511   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7512   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7513   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7514   //   JNE LoopMBB
7515   //   # fall through to DoneMBB
7516   MBB = LoopMBB;
7517   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7518     .addReg(OrigVal).addMBB(StartMBB)
7519     .addReg(Dest).addMBB(LoopMBB);
7520   if (IsSubWord)
7521     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7522       .addReg(OldVal).addReg(BitShift).addImm(0);
7523   if (Invert) {
7524     // Perform the operation normally and then invert every bit of the field.
7525     Register Tmp = MRI.createVirtualRegister(RC);
7526     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7527     if (BitSize <= 32)
7528       // XILF with the upper BitSize bits set.
7529       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7530         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7531     else {
7532       // Use LCGR and add -1 to the result, which is more compact than
7533       // an XILF, XILH pair.
7534       Register Tmp2 = MRI.createVirtualRegister(RC);
7535       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7536       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7537         .addReg(Tmp2).addImm(-1);
7538     }
7539   } else if (BinOpcode)
7540     // A simply binary operation.
7541     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7542         .addReg(RotatedOldVal)
7543         .add(Src2);
7544   else if (IsSubWord)
7545     // Use RISBG to rotate Src2 into position and use it to replace the
7546     // field in RotatedOldVal.
7547     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7548       .addReg(RotatedOldVal).addReg(Src2.getReg())
7549       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7550   if (IsSubWord)
7551     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7552       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7553   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7554       .addReg(OldVal)
7555       .addReg(NewVal)
7556       .add(Base)
7557       .addImm(Disp);
7558   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7559     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7560   MBB->addSuccessor(LoopMBB);
7561   MBB->addSuccessor(DoneMBB);
7562 
7563   MI.eraseFromParent();
7564   return DoneMBB;
7565 }
7566 
7567 // Implement EmitInstrWithCustomInserter for pseudo
7568 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7569 // instruction that should be used to compare the current field with the
7570 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7571 // for when the current field should be kept.  BitSize is the width of
7572 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7573 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7574     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7575     unsigned KeepOldMask, unsigned BitSize) const {
7576   MachineFunction &MF = *MBB->getParent();
7577   const SystemZInstrInfo *TII =
7578       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7579   MachineRegisterInfo &MRI = MF.getRegInfo();
7580   bool IsSubWord = (BitSize < 32);
7581 
7582   // Extract the operands.  Base can be a register or a frame index.
7583   Register Dest = MI.getOperand(0).getReg();
7584   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7585   int64_t Disp = MI.getOperand(2).getImm();
7586   Register Src2 = MI.getOperand(3).getReg();
7587   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7588   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7589   DebugLoc DL = MI.getDebugLoc();
7590   if (IsSubWord)
7591     BitSize = MI.getOperand(6).getImm();
7592 
7593   // Subword operations use 32-bit registers.
7594   const TargetRegisterClass *RC = (BitSize <= 32 ?
7595                                    &SystemZ::GR32BitRegClass :
7596                                    &SystemZ::GR64BitRegClass);
7597   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7598   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7599 
7600   // Get the right opcodes for the displacement.
7601   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7602   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7603   assert(LOpcode && CSOpcode && "Displacement out of range");
7604 
7605   // Create virtual registers for temporary results.
7606   Register OrigVal       = MRI.createVirtualRegister(RC);
7607   Register OldVal        = MRI.createVirtualRegister(RC);
7608   Register NewVal        = MRI.createVirtualRegister(RC);
7609   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7610   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7611   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7612 
7613   // Insert 3 basic blocks for the loop.
7614   MachineBasicBlock *StartMBB  = MBB;
7615   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7616   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7617   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7618   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7619 
7620   //  StartMBB:
7621   //   ...
7622   //   %OrigVal     = L Disp(%Base)
7623   //   # fall through to LoopMBB
7624   MBB = StartMBB;
7625   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7626   MBB->addSuccessor(LoopMBB);
7627 
7628   //  LoopMBB:
7629   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7630   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7631   //   CompareOpcode %RotatedOldVal, %Src2
7632   //   BRC KeepOldMask, UpdateMBB
7633   MBB = LoopMBB;
7634   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7635     .addReg(OrigVal).addMBB(StartMBB)
7636     .addReg(Dest).addMBB(UpdateMBB);
7637   if (IsSubWord)
7638     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7639       .addReg(OldVal).addReg(BitShift).addImm(0);
7640   BuildMI(MBB, DL, TII->get(CompareOpcode))
7641     .addReg(RotatedOldVal).addReg(Src2);
7642   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7643     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7644   MBB->addSuccessor(UpdateMBB);
7645   MBB->addSuccessor(UseAltMBB);
7646 
7647   //  UseAltMBB:
7648   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7649   //   # fall through to UpdateMBB
7650   MBB = UseAltMBB;
7651   if (IsSubWord)
7652     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7653       .addReg(RotatedOldVal).addReg(Src2)
7654       .addImm(32).addImm(31 + BitSize).addImm(0);
7655   MBB->addSuccessor(UpdateMBB);
7656 
7657   //  UpdateMBB:
7658   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7659   //                        [ %RotatedAltVal, UseAltMBB ]
7660   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7661   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7662   //   JNE LoopMBB
7663   //   # fall through to DoneMBB
7664   MBB = UpdateMBB;
7665   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7666     .addReg(RotatedOldVal).addMBB(LoopMBB)
7667     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7668   if (IsSubWord)
7669     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7670       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7671   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7672       .addReg(OldVal)
7673       .addReg(NewVal)
7674       .add(Base)
7675       .addImm(Disp);
7676   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7677     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7678   MBB->addSuccessor(LoopMBB);
7679   MBB->addSuccessor(DoneMBB);
7680 
7681   MI.eraseFromParent();
7682   return DoneMBB;
7683 }
7684 
7685 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7686 // instruction MI.
7687 MachineBasicBlock *
7688 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7689                                           MachineBasicBlock *MBB) const {
7690   MachineFunction &MF = *MBB->getParent();
7691   const SystemZInstrInfo *TII =
7692       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7693   MachineRegisterInfo &MRI = MF.getRegInfo();
7694 
7695   // Extract the operands.  Base can be a register or a frame index.
7696   Register Dest = MI.getOperand(0).getReg();
7697   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7698   int64_t Disp = MI.getOperand(2).getImm();
7699   Register CmpVal = MI.getOperand(3).getReg();
7700   Register OrigSwapVal = MI.getOperand(4).getReg();
7701   Register BitShift = MI.getOperand(5).getReg();
7702   Register NegBitShift = MI.getOperand(6).getReg();
7703   int64_t BitSize = MI.getOperand(7).getImm();
7704   DebugLoc DL = MI.getDebugLoc();
7705 
7706   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7707 
7708   // Get the right opcodes for the displacement and zero-extension.
7709   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7710   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7711   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7712   assert(LOpcode && CSOpcode && "Displacement out of range");
7713 
7714   // Create virtual registers for temporary results.
7715   Register OrigOldVal = MRI.createVirtualRegister(RC);
7716   Register OldVal = MRI.createVirtualRegister(RC);
7717   Register SwapVal = MRI.createVirtualRegister(RC);
7718   Register StoreVal = MRI.createVirtualRegister(RC);
7719   Register OldValRot = MRI.createVirtualRegister(RC);
7720   Register RetryOldVal = MRI.createVirtualRegister(RC);
7721   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7722 
7723   // Insert 2 basic blocks for the loop.
7724   MachineBasicBlock *StartMBB = MBB;
7725   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7726   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7727   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7728 
7729   //  StartMBB:
7730   //   ...
7731   //   %OrigOldVal     = L Disp(%Base)
7732   //   # fall through to LoopMBB
7733   MBB = StartMBB;
7734   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7735       .add(Base)
7736       .addImm(Disp)
7737       .addReg(0);
7738   MBB->addSuccessor(LoopMBB);
7739 
7740   //  LoopMBB:
7741   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7742   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7743   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
7744   //                      ^^ The low BitSize bits contain the field
7745   //                         of interest.
7746   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7747   //                      ^^ Replace the upper 32-BitSize bits of the
7748   //                         swap value with those that we loaded and rotated.
7749   //   %Dest = LL[CH] %OldValRot
7750   //   CR %Dest, %CmpVal
7751   //   JNE DoneMBB
7752   //   # Fall through to SetMBB
7753   MBB = LoopMBB;
7754   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7755     .addReg(OrigOldVal).addMBB(StartMBB)
7756     .addReg(RetryOldVal).addMBB(SetMBB);
7757   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7758     .addReg(OrigSwapVal).addMBB(StartMBB)
7759     .addReg(RetrySwapVal).addMBB(SetMBB);
7760   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7761     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7762   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7763     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7764   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7765     .addReg(OldValRot);
7766   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7767     .addReg(Dest).addReg(CmpVal);
7768   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7769     .addImm(SystemZ::CCMASK_ICMP)
7770     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7771   MBB->addSuccessor(DoneMBB);
7772   MBB->addSuccessor(SetMBB);
7773 
7774   //  SetMBB:
7775   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7776   //                      ^^ Rotate the new field to its proper position.
7777   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
7778   //   JNE LoopMBB
7779   //   # fall through to ExitMBB
7780   MBB = SetMBB;
7781   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7782     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7783   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7784       .addReg(OldVal)
7785       .addReg(StoreVal)
7786       .add(Base)
7787       .addImm(Disp);
7788   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7789     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7790   MBB->addSuccessor(LoopMBB);
7791   MBB->addSuccessor(DoneMBB);
7792 
7793   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7794   // to the block after the loop.  At this point, CC may have been defined
7795   // either by the CR in LoopMBB or by the CS in SetMBB.
7796   if (!MI.registerDefIsDead(SystemZ::CC))
7797     DoneMBB->addLiveIn(SystemZ::CC);
7798 
7799   MI.eraseFromParent();
7800   return DoneMBB;
7801 }
7802 
7803 // Emit a move from two GR64s to a GR128.
7804 MachineBasicBlock *
7805 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7806                                    MachineBasicBlock *MBB) const {
7807   MachineFunction &MF = *MBB->getParent();
7808   const SystemZInstrInfo *TII =
7809       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7810   MachineRegisterInfo &MRI = MF.getRegInfo();
7811   DebugLoc DL = MI.getDebugLoc();
7812 
7813   Register Dest = MI.getOperand(0).getReg();
7814   Register Hi = MI.getOperand(1).getReg();
7815   Register Lo = MI.getOperand(2).getReg();
7816   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7817   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7818 
7819   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7820   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7821     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7822   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7823     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7824 
7825   MI.eraseFromParent();
7826   return MBB;
7827 }
7828 
7829 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7830 // if the high register of the GR128 value must be cleared or false if
7831 // it's "don't care".
7832 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7833                                                      MachineBasicBlock *MBB,
7834                                                      bool ClearEven) const {
7835   MachineFunction &MF = *MBB->getParent();
7836   const SystemZInstrInfo *TII =
7837       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7838   MachineRegisterInfo &MRI = MF.getRegInfo();
7839   DebugLoc DL = MI.getDebugLoc();
7840 
7841   Register Dest = MI.getOperand(0).getReg();
7842   Register Src = MI.getOperand(1).getReg();
7843   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7844 
7845   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7846   if (ClearEven) {
7847     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7848     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7849 
7850     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7851       .addImm(0);
7852     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7853       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7854     In128 = NewIn128;
7855   }
7856   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7857     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7858 
7859   MI.eraseFromParent();
7860   return MBB;
7861 }
7862 
7863 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7864     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7865   MachineFunction &MF = *MBB->getParent();
7866   const SystemZInstrInfo *TII =
7867       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7868   MachineRegisterInfo &MRI = MF.getRegInfo();
7869   DebugLoc DL = MI.getDebugLoc();
7870 
7871   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7872   uint64_t DestDisp = MI.getOperand(1).getImm();
7873   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7874   uint64_t SrcDisp = MI.getOperand(3).getImm();
7875   MachineOperand &LengthMO = MI.getOperand(4);
7876   bool IsImmForm = LengthMO.isImm();
7877   bool IsRegForm = !IsImmForm;
7878 
7879   bool NeedsLoop = false;
7880   uint64_t ImmLength = 0;
7881   Register LenMinus1Reg = SystemZ::NoRegister;
7882   if (IsImmForm) {
7883     ImmLength = LengthMO.getImm();
7884     ImmLength++; // Add back the '1' subtracted originally.
7885     if (ImmLength == 0) {
7886       MI.eraseFromParent();
7887       return MBB;
7888     }
7889     if (Opcode == SystemZ::CLC) {
7890       if (ImmLength > 3 * 256)
7891         // A two-CLC sequence is a clear win over a loop, not least because
7892         // it needs only one branch.  A three-CLC sequence needs the same
7893         // number of branches as a loop (i.e. 2), but is shorter.  That
7894         // brings us to lengths greater than 768 bytes.  It seems relatively
7895         // likely that a difference will be found within the first 768 bytes,
7896         // so we just optimize for the smallest number of branch
7897         // instructions, in order to avoid polluting the prediction buffer
7898         // too much.
7899         NeedsLoop = true;
7900     } else if (ImmLength > 6 * 256)
7901       // The heuristic we use is to prefer loops for anything that would
7902       // require 7 or more MVCs.  With these kinds of sizes there isn't much
7903       // to choose between straight-line code and looping code, since the
7904       // time will be dominated by the MVCs themselves.
7905       NeedsLoop = true;
7906   } else {
7907     NeedsLoop = true;
7908     LenMinus1Reg = LengthMO.getReg();
7909   }
7910 
7911   // When generating more than one CLC, all but the last will need to
7912   // branch to the end when a difference is found.
7913   MachineBasicBlock *EndMBB =
7914       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
7915            ? SystemZ::splitBlockAfter(MI, MBB)
7916            : nullptr);
7917 
7918   if (NeedsLoop) {
7919     Register StartCountReg =
7920       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7921     if (IsImmForm) {
7922       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
7923       ImmLength &= 255;
7924     } else {
7925       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
7926         .addReg(LenMinus1Reg)
7927         .addReg(0)
7928         .addImm(8);
7929     }
7930 
7931     auto loadZeroAddress = [&]() -> MachineOperand {
7932       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7933       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
7934       return MachineOperand::CreateReg(Reg, false);
7935     };
7936     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7937     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
7938       DestBase = loadZeroAddress();
7939     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
7940       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
7941 
7942     MachineBasicBlock *StartMBB = nullptr;
7943     MachineBasicBlock *LoopMBB = nullptr;
7944     MachineBasicBlock *NextMBB = nullptr;
7945     MachineBasicBlock *DoneMBB = nullptr;
7946     MachineBasicBlock *AllDoneMBB = nullptr;
7947 
7948     Register StartSrcReg = forceReg(MI, SrcBase, TII);
7949     Register StartDestReg =
7950         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
7951 
7952     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7953     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7954     Register ThisDestReg =
7955         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
7956     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7957     Register NextDestReg =
7958         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
7959     RC = &SystemZ::GR64BitRegClass;
7960     Register ThisCountReg = MRI.createVirtualRegister(RC);
7961     Register NextCountReg = MRI.createVirtualRegister(RC);
7962 
7963     if (IsRegForm) {
7964       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7965       StartMBB = SystemZ::emitBlockAfter(MBB);
7966       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7967       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7968       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
7969 
7970       //  MBB:
7971       //   # Jump to AllDoneMBB if LenMinus1Reg is -1, or fall thru to StartMBB.
7972       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7973         .addReg(LenMinus1Reg).addImm(-1);
7974       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7975         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7976         .addMBB(AllDoneMBB);
7977       MBB->addSuccessor(AllDoneMBB);
7978       MBB->addSuccessor(StartMBB);
7979 
7980       // StartMBB:
7981       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
7982       MBB = StartMBB;
7983       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7984         .addReg(StartCountReg).addImm(0);
7985       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7986         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7987         .addMBB(DoneMBB);
7988       MBB->addSuccessor(DoneMBB);
7989       MBB->addSuccessor(LoopMBB);
7990     }
7991     else {
7992       StartMBB = MBB;
7993       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7994       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7995       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7996 
7997       //  StartMBB:
7998       //   # fall through to LoopMBB
7999       MBB->addSuccessor(LoopMBB);
8000 
8001       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8002       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8003       if (EndMBB && !ImmLength)
8004         // If the loop handled the whole CLC range, DoneMBB will be empty with
8005         // CC live-through into EndMBB, so add it as live-in.
8006         DoneMBB->addLiveIn(SystemZ::CC);
8007     }
8008 
8009     //  LoopMBB:
8010     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8011     //                      [ %NextDestReg, NextMBB ]
8012     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8013     //                     [ %NextSrcReg, NextMBB ]
8014     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8015     //                       [ %NextCountReg, NextMBB ]
8016     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8017     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8018     //   ( JLH EndMBB )
8019     //
8020     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8021     MBB = LoopMBB;
8022     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8023       .addReg(StartDestReg).addMBB(StartMBB)
8024       .addReg(NextDestReg).addMBB(NextMBB);
8025     if (!HaveSingleBase)
8026       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8027         .addReg(StartSrcReg).addMBB(StartMBB)
8028         .addReg(NextSrcReg).addMBB(NextMBB);
8029     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8030       .addReg(StartCountReg).addMBB(StartMBB)
8031       .addReg(NextCountReg).addMBB(NextMBB);
8032     if (Opcode == SystemZ::MVC)
8033       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8034         .addImm(SystemZ::PFD_WRITE)
8035         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
8036     BuildMI(MBB, DL, TII->get(Opcode))
8037       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
8038       .addReg(ThisSrcReg).addImm(SrcDisp);
8039     if (EndMBB) {
8040       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8041         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8042         .addMBB(EndMBB);
8043       MBB->addSuccessor(EndMBB);
8044       MBB->addSuccessor(NextMBB);
8045     }
8046 
8047     // NextMBB:
8048     //   %NextDestReg = LA 256(%ThisDestReg)
8049     //   %NextSrcReg = LA 256(%ThisSrcReg)
8050     //   %NextCountReg = AGHI %ThisCountReg, -1
8051     //   CGHI %NextCountReg, 0
8052     //   JLH LoopMBB
8053     //   # fall through to DoneMBB
8054     //
8055     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8056     MBB = NextMBB;
8057     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8058       .addReg(ThisDestReg).addImm(256).addReg(0);
8059     if (!HaveSingleBase)
8060       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8061         .addReg(ThisSrcReg).addImm(256).addReg(0);
8062     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8063       .addReg(ThisCountReg).addImm(-1);
8064     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8065       .addReg(NextCountReg).addImm(0);
8066     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8067       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8068       .addMBB(LoopMBB);
8069     MBB->addSuccessor(LoopMBB);
8070     MBB->addSuccessor(DoneMBB);
8071 
8072     MBB = DoneMBB;
8073     if (IsRegForm) {
8074       // DoneMBB:
8075       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8076       // # Use EXecute Relative Long for the remainder of the bytes. The target
8077       //   instruction of the EXRL will have a length field of 1 since 0 is an
8078       //   illegal value. The number of bytes processed becomes (%LenMinus1Reg &
8079       //   0xff) + 1.
8080       // # Fall through to AllDoneMBB.
8081       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8082       Register RemDestReg = HaveSingleBase ? RemSrcReg
8083         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8084       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8085         .addReg(StartDestReg).addMBB(StartMBB)
8086         .addReg(NextDestReg).addMBB(NextMBB);
8087       if (!HaveSingleBase)
8088         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8089           .addReg(StartSrcReg).addMBB(StartMBB)
8090           .addReg(NextSrcReg).addMBB(NextMBB);
8091       MachineInstrBuilder EXRL_MIB =
8092         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8093           .addImm(Opcode)
8094           .addReg(LenMinus1Reg)
8095           .addReg(RemDestReg).addImm(DestDisp)
8096           .addReg(RemSrcReg).addImm(SrcDisp);
8097       MBB->addSuccessor(AllDoneMBB);
8098       MBB = AllDoneMBB;
8099       if (EndMBB) {
8100         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8101         MBB->addLiveIn(SystemZ::CC);
8102       }
8103     }
8104   }
8105 
8106   // Handle any remaining bytes with straight-line code.
8107   while (ImmLength > 0) {
8108     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8109     // The previous iteration might have created out-of-range displacements.
8110     // Apply them using LAY if so.
8111     if (!isUInt<12>(DestDisp)) {
8112       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8113       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
8114           .add(DestBase)
8115           .addImm(DestDisp)
8116           .addReg(0);
8117       DestBase = MachineOperand::CreateReg(Reg, false);
8118       DestDisp = 0;
8119     }
8120     if (!isUInt<12>(SrcDisp)) {
8121       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8122       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
8123           .add(SrcBase)
8124           .addImm(SrcDisp)
8125           .addReg(0);
8126       SrcBase = MachineOperand::CreateReg(Reg, false);
8127       SrcDisp = 0;
8128     }
8129     BuildMI(*MBB, MI, DL, TII->get(Opcode))
8130         .add(DestBase)
8131         .addImm(DestDisp)
8132         .addImm(ThisLength)
8133         .add(SrcBase)
8134         .addImm(SrcDisp)
8135         .setMemRefs(MI.memoperands());
8136     DestDisp += ThisLength;
8137     SrcDisp += ThisLength;
8138     ImmLength -= ThisLength;
8139     // If there's another CLC to go, branch to the end if a difference
8140     // was found.
8141     if (EndMBB && ImmLength > 0) {
8142       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8143       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8144         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8145         .addMBB(EndMBB);
8146       MBB->addSuccessor(EndMBB);
8147       MBB->addSuccessor(NextMBB);
8148       MBB = NextMBB;
8149     }
8150   }
8151   if (EndMBB) {
8152     MBB->addSuccessor(EndMBB);
8153     MBB = EndMBB;
8154     MBB->addLiveIn(SystemZ::CC);
8155   }
8156 
8157   MI.eraseFromParent();
8158   return MBB;
8159 }
8160 
8161 // Decompose string pseudo-instruction MI into a loop that continually performs
8162 // Opcode until CC != 3.
8163 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8164     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8165   MachineFunction &MF = *MBB->getParent();
8166   const SystemZInstrInfo *TII =
8167       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8168   MachineRegisterInfo &MRI = MF.getRegInfo();
8169   DebugLoc DL = MI.getDebugLoc();
8170 
8171   uint64_t End1Reg = MI.getOperand(0).getReg();
8172   uint64_t Start1Reg = MI.getOperand(1).getReg();
8173   uint64_t Start2Reg = MI.getOperand(2).getReg();
8174   uint64_t CharReg = MI.getOperand(3).getReg();
8175 
8176   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8177   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8178   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8179   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8180 
8181   MachineBasicBlock *StartMBB = MBB;
8182   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8183   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8184 
8185   //  StartMBB:
8186   //   # fall through to LoopMBB
8187   MBB->addSuccessor(LoopMBB);
8188 
8189   //  LoopMBB:
8190   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8191   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8192   //   R0L = %CharReg
8193   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8194   //   JO LoopMBB
8195   //   # fall through to DoneMBB
8196   //
8197   // The load of R0L can be hoisted by post-RA LICM.
8198   MBB = LoopMBB;
8199 
8200   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8201     .addReg(Start1Reg).addMBB(StartMBB)
8202     .addReg(End1Reg).addMBB(LoopMBB);
8203   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8204     .addReg(Start2Reg).addMBB(StartMBB)
8205     .addReg(End2Reg).addMBB(LoopMBB);
8206   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8207   BuildMI(MBB, DL, TII->get(Opcode))
8208     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8209     .addReg(This1Reg).addReg(This2Reg);
8210   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8211     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8212   MBB->addSuccessor(LoopMBB);
8213   MBB->addSuccessor(DoneMBB);
8214 
8215   DoneMBB->addLiveIn(SystemZ::CC);
8216 
8217   MI.eraseFromParent();
8218   return DoneMBB;
8219 }
8220 
8221 // Update TBEGIN instruction with final opcode and register clobbers.
8222 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8223     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8224     bool NoFloat) const {
8225   MachineFunction &MF = *MBB->getParent();
8226   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8227   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8228 
8229   // Update opcode.
8230   MI.setDesc(TII->get(Opcode));
8231 
8232   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8233   // Make sure to add the corresponding GRSM bits if they are missing.
8234   uint64_t Control = MI.getOperand(2).getImm();
8235   static const unsigned GPRControlBit[16] = {
8236     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8237     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8238   };
8239   Control |= GPRControlBit[15];
8240   if (TFI->hasFP(MF))
8241     Control |= GPRControlBit[11];
8242   MI.getOperand(2).setImm(Control);
8243 
8244   // Add GPR clobbers.
8245   for (int I = 0; I < 16; I++) {
8246     if ((Control & GPRControlBit[I]) == 0) {
8247       unsigned Reg = SystemZMC::GR64Regs[I];
8248       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8249     }
8250   }
8251 
8252   // Add FPR/VR clobbers.
8253   if (!NoFloat && (Control & 4) != 0) {
8254     if (Subtarget.hasVector()) {
8255       for (int I = 0; I < 32; I++) {
8256         unsigned Reg = SystemZMC::VR128Regs[I];
8257         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8258       }
8259     } else {
8260       for (int I = 0; I < 16; I++) {
8261         unsigned Reg = SystemZMC::FP64Regs[I];
8262         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8263       }
8264     }
8265   }
8266 
8267   return MBB;
8268 }
8269 
8270 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8271     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8272   MachineFunction &MF = *MBB->getParent();
8273   MachineRegisterInfo *MRI = &MF.getRegInfo();
8274   const SystemZInstrInfo *TII =
8275       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8276   DebugLoc DL = MI.getDebugLoc();
8277 
8278   Register SrcReg = MI.getOperand(0).getReg();
8279 
8280   // Create new virtual register of the same class as source.
8281   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8282   Register DstReg = MRI->createVirtualRegister(RC);
8283 
8284   // Replace pseudo with a normal load-and-test that models the def as
8285   // well.
8286   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8287     .addReg(SrcReg)
8288     .setMIFlags(MI.getFlags());
8289   MI.eraseFromParent();
8290 
8291   return MBB;
8292 }
8293 
8294 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8295     MachineInstr &MI, MachineBasicBlock *MBB) const {
8296   MachineFunction &MF = *MBB->getParent();
8297   MachineRegisterInfo *MRI = &MF.getRegInfo();
8298   const SystemZInstrInfo *TII =
8299       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8300   DebugLoc DL = MI.getDebugLoc();
8301   const unsigned ProbeSize = getStackProbeSize(MF);
8302   Register DstReg = MI.getOperand(0).getReg();
8303   Register SizeReg = MI.getOperand(2).getReg();
8304 
8305   MachineBasicBlock *StartMBB = MBB;
8306   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8307   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8308   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8309   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8310   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8311 
8312   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8313     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8314 
8315   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8316   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8317 
8318   //  LoopTestMBB
8319   //  BRC TailTestMBB
8320   //  # fallthrough to LoopBodyMBB
8321   StartMBB->addSuccessor(LoopTestMBB);
8322   MBB = LoopTestMBB;
8323   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8324     .addReg(SizeReg)
8325     .addMBB(StartMBB)
8326     .addReg(IncReg)
8327     .addMBB(LoopBodyMBB);
8328   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8329     .addReg(PHIReg)
8330     .addImm(ProbeSize);
8331   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8332     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8333     .addMBB(TailTestMBB);
8334   MBB->addSuccessor(LoopBodyMBB);
8335   MBB->addSuccessor(TailTestMBB);
8336 
8337   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8338   //  J LoopTestMBB
8339   MBB = LoopBodyMBB;
8340   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8341     .addReg(PHIReg)
8342     .addImm(ProbeSize);
8343   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8344     .addReg(SystemZ::R15D)
8345     .addImm(ProbeSize);
8346   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8347     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8348     .setMemRefs(VolLdMMO);
8349   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8350   MBB->addSuccessor(LoopTestMBB);
8351 
8352   //  TailTestMBB
8353   //  BRC DoneMBB
8354   //  # fallthrough to TailMBB
8355   MBB = TailTestMBB;
8356   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8357     .addReg(PHIReg)
8358     .addImm(0);
8359   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8360     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8361     .addMBB(DoneMBB);
8362   MBB->addSuccessor(TailMBB);
8363   MBB->addSuccessor(DoneMBB);
8364 
8365   //  TailMBB
8366   //  # fallthrough to DoneMBB
8367   MBB = TailMBB;
8368   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8369     .addReg(SystemZ::R15D)
8370     .addReg(PHIReg);
8371   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8372     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8373     .setMemRefs(VolLdMMO);
8374   MBB->addSuccessor(DoneMBB);
8375 
8376   //  DoneMBB
8377   MBB = DoneMBB;
8378   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8379     .addReg(SystemZ::R15D);
8380 
8381   MI.eraseFromParent();
8382   return DoneMBB;
8383 }
8384 
8385 SDValue SystemZTargetLowering::
8386 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8387   MachineFunction &MF = DAG.getMachineFunction();
8388   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8389   SDLoc DL(SP);
8390   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8391                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8392 }
8393 
8394 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8395     MachineInstr &MI, MachineBasicBlock *MBB) const {
8396   switch (MI.getOpcode()) {
8397   case SystemZ::Select32:
8398   case SystemZ::Select64:
8399   case SystemZ::SelectF32:
8400   case SystemZ::SelectF64:
8401   case SystemZ::SelectF128:
8402   case SystemZ::SelectVR32:
8403   case SystemZ::SelectVR64:
8404   case SystemZ::SelectVR128:
8405     return emitSelect(MI, MBB);
8406 
8407   case SystemZ::CondStore8Mux:
8408     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8409   case SystemZ::CondStore8MuxInv:
8410     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8411   case SystemZ::CondStore16Mux:
8412     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8413   case SystemZ::CondStore16MuxInv:
8414     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8415   case SystemZ::CondStore32Mux:
8416     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8417   case SystemZ::CondStore32MuxInv:
8418     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8419   case SystemZ::CondStore8:
8420     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8421   case SystemZ::CondStore8Inv:
8422     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8423   case SystemZ::CondStore16:
8424     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8425   case SystemZ::CondStore16Inv:
8426     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8427   case SystemZ::CondStore32:
8428     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8429   case SystemZ::CondStore32Inv:
8430     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8431   case SystemZ::CondStore64:
8432     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8433   case SystemZ::CondStore64Inv:
8434     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8435   case SystemZ::CondStoreF32:
8436     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8437   case SystemZ::CondStoreF32Inv:
8438     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8439   case SystemZ::CondStoreF64:
8440     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8441   case SystemZ::CondStoreF64Inv:
8442     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8443 
8444   case SystemZ::PAIR128:
8445     return emitPair128(MI, MBB);
8446   case SystemZ::AEXT128:
8447     return emitExt128(MI, MBB, false);
8448   case SystemZ::ZEXT128:
8449     return emitExt128(MI, MBB, true);
8450 
8451   case SystemZ::ATOMIC_SWAPW:
8452     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8453   case SystemZ::ATOMIC_SWAP_32:
8454     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8455   case SystemZ::ATOMIC_SWAP_64:
8456     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8457 
8458   case SystemZ::ATOMIC_LOADW_AR:
8459     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8460   case SystemZ::ATOMIC_LOADW_AFI:
8461     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8462   case SystemZ::ATOMIC_LOAD_AR:
8463     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8464   case SystemZ::ATOMIC_LOAD_AHI:
8465     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8466   case SystemZ::ATOMIC_LOAD_AFI:
8467     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8468   case SystemZ::ATOMIC_LOAD_AGR:
8469     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8470   case SystemZ::ATOMIC_LOAD_AGHI:
8471     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8472   case SystemZ::ATOMIC_LOAD_AGFI:
8473     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8474 
8475   case SystemZ::ATOMIC_LOADW_SR:
8476     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8477   case SystemZ::ATOMIC_LOAD_SR:
8478     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8479   case SystemZ::ATOMIC_LOAD_SGR:
8480     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8481 
8482   case SystemZ::ATOMIC_LOADW_NR:
8483     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8484   case SystemZ::ATOMIC_LOADW_NILH:
8485     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8486   case SystemZ::ATOMIC_LOAD_NR:
8487     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8488   case SystemZ::ATOMIC_LOAD_NILL:
8489     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8490   case SystemZ::ATOMIC_LOAD_NILH:
8491     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8492   case SystemZ::ATOMIC_LOAD_NILF:
8493     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8494   case SystemZ::ATOMIC_LOAD_NGR:
8495     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8496   case SystemZ::ATOMIC_LOAD_NILL64:
8497     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8498   case SystemZ::ATOMIC_LOAD_NILH64:
8499     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8500   case SystemZ::ATOMIC_LOAD_NIHL64:
8501     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8502   case SystemZ::ATOMIC_LOAD_NIHH64:
8503     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8504   case SystemZ::ATOMIC_LOAD_NILF64:
8505     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8506   case SystemZ::ATOMIC_LOAD_NIHF64:
8507     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8508 
8509   case SystemZ::ATOMIC_LOADW_OR:
8510     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8511   case SystemZ::ATOMIC_LOADW_OILH:
8512     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8513   case SystemZ::ATOMIC_LOAD_OR:
8514     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8515   case SystemZ::ATOMIC_LOAD_OILL:
8516     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8517   case SystemZ::ATOMIC_LOAD_OILH:
8518     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8519   case SystemZ::ATOMIC_LOAD_OILF:
8520     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8521   case SystemZ::ATOMIC_LOAD_OGR:
8522     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8523   case SystemZ::ATOMIC_LOAD_OILL64:
8524     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8525   case SystemZ::ATOMIC_LOAD_OILH64:
8526     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8527   case SystemZ::ATOMIC_LOAD_OIHL64:
8528     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8529   case SystemZ::ATOMIC_LOAD_OIHH64:
8530     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8531   case SystemZ::ATOMIC_LOAD_OILF64:
8532     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8533   case SystemZ::ATOMIC_LOAD_OIHF64:
8534     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8535 
8536   case SystemZ::ATOMIC_LOADW_XR:
8537     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8538   case SystemZ::ATOMIC_LOADW_XILF:
8539     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8540   case SystemZ::ATOMIC_LOAD_XR:
8541     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8542   case SystemZ::ATOMIC_LOAD_XILF:
8543     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8544   case SystemZ::ATOMIC_LOAD_XGR:
8545     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8546   case SystemZ::ATOMIC_LOAD_XILF64:
8547     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8548   case SystemZ::ATOMIC_LOAD_XIHF64:
8549     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8550 
8551   case SystemZ::ATOMIC_LOADW_NRi:
8552     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8553   case SystemZ::ATOMIC_LOADW_NILHi:
8554     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8555   case SystemZ::ATOMIC_LOAD_NRi:
8556     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8557   case SystemZ::ATOMIC_LOAD_NILLi:
8558     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8559   case SystemZ::ATOMIC_LOAD_NILHi:
8560     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8561   case SystemZ::ATOMIC_LOAD_NILFi:
8562     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8563   case SystemZ::ATOMIC_LOAD_NGRi:
8564     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8565   case SystemZ::ATOMIC_LOAD_NILL64i:
8566     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8567   case SystemZ::ATOMIC_LOAD_NILH64i:
8568     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8569   case SystemZ::ATOMIC_LOAD_NIHL64i:
8570     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8571   case SystemZ::ATOMIC_LOAD_NIHH64i:
8572     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8573   case SystemZ::ATOMIC_LOAD_NILF64i:
8574     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8575   case SystemZ::ATOMIC_LOAD_NIHF64i:
8576     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8577 
8578   case SystemZ::ATOMIC_LOADW_MIN:
8579     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8580                                 SystemZ::CCMASK_CMP_LE, 0);
8581   case SystemZ::ATOMIC_LOAD_MIN_32:
8582     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8583                                 SystemZ::CCMASK_CMP_LE, 32);
8584   case SystemZ::ATOMIC_LOAD_MIN_64:
8585     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8586                                 SystemZ::CCMASK_CMP_LE, 64);
8587 
8588   case SystemZ::ATOMIC_LOADW_MAX:
8589     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8590                                 SystemZ::CCMASK_CMP_GE, 0);
8591   case SystemZ::ATOMIC_LOAD_MAX_32:
8592     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8593                                 SystemZ::CCMASK_CMP_GE, 32);
8594   case SystemZ::ATOMIC_LOAD_MAX_64:
8595     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8596                                 SystemZ::CCMASK_CMP_GE, 64);
8597 
8598   case SystemZ::ATOMIC_LOADW_UMIN:
8599     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8600                                 SystemZ::CCMASK_CMP_LE, 0);
8601   case SystemZ::ATOMIC_LOAD_UMIN_32:
8602     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8603                                 SystemZ::CCMASK_CMP_LE, 32);
8604   case SystemZ::ATOMIC_LOAD_UMIN_64:
8605     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8606                                 SystemZ::CCMASK_CMP_LE, 64);
8607 
8608   case SystemZ::ATOMIC_LOADW_UMAX:
8609     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8610                                 SystemZ::CCMASK_CMP_GE, 0);
8611   case SystemZ::ATOMIC_LOAD_UMAX_32:
8612     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8613                                 SystemZ::CCMASK_CMP_GE, 32);
8614   case SystemZ::ATOMIC_LOAD_UMAX_64:
8615     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8616                                 SystemZ::CCMASK_CMP_GE, 64);
8617 
8618   case SystemZ::ATOMIC_CMP_SWAPW:
8619     return emitAtomicCmpSwapW(MI, MBB);
8620   case SystemZ::MVCImm:
8621   case SystemZ::MVCReg:
8622     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8623   case SystemZ::NCImm:
8624     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8625   case SystemZ::OCImm:
8626     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8627   case SystemZ::XCImm:
8628   case SystemZ::XCReg:
8629     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8630   case SystemZ::CLCImm:
8631   case SystemZ::CLCReg:
8632     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8633   case SystemZ::CLSTLoop:
8634     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8635   case SystemZ::MVSTLoop:
8636     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8637   case SystemZ::SRSTLoop:
8638     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8639   case SystemZ::TBEGIN:
8640     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8641   case SystemZ::TBEGIN_nofloat:
8642     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8643   case SystemZ::TBEGINC:
8644     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8645   case SystemZ::LTEBRCompare_VecPseudo:
8646     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8647   case SystemZ::LTDBRCompare_VecPseudo:
8648     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8649   case SystemZ::LTXBRCompare_VecPseudo:
8650     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8651 
8652   case SystemZ::PROBED_ALLOCA:
8653     return emitProbedAlloca(MI, MBB);
8654 
8655   case TargetOpcode::STACKMAP:
8656   case TargetOpcode::PATCHPOINT:
8657     return emitPatchPoint(MI, MBB);
8658 
8659   default:
8660     llvm_unreachable("Unexpected instr type to insert");
8661   }
8662 }
8663 
8664 // This is only used by the isel schedulers, and is needed only to prevent
8665 // compiler from crashing when list-ilp is used.
8666 const TargetRegisterClass *
8667 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8668   if (VT == MVT::Untyped)
8669     return &SystemZ::ADDR128BitRegClass;
8670   return TargetLowering::getRepRegClassFor(VT);
8671 }
8672