xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 #include <optional>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "systemz-lower"
33 
34 namespace {
35 // Represents information about a comparison.
36 struct Comparison {
37   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
38     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
39       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
40 
41   // The operands to the comparison.
42   SDValue Op0, Op1;
43 
44   // Chain if this is a strict floating-point comparison.
45   SDValue Chain;
46 
47   // The opcode that should be used to compare Op0 and Op1.
48   unsigned Opcode;
49 
50   // A SystemZICMP value.  Only used for integer comparisons.
51   unsigned ICmpType;
52 
53   // The mask of CC values that Opcode can produce.
54   unsigned CCValid;
55 
56   // The mask of CC values for which the original condition is true.
57   unsigned CCMask;
58 };
59 } // end anonymous namespace
60 
61 // Classify VT as either 32 or 64 bit.
62 static bool is32Bit(EVT VT) {
63   switch (VT.getSimpleVT().SimpleTy) {
64   case MVT::i32:
65     return true;
66   case MVT::i64:
67     return false;
68   default:
69     llvm_unreachable("Unsupported type");
70   }
71 }
72 
73 // Return a version of MachineOperand that can be safely used before the
74 // final use.
75 static MachineOperand earlyUseOperand(MachineOperand Op) {
76   if (Op.isReg())
77     Op.setIsKill(false);
78   return Op;
79 }
80 
81 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
82                                              const SystemZSubtarget &STI)
83     : TargetLowering(TM), Subtarget(STI) {
84   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
85 
86   auto *Regs = STI.getSpecialRegisters();
87 
88   // Set up the register classes.
89   if (Subtarget.hasHighWord())
90     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91   else
92     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
93   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
94   if (!useSoftFloat()) {
95     if (Subtarget.hasVector()) {
96       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
98     } else {
99       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
100       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
101     }
102     if (Subtarget.hasVectorEnhancements1())
103       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
104     else
105       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
106 
107     if (Subtarget.hasVector()) {
108       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
113       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
114     }
115 
116     if (Subtarget.hasVector())
117       addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass);
118   }
119 
120   // Compute derived properties from the register classes
121   computeRegisterProperties(Subtarget.getRegisterInfo());
122 
123   // Set up special registers.
124   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
125 
126   // TODO: It may be better to default to latency-oriented scheduling, however
127   // LLVM's current latency-oriented scheduler can't handle physreg definitions
128   // such as SystemZ has with CC, so set this to the register-pressure
129   // scheduler, because it can.
130   setSchedulingPreference(Sched::RegPressure);
131 
132   setBooleanContents(ZeroOrOneBooleanContent);
133   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
134 
135   setMaxAtomicSizeInBitsSupported(128);
136 
137   // Instructions are strings of 2-byte aligned 2-byte values.
138   setMinFunctionAlignment(Align(2));
139   // For performance reasons we prefer 16-byte alignment.
140   setPrefFunctionAlignment(Align(16));
141 
142   // Handle operations that are handled in a similar way for all types.
143   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
144        I <= MVT::LAST_FP_VALUETYPE;
145        ++I) {
146     MVT VT = MVT::SimpleValueType(I);
147     if (isTypeLegal(VT)) {
148       // Lower SET_CC into an IPM-based sequence.
149       setOperationAction(ISD::SETCC, VT, Custom);
150       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
151       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
152 
153       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
154       setOperationAction(ISD::SELECT, VT, Expand);
155 
156       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
157       setOperationAction(ISD::SELECT_CC, VT, Custom);
158       setOperationAction(ISD::BR_CC,     VT, Custom);
159     }
160   }
161 
162   // Expand jump table branches as address arithmetic followed by an
163   // indirect jump.
164   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
165 
166   // Expand BRCOND into a BR_CC (see above).
167   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
168 
169   // Handle integer types except i128.
170   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
171        I <= MVT::LAST_INTEGER_VALUETYPE;
172        ++I) {
173     MVT VT = MVT::SimpleValueType(I);
174     if (isTypeLegal(VT) && VT != MVT::i128) {
175       setOperationAction(ISD::ABS, VT, Legal);
176 
177       // Expand individual DIV and REMs into DIVREMs.
178       setOperationAction(ISD::SDIV, VT, Expand);
179       setOperationAction(ISD::UDIV, VT, Expand);
180       setOperationAction(ISD::SREM, VT, Expand);
181       setOperationAction(ISD::UREM, VT, Expand);
182       setOperationAction(ISD::SDIVREM, VT, Custom);
183       setOperationAction(ISD::UDIVREM, VT, Custom);
184 
185       // Support addition/subtraction with overflow.
186       setOperationAction(ISD::SADDO, VT, Custom);
187       setOperationAction(ISD::SSUBO, VT, Custom);
188 
189       // Support addition/subtraction with carry.
190       setOperationAction(ISD::UADDO, VT, Custom);
191       setOperationAction(ISD::USUBO, VT, Custom);
192 
193       // Support carry in as value rather than glue.
194       setOperationAction(ISD::UADDO_CARRY, VT, Custom);
195       setOperationAction(ISD::USUBO_CARRY, VT, Custom);
196 
197       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
198       // stores, putting a serialization instruction after the stores.
199       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
200       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
201 
202       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
203       // available, or if the operand is constant.
204       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
205 
206       // Use POPCNT on z196 and above.
207       if (Subtarget.hasPopulationCount())
208         setOperationAction(ISD::CTPOP, VT, Custom);
209       else
210         setOperationAction(ISD::CTPOP, VT, Expand);
211 
212       // No special instructions for these.
213       setOperationAction(ISD::CTTZ,            VT, Expand);
214       setOperationAction(ISD::ROTR,            VT, Expand);
215 
216       // Use *MUL_LOHI where possible instead of MULH*.
217       setOperationAction(ISD::MULHS, VT, Expand);
218       setOperationAction(ISD::MULHU, VT, Expand);
219       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
220       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
221 
222       // Only z196 and above have native support for conversions to unsigned.
223       // On z10, promoting to i64 doesn't generate an inexact condition for
224       // values that are outside the i32 range but in the i64 range, so use
225       // the default expansion.
226       if (!Subtarget.hasFPExtension())
227         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
228 
229       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
230       // default to Expand, so need to be modified to Legal where appropriate.
231       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
232       if (Subtarget.hasFPExtension())
233         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
234 
235       // And similarly for STRICT_[SU]INT_TO_FP.
236       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
237       if (Subtarget.hasFPExtension())
238         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
239     }
240   }
241 
242   // Handle i128 if legal.
243   if (isTypeLegal(MVT::i128)) {
244     // No special instructions for these.
245     setOperationAction(ISD::SDIVREM,   MVT::i128, Expand);
246     setOperationAction(ISD::UDIVREM,   MVT::i128, Expand);
247     setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand);
248     setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand);
249     setOperationAction(ISD::ROTR,      MVT::i128, Expand);
250     setOperationAction(ISD::ROTL,      MVT::i128, Expand);
251     setOperationAction(ISD::MUL,       MVT::i128, Expand);
252     setOperationAction(ISD::MULHS,     MVT::i128, Expand);
253     setOperationAction(ISD::MULHU,     MVT::i128, Expand);
254     setOperationAction(ISD::SDIV,      MVT::i128, Expand);
255     setOperationAction(ISD::UDIV,      MVT::i128, Expand);
256     setOperationAction(ISD::SREM,      MVT::i128, Expand);
257     setOperationAction(ISD::UREM,      MVT::i128, Expand);
258     setOperationAction(ISD::CTLZ,      MVT::i128, Expand);
259     setOperationAction(ISD::CTTZ,      MVT::i128, Expand);
260 
261     // Support addition/subtraction with carry.
262     setOperationAction(ISD::UADDO, MVT::i128, Custom);
263     setOperationAction(ISD::USUBO, MVT::i128, Custom);
264     setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom);
265     setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom);
266 
267     // Use VPOPCT and add up partial results.
268     setOperationAction(ISD::CTPOP, MVT::i128, Custom);
269 
270     // We have to use libcalls for these.
271     setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall);
272     setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall);
273     setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall);
274     setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall);
275     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall);
276     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall);
277     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall);
278     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall);
279   }
280 
281   // Type legalization will convert 8- and 16-bit atomic operations into
282   // forms that operate on i32s (but still keeping the original memory VT).
283   // Lower them into full i32 operations.
284   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
285   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
286   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
287   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
288   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
289   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
290   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
291   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
292   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
293   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
294   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
295 
296   // Whether or not i128 is not a legal type, we need to custom lower
297   // the atomic operations in order to exploit SystemZ instructions.
298   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
299   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
300 
301   // We can use the CC result of compare-and-swap to implement
302   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
303   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
304   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
305   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
306 
307   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
308 
309   // Traps are legal, as we will convert them to "j .+2".
310   setOperationAction(ISD::TRAP, MVT::Other, Legal);
311 
312   // z10 has instructions for signed but not unsigned FP conversion.
313   // Handle unsigned 32-bit types as signed 64-bit types.
314   if (!Subtarget.hasFPExtension()) {
315     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
316     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
317     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
318     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
319   }
320 
321   // We have native support for a 64-bit CTLZ, via FLOGR.
322   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
323   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
324   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
325 
326   // On z15 we have native support for a 64-bit CTPOP.
327   if (Subtarget.hasMiscellaneousExtensions3()) {
328     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
329     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
330   }
331 
332   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
333   setOperationAction(ISD::OR, MVT::i64, Custom);
334 
335   // Expand 128 bit shifts without using a libcall.
336   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
337   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
338   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
339   setLibcallName(RTLIB::SRL_I128, nullptr);
340   setLibcallName(RTLIB::SHL_I128, nullptr);
341   setLibcallName(RTLIB::SRA_I128, nullptr);
342 
343   // Also expand 256 bit shifts if i128 is a legal type.
344   if (isTypeLegal(MVT::i128)) {
345     setOperationAction(ISD::SRL_PARTS, MVT::i128, Expand);
346     setOperationAction(ISD::SHL_PARTS, MVT::i128, Expand);
347     setOperationAction(ISD::SRA_PARTS, MVT::i128, Expand);
348   }
349 
350   // Handle bitcast from fp128 to i128.
351   if (!isTypeLegal(MVT::i128))
352     setOperationAction(ISD::BITCAST, MVT::i128, Custom);
353 
354   // We have native instructions for i8, i16 and i32 extensions, but not i1.
355   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
356   for (MVT VT : MVT::integer_valuetypes()) {
357     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
358     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
359     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
360   }
361 
362   // Handle the various types of symbolic address.
363   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
364   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
365   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
366   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
367   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
368 
369   // We need to handle dynamic allocations specially because of the
370   // 160-byte area at the bottom of the stack.
371   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
372   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
373 
374   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
375   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
376 
377   // Handle prefetches with PFD or PFDRL.
378   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
379 
380   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
381     // Assume by default that all vector operations need to be expanded.
382     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
383       if (getOperationAction(Opcode, VT) == Legal)
384         setOperationAction(Opcode, VT, Expand);
385 
386     // Likewise all truncating stores and extending loads.
387     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
388       setTruncStoreAction(VT, InnerVT, Expand);
389       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
390       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
391       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
392     }
393 
394     if (isTypeLegal(VT)) {
395       // These operations are legal for anything that can be stored in a
396       // vector register, even if there is no native support for the format
397       // as such.  In particular, we can do these for v4f32 even though there
398       // are no specific instructions for that format.
399       setOperationAction(ISD::LOAD, VT, Legal);
400       setOperationAction(ISD::STORE, VT, Legal);
401       setOperationAction(ISD::VSELECT, VT, Legal);
402       setOperationAction(ISD::BITCAST, VT, Legal);
403       setOperationAction(ISD::UNDEF, VT, Legal);
404 
405       // Likewise, except that we need to replace the nodes with something
406       // more specific.
407       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
408       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
409     }
410   }
411 
412   // Handle integer vector types.
413   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
414     if (isTypeLegal(VT)) {
415       // These operations have direct equivalents.
416       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
417       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
418       setOperationAction(ISD::ADD, VT, Legal);
419       setOperationAction(ISD::SUB, VT, Legal);
420       if (VT != MVT::v2i64)
421         setOperationAction(ISD::MUL, VT, Legal);
422       setOperationAction(ISD::ABS, VT, Legal);
423       setOperationAction(ISD::AND, VT, Legal);
424       setOperationAction(ISD::OR, VT, Legal);
425       setOperationAction(ISD::XOR, VT, Legal);
426       if (Subtarget.hasVectorEnhancements1())
427         setOperationAction(ISD::CTPOP, VT, Legal);
428       else
429         setOperationAction(ISD::CTPOP, VT, Custom);
430       setOperationAction(ISD::CTTZ, VT, Legal);
431       setOperationAction(ISD::CTLZ, VT, Legal);
432 
433       // Convert a GPR scalar to a vector by inserting it into element 0.
434       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
435 
436       // Use a series of unpacks for extensions.
437       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
438       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
439 
440       // Detect shifts/rotates by a scalar amount and convert them into
441       // V*_BY_SCALAR.
442       setOperationAction(ISD::SHL, VT, Custom);
443       setOperationAction(ISD::SRA, VT, Custom);
444       setOperationAction(ISD::SRL, VT, Custom);
445       setOperationAction(ISD::ROTL, VT, Custom);
446 
447       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
448       // and inverting the result as necessary.
449       setOperationAction(ISD::SETCC, VT, Custom);
450     }
451   }
452 
453   if (Subtarget.hasVector()) {
454     // There should be no need to check for float types other than v2f64
455     // since <2 x f32> isn't a legal type.
456     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
457     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
458     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
459     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
460     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
461     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
462     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
463     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
464 
465     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
466     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
467     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
468     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
469     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
470     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
471     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
472     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
473   }
474 
475   if (Subtarget.hasVectorEnhancements2()) {
476     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
477     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
478     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
479     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
480     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
481     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
482     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
483     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
484 
485     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
486     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
487     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
488     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
489     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
490     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
491     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
492     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
493   }
494 
495   // Handle floating-point types.
496   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
497        I <= MVT::LAST_FP_VALUETYPE;
498        ++I) {
499     MVT VT = MVT::SimpleValueType(I);
500     if (isTypeLegal(VT)) {
501       // We can use FI for FRINT.
502       setOperationAction(ISD::FRINT, VT, Legal);
503 
504       // We can use the extended form of FI for other rounding operations.
505       if (Subtarget.hasFPExtension()) {
506         setOperationAction(ISD::FNEARBYINT, VT, Legal);
507         setOperationAction(ISD::FFLOOR, VT, Legal);
508         setOperationAction(ISD::FCEIL, VT, Legal);
509         setOperationAction(ISD::FTRUNC, VT, Legal);
510         setOperationAction(ISD::FROUND, VT, Legal);
511       }
512 
513       // No special instructions for these.
514       setOperationAction(ISD::FSIN, VT, Expand);
515       setOperationAction(ISD::FCOS, VT, Expand);
516       setOperationAction(ISD::FSINCOS, VT, Expand);
517       setOperationAction(ISD::FREM, VT, Expand);
518       setOperationAction(ISD::FPOW, VT, Expand);
519 
520       // Special treatment.
521       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
522 
523       // Handle constrained floating-point operations.
524       setOperationAction(ISD::STRICT_FADD, VT, Legal);
525       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
526       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
527       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
528       setOperationAction(ISD::STRICT_FMA, VT, Legal);
529       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
530       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
531       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
532       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
533       if (Subtarget.hasFPExtension()) {
534         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
535         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
536         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
537         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
538         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
539       }
540     }
541   }
542 
543   // Handle floating-point vector types.
544   if (Subtarget.hasVector()) {
545     // Scalar-to-vector conversion is just a subreg.
546     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
547     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
548 
549     // Some insertions and extractions can be done directly but others
550     // need to go via integers.
551     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
552     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
553     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
554     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
555 
556     // These operations have direct equivalents.
557     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
558     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
559     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
560     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
561     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
562     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
563     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
564     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
565     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
566     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
567     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
568     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
569     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
570     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
571 
572     // Handle constrained floating-point operations.
573     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
574     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
575     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
576     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
577     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
578     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
579     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
580     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
581     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
582     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
584     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
585 
586     setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
587     setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
588     setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom);
589     setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom);
590     if (Subtarget.hasVectorEnhancements1()) {
591       setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom);
592       setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom);
593     }
594   }
595 
596   // The vector enhancements facility 1 has instructions for these.
597   if (Subtarget.hasVectorEnhancements1()) {
598     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
599     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
600     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
601     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
602     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
603     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
604     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
605     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
606     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
607     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
608     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
609     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
610     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
611     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
612 
613     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
614     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
615     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
616     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
617 
618     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
619     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
620     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
621     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
622 
623     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
624     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
625     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
626     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
627 
628     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
629     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
630     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
631     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
632 
633     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
634     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
635     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
636     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
637 
638     // Handle constrained floating-point operations.
639     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
640     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
641     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
642     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
643     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
644     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
645     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
646     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
647     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
648     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
649     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
650     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
651     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
652                      MVT::v4f32, MVT::v2f64 }) {
653       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
654       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
655       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
656       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
657     }
658   }
659 
660   // We only have fused f128 multiply-addition on vector registers.
661   if (!Subtarget.hasVectorEnhancements1()) {
662     setOperationAction(ISD::FMA, MVT::f128, Expand);
663     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
664   }
665 
666   // We don't have a copysign instruction on vector registers.
667   if (Subtarget.hasVectorEnhancements1())
668     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
669 
670   // Needed so that we don't try to implement f128 constant loads using
671   // a load-and-extend of a f80 constant (in cases where the constant
672   // would fit in an f80).
673   for (MVT VT : MVT::fp_valuetypes())
674     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
675 
676   // We don't have extending load instruction on vector registers.
677   if (Subtarget.hasVectorEnhancements1()) {
678     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
679     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
680   }
681 
682   // Floating-point truncation and stores need to be done separately.
683   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
684   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
685   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
686 
687   // We have 64-bit FPR<->GPR moves, but need special handling for
688   // 32-bit forms.
689   if (!Subtarget.hasVector()) {
690     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
691     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
692   }
693 
694   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
695   // structure, but VAEND is a no-op.
696   setOperationAction(ISD::VASTART, MVT::Other, Custom);
697   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
698   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
699 
700   setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
701 
702   // Codes for which we want to perform some z-specific combinations.
703   setTargetDAGCombine({ISD::ZERO_EXTEND,
704                        ISD::SIGN_EXTEND,
705                        ISD::SIGN_EXTEND_INREG,
706                        ISD::LOAD,
707                        ISD::STORE,
708                        ISD::VECTOR_SHUFFLE,
709                        ISD::EXTRACT_VECTOR_ELT,
710                        ISD::FP_ROUND,
711                        ISD::STRICT_FP_ROUND,
712                        ISD::FP_EXTEND,
713                        ISD::SINT_TO_FP,
714                        ISD::UINT_TO_FP,
715                        ISD::STRICT_FP_EXTEND,
716                        ISD::BSWAP,
717                        ISD::SDIV,
718                        ISD::UDIV,
719                        ISD::SREM,
720                        ISD::UREM,
721                        ISD::INTRINSIC_VOID,
722                        ISD::INTRINSIC_W_CHAIN});
723 
724   // Handle intrinsics.
725   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
726   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
727 
728   // We want to use MVC in preference to even a single load/store pair.
729   MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
730   MaxStoresPerMemcpyOptSize = 0;
731 
732   // The main memset sequence is a byte store followed by an MVC.
733   // Two STC or MV..I stores win over that, but the kind of fused stores
734   // generated by target-independent code don't when the byte value is
735   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
736   // than "STC;MVC".  Handle the choice in target-specific code instead.
737   MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
738   MaxStoresPerMemsetOptSize = 0;
739 
740   // Default to having -disable-strictnode-mutation on
741   IsStrictFPEnabled = true;
742 
743   if (Subtarget.isTargetzOS()) {
744     struct RTLibCallMapping {
745       RTLIB::Libcall Code;
746       const char *Name;
747     };
748     static RTLibCallMapping RTLibCallCommon[] = {
749 #define HANDLE_LIBCALL(code, name) {RTLIB::code, name},
750 #include "ZOSLibcallNames.def"
751     };
752     for (auto &E : RTLibCallCommon)
753       setLibcallName(E.Code, E.Name);
754   }
755 }
756 
757 bool SystemZTargetLowering::useSoftFloat() const {
758   return Subtarget.hasSoftFloat();
759 }
760 
761 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
762                                               LLVMContext &, EVT VT) const {
763   if (!VT.isVector())
764     return MVT::i32;
765   return VT.changeVectorElementTypeToInteger();
766 }
767 
768 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
769     const MachineFunction &MF, EVT VT) const {
770   VT = VT.getScalarType();
771 
772   if (!VT.isSimple())
773     return false;
774 
775   switch (VT.getSimpleVT().SimpleTy) {
776   case MVT::f32:
777   case MVT::f64:
778     return true;
779   case MVT::f128:
780     return Subtarget.hasVectorEnhancements1();
781   default:
782     break;
783   }
784 
785   return false;
786 }
787 
788 // Return true if the constant can be generated with a vector instruction,
789 // such as VGM, VGMB or VREPI.
790 bool SystemZVectorConstantInfo::isVectorConstantLegal(
791     const SystemZSubtarget &Subtarget) {
792   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
793   if (!Subtarget.hasVector() ||
794       (isFP128 && !Subtarget.hasVectorEnhancements1()))
795     return false;
796 
797   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
798   // preferred way of creating all-zero and all-one vectors so give it
799   // priority over other methods below.
800   unsigned Mask = 0;
801   unsigned I = 0;
802   for (; I < SystemZ::VectorBytes; ++I) {
803     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
804     if (Byte == 0xff)
805       Mask |= 1ULL << I;
806     else if (Byte != 0)
807       break;
808   }
809   if (I == SystemZ::VectorBytes) {
810     Opcode = SystemZISD::BYTE_MASK;
811     OpVals.push_back(Mask);
812     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
813     return true;
814   }
815 
816   if (SplatBitSize > 64)
817     return false;
818 
819   auto tryValue = [&](uint64_t Value) -> bool {
820     // Try VECTOR REPLICATE IMMEDIATE
821     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
822     if (isInt<16>(SignedValue)) {
823       OpVals.push_back(((unsigned) SignedValue));
824       Opcode = SystemZISD::REPLICATE;
825       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
826                                SystemZ::VectorBits / SplatBitSize);
827       return true;
828     }
829     // Try VECTOR GENERATE MASK
830     unsigned Start, End;
831     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
832       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
833       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
834       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
835       OpVals.push_back(Start - (64 - SplatBitSize));
836       OpVals.push_back(End - (64 - SplatBitSize));
837       Opcode = SystemZISD::ROTATE_MASK;
838       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
839                                SystemZ::VectorBits / SplatBitSize);
840       return true;
841     }
842     return false;
843   };
844 
845   // First try assuming that any undefined bits above the highest set bit
846   // and below the lowest set bit are 1s.  This increases the likelihood of
847   // being able to use a sign-extended element value in VECTOR REPLICATE
848   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
849   uint64_t SplatBitsZ = SplatBits.getZExtValue();
850   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
851   unsigned LowerBits = llvm::countr_zero(SplatBitsZ);
852   unsigned UpperBits = llvm::countl_zero(SplatBitsZ);
853   uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits);
854   uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits);
855   if (tryValue(SplatBitsZ | Upper | Lower))
856     return true;
857 
858   // Now try assuming that any undefined bits between the first and
859   // last defined set bits are set.  This increases the chances of
860   // using a non-wraparound mask.
861   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
862   return tryValue(SplatBitsZ | Middle);
863 }
864 
865 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
866   if (IntImm.isSingleWord()) {
867     IntBits = APInt(128, IntImm.getZExtValue());
868     IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
869   } else
870     IntBits = IntImm;
871   assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
872 
873   // Find the smallest splat.
874   SplatBits = IntImm;
875   unsigned Width = SplatBits.getBitWidth();
876   while (Width > 8) {
877     unsigned HalfSize = Width / 2;
878     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
879     APInt LowValue = SplatBits.trunc(HalfSize);
880 
881     // If the two halves do not match, stop here.
882     if (HighValue != LowValue || 8 > HalfSize)
883       break;
884 
885     SplatBits = HighValue;
886     Width = HalfSize;
887   }
888   SplatUndef = 0;
889   SplatBitSize = Width;
890 }
891 
892 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
893   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
894   bool HasAnyUndefs;
895 
896   // Get IntBits by finding the 128 bit splat.
897   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
898                        true);
899 
900   // Get SplatBits by finding the 8 bit or greater splat.
901   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
902                        true);
903 }
904 
905 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
906                                          bool ForCodeSize) const {
907   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
908   if (Imm.isZero() || Imm.isNegZero())
909     return true;
910 
911   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
912 }
913 
914 /// Returns true if stack probing through inline assembly is requested.
915 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
916   // If the function specifically requests inline stack probes, emit them.
917   if (MF.getFunction().hasFnAttribute("probe-stack"))
918     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
919            "inline-asm";
920   return false;
921 }
922 
923 TargetLowering::AtomicExpansionKind
924 SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
925   // Don't expand subword operations as they require special treatment.
926   if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16))
927     return AtomicExpansionKind::None;
928 
929   // Don't expand if there is a target instruction available.
930   if (Subtarget.hasInterlockedAccess1() &&
931       (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) &&
932       (RMW->getOperation() == AtomicRMWInst::BinOp::Add ||
933        RMW->getOperation() == AtomicRMWInst::BinOp::Sub ||
934        RMW->getOperation() == AtomicRMWInst::BinOp::And ||
935        RMW->getOperation() == AtomicRMWInst::BinOp::Or ||
936        RMW->getOperation() == AtomicRMWInst::BinOp::Xor))
937     return AtomicExpansionKind::None;
938 
939   return AtomicExpansionKind::CmpXChg;
940 }
941 
942 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
943   // We can use CGFI or CLGFI.
944   return isInt<32>(Imm) || isUInt<32>(Imm);
945 }
946 
947 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
948   // We can use ALGFI or SLGFI.
949   return isUInt<32>(Imm) || isUInt<32>(-Imm);
950 }
951 
952 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
953     EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
954   // Unaligned accesses should never be slower than the expanded version.
955   // We check specifically for aligned accesses in the few cases where
956   // they are required.
957   if (Fast)
958     *Fast = 1;
959   return true;
960 }
961 
962 // Information about the addressing mode for a memory access.
963 struct AddressingMode {
964   // True if a long displacement is supported.
965   bool LongDisplacement;
966 
967   // True if use of index register is supported.
968   bool IndexReg;
969 
970   AddressingMode(bool LongDispl, bool IdxReg) :
971     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
972 };
973 
974 // Return the desired addressing mode for a Load which has only one use (in
975 // the same block) which is a Store.
976 static AddressingMode getLoadStoreAddrMode(bool HasVector,
977                                           Type *Ty) {
978   // With vector support a Load->Store combination may be combined to either
979   // an MVC or vector operations and it seems to work best to allow the
980   // vector addressing mode.
981   if (HasVector)
982     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
983 
984   // Otherwise only the MVC case is special.
985   bool MVC = Ty->isIntegerTy(8);
986   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
987 }
988 
989 // Return the addressing mode which seems most desirable given an LLVM
990 // Instruction pointer.
991 static AddressingMode
992 supportedAddressingMode(Instruction *I, bool HasVector) {
993   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
994     switch (II->getIntrinsicID()) {
995     default: break;
996     case Intrinsic::memset:
997     case Intrinsic::memmove:
998     case Intrinsic::memcpy:
999       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1000     }
1001   }
1002 
1003   if (isa<LoadInst>(I) && I->hasOneUse()) {
1004     auto *SingleUser = cast<Instruction>(*I->user_begin());
1005     if (SingleUser->getParent() == I->getParent()) {
1006       if (isa<ICmpInst>(SingleUser)) {
1007         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
1008           if (C->getBitWidth() <= 64 &&
1009               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
1010             // Comparison of memory with 16 bit signed / unsigned immediate
1011             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1012       } else if (isa<StoreInst>(SingleUser))
1013         // Load->Store
1014         return getLoadStoreAddrMode(HasVector, I->getType());
1015     }
1016   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
1017     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
1018       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
1019         // Load->Store
1020         return getLoadStoreAddrMode(HasVector, LoadI->getType());
1021   }
1022 
1023   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
1024 
1025     // * Use LDE instead of LE/LEY for z13 to avoid partial register
1026     //   dependencies (LDE only supports small offsets).
1027     // * Utilize the vector registers to hold floating point
1028     //   values (vector load / store instructions only support small
1029     //   offsets).
1030 
1031     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
1032                          I->getOperand(0)->getType());
1033     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
1034     bool IsVectorAccess = MemAccessTy->isVectorTy();
1035 
1036     // A store of an extracted vector element will be combined into a VSTE type
1037     // instruction.
1038     if (!IsVectorAccess && isa<StoreInst>(I)) {
1039       Value *DataOp = I->getOperand(0);
1040       if (isa<ExtractElementInst>(DataOp))
1041         IsVectorAccess = true;
1042     }
1043 
1044     // A load which gets inserted into a vector element will be combined into a
1045     // VLE type instruction.
1046     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
1047       User *LoadUser = *I->user_begin();
1048       if (isa<InsertElementInst>(LoadUser))
1049         IsVectorAccess = true;
1050     }
1051 
1052     if (IsFPAccess || IsVectorAccess)
1053       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1054   }
1055 
1056   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
1057 }
1058 
1059 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1060        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
1061   // Punt on globals for now, although they can be used in limited
1062   // RELATIVE LONG cases.
1063   if (AM.BaseGV)
1064     return false;
1065 
1066   // Require a 20-bit signed offset.
1067   if (!isInt<20>(AM.BaseOffs))
1068     return false;
1069 
1070   bool RequireD12 =
1071       Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(128));
1072   AddressingMode SupportedAM(!RequireD12, true);
1073   if (I != nullptr)
1074     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
1075 
1076   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
1077     return false;
1078 
1079   if (!SupportedAM.IndexReg)
1080     // No indexing allowed.
1081     return AM.Scale == 0;
1082   else
1083     // Indexing is OK but no scale factor can be applied.
1084     return AM.Scale == 0 || AM.Scale == 1;
1085 }
1086 
1087 bool SystemZTargetLowering::findOptimalMemOpLowering(
1088     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1089     unsigned SrcAS, const AttributeList &FuncAttributes) const {
1090   const int MVCFastLen = 16;
1091 
1092   if (Limit != ~unsigned(0)) {
1093     // Don't expand Op into scalar loads/stores in these cases:
1094     if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1095       return false; // Small memcpy: Use MVC
1096     if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1097       return false; // Small memset (first byte with STC/MVI): Use MVC
1098     if (Op.isZeroMemset())
1099       return false; // Memset zero: Use XC
1100   }
1101 
1102   return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1103                                                   SrcAS, FuncAttributes);
1104 }
1105 
1106 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1107                                    const AttributeList &FuncAttributes) const {
1108   return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1109 }
1110 
1111 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1112   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1113     return false;
1114   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue();
1115   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue();
1116   return FromBits > ToBits;
1117 }
1118 
1119 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1120   if (!FromVT.isInteger() || !ToVT.isInteger())
1121     return false;
1122   unsigned FromBits = FromVT.getFixedSizeInBits();
1123   unsigned ToBits = ToVT.getFixedSizeInBits();
1124   return FromBits > ToBits;
1125 }
1126 
1127 //===----------------------------------------------------------------------===//
1128 // Inline asm support
1129 //===----------------------------------------------------------------------===//
1130 
1131 TargetLowering::ConstraintType
1132 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1133   if (Constraint.size() == 1) {
1134     switch (Constraint[0]) {
1135     case 'a': // Address register
1136     case 'd': // Data register (equivalent to 'r')
1137     case 'f': // Floating-point register
1138     case 'h': // High-part register
1139     case 'r': // General-purpose register
1140     case 'v': // Vector register
1141       return C_RegisterClass;
1142 
1143     case 'Q': // Memory with base and unsigned 12-bit displacement
1144     case 'R': // Likewise, plus an index
1145     case 'S': // Memory with base and signed 20-bit displacement
1146     case 'T': // Likewise, plus an index
1147     case 'm': // Equivalent to 'T'.
1148       return C_Memory;
1149 
1150     case 'I': // Unsigned 8-bit constant
1151     case 'J': // Unsigned 12-bit constant
1152     case 'K': // Signed 16-bit constant
1153     case 'L': // Signed 20-bit displacement (on all targets we support)
1154     case 'M': // 0x7fffffff
1155       return C_Immediate;
1156 
1157     default:
1158       break;
1159     }
1160   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1161     switch (Constraint[1]) {
1162     case 'Q': // Address with base and unsigned 12-bit displacement
1163     case 'R': // Likewise, plus an index
1164     case 'S': // Address with base and signed 20-bit displacement
1165     case 'T': // Likewise, plus an index
1166       return C_Address;
1167 
1168     default:
1169       break;
1170     }
1171   }
1172   return TargetLowering::getConstraintType(Constraint);
1173 }
1174 
1175 TargetLowering::ConstraintWeight SystemZTargetLowering::
1176 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1177                                const char *constraint) const {
1178   ConstraintWeight weight = CW_Invalid;
1179   Value *CallOperandVal = info.CallOperandVal;
1180   // If we don't have a value, we can't do a match,
1181   // but allow it at the lowest weight.
1182   if (!CallOperandVal)
1183     return CW_Default;
1184   Type *type = CallOperandVal->getType();
1185   // Look at the constraint type.
1186   switch (*constraint) {
1187   default:
1188     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1189     break;
1190 
1191   case 'a': // Address register
1192   case 'd': // Data register (equivalent to 'r')
1193   case 'h': // High-part register
1194   case 'r': // General-purpose register
1195     weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default;
1196     break;
1197 
1198   case 'f': // Floating-point register
1199     if (!useSoftFloat())
1200       weight = type->isFloatingPointTy() ? CW_Register : CW_Default;
1201     break;
1202 
1203   case 'v': // Vector register
1204     if (Subtarget.hasVector())
1205       weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register
1206                                                                  : CW_Default;
1207     break;
1208 
1209   case 'I': // Unsigned 8-bit constant
1210     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1211       if (isUInt<8>(C->getZExtValue()))
1212         weight = CW_Constant;
1213     break;
1214 
1215   case 'J': // Unsigned 12-bit constant
1216     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1217       if (isUInt<12>(C->getZExtValue()))
1218         weight = CW_Constant;
1219     break;
1220 
1221   case 'K': // Signed 16-bit constant
1222     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1223       if (isInt<16>(C->getSExtValue()))
1224         weight = CW_Constant;
1225     break;
1226 
1227   case 'L': // Signed 20-bit displacement (on all targets we support)
1228     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1229       if (isInt<20>(C->getSExtValue()))
1230         weight = CW_Constant;
1231     break;
1232 
1233   case 'M': // 0x7fffffff
1234     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1235       if (C->getZExtValue() == 0x7fffffff)
1236         weight = CW_Constant;
1237     break;
1238   }
1239   return weight;
1240 }
1241 
1242 // Parse a "{tNNN}" register constraint for which the register type "t"
1243 // has already been verified.  MC is the class associated with "t" and
1244 // Map maps 0-based register numbers to LLVM register numbers.
1245 static std::pair<unsigned, const TargetRegisterClass *>
1246 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1247                     const unsigned *Map, unsigned Size) {
1248   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1249   if (isdigit(Constraint[2])) {
1250     unsigned Index;
1251     bool Failed =
1252         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1253     if (!Failed && Index < Size && Map[Index])
1254       return std::make_pair(Map[Index], RC);
1255   }
1256   return std::make_pair(0U, nullptr);
1257 }
1258 
1259 std::pair<unsigned, const TargetRegisterClass *>
1260 SystemZTargetLowering::getRegForInlineAsmConstraint(
1261     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1262   if (Constraint.size() == 1) {
1263     // GCC Constraint Letters
1264     switch (Constraint[0]) {
1265     default: break;
1266     case 'd': // Data register (equivalent to 'r')
1267     case 'r': // General-purpose register
1268       if (VT.getSizeInBits() == 64)
1269         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1270       else if (VT.getSizeInBits() == 128)
1271         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1272       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1273 
1274     case 'a': // Address register
1275       if (VT == MVT::i64)
1276         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1277       else if (VT == MVT::i128)
1278         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1279       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1280 
1281     case 'h': // High-part register (an LLVM extension)
1282       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1283 
1284     case 'f': // Floating-point register
1285       if (!useSoftFloat()) {
1286         if (VT.getSizeInBits() == 64)
1287           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1288         else if (VT.getSizeInBits() == 128)
1289           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1290         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1291       }
1292       break;
1293 
1294     case 'v': // Vector register
1295       if (Subtarget.hasVector()) {
1296         if (VT.getSizeInBits() == 32)
1297           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1298         if (VT.getSizeInBits() == 64)
1299           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1300         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1301       }
1302       break;
1303     }
1304   }
1305   if (Constraint.size() > 0 && Constraint[0] == '{') {
1306 
1307     // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal
1308     // to check the size on.
1309     auto getVTSizeInBits = [&VT]() {
1310       return VT == MVT::Other ? 0 : VT.getSizeInBits();
1311     };
1312 
1313     // We need to override the default register parsing for GPRs and FPRs
1314     // because the interpretation depends on VT.  The internal names of
1315     // the registers are also different from the external names
1316     // (F0D and F0S instead of F0, etc.).
1317     if (Constraint[1] == 'r') {
1318       if (getVTSizeInBits() == 32)
1319         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1320                                    SystemZMC::GR32Regs, 16);
1321       if (getVTSizeInBits() == 128)
1322         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1323                                    SystemZMC::GR128Regs, 16);
1324       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1325                                  SystemZMC::GR64Regs, 16);
1326     }
1327     if (Constraint[1] == 'f') {
1328       if (useSoftFloat())
1329         return std::make_pair(
1330             0u, static_cast<const TargetRegisterClass *>(nullptr));
1331       if (getVTSizeInBits() == 32)
1332         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1333                                    SystemZMC::FP32Regs, 16);
1334       if (getVTSizeInBits() == 128)
1335         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1336                                    SystemZMC::FP128Regs, 16);
1337       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1338                                  SystemZMC::FP64Regs, 16);
1339     }
1340     if (Constraint[1] == 'v') {
1341       if (!Subtarget.hasVector())
1342         return std::make_pair(
1343             0u, static_cast<const TargetRegisterClass *>(nullptr));
1344       if (getVTSizeInBits() == 32)
1345         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1346                                    SystemZMC::VR32Regs, 32);
1347       if (getVTSizeInBits() == 64)
1348         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1349                                    SystemZMC::VR64Regs, 32);
1350       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1351                                  SystemZMC::VR128Regs, 32);
1352     }
1353   }
1354   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1355 }
1356 
1357 // FIXME? Maybe this could be a TableGen attribute on some registers and
1358 // this table could be generated automatically from RegInfo.
1359 Register
1360 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1361                                          const MachineFunction &MF) const {
1362   Register Reg =
1363       StringSwitch<Register>(RegName)
1364           .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0)
1365           .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0)
1366           .Default(0);
1367 
1368   if (Reg)
1369     return Reg;
1370   report_fatal_error("Invalid register name global variable");
1371 }
1372 
1373 Register SystemZTargetLowering::getExceptionPointerRegister(
1374     const Constant *PersonalityFn) const {
1375   return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D;
1376 }
1377 
1378 Register SystemZTargetLowering::getExceptionSelectorRegister(
1379     const Constant *PersonalityFn) const {
1380   return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D;
1381 }
1382 
1383 void SystemZTargetLowering::LowerAsmOperandForConstraint(
1384     SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
1385     SelectionDAG &DAG) const {
1386   // Only support length 1 constraints for now.
1387   if (Constraint.size() == 1) {
1388     switch (Constraint[0]) {
1389     case 'I': // Unsigned 8-bit constant
1390       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1391         if (isUInt<8>(C->getZExtValue()))
1392           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1393                                               Op.getValueType()));
1394       return;
1395 
1396     case 'J': // Unsigned 12-bit constant
1397       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1398         if (isUInt<12>(C->getZExtValue()))
1399           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1400                                               Op.getValueType()));
1401       return;
1402 
1403     case 'K': // Signed 16-bit constant
1404       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1405         if (isInt<16>(C->getSExtValue()))
1406           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1407                                               Op.getValueType()));
1408       return;
1409 
1410     case 'L': // Signed 20-bit displacement (on all targets we support)
1411       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1412         if (isInt<20>(C->getSExtValue()))
1413           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1414                                               Op.getValueType()));
1415       return;
1416 
1417     case 'M': // 0x7fffffff
1418       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1419         if (C->getZExtValue() == 0x7fffffff)
1420           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1421                                               Op.getValueType()));
1422       return;
1423     }
1424   }
1425   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1426 }
1427 
1428 //===----------------------------------------------------------------------===//
1429 // Calling conventions
1430 //===----------------------------------------------------------------------===//
1431 
1432 #include "SystemZGenCallingConv.inc"
1433 
1434 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1435   CallingConv::ID) const {
1436   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1437                                            SystemZ::R14D, 0 };
1438   return ScratchRegs;
1439 }
1440 
1441 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1442                                                      Type *ToType) const {
1443   return isTruncateFree(FromType, ToType);
1444 }
1445 
1446 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1447   return CI->isTailCall();
1448 }
1449 
1450 // Value is a value that has been passed to us in the location described by VA
1451 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1452 // any loads onto Chain.
1453 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1454                                    CCValAssign &VA, SDValue Chain,
1455                                    SDValue Value) {
1456   // If the argument has been promoted from a smaller type, insert an
1457   // assertion to capture this.
1458   if (VA.getLocInfo() == CCValAssign::SExt)
1459     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1460                         DAG.getValueType(VA.getValVT()));
1461   else if (VA.getLocInfo() == CCValAssign::ZExt)
1462     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1463                         DAG.getValueType(VA.getValVT()));
1464 
1465   if (VA.isExtInLoc())
1466     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1467   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1468     // If this is a short vector argument loaded from the stack,
1469     // extend from i64 to full vector size and then bitcast.
1470     assert(VA.getLocVT() == MVT::i64);
1471     assert(VA.getValVT().isVector());
1472     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1473     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1474   } else
1475     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1476   return Value;
1477 }
1478 
1479 // Value is a value of type VA.getValVT() that we need to copy into
1480 // the location described by VA.  Return a copy of Value converted to
1481 // VA.getValVT().  The caller is responsible for handling indirect values.
1482 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1483                                    CCValAssign &VA, SDValue Value) {
1484   switch (VA.getLocInfo()) {
1485   case CCValAssign::SExt:
1486     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1487   case CCValAssign::ZExt:
1488     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1489   case CCValAssign::AExt:
1490     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1491   case CCValAssign::BCvt: {
1492     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1493     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
1494            VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
1495     // For an f32 vararg we need to first promote it to an f64 and then
1496     // bitcast it to an i64.
1497     if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
1498       Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
1499     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1500                             ? MVT::v2i64
1501                             : VA.getLocVT();
1502     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1503     // For ELF, this is a short vector argument to be stored to the stack,
1504     // bitcast to v2i64 and then extract first element.
1505     if (BitCastToType == MVT::v2i64)
1506       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1507                          DAG.getConstant(0, DL, MVT::i32));
1508     return Value;
1509   }
1510   case CCValAssign::Full:
1511     return Value;
1512   default:
1513     llvm_unreachable("Unhandled getLocInfo()");
1514   }
1515 }
1516 
1517 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1518   SDLoc DL(In);
1519   SDValue Lo, Hi;
1520   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1521     Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In);
1522     Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
1523                      DAG.getNode(ISD::SRL, DL, MVT::i128, In,
1524                                  DAG.getConstant(64, DL, MVT::i32)));
1525   } else {
1526     std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64);
1527   }
1528 
1529   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1530                                     MVT::Untyped, Hi, Lo);
1531   return SDValue(Pair, 0);
1532 }
1533 
1534 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1535   SDLoc DL(In);
1536   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1537                                           DL, MVT::i64, In);
1538   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1539                                           DL, MVT::i64, In);
1540 
1541   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1542     Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo);
1543     Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi);
1544     Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi,
1545                      DAG.getConstant(64, DL, MVT::i32));
1546     return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi);
1547   } else {
1548     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1549   }
1550 }
1551 
1552 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1553     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1554     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
1555   EVT ValueVT = Val.getValueType();
1556   if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1557     // Inline assembly operand.
1558     Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val));
1559     return true;
1560   }
1561 
1562   return false;
1563 }
1564 
1565 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1566     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1567     MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
1568   if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1569     // Inline assembly operand.
1570     SDValue Res = lowerGR128ToI128(DAG, Parts[0]);
1571     return DAG.getBitcast(ValueVT, Res);
1572   }
1573 
1574   return SDValue();
1575 }
1576 
1577 SDValue SystemZTargetLowering::LowerFormalArguments(
1578     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1579     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1580     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1581   MachineFunction &MF = DAG.getMachineFunction();
1582   MachineFrameInfo &MFI = MF.getFrameInfo();
1583   MachineRegisterInfo &MRI = MF.getRegInfo();
1584   SystemZMachineFunctionInfo *FuncInfo =
1585       MF.getInfo<SystemZMachineFunctionInfo>();
1586   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1587   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1588 
1589   // Assign locations to all of the incoming arguments.
1590   SmallVector<CCValAssign, 16> ArgLocs;
1591   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1592   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1593   FuncInfo->setSizeOfFnParams(CCInfo.getStackSize());
1594 
1595   unsigned NumFixedGPRs = 0;
1596   unsigned NumFixedFPRs = 0;
1597   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1598     SDValue ArgValue;
1599     CCValAssign &VA = ArgLocs[I];
1600     EVT LocVT = VA.getLocVT();
1601     if (VA.isRegLoc()) {
1602       // Arguments passed in registers
1603       const TargetRegisterClass *RC;
1604       switch (LocVT.getSimpleVT().SimpleTy) {
1605       default:
1606         // Integers smaller than i64 should be promoted to i64.
1607         llvm_unreachable("Unexpected argument type");
1608       case MVT::i32:
1609         NumFixedGPRs += 1;
1610         RC = &SystemZ::GR32BitRegClass;
1611         break;
1612       case MVT::i64:
1613         NumFixedGPRs += 1;
1614         RC = &SystemZ::GR64BitRegClass;
1615         break;
1616       case MVT::f32:
1617         NumFixedFPRs += 1;
1618         RC = &SystemZ::FP32BitRegClass;
1619         break;
1620       case MVT::f64:
1621         NumFixedFPRs += 1;
1622         RC = &SystemZ::FP64BitRegClass;
1623         break;
1624       case MVT::f128:
1625         NumFixedFPRs += 2;
1626         RC = &SystemZ::FP128BitRegClass;
1627         break;
1628       case MVT::v16i8:
1629       case MVT::v8i16:
1630       case MVT::v4i32:
1631       case MVT::v2i64:
1632       case MVT::v4f32:
1633       case MVT::v2f64:
1634         RC = &SystemZ::VR128BitRegClass;
1635         break;
1636       }
1637 
1638       Register VReg = MRI.createVirtualRegister(RC);
1639       MRI.addLiveIn(VA.getLocReg(), VReg);
1640       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1641     } else {
1642       assert(VA.isMemLoc() && "Argument not register or memory");
1643 
1644       // Create the frame index object for this incoming parameter.
1645       // FIXME: Pre-include call frame size in the offset, should not
1646       // need to manually add it here.
1647       int64_t ArgSPOffset = VA.getLocMemOffset();
1648       if (Subtarget.isTargetXPLINK64()) {
1649         auto &XPRegs =
1650             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1651         ArgSPOffset += XPRegs.getCallFrameSize();
1652       }
1653       int FI =
1654           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1655 
1656       // Create the SelectionDAG nodes corresponding to a load
1657       // from this parameter.  Unpromoted ints and floats are
1658       // passed as right-justified 8-byte values.
1659       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1660       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1661         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1662                           DAG.getIntPtrConstant(4, DL));
1663       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1664                              MachinePointerInfo::getFixedStack(MF, FI));
1665     }
1666 
1667     // Convert the value of the argument register into the value that's
1668     // being passed.
1669     if (VA.getLocInfo() == CCValAssign::Indirect) {
1670       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1671                                    MachinePointerInfo()));
1672       // If the original argument was split (e.g. i128), we need
1673       // to load all parts of it here (using the same address).
1674       unsigned ArgIndex = Ins[I].OrigArgIndex;
1675       assert (Ins[I].PartOffset == 0);
1676       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1677         CCValAssign &PartVA = ArgLocs[I + 1];
1678         unsigned PartOffset = Ins[I + 1].PartOffset;
1679         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1680                                       DAG.getIntPtrConstant(PartOffset, DL));
1681         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1682                                      MachinePointerInfo()));
1683         ++I;
1684       }
1685     } else
1686       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1687   }
1688 
1689   if (IsVarArg && Subtarget.isTargetXPLINK64()) {
1690     // Save the number of non-varargs registers for later use by va_start, etc.
1691     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1692     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1693 
1694     auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1695         Subtarget.getSpecialRegisters());
1696 
1697     // Likewise the address (in the form of a frame index) of where the
1698     // first stack vararg would be.  The 1-byte size here is arbitrary.
1699     // FIXME: Pre-include call frame size in the offset, should not
1700     // need to manually add it here.
1701     int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize();
1702     int FI = MFI.CreateFixedObject(1, VarArgOffset, true);
1703     FuncInfo->setVarArgsFrameIndex(FI);
1704   }
1705 
1706   if (IsVarArg && Subtarget.isTargetELF()) {
1707     // Save the number of non-varargs registers for later use by va_start, etc.
1708     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1709     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1710 
1711     // Likewise the address (in the form of a frame index) of where the
1712     // first stack vararg would be.  The 1-byte size here is arbitrary.
1713     int64_t VarArgsOffset = CCInfo.getStackSize();
1714     FuncInfo->setVarArgsFrameIndex(
1715         MFI.CreateFixedObject(1, VarArgsOffset, true));
1716 
1717     // ...and a similar frame index for the caller-allocated save area
1718     // that will be used to store the incoming registers.
1719     int64_t RegSaveOffset =
1720       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1721     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1722     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1723 
1724     // Store the FPR varargs in the reserved frame slots.  (We store the
1725     // GPRs as part of the prologue.)
1726     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1727       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1728       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1729         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1730         int FI =
1731           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1732         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1733         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1734                                      &SystemZ::FP64BitRegClass);
1735         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1736         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1737                                  MachinePointerInfo::getFixedStack(MF, FI));
1738       }
1739       // Join the stores, which are independent of one another.
1740       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1741                           ArrayRef(&MemOps[NumFixedFPRs],
1742                                    SystemZ::ELFNumArgFPRs - NumFixedFPRs));
1743     }
1744   }
1745 
1746   if (Subtarget.isTargetXPLINK64()) {
1747     // Create virual register  for handling incoming "ADA" special register (R5)
1748     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
1749     Register ADAvReg = MRI.createVirtualRegister(RC);
1750     auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1751         Subtarget.getSpecialRegisters());
1752     MRI.addLiveIn(Regs->getADARegister(), ADAvReg);
1753     FuncInfo->setADAVirtualRegister(ADAvReg);
1754   }
1755   return Chain;
1756 }
1757 
1758 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1759                               SmallVectorImpl<CCValAssign> &ArgLocs,
1760                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1761   // Punt if there are any indirect or stack arguments, or if the call
1762   // needs the callee-saved argument register R6, or if the call uses
1763   // the callee-saved register arguments SwiftSelf and SwiftError.
1764   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1765     CCValAssign &VA = ArgLocs[I];
1766     if (VA.getLocInfo() == CCValAssign::Indirect)
1767       return false;
1768     if (!VA.isRegLoc())
1769       return false;
1770     Register Reg = VA.getLocReg();
1771     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1772       return false;
1773     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1774       return false;
1775   }
1776   return true;
1777 }
1778 
1779 static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL,
1780                            unsigned Offset, bool LoadAdr = false) {
1781   MachineFunction &MF = DAG.getMachineFunction();
1782   SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
1783   unsigned ADAvReg = MFI->getADAVirtualRegister();
1784   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1785 
1786   SDValue Reg = DAG.getRegister(ADAvReg, PtrVT);
1787   SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT);
1788 
1789   SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs);
1790   if (!LoadAdr)
1791     Result = DAG.getLoad(
1792         PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8),
1793         MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant);
1794 
1795   return Result;
1796 }
1797 
1798 // ADA access using Global value
1799 // Note: for functions, address of descriptor is returned
1800 static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL,
1801                            EVT PtrVT) {
1802   unsigned ADAtype;
1803   bool LoadAddr = false;
1804   const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV);
1805   bool IsFunction =
1806       (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject()));
1807   bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage());
1808 
1809   if (IsFunction) {
1810     if (IsInternal) {
1811       ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC;
1812       LoadAddr = true;
1813     } else
1814       ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC;
1815   } else {
1816     ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR;
1817   }
1818   SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype);
1819 
1820   return getADAEntry(DAG, Val, DL, 0, LoadAddr);
1821 }
1822 
1823 static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA,
1824                                SDLoc &DL, SDValue &Chain) {
1825   unsigned ADADelta = 0; // ADA offset in desc.
1826   unsigned EPADelta = 8; // EPA offset in desc.
1827   MachineFunction &MF = DAG.getMachineFunction();
1828   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1829 
1830   // XPLink calling convention.
1831   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1832     bool IsInternal = (G->getGlobal()->hasInternalLinkage() ||
1833                        G->getGlobal()->hasPrivateLinkage());
1834     if (IsInternal) {
1835       SystemZMachineFunctionInfo *MFI =
1836           MF.getInfo<SystemZMachineFunctionInfo>();
1837       unsigned ADAvReg = MFI->getADAVirtualRegister();
1838       ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT);
1839       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1840       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1841       return true;
1842     } else {
1843       SDValue GA = DAG.getTargetGlobalAddress(
1844           G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1845       ADA = getADAEntry(DAG, GA, DL, ADADelta);
1846       Callee = getADAEntry(DAG, GA, DL, EPADelta);
1847     }
1848   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1849     SDValue ES = DAG.getTargetExternalSymbol(
1850         E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1851     ADA = getADAEntry(DAG, ES, DL, ADADelta);
1852     Callee = getADAEntry(DAG, ES, DL, EPADelta);
1853   } else {
1854     // Function pointer case
1855     ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1856                       DAG.getConstant(ADADelta, DL, PtrVT));
1857     ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA,
1858                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1859     Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1860                          DAG.getConstant(EPADelta, DL, PtrVT));
1861     Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee,
1862                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1863   }
1864   return false;
1865 }
1866 
1867 SDValue
1868 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1869                                  SmallVectorImpl<SDValue> &InVals) const {
1870   SelectionDAG &DAG = CLI.DAG;
1871   SDLoc &DL = CLI.DL;
1872   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1873   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1874   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1875   SDValue Chain = CLI.Chain;
1876   SDValue Callee = CLI.Callee;
1877   bool &IsTailCall = CLI.IsTailCall;
1878   CallingConv::ID CallConv = CLI.CallConv;
1879   bool IsVarArg = CLI.IsVarArg;
1880   MachineFunction &MF = DAG.getMachineFunction();
1881   EVT PtrVT = getPointerTy(MF.getDataLayout());
1882   LLVMContext &Ctx = *DAG.getContext();
1883   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1884 
1885   // FIXME: z/OS support to be added in later.
1886   if (Subtarget.isTargetXPLINK64())
1887     IsTailCall = false;
1888 
1889   // Analyze the operands of the call, assigning locations to each operand.
1890   SmallVector<CCValAssign, 16> ArgLocs;
1891   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1892   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1893 
1894   // We don't support GuaranteedTailCallOpt, only automatically-detected
1895   // sibling calls.
1896   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1897     IsTailCall = false;
1898 
1899   // Get a count of how many bytes are to be pushed on the stack.
1900   unsigned NumBytes = ArgCCInfo.getStackSize();
1901 
1902   // Mark the start of the call.
1903   if (!IsTailCall)
1904     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1905 
1906   // Copy argument values to their designated locations.
1907   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1908   SmallVector<SDValue, 8> MemOpChains;
1909   SDValue StackPtr;
1910   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1911     CCValAssign &VA = ArgLocs[I];
1912     SDValue ArgValue = OutVals[I];
1913 
1914     if (VA.getLocInfo() == CCValAssign::Indirect) {
1915       // Store the argument in a stack slot and pass its address.
1916       unsigned ArgIndex = Outs[I].OrigArgIndex;
1917       EVT SlotVT;
1918       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1919         // Allocate the full stack space for a promoted (and split) argument.
1920         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1921         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1922         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1923         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1924         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1925       } else {
1926         SlotVT = Outs[I].VT;
1927       }
1928       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1929       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1930       MemOpChains.push_back(
1931           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1932                        MachinePointerInfo::getFixedStack(MF, FI)));
1933       // If the original argument was split (e.g. i128), we need
1934       // to store all parts of it here (and pass just one address).
1935       assert (Outs[I].PartOffset == 0);
1936       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1937         SDValue PartValue = OutVals[I + 1];
1938         unsigned PartOffset = Outs[I + 1].PartOffset;
1939         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1940                                       DAG.getIntPtrConstant(PartOffset, DL));
1941         MemOpChains.push_back(
1942             DAG.getStore(Chain, DL, PartValue, Address,
1943                          MachinePointerInfo::getFixedStack(MF, FI)));
1944         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1945                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1946         ++I;
1947       }
1948       ArgValue = SpillSlot;
1949     } else
1950       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1951 
1952     if (VA.isRegLoc()) {
1953       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1954       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1955       // and low values.
1956       if (VA.getLocVT() == MVT::i128)
1957         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1958       // Queue up the argument copies and emit them at the end.
1959       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1960     } else {
1961       assert(VA.isMemLoc() && "Argument not register or memory");
1962 
1963       // Work out the address of the stack slot.  Unpromoted ints and
1964       // floats are passed as right-justified 8-byte values.
1965       if (!StackPtr.getNode())
1966         StackPtr = DAG.getCopyFromReg(Chain, DL,
1967                                       Regs->getStackPointerRegister(), PtrVT);
1968       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1969                         VA.getLocMemOffset();
1970       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1971         Offset += 4;
1972       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1973                                     DAG.getIntPtrConstant(Offset, DL));
1974 
1975       // Emit the store.
1976       MemOpChains.push_back(
1977           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1978 
1979       // Although long doubles or vectors are passed through the stack when
1980       // they are vararg (non-fixed arguments), if a long double or vector
1981       // occupies the third and fourth slot of the argument list GPR3 should
1982       // still shadow the third slot of the argument list.
1983       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1984         SDValue ShadowArgValue =
1985             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1986                         DAG.getIntPtrConstant(1, DL));
1987         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1988       }
1989     }
1990   }
1991 
1992   // Join the stores, which are independent of one another.
1993   if (!MemOpChains.empty())
1994     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1995 
1996   // Accept direct calls by converting symbolic call addresses to the
1997   // associated Target* opcodes.  Force %r1 to be used for indirect
1998   // tail calls.
1999   SDValue Glue;
2000 
2001   if (Subtarget.isTargetXPLINK64()) {
2002     SDValue ADA;
2003     bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain);
2004     if (!IsBRASL) {
2005       unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs)
2006                                ->getAddressOfCalleeRegister();
2007       Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue);
2008       Glue = Chain.getValue(1);
2009       Callee = DAG.getRegister(CalleeReg, Callee.getValueType());
2010     }
2011     RegsToPass.push_back(std::make_pair(
2012         static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA));
2013   } else {
2014     if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2015       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
2016       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2017     } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2018       Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
2019       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2020     } else if (IsTailCall) {
2021       Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
2022       Glue = Chain.getValue(1);
2023       Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
2024     }
2025   }
2026 
2027   // Build a sequence of copy-to-reg nodes, chained and glued together.
2028   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
2029     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
2030                              RegsToPass[I].second, Glue);
2031     Glue = Chain.getValue(1);
2032   }
2033 
2034   // The first call operand is the chain and the second is the target address.
2035   SmallVector<SDValue, 8> Ops;
2036   Ops.push_back(Chain);
2037   Ops.push_back(Callee);
2038 
2039   // Add argument registers to the end of the list so that they are
2040   // known live into the call.
2041   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
2042     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
2043                                   RegsToPass[I].second.getValueType()));
2044 
2045   // Add a register mask operand representing the call-preserved registers.
2046   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2047   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2048   assert(Mask && "Missing call preserved mask for calling convention");
2049   Ops.push_back(DAG.getRegisterMask(Mask));
2050 
2051   // Glue the call to the argument copies, if any.
2052   if (Glue.getNode())
2053     Ops.push_back(Glue);
2054 
2055   // Emit the call.
2056   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2057   if (IsTailCall) {
2058     SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
2059     DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2060     return Ret;
2061   }
2062   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
2063   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2064   Glue = Chain.getValue(1);
2065 
2066   // Mark the end of the call, which is glued to the call itself.
2067   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
2068   Glue = Chain.getValue(1);
2069 
2070   // Assign locations to each value returned by this call.
2071   SmallVector<CCValAssign, 16> RetLocs;
2072   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
2073   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
2074 
2075   // Copy all of the result registers out of their specified physreg.
2076   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2077     CCValAssign &VA = RetLocs[I];
2078 
2079     // Copy the value out, gluing the copy to the end of the call sequence.
2080     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
2081                                           VA.getLocVT(), Glue);
2082     Chain = RetValue.getValue(1);
2083     Glue = RetValue.getValue(2);
2084 
2085     // Convert the value of the return register into the value that's
2086     // being returned.
2087     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
2088   }
2089 
2090   return Chain;
2091 }
2092 
2093 // Generate a call taking the given operands as arguments and returning a
2094 // result of type RetVT.
2095 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
2096     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
2097     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
2098     bool DoesNotReturn, bool IsReturnValueUsed) const {
2099   TargetLowering::ArgListTy Args;
2100   Args.reserve(Ops.size());
2101 
2102   TargetLowering::ArgListEntry Entry;
2103   for (SDValue Op : Ops) {
2104     Entry.Node = Op;
2105     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2106     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2107     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2108     Args.push_back(Entry);
2109   }
2110 
2111   SDValue Callee =
2112       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
2113 
2114   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2115   TargetLowering::CallLoweringInfo CLI(DAG);
2116   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
2117   CLI.setDebugLoc(DL)
2118       .setChain(Chain)
2119       .setCallee(CallConv, RetTy, Callee, std::move(Args))
2120       .setNoReturn(DoesNotReturn)
2121       .setDiscardResult(!IsReturnValueUsed)
2122       .setSExtResult(SignExtend)
2123       .setZExtResult(!SignExtend);
2124   return LowerCallTo(CLI);
2125 }
2126 
2127 bool SystemZTargetLowering::
2128 CanLowerReturn(CallingConv::ID CallConv,
2129                MachineFunction &MF, bool isVarArg,
2130                const SmallVectorImpl<ISD::OutputArg> &Outs,
2131                LLVMContext &Context) const {
2132   // Special case that we cannot easily detect in RetCC_SystemZ since
2133   // i128 may not be a legal type.
2134   for (auto &Out : Outs)
2135     if (Out.ArgVT == MVT::i128)
2136       return false;
2137 
2138   SmallVector<CCValAssign, 16> RetLocs;
2139   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
2140   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
2141 }
2142 
2143 SDValue
2144 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2145                                    bool IsVarArg,
2146                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2147                                    const SmallVectorImpl<SDValue> &OutVals,
2148                                    const SDLoc &DL, SelectionDAG &DAG) const {
2149   MachineFunction &MF = DAG.getMachineFunction();
2150 
2151   // Assign locations to each returned value.
2152   SmallVector<CCValAssign, 16> RetLocs;
2153   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
2154   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
2155 
2156   // Quick exit for void returns
2157   if (RetLocs.empty())
2158     return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain);
2159 
2160   if (CallConv == CallingConv::GHC)
2161     report_fatal_error("GHC functions return void only");
2162 
2163   // Copy the result values into the output registers.
2164   SDValue Glue;
2165   SmallVector<SDValue, 4> RetOps;
2166   RetOps.push_back(Chain);
2167   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2168     CCValAssign &VA = RetLocs[I];
2169     SDValue RetValue = OutVals[I];
2170 
2171     // Make the return register live on exit.
2172     assert(VA.isRegLoc() && "Can only return in registers!");
2173 
2174     // Promote the value as required.
2175     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
2176 
2177     // Chain and glue the copies together.
2178     Register Reg = VA.getLocReg();
2179     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
2180     Glue = Chain.getValue(1);
2181     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
2182   }
2183 
2184   // Update chain and glue.
2185   RetOps[0] = Chain;
2186   if (Glue.getNode())
2187     RetOps.push_back(Glue);
2188 
2189   return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps);
2190 }
2191 
2192 // Return true if Op is an intrinsic node with chain that returns the CC value
2193 // as its only (other) argument.  Provide the associated SystemZISD opcode and
2194 // the mask of valid CC values if so.
2195 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
2196                                       unsigned &CCValid) {
2197   unsigned Id = Op.getConstantOperandVal(1);
2198   switch (Id) {
2199   case Intrinsic::s390_tbegin:
2200     Opcode = SystemZISD::TBEGIN;
2201     CCValid = SystemZ::CCMASK_TBEGIN;
2202     return true;
2203 
2204   case Intrinsic::s390_tbegin_nofloat:
2205     Opcode = SystemZISD::TBEGIN_NOFLOAT;
2206     CCValid = SystemZ::CCMASK_TBEGIN;
2207     return true;
2208 
2209   case Intrinsic::s390_tend:
2210     Opcode = SystemZISD::TEND;
2211     CCValid = SystemZ::CCMASK_TEND;
2212     return true;
2213 
2214   default:
2215     return false;
2216   }
2217 }
2218 
2219 // Return true if Op is an intrinsic node without chain that returns the
2220 // CC value as its final argument.  Provide the associated SystemZISD
2221 // opcode and the mask of valid CC values if so.
2222 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2223   unsigned Id = Op.getConstantOperandVal(0);
2224   switch (Id) {
2225   case Intrinsic::s390_vpkshs:
2226   case Intrinsic::s390_vpksfs:
2227   case Intrinsic::s390_vpksgs:
2228     Opcode = SystemZISD::PACKS_CC;
2229     CCValid = SystemZ::CCMASK_VCMP;
2230     return true;
2231 
2232   case Intrinsic::s390_vpklshs:
2233   case Intrinsic::s390_vpklsfs:
2234   case Intrinsic::s390_vpklsgs:
2235     Opcode = SystemZISD::PACKLS_CC;
2236     CCValid = SystemZ::CCMASK_VCMP;
2237     return true;
2238 
2239   case Intrinsic::s390_vceqbs:
2240   case Intrinsic::s390_vceqhs:
2241   case Intrinsic::s390_vceqfs:
2242   case Intrinsic::s390_vceqgs:
2243     Opcode = SystemZISD::VICMPES;
2244     CCValid = SystemZ::CCMASK_VCMP;
2245     return true;
2246 
2247   case Intrinsic::s390_vchbs:
2248   case Intrinsic::s390_vchhs:
2249   case Intrinsic::s390_vchfs:
2250   case Intrinsic::s390_vchgs:
2251     Opcode = SystemZISD::VICMPHS;
2252     CCValid = SystemZ::CCMASK_VCMP;
2253     return true;
2254 
2255   case Intrinsic::s390_vchlbs:
2256   case Intrinsic::s390_vchlhs:
2257   case Intrinsic::s390_vchlfs:
2258   case Intrinsic::s390_vchlgs:
2259     Opcode = SystemZISD::VICMPHLS;
2260     CCValid = SystemZ::CCMASK_VCMP;
2261     return true;
2262 
2263   case Intrinsic::s390_vtm:
2264     Opcode = SystemZISD::VTM;
2265     CCValid = SystemZ::CCMASK_VCMP;
2266     return true;
2267 
2268   case Intrinsic::s390_vfaebs:
2269   case Intrinsic::s390_vfaehs:
2270   case Intrinsic::s390_vfaefs:
2271     Opcode = SystemZISD::VFAE_CC;
2272     CCValid = SystemZ::CCMASK_ANY;
2273     return true;
2274 
2275   case Intrinsic::s390_vfaezbs:
2276   case Intrinsic::s390_vfaezhs:
2277   case Intrinsic::s390_vfaezfs:
2278     Opcode = SystemZISD::VFAEZ_CC;
2279     CCValid = SystemZ::CCMASK_ANY;
2280     return true;
2281 
2282   case Intrinsic::s390_vfeebs:
2283   case Intrinsic::s390_vfeehs:
2284   case Intrinsic::s390_vfeefs:
2285     Opcode = SystemZISD::VFEE_CC;
2286     CCValid = SystemZ::CCMASK_ANY;
2287     return true;
2288 
2289   case Intrinsic::s390_vfeezbs:
2290   case Intrinsic::s390_vfeezhs:
2291   case Intrinsic::s390_vfeezfs:
2292     Opcode = SystemZISD::VFEEZ_CC;
2293     CCValid = SystemZ::CCMASK_ANY;
2294     return true;
2295 
2296   case Intrinsic::s390_vfenebs:
2297   case Intrinsic::s390_vfenehs:
2298   case Intrinsic::s390_vfenefs:
2299     Opcode = SystemZISD::VFENE_CC;
2300     CCValid = SystemZ::CCMASK_ANY;
2301     return true;
2302 
2303   case Intrinsic::s390_vfenezbs:
2304   case Intrinsic::s390_vfenezhs:
2305   case Intrinsic::s390_vfenezfs:
2306     Opcode = SystemZISD::VFENEZ_CC;
2307     CCValid = SystemZ::CCMASK_ANY;
2308     return true;
2309 
2310   case Intrinsic::s390_vistrbs:
2311   case Intrinsic::s390_vistrhs:
2312   case Intrinsic::s390_vistrfs:
2313     Opcode = SystemZISD::VISTR_CC;
2314     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2315     return true;
2316 
2317   case Intrinsic::s390_vstrcbs:
2318   case Intrinsic::s390_vstrchs:
2319   case Intrinsic::s390_vstrcfs:
2320     Opcode = SystemZISD::VSTRC_CC;
2321     CCValid = SystemZ::CCMASK_ANY;
2322     return true;
2323 
2324   case Intrinsic::s390_vstrczbs:
2325   case Intrinsic::s390_vstrczhs:
2326   case Intrinsic::s390_vstrczfs:
2327     Opcode = SystemZISD::VSTRCZ_CC;
2328     CCValid = SystemZ::CCMASK_ANY;
2329     return true;
2330 
2331   case Intrinsic::s390_vstrsb:
2332   case Intrinsic::s390_vstrsh:
2333   case Intrinsic::s390_vstrsf:
2334     Opcode = SystemZISD::VSTRS_CC;
2335     CCValid = SystemZ::CCMASK_ANY;
2336     return true;
2337 
2338   case Intrinsic::s390_vstrszb:
2339   case Intrinsic::s390_vstrszh:
2340   case Intrinsic::s390_vstrszf:
2341     Opcode = SystemZISD::VSTRSZ_CC;
2342     CCValid = SystemZ::CCMASK_ANY;
2343     return true;
2344 
2345   case Intrinsic::s390_vfcedbs:
2346   case Intrinsic::s390_vfcesbs:
2347     Opcode = SystemZISD::VFCMPES;
2348     CCValid = SystemZ::CCMASK_VCMP;
2349     return true;
2350 
2351   case Intrinsic::s390_vfchdbs:
2352   case Intrinsic::s390_vfchsbs:
2353     Opcode = SystemZISD::VFCMPHS;
2354     CCValid = SystemZ::CCMASK_VCMP;
2355     return true;
2356 
2357   case Intrinsic::s390_vfchedbs:
2358   case Intrinsic::s390_vfchesbs:
2359     Opcode = SystemZISD::VFCMPHES;
2360     CCValid = SystemZ::CCMASK_VCMP;
2361     return true;
2362 
2363   case Intrinsic::s390_vftcidb:
2364   case Intrinsic::s390_vftcisb:
2365     Opcode = SystemZISD::VFTCI;
2366     CCValid = SystemZ::CCMASK_VCMP;
2367     return true;
2368 
2369   case Intrinsic::s390_tdc:
2370     Opcode = SystemZISD::TDC;
2371     CCValid = SystemZ::CCMASK_TDC;
2372     return true;
2373 
2374   default:
2375     return false;
2376   }
2377 }
2378 
2379 // Emit an intrinsic with chain and an explicit CC register result.
2380 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2381                                            unsigned Opcode) {
2382   // Copy all operands except the intrinsic ID.
2383   unsigned NumOps = Op.getNumOperands();
2384   SmallVector<SDValue, 6> Ops;
2385   Ops.reserve(NumOps - 1);
2386   Ops.push_back(Op.getOperand(0));
2387   for (unsigned I = 2; I < NumOps; ++I)
2388     Ops.push_back(Op.getOperand(I));
2389 
2390   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2391   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2392   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2393   SDValue OldChain = SDValue(Op.getNode(), 1);
2394   SDValue NewChain = SDValue(Intr.getNode(), 1);
2395   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2396   return Intr.getNode();
2397 }
2398 
2399 // Emit an intrinsic with an explicit CC register result.
2400 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2401                                    unsigned Opcode) {
2402   // Copy all operands except the intrinsic ID.
2403   unsigned NumOps = Op.getNumOperands();
2404   SmallVector<SDValue, 6> Ops;
2405   Ops.reserve(NumOps - 1);
2406   for (unsigned I = 1; I < NumOps; ++I)
2407     Ops.push_back(Op.getOperand(I));
2408 
2409   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2410   return Intr.getNode();
2411 }
2412 
2413 // CC is a comparison that will be implemented using an integer or
2414 // floating-point comparison.  Return the condition code mask for
2415 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2416 // unsigned comparisons and clear for signed ones.  In the floating-point
2417 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2418 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2419 #define CONV(X) \
2420   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2421   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2422   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2423 
2424   switch (CC) {
2425   default:
2426     llvm_unreachable("Invalid integer condition!");
2427 
2428   CONV(EQ);
2429   CONV(NE);
2430   CONV(GT);
2431   CONV(GE);
2432   CONV(LT);
2433   CONV(LE);
2434 
2435   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2436   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2437   }
2438 #undef CONV
2439 }
2440 
2441 // If C can be converted to a comparison against zero, adjust the operands
2442 // as necessary.
2443 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2444   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2445     return;
2446 
2447   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2448   if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2449     return;
2450 
2451   int64_t Value = ConstOp1->getSExtValue();
2452   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2453       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2454       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2455       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2456     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2457     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2458   }
2459 }
2460 
2461 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2462 // adjust the operands as necessary.
2463 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2464                              Comparison &C) {
2465   // For us to make any changes, it must a comparison between a single-use
2466   // load and a constant.
2467   if (!C.Op0.hasOneUse() ||
2468       C.Op0.getOpcode() != ISD::LOAD ||
2469       C.Op1.getOpcode() != ISD::Constant)
2470     return;
2471 
2472   // We must have an 8- or 16-bit load.
2473   auto *Load = cast<LoadSDNode>(C.Op0);
2474   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2475   if ((NumBits != 8 && NumBits != 16) ||
2476       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2477     return;
2478 
2479   // The load must be an extending one and the constant must be within the
2480   // range of the unextended value.
2481   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2482   if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2483     return;
2484   uint64_t Value = ConstOp1->getZExtValue();
2485   uint64_t Mask = (1 << NumBits) - 1;
2486   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2487     // Make sure that ConstOp1 is in range of C.Op0.
2488     int64_t SignedValue = ConstOp1->getSExtValue();
2489     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2490       return;
2491     if (C.ICmpType != SystemZICMP::SignedOnly) {
2492       // Unsigned comparison between two sign-extended values is equivalent
2493       // to unsigned comparison between two zero-extended values.
2494       Value &= Mask;
2495     } else if (NumBits == 8) {
2496       // Try to treat the comparison as unsigned, so that we can use CLI.
2497       // Adjust CCMask and Value as necessary.
2498       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2499         // Test whether the high bit of the byte is set.
2500         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2501       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2502         // Test whether the high bit of the byte is clear.
2503         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2504       else
2505         // No instruction exists for this combination.
2506         return;
2507       C.ICmpType = SystemZICMP::UnsignedOnly;
2508     }
2509   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2510     if (Value > Mask)
2511       return;
2512     // If the constant is in range, we can use any comparison.
2513     C.ICmpType = SystemZICMP::Any;
2514   } else
2515     return;
2516 
2517   // Make sure that the first operand is an i32 of the right extension type.
2518   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2519                               ISD::SEXTLOAD :
2520                               ISD::ZEXTLOAD);
2521   if (C.Op0.getValueType() != MVT::i32 ||
2522       Load->getExtensionType() != ExtType) {
2523     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2524                            Load->getBasePtr(), Load->getPointerInfo(),
2525                            Load->getMemoryVT(), Load->getAlign(),
2526                            Load->getMemOperand()->getFlags());
2527     // Update the chain uses.
2528     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2529   }
2530 
2531   // Make sure that the second operand is an i32 with the right value.
2532   if (C.Op1.getValueType() != MVT::i32 ||
2533       Value != ConstOp1->getZExtValue())
2534     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2535 }
2536 
2537 // Return true if Op is either an unextended load, or a load suitable
2538 // for integer register-memory comparisons of type ICmpType.
2539 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2540   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2541   if (Load) {
2542     // There are no instructions to compare a register with a memory byte.
2543     if (Load->getMemoryVT() == MVT::i8)
2544       return false;
2545     // Otherwise decide on extension type.
2546     switch (Load->getExtensionType()) {
2547     case ISD::NON_EXTLOAD:
2548       return true;
2549     case ISD::SEXTLOAD:
2550       return ICmpType != SystemZICMP::UnsignedOnly;
2551     case ISD::ZEXTLOAD:
2552       return ICmpType != SystemZICMP::SignedOnly;
2553     default:
2554       break;
2555     }
2556   }
2557   return false;
2558 }
2559 
2560 // Return true if it is better to swap the operands of C.
2561 static bool shouldSwapCmpOperands(const Comparison &C) {
2562   // Leave i128 and f128 comparisons alone, since they have no memory forms.
2563   if (C.Op0.getValueType() == MVT::i128)
2564     return false;
2565   if (C.Op0.getValueType() == MVT::f128)
2566     return false;
2567 
2568   // Always keep a floating-point constant second, since comparisons with
2569   // zero can use LOAD TEST and comparisons with other constants make a
2570   // natural memory operand.
2571   if (isa<ConstantFPSDNode>(C.Op1))
2572     return false;
2573 
2574   // Never swap comparisons with zero since there are many ways to optimize
2575   // those later.
2576   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2577   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2578     return false;
2579 
2580   // Also keep natural memory operands second if the loaded value is
2581   // only used here.  Several comparisons have memory forms.
2582   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2583     return false;
2584 
2585   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2586   // In that case we generally prefer the memory to be second.
2587   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2588     // The only exceptions are when the second operand is a constant and
2589     // we can use things like CHHSI.
2590     if (!ConstOp1)
2591       return true;
2592     // The unsigned memory-immediate instructions can handle 16-bit
2593     // unsigned integers.
2594     if (C.ICmpType != SystemZICMP::SignedOnly &&
2595         isUInt<16>(ConstOp1->getZExtValue()))
2596       return false;
2597     // The signed memory-immediate instructions can handle 16-bit
2598     // signed integers.
2599     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2600         isInt<16>(ConstOp1->getSExtValue()))
2601       return false;
2602     return true;
2603   }
2604 
2605   // Try to promote the use of CGFR and CLGFR.
2606   unsigned Opcode0 = C.Op0.getOpcode();
2607   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2608     return true;
2609   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2610     return true;
2611   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND &&
2612       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2613       C.Op0.getConstantOperandVal(1) == 0xffffffff)
2614     return true;
2615 
2616   return false;
2617 }
2618 
2619 // Check whether C tests for equality between X and Y and whether X - Y
2620 // or Y - X is also computed.  In that case it's better to compare the
2621 // result of the subtraction against zero.
2622 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2623                                  Comparison &C) {
2624   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2625       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2626     for (SDNode *N : C.Op0->uses()) {
2627       if (N->getOpcode() == ISD::SUB &&
2628           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2629            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2630         // Disable the nsw and nuw flags: the backend needs to handle
2631         // overflow as well during comparison elimination.
2632         SDNodeFlags Flags = N->getFlags();
2633         Flags.setNoSignedWrap(false);
2634         Flags.setNoUnsignedWrap(false);
2635         N->setFlags(Flags);
2636         C.Op0 = SDValue(N, 0);
2637         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2638         return;
2639       }
2640     }
2641   }
2642 }
2643 
2644 // Check whether C compares a floating-point value with zero and if that
2645 // floating-point value is also negated.  In this case we can use the
2646 // negation to set CC, so avoiding separate LOAD AND TEST and
2647 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2648 static void adjustForFNeg(Comparison &C) {
2649   // This optimization is invalid for strict comparisons, since FNEG
2650   // does not raise any exceptions.
2651   if (C.Chain)
2652     return;
2653   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2654   if (C1 && C1->isZero()) {
2655     for (SDNode *N : C.Op0->uses()) {
2656       if (N->getOpcode() == ISD::FNEG) {
2657         C.Op0 = SDValue(N, 0);
2658         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2659         return;
2660       }
2661     }
2662   }
2663 }
2664 
2665 // Check whether C compares (shl X, 32) with 0 and whether X is
2666 // also sign-extended.  In that case it is better to test the result
2667 // of the sign extension using LTGFR.
2668 //
2669 // This case is important because InstCombine transforms a comparison
2670 // with (sext (trunc X)) into a comparison with (shl X, 32).
2671 static void adjustForLTGFR(Comparison &C) {
2672   // Check for a comparison between (shl X, 32) and 0.
2673   if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 &&
2674       C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) {
2675     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2676     if (C1 && C1->getZExtValue() == 32) {
2677       SDValue ShlOp0 = C.Op0.getOperand(0);
2678       // See whether X has any SIGN_EXTEND_INREG uses.
2679       for (SDNode *N : ShlOp0->uses()) {
2680         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2681             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2682           C.Op0 = SDValue(N, 0);
2683           return;
2684         }
2685       }
2686     }
2687   }
2688 }
2689 
2690 // If C compares the truncation of an extending load, try to compare
2691 // the untruncated value instead.  This exposes more opportunities to
2692 // reuse CC.
2693 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2694                                Comparison &C) {
2695   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2696       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2697       C.Op1.getOpcode() == ISD::Constant &&
2698       cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
2699       C.Op1->getAsZExtVal() == 0) {
2700     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2701     if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <=
2702         C.Op0.getValueSizeInBits().getFixedValue()) {
2703       unsigned Type = L->getExtensionType();
2704       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2705           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2706         C.Op0 = C.Op0.getOperand(0);
2707         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2708       }
2709     }
2710   }
2711 }
2712 
2713 // Return true if shift operation N has an in-range constant shift value.
2714 // Store it in ShiftVal if so.
2715 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2716   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2717   if (!Shift)
2718     return false;
2719 
2720   uint64_t Amount = Shift->getZExtValue();
2721   if (Amount >= N.getValueSizeInBits())
2722     return false;
2723 
2724   ShiftVal = Amount;
2725   return true;
2726 }
2727 
2728 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2729 // instruction and whether the CC value is descriptive enough to handle
2730 // a comparison of type Opcode between the AND result and CmpVal.
2731 // CCMask says which comparison result is being tested and BitSize is
2732 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2733 // return the corresponding CC mask, otherwise return 0.
2734 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2735                                      uint64_t Mask, uint64_t CmpVal,
2736                                      unsigned ICmpType) {
2737   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2738 
2739   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2740   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2741       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2742     return 0;
2743 
2744   // Work out the masks for the lowest and highest bits.
2745   uint64_t High = llvm::bit_floor(Mask);
2746   uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask);
2747 
2748   // Signed ordered comparisons are effectively unsigned if the sign
2749   // bit is dropped.
2750   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2751 
2752   // Check for equality comparisons with 0, or the equivalent.
2753   if (CmpVal == 0) {
2754     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2755       return SystemZ::CCMASK_TM_ALL_0;
2756     if (CCMask == SystemZ::CCMASK_CMP_NE)
2757       return SystemZ::CCMASK_TM_SOME_1;
2758   }
2759   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2760     if (CCMask == SystemZ::CCMASK_CMP_LT)
2761       return SystemZ::CCMASK_TM_ALL_0;
2762     if (CCMask == SystemZ::CCMASK_CMP_GE)
2763       return SystemZ::CCMASK_TM_SOME_1;
2764   }
2765   if (EffectivelyUnsigned && CmpVal < Low) {
2766     if (CCMask == SystemZ::CCMASK_CMP_LE)
2767       return SystemZ::CCMASK_TM_ALL_0;
2768     if (CCMask == SystemZ::CCMASK_CMP_GT)
2769       return SystemZ::CCMASK_TM_SOME_1;
2770   }
2771 
2772   // Check for equality comparisons with the mask, or the equivalent.
2773   if (CmpVal == Mask) {
2774     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2775       return SystemZ::CCMASK_TM_ALL_1;
2776     if (CCMask == SystemZ::CCMASK_CMP_NE)
2777       return SystemZ::CCMASK_TM_SOME_0;
2778   }
2779   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2780     if (CCMask == SystemZ::CCMASK_CMP_GT)
2781       return SystemZ::CCMASK_TM_ALL_1;
2782     if (CCMask == SystemZ::CCMASK_CMP_LE)
2783       return SystemZ::CCMASK_TM_SOME_0;
2784   }
2785   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2786     if (CCMask == SystemZ::CCMASK_CMP_GE)
2787       return SystemZ::CCMASK_TM_ALL_1;
2788     if (CCMask == SystemZ::CCMASK_CMP_LT)
2789       return SystemZ::CCMASK_TM_SOME_0;
2790   }
2791 
2792   // Check for ordered comparisons with the top bit.
2793   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2794     if (CCMask == SystemZ::CCMASK_CMP_LE)
2795       return SystemZ::CCMASK_TM_MSB_0;
2796     if (CCMask == SystemZ::CCMASK_CMP_GT)
2797       return SystemZ::CCMASK_TM_MSB_1;
2798   }
2799   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2800     if (CCMask == SystemZ::CCMASK_CMP_LT)
2801       return SystemZ::CCMASK_TM_MSB_0;
2802     if (CCMask == SystemZ::CCMASK_CMP_GE)
2803       return SystemZ::CCMASK_TM_MSB_1;
2804   }
2805 
2806   // If there are just two bits, we can do equality checks for Low and High
2807   // as well.
2808   if (Mask == Low + High) {
2809     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2810       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2811     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2812       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2813     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2814       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2815     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2816       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2817   }
2818 
2819   // Looks like we've exhausted our options.
2820   return 0;
2821 }
2822 
2823 // See whether C can be implemented as a TEST UNDER MASK instruction.
2824 // Update the arguments with the TM version if so.
2825 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2826                                    Comparison &C) {
2827   // Use VECTOR TEST UNDER MASK for i128 operations.
2828   if (C.Op0.getValueType() == MVT::i128) {
2829     // We can use VTM for EQ/NE comparisons of x & y against 0.
2830     if (C.Op0.getOpcode() == ISD::AND &&
2831         (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2832          C.CCMask == SystemZ::CCMASK_CMP_NE)) {
2833       auto *Mask = dyn_cast<ConstantSDNode>(C.Op1);
2834       if (Mask && Mask->getAPIntValue() == 0) {
2835         C.Opcode = SystemZISD::VTM;
2836         C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1));
2837         C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0));
2838         C.CCValid = SystemZ::CCMASK_VCMP;
2839         if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2840           C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2841         else
2842           C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2843       }
2844     }
2845     return;
2846   }
2847 
2848   // Check that we have a comparison with a constant.
2849   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2850   if (!ConstOp1)
2851     return;
2852   uint64_t CmpVal = ConstOp1->getZExtValue();
2853 
2854   // Check whether the nonconstant input is an AND with a constant mask.
2855   Comparison NewC(C);
2856   uint64_t MaskVal;
2857   ConstantSDNode *Mask = nullptr;
2858   if (C.Op0.getOpcode() == ISD::AND) {
2859     NewC.Op0 = C.Op0.getOperand(0);
2860     NewC.Op1 = C.Op0.getOperand(1);
2861     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2862     if (!Mask)
2863       return;
2864     MaskVal = Mask->getZExtValue();
2865   } else {
2866     // There is no instruction to compare with a 64-bit immediate
2867     // so use TMHH instead if possible.  We need an unsigned ordered
2868     // comparison with an i64 immediate.
2869     if (NewC.Op0.getValueType() != MVT::i64 ||
2870         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2871         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2872         NewC.ICmpType == SystemZICMP::SignedOnly)
2873       return;
2874     // Convert LE and GT comparisons into LT and GE.
2875     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2876         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2877       if (CmpVal == uint64_t(-1))
2878         return;
2879       CmpVal += 1;
2880       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2881     }
2882     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2883     // be masked off without changing the result.
2884     MaskVal = -(CmpVal & -CmpVal);
2885     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2886   }
2887   if (!MaskVal)
2888     return;
2889 
2890   // Check whether the combination of mask, comparison value and comparison
2891   // type are suitable.
2892   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2893   unsigned NewCCMask, ShiftVal;
2894   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2895       NewC.Op0.getOpcode() == ISD::SHL &&
2896       isSimpleShift(NewC.Op0, ShiftVal) &&
2897       (MaskVal >> ShiftVal != 0) &&
2898       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2899       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2900                                         MaskVal >> ShiftVal,
2901                                         CmpVal >> ShiftVal,
2902                                         SystemZICMP::Any))) {
2903     NewC.Op0 = NewC.Op0.getOperand(0);
2904     MaskVal >>= ShiftVal;
2905   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2906              NewC.Op0.getOpcode() == ISD::SRL &&
2907              isSimpleShift(NewC.Op0, ShiftVal) &&
2908              (MaskVal << ShiftVal != 0) &&
2909              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2910              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2911                                                MaskVal << ShiftVal,
2912                                                CmpVal << ShiftVal,
2913                                                SystemZICMP::UnsignedOnly))) {
2914     NewC.Op0 = NewC.Op0.getOperand(0);
2915     MaskVal <<= ShiftVal;
2916   } else {
2917     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2918                                      NewC.ICmpType);
2919     if (!NewCCMask)
2920       return;
2921   }
2922 
2923   // Go ahead and make the change.
2924   C.Opcode = SystemZISD::TM;
2925   C.Op0 = NewC.Op0;
2926   if (Mask && Mask->getZExtValue() == MaskVal)
2927     C.Op1 = SDValue(Mask, 0);
2928   else
2929     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2930   C.CCValid = SystemZ::CCMASK_TM;
2931   C.CCMask = NewCCMask;
2932 }
2933 
2934 // Implement i128 comparison in vector registers.
2935 static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL,
2936                           Comparison &C) {
2937   if (C.Opcode != SystemZISD::ICMP)
2938     return;
2939   if (C.Op0.getValueType() != MVT::i128)
2940     return;
2941 
2942   // (In-)Equality comparisons can be implemented via VCEQGS.
2943   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2944       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2945     C.Opcode = SystemZISD::VICMPES;
2946     C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0);
2947     C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1);
2948     C.CCValid = SystemZ::CCMASK_VCMP;
2949     if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2950       C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2951     else
2952       C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2953     return;
2954   }
2955 
2956   // Normalize other comparisons to GT.
2957   bool Swap = false, Invert = false;
2958   switch (C.CCMask) {
2959     case SystemZ::CCMASK_CMP_GT: break;
2960     case SystemZ::CCMASK_CMP_LT: Swap = true; break;
2961     case SystemZ::CCMASK_CMP_LE: Invert = true; break;
2962     case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break;
2963     default: llvm_unreachable("Invalid integer condition!");
2964   }
2965   if (Swap)
2966     std::swap(C.Op0, C.Op1);
2967 
2968   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2969     C.Opcode = SystemZISD::UCMP128HI;
2970   else
2971     C.Opcode = SystemZISD::SCMP128HI;
2972   C.CCValid = SystemZ::CCMASK_ANY;
2973   C.CCMask = SystemZ::CCMASK_1;
2974 
2975   if (Invert)
2976     C.CCMask ^= C.CCValid;
2977 }
2978 
2979 // See whether the comparison argument contains a redundant AND
2980 // and remove it if so.  This sometimes happens due to the generic
2981 // BRCOND expansion.
2982 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2983                                   Comparison &C) {
2984   if (C.Op0.getOpcode() != ISD::AND)
2985     return;
2986   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2987   if (!Mask || Mask->getValueSizeInBits(0) > 64)
2988     return;
2989   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2990   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2991     return;
2992 
2993   C.Op0 = C.Op0.getOperand(0);
2994 }
2995 
2996 // Return a Comparison that tests the condition-code result of intrinsic
2997 // node Call against constant integer CC using comparison code Cond.
2998 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2999 // and CCValid is the set of possible condition-code results.
3000 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
3001                                   SDValue Call, unsigned CCValid, uint64_t CC,
3002                                   ISD::CondCode Cond) {
3003   Comparison C(Call, SDValue(), SDValue());
3004   C.Opcode = Opcode;
3005   C.CCValid = CCValid;
3006   if (Cond == ISD::SETEQ)
3007     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
3008     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
3009   else if (Cond == ISD::SETNE)
3010     // ...and the inverse of that.
3011     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
3012   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
3013     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
3014     // always true for CC>3.
3015     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
3016   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
3017     // ...and the inverse of that.
3018     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
3019   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
3020     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
3021     // always true for CC>3.
3022     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
3023   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
3024     // ...and the inverse of that.
3025     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
3026   else
3027     llvm_unreachable("Unexpected integer comparison type");
3028   C.CCMask &= CCValid;
3029   return C;
3030 }
3031 
3032 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
3033 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
3034                          ISD::CondCode Cond, const SDLoc &DL,
3035                          SDValue Chain = SDValue(),
3036                          bool IsSignaling = false) {
3037   if (CmpOp1.getOpcode() == ISD::Constant) {
3038     assert(!Chain);
3039     unsigned Opcode, CCValid;
3040     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
3041         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
3042         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
3043       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3044                              CmpOp1->getAsZExtVal(), Cond);
3045     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3046         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
3047         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
3048       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3049                              CmpOp1->getAsZExtVal(), Cond);
3050   }
3051   Comparison C(CmpOp0, CmpOp1, Chain);
3052   C.CCMask = CCMaskForCondCode(Cond);
3053   if (C.Op0.getValueType().isFloatingPoint()) {
3054     C.CCValid = SystemZ::CCMASK_FCMP;
3055     if (!C.Chain)
3056       C.Opcode = SystemZISD::FCMP;
3057     else if (!IsSignaling)
3058       C.Opcode = SystemZISD::STRICT_FCMP;
3059     else
3060       C.Opcode = SystemZISD::STRICT_FCMPS;
3061     adjustForFNeg(C);
3062   } else {
3063     assert(!C.Chain);
3064     C.CCValid = SystemZ::CCMASK_ICMP;
3065     C.Opcode = SystemZISD::ICMP;
3066     // Choose the type of comparison.  Equality and inequality tests can
3067     // use either signed or unsigned comparisons.  The choice also doesn't
3068     // matter if both sign bits are known to be clear.  In those cases we
3069     // want to give the main isel code the freedom to choose whichever
3070     // form fits best.
3071     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3072         C.CCMask == SystemZ::CCMASK_CMP_NE ||
3073         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
3074       C.ICmpType = SystemZICMP::Any;
3075     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
3076       C.ICmpType = SystemZICMP::UnsignedOnly;
3077     else
3078       C.ICmpType = SystemZICMP::SignedOnly;
3079     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
3080     adjustForRedundantAnd(DAG, DL, C);
3081     adjustZeroCmp(DAG, DL, C);
3082     adjustSubwordCmp(DAG, DL, C);
3083     adjustForSubtraction(DAG, DL, C);
3084     adjustForLTGFR(C);
3085     adjustICmpTruncate(DAG, DL, C);
3086   }
3087 
3088   if (shouldSwapCmpOperands(C)) {
3089     std::swap(C.Op0, C.Op1);
3090     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
3091   }
3092 
3093   adjustForTestUnderMask(DAG, DL, C);
3094   adjustICmp128(DAG, DL, C);
3095   return C;
3096 }
3097 
3098 // Emit the comparison instruction described by C.
3099 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
3100   if (!C.Op1.getNode()) {
3101     SDNode *Node;
3102     switch (C.Op0.getOpcode()) {
3103     case ISD::INTRINSIC_W_CHAIN:
3104       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
3105       return SDValue(Node, 0);
3106     case ISD::INTRINSIC_WO_CHAIN:
3107       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
3108       return SDValue(Node, Node->getNumValues() - 1);
3109     default:
3110       llvm_unreachable("Invalid comparison operands");
3111     }
3112   }
3113   if (C.Opcode == SystemZISD::ICMP)
3114     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
3115                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
3116   if (C.Opcode == SystemZISD::TM) {
3117     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
3118                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
3119     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
3120                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
3121   }
3122   if (C.Opcode == SystemZISD::VICMPES) {
3123     SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32);
3124     SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1);
3125     return SDValue(Val.getNode(), 1);
3126   }
3127   if (C.Chain) {
3128     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
3129     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
3130   }
3131   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
3132 }
3133 
3134 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
3135 // 64 bits.  Extend is the extension type to use.  Store the high part
3136 // in Hi and the low part in Lo.
3137 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
3138                             SDValue Op0, SDValue Op1, SDValue &Hi,
3139                             SDValue &Lo) {
3140   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
3141   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
3142   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
3143   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
3144                    DAG.getConstant(32, DL, MVT::i64));
3145   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
3146   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
3147 }
3148 
3149 // Lower a binary operation that produces two VT results, one in each
3150 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
3151 // and Opcode performs the GR128 operation.  Store the even register result
3152 // in Even and the odd register result in Odd.
3153 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3154                              unsigned Opcode, SDValue Op0, SDValue Op1,
3155                              SDValue &Even, SDValue &Odd) {
3156   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
3157   bool Is32Bit = is32Bit(VT);
3158   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
3159   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
3160 }
3161 
3162 // Return an i32 value that is 1 if the CC value produced by CCReg is
3163 // in the mask CCMask and 0 otherwise.  CC is known to have a value
3164 // in CCValid, so other values can be ignored.
3165 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
3166                          unsigned CCValid, unsigned CCMask) {
3167   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
3168                    DAG.getConstant(0, DL, MVT::i32),
3169                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
3170                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
3171   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
3172 }
3173 
3174 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
3175 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
3176 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
3177 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
3178 // floating-point comparisons.
3179 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
3180 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
3181   switch (CC) {
3182   case ISD::SETOEQ:
3183   case ISD::SETEQ:
3184     switch (Mode) {
3185     case CmpMode::Int:         return SystemZISD::VICMPE;
3186     case CmpMode::FP:          return SystemZISD::VFCMPE;
3187     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
3188     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
3189     }
3190     llvm_unreachable("Bad mode");
3191 
3192   case ISD::SETOGE:
3193   case ISD::SETGE:
3194     switch (Mode) {
3195     case CmpMode::Int:         return 0;
3196     case CmpMode::FP:          return SystemZISD::VFCMPHE;
3197     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
3198     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
3199     }
3200     llvm_unreachable("Bad mode");
3201 
3202   case ISD::SETOGT:
3203   case ISD::SETGT:
3204     switch (Mode) {
3205     case CmpMode::Int:         return SystemZISD::VICMPH;
3206     case CmpMode::FP:          return SystemZISD::VFCMPH;
3207     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
3208     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
3209     }
3210     llvm_unreachable("Bad mode");
3211 
3212   case ISD::SETUGT:
3213     switch (Mode) {
3214     case CmpMode::Int:         return SystemZISD::VICMPHL;
3215     case CmpMode::FP:          return 0;
3216     case CmpMode::StrictFP:    return 0;
3217     case CmpMode::SignalingFP: return 0;
3218     }
3219     llvm_unreachable("Bad mode");
3220 
3221   default:
3222     return 0;
3223   }
3224 }
3225 
3226 // Return the SystemZISD vector comparison operation for CC or its inverse,
3227 // or 0 if neither can be done directly.  Indicate in Invert whether the
3228 // result is for the inverse of CC.  Mode is as above.
3229 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
3230                                             bool &Invert) {
3231   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3232     Invert = false;
3233     return Opcode;
3234   }
3235 
3236   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
3237   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3238     Invert = true;
3239     return Opcode;
3240   }
3241 
3242   return 0;
3243 }
3244 
3245 // Return a v2f64 that contains the extended form of elements Start and Start+1
3246 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
3247 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
3248                                   SDValue Op, SDValue Chain) {
3249   int Mask[] = { Start, -1, Start + 1, -1 };
3250   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
3251   if (Chain) {
3252     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
3253     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
3254   }
3255   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
3256 }
3257 
3258 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
3259 // producing a result of type VT.  If Chain is nonnull, return the strict form.
3260 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
3261                                             const SDLoc &DL, EVT VT,
3262                                             SDValue CmpOp0,
3263                                             SDValue CmpOp1,
3264                                             SDValue Chain) const {
3265   // There is no hardware support for v4f32 (unless we have the vector
3266   // enhancements facility 1), so extend the vector into two v2f64s
3267   // and compare those.
3268   if (CmpOp0.getValueType() == MVT::v4f32 &&
3269       !Subtarget.hasVectorEnhancements1()) {
3270     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
3271     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
3272     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
3273     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
3274     if (Chain) {
3275       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
3276       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
3277       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
3278       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3279       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
3280                             H1.getValue(1), L1.getValue(1),
3281                             HRes.getValue(1), LRes.getValue(1) };
3282       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3283       SDValue Ops[2] = { Res, NewChain };
3284       return DAG.getMergeValues(Ops, DL);
3285     }
3286     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3287     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3288     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3289   }
3290   if (Chain) {
3291     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3292     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3293   }
3294   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3295 }
3296 
3297 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3298 // an integer mask of type VT.  If Chain is nonnull, we have a strict
3299 // floating-point comparison.  If in addition IsSignaling is true, we have
3300 // a strict signaling floating-point comparison.
3301 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3302                                                 const SDLoc &DL, EVT VT,
3303                                                 ISD::CondCode CC,
3304                                                 SDValue CmpOp0,
3305                                                 SDValue CmpOp1,
3306                                                 SDValue Chain,
3307                                                 bool IsSignaling) const {
3308   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3309   assert (!Chain || IsFP);
3310   assert (!IsSignaling || Chain);
3311   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3312                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3313   bool Invert = false;
3314   SDValue Cmp;
3315   switch (CC) {
3316     // Handle tests for order using (or (ogt y x) (oge x y)).
3317   case ISD::SETUO:
3318     Invert = true;
3319     [[fallthrough]];
3320   case ISD::SETO: {
3321     assert(IsFP && "Unexpected integer comparison");
3322     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3323                               DL, VT, CmpOp1, CmpOp0, Chain);
3324     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3325                               DL, VT, CmpOp0, CmpOp1, Chain);
3326     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3327     if (Chain)
3328       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3329                           LT.getValue(1), GE.getValue(1));
3330     break;
3331   }
3332 
3333     // Handle <> tests using (or (ogt y x) (ogt x y)).
3334   case ISD::SETUEQ:
3335     Invert = true;
3336     [[fallthrough]];
3337   case ISD::SETONE: {
3338     assert(IsFP && "Unexpected integer comparison");
3339     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3340                               DL, VT, CmpOp1, CmpOp0, Chain);
3341     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3342                               DL, VT, CmpOp0, CmpOp1, Chain);
3343     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3344     if (Chain)
3345       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3346                           LT.getValue(1), GT.getValue(1));
3347     break;
3348   }
3349 
3350     // Otherwise a single comparison is enough.  It doesn't really
3351     // matter whether we try the inversion or the swap first, since
3352     // there are no cases where both work.
3353   default:
3354     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3355       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3356     else {
3357       CC = ISD::getSetCCSwappedOperands(CC);
3358       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3359         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3360       else
3361         llvm_unreachable("Unhandled comparison");
3362     }
3363     if (Chain)
3364       Chain = Cmp.getValue(1);
3365     break;
3366   }
3367   if (Invert) {
3368     SDValue Mask =
3369       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3370     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3371   }
3372   if (Chain && Chain.getNode() != Cmp.getNode()) {
3373     SDValue Ops[2] = { Cmp, Chain };
3374     Cmp = DAG.getMergeValues(Ops, DL);
3375   }
3376   return Cmp;
3377 }
3378 
3379 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3380                                           SelectionDAG &DAG) const {
3381   SDValue CmpOp0   = Op.getOperand(0);
3382   SDValue CmpOp1   = Op.getOperand(1);
3383   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3384   SDLoc DL(Op);
3385   EVT VT = Op.getValueType();
3386   if (VT.isVector())
3387     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3388 
3389   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3390   SDValue CCReg = emitCmp(DAG, DL, C);
3391   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3392 }
3393 
3394 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3395                                                   SelectionDAG &DAG,
3396                                                   bool IsSignaling) const {
3397   SDValue Chain    = Op.getOperand(0);
3398   SDValue CmpOp0   = Op.getOperand(1);
3399   SDValue CmpOp1   = Op.getOperand(2);
3400   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3401   SDLoc DL(Op);
3402   EVT VT = Op.getNode()->getValueType(0);
3403   if (VT.isVector()) {
3404     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3405                                    Chain, IsSignaling);
3406     return Res.getValue(Op.getResNo());
3407   }
3408 
3409   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3410   SDValue CCReg = emitCmp(DAG, DL, C);
3411   CCReg->setFlags(Op->getFlags());
3412   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3413   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3414   return DAG.getMergeValues(Ops, DL);
3415 }
3416 
3417 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3418   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3419   SDValue CmpOp0   = Op.getOperand(2);
3420   SDValue CmpOp1   = Op.getOperand(3);
3421   SDValue Dest     = Op.getOperand(4);
3422   SDLoc DL(Op);
3423 
3424   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3425   SDValue CCReg = emitCmp(DAG, DL, C);
3426   return DAG.getNode(
3427       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3428       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3429       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3430 }
3431 
3432 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3433 // allowing Pos and Neg to be wider than CmpOp.
3434 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3435   return (Neg.getOpcode() == ISD::SUB &&
3436           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3437           Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos &&
3438           (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3439                             Pos.getOperand(0) == CmpOp)));
3440 }
3441 
3442 // Return the absolute or negative absolute of Op; IsNegative decides which.
3443 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3444                            bool IsNegative) {
3445   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3446   if (IsNegative)
3447     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3448                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3449   return Op;
3450 }
3451 
3452 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3453                                               SelectionDAG &DAG) const {
3454   SDValue CmpOp0   = Op.getOperand(0);
3455   SDValue CmpOp1   = Op.getOperand(1);
3456   SDValue TrueOp   = Op.getOperand(2);
3457   SDValue FalseOp  = Op.getOperand(3);
3458   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3459   SDLoc DL(Op);
3460 
3461   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3462 
3463   // Check for absolute and negative-absolute selections, including those
3464   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3465   // This check supplements the one in DAGCombiner.
3466   if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3467       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3468       C.Op1.getOpcode() == ISD::Constant &&
3469       cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
3470       C.Op1->getAsZExtVal() == 0) {
3471     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3472       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3473     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3474       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3475   }
3476 
3477   SDValue CCReg = emitCmp(DAG, DL, C);
3478   SDValue Ops[] = {TrueOp, FalseOp,
3479                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3480                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3481 
3482   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3483 }
3484 
3485 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3486                                                   SelectionDAG &DAG) const {
3487   SDLoc DL(Node);
3488   const GlobalValue *GV = Node->getGlobal();
3489   int64_t Offset = Node->getOffset();
3490   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3491   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3492 
3493   SDValue Result;
3494   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3495     if (isInt<32>(Offset)) {
3496       // Assign anchors at 1<<12 byte boundaries.
3497       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3498       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3499       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3500 
3501       // The offset can be folded into the address if it is aligned to a
3502       // halfword.
3503       Offset -= Anchor;
3504       if (Offset != 0 && (Offset & 1) == 0) {
3505         SDValue Full =
3506           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3507         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3508         Offset = 0;
3509       }
3510     } else {
3511       // Conservatively load a constant offset greater than 32 bits into a
3512       // register below.
3513       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3514       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3515     }
3516   } else if (Subtarget.isTargetELF()) {
3517     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3518     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3519     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3520                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3521   } else if (Subtarget.isTargetzOS()) {
3522     Result = getADAEntry(DAG, GV, DL, PtrVT);
3523   } else
3524     llvm_unreachable("Unexpected Subtarget");
3525 
3526   // If there was a non-zero offset that we didn't fold, create an explicit
3527   // addition for it.
3528   if (Offset != 0)
3529     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3530                          DAG.getConstant(Offset, DL, PtrVT));
3531 
3532   return Result;
3533 }
3534 
3535 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3536                                                  SelectionDAG &DAG,
3537                                                  unsigned Opcode,
3538                                                  SDValue GOTOffset) const {
3539   SDLoc DL(Node);
3540   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3541   SDValue Chain = DAG.getEntryNode();
3542   SDValue Glue;
3543 
3544   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3545       CallingConv::GHC)
3546     report_fatal_error("In GHC calling convention TLS is not supported");
3547 
3548   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3549   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3550   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3551   Glue = Chain.getValue(1);
3552   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3553   Glue = Chain.getValue(1);
3554 
3555   // The first call operand is the chain and the second is the TLS symbol.
3556   SmallVector<SDValue, 8> Ops;
3557   Ops.push_back(Chain);
3558   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3559                                            Node->getValueType(0),
3560                                            0, 0));
3561 
3562   // Add argument registers to the end of the list so that they are
3563   // known live into the call.
3564   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3565   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3566 
3567   // Add a register mask operand representing the call-preserved registers.
3568   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3569   const uint32_t *Mask =
3570       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3571   assert(Mask && "Missing call preserved mask for calling convention");
3572   Ops.push_back(DAG.getRegisterMask(Mask));
3573 
3574   // Glue the call to the argument copies.
3575   Ops.push_back(Glue);
3576 
3577   // Emit the call.
3578   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3579   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3580   Glue = Chain.getValue(1);
3581 
3582   // Copy the return value from %r2.
3583   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3584 }
3585 
3586 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3587                                                   SelectionDAG &DAG) const {
3588   SDValue Chain = DAG.getEntryNode();
3589   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3590 
3591   // The high part of the thread pointer is in access register 0.
3592   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3593   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3594 
3595   // The low part of the thread pointer is in access register 1.
3596   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3597   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3598 
3599   // Merge them into a single 64-bit address.
3600   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3601                                     DAG.getConstant(32, DL, PtrVT));
3602   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3603 }
3604 
3605 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3606                                                      SelectionDAG &DAG) const {
3607   if (DAG.getTarget().useEmulatedTLS())
3608     return LowerToTLSEmulatedModel(Node, DAG);
3609   SDLoc DL(Node);
3610   const GlobalValue *GV = Node->getGlobal();
3611   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3612   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3613 
3614   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3615       CallingConv::GHC)
3616     report_fatal_error("In GHC calling convention TLS is not supported");
3617 
3618   SDValue TP = lowerThreadPointer(DL, DAG);
3619 
3620   // Get the offset of GA from the thread pointer, based on the TLS model.
3621   SDValue Offset;
3622   switch (model) {
3623     case TLSModel::GeneralDynamic: {
3624       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3625       SystemZConstantPoolValue *CPV =
3626         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3627 
3628       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3629       Offset = DAG.getLoad(
3630           PtrVT, DL, DAG.getEntryNode(), Offset,
3631           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3632 
3633       // Call __tls_get_offset to retrieve the offset.
3634       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3635       break;
3636     }
3637 
3638     case TLSModel::LocalDynamic: {
3639       // Load the GOT offset of the module ID.
3640       SystemZConstantPoolValue *CPV =
3641         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3642 
3643       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3644       Offset = DAG.getLoad(
3645           PtrVT, DL, DAG.getEntryNode(), Offset,
3646           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3647 
3648       // Call __tls_get_offset to retrieve the module base offset.
3649       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3650 
3651       // Note: The SystemZLDCleanupPass will remove redundant computations
3652       // of the module base offset.  Count total number of local-dynamic
3653       // accesses to trigger execution of that pass.
3654       SystemZMachineFunctionInfo* MFI =
3655         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3656       MFI->incNumLocalDynamicTLSAccesses();
3657 
3658       // Add the per-symbol offset.
3659       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3660 
3661       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3662       DTPOffset = DAG.getLoad(
3663           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3664           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3665 
3666       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3667       break;
3668     }
3669 
3670     case TLSModel::InitialExec: {
3671       // Load the offset from the GOT.
3672       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3673                                           SystemZII::MO_INDNTPOFF);
3674       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3675       Offset =
3676           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3677                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3678       break;
3679     }
3680 
3681     case TLSModel::LocalExec: {
3682       // Force the offset into the constant pool and load it from there.
3683       SystemZConstantPoolValue *CPV =
3684         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3685 
3686       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3687       Offset = DAG.getLoad(
3688           PtrVT, DL, DAG.getEntryNode(), Offset,
3689           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3690       break;
3691     }
3692   }
3693 
3694   // Add the base and offset together.
3695   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3696 }
3697 
3698 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3699                                                  SelectionDAG &DAG) const {
3700   SDLoc DL(Node);
3701   const BlockAddress *BA = Node->getBlockAddress();
3702   int64_t Offset = Node->getOffset();
3703   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3704 
3705   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3706   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3707   return Result;
3708 }
3709 
3710 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3711                                               SelectionDAG &DAG) const {
3712   SDLoc DL(JT);
3713   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3714   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3715 
3716   // Use LARL to load the address of the table.
3717   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3718 }
3719 
3720 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3721                                                  SelectionDAG &DAG) const {
3722   SDLoc DL(CP);
3723   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3724 
3725   SDValue Result;
3726   if (CP->isMachineConstantPoolEntry())
3727     Result =
3728         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3729   else
3730     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3731                                        CP->getOffset());
3732 
3733   // Use LARL to load the address of the constant pool entry.
3734   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3735 }
3736 
3737 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3738                                               SelectionDAG &DAG) const {
3739   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3740   MachineFunction &MF = DAG.getMachineFunction();
3741   MachineFrameInfo &MFI = MF.getFrameInfo();
3742   MFI.setFrameAddressIsTaken(true);
3743 
3744   SDLoc DL(Op);
3745   unsigned Depth = Op.getConstantOperandVal(0);
3746   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3747 
3748   // By definition, the frame address is the address of the back chain.  (In
3749   // the case of packed stack without backchain, return the address where the
3750   // backchain would have been stored. This will either be an unused space or
3751   // contain a saved register).
3752   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3753   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3754 
3755   if (Depth > 0) {
3756     // FIXME The frontend should detect this case.
3757     if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3758       report_fatal_error("Unsupported stack frame traversal count");
3759 
3760     SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT);
3761     while (Depth--) {
3762       BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain,
3763                               MachinePointerInfo());
3764       BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset);
3765     }
3766   }
3767 
3768   return BackChain;
3769 }
3770 
3771 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3772                                                SelectionDAG &DAG) const {
3773   MachineFunction &MF = DAG.getMachineFunction();
3774   MachineFrameInfo &MFI = MF.getFrameInfo();
3775   MFI.setReturnAddressIsTaken(true);
3776 
3777   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3778     return SDValue();
3779 
3780   SDLoc DL(Op);
3781   unsigned Depth = Op.getConstantOperandVal(0);
3782   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3783 
3784   if (Depth > 0) {
3785     // FIXME The frontend should detect this case.
3786     if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3787       report_fatal_error("Unsupported stack frame traversal count");
3788 
3789     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3790     auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3791     int Offset = (TFL->usePackedStack(MF) ? -2 : 14) *
3792                  getTargetMachine().getPointerSize(0);
3793     SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr,
3794                               DAG.getConstant(Offset, DL, PtrVT));
3795     return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr,
3796                        MachinePointerInfo());
3797   }
3798 
3799   // Return R14D, which has the return address. Mark it an implicit live-in.
3800   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3801   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3802 }
3803 
3804 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3805                                             SelectionDAG &DAG) const {
3806   SDLoc DL(Op);
3807   SDValue In = Op.getOperand(0);
3808   EVT InVT = In.getValueType();
3809   EVT ResVT = Op.getValueType();
3810 
3811   // Convert loads directly.  This is normally done by DAGCombiner,
3812   // but we need this case for bitcasts that are created during lowering
3813   // and which are then lowered themselves.
3814   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3815     if (ISD::isNormalLoad(LoadN)) {
3816       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3817                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3818       // Update the chain uses.
3819       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3820       return NewLoad;
3821     }
3822 
3823   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3824     SDValue In64;
3825     if (Subtarget.hasHighWord()) {
3826       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3827                                        MVT::i64);
3828       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3829                                        MVT::i64, SDValue(U64, 0), In);
3830     } else {
3831       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3832       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3833                          DAG.getConstant(32, DL, MVT::i64));
3834     }
3835     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3836     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3837                                       DL, MVT::f32, Out64);
3838   }
3839   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3840     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3841     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3842                                              MVT::f64, SDValue(U64, 0), In);
3843     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3844     if (Subtarget.hasHighWord())
3845       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3846                                         MVT::i32, Out64);
3847     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3848                                 DAG.getConstant(32, DL, MVT::i64));
3849     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3850   }
3851   llvm_unreachable("Unexpected bitcast combination");
3852 }
3853 
3854 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3855                                             SelectionDAG &DAG) const {
3856 
3857   if (Subtarget.isTargetXPLINK64())
3858     return lowerVASTART_XPLINK(Op, DAG);
3859   else
3860     return lowerVASTART_ELF(Op, DAG);
3861 }
3862 
3863 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3864                                                    SelectionDAG &DAG) const {
3865   MachineFunction &MF = DAG.getMachineFunction();
3866   SystemZMachineFunctionInfo *FuncInfo =
3867       MF.getInfo<SystemZMachineFunctionInfo>();
3868 
3869   SDLoc DL(Op);
3870 
3871   // vastart just stores the address of the VarArgsFrameIndex slot into the
3872   // memory location argument.
3873   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3874   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3875   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3876   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3877                       MachinePointerInfo(SV));
3878 }
3879 
3880 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3881                                                 SelectionDAG &DAG) const {
3882   MachineFunction &MF = DAG.getMachineFunction();
3883   SystemZMachineFunctionInfo *FuncInfo =
3884     MF.getInfo<SystemZMachineFunctionInfo>();
3885   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3886 
3887   SDValue Chain   = Op.getOperand(0);
3888   SDValue Addr    = Op.getOperand(1);
3889   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3890   SDLoc DL(Op);
3891 
3892   // The initial values of each field.
3893   const unsigned NumFields = 4;
3894   SDValue Fields[NumFields] = {
3895     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3896     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3897     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3898     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3899   };
3900 
3901   // Store each field into its respective slot.
3902   SDValue MemOps[NumFields];
3903   unsigned Offset = 0;
3904   for (unsigned I = 0; I < NumFields; ++I) {
3905     SDValue FieldAddr = Addr;
3906     if (Offset != 0)
3907       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3908                               DAG.getIntPtrConstant(Offset, DL));
3909     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3910                              MachinePointerInfo(SV, Offset));
3911     Offset += 8;
3912   }
3913   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3914 }
3915 
3916 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3917                                            SelectionDAG &DAG) const {
3918   SDValue Chain      = Op.getOperand(0);
3919   SDValue DstPtr     = Op.getOperand(1);
3920   SDValue SrcPtr     = Op.getOperand(2);
3921   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3922   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3923   SDLoc DL(Op);
3924 
3925   uint32_t Sz =
3926       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3927   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3928                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3929                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3930                        MachinePointerInfo(SrcSV));
3931 }
3932 
3933 SDValue
3934 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3935                                                SelectionDAG &DAG) const {
3936   if (Subtarget.isTargetXPLINK64())
3937     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3938   else
3939     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3940 }
3941 
3942 SDValue
3943 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3944                                                       SelectionDAG &DAG) const {
3945   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3946   MachineFunction &MF = DAG.getMachineFunction();
3947   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3948   SDValue Chain = Op.getOperand(0);
3949   SDValue Size = Op.getOperand(1);
3950   SDValue Align = Op.getOperand(2);
3951   SDLoc DL(Op);
3952 
3953   // If user has set the no alignment function attribute, ignore
3954   // alloca alignments.
3955   uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
3956 
3957   uint64_t StackAlign = TFI->getStackAlignment();
3958   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3959   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3960 
3961   SDValue NeededSpace = Size;
3962 
3963   // Add extra space for alignment if needed.
3964   EVT PtrVT = getPointerTy(MF.getDataLayout());
3965   if (ExtraAlignSpace)
3966     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3967                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3968 
3969   bool IsSigned = false;
3970   bool DoesNotReturn = false;
3971   bool IsReturnValueUsed = false;
3972   EVT VT = Op.getValueType();
3973   SDValue AllocaCall =
3974       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace),
3975                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3976                        IsReturnValueUsed)
3977           .first;
3978 
3979   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3980   // to end of call in order to ensure it isn't broken up from the call
3981   // sequence.
3982   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3983   Register SPReg = Regs.getStackPointerRegister();
3984   Chain = AllocaCall.getValue(1);
3985   SDValue Glue = AllocaCall.getValue(2);
3986   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3987   Chain = NewSPRegNode.getValue(1);
3988 
3989   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3990   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3991   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3992 
3993   // Dynamically realign if needed.
3994   if (ExtraAlignSpace) {
3995     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3996                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3997     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3998                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3999   }
4000 
4001   SDValue Ops[2] = {Result, Chain};
4002   return DAG.getMergeValues(Ops, DL);
4003 }
4004 
4005 SDValue
4006 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
4007                                                    SelectionDAG &DAG) const {
4008   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
4009   MachineFunction &MF = DAG.getMachineFunction();
4010   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
4011   bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4012 
4013   SDValue Chain = Op.getOperand(0);
4014   SDValue Size  = Op.getOperand(1);
4015   SDValue Align = Op.getOperand(2);
4016   SDLoc DL(Op);
4017 
4018   // If user has set the no alignment function attribute, ignore
4019   // alloca alignments.
4020   uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
4021 
4022   uint64_t StackAlign = TFI->getStackAlignment();
4023   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
4024   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
4025 
4026   Register SPReg = getStackPointerRegisterToSaveRestore();
4027   SDValue NeededSpace = Size;
4028 
4029   // Get a reference to the stack pointer.
4030   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
4031 
4032   // If we need a backchain, save it now.
4033   SDValue Backchain;
4034   if (StoreBackchain)
4035     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4036                             MachinePointerInfo());
4037 
4038   // Add extra space for alignment if needed.
4039   if (ExtraAlignSpace)
4040     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
4041                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4042 
4043   // Get the new stack pointer value.
4044   SDValue NewSP;
4045   if (hasInlineStackProbe(MF)) {
4046     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
4047                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
4048     Chain = NewSP.getValue(1);
4049   }
4050   else {
4051     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
4052     // Copy the new stack pointer back.
4053     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
4054   }
4055 
4056   // The allocated data lives above the 160 bytes allocated for the standard
4057   // frame, plus any outgoing stack arguments.  We don't know how much that
4058   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
4059   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4060   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
4061 
4062   // Dynamically realign if needed.
4063   if (RequiredAlign > StackAlign) {
4064     Result =
4065       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
4066                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4067     Result =
4068       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
4069                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
4070   }
4071 
4072   if (StoreBackchain)
4073     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4074                          MachinePointerInfo());
4075 
4076   SDValue Ops[2] = { Result, Chain };
4077   return DAG.getMergeValues(Ops, DL);
4078 }
4079 
4080 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
4081     SDValue Op, SelectionDAG &DAG) const {
4082   SDLoc DL(Op);
4083 
4084   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4085 }
4086 
4087 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
4088                                               SelectionDAG &DAG) const {
4089   EVT VT = Op.getValueType();
4090   SDLoc DL(Op);
4091   SDValue Ops[2];
4092   if (is32Bit(VT))
4093     // Just do a normal 64-bit multiplication and extract the results.
4094     // We define this so that it can be used for constant division.
4095     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
4096                     Op.getOperand(1), Ops[1], Ops[0]);
4097   else if (Subtarget.hasMiscellaneousExtensions2())
4098     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
4099     // the high result in the even register.  ISD::SMUL_LOHI is defined to
4100     // return the low half first, so the results are in reverse order.
4101     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
4102                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4103   else {
4104     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
4105     //
4106     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
4107     //
4108     // but using the fact that the upper halves are either all zeros
4109     // or all ones:
4110     //
4111     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
4112     //
4113     // and grouping the right terms together since they are quicker than the
4114     // multiplication:
4115     //
4116     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
4117     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
4118     SDValue LL = Op.getOperand(0);
4119     SDValue RL = Op.getOperand(1);
4120     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
4121     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
4122     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4123     // the high result in the even register.  ISD::SMUL_LOHI is defined to
4124     // return the low half first, so the results are in reverse order.
4125     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4126                      LL, RL, Ops[1], Ops[0]);
4127     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
4128     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
4129     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
4130     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
4131   }
4132   return DAG.getMergeValues(Ops, DL);
4133 }
4134 
4135 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
4136                                               SelectionDAG &DAG) const {
4137   EVT VT = Op.getValueType();
4138   SDLoc DL(Op);
4139   SDValue Ops[2];
4140   if (is32Bit(VT))
4141     // Just do a normal 64-bit multiplication and extract the results.
4142     // We define this so that it can be used for constant division.
4143     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
4144                     Op.getOperand(1), Ops[1], Ops[0]);
4145   else
4146     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4147     // the high result in the even register.  ISD::UMUL_LOHI is defined to
4148     // return the low half first, so the results are in reverse order.
4149     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4150                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4151   return DAG.getMergeValues(Ops, DL);
4152 }
4153 
4154 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
4155                                             SelectionDAG &DAG) const {
4156   SDValue Op0 = Op.getOperand(0);
4157   SDValue Op1 = Op.getOperand(1);
4158   EVT VT = Op.getValueType();
4159   SDLoc DL(Op);
4160 
4161   // We use DSGF for 32-bit division.  This means the first operand must
4162   // always be 64-bit, and the second operand should be 32-bit whenever
4163   // that is possible, to improve performance.
4164   if (is32Bit(VT))
4165     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
4166   else if (DAG.ComputeNumSignBits(Op1) > 32)
4167     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
4168 
4169   // DSG(F) returns the remainder in the even register and the
4170   // quotient in the odd register.
4171   SDValue Ops[2];
4172   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
4173   return DAG.getMergeValues(Ops, DL);
4174 }
4175 
4176 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
4177                                             SelectionDAG &DAG) const {
4178   EVT VT = Op.getValueType();
4179   SDLoc DL(Op);
4180 
4181   // DL(G) returns the remainder in the even register and the
4182   // quotient in the odd register.
4183   SDValue Ops[2];
4184   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
4185                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4186   return DAG.getMergeValues(Ops, DL);
4187 }
4188 
4189 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
4190   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
4191 
4192   // Get the known-zero masks for each operand.
4193   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
4194   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
4195                         DAG.computeKnownBits(Ops[1])};
4196 
4197   // See if the upper 32 bits of one operand and the lower 32 bits of the
4198   // other are known zero.  They are the low and high operands respectively.
4199   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
4200                        Known[1].Zero.getZExtValue() };
4201   unsigned High, Low;
4202   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
4203     High = 1, Low = 0;
4204   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
4205     High = 0, Low = 1;
4206   else
4207     return Op;
4208 
4209   SDValue LowOp = Ops[Low];
4210   SDValue HighOp = Ops[High];
4211 
4212   // If the high part is a constant, we're better off using IILH.
4213   if (HighOp.getOpcode() == ISD::Constant)
4214     return Op;
4215 
4216   // If the low part is a constant that is outside the range of LHI,
4217   // then we're better off using IILF.
4218   if (LowOp.getOpcode() == ISD::Constant) {
4219     int64_t Value = int32_t(LowOp->getAsZExtVal());
4220     if (!isInt<16>(Value))
4221       return Op;
4222   }
4223 
4224   // Check whether the high part is an AND that doesn't change the
4225   // high 32 bits and just masks out low bits.  We can skip it if so.
4226   if (HighOp.getOpcode() == ISD::AND &&
4227       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
4228     SDValue HighOp0 = HighOp.getOperand(0);
4229     uint64_t Mask = HighOp.getConstantOperandVal(1);
4230     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
4231       HighOp = HighOp0;
4232   }
4233 
4234   // Take advantage of the fact that all GR32 operations only change the
4235   // low 32 bits by truncating Low to an i32 and inserting it directly
4236   // using a subreg.  The interesting cases are those where the truncation
4237   // can be folded.
4238   SDLoc DL(Op);
4239   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
4240   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
4241                                    MVT::i64, HighOp, Low32);
4242 }
4243 
4244 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
4245 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
4246                                           SelectionDAG &DAG) const {
4247   SDNode *N = Op.getNode();
4248   SDValue LHS = N->getOperand(0);
4249   SDValue RHS = N->getOperand(1);
4250   SDLoc DL(N);
4251 
4252   if (N->getValueType(0) == MVT::i128) {
4253     unsigned BaseOp = 0;
4254     unsigned FlagOp = 0;
4255     bool IsBorrow = false;
4256     switch (Op.getOpcode()) {
4257     default: llvm_unreachable("Unknown instruction!");
4258     case ISD::UADDO:
4259       BaseOp = ISD::ADD;
4260       FlagOp = SystemZISD::VACC;
4261       break;
4262     case ISD::USUBO:
4263       BaseOp = ISD::SUB;
4264       FlagOp = SystemZISD::VSCBI;
4265       IsBorrow = true;
4266       break;
4267     }
4268     SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS);
4269     SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS);
4270     Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4271                        DAG.getValueType(MVT::i1));
4272     Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4273     if (IsBorrow)
4274       Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4275                          Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4276     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4277   }
4278 
4279   unsigned BaseOp = 0;
4280   unsigned CCValid = 0;
4281   unsigned CCMask = 0;
4282 
4283   switch (Op.getOpcode()) {
4284   default: llvm_unreachable("Unknown instruction!");
4285   case ISD::SADDO:
4286     BaseOp = SystemZISD::SADDO;
4287     CCValid = SystemZ::CCMASK_ARITH;
4288     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4289     break;
4290   case ISD::SSUBO:
4291     BaseOp = SystemZISD::SSUBO;
4292     CCValid = SystemZ::CCMASK_ARITH;
4293     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4294     break;
4295   case ISD::UADDO:
4296     BaseOp = SystemZISD::UADDO;
4297     CCValid = SystemZ::CCMASK_LOGICAL;
4298     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4299     break;
4300   case ISD::USUBO:
4301     BaseOp = SystemZISD::USUBO;
4302     CCValid = SystemZ::CCMASK_LOGICAL;
4303     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4304     break;
4305   }
4306 
4307   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
4308   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
4309 
4310   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4311   if (N->getValueType(1) == MVT::i1)
4312     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4313 
4314   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4315 }
4316 
4317 static bool isAddCarryChain(SDValue Carry) {
4318   while (Carry.getOpcode() == ISD::UADDO_CARRY)
4319     Carry = Carry.getOperand(2);
4320   return Carry.getOpcode() == ISD::UADDO;
4321 }
4322 
4323 static bool isSubBorrowChain(SDValue Carry) {
4324   while (Carry.getOpcode() == ISD::USUBO_CARRY)
4325     Carry = Carry.getOperand(2);
4326   return Carry.getOpcode() == ISD::USUBO;
4327 }
4328 
4329 // Lower UADDO_CARRY/USUBO_CARRY nodes.
4330 SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op,
4331                                                    SelectionDAG &DAG) const {
4332 
4333   SDNode *N = Op.getNode();
4334   MVT VT = N->getSimpleValueType(0);
4335 
4336   // Let legalize expand this if it isn't a legal type yet.
4337   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4338     return SDValue();
4339 
4340   SDValue LHS = N->getOperand(0);
4341   SDValue RHS = N->getOperand(1);
4342   SDValue Carry = Op.getOperand(2);
4343   SDLoc DL(N);
4344 
4345   if (VT == MVT::i128) {
4346     unsigned BaseOp = 0;
4347     unsigned FlagOp = 0;
4348     bool IsBorrow = false;
4349     switch (Op.getOpcode()) {
4350     default: llvm_unreachable("Unknown instruction!");
4351     case ISD::UADDO_CARRY:
4352       BaseOp = SystemZISD::VAC;
4353       FlagOp = SystemZISD::VACCC;
4354       break;
4355     case ISD::USUBO_CARRY:
4356       BaseOp = SystemZISD::VSBI;
4357       FlagOp = SystemZISD::VSBCBI;
4358       IsBorrow = true;
4359       break;
4360     }
4361     if (IsBorrow)
4362       Carry = DAG.getNode(ISD::XOR, DL, Carry.getValueType(),
4363                           Carry, DAG.getConstant(1, DL, Carry.getValueType()));
4364     Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128);
4365     SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry);
4366     SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry);
4367     Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4368                        DAG.getValueType(MVT::i1));
4369     Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4370     if (IsBorrow)
4371       Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4372                          Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4373     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4374   }
4375 
4376   unsigned BaseOp = 0;
4377   unsigned CCValid = 0;
4378   unsigned CCMask = 0;
4379 
4380   switch (Op.getOpcode()) {
4381   default: llvm_unreachable("Unknown instruction!");
4382   case ISD::UADDO_CARRY:
4383     if (!isAddCarryChain(Carry))
4384       return SDValue();
4385 
4386     BaseOp = SystemZISD::ADDCARRY;
4387     CCValid = SystemZ::CCMASK_LOGICAL;
4388     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4389     break;
4390   case ISD::USUBO_CARRY:
4391     if (!isSubBorrowChain(Carry))
4392       return SDValue();
4393 
4394     BaseOp = SystemZISD::SUBCARRY;
4395     CCValid = SystemZ::CCMASK_LOGICAL;
4396     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4397     break;
4398   }
4399 
4400   // Set the condition code from the carry flag.
4401   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4402                       DAG.getConstant(CCValid, DL, MVT::i32),
4403                       DAG.getConstant(CCMask, DL, MVT::i32));
4404 
4405   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4406   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4407 
4408   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4409   if (N->getValueType(1) == MVT::i1)
4410     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4411 
4412   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4413 }
4414 
4415 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4416                                           SelectionDAG &DAG) const {
4417   EVT VT = Op.getValueType();
4418   SDLoc DL(Op);
4419   Op = Op.getOperand(0);
4420 
4421   if (VT.getScalarSizeInBits() == 128) {
4422     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op);
4423     Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op);
4424     SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL,
4425                                           DAG.getConstant(0, DL, MVT::i64));
4426     Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4427     return Op;
4428   }
4429 
4430   // Handle vector types via VPOPCT.
4431   if (VT.isVector()) {
4432     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4433     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4434     switch (VT.getScalarSizeInBits()) {
4435     case 8:
4436       break;
4437     case 16: {
4438       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4439       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4440       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4441       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4442       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4443       break;
4444     }
4445     case 32: {
4446       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4447                                             DAG.getConstant(0, DL, MVT::i32));
4448       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4449       break;
4450     }
4451     case 64: {
4452       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4453                                             DAG.getConstant(0, DL, MVT::i32));
4454       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4455       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4456       break;
4457     }
4458     default:
4459       llvm_unreachable("Unexpected type");
4460     }
4461     return Op;
4462   }
4463 
4464   // Get the known-zero mask for the operand.
4465   KnownBits Known = DAG.computeKnownBits(Op);
4466   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4467   if (NumSignificantBits == 0)
4468     return DAG.getConstant(0, DL, VT);
4469 
4470   // Skip known-zero high parts of the operand.
4471   int64_t OrigBitSize = VT.getSizeInBits();
4472   int64_t BitSize = llvm::bit_ceil(NumSignificantBits);
4473   BitSize = std::min(BitSize, OrigBitSize);
4474 
4475   // The POPCNT instruction counts the number of bits in each byte.
4476   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4477   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4478   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4479 
4480   // Add up per-byte counts in a binary tree.  All bits of Op at
4481   // position larger than BitSize remain zero throughout.
4482   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4483     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4484     if (BitSize != OrigBitSize)
4485       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4486                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4487     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4488   }
4489 
4490   // Extract overall result from high byte.
4491   if (BitSize > 8)
4492     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4493                      DAG.getConstant(BitSize - 8, DL, VT));
4494 
4495   return Op;
4496 }
4497 
4498 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4499                                                  SelectionDAG &DAG) const {
4500   SDLoc DL(Op);
4501   AtomicOrdering FenceOrdering =
4502       static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4503   SyncScope::ID FenceSSID =
4504       static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4505 
4506   // The only fence that needs an instruction is a sequentially-consistent
4507   // cross-thread fence.
4508   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4509       FenceSSID == SyncScope::System) {
4510     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4511                                       Op.getOperand(0)),
4512                    0);
4513   }
4514 
4515   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4516   return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4517 }
4518 
4519 // Op is an atomic load.  Lower it into a normal volatile load.
4520 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4521                                                 SelectionDAG &DAG) const {
4522   auto *Node = cast<AtomicSDNode>(Op.getNode());
4523   if (Node->getMemoryVT() == MVT::i128) {
4524     // Use same code to handle both legal and non-legal i128 types.
4525     SmallVector<SDValue, 2> Results;
4526     LowerOperationWrapper(Node, Results, DAG);
4527     return DAG.getMergeValues(Results, SDLoc(Op));
4528   }
4529   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4530                         Node->getChain(), Node->getBasePtr(),
4531                         Node->getMemoryVT(), Node->getMemOperand());
4532 }
4533 
4534 // Op is an atomic store.  Lower it into a normal volatile store.
4535 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4536                                                  SelectionDAG &DAG) const {
4537   auto *Node = cast<AtomicSDNode>(Op.getNode());
4538   if (Node->getMemoryVT() == MVT::i128) {
4539     // Use same code to handle both legal and non-legal i128 types.
4540     SmallVector<SDValue, 1> Results;
4541     LowerOperationWrapper(Node, Results, DAG);
4542     return DAG.getMergeValues(Results, SDLoc(Op));
4543   }
4544   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4545                                     Node->getBasePtr(), Node->getMemoryVT(),
4546                                     Node->getMemOperand());
4547   // We have to enforce sequential consistency by performing a
4548   // serialization operation after the store.
4549   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4550     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4551                                        MVT::Other, Chain), 0);
4552   return Chain;
4553 }
4554 
4555 // Prepare for a Compare And Swap for a subword operation. This needs to be
4556 // done in memory with 4 bytes at natural alignment.
4557 static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL,
4558                                   SDValue &AlignedAddr, SDValue &BitShift,
4559                                   SDValue &NegBitShift) {
4560   EVT PtrVT = Addr.getValueType();
4561   EVT WideVT = MVT::i32;
4562 
4563   // Get the address of the containing word.
4564   AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4565                             DAG.getConstant(-4, DL, PtrVT));
4566 
4567   // Get the number of bits that the word must be rotated left in order
4568   // to bring the field to the top bits of a GR32.
4569   BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4570                          DAG.getConstant(3, DL, PtrVT));
4571   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4572 
4573   // Get the complementing shift amount, for rotating a field in the top
4574   // bits back to its proper position.
4575   NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4576                             DAG.getConstant(0, DL, WideVT), BitShift);
4577 
4578 }
4579 
4580 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4581 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4582 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4583                                                    SelectionDAG &DAG,
4584                                                    unsigned Opcode) const {
4585   auto *Node = cast<AtomicSDNode>(Op.getNode());
4586 
4587   // 32-bit operations need no special handling.
4588   EVT NarrowVT = Node->getMemoryVT();
4589   EVT WideVT = MVT::i32;
4590   if (NarrowVT == WideVT)
4591     return Op;
4592 
4593   int64_t BitSize = NarrowVT.getSizeInBits();
4594   SDValue ChainIn = Node->getChain();
4595   SDValue Addr = Node->getBasePtr();
4596   SDValue Src2 = Node->getVal();
4597   MachineMemOperand *MMO = Node->getMemOperand();
4598   SDLoc DL(Node);
4599 
4600   // Convert atomic subtracts of constants into additions.
4601   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4602     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4603       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4604       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4605     }
4606 
4607   SDValue AlignedAddr, BitShift, NegBitShift;
4608   getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4609 
4610   // Extend the source operand to 32 bits and prepare it for the inner loop.
4611   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4612   // operations require the source to be shifted in advance.  (This shift
4613   // can be folded if the source is constant.)  For AND and NAND, the lower
4614   // bits must be set, while for other opcodes they should be left clear.
4615   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4616     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4617                        DAG.getConstant(32 - BitSize, DL, WideVT));
4618   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4619       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4620     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4621                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4622 
4623   // Construct the ATOMIC_LOADW_* node.
4624   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4625   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4626                     DAG.getConstant(BitSize, DL, WideVT) };
4627   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4628                                              NarrowVT, MMO);
4629 
4630   // Rotate the result of the final CS so that the field is in the lower
4631   // bits of a GR32, then truncate it.
4632   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4633                                     DAG.getConstant(BitSize, DL, WideVT));
4634   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4635 
4636   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4637   return DAG.getMergeValues(RetOps, DL);
4638 }
4639 
4640 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations into
4641 // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions.
4642 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4643                                                     SelectionDAG &DAG) const {
4644   auto *Node = cast<AtomicSDNode>(Op.getNode());
4645   EVT MemVT = Node->getMemoryVT();
4646   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4647     // A full-width operation: negate and use LAA(G).
4648     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4649     assert(Subtarget.hasInterlockedAccess1() &&
4650            "Should have been expanded by AtomicExpand pass.");
4651     SDValue Src2 = Node->getVal();
4652     SDLoc DL(Src2);
4653     SDValue NegSrc2 =
4654       DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2);
4655     return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4656                          Node->getChain(), Node->getBasePtr(), NegSrc2,
4657                          Node->getMemOperand());
4658   }
4659 
4660   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4661 }
4662 
4663 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4664 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4665                                                     SelectionDAG &DAG) const {
4666   auto *Node = cast<AtomicSDNode>(Op.getNode());
4667   SDValue ChainIn = Node->getOperand(0);
4668   SDValue Addr = Node->getOperand(1);
4669   SDValue CmpVal = Node->getOperand(2);
4670   SDValue SwapVal = Node->getOperand(3);
4671   MachineMemOperand *MMO = Node->getMemOperand();
4672   SDLoc DL(Node);
4673 
4674   if (Node->getMemoryVT() == MVT::i128) {
4675     // Use same code to handle both legal and non-legal i128 types.
4676     SmallVector<SDValue, 3> Results;
4677     LowerOperationWrapper(Node, Results, DAG);
4678     return DAG.getMergeValues(Results, DL);
4679   }
4680 
4681   // We have native support for 32-bit and 64-bit compare and swap, but we
4682   // still need to expand extracting the "success" result from the CC.
4683   EVT NarrowVT = Node->getMemoryVT();
4684   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4685   if (NarrowVT == WideVT) {
4686     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4687     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4688     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4689                                                DL, Tys, Ops, NarrowVT, MMO);
4690     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4691                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4692 
4693     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4694     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4695     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4696     return SDValue();
4697   }
4698 
4699   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4700   // via a fullword ATOMIC_CMP_SWAPW operation.
4701   int64_t BitSize = NarrowVT.getSizeInBits();
4702 
4703   SDValue AlignedAddr, BitShift, NegBitShift;
4704   getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4705 
4706   // Construct the ATOMIC_CMP_SWAPW node.
4707   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4708   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4709                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4710   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4711                                              VTList, Ops, NarrowVT, MMO);
4712   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4713                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4714 
4715   // emitAtomicCmpSwapW() will zero extend the result (original value).
4716   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4717                                 DAG.getValueType(NarrowVT));
4718   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4719   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4720   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4721   return SDValue();
4722 }
4723 
4724 MachineMemOperand::Flags
4725 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4726   // Because of how we convert atomic_load and atomic_store to normal loads and
4727   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4728   // since DAGCombine hasn't been updated to account for atomic, but non
4729   // volatile loads.  (See D57601)
4730   if (auto *SI = dyn_cast<StoreInst>(&I))
4731     if (SI->isAtomic())
4732       return MachineMemOperand::MOVolatile;
4733   if (auto *LI = dyn_cast<LoadInst>(&I))
4734     if (LI->isAtomic())
4735       return MachineMemOperand::MOVolatile;
4736   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4737     if (AI->isAtomic())
4738       return MachineMemOperand::MOVolatile;
4739   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4740     if (AI->isAtomic())
4741       return MachineMemOperand::MOVolatile;
4742   return MachineMemOperand::MONone;
4743 }
4744 
4745 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4746                                               SelectionDAG &DAG) const {
4747   MachineFunction &MF = DAG.getMachineFunction();
4748   auto *Regs = Subtarget.getSpecialRegisters();
4749   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4750     report_fatal_error("Variable-sized stack allocations are not supported "
4751                        "in GHC calling convention");
4752   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4753                             Regs->getStackPointerRegister(), Op.getValueType());
4754 }
4755 
4756 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4757                                                  SelectionDAG &DAG) const {
4758   MachineFunction &MF = DAG.getMachineFunction();
4759   auto *Regs = Subtarget.getSpecialRegisters();
4760   bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4761 
4762   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4763     report_fatal_error("Variable-sized stack allocations are not supported "
4764                        "in GHC calling convention");
4765 
4766   SDValue Chain = Op.getOperand(0);
4767   SDValue NewSP = Op.getOperand(1);
4768   SDValue Backchain;
4769   SDLoc DL(Op);
4770 
4771   if (StoreBackchain) {
4772     SDValue OldSP = DAG.getCopyFromReg(
4773         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4774     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4775                             MachinePointerInfo());
4776   }
4777 
4778   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4779 
4780   if (StoreBackchain)
4781     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4782                          MachinePointerInfo());
4783 
4784   return Chain;
4785 }
4786 
4787 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4788                                              SelectionDAG &DAG) const {
4789   bool IsData = Op.getConstantOperandVal(4);
4790   if (!IsData)
4791     // Just preserve the chain.
4792     return Op.getOperand(0);
4793 
4794   SDLoc DL(Op);
4795   bool IsWrite = Op.getConstantOperandVal(2);
4796   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4797   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4798   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4799                    Op.getOperand(1)};
4800   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4801                                  Node->getVTList(), Ops,
4802                                  Node->getMemoryVT(), Node->getMemOperand());
4803 }
4804 
4805 // Convert condition code in CCReg to an i32 value.
4806 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4807   SDLoc DL(CCReg);
4808   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4809   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4810                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4811 }
4812 
4813 SDValue
4814 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4815                                               SelectionDAG &DAG) const {
4816   unsigned Opcode, CCValid;
4817   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4818     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4819     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4820     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4821     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4822     return SDValue();
4823   }
4824 
4825   return SDValue();
4826 }
4827 
4828 SDValue
4829 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4830                                                SelectionDAG &DAG) const {
4831   unsigned Opcode, CCValid;
4832   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4833     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4834     if (Op->getNumValues() == 1)
4835       return getCCResult(DAG, SDValue(Node, 0));
4836     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4837     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4838                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4839   }
4840 
4841   unsigned Id = Op.getConstantOperandVal(0);
4842   switch (Id) {
4843   case Intrinsic::thread_pointer:
4844     return lowerThreadPointer(SDLoc(Op), DAG);
4845 
4846   case Intrinsic::s390_vpdi:
4847     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4848                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4849 
4850   case Intrinsic::s390_vperm:
4851     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4852                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4853 
4854   case Intrinsic::s390_vuphb:
4855   case Intrinsic::s390_vuphh:
4856   case Intrinsic::s390_vuphf:
4857     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4858                        Op.getOperand(1));
4859 
4860   case Intrinsic::s390_vuplhb:
4861   case Intrinsic::s390_vuplhh:
4862   case Intrinsic::s390_vuplhf:
4863     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4864                        Op.getOperand(1));
4865 
4866   case Intrinsic::s390_vuplb:
4867   case Intrinsic::s390_vuplhw:
4868   case Intrinsic::s390_vuplf:
4869     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4870                        Op.getOperand(1));
4871 
4872   case Intrinsic::s390_vupllb:
4873   case Intrinsic::s390_vupllh:
4874   case Intrinsic::s390_vupllf:
4875     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4876                        Op.getOperand(1));
4877 
4878   case Intrinsic::s390_vsumb:
4879   case Intrinsic::s390_vsumh:
4880   case Intrinsic::s390_vsumgh:
4881   case Intrinsic::s390_vsumgf:
4882   case Intrinsic::s390_vsumqf:
4883   case Intrinsic::s390_vsumqg:
4884     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4885                        Op.getOperand(1), Op.getOperand(2));
4886 
4887   case Intrinsic::s390_vaq:
4888     return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(),
4889                        Op.getOperand(1), Op.getOperand(2));
4890   case Intrinsic::s390_vaccb:
4891   case Intrinsic::s390_vacch:
4892   case Intrinsic::s390_vaccf:
4893   case Intrinsic::s390_vaccg:
4894   case Intrinsic::s390_vaccq:
4895     return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(),
4896                        Op.getOperand(1), Op.getOperand(2));
4897   case Intrinsic::s390_vacq:
4898     return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(),
4899                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4900   case Intrinsic::s390_vacccq:
4901     return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(),
4902                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4903 
4904   case Intrinsic::s390_vsq:
4905     return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(),
4906                        Op.getOperand(1), Op.getOperand(2));
4907   case Intrinsic::s390_vscbib:
4908   case Intrinsic::s390_vscbih:
4909   case Intrinsic::s390_vscbif:
4910   case Intrinsic::s390_vscbig:
4911   case Intrinsic::s390_vscbiq:
4912     return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(),
4913                        Op.getOperand(1), Op.getOperand(2));
4914   case Intrinsic::s390_vsbiq:
4915     return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(),
4916                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4917   case Intrinsic::s390_vsbcbiq:
4918     return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(),
4919                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4920   }
4921 
4922   return SDValue();
4923 }
4924 
4925 namespace {
4926 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4927 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4928 // Operand is the constant third operand, otherwise it is the number of
4929 // bytes in each element of the result.
4930 struct Permute {
4931   unsigned Opcode;
4932   unsigned Operand;
4933   unsigned char Bytes[SystemZ::VectorBytes];
4934 };
4935 }
4936 
4937 static const Permute PermuteForms[] = {
4938   // VMRHG
4939   { SystemZISD::MERGE_HIGH, 8,
4940     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4941   // VMRHF
4942   { SystemZISD::MERGE_HIGH, 4,
4943     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4944   // VMRHH
4945   { SystemZISD::MERGE_HIGH, 2,
4946     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4947   // VMRHB
4948   { SystemZISD::MERGE_HIGH, 1,
4949     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4950   // VMRLG
4951   { SystemZISD::MERGE_LOW, 8,
4952     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4953   // VMRLF
4954   { SystemZISD::MERGE_LOW, 4,
4955     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4956   // VMRLH
4957   { SystemZISD::MERGE_LOW, 2,
4958     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4959   // VMRLB
4960   { SystemZISD::MERGE_LOW, 1,
4961     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4962   // VPKG
4963   { SystemZISD::PACK, 4,
4964     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4965   // VPKF
4966   { SystemZISD::PACK, 2,
4967     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4968   // VPKH
4969   { SystemZISD::PACK, 1,
4970     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4971   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4972   { SystemZISD::PERMUTE_DWORDS, 4,
4973     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4974   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4975   { SystemZISD::PERMUTE_DWORDS, 1,
4976     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4977 };
4978 
4979 // Called after matching a vector shuffle against a particular pattern.
4980 // Both the original shuffle and the pattern have two vector operands.
4981 // OpNos[0] is the operand of the original shuffle that should be used for
4982 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4983 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4984 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4985 // for operands 0 and 1 of the pattern.
4986 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4987   if (OpNos[0] < 0) {
4988     if (OpNos[1] < 0)
4989       return false;
4990     OpNo0 = OpNo1 = OpNos[1];
4991   } else if (OpNos[1] < 0) {
4992     OpNo0 = OpNo1 = OpNos[0];
4993   } else {
4994     OpNo0 = OpNos[0];
4995     OpNo1 = OpNos[1];
4996   }
4997   return true;
4998 }
4999 
5000 // Bytes is a VPERM-like permute vector, except that -1 is used for
5001 // undefined bytes.  Return true if the VPERM can be implemented using P.
5002 // When returning true set OpNo0 to the VPERM operand that should be
5003 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
5004 //
5005 // For example, if swapping the VPERM operands allows P to match, OpNo0
5006 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
5007 // operand, but rewriting it to use two duplicated operands allows it to
5008 // match P, then OpNo0 and OpNo1 will be the same.
5009 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
5010                          unsigned &OpNo0, unsigned &OpNo1) {
5011   int OpNos[] = { -1, -1 };
5012   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5013     int Elt = Bytes[I];
5014     if (Elt >= 0) {
5015       // Make sure that the two permute vectors use the same suboperand
5016       // byte number.  Only the operand numbers (the high bits) are
5017       // allowed to differ.
5018       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
5019         return false;
5020       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
5021       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
5022       // Make sure that the operand mappings are consistent with previous
5023       // elements.
5024       if (OpNos[ModelOpNo] == 1 - RealOpNo)
5025         return false;
5026       OpNos[ModelOpNo] = RealOpNo;
5027     }
5028   }
5029   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5030 }
5031 
5032 // As above, but search for a matching permute.
5033 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
5034                                    unsigned &OpNo0, unsigned &OpNo1) {
5035   for (auto &P : PermuteForms)
5036     if (matchPermute(Bytes, P, OpNo0, OpNo1))
5037       return &P;
5038   return nullptr;
5039 }
5040 
5041 // Bytes is a VPERM-like permute vector, except that -1 is used for
5042 // undefined bytes.  This permute is an operand of an outer permute.
5043 // See whether redistributing the -1 bytes gives a shuffle that can be
5044 // implemented using P.  If so, set Transform to a VPERM-like permute vector
5045 // that, when applied to the result of P, gives the original permute in Bytes.
5046 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5047                                const Permute &P,
5048                                SmallVectorImpl<int> &Transform) {
5049   unsigned To = 0;
5050   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
5051     int Elt = Bytes[From];
5052     if (Elt < 0)
5053       // Byte number From of the result is undefined.
5054       Transform[From] = -1;
5055     else {
5056       while (P.Bytes[To] != Elt) {
5057         To += 1;
5058         if (To == SystemZ::VectorBytes)
5059           return false;
5060       }
5061       Transform[From] = To;
5062     }
5063   }
5064   return true;
5065 }
5066 
5067 // As above, but search for a matching permute.
5068 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5069                                          SmallVectorImpl<int> &Transform) {
5070   for (auto &P : PermuteForms)
5071     if (matchDoublePermute(Bytes, P, Transform))
5072       return &P;
5073   return nullptr;
5074 }
5075 
5076 // Convert the mask of the given shuffle op into a byte-level mask,
5077 // as if it had type vNi8.
5078 static bool getVPermMask(SDValue ShuffleOp,
5079                          SmallVectorImpl<int> &Bytes) {
5080   EVT VT = ShuffleOp.getValueType();
5081   unsigned NumElements = VT.getVectorNumElements();
5082   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5083 
5084   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
5085     Bytes.resize(NumElements * BytesPerElement, -1);
5086     for (unsigned I = 0; I < NumElements; ++I) {
5087       int Index = VSN->getMaskElt(I);
5088       if (Index >= 0)
5089         for (unsigned J = 0; J < BytesPerElement; ++J)
5090           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5091     }
5092     return true;
5093   }
5094   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
5095       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
5096     unsigned Index = ShuffleOp.getConstantOperandVal(1);
5097     Bytes.resize(NumElements * BytesPerElement, -1);
5098     for (unsigned I = 0; I < NumElements; ++I)
5099       for (unsigned J = 0; J < BytesPerElement; ++J)
5100         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5101     return true;
5102   }
5103   return false;
5104 }
5105 
5106 // Bytes is a VPERM-like permute vector, except that -1 is used for
5107 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
5108 // the result come from a contiguous sequence of bytes from one input.
5109 // Set Base to the selector for the first byte if so.
5110 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
5111                             unsigned BytesPerElement, int &Base) {
5112   Base = -1;
5113   for (unsigned I = 0; I < BytesPerElement; ++I) {
5114     if (Bytes[Start + I] >= 0) {
5115       unsigned Elem = Bytes[Start + I];
5116       if (Base < 0) {
5117         Base = Elem - I;
5118         // Make sure the bytes would come from one input operand.
5119         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
5120           return false;
5121       } else if (unsigned(Base) != Elem - I)
5122         return false;
5123     }
5124   }
5125   return true;
5126 }
5127 
5128 // Bytes is a VPERM-like permute vector, except that -1 is used for
5129 // undefined bytes.  Return true if it can be performed using VSLDB.
5130 // When returning true, set StartIndex to the shift amount and OpNo0
5131 // and OpNo1 to the VPERM operands that should be used as the first
5132 // and second shift operand respectively.
5133 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
5134                                unsigned &StartIndex, unsigned &OpNo0,
5135                                unsigned &OpNo1) {
5136   int OpNos[] = { -1, -1 };
5137   int Shift = -1;
5138   for (unsigned I = 0; I < 16; ++I) {
5139     int Index = Bytes[I];
5140     if (Index >= 0) {
5141       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
5142       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
5143       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
5144       if (Shift < 0)
5145         Shift = ExpectedShift;
5146       else if (Shift != ExpectedShift)
5147         return false;
5148       // Make sure that the operand mappings are consistent with previous
5149       // elements.
5150       if (OpNos[ModelOpNo] == 1 - RealOpNo)
5151         return false;
5152       OpNos[ModelOpNo] = RealOpNo;
5153     }
5154   }
5155   StartIndex = Shift;
5156   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5157 }
5158 
5159 // Create a node that performs P on operands Op0 and Op1, casting the
5160 // operands to the appropriate type.  The type of the result is determined by P.
5161 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5162                               const Permute &P, SDValue Op0, SDValue Op1) {
5163   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
5164   // elements of a PACK are twice as wide as the outputs.
5165   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
5166                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
5167                       P.Operand);
5168   // Cast both operands to the appropriate type.
5169   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
5170                               SystemZ::VectorBytes / InBytes);
5171   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
5172   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
5173   SDValue Op;
5174   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
5175     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
5176     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
5177   } else if (P.Opcode == SystemZISD::PACK) {
5178     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
5179                                  SystemZ::VectorBytes / P.Operand);
5180     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
5181   } else {
5182     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
5183   }
5184   return Op;
5185 }
5186 
5187 static bool isZeroVector(SDValue N) {
5188   if (N->getOpcode() == ISD::BITCAST)
5189     N = N->getOperand(0);
5190   if (N->getOpcode() == ISD::SPLAT_VECTOR)
5191     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
5192       return Op->getZExtValue() == 0;
5193   return ISD::isBuildVectorAllZeros(N.getNode());
5194 }
5195 
5196 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
5197 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
5198   for (unsigned I = 0; I < Num ; I++)
5199     if (isZeroVector(Ops[I]))
5200       return I;
5201   return UINT32_MAX;
5202 }
5203 
5204 // Bytes is a VPERM-like permute vector, except that -1 is used for
5205 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
5206 // VSLDB or VPERM.
5207 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5208                                      SDValue *Ops,
5209                                      const SmallVectorImpl<int> &Bytes) {
5210   for (unsigned I = 0; I < 2; ++I)
5211     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
5212 
5213   // First see whether VSLDB can be used.
5214   unsigned StartIndex, OpNo0, OpNo1;
5215   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
5216     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
5217                        Ops[OpNo1],
5218                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
5219 
5220   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
5221   // eliminate a zero vector by reusing any zero index in the permute vector.
5222   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
5223   if (ZeroVecIdx != UINT32_MAX) {
5224     bool MaskFirst = true;
5225     int ZeroIdx = -1;
5226     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5227       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5228       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5229       if (OpNo == ZeroVecIdx && I == 0) {
5230         // If the first byte is zero, use mask as first operand.
5231         ZeroIdx = 0;
5232         break;
5233       }
5234       if (OpNo != ZeroVecIdx && Byte == 0) {
5235         // If mask contains a zero, use it by placing that vector first.
5236         ZeroIdx = I + SystemZ::VectorBytes;
5237         MaskFirst = false;
5238         break;
5239       }
5240     }
5241     if (ZeroIdx != -1) {
5242       SDValue IndexNodes[SystemZ::VectorBytes];
5243       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5244         if (Bytes[I] >= 0) {
5245           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5246           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5247           if (OpNo == ZeroVecIdx)
5248             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
5249           else {
5250             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
5251             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
5252           }
5253         } else
5254           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5255       }
5256       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5257       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
5258       if (MaskFirst)
5259         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
5260                            Mask);
5261       else
5262         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
5263                            Mask);
5264     }
5265   }
5266 
5267   SDValue IndexNodes[SystemZ::VectorBytes];
5268   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5269     if (Bytes[I] >= 0)
5270       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
5271     else
5272       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5273   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5274   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
5275                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
5276 }
5277 
5278 namespace {
5279 // Describes a general N-operand vector shuffle.
5280 struct GeneralShuffle {
5281   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
5282   void addUndef();
5283   bool add(SDValue, unsigned);
5284   SDValue getNode(SelectionDAG &, const SDLoc &);
5285   void tryPrepareForUnpack();
5286   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
5287   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
5288 
5289   // The operands of the shuffle.
5290   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
5291 
5292   // Index I is -1 if byte I of the result is undefined.  Otherwise the
5293   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
5294   // Bytes[I] / SystemZ::VectorBytes.
5295   SmallVector<int, SystemZ::VectorBytes> Bytes;
5296 
5297   // The type of the shuffle result.
5298   EVT VT;
5299 
5300   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
5301   unsigned UnpackFromEltSize;
5302 };
5303 }
5304 
5305 // Add an extra undefined element to the shuffle.
5306 void GeneralShuffle::addUndef() {
5307   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5308   for (unsigned I = 0; I < BytesPerElement; ++I)
5309     Bytes.push_back(-1);
5310 }
5311 
5312 // Add an extra element to the shuffle, taking it from element Elem of Op.
5313 // A null Op indicates a vector input whose value will be calculated later;
5314 // there is at most one such input per shuffle and it always has the same
5315 // type as the result. Aborts and returns false if the source vector elements
5316 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
5317 // LLVM they become implicitly extended, but this is rare and not optimized.
5318 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
5319   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5320 
5321   // The source vector can have wider elements than the result,
5322   // either through an explicit TRUNCATE or because of type legalization.
5323   // We want the least significant part.
5324   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
5325   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
5326 
5327   // Return false if the source elements are smaller than their destination
5328   // elements.
5329   if (FromBytesPerElement < BytesPerElement)
5330     return false;
5331 
5332   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
5333                    (FromBytesPerElement - BytesPerElement));
5334 
5335   // Look through things like shuffles and bitcasts.
5336   while (Op.getNode()) {
5337     if (Op.getOpcode() == ISD::BITCAST)
5338       Op = Op.getOperand(0);
5339     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
5340       // See whether the bytes we need come from a contiguous part of one
5341       // operand.
5342       SmallVector<int, SystemZ::VectorBytes> OpBytes;
5343       if (!getVPermMask(Op, OpBytes))
5344         break;
5345       int NewByte;
5346       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
5347         break;
5348       if (NewByte < 0) {
5349         addUndef();
5350         return true;
5351       }
5352       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
5353       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
5354     } else if (Op.isUndef()) {
5355       addUndef();
5356       return true;
5357     } else
5358       break;
5359   }
5360 
5361   // Make sure that the source of the extraction is in Ops.
5362   unsigned OpNo = 0;
5363   for (; OpNo < Ops.size(); ++OpNo)
5364     if (Ops[OpNo] == Op)
5365       break;
5366   if (OpNo == Ops.size())
5367     Ops.push_back(Op);
5368 
5369   // Add the element to Bytes.
5370   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
5371   for (unsigned I = 0; I < BytesPerElement; ++I)
5372     Bytes.push_back(Base + I);
5373 
5374   return true;
5375 }
5376 
5377 // Return SDNodes for the completed shuffle.
5378 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
5379   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
5380 
5381   if (Ops.size() == 0)
5382     return DAG.getUNDEF(VT);
5383 
5384   // Use a single unpack if possible as the last operation.
5385   tryPrepareForUnpack();
5386 
5387   // Make sure that there are at least two shuffle operands.
5388   if (Ops.size() == 1)
5389     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
5390 
5391   // Create a tree of shuffles, deferring root node until after the loop.
5392   // Try to redistribute the undefined elements of non-root nodes so that
5393   // the non-root shuffles match something like a pack or merge, then adjust
5394   // the parent node's permute vector to compensate for the new order.
5395   // Among other things, this copes with vectors like <2 x i16> that were
5396   // padded with undefined elements during type legalization.
5397   //
5398   // In the best case this redistribution will lead to the whole tree
5399   // using packs and merges.  It should rarely be a loss in other cases.
5400   unsigned Stride = 1;
5401   for (; Stride * 2 < Ops.size(); Stride *= 2) {
5402     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
5403       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5404 
5405       // Create a mask for just these two operands.
5406       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5407       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5408         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5409         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5410         if (OpNo == I)
5411           NewBytes[J] = Byte;
5412         else if (OpNo == I + Stride)
5413           NewBytes[J] = SystemZ::VectorBytes + Byte;
5414         else
5415           NewBytes[J] = -1;
5416       }
5417       // See if it would be better to reorganize NewMask to avoid using VPERM.
5418       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5419       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5420         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5421         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5422         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5423           if (NewBytes[J] >= 0) {
5424             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5425                    "Invalid double permute");
5426             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5427           } else
5428             assert(NewBytesMap[J] < 0 && "Invalid double permute");
5429         }
5430       } else {
5431         // Just use NewBytes on the operands.
5432         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5433         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5434           if (NewBytes[J] >= 0)
5435             Bytes[J] = I * SystemZ::VectorBytes + J;
5436       }
5437     }
5438   }
5439 
5440   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5441   if (Stride > 1) {
5442     Ops[1] = Ops[Stride];
5443     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5444       if (Bytes[I] >= int(SystemZ::VectorBytes))
5445         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5446   }
5447 
5448   // Look for an instruction that can do the permute without resorting
5449   // to VPERM.
5450   unsigned OpNo0, OpNo1;
5451   SDValue Op;
5452   if (unpackWasPrepared() && Ops[1].isUndef())
5453     Op = Ops[0];
5454   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5455     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5456   else
5457     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5458 
5459   Op = insertUnpackIfPrepared(DAG, DL, Op);
5460 
5461   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5462 }
5463 
5464 #ifndef NDEBUG
5465 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5466   dbgs() << Msg.c_str() << " { ";
5467   for (unsigned i = 0; i < Bytes.size(); i++)
5468     dbgs() << Bytes[i] << " ";
5469   dbgs() << "}\n";
5470 }
5471 #endif
5472 
5473 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5474 // after all else by removing the zero vector and the effect of the unpack on
5475 // Bytes.
5476 void GeneralShuffle::tryPrepareForUnpack() {
5477   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5478   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5479     return;
5480 
5481   // Only do this if removing the zero vector reduces the depth, otherwise
5482   // the critical path will increase with the final unpack.
5483   if (Ops.size() > 2 &&
5484       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5485     return;
5486 
5487   // Find an unpack that would allow removing the zero vector from Ops.
5488   UnpackFromEltSize = 1;
5489   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5490     bool MatchUnpack = true;
5491     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5492     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5493       unsigned ToEltSize = UnpackFromEltSize * 2;
5494       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5495       if (!IsZextByte)
5496         SrcBytes.push_back(Bytes[Elt]);
5497       if (Bytes[Elt] != -1) {
5498         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5499         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5500           MatchUnpack = false;
5501           break;
5502         }
5503       }
5504     }
5505     if (MatchUnpack) {
5506       if (Ops.size() == 2) {
5507         // Don't use unpack if a single source operand needs rearrangement.
5508         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5509           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5510             UnpackFromEltSize = UINT_MAX;
5511             return;
5512           }
5513       }
5514       break;
5515     }
5516   }
5517   if (UnpackFromEltSize > 4)
5518     return;
5519 
5520   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5521              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5522              << ".\n";
5523              dumpBytes(Bytes, "Original Bytes vector:"););
5524 
5525   // Apply the unpack in reverse to the Bytes array.
5526   unsigned B = 0;
5527   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5528     Elt += UnpackFromEltSize;
5529     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5530       Bytes[B] = Bytes[Elt];
5531   }
5532   while (B < SystemZ::VectorBytes)
5533     Bytes[B++] = -1;
5534 
5535   // Remove the zero vector from Ops
5536   Ops.erase(&Ops[ZeroVecOpNo]);
5537   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5538     if (Bytes[I] >= 0) {
5539       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5540       if (OpNo > ZeroVecOpNo)
5541         Bytes[I] -= SystemZ::VectorBytes;
5542     }
5543 
5544   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5545              dbgs() << "\n";);
5546 }
5547 
5548 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5549                                                const SDLoc &DL,
5550                                                SDValue Op) {
5551   if (!unpackWasPrepared())
5552     return Op;
5553   unsigned InBits = UnpackFromEltSize * 8;
5554   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5555                                 SystemZ::VectorBits / InBits);
5556   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5557   unsigned OutBits = InBits * 2;
5558   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5559                                SystemZ::VectorBits / OutBits);
5560   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5561 }
5562 
5563 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5564 static bool isScalarToVector(SDValue Op) {
5565   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5566     if (!Op.getOperand(I).isUndef())
5567       return false;
5568   return true;
5569 }
5570 
5571 // Return a vector of type VT that contains Value in the first element.
5572 // The other elements don't matter.
5573 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5574                                    SDValue Value) {
5575   // If we have a constant, replicate it to all elements and let the
5576   // BUILD_VECTOR lowering take care of it.
5577   if (Value.getOpcode() == ISD::Constant ||
5578       Value.getOpcode() == ISD::ConstantFP) {
5579     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5580     return DAG.getBuildVector(VT, DL, Ops);
5581   }
5582   if (Value.isUndef())
5583     return DAG.getUNDEF(VT);
5584   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5585 }
5586 
5587 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5588 // element 1.  Used for cases in which replication is cheap.
5589 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5590                                  SDValue Op0, SDValue Op1) {
5591   if (Op0.isUndef()) {
5592     if (Op1.isUndef())
5593       return DAG.getUNDEF(VT);
5594     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5595   }
5596   if (Op1.isUndef())
5597     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5598   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5599                      buildScalarToVector(DAG, DL, VT, Op0),
5600                      buildScalarToVector(DAG, DL, VT, Op1));
5601 }
5602 
5603 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5604 // vector for them.
5605 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5606                           SDValue Op1) {
5607   if (Op0.isUndef() && Op1.isUndef())
5608     return DAG.getUNDEF(MVT::v2i64);
5609   // If one of the two inputs is undefined then replicate the other one,
5610   // in order to avoid using another register unnecessarily.
5611   if (Op0.isUndef())
5612     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5613   else if (Op1.isUndef())
5614     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5615   else {
5616     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5617     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5618   }
5619   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5620 }
5621 
5622 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5623 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5624 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5625 // would benefit from this representation and return it if so.
5626 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5627                                      BuildVectorSDNode *BVN) {
5628   EVT VT = BVN->getValueType(0);
5629   unsigned NumElements = VT.getVectorNumElements();
5630 
5631   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5632   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5633   // need a BUILD_VECTOR, add an additional placeholder operand for that
5634   // BUILD_VECTOR and store its operands in ResidueOps.
5635   GeneralShuffle GS(VT);
5636   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5637   bool FoundOne = false;
5638   for (unsigned I = 0; I < NumElements; ++I) {
5639     SDValue Op = BVN->getOperand(I);
5640     if (Op.getOpcode() == ISD::TRUNCATE)
5641       Op = Op.getOperand(0);
5642     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5643         Op.getOperand(1).getOpcode() == ISD::Constant) {
5644       unsigned Elem = Op.getConstantOperandVal(1);
5645       if (!GS.add(Op.getOperand(0), Elem))
5646         return SDValue();
5647       FoundOne = true;
5648     } else if (Op.isUndef()) {
5649       GS.addUndef();
5650     } else {
5651       if (!GS.add(SDValue(), ResidueOps.size()))
5652         return SDValue();
5653       ResidueOps.push_back(BVN->getOperand(I));
5654     }
5655   }
5656 
5657   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5658   if (!FoundOne)
5659     return SDValue();
5660 
5661   // Create the BUILD_VECTOR for the remaining elements, if any.
5662   if (!ResidueOps.empty()) {
5663     while (ResidueOps.size() < NumElements)
5664       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5665     for (auto &Op : GS.Ops) {
5666       if (!Op.getNode()) {
5667         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5668         break;
5669       }
5670     }
5671   }
5672   return GS.getNode(DAG, SDLoc(BVN));
5673 }
5674 
5675 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5676   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5677     return true;
5678   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5679     return true;
5680   return false;
5681 }
5682 
5683 // Combine GPR scalar values Elems into a vector of type VT.
5684 SDValue
5685 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5686                                    SmallVectorImpl<SDValue> &Elems) const {
5687   // See whether there is a single replicated value.
5688   SDValue Single;
5689   unsigned int NumElements = Elems.size();
5690   unsigned int Count = 0;
5691   for (auto Elem : Elems) {
5692     if (!Elem.isUndef()) {
5693       if (!Single.getNode())
5694         Single = Elem;
5695       else if (Elem != Single) {
5696         Single = SDValue();
5697         break;
5698       }
5699       Count += 1;
5700     }
5701   }
5702   // There are three cases here:
5703   //
5704   // - if the only defined element is a loaded one, the best sequence
5705   //   is a replicating load.
5706   //
5707   // - otherwise, if the only defined element is an i64 value, we will
5708   //   end up with the same VLVGP sequence regardless of whether we short-cut
5709   //   for replication or fall through to the later code.
5710   //
5711   // - otherwise, if the only defined element is an i32 or smaller value,
5712   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5713   //   This is only a win if the single defined element is used more than once.
5714   //   In other cases we're better off using a single VLVGx.
5715   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5716     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5717 
5718   // If all elements are loads, use VLREP/VLEs (below).
5719   bool AllLoads = true;
5720   for (auto Elem : Elems)
5721     if (!isVectorElementLoad(Elem)) {
5722       AllLoads = false;
5723       break;
5724     }
5725 
5726   // The best way of building a v2i64 from two i64s is to use VLVGP.
5727   if (VT == MVT::v2i64 && !AllLoads)
5728     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5729 
5730   // Use a 64-bit merge high to combine two doubles.
5731   if (VT == MVT::v2f64 && !AllLoads)
5732     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5733 
5734   // Build v4f32 values directly from the FPRs:
5735   //
5736   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5737   //         V              V         VMRHF
5738   //      <ABxx>         <CDxx>
5739   //                V                 VMRHG
5740   //              <ABCD>
5741   if (VT == MVT::v4f32 && !AllLoads) {
5742     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5743     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5744     // Avoid unnecessary undefs by reusing the other operand.
5745     if (Op01.isUndef())
5746       Op01 = Op23;
5747     else if (Op23.isUndef())
5748       Op23 = Op01;
5749     // Merging identical replications is a no-op.
5750     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5751       return Op01;
5752     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5753     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5754     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5755                              DL, MVT::v2i64, Op01, Op23);
5756     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5757   }
5758 
5759   // Collect the constant terms.
5760   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5761   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5762 
5763   unsigned NumConstants = 0;
5764   for (unsigned I = 0; I < NumElements; ++I) {
5765     SDValue Elem = Elems[I];
5766     if (Elem.getOpcode() == ISD::Constant ||
5767         Elem.getOpcode() == ISD::ConstantFP) {
5768       NumConstants += 1;
5769       Constants[I] = Elem;
5770       Done[I] = true;
5771     }
5772   }
5773   // If there was at least one constant, fill in the other elements of
5774   // Constants with undefs to get a full vector constant and use that
5775   // as the starting point.
5776   SDValue Result;
5777   SDValue ReplicatedVal;
5778   if (NumConstants > 0) {
5779     for (unsigned I = 0; I < NumElements; ++I)
5780       if (!Constants[I].getNode())
5781         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5782     Result = DAG.getBuildVector(VT, DL, Constants);
5783   } else {
5784     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5785     // avoid a false dependency on any previous contents of the vector
5786     // register.
5787 
5788     // Use a VLREP if at least one element is a load. Make sure to replicate
5789     // the load with the most elements having its value.
5790     std::map<const SDNode*, unsigned> UseCounts;
5791     SDNode *LoadMaxUses = nullptr;
5792     for (unsigned I = 0; I < NumElements; ++I)
5793       if (isVectorElementLoad(Elems[I])) {
5794         SDNode *Ld = Elems[I].getNode();
5795         UseCounts[Ld]++;
5796         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5797           LoadMaxUses = Ld;
5798       }
5799     if (LoadMaxUses != nullptr) {
5800       ReplicatedVal = SDValue(LoadMaxUses, 0);
5801       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5802     } else {
5803       // Try to use VLVGP.
5804       unsigned I1 = NumElements / 2 - 1;
5805       unsigned I2 = NumElements - 1;
5806       bool Def1 = !Elems[I1].isUndef();
5807       bool Def2 = !Elems[I2].isUndef();
5808       if (Def1 || Def2) {
5809         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5810         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5811         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5812                              joinDwords(DAG, DL, Elem1, Elem2));
5813         Done[I1] = true;
5814         Done[I2] = true;
5815       } else
5816         Result = DAG.getUNDEF(VT);
5817     }
5818   }
5819 
5820   // Use VLVGx to insert the other elements.
5821   for (unsigned I = 0; I < NumElements; ++I)
5822     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5823       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5824                            DAG.getConstant(I, DL, MVT::i32));
5825   return Result;
5826 }
5827 
5828 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5829                                                  SelectionDAG &DAG) const {
5830   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5831   SDLoc DL(Op);
5832   EVT VT = Op.getValueType();
5833 
5834   if (BVN->isConstant()) {
5835     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5836       return Op;
5837 
5838     // Fall back to loading it from memory.
5839     return SDValue();
5840   }
5841 
5842   // See if we should use shuffles to construct the vector from other vectors.
5843   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5844     return Res;
5845 
5846   // Detect SCALAR_TO_VECTOR conversions.
5847   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5848     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5849 
5850   // Otherwise use buildVector to build the vector up from GPRs.
5851   unsigned NumElements = Op.getNumOperands();
5852   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5853   for (unsigned I = 0; I < NumElements; ++I)
5854     Ops[I] = Op.getOperand(I);
5855   return buildVector(DAG, DL, VT, Ops);
5856 }
5857 
5858 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5859                                                    SelectionDAG &DAG) const {
5860   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5861   SDLoc DL(Op);
5862   EVT VT = Op.getValueType();
5863   unsigned NumElements = VT.getVectorNumElements();
5864 
5865   if (VSN->isSplat()) {
5866     SDValue Op0 = Op.getOperand(0);
5867     unsigned Index = VSN->getSplatIndex();
5868     assert(Index < VT.getVectorNumElements() &&
5869            "Splat index should be defined and in first operand");
5870     // See whether the value we're splatting is directly available as a scalar.
5871     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5872         Op0.getOpcode() == ISD::BUILD_VECTOR)
5873       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5874     // Otherwise keep it as a vector-to-vector operation.
5875     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5876                        DAG.getTargetConstant(Index, DL, MVT::i32));
5877   }
5878 
5879   GeneralShuffle GS(VT);
5880   for (unsigned I = 0; I < NumElements; ++I) {
5881     int Elt = VSN->getMaskElt(I);
5882     if (Elt < 0)
5883       GS.addUndef();
5884     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5885                      unsigned(Elt) % NumElements))
5886       return SDValue();
5887   }
5888   return GS.getNode(DAG, SDLoc(VSN));
5889 }
5890 
5891 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5892                                                      SelectionDAG &DAG) const {
5893   SDLoc DL(Op);
5894   // Just insert the scalar into element 0 of an undefined vector.
5895   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5896                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5897                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5898 }
5899 
5900 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5901                                                       SelectionDAG &DAG) const {
5902   // Handle insertions of floating-point values.
5903   SDLoc DL(Op);
5904   SDValue Op0 = Op.getOperand(0);
5905   SDValue Op1 = Op.getOperand(1);
5906   SDValue Op2 = Op.getOperand(2);
5907   EVT VT = Op.getValueType();
5908 
5909   // Insertions into constant indices of a v2f64 can be done using VPDI.
5910   // However, if the inserted value is a bitcast or a constant then it's
5911   // better to use GPRs, as below.
5912   if (VT == MVT::v2f64 &&
5913       Op1.getOpcode() != ISD::BITCAST &&
5914       Op1.getOpcode() != ISD::ConstantFP &&
5915       Op2.getOpcode() == ISD::Constant) {
5916     uint64_t Index = Op2->getAsZExtVal();
5917     unsigned Mask = VT.getVectorNumElements() - 1;
5918     if (Index <= Mask)
5919       return Op;
5920   }
5921 
5922   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5923   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5924   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5925   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5926                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5927                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5928   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5929 }
5930 
5931 SDValue
5932 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5933                                                SelectionDAG &DAG) const {
5934   // Handle extractions of floating-point values.
5935   SDLoc DL(Op);
5936   SDValue Op0 = Op.getOperand(0);
5937   SDValue Op1 = Op.getOperand(1);
5938   EVT VT = Op.getValueType();
5939   EVT VecVT = Op0.getValueType();
5940 
5941   // Extractions of constant indices can be done directly.
5942   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5943     uint64_t Index = CIndexN->getZExtValue();
5944     unsigned Mask = VecVT.getVectorNumElements() - 1;
5945     if (Index <= Mask)
5946       return Op;
5947   }
5948 
5949   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5950   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5951   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5952   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5953                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5954   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5955 }
5956 
5957 SDValue SystemZTargetLowering::
5958 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5959   SDValue PackedOp = Op.getOperand(0);
5960   EVT OutVT = Op.getValueType();
5961   EVT InVT = PackedOp.getValueType();
5962   unsigned ToBits = OutVT.getScalarSizeInBits();
5963   unsigned FromBits = InVT.getScalarSizeInBits();
5964   do {
5965     FromBits *= 2;
5966     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5967                                  SystemZ::VectorBits / FromBits);
5968     PackedOp =
5969       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5970   } while (FromBits != ToBits);
5971   return PackedOp;
5972 }
5973 
5974 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5975 SDValue SystemZTargetLowering::
5976 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5977   SDValue PackedOp = Op.getOperand(0);
5978   SDLoc DL(Op);
5979   EVT OutVT = Op.getValueType();
5980   EVT InVT = PackedOp.getValueType();
5981   unsigned InNumElts = InVT.getVectorNumElements();
5982   unsigned OutNumElts = OutVT.getVectorNumElements();
5983   unsigned NumInPerOut = InNumElts / OutNumElts;
5984 
5985   SDValue ZeroVec =
5986     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5987 
5988   SmallVector<int, 16> Mask(InNumElts);
5989   unsigned ZeroVecElt = InNumElts;
5990   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5991     unsigned MaskElt = PackedElt * NumInPerOut;
5992     unsigned End = MaskElt + NumInPerOut - 1;
5993     for (; MaskElt < End; MaskElt++)
5994       Mask[MaskElt] = ZeroVecElt++;
5995     Mask[MaskElt] = PackedElt;
5996   }
5997   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5998   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5999 }
6000 
6001 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
6002                                           unsigned ByScalar) const {
6003   // Look for cases where a vector shift can use the *_BY_SCALAR form.
6004   SDValue Op0 = Op.getOperand(0);
6005   SDValue Op1 = Op.getOperand(1);
6006   SDLoc DL(Op);
6007   EVT VT = Op.getValueType();
6008   unsigned ElemBitSize = VT.getScalarSizeInBits();
6009 
6010   // See whether the shift vector is a splat represented as BUILD_VECTOR.
6011   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
6012     APInt SplatBits, SplatUndef;
6013     unsigned SplatBitSize;
6014     bool HasAnyUndefs;
6015     // Check for constant splats.  Use ElemBitSize as the minimum element
6016     // width and reject splats that need wider elements.
6017     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6018                              ElemBitSize, true) &&
6019         SplatBitSize == ElemBitSize) {
6020       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
6021                                       DL, MVT::i32);
6022       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6023     }
6024     // Check for variable splats.
6025     BitVector UndefElements;
6026     SDValue Splat = BVN->getSplatValue(&UndefElements);
6027     if (Splat) {
6028       // Since i32 is the smallest legal type, we either need a no-op
6029       // or a truncation.
6030       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
6031       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6032     }
6033   }
6034 
6035   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
6036   // and the shift amount is directly available in a GPR.
6037   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
6038     if (VSN->isSplat()) {
6039       SDValue VSNOp0 = VSN->getOperand(0);
6040       unsigned Index = VSN->getSplatIndex();
6041       assert(Index < VT.getVectorNumElements() &&
6042              "Splat index should be defined and in first operand");
6043       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
6044           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
6045         // Since i32 is the smallest legal type, we either need a no-op
6046         // or a truncation.
6047         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
6048                                     VSNOp0.getOperand(Index));
6049         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6050       }
6051     }
6052   }
6053 
6054   // Otherwise just treat the current form as legal.
6055   return Op;
6056 }
6057 
6058 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
6059                                                SelectionDAG &DAG) const {
6060   SDLoc DL(Op);
6061   MVT ResultVT = Op.getSimpleValueType();
6062   SDValue Arg = Op.getOperand(0);
6063   unsigned Check = Op.getConstantOperandVal(1);
6064 
6065   unsigned TDCMask = 0;
6066   if (Check & fcSNan)
6067     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
6068   if (Check & fcQNan)
6069     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
6070   if (Check & fcPosInf)
6071     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
6072   if (Check & fcNegInf)
6073     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
6074   if (Check & fcPosNormal)
6075     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
6076   if (Check & fcNegNormal)
6077     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
6078   if (Check & fcPosSubnormal)
6079     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
6080   if (Check & fcNegSubnormal)
6081     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
6082   if (Check & fcPosZero)
6083     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
6084   if (Check & fcNegZero)
6085     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
6086   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
6087 
6088   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
6089   return getCCResult(DAG, Intr);
6090 }
6091 
6092 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
6093                                               SelectionDAG &DAG) const {
6094   switch (Op.getOpcode()) {
6095   case ISD::FRAMEADDR:
6096     return lowerFRAMEADDR(Op, DAG);
6097   case ISD::RETURNADDR:
6098     return lowerRETURNADDR(Op, DAG);
6099   case ISD::BR_CC:
6100     return lowerBR_CC(Op, DAG);
6101   case ISD::SELECT_CC:
6102     return lowerSELECT_CC(Op, DAG);
6103   case ISD::SETCC:
6104     return lowerSETCC(Op, DAG);
6105   case ISD::STRICT_FSETCC:
6106     return lowerSTRICT_FSETCC(Op, DAG, false);
6107   case ISD::STRICT_FSETCCS:
6108     return lowerSTRICT_FSETCC(Op, DAG, true);
6109   case ISD::GlobalAddress:
6110     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
6111   case ISD::GlobalTLSAddress:
6112     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
6113   case ISD::BlockAddress:
6114     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
6115   case ISD::JumpTable:
6116     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
6117   case ISD::ConstantPool:
6118     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
6119   case ISD::BITCAST:
6120     return lowerBITCAST(Op, DAG);
6121   case ISD::VASTART:
6122     return lowerVASTART(Op, DAG);
6123   case ISD::VACOPY:
6124     return lowerVACOPY(Op, DAG);
6125   case ISD::DYNAMIC_STACKALLOC:
6126     return lowerDYNAMIC_STACKALLOC(Op, DAG);
6127   case ISD::GET_DYNAMIC_AREA_OFFSET:
6128     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
6129   case ISD::SMUL_LOHI:
6130     return lowerSMUL_LOHI(Op, DAG);
6131   case ISD::UMUL_LOHI:
6132     return lowerUMUL_LOHI(Op, DAG);
6133   case ISD::SDIVREM:
6134     return lowerSDIVREM(Op, DAG);
6135   case ISD::UDIVREM:
6136     return lowerUDIVREM(Op, DAG);
6137   case ISD::SADDO:
6138   case ISD::SSUBO:
6139   case ISD::UADDO:
6140   case ISD::USUBO:
6141     return lowerXALUO(Op, DAG);
6142   case ISD::UADDO_CARRY:
6143   case ISD::USUBO_CARRY:
6144     return lowerUADDSUBO_CARRY(Op, DAG);
6145   case ISD::OR:
6146     return lowerOR(Op, DAG);
6147   case ISD::CTPOP:
6148     return lowerCTPOP(Op, DAG);
6149   case ISD::ATOMIC_FENCE:
6150     return lowerATOMIC_FENCE(Op, DAG);
6151   case ISD::ATOMIC_SWAP:
6152     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
6153   case ISD::ATOMIC_STORE:
6154     return lowerATOMIC_STORE(Op, DAG);
6155   case ISD::ATOMIC_LOAD:
6156     return lowerATOMIC_LOAD(Op, DAG);
6157   case ISD::ATOMIC_LOAD_ADD:
6158     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
6159   case ISD::ATOMIC_LOAD_SUB:
6160     return lowerATOMIC_LOAD_SUB(Op, DAG);
6161   case ISD::ATOMIC_LOAD_AND:
6162     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
6163   case ISD::ATOMIC_LOAD_OR:
6164     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
6165   case ISD::ATOMIC_LOAD_XOR:
6166     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
6167   case ISD::ATOMIC_LOAD_NAND:
6168     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
6169   case ISD::ATOMIC_LOAD_MIN:
6170     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
6171   case ISD::ATOMIC_LOAD_MAX:
6172     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
6173   case ISD::ATOMIC_LOAD_UMIN:
6174     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
6175   case ISD::ATOMIC_LOAD_UMAX:
6176     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
6177   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
6178     return lowerATOMIC_CMP_SWAP(Op, DAG);
6179   case ISD::STACKSAVE:
6180     return lowerSTACKSAVE(Op, DAG);
6181   case ISD::STACKRESTORE:
6182     return lowerSTACKRESTORE(Op, DAG);
6183   case ISD::PREFETCH:
6184     return lowerPREFETCH(Op, DAG);
6185   case ISD::INTRINSIC_W_CHAIN:
6186     return lowerINTRINSIC_W_CHAIN(Op, DAG);
6187   case ISD::INTRINSIC_WO_CHAIN:
6188     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
6189   case ISD::BUILD_VECTOR:
6190     return lowerBUILD_VECTOR(Op, DAG);
6191   case ISD::VECTOR_SHUFFLE:
6192     return lowerVECTOR_SHUFFLE(Op, DAG);
6193   case ISD::SCALAR_TO_VECTOR:
6194     return lowerSCALAR_TO_VECTOR(Op, DAG);
6195   case ISD::INSERT_VECTOR_ELT:
6196     return lowerINSERT_VECTOR_ELT(Op, DAG);
6197   case ISD::EXTRACT_VECTOR_ELT:
6198     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6199   case ISD::SIGN_EXTEND_VECTOR_INREG:
6200     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
6201   case ISD::ZERO_EXTEND_VECTOR_INREG:
6202     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
6203   case ISD::SHL:
6204     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
6205   case ISD::SRL:
6206     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
6207   case ISD::SRA:
6208     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
6209   case ISD::ROTL:
6210     return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR);
6211   case ISD::IS_FPCLASS:
6212     return lowerIS_FPCLASS(Op, DAG);
6213   case ISD::GET_ROUNDING:
6214     return lowerGET_ROUNDING(Op, DAG);
6215   default:
6216     llvm_unreachable("Unexpected node to lower");
6217   }
6218 }
6219 
6220 // Lower operations with invalid operand or result types (currently used
6221 // only for 128-bit integer types).
6222 void
6223 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
6224                                              SmallVectorImpl<SDValue> &Results,
6225                                              SelectionDAG &DAG) const {
6226   switch (N->getOpcode()) {
6227   case ISD::ATOMIC_LOAD: {
6228     SDLoc DL(N);
6229     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
6230     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
6231     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6232     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
6233                                           DL, Tys, Ops, MVT::i128, MMO);
6234     Results.push_back(lowerGR128ToI128(DAG, Res));
6235     Results.push_back(Res.getValue(1));
6236     break;
6237   }
6238   case ISD::ATOMIC_STORE: {
6239     SDLoc DL(N);
6240     SDVTList Tys = DAG.getVTList(MVT::Other);
6241     SDValue Ops[] = {N->getOperand(0), lowerI128ToGR128(DAG, N->getOperand(1)),
6242                      N->getOperand(2)};
6243     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6244     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
6245                                           DL, Tys, Ops, MVT::i128, MMO);
6246     // We have to enforce sequential consistency by performing a
6247     // serialization operation after the store.
6248     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
6249         AtomicOrdering::SequentiallyConsistent)
6250       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
6251                                        MVT::Other, Res), 0);
6252     Results.push_back(Res);
6253     break;
6254   }
6255   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
6256     SDLoc DL(N);
6257     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
6258     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
6259                       lowerI128ToGR128(DAG, N->getOperand(2)),
6260                       lowerI128ToGR128(DAG, N->getOperand(3)) };
6261     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6262     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
6263                                           DL, Tys, Ops, MVT::i128, MMO);
6264     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
6265                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
6266     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
6267     Results.push_back(lowerGR128ToI128(DAG, Res));
6268     Results.push_back(Success);
6269     Results.push_back(Res.getValue(2));
6270     break;
6271   }
6272   case ISD::BITCAST: {
6273     SDValue Src = N->getOperand(0);
6274     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
6275         !useSoftFloat()) {
6276       SDLoc DL(N);
6277       SDValue Lo, Hi;
6278       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
6279         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
6280         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
6281                          DAG.getConstant(1, DL, MVT::i32));
6282         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
6283                          DAG.getConstant(0, DL, MVT::i32));
6284       } else {
6285         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
6286                "Unrecognized register class for f128.");
6287         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
6288                                                   DL, MVT::f64, Src);
6289         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
6290                                                   DL, MVT::f64, Src);
6291         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
6292         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
6293       }
6294       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
6295     }
6296     break;
6297   }
6298   default:
6299     llvm_unreachable("Unexpected node to lower");
6300   }
6301 }
6302 
6303 void
6304 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
6305                                           SmallVectorImpl<SDValue> &Results,
6306                                           SelectionDAG &DAG) const {
6307   return LowerOperationWrapper(N, Results, DAG);
6308 }
6309 
6310 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
6311 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
6312   switch ((SystemZISD::NodeType)Opcode) {
6313     case SystemZISD::FIRST_NUMBER: break;
6314     OPCODE(RET_GLUE);
6315     OPCODE(CALL);
6316     OPCODE(SIBCALL);
6317     OPCODE(TLS_GDCALL);
6318     OPCODE(TLS_LDCALL);
6319     OPCODE(PCREL_WRAPPER);
6320     OPCODE(PCREL_OFFSET);
6321     OPCODE(ICMP);
6322     OPCODE(FCMP);
6323     OPCODE(STRICT_FCMP);
6324     OPCODE(STRICT_FCMPS);
6325     OPCODE(TM);
6326     OPCODE(BR_CCMASK);
6327     OPCODE(SELECT_CCMASK);
6328     OPCODE(ADJDYNALLOC);
6329     OPCODE(PROBED_ALLOCA);
6330     OPCODE(POPCNT);
6331     OPCODE(SMUL_LOHI);
6332     OPCODE(UMUL_LOHI);
6333     OPCODE(SDIVREM);
6334     OPCODE(UDIVREM);
6335     OPCODE(SADDO);
6336     OPCODE(SSUBO);
6337     OPCODE(UADDO);
6338     OPCODE(USUBO);
6339     OPCODE(ADDCARRY);
6340     OPCODE(SUBCARRY);
6341     OPCODE(GET_CCMASK);
6342     OPCODE(MVC);
6343     OPCODE(NC);
6344     OPCODE(OC);
6345     OPCODE(XC);
6346     OPCODE(CLC);
6347     OPCODE(MEMSET_MVC);
6348     OPCODE(STPCPY);
6349     OPCODE(STRCMP);
6350     OPCODE(SEARCH_STRING);
6351     OPCODE(IPM);
6352     OPCODE(TBEGIN);
6353     OPCODE(TBEGIN_NOFLOAT);
6354     OPCODE(TEND);
6355     OPCODE(BYTE_MASK);
6356     OPCODE(ROTATE_MASK);
6357     OPCODE(REPLICATE);
6358     OPCODE(JOIN_DWORDS);
6359     OPCODE(SPLAT);
6360     OPCODE(MERGE_HIGH);
6361     OPCODE(MERGE_LOW);
6362     OPCODE(SHL_DOUBLE);
6363     OPCODE(PERMUTE_DWORDS);
6364     OPCODE(PERMUTE);
6365     OPCODE(PACK);
6366     OPCODE(PACKS_CC);
6367     OPCODE(PACKLS_CC);
6368     OPCODE(UNPACK_HIGH);
6369     OPCODE(UNPACKL_HIGH);
6370     OPCODE(UNPACK_LOW);
6371     OPCODE(UNPACKL_LOW);
6372     OPCODE(VSHL_BY_SCALAR);
6373     OPCODE(VSRL_BY_SCALAR);
6374     OPCODE(VSRA_BY_SCALAR);
6375     OPCODE(VROTL_BY_SCALAR);
6376     OPCODE(VSUM);
6377     OPCODE(VACC);
6378     OPCODE(VSCBI);
6379     OPCODE(VAC);
6380     OPCODE(VSBI);
6381     OPCODE(VACCC);
6382     OPCODE(VSBCBI);
6383     OPCODE(VICMPE);
6384     OPCODE(VICMPH);
6385     OPCODE(VICMPHL);
6386     OPCODE(VICMPES);
6387     OPCODE(VICMPHS);
6388     OPCODE(VICMPHLS);
6389     OPCODE(VFCMPE);
6390     OPCODE(STRICT_VFCMPE);
6391     OPCODE(STRICT_VFCMPES);
6392     OPCODE(VFCMPH);
6393     OPCODE(STRICT_VFCMPH);
6394     OPCODE(STRICT_VFCMPHS);
6395     OPCODE(VFCMPHE);
6396     OPCODE(STRICT_VFCMPHE);
6397     OPCODE(STRICT_VFCMPHES);
6398     OPCODE(VFCMPES);
6399     OPCODE(VFCMPHS);
6400     OPCODE(VFCMPHES);
6401     OPCODE(VFTCI);
6402     OPCODE(VEXTEND);
6403     OPCODE(STRICT_VEXTEND);
6404     OPCODE(VROUND);
6405     OPCODE(STRICT_VROUND);
6406     OPCODE(VTM);
6407     OPCODE(SCMP128HI);
6408     OPCODE(UCMP128HI);
6409     OPCODE(VFAE_CC);
6410     OPCODE(VFAEZ_CC);
6411     OPCODE(VFEE_CC);
6412     OPCODE(VFEEZ_CC);
6413     OPCODE(VFENE_CC);
6414     OPCODE(VFENEZ_CC);
6415     OPCODE(VISTR_CC);
6416     OPCODE(VSTRC_CC);
6417     OPCODE(VSTRCZ_CC);
6418     OPCODE(VSTRS_CC);
6419     OPCODE(VSTRSZ_CC);
6420     OPCODE(TDC);
6421     OPCODE(ATOMIC_SWAPW);
6422     OPCODE(ATOMIC_LOADW_ADD);
6423     OPCODE(ATOMIC_LOADW_SUB);
6424     OPCODE(ATOMIC_LOADW_AND);
6425     OPCODE(ATOMIC_LOADW_OR);
6426     OPCODE(ATOMIC_LOADW_XOR);
6427     OPCODE(ATOMIC_LOADW_NAND);
6428     OPCODE(ATOMIC_LOADW_MIN);
6429     OPCODE(ATOMIC_LOADW_MAX);
6430     OPCODE(ATOMIC_LOADW_UMIN);
6431     OPCODE(ATOMIC_LOADW_UMAX);
6432     OPCODE(ATOMIC_CMP_SWAPW);
6433     OPCODE(ATOMIC_CMP_SWAP);
6434     OPCODE(ATOMIC_LOAD_128);
6435     OPCODE(ATOMIC_STORE_128);
6436     OPCODE(ATOMIC_CMP_SWAP_128);
6437     OPCODE(LRV);
6438     OPCODE(STRV);
6439     OPCODE(VLER);
6440     OPCODE(VSTER);
6441     OPCODE(PREFETCH);
6442     OPCODE(ADA_ENTRY);
6443   }
6444   return nullptr;
6445 #undef OPCODE
6446 }
6447 
6448 // Return true if VT is a vector whose elements are a whole number of bytes
6449 // in width. Also check for presence of vector support.
6450 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6451   if (!Subtarget.hasVector())
6452     return false;
6453 
6454   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6455 }
6456 
6457 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6458 // producing a result of type ResVT.  Op is a possibly bitcast version
6459 // of the input vector and Index is the index (based on type VecVT) that
6460 // should be extracted.  Return the new extraction if a simplification
6461 // was possible or if Force is true.
6462 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6463                                               EVT VecVT, SDValue Op,
6464                                               unsigned Index,
6465                                               DAGCombinerInfo &DCI,
6466                                               bool Force) const {
6467   SelectionDAG &DAG = DCI.DAG;
6468 
6469   // The number of bytes being extracted.
6470   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6471 
6472   for (;;) {
6473     unsigned Opcode = Op.getOpcode();
6474     if (Opcode == ISD::BITCAST)
6475       // Look through bitcasts.
6476       Op = Op.getOperand(0);
6477     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6478              canTreatAsByteVector(Op.getValueType())) {
6479       // Get a VPERM-like permute mask and see whether the bytes covered
6480       // by the extracted element are a contiguous sequence from one
6481       // source operand.
6482       SmallVector<int, SystemZ::VectorBytes> Bytes;
6483       if (!getVPermMask(Op, Bytes))
6484         break;
6485       int First;
6486       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6487                            BytesPerElement, First))
6488         break;
6489       if (First < 0)
6490         return DAG.getUNDEF(ResVT);
6491       // Make sure the contiguous sequence starts at a multiple of the
6492       // original element size.
6493       unsigned Byte = unsigned(First) % Bytes.size();
6494       if (Byte % BytesPerElement != 0)
6495         break;
6496       // We can get the extracted value directly from an input.
6497       Index = Byte / BytesPerElement;
6498       Op = Op.getOperand(unsigned(First) / Bytes.size());
6499       Force = true;
6500     } else if (Opcode == ISD::BUILD_VECTOR &&
6501                canTreatAsByteVector(Op.getValueType())) {
6502       // We can only optimize this case if the BUILD_VECTOR elements are
6503       // at least as wide as the extracted value.
6504       EVT OpVT = Op.getValueType();
6505       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6506       if (OpBytesPerElement < BytesPerElement)
6507         break;
6508       // Make sure that the least-significant bit of the extracted value
6509       // is the least significant bit of an input.
6510       unsigned End = (Index + 1) * BytesPerElement;
6511       if (End % OpBytesPerElement != 0)
6512         break;
6513       // We're extracting the low part of one operand of the BUILD_VECTOR.
6514       Op = Op.getOperand(End / OpBytesPerElement - 1);
6515       if (!Op.getValueType().isInteger()) {
6516         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6517         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6518         DCI.AddToWorklist(Op.getNode());
6519       }
6520       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6521       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6522       if (VT != ResVT) {
6523         DCI.AddToWorklist(Op.getNode());
6524         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6525       }
6526       return Op;
6527     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6528                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6529                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6530                canTreatAsByteVector(Op.getValueType()) &&
6531                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6532       // Make sure that only the unextended bits are significant.
6533       EVT ExtVT = Op.getValueType();
6534       EVT OpVT = Op.getOperand(0).getValueType();
6535       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6536       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6537       unsigned Byte = Index * BytesPerElement;
6538       unsigned SubByte = Byte % ExtBytesPerElement;
6539       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6540       if (SubByte < MinSubByte ||
6541           SubByte + BytesPerElement > ExtBytesPerElement)
6542         break;
6543       // Get the byte offset of the unextended element
6544       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6545       // ...then add the byte offset relative to that element.
6546       Byte += SubByte - MinSubByte;
6547       if (Byte % BytesPerElement != 0)
6548         break;
6549       Op = Op.getOperand(0);
6550       Index = Byte / BytesPerElement;
6551       Force = true;
6552     } else
6553       break;
6554   }
6555   if (Force) {
6556     if (Op.getValueType() != VecVT) {
6557       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6558       DCI.AddToWorklist(Op.getNode());
6559     }
6560     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6561                        DAG.getConstant(Index, DL, MVT::i32));
6562   }
6563   return SDValue();
6564 }
6565 
6566 // Optimize vector operations in scalar value Op on the basis that Op
6567 // is truncated to TruncVT.
6568 SDValue SystemZTargetLowering::combineTruncateExtract(
6569     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6570   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6571   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6572   // of type TruncVT.
6573   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6574       TruncVT.getSizeInBits() % 8 == 0) {
6575     SDValue Vec = Op.getOperand(0);
6576     EVT VecVT = Vec.getValueType();
6577     if (canTreatAsByteVector(VecVT)) {
6578       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6579         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6580         unsigned TruncBytes = TruncVT.getStoreSize();
6581         if (BytesPerElement % TruncBytes == 0) {
6582           // Calculate the value of Y' in the above description.  We are
6583           // splitting the original elements into Scale equal-sized pieces
6584           // and for truncation purposes want the last (least-significant)
6585           // of these pieces for IndexN.  This is easiest to do by calculating
6586           // the start index of the following element and then subtracting 1.
6587           unsigned Scale = BytesPerElement / TruncBytes;
6588           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6589 
6590           // Defer the creation of the bitcast from X to combineExtract,
6591           // which might be able to optimize the extraction.
6592           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6593                                    VecVT.getStoreSize() / TruncBytes);
6594           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6595           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6596         }
6597       }
6598     }
6599   }
6600   return SDValue();
6601 }
6602 
6603 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6604     SDNode *N, DAGCombinerInfo &DCI) const {
6605   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6606   SelectionDAG &DAG = DCI.DAG;
6607   SDValue N0 = N->getOperand(0);
6608   EVT VT = N->getValueType(0);
6609   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6610     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6611     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6612     if (TrueOp && FalseOp) {
6613       SDLoc DL(N0);
6614       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6615                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6616                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6617       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6618       // If N0 has multiple uses, change other uses as well.
6619       if (!N0.hasOneUse()) {
6620         SDValue TruncSelect =
6621           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6622         DCI.CombineTo(N0.getNode(), TruncSelect);
6623       }
6624       return NewSelect;
6625     }
6626   }
6627   // Convert (zext (xor (trunc X), C)) into (xor (trunc X), C') if the size
6628   // of the result is smaller than the size of X and all the truncated bits
6629   // of X are already zero.
6630   if (N0.getOpcode() == ISD::XOR &&
6631       N0.hasOneUse() && N0.getOperand(0).hasOneUse() &&
6632       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6633       N0.getOperand(1).getOpcode() == ISD::Constant) {
6634     SDValue X = N0.getOperand(0).getOperand(0);
6635     if (VT.isScalarInteger() && VT.getSizeInBits() < X.getValueSizeInBits()) {
6636       KnownBits Known = DAG.computeKnownBits(X);
6637       APInt TruncatedBits = APInt::getBitsSet(X.getValueSizeInBits(),
6638                                               N0.getValueSizeInBits(),
6639                                               VT.getSizeInBits());
6640       if (TruncatedBits.isSubsetOf(Known.Zero)) {
6641         X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6642         APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
6643         return DAG.getNode(ISD::XOR, SDLoc(N0), VT,
6644                            X, DAG.getConstant(Mask, SDLoc(N0), VT));
6645       }
6646     }
6647   }
6648   return SDValue();
6649 }
6650 
6651 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6652     SDNode *N, DAGCombinerInfo &DCI) const {
6653   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6654   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6655   // into (select_cc LHS, RHS, -1, 0, COND)
6656   SelectionDAG &DAG = DCI.DAG;
6657   SDValue N0 = N->getOperand(0);
6658   EVT VT = N->getValueType(0);
6659   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6660   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6661     N0 = N0.getOperand(0);
6662   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6663     SDLoc DL(N0);
6664     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6665                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6666                       N0.getOperand(2) };
6667     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6668   }
6669   return SDValue();
6670 }
6671 
6672 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6673     SDNode *N, DAGCombinerInfo &DCI) const {
6674   // Convert (sext (ashr (shl X, C1), C2)) to
6675   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6676   // cheap as narrower ones.
6677   SelectionDAG &DAG = DCI.DAG;
6678   SDValue N0 = N->getOperand(0);
6679   EVT VT = N->getValueType(0);
6680   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6681     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6682     SDValue Inner = N0.getOperand(0);
6683     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6684       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6685         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6686         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6687         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6688         EVT ShiftVT = N0.getOperand(1).getValueType();
6689         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6690                                   Inner.getOperand(0));
6691         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6692                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6693                                                   ShiftVT));
6694         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6695                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6696       }
6697     }
6698   }
6699   return SDValue();
6700 }
6701 
6702 SDValue SystemZTargetLowering::combineMERGE(
6703     SDNode *N, DAGCombinerInfo &DCI) const {
6704   SelectionDAG &DAG = DCI.DAG;
6705   unsigned Opcode = N->getOpcode();
6706   SDValue Op0 = N->getOperand(0);
6707   SDValue Op1 = N->getOperand(1);
6708   if (Op0.getOpcode() == ISD::BITCAST)
6709     Op0 = Op0.getOperand(0);
6710   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6711     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6712     // for v4f32.
6713     if (Op1 == N->getOperand(0))
6714       return Op1;
6715     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6716     EVT VT = Op1.getValueType();
6717     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6718     if (ElemBytes <= 4) {
6719       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6720                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6721       EVT InVT = VT.changeVectorElementTypeToInteger();
6722       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6723                                    SystemZ::VectorBytes / ElemBytes / 2);
6724       if (VT != InVT) {
6725         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6726         DCI.AddToWorklist(Op1.getNode());
6727       }
6728       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6729       DCI.AddToWorklist(Op.getNode());
6730       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6731     }
6732   }
6733   return SDValue();
6734 }
6735 
6736 SDValue SystemZTargetLowering::combineLOAD(
6737     SDNode *N, DAGCombinerInfo &DCI) const {
6738   SelectionDAG &DAG = DCI.DAG;
6739   EVT LdVT = N->getValueType(0);
6740   SDLoc DL(N);
6741 
6742   // Replace an i128 load that is used solely to move its value into GPRs
6743   // by separate loads of both halves.
6744   if (LdVT == MVT::i128) {
6745     LoadSDNode *LD = cast<LoadSDNode>(N);
6746     if (!LD->isSimple() || !ISD::isNormalLoad(LD))
6747       return SDValue();
6748 
6749     // Scan through all users.
6750     SmallVector<std::pair<SDNode *, int>, 2> Users;
6751     int UsedElements = 0;
6752     for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6753          UI != UIEnd; ++UI) {
6754       // Skip the uses of the chain.
6755       if (UI.getUse().getResNo() != 0)
6756         continue;
6757 
6758       // Verify every user is a TRUNCATE to i64 of the low or high half ...
6759       SDNode *User = *UI;
6760       int Index = 1;
6761       if (User->getOpcode() == ISD::SRL &&
6762           User->getOperand(1).getOpcode() == ISD::Constant &&
6763           User->getConstantOperandVal(1) == 64 && User->hasOneUse()) {
6764         User = *User->use_begin();
6765         Index = 0;
6766       }
6767       if (User->getOpcode() != ISD::TRUNCATE ||
6768           User->getValueType(0) != MVT::i64)
6769         return SDValue();
6770 
6771       // ... and no half is extracted twice.
6772       if (UsedElements & (1 << Index))
6773         return SDValue();
6774 
6775       UsedElements |= 1 << Index;
6776       Users.push_back(std::make_pair(User, Index));
6777     }
6778 
6779     // Rewrite each extraction as an independent load.
6780     SmallVector<SDValue, 2> ArgChains;
6781     for (auto UserAndIndex : Users) {
6782       SDNode *User = UserAndIndex.first;
6783       unsigned Offset = User->getValueType(0).getStoreSize() * UserAndIndex.second;
6784       SDValue Ptr =
6785         DAG.getMemBasePlusOffset(LD->getBasePtr(), TypeSize::getFixed(Offset), DL);
6786       SDValue EltLoad =
6787         DAG.getLoad(User->getValueType(0), DL, LD->getChain(), Ptr,
6788                     LD->getPointerInfo().getWithOffset(Offset),
6789                     LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
6790                     LD->getAAInfo());
6791 
6792       DCI.CombineTo(User, EltLoad, true);
6793       ArgChains.push_back(EltLoad.getValue(1));
6794     }
6795 
6796     // Collect all chains via TokenFactor.
6797     SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
6798                                 ArgChains);
6799     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
6800     DCI.AddToWorklist(Chain.getNode());
6801     return SDValue(N, 0);
6802   }
6803 
6804   if (LdVT.isVector() || LdVT.isInteger())
6805     return SDValue();
6806   // Transform a scalar load that is REPLICATEd as well as having other
6807   // use(s) to the form where the other use(s) use the first element of the
6808   // REPLICATE instead of the load. Otherwise instruction selection will not
6809   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6810   // point loads.
6811 
6812   SDValue Replicate;
6813   SmallVector<SDNode*, 8> OtherUses;
6814   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6815        UI != UE; ++UI) {
6816     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6817       if (Replicate)
6818         return SDValue(); // Should never happen
6819       Replicate = SDValue(*UI, 0);
6820     }
6821     else if (UI.getUse().getResNo() == 0)
6822       OtherUses.push_back(*UI);
6823   }
6824   if (!Replicate || OtherUses.empty())
6825     return SDValue();
6826 
6827   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6828                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6829   // Update uses of the loaded Value while preserving old chains.
6830   for (SDNode *U : OtherUses) {
6831     SmallVector<SDValue, 8> Ops;
6832     for (SDValue Op : U->ops())
6833       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6834     DAG.UpdateNodeOperands(U, Ops);
6835   }
6836   return SDValue(N, 0);
6837 }
6838 
6839 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6840   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6841     return true;
6842   if (Subtarget.hasVectorEnhancements2())
6843     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128)
6844       return true;
6845   return false;
6846 }
6847 
6848 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6849   if (!VT.isVector() || !VT.isSimple() ||
6850       VT.getSizeInBits() != 128 ||
6851       VT.getScalarSizeInBits() % 8 != 0)
6852     return false;
6853 
6854   unsigned NumElts = VT.getVectorNumElements();
6855   for (unsigned i = 0; i < NumElts; ++i) {
6856     if (M[i] < 0) continue; // ignore UNDEF indices
6857     if ((unsigned) M[i] != NumElts - 1 - i)
6858       return false;
6859   }
6860 
6861   return true;
6862 }
6863 
6864 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6865   for (auto *U : StoredVal->uses()) {
6866     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6867       EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6868       if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6869         continue;
6870     } else if (isa<BuildVectorSDNode>(U)) {
6871       SDValue BuildVector = SDValue(U, 0);
6872       if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6873           isOnlyUsedByStores(BuildVector, DAG))
6874         continue;
6875     }
6876     return false;
6877   }
6878   return true;
6879 }
6880 
6881 static bool isMovedFromParts(SDValue Val, SDValue &LoPart, SDValue &HiPart) {
6882   if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse())
6883     return false;
6884 
6885   SDValue Op0 = Val.getOperand(0);
6886   SDValue Op1 = Val.getOperand(1);
6887 
6888   if (Op0.getOpcode() == ISD::SHL)
6889     std::swap(Op0, Op1);
6890   if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() ||
6891       Op1.getOperand(1).getOpcode() != ISD::Constant ||
6892       Op1.getConstantOperandVal(1) != 64)
6893     return false;
6894   Op1 = Op1.getOperand(0);
6895 
6896   if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() ||
6897       Op0.getOperand(0).getValueType() != MVT::i64)
6898     return false;
6899   if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() ||
6900       Op1.getOperand(0).getValueType() != MVT::i64)
6901     return false;
6902 
6903   LoPart = Op0.getOperand(0);
6904   HiPart = Op1.getOperand(0);
6905   return true;
6906 }
6907 
6908 SDValue SystemZTargetLowering::combineSTORE(
6909     SDNode *N, DAGCombinerInfo &DCI) const {
6910   SelectionDAG &DAG = DCI.DAG;
6911   auto *SN = cast<StoreSDNode>(N);
6912   auto &Op1 = N->getOperand(1);
6913   EVT MemVT = SN->getMemoryVT();
6914   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6915   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6916   // If X has wider elements then convert it to:
6917   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6918   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6919     if (SDValue Value =
6920             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6921       DCI.AddToWorklist(Value.getNode());
6922 
6923       // Rewrite the store with the new form of stored value.
6924       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6925                                SN->getBasePtr(), SN->getMemoryVT(),
6926                                SN->getMemOperand());
6927     }
6928   }
6929   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6930   if (!SN->isTruncatingStore() &&
6931       Op1.getOpcode() == ISD::BSWAP &&
6932       Op1.getNode()->hasOneUse() &&
6933       canLoadStoreByteSwapped(Op1.getValueType())) {
6934 
6935       SDValue BSwapOp = Op1.getOperand(0);
6936 
6937       if (BSwapOp.getValueType() == MVT::i16)
6938         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6939 
6940       SDValue Ops[] = {
6941         N->getOperand(0), BSwapOp, N->getOperand(2)
6942       };
6943 
6944       return
6945         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6946                                 Ops, MemVT, SN->getMemOperand());
6947     }
6948   // Combine STORE (element-swap) into VSTER
6949   if (!SN->isTruncatingStore() &&
6950       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6951       Op1.getNode()->hasOneUse() &&
6952       Subtarget.hasVectorEnhancements2()) {
6953     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6954     ArrayRef<int> ShuffleMask = SVN->getMask();
6955     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6956       SDValue Ops[] = {
6957         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6958       };
6959 
6960       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6961                                      DAG.getVTList(MVT::Other),
6962                                      Ops, MemVT, SN->getMemOperand());
6963     }
6964   }
6965 
6966   // Transform a store of an i128 moved from GPRs into two separate stores.
6967   if (MemVT == MVT::i128 && SN->isSimple() && ISD::isNormalStore(SN)) {
6968     SDValue LoPart, HiPart;
6969     if (isMovedFromParts(Op1, LoPart, HiPart)) {
6970       SDLoc DL(SN);
6971       SDValue Chain0 =
6972         DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(),
6973                      SN->getPointerInfo(), SN->getOriginalAlign(),
6974                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
6975       SDValue Chain1 =
6976         DAG.getStore(SN->getChain(), DL, LoPart,
6977                      DAG.getObjectPtrOffset(DL, SN->getBasePtr(),
6978                                                 TypeSize::getFixed(8)),
6979                      SN->getPointerInfo().getWithOffset(8),
6980                      SN->getOriginalAlign(),
6981                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
6982 
6983       return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1);
6984     }
6985   }
6986 
6987   // Replicate a reg or immediate with VREP instead of scalar multiply or
6988   // immediate load. It seems best to do this during the first DAGCombine as
6989   // it is straight-forward to handle the zero-extend node in the initial
6990   // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
6991   // extracting an i16 element from a v16i8 vector).
6992   if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
6993       isOnlyUsedByStores(Op1, DAG)) {
6994     SDValue Word = SDValue();
6995     EVT WordVT;
6996 
6997     // Find a replicated immediate and return it if found in Word and its
6998     // type in WordVT.
6999     auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
7000       // Some constants are better handled with a scalar store.
7001       if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
7002           isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
7003         return;
7004       SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
7005       if (VCI.isVectorConstantLegal(Subtarget) &&
7006           VCI.Opcode == SystemZISD::REPLICATE) {
7007         Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
7008         WordVT = VCI.VecVT.getScalarType();
7009       }
7010     };
7011 
7012     // Find a replicated register and return it if found in Word and its type
7013     // in WordVT.
7014     auto FindReplicatedReg = [&](SDValue MulOp) {
7015       EVT MulVT = MulOp.getValueType();
7016       if (MulOp->getOpcode() == ISD::MUL &&
7017           (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
7018         // Find a zero extended value and its type.
7019         SDValue LHS = MulOp->getOperand(0);
7020         if (LHS->getOpcode() == ISD::ZERO_EXTEND)
7021           WordVT = LHS->getOperand(0).getValueType();
7022         else if (LHS->getOpcode() == ISD::AssertZext)
7023           WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
7024         else
7025           return;
7026         // Find a replicating constant, e.g. 0x00010001.
7027         if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
7028           SystemZVectorConstantInfo VCI(
7029               APInt(MulVT.getSizeInBits(), C->getZExtValue()));
7030           if (VCI.isVectorConstantLegal(Subtarget) &&
7031               VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
7032               WordVT == VCI.VecVT.getScalarType())
7033             Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
7034         }
7035       }
7036     };
7037 
7038     if (isa<BuildVectorSDNode>(Op1) &&
7039         DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
7040       SDValue SplatVal = Op1->getOperand(0);
7041       if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
7042         FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
7043       else
7044         FindReplicatedReg(SplatVal);
7045     } else {
7046       if (auto *C = dyn_cast<ConstantSDNode>(Op1))
7047         FindReplicatedImm(C, MemVT.getStoreSize());
7048       else
7049         FindReplicatedReg(Op1);
7050     }
7051 
7052     if (Word != SDValue()) {
7053       assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
7054              "Bad type handling");
7055       unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
7056       EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
7057       SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
7058       return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
7059                           SN->getBasePtr(), SN->getMemOperand());
7060     }
7061   }
7062 
7063   return SDValue();
7064 }
7065 
7066 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
7067     SDNode *N, DAGCombinerInfo &DCI) const {
7068   SelectionDAG &DAG = DCI.DAG;
7069   // Combine element-swap (LOAD) into VLER
7070   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7071       N->getOperand(0).hasOneUse() &&
7072       Subtarget.hasVectorEnhancements2()) {
7073     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7074     ArrayRef<int> ShuffleMask = SVN->getMask();
7075     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
7076       SDValue Load = N->getOperand(0);
7077       LoadSDNode *LD = cast<LoadSDNode>(Load);
7078 
7079       // Create the element-swapping load.
7080       SDValue Ops[] = {
7081         LD->getChain(),    // Chain
7082         LD->getBasePtr()   // Ptr
7083       };
7084       SDValue ESLoad =
7085         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
7086                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
7087                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
7088 
7089       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
7090       // by the load dead.
7091       DCI.CombineTo(N, ESLoad);
7092 
7093       // Next, combine the load away, we give it a bogus result value but a real
7094       // chain result.  The result value is dead because the shuffle is dead.
7095       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
7096 
7097       // Return N so it doesn't get rechecked!
7098       return SDValue(N, 0);
7099     }
7100   }
7101 
7102   return SDValue();
7103 }
7104 
7105 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
7106     SDNode *N, DAGCombinerInfo &DCI) const {
7107   SelectionDAG &DAG = DCI.DAG;
7108 
7109   if (!Subtarget.hasVector())
7110     return SDValue();
7111 
7112   // Look through bitcasts that retain the number of vector elements.
7113   SDValue Op = N->getOperand(0);
7114   if (Op.getOpcode() == ISD::BITCAST &&
7115       Op.getValueType().isVector() &&
7116       Op.getOperand(0).getValueType().isVector() &&
7117       Op.getValueType().getVectorNumElements() ==
7118       Op.getOperand(0).getValueType().getVectorNumElements())
7119     Op = Op.getOperand(0);
7120 
7121   // Pull BSWAP out of a vector extraction.
7122   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
7123     EVT VecVT = Op.getValueType();
7124     EVT EltVT = VecVT.getVectorElementType();
7125     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
7126                      Op.getOperand(0), N->getOperand(1));
7127     DCI.AddToWorklist(Op.getNode());
7128     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
7129     if (EltVT != N->getValueType(0)) {
7130       DCI.AddToWorklist(Op.getNode());
7131       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
7132     }
7133     return Op;
7134   }
7135 
7136   // Try to simplify a vector extraction.
7137   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7138     SDValue Op0 = N->getOperand(0);
7139     EVT VecVT = Op0.getValueType();
7140     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
7141                           IndexN->getZExtValue(), DCI, false);
7142   }
7143   return SDValue();
7144 }
7145 
7146 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
7147     SDNode *N, DAGCombinerInfo &DCI) const {
7148   SelectionDAG &DAG = DCI.DAG;
7149   // (join_dwords X, X) == (replicate X)
7150   if (N->getOperand(0) == N->getOperand(1))
7151     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
7152                        N->getOperand(0));
7153   return SDValue();
7154 }
7155 
7156 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
7157   SDValue Chain1 = N1->getOperand(0);
7158   SDValue Chain2 = N2->getOperand(0);
7159 
7160   // Trivial case: both nodes take the same chain.
7161   if (Chain1 == Chain2)
7162     return Chain1;
7163 
7164   // FIXME - we could handle more complex cases via TokenFactor,
7165   // assuming we can verify that this would not create a cycle.
7166   return SDValue();
7167 }
7168 
7169 SDValue SystemZTargetLowering::combineFP_ROUND(
7170     SDNode *N, DAGCombinerInfo &DCI) const {
7171 
7172   if (!Subtarget.hasVector())
7173     return SDValue();
7174 
7175   // (fpround (extract_vector_elt X 0))
7176   // (fpround (extract_vector_elt X 1)) ->
7177   // (extract_vector_elt (VROUND X) 0)
7178   // (extract_vector_elt (VROUND X) 2)
7179   //
7180   // This is a special case since the target doesn't really support v2f32s.
7181   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7182   SelectionDAG &DAG = DCI.DAG;
7183   SDValue Op0 = N->getOperand(OpNo);
7184   if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() &&
7185       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7186       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
7187       Op0.getOperand(1).getOpcode() == ISD::Constant &&
7188       Op0.getConstantOperandVal(1) == 0) {
7189     SDValue Vec = Op0.getOperand(0);
7190     for (auto *U : Vec->uses()) {
7191       if (U != Op0.getNode() && U->hasOneUse() &&
7192           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7193           U->getOperand(0) == Vec &&
7194           U->getOperand(1).getOpcode() == ISD::Constant &&
7195           U->getConstantOperandVal(1) == 1) {
7196         SDValue OtherRound = SDValue(*U->use_begin(), 0);
7197         if (OtherRound.getOpcode() == N->getOpcode() &&
7198             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
7199             OtherRound.getValueType() == MVT::f32) {
7200           SDValue VRound, Chain;
7201           if (N->isStrictFPOpcode()) {
7202             Chain = MergeInputChains(N, OtherRound.getNode());
7203             if (!Chain)
7204               continue;
7205             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
7206                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
7207             Chain = VRound.getValue(1);
7208           } else
7209             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
7210                                  MVT::v4f32, Vec);
7211           DCI.AddToWorklist(VRound.getNode());
7212           SDValue Extract1 =
7213             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
7214                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
7215           DCI.AddToWorklist(Extract1.getNode());
7216           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
7217           if (Chain)
7218             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
7219           SDValue Extract0 =
7220             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
7221                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7222           if (Chain)
7223             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7224                                N->getVTList(), Extract0, Chain);
7225           return Extract0;
7226         }
7227       }
7228     }
7229   }
7230   return SDValue();
7231 }
7232 
7233 SDValue SystemZTargetLowering::combineFP_EXTEND(
7234     SDNode *N, DAGCombinerInfo &DCI) const {
7235 
7236   if (!Subtarget.hasVector())
7237     return SDValue();
7238 
7239   // (fpextend (extract_vector_elt X 0))
7240   // (fpextend (extract_vector_elt X 2)) ->
7241   // (extract_vector_elt (VEXTEND X) 0)
7242   // (extract_vector_elt (VEXTEND X) 1)
7243   //
7244   // This is a special case since the target doesn't really support v2f32s.
7245   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7246   SelectionDAG &DAG = DCI.DAG;
7247   SDValue Op0 = N->getOperand(OpNo);
7248   if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() &&
7249       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7250       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
7251       Op0.getOperand(1).getOpcode() == ISD::Constant &&
7252       Op0.getConstantOperandVal(1) == 0) {
7253     SDValue Vec = Op0.getOperand(0);
7254     for (auto *U : Vec->uses()) {
7255       if (U != Op0.getNode() && U->hasOneUse() &&
7256           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7257           U->getOperand(0) == Vec &&
7258           U->getOperand(1).getOpcode() == ISD::Constant &&
7259           U->getConstantOperandVal(1) == 2) {
7260         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
7261         if (OtherExtend.getOpcode() == N->getOpcode() &&
7262             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
7263             OtherExtend.getValueType() == MVT::f64) {
7264           SDValue VExtend, Chain;
7265           if (N->isStrictFPOpcode()) {
7266             Chain = MergeInputChains(N, OtherExtend.getNode());
7267             if (!Chain)
7268               continue;
7269             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
7270                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
7271             Chain = VExtend.getValue(1);
7272           } else
7273             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
7274                                   MVT::v2f64, Vec);
7275           DCI.AddToWorklist(VExtend.getNode());
7276           SDValue Extract1 =
7277             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
7278                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
7279           DCI.AddToWorklist(Extract1.getNode());
7280           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
7281           if (Chain)
7282             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
7283           SDValue Extract0 =
7284             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
7285                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7286           if (Chain)
7287             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7288                                N->getVTList(), Extract0, Chain);
7289           return Extract0;
7290         }
7291       }
7292     }
7293   }
7294   return SDValue();
7295 }
7296 
7297 SDValue SystemZTargetLowering::combineINT_TO_FP(
7298     SDNode *N, DAGCombinerInfo &DCI) const {
7299   if (DCI.Level != BeforeLegalizeTypes)
7300     return SDValue();
7301   SelectionDAG &DAG = DCI.DAG;
7302   LLVMContext &Ctx = *DAG.getContext();
7303   unsigned Opcode = N->getOpcode();
7304   EVT OutVT = N->getValueType(0);
7305   Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
7306   SDValue Op = N->getOperand(0);
7307   unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
7308   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
7309 
7310   // Insert an extension before type-legalization to avoid scalarization, e.g.:
7311   // v2f64 = uint_to_fp v2i16
7312   // =>
7313   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
7314   if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
7315       OutScalarBits <= 64) {
7316     unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
7317     EVT ExtVT = EVT::getVectorVT(
7318         Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
7319     unsigned ExtOpcode =
7320         (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
7321     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
7322     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
7323   }
7324   return SDValue();
7325 }
7326 
7327 SDValue SystemZTargetLowering::combineBSWAP(
7328     SDNode *N, DAGCombinerInfo &DCI) const {
7329   SelectionDAG &DAG = DCI.DAG;
7330   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
7331   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7332       N->getOperand(0).hasOneUse() &&
7333       canLoadStoreByteSwapped(N->getValueType(0))) {
7334       SDValue Load = N->getOperand(0);
7335       LoadSDNode *LD = cast<LoadSDNode>(Load);
7336 
7337       // Create the byte-swapping load.
7338       SDValue Ops[] = {
7339         LD->getChain(),    // Chain
7340         LD->getBasePtr()   // Ptr
7341       };
7342       EVT LoadVT = N->getValueType(0);
7343       if (LoadVT == MVT::i16)
7344         LoadVT = MVT::i32;
7345       SDValue BSLoad =
7346         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
7347                                 DAG.getVTList(LoadVT, MVT::Other),
7348                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
7349 
7350       // If this is an i16 load, insert the truncate.
7351       SDValue ResVal = BSLoad;
7352       if (N->getValueType(0) == MVT::i16)
7353         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
7354 
7355       // First, combine the bswap away.  This makes the value produced by the
7356       // load dead.
7357       DCI.CombineTo(N, ResVal);
7358 
7359       // Next, combine the load away, we give it a bogus result value but a real
7360       // chain result.  The result value is dead because the bswap is dead.
7361       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7362 
7363       // Return N so it doesn't get rechecked!
7364       return SDValue(N, 0);
7365     }
7366 
7367   // Look through bitcasts that retain the number of vector elements.
7368   SDValue Op = N->getOperand(0);
7369   if (Op.getOpcode() == ISD::BITCAST &&
7370       Op.getValueType().isVector() &&
7371       Op.getOperand(0).getValueType().isVector() &&
7372       Op.getValueType().getVectorNumElements() ==
7373       Op.getOperand(0).getValueType().getVectorNumElements())
7374     Op = Op.getOperand(0);
7375 
7376   // Push BSWAP into a vector insertion if at least one side then simplifies.
7377   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
7378     SDValue Vec = Op.getOperand(0);
7379     SDValue Elt = Op.getOperand(1);
7380     SDValue Idx = Op.getOperand(2);
7381 
7382     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
7383         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
7384         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
7385         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
7386         (canLoadStoreByteSwapped(N->getValueType(0)) &&
7387          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
7388       EVT VecVT = N->getValueType(0);
7389       EVT EltVT = N->getValueType(0).getVectorElementType();
7390       if (VecVT != Vec.getValueType()) {
7391         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
7392         DCI.AddToWorklist(Vec.getNode());
7393       }
7394       if (EltVT != Elt.getValueType()) {
7395         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
7396         DCI.AddToWorklist(Elt.getNode());
7397       }
7398       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
7399       DCI.AddToWorklist(Vec.getNode());
7400       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
7401       DCI.AddToWorklist(Elt.getNode());
7402       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
7403                          Vec, Elt, Idx);
7404     }
7405   }
7406 
7407   // Push BSWAP into a vector shuffle if at least one side then simplifies.
7408   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
7409   if (SV && Op.hasOneUse()) {
7410     SDValue Op0 = Op.getOperand(0);
7411     SDValue Op1 = Op.getOperand(1);
7412 
7413     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
7414         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
7415         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
7416         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
7417       EVT VecVT = N->getValueType(0);
7418       if (VecVT != Op0.getValueType()) {
7419         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
7420         DCI.AddToWorklist(Op0.getNode());
7421       }
7422       if (VecVT != Op1.getValueType()) {
7423         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
7424         DCI.AddToWorklist(Op1.getNode());
7425       }
7426       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
7427       DCI.AddToWorklist(Op0.getNode());
7428       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
7429       DCI.AddToWorklist(Op1.getNode());
7430       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
7431     }
7432   }
7433 
7434   return SDValue();
7435 }
7436 
7437 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
7438   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
7439   // set by the CCReg instruction using the CCValid / CCMask masks,
7440   // If the CCReg instruction is itself a ICMP testing the condition
7441   // code set by some other instruction, see whether we can directly
7442   // use that condition code.
7443 
7444   // Verify that we have an ICMP against some constant.
7445   if (CCValid != SystemZ::CCMASK_ICMP)
7446     return false;
7447   auto *ICmp = CCReg.getNode();
7448   if (ICmp->getOpcode() != SystemZISD::ICMP)
7449     return false;
7450   auto *CompareLHS = ICmp->getOperand(0).getNode();
7451   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
7452   if (!CompareRHS)
7453     return false;
7454 
7455   // Optimize the case where CompareLHS is a SELECT_CCMASK.
7456   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
7457     // Verify that we have an appropriate mask for a EQ or NE comparison.
7458     bool Invert = false;
7459     if (CCMask == SystemZ::CCMASK_CMP_NE)
7460       Invert = !Invert;
7461     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
7462       return false;
7463 
7464     // Verify that the ICMP compares against one of select values.
7465     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
7466     if (!TrueVal)
7467       return false;
7468     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7469     if (!FalseVal)
7470       return false;
7471     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
7472       Invert = !Invert;
7473     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
7474       return false;
7475 
7476     // Compute the effective CC mask for the new branch or select.
7477     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
7478     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
7479     if (!NewCCValid || !NewCCMask)
7480       return false;
7481     CCValid = NewCCValid->getZExtValue();
7482     CCMask = NewCCMask->getZExtValue();
7483     if (Invert)
7484       CCMask ^= CCValid;
7485 
7486     // Return the updated CCReg link.
7487     CCReg = CompareLHS->getOperand(4);
7488     return true;
7489   }
7490 
7491   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
7492   if (CompareLHS->getOpcode() == ISD::SRA) {
7493     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7494     if (!SRACount || SRACount->getZExtValue() != 30)
7495       return false;
7496     auto *SHL = CompareLHS->getOperand(0).getNode();
7497     if (SHL->getOpcode() != ISD::SHL)
7498       return false;
7499     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
7500     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
7501       return false;
7502     auto *IPM = SHL->getOperand(0).getNode();
7503     if (IPM->getOpcode() != SystemZISD::IPM)
7504       return false;
7505 
7506     // Avoid introducing CC spills (because SRA would clobber CC).
7507     if (!CompareLHS->hasOneUse())
7508       return false;
7509     // Verify that the ICMP compares against zero.
7510     if (CompareRHS->getZExtValue() != 0)
7511       return false;
7512 
7513     // Compute the effective CC mask for the new branch or select.
7514     CCMask = SystemZ::reverseCCMask(CCMask);
7515 
7516     // Return the updated CCReg link.
7517     CCReg = IPM->getOperand(0);
7518     return true;
7519   }
7520 
7521   return false;
7522 }
7523 
7524 SDValue SystemZTargetLowering::combineBR_CCMASK(
7525     SDNode *N, DAGCombinerInfo &DCI) const {
7526   SelectionDAG &DAG = DCI.DAG;
7527 
7528   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
7529   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7530   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7531   if (!CCValid || !CCMask)
7532     return SDValue();
7533 
7534   int CCValidVal = CCValid->getZExtValue();
7535   int CCMaskVal = CCMask->getZExtValue();
7536   SDValue Chain = N->getOperand(0);
7537   SDValue CCReg = N->getOperand(4);
7538 
7539   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7540     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
7541                        Chain,
7542                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7543                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7544                        N->getOperand(3), CCReg);
7545   return SDValue();
7546 }
7547 
7548 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7549     SDNode *N, DAGCombinerInfo &DCI) const {
7550   SelectionDAG &DAG = DCI.DAG;
7551 
7552   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7553   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7554   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7555   if (!CCValid || !CCMask)
7556     return SDValue();
7557 
7558   int CCValidVal = CCValid->getZExtValue();
7559   int CCMaskVal = CCMask->getZExtValue();
7560   SDValue CCReg = N->getOperand(4);
7561 
7562   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7563     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7564                        N->getOperand(0), N->getOperand(1),
7565                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7566                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7567                        CCReg);
7568   return SDValue();
7569 }
7570 
7571 
7572 SDValue SystemZTargetLowering::combineGET_CCMASK(
7573     SDNode *N, DAGCombinerInfo &DCI) const {
7574 
7575   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7576   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7577   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7578   if (!CCValid || !CCMask)
7579     return SDValue();
7580   int CCValidVal = CCValid->getZExtValue();
7581   int CCMaskVal = CCMask->getZExtValue();
7582 
7583   SDValue Select = N->getOperand(0);
7584   if (Select->getOpcode() == ISD::TRUNCATE)
7585     Select = Select->getOperand(0);
7586   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7587     return SDValue();
7588 
7589   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7590   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7591   if (!SelectCCValid || !SelectCCMask)
7592     return SDValue();
7593   int SelectCCValidVal = SelectCCValid->getZExtValue();
7594   int SelectCCMaskVal = SelectCCMask->getZExtValue();
7595 
7596   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7597   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7598   if (!TrueVal || !FalseVal)
7599     return SDValue();
7600   if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0)
7601     ;
7602   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1)
7603     SelectCCMaskVal ^= SelectCCValidVal;
7604   else
7605     return SDValue();
7606 
7607   if (SelectCCValidVal & ~CCValidVal)
7608     return SDValue();
7609   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7610     return SDValue();
7611 
7612   return Select->getOperand(4);
7613 }
7614 
7615 SDValue SystemZTargetLowering::combineIntDIVREM(
7616     SDNode *N, DAGCombinerInfo &DCI) const {
7617   SelectionDAG &DAG = DCI.DAG;
7618   EVT VT = N->getValueType(0);
7619   // In the case where the divisor is a vector of constants a cheaper
7620   // sequence of instructions can replace the divide. BuildSDIV is called to
7621   // do this during DAG combining, but it only succeeds when it can build a
7622   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7623   // since it is not Legal but Custom it can only happen before
7624   // legalization. Therefore we must scalarize this early before Combine
7625   // 1. For widened vectors, this is already the result of type legalization.
7626   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7627       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7628     return DAG.UnrollVectorOp(N);
7629   return SDValue();
7630 }
7631 
7632 SDValue SystemZTargetLowering::combineINTRINSIC(
7633     SDNode *N, DAGCombinerInfo &DCI) const {
7634   SelectionDAG &DAG = DCI.DAG;
7635 
7636   unsigned Id = N->getConstantOperandVal(1);
7637   switch (Id) {
7638   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7639   // or larger is simply a vector load.
7640   case Intrinsic::s390_vll:
7641   case Intrinsic::s390_vlrl:
7642     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7643       if (C->getZExtValue() >= 15)
7644         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7645                            N->getOperand(3), MachinePointerInfo());
7646     break;
7647   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7648   case Intrinsic::s390_vstl:
7649   case Intrinsic::s390_vstrl:
7650     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7651       if (C->getZExtValue() >= 15)
7652         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7653                             N->getOperand(4), MachinePointerInfo());
7654     break;
7655   }
7656 
7657   return SDValue();
7658 }
7659 
7660 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7661   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7662     return N->getOperand(0);
7663   return N;
7664 }
7665 
7666 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7667                                                  DAGCombinerInfo &DCI) const {
7668   switch(N->getOpcode()) {
7669   default: break;
7670   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
7671   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
7672   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
7673   case SystemZISD::MERGE_HIGH:
7674   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7675   case ISD::LOAD:               return combineLOAD(N, DCI);
7676   case ISD::STORE:              return combineSTORE(N, DCI);
7677   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7678   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7679   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7680   case ISD::STRICT_FP_ROUND:
7681   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7682   case ISD::STRICT_FP_EXTEND:
7683   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7684   case ISD::SINT_TO_FP:
7685   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7686   case ISD::BSWAP:              return combineBSWAP(N, DCI);
7687   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7688   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7689   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7690   case ISD::SDIV:
7691   case ISD::UDIV:
7692   case ISD::SREM:
7693   case ISD::UREM:               return combineIntDIVREM(N, DCI);
7694   case ISD::INTRINSIC_W_CHAIN:
7695   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7696   }
7697 
7698   return SDValue();
7699 }
7700 
7701 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7702 // are for Op.
7703 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7704                                     unsigned OpNo) {
7705   EVT VT = Op.getValueType();
7706   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7707   APInt SrcDemE;
7708   unsigned Opcode = Op.getOpcode();
7709   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7710     unsigned Id = Op.getConstantOperandVal(0);
7711     switch (Id) {
7712     case Intrinsic::s390_vpksh:   // PACKS
7713     case Intrinsic::s390_vpksf:
7714     case Intrinsic::s390_vpksg:
7715     case Intrinsic::s390_vpkshs:  // PACKS_CC
7716     case Intrinsic::s390_vpksfs:
7717     case Intrinsic::s390_vpksgs:
7718     case Intrinsic::s390_vpklsh:  // PACKLS
7719     case Intrinsic::s390_vpklsf:
7720     case Intrinsic::s390_vpklsg:
7721     case Intrinsic::s390_vpklshs: // PACKLS_CC
7722     case Intrinsic::s390_vpklsfs:
7723     case Intrinsic::s390_vpklsgs:
7724       // VECTOR PACK truncates the elements of two source vectors into one.
7725       SrcDemE = DemandedElts;
7726       if (OpNo == 2)
7727         SrcDemE.lshrInPlace(NumElts / 2);
7728       SrcDemE = SrcDemE.trunc(NumElts / 2);
7729       break;
7730       // VECTOR UNPACK extends half the elements of the source vector.
7731     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7732     case Intrinsic::s390_vuphh:
7733     case Intrinsic::s390_vuphf:
7734     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7735     case Intrinsic::s390_vuplhh:
7736     case Intrinsic::s390_vuplhf:
7737       SrcDemE = APInt(NumElts * 2, 0);
7738       SrcDemE.insertBits(DemandedElts, 0);
7739       break;
7740     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7741     case Intrinsic::s390_vuplhw:
7742     case Intrinsic::s390_vuplf:
7743     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7744     case Intrinsic::s390_vupllh:
7745     case Intrinsic::s390_vupllf:
7746       SrcDemE = APInt(NumElts * 2, 0);
7747       SrcDemE.insertBits(DemandedElts, NumElts);
7748       break;
7749     case Intrinsic::s390_vpdi: {
7750       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7751       SrcDemE = APInt(NumElts, 0);
7752       if (!DemandedElts[OpNo - 1])
7753         break;
7754       unsigned Mask = Op.getConstantOperandVal(3);
7755       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7756       // Demand input element 0 or 1, given by the mask bit value.
7757       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7758       break;
7759     }
7760     case Intrinsic::s390_vsldb: {
7761       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7762       assert(VT == MVT::v16i8 && "Unexpected type.");
7763       unsigned FirstIdx = Op.getConstantOperandVal(3);
7764       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7765       unsigned NumSrc0Els = 16 - FirstIdx;
7766       SrcDemE = APInt(NumElts, 0);
7767       if (OpNo == 1) {
7768         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7769         SrcDemE.insertBits(DemEls, FirstIdx);
7770       } else {
7771         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7772         SrcDemE.insertBits(DemEls, 0);
7773       }
7774       break;
7775     }
7776     case Intrinsic::s390_vperm:
7777       SrcDemE = APInt(NumElts, 1);
7778       break;
7779     default:
7780       llvm_unreachable("Unhandled intrinsic.");
7781       break;
7782     }
7783   } else {
7784     switch (Opcode) {
7785     case SystemZISD::JOIN_DWORDS:
7786       // Scalar operand.
7787       SrcDemE = APInt(1, 1);
7788       break;
7789     case SystemZISD::SELECT_CCMASK:
7790       SrcDemE = DemandedElts;
7791       break;
7792     default:
7793       llvm_unreachable("Unhandled opcode.");
7794       break;
7795     }
7796   }
7797   return SrcDemE;
7798 }
7799 
7800 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7801                                   const APInt &DemandedElts,
7802                                   const SelectionDAG &DAG, unsigned Depth,
7803                                   unsigned OpNo) {
7804   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7805   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7806   KnownBits LHSKnown =
7807       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7808   KnownBits RHSKnown =
7809       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7810   Known = LHSKnown.intersectWith(RHSKnown);
7811 }
7812 
7813 void
7814 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7815                                                      KnownBits &Known,
7816                                                      const APInt &DemandedElts,
7817                                                      const SelectionDAG &DAG,
7818                                                      unsigned Depth) const {
7819   Known.resetAll();
7820 
7821   // Intrinsic CC result is returned in the two low bits.
7822   unsigned tmp0, tmp1; // not used
7823   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7824     Known.Zero.setBitsFrom(2);
7825     return;
7826   }
7827   EVT VT = Op.getValueType();
7828   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7829     return;
7830   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7831           "KnownBits does not match VT in bitwidth");
7832   assert ((!VT.isVector() ||
7833            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7834           "DemandedElts does not match VT number of elements");
7835   unsigned BitWidth = Known.getBitWidth();
7836   unsigned Opcode = Op.getOpcode();
7837   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7838     bool IsLogical = false;
7839     unsigned Id = Op.getConstantOperandVal(0);
7840     switch (Id) {
7841     case Intrinsic::s390_vpksh:   // PACKS
7842     case Intrinsic::s390_vpksf:
7843     case Intrinsic::s390_vpksg:
7844     case Intrinsic::s390_vpkshs:  // PACKS_CC
7845     case Intrinsic::s390_vpksfs:
7846     case Intrinsic::s390_vpksgs:
7847     case Intrinsic::s390_vpklsh:  // PACKLS
7848     case Intrinsic::s390_vpklsf:
7849     case Intrinsic::s390_vpklsg:
7850     case Intrinsic::s390_vpklshs: // PACKLS_CC
7851     case Intrinsic::s390_vpklsfs:
7852     case Intrinsic::s390_vpklsgs:
7853     case Intrinsic::s390_vpdi:
7854     case Intrinsic::s390_vsldb:
7855     case Intrinsic::s390_vperm:
7856       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7857       break;
7858     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7859     case Intrinsic::s390_vuplhh:
7860     case Intrinsic::s390_vuplhf:
7861     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7862     case Intrinsic::s390_vupllh:
7863     case Intrinsic::s390_vupllf:
7864       IsLogical = true;
7865       [[fallthrough]];
7866     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7867     case Intrinsic::s390_vuphh:
7868     case Intrinsic::s390_vuphf:
7869     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7870     case Intrinsic::s390_vuplhw:
7871     case Intrinsic::s390_vuplf: {
7872       SDValue SrcOp = Op.getOperand(1);
7873       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7874       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7875       if (IsLogical) {
7876         Known = Known.zext(BitWidth);
7877       } else
7878         Known = Known.sext(BitWidth);
7879       break;
7880     }
7881     default:
7882       break;
7883     }
7884   } else {
7885     switch (Opcode) {
7886     case SystemZISD::JOIN_DWORDS:
7887     case SystemZISD::SELECT_CCMASK:
7888       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7889       break;
7890     case SystemZISD::REPLICATE: {
7891       SDValue SrcOp = Op.getOperand(0);
7892       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7893       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7894         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7895       break;
7896     }
7897     default:
7898       break;
7899     }
7900   }
7901 
7902   // Known has the width of the source operand(s). Adjust if needed to match
7903   // the passed bitwidth.
7904   if (Known.getBitWidth() != BitWidth)
7905     Known = Known.anyextOrTrunc(BitWidth);
7906 }
7907 
7908 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7909                                         const SelectionDAG &DAG, unsigned Depth,
7910                                         unsigned OpNo) {
7911   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7912   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7913   if (LHS == 1) return 1; // Early out.
7914   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7915   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7916   if (RHS == 1) return 1; // Early out.
7917   unsigned Common = std::min(LHS, RHS);
7918   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7919   EVT VT = Op.getValueType();
7920   unsigned VTBits = VT.getScalarSizeInBits();
7921   if (SrcBitWidth > VTBits) { // PACK
7922     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7923     if (Common > SrcExtraBits)
7924       return (Common - SrcExtraBits);
7925     return 1;
7926   }
7927   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7928   return Common;
7929 }
7930 
7931 unsigned
7932 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7933     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7934     unsigned Depth) const {
7935   if (Op.getResNo() != 0)
7936     return 1;
7937   unsigned Opcode = Op.getOpcode();
7938   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7939     unsigned Id = Op.getConstantOperandVal(0);
7940     switch (Id) {
7941     case Intrinsic::s390_vpksh:   // PACKS
7942     case Intrinsic::s390_vpksf:
7943     case Intrinsic::s390_vpksg:
7944     case Intrinsic::s390_vpkshs:  // PACKS_CC
7945     case Intrinsic::s390_vpksfs:
7946     case Intrinsic::s390_vpksgs:
7947     case Intrinsic::s390_vpklsh:  // PACKLS
7948     case Intrinsic::s390_vpklsf:
7949     case Intrinsic::s390_vpklsg:
7950     case Intrinsic::s390_vpklshs: // PACKLS_CC
7951     case Intrinsic::s390_vpklsfs:
7952     case Intrinsic::s390_vpklsgs:
7953     case Intrinsic::s390_vpdi:
7954     case Intrinsic::s390_vsldb:
7955     case Intrinsic::s390_vperm:
7956       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7957     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7958     case Intrinsic::s390_vuphh:
7959     case Intrinsic::s390_vuphf:
7960     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7961     case Intrinsic::s390_vuplhw:
7962     case Intrinsic::s390_vuplf: {
7963       SDValue PackedOp = Op.getOperand(1);
7964       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7965       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7966       EVT VT = Op.getValueType();
7967       unsigned VTBits = VT.getScalarSizeInBits();
7968       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7969       return Tmp;
7970     }
7971     default:
7972       break;
7973     }
7974   } else {
7975     switch (Opcode) {
7976     case SystemZISD::SELECT_CCMASK:
7977       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7978     default:
7979       break;
7980     }
7981   }
7982 
7983   return 1;
7984 }
7985 
7986 bool SystemZTargetLowering::
7987 isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,
7988          const APInt &DemandedElts, const SelectionDAG &DAG,
7989          bool PoisonOnly, unsigned Depth) const {
7990   switch (Op->getOpcode()) {
7991   case SystemZISD::PCREL_WRAPPER:
7992   case SystemZISD::PCREL_OFFSET:
7993     return true;
7994   }
7995   return false;
7996 }
7997 
7998 unsigned
7999 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
8000   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8001   unsigned StackAlign = TFI->getStackAlignment();
8002   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
8003          "Unexpected stack alignment");
8004   // The default stack probe size is 4096 if the function has no
8005   // stack-probe-size attribute.
8006   unsigned StackProbeSize =
8007       MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096);
8008   // Round down to the stack alignment.
8009   StackProbeSize &= ~(StackAlign - 1);
8010   return StackProbeSize ? StackProbeSize : StackAlign;
8011 }
8012 
8013 //===----------------------------------------------------------------------===//
8014 // Custom insertion
8015 //===----------------------------------------------------------------------===//
8016 
8017 // Force base value Base into a register before MI.  Return the register.
8018 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
8019                          const SystemZInstrInfo *TII) {
8020   MachineBasicBlock *MBB = MI.getParent();
8021   MachineFunction &MF = *MBB->getParent();
8022   MachineRegisterInfo &MRI = MF.getRegInfo();
8023 
8024   if (Base.isReg()) {
8025     // Copy Base into a new virtual register to help register coalescing in
8026     // cases with multiple uses.
8027     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8028     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
8029       .add(Base);
8030     return Reg;
8031   }
8032 
8033   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8034   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
8035       .add(Base)
8036       .addImm(0)
8037       .addReg(0);
8038   return Reg;
8039 }
8040 
8041 // The CC operand of MI might be missing a kill marker because there
8042 // were multiple uses of CC, and ISel didn't know which to mark.
8043 // Figure out whether MI should have had a kill marker.
8044 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
8045   // Scan forward through BB for a use/def of CC.
8046   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
8047   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
8048     const MachineInstr& mi = *miI;
8049     if (mi.readsRegister(SystemZ::CC))
8050       return false;
8051     if (mi.definesRegister(SystemZ::CC))
8052       break; // Should have kill-flag - update below.
8053   }
8054 
8055   // If we hit the end of the block, check whether CC is live into a
8056   // successor.
8057   if (miI == MBB->end()) {
8058     for (const MachineBasicBlock *Succ : MBB->successors())
8059       if (Succ->isLiveIn(SystemZ::CC))
8060         return false;
8061   }
8062 
8063   return true;
8064 }
8065 
8066 // Return true if it is OK for this Select pseudo-opcode to be cascaded
8067 // together with other Select pseudo-opcodes into a single basic-block with
8068 // a conditional jump around it.
8069 static bool isSelectPseudo(MachineInstr &MI) {
8070   switch (MI.getOpcode()) {
8071   case SystemZ::Select32:
8072   case SystemZ::Select64:
8073   case SystemZ::Select128:
8074   case SystemZ::SelectF32:
8075   case SystemZ::SelectF64:
8076   case SystemZ::SelectF128:
8077   case SystemZ::SelectVR32:
8078   case SystemZ::SelectVR64:
8079   case SystemZ::SelectVR128:
8080     return true;
8081 
8082   default:
8083     return false;
8084   }
8085 }
8086 
8087 // Helper function, which inserts PHI functions into SinkMBB:
8088 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
8089 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
8090 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
8091                                  MachineBasicBlock *TrueMBB,
8092                                  MachineBasicBlock *FalseMBB,
8093                                  MachineBasicBlock *SinkMBB) {
8094   MachineFunction *MF = TrueMBB->getParent();
8095   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
8096 
8097   MachineInstr *FirstMI = Selects.front();
8098   unsigned CCValid = FirstMI->getOperand(3).getImm();
8099   unsigned CCMask = FirstMI->getOperand(4).getImm();
8100 
8101   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
8102 
8103   // As we are creating the PHIs, we have to be careful if there is more than
8104   // one.  Later Selects may reference the results of earlier Selects, but later
8105   // PHIs have to reference the individual true/false inputs from earlier PHIs.
8106   // That also means that PHI construction must work forward from earlier to
8107   // later, and that the code must maintain a mapping from earlier PHI's
8108   // destination registers, and the registers that went into the PHI.
8109   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
8110 
8111   for (auto *MI : Selects) {
8112     Register DestReg = MI->getOperand(0).getReg();
8113     Register TrueReg = MI->getOperand(1).getReg();
8114     Register FalseReg = MI->getOperand(2).getReg();
8115 
8116     // If this Select we are generating is the opposite condition from
8117     // the jump we generated, then we have to swap the operands for the
8118     // PHI that is going to be generated.
8119     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
8120       std::swap(TrueReg, FalseReg);
8121 
8122     if (RegRewriteTable.contains(TrueReg))
8123       TrueReg = RegRewriteTable[TrueReg].first;
8124 
8125     if (RegRewriteTable.contains(FalseReg))
8126       FalseReg = RegRewriteTable[FalseReg].second;
8127 
8128     DebugLoc DL = MI->getDebugLoc();
8129     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
8130       .addReg(TrueReg).addMBB(TrueMBB)
8131       .addReg(FalseReg).addMBB(FalseMBB);
8132 
8133     // Add this PHI to the rewrite table.
8134     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
8135   }
8136 
8137   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8138 }
8139 
8140 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
8141 MachineBasicBlock *
8142 SystemZTargetLowering::emitSelect(MachineInstr &MI,
8143                                   MachineBasicBlock *MBB) const {
8144   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
8145   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8146 
8147   unsigned CCValid = MI.getOperand(3).getImm();
8148   unsigned CCMask = MI.getOperand(4).getImm();
8149 
8150   // If we have a sequence of Select* pseudo instructions using the
8151   // same condition code value, we want to expand all of them into
8152   // a single pair of basic blocks using the same condition.
8153   SmallVector<MachineInstr*, 8> Selects;
8154   SmallVector<MachineInstr*, 8> DbgValues;
8155   Selects.push_back(&MI);
8156   unsigned Count = 0;
8157   for (MachineInstr &NextMI : llvm::make_range(
8158            std::next(MachineBasicBlock::iterator(MI)), MBB->end())) {
8159     if (isSelectPseudo(NextMI)) {
8160       assert(NextMI.getOperand(3).getImm() == CCValid &&
8161              "Bad CCValid operands since CC was not redefined.");
8162       if (NextMI.getOperand(4).getImm() == CCMask ||
8163           NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) {
8164         Selects.push_back(&NextMI);
8165         continue;
8166       }
8167       break;
8168     }
8169     if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook())
8170       break;
8171     bool User = false;
8172     for (auto *SelMI : Selects)
8173       if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) {
8174         User = true;
8175         break;
8176       }
8177     if (NextMI.isDebugInstr()) {
8178       if (User) {
8179         assert(NextMI.isDebugValue() && "Unhandled debug opcode.");
8180         DbgValues.push_back(&NextMI);
8181       }
8182     } else if (User || ++Count > 20)
8183       break;
8184   }
8185 
8186   MachineInstr *LastMI = Selects.back();
8187   bool CCKilled =
8188       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
8189   MachineBasicBlock *StartMBB = MBB;
8190   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
8191   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8192 
8193   // Unless CC was killed in the last Select instruction, mark it as
8194   // live-in to both FalseMBB and JoinMBB.
8195   if (!CCKilled) {
8196     FalseMBB->addLiveIn(SystemZ::CC);
8197     JoinMBB->addLiveIn(SystemZ::CC);
8198   }
8199 
8200   //  StartMBB:
8201   //   BRC CCMask, JoinMBB
8202   //   # fallthrough to FalseMBB
8203   MBB = StartMBB;
8204   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8205     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8206   MBB->addSuccessor(JoinMBB);
8207   MBB->addSuccessor(FalseMBB);
8208 
8209   //  FalseMBB:
8210   //   # fallthrough to JoinMBB
8211   MBB = FalseMBB;
8212   MBB->addSuccessor(JoinMBB);
8213 
8214   //  JoinMBB:
8215   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
8216   //  ...
8217   MBB = JoinMBB;
8218   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
8219   for (auto *SelMI : Selects)
8220     SelMI->eraseFromParent();
8221 
8222   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
8223   for (auto *DbgMI : DbgValues)
8224     MBB->splice(InsertPos, StartMBB, DbgMI);
8225 
8226   return JoinMBB;
8227 }
8228 
8229 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
8230 // StoreOpcode is the store to use and Invert says whether the store should
8231 // happen when the condition is false rather than true.  If a STORE ON
8232 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
8233 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
8234                                                         MachineBasicBlock *MBB,
8235                                                         unsigned StoreOpcode,
8236                                                         unsigned STOCOpcode,
8237                                                         bool Invert) const {
8238   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8239 
8240   Register SrcReg = MI.getOperand(0).getReg();
8241   MachineOperand Base = MI.getOperand(1);
8242   int64_t Disp = MI.getOperand(2).getImm();
8243   Register IndexReg = MI.getOperand(3).getReg();
8244   unsigned CCValid = MI.getOperand(4).getImm();
8245   unsigned CCMask = MI.getOperand(5).getImm();
8246   DebugLoc DL = MI.getDebugLoc();
8247 
8248   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
8249 
8250   // ISel pattern matching also adds a load memory operand of the same
8251   // address, so take special care to find the storing memory operand.
8252   MachineMemOperand *MMO = nullptr;
8253   for (auto *I : MI.memoperands())
8254     if (I->isStore()) {
8255       MMO = I;
8256       break;
8257     }
8258 
8259   // Use STOCOpcode if possible.  We could use different store patterns in
8260   // order to avoid matching the index register, but the performance trade-offs
8261   // might be more complicated in that case.
8262   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
8263     if (Invert)
8264       CCMask ^= CCValid;
8265 
8266     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
8267       .addReg(SrcReg)
8268       .add(Base)
8269       .addImm(Disp)
8270       .addImm(CCValid)
8271       .addImm(CCMask)
8272       .addMemOperand(MMO);
8273 
8274     MI.eraseFromParent();
8275     return MBB;
8276   }
8277 
8278   // Get the condition needed to branch around the store.
8279   if (!Invert)
8280     CCMask ^= CCValid;
8281 
8282   MachineBasicBlock *StartMBB = MBB;
8283   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
8284   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8285 
8286   // Unless CC was killed in the CondStore instruction, mark it as
8287   // live-in to both FalseMBB and JoinMBB.
8288   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
8289     FalseMBB->addLiveIn(SystemZ::CC);
8290     JoinMBB->addLiveIn(SystemZ::CC);
8291   }
8292 
8293   //  StartMBB:
8294   //   BRC CCMask, JoinMBB
8295   //   # fallthrough to FalseMBB
8296   MBB = StartMBB;
8297   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8298     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8299   MBB->addSuccessor(JoinMBB);
8300   MBB->addSuccessor(FalseMBB);
8301 
8302   //  FalseMBB:
8303   //   store %SrcReg, %Disp(%Index,%Base)
8304   //   # fallthrough to JoinMBB
8305   MBB = FalseMBB;
8306   BuildMI(MBB, DL, TII->get(StoreOpcode))
8307       .addReg(SrcReg)
8308       .add(Base)
8309       .addImm(Disp)
8310       .addReg(IndexReg)
8311       .addMemOperand(MMO);
8312   MBB->addSuccessor(JoinMBB);
8313 
8314   MI.eraseFromParent();
8315   return JoinMBB;
8316 }
8317 
8318 // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI.
8319 MachineBasicBlock *
8320 SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI,
8321                                      MachineBasicBlock *MBB,
8322                                      bool Unsigned) const {
8323   MachineFunction &MF = *MBB->getParent();
8324   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8325   MachineRegisterInfo &MRI = MF.getRegInfo();
8326 
8327   // Synthetic instruction to compare 128-bit values.
8328   // Sets CC 1 if Op0 > Op1, sets a different CC otherwise.
8329   Register Op0 = MI.getOperand(0).getReg();
8330   Register Op1 = MI.getOperand(1).getReg();
8331 
8332   MachineBasicBlock *StartMBB = MBB;
8333   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(MI, MBB);
8334   MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB);
8335 
8336   //  StartMBB:
8337   //
8338   //  Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts.
8339   //  Swap the inputs to get:
8340   //    CC 1 if high(Op0) > high(Op1)
8341   //    CC 2 if high(Op0) < high(Op1)
8342   //    CC 0 if high(Op0) == high(Op1)
8343   //
8344   //  If CC != 0, we'd done, so jump over the next instruction.
8345   //
8346   //   VEC[L]G Op1, Op0
8347   //   JNE JoinMBB
8348   //   # fallthrough to HiEqMBB
8349   MBB = StartMBB;
8350   int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG;
8351   BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode))
8352     .addReg(Op1).addReg(Op0);
8353   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8354     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB);
8355   MBB->addSuccessor(JoinMBB);
8356   MBB->addSuccessor(HiEqMBB);
8357 
8358   //  HiEqMBB:
8359   //
8360   //  Otherwise, use VECTOR COMPARE HIGH LOGICAL.
8361   //  Since we already know the high parts are equal, the CC
8362   //  result will only depend on the low parts:
8363   //     CC 1 if low(Op0) > low(Op1)
8364   //     CC 3 if low(Op0) <= low(Op1)
8365   //
8366   //   VCHLGS Tmp, Op0, Op1
8367   //   # fallthrough to JoinMBB
8368   MBB = HiEqMBB;
8369   Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass);
8370   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp)
8371     .addReg(Op0).addReg(Op1);
8372   MBB->addSuccessor(JoinMBB);
8373 
8374   // Mark CC as live-in to JoinMBB.
8375   JoinMBB->addLiveIn(SystemZ::CC);
8376 
8377   MI.eraseFromParent();
8378   return JoinMBB;
8379 }
8380 
8381 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or
8382 // ATOMIC_SWAPW instruction MI.  BinOpcode is the instruction that performs
8383 // the binary operation elided by "*", or 0 for ATOMIC_SWAPW.  Invert says
8384 // whether the field should be inverted after performing BinOpcode (e.g. for
8385 // NAND).
8386 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
8387     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
8388     bool Invert) const {
8389   MachineFunction &MF = *MBB->getParent();
8390   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8391   MachineRegisterInfo &MRI = MF.getRegInfo();
8392 
8393   // Extract the operands.  Base can be a register or a frame index.
8394   // Src2 can be a register or immediate.
8395   Register Dest = MI.getOperand(0).getReg();
8396   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8397   int64_t Disp = MI.getOperand(2).getImm();
8398   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
8399   Register BitShift = MI.getOperand(4).getReg();
8400   Register NegBitShift = MI.getOperand(5).getReg();
8401   unsigned BitSize = MI.getOperand(6).getImm();
8402   DebugLoc DL = MI.getDebugLoc();
8403 
8404   // Get the right opcodes for the displacement.
8405   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8406   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8407   assert(LOpcode && CSOpcode && "Displacement out of range");
8408 
8409   // Create virtual registers for temporary results.
8410   Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8411   Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8412   Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8413   Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8414   Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8415 
8416   // Insert a basic block for the main loop.
8417   MachineBasicBlock *StartMBB = MBB;
8418   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8419   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8420 
8421   //  StartMBB:
8422   //   ...
8423   //   %OrigVal = L Disp(%Base)
8424   //   # fall through to LoopMBB
8425   MBB = StartMBB;
8426   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8427   MBB->addSuccessor(LoopMBB);
8428 
8429   //  LoopMBB:
8430   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
8431   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8432   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
8433   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
8434   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
8435   //   JNE LoopMBB
8436   //   # fall through to DoneMBB
8437   MBB = LoopMBB;
8438   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8439     .addReg(OrigVal).addMBB(StartMBB)
8440     .addReg(Dest).addMBB(LoopMBB);
8441   BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8442     .addReg(OldVal).addReg(BitShift).addImm(0);
8443   if (Invert) {
8444     // Perform the operation normally and then invert every bit of the field.
8445     Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8446     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
8447     // XILF with the upper BitSize bits set.
8448     BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
8449       .addReg(Tmp).addImm(-1U << (32 - BitSize));
8450   } else if (BinOpcode)
8451     // A simply binary operation.
8452     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
8453         .addReg(RotatedOldVal)
8454         .add(Src2);
8455   else
8456     // Use RISBG to rotate Src2 into position and use it to replace the
8457     // field in RotatedOldVal.
8458     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
8459       .addReg(RotatedOldVal).addReg(Src2.getReg())
8460       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
8461   BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8462     .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8463   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8464       .addReg(OldVal)
8465       .addReg(NewVal)
8466       .add(Base)
8467       .addImm(Disp);
8468   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8469     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8470   MBB->addSuccessor(LoopMBB);
8471   MBB->addSuccessor(DoneMBB);
8472 
8473   MI.eraseFromParent();
8474   return DoneMBB;
8475 }
8476 
8477 // Implement EmitInstrWithCustomInserter for subword pseudo
8478 // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
8479 // instruction that should be used to compare the current field with the
8480 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
8481 // for when the current field should be kept.
8482 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
8483     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
8484     unsigned KeepOldMask) const {
8485   MachineFunction &MF = *MBB->getParent();
8486   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8487   MachineRegisterInfo &MRI = MF.getRegInfo();
8488 
8489   // Extract the operands.  Base can be a register or a frame index.
8490   Register Dest = MI.getOperand(0).getReg();
8491   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8492   int64_t Disp = MI.getOperand(2).getImm();
8493   Register Src2 = MI.getOperand(3).getReg();
8494   Register BitShift = MI.getOperand(4).getReg();
8495   Register NegBitShift = MI.getOperand(5).getReg();
8496   unsigned BitSize = MI.getOperand(6).getImm();
8497   DebugLoc DL = MI.getDebugLoc();
8498 
8499   // Get the right opcodes for the displacement.
8500   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8501   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8502   assert(LOpcode && CSOpcode && "Displacement out of range");
8503 
8504   // Create virtual registers for temporary results.
8505   Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8506   Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8507   Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8508   Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8509   Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8510   Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8511 
8512   // Insert 3 basic blocks for the loop.
8513   MachineBasicBlock *StartMBB  = MBB;
8514   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
8515   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
8516   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
8517   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
8518 
8519   //  StartMBB:
8520   //   ...
8521   //   %OrigVal     = L Disp(%Base)
8522   //   # fall through to LoopMBB
8523   MBB = StartMBB;
8524   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8525   MBB->addSuccessor(LoopMBB);
8526 
8527   //  LoopMBB:
8528   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
8529   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8530   //   CompareOpcode %RotatedOldVal, %Src2
8531   //   BRC KeepOldMask, UpdateMBB
8532   MBB = LoopMBB;
8533   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8534     .addReg(OrigVal).addMBB(StartMBB)
8535     .addReg(Dest).addMBB(UpdateMBB);
8536   BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8537     .addReg(OldVal).addReg(BitShift).addImm(0);
8538   BuildMI(MBB, DL, TII->get(CompareOpcode))
8539     .addReg(RotatedOldVal).addReg(Src2);
8540   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8541     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
8542   MBB->addSuccessor(UpdateMBB);
8543   MBB->addSuccessor(UseAltMBB);
8544 
8545   //  UseAltMBB:
8546   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
8547   //   # fall through to UpdateMBB
8548   MBB = UseAltMBB;
8549   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
8550     .addReg(RotatedOldVal).addReg(Src2)
8551     .addImm(32).addImm(31 + BitSize).addImm(0);
8552   MBB->addSuccessor(UpdateMBB);
8553 
8554   //  UpdateMBB:
8555   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
8556   //                        [ %RotatedAltVal, UseAltMBB ]
8557   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
8558   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
8559   //   JNE LoopMBB
8560   //   # fall through to DoneMBB
8561   MBB = UpdateMBB;
8562   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
8563     .addReg(RotatedOldVal).addMBB(LoopMBB)
8564     .addReg(RotatedAltVal).addMBB(UseAltMBB);
8565   BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8566     .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8567   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8568       .addReg(OldVal)
8569       .addReg(NewVal)
8570       .add(Base)
8571       .addImm(Disp);
8572   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8573     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8574   MBB->addSuccessor(LoopMBB);
8575   MBB->addSuccessor(DoneMBB);
8576 
8577   MI.eraseFromParent();
8578   return DoneMBB;
8579 }
8580 
8581 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW
8582 // instruction MI.
8583 MachineBasicBlock *
8584 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8585                                           MachineBasicBlock *MBB) const {
8586   MachineFunction &MF = *MBB->getParent();
8587   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8588   MachineRegisterInfo &MRI = MF.getRegInfo();
8589 
8590   // Extract the operands.  Base can be a register or a frame index.
8591   Register Dest = MI.getOperand(0).getReg();
8592   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8593   int64_t Disp = MI.getOperand(2).getImm();
8594   Register CmpVal = MI.getOperand(3).getReg();
8595   Register OrigSwapVal = MI.getOperand(4).getReg();
8596   Register BitShift = MI.getOperand(5).getReg();
8597   Register NegBitShift = MI.getOperand(6).getReg();
8598   int64_t BitSize = MI.getOperand(7).getImm();
8599   DebugLoc DL = MI.getDebugLoc();
8600 
8601   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8602 
8603   // Get the right opcodes for the displacement and zero-extension.
8604   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8605   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8606   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8607   assert(LOpcode && CSOpcode && "Displacement out of range");
8608 
8609   // Create virtual registers for temporary results.
8610   Register OrigOldVal = MRI.createVirtualRegister(RC);
8611   Register OldVal = MRI.createVirtualRegister(RC);
8612   Register SwapVal = MRI.createVirtualRegister(RC);
8613   Register StoreVal = MRI.createVirtualRegister(RC);
8614   Register OldValRot = MRI.createVirtualRegister(RC);
8615   Register RetryOldVal = MRI.createVirtualRegister(RC);
8616   Register RetrySwapVal = MRI.createVirtualRegister(RC);
8617 
8618   // Insert 2 basic blocks for the loop.
8619   MachineBasicBlock *StartMBB = MBB;
8620   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8621   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8622   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
8623 
8624   //  StartMBB:
8625   //   ...
8626   //   %OrigOldVal     = L Disp(%Base)
8627   //   # fall through to LoopMBB
8628   MBB = StartMBB;
8629   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8630       .add(Base)
8631       .addImm(Disp)
8632       .addReg(0);
8633   MBB->addSuccessor(LoopMBB);
8634 
8635   //  LoopMBB:
8636   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8637   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8638   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
8639   //                      ^^ The low BitSize bits contain the field
8640   //                         of interest.
8641   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8642   //                      ^^ Replace the upper 32-BitSize bits of the
8643   //                         swap value with those that we loaded and rotated.
8644   //   %Dest = LL[CH] %OldValRot
8645   //   CR %Dest, %CmpVal
8646   //   JNE DoneMBB
8647   //   # Fall through to SetMBB
8648   MBB = LoopMBB;
8649   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8650     .addReg(OrigOldVal).addMBB(StartMBB)
8651     .addReg(RetryOldVal).addMBB(SetMBB);
8652   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8653     .addReg(OrigSwapVal).addMBB(StartMBB)
8654     .addReg(RetrySwapVal).addMBB(SetMBB);
8655   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8656     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8657   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8658     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8659   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8660     .addReg(OldValRot);
8661   BuildMI(MBB, DL, TII->get(SystemZ::CR))
8662     .addReg(Dest).addReg(CmpVal);
8663   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8664     .addImm(SystemZ::CCMASK_ICMP)
8665     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8666   MBB->addSuccessor(DoneMBB);
8667   MBB->addSuccessor(SetMBB);
8668 
8669   //  SetMBB:
8670   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8671   //                      ^^ Rotate the new field to its proper position.
8672   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
8673   //   JNE LoopMBB
8674   //   # fall through to ExitMBB
8675   MBB = SetMBB;
8676   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8677     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8678   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8679       .addReg(OldVal)
8680       .addReg(StoreVal)
8681       .add(Base)
8682       .addImm(Disp);
8683   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8684     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8685   MBB->addSuccessor(LoopMBB);
8686   MBB->addSuccessor(DoneMBB);
8687 
8688   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8689   // to the block after the loop.  At this point, CC may have been defined
8690   // either by the CR in LoopMBB or by the CS in SetMBB.
8691   if (!MI.registerDefIsDead(SystemZ::CC))
8692     DoneMBB->addLiveIn(SystemZ::CC);
8693 
8694   MI.eraseFromParent();
8695   return DoneMBB;
8696 }
8697 
8698 // Emit a move from two GR64s to a GR128.
8699 MachineBasicBlock *
8700 SystemZTargetLowering::emitPair128(MachineInstr &MI,
8701                                    MachineBasicBlock *MBB) const {
8702   MachineFunction &MF = *MBB->getParent();
8703   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8704   MachineRegisterInfo &MRI = MF.getRegInfo();
8705   DebugLoc DL = MI.getDebugLoc();
8706 
8707   Register Dest = MI.getOperand(0).getReg();
8708   Register Hi = MI.getOperand(1).getReg();
8709   Register Lo = MI.getOperand(2).getReg();
8710   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8711   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8712 
8713   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
8714   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
8715     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
8716   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8717     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
8718 
8719   MI.eraseFromParent();
8720   return MBB;
8721 }
8722 
8723 // Emit an extension from a GR64 to a GR128.  ClearEven is true
8724 // if the high register of the GR128 value must be cleared or false if
8725 // it's "don't care".
8726 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8727                                                      MachineBasicBlock *MBB,
8728                                                      bool ClearEven) const {
8729   MachineFunction &MF = *MBB->getParent();
8730   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8731   MachineRegisterInfo &MRI = MF.getRegInfo();
8732   DebugLoc DL = MI.getDebugLoc();
8733 
8734   Register Dest = MI.getOperand(0).getReg();
8735   Register Src = MI.getOperand(1).getReg();
8736   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8737 
8738   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8739   if (ClearEven) {
8740     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8741     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8742 
8743     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8744       .addImm(0);
8745     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8746       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8747     In128 = NewIn128;
8748   }
8749   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8750     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8751 
8752   MI.eraseFromParent();
8753   return MBB;
8754 }
8755 
8756 MachineBasicBlock *
8757 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8758                                          MachineBasicBlock *MBB,
8759                                          unsigned Opcode, bool IsMemset) const {
8760   MachineFunction &MF = *MBB->getParent();
8761   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8762   MachineRegisterInfo &MRI = MF.getRegInfo();
8763   DebugLoc DL = MI.getDebugLoc();
8764 
8765   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8766   uint64_t DestDisp = MI.getOperand(1).getImm();
8767   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8768   uint64_t SrcDisp;
8769 
8770   // Fold the displacement Disp if it is out of range.
8771   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8772     if (!isUInt<12>(Disp)) {
8773       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8774       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8775       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8776         .add(Base).addImm(Disp).addReg(0);
8777       Base = MachineOperand::CreateReg(Reg, false);
8778       Disp = 0;
8779     }
8780   };
8781 
8782   if (!IsMemset) {
8783     SrcBase = earlyUseOperand(MI.getOperand(2));
8784     SrcDisp = MI.getOperand(3).getImm();
8785   } else {
8786     SrcBase = DestBase;
8787     SrcDisp = DestDisp++;
8788     foldDisplIfNeeded(DestBase, DestDisp);
8789   }
8790 
8791   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8792   bool IsImmForm = LengthMO.isImm();
8793   bool IsRegForm = !IsImmForm;
8794 
8795   // Build and insert one Opcode of Length, with special treatment for memset.
8796   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8797                             MachineBasicBlock::iterator InsPos,
8798                             MachineOperand DBase, uint64_t DDisp,
8799                             MachineOperand SBase, uint64_t SDisp,
8800                             unsigned Length) -> void {
8801     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8802     if (IsMemset) {
8803       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8804       if (ByteMO.isImm())
8805         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8806           .add(SBase).addImm(SDisp).add(ByteMO);
8807       else
8808         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8809           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8810       if (--Length == 0)
8811         return;
8812     }
8813     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8814       .add(DBase).addImm(DDisp).addImm(Length)
8815       .add(SBase).addImm(SDisp)
8816       .setMemRefs(MI.memoperands());
8817   };
8818 
8819   bool NeedsLoop = false;
8820   uint64_t ImmLength = 0;
8821   Register LenAdjReg = SystemZ::NoRegister;
8822   if (IsImmForm) {
8823     ImmLength = LengthMO.getImm();
8824     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8825     if (ImmLength == 0) {
8826       MI.eraseFromParent();
8827       return MBB;
8828     }
8829     if (Opcode == SystemZ::CLC) {
8830       if (ImmLength > 3 * 256)
8831         // A two-CLC sequence is a clear win over a loop, not least because
8832         // it needs only one branch.  A three-CLC sequence needs the same
8833         // number of branches as a loop (i.e. 2), but is shorter.  That
8834         // brings us to lengths greater than 768 bytes.  It seems relatively
8835         // likely that a difference will be found within the first 768 bytes,
8836         // so we just optimize for the smallest number of branch
8837         // instructions, in order to avoid polluting the prediction buffer
8838         // too much.
8839         NeedsLoop = true;
8840     } else if (ImmLength > 6 * 256)
8841       // The heuristic we use is to prefer loops for anything that would
8842       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8843       // to choose between straight-line code and looping code, since the
8844       // time will be dominated by the MVCs themselves.
8845       NeedsLoop = true;
8846   } else {
8847     NeedsLoop = true;
8848     LenAdjReg = LengthMO.getReg();
8849   }
8850 
8851   // When generating more than one CLC, all but the last will need to
8852   // branch to the end when a difference is found.
8853   MachineBasicBlock *EndMBB =
8854       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8855            ? SystemZ::splitBlockAfter(MI, MBB)
8856            : nullptr);
8857 
8858   if (NeedsLoop) {
8859     Register StartCountReg =
8860       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8861     if (IsImmForm) {
8862       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8863       ImmLength &= 255;
8864     } else {
8865       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8866         .addReg(LenAdjReg)
8867         .addReg(0)
8868         .addImm(8);
8869     }
8870 
8871     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8872     auto loadZeroAddress = [&]() -> MachineOperand {
8873       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8874       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8875       return MachineOperand::CreateReg(Reg, false);
8876     };
8877     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8878       DestBase = loadZeroAddress();
8879     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8880       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8881 
8882     MachineBasicBlock *StartMBB = nullptr;
8883     MachineBasicBlock *LoopMBB = nullptr;
8884     MachineBasicBlock *NextMBB = nullptr;
8885     MachineBasicBlock *DoneMBB = nullptr;
8886     MachineBasicBlock *AllDoneMBB = nullptr;
8887 
8888     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8889     Register StartDestReg =
8890         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8891 
8892     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8893     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8894     Register ThisDestReg =
8895         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8896     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8897     Register NextDestReg =
8898         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8899     RC = &SystemZ::GR64BitRegClass;
8900     Register ThisCountReg = MRI.createVirtualRegister(RC);
8901     Register NextCountReg = MRI.createVirtualRegister(RC);
8902 
8903     if (IsRegForm) {
8904       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8905       StartMBB = SystemZ::emitBlockAfter(MBB);
8906       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8907       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8908       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8909 
8910       //  MBB:
8911       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8912       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8913         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8914       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8915         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8916         .addMBB(AllDoneMBB);
8917       MBB->addSuccessor(AllDoneMBB);
8918       if (!IsMemset)
8919         MBB->addSuccessor(StartMBB);
8920       else {
8921         // MemsetOneCheckMBB:
8922         // # Jump to MemsetOneMBB for a memset of length 1, or
8923         // # fall thru to StartMBB.
8924         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8925         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8926         MBB->addSuccessor(MemsetOneCheckMBB);
8927         MBB = MemsetOneCheckMBB;
8928         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8929           .addReg(LenAdjReg).addImm(-1);
8930         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8931           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8932           .addMBB(MemsetOneMBB);
8933         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8934         MBB->addSuccessor(StartMBB, {90, 100});
8935 
8936         // MemsetOneMBB:
8937         // # Jump back to AllDoneMBB after a single MVI or STC.
8938         MBB = MemsetOneMBB;
8939         insertMemMemOp(MBB, MBB->end(),
8940                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8941                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8942                        1);
8943         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8944         MBB->addSuccessor(AllDoneMBB);
8945       }
8946 
8947       // StartMBB:
8948       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8949       MBB = StartMBB;
8950       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8951         .addReg(StartCountReg).addImm(0);
8952       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8953         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8954         .addMBB(DoneMBB);
8955       MBB->addSuccessor(DoneMBB);
8956       MBB->addSuccessor(LoopMBB);
8957     }
8958     else {
8959       StartMBB = MBB;
8960       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8961       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8962       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8963 
8964       //  StartMBB:
8965       //   # fall through to LoopMBB
8966       MBB->addSuccessor(LoopMBB);
8967 
8968       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8969       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8970       if (EndMBB && !ImmLength)
8971         // If the loop handled the whole CLC range, DoneMBB will be empty with
8972         // CC live-through into EndMBB, so add it as live-in.
8973         DoneMBB->addLiveIn(SystemZ::CC);
8974     }
8975 
8976     //  LoopMBB:
8977     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8978     //                      [ %NextDestReg, NextMBB ]
8979     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8980     //                     [ %NextSrcReg, NextMBB ]
8981     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8982     //                       [ %NextCountReg, NextMBB ]
8983     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8984     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8985     //   ( JLH EndMBB )
8986     //
8987     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8988     MBB = LoopMBB;
8989     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8990       .addReg(StartDestReg).addMBB(StartMBB)
8991       .addReg(NextDestReg).addMBB(NextMBB);
8992     if (!HaveSingleBase)
8993       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8994         .addReg(StartSrcReg).addMBB(StartMBB)
8995         .addReg(NextSrcReg).addMBB(NextMBB);
8996     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8997       .addReg(StartCountReg).addMBB(StartMBB)
8998       .addReg(NextCountReg).addMBB(NextMBB);
8999     if (Opcode == SystemZ::MVC)
9000       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
9001         .addImm(SystemZ::PFD_WRITE)
9002         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
9003     insertMemMemOp(MBB, MBB->end(),
9004                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
9005                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
9006     if (EndMBB) {
9007       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9008         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9009         .addMBB(EndMBB);
9010       MBB->addSuccessor(EndMBB);
9011       MBB->addSuccessor(NextMBB);
9012     }
9013 
9014     // NextMBB:
9015     //   %NextDestReg = LA 256(%ThisDestReg)
9016     //   %NextSrcReg = LA 256(%ThisSrcReg)
9017     //   %NextCountReg = AGHI %ThisCountReg, -1
9018     //   CGHI %NextCountReg, 0
9019     //   JLH LoopMBB
9020     //   # fall through to DoneMBB
9021     //
9022     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
9023     MBB = NextMBB;
9024     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
9025       .addReg(ThisDestReg).addImm(256).addReg(0);
9026     if (!HaveSingleBase)
9027       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
9028         .addReg(ThisSrcReg).addImm(256).addReg(0);
9029     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
9030       .addReg(ThisCountReg).addImm(-1);
9031     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9032       .addReg(NextCountReg).addImm(0);
9033     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9034       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9035       .addMBB(LoopMBB);
9036     MBB->addSuccessor(LoopMBB);
9037     MBB->addSuccessor(DoneMBB);
9038 
9039     MBB = DoneMBB;
9040     if (IsRegForm) {
9041       // DoneMBB:
9042       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
9043       // # Use EXecute Relative Long for the remainder of the bytes. The target
9044       //   instruction of the EXRL will have a length field of 1 since 0 is an
9045       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
9046       //   0xff) + 1.
9047       // # Fall through to AllDoneMBB.
9048       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9049       Register RemDestReg = HaveSingleBase ? RemSrcReg
9050         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9051       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
9052         .addReg(StartDestReg).addMBB(StartMBB)
9053         .addReg(NextDestReg).addMBB(NextMBB);
9054       if (!HaveSingleBase)
9055         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
9056           .addReg(StartSrcReg).addMBB(StartMBB)
9057           .addReg(NextSrcReg).addMBB(NextMBB);
9058       if (IsMemset)
9059         insertMemMemOp(MBB, MBB->end(),
9060                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
9061                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
9062       MachineInstrBuilder EXRL_MIB =
9063         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
9064           .addImm(Opcode)
9065           .addReg(LenAdjReg)
9066           .addReg(RemDestReg).addImm(DestDisp)
9067           .addReg(RemSrcReg).addImm(SrcDisp);
9068       MBB->addSuccessor(AllDoneMBB);
9069       MBB = AllDoneMBB;
9070       if (Opcode != SystemZ::MVC) {
9071         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
9072         if (EndMBB)
9073           MBB->addLiveIn(SystemZ::CC);
9074       }
9075     }
9076     MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9077   }
9078 
9079   // Handle any remaining bytes with straight-line code.
9080   while (ImmLength > 0) {
9081     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
9082     // The previous iteration might have created out-of-range displacements.
9083     // Apply them using LA/LAY if so.
9084     foldDisplIfNeeded(DestBase, DestDisp);
9085     foldDisplIfNeeded(SrcBase, SrcDisp);
9086     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
9087     DestDisp += ThisLength;
9088     SrcDisp += ThisLength;
9089     ImmLength -= ThisLength;
9090     // If there's another CLC to go, branch to the end if a difference
9091     // was found.
9092     if (EndMBB && ImmLength > 0) {
9093       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
9094       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9095         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9096         .addMBB(EndMBB);
9097       MBB->addSuccessor(EndMBB);
9098       MBB->addSuccessor(NextMBB);
9099       MBB = NextMBB;
9100     }
9101   }
9102   if (EndMBB) {
9103     MBB->addSuccessor(EndMBB);
9104     MBB = EndMBB;
9105     MBB->addLiveIn(SystemZ::CC);
9106   }
9107 
9108   MI.eraseFromParent();
9109   return MBB;
9110 }
9111 
9112 // Decompose string pseudo-instruction MI into a loop that continually performs
9113 // Opcode until CC != 3.
9114 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
9115     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9116   MachineFunction &MF = *MBB->getParent();
9117   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9118   MachineRegisterInfo &MRI = MF.getRegInfo();
9119   DebugLoc DL = MI.getDebugLoc();
9120 
9121   uint64_t End1Reg = MI.getOperand(0).getReg();
9122   uint64_t Start1Reg = MI.getOperand(1).getReg();
9123   uint64_t Start2Reg = MI.getOperand(2).getReg();
9124   uint64_t CharReg = MI.getOperand(3).getReg();
9125 
9126   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
9127   uint64_t This1Reg = MRI.createVirtualRegister(RC);
9128   uint64_t This2Reg = MRI.createVirtualRegister(RC);
9129   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
9130 
9131   MachineBasicBlock *StartMBB = MBB;
9132   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9133   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9134 
9135   //  StartMBB:
9136   //   # fall through to LoopMBB
9137   MBB->addSuccessor(LoopMBB);
9138 
9139   //  LoopMBB:
9140   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
9141   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
9142   //   R0L = %CharReg
9143   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
9144   //   JO LoopMBB
9145   //   # fall through to DoneMBB
9146   //
9147   // The load of R0L can be hoisted by post-RA LICM.
9148   MBB = LoopMBB;
9149 
9150   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
9151     .addReg(Start1Reg).addMBB(StartMBB)
9152     .addReg(End1Reg).addMBB(LoopMBB);
9153   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
9154     .addReg(Start2Reg).addMBB(StartMBB)
9155     .addReg(End2Reg).addMBB(LoopMBB);
9156   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
9157   BuildMI(MBB, DL, TII->get(Opcode))
9158     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
9159     .addReg(This1Reg).addReg(This2Reg);
9160   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9161     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
9162   MBB->addSuccessor(LoopMBB);
9163   MBB->addSuccessor(DoneMBB);
9164 
9165   DoneMBB->addLiveIn(SystemZ::CC);
9166 
9167   MI.eraseFromParent();
9168   return DoneMBB;
9169 }
9170 
9171 // Update TBEGIN instruction with final opcode and register clobbers.
9172 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
9173     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
9174     bool NoFloat) const {
9175   MachineFunction &MF = *MBB->getParent();
9176   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
9177   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9178 
9179   // Update opcode.
9180   MI.setDesc(TII->get(Opcode));
9181 
9182   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
9183   // Make sure to add the corresponding GRSM bits if they are missing.
9184   uint64_t Control = MI.getOperand(2).getImm();
9185   static const unsigned GPRControlBit[16] = {
9186     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
9187     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
9188   };
9189   Control |= GPRControlBit[15];
9190   if (TFI->hasFP(MF))
9191     Control |= GPRControlBit[11];
9192   MI.getOperand(2).setImm(Control);
9193 
9194   // Add GPR clobbers.
9195   for (int I = 0; I < 16; I++) {
9196     if ((Control & GPRControlBit[I]) == 0) {
9197       unsigned Reg = SystemZMC::GR64Regs[I];
9198       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9199     }
9200   }
9201 
9202   // Add FPR/VR clobbers.
9203   if (!NoFloat && (Control & 4) != 0) {
9204     if (Subtarget.hasVector()) {
9205       for (unsigned Reg : SystemZMC::VR128Regs) {
9206         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9207       }
9208     } else {
9209       for (unsigned Reg : SystemZMC::FP64Regs) {
9210         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9211       }
9212     }
9213   }
9214 
9215   return MBB;
9216 }
9217 
9218 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
9219     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9220   MachineFunction &MF = *MBB->getParent();
9221   MachineRegisterInfo *MRI = &MF.getRegInfo();
9222   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9223   DebugLoc DL = MI.getDebugLoc();
9224 
9225   Register SrcReg = MI.getOperand(0).getReg();
9226 
9227   // Create new virtual register of the same class as source.
9228   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
9229   Register DstReg = MRI->createVirtualRegister(RC);
9230 
9231   // Replace pseudo with a normal load-and-test that models the def as
9232   // well.
9233   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
9234     .addReg(SrcReg)
9235     .setMIFlags(MI.getFlags());
9236   MI.eraseFromParent();
9237 
9238   return MBB;
9239 }
9240 
9241 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
9242     MachineInstr &MI, MachineBasicBlock *MBB) const {
9243   MachineFunction &MF = *MBB->getParent();
9244   MachineRegisterInfo *MRI = &MF.getRegInfo();
9245   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9246   DebugLoc DL = MI.getDebugLoc();
9247   const unsigned ProbeSize = getStackProbeSize(MF);
9248   Register DstReg = MI.getOperand(0).getReg();
9249   Register SizeReg = MI.getOperand(2).getReg();
9250 
9251   MachineBasicBlock *StartMBB = MBB;
9252   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
9253   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
9254   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
9255   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
9256   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
9257 
9258   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
9259     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
9260 
9261   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9262   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9263 
9264   //  LoopTestMBB
9265   //  BRC TailTestMBB
9266   //  # fallthrough to LoopBodyMBB
9267   StartMBB->addSuccessor(LoopTestMBB);
9268   MBB = LoopTestMBB;
9269   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
9270     .addReg(SizeReg)
9271     .addMBB(StartMBB)
9272     .addReg(IncReg)
9273     .addMBB(LoopBodyMBB);
9274   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
9275     .addReg(PHIReg)
9276     .addImm(ProbeSize);
9277   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9278     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
9279     .addMBB(TailTestMBB);
9280   MBB->addSuccessor(LoopBodyMBB);
9281   MBB->addSuccessor(TailTestMBB);
9282 
9283   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
9284   //  J LoopTestMBB
9285   MBB = LoopBodyMBB;
9286   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
9287     .addReg(PHIReg)
9288     .addImm(ProbeSize);
9289   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
9290     .addReg(SystemZ::R15D)
9291     .addImm(ProbeSize);
9292   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9293     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
9294     .setMemRefs(VolLdMMO);
9295   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
9296   MBB->addSuccessor(LoopTestMBB);
9297 
9298   //  TailTestMBB
9299   //  BRC DoneMBB
9300   //  # fallthrough to TailMBB
9301   MBB = TailTestMBB;
9302   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9303     .addReg(PHIReg)
9304     .addImm(0);
9305   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9306     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9307     .addMBB(DoneMBB);
9308   MBB->addSuccessor(TailMBB);
9309   MBB->addSuccessor(DoneMBB);
9310 
9311   //  TailMBB
9312   //  # fallthrough to DoneMBB
9313   MBB = TailMBB;
9314   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
9315     .addReg(SystemZ::R15D)
9316     .addReg(PHIReg);
9317   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9318     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
9319     .setMemRefs(VolLdMMO);
9320   MBB->addSuccessor(DoneMBB);
9321 
9322   //  DoneMBB
9323   MBB = DoneMBB;
9324   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
9325     .addReg(SystemZ::R15D);
9326 
9327   MI.eraseFromParent();
9328   return DoneMBB;
9329 }
9330 
9331 SDValue SystemZTargetLowering::
9332 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
9333   MachineFunction &MF = DAG.getMachineFunction();
9334   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
9335   SDLoc DL(SP);
9336   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
9337                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
9338 }
9339 
9340 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
9341     MachineInstr &MI, MachineBasicBlock *MBB) const {
9342   switch (MI.getOpcode()) {
9343   case SystemZ::Select32:
9344   case SystemZ::Select64:
9345   case SystemZ::Select128:
9346   case SystemZ::SelectF32:
9347   case SystemZ::SelectF64:
9348   case SystemZ::SelectF128:
9349   case SystemZ::SelectVR32:
9350   case SystemZ::SelectVR64:
9351   case SystemZ::SelectVR128:
9352     return emitSelect(MI, MBB);
9353 
9354   case SystemZ::CondStore8Mux:
9355     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
9356   case SystemZ::CondStore8MuxInv:
9357     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
9358   case SystemZ::CondStore16Mux:
9359     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
9360   case SystemZ::CondStore16MuxInv:
9361     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
9362   case SystemZ::CondStore32Mux:
9363     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
9364   case SystemZ::CondStore32MuxInv:
9365     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
9366   case SystemZ::CondStore8:
9367     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
9368   case SystemZ::CondStore8Inv:
9369     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
9370   case SystemZ::CondStore16:
9371     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
9372   case SystemZ::CondStore16Inv:
9373     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
9374   case SystemZ::CondStore32:
9375     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
9376   case SystemZ::CondStore32Inv:
9377     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
9378   case SystemZ::CondStore64:
9379     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
9380   case SystemZ::CondStore64Inv:
9381     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
9382   case SystemZ::CondStoreF32:
9383     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
9384   case SystemZ::CondStoreF32Inv:
9385     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
9386   case SystemZ::CondStoreF64:
9387     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
9388   case SystemZ::CondStoreF64Inv:
9389     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
9390 
9391   case SystemZ::SCmp128Hi:
9392     return emitICmp128Hi(MI, MBB, false);
9393   case SystemZ::UCmp128Hi:
9394     return emitICmp128Hi(MI, MBB, true);
9395 
9396   case SystemZ::PAIR128:
9397     return emitPair128(MI, MBB);
9398   case SystemZ::AEXT128:
9399     return emitExt128(MI, MBB, false);
9400   case SystemZ::ZEXT128:
9401     return emitExt128(MI, MBB, true);
9402 
9403   case SystemZ::ATOMIC_SWAPW:
9404     return emitAtomicLoadBinary(MI, MBB, 0);
9405 
9406   case SystemZ::ATOMIC_LOADW_AR:
9407     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR);
9408   case SystemZ::ATOMIC_LOADW_AFI:
9409     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI);
9410 
9411   case SystemZ::ATOMIC_LOADW_SR:
9412     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR);
9413 
9414   case SystemZ::ATOMIC_LOADW_NR:
9415     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR);
9416   case SystemZ::ATOMIC_LOADW_NILH:
9417     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH);
9418 
9419   case SystemZ::ATOMIC_LOADW_OR:
9420     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR);
9421   case SystemZ::ATOMIC_LOADW_OILH:
9422     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH);
9423 
9424   case SystemZ::ATOMIC_LOADW_XR:
9425     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR);
9426   case SystemZ::ATOMIC_LOADW_XILF:
9427     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF);
9428 
9429   case SystemZ::ATOMIC_LOADW_NRi:
9430     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true);
9431   case SystemZ::ATOMIC_LOADW_NILHi:
9432     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true);
9433 
9434   case SystemZ::ATOMIC_LOADW_MIN:
9435     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE);
9436   case SystemZ::ATOMIC_LOADW_MAX:
9437     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE);
9438   case SystemZ::ATOMIC_LOADW_UMIN:
9439     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE);
9440   case SystemZ::ATOMIC_LOADW_UMAX:
9441     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE);
9442 
9443   case SystemZ::ATOMIC_CMP_SWAPW:
9444     return emitAtomicCmpSwapW(MI, MBB);
9445   case SystemZ::MVCImm:
9446   case SystemZ::MVCReg:
9447     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
9448   case SystemZ::NCImm:
9449     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
9450   case SystemZ::OCImm:
9451     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
9452   case SystemZ::XCImm:
9453   case SystemZ::XCReg:
9454     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9455   case SystemZ::CLCImm:
9456   case SystemZ::CLCReg:
9457     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9458   case SystemZ::MemsetImmImm:
9459   case SystemZ::MemsetImmReg:
9460   case SystemZ::MemsetRegImm:
9461   case SystemZ::MemsetRegReg:
9462     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9463   case SystemZ::CLSTLoop:
9464     return emitStringWrapper(MI, MBB, SystemZ::CLST);
9465   case SystemZ::MVSTLoop:
9466     return emitStringWrapper(MI, MBB, SystemZ::MVST);
9467   case SystemZ::SRSTLoop:
9468     return emitStringWrapper(MI, MBB, SystemZ::SRST);
9469   case SystemZ::TBEGIN:
9470     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9471   case SystemZ::TBEGIN_nofloat:
9472     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9473   case SystemZ::TBEGINC:
9474     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9475   case SystemZ::LTEBRCompare_Pseudo:
9476     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9477   case SystemZ::LTDBRCompare_Pseudo:
9478     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9479   case SystemZ::LTXBRCompare_Pseudo:
9480     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9481 
9482   case SystemZ::PROBED_ALLOCA:
9483     return emitProbedAlloca(MI, MBB);
9484 
9485   case TargetOpcode::STACKMAP:
9486   case TargetOpcode::PATCHPOINT:
9487     return emitPatchPoint(MI, MBB);
9488 
9489   default:
9490     llvm_unreachable("Unexpected instr type to insert");
9491   }
9492 }
9493 
9494 // This is only used by the isel schedulers, and is needed only to prevent
9495 // compiler from crashing when list-ilp is used.
9496 const TargetRegisterClass *
9497 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9498   if (VT == MVT::Untyped)
9499     return &SystemZ::ADDR128BitRegClass;
9500   return TargetLowering::getRepRegClassFor(VT);
9501 }
9502 
9503 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op,
9504                                                  SelectionDAG &DAG) const {
9505   SDLoc dl(Op);
9506   /*
9507    The rounding method is in FPC Byte 3 bits 6-7, and has the following
9508    settings:
9509      00 Round to nearest
9510      01 Round to 0
9511      10 Round to +inf
9512      11 Round to -inf
9513 
9514   FLT_ROUNDS, on the other hand, expects the following:
9515     -1 Undefined
9516      0 Round to 0
9517      1 Round to nearest
9518      2 Round to +inf
9519      3 Round to -inf
9520   */
9521 
9522   // Save FPC to register.
9523   SDValue Chain = Op.getOperand(0);
9524   SDValue EFPC(
9525       DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0);
9526   Chain = EFPC.getValue(1);
9527 
9528   // Transform as necessary
9529   SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC,
9530                              DAG.getConstant(3, dl, MVT::i32));
9531   // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1
9532   SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1,
9533                              DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1,
9534                                          DAG.getConstant(1, dl, MVT::i32)));
9535 
9536   SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2,
9537                                DAG.getConstant(1, dl, MVT::i32));
9538   RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType());
9539 
9540   return DAG.getMergeValues({RetVal, Chain}, dl);
9541 }
9542