xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/IntrinsicsS390.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/KnownBits.h"
30 #include <cctype>
31 #include <optional>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "systemz-lower"
36 
37 namespace {
38 // Represents information about a comparison.
39 struct Comparison {
40   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
41     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
42       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
43 
44   // The operands to the comparison.
45   SDValue Op0, Op1;
46 
47   // Chain if this is a strict floating-point comparison.
48   SDValue Chain;
49 
50   // The opcode that should be used to compare Op0 and Op1.
51   unsigned Opcode;
52 
53   // A SystemZICMP value.  Only used for integer comparisons.
54   unsigned ICmpType;
55 
56   // The mask of CC values that Opcode can produce.
57   unsigned CCValid;
58 
59   // The mask of CC values for which the original condition is true.
60   unsigned CCMask;
61 };
62 } // end anonymous namespace
63 
64 // Classify VT as either 32 or 64 bit.
65 static bool is32Bit(EVT VT) {
66   switch (VT.getSimpleVT().SimpleTy) {
67   case MVT::i32:
68     return true;
69   case MVT::i64:
70     return false;
71   default:
72     llvm_unreachable("Unsupported type");
73   }
74 }
75 
76 // Return a version of MachineOperand that can be safely used before the
77 // final use.
78 static MachineOperand earlyUseOperand(MachineOperand Op) {
79   if (Op.isReg())
80     Op.setIsKill(false);
81   return Op;
82 }
83 
84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
85                                              const SystemZSubtarget &STI)
86     : TargetLowering(TM), Subtarget(STI) {
87   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
88 
89   auto *Regs = STI.getSpecialRegisters();
90 
91   // Set up the register classes.
92   if (Subtarget.hasHighWord())
93     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
94   else
95     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
96   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
97   if (!useSoftFloat()) {
98     if (Subtarget.hasVector()) {
99       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
100       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
101     } else {
102       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
103       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
104     }
105     if (Subtarget.hasVectorEnhancements1())
106       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
107     else
108       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
109 
110     if (Subtarget.hasVector()) {
111       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
113       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
114       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
115       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
116       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
117     }
118 
119     if (Subtarget.hasVector())
120       addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass);
121   }
122 
123   // Compute derived properties from the register classes
124   computeRegisterProperties(Subtarget.getRegisterInfo());
125 
126   // Set up special registers.
127   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
128 
129   // TODO: It may be better to default to latency-oriented scheduling, however
130   // LLVM's current latency-oriented scheduler can't handle physreg definitions
131   // such as SystemZ has with CC, so set this to the register-pressure
132   // scheduler, because it can.
133   setSchedulingPreference(Sched::RegPressure);
134 
135   setBooleanContents(ZeroOrOneBooleanContent);
136   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
137 
138   setMaxAtomicSizeInBitsSupported(128);
139 
140   // Instructions are strings of 2-byte aligned 2-byte values.
141   setMinFunctionAlignment(Align(2));
142   // For performance reasons we prefer 16-byte alignment.
143   setPrefFunctionAlignment(Align(16));
144 
145   // Handle operations that are handled in a similar way for all types.
146   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
147        I <= MVT::LAST_FP_VALUETYPE;
148        ++I) {
149     MVT VT = MVT::SimpleValueType(I);
150     if (isTypeLegal(VT)) {
151       // Lower SET_CC into an IPM-based sequence.
152       setOperationAction(ISD::SETCC, VT, Custom);
153       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
154       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
155 
156       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
157       setOperationAction(ISD::SELECT, VT, Expand);
158 
159       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
160       setOperationAction(ISD::SELECT_CC, VT, Custom);
161       setOperationAction(ISD::BR_CC,     VT, Custom);
162     }
163   }
164 
165   // Expand jump table branches as address arithmetic followed by an
166   // indirect jump.
167   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
168 
169   // Expand BRCOND into a BR_CC (see above).
170   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171 
172   // Handle integer types except i128.
173   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
174        I <= MVT::LAST_INTEGER_VALUETYPE;
175        ++I) {
176     MVT VT = MVT::SimpleValueType(I);
177     if (isTypeLegal(VT) && VT != MVT::i128) {
178       setOperationAction(ISD::ABS, VT, Legal);
179 
180       // Expand individual DIV and REMs into DIVREMs.
181       setOperationAction(ISD::SDIV, VT, Expand);
182       setOperationAction(ISD::UDIV, VT, Expand);
183       setOperationAction(ISD::SREM, VT, Expand);
184       setOperationAction(ISD::UREM, VT, Expand);
185       setOperationAction(ISD::SDIVREM, VT, Custom);
186       setOperationAction(ISD::UDIVREM, VT, Custom);
187 
188       // Support addition/subtraction with overflow.
189       setOperationAction(ISD::SADDO, VT, Custom);
190       setOperationAction(ISD::SSUBO, VT, Custom);
191 
192       // Support addition/subtraction with carry.
193       setOperationAction(ISD::UADDO, VT, Custom);
194       setOperationAction(ISD::USUBO, VT, Custom);
195 
196       // Support carry in as value rather than glue.
197       setOperationAction(ISD::UADDO_CARRY, VT, Custom);
198       setOperationAction(ISD::USUBO_CARRY, VT, Custom);
199 
200       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
201       // available, or if the operand is constant.
202       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
203 
204       // Use POPCNT on z196 and above.
205       if (Subtarget.hasPopulationCount())
206         setOperationAction(ISD::CTPOP, VT, Custom);
207       else
208         setOperationAction(ISD::CTPOP, VT, Expand);
209 
210       // No special instructions for these.
211       setOperationAction(ISD::CTTZ,            VT, Expand);
212       setOperationAction(ISD::ROTR,            VT, Expand);
213 
214       // Use *MUL_LOHI where possible instead of MULH*.
215       setOperationAction(ISD::MULHS, VT, Expand);
216       setOperationAction(ISD::MULHU, VT, Expand);
217       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
218       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
219 
220       // Only z196 and above have native support for conversions to unsigned.
221       // On z10, promoting to i64 doesn't generate an inexact condition for
222       // values that are outside the i32 range but in the i64 range, so use
223       // the default expansion.
224       if (!Subtarget.hasFPExtension())
225         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
226 
227       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
228       // default to Expand, so need to be modified to Legal where appropriate.
229       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
230       if (Subtarget.hasFPExtension())
231         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
232 
233       // And similarly for STRICT_[SU]INT_TO_FP.
234       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
235       if (Subtarget.hasFPExtension())
236         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
237     }
238   }
239 
240   // Handle i128 if legal.
241   if (isTypeLegal(MVT::i128)) {
242     // No special instructions for these.
243     setOperationAction(ISD::SDIVREM,   MVT::i128, Expand);
244     setOperationAction(ISD::UDIVREM,   MVT::i128, Expand);
245     setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand);
246     setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand);
247     setOperationAction(ISD::ROTR,      MVT::i128, Expand);
248     setOperationAction(ISD::ROTL,      MVT::i128, Expand);
249     setOperationAction(ISD::MUL,       MVT::i128, Expand);
250     setOperationAction(ISD::MULHS,     MVT::i128, Expand);
251     setOperationAction(ISD::MULHU,     MVT::i128, Expand);
252     setOperationAction(ISD::SDIV,      MVT::i128, Expand);
253     setOperationAction(ISD::UDIV,      MVT::i128, Expand);
254     setOperationAction(ISD::SREM,      MVT::i128, Expand);
255     setOperationAction(ISD::UREM,      MVT::i128, Expand);
256     setOperationAction(ISD::CTLZ,      MVT::i128, Expand);
257     setOperationAction(ISD::CTTZ,      MVT::i128, Expand);
258 
259     // Support addition/subtraction with carry.
260     setOperationAction(ISD::UADDO, MVT::i128, Custom);
261     setOperationAction(ISD::USUBO, MVT::i128, Custom);
262     setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom);
263     setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom);
264 
265     // Use VPOPCT and add up partial results.
266     setOperationAction(ISD::CTPOP, MVT::i128, Custom);
267 
268     // We have to use libcalls for these.
269     setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall);
270     setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall);
272     setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall);
273     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall);
274     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall);
275     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall);
276     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall);
277   }
278 
279   // Type legalization will convert 8- and 16-bit atomic operations into
280   // forms that operate on i32s (but still keeping the original memory VT).
281   // Lower them into full i32 operations.
282   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
283   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
284   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
285   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
286   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
287   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
288   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
289   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
290   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
291   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
292   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
293 
294   // Whether or not i128 is not a legal type, we need to custom lower
295   // the atomic operations in order to exploit SystemZ instructions.
296   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
297   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
298   setOperationAction(ISD::ATOMIC_LOAD, MVT::f128, Custom);
299   setOperationAction(ISD::ATOMIC_STORE, MVT::f128, Custom);
300 
301   // Mark sign/zero extending atomic loads as legal, which will make
302   // DAGCombiner fold extensions into atomic loads if possible.
303   setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i64,
304                          {MVT::i8, MVT::i16, MVT::i32}, Legal);
305   setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i32,
306                          {MVT::i8, MVT::i16}, Legal);
307   setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i16,
308                          MVT::i8, Legal);
309 
310   // We can use the CC result of compare-and-swap to implement
311   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
312   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
313   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
314   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
315 
316   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
317 
318   // Traps are legal, as we will convert them to "j .+2".
319   setOperationAction(ISD::TRAP, MVT::Other, Legal);
320 
321   // z10 has instructions for signed but not unsigned FP conversion.
322   // Handle unsigned 32-bit types as signed 64-bit types.
323   if (!Subtarget.hasFPExtension()) {
324     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
325     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
326     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
327     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
328   }
329 
330   // We have native support for a 64-bit CTLZ, via FLOGR.
331   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
332   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
333   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
334 
335   // On z15 we have native support for a 64-bit CTPOP.
336   if (Subtarget.hasMiscellaneousExtensions3()) {
337     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
338     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
339   }
340 
341   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
342   setOperationAction(ISD::OR, MVT::i64, Custom);
343 
344   // Expand 128 bit shifts without using a libcall.
345   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
346   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
347   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
348 
349   // Also expand 256 bit shifts if i128 is a legal type.
350   if (isTypeLegal(MVT::i128)) {
351     setOperationAction(ISD::SRL_PARTS, MVT::i128, Expand);
352     setOperationAction(ISD::SHL_PARTS, MVT::i128, Expand);
353     setOperationAction(ISD::SRA_PARTS, MVT::i128, Expand);
354   }
355 
356   // Handle bitcast from fp128 to i128.
357   if (!isTypeLegal(MVT::i128))
358     setOperationAction(ISD::BITCAST, MVT::i128, Custom);
359 
360   // We have native instructions for i8, i16 and i32 extensions, but not i1.
361   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
362   for (MVT VT : MVT::integer_valuetypes()) {
363     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
364     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
365     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
366   }
367 
368   // Handle the various types of symbolic address.
369   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
370   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
371   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
372   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
373   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
374 
375   // We need to handle dynamic allocations specially because of the
376   // 160-byte area at the bottom of the stack.
377   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
378   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
379 
380   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
381   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
382 
383   // Handle prefetches with PFD or PFDRL.
384   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
385 
386   // Handle readcyclecounter with STCKF.
387   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
388 
389   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
390     // Assume by default that all vector operations need to be expanded.
391     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
392       if (getOperationAction(Opcode, VT) == Legal)
393         setOperationAction(Opcode, VT, Expand);
394 
395     // Likewise all truncating stores and extending loads.
396     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
397       setTruncStoreAction(VT, InnerVT, Expand);
398       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
399       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
400       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
401     }
402 
403     if (isTypeLegal(VT)) {
404       // These operations are legal for anything that can be stored in a
405       // vector register, even if there is no native support for the format
406       // as such.  In particular, we can do these for v4f32 even though there
407       // are no specific instructions for that format.
408       setOperationAction(ISD::LOAD, VT, Legal);
409       setOperationAction(ISD::STORE, VT, Legal);
410       setOperationAction(ISD::VSELECT, VT, Legal);
411       setOperationAction(ISD::BITCAST, VT, Legal);
412       setOperationAction(ISD::UNDEF, VT, Legal);
413 
414       // Likewise, except that we need to replace the nodes with something
415       // more specific.
416       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
417       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
418     }
419   }
420 
421   // Handle integer vector types.
422   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
423     if (isTypeLegal(VT)) {
424       // These operations have direct equivalents.
425       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
426       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
427       setOperationAction(ISD::ADD, VT, Legal);
428       setOperationAction(ISD::SUB, VT, Legal);
429       if (VT != MVT::v2i64)
430         setOperationAction(ISD::MUL, VT, Legal);
431       setOperationAction(ISD::ABS, VT, Legal);
432       setOperationAction(ISD::AND, VT, Legal);
433       setOperationAction(ISD::OR, VT, Legal);
434       setOperationAction(ISD::XOR, VT, Legal);
435       if (Subtarget.hasVectorEnhancements1())
436         setOperationAction(ISD::CTPOP, VT, Legal);
437       else
438         setOperationAction(ISD::CTPOP, VT, Custom);
439       setOperationAction(ISD::CTTZ, VT, Legal);
440       setOperationAction(ISD::CTLZ, VT, Legal);
441 
442       // Convert a GPR scalar to a vector by inserting it into element 0.
443       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
444 
445       // Use a series of unpacks for extensions.
446       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
447       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
448 
449       // Detect shifts/rotates by a scalar amount and convert them into
450       // V*_BY_SCALAR.
451       setOperationAction(ISD::SHL, VT, Custom);
452       setOperationAction(ISD::SRA, VT, Custom);
453       setOperationAction(ISD::SRL, VT, Custom);
454       setOperationAction(ISD::ROTL, VT, Custom);
455 
456       // Add ISD::VECREDUCE_ADD as custom in order to implement
457       // it with VZERO+VSUM
458       setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
459 
460       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
461       // and inverting the result as necessary.
462       setOperationAction(ISD::SETCC, VT, Custom);
463     }
464   }
465 
466   if (Subtarget.hasVector()) {
467     // There should be no need to check for float types other than v2f64
468     // since <2 x f32> isn't a legal type.
469     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
470     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
471     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
472     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
473     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
474     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
475     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
476     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
477 
478     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
479     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
480     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
481     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
482     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
483     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
484     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
485     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
486   }
487 
488   if (Subtarget.hasVectorEnhancements2()) {
489     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
490     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
491     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
492     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
493     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
494     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
495     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
496     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
497 
498     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
499     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
500     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
501     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
502     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
503     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
504     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
505     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
506   }
507 
508   // Handle floating-point types.
509   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
510        I <= MVT::LAST_FP_VALUETYPE;
511        ++I) {
512     MVT VT = MVT::SimpleValueType(I);
513     if (isTypeLegal(VT)) {
514       // We can use FI for FRINT.
515       setOperationAction(ISD::FRINT, VT, Legal);
516 
517       // We can use the extended form of FI for other rounding operations.
518       if (Subtarget.hasFPExtension()) {
519         setOperationAction(ISD::FNEARBYINT, VT, Legal);
520         setOperationAction(ISD::FFLOOR, VT, Legal);
521         setOperationAction(ISD::FCEIL, VT, Legal);
522         setOperationAction(ISD::FTRUNC, VT, Legal);
523         setOperationAction(ISD::FROUND, VT, Legal);
524       }
525 
526       // No special instructions for these.
527       setOperationAction(ISD::FSIN, VT, Expand);
528       setOperationAction(ISD::FCOS, VT, Expand);
529       setOperationAction(ISD::FSINCOS, VT, Expand);
530       setOperationAction(ISD::FREM, VT, Expand);
531       setOperationAction(ISD::FPOW, VT, Expand);
532 
533       // Special treatment.
534       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
535 
536       // Handle constrained floating-point operations.
537       setOperationAction(ISD::STRICT_FADD, VT, Legal);
538       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
539       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
540       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
541       setOperationAction(ISD::STRICT_FMA, VT, Legal);
542       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
543       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
544       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
545       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
546       if (Subtarget.hasFPExtension()) {
547         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
548         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
549         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
550         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
551         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
552       }
553     }
554   }
555 
556   // Handle floating-point vector types.
557   if (Subtarget.hasVector()) {
558     // Scalar-to-vector conversion is just a subreg.
559     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
560     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
561 
562     // Some insertions and extractions can be done directly but others
563     // need to go via integers.
564     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
565     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
566     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
567     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
568 
569     // These operations have direct equivalents.
570     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
571     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
572     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
573     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
574     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
575     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
576     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
577     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
578     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
579     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
580     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
581     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
582     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
583     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
584 
585     // Handle constrained floating-point operations.
586     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
587     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
588     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
589     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
590     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
591     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
592     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
593     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
594     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
595     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
596     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
597     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
598 
599     setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
600     setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
601     setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom);
602     setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom);
603     if (Subtarget.hasVectorEnhancements1()) {
604       setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom);
605       setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom);
606     }
607   }
608 
609   // The vector enhancements facility 1 has instructions for these.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
612     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
613     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
614     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
615     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
616     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
617     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
618     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
619     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
620     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
621     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
622     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
623     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
624     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
625 
626     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
627     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
628     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
629     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
630 
631     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
632     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
633     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
634     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
635 
636     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
637     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
638     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
639     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
640 
641     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
642     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
643     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
644     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
645 
646     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
647     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
648     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
649     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
650 
651     // Handle constrained floating-point operations.
652     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
653     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
654     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
655     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
656     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
657     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
658     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
659     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
660     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
661     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
662     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
663     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
664     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
665                      MVT::v4f32, MVT::v2f64 }) {
666       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
667       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
668       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
669       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
670     }
671   }
672 
673   // We only have fused f128 multiply-addition on vector registers.
674   if (!Subtarget.hasVectorEnhancements1()) {
675     setOperationAction(ISD::FMA, MVT::f128, Expand);
676     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
677   }
678 
679   // We don't have a copysign instruction on vector registers.
680   if (Subtarget.hasVectorEnhancements1())
681     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
682 
683   // Needed so that we don't try to implement f128 constant loads using
684   // a load-and-extend of a f80 constant (in cases where the constant
685   // would fit in an f80).
686   for (MVT VT : MVT::fp_valuetypes())
687     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
688 
689   // We don't have extending load instruction on vector registers.
690   if (Subtarget.hasVectorEnhancements1()) {
691     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
692     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
693   }
694 
695   // Floating-point truncation and stores need to be done separately.
696   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
697   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
698   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
699 
700   // We have 64-bit FPR<->GPR moves, but need special handling for
701   // 32-bit forms.
702   if (!Subtarget.hasVector()) {
703     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
704     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
705   }
706 
707   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
708   // structure, but VAEND is a no-op.
709   setOperationAction(ISD::VASTART, MVT::Other, Custom);
710   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
711   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
712 
713   setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
714 
715   // Codes for which we want to perform some z-specific combinations.
716   setTargetDAGCombine({ISD::ZERO_EXTEND,
717                        ISD::SIGN_EXTEND,
718                        ISD::SIGN_EXTEND_INREG,
719                        ISD::LOAD,
720                        ISD::STORE,
721                        ISD::VECTOR_SHUFFLE,
722                        ISD::EXTRACT_VECTOR_ELT,
723                        ISD::FP_ROUND,
724                        ISD::STRICT_FP_ROUND,
725                        ISD::FP_EXTEND,
726                        ISD::SINT_TO_FP,
727                        ISD::UINT_TO_FP,
728                        ISD::STRICT_FP_EXTEND,
729                        ISD::BSWAP,
730                        ISD::SDIV,
731                        ISD::UDIV,
732                        ISD::SREM,
733                        ISD::UREM,
734                        ISD::INTRINSIC_VOID,
735                        ISD::INTRINSIC_W_CHAIN});
736 
737   // Handle intrinsics.
738   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
739   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
740 
741   // We want to use MVC in preference to even a single load/store pair.
742   MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
743   MaxStoresPerMemcpyOptSize = 0;
744 
745   // The main memset sequence is a byte store followed by an MVC.
746   // Two STC or MV..I stores win over that, but the kind of fused stores
747   // generated by target-independent code don't when the byte value is
748   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
749   // than "STC;MVC".  Handle the choice in target-specific code instead.
750   MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
751   MaxStoresPerMemsetOptSize = 0;
752 
753   // Default to having -disable-strictnode-mutation on
754   IsStrictFPEnabled = true;
755 
756   if (Subtarget.isTargetzOS()) {
757     struct RTLibCallMapping {
758       RTLIB::Libcall Code;
759       const char *Name;
760     };
761     static RTLibCallMapping RTLibCallCommon[] = {
762 #define HANDLE_LIBCALL(code, name) {RTLIB::code, name},
763 #include "ZOSLibcallNames.def"
764     };
765     for (auto &E : RTLibCallCommon)
766       setLibcallName(E.Code, E.Name);
767   }
768 }
769 
770 bool SystemZTargetLowering::useSoftFloat() const {
771   return Subtarget.hasSoftFloat();
772 }
773 
774 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
775                                               LLVMContext &, EVT VT) const {
776   if (!VT.isVector())
777     return MVT::i32;
778   return VT.changeVectorElementTypeToInteger();
779 }
780 
781 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
782     const MachineFunction &MF, EVT VT) const {
783   VT = VT.getScalarType();
784 
785   if (!VT.isSimple())
786     return false;
787 
788   switch (VT.getSimpleVT().SimpleTy) {
789   case MVT::f32:
790   case MVT::f64:
791     return true;
792   case MVT::f128:
793     return Subtarget.hasVectorEnhancements1();
794   default:
795     break;
796   }
797 
798   return false;
799 }
800 
801 // Return true if the constant can be generated with a vector instruction,
802 // such as VGM, VGMB or VREPI.
803 bool SystemZVectorConstantInfo::isVectorConstantLegal(
804     const SystemZSubtarget &Subtarget) {
805   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
806   if (!Subtarget.hasVector() ||
807       (isFP128 && !Subtarget.hasVectorEnhancements1()))
808     return false;
809 
810   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
811   // preferred way of creating all-zero and all-one vectors so give it
812   // priority over other methods below.
813   unsigned Mask = 0;
814   unsigned I = 0;
815   for (; I < SystemZ::VectorBytes; ++I) {
816     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
817     if (Byte == 0xff)
818       Mask |= 1ULL << I;
819     else if (Byte != 0)
820       break;
821   }
822   if (I == SystemZ::VectorBytes) {
823     Opcode = SystemZISD::BYTE_MASK;
824     OpVals.push_back(Mask);
825     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
826     return true;
827   }
828 
829   if (SplatBitSize > 64)
830     return false;
831 
832   auto tryValue = [&](uint64_t Value) -> bool {
833     // Try VECTOR REPLICATE IMMEDIATE
834     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
835     if (isInt<16>(SignedValue)) {
836       OpVals.push_back(((unsigned) SignedValue));
837       Opcode = SystemZISD::REPLICATE;
838       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
839                                SystemZ::VectorBits / SplatBitSize);
840       return true;
841     }
842     // Try VECTOR GENERATE MASK
843     unsigned Start, End;
844     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
845       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
846       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
847       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
848       OpVals.push_back(Start - (64 - SplatBitSize));
849       OpVals.push_back(End - (64 - SplatBitSize));
850       Opcode = SystemZISD::ROTATE_MASK;
851       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
852                                SystemZ::VectorBits / SplatBitSize);
853       return true;
854     }
855     return false;
856   };
857 
858   // First try assuming that any undefined bits above the highest set bit
859   // and below the lowest set bit are 1s.  This increases the likelihood of
860   // being able to use a sign-extended element value in VECTOR REPLICATE
861   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
862   uint64_t SplatBitsZ = SplatBits.getZExtValue();
863   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
864   unsigned LowerBits = llvm::countr_zero(SplatBitsZ);
865   unsigned UpperBits = llvm::countl_zero(SplatBitsZ);
866   uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits);
867   uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits);
868   if (tryValue(SplatBitsZ | Upper | Lower))
869     return true;
870 
871   // Now try assuming that any undefined bits between the first and
872   // last defined set bits are set.  This increases the chances of
873   // using a non-wraparound mask.
874   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
875   return tryValue(SplatBitsZ | Middle);
876 }
877 
878 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
879   if (IntImm.isSingleWord()) {
880     IntBits = APInt(128, IntImm.getZExtValue());
881     IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
882   } else
883     IntBits = IntImm;
884   assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
885 
886   // Find the smallest splat.
887   SplatBits = IntImm;
888   unsigned Width = SplatBits.getBitWidth();
889   while (Width > 8) {
890     unsigned HalfSize = Width / 2;
891     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
892     APInt LowValue = SplatBits.trunc(HalfSize);
893 
894     // If the two halves do not match, stop here.
895     if (HighValue != LowValue || 8 > HalfSize)
896       break;
897 
898     SplatBits = HighValue;
899     Width = HalfSize;
900   }
901   SplatUndef = 0;
902   SplatBitSize = Width;
903 }
904 
905 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
906   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
907   bool HasAnyUndefs;
908 
909   // Get IntBits by finding the 128 bit splat.
910   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
911                        true);
912 
913   // Get SplatBits by finding the 8 bit or greater splat.
914   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
915                        true);
916 }
917 
918 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
919                                          bool ForCodeSize) const {
920   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
921   if (Imm.isZero() || Imm.isNegZero())
922     return true;
923 
924   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
925 }
926 
927 /// Returns true if stack probing through inline assembly is requested.
928 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
929   // If the function specifically requests inline stack probes, emit them.
930   if (MF.getFunction().hasFnAttribute("probe-stack"))
931     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
932            "inline-asm";
933   return false;
934 }
935 
936 TargetLowering::AtomicExpansionKind
937 SystemZTargetLowering::shouldCastAtomicLoadInIR(LoadInst *LI) const {
938   return AtomicExpansionKind::None;
939 }
940 
941 TargetLowering::AtomicExpansionKind
942 SystemZTargetLowering::shouldCastAtomicStoreInIR(StoreInst *SI) const {
943   return AtomicExpansionKind::None;
944 }
945 
946 TargetLowering::AtomicExpansionKind
947 SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
948   // Don't expand subword operations as they require special treatment.
949   if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16))
950     return AtomicExpansionKind::None;
951 
952   // Don't expand if there is a target instruction available.
953   if (Subtarget.hasInterlockedAccess1() &&
954       (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) &&
955       (RMW->getOperation() == AtomicRMWInst::BinOp::Add ||
956        RMW->getOperation() == AtomicRMWInst::BinOp::Sub ||
957        RMW->getOperation() == AtomicRMWInst::BinOp::And ||
958        RMW->getOperation() == AtomicRMWInst::BinOp::Or ||
959        RMW->getOperation() == AtomicRMWInst::BinOp::Xor))
960     return AtomicExpansionKind::None;
961 
962   return AtomicExpansionKind::CmpXChg;
963 }
964 
965 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
966   // We can use CGFI or CLGFI.
967   return isInt<32>(Imm) || isUInt<32>(Imm);
968 }
969 
970 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
971   // We can use ALGFI or SLGFI.
972   return isUInt<32>(Imm) || isUInt<32>(-Imm);
973 }
974 
975 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
976     EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
977   // Unaligned accesses should never be slower than the expanded version.
978   // We check specifically for aligned accesses in the few cases where
979   // they are required.
980   if (Fast)
981     *Fast = 1;
982   return true;
983 }
984 
985 // Information about the addressing mode for a memory access.
986 struct AddressingMode {
987   // True if a long displacement is supported.
988   bool LongDisplacement;
989 
990   // True if use of index register is supported.
991   bool IndexReg;
992 
993   AddressingMode(bool LongDispl, bool IdxReg) :
994     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
995 };
996 
997 // Return the desired addressing mode for a Load which has only one use (in
998 // the same block) which is a Store.
999 static AddressingMode getLoadStoreAddrMode(bool HasVector,
1000                                           Type *Ty) {
1001   // With vector support a Load->Store combination may be combined to either
1002   // an MVC or vector operations and it seems to work best to allow the
1003   // vector addressing mode.
1004   if (HasVector)
1005     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1006 
1007   // Otherwise only the MVC case is special.
1008   bool MVC = Ty->isIntegerTy(8);
1009   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
1010 }
1011 
1012 // Return the addressing mode which seems most desirable given an LLVM
1013 // Instruction pointer.
1014 static AddressingMode
1015 supportedAddressingMode(Instruction *I, bool HasVector) {
1016   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1017     switch (II->getIntrinsicID()) {
1018     default: break;
1019     case Intrinsic::memset:
1020     case Intrinsic::memmove:
1021     case Intrinsic::memcpy:
1022       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1023     }
1024   }
1025 
1026   if (isa<LoadInst>(I) && I->hasOneUse()) {
1027     auto *SingleUser = cast<Instruction>(*I->user_begin());
1028     if (SingleUser->getParent() == I->getParent()) {
1029       if (isa<ICmpInst>(SingleUser)) {
1030         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
1031           if (C->getBitWidth() <= 64 &&
1032               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
1033             // Comparison of memory with 16 bit signed / unsigned immediate
1034             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1035       } else if (isa<StoreInst>(SingleUser))
1036         // Load->Store
1037         return getLoadStoreAddrMode(HasVector, I->getType());
1038     }
1039   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
1040     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
1041       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
1042         // Load->Store
1043         return getLoadStoreAddrMode(HasVector, LoadI->getType());
1044   }
1045 
1046   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
1047 
1048     // * Use LDE instead of LE/LEY for z13 to avoid partial register
1049     //   dependencies (LDE only supports small offsets).
1050     // * Utilize the vector registers to hold floating point
1051     //   values (vector load / store instructions only support small
1052     //   offsets).
1053 
1054     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
1055                          I->getOperand(0)->getType());
1056     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
1057     bool IsVectorAccess = MemAccessTy->isVectorTy();
1058 
1059     // A store of an extracted vector element will be combined into a VSTE type
1060     // instruction.
1061     if (!IsVectorAccess && isa<StoreInst>(I)) {
1062       Value *DataOp = I->getOperand(0);
1063       if (isa<ExtractElementInst>(DataOp))
1064         IsVectorAccess = true;
1065     }
1066 
1067     // A load which gets inserted into a vector element will be combined into a
1068     // VLE type instruction.
1069     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
1070       User *LoadUser = *I->user_begin();
1071       if (isa<InsertElementInst>(LoadUser))
1072         IsVectorAccess = true;
1073     }
1074 
1075     if (IsFPAccess || IsVectorAccess)
1076       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1077   }
1078 
1079   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
1080 }
1081 
1082 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1083        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
1084   // Punt on globals for now, although they can be used in limited
1085   // RELATIVE LONG cases.
1086   if (AM.BaseGV)
1087     return false;
1088 
1089   // Require a 20-bit signed offset.
1090   if (!isInt<20>(AM.BaseOffs))
1091     return false;
1092 
1093   bool RequireD12 =
1094       Subtarget.hasVector() && (Ty->isVectorTy() || Ty->isIntegerTy(128));
1095   AddressingMode SupportedAM(!RequireD12, true);
1096   if (I != nullptr)
1097     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
1098 
1099   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
1100     return false;
1101 
1102   if (!SupportedAM.IndexReg)
1103     // No indexing allowed.
1104     return AM.Scale == 0;
1105   else
1106     // Indexing is OK but no scale factor can be applied.
1107     return AM.Scale == 0 || AM.Scale == 1;
1108 }
1109 
1110 bool SystemZTargetLowering::findOptimalMemOpLowering(
1111     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1112     unsigned SrcAS, const AttributeList &FuncAttributes) const {
1113   const int MVCFastLen = 16;
1114 
1115   if (Limit != ~unsigned(0)) {
1116     // Don't expand Op into scalar loads/stores in these cases:
1117     if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1118       return false; // Small memcpy: Use MVC
1119     if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1120       return false; // Small memset (first byte with STC/MVI): Use MVC
1121     if (Op.isZeroMemset())
1122       return false; // Memset zero: Use XC
1123   }
1124 
1125   return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1126                                                   SrcAS, FuncAttributes);
1127 }
1128 
1129 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1130                                    const AttributeList &FuncAttributes) const {
1131   return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1132 }
1133 
1134 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1135   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1136     return false;
1137   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue();
1138   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue();
1139   return FromBits > ToBits;
1140 }
1141 
1142 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1143   if (!FromVT.isInteger() || !ToVT.isInteger())
1144     return false;
1145   unsigned FromBits = FromVT.getFixedSizeInBits();
1146   unsigned ToBits = ToVT.getFixedSizeInBits();
1147   return FromBits > ToBits;
1148 }
1149 
1150 //===----------------------------------------------------------------------===//
1151 // Inline asm support
1152 //===----------------------------------------------------------------------===//
1153 
1154 TargetLowering::ConstraintType
1155 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1156   if (Constraint.size() == 1) {
1157     switch (Constraint[0]) {
1158     case 'a': // Address register
1159     case 'd': // Data register (equivalent to 'r')
1160     case 'f': // Floating-point register
1161     case 'h': // High-part register
1162     case 'r': // General-purpose register
1163     case 'v': // Vector register
1164       return C_RegisterClass;
1165 
1166     case 'Q': // Memory with base and unsigned 12-bit displacement
1167     case 'R': // Likewise, plus an index
1168     case 'S': // Memory with base and signed 20-bit displacement
1169     case 'T': // Likewise, plus an index
1170     case 'm': // Equivalent to 'T'.
1171       return C_Memory;
1172 
1173     case 'I': // Unsigned 8-bit constant
1174     case 'J': // Unsigned 12-bit constant
1175     case 'K': // Signed 16-bit constant
1176     case 'L': // Signed 20-bit displacement (on all targets we support)
1177     case 'M': // 0x7fffffff
1178       return C_Immediate;
1179 
1180     default:
1181       break;
1182     }
1183   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1184     switch (Constraint[1]) {
1185     case 'Q': // Address with base and unsigned 12-bit displacement
1186     case 'R': // Likewise, plus an index
1187     case 'S': // Address with base and signed 20-bit displacement
1188     case 'T': // Likewise, plus an index
1189       return C_Address;
1190 
1191     default:
1192       break;
1193     }
1194   }
1195   return TargetLowering::getConstraintType(Constraint);
1196 }
1197 
1198 TargetLowering::ConstraintWeight SystemZTargetLowering::
1199 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1200                                const char *constraint) const {
1201   ConstraintWeight weight = CW_Invalid;
1202   Value *CallOperandVal = info.CallOperandVal;
1203   // If we don't have a value, we can't do a match,
1204   // but allow it at the lowest weight.
1205   if (!CallOperandVal)
1206     return CW_Default;
1207   Type *type = CallOperandVal->getType();
1208   // Look at the constraint type.
1209   switch (*constraint) {
1210   default:
1211     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1212     break;
1213 
1214   case 'a': // Address register
1215   case 'd': // Data register (equivalent to 'r')
1216   case 'h': // High-part register
1217   case 'r': // General-purpose register
1218     weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default;
1219     break;
1220 
1221   case 'f': // Floating-point register
1222     if (!useSoftFloat())
1223       weight = type->isFloatingPointTy() ? CW_Register : CW_Default;
1224     break;
1225 
1226   case 'v': // Vector register
1227     if (Subtarget.hasVector())
1228       weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register
1229                                                                  : CW_Default;
1230     break;
1231 
1232   case 'I': // Unsigned 8-bit constant
1233     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1234       if (isUInt<8>(C->getZExtValue()))
1235         weight = CW_Constant;
1236     break;
1237 
1238   case 'J': // Unsigned 12-bit constant
1239     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1240       if (isUInt<12>(C->getZExtValue()))
1241         weight = CW_Constant;
1242     break;
1243 
1244   case 'K': // Signed 16-bit constant
1245     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1246       if (isInt<16>(C->getSExtValue()))
1247         weight = CW_Constant;
1248     break;
1249 
1250   case 'L': // Signed 20-bit displacement (on all targets we support)
1251     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1252       if (isInt<20>(C->getSExtValue()))
1253         weight = CW_Constant;
1254     break;
1255 
1256   case 'M': // 0x7fffffff
1257     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1258       if (C->getZExtValue() == 0x7fffffff)
1259         weight = CW_Constant;
1260     break;
1261   }
1262   return weight;
1263 }
1264 
1265 // Parse a "{tNNN}" register constraint for which the register type "t"
1266 // has already been verified.  MC is the class associated with "t" and
1267 // Map maps 0-based register numbers to LLVM register numbers.
1268 static std::pair<unsigned, const TargetRegisterClass *>
1269 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1270                     const unsigned *Map, unsigned Size) {
1271   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1272   if (isdigit(Constraint[2])) {
1273     unsigned Index;
1274     bool Failed =
1275         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1276     if (!Failed && Index < Size && Map[Index])
1277       return std::make_pair(Map[Index], RC);
1278   }
1279   return std::make_pair(0U, nullptr);
1280 }
1281 
1282 std::pair<unsigned, const TargetRegisterClass *>
1283 SystemZTargetLowering::getRegForInlineAsmConstraint(
1284     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1285   if (Constraint.size() == 1) {
1286     // GCC Constraint Letters
1287     switch (Constraint[0]) {
1288     default: break;
1289     case 'd': // Data register (equivalent to 'r')
1290     case 'r': // General-purpose register
1291       if (VT.getSizeInBits() == 64)
1292         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1293       else if (VT.getSizeInBits() == 128)
1294         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1295       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1296 
1297     case 'a': // Address register
1298       if (VT == MVT::i64)
1299         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1300       else if (VT == MVT::i128)
1301         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1302       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1303 
1304     case 'h': // High-part register (an LLVM extension)
1305       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1306 
1307     case 'f': // Floating-point register
1308       if (!useSoftFloat()) {
1309         if (VT.getSizeInBits() == 64)
1310           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1311         else if (VT.getSizeInBits() == 128)
1312           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1313         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1314       }
1315       break;
1316 
1317     case 'v': // Vector register
1318       if (Subtarget.hasVector()) {
1319         if (VT.getSizeInBits() == 32)
1320           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1321         if (VT.getSizeInBits() == 64)
1322           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1323         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1324       }
1325       break;
1326     }
1327   }
1328   if (Constraint.starts_with("{")) {
1329 
1330     // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal
1331     // to check the size on.
1332     auto getVTSizeInBits = [&VT]() {
1333       return VT == MVT::Other ? 0 : VT.getSizeInBits();
1334     };
1335 
1336     // We need to override the default register parsing for GPRs and FPRs
1337     // because the interpretation depends on VT.  The internal names of
1338     // the registers are also different from the external names
1339     // (F0D and F0S instead of F0, etc.).
1340     if (Constraint[1] == 'r') {
1341       if (getVTSizeInBits() == 32)
1342         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1343                                    SystemZMC::GR32Regs, 16);
1344       if (getVTSizeInBits() == 128)
1345         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1346                                    SystemZMC::GR128Regs, 16);
1347       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1348                                  SystemZMC::GR64Regs, 16);
1349     }
1350     if (Constraint[1] == 'f') {
1351       if (useSoftFloat())
1352         return std::make_pair(
1353             0u, static_cast<const TargetRegisterClass *>(nullptr));
1354       if (getVTSizeInBits() == 32)
1355         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1356                                    SystemZMC::FP32Regs, 16);
1357       if (getVTSizeInBits() == 128)
1358         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1359                                    SystemZMC::FP128Regs, 16);
1360       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1361                                  SystemZMC::FP64Regs, 16);
1362     }
1363     if (Constraint[1] == 'v') {
1364       if (!Subtarget.hasVector())
1365         return std::make_pair(
1366             0u, static_cast<const TargetRegisterClass *>(nullptr));
1367       if (getVTSizeInBits() == 32)
1368         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1369                                    SystemZMC::VR32Regs, 32);
1370       if (getVTSizeInBits() == 64)
1371         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1372                                    SystemZMC::VR64Regs, 32);
1373       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1374                                  SystemZMC::VR128Regs, 32);
1375     }
1376   }
1377   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1378 }
1379 
1380 // FIXME? Maybe this could be a TableGen attribute on some registers and
1381 // this table could be generated automatically from RegInfo.
1382 Register
1383 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1384                                          const MachineFunction &MF) const {
1385   Register Reg =
1386       StringSwitch<Register>(RegName)
1387           .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0)
1388           .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0)
1389           .Default(0);
1390 
1391   if (Reg)
1392     return Reg;
1393   report_fatal_error("Invalid register name global variable");
1394 }
1395 
1396 Register SystemZTargetLowering::getExceptionPointerRegister(
1397     const Constant *PersonalityFn) const {
1398   return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D;
1399 }
1400 
1401 Register SystemZTargetLowering::getExceptionSelectorRegister(
1402     const Constant *PersonalityFn) const {
1403   return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D;
1404 }
1405 
1406 void SystemZTargetLowering::LowerAsmOperandForConstraint(
1407     SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
1408     SelectionDAG &DAG) const {
1409   // Only support length 1 constraints for now.
1410   if (Constraint.size() == 1) {
1411     switch (Constraint[0]) {
1412     case 'I': // Unsigned 8-bit constant
1413       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1414         if (isUInt<8>(C->getZExtValue()))
1415           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1416                                               Op.getValueType()));
1417       return;
1418 
1419     case 'J': // Unsigned 12-bit constant
1420       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1421         if (isUInt<12>(C->getZExtValue()))
1422           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1423                                               Op.getValueType()));
1424       return;
1425 
1426     case 'K': // Signed 16-bit constant
1427       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1428         if (isInt<16>(C->getSExtValue()))
1429           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1430                                               Op.getValueType()));
1431       return;
1432 
1433     case 'L': // Signed 20-bit displacement (on all targets we support)
1434       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1435         if (isInt<20>(C->getSExtValue()))
1436           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1437                                               Op.getValueType()));
1438       return;
1439 
1440     case 'M': // 0x7fffffff
1441       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1442         if (C->getZExtValue() == 0x7fffffff)
1443           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1444                                               Op.getValueType()));
1445       return;
1446     }
1447   }
1448   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1449 }
1450 
1451 //===----------------------------------------------------------------------===//
1452 // Calling conventions
1453 //===----------------------------------------------------------------------===//
1454 
1455 #include "SystemZGenCallingConv.inc"
1456 
1457 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1458   CallingConv::ID) const {
1459   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1460                                            SystemZ::R14D, 0 };
1461   return ScratchRegs;
1462 }
1463 
1464 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1465                                                      Type *ToType) const {
1466   return isTruncateFree(FromType, ToType);
1467 }
1468 
1469 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1470   return CI->isTailCall();
1471 }
1472 
1473 // Value is a value that has been passed to us in the location described by VA
1474 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1475 // any loads onto Chain.
1476 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1477                                    CCValAssign &VA, SDValue Chain,
1478                                    SDValue Value) {
1479   // If the argument has been promoted from a smaller type, insert an
1480   // assertion to capture this.
1481   if (VA.getLocInfo() == CCValAssign::SExt)
1482     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1483                         DAG.getValueType(VA.getValVT()));
1484   else if (VA.getLocInfo() == CCValAssign::ZExt)
1485     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1486                         DAG.getValueType(VA.getValVT()));
1487 
1488   if (VA.isExtInLoc())
1489     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1490   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1491     // If this is a short vector argument loaded from the stack,
1492     // extend from i64 to full vector size and then bitcast.
1493     assert(VA.getLocVT() == MVT::i64);
1494     assert(VA.getValVT().isVector());
1495     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1496     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1497   } else
1498     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1499   return Value;
1500 }
1501 
1502 // Value is a value of type VA.getValVT() that we need to copy into
1503 // the location described by VA.  Return a copy of Value converted to
1504 // VA.getValVT().  The caller is responsible for handling indirect values.
1505 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1506                                    CCValAssign &VA, SDValue Value) {
1507   switch (VA.getLocInfo()) {
1508   case CCValAssign::SExt:
1509     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1510   case CCValAssign::ZExt:
1511     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1512   case CCValAssign::AExt:
1513     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1514   case CCValAssign::BCvt: {
1515     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1516     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
1517            VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
1518     // For an f32 vararg we need to first promote it to an f64 and then
1519     // bitcast it to an i64.
1520     if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
1521       Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
1522     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1523                             ? MVT::v2i64
1524                             : VA.getLocVT();
1525     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1526     // For ELF, this is a short vector argument to be stored to the stack,
1527     // bitcast to v2i64 and then extract first element.
1528     if (BitCastToType == MVT::v2i64)
1529       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1530                          DAG.getConstant(0, DL, MVT::i32));
1531     return Value;
1532   }
1533   case CCValAssign::Full:
1534     return Value;
1535   default:
1536     llvm_unreachable("Unhandled getLocInfo()");
1537   }
1538 }
1539 
1540 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1541   SDLoc DL(In);
1542   SDValue Lo, Hi;
1543   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1544     Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In);
1545     Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
1546                      DAG.getNode(ISD::SRL, DL, MVT::i128, In,
1547                                  DAG.getConstant(64, DL, MVT::i32)));
1548   } else {
1549     std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64);
1550   }
1551 
1552   // FIXME: If v2i64 were a legal type, we could use it instead of
1553   // Untyped here.  This might enable improved folding.
1554   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1555                                     MVT::Untyped, Hi, Lo);
1556   return SDValue(Pair, 0);
1557 }
1558 
1559 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1560   SDLoc DL(In);
1561   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1562                                           DL, MVT::i64, In);
1563   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1564                                           DL, MVT::i64, In);
1565 
1566   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1567     Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo);
1568     Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi);
1569     Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi,
1570                      DAG.getConstant(64, DL, MVT::i32));
1571     return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi);
1572   } else {
1573     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1574   }
1575 }
1576 
1577 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1578     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1579     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
1580   EVT ValueVT = Val.getValueType();
1581   if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1582     // Inline assembly operand.
1583     Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val));
1584     return true;
1585   }
1586 
1587   return false;
1588 }
1589 
1590 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1591     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1592     MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
1593   if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1594     // Inline assembly operand.
1595     SDValue Res = lowerGR128ToI128(DAG, Parts[0]);
1596     return DAG.getBitcast(ValueVT, Res);
1597   }
1598 
1599   return SDValue();
1600 }
1601 
1602 SDValue SystemZTargetLowering::LowerFormalArguments(
1603     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1604     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1605     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1606   MachineFunction &MF = DAG.getMachineFunction();
1607   MachineFrameInfo &MFI = MF.getFrameInfo();
1608   MachineRegisterInfo &MRI = MF.getRegInfo();
1609   SystemZMachineFunctionInfo *FuncInfo =
1610       MF.getInfo<SystemZMachineFunctionInfo>();
1611   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1612   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1613 
1614   // Assign locations to all of the incoming arguments.
1615   SmallVector<CCValAssign, 16> ArgLocs;
1616   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1617   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1618   FuncInfo->setSizeOfFnParams(CCInfo.getStackSize());
1619 
1620   unsigned NumFixedGPRs = 0;
1621   unsigned NumFixedFPRs = 0;
1622   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1623     SDValue ArgValue;
1624     CCValAssign &VA = ArgLocs[I];
1625     EVT LocVT = VA.getLocVT();
1626     if (VA.isRegLoc()) {
1627       // Arguments passed in registers
1628       const TargetRegisterClass *RC;
1629       switch (LocVT.getSimpleVT().SimpleTy) {
1630       default:
1631         // Integers smaller than i64 should be promoted to i64.
1632         llvm_unreachable("Unexpected argument type");
1633       case MVT::i32:
1634         NumFixedGPRs += 1;
1635         RC = &SystemZ::GR32BitRegClass;
1636         break;
1637       case MVT::i64:
1638         NumFixedGPRs += 1;
1639         RC = &SystemZ::GR64BitRegClass;
1640         break;
1641       case MVT::f32:
1642         NumFixedFPRs += 1;
1643         RC = &SystemZ::FP32BitRegClass;
1644         break;
1645       case MVT::f64:
1646         NumFixedFPRs += 1;
1647         RC = &SystemZ::FP64BitRegClass;
1648         break;
1649       case MVT::f128:
1650         NumFixedFPRs += 2;
1651         RC = &SystemZ::FP128BitRegClass;
1652         break;
1653       case MVT::v16i8:
1654       case MVT::v8i16:
1655       case MVT::v4i32:
1656       case MVT::v2i64:
1657       case MVT::v4f32:
1658       case MVT::v2f64:
1659         RC = &SystemZ::VR128BitRegClass;
1660         break;
1661       }
1662 
1663       Register VReg = MRI.createVirtualRegister(RC);
1664       MRI.addLiveIn(VA.getLocReg(), VReg);
1665       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1666     } else {
1667       assert(VA.isMemLoc() && "Argument not register or memory");
1668 
1669       // Create the frame index object for this incoming parameter.
1670       // FIXME: Pre-include call frame size in the offset, should not
1671       // need to manually add it here.
1672       int64_t ArgSPOffset = VA.getLocMemOffset();
1673       if (Subtarget.isTargetXPLINK64()) {
1674         auto &XPRegs =
1675             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1676         ArgSPOffset += XPRegs.getCallFrameSize();
1677       }
1678       int FI =
1679           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1680 
1681       // Create the SelectionDAG nodes corresponding to a load
1682       // from this parameter.  Unpromoted ints and floats are
1683       // passed as right-justified 8-byte values.
1684       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1685       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1686         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1687                           DAG.getIntPtrConstant(4, DL));
1688       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1689                              MachinePointerInfo::getFixedStack(MF, FI));
1690     }
1691 
1692     // Convert the value of the argument register into the value that's
1693     // being passed.
1694     if (VA.getLocInfo() == CCValAssign::Indirect) {
1695       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1696                                    MachinePointerInfo()));
1697       // If the original argument was split (e.g. i128), we need
1698       // to load all parts of it here (using the same address).
1699       unsigned ArgIndex = Ins[I].OrigArgIndex;
1700       assert (Ins[I].PartOffset == 0);
1701       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1702         CCValAssign &PartVA = ArgLocs[I + 1];
1703         unsigned PartOffset = Ins[I + 1].PartOffset;
1704         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1705                                       DAG.getIntPtrConstant(PartOffset, DL));
1706         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1707                                      MachinePointerInfo()));
1708         ++I;
1709       }
1710     } else
1711       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1712   }
1713 
1714   if (IsVarArg && Subtarget.isTargetXPLINK64()) {
1715     // Save the number of non-varargs registers for later use by va_start, etc.
1716     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1717     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1718 
1719     auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1720         Subtarget.getSpecialRegisters());
1721 
1722     // Likewise the address (in the form of a frame index) of where the
1723     // first stack vararg would be.  The 1-byte size here is arbitrary.
1724     // FIXME: Pre-include call frame size in the offset, should not
1725     // need to manually add it here.
1726     int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize();
1727     int FI = MFI.CreateFixedObject(1, VarArgOffset, true);
1728     FuncInfo->setVarArgsFrameIndex(FI);
1729   }
1730 
1731   if (IsVarArg && Subtarget.isTargetELF()) {
1732     // Save the number of non-varargs registers for later use by va_start, etc.
1733     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1734     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1735 
1736     // Likewise the address (in the form of a frame index) of where the
1737     // first stack vararg would be.  The 1-byte size here is arbitrary.
1738     int64_t VarArgsOffset = CCInfo.getStackSize();
1739     FuncInfo->setVarArgsFrameIndex(
1740         MFI.CreateFixedObject(1, VarArgsOffset, true));
1741 
1742     // ...and a similar frame index for the caller-allocated save area
1743     // that will be used to store the incoming registers.
1744     int64_t RegSaveOffset =
1745       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1746     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1747     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1748 
1749     // Store the FPR varargs in the reserved frame slots.  (We store the
1750     // GPRs as part of the prologue.)
1751     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1752       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1753       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1754         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1755         int FI =
1756           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1757         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1758         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1759                                      &SystemZ::FP64BitRegClass);
1760         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1761         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1762                                  MachinePointerInfo::getFixedStack(MF, FI));
1763       }
1764       // Join the stores, which are independent of one another.
1765       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1766                           ArrayRef(&MemOps[NumFixedFPRs],
1767                                    SystemZ::ELFNumArgFPRs - NumFixedFPRs));
1768     }
1769   }
1770 
1771   if (Subtarget.isTargetXPLINK64()) {
1772     // Create virual register  for handling incoming "ADA" special register (R5)
1773     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
1774     Register ADAvReg = MRI.createVirtualRegister(RC);
1775     auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1776         Subtarget.getSpecialRegisters());
1777     MRI.addLiveIn(Regs->getADARegister(), ADAvReg);
1778     FuncInfo->setADAVirtualRegister(ADAvReg);
1779   }
1780   return Chain;
1781 }
1782 
1783 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1784                               SmallVectorImpl<CCValAssign> &ArgLocs,
1785                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1786   // Punt if there are any indirect or stack arguments, or if the call
1787   // needs the callee-saved argument register R6, or if the call uses
1788   // the callee-saved register arguments SwiftSelf and SwiftError.
1789   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1790     CCValAssign &VA = ArgLocs[I];
1791     if (VA.getLocInfo() == CCValAssign::Indirect)
1792       return false;
1793     if (!VA.isRegLoc())
1794       return false;
1795     Register Reg = VA.getLocReg();
1796     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1797       return false;
1798     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1799       return false;
1800   }
1801   return true;
1802 }
1803 
1804 static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL,
1805                            unsigned Offset, bool LoadAdr = false) {
1806   MachineFunction &MF = DAG.getMachineFunction();
1807   SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
1808   unsigned ADAvReg = MFI->getADAVirtualRegister();
1809   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1810 
1811   SDValue Reg = DAG.getRegister(ADAvReg, PtrVT);
1812   SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT);
1813 
1814   SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs);
1815   if (!LoadAdr)
1816     Result = DAG.getLoad(
1817         PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8),
1818         MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant);
1819 
1820   return Result;
1821 }
1822 
1823 // ADA access using Global value
1824 // Note: for functions, address of descriptor is returned
1825 static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL,
1826                            EVT PtrVT) {
1827   unsigned ADAtype;
1828   bool LoadAddr = false;
1829   const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV);
1830   bool IsFunction =
1831       (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject()));
1832   bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage());
1833 
1834   if (IsFunction) {
1835     if (IsInternal) {
1836       ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC;
1837       LoadAddr = true;
1838     } else
1839       ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC;
1840   } else {
1841     ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR;
1842   }
1843   SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype);
1844 
1845   return getADAEntry(DAG, Val, DL, 0, LoadAddr);
1846 }
1847 
1848 static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA,
1849                                SDLoc &DL, SDValue &Chain) {
1850   unsigned ADADelta = 0; // ADA offset in desc.
1851   unsigned EPADelta = 8; // EPA offset in desc.
1852   MachineFunction &MF = DAG.getMachineFunction();
1853   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1854 
1855   // XPLink calling convention.
1856   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1857     bool IsInternal = (G->getGlobal()->hasInternalLinkage() ||
1858                        G->getGlobal()->hasPrivateLinkage());
1859     if (IsInternal) {
1860       SystemZMachineFunctionInfo *MFI =
1861           MF.getInfo<SystemZMachineFunctionInfo>();
1862       unsigned ADAvReg = MFI->getADAVirtualRegister();
1863       ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT);
1864       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1865       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1866       return true;
1867     } else {
1868       SDValue GA = DAG.getTargetGlobalAddress(
1869           G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1870       ADA = getADAEntry(DAG, GA, DL, ADADelta);
1871       Callee = getADAEntry(DAG, GA, DL, EPADelta);
1872     }
1873   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1874     SDValue ES = DAG.getTargetExternalSymbol(
1875         E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1876     ADA = getADAEntry(DAG, ES, DL, ADADelta);
1877     Callee = getADAEntry(DAG, ES, DL, EPADelta);
1878   } else {
1879     // Function pointer case
1880     ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1881                       DAG.getConstant(ADADelta, DL, PtrVT));
1882     ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA,
1883                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1884     Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1885                          DAG.getConstant(EPADelta, DL, PtrVT));
1886     Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee,
1887                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1888   }
1889   return false;
1890 }
1891 
1892 SDValue
1893 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1894                                  SmallVectorImpl<SDValue> &InVals) const {
1895   SelectionDAG &DAG = CLI.DAG;
1896   SDLoc &DL = CLI.DL;
1897   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1898   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1899   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1900   SDValue Chain = CLI.Chain;
1901   SDValue Callee = CLI.Callee;
1902   bool &IsTailCall = CLI.IsTailCall;
1903   CallingConv::ID CallConv = CLI.CallConv;
1904   bool IsVarArg = CLI.IsVarArg;
1905   MachineFunction &MF = DAG.getMachineFunction();
1906   EVT PtrVT = getPointerTy(MF.getDataLayout());
1907   LLVMContext &Ctx = *DAG.getContext();
1908   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1909 
1910   // FIXME: z/OS support to be added in later.
1911   if (Subtarget.isTargetXPLINK64())
1912     IsTailCall = false;
1913 
1914   // Analyze the operands of the call, assigning locations to each operand.
1915   SmallVector<CCValAssign, 16> ArgLocs;
1916   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1917   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1918 
1919   // We don't support GuaranteedTailCallOpt, only automatically-detected
1920   // sibling calls.
1921   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1922     IsTailCall = false;
1923 
1924   // Get a count of how many bytes are to be pushed on the stack.
1925   unsigned NumBytes = ArgCCInfo.getStackSize();
1926 
1927   // Mark the start of the call.
1928   if (!IsTailCall)
1929     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1930 
1931   // Copy argument values to their designated locations.
1932   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1933   SmallVector<SDValue, 8> MemOpChains;
1934   SDValue StackPtr;
1935   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1936     CCValAssign &VA = ArgLocs[I];
1937     SDValue ArgValue = OutVals[I];
1938 
1939     if (VA.getLocInfo() == CCValAssign::Indirect) {
1940       // Store the argument in a stack slot and pass its address.
1941       unsigned ArgIndex = Outs[I].OrigArgIndex;
1942       EVT SlotVT;
1943       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1944         // Allocate the full stack space for a promoted (and split) argument.
1945         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1946         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1947         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1948         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1949         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1950       } else {
1951         SlotVT = Outs[I].VT;
1952       }
1953       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1954       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1955       MemOpChains.push_back(
1956           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1957                        MachinePointerInfo::getFixedStack(MF, FI)));
1958       // If the original argument was split (e.g. i128), we need
1959       // to store all parts of it here (and pass just one address).
1960       assert (Outs[I].PartOffset == 0);
1961       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1962         SDValue PartValue = OutVals[I + 1];
1963         unsigned PartOffset = Outs[I + 1].PartOffset;
1964         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1965                                       DAG.getIntPtrConstant(PartOffset, DL));
1966         MemOpChains.push_back(
1967             DAG.getStore(Chain, DL, PartValue, Address,
1968                          MachinePointerInfo::getFixedStack(MF, FI)));
1969         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1970                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1971         ++I;
1972       }
1973       ArgValue = SpillSlot;
1974     } else
1975       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1976 
1977     if (VA.isRegLoc()) {
1978       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1979       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1980       // and low values.
1981       if (VA.getLocVT() == MVT::i128)
1982         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1983       // Queue up the argument copies and emit them at the end.
1984       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1985     } else {
1986       assert(VA.isMemLoc() && "Argument not register or memory");
1987 
1988       // Work out the address of the stack slot.  Unpromoted ints and
1989       // floats are passed as right-justified 8-byte values.
1990       if (!StackPtr.getNode())
1991         StackPtr = DAG.getCopyFromReg(Chain, DL,
1992                                       Regs->getStackPointerRegister(), PtrVT);
1993       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1994                         VA.getLocMemOffset();
1995       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1996         Offset += 4;
1997       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1998                                     DAG.getIntPtrConstant(Offset, DL));
1999 
2000       // Emit the store.
2001       MemOpChains.push_back(
2002           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2003 
2004       // Although long doubles or vectors are passed through the stack when
2005       // they are vararg (non-fixed arguments), if a long double or vector
2006       // occupies the third and fourth slot of the argument list GPR3 should
2007       // still shadow the third slot of the argument list.
2008       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
2009         SDValue ShadowArgValue =
2010             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
2011                         DAG.getIntPtrConstant(1, DL));
2012         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
2013       }
2014     }
2015   }
2016 
2017   // Join the stores, which are independent of one another.
2018   if (!MemOpChains.empty())
2019     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2020 
2021   // Accept direct calls by converting symbolic call addresses to the
2022   // associated Target* opcodes.  Force %r1 to be used for indirect
2023   // tail calls.
2024   SDValue Glue;
2025 
2026   if (Subtarget.isTargetXPLINK64()) {
2027     SDValue ADA;
2028     bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain);
2029     if (!IsBRASL) {
2030       unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs)
2031                                ->getAddressOfCalleeRegister();
2032       Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue);
2033       Glue = Chain.getValue(1);
2034       Callee = DAG.getRegister(CalleeReg, Callee.getValueType());
2035     }
2036     RegsToPass.push_back(std::make_pair(
2037         static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA));
2038   } else {
2039     if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2040       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
2041       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2042     } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2043       Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
2044       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2045     } else if (IsTailCall) {
2046       Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
2047       Glue = Chain.getValue(1);
2048       Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
2049     }
2050   }
2051 
2052   // Build a sequence of copy-to-reg nodes, chained and glued together.
2053   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
2054     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
2055                              RegsToPass[I].second, Glue);
2056     Glue = Chain.getValue(1);
2057   }
2058 
2059   // The first call operand is the chain and the second is the target address.
2060   SmallVector<SDValue, 8> Ops;
2061   Ops.push_back(Chain);
2062   Ops.push_back(Callee);
2063 
2064   // Add argument registers to the end of the list so that they are
2065   // known live into the call.
2066   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
2067     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
2068                                   RegsToPass[I].second.getValueType()));
2069 
2070   // Add a register mask operand representing the call-preserved registers.
2071   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2072   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2073   assert(Mask && "Missing call preserved mask for calling convention");
2074   Ops.push_back(DAG.getRegisterMask(Mask));
2075 
2076   // Glue the call to the argument copies, if any.
2077   if (Glue.getNode())
2078     Ops.push_back(Glue);
2079 
2080   // Emit the call.
2081   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2082   if (IsTailCall) {
2083     SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
2084     DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2085     return Ret;
2086   }
2087   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
2088   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2089   Glue = Chain.getValue(1);
2090 
2091   // Mark the end of the call, which is glued to the call itself.
2092   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
2093   Glue = Chain.getValue(1);
2094 
2095   // Assign locations to each value returned by this call.
2096   SmallVector<CCValAssign, 16> RetLocs;
2097   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
2098   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
2099 
2100   // Copy all of the result registers out of their specified physreg.
2101   for (CCValAssign &VA : RetLocs) {
2102     // Copy the value out, gluing the copy to the end of the call sequence.
2103     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
2104                                           VA.getLocVT(), Glue);
2105     Chain = RetValue.getValue(1);
2106     Glue = RetValue.getValue(2);
2107 
2108     // Convert the value of the return register into the value that's
2109     // being returned.
2110     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
2111   }
2112 
2113   return Chain;
2114 }
2115 
2116 // Generate a call taking the given operands as arguments and returning a
2117 // result of type RetVT.
2118 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
2119     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
2120     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
2121     bool DoesNotReturn, bool IsReturnValueUsed) const {
2122   TargetLowering::ArgListTy Args;
2123   Args.reserve(Ops.size());
2124 
2125   TargetLowering::ArgListEntry Entry;
2126   for (SDValue Op : Ops) {
2127     Entry.Node = Op;
2128     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2129     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2130     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2131     Args.push_back(Entry);
2132   }
2133 
2134   SDValue Callee =
2135       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
2136 
2137   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2138   TargetLowering::CallLoweringInfo CLI(DAG);
2139   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
2140   CLI.setDebugLoc(DL)
2141       .setChain(Chain)
2142       .setCallee(CallConv, RetTy, Callee, std::move(Args))
2143       .setNoReturn(DoesNotReturn)
2144       .setDiscardResult(!IsReturnValueUsed)
2145       .setSExtResult(SignExtend)
2146       .setZExtResult(!SignExtend);
2147   return LowerCallTo(CLI);
2148 }
2149 
2150 bool SystemZTargetLowering::
2151 CanLowerReturn(CallingConv::ID CallConv,
2152                MachineFunction &MF, bool isVarArg,
2153                const SmallVectorImpl<ISD::OutputArg> &Outs,
2154                LLVMContext &Context) const {
2155   // Special case that we cannot easily detect in RetCC_SystemZ since
2156   // i128 may not be a legal type.
2157   for (auto &Out : Outs)
2158     if (Out.ArgVT == MVT::i128)
2159       return false;
2160 
2161   SmallVector<CCValAssign, 16> RetLocs;
2162   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
2163   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
2164 }
2165 
2166 SDValue
2167 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2168                                    bool IsVarArg,
2169                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2170                                    const SmallVectorImpl<SDValue> &OutVals,
2171                                    const SDLoc &DL, SelectionDAG &DAG) const {
2172   MachineFunction &MF = DAG.getMachineFunction();
2173 
2174   // Assign locations to each returned value.
2175   SmallVector<CCValAssign, 16> RetLocs;
2176   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
2177   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
2178 
2179   // Quick exit for void returns
2180   if (RetLocs.empty())
2181     return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain);
2182 
2183   if (CallConv == CallingConv::GHC)
2184     report_fatal_error("GHC functions return void only");
2185 
2186   // Copy the result values into the output registers.
2187   SDValue Glue;
2188   SmallVector<SDValue, 4> RetOps;
2189   RetOps.push_back(Chain);
2190   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2191     CCValAssign &VA = RetLocs[I];
2192     SDValue RetValue = OutVals[I];
2193 
2194     // Make the return register live on exit.
2195     assert(VA.isRegLoc() && "Can only return in registers!");
2196 
2197     // Promote the value as required.
2198     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
2199 
2200     // Chain and glue the copies together.
2201     Register Reg = VA.getLocReg();
2202     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
2203     Glue = Chain.getValue(1);
2204     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
2205   }
2206 
2207   // Update chain and glue.
2208   RetOps[0] = Chain;
2209   if (Glue.getNode())
2210     RetOps.push_back(Glue);
2211 
2212   return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps);
2213 }
2214 
2215 // Return true if Op is an intrinsic node with chain that returns the CC value
2216 // as its only (other) argument.  Provide the associated SystemZISD opcode and
2217 // the mask of valid CC values if so.
2218 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
2219                                       unsigned &CCValid) {
2220   unsigned Id = Op.getConstantOperandVal(1);
2221   switch (Id) {
2222   case Intrinsic::s390_tbegin:
2223     Opcode = SystemZISD::TBEGIN;
2224     CCValid = SystemZ::CCMASK_TBEGIN;
2225     return true;
2226 
2227   case Intrinsic::s390_tbegin_nofloat:
2228     Opcode = SystemZISD::TBEGIN_NOFLOAT;
2229     CCValid = SystemZ::CCMASK_TBEGIN;
2230     return true;
2231 
2232   case Intrinsic::s390_tend:
2233     Opcode = SystemZISD::TEND;
2234     CCValid = SystemZ::CCMASK_TEND;
2235     return true;
2236 
2237   default:
2238     return false;
2239   }
2240 }
2241 
2242 // Return true if Op is an intrinsic node without chain that returns the
2243 // CC value as its final argument.  Provide the associated SystemZISD
2244 // opcode and the mask of valid CC values if so.
2245 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2246   unsigned Id = Op.getConstantOperandVal(0);
2247   switch (Id) {
2248   case Intrinsic::s390_vpkshs:
2249   case Intrinsic::s390_vpksfs:
2250   case Intrinsic::s390_vpksgs:
2251     Opcode = SystemZISD::PACKS_CC;
2252     CCValid = SystemZ::CCMASK_VCMP;
2253     return true;
2254 
2255   case Intrinsic::s390_vpklshs:
2256   case Intrinsic::s390_vpklsfs:
2257   case Intrinsic::s390_vpklsgs:
2258     Opcode = SystemZISD::PACKLS_CC;
2259     CCValid = SystemZ::CCMASK_VCMP;
2260     return true;
2261 
2262   case Intrinsic::s390_vceqbs:
2263   case Intrinsic::s390_vceqhs:
2264   case Intrinsic::s390_vceqfs:
2265   case Intrinsic::s390_vceqgs:
2266     Opcode = SystemZISD::VICMPES;
2267     CCValid = SystemZ::CCMASK_VCMP;
2268     return true;
2269 
2270   case Intrinsic::s390_vchbs:
2271   case Intrinsic::s390_vchhs:
2272   case Intrinsic::s390_vchfs:
2273   case Intrinsic::s390_vchgs:
2274     Opcode = SystemZISD::VICMPHS;
2275     CCValid = SystemZ::CCMASK_VCMP;
2276     return true;
2277 
2278   case Intrinsic::s390_vchlbs:
2279   case Intrinsic::s390_vchlhs:
2280   case Intrinsic::s390_vchlfs:
2281   case Intrinsic::s390_vchlgs:
2282     Opcode = SystemZISD::VICMPHLS;
2283     CCValid = SystemZ::CCMASK_VCMP;
2284     return true;
2285 
2286   case Intrinsic::s390_vtm:
2287     Opcode = SystemZISD::VTM;
2288     CCValid = SystemZ::CCMASK_VCMP;
2289     return true;
2290 
2291   case Intrinsic::s390_vfaebs:
2292   case Intrinsic::s390_vfaehs:
2293   case Intrinsic::s390_vfaefs:
2294     Opcode = SystemZISD::VFAE_CC;
2295     CCValid = SystemZ::CCMASK_ANY;
2296     return true;
2297 
2298   case Intrinsic::s390_vfaezbs:
2299   case Intrinsic::s390_vfaezhs:
2300   case Intrinsic::s390_vfaezfs:
2301     Opcode = SystemZISD::VFAEZ_CC;
2302     CCValid = SystemZ::CCMASK_ANY;
2303     return true;
2304 
2305   case Intrinsic::s390_vfeebs:
2306   case Intrinsic::s390_vfeehs:
2307   case Intrinsic::s390_vfeefs:
2308     Opcode = SystemZISD::VFEE_CC;
2309     CCValid = SystemZ::CCMASK_ANY;
2310     return true;
2311 
2312   case Intrinsic::s390_vfeezbs:
2313   case Intrinsic::s390_vfeezhs:
2314   case Intrinsic::s390_vfeezfs:
2315     Opcode = SystemZISD::VFEEZ_CC;
2316     CCValid = SystemZ::CCMASK_ANY;
2317     return true;
2318 
2319   case Intrinsic::s390_vfenebs:
2320   case Intrinsic::s390_vfenehs:
2321   case Intrinsic::s390_vfenefs:
2322     Opcode = SystemZISD::VFENE_CC;
2323     CCValid = SystemZ::CCMASK_ANY;
2324     return true;
2325 
2326   case Intrinsic::s390_vfenezbs:
2327   case Intrinsic::s390_vfenezhs:
2328   case Intrinsic::s390_vfenezfs:
2329     Opcode = SystemZISD::VFENEZ_CC;
2330     CCValid = SystemZ::CCMASK_ANY;
2331     return true;
2332 
2333   case Intrinsic::s390_vistrbs:
2334   case Intrinsic::s390_vistrhs:
2335   case Intrinsic::s390_vistrfs:
2336     Opcode = SystemZISD::VISTR_CC;
2337     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2338     return true;
2339 
2340   case Intrinsic::s390_vstrcbs:
2341   case Intrinsic::s390_vstrchs:
2342   case Intrinsic::s390_vstrcfs:
2343     Opcode = SystemZISD::VSTRC_CC;
2344     CCValid = SystemZ::CCMASK_ANY;
2345     return true;
2346 
2347   case Intrinsic::s390_vstrczbs:
2348   case Intrinsic::s390_vstrczhs:
2349   case Intrinsic::s390_vstrczfs:
2350     Opcode = SystemZISD::VSTRCZ_CC;
2351     CCValid = SystemZ::CCMASK_ANY;
2352     return true;
2353 
2354   case Intrinsic::s390_vstrsb:
2355   case Intrinsic::s390_vstrsh:
2356   case Intrinsic::s390_vstrsf:
2357     Opcode = SystemZISD::VSTRS_CC;
2358     CCValid = SystemZ::CCMASK_ANY;
2359     return true;
2360 
2361   case Intrinsic::s390_vstrszb:
2362   case Intrinsic::s390_vstrszh:
2363   case Intrinsic::s390_vstrszf:
2364     Opcode = SystemZISD::VSTRSZ_CC;
2365     CCValid = SystemZ::CCMASK_ANY;
2366     return true;
2367 
2368   case Intrinsic::s390_vfcedbs:
2369   case Intrinsic::s390_vfcesbs:
2370     Opcode = SystemZISD::VFCMPES;
2371     CCValid = SystemZ::CCMASK_VCMP;
2372     return true;
2373 
2374   case Intrinsic::s390_vfchdbs:
2375   case Intrinsic::s390_vfchsbs:
2376     Opcode = SystemZISD::VFCMPHS;
2377     CCValid = SystemZ::CCMASK_VCMP;
2378     return true;
2379 
2380   case Intrinsic::s390_vfchedbs:
2381   case Intrinsic::s390_vfchesbs:
2382     Opcode = SystemZISD::VFCMPHES;
2383     CCValid = SystemZ::CCMASK_VCMP;
2384     return true;
2385 
2386   case Intrinsic::s390_vftcidb:
2387   case Intrinsic::s390_vftcisb:
2388     Opcode = SystemZISD::VFTCI;
2389     CCValid = SystemZ::CCMASK_VCMP;
2390     return true;
2391 
2392   case Intrinsic::s390_tdc:
2393     Opcode = SystemZISD::TDC;
2394     CCValid = SystemZ::CCMASK_TDC;
2395     return true;
2396 
2397   default:
2398     return false;
2399   }
2400 }
2401 
2402 // Emit an intrinsic with chain and an explicit CC register result.
2403 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2404                                            unsigned Opcode) {
2405   // Copy all operands except the intrinsic ID.
2406   unsigned NumOps = Op.getNumOperands();
2407   SmallVector<SDValue, 6> Ops;
2408   Ops.reserve(NumOps - 1);
2409   Ops.push_back(Op.getOperand(0));
2410   for (unsigned I = 2; I < NumOps; ++I)
2411     Ops.push_back(Op.getOperand(I));
2412 
2413   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2414   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2415   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2416   SDValue OldChain = SDValue(Op.getNode(), 1);
2417   SDValue NewChain = SDValue(Intr.getNode(), 1);
2418   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2419   return Intr.getNode();
2420 }
2421 
2422 // Emit an intrinsic with an explicit CC register result.
2423 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2424                                    unsigned Opcode) {
2425   // Copy all operands except the intrinsic ID.
2426   unsigned NumOps = Op.getNumOperands();
2427   SmallVector<SDValue, 6> Ops;
2428   Ops.reserve(NumOps - 1);
2429   for (unsigned I = 1; I < NumOps; ++I)
2430     Ops.push_back(Op.getOperand(I));
2431 
2432   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2433   return Intr.getNode();
2434 }
2435 
2436 // CC is a comparison that will be implemented using an integer or
2437 // floating-point comparison.  Return the condition code mask for
2438 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2439 // unsigned comparisons and clear for signed ones.  In the floating-point
2440 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2441 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2442 #define CONV(X) \
2443   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2444   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2445   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2446 
2447   switch (CC) {
2448   default:
2449     llvm_unreachable("Invalid integer condition!");
2450 
2451   CONV(EQ);
2452   CONV(NE);
2453   CONV(GT);
2454   CONV(GE);
2455   CONV(LT);
2456   CONV(LE);
2457 
2458   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2459   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2460   }
2461 #undef CONV
2462 }
2463 
2464 // If C can be converted to a comparison against zero, adjust the operands
2465 // as necessary.
2466 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2467   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2468     return;
2469 
2470   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2471   if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2472     return;
2473 
2474   int64_t Value = ConstOp1->getSExtValue();
2475   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2476       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2477       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2478       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2479     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2480     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2481   }
2482 }
2483 
2484 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2485 // adjust the operands as necessary.
2486 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2487                              Comparison &C) {
2488   // For us to make any changes, it must a comparison between a single-use
2489   // load and a constant.
2490   if (!C.Op0.hasOneUse() ||
2491       C.Op0.getOpcode() != ISD::LOAD ||
2492       C.Op1.getOpcode() != ISD::Constant)
2493     return;
2494 
2495   // We must have an 8- or 16-bit load.
2496   auto *Load = cast<LoadSDNode>(C.Op0);
2497   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2498   if ((NumBits != 8 && NumBits != 16) ||
2499       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2500     return;
2501 
2502   // The load must be an extending one and the constant must be within the
2503   // range of the unextended value.
2504   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2505   if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2506     return;
2507   uint64_t Value = ConstOp1->getZExtValue();
2508   uint64_t Mask = (1 << NumBits) - 1;
2509   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2510     // Make sure that ConstOp1 is in range of C.Op0.
2511     int64_t SignedValue = ConstOp1->getSExtValue();
2512     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2513       return;
2514     if (C.ICmpType != SystemZICMP::SignedOnly) {
2515       // Unsigned comparison between two sign-extended values is equivalent
2516       // to unsigned comparison between two zero-extended values.
2517       Value &= Mask;
2518     } else if (NumBits == 8) {
2519       // Try to treat the comparison as unsigned, so that we can use CLI.
2520       // Adjust CCMask and Value as necessary.
2521       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2522         // Test whether the high bit of the byte is set.
2523         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2524       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2525         // Test whether the high bit of the byte is clear.
2526         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2527       else
2528         // No instruction exists for this combination.
2529         return;
2530       C.ICmpType = SystemZICMP::UnsignedOnly;
2531     }
2532   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2533     if (Value > Mask)
2534       return;
2535     // If the constant is in range, we can use any comparison.
2536     C.ICmpType = SystemZICMP::Any;
2537   } else
2538     return;
2539 
2540   // Make sure that the first operand is an i32 of the right extension type.
2541   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2542                               ISD::SEXTLOAD :
2543                               ISD::ZEXTLOAD);
2544   if (C.Op0.getValueType() != MVT::i32 ||
2545       Load->getExtensionType() != ExtType) {
2546     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2547                            Load->getBasePtr(), Load->getPointerInfo(),
2548                            Load->getMemoryVT(), Load->getAlign(),
2549                            Load->getMemOperand()->getFlags());
2550     // Update the chain uses.
2551     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2552   }
2553 
2554   // Make sure that the second operand is an i32 with the right value.
2555   if (C.Op1.getValueType() != MVT::i32 ||
2556       Value != ConstOp1->getZExtValue())
2557     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2558 }
2559 
2560 // Return true if Op is either an unextended load, or a load suitable
2561 // for integer register-memory comparisons of type ICmpType.
2562 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2563   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2564   if (Load) {
2565     // There are no instructions to compare a register with a memory byte.
2566     if (Load->getMemoryVT() == MVT::i8)
2567       return false;
2568     // Otherwise decide on extension type.
2569     switch (Load->getExtensionType()) {
2570     case ISD::NON_EXTLOAD:
2571       return true;
2572     case ISD::SEXTLOAD:
2573       return ICmpType != SystemZICMP::UnsignedOnly;
2574     case ISD::ZEXTLOAD:
2575       return ICmpType != SystemZICMP::SignedOnly;
2576     default:
2577       break;
2578     }
2579   }
2580   return false;
2581 }
2582 
2583 // Return true if it is better to swap the operands of C.
2584 static bool shouldSwapCmpOperands(const Comparison &C) {
2585   // Leave i128 and f128 comparisons alone, since they have no memory forms.
2586   if (C.Op0.getValueType() == MVT::i128)
2587     return false;
2588   if (C.Op0.getValueType() == MVT::f128)
2589     return false;
2590 
2591   // Always keep a floating-point constant second, since comparisons with
2592   // zero can use LOAD TEST and comparisons with other constants make a
2593   // natural memory operand.
2594   if (isa<ConstantFPSDNode>(C.Op1))
2595     return false;
2596 
2597   // Never swap comparisons with zero since there are many ways to optimize
2598   // those later.
2599   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2600   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2601     return false;
2602 
2603   // Also keep natural memory operands second if the loaded value is
2604   // only used here.  Several comparisons have memory forms.
2605   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2606     return false;
2607 
2608   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2609   // In that case we generally prefer the memory to be second.
2610   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2611     // The only exceptions are when the second operand is a constant and
2612     // we can use things like CHHSI.
2613     if (!ConstOp1)
2614       return true;
2615     // The unsigned memory-immediate instructions can handle 16-bit
2616     // unsigned integers.
2617     if (C.ICmpType != SystemZICMP::SignedOnly &&
2618         isUInt<16>(ConstOp1->getZExtValue()))
2619       return false;
2620     // The signed memory-immediate instructions can handle 16-bit
2621     // signed integers.
2622     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2623         isInt<16>(ConstOp1->getSExtValue()))
2624       return false;
2625     return true;
2626   }
2627 
2628   // Try to promote the use of CGFR and CLGFR.
2629   unsigned Opcode0 = C.Op0.getOpcode();
2630   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2631     return true;
2632   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2633     return true;
2634   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND &&
2635       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2636       C.Op0.getConstantOperandVal(1) == 0xffffffff)
2637     return true;
2638 
2639   return false;
2640 }
2641 
2642 // Check whether C tests for equality between X and Y and whether X - Y
2643 // or Y - X is also computed.  In that case it's better to compare the
2644 // result of the subtraction against zero.
2645 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2646                                  Comparison &C) {
2647   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2648       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2649     for (SDNode *N : C.Op0->uses()) {
2650       if (N->getOpcode() == ISD::SUB &&
2651           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2652            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2653         // Disable the nsw and nuw flags: the backend needs to handle
2654         // overflow as well during comparison elimination.
2655         SDNodeFlags Flags = N->getFlags();
2656         Flags.setNoSignedWrap(false);
2657         Flags.setNoUnsignedWrap(false);
2658         N->setFlags(Flags);
2659         C.Op0 = SDValue(N, 0);
2660         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2661         return;
2662       }
2663     }
2664   }
2665 }
2666 
2667 // Check whether C compares a floating-point value with zero and if that
2668 // floating-point value is also negated.  In this case we can use the
2669 // negation to set CC, so avoiding separate LOAD AND TEST and
2670 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2671 static void adjustForFNeg(Comparison &C) {
2672   // This optimization is invalid for strict comparisons, since FNEG
2673   // does not raise any exceptions.
2674   if (C.Chain)
2675     return;
2676   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2677   if (C1 && C1->isZero()) {
2678     for (SDNode *N : C.Op0->uses()) {
2679       if (N->getOpcode() == ISD::FNEG) {
2680         C.Op0 = SDValue(N, 0);
2681         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2682         return;
2683       }
2684     }
2685   }
2686 }
2687 
2688 // Check whether C compares (shl X, 32) with 0 and whether X is
2689 // also sign-extended.  In that case it is better to test the result
2690 // of the sign extension using LTGFR.
2691 //
2692 // This case is important because InstCombine transforms a comparison
2693 // with (sext (trunc X)) into a comparison with (shl X, 32).
2694 static void adjustForLTGFR(Comparison &C) {
2695   // Check for a comparison between (shl X, 32) and 0.
2696   if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 &&
2697       C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) {
2698     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2699     if (C1 && C1->getZExtValue() == 32) {
2700       SDValue ShlOp0 = C.Op0.getOperand(0);
2701       // See whether X has any SIGN_EXTEND_INREG uses.
2702       for (SDNode *N : ShlOp0->uses()) {
2703         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2704             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2705           C.Op0 = SDValue(N, 0);
2706           return;
2707         }
2708       }
2709     }
2710   }
2711 }
2712 
2713 // If C compares the truncation of an extending load, try to compare
2714 // the untruncated value instead.  This exposes more opportunities to
2715 // reuse CC.
2716 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2717                                Comparison &C) {
2718   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2719       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2720       C.Op1.getOpcode() == ISD::Constant &&
2721       cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
2722       C.Op1->getAsZExtVal() == 0) {
2723     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2724     if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <=
2725         C.Op0.getValueSizeInBits().getFixedValue()) {
2726       unsigned Type = L->getExtensionType();
2727       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2728           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2729         C.Op0 = C.Op0.getOperand(0);
2730         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2731       }
2732     }
2733   }
2734 }
2735 
2736 // Return true if shift operation N has an in-range constant shift value.
2737 // Store it in ShiftVal if so.
2738 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2739   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2740   if (!Shift)
2741     return false;
2742 
2743   uint64_t Amount = Shift->getZExtValue();
2744   if (Amount >= N.getValueSizeInBits())
2745     return false;
2746 
2747   ShiftVal = Amount;
2748   return true;
2749 }
2750 
2751 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2752 // instruction and whether the CC value is descriptive enough to handle
2753 // a comparison of type Opcode between the AND result and CmpVal.
2754 // CCMask says which comparison result is being tested and BitSize is
2755 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2756 // return the corresponding CC mask, otherwise return 0.
2757 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2758                                      uint64_t Mask, uint64_t CmpVal,
2759                                      unsigned ICmpType) {
2760   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2761 
2762   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2763   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2764       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2765     return 0;
2766 
2767   // Work out the masks for the lowest and highest bits.
2768   uint64_t High = llvm::bit_floor(Mask);
2769   uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask);
2770 
2771   // Signed ordered comparisons are effectively unsigned if the sign
2772   // bit is dropped.
2773   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2774 
2775   // Check for equality comparisons with 0, or the equivalent.
2776   if (CmpVal == 0) {
2777     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2778       return SystemZ::CCMASK_TM_ALL_0;
2779     if (CCMask == SystemZ::CCMASK_CMP_NE)
2780       return SystemZ::CCMASK_TM_SOME_1;
2781   }
2782   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2783     if (CCMask == SystemZ::CCMASK_CMP_LT)
2784       return SystemZ::CCMASK_TM_ALL_0;
2785     if (CCMask == SystemZ::CCMASK_CMP_GE)
2786       return SystemZ::CCMASK_TM_SOME_1;
2787   }
2788   if (EffectivelyUnsigned && CmpVal < Low) {
2789     if (CCMask == SystemZ::CCMASK_CMP_LE)
2790       return SystemZ::CCMASK_TM_ALL_0;
2791     if (CCMask == SystemZ::CCMASK_CMP_GT)
2792       return SystemZ::CCMASK_TM_SOME_1;
2793   }
2794 
2795   // Check for equality comparisons with the mask, or the equivalent.
2796   if (CmpVal == Mask) {
2797     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2798       return SystemZ::CCMASK_TM_ALL_1;
2799     if (CCMask == SystemZ::CCMASK_CMP_NE)
2800       return SystemZ::CCMASK_TM_SOME_0;
2801   }
2802   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2803     if (CCMask == SystemZ::CCMASK_CMP_GT)
2804       return SystemZ::CCMASK_TM_ALL_1;
2805     if (CCMask == SystemZ::CCMASK_CMP_LE)
2806       return SystemZ::CCMASK_TM_SOME_0;
2807   }
2808   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2809     if (CCMask == SystemZ::CCMASK_CMP_GE)
2810       return SystemZ::CCMASK_TM_ALL_1;
2811     if (CCMask == SystemZ::CCMASK_CMP_LT)
2812       return SystemZ::CCMASK_TM_SOME_0;
2813   }
2814 
2815   // Check for ordered comparisons with the top bit.
2816   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2817     if (CCMask == SystemZ::CCMASK_CMP_LE)
2818       return SystemZ::CCMASK_TM_MSB_0;
2819     if (CCMask == SystemZ::CCMASK_CMP_GT)
2820       return SystemZ::CCMASK_TM_MSB_1;
2821   }
2822   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2823     if (CCMask == SystemZ::CCMASK_CMP_LT)
2824       return SystemZ::CCMASK_TM_MSB_0;
2825     if (CCMask == SystemZ::CCMASK_CMP_GE)
2826       return SystemZ::CCMASK_TM_MSB_1;
2827   }
2828 
2829   // If there are just two bits, we can do equality checks for Low and High
2830   // as well.
2831   if (Mask == Low + High) {
2832     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2833       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2834     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2835       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2836     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2837       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2838     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2839       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2840   }
2841 
2842   // Looks like we've exhausted our options.
2843   return 0;
2844 }
2845 
2846 // See whether C can be implemented as a TEST UNDER MASK instruction.
2847 // Update the arguments with the TM version if so.
2848 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2849                                    Comparison &C) {
2850   // Use VECTOR TEST UNDER MASK for i128 operations.
2851   if (C.Op0.getValueType() == MVT::i128) {
2852     // We can use VTM for EQ/NE comparisons of x & y against 0.
2853     if (C.Op0.getOpcode() == ISD::AND &&
2854         (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2855          C.CCMask == SystemZ::CCMASK_CMP_NE)) {
2856       auto *Mask = dyn_cast<ConstantSDNode>(C.Op1);
2857       if (Mask && Mask->getAPIntValue() == 0) {
2858         C.Opcode = SystemZISD::VTM;
2859         C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1));
2860         C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0));
2861         C.CCValid = SystemZ::CCMASK_VCMP;
2862         if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2863           C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2864         else
2865           C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2866       }
2867     }
2868     return;
2869   }
2870 
2871   // Check that we have a comparison with a constant.
2872   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2873   if (!ConstOp1)
2874     return;
2875   uint64_t CmpVal = ConstOp1->getZExtValue();
2876 
2877   // Check whether the nonconstant input is an AND with a constant mask.
2878   Comparison NewC(C);
2879   uint64_t MaskVal;
2880   ConstantSDNode *Mask = nullptr;
2881   if (C.Op0.getOpcode() == ISD::AND) {
2882     NewC.Op0 = C.Op0.getOperand(0);
2883     NewC.Op1 = C.Op0.getOperand(1);
2884     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2885     if (!Mask)
2886       return;
2887     MaskVal = Mask->getZExtValue();
2888   } else {
2889     // There is no instruction to compare with a 64-bit immediate
2890     // so use TMHH instead if possible.  We need an unsigned ordered
2891     // comparison with an i64 immediate.
2892     if (NewC.Op0.getValueType() != MVT::i64 ||
2893         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2894         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2895         NewC.ICmpType == SystemZICMP::SignedOnly)
2896       return;
2897     // Convert LE and GT comparisons into LT and GE.
2898     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2899         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2900       if (CmpVal == uint64_t(-1))
2901         return;
2902       CmpVal += 1;
2903       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2904     }
2905     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2906     // be masked off without changing the result.
2907     MaskVal = -(CmpVal & -CmpVal);
2908     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2909   }
2910   if (!MaskVal)
2911     return;
2912 
2913   // Check whether the combination of mask, comparison value and comparison
2914   // type are suitable.
2915   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2916   unsigned NewCCMask, ShiftVal;
2917   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2918       NewC.Op0.getOpcode() == ISD::SHL &&
2919       isSimpleShift(NewC.Op0, ShiftVal) &&
2920       (MaskVal >> ShiftVal != 0) &&
2921       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2922       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2923                                         MaskVal >> ShiftVal,
2924                                         CmpVal >> ShiftVal,
2925                                         SystemZICMP::Any))) {
2926     NewC.Op0 = NewC.Op0.getOperand(0);
2927     MaskVal >>= ShiftVal;
2928   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2929              NewC.Op0.getOpcode() == ISD::SRL &&
2930              isSimpleShift(NewC.Op0, ShiftVal) &&
2931              (MaskVal << ShiftVal != 0) &&
2932              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2933              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2934                                                MaskVal << ShiftVal,
2935                                                CmpVal << ShiftVal,
2936                                                SystemZICMP::UnsignedOnly))) {
2937     NewC.Op0 = NewC.Op0.getOperand(0);
2938     MaskVal <<= ShiftVal;
2939   } else {
2940     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2941                                      NewC.ICmpType);
2942     if (!NewCCMask)
2943       return;
2944   }
2945 
2946   // Go ahead and make the change.
2947   C.Opcode = SystemZISD::TM;
2948   C.Op0 = NewC.Op0;
2949   if (Mask && Mask->getZExtValue() == MaskVal)
2950     C.Op1 = SDValue(Mask, 0);
2951   else
2952     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2953   C.CCValid = SystemZ::CCMASK_TM;
2954   C.CCMask = NewCCMask;
2955 }
2956 
2957 // Implement i128 comparison in vector registers.
2958 static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL,
2959                           Comparison &C) {
2960   if (C.Opcode != SystemZISD::ICMP)
2961     return;
2962   if (C.Op0.getValueType() != MVT::i128)
2963     return;
2964 
2965   // (In-)Equality comparisons can be implemented via VCEQGS.
2966   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2967       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2968     C.Opcode = SystemZISD::VICMPES;
2969     C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0);
2970     C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1);
2971     C.CCValid = SystemZ::CCMASK_VCMP;
2972     if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2973       C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2974     else
2975       C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2976     return;
2977   }
2978 
2979   // Normalize other comparisons to GT.
2980   bool Swap = false, Invert = false;
2981   switch (C.CCMask) {
2982     case SystemZ::CCMASK_CMP_GT: break;
2983     case SystemZ::CCMASK_CMP_LT: Swap = true; break;
2984     case SystemZ::CCMASK_CMP_LE: Invert = true; break;
2985     case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break;
2986     default: llvm_unreachable("Invalid integer condition!");
2987   }
2988   if (Swap)
2989     std::swap(C.Op0, C.Op1);
2990 
2991   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2992     C.Opcode = SystemZISD::UCMP128HI;
2993   else
2994     C.Opcode = SystemZISD::SCMP128HI;
2995   C.CCValid = SystemZ::CCMASK_ANY;
2996   C.CCMask = SystemZ::CCMASK_1;
2997 
2998   if (Invert)
2999     C.CCMask ^= C.CCValid;
3000 }
3001 
3002 // See whether the comparison argument contains a redundant AND
3003 // and remove it if so.  This sometimes happens due to the generic
3004 // BRCOND expansion.
3005 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
3006                                   Comparison &C) {
3007   if (C.Op0.getOpcode() != ISD::AND)
3008     return;
3009   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
3010   if (!Mask || Mask->getValueSizeInBits(0) > 64)
3011     return;
3012   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
3013   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
3014     return;
3015 
3016   C.Op0 = C.Op0.getOperand(0);
3017 }
3018 
3019 // Return a Comparison that tests the condition-code result of intrinsic
3020 // node Call against constant integer CC using comparison code Cond.
3021 // Opcode is the opcode of the SystemZISD operation for the intrinsic
3022 // and CCValid is the set of possible condition-code results.
3023 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
3024                                   SDValue Call, unsigned CCValid, uint64_t CC,
3025                                   ISD::CondCode Cond) {
3026   Comparison C(Call, SDValue(), SDValue());
3027   C.Opcode = Opcode;
3028   C.CCValid = CCValid;
3029   if (Cond == ISD::SETEQ)
3030     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
3031     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
3032   else if (Cond == ISD::SETNE)
3033     // ...and the inverse of that.
3034     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
3035   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
3036     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
3037     // always true for CC>3.
3038     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
3039   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
3040     // ...and the inverse of that.
3041     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
3042   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
3043     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
3044     // always true for CC>3.
3045     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
3046   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
3047     // ...and the inverse of that.
3048     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
3049   else
3050     llvm_unreachable("Unexpected integer comparison type");
3051   C.CCMask &= CCValid;
3052   return C;
3053 }
3054 
3055 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
3056 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
3057                          ISD::CondCode Cond, const SDLoc &DL,
3058                          SDValue Chain = SDValue(),
3059                          bool IsSignaling = false) {
3060   if (CmpOp1.getOpcode() == ISD::Constant) {
3061     assert(!Chain);
3062     unsigned Opcode, CCValid;
3063     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
3064         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
3065         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
3066       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3067                              CmpOp1->getAsZExtVal(), Cond);
3068     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3069         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
3070         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
3071       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3072                              CmpOp1->getAsZExtVal(), Cond);
3073   }
3074   Comparison C(CmpOp0, CmpOp1, Chain);
3075   C.CCMask = CCMaskForCondCode(Cond);
3076   if (C.Op0.getValueType().isFloatingPoint()) {
3077     C.CCValid = SystemZ::CCMASK_FCMP;
3078     if (!C.Chain)
3079       C.Opcode = SystemZISD::FCMP;
3080     else if (!IsSignaling)
3081       C.Opcode = SystemZISD::STRICT_FCMP;
3082     else
3083       C.Opcode = SystemZISD::STRICT_FCMPS;
3084     adjustForFNeg(C);
3085   } else {
3086     assert(!C.Chain);
3087     C.CCValid = SystemZ::CCMASK_ICMP;
3088     C.Opcode = SystemZISD::ICMP;
3089     // Choose the type of comparison.  Equality and inequality tests can
3090     // use either signed or unsigned comparisons.  The choice also doesn't
3091     // matter if both sign bits are known to be clear.  In those cases we
3092     // want to give the main isel code the freedom to choose whichever
3093     // form fits best.
3094     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3095         C.CCMask == SystemZ::CCMASK_CMP_NE ||
3096         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
3097       C.ICmpType = SystemZICMP::Any;
3098     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
3099       C.ICmpType = SystemZICMP::UnsignedOnly;
3100     else
3101       C.ICmpType = SystemZICMP::SignedOnly;
3102     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
3103     adjustForRedundantAnd(DAG, DL, C);
3104     adjustZeroCmp(DAG, DL, C);
3105     adjustSubwordCmp(DAG, DL, C);
3106     adjustForSubtraction(DAG, DL, C);
3107     adjustForLTGFR(C);
3108     adjustICmpTruncate(DAG, DL, C);
3109   }
3110 
3111   if (shouldSwapCmpOperands(C)) {
3112     std::swap(C.Op0, C.Op1);
3113     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
3114   }
3115 
3116   adjustForTestUnderMask(DAG, DL, C);
3117   adjustICmp128(DAG, DL, C);
3118   return C;
3119 }
3120 
3121 // Emit the comparison instruction described by C.
3122 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
3123   if (!C.Op1.getNode()) {
3124     SDNode *Node;
3125     switch (C.Op0.getOpcode()) {
3126     case ISD::INTRINSIC_W_CHAIN:
3127       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
3128       return SDValue(Node, 0);
3129     case ISD::INTRINSIC_WO_CHAIN:
3130       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
3131       return SDValue(Node, Node->getNumValues() - 1);
3132     default:
3133       llvm_unreachable("Invalid comparison operands");
3134     }
3135   }
3136   if (C.Opcode == SystemZISD::ICMP)
3137     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
3138                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
3139   if (C.Opcode == SystemZISD::TM) {
3140     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
3141                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
3142     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
3143                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
3144   }
3145   if (C.Opcode == SystemZISD::VICMPES) {
3146     SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32);
3147     SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1);
3148     return SDValue(Val.getNode(), 1);
3149   }
3150   if (C.Chain) {
3151     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
3152     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
3153   }
3154   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
3155 }
3156 
3157 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
3158 // 64 bits.  Extend is the extension type to use.  Store the high part
3159 // in Hi and the low part in Lo.
3160 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
3161                             SDValue Op0, SDValue Op1, SDValue &Hi,
3162                             SDValue &Lo) {
3163   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
3164   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
3165   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
3166   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
3167                    DAG.getConstant(32, DL, MVT::i64));
3168   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
3169   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
3170 }
3171 
3172 // Lower a binary operation that produces two VT results, one in each
3173 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
3174 // and Opcode performs the GR128 operation.  Store the even register result
3175 // in Even and the odd register result in Odd.
3176 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3177                              unsigned Opcode, SDValue Op0, SDValue Op1,
3178                              SDValue &Even, SDValue &Odd) {
3179   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
3180   bool Is32Bit = is32Bit(VT);
3181   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
3182   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
3183 }
3184 
3185 // Return an i32 value that is 1 if the CC value produced by CCReg is
3186 // in the mask CCMask and 0 otherwise.  CC is known to have a value
3187 // in CCValid, so other values can be ignored.
3188 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
3189                          unsigned CCValid, unsigned CCMask) {
3190   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
3191                    DAG.getConstant(0, DL, MVT::i32),
3192                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
3193                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
3194   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
3195 }
3196 
3197 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
3198 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
3199 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
3200 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
3201 // floating-point comparisons.
3202 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
3203 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
3204   switch (CC) {
3205   case ISD::SETOEQ:
3206   case ISD::SETEQ:
3207     switch (Mode) {
3208     case CmpMode::Int:         return SystemZISD::VICMPE;
3209     case CmpMode::FP:          return SystemZISD::VFCMPE;
3210     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
3211     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
3212     }
3213     llvm_unreachable("Bad mode");
3214 
3215   case ISD::SETOGE:
3216   case ISD::SETGE:
3217     switch (Mode) {
3218     case CmpMode::Int:         return 0;
3219     case CmpMode::FP:          return SystemZISD::VFCMPHE;
3220     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
3221     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
3222     }
3223     llvm_unreachable("Bad mode");
3224 
3225   case ISD::SETOGT:
3226   case ISD::SETGT:
3227     switch (Mode) {
3228     case CmpMode::Int:         return SystemZISD::VICMPH;
3229     case CmpMode::FP:          return SystemZISD::VFCMPH;
3230     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
3231     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
3232     }
3233     llvm_unreachable("Bad mode");
3234 
3235   case ISD::SETUGT:
3236     switch (Mode) {
3237     case CmpMode::Int:         return SystemZISD::VICMPHL;
3238     case CmpMode::FP:          return 0;
3239     case CmpMode::StrictFP:    return 0;
3240     case CmpMode::SignalingFP: return 0;
3241     }
3242     llvm_unreachable("Bad mode");
3243 
3244   default:
3245     return 0;
3246   }
3247 }
3248 
3249 // Return the SystemZISD vector comparison operation for CC or its inverse,
3250 // or 0 if neither can be done directly.  Indicate in Invert whether the
3251 // result is for the inverse of CC.  Mode is as above.
3252 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
3253                                             bool &Invert) {
3254   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3255     Invert = false;
3256     return Opcode;
3257   }
3258 
3259   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
3260   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3261     Invert = true;
3262     return Opcode;
3263   }
3264 
3265   return 0;
3266 }
3267 
3268 // Return a v2f64 that contains the extended form of elements Start and Start+1
3269 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
3270 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
3271                                   SDValue Op, SDValue Chain) {
3272   int Mask[] = { Start, -1, Start + 1, -1 };
3273   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
3274   if (Chain) {
3275     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
3276     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
3277   }
3278   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
3279 }
3280 
3281 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
3282 // producing a result of type VT.  If Chain is nonnull, return the strict form.
3283 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
3284                                             const SDLoc &DL, EVT VT,
3285                                             SDValue CmpOp0,
3286                                             SDValue CmpOp1,
3287                                             SDValue Chain) const {
3288   // There is no hardware support for v4f32 (unless we have the vector
3289   // enhancements facility 1), so extend the vector into two v2f64s
3290   // and compare those.
3291   if (CmpOp0.getValueType() == MVT::v4f32 &&
3292       !Subtarget.hasVectorEnhancements1()) {
3293     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
3294     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
3295     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
3296     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
3297     if (Chain) {
3298       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
3299       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
3300       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
3301       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3302       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
3303                             H1.getValue(1), L1.getValue(1),
3304                             HRes.getValue(1), LRes.getValue(1) };
3305       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3306       SDValue Ops[2] = { Res, NewChain };
3307       return DAG.getMergeValues(Ops, DL);
3308     }
3309     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3310     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3311     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3312   }
3313   if (Chain) {
3314     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3315     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3316   }
3317   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3318 }
3319 
3320 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3321 // an integer mask of type VT.  If Chain is nonnull, we have a strict
3322 // floating-point comparison.  If in addition IsSignaling is true, we have
3323 // a strict signaling floating-point comparison.
3324 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3325                                                 const SDLoc &DL, EVT VT,
3326                                                 ISD::CondCode CC,
3327                                                 SDValue CmpOp0,
3328                                                 SDValue CmpOp1,
3329                                                 SDValue Chain,
3330                                                 bool IsSignaling) const {
3331   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3332   assert (!Chain || IsFP);
3333   assert (!IsSignaling || Chain);
3334   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3335                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3336   bool Invert = false;
3337   SDValue Cmp;
3338   switch (CC) {
3339     // Handle tests for order using (or (ogt y x) (oge x y)).
3340   case ISD::SETUO:
3341     Invert = true;
3342     [[fallthrough]];
3343   case ISD::SETO: {
3344     assert(IsFP && "Unexpected integer comparison");
3345     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3346                               DL, VT, CmpOp1, CmpOp0, Chain);
3347     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3348                               DL, VT, CmpOp0, CmpOp1, Chain);
3349     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3350     if (Chain)
3351       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3352                           LT.getValue(1), GE.getValue(1));
3353     break;
3354   }
3355 
3356     // Handle <> tests using (or (ogt y x) (ogt x y)).
3357   case ISD::SETUEQ:
3358     Invert = true;
3359     [[fallthrough]];
3360   case ISD::SETONE: {
3361     assert(IsFP && "Unexpected integer comparison");
3362     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3363                               DL, VT, CmpOp1, CmpOp0, Chain);
3364     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3365                               DL, VT, CmpOp0, CmpOp1, Chain);
3366     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3367     if (Chain)
3368       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3369                           LT.getValue(1), GT.getValue(1));
3370     break;
3371   }
3372 
3373     // Otherwise a single comparison is enough.  It doesn't really
3374     // matter whether we try the inversion or the swap first, since
3375     // there are no cases where both work.
3376   default:
3377     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3378       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3379     else {
3380       CC = ISD::getSetCCSwappedOperands(CC);
3381       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3382         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3383       else
3384         llvm_unreachable("Unhandled comparison");
3385     }
3386     if (Chain)
3387       Chain = Cmp.getValue(1);
3388     break;
3389   }
3390   if (Invert) {
3391     SDValue Mask =
3392       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3393     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3394   }
3395   if (Chain && Chain.getNode() != Cmp.getNode()) {
3396     SDValue Ops[2] = { Cmp, Chain };
3397     Cmp = DAG.getMergeValues(Ops, DL);
3398   }
3399   return Cmp;
3400 }
3401 
3402 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3403                                           SelectionDAG &DAG) const {
3404   SDValue CmpOp0   = Op.getOperand(0);
3405   SDValue CmpOp1   = Op.getOperand(1);
3406   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3407   SDLoc DL(Op);
3408   EVT VT = Op.getValueType();
3409   if (VT.isVector())
3410     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3411 
3412   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3413   SDValue CCReg = emitCmp(DAG, DL, C);
3414   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3415 }
3416 
3417 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3418                                                   SelectionDAG &DAG,
3419                                                   bool IsSignaling) const {
3420   SDValue Chain    = Op.getOperand(0);
3421   SDValue CmpOp0   = Op.getOperand(1);
3422   SDValue CmpOp1   = Op.getOperand(2);
3423   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3424   SDLoc DL(Op);
3425   EVT VT = Op.getNode()->getValueType(0);
3426   if (VT.isVector()) {
3427     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3428                                    Chain, IsSignaling);
3429     return Res.getValue(Op.getResNo());
3430   }
3431 
3432   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3433   SDValue CCReg = emitCmp(DAG, DL, C);
3434   CCReg->setFlags(Op->getFlags());
3435   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3436   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3437   return DAG.getMergeValues(Ops, DL);
3438 }
3439 
3440 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3441   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3442   SDValue CmpOp0   = Op.getOperand(2);
3443   SDValue CmpOp1   = Op.getOperand(3);
3444   SDValue Dest     = Op.getOperand(4);
3445   SDLoc DL(Op);
3446 
3447   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3448   SDValue CCReg = emitCmp(DAG, DL, C);
3449   return DAG.getNode(
3450       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3451       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3452       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3453 }
3454 
3455 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3456 // allowing Pos and Neg to be wider than CmpOp.
3457 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3458   return (Neg.getOpcode() == ISD::SUB &&
3459           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3460           Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos &&
3461           (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3462                             Pos.getOperand(0) == CmpOp)));
3463 }
3464 
3465 // Return the absolute or negative absolute of Op; IsNegative decides which.
3466 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3467                            bool IsNegative) {
3468   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3469   if (IsNegative)
3470     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3471                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3472   return Op;
3473 }
3474 
3475 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3476                                               SelectionDAG &DAG) const {
3477   SDValue CmpOp0   = Op.getOperand(0);
3478   SDValue CmpOp1   = Op.getOperand(1);
3479   SDValue TrueOp   = Op.getOperand(2);
3480   SDValue FalseOp  = Op.getOperand(3);
3481   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3482   SDLoc DL(Op);
3483 
3484   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3485 
3486   // Check for absolute and negative-absolute selections, including those
3487   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3488   // This check supplements the one in DAGCombiner.
3489   if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3490       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3491       C.Op1.getOpcode() == ISD::Constant &&
3492       cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
3493       C.Op1->getAsZExtVal() == 0) {
3494     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3495       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3496     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3497       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3498   }
3499 
3500   SDValue CCReg = emitCmp(DAG, DL, C);
3501   SDValue Ops[] = {TrueOp, FalseOp,
3502                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3503                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3504 
3505   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3506 }
3507 
3508 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3509                                                   SelectionDAG &DAG) const {
3510   SDLoc DL(Node);
3511   const GlobalValue *GV = Node->getGlobal();
3512   int64_t Offset = Node->getOffset();
3513   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3514   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3515 
3516   SDValue Result;
3517   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3518     if (isInt<32>(Offset)) {
3519       // Assign anchors at 1<<12 byte boundaries.
3520       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3521       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3522       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3523 
3524       // The offset can be folded into the address if it is aligned to a
3525       // halfword.
3526       Offset -= Anchor;
3527       if (Offset != 0 && (Offset & 1) == 0) {
3528         SDValue Full =
3529           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3530         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3531         Offset = 0;
3532       }
3533     } else {
3534       // Conservatively load a constant offset greater than 32 bits into a
3535       // register below.
3536       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3537       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3538     }
3539   } else if (Subtarget.isTargetELF()) {
3540     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3541     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3542     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3543                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3544   } else if (Subtarget.isTargetzOS()) {
3545     Result = getADAEntry(DAG, GV, DL, PtrVT);
3546   } else
3547     llvm_unreachable("Unexpected Subtarget");
3548 
3549   // If there was a non-zero offset that we didn't fold, create an explicit
3550   // addition for it.
3551   if (Offset != 0)
3552     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3553                          DAG.getConstant(Offset, DL, PtrVT));
3554 
3555   return Result;
3556 }
3557 
3558 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3559                                                  SelectionDAG &DAG,
3560                                                  unsigned Opcode,
3561                                                  SDValue GOTOffset) const {
3562   SDLoc DL(Node);
3563   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3564   SDValue Chain = DAG.getEntryNode();
3565   SDValue Glue;
3566 
3567   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3568       CallingConv::GHC)
3569     report_fatal_error("In GHC calling convention TLS is not supported");
3570 
3571   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3572   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3573   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3574   Glue = Chain.getValue(1);
3575   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3576   Glue = Chain.getValue(1);
3577 
3578   // The first call operand is the chain and the second is the TLS symbol.
3579   SmallVector<SDValue, 8> Ops;
3580   Ops.push_back(Chain);
3581   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3582                                            Node->getValueType(0),
3583                                            0, 0));
3584 
3585   // Add argument registers to the end of the list so that they are
3586   // known live into the call.
3587   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3588   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3589 
3590   // Add a register mask operand representing the call-preserved registers.
3591   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3592   const uint32_t *Mask =
3593       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3594   assert(Mask && "Missing call preserved mask for calling convention");
3595   Ops.push_back(DAG.getRegisterMask(Mask));
3596 
3597   // Glue the call to the argument copies.
3598   Ops.push_back(Glue);
3599 
3600   // Emit the call.
3601   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3602   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3603   Glue = Chain.getValue(1);
3604 
3605   // Copy the return value from %r2.
3606   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3607 }
3608 
3609 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3610                                                   SelectionDAG &DAG) const {
3611   SDValue Chain = DAG.getEntryNode();
3612   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3613 
3614   // The high part of the thread pointer is in access register 0.
3615   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3616   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3617 
3618   // The low part of the thread pointer is in access register 1.
3619   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3620   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3621 
3622   // Merge them into a single 64-bit address.
3623   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3624                                     DAG.getConstant(32, DL, PtrVT));
3625   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3626 }
3627 
3628 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3629                                                      SelectionDAG &DAG) const {
3630   if (DAG.getTarget().useEmulatedTLS())
3631     return LowerToTLSEmulatedModel(Node, DAG);
3632   SDLoc DL(Node);
3633   const GlobalValue *GV = Node->getGlobal();
3634   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3635   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3636 
3637   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3638       CallingConv::GHC)
3639     report_fatal_error("In GHC calling convention TLS is not supported");
3640 
3641   SDValue TP = lowerThreadPointer(DL, DAG);
3642 
3643   // Get the offset of GA from the thread pointer, based on the TLS model.
3644   SDValue Offset;
3645   switch (model) {
3646     case TLSModel::GeneralDynamic: {
3647       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3648       SystemZConstantPoolValue *CPV =
3649         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3650 
3651       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3652       Offset = DAG.getLoad(
3653           PtrVT, DL, DAG.getEntryNode(), Offset,
3654           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3655 
3656       // Call __tls_get_offset to retrieve the offset.
3657       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3658       break;
3659     }
3660 
3661     case TLSModel::LocalDynamic: {
3662       // Load the GOT offset of the module ID.
3663       SystemZConstantPoolValue *CPV =
3664         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3665 
3666       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3667       Offset = DAG.getLoad(
3668           PtrVT, DL, DAG.getEntryNode(), Offset,
3669           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3670 
3671       // Call __tls_get_offset to retrieve the module base offset.
3672       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3673 
3674       // Note: The SystemZLDCleanupPass will remove redundant computations
3675       // of the module base offset.  Count total number of local-dynamic
3676       // accesses to trigger execution of that pass.
3677       SystemZMachineFunctionInfo* MFI =
3678         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3679       MFI->incNumLocalDynamicTLSAccesses();
3680 
3681       // Add the per-symbol offset.
3682       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3683 
3684       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3685       DTPOffset = DAG.getLoad(
3686           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3687           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3688 
3689       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3690       break;
3691     }
3692 
3693     case TLSModel::InitialExec: {
3694       // Load the offset from the GOT.
3695       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3696                                           SystemZII::MO_INDNTPOFF);
3697       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3698       Offset =
3699           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3700                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3701       break;
3702     }
3703 
3704     case TLSModel::LocalExec: {
3705       // Force the offset into the constant pool and load it from there.
3706       SystemZConstantPoolValue *CPV =
3707         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3708 
3709       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3710       Offset = DAG.getLoad(
3711           PtrVT, DL, DAG.getEntryNode(), Offset,
3712           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3713       break;
3714     }
3715   }
3716 
3717   // Add the base and offset together.
3718   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3719 }
3720 
3721 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3722                                                  SelectionDAG &DAG) const {
3723   SDLoc DL(Node);
3724   const BlockAddress *BA = Node->getBlockAddress();
3725   int64_t Offset = Node->getOffset();
3726   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3727 
3728   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3729   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3730   return Result;
3731 }
3732 
3733 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3734                                               SelectionDAG &DAG) const {
3735   SDLoc DL(JT);
3736   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3737   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3738 
3739   // Use LARL to load the address of the table.
3740   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3741 }
3742 
3743 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3744                                                  SelectionDAG &DAG) const {
3745   SDLoc DL(CP);
3746   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3747 
3748   SDValue Result;
3749   if (CP->isMachineConstantPoolEntry())
3750     Result =
3751         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3752   else
3753     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3754                                        CP->getOffset());
3755 
3756   // Use LARL to load the address of the constant pool entry.
3757   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3758 }
3759 
3760 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3761                                               SelectionDAG &DAG) const {
3762   auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
3763   MachineFunction &MF = DAG.getMachineFunction();
3764   MachineFrameInfo &MFI = MF.getFrameInfo();
3765   MFI.setFrameAddressIsTaken(true);
3766 
3767   SDLoc DL(Op);
3768   unsigned Depth = Op.getConstantOperandVal(0);
3769   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3770 
3771   // By definition, the frame address is the address of the back chain.  (In
3772   // the case of packed stack without backchain, return the address where the
3773   // backchain would have been stored. This will either be an unused space or
3774   // contain a saved register).
3775   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3776   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3777 
3778   if (Depth > 0) {
3779     // FIXME The frontend should detect this case.
3780     if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3781       report_fatal_error("Unsupported stack frame traversal count");
3782 
3783     SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT);
3784     while (Depth--) {
3785       BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain,
3786                               MachinePointerInfo());
3787       BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset);
3788     }
3789   }
3790 
3791   return BackChain;
3792 }
3793 
3794 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3795                                                SelectionDAG &DAG) const {
3796   MachineFunction &MF = DAG.getMachineFunction();
3797   MachineFrameInfo &MFI = MF.getFrameInfo();
3798   MFI.setReturnAddressIsTaken(true);
3799 
3800   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3801     return SDValue();
3802 
3803   SDLoc DL(Op);
3804   unsigned Depth = Op.getConstantOperandVal(0);
3805   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3806 
3807   if (Depth > 0) {
3808     // FIXME The frontend should detect this case.
3809     if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3810       report_fatal_error("Unsupported stack frame traversal count");
3811 
3812     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3813     const auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
3814     int Offset = TFL->getReturnAddressOffset(MF);
3815     SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr,
3816                               DAG.getConstant(Offset, DL, PtrVT));
3817     return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr,
3818                        MachinePointerInfo());
3819   }
3820 
3821   // Return R14D (Elf) / R7D (XPLINK), which has the return address. Mark it an
3822   // implicit live-in.
3823   SystemZCallingConventionRegisters *CCR = Subtarget.getSpecialRegisters();
3824   Register LinkReg = MF.addLiveIn(CCR->getReturnFunctionAddressRegister(),
3825                                   &SystemZ::GR64BitRegClass);
3826   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3827 }
3828 
3829 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3830                                             SelectionDAG &DAG) const {
3831   SDLoc DL(Op);
3832   SDValue In = Op.getOperand(0);
3833   EVT InVT = In.getValueType();
3834   EVT ResVT = Op.getValueType();
3835 
3836   // Convert loads directly.  This is normally done by DAGCombiner,
3837   // but we need this case for bitcasts that are created during lowering
3838   // and which are then lowered themselves.
3839   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3840     if (ISD::isNormalLoad(LoadN)) {
3841       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3842                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3843       // Update the chain uses.
3844       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3845       return NewLoad;
3846     }
3847 
3848   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3849     SDValue In64;
3850     if (Subtarget.hasHighWord()) {
3851       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3852                                        MVT::i64);
3853       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3854                                        MVT::i64, SDValue(U64, 0), In);
3855     } else {
3856       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3857       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3858                          DAG.getConstant(32, DL, MVT::i64));
3859     }
3860     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3861     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3862                                       DL, MVT::f32, Out64);
3863   }
3864   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3865     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3866     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3867                                              MVT::f64, SDValue(U64, 0), In);
3868     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3869     if (Subtarget.hasHighWord())
3870       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3871                                         MVT::i32, Out64);
3872     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3873                                 DAG.getConstant(32, DL, MVT::i64));
3874     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3875   }
3876   llvm_unreachable("Unexpected bitcast combination");
3877 }
3878 
3879 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3880                                             SelectionDAG &DAG) const {
3881 
3882   if (Subtarget.isTargetXPLINK64())
3883     return lowerVASTART_XPLINK(Op, DAG);
3884   else
3885     return lowerVASTART_ELF(Op, DAG);
3886 }
3887 
3888 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3889                                                    SelectionDAG &DAG) const {
3890   MachineFunction &MF = DAG.getMachineFunction();
3891   SystemZMachineFunctionInfo *FuncInfo =
3892       MF.getInfo<SystemZMachineFunctionInfo>();
3893 
3894   SDLoc DL(Op);
3895 
3896   // vastart just stores the address of the VarArgsFrameIndex slot into the
3897   // memory location argument.
3898   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3899   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3900   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3901   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3902                       MachinePointerInfo(SV));
3903 }
3904 
3905 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3906                                                 SelectionDAG &DAG) const {
3907   MachineFunction &MF = DAG.getMachineFunction();
3908   SystemZMachineFunctionInfo *FuncInfo =
3909     MF.getInfo<SystemZMachineFunctionInfo>();
3910   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3911 
3912   SDValue Chain   = Op.getOperand(0);
3913   SDValue Addr    = Op.getOperand(1);
3914   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3915   SDLoc DL(Op);
3916 
3917   // The initial values of each field.
3918   const unsigned NumFields = 4;
3919   SDValue Fields[NumFields] = {
3920     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3921     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3922     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3923     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3924   };
3925 
3926   // Store each field into its respective slot.
3927   SDValue MemOps[NumFields];
3928   unsigned Offset = 0;
3929   for (unsigned I = 0; I < NumFields; ++I) {
3930     SDValue FieldAddr = Addr;
3931     if (Offset != 0)
3932       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3933                               DAG.getIntPtrConstant(Offset, DL));
3934     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3935                              MachinePointerInfo(SV, Offset));
3936     Offset += 8;
3937   }
3938   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3939 }
3940 
3941 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3942                                            SelectionDAG &DAG) const {
3943   SDValue Chain      = Op.getOperand(0);
3944   SDValue DstPtr     = Op.getOperand(1);
3945   SDValue SrcPtr     = Op.getOperand(2);
3946   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3947   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3948   SDLoc DL(Op);
3949 
3950   uint32_t Sz =
3951       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3952   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3953                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3954                        /*CI=*/nullptr, std::nullopt, MachinePointerInfo(DstSV),
3955                        MachinePointerInfo(SrcSV));
3956 }
3957 
3958 SDValue
3959 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3960                                                SelectionDAG &DAG) const {
3961   if (Subtarget.isTargetXPLINK64())
3962     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3963   else
3964     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3965 }
3966 
3967 SDValue
3968 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3969                                                       SelectionDAG &DAG) const {
3970   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3971   MachineFunction &MF = DAG.getMachineFunction();
3972   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3973   SDValue Chain = Op.getOperand(0);
3974   SDValue Size = Op.getOperand(1);
3975   SDValue Align = Op.getOperand(2);
3976   SDLoc DL(Op);
3977 
3978   // If user has set the no alignment function attribute, ignore
3979   // alloca alignments.
3980   uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
3981 
3982   uint64_t StackAlign = TFI->getStackAlignment();
3983   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3984   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3985 
3986   SDValue NeededSpace = Size;
3987 
3988   // Add extra space for alignment if needed.
3989   EVT PtrVT = getPointerTy(MF.getDataLayout());
3990   if (ExtraAlignSpace)
3991     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3992                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3993 
3994   bool IsSigned = false;
3995   bool DoesNotReturn = false;
3996   bool IsReturnValueUsed = false;
3997   EVT VT = Op.getValueType();
3998   SDValue AllocaCall =
3999       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace),
4000                        CallingConv::C, IsSigned, DL, DoesNotReturn,
4001                        IsReturnValueUsed)
4002           .first;
4003 
4004   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
4005   // to end of call in order to ensure it isn't broken up from the call
4006   // sequence.
4007   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
4008   Register SPReg = Regs.getStackPointerRegister();
4009   Chain = AllocaCall.getValue(1);
4010   SDValue Glue = AllocaCall.getValue(2);
4011   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
4012   Chain = NewSPRegNode.getValue(1);
4013 
4014   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
4015   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
4016   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
4017 
4018   // Dynamically realign if needed.
4019   if (ExtraAlignSpace) {
4020     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
4021                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
4022     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
4023                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
4024   }
4025 
4026   SDValue Ops[2] = {Result, Chain};
4027   return DAG.getMergeValues(Ops, DL);
4028 }
4029 
4030 SDValue
4031 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
4032                                                    SelectionDAG &DAG) const {
4033   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
4034   MachineFunction &MF = DAG.getMachineFunction();
4035   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
4036   bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4037 
4038   SDValue Chain = Op.getOperand(0);
4039   SDValue Size  = Op.getOperand(1);
4040   SDValue Align = Op.getOperand(2);
4041   SDLoc DL(Op);
4042 
4043   // If user has set the no alignment function attribute, ignore
4044   // alloca alignments.
4045   uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
4046 
4047   uint64_t StackAlign = TFI->getStackAlignment();
4048   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
4049   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
4050 
4051   Register SPReg = getStackPointerRegisterToSaveRestore();
4052   SDValue NeededSpace = Size;
4053 
4054   // Get a reference to the stack pointer.
4055   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
4056 
4057   // If we need a backchain, save it now.
4058   SDValue Backchain;
4059   if (StoreBackchain)
4060     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4061                             MachinePointerInfo());
4062 
4063   // Add extra space for alignment if needed.
4064   if (ExtraAlignSpace)
4065     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
4066                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4067 
4068   // Get the new stack pointer value.
4069   SDValue NewSP;
4070   if (hasInlineStackProbe(MF)) {
4071     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
4072                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
4073     Chain = NewSP.getValue(1);
4074   }
4075   else {
4076     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
4077     // Copy the new stack pointer back.
4078     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
4079   }
4080 
4081   // The allocated data lives above the 160 bytes allocated for the standard
4082   // frame, plus any outgoing stack arguments.  We don't know how much that
4083   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
4084   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4085   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
4086 
4087   // Dynamically realign if needed.
4088   if (RequiredAlign > StackAlign) {
4089     Result =
4090       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
4091                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4092     Result =
4093       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
4094                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
4095   }
4096 
4097   if (StoreBackchain)
4098     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4099                          MachinePointerInfo());
4100 
4101   SDValue Ops[2] = { Result, Chain };
4102   return DAG.getMergeValues(Ops, DL);
4103 }
4104 
4105 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
4106     SDValue Op, SelectionDAG &DAG) const {
4107   SDLoc DL(Op);
4108 
4109   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4110 }
4111 
4112 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
4113                                               SelectionDAG &DAG) const {
4114   EVT VT = Op.getValueType();
4115   SDLoc DL(Op);
4116   SDValue Ops[2];
4117   if (is32Bit(VT))
4118     // Just do a normal 64-bit multiplication and extract the results.
4119     // We define this so that it can be used for constant division.
4120     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
4121                     Op.getOperand(1), Ops[1], Ops[0]);
4122   else if (Subtarget.hasMiscellaneousExtensions2())
4123     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
4124     // the high result in the even register.  ISD::SMUL_LOHI is defined to
4125     // return the low half first, so the results are in reverse order.
4126     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
4127                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4128   else {
4129     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
4130     //
4131     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
4132     //
4133     // but using the fact that the upper halves are either all zeros
4134     // or all ones:
4135     //
4136     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
4137     //
4138     // and grouping the right terms together since they are quicker than the
4139     // multiplication:
4140     //
4141     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
4142     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
4143     SDValue LL = Op.getOperand(0);
4144     SDValue RL = Op.getOperand(1);
4145     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
4146     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
4147     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4148     // the high result in the even register.  ISD::SMUL_LOHI is defined to
4149     // return the low half first, so the results are in reverse order.
4150     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4151                      LL, RL, Ops[1], Ops[0]);
4152     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
4153     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
4154     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
4155     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
4156   }
4157   return DAG.getMergeValues(Ops, DL);
4158 }
4159 
4160 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
4161                                               SelectionDAG &DAG) const {
4162   EVT VT = Op.getValueType();
4163   SDLoc DL(Op);
4164   SDValue Ops[2];
4165   if (is32Bit(VT))
4166     // Just do a normal 64-bit multiplication and extract the results.
4167     // We define this so that it can be used for constant division.
4168     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
4169                     Op.getOperand(1), Ops[1], Ops[0]);
4170   else
4171     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4172     // the high result in the even register.  ISD::UMUL_LOHI is defined to
4173     // return the low half first, so the results are in reverse order.
4174     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4175                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4176   return DAG.getMergeValues(Ops, DL);
4177 }
4178 
4179 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
4180                                             SelectionDAG &DAG) const {
4181   SDValue Op0 = Op.getOperand(0);
4182   SDValue Op1 = Op.getOperand(1);
4183   EVT VT = Op.getValueType();
4184   SDLoc DL(Op);
4185 
4186   // We use DSGF for 32-bit division.  This means the first operand must
4187   // always be 64-bit, and the second operand should be 32-bit whenever
4188   // that is possible, to improve performance.
4189   if (is32Bit(VT))
4190     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
4191   else if (DAG.ComputeNumSignBits(Op1) > 32)
4192     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
4193 
4194   // DSG(F) returns the remainder in the even register and the
4195   // quotient in the odd register.
4196   SDValue Ops[2];
4197   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
4198   return DAG.getMergeValues(Ops, DL);
4199 }
4200 
4201 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
4202                                             SelectionDAG &DAG) const {
4203   EVT VT = Op.getValueType();
4204   SDLoc DL(Op);
4205 
4206   // DL(G) returns the remainder in the even register and the
4207   // quotient in the odd register.
4208   SDValue Ops[2];
4209   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
4210                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4211   return DAG.getMergeValues(Ops, DL);
4212 }
4213 
4214 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
4215   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
4216 
4217   // Get the known-zero masks for each operand.
4218   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
4219   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
4220                         DAG.computeKnownBits(Ops[1])};
4221 
4222   // See if the upper 32 bits of one operand and the lower 32 bits of the
4223   // other are known zero.  They are the low and high operands respectively.
4224   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
4225                        Known[1].Zero.getZExtValue() };
4226   unsigned High, Low;
4227   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
4228     High = 1, Low = 0;
4229   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
4230     High = 0, Low = 1;
4231   else
4232     return Op;
4233 
4234   SDValue LowOp = Ops[Low];
4235   SDValue HighOp = Ops[High];
4236 
4237   // If the high part is a constant, we're better off using IILH.
4238   if (HighOp.getOpcode() == ISD::Constant)
4239     return Op;
4240 
4241   // If the low part is a constant that is outside the range of LHI,
4242   // then we're better off using IILF.
4243   if (LowOp.getOpcode() == ISD::Constant) {
4244     int64_t Value = int32_t(LowOp->getAsZExtVal());
4245     if (!isInt<16>(Value))
4246       return Op;
4247   }
4248 
4249   // Check whether the high part is an AND that doesn't change the
4250   // high 32 bits and just masks out low bits.  We can skip it if so.
4251   if (HighOp.getOpcode() == ISD::AND &&
4252       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
4253     SDValue HighOp0 = HighOp.getOperand(0);
4254     uint64_t Mask = HighOp.getConstantOperandVal(1);
4255     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
4256       HighOp = HighOp0;
4257   }
4258 
4259   // Take advantage of the fact that all GR32 operations only change the
4260   // low 32 bits by truncating Low to an i32 and inserting it directly
4261   // using a subreg.  The interesting cases are those where the truncation
4262   // can be folded.
4263   SDLoc DL(Op);
4264   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
4265   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
4266                                    MVT::i64, HighOp, Low32);
4267 }
4268 
4269 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
4270 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
4271                                           SelectionDAG &DAG) const {
4272   SDNode *N = Op.getNode();
4273   SDValue LHS = N->getOperand(0);
4274   SDValue RHS = N->getOperand(1);
4275   SDLoc DL(N);
4276 
4277   if (N->getValueType(0) == MVT::i128) {
4278     unsigned BaseOp = 0;
4279     unsigned FlagOp = 0;
4280     bool IsBorrow = false;
4281     switch (Op.getOpcode()) {
4282     default: llvm_unreachable("Unknown instruction!");
4283     case ISD::UADDO:
4284       BaseOp = ISD::ADD;
4285       FlagOp = SystemZISD::VACC;
4286       break;
4287     case ISD::USUBO:
4288       BaseOp = ISD::SUB;
4289       FlagOp = SystemZISD::VSCBI;
4290       IsBorrow = true;
4291       break;
4292     }
4293     SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS);
4294     SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS);
4295     Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4296                        DAG.getValueType(MVT::i1));
4297     Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4298     if (IsBorrow)
4299       Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4300                          Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4301     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4302   }
4303 
4304   unsigned BaseOp = 0;
4305   unsigned CCValid = 0;
4306   unsigned CCMask = 0;
4307 
4308   switch (Op.getOpcode()) {
4309   default: llvm_unreachable("Unknown instruction!");
4310   case ISD::SADDO:
4311     BaseOp = SystemZISD::SADDO;
4312     CCValid = SystemZ::CCMASK_ARITH;
4313     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4314     break;
4315   case ISD::SSUBO:
4316     BaseOp = SystemZISD::SSUBO;
4317     CCValid = SystemZ::CCMASK_ARITH;
4318     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4319     break;
4320   case ISD::UADDO:
4321     BaseOp = SystemZISD::UADDO;
4322     CCValid = SystemZ::CCMASK_LOGICAL;
4323     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4324     break;
4325   case ISD::USUBO:
4326     BaseOp = SystemZISD::USUBO;
4327     CCValid = SystemZ::CCMASK_LOGICAL;
4328     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4329     break;
4330   }
4331 
4332   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
4333   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
4334 
4335   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4336   if (N->getValueType(1) == MVT::i1)
4337     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4338 
4339   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4340 }
4341 
4342 static bool isAddCarryChain(SDValue Carry) {
4343   while (Carry.getOpcode() == ISD::UADDO_CARRY)
4344     Carry = Carry.getOperand(2);
4345   return Carry.getOpcode() == ISD::UADDO;
4346 }
4347 
4348 static bool isSubBorrowChain(SDValue Carry) {
4349   while (Carry.getOpcode() == ISD::USUBO_CARRY)
4350     Carry = Carry.getOperand(2);
4351   return Carry.getOpcode() == ISD::USUBO;
4352 }
4353 
4354 // Lower UADDO_CARRY/USUBO_CARRY nodes.
4355 SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op,
4356                                                    SelectionDAG &DAG) const {
4357 
4358   SDNode *N = Op.getNode();
4359   MVT VT = N->getSimpleValueType(0);
4360 
4361   // Let legalize expand this if it isn't a legal type yet.
4362   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4363     return SDValue();
4364 
4365   SDValue LHS = N->getOperand(0);
4366   SDValue RHS = N->getOperand(1);
4367   SDValue Carry = Op.getOperand(2);
4368   SDLoc DL(N);
4369 
4370   if (VT == MVT::i128) {
4371     unsigned BaseOp = 0;
4372     unsigned FlagOp = 0;
4373     bool IsBorrow = false;
4374     switch (Op.getOpcode()) {
4375     default: llvm_unreachable("Unknown instruction!");
4376     case ISD::UADDO_CARRY:
4377       BaseOp = SystemZISD::VAC;
4378       FlagOp = SystemZISD::VACCC;
4379       break;
4380     case ISD::USUBO_CARRY:
4381       BaseOp = SystemZISD::VSBI;
4382       FlagOp = SystemZISD::VSBCBI;
4383       IsBorrow = true;
4384       break;
4385     }
4386     if (IsBorrow)
4387       Carry = DAG.getNode(ISD::XOR, DL, Carry.getValueType(),
4388                           Carry, DAG.getConstant(1, DL, Carry.getValueType()));
4389     Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128);
4390     SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry);
4391     SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry);
4392     Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4393                        DAG.getValueType(MVT::i1));
4394     Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4395     if (IsBorrow)
4396       Flag = DAG.getNode(ISD::XOR, DL, Flag.getValueType(),
4397                          Flag, DAG.getConstant(1, DL, Flag.getValueType()));
4398     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4399   }
4400 
4401   unsigned BaseOp = 0;
4402   unsigned CCValid = 0;
4403   unsigned CCMask = 0;
4404 
4405   switch (Op.getOpcode()) {
4406   default: llvm_unreachable("Unknown instruction!");
4407   case ISD::UADDO_CARRY:
4408     if (!isAddCarryChain(Carry))
4409       return SDValue();
4410 
4411     BaseOp = SystemZISD::ADDCARRY;
4412     CCValid = SystemZ::CCMASK_LOGICAL;
4413     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4414     break;
4415   case ISD::USUBO_CARRY:
4416     if (!isSubBorrowChain(Carry))
4417       return SDValue();
4418 
4419     BaseOp = SystemZISD::SUBCARRY;
4420     CCValid = SystemZ::CCMASK_LOGICAL;
4421     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4422     break;
4423   }
4424 
4425   // Set the condition code from the carry flag.
4426   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4427                       DAG.getConstant(CCValid, DL, MVT::i32),
4428                       DAG.getConstant(CCMask, DL, MVT::i32));
4429 
4430   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4431   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4432 
4433   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4434   if (N->getValueType(1) == MVT::i1)
4435     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4436 
4437   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4438 }
4439 
4440 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4441                                           SelectionDAG &DAG) const {
4442   EVT VT = Op.getValueType();
4443   SDLoc DL(Op);
4444   Op = Op.getOperand(0);
4445 
4446   if (VT.getScalarSizeInBits() == 128) {
4447     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op);
4448     Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op);
4449     SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL,
4450                                           DAG.getConstant(0, DL, MVT::i64));
4451     Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4452     return Op;
4453   }
4454 
4455   // Handle vector types via VPOPCT.
4456   if (VT.isVector()) {
4457     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4458     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4459     switch (VT.getScalarSizeInBits()) {
4460     case 8:
4461       break;
4462     case 16: {
4463       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4464       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4465       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4466       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4467       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4468       break;
4469     }
4470     case 32: {
4471       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4472                                             DAG.getConstant(0, DL, MVT::i32));
4473       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4474       break;
4475     }
4476     case 64: {
4477       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4478                                             DAG.getConstant(0, DL, MVT::i32));
4479       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4480       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4481       break;
4482     }
4483     default:
4484       llvm_unreachable("Unexpected type");
4485     }
4486     return Op;
4487   }
4488 
4489   // Get the known-zero mask for the operand.
4490   KnownBits Known = DAG.computeKnownBits(Op);
4491   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4492   if (NumSignificantBits == 0)
4493     return DAG.getConstant(0, DL, VT);
4494 
4495   // Skip known-zero high parts of the operand.
4496   int64_t OrigBitSize = VT.getSizeInBits();
4497   int64_t BitSize = llvm::bit_ceil(NumSignificantBits);
4498   BitSize = std::min(BitSize, OrigBitSize);
4499 
4500   // The POPCNT instruction counts the number of bits in each byte.
4501   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4502   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4503   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4504 
4505   // Add up per-byte counts in a binary tree.  All bits of Op at
4506   // position larger than BitSize remain zero throughout.
4507   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4508     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4509     if (BitSize != OrigBitSize)
4510       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4511                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4512     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4513   }
4514 
4515   // Extract overall result from high byte.
4516   if (BitSize > 8)
4517     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4518                      DAG.getConstant(BitSize - 8, DL, VT));
4519 
4520   return Op;
4521 }
4522 
4523 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4524                                                  SelectionDAG &DAG) const {
4525   SDLoc DL(Op);
4526   AtomicOrdering FenceOrdering =
4527       static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4528   SyncScope::ID FenceSSID =
4529       static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4530 
4531   // The only fence that needs an instruction is a sequentially-consistent
4532   // cross-thread fence.
4533   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4534       FenceSSID == SyncScope::System) {
4535     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4536                                       Op.getOperand(0)),
4537                    0);
4538   }
4539 
4540   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4541   return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4542 }
4543 
4544 SDValue SystemZTargetLowering::lowerATOMIC_LDST_I128(SDValue Op,
4545                                                      SelectionDAG &DAG) const {
4546   auto *Node = cast<AtomicSDNode>(Op.getNode());
4547   assert(
4548       (Node->getMemoryVT() == MVT::i128 || Node->getMemoryVT() == MVT::f128) &&
4549       "Only custom lowering i128 or f128.");
4550   // Use same code to handle both legal and non-legal i128 types.
4551   SmallVector<SDValue, 2> Results;
4552   LowerOperationWrapper(Node, Results, DAG);
4553   return DAG.getMergeValues(Results, SDLoc(Op));
4554 }
4555 
4556 // Prepare for a Compare And Swap for a subword operation. This needs to be
4557 // done in memory with 4 bytes at natural alignment.
4558 static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL,
4559                                   SDValue &AlignedAddr, SDValue &BitShift,
4560                                   SDValue &NegBitShift) {
4561   EVT PtrVT = Addr.getValueType();
4562   EVT WideVT = MVT::i32;
4563 
4564   // Get the address of the containing word.
4565   AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4566                             DAG.getConstant(-4, DL, PtrVT));
4567 
4568   // Get the number of bits that the word must be rotated left in order
4569   // to bring the field to the top bits of a GR32.
4570   BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4571                          DAG.getConstant(3, DL, PtrVT));
4572   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4573 
4574   // Get the complementing shift amount, for rotating a field in the top
4575   // bits back to its proper position.
4576   NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4577                             DAG.getConstant(0, DL, WideVT), BitShift);
4578 
4579 }
4580 
4581 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4582 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4583 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4584                                                    SelectionDAG &DAG,
4585                                                    unsigned Opcode) const {
4586   auto *Node = cast<AtomicSDNode>(Op.getNode());
4587 
4588   // 32-bit operations need no special handling.
4589   EVT NarrowVT = Node->getMemoryVT();
4590   EVT WideVT = MVT::i32;
4591   if (NarrowVT == WideVT)
4592     return Op;
4593 
4594   int64_t BitSize = NarrowVT.getSizeInBits();
4595   SDValue ChainIn = Node->getChain();
4596   SDValue Addr = Node->getBasePtr();
4597   SDValue Src2 = Node->getVal();
4598   MachineMemOperand *MMO = Node->getMemOperand();
4599   SDLoc DL(Node);
4600 
4601   // Convert atomic subtracts of constants into additions.
4602   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4603     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4604       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4605       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4606     }
4607 
4608   SDValue AlignedAddr, BitShift, NegBitShift;
4609   getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4610 
4611   // Extend the source operand to 32 bits and prepare it for the inner loop.
4612   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4613   // operations require the source to be shifted in advance.  (This shift
4614   // can be folded if the source is constant.)  For AND and NAND, the lower
4615   // bits must be set, while for other opcodes they should be left clear.
4616   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4617     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4618                        DAG.getConstant(32 - BitSize, DL, WideVT));
4619   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4620       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4621     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4622                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4623 
4624   // Construct the ATOMIC_LOADW_* node.
4625   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4626   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4627                     DAG.getConstant(BitSize, DL, WideVT) };
4628   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4629                                              NarrowVT, MMO);
4630 
4631   // Rotate the result of the final CS so that the field is in the lower
4632   // bits of a GR32, then truncate it.
4633   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4634                                     DAG.getConstant(BitSize, DL, WideVT));
4635   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4636 
4637   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4638   return DAG.getMergeValues(RetOps, DL);
4639 }
4640 
4641 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations into
4642 // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions.
4643 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4644                                                     SelectionDAG &DAG) const {
4645   auto *Node = cast<AtomicSDNode>(Op.getNode());
4646   EVT MemVT = Node->getMemoryVT();
4647   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4648     // A full-width operation: negate and use LAA(G).
4649     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4650     assert(Subtarget.hasInterlockedAccess1() &&
4651            "Should have been expanded by AtomicExpand pass.");
4652     SDValue Src2 = Node->getVal();
4653     SDLoc DL(Src2);
4654     SDValue NegSrc2 =
4655       DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2);
4656     return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4657                          Node->getChain(), Node->getBasePtr(), NegSrc2,
4658                          Node->getMemOperand());
4659   }
4660 
4661   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4662 }
4663 
4664 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4665 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4666                                                     SelectionDAG &DAG) const {
4667   auto *Node = cast<AtomicSDNode>(Op.getNode());
4668   SDValue ChainIn = Node->getOperand(0);
4669   SDValue Addr = Node->getOperand(1);
4670   SDValue CmpVal = Node->getOperand(2);
4671   SDValue SwapVal = Node->getOperand(3);
4672   MachineMemOperand *MMO = Node->getMemOperand();
4673   SDLoc DL(Node);
4674 
4675   if (Node->getMemoryVT() == MVT::i128) {
4676     // Use same code to handle both legal and non-legal i128 types.
4677     SmallVector<SDValue, 3> Results;
4678     LowerOperationWrapper(Node, Results, DAG);
4679     return DAG.getMergeValues(Results, DL);
4680   }
4681 
4682   // We have native support for 32-bit and 64-bit compare and swap, but we
4683   // still need to expand extracting the "success" result from the CC.
4684   EVT NarrowVT = Node->getMemoryVT();
4685   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4686   if (NarrowVT == WideVT) {
4687     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4688     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4689     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4690                                                DL, Tys, Ops, NarrowVT, MMO);
4691     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4692                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4693 
4694     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4695     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4696     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4697     return SDValue();
4698   }
4699 
4700   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4701   // via a fullword ATOMIC_CMP_SWAPW operation.
4702   int64_t BitSize = NarrowVT.getSizeInBits();
4703 
4704   SDValue AlignedAddr, BitShift, NegBitShift;
4705   getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4706 
4707   // Construct the ATOMIC_CMP_SWAPW node.
4708   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4709   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4710                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4711   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4712                                              VTList, Ops, NarrowVT, MMO);
4713   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4714                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4715 
4716   // emitAtomicCmpSwapW() will zero extend the result (original value).
4717   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4718                                 DAG.getValueType(NarrowVT));
4719   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4720   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4721   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4722   return SDValue();
4723 }
4724 
4725 MachineMemOperand::Flags
4726 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4727   // Because of how we convert atomic_load and atomic_store to normal loads and
4728   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4729   // since DAGCombine hasn't been updated to account for atomic, but non
4730   // volatile loads.  (See D57601)
4731   if (auto *SI = dyn_cast<StoreInst>(&I))
4732     if (SI->isAtomic())
4733       return MachineMemOperand::MOVolatile;
4734   if (auto *LI = dyn_cast<LoadInst>(&I))
4735     if (LI->isAtomic())
4736       return MachineMemOperand::MOVolatile;
4737   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4738     if (AI->isAtomic())
4739       return MachineMemOperand::MOVolatile;
4740   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4741     if (AI->isAtomic())
4742       return MachineMemOperand::MOVolatile;
4743   return MachineMemOperand::MONone;
4744 }
4745 
4746 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4747                                               SelectionDAG &DAG) const {
4748   MachineFunction &MF = DAG.getMachineFunction();
4749   auto *Regs = Subtarget.getSpecialRegisters();
4750   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4751     report_fatal_error("Variable-sized stack allocations are not supported "
4752                        "in GHC calling convention");
4753   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4754                             Regs->getStackPointerRegister(), Op.getValueType());
4755 }
4756 
4757 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4758                                                  SelectionDAG &DAG) const {
4759   MachineFunction &MF = DAG.getMachineFunction();
4760   auto *Regs = Subtarget.getSpecialRegisters();
4761   bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4762 
4763   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4764     report_fatal_error("Variable-sized stack allocations are not supported "
4765                        "in GHC calling convention");
4766 
4767   SDValue Chain = Op.getOperand(0);
4768   SDValue NewSP = Op.getOperand(1);
4769   SDValue Backchain;
4770   SDLoc DL(Op);
4771 
4772   if (StoreBackchain) {
4773     SDValue OldSP = DAG.getCopyFromReg(
4774         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4775     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4776                             MachinePointerInfo());
4777   }
4778 
4779   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4780 
4781   if (StoreBackchain)
4782     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4783                          MachinePointerInfo());
4784 
4785   return Chain;
4786 }
4787 
4788 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4789                                              SelectionDAG &DAG) const {
4790   bool IsData = Op.getConstantOperandVal(4);
4791   if (!IsData)
4792     // Just preserve the chain.
4793     return Op.getOperand(0);
4794 
4795   SDLoc DL(Op);
4796   bool IsWrite = Op.getConstantOperandVal(2);
4797   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4798   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4799   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4800                    Op.getOperand(1)};
4801   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4802                                  Node->getVTList(), Ops,
4803                                  Node->getMemoryVT(), Node->getMemOperand());
4804 }
4805 
4806 // Convert condition code in CCReg to an i32 value.
4807 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4808   SDLoc DL(CCReg);
4809   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4810   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4811                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4812 }
4813 
4814 SDValue
4815 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4816                                               SelectionDAG &DAG) const {
4817   unsigned Opcode, CCValid;
4818   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4819     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4820     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4821     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4822     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4823     return SDValue();
4824   }
4825 
4826   return SDValue();
4827 }
4828 
4829 SDValue
4830 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4831                                                SelectionDAG &DAG) const {
4832   unsigned Opcode, CCValid;
4833   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4834     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4835     if (Op->getNumValues() == 1)
4836       return getCCResult(DAG, SDValue(Node, 0));
4837     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4838     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4839                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4840   }
4841 
4842   unsigned Id = Op.getConstantOperandVal(0);
4843   switch (Id) {
4844   case Intrinsic::thread_pointer:
4845     return lowerThreadPointer(SDLoc(Op), DAG);
4846 
4847   case Intrinsic::s390_vpdi:
4848     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4849                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4850 
4851   case Intrinsic::s390_vperm:
4852     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4853                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4854 
4855   case Intrinsic::s390_vuphb:
4856   case Intrinsic::s390_vuphh:
4857   case Intrinsic::s390_vuphf:
4858     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4859                        Op.getOperand(1));
4860 
4861   case Intrinsic::s390_vuplhb:
4862   case Intrinsic::s390_vuplhh:
4863   case Intrinsic::s390_vuplhf:
4864     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4865                        Op.getOperand(1));
4866 
4867   case Intrinsic::s390_vuplb:
4868   case Intrinsic::s390_vuplhw:
4869   case Intrinsic::s390_vuplf:
4870     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4871                        Op.getOperand(1));
4872 
4873   case Intrinsic::s390_vupllb:
4874   case Intrinsic::s390_vupllh:
4875   case Intrinsic::s390_vupllf:
4876     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4877                        Op.getOperand(1));
4878 
4879   case Intrinsic::s390_vsumb:
4880   case Intrinsic::s390_vsumh:
4881   case Intrinsic::s390_vsumgh:
4882   case Intrinsic::s390_vsumgf:
4883   case Intrinsic::s390_vsumqf:
4884   case Intrinsic::s390_vsumqg:
4885     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4886                        Op.getOperand(1), Op.getOperand(2));
4887 
4888   case Intrinsic::s390_vaq:
4889     return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(),
4890                        Op.getOperand(1), Op.getOperand(2));
4891   case Intrinsic::s390_vaccb:
4892   case Intrinsic::s390_vacch:
4893   case Intrinsic::s390_vaccf:
4894   case Intrinsic::s390_vaccg:
4895   case Intrinsic::s390_vaccq:
4896     return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(),
4897                        Op.getOperand(1), Op.getOperand(2));
4898   case Intrinsic::s390_vacq:
4899     return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(),
4900                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4901   case Intrinsic::s390_vacccq:
4902     return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(),
4903                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4904 
4905   case Intrinsic::s390_vsq:
4906     return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(),
4907                        Op.getOperand(1), Op.getOperand(2));
4908   case Intrinsic::s390_vscbib:
4909   case Intrinsic::s390_vscbih:
4910   case Intrinsic::s390_vscbif:
4911   case Intrinsic::s390_vscbig:
4912   case Intrinsic::s390_vscbiq:
4913     return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(),
4914                        Op.getOperand(1), Op.getOperand(2));
4915   case Intrinsic::s390_vsbiq:
4916     return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(),
4917                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4918   case Intrinsic::s390_vsbcbiq:
4919     return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(),
4920                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4921   }
4922 
4923   return SDValue();
4924 }
4925 
4926 namespace {
4927 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4928 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4929 // Operand is the constant third operand, otherwise it is the number of
4930 // bytes in each element of the result.
4931 struct Permute {
4932   unsigned Opcode;
4933   unsigned Operand;
4934   unsigned char Bytes[SystemZ::VectorBytes];
4935 };
4936 }
4937 
4938 static const Permute PermuteForms[] = {
4939   // VMRHG
4940   { SystemZISD::MERGE_HIGH, 8,
4941     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4942   // VMRHF
4943   { SystemZISD::MERGE_HIGH, 4,
4944     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4945   // VMRHH
4946   { SystemZISD::MERGE_HIGH, 2,
4947     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4948   // VMRHB
4949   { SystemZISD::MERGE_HIGH, 1,
4950     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4951   // VMRLG
4952   { SystemZISD::MERGE_LOW, 8,
4953     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4954   // VMRLF
4955   { SystemZISD::MERGE_LOW, 4,
4956     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4957   // VMRLH
4958   { SystemZISD::MERGE_LOW, 2,
4959     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4960   // VMRLB
4961   { SystemZISD::MERGE_LOW, 1,
4962     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4963   // VPKG
4964   { SystemZISD::PACK, 4,
4965     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4966   // VPKF
4967   { SystemZISD::PACK, 2,
4968     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4969   // VPKH
4970   { SystemZISD::PACK, 1,
4971     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4972   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4973   { SystemZISD::PERMUTE_DWORDS, 4,
4974     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4975   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4976   { SystemZISD::PERMUTE_DWORDS, 1,
4977     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4978 };
4979 
4980 // Called after matching a vector shuffle against a particular pattern.
4981 // Both the original shuffle and the pattern have two vector operands.
4982 // OpNos[0] is the operand of the original shuffle that should be used for
4983 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4984 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4985 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4986 // for operands 0 and 1 of the pattern.
4987 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4988   if (OpNos[0] < 0) {
4989     if (OpNos[1] < 0)
4990       return false;
4991     OpNo0 = OpNo1 = OpNos[1];
4992   } else if (OpNos[1] < 0) {
4993     OpNo0 = OpNo1 = OpNos[0];
4994   } else {
4995     OpNo0 = OpNos[0];
4996     OpNo1 = OpNos[1];
4997   }
4998   return true;
4999 }
5000 
5001 // Bytes is a VPERM-like permute vector, except that -1 is used for
5002 // undefined bytes.  Return true if the VPERM can be implemented using P.
5003 // When returning true set OpNo0 to the VPERM operand that should be
5004 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
5005 //
5006 // For example, if swapping the VPERM operands allows P to match, OpNo0
5007 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
5008 // operand, but rewriting it to use two duplicated operands allows it to
5009 // match P, then OpNo0 and OpNo1 will be the same.
5010 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
5011                          unsigned &OpNo0, unsigned &OpNo1) {
5012   int OpNos[] = { -1, -1 };
5013   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5014     int Elt = Bytes[I];
5015     if (Elt >= 0) {
5016       // Make sure that the two permute vectors use the same suboperand
5017       // byte number.  Only the operand numbers (the high bits) are
5018       // allowed to differ.
5019       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
5020         return false;
5021       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
5022       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
5023       // Make sure that the operand mappings are consistent with previous
5024       // elements.
5025       if (OpNos[ModelOpNo] == 1 - RealOpNo)
5026         return false;
5027       OpNos[ModelOpNo] = RealOpNo;
5028     }
5029   }
5030   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5031 }
5032 
5033 // As above, but search for a matching permute.
5034 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
5035                                    unsigned &OpNo0, unsigned &OpNo1) {
5036   for (auto &P : PermuteForms)
5037     if (matchPermute(Bytes, P, OpNo0, OpNo1))
5038       return &P;
5039   return nullptr;
5040 }
5041 
5042 // Bytes is a VPERM-like permute vector, except that -1 is used for
5043 // undefined bytes.  This permute is an operand of an outer permute.
5044 // See whether redistributing the -1 bytes gives a shuffle that can be
5045 // implemented using P.  If so, set Transform to a VPERM-like permute vector
5046 // that, when applied to the result of P, gives the original permute in Bytes.
5047 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5048                                const Permute &P,
5049                                SmallVectorImpl<int> &Transform) {
5050   unsigned To = 0;
5051   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
5052     int Elt = Bytes[From];
5053     if (Elt < 0)
5054       // Byte number From of the result is undefined.
5055       Transform[From] = -1;
5056     else {
5057       while (P.Bytes[To] != Elt) {
5058         To += 1;
5059         if (To == SystemZ::VectorBytes)
5060           return false;
5061       }
5062       Transform[From] = To;
5063     }
5064   }
5065   return true;
5066 }
5067 
5068 // As above, but search for a matching permute.
5069 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5070                                          SmallVectorImpl<int> &Transform) {
5071   for (auto &P : PermuteForms)
5072     if (matchDoublePermute(Bytes, P, Transform))
5073       return &P;
5074   return nullptr;
5075 }
5076 
5077 // Convert the mask of the given shuffle op into a byte-level mask,
5078 // as if it had type vNi8.
5079 static bool getVPermMask(SDValue ShuffleOp,
5080                          SmallVectorImpl<int> &Bytes) {
5081   EVT VT = ShuffleOp.getValueType();
5082   unsigned NumElements = VT.getVectorNumElements();
5083   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5084 
5085   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
5086     Bytes.resize(NumElements * BytesPerElement, -1);
5087     for (unsigned I = 0; I < NumElements; ++I) {
5088       int Index = VSN->getMaskElt(I);
5089       if (Index >= 0)
5090         for (unsigned J = 0; J < BytesPerElement; ++J)
5091           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5092     }
5093     return true;
5094   }
5095   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
5096       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
5097     unsigned Index = ShuffleOp.getConstantOperandVal(1);
5098     Bytes.resize(NumElements * BytesPerElement, -1);
5099     for (unsigned I = 0; I < NumElements; ++I)
5100       for (unsigned J = 0; J < BytesPerElement; ++J)
5101         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5102     return true;
5103   }
5104   return false;
5105 }
5106 
5107 // Bytes is a VPERM-like permute vector, except that -1 is used for
5108 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
5109 // the result come from a contiguous sequence of bytes from one input.
5110 // Set Base to the selector for the first byte if so.
5111 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
5112                             unsigned BytesPerElement, int &Base) {
5113   Base = -1;
5114   for (unsigned I = 0; I < BytesPerElement; ++I) {
5115     if (Bytes[Start + I] >= 0) {
5116       unsigned Elem = Bytes[Start + I];
5117       if (Base < 0) {
5118         Base = Elem - I;
5119         // Make sure the bytes would come from one input operand.
5120         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
5121           return false;
5122       } else if (unsigned(Base) != Elem - I)
5123         return false;
5124     }
5125   }
5126   return true;
5127 }
5128 
5129 // Bytes is a VPERM-like permute vector, except that -1 is used for
5130 // undefined bytes.  Return true if it can be performed using VSLDB.
5131 // When returning true, set StartIndex to the shift amount and OpNo0
5132 // and OpNo1 to the VPERM operands that should be used as the first
5133 // and second shift operand respectively.
5134 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
5135                                unsigned &StartIndex, unsigned &OpNo0,
5136                                unsigned &OpNo1) {
5137   int OpNos[] = { -1, -1 };
5138   int Shift = -1;
5139   for (unsigned I = 0; I < 16; ++I) {
5140     int Index = Bytes[I];
5141     if (Index >= 0) {
5142       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
5143       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
5144       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
5145       if (Shift < 0)
5146         Shift = ExpectedShift;
5147       else if (Shift != ExpectedShift)
5148         return false;
5149       // Make sure that the operand mappings are consistent with previous
5150       // elements.
5151       if (OpNos[ModelOpNo] == 1 - RealOpNo)
5152         return false;
5153       OpNos[ModelOpNo] = RealOpNo;
5154     }
5155   }
5156   StartIndex = Shift;
5157   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5158 }
5159 
5160 // Create a node that performs P on operands Op0 and Op1, casting the
5161 // operands to the appropriate type.  The type of the result is determined by P.
5162 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5163                               const Permute &P, SDValue Op0, SDValue Op1) {
5164   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
5165   // elements of a PACK are twice as wide as the outputs.
5166   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
5167                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
5168                       P.Operand);
5169   // Cast both operands to the appropriate type.
5170   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
5171                               SystemZ::VectorBytes / InBytes);
5172   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
5173   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
5174   SDValue Op;
5175   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
5176     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
5177     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
5178   } else if (P.Opcode == SystemZISD::PACK) {
5179     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
5180                                  SystemZ::VectorBytes / P.Operand);
5181     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
5182   } else {
5183     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
5184   }
5185   return Op;
5186 }
5187 
5188 static bool isZeroVector(SDValue N) {
5189   if (N->getOpcode() == ISD::BITCAST)
5190     N = N->getOperand(0);
5191   if (N->getOpcode() == ISD::SPLAT_VECTOR)
5192     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
5193       return Op->getZExtValue() == 0;
5194   return ISD::isBuildVectorAllZeros(N.getNode());
5195 }
5196 
5197 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
5198 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
5199   for (unsigned I = 0; I < Num ; I++)
5200     if (isZeroVector(Ops[I]))
5201       return I;
5202   return UINT32_MAX;
5203 }
5204 
5205 // Bytes is a VPERM-like permute vector, except that -1 is used for
5206 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
5207 // VSLDB or VPERM.
5208 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5209                                      SDValue *Ops,
5210                                      const SmallVectorImpl<int> &Bytes) {
5211   for (unsigned I = 0; I < 2; ++I)
5212     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
5213 
5214   // First see whether VSLDB can be used.
5215   unsigned StartIndex, OpNo0, OpNo1;
5216   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
5217     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
5218                        Ops[OpNo1],
5219                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
5220 
5221   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
5222   // eliminate a zero vector by reusing any zero index in the permute vector.
5223   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
5224   if (ZeroVecIdx != UINT32_MAX) {
5225     bool MaskFirst = true;
5226     int ZeroIdx = -1;
5227     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5228       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5229       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5230       if (OpNo == ZeroVecIdx && I == 0) {
5231         // If the first byte is zero, use mask as first operand.
5232         ZeroIdx = 0;
5233         break;
5234       }
5235       if (OpNo != ZeroVecIdx && Byte == 0) {
5236         // If mask contains a zero, use it by placing that vector first.
5237         ZeroIdx = I + SystemZ::VectorBytes;
5238         MaskFirst = false;
5239         break;
5240       }
5241     }
5242     if (ZeroIdx != -1) {
5243       SDValue IndexNodes[SystemZ::VectorBytes];
5244       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5245         if (Bytes[I] >= 0) {
5246           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5247           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5248           if (OpNo == ZeroVecIdx)
5249             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
5250           else {
5251             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
5252             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
5253           }
5254         } else
5255           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5256       }
5257       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5258       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
5259       if (MaskFirst)
5260         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
5261                            Mask);
5262       else
5263         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
5264                            Mask);
5265     }
5266   }
5267 
5268   SDValue IndexNodes[SystemZ::VectorBytes];
5269   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5270     if (Bytes[I] >= 0)
5271       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
5272     else
5273       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5274   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5275   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
5276                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
5277 }
5278 
5279 namespace {
5280 // Describes a general N-operand vector shuffle.
5281 struct GeneralShuffle {
5282   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
5283   void addUndef();
5284   bool add(SDValue, unsigned);
5285   SDValue getNode(SelectionDAG &, const SDLoc &);
5286   void tryPrepareForUnpack();
5287   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
5288   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
5289 
5290   // The operands of the shuffle.
5291   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
5292 
5293   // Index I is -1 if byte I of the result is undefined.  Otherwise the
5294   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
5295   // Bytes[I] / SystemZ::VectorBytes.
5296   SmallVector<int, SystemZ::VectorBytes> Bytes;
5297 
5298   // The type of the shuffle result.
5299   EVT VT;
5300 
5301   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
5302   unsigned UnpackFromEltSize;
5303 };
5304 }
5305 
5306 // Add an extra undefined element to the shuffle.
5307 void GeneralShuffle::addUndef() {
5308   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5309   for (unsigned I = 0; I < BytesPerElement; ++I)
5310     Bytes.push_back(-1);
5311 }
5312 
5313 // Add an extra element to the shuffle, taking it from element Elem of Op.
5314 // A null Op indicates a vector input whose value will be calculated later;
5315 // there is at most one such input per shuffle and it always has the same
5316 // type as the result. Aborts and returns false if the source vector elements
5317 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
5318 // LLVM they become implicitly extended, but this is rare and not optimized.
5319 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
5320   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5321 
5322   // The source vector can have wider elements than the result,
5323   // either through an explicit TRUNCATE or because of type legalization.
5324   // We want the least significant part.
5325   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
5326   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
5327 
5328   // Return false if the source elements are smaller than their destination
5329   // elements.
5330   if (FromBytesPerElement < BytesPerElement)
5331     return false;
5332 
5333   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
5334                    (FromBytesPerElement - BytesPerElement));
5335 
5336   // Look through things like shuffles and bitcasts.
5337   while (Op.getNode()) {
5338     if (Op.getOpcode() == ISD::BITCAST)
5339       Op = Op.getOperand(0);
5340     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
5341       // See whether the bytes we need come from a contiguous part of one
5342       // operand.
5343       SmallVector<int, SystemZ::VectorBytes> OpBytes;
5344       if (!getVPermMask(Op, OpBytes))
5345         break;
5346       int NewByte;
5347       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
5348         break;
5349       if (NewByte < 0) {
5350         addUndef();
5351         return true;
5352       }
5353       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
5354       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
5355     } else if (Op.isUndef()) {
5356       addUndef();
5357       return true;
5358     } else
5359       break;
5360   }
5361 
5362   // Make sure that the source of the extraction is in Ops.
5363   unsigned OpNo = 0;
5364   for (; OpNo < Ops.size(); ++OpNo)
5365     if (Ops[OpNo] == Op)
5366       break;
5367   if (OpNo == Ops.size())
5368     Ops.push_back(Op);
5369 
5370   // Add the element to Bytes.
5371   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
5372   for (unsigned I = 0; I < BytesPerElement; ++I)
5373     Bytes.push_back(Base + I);
5374 
5375   return true;
5376 }
5377 
5378 // Return SDNodes for the completed shuffle.
5379 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
5380   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
5381 
5382   if (Ops.size() == 0)
5383     return DAG.getUNDEF(VT);
5384 
5385   // Use a single unpack if possible as the last operation.
5386   tryPrepareForUnpack();
5387 
5388   // Make sure that there are at least two shuffle operands.
5389   if (Ops.size() == 1)
5390     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
5391 
5392   // Create a tree of shuffles, deferring root node until after the loop.
5393   // Try to redistribute the undefined elements of non-root nodes so that
5394   // the non-root shuffles match something like a pack or merge, then adjust
5395   // the parent node's permute vector to compensate for the new order.
5396   // Among other things, this copes with vectors like <2 x i16> that were
5397   // padded with undefined elements during type legalization.
5398   //
5399   // In the best case this redistribution will lead to the whole tree
5400   // using packs and merges.  It should rarely be a loss in other cases.
5401   unsigned Stride = 1;
5402   for (; Stride * 2 < Ops.size(); Stride *= 2) {
5403     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
5404       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5405 
5406       // Create a mask for just these two operands.
5407       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5408       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5409         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5410         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5411         if (OpNo == I)
5412           NewBytes[J] = Byte;
5413         else if (OpNo == I + Stride)
5414           NewBytes[J] = SystemZ::VectorBytes + Byte;
5415         else
5416           NewBytes[J] = -1;
5417       }
5418       // See if it would be better to reorganize NewMask to avoid using VPERM.
5419       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5420       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5421         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5422         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5423         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5424           if (NewBytes[J] >= 0) {
5425             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5426                    "Invalid double permute");
5427             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5428           } else
5429             assert(NewBytesMap[J] < 0 && "Invalid double permute");
5430         }
5431       } else {
5432         // Just use NewBytes on the operands.
5433         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5434         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5435           if (NewBytes[J] >= 0)
5436             Bytes[J] = I * SystemZ::VectorBytes + J;
5437       }
5438     }
5439   }
5440 
5441   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5442   if (Stride > 1) {
5443     Ops[1] = Ops[Stride];
5444     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5445       if (Bytes[I] >= int(SystemZ::VectorBytes))
5446         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5447   }
5448 
5449   // Look for an instruction that can do the permute without resorting
5450   // to VPERM.
5451   unsigned OpNo0, OpNo1;
5452   SDValue Op;
5453   if (unpackWasPrepared() && Ops[1].isUndef())
5454     Op = Ops[0];
5455   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5456     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5457   else
5458     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5459 
5460   Op = insertUnpackIfPrepared(DAG, DL, Op);
5461 
5462   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5463 }
5464 
5465 #ifndef NDEBUG
5466 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5467   dbgs() << Msg.c_str() << " { ";
5468   for (unsigned i = 0; i < Bytes.size(); i++)
5469     dbgs() << Bytes[i] << " ";
5470   dbgs() << "}\n";
5471 }
5472 #endif
5473 
5474 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5475 // after all else by removing the zero vector and the effect of the unpack on
5476 // Bytes.
5477 void GeneralShuffle::tryPrepareForUnpack() {
5478   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5479   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5480     return;
5481 
5482   // Only do this if removing the zero vector reduces the depth, otherwise
5483   // the critical path will increase with the final unpack.
5484   if (Ops.size() > 2 &&
5485       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5486     return;
5487 
5488   // Find an unpack that would allow removing the zero vector from Ops.
5489   UnpackFromEltSize = 1;
5490   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5491     bool MatchUnpack = true;
5492     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5493     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5494       unsigned ToEltSize = UnpackFromEltSize * 2;
5495       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5496       if (!IsZextByte)
5497         SrcBytes.push_back(Bytes[Elt]);
5498       if (Bytes[Elt] != -1) {
5499         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5500         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5501           MatchUnpack = false;
5502           break;
5503         }
5504       }
5505     }
5506     if (MatchUnpack) {
5507       if (Ops.size() == 2) {
5508         // Don't use unpack if a single source operand needs rearrangement.
5509         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5510           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5511             UnpackFromEltSize = UINT_MAX;
5512             return;
5513           }
5514       }
5515       break;
5516     }
5517   }
5518   if (UnpackFromEltSize > 4)
5519     return;
5520 
5521   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5522              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5523              << ".\n";
5524              dumpBytes(Bytes, "Original Bytes vector:"););
5525 
5526   // Apply the unpack in reverse to the Bytes array.
5527   unsigned B = 0;
5528   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5529     Elt += UnpackFromEltSize;
5530     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5531       Bytes[B] = Bytes[Elt];
5532   }
5533   while (B < SystemZ::VectorBytes)
5534     Bytes[B++] = -1;
5535 
5536   // Remove the zero vector from Ops
5537   Ops.erase(&Ops[ZeroVecOpNo]);
5538   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5539     if (Bytes[I] >= 0) {
5540       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5541       if (OpNo > ZeroVecOpNo)
5542         Bytes[I] -= SystemZ::VectorBytes;
5543     }
5544 
5545   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5546              dbgs() << "\n";);
5547 }
5548 
5549 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5550                                                const SDLoc &DL,
5551                                                SDValue Op) {
5552   if (!unpackWasPrepared())
5553     return Op;
5554   unsigned InBits = UnpackFromEltSize * 8;
5555   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5556                                 SystemZ::VectorBits / InBits);
5557   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5558   unsigned OutBits = InBits * 2;
5559   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5560                                SystemZ::VectorBits / OutBits);
5561   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5562 }
5563 
5564 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5565 static bool isScalarToVector(SDValue Op) {
5566   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5567     if (!Op.getOperand(I).isUndef())
5568       return false;
5569   return true;
5570 }
5571 
5572 // Return a vector of type VT that contains Value in the first element.
5573 // The other elements don't matter.
5574 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5575                                    SDValue Value) {
5576   // If we have a constant, replicate it to all elements and let the
5577   // BUILD_VECTOR lowering take care of it.
5578   if (Value.getOpcode() == ISD::Constant ||
5579       Value.getOpcode() == ISD::ConstantFP) {
5580     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5581     return DAG.getBuildVector(VT, DL, Ops);
5582   }
5583   if (Value.isUndef())
5584     return DAG.getUNDEF(VT);
5585   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5586 }
5587 
5588 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5589 // element 1.  Used for cases in which replication is cheap.
5590 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5591                                  SDValue Op0, SDValue Op1) {
5592   if (Op0.isUndef()) {
5593     if (Op1.isUndef())
5594       return DAG.getUNDEF(VT);
5595     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5596   }
5597   if (Op1.isUndef())
5598     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5599   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5600                      buildScalarToVector(DAG, DL, VT, Op0),
5601                      buildScalarToVector(DAG, DL, VT, Op1));
5602 }
5603 
5604 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5605 // vector for them.
5606 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5607                           SDValue Op1) {
5608   if (Op0.isUndef() && Op1.isUndef())
5609     return DAG.getUNDEF(MVT::v2i64);
5610   // If one of the two inputs is undefined then replicate the other one,
5611   // in order to avoid using another register unnecessarily.
5612   if (Op0.isUndef())
5613     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5614   else if (Op1.isUndef())
5615     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5616   else {
5617     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5618     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5619   }
5620   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5621 }
5622 
5623 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5624 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5625 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5626 // would benefit from this representation and return it if so.
5627 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5628                                      BuildVectorSDNode *BVN) {
5629   EVT VT = BVN->getValueType(0);
5630   unsigned NumElements = VT.getVectorNumElements();
5631 
5632   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5633   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5634   // need a BUILD_VECTOR, add an additional placeholder operand for that
5635   // BUILD_VECTOR and store its operands in ResidueOps.
5636   GeneralShuffle GS(VT);
5637   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5638   bool FoundOne = false;
5639   for (unsigned I = 0; I < NumElements; ++I) {
5640     SDValue Op = BVN->getOperand(I);
5641     if (Op.getOpcode() == ISD::TRUNCATE)
5642       Op = Op.getOperand(0);
5643     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5644         Op.getOperand(1).getOpcode() == ISD::Constant) {
5645       unsigned Elem = Op.getConstantOperandVal(1);
5646       if (!GS.add(Op.getOperand(0), Elem))
5647         return SDValue();
5648       FoundOne = true;
5649     } else if (Op.isUndef()) {
5650       GS.addUndef();
5651     } else {
5652       if (!GS.add(SDValue(), ResidueOps.size()))
5653         return SDValue();
5654       ResidueOps.push_back(BVN->getOperand(I));
5655     }
5656   }
5657 
5658   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5659   if (!FoundOne)
5660     return SDValue();
5661 
5662   // Create the BUILD_VECTOR for the remaining elements, if any.
5663   if (!ResidueOps.empty()) {
5664     while (ResidueOps.size() < NumElements)
5665       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5666     for (auto &Op : GS.Ops) {
5667       if (!Op.getNode()) {
5668         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5669         break;
5670       }
5671     }
5672   }
5673   return GS.getNode(DAG, SDLoc(BVN));
5674 }
5675 
5676 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5677   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5678     return true;
5679   if (auto *AL = dyn_cast<AtomicSDNode>(Op))
5680     if (AL->getOpcode() == ISD::ATOMIC_LOAD)
5681       return true;
5682   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5683     return true;
5684   return false;
5685 }
5686 
5687 // Combine GPR scalar values Elems into a vector of type VT.
5688 SDValue
5689 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5690                                    SmallVectorImpl<SDValue> &Elems) const {
5691   // See whether there is a single replicated value.
5692   SDValue Single;
5693   unsigned int NumElements = Elems.size();
5694   unsigned int Count = 0;
5695   for (auto Elem : Elems) {
5696     if (!Elem.isUndef()) {
5697       if (!Single.getNode())
5698         Single = Elem;
5699       else if (Elem != Single) {
5700         Single = SDValue();
5701         break;
5702       }
5703       Count += 1;
5704     }
5705   }
5706   // There are three cases here:
5707   //
5708   // - if the only defined element is a loaded one, the best sequence
5709   //   is a replicating load.
5710   //
5711   // - otherwise, if the only defined element is an i64 value, we will
5712   //   end up with the same VLVGP sequence regardless of whether we short-cut
5713   //   for replication or fall through to the later code.
5714   //
5715   // - otherwise, if the only defined element is an i32 or smaller value,
5716   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5717   //   This is only a win if the single defined element is used more than once.
5718   //   In other cases we're better off using a single VLVGx.
5719   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5720     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5721 
5722   // If all elements are loads, use VLREP/VLEs (below).
5723   bool AllLoads = true;
5724   for (auto Elem : Elems)
5725     if (!isVectorElementLoad(Elem)) {
5726       AllLoads = false;
5727       break;
5728     }
5729 
5730   // The best way of building a v2i64 from two i64s is to use VLVGP.
5731   if (VT == MVT::v2i64 && !AllLoads)
5732     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5733 
5734   // Use a 64-bit merge high to combine two doubles.
5735   if (VT == MVT::v2f64 && !AllLoads)
5736     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5737 
5738   // Build v4f32 values directly from the FPRs:
5739   //
5740   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5741   //         V              V         VMRHF
5742   //      <ABxx>         <CDxx>
5743   //                V                 VMRHG
5744   //              <ABCD>
5745   if (VT == MVT::v4f32 && !AllLoads) {
5746     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5747     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5748     // Avoid unnecessary undefs by reusing the other operand.
5749     if (Op01.isUndef())
5750       Op01 = Op23;
5751     else if (Op23.isUndef())
5752       Op23 = Op01;
5753     // Merging identical replications is a no-op.
5754     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5755       return Op01;
5756     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5757     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5758     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5759                              DL, MVT::v2i64, Op01, Op23);
5760     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5761   }
5762 
5763   // Collect the constant terms.
5764   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5765   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5766 
5767   unsigned NumConstants = 0;
5768   for (unsigned I = 0; I < NumElements; ++I) {
5769     SDValue Elem = Elems[I];
5770     if (Elem.getOpcode() == ISD::Constant ||
5771         Elem.getOpcode() == ISD::ConstantFP) {
5772       NumConstants += 1;
5773       Constants[I] = Elem;
5774       Done[I] = true;
5775     }
5776   }
5777   // If there was at least one constant, fill in the other elements of
5778   // Constants with undefs to get a full vector constant and use that
5779   // as the starting point.
5780   SDValue Result;
5781   SDValue ReplicatedVal;
5782   if (NumConstants > 0) {
5783     for (unsigned I = 0; I < NumElements; ++I)
5784       if (!Constants[I].getNode())
5785         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5786     Result = DAG.getBuildVector(VT, DL, Constants);
5787   } else {
5788     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5789     // avoid a false dependency on any previous contents of the vector
5790     // register.
5791 
5792     // Use a VLREP if at least one element is a load. Make sure to replicate
5793     // the load with the most elements having its value.
5794     std::map<const SDNode*, unsigned> UseCounts;
5795     SDNode *LoadMaxUses = nullptr;
5796     for (unsigned I = 0; I < NumElements; ++I)
5797       if (isVectorElementLoad(Elems[I])) {
5798         SDNode *Ld = Elems[I].getNode();
5799         UseCounts[Ld]++;
5800         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5801           LoadMaxUses = Ld;
5802       }
5803     if (LoadMaxUses != nullptr) {
5804       ReplicatedVal = SDValue(LoadMaxUses, 0);
5805       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5806     } else {
5807       // Try to use VLVGP.
5808       unsigned I1 = NumElements / 2 - 1;
5809       unsigned I2 = NumElements - 1;
5810       bool Def1 = !Elems[I1].isUndef();
5811       bool Def2 = !Elems[I2].isUndef();
5812       if (Def1 || Def2) {
5813         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5814         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5815         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5816                              joinDwords(DAG, DL, Elem1, Elem2));
5817         Done[I1] = true;
5818         Done[I2] = true;
5819       } else
5820         Result = DAG.getUNDEF(VT);
5821     }
5822   }
5823 
5824   // Use VLVGx to insert the other elements.
5825   for (unsigned I = 0; I < NumElements; ++I)
5826     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5827       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5828                            DAG.getConstant(I, DL, MVT::i32));
5829   return Result;
5830 }
5831 
5832 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5833                                                  SelectionDAG &DAG) const {
5834   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5835   SDLoc DL(Op);
5836   EVT VT = Op.getValueType();
5837 
5838   if (BVN->isConstant()) {
5839     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5840       return Op;
5841 
5842     // Fall back to loading it from memory.
5843     return SDValue();
5844   }
5845 
5846   // See if we should use shuffles to construct the vector from other vectors.
5847   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5848     return Res;
5849 
5850   // Detect SCALAR_TO_VECTOR conversions.
5851   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5852     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5853 
5854   // Otherwise use buildVector to build the vector up from GPRs.
5855   unsigned NumElements = Op.getNumOperands();
5856   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5857   for (unsigned I = 0; I < NumElements; ++I)
5858     Ops[I] = Op.getOperand(I);
5859   return buildVector(DAG, DL, VT, Ops);
5860 }
5861 
5862 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5863                                                    SelectionDAG &DAG) const {
5864   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5865   SDLoc DL(Op);
5866   EVT VT = Op.getValueType();
5867   unsigned NumElements = VT.getVectorNumElements();
5868 
5869   if (VSN->isSplat()) {
5870     SDValue Op0 = Op.getOperand(0);
5871     unsigned Index = VSN->getSplatIndex();
5872     assert(Index < VT.getVectorNumElements() &&
5873            "Splat index should be defined and in first operand");
5874     // See whether the value we're splatting is directly available as a scalar.
5875     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5876         Op0.getOpcode() == ISD::BUILD_VECTOR)
5877       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5878     // Otherwise keep it as a vector-to-vector operation.
5879     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5880                        DAG.getTargetConstant(Index, DL, MVT::i32));
5881   }
5882 
5883   GeneralShuffle GS(VT);
5884   for (unsigned I = 0; I < NumElements; ++I) {
5885     int Elt = VSN->getMaskElt(I);
5886     if (Elt < 0)
5887       GS.addUndef();
5888     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5889                      unsigned(Elt) % NumElements))
5890       return SDValue();
5891   }
5892   return GS.getNode(DAG, SDLoc(VSN));
5893 }
5894 
5895 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5896                                                      SelectionDAG &DAG) const {
5897   SDLoc DL(Op);
5898   // Just insert the scalar into element 0 of an undefined vector.
5899   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5900                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5901                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5902 }
5903 
5904 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5905                                                       SelectionDAG &DAG) const {
5906   // Handle insertions of floating-point values.
5907   SDLoc DL(Op);
5908   SDValue Op0 = Op.getOperand(0);
5909   SDValue Op1 = Op.getOperand(1);
5910   SDValue Op2 = Op.getOperand(2);
5911   EVT VT = Op.getValueType();
5912 
5913   // Insertions into constant indices of a v2f64 can be done using VPDI.
5914   // However, if the inserted value is a bitcast or a constant then it's
5915   // better to use GPRs, as below.
5916   if (VT == MVT::v2f64 &&
5917       Op1.getOpcode() != ISD::BITCAST &&
5918       Op1.getOpcode() != ISD::ConstantFP &&
5919       Op2.getOpcode() == ISD::Constant) {
5920     uint64_t Index = Op2->getAsZExtVal();
5921     unsigned Mask = VT.getVectorNumElements() - 1;
5922     if (Index <= Mask)
5923       return Op;
5924   }
5925 
5926   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5927   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5928   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5929   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5930                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5931                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5932   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5933 }
5934 
5935 SDValue
5936 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5937                                                SelectionDAG &DAG) const {
5938   // Handle extractions of floating-point values.
5939   SDLoc DL(Op);
5940   SDValue Op0 = Op.getOperand(0);
5941   SDValue Op1 = Op.getOperand(1);
5942   EVT VT = Op.getValueType();
5943   EVT VecVT = Op0.getValueType();
5944 
5945   // Extractions of constant indices can be done directly.
5946   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5947     uint64_t Index = CIndexN->getZExtValue();
5948     unsigned Mask = VecVT.getVectorNumElements() - 1;
5949     if (Index <= Mask)
5950       return Op;
5951   }
5952 
5953   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5954   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5955   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5956   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5957                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5958   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5959 }
5960 
5961 SDValue SystemZTargetLowering::
5962 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5963   SDValue PackedOp = Op.getOperand(0);
5964   EVT OutVT = Op.getValueType();
5965   EVT InVT = PackedOp.getValueType();
5966   unsigned ToBits = OutVT.getScalarSizeInBits();
5967   unsigned FromBits = InVT.getScalarSizeInBits();
5968   do {
5969     FromBits *= 2;
5970     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5971                                  SystemZ::VectorBits / FromBits);
5972     PackedOp =
5973       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5974   } while (FromBits != ToBits);
5975   return PackedOp;
5976 }
5977 
5978 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5979 SDValue SystemZTargetLowering::
5980 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5981   SDValue PackedOp = Op.getOperand(0);
5982   SDLoc DL(Op);
5983   EVT OutVT = Op.getValueType();
5984   EVT InVT = PackedOp.getValueType();
5985   unsigned InNumElts = InVT.getVectorNumElements();
5986   unsigned OutNumElts = OutVT.getVectorNumElements();
5987   unsigned NumInPerOut = InNumElts / OutNumElts;
5988 
5989   SDValue ZeroVec =
5990     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5991 
5992   SmallVector<int, 16> Mask(InNumElts);
5993   unsigned ZeroVecElt = InNumElts;
5994   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5995     unsigned MaskElt = PackedElt * NumInPerOut;
5996     unsigned End = MaskElt + NumInPerOut - 1;
5997     for (; MaskElt < End; MaskElt++)
5998       Mask[MaskElt] = ZeroVecElt++;
5999     Mask[MaskElt] = PackedElt;
6000   }
6001   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
6002   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
6003 }
6004 
6005 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
6006                                           unsigned ByScalar) const {
6007   // Look for cases where a vector shift can use the *_BY_SCALAR form.
6008   SDValue Op0 = Op.getOperand(0);
6009   SDValue Op1 = Op.getOperand(1);
6010   SDLoc DL(Op);
6011   EVT VT = Op.getValueType();
6012   unsigned ElemBitSize = VT.getScalarSizeInBits();
6013 
6014   // See whether the shift vector is a splat represented as BUILD_VECTOR.
6015   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
6016     APInt SplatBits, SplatUndef;
6017     unsigned SplatBitSize;
6018     bool HasAnyUndefs;
6019     // Check for constant splats.  Use ElemBitSize as the minimum element
6020     // width and reject splats that need wider elements.
6021     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6022                              ElemBitSize, true) &&
6023         SplatBitSize == ElemBitSize) {
6024       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
6025                                       DL, MVT::i32);
6026       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6027     }
6028     // Check for variable splats.
6029     BitVector UndefElements;
6030     SDValue Splat = BVN->getSplatValue(&UndefElements);
6031     if (Splat) {
6032       // Since i32 is the smallest legal type, we either need a no-op
6033       // or a truncation.
6034       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
6035       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6036     }
6037   }
6038 
6039   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
6040   // and the shift amount is directly available in a GPR.
6041   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
6042     if (VSN->isSplat()) {
6043       SDValue VSNOp0 = VSN->getOperand(0);
6044       unsigned Index = VSN->getSplatIndex();
6045       assert(Index < VT.getVectorNumElements() &&
6046              "Splat index should be defined and in first operand");
6047       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
6048           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
6049         // Since i32 is the smallest legal type, we either need a no-op
6050         // or a truncation.
6051         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
6052                                     VSNOp0.getOperand(Index));
6053         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6054       }
6055     }
6056   }
6057 
6058   // Otherwise just treat the current form as legal.
6059   return Op;
6060 }
6061 
6062 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
6063                                                SelectionDAG &DAG) const {
6064   SDLoc DL(Op);
6065   MVT ResultVT = Op.getSimpleValueType();
6066   SDValue Arg = Op.getOperand(0);
6067   unsigned Check = Op.getConstantOperandVal(1);
6068 
6069   unsigned TDCMask = 0;
6070   if (Check & fcSNan)
6071     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
6072   if (Check & fcQNan)
6073     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
6074   if (Check & fcPosInf)
6075     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
6076   if (Check & fcNegInf)
6077     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
6078   if (Check & fcPosNormal)
6079     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
6080   if (Check & fcNegNormal)
6081     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
6082   if (Check & fcPosSubnormal)
6083     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
6084   if (Check & fcNegSubnormal)
6085     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
6086   if (Check & fcPosZero)
6087     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
6088   if (Check & fcNegZero)
6089     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
6090   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
6091 
6092   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
6093   return getCCResult(DAG, Intr);
6094 }
6095 
6096 SDValue SystemZTargetLowering::lowerREADCYCLECOUNTER(SDValue Op,
6097                                                      SelectionDAG &DAG) const {
6098   SDLoc DL(Op);
6099   SDValue Chain = Op.getOperand(0);
6100 
6101   // STCKF only supports a memory operand, so we have to use a temporary.
6102   SDValue StackPtr = DAG.CreateStackTemporary(MVT::i64);
6103   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6104   MachinePointerInfo MPI =
6105     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6106 
6107   // Use STCFK to store the TOD clock into the temporary.
6108   SDValue StoreOps[] = {Chain, StackPtr};
6109   Chain = DAG.getMemIntrinsicNode(
6110     SystemZISD::STCKF, DL, DAG.getVTList(MVT::Other), StoreOps, MVT::i64,
6111     MPI, MaybeAlign(), MachineMemOperand::MOStore);
6112 
6113   // And read it back from there.
6114   return DAG.getLoad(MVT::i64, DL, Chain, StackPtr, MPI);
6115 }
6116 
6117 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
6118                                               SelectionDAG &DAG) const {
6119   switch (Op.getOpcode()) {
6120   case ISD::FRAMEADDR:
6121     return lowerFRAMEADDR(Op, DAG);
6122   case ISD::RETURNADDR:
6123     return lowerRETURNADDR(Op, DAG);
6124   case ISD::BR_CC:
6125     return lowerBR_CC(Op, DAG);
6126   case ISD::SELECT_CC:
6127     return lowerSELECT_CC(Op, DAG);
6128   case ISD::SETCC:
6129     return lowerSETCC(Op, DAG);
6130   case ISD::STRICT_FSETCC:
6131     return lowerSTRICT_FSETCC(Op, DAG, false);
6132   case ISD::STRICT_FSETCCS:
6133     return lowerSTRICT_FSETCC(Op, DAG, true);
6134   case ISD::GlobalAddress:
6135     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
6136   case ISD::GlobalTLSAddress:
6137     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
6138   case ISD::BlockAddress:
6139     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
6140   case ISD::JumpTable:
6141     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
6142   case ISD::ConstantPool:
6143     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
6144   case ISD::BITCAST:
6145     return lowerBITCAST(Op, DAG);
6146   case ISD::VASTART:
6147     return lowerVASTART(Op, DAG);
6148   case ISD::VACOPY:
6149     return lowerVACOPY(Op, DAG);
6150   case ISD::DYNAMIC_STACKALLOC:
6151     return lowerDYNAMIC_STACKALLOC(Op, DAG);
6152   case ISD::GET_DYNAMIC_AREA_OFFSET:
6153     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
6154   case ISD::SMUL_LOHI:
6155     return lowerSMUL_LOHI(Op, DAG);
6156   case ISD::UMUL_LOHI:
6157     return lowerUMUL_LOHI(Op, DAG);
6158   case ISD::SDIVREM:
6159     return lowerSDIVREM(Op, DAG);
6160   case ISD::UDIVREM:
6161     return lowerUDIVREM(Op, DAG);
6162   case ISD::SADDO:
6163   case ISD::SSUBO:
6164   case ISD::UADDO:
6165   case ISD::USUBO:
6166     return lowerXALUO(Op, DAG);
6167   case ISD::UADDO_CARRY:
6168   case ISD::USUBO_CARRY:
6169     return lowerUADDSUBO_CARRY(Op, DAG);
6170   case ISD::OR:
6171     return lowerOR(Op, DAG);
6172   case ISD::CTPOP:
6173     return lowerCTPOP(Op, DAG);
6174   case ISD::VECREDUCE_ADD:
6175     return lowerVECREDUCE_ADD(Op, DAG);
6176   case ISD::ATOMIC_FENCE:
6177     return lowerATOMIC_FENCE(Op, DAG);
6178   case ISD::ATOMIC_SWAP:
6179     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
6180   case ISD::ATOMIC_STORE:
6181   case ISD::ATOMIC_LOAD:
6182     return lowerATOMIC_LDST_I128(Op, DAG);
6183   case ISD::ATOMIC_LOAD_ADD:
6184     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
6185   case ISD::ATOMIC_LOAD_SUB:
6186     return lowerATOMIC_LOAD_SUB(Op, DAG);
6187   case ISD::ATOMIC_LOAD_AND:
6188     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
6189   case ISD::ATOMIC_LOAD_OR:
6190     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
6191   case ISD::ATOMIC_LOAD_XOR:
6192     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
6193   case ISD::ATOMIC_LOAD_NAND:
6194     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
6195   case ISD::ATOMIC_LOAD_MIN:
6196     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
6197   case ISD::ATOMIC_LOAD_MAX:
6198     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
6199   case ISD::ATOMIC_LOAD_UMIN:
6200     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
6201   case ISD::ATOMIC_LOAD_UMAX:
6202     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
6203   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
6204     return lowerATOMIC_CMP_SWAP(Op, DAG);
6205   case ISD::STACKSAVE:
6206     return lowerSTACKSAVE(Op, DAG);
6207   case ISD::STACKRESTORE:
6208     return lowerSTACKRESTORE(Op, DAG);
6209   case ISD::PREFETCH:
6210     return lowerPREFETCH(Op, DAG);
6211   case ISD::INTRINSIC_W_CHAIN:
6212     return lowerINTRINSIC_W_CHAIN(Op, DAG);
6213   case ISD::INTRINSIC_WO_CHAIN:
6214     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
6215   case ISD::BUILD_VECTOR:
6216     return lowerBUILD_VECTOR(Op, DAG);
6217   case ISD::VECTOR_SHUFFLE:
6218     return lowerVECTOR_SHUFFLE(Op, DAG);
6219   case ISD::SCALAR_TO_VECTOR:
6220     return lowerSCALAR_TO_VECTOR(Op, DAG);
6221   case ISD::INSERT_VECTOR_ELT:
6222     return lowerINSERT_VECTOR_ELT(Op, DAG);
6223   case ISD::EXTRACT_VECTOR_ELT:
6224     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6225   case ISD::SIGN_EXTEND_VECTOR_INREG:
6226     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
6227   case ISD::ZERO_EXTEND_VECTOR_INREG:
6228     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
6229   case ISD::SHL:
6230     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
6231   case ISD::SRL:
6232     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
6233   case ISD::SRA:
6234     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
6235   case ISD::ROTL:
6236     return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR);
6237   case ISD::IS_FPCLASS:
6238     return lowerIS_FPCLASS(Op, DAG);
6239   case ISD::GET_ROUNDING:
6240     return lowerGET_ROUNDING(Op, DAG);
6241   case ISD::READCYCLECOUNTER:
6242     return lowerREADCYCLECOUNTER(Op, DAG);
6243   default:
6244     llvm_unreachable("Unexpected node to lower");
6245   }
6246 }
6247 
6248 static SDValue expandBitCastI128ToF128(SelectionDAG &DAG, SDValue Src,
6249                                        const SDLoc &SL) {
6250   // If i128 is legal, just use a normal bitcast.
6251   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128))
6252     return DAG.getBitcast(MVT::f128, Src);
6253 
6254   // Otherwise, f128 must live in FP128, so do a partwise move.
6255   assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) ==
6256          &SystemZ::FP128BitRegClass);
6257 
6258   SDValue Hi, Lo;
6259   std::tie(Lo, Hi) = DAG.SplitScalar(Src, SL, MVT::i64, MVT::i64);
6260 
6261   Hi = DAG.getBitcast(MVT::f64, Hi);
6262   Lo = DAG.getBitcast(MVT::f64, Lo);
6263 
6264   SDNode *Pair = DAG.getMachineNode(
6265       SystemZ::REG_SEQUENCE, SL, MVT::f128,
6266       {DAG.getTargetConstant(SystemZ::FP128BitRegClassID, SL, MVT::i32), Lo,
6267        DAG.getTargetConstant(SystemZ::subreg_l64, SL, MVT::i32), Hi,
6268        DAG.getTargetConstant(SystemZ::subreg_h64, SL, MVT::i32)});
6269   return SDValue(Pair, 0);
6270 }
6271 
6272 static SDValue expandBitCastF128ToI128(SelectionDAG &DAG, SDValue Src,
6273                                        const SDLoc &SL) {
6274   // If i128 is legal, just use a normal bitcast.
6275   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128))
6276     return DAG.getBitcast(MVT::i128, Src);
6277 
6278   // Otherwise, f128 must live in FP128, so do a partwise move.
6279   assert(DAG.getTargetLoweringInfo().getRepRegClassFor(MVT::f128) ==
6280          &SystemZ::FP128BitRegClass);
6281 
6282   SDValue LoFP =
6283       DAG.getTargetExtractSubreg(SystemZ::subreg_l64, SL, MVT::f64, Src);
6284   SDValue HiFP =
6285       DAG.getTargetExtractSubreg(SystemZ::subreg_h64, SL, MVT::f64, Src);
6286   SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i64, LoFP);
6287   SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i64, HiFP);
6288 
6289   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i128, Lo, Hi);
6290 }
6291 
6292 // Lower operations with invalid operand or result types (currently used
6293 // only for 128-bit integer types).
6294 void
6295 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
6296                                              SmallVectorImpl<SDValue> &Results,
6297                                              SelectionDAG &DAG) const {
6298   switch (N->getOpcode()) {
6299   case ISD::ATOMIC_LOAD: {
6300     SDLoc DL(N);
6301     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
6302     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
6303     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6304     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
6305                                           DL, Tys, Ops, MVT::i128, MMO);
6306 
6307     SDValue Lowered = lowerGR128ToI128(DAG, Res);
6308     if (N->getValueType(0) == MVT::f128)
6309       Lowered = expandBitCastI128ToF128(DAG, Lowered, DL);
6310     Results.push_back(Lowered);
6311     Results.push_back(Res.getValue(1));
6312     break;
6313   }
6314   case ISD::ATOMIC_STORE: {
6315     SDLoc DL(N);
6316     SDVTList Tys = DAG.getVTList(MVT::Other);
6317     SDValue Val = N->getOperand(1);
6318     if (Val.getValueType() == MVT::f128)
6319       Val = expandBitCastF128ToI128(DAG, Val, DL);
6320     Val = lowerI128ToGR128(DAG, Val);
6321 
6322     SDValue Ops[] = {N->getOperand(0), Val, N->getOperand(2)};
6323     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6324     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
6325                                           DL, Tys, Ops, MVT::i128, MMO);
6326     // We have to enforce sequential consistency by performing a
6327     // serialization operation after the store.
6328     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
6329         AtomicOrdering::SequentiallyConsistent)
6330       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
6331                                        MVT::Other, Res), 0);
6332     Results.push_back(Res);
6333     break;
6334   }
6335   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
6336     SDLoc DL(N);
6337     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
6338     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
6339                       lowerI128ToGR128(DAG, N->getOperand(2)),
6340                       lowerI128ToGR128(DAG, N->getOperand(3)) };
6341     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6342     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
6343                                           DL, Tys, Ops, MVT::i128, MMO);
6344     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
6345                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
6346     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
6347     Results.push_back(lowerGR128ToI128(DAG, Res));
6348     Results.push_back(Success);
6349     Results.push_back(Res.getValue(2));
6350     break;
6351   }
6352   case ISD::BITCAST: {
6353     SDValue Src = N->getOperand(0);
6354     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
6355         !useSoftFloat()) {
6356       SDLoc DL(N);
6357       Results.push_back(expandBitCastF128ToI128(DAG, Src, DL));
6358     }
6359     break;
6360   }
6361   default:
6362     llvm_unreachable("Unexpected node to lower");
6363   }
6364 }
6365 
6366 void
6367 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
6368                                           SmallVectorImpl<SDValue> &Results,
6369                                           SelectionDAG &DAG) const {
6370   return LowerOperationWrapper(N, Results, DAG);
6371 }
6372 
6373 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
6374 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
6375   switch ((SystemZISD::NodeType)Opcode) {
6376     case SystemZISD::FIRST_NUMBER: break;
6377     OPCODE(RET_GLUE);
6378     OPCODE(CALL);
6379     OPCODE(SIBCALL);
6380     OPCODE(TLS_GDCALL);
6381     OPCODE(TLS_LDCALL);
6382     OPCODE(PCREL_WRAPPER);
6383     OPCODE(PCREL_OFFSET);
6384     OPCODE(ICMP);
6385     OPCODE(FCMP);
6386     OPCODE(STRICT_FCMP);
6387     OPCODE(STRICT_FCMPS);
6388     OPCODE(TM);
6389     OPCODE(BR_CCMASK);
6390     OPCODE(SELECT_CCMASK);
6391     OPCODE(ADJDYNALLOC);
6392     OPCODE(PROBED_ALLOCA);
6393     OPCODE(POPCNT);
6394     OPCODE(SMUL_LOHI);
6395     OPCODE(UMUL_LOHI);
6396     OPCODE(SDIVREM);
6397     OPCODE(UDIVREM);
6398     OPCODE(SADDO);
6399     OPCODE(SSUBO);
6400     OPCODE(UADDO);
6401     OPCODE(USUBO);
6402     OPCODE(ADDCARRY);
6403     OPCODE(SUBCARRY);
6404     OPCODE(GET_CCMASK);
6405     OPCODE(MVC);
6406     OPCODE(NC);
6407     OPCODE(OC);
6408     OPCODE(XC);
6409     OPCODE(CLC);
6410     OPCODE(MEMSET_MVC);
6411     OPCODE(STPCPY);
6412     OPCODE(STRCMP);
6413     OPCODE(SEARCH_STRING);
6414     OPCODE(IPM);
6415     OPCODE(TBEGIN);
6416     OPCODE(TBEGIN_NOFLOAT);
6417     OPCODE(TEND);
6418     OPCODE(BYTE_MASK);
6419     OPCODE(ROTATE_MASK);
6420     OPCODE(REPLICATE);
6421     OPCODE(JOIN_DWORDS);
6422     OPCODE(SPLAT);
6423     OPCODE(MERGE_HIGH);
6424     OPCODE(MERGE_LOW);
6425     OPCODE(SHL_DOUBLE);
6426     OPCODE(PERMUTE_DWORDS);
6427     OPCODE(PERMUTE);
6428     OPCODE(PACK);
6429     OPCODE(PACKS_CC);
6430     OPCODE(PACKLS_CC);
6431     OPCODE(UNPACK_HIGH);
6432     OPCODE(UNPACKL_HIGH);
6433     OPCODE(UNPACK_LOW);
6434     OPCODE(UNPACKL_LOW);
6435     OPCODE(VSHL_BY_SCALAR);
6436     OPCODE(VSRL_BY_SCALAR);
6437     OPCODE(VSRA_BY_SCALAR);
6438     OPCODE(VROTL_BY_SCALAR);
6439     OPCODE(VSUM);
6440     OPCODE(VACC);
6441     OPCODE(VSCBI);
6442     OPCODE(VAC);
6443     OPCODE(VSBI);
6444     OPCODE(VACCC);
6445     OPCODE(VSBCBI);
6446     OPCODE(VICMPE);
6447     OPCODE(VICMPH);
6448     OPCODE(VICMPHL);
6449     OPCODE(VICMPES);
6450     OPCODE(VICMPHS);
6451     OPCODE(VICMPHLS);
6452     OPCODE(VFCMPE);
6453     OPCODE(STRICT_VFCMPE);
6454     OPCODE(STRICT_VFCMPES);
6455     OPCODE(VFCMPH);
6456     OPCODE(STRICT_VFCMPH);
6457     OPCODE(STRICT_VFCMPHS);
6458     OPCODE(VFCMPHE);
6459     OPCODE(STRICT_VFCMPHE);
6460     OPCODE(STRICT_VFCMPHES);
6461     OPCODE(VFCMPES);
6462     OPCODE(VFCMPHS);
6463     OPCODE(VFCMPHES);
6464     OPCODE(VFTCI);
6465     OPCODE(VEXTEND);
6466     OPCODE(STRICT_VEXTEND);
6467     OPCODE(VROUND);
6468     OPCODE(STRICT_VROUND);
6469     OPCODE(VTM);
6470     OPCODE(SCMP128HI);
6471     OPCODE(UCMP128HI);
6472     OPCODE(VFAE_CC);
6473     OPCODE(VFAEZ_CC);
6474     OPCODE(VFEE_CC);
6475     OPCODE(VFEEZ_CC);
6476     OPCODE(VFENE_CC);
6477     OPCODE(VFENEZ_CC);
6478     OPCODE(VISTR_CC);
6479     OPCODE(VSTRC_CC);
6480     OPCODE(VSTRCZ_CC);
6481     OPCODE(VSTRS_CC);
6482     OPCODE(VSTRSZ_CC);
6483     OPCODE(TDC);
6484     OPCODE(ATOMIC_SWAPW);
6485     OPCODE(ATOMIC_LOADW_ADD);
6486     OPCODE(ATOMIC_LOADW_SUB);
6487     OPCODE(ATOMIC_LOADW_AND);
6488     OPCODE(ATOMIC_LOADW_OR);
6489     OPCODE(ATOMIC_LOADW_XOR);
6490     OPCODE(ATOMIC_LOADW_NAND);
6491     OPCODE(ATOMIC_LOADW_MIN);
6492     OPCODE(ATOMIC_LOADW_MAX);
6493     OPCODE(ATOMIC_LOADW_UMIN);
6494     OPCODE(ATOMIC_LOADW_UMAX);
6495     OPCODE(ATOMIC_CMP_SWAPW);
6496     OPCODE(ATOMIC_CMP_SWAP);
6497     OPCODE(ATOMIC_LOAD_128);
6498     OPCODE(ATOMIC_STORE_128);
6499     OPCODE(ATOMIC_CMP_SWAP_128);
6500     OPCODE(LRV);
6501     OPCODE(STRV);
6502     OPCODE(VLER);
6503     OPCODE(VSTER);
6504     OPCODE(STCKF);
6505     OPCODE(PREFETCH);
6506     OPCODE(ADA_ENTRY);
6507   }
6508   return nullptr;
6509 #undef OPCODE
6510 }
6511 
6512 // Return true if VT is a vector whose elements are a whole number of bytes
6513 // in width. Also check for presence of vector support.
6514 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6515   if (!Subtarget.hasVector())
6516     return false;
6517 
6518   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6519 }
6520 
6521 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6522 // producing a result of type ResVT.  Op is a possibly bitcast version
6523 // of the input vector and Index is the index (based on type VecVT) that
6524 // should be extracted.  Return the new extraction if a simplification
6525 // was possible or if Force is true.
6526 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6527                                               EVT VecVT, SDValue Op,
6528                                               unsigned Index,
6529                                               DAGCombinerInfo &DCI,
6530                                               bool Force) const {
6531   SelectionDAG &DAG = DCI.DAG;
6532 
6533   // The number of bytes being extracted.
6534   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6535 
6536   for (;;) {
6537     unsigned Opcode = Op.getOpcode();
6538     if (Opcode == ISD::BITCAST)
6539       // Look through bitcasts.
6540       Op = Op.getOperand(0);
6541     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6542              canTreatAsByteVector(Op.getValueType())) {
6543       // Get a VPERM-like permute mask and see whether the bytes covered
6544       // by the extracted element are a contiguous sequence from one
6545       // source operand.
6546       SmallVector<int, SystemZ::VectorBytes> Bytes;
6547       if (!getVPermMask(Op, Bytes))
6548         break;
6549       int First;
6550       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6551                            BytesPerElement, First))
6552         break;
6553       if (First < 0)
6554         return DAG.getUNDEF(ResVT);
6555       // Make sure the contiguous sequence starts at a multiple of the
6556       // original element size.
6557       unsigned Byte = unsigned(First) % Bytes.size();
6558       if (Byte % BytesPerElement != 0)
6559         break;
6560       // We can get the extracted value directly from an input.
6561       Index = Byte / BytesPerElement;
6562       Op = Op.getOperand(unsigned(First) / Bytes.size());
6563       Force = true;
6564     } else if (Opcode == ISD::BUILD_VECTOR &&
6565                canTreatAsByteVector(Op.getValueType())) {
6566       // We can only optimize this case if the BUILD_VECTOR elements are
6567       // at least as wide as the extracted value.
6568       EVT OpVT = Op.getValueType();
6569       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6570       if (OpBytesPerElement < BytesPerElement)
6571         break;
6572       // Make sure that the least-significant bit of the extracted value
6573       // is the least significant bit of an input.
6574       unsigned End = (Index + 1) * BytesPerElement;
6575       if (End % OpBytesPerElement != 0)
6576         break;
6577       // We're extracting the low part of one operand of the BUILD_VECTOR.
6578       Op = Op.getOperand(End / OpBytesPerElement - 1);
6579       if (!Op.getValueType().isInteger()) {
6580         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6581         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6582         DCI.AddToWorklist(Op.getNode());
6583       }
6584       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6585       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6586       if (VT != ResVT) {
6587         DCI.AddToWorklist(Op.getNode());
6588         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6589       }
6590       return Op;
6591     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6592                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6593                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6594                canTreatAsByteVector(Op.getValueType()) &&
6595                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6596       // Make sure that only the unextended bits are significant.
6597       EVT ExtVT = Op.getValueType();
6598       EVT OpVT = Op.getOperand(0).getValueType();
6599       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6600       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6601       unsigned Byte = Index * BytesPerElement;
6602       unsigned SubByte = Byte % ExtBytesPerElement;
6603       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6604       if (SubByte < MinSubByte ||
6605           SubByte + BytesPerElement > ExtBytesPerElement)
6606         break;
6607       // Get the byte offset of the unextended element
6608       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6609       // ...then add the byte offset relative to that element.
6610       Byte += SubByte - MinSubByte;
6611       if (Byte % BytesPerElement != 0)
6612         break;
6613       Op = Op.getOperand(0);
6614       Index = Byte / BytesPerElement;
6615       Force = true;
6616     } else
6617       break;
6618   }
6619   if (Force) {
6620     if (Op.getValueType() != VecVT) {
6621       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6622       DCI.AddToWorklist(Op.getNode());
6623     }
6624     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6625                        DAG.getConstant(Index, DL, MVT::i32));
6626   }
6627   return SDValue();
6628 }
6629 
6630 // Optimize vector operations in scalar value Op on the basis that Op
6631 // is truncated to TruncVT.
6632 SDValue SystemZTargetLowering::combineTruncateExtract(
6633     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6634   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6635   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6636   // of type TruncVT.
6637   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6638       TruncVT.getSizeInBits() % 8 == 0) {
6639     SDValue Vec = Op.getOperand(0);
6640     EVT VecVT = Vec.getValueType();
6641     if (canTreatAsByteVector(VecVT)) {
6642       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6643         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6644         unsigned TruncBytes = TruncVT.getStoreSize();
6645         if (BytesPerElement % TruncBytes == 0) {
6646           // Calculate the value of Y' in the above description.  We are
6647           // splitting the original elements into Scale equal-sized pieces
6648           // and for truncation purposes want the last (least-significant)
6649           // of these pieces for IndexN.  This is easiest to do by calculating
6650           // the start index of the following element and then subtracting 1.
6651           unsigned Scale = BytesPerElement / TruncBytes;
6652           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6653 
6654           // Defer the creation of the bitcast from X to combineExtract,
6655           // which might be able to optimize the extraction.
6656           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6657                                    VecVT.getStoreSize() / TruncBytes);
6658           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6659           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6660         }
6661       }
6662     }
6663   }
6664   return SDValue();
6665 }
6666 
6667 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6668     SDNode *N, DAGCombinerInfo &DCI) const {
6669   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6670   SelectionDAG &DAG = DCI.DAG;
6671   SDValue N0 = N->getOperand(0);
6672   EVT VT = N->getValueType(0);
6673   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6674     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6675     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6676     if (TrueOp && FalseOp) {
6677       SDLoc DL(N0);
6678       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6679                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6680                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6681       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6682       // If N0 has multiple uses, change other uses as well.
6683       if (!N0.hasOneUse()) {
6684         SDValue TruncSelect =
6685           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6686         DCI.CombineTo(N0.getNode(), TruncSelect);
6687       }
6688       return NewSelect;
6689     }
6690   }
6691   // Convert (zext (xor (trunc X), C)) into (xor (trunc X), C') if the size
6692   // of the result is smaller than the size of X and all the truncated bits
6693   // of X are already zero.
6694   if (N0.getOpcode() == ISD::XOR &&
6695       N0.hasOneUse() && N0.getOperand(0).hasOneUse() &&
6696       N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6697       N0.getOperand(1).getOpcode() == ISD::Constant) {
6698     SDValue X = N0.getOperand(0).getOperand(0);
6699     if (VT.isScalarInteger() && VT.getSizeInBits() < X.getValueSizeInBits()) {
6700       KnownBits Known = DAG.computeKnownBits(X);
6701       APInt TruncatedBits = APInt::getBitsSet(X.getValueSizeInBits(),
6702                                               N0.getValueSizeInBits(),
6703                                               VT.getSizeInBits());
6704       if (TruncatedBits.isSubsetOf(Known.Zero)) {
6705         X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6706         APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
6707         return DAG.getNode(ISD::XOR, SDLoc(N0), VT,
6708                            X, DAG.getConstant(Mask, SDLoc(N0), VT));
6709       }
6710     }
6711   }
6712 
6713   return SDValue();
6714 }
6715 
6716 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6717     SDNode *N, DAGCombinerInfo &DCI) const {
6718   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6719   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6720   // into (select_cc LHS, RHS, -1, 0, COND)
6721   SelectionDAG &DAG = DCI.DAG;
6722   SDValue N0 = N->getOperand(0);
6723   EVT VT = N->getValueType(0);
6724   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6725   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6726     N0 = N0.getOperand(0);
6727   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6728     SDLoc DL(N0);
6729     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6730                       DAG.getAllOnesConstant(DL, VT),
6731                       DAG.getConstant(0, DL, VT), N0.getOperand(2) };
6732     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6733   }
6734   return SDValue();
6735 }
6736 
6737 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6738     SDNode *N, DAGCombinerInfo &DCI) const {
6739   // Convert (sext (ashr (shl X, C1), C2)) to
6740   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6741   // cheap as narrower ones.
6742   SelectionDAG &DAG = DCI.DAG;
6743   SDValue N0 = N->getOperand(0);
6744   EVT VT = N->getValueType(0);
6745   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6746     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6747     SDValue Inner = N0.getOperand(0);
6748     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6749       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6750         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6751         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6752         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6753         EVT ShiftVT = N0.getOperand(1).getValueType();
6754         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6755                                   Inner.getOperand(0));
6756         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6757                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6758                                                   ShiftVT));
6759         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6760                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6761       }
6762     }
6763   }
6764 
6765   return SDValue();
6766 }
6767 
6768 SDValue SystemZTargetLowering::combineMERGE(
6769     SDNode *N, DAGCombinerInfo &DCI) const {
6770   SelectionDAG &DAG = DCI.DAG;
6771   unsigned Opcode = N->getOpcode();
6772   SDValue Op0 = N->getOperand(0);
6773   SDValue Op1 = N->getOperand(1);
6774   if (Op0.getOpcode() == ISD::BITCAST)
6775     Op0 = Op0.getOperand(0);
6776   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6777     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6778     // for v4f32.
6779     if (Op1 == N->getOperand(0))
6780       return Op1;
6781     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6782     EVT VT = Op1.getValueType();
6783     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6784     if (ElemBytes <= 4) {
6785       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6786                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6787       EVT InVT = VT.changeVectorElementTypeToInteger();
6788       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6789                                    SystemZ::VectorBytes / ElemBytes / 2);
6790       if (VT != InVT) {
6791         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6792         DCI.AddToWorklist(Op1.getNode());
6793       }
6794       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6795       DCI.AddToWorklist(Op.getNode());
6796       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6797     }
6798   }
6799   return SDValue();
6800 }
6801 
6802 static bool isI128MovedToParts(LoadSDNode *LD, SDNode *&LoPart,
6803                                SDNode *&HiPart) {
6804   LoPart = HiPart = nullptr;
6805 
6806   // Scan through all users.
6807   for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6808        UI != UIEnd; ++UI) {
6809     // Skip the uses of the chain.
6810     if (UI.getUse().getResNo() != 0)
6811       continue;
6812 
6813     // Verify every user is a TRUNCATE to i64 of the low or high half.
6814     SDNode *User = *UI;
6815     bool IsLoPart = true;
6816     if (User->getOpcode() == ISD::SRL &&
6817         User->getOperand(1).getOpcode() == ISD::Constant &&
6818         User->getConstantOperandVal(1) == 64 && User->hasOneUse()) {
6819       User = *User->use_begin();
6820       IsLoPart = false;
6821     }
6822     if (User->getOpcode() != ISD::TRUNCATE || User->getValueType(0) != MVT::i64)
6823       return false;
6824 
6825     if (IsLoPart) {
6826       if (LoPart)
6827         return false;
6828       LoPart = User;
6829     } else {
6830       if (HiPart)
6831         return false;
6832       HiPart = User;
6833     }
6834   }
6835   return true;
6836 }
6837 
6838 static bool isF128MovedToParts(LoadSDNode *LD, SDNode *&LoPart,
6839                                SDNode *&HiPart) {
6840   LoPart = HiPart = nullptr;
6841 
6842   // Scan through all users.
6843   for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6844        UI != UIEnd; ++UI) {
6845     // Skip the uses of the chain.
6846     if (UI.getUse().getResNo() != 0)
6847       continue;
6848 
6849     // Verify every user is an EXTRACT_SUBREG of the low or high half.
6850     SDNode *User = *UI;
6851     if (!User->hasOneUse() || !User->isMachineOpcode() ||
6852         User->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
6853       return false;
6854 
6855     switch (User->getConstantOperandVal(1)) {
6856     case SystemZ::subreg_l64:
6857       if (LoPart)
6858         return false;
6859       LoPart = User;
6860       break;
6861     case SystemZ::subreg_h64:
6862       if (HiPart)
6863         return false;
6864       HiPart = User;
6865       break;
6866     default:
6867       return false;
6868     }
6869   }
6870   return true;
6871 }
6872 
6873 SDValue SystemZTargetLowering::combineLOAD(
6874     SDNode *N, DAGCombinerInfo &DCI) const {
6875   SelectionDAG &DAG = DCI.DAG;
6876   EVT LdVT = N->getValueType(0);
6877   SDLoc DL(N);
6878 
6879   // Replace a 128-bit load that is used solely to move its value into GPRs
6880   // by separate loads of both halves.
6881   LoadSDNode *LD = cast<LoadSDNode>(N);
6882   if (LD->isSimple() && ISD::isNormalLoad(LD)) {
6883     SDNode *LoPart, *HiPart;
6884     if ((LdVT == MVT::i128 && isI128MovedToParts(LD, LoPart, HiPart)) ||
6885         (LdVT == MVT::f128 && isF128MovedToParts(LD, LoPart, HiPart))) {
6886       // Rewrite each extraction as an independent load.
6887       SmallVector<SDValue, 2> ArgChains;
6888       if (HiPart) {
6889         SDValue EltLoad = DAG.getLoad(
6890             HiPart->getValueType(0), DL, LD->getChain(), LD->getBasePtr(),
6891             LD->getPointerInfo(), LD->getOriginalAlign(),
6892             LD->getMemOperand()->getFlags(), LD->getAAInfo());
6893 
6894         DCI.CombineTo(HiPart, EltLoad, true);
6895         ArgChains.push_back(EltLoad.getValue(1));
6896       }
6897       if (LoPart) {
6898         SDValue EltLoad = DAG.getLoad(
6899             LoPart->getValueType(0), DL, LD->getChain(),
6900             DAG.getObjectPtrOffset(DL, LD->getBasePtr(), TypeSize::getFixed(8)),
6901             LD->getPointerInfo().getWithOffset(8), LD->getOriginalAlign(),
6902             LD->getMemOperand()->getFlags(), LD->getAAInfo());
6903 
6904         DCI.CombineTo(LoPart, EltLoad, true);
6905         ArgChains.push_back(EltLoad.getValue(1));
6906       }
6907 
6908       // Collect all chains via TokenFactor.
6909       SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, ArgChains);
6910       DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
6911       DCI.AddToWorklist(Chain.getNode());
6912       return SDValue(N, 0);
6913     }
6914   }
6915 
6916   if (LdVT.isVector() || LdVT.isInteger())
6917     return SDValue();
6918   // Transform a scalar load that is REPLICATEd as well as having other
6919   // use(s) to the form where the other use(s) use the first element of the
6920   // REPLICATE instead of the load. Otherwise instruction selection will not
6921   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6922   // point loads.
6923 
6924   SDValue Replicate;
6925   SmallVector<SDNode*, 8> OtherUses;
6926   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6927        UI != UE; ++UI) {
6928     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6929       if (Replicate)
6930         return SDValue(); // Should never happen
6931       Replicate = SDValue(*UI, 0);
6932     }
6933     else if (UI.getUse().getResNo() == 0)
6934       OtherUses.push_back(*UI);
6935   }
6936   if (!Replicate || OtherUses.empty())
6937     return SDValue();
6938 
6939   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6940                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6941   // Update uses of the loaded Value while preserving old chains.
6942   for (SDNode *U : OtherUses) {
6943     SmallVector<SDValue, 8> Ops;
6944     for (SDValue Op : U->ops())
6945       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6946     DAG.UpdateNodeOperands(U, Ops);
6947   }
6948   return SDValue(N, 0);
6949 }
6950 
6951 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6952   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6953     return true;
6954   if (Subtarget.hasVectorEnhancements2())
6955     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128)
6956       return true;
6957   return false;
6958 }
6959 
6960 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6961   if (!VT.isVector() || !VT.isSimple() ||
6962       VT.getSizeInBits() != 128 ||
6963       VT.getScalarSizeInBits() % 8 != 0)
6964     return false;
6965 
6966   unsigned NumElts = VT.getVectorNumElements();
6967   for (unsigned i = 0; i < NumElts; ++i) {
6968     if (M[i] < 0) continue; // ignore UNDEF indices
6969     if ((unsigned) M[i] != NumElts - 1 - i)
6970       return false;
6971   }
6972 
6973   return true;
6974 }
6975 
6976 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6977   for (auto *U : StoredVal->uses()) {
6978     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6979       EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6980       if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6981         continue;
6982     } else if (isa<BuildVectorSDNode>(U)) {
6983       SDValue BuildVector = SDValue(U, 0);
6984       if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6985           isOnlyUsedByStores(BuildVector, DAG))
6986         continue;
6987     }
6988     return false;
6989   }
6990   return true;
6991 }
6992 
6993 static bool isI128MovedFromParts(SDValue Val, SDValue &LoPart,
6994                                  SDValue &HiPart) {
6995   if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse())
6996     return false;
6997 
6998   SDValue Op0 = Val.getOperand(0);
6999   SDValue Op1 = Val.getOperand(1);
7000 
7001   if (Op0.getOpcode() == ISD::SHL)
7002     std::swap(Op0, Op1);
7003   if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() ||
7004       Op1.getOperand(1).getOpcode() != ISD::Constant ||
7005       Op1.getConstantOperandVal(1) != 64)
7006     return false;
7007   Op1 = Op1.getOperand(0);
7008 
7009   if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() ||
7010       Op0.getOperand(0).getValueType() != MVT::i64)
7011     return false;
7012   if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() ||
7013       Op1.getOperand(0).getValueType() != MVT::i64)
7014     return false;
7015 
7016   LoPart = Op0.getOperand(0);
7017   HiPart = Op1.getOperand(0);
7018   return true;
7019 }
7020 
7021 static bool isF128MovedFromParts(SDValue Val, SDValue &LoPart,
7022                                  SDValue &HiPart) {
7023   if (!Val.getNode()->hasOneUse() || !Val.isMachineOpcode() ||
7024       Val.getMachineOpcode() != TargetOpcode::REG_SEQUENCE)
7025     return false;
7026 
7027   if (Val->getNumOperands() != 5 ||
7028       Val->getOperand(0)->getAsZExtVal() != SystemZ::FP128BitRegClassID ||
7029       Val->getOperand(2)->getAsZExtVal() != SystemZ::subreg_l64 ||
7030       Val->getOperand(4)->getAsZExtVal() != SystemZ::subreg_h64)
7031     return false;
7032 
7033   LoPart = Val->getOperand(1);
7034   HiPart = Val->getOperand(3);
7035   return true;
7036 }
7037 
7038 SDValue SystemZTargetLowering::combineSTORE(
7039     SDNode *N, DAGCombinerInfo &DCI) const {
7040   SelectionDAG &DAG = DCI.DAG;
7041   auto *SN = cast<StoreSDNode>(N);
7042   auto &Op1 = N->getOperand(1);
7043   EVT MemVT = SN->getMemoryVT();
7044   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
7045   // for the extraction to be done on a vMiN value, so that we can use VSTE.
7046   // If X has wider elements then convert it to:
7047   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
7048   if (MemVT.isInteger() && SN->isTruncatingStore()) {
7049     if (SDValue Value =
7050             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
7051       DCI.AddToWorklist(Value.getNode());
7052 
7053       // Rewrite the store with the new form of stored value.
7054       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
7055                                SN->getBasePtr(), SN->getMemoryVT(),
7056                                SN->getMemOperand());
7057     }
7058   }
7059   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
7060   if (!SN->isTruncatingStore() &&
7061       Op1.getOpcode() == ISD::BSWAP &&
7062       Op1.getNode()->hasOneUse() &&
7063       canLoadStoreByteSwapped(Op1.getValueType())) {
7064 
7065       SDValue BSwapOp = Op1.getOperand(0);
7066 
7067       if (BSwapOp.getValueType() == MVT::i16)
7068         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
7069 
7070       SDValue Ops[] = {
7071         N->getOperand(0), BSwapOp, N->getOperand(2)
7072       };
7073 
7074       return
7075         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
7076                                 Ops, MemVT, SN->getMemOperand());
7077     }
7078   // Combine STORE (element-swap) into VSTER
7079   if (!SN->isTruncatingStore() &&
7080       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
7081       Op1.getNode()->hasOneUse() &&
7082       Subtarget.hasVectorEnhancements2()) {
7083     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
7084     ArrayRef<int> ShuffleMask = SVN->getMask();
7085     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
7086       SDValue Ops[] = {
7087         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
7088       };
7089 
7090       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
7091                                      DAG.getVTList(MVT::Other),
7092                                      Ops, MemVT, SN->getMemOperand());
7093     }
7094   }
7095 
7096   // Combine STORE (READCYCLECOUNTER) into STCKF.
7097   if (!SN->isTruncatingStore() &&
7098       Op1.getOpcode() == ISD::READCYCLECOUNTER &&
7099       Op1.hasOneUse() &&
7100       N->getOperand(0).reachesChainWithoutSideEffects(SDValue(Op1.getNode(), 1))) {
7101       SDValue Ops[] = { Op1.getOperand(0), N->getOperand(2) };
7102       return DAG.getMemIntrinsicNode(SystemZISD::STCKF, SDLoc(N),
7103                                      DAG.getVTList(MVT::Other),
7104                                      Ops, MemVT, SN->getMemOperand());
7105   }
7106 
7107   // Transform a store of a 128-bit value moved from parts into two stores.
7108   if (SN->isSimple() && ISD::isNormalStore(SN)) {
7109     SDValue LoPart, HiPart;
7110     if ((MemVT == MVT::i128 && isI128MovedFromParts(Op1, LoPart, HiPart)) ||
7111         (MemVT == MVT::f128 && isF128MovedFromParts(Op1, LoPart, HiPart))) {
7112       SDLoc DL(SN);
7113       SDValue Chain0 =
7114         DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(),
7115                      SN->getPointerInfo(), SN->getOriginalAlign(),
7116                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
7117       SDValue Chain1 =
7118         DAG.getStore(SN->getChain(), DL, LoPart,
7119                      DAG.getObjectPtrOffset(DL, SN->getBasePtr(),
7120                                                 TypeSize::getFixed(8)),
7121                      SN->getPointerInfo().getWithOffset(8),
7122                      SN->getOriginalAlign(),
7123                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
7124 
7125       return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1);
7126     }
7127   }
7128 
7129   // Replicate a reg or immediate with VREP instead of scalar multiply or
7130   // immediate load. It seems best to do this during the first DAGCombine as
7131   // it is straight-forward to handle the zero-extend node in the initial
7132   // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
7133   // extracting an i16 element from a v16i8 vector).
7134   if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
7135       isOnlyUsedByStores(Op1, DAG)) {
7136     SDValue Word = SDValue();
7137     EVT WordVT;
7138 
7139     // Find a replicated immediate and return it if found in Word and its
7140     // type in WordVT.
7141     auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
7142       // Some constants are better handled with a scalar store.
7143       if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
7144           isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
7145         return;
7146       SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
7147       if (VCI.isVectorConstantLegal(Subtarget) &&
7148           VCI.Opcode == SystemZISD::REPLICATE) {
7149         Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
7150         WordVT = VCI.VecVT.getScalarType();
7151       }
7152     };
7153 
7154     // Find a replicated register and return it if found in Word and its type
7155     // in WordVT.
7156     auto FindReplicatedReg = [&](SDValue MulOp) {
7157       EVT MulVT = MulOp.getValueType();
7158       if (MulOp->getOpcode() == ISD::MUL &&
7159           (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
7160         // Find a zero extended value and its type.
7161         SDValue LHS = MulOp->getOperand(0);
7162         if (LHS->getOpcode() == ISD::ZERO_EXTEND)
7163           WordVT = LHS->getOperand(0).getValueType();
7164         else if (LHS->getOpcode() == ISD::AssertZext)
7165           WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
7166         else
7167           return;
7168         // Find a replicating constant, e.g. 0x00010001.
7169         if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
7170           SystemZVectorConstantInfo VCI(
7171               APInt(MulVT.getSizeInBits(), C->getZExtValue()));
7172           if (VCI.isVectorConstantLegal(Subtarget) &&
7173               VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
7174               WordVT == VCI.VecVT.getScalarType())
7175             Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
7176         }
7177       }
7178     };
7179 
7180     if (isa<BuildVectorSDNode>(Op1) &&
7181         DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
7182       SDValue SplatVal = Op1->getOperand(0);
7183       if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
7184         FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
7185       else
7186         FindReplicatedReg(SplatVal);
7187     } else {
7188       if (auto *C = dyn_cast<ConstantSDNode>(Op1))
7189         FindReplicatedImm(C, MemVT.getStoreSize());
7190       else
7191         FindReplicatedReg(Op1);
7192     }
7193 
7194     if (Word != SDValue()) {
7195       assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
7196              "Bad type handling");
7197       unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
7198       EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
7199       SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
7200       return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
7201                           SN->getBasePtr(), SN->getMemOperand());
7202     }
7203   }
7204 
7205   return SDValue();
7206 }
7207 
7208 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
7209     SDNode *N, DAGCombinerInfo &DCI) const {
7210   SelectionDAG &DAG = DCI.DAG;
7211   // Combine element-swap (LOAD) into VLER
7212   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7213       N->getOperand(0).hasOneUse() &&
7214       Subtarget.hasVectorEnhancements2()) {
7215     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7216     ArrayRef<int> ShuffleMask = SVN->getMask();
7217     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
7218       SDValue Load = N->getOperand(0);
7219       LoadSDNode *LD = cast<LoadSDNode>(Load);
7220 
7221       // Create the element-swapping load.
7222       SDValue Ops[] = {
7223         LD->getChain(),    // Chain
7224         LD->getBasePtr()   // Ptr
7225       };
7226       SDValue ESLoad =
7227         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
7228                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
7229                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
7230 
7231       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
7232       // by the load dead.
7233       DCI.CombineTo(N, ESLoad);
7234 
7235       // Next, combine the load away, we give it a bogus result value but a real
7236       // chain result.  The result value is dead because the shuffle is dead.
7237       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
7238 
7239       // Return N so it doesn't get rechecked!
7240       return SDValue(N, 0);
7241     }
7242   }
7243 
7244   return SDValue();
7245 }
7246 
7247 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
7248     SDNode *N, DAGCombinerInfo &DCI) const {
7249   SelectionDAG &DAG = DCI.DAG;
7250 
7251   if (!Subtarget.hasVector())
7252     return SDValue();
7253 
7254   // Look through bitcasts that retain the number of vector elements.
7255   SDValue Op = N->getOperand(0);
7256   if (Op.getOpcode() == ISD::BITCAST &&
7257       Op.getValueType().isVector() &&
7258       Op.getOperand(0).getValueType().isVector() &&
7259       Op.getValueType().getVectorNumElements() ==
7260       Op.getOperand(0).getValueType().getVectorNumElements())
7261     Op = Op.getOperand(0);
7262 
7263   // Pull BSWAP out of a vector extraction.
7264   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
7265     EVT VecVT = Op.getValueType();
7266     EVT EltVT = VecVT.getVectorElementType();
7267     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
7268                      Op.getOperand(0), N->getOperand(1));
7269     DCI.AddToWorklist(Op.getNode());
7270     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
7271     if (EltVT != N->getValueType(0)) {
7272       DCI.AddToWorklist(Op.getNode());
7273       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
7274     }
7275     return Op;
7276   }
7277 
7278   // Try to simplify a vector extraction.
7279   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7280     SDValue Op0 = N->getOperand(0);
7281     EVT VecVT = Op0.getValueType();
7282     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
7283                           IndexN->getZExtValue(), DCI, false);
7284   }
7285   return SDValue();
7286 }
7287 
7288 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
7289     SDNode *N, DAGCombinerInfo &DCI) const {
7290   SelectionDAG &DAG = DCI.DAG;
7291   // (join_dwords X, X) == (replicate X)
7292   if (N->getOperand(0) == N->getOperand(1))
7293     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
7294                        N->getOperand(0));
7295   return SDValue();
7296 }
7297 
7298 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
7299   SDValue Chain1 = N1->getOperand(0);
7300   SDValue Chain2 = N2->getOperand(0);
7301 
7302   // Trivial case: both nodes take the same chain.
7303   if (Chain1 == Chain2)
7304     return Chain1;
7305 
7306   // FIXME - we could handle more complex cases via TokenFactor,
7307   // assuming we can verify that this would not create a cycle.
7308   return SDValue();
7309 }
7310 
7311 SDValue SystemZTargetLowering::combineFP_ROUND(
7312     SDNode *N, DAGCombinerInfo &DCI) const {
7313 
7314   if (!Subtarget.hasVector())
7315     return SDValue();
7316 
7317   // (fpround (extract_vector_elt X 0))
7318   // (fpround (extract_vector_elt X 1)) ->
7319   // (extract_vector_elt (VROUND X) 0)
7320   // (extract_vector_elt (VROUND X) 2)
7321   //
7322   // This is a special case since the target doesn't really support v2f32s.
7323   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7324   SelectionDAG &DAG = DCI.DAG;
7325   SDValue Op0 = N->getOperand(OpNo);
7326   if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() &&
7327       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7328       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
7329       Op0.getOperand(1).getOpcode() == ISD::Constant &&
7330       Op0.getConstantOperandVal(1) == 0) {
7331     SDValue Vec = Op0.getOperand(0);
7332     for (auto *U : Vec->uses()) {
7333       if (U != Op0.getNode() && U->hasOneUse() &&
7334           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7335           U->getOperand(0) == Vec &&
7336           U->getOperand(1).getOpcode() == ISD::Constant &&
7337           U->getConstantOperandVal(1) == 1) {
7338         SDValue OtherRound = SDValue(*U->use_begin(), 0);
7339         if (OtherRound.getOpcode() == N->getOpcode() &&
7340             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
7341             OtherRound.getValueType() == MVT::f32) {
7342           SDValue VRound, Chain;
7343           if (N->isStrictFPOpcode()) {
7344             Chain = MergeInputChains(N, OtherRound.getNode());
7345             if (!Chain)
7346               continue;
7347             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
7348                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
7349             Chain = VRound.getValue(1);
7350           } else
7351             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
7352                                  MVT::v4f32, Vec);
7353           DCI.AddToWorklist(VRound.getNode());
7354           SDValue Extract1 =
7355             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
7356                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
7357           DCI.AddToWorklist(Extract1.getNode());
7358           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
7359           if (Chain)
7360             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
7361           SDValue Extract0 =
7362             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
7363                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7364           if (Chain)
7365             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7366                                N->getVTList(), Extract0, Chain);
7367           return Extract0;
7368         }
7369       }
7370     }
7371   }
7372   return SDValue();
7373 }
7374 
7375 SDValue SystemZTargetLowering::combineFP_EXTEND(
7376     SDNode *N, DAGCombinerInfo &DCI) const {
7377 
7378   if (!Subtarget.hasVector())
7379     return SDValue();
7380 
7381   // (fpextend (extract_vector_elt X 0))
7382   // (fpextend (extract_vector_elt X 2)) ->
7383   // (extract_vector_elt (VEXTEND X) 0)
7384   // (extract_vector_elt (VEXTEND X) 1)
7385   //
7386   // This is a special case since the target doesn't really support v2f32s.
7387   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7388   SelectionDAG &DAG = DCI.DAG;
7389   SDValue Op0 = N->getOperand(OpNo);
7390   if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() &&
7391       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7392       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
7393       Op0.getOperand(1).getOpcode() == ISD::Constant &&
7394       Op0.getConstantOperandVal(1) == 0) {
7395     SDValue Vec = Op0.getOperand(0);
7396     for (auto *U : Vec->uses()) {
7397       if (U != Op0.getNode() && U->hasOneUse() &&
7398           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7399           U->getOperand(0) == Vec &&
7400           U->getOperand(1).getOpcode() == ISD::Constant &&
7401           U->getConstantOperandVal(1) == 2) {
7402         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
7403         if (OtherExtend.getOpcode() == N->getOpcode() &&
7404             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
7405             OtherExtend.getValueType() == MVT::f64) {
7406           SDValue VExtend, Chain;
7407           if (N->isStrictFPOpcode()) {
7408             Chain = MergeInputChains(N, OtherExtend.getNode());
7409             if (!Chain)
7410               continue;
7411             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
7412                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
7413             Chain = VExtend.getValue(1);
7414           } else
7415             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
7416                                   MVT::v2f64, Vec);
7417           DCI.AddToWorklist(VExtend.getNode());
7418           SDValue Extract1 =
7419             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
7420                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
7421           DCI.AddToWorklist(Extract1.getNode());
7422           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
7423           if (Chain)
7424             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
7425           SDValue Extract0 =
7426             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
7427                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7428           if (Chain)
7429             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7430                                N->getVTList(), Extract0, Chain);
7431           return Extract0;
7432         }
7433       }
7434     }
7435   }
7436   return SDValue();
7437 }
7438 
7439 SDValue SystemZTargetLowering::combineINT_TO_FP(
7440     SDNode *N, DAGCombinerInfo &DCI) const {
7441   if (DCI.Level != BeforeLegalizeTypes)
7442     return SDValue();
7443   SelectionDAG &DAG = DCI.DAG;
7444   LLVMContext &Ctx = *DAG.getContext();
7445   unsigned Opcode = N->getOpcode();
7446   EVT OutVT = N->getValueType(0);
7447   Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
7448   SDValue Op = N->getOperand(0);
7449   unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
7450   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
7451 
7452   // Insert an extension before type-legalization to avoid scalarization, e.g.:
7453   // v2f64 = uint_to_fp v2i16
7454   // =>
7455   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
7456   if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
7457       OutScalarBits <= 64) {
7458     unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
7459     EVT ExtVT = EVT::getVectorVT(
7460         Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
7461     unsigned ExtOpcode =
7462         (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
7463     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
7464     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
7465   }
7466   return SDValue();
7467 }
7468 
7469 SDValue SystemZTargetLowering::combineBSWAP(
7470     SDNode *N, DAGCombinerInfo &DCI) const {
7471   SelectionDAG &DAG = DCI.DAG;
7472   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
7473   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7474       N->getOperand(0).hasOneUse() &&
7475       canLoadStoreByteSwapped(N->getValueType(0))) {
7476       SDValue Load = N->getOperand(0);
7477       LoadSDNode *LD = cast<LoadSDNode>(Load);
7478 
7479       // Create the byte-swapping load.
7480       SDValue Ops[] = {
7481         LD->getChain(),    // Chain
7482         LD->getBasePtr()   // Ptr
7483       };
7484       EVT LoadVT = N->getValueType(0);
7485       if (LoadVT == MVT::i16)
7486         LoadVT = MVT::i32;
7487       SDValue BSLoad =
7488         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
7489                                 DAG.getVTList(LoadVT, MVT::Other),
7490                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
7491 
7492       // If this is an i16 load, insert the truncate.
7493       SDValue ResVal = BSLoad;
7494       if (N->getValueType(0) == MVT::i16)
7495         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
7496 
7497       // First, combine the bswap away.  This makes the value produced by the
7498       // load dead.
7499       DCI.CombineTo(N, ResVal);
7500 
7501       // Next, combine the load away, we give it a bogus result value but a real
7502       // chain result.  The result value is dead because the bswap is dead.
7503       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7504 
7505       // Return N so it doesn't get rechecked!
7506       return SDValue(N, 0);
7507     }
7508 
7509   // Look through bitcasts that retain the number of vector elements.
7510   SDValue Op = N->getOperand(0);
7511   if (Op.getOpcode() == ISD::BITCAST &&
7512       Op.getValueType().isVector() &&
7513       Op.getOperand(0).getValueType().isVector() &&
7514       Op.getValueType().getVectorNumElements() ==
7515       Op.getOperand(0).getValueType().getVectorNumElements())
7516     Op = Op.getOperand(0);
7517 
7518   // Push BSWAP into a vector insertion if at least one side then simplifies.
7519   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
7520     SDValue Vec = Op.getOperand(0);
7521     SDValue Elt = Op.getOperand(1);
7522     SDValue Idx = Op.getOperand(2);
7523 
7524     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
7525         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
7526         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
7527         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
7528         (canLoadStoreByteSwapped(N->getValueType(0)) &&
7529          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
7530       EVT VecVT = N->getValueType(0);
7531       EVT EltVT = N->getValueType(0).getVectorElementType();
7532       if (VecVT != Vec.getValueType()) {
7533         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
7534         DCI.AddToWorklist(Vec.getNode());
7535       }
7536       if (EltVT != Elt.getValueType()) {
7537         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
7538         DCI.AddToWorklist(Elt.getNode());
7539       }
7540       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
7541       DCI.AddToWorklist(Vec.getNode());
7542       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
7543       DCI.AddToWorklist(Elt.getNode());
7544       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
7545                          Vec, Elt, Idx);
7546     }
7547   }
7548 
7549   // Push BSWAP into a vector shuffle if at least one side then simplifies.
7550   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
7551   if (SV && Op.hasOneUse()) {
7552     SDValue Op0 = Op.getOperand(0);
7553     SDValue Op1 = Op.getOperand(1);
7554 
7555     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
7556         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
7557         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
7558         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
7559       EVT VecVT = N->getValueType(0);
7560       if (VecVT != Op0.getValueType()) {
7561         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
7562         DCI.AddToWorklist(Op0.getNode());
7563       }
7564       if (VecVT != Op1.getValueType()) {
7565         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
7566         DCI.AddToWorklist(Op1.getNode());
7567       }
7568       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
7569       DCI.AddToWorklist(Op0.getNode());
7570       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
7571       DCI.AddToWorklist(Op1.getNode());
7572       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
7573     }
7574   }
7575 
7576   return SDValue();
7577 }
7578 
7579 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
7580   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
7581   // set by the CCReg instruction using the CCValid / CCMask masks,
7582   // If the CCReg instruction is itself a ICMP testing the condition
7583   // code set by some other instruction, see whether we can directly
7584   // use that condition code.
7585 
7586   // Verify that we have an ICMP against some constant.
7587   if (CCValid != SystemZ::CCMASK_ICMP)
7588     return false;
7589   auto *ICmp = CCReg.getNode();
7590   if (ICmp->getOpcode() != SystemZISD::ICMP)
7591     return false;
7592   auto *CompareLHS = ICmp->getOperand(0).getNode();
7593   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
7594   if (!CompareRHS)
7595     return false;
7596 
7597   // Optimize the case where CompareLHS is a SELECT_CCMASK.
7598   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
7599     // Verify that we have an appropriate mask for a EQ or NE comparison.
7600     bool Invert = false;
7601     if (CCMask == SystemZ::CCMASK_CMP_NE)
7602       Invert = !Invert;
7603     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
7604       return false;
7605 
7606     // Verify that the ICMP compares against one of select values.
7607     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
7608     if (!TrueVal)
7609       return false;
7610     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7611     if (!FalseVal)
7612       return false;
7613     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
7614       Invert = !Invert;
7615     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
7616       return false;
7617 
7618     // Compute the effective CC mask for the new branch or select.
7619     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
7620     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
7621     if (!NewCCValid || !NewCCMask)
7622       return false;
7623     CCValid = NewCCValid->getZExtValue();
7624     CCMask = NewCCMask->getZExtValue();
7625     if (Invert)
7626       CCMask ^= CCValid;
7627 
7628     // Return the updated CCReg link.
7629     CCReg = CompareLHS->getOperand(4);
7630     return true;
7631   }
7632 
7633   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
7634   if (CompareLHS->getOpcode() == ISD::SRA) {
7635     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7636     if (!SRACount || SRACount->getZExtValue() != 30)
7637       return false;
7638     auto *SHL = CompareLHS->getOperand(0).getNode();
7639     if (SHL->getOpcode() != ISD::SHL)
7640       return false;
7641     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
7642     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
7643       return false;
7644     auto *IPM = SHL->getOperand(0).getNode();
7645     if (IPM->getOpcode() != SystemZISD::IPM)
7646       return false;
7647 
7648     // Avoid introducing CC spills (because SRA would clobber CC).
7649     if (!CompareLHS->hasOneUse())
7650       return false;
7651     // Verify that the ICMP compares against zero.
7652     if (CompareRHS->getZExtValue() != 0)
7653       return false;
7654 
7655     // Compute the effective CC mask for the new branch or select.
7656     CCMask = SystemZ::reverseCCMask(CCMask);
7657 
7658     // Return the updated CCReg link.
7659     CCReg = IPM->getOperand(0);
7660     return true;
7661   }
7662 
7663   return false;
7664 }
7665 
7666 SDValue SystemZTargetLowering::combineBR_CCMASK(
7667     SDNode *N, DAGCombinerInfo &DCI) const {
7668   SelectionDAG &DAG = DCI.DAG;
7669 
7670   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
7671   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7672   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7673   if (!CCValid || !CCMask)
7674     return SDValue();
7675 
7676   int CCValidVal = CCValid->getZExtValue();
7677   int CCMaskVal = CCMask->getZExtValue();
7678   SDValue Chain = N->getOperand(0);
7679   SDValue CCReg = N->getOperand(4);
7680 
7681   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7682     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
7683                        Chain,
7684                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7685                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7686                        N->getOperand(3), CCReg);
7687   return SDValue();
7688 }
7689 
7690 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7691     SDNode *N, DAGCombinerInfo &DCI) const {
7692   SelectionDAG &DAG = DCI.DAG;
7693 
7694   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7695   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7696   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7697   if (!CCValid || !CCMask)
7698     return SDValue();
7699 
7700   int CCValidVal = CCValid->getZExtValue();
7701   int CCMaskVal = CCMask->getZExtValue();
7702   SDValue CCReg = N->getOperand(4);
7703 
7704   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7705     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7706                        N->getOperand(0), N->getOperand(1),
7707                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7708                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7709                        CCReg);
7710   return SDValue();
7711 }
7712 
7713 
7714 SDValue SystemZTargetLowering::combineGET_CCMASK(
7715     SDNode *N, DAGCombinerInfo &DCI) const {
7716 
7717   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7718   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7719   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7720   if (!CCValid || !CCMask)
7721     return SDValue();
7722   int CCValidVal = CCValid->getZExtValue();
7723   int CCMaskVal = CCMask->getZExtValue();
7724 
7725   SDValue Select = N->getOperand(0);
7726   if (Select->getOpcode() == ISD::TRUNCATE)
7727     Select = Select->getOperand(0);
7728   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7729     return SDValue();
7730 
7731   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7732   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7733   if (!SelectCCValid || !SelectCCMask)
7734     return SDValue();
7735   int SelectCCValidVal = SelectCCValid->getZExtValue();
7736   int SelectCCMaskVal = SelectCCMask->getZExtValue();
7737 
7738   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7739   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7740   if (!TrueVal || !FalseVal)
7741     return SDValue();
7742   if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0)
7743     ;
7744   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1)
7745     SelectCCMaskVal ^= SelectCCValidVal;
7746   else
7747     return SDValue();
7748 
7749   if (SelectCCValidVal & ~CCValidVal)
7750     return SDValue();
7751   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7752     return SDValue();
7753 
7754   return Select->getOperand(4);
7755 }
7756 
7757 SDValue SystemZTargetLowering::combineIntDIVREM(
7758     SDNode *N, DAGCombinerInfo &DCI) const {
7759   SelectionDAG &DAG = DCI.DAG;
7760   EVT VT = N->getValueType(0);
7761   // In the case where the divisor is a vector of constants a cheaper
7762   // sequence of instructions can replace the divide. BuildSDIV is called to
7763   // do this during DAG combining, but it only succeeds when it can build a
7764   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7765   // since it is not Legal but Custom it can only happen before
7766   // legalization. Therefore we must scalarize this early before Combine
7767   // 1. For widened vectors, this is already the result of type legalization.
7768   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7769       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7770     return DAG.UnrollVectorOp(N);
7771   return SDValue();
7772 }
7773 
7774 SDValue SystemZTargetLowering::combineINTRINSIC(
7775     SDNode *N, DAGCombinerInfo &DCI) const {
7776   SelectionDAG &DAG = DCI.DAG;
7777 
7778   unsigned Id = N->getConstantOperandVal(1);
7779   switch (Id) {
7780   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7781   // or larger is simply a vector load.
7782   case Intrinsic::s390_vll:
7783   case Intrinsic::s390_vlrl:
7784     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7785       if (C->getZExtValue() >= 15)
7786         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7787                            N->getOperand(3), MachinePointerInfo());
7788     break;
7789   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7790   case Intrinsic::s390_vstl:
7791   case Intrinsic::s390_vstrl:
7792     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7793       if (C->getZExtValue() >= 15)
7794         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7795                             N->getOperand(4), MachinePointerInfo());
7796     break;
7797   }
7798 
7799   return SDValue();
7800 }
7801 
7802 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7803   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7804     return N->getOperand(0);
7805   return N;
7806 }
7807 
7808 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7809                                                  DAGCombinerInfo &DCI) const {
7810   switch(N->getOpcode()) {
7811   default: break;
7812   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
7813   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
7814   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
7815   case SystemZISD::MERGE_HIGH:
7816   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7817   case ISD::LOAD:               return combineLOAD(N, DCI);
7818   case ISD::STORE:              return combineSTORE(N, DCI);
7819   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7820   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7821   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7822   case ISD::STRICT_FP_ROUND:
7823   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7824   case ISD::STRICT_FP_EXTEND:
7825   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7826   case ISD::SINT_TO_FP:
7827   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7828   case ISD::BSWAP:              return combineBSWAP(N, DCI);
7829   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7830   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7831   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7832   case ISD::SDIV:
7833   case ISD::UDIV:
7834   case ISD::SREM:
7835   case ISD::UREM:               return combineIntDIVREM(N, DCI);
7836   case ISD::INTRINSIC_W_CHAIN:
7837   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7838   }
7839 
7840   return SDValue();
7841 }
7842 
7843 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7844 // are for Op.
7845 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7846                                     unsigned OpNo) {
7847   EVT VT = Op.getValueType();
7848   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7849   APInt SrcDemE;
7850   unsigned Opcode = Op.getOpcode();
7851   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7852     unsigned Id = Op.getConstantOperandVal(0);
7853     switch (Id) {
7854     case Intrinsic::s390_vpksh:   // PACKS
7855     case Intrinsic::s390_vpksf:
7856     case Intrinsic::s390_vpksg:
7857     case Intrinsic::s390_vpkshs:  // PACKS_CC
7858     case Intrinsic::s390_vpksfs:
7859     case Intrinsic::s390_vpksgs:
7860     case Intrinsic::s390_vpklsh:  // PACKLS
7861     case Intrinsic::s390_vpklsf:
7862     case Intrinsic::s390_vpklsg:
7863     case Intrinsic::s390_vpklshs: // PACKLS_CC
7864     case Intrinsic::s390_vpklsfs:
7865     case Intrinsic::s390_vpklsgs:
7866       // VECTOR PACK truncates the elements of two source vectors into one.
7867       SrcDemE = DemandedElts;
7868       if (OpNo == 2)
7869         SrcDemE.lshrInPlace(NumElts / 2);
7870       SrcDemE = SrcDemE.trunc(NumElts / 2);
7871       break;
7872       // VECTOR UNPACK extends half the elements of the source vector.
7873     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7874     case Intrinsic::s390_vuphh:
7875     case Intrinsic::s390_vuphf:
7876     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7877     case Intrinsic::s390_vuplhh:
7878     case Intrinsic::s390_vuplhf:
7879       SrcDemE = APInt(NumElts * 2, 0);
7880       SrcDemE.insertBits(DemandedElts, 0);
7881       break;
7882     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7883     case Intrinsic::s390_vuplhw:
7884     case Intrinsic::s390_vuplf:
7885     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7886     case Intrinsic::s390_vupllh:
7887     case Intrinsic::s390_vupllf:
7888       SrcDemE = APInt(NumElts * 2, 0);
7889       SrcDemE.insertBits(DemandedElts, NumElts);
7890       break;
7891     case Intrinsic::s390_vpdi: {
7892       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7893       SrcDemE = APInt(NumElts, 0);
7894       if (!DemandedElts[OpNo - 1])
7895         break;
7896       unsigned Mask = Op.getConstantOperandVal(3);
7897       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7898       // Demand input element 0 or 1, given by the mask bit value.
7899       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7900       break;
7901     }
7902     case Intrinsic::s390_vsldb: {
7903       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7904       assert(VT == MVT::v16i8 && "Unexpected type.");
7905       unsigned FirstIdx = Op.getConstantOperandVal(3);
7906       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7907       unsigned NumSrc0Els = 16 - FirstIdx;
7908       SrcDemE = APInt(NumElts, 0);
7909       if (OpNo == 1) {
7910         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7911         SrcDemE.insertBits(DemEls, FirstIdx);
7912       } else {
7913         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7914         SrcDemE.insertBits(DemEls, 0);
7915       }
7916       break;
7917     }
7918     case Intrinsic::s390_vperm:
7919       SrcDemE = APInt(NumElts, -1);
7920       break;
7921     default:
7922       llvm_unreachable("Unhandled intrinsic.");
7923       break;
7924     }
7925   } else {
7926     switch (Opcode) {
7927     case SystemZISD::JOIN_DWORDS:
7928       // Scalar operand.
7929       SrcDemE = APInt(1, 1);
7930       break;
7931     case SystemZISD::SELECT_CCMASK:
7932       SrcDemE = DemandedElts;
7933       break;
7934     default:
7935       llvm_unreachable("Unhandled opcode.");
7936       break;
7937     }
7938   }
7939   return SrcDemE;
7940 }
7941 
7942 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7943                                   const APInt &DemandedElts,
7944                                   const SelectionDAG &DAG, unsigned Depth,
7945                                   unsigned OpNo) {
7946   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7947   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7948   KnownBits LHSKnown =
7949       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7950   KnownBits RHSKnown =
7951       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7952   Known = LHSKnown.intersectWith(RHSKnown);
7953 }
7954 
7955 void
7956 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7957                                                      KnownBits &Known,
7958                                                      const APInt &DemandedElts,
7959                                                      const SelectionDAG &DAG,
7960                                                      unsigned Depth) const {
7961   Known.resetAll();
7962 
7963   // Intrinsic CC result is returned in the two low bits.
7964   unsigned tmp0, tmp1; // not used
7965   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7966     Known.Zero.setBitsFrom(2);
7967     return;
7968   }
7969   EVT VT = Op.getValueType();
7970   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7971     return;
7972   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7973           "KnownBits does not match VT in bitwidth");
7974   assert ((!VT.isVector() ||
7975            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7976           "DemandedElts does not match VT number of elements");
7977   unsigned BitWidth = Known.getBitWidth();
7978   unsigned Opcode = Op.getOpcode();
7979   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7980     bool IsLogical = false;
7981     unsigned Id = Op.getConstantOperandVal(0);
7982     switch (Id) {
7983     case Intrinsic::s390_vpksh:   // PACKS
7984     case Intrinsic::s390_vpksf:
7985     case Intrinsic::s390_vpksg:
7986     case Intrinsic::s390_vpkshs:  // PACKS_CC
7987     case Intrinsic::s390_vpksfs:
7988     case Intrinsic::s390_vpksgs:
7989     case Intrinsic::s390_vpklsh:  // PACKLS
7990     case Intrinsic::s390_vpklsf:
7991     case Intrinsic::s390_vpklsg:
7992     case Intrinsic::s390_vpklshs: // PACKLS_CC
7993     case Intrinsic::s390_vpklsfs:
7994     case Intrinsic::s390_vpklsgs:
7995     case Intrinsic::s390_vpdi:
7996     case Intrinsic::s390_vsldb:
7997     case Intrinsic::s390_vperm:
7998       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7999       break;
8000     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
8001     case Intrinsic::s390_vuplhh:
8002     case Intrinsic::s390_vuplhf:
8003     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
8004     case Intrinsic::s390_vupllh:
8005     case Intrinsic::s390_vupllf:
8006       IsLogical = true;
8007       [[fallthrough]];
8008     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
8009     case Intrinsic::s390_vuphh:
8010     case Intrinsic::s390_vuphf:
8011     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
8012     case Intrinsic::s390_vuplhw:
8013     case Intrinsic::s390_vuplf: {
8014       SDValue SrcOp = Op.getOperand(1);
8015       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
8016       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
8017       if (IsLogical) {
8018         Known = Known.zext(BitWidth);
8019       } else
8020         Known = Known.sext(BitWidth);
8021       break;
8022     }
8023     default:
8024       break;
8025     }
8026   } else {
8027     switch (Opcode) {
8028     case SystemZISD::JOIN_DWORDS:
8029     case SystemZISD::SELECT_CCMASK:
8030       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
8031       break;
8032     case SystemZISD::REPLICATE: {
8033       SDValue SrcOp = Op.getOperand(0);
8034       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
8035       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
8036         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
8037       break;
8038     }
8039     default:
8040       break;
8041     }
8042   }
8043 
8044   // Known has the width of the source operand(s). Adjust if needed to match
8045   // the passed bitwidth.
8046   if (Known.getBitWidth() != BitWidth)
8047     Known = Known.anyextOrTrunc(BitWidth);
8048 }
8049 
8050 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
8051                                         const SelectionDAG &DAG, unsigned Depth,
8052                                         unsigned OpNo) {
8053   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
8054   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
8055   if (LHS == 1) return 1; // Early out.
8056   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
8057   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
8058   if (RHS == 1) return 1; // Early out.
8059   unsigned Common = std::min(LHS, RHS);
8060   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
8061   EVT VT = Op.getValueType();
8062   unsigned VTBits = VT.getScalarSizeInBits();
8063   if (SrcBitWidth > VTBits) { // PACK
8064     unsigned SrcExtraBits = SrcBitWidth - VTBits;
8065     if (Common > SrcExtraBits)
8066       return (Common - SrcExtraBits);
8067     return 1;
8068   }
8069   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
8070   return Common;
8071 }
8072 
8073 unsigned
8074 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
8075     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
8076     unsigned Depth) const {
8077   if (Op.getResNo() != 0)
8078     return 1;
8079   unsigned Opcode = Op.getOpcode();
8080   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
8081     unsigned Id = Op.getConstantOperandVal(0);
8082     switch (Id) {
8083     case Intrinsic::s390_vpksh:   // PACKS
8084     case Intrinsic::s390_vpksf:
8085     case Intrinsic::s390_vpksg:
8086     case Intrinsic::s390_vpkshs:  // PACKS_CC
8087     case Intrinsic::s390_vpksfs:
8088     case Intrinsic::s390_vpksgs:
8089     case Intrinsic::s390_vpklsh:  // PACKLS
8090     case Intrinsic::s390_vpklsf:
8091     case Intrinsic::s390_vpklsg:
8092     case Intrinsic::s390_vpklshs: // PACKLS_CC
8093     case Intrinsic::s390_vpklsfs:
8094     case Intrinsic::s390_vpklsgs:
8095     case Intrinsic::s390_vpdi:
8096     case Intrinsic::s390_vsldb:
8097     case Intrinsic::s390_vperm:
8098       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
8099     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
8100     case Intrinsic::s390_vuphh:
8101     case Intrinsic::s390_vuphf:
8102     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
8103     case Intrinsic::s390_vuplhw:
8104     case Intrinsic::s390_vuplf: {
8105       SDValue PackedOp = Op.getOperand(1);
8106       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
8107       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
8108       EVT VT = Op.getValueType();
8109       unsigned VTBits = VT.getScalarSizeInBits();
8110       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
8111       return Tmp;
8112     }
8113     default:
8114       break;
8115     }
8116   } else {
8117     switch (Opcode) {
8118     case SystemZISD::SELECT_CCMASK:
8119       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
8120     default:
8121       break;
8122     }
8123   }
8124 
8125   return 1;
8126 }
8127 
8128 bool SystemZTargetLowering::
8129 isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,
8130          const APInt &DemandedElts, const SelectionDAG &DAG,
8131          bool PoisonOnly, unsigned Depth) const {
8132   switch (Op->getOpcode()) {
8133   case SystemZISD::PCREL_WRAPPER:
8134   case SystemZISD::PCREL_OFFSET:
8135     return true;
8136   }
8137   return false;
8138 }
8139 
8140 unsigned
8141 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
8142   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8143   unsigned StackAlign = TFI->getStackAlignment();
8144   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
8145          "Unexpected stack alignment");
8146   // The default stack probe size is 4096 if the function has no
8147   // stack-probe-size attribute.
8148   unsigned StackProbeSize =
8149       MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096);
8150   // Round down to the stack alignment.
8151   StackProbeSize &= ~(StackAlign - 1);
8152   return StackProbeSize ? StackProbeSize : StackAlign;
8153 }
8154 
8155 //===----------------------------------------------------------------------===//
8156 // Custom insertion
8157 //===----------------------------------------------------------------------===//
8158 
8159 // Force base value Base into a register before MI.  Return the register.
8160 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
8161                          const SystemZInstrInfo *TII) {
8162   MachineBasicBlock *MBB = MI.getParent();
8163   MachineFunction &MF = *MBB->getParent();
8164   MachineRegisterInfo &MRI = MF.getRegInfo();
8165 
8166   if (Base.isReg()) {
8167     // Copy Base into a new virtual register to help register coalescing in
8168     // cases with multiple uses.
8169     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8170     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
8171       .add(Base);
8172     return Reg;
8173   }
8174 
8175   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8176   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
8177       .add(Base)
8178       .addImm(0)
8179       .addReg(0);
8180   return Reg;
8181 }
8182 
8183 // The CC operand of MI might be missing a kill marker because there
8184 // were multiple uses of CC, and ISel didn't know which to mark.
8185 // Figure out whether MI should have had a kill marker.
8186 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
8187   // Scan forward through BB for a use/def of CC.
8188   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
8189   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
8190     const MachineInstr& mi = *miI;
8191     if (mi.readsRegister(SystemZ::CC, /*TRI=*/nullptr))
8192       return false;
8193     if (mi.definesRegister(SystemZ::CC, /*TRI=*/nullptr))
8194       break; // Should have kill-flag - update below.
8195   }
8196 
8197   // If we hit the end of the block, check whether CC is live into a
8198   // successor.
8199   if (miI == MBB->end()) {
8200     for (const MachineBasicBlock *Succ : MBB->successors())
8201       if (Succ->isLiveIn(SystemZ::CC))
8202         return false;
8203   }
8204 
8205   return true;
8206 }
8207 
8208 // Return true if it is OK for this Select pseudo-opcode to be cascaded
8209 // together with other Select pseudo-opcodes into a single basic-block with
8210 // a conditional jump around it.
8211 static bool isSelectPseudo(MachineInstr &MI) {
8212   switch (MI.getOpcode()) {
8213   case SystemZ::Select32:
8214   case SystemZ::Select64:
8215   case SystemZ::Select128:
8216   case SystemZ::SelectF32:
8217   case SystemZ::SelectF64:
8218   case SystemZ::SelectF128:
8219   case SystemZ::SelectVR32:
8220   case SystemZ::SelectVR64:
8221   case SystemZ::SelectVR128:
8222     return true;
8223 
8224   default:
8225     return false;
8226   }
8227 }
8228 
8229 // Helper function, which inserts PHI functions into SinkMBB:
8230 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
8231 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
8232 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
8233                                  MachineBasicBlock *TrueMBB,
8234                                  MachineBasicBlock *FalseMBB,
8235                                  MachineBasicBlock *SinkMBB) {
8236   MachineFunction *MF = TrueMBB->getParent();
8237   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
8238 
8239   MachineInstr *FirstMI = Selects.front();
8240   unsigned CCValid = FirstMI->getOperand(3).getImm();
8241   unsigned CCMask = FirstMI->getOperand(4).getImm();
8242 
8243   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
8244 
8245   // As we are creating the PHIs, we have to be careful if there is more than
8246   // one.  Later Selects may reference the results of earlier Selects, but later
8247   // PHIs have to reference the individual true/false inputs from earlier PHIs.
8248   // That also means that PHI construction must work forward from earlier to
8249   // later, and that the code must maintain a mapping from earlier PHI's
8250   // destination registers, and the registers that went into the PHI.
8251   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
8252 
8253   for (auto *MI : Selects) {
8254     Register DestReg = MI->getOperand(0).getReg();
8255     Register TrueReg = MI->getOperand(1).getReg();
8256     Register FalseReg = MI->getOperand(2).getReg();
8257 
8258     // If this Select we are generating is the opposite condition from
8259     // the jump we generated, then we have to swap the operands for the
8260     // PHI that is going to be generated.
8261     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
8262       std::swap(TrueReg, FalseReg);
8263 
8264     if (RegRewriteTable.contains(TrueReg))
8265       TrueReg = RegRewriteTable[TrueReg].first;
8266 
8267     if (RegRewriteTable.contains(FalseReg))
8268       FalseReg = RegRewriteTable[FalseReg].second;
8269 
8270     DebugLoc DL = MI->getDebugLoc();
8271     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
8272       .addReg(TrueReg).addMBB(TrueMBB)
8273       .addReg(FalseReg).addMBB(FalseMBB);
8274 
8275     // Add this PHI to the rewrite table.
8276     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
8277   }
8278 
8279   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8280 }
8281 
8282 MachineBasicBlock *
8283 SystemZTargetLowering::emitAdjCallStack(MachineInstr &MI,
8284                                         MachineBasicBlock *BB) const {
8285   MachineFunction &MF = *BB->getParent();
8286   MachineFrameInfo &MFI = MF.getFrameInfo();
8287   auto *TFL = Subtarget.getFrameLowering<SystemZFrameLowering>();
8288   assert(TFL->hasReservedCallFrame(MF) &&
8289          "ADJSTACKDOWN and ADJSTACKUP should be no-ops");
8290   (void)TFL;
8291   // Get the MaxCallFrameSize value and erase MI since it serves no further
8292   // purpose as the call frame is statically reserved in the prolog. Set
8293   // AdjustsStack as MI is *not* mapped as a frame instruction.
8294   uint32_t NumBytes = MI.getOperand(0).getImm();
8295   if (NumBytes > MFI.getMaxCallFrameSize())
8296     MFI.setMaxCallFrameSize(NumBytes);
8297   MFI.setAdjustsStack(true);
8298 
8299   MI.eraseFromParent();
8300   return BB;
8301 }
8302 
8303 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
8304 MachineBasicBlock *
8305 SystemZTargetLowering::emitSelect(MachineInstr &MI,
8306                                   MachineBasicBlock *MBB) const {
8307   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
8308   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8309 
8310   unsigned CCValid = MI.getOperand(3).getImm();
8311   unsigned CCMask = MI.getOperand(4).getImm();
8312 
8313   // If we have a sequence of Select* pseudo instructions using the
8314   // same condition code value, we want to expand all of them into
8315   // a single pair of basic blocks using the same condition.
8316   SmallVector<MachineInstr*, 8> Selects;
8317   SmallVector<MachineInstr*, 8> DbgValues;
8318   Selects.push_back(&MI);
8319   unsigned Count = 0;
8320   for (MachineInstr &NextMI : llvm::make_range(
8321            std::next(MachineBasicBlock::iterator(MI)), MBB->end())) {
8322     if (isSelectPseudo(NextMI)) {
8323       assert(NextMI.getOperand(3).getImm() == CCValid &&
8324              "Bad CCValid operands since CC was not redefined.");
8325       if (NextMI.getOperand(4).getImm() == CCMask ||
8326           NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) {
8327         Selects.push_back(&NextMI);
8328         continue;
8329       }
8330       break;
8331     }
8332     if (NextMI.definesRegister(SystemZ::CC, /*TRI=*/nullptr) ||
8333         NextMI.usesCustomInsertionHook())
8334       break;
8335     bool User = false;
8336     for (auto *SelMI : Selects)
8337       if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) {
8338         User = true;
8339         break;
8340       }
8341     if (NextMI.isDebugInstr()) {
8342       if (User) {
8343         assert(NextMI.isDebugValue() && "Unhandled debug opcode.");
8344         DbgValues.push_back(&NextMI);
8345       }
8346     } else if (User || ++Count > 20)
8347       break;
8348   }
8349 
8350   MachineInstr *LastMI = Selects.back();
8351   bool CCKilled = (LastMI->killsRegister(SystemZ::CC, /*TRI=*/nullptr) ||
8352                    checkCCKill(*LastMI, MBB));
8353   MachineBasicBlock *StartMBB = MBB;
8354   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
8355   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8356 
8357   // Unless CC was killed in the last Select instruction, mark it as
8358   // live-in to both FalseMBB and JoinMBB.
8359   if (!CCKilled) {
8360     FalseMBB->addLiveIn(SystemZ::CC);
8361     JoinMBB->addLiveIn(SystemZ::CC);
8362   }
8363 
8364   //  StartMBB:
8365   //   BRC CCMask, JoinMBB
8366   //   # fallthrough to FalseMBB
8367   MBB = StartMBB;
8368   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8369     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8370   MBB->addSuccessor(JoinMBB);
8371   MBB->addSuccessor(FalseMBB);
8372 
8373   //  FalseMBB:
8374   //   # fallthrough to JoinMBB
8375   MBB = FalseMBB;
8376   MBB->addSuccessor(JoinMBB);
8377 
8378   //  JoinMBB:
8379   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
8380   //  ...
8381   MBB = JoinMBB;
8382   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
8383   for (auto *SelMI : Selects)
8384     SelMI->eraseFromParent();
8385 
8386   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
8387   for (auto *DbgMI : DbgValues)
8388     MBB->splice(InsertPos, StartMBB, DbgMI);
8389 
8390   return JoinMBB;
8391 }
8392 
8393 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
8394 // StoreOpcode is the store to use and Invert says whether the store should
8395 // happen when the condition is false rather than true.  If a STORE ON
8396 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
8397 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
8398                                                         MachineBasicBlock *MBB,
8399                                                         unsigned StoreOpcode,
8400                                                         unsigned STOCOpcode,
8401                                                         bool Invert) const {
8402   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8403 
8404   Register SrcReg = MI.getOperand(0).getReg();
8405   MachineOperand Base = MI.getOperand(1);
8406   int64_t Disp = MI.getOperand(2).getImm();
8407   Register IndexReg = MI.getOperand(3).getReg();
8408   unsigned CCValid = MI.getOperand(4).getImm();
8409   unsigned CCMask = MI.getOperand(5).getImm();
8410   DebugLoc DL = MI.getDebugLoc();
8411 
8412   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
8413 
8414   // ISel pattern matching also adds a load memory operand of the same
8415   // address, so take special care to find the storing memory operand.
8416   MachineMemOperand *MMO = nullptr;
8417   for (auto *I : MI.memoperands())
8418     if (I->isStore()) {
8419       MMO = I;
8420       break;
8421     }
8422 
8423   // Use STOCOpcode if possible.  We could use different store patterns in
8424   // order to avoid matching the index register, but the performance trade-offs
8425   // might be more complicated in that case.
8426   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
8427     if (Invert)
8428       CCMask ^= CCValid;
8429 
8430     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
8431       .addReg(SrcReg)
8432       .add(Base)
8433       .addImm(Disp)
8434       .addImm(CCValid)
8435       .addImm(CCMask)
8436       .addMemOperand(MMO);
8437 
8438     MI.eraseFromParent();
8439     return MBB;
8440   }
8441 
8442   // Get the condition needed to branch around the store.
8443   if (!Invert)
8444     CCMask ^= CCValid;
8445 
8446   MachineBasicBlock *StartMBB = MBB;
8447   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
8448   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8449 
8450   // Unless CC was killed in the CondStore instruction, mark it as
8451   // live-in to both FalseMBB and JoinMBB.
8452   if (!MI.killsRegister(SystemZ::CC, /*TRI=*/nullptr) &&
8453       !checkCCKill(MI, JoinMBB)) {
8454     FalseMBB->addLiveIn(SystemZ::CC);
8455     JoinMBB->addLiveIn(SystemZ::CC);
8456   }
8457 
8458   //  StartMBB:
8459   //   BRC CCMask, JoinMBB
8460   //   # fallthrough to FalseMBB
8461   MBB = StartMBB;
8462   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8463     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8464   MBB->addSuccessor(JoinMBB);
8465   MBB->addSuccessor(FalseMBB);
8466 
8467   //  FalseMBB:
8468   //   store %SrcReg, %Disp(%Index,%Base)
8469   //   # fallthrough to JoinMBB
8470   MBB = FalseMBB;
8471   BuildMI(MBB, DL, TII->get(StoreOpcode))
8472       .addReg(SrcReg)
8473       .add(Base)
8474       .addImm(Disp)
8475       .addReg(IndexReg)
8476       .addMemOperand(MMO);
8477   MBB->addSuccessor(JoinMBB);
8478 
8479   MI.eraseFromParent();
8480   return JoinMBB;
8481 }
8482 
8483 // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI.
8484 MachineBasicBlock *
8485 SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI,
8486                                      MachineBasicBlock *MBB,
8487                                      bool Unsigned) const {
8488   MachineFunction &MF = *MBB->getParent();
8489   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8490   MachineRegisterInfo &MRI = MF.getRegInfo();
8491 
8492   // Synthetic instruction to compare 128-bit values.
8493   // Sets CC 1 if Op0 > Op1, sets a different CC otherwise.
8494   Register Op0 = MI.getOperand(0).getReg();
8495   Register Op1 = MI.getOperand(1).getReg();
8496 
8497   MachineBasicBlock *StartMBB = MBB;
8498   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(MI, MBB);
8499   MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB);
8500 
8501   //  StartMBB:
8502   //
8503   //  Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts.
8504   //  Swap the inputs to get:
8505   //    CC 1 if high(Op0) > high(Op1)
8506   //    CC 2 if high(Op0) < high(Op1)
8507   //    CC 0 if high(Op0) == high(Op1)
8508   //
8509   //  If CC != 0, we'd done, so jump over the next instruction.
8510   //
8511   //   VEC[L]G Op1, Op0
8512   //   JNE JoinMBB
8513   //   # fallthrough to HiEqMBB
8514   MBB = StartMBB;
8515   int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG;
8516   BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode))
8517     .addReg(Op1).addReg(Op0);
8518   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8519     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB);
8520   MBB->addSuccessor(JoinMBB);
8521   MBB->addSuccessor(HiEqMBB);
8522 
8523   //  HiEqMBB:
8524   //
8525   //  Otherwise, use VECTOR COMPARE HIGH LOGICAL.
8526   //  Since we already know the high parts are equal, the CC
8527   //  result will only depend on the low parts:
8528   //     CC 1 if low(Op0) > low(Op1)
8529   //     CC 3 if low(Op0) <= low(Op1)
8530   //
8531   //   VCHLGS Tmp, Op0, Op1
8532   //   # fallthrough to JoinMBB
8533   MBB = HiEqMBB;
8534   Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass);
8535   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp)
8536     .addReg(Op0).addReg(Op1);
8537   MBB->addSuccessor(JoinMBB);
8538 
8539   // Mark CC as live-in to JoinMBB.
8540   JoinMBB->addLiveIn(SystemZ::CC);
8541 
8542   MI.eraseFromParent();
8543   return JoinMBB;
8544 }
8545 
8546 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or
8547 // ATOMIC_SWAPW instruction MI.  BinOpcode is the instruction that performs
8548 // the binary operation elided by "*", or 0 for ATOMIC_SWAPW.  Invert says
8549 // whether the field should be inverted after performing BinOpcode (e.g. for
8550 // NAND).
8551 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
8552     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
8553     bool Invert) const {
8554   MachineFunction &MF = *MBB->getParent();
8555   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8556   MachineRegisterInfo &MRI = MF.getRegInfo();
8557 
8558   // Extract the operands.  Base can be a register or a frame index.
8559   // Src2 can be a register or immediate.
8560   Register Dest = MI.getOperand(0).getReg();
8561   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8562   int64_t Disp = MI.getOperand(2).getImm();
8563   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
8564   Register BitShift = MI.getOperand(4).getReg();
8565   Register NegBitShift = MI.getOperand(5).getReg();
8566   unsigned BitSize = MI.getOperand(6).getImm();
8567   DebugLoc DL = MI.getDebugLoc();
8568 
8569   // Get the right opcodes for the displacement.
8570   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8571   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8572   assert(LOpcode && CSOpcode && "Displacement out of range");
8573 
8574   // Create virtual registers for temporary results.
8575   Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8576   Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8577   Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8578   Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8579   Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8580 
8581   // Insert a basic block for the main loop.
8582   MachineBasicBlock *StartMBB = MBB;
8583   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8584   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8585 
8586   //  StartMBB:
8587   //   ...
8588   //   %OrigVal = L Disp(%Base)
8589   //   # fall through to LoopMBB
8590   MBB = StartMBB;
8591   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8592   MBB->addSuccessor(LoopMBB);
8593 
8594   //  LoopMBB:
8595   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
8596   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8597   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
8598   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
8599   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
8600   //   JNE LoopMBB
8601   //   # fall through to DoneMBB
8602   MBB = LoopMBB;
8603   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8604     .addReg(OrigVal).addMBB(StartMBB)
8605     .addReg(Dest).addMBB(LoopMBB);
8606   BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8607     .addReg(OldVal).addReg(BitShift).addImm(0);
8608   if (Invert) {
8609     // Perform the operation normally and then invert every bit of the field.
8610     Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8611     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
8612     // XILF with the upper BitSize bits set.
8613     BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
8614       .addReg(Tmp).addImm(-1U << (32 - BitSize));
8615   } else if (BinOpcode)
8616     // A simply binary operation.
8617     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
8618         .addReg(RotatedOldVal)
8619         .add(Src2);
8620   else
8621     // Use RISBG to rotate Src2 into position and use it to replace the
8622     // field in RotatedOldVal.
8623     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
8624       .addReg(RotatedOldVal).addReg(Src2.getReg())
8625       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
8626   BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8627     .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8628   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8629       .addReg(OldVal)
8630       .addReg(NewVal)
8631       .add(Base)
8632       .addImm(Disp);
8633   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8634     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8635   MBB->addSuccessor(LoopMBB);
8636   MBB->addSuccessor(DoneMBB);
8637 
8638   MI.eraseFromParent();
8639   return DoneMBB;
8640 }
8641 
8642 // Implement EmitInstrWithCustomInserter for subword pseudo
8643 // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
8644 // instruction that should be used to compare the current field with the
8645 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
8646 // for when the current field should be kept.
8647 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
8648     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
8649     unsigned KeepOldMask) const {
8650   MachineFunction &MF = *MBB->getParent();
8651   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8652   MachineRegisterInfo &MRI = MF.getRegInfo();
8653 
8654   // Extract the operands.  Base can be a register or a frame index.
8655   Register Dest = MI.getOperand(0).getReg();
8656   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8657   int64_t Disp = MI.getOperand(2).getImm();
8658   Register Src2 = MI.getOperand(3).getReg();
8659   Register BitShift = MI.getOperand(4).getReg();
8660   Register NegBitShift = MI.getOperand(5).getReg();
8661   unsigned BitSize = MI.getOperand(6).getImm();
8662   DebugLoc DL = MI.getDebugLoc();
8663 
8664   // Get the right opcodes for the displacement.
8665   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8666   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8667   assert(LOpcode && CSOpcode && "Displacement out of range");
8668 
8669   // Create virtual registers for temporary results.
8670   Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8671   Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8672   Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8673   Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8674   Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8675   Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8676 
8677   // Insert 3 basic blocks for the loop.
8678   MachineBasicBlock *StartMBB  = MBB;
8679   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
8680   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
8681   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
8682   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
8683 
8684   //  StartMBB:
8685   //   ...
8686   //   %OrigVal     = L Disp(%Base)
8687   //   # fall through to LoopMBB
8688   MBB = StartMBB;
8689   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8690   MBB->addSuccessor(LoopMBB);
8691 
8692   //  LoopMBB:
8693   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
8694   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8695   //   CompareOpcode %RotatedOldVal, %Src2
8696   //   BRC KeepOldMask, UpdateMBB
8697   MBB = LoopMBB;
8698   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8699     .addReg(OrigVal).addMBB(StartMBB)
8700     .addReg(Dest).addMBB(UpdateMBB);
8701   BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8702     .addReg(OldVal).addReg(BitShift).addImm(0);
8703   BuildMI(MBB, DL, TII->get(CompareOpcode))
8704     .addReg(RotatedOldVal).addReg(Src2);
8705   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8706     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
8707   MBB->addSuccessor(UpdateMBB);
8708   MBB->addSuccessor(UseAltMBB);
8709 
8710   //  UseAltMBB:
8711   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
8712   //   # fall through to UpdateMBB
8713   MBB = UseAltMBB;
8714   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
8715     .addReg(RotatedOldVal).addReg(Src2)
8716     .addImm(32).addImm(31 + BitSize).addImm(0);
8717   MBB->addSuccessor(UpdateMBB);
8718 
8719   //  UpdateMBB:
8720   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
8721   //                        [ %RotatedAltVal, UseAltMBB ]
8722   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
8723   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
8724   //   JNE LoopMBB
8725   //   # fall through to DoneMBB
8726   MBB = UpdateMBB;
8727   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
8728     .addReg(RotatedOldVal).addMBB(LoopMBB)
8729     .addReg(RotatedAltVal).addMBB(UseAltMBB);
8730   BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8731     .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8732   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8733       .addReg(OldVal)
8734       .addReg(NewVal)
8735       .add(Base)
8736       .addImm(Disp);
8737   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8738     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8739   MBB->addSuccessor(LoopMBB);
8740   MBB->addSuccessor(DoneMBB);
8741 
8742   MI.eraseFromParent();
8743   return DoneMBB;
8744 }
8745 
8746 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW
8747 // instruction MI.
8748 MachineBasicBlock *
8749 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8750                                           MachineBasicBlock *MBB) const {
8751   MachineFunction &MF = *MBB->getParent();
8752   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8753   MachineRegisterInfo &MRI = MF.getRegInfo();
8754 
8755   // Extract the operands.  Base can be a register or a frame index.
8756   Register Dest = MI.getOperand(0).getReg();
8757   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8758   int64_t Disp = MI.getOperand(2).getImm();
8759   Register CmpVal = MI.getOperand(3).getReg();
8760   Register OrigSwapVal = MI.getOperand(4).getReg();
8761   Register BitShift = MI.getOperand(5).getReg();
8762   Register NegBitShift = MI.getOperand(6).getReg();
8763   int64_t BitSize = MI.getOperand(7).getImm();
8764   DebugLoc DL = MI.getDebugLoc();
8765 
8766   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8767 
8768   // Get the right opcodes for the displacement and zero-extension.
8769   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8770   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8771   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8772   assert(LOpcode && CSOpcode && "Displacement out of range");
8773 
8774   // Create virtual registers for temporary results.
8775   Register OrigOldVal = MRI.createVirtualRegister(RC);
8776   Register OldVal = MRI.createVirtualRegister(RC);
8777   Register SwapVal = MRI.createVirtualRegister(RC);
8778   Register StoreVal = MRI.createVirtualRegister(RC);
8779   Register OldValRot = MRI.createVirtualRegister(RC);
8780   Register RetryOldVal = MRI.createVirtualRegister(RC);
8781   Register RetrySwapVal = MRI.createVirtualRegister(RC);
8782 
8783   // Insert 2 basic blocks for the loop.
8784   MachineBasicBlock *StartMBB = MBB;
8785   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8786   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8787   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
8788 
8789   //  StartMBB:
8790   //   ...
8791   //   %OrigOldVal     = L Disp(%Base)
8792   //   # fall through to LoopMBB
8793   MBB = StartMBB;
8794   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8795       .add(Base)
8796       .addImm(Disp)
8797       .addReg(0);
8798   MBB->addSuccessor(LoopMBB);
8799 
8800   //  LoopMBB:
8801   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8802   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8803   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
8804   //                      ^^ The low BitSize bits contain the field
8805   //                         of interest.
8806   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8807   //                      ^^ Replace the upper 32-BitSize bits of the
8808   //                         swap value with those that we loaded and rotated.
8809   //   %Dest = LL[CH] %OldValRot
8810   //   CR %Dest, %CmpVal
8811   //   JNE DoneMBB
8812   //   # Fall through to SetMBB
8813   MBB = LoopMBB;
8814   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8815     .addReg(OrigOldVal).addMBB(StartMBB)
8816     .addReg(RetryOldVal).addMBB(SetMBB);
8817   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8818     .addReg(OrigSwapVal).addMBB(StartMBB)
8819     .addReg(RetrySwapVal).addMBB(SetMBB);
8820   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8821     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8822   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8823     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8824   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8825     .addReg(OldValRot);
8826   BuildMI(MBB, DL, TII->get(SystemZ::CR))
8827     .addReg(Dest).addReg(CmpVal);
8828   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8829     .addImm(SystemZ::CCMASK_ICMP)
8830     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8831   MBB->addSuccessor(DoneMBB);
8832   MBB->addSuccessor(SetMBB);
8833 
8834   //  SetMBB:
8835   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8836   //                      ^^ Rotate the new field to its proper position.
8837   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
8838   //   JNE LoopMBB
8839   //   # fall through to ExitMBB
8840   MBB = SetMBB;
8841   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8842     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8843   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8844       .addReg(OldVal)
8845       .addReg(StoreVal)
8846       .add(Base)
8847       .addImm(Disp);
8848   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8849     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8850   MBB->addSuccessor(LoopMBB);
8851   MBB->addSuccessor(DoneMBB);
8852 
8853   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8854   // to the block after the loop.  At this point, CC may have been defined
8855   // either by the CR in LoopMBB or by the CS in SetMBB.
8856   if (!MI.registerDefIsDead(SystemZ::CC, /*TRI=*/nullptr))
8857     DoneMBB->addLiveIn(SystemZ::CC);
8858 
8859   MI.eraseFromParent();
8860   return DoneMBB;
8861 }
8862 
8863 // Emit a move from two GR64s to a GR128.
8864 MachineBasicBlock *
8865 SystemZTargetLowering::emitPair128(MachineInstr &MI,
8866                                    MachineBasicBlock *MBB) const {
8867   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8868   const DebugLoc &DL = MI.getDebugLoc();
8869 
8870   Register Dest = MI.getOperand(0).getReg();
8871   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest)
8872       .add(MI.getOperand(1))
8873       .addImm(SystemZ::subreg_h64)
8874       .add(MI.getOperand(2))
8875       .addImm(SystemZ::subreg_l64);
8876   MI.eraseFromParent();
8877   return MBB;
8878 }
8879 
8880 // Emit an extension from a GR64 to a GR128.  ClearEven is true
8881 // if the high register of the GR128 value must be cleared or false if
8882 // it's "don't care".
8883 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8884                                                      MachineBasicBlock *MBB,
8885                                                      bool ClearEven) const {
8886   MachineFunction &MF = *MBB->getParent();
8887   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8888   MachineRegisterInfo &MRI = MF.getRegInfo();
8889   DebugLoc DL = MI.getDebugLoc();
8890 
8891   Register Dest = MI.getOperand(0).getReg();
8892   Register Src = MI.getOperand(1).getReg();
8893   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8894 
8895   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8896   if (ClearEven) {
8897     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8898     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8899 
8900     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8901       .addImm(0);
8902     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8903       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8904     In128 = NewIn128;
8905   }
8906   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8907     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8908 
8909   MI.eraseFromParent();
8910   return MBB;
8911 }
8912 
8913 MachineBasicBlock *
8914 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8915                                          MachineBasicBlock *MBB,
8916                                          unsigned Opcode, bool IsMemset) const {
8917   MachineFunction &MF = *MBB->getParent();
8918   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8919   MachineRegisterInfo &MRI = MF.getRegInfo();
8920   DebugLoc DL = MI.getDebugLoc();
8921 
8922   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8923   uint64_t DestDisp = MI.getOperand(1).getImm();
8924   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8925   uint64_t SrcDisp;
8926 
8927   // Fold the displacement Disp if it is out of range.
8928   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8929     if (!isUInt<12>(Disp)) {
8930       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8931       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8932       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8933         .add(Base).addImm(Disp).addReg(0);
8934       Base = MachineOperand::CreateReg(Reg, false);
8935       Disp = 0;
8936     }
8937   };
8938 
8939   if (!IsMemset) {
8940     SrcBase = earlyUseOperand(MI.getOperand(2));
8941     SrcDisp = MI.getOperand(3).getImm();
8942   } else {
8943     SrcBase = DestBase;
8944     SrcDisp = DestDisp++;
8945     foldDisplIfNeeded(DestBase, DestDisp);
8946   }
8947 
8948   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8949   bool IsImmForm = LengthMO.isImm();
8950   bool IsRegForm = !IsImmForm;
8951 
8952   // Build and insert one Opcode of Length, with special treatment for memset.
8953   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8954                             MachineBasicBlock::iterator InsPos,
8955                             MachineOperand DBase, uint64_t DDisp,
8956                             MachineOperand SBase, uint64_t SDisp,
8957                             unsigned Length) -> void {
8958     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8959     if (IsMemset) {
8960       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8961       if (ByteMO.isImm())
8962         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8963           .add(SBase).addImm(SDisp).add(ByteMO);
8964       else
8965         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8966           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8967       if (--Length == 0)
8968         return;
8969     }
8970     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8971       .add(DBase).addImm(DDisp).addImm(Length)
8972       .add(SBase).addImm(SDisp)
8973       .setMemRefs(MI.memoperands());
8974   };
8975 
8976   bool NeedsLoop = false;
8977   uint64_t ImmLength = 0;
8978   Register LenAdjReg = SystemZ::NoRegister;
8979   if (IsImmForm) {
8980     ImmLength = LengthMO.getImm();
8981     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8982     if (ImmLength == 0) {
8983       MI.eraseFromParent();
8984       return MBB;
8985     }
8986     if (Opcode == SystemZ::CLC) {
8987       if (ImmLength > 3 * 256)
8988         // A two-CLC sequence is a clear win over a loop, not least because
8989         // it needs only one branch.  A three-CLC sequence needs the same
8990         // number of branches as a loop (i.e. 2), but is shorter.  That
8991         // brings us to lengths greater than 768 bytes.  It seems relatively
8992         // likely that a difference will be found within the first 768 bytes,
8993         // so we just optimize for the smallest number of branch
8994         // instructions, in order to avoid polluting the prediction buffer
8995         // too much.
8996         NeedsLoop = true;
8997     } else if (ImmLength > 6 * 256)
8998       // The heuristic we use is to prefer loops for anything that would
8999       // require 7 or more MVCs.  With these kinds of sizes there isn't much
9000       // to choose between straight-line code and looping code, since the
9001       // time will be dominated by the MVCs themselves.
9002       NeedsLoop = true;
9003   } else {
9004     NeedsLoop = true;
9005     LenAdjReg = LengthMO.getReg();
9006   }
9007 
9008   // When generating more than one CLC, all but the last will need to
9009   // branch to the end when a difference is found.
9010   MachineBasicBlock *EndMBB =
9011       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
9012            ? SystemZ::splitBlockAfter(MI, MBB)
9013            : nullptr);
9014 
9015   if (NeedsLoop) {
9016     Register StartCountReg =
9017       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
9018     if (IsImmForm) {
9019       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
9020       ImmLength &= 255;
9021     } else {
9022       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
9023         .addReg(LenAdjReg)
9024         .addReg(0)
9025         .addImm(8);
9026     }
9027 
9028     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
9029     auto loadZeroAddress = [&]() -> MachineOperand {
9030       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9031       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
9032       return MachineOperand::CreateReg(Reg, false);
9033     };
9034     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
9035       DestBase = loadZeroAddress();
9036     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
9037       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
9038 
9039     MachineBasicBlock *StartMBB = nullptr;
9040     MachineBasicBlock *LoopMBB = nullptr;
9041     MachineBasicBlock *NextMBB = nullptr;
9042     MachineBasicBlock *DoneMBB = nullptr;
9043     MachineBasicBlock *AllDoneMBB = nullptr;
9044 
9045     Register StartSrcReg = forceReg(MI, SrcBase, TII);
9046     Register StartDestReg =
9047         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
9048 
9049     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
9050     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
9051     Register ThisDestReg =
9052         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
9053     Register NextSrcReg  = MRI.createVirtualRegister(RC);
9054     Register NextDestReg =
9055         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
9056     RC = &SystemZ::GR64BitRegClass;
9057     Register ThisCountReg = MRI.createVirtualRegister(RC);
9058     Register NextCountReg = MRI.createVirtualRegister(RC);
9059 
9060     if (IsRegForm) {
9061       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9062       StartMBB = SystemZ::emitBlockAfter(MBB);
9063       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9064       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
9065       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
9066 
9067       //  MBB:
9068       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
9069       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9070         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
9071       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9072         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9073         .addMBB(AllDoneMBB);
9074       MBB->addSuccessor(AllDoneMBB);
9075       if (!IsMemset)
9076         MBB->addSuccessor(StartMBB);
9077       else {
9078         // MemsetOneCheckMBB:
9079         // # Jump to MemsetOneMBB for a memset of length 1, or
9080         // # fall thru to StartMBB.
9081         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
9082         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
9083         MBB->addSuccessor(MemsetOneCheckMBB);
9084         MBB = MemsetOneCheckMBB;
9085         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9086           .addReg(LenAdjReg).addImm(-1);
9087         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9088           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9089           .addMBB(MemsetOneMBB);
9090         MBB->addSuccessor(MemsetOneMBB, {10, 100});
9091         MBB->addSuccessor(StartMBB, {90, 100});
9092 
9093         // MemsetOneMBB:
9094         // # Jump back to AllDoneMBB after a single MVI or STC.
9095         MBB = MemsetOneMBB;
9096         insertMemMemOp(MBB, MBB->end(),
9097                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
9098                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
9099                        1);
9100         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
9101         MBB->addSuccessor(AllDoneMBB);
9102       }
9103 
9104       // StartMBB:
9105       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
9106       MBB = StartMBB;
9107       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9108         .addReg(StartCountReg).addImm(0);
9109       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9110         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9111         .addMBB(DoneMBB);
9112       MBB->addSuccessor(DoneMBB);
9113       MBB->addSuccessor(LoopMBB);
9114     }
9115     else {
9116       StartMBB = MBB;
9117       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9118       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9119       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
9120 
9121       //  StartMBB:
9122       //   # fall through to LoopMBB
9123       MBB->addSuccessor(LoopMBB);
9124 
9125       DestBase = MachineOperand::CreateReg(NextDestReg, false);
9126       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
9127       if (EndMBB && !ImmLength)
9128         // If the loop handled the whole CLC range, DoneMBB will be empty with
9129         // CC live-through into EndMBB, so add it as live-in.
9130         DoneMBB->addLiveIn(SystemZ::CC);
9131     }
9132 
9133     //  LoopMBB:
9134     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
9135     //                      [ %NextDestReg, NextMBB ]
9136     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
9137     //                     [ %NextSrcReg, NextMBB ]
9138     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
9139     //                       [ %NextCountReg, NextMBB ]
9140     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
9141     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
9142     //   ( JLH EndMBB )
9143     //
9144     // The prefetch is used only for MVC.  The JLH is used only for CLC.
9145     MBB = LoopMBB;
9146     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
9147       .addReg(StartDestReg).addMBB(StartMBB)
9148       .addReg(NextDestReg).addMBB(NextMBB);
9149     if (!HaveSingleBase)
9150       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
9151         .addReg(StartSrcReg).addMBB(StartMBB)
9152         .addReg(NextSrcReg).addMBB(NextMBB);
9153     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
9154       .addReg(StartCountReg).addMBB(StartMBB)
9155       .addReg(NextCountReg).addMBB(NextMBB);
9156     if (Opcode == SystemZ::MVC)
9157       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
9158         .addImm(SystemZ::PFD_WRITE)
9159         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
9160     insertMemMemOp(MBB, MBB->end(),
9161                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
9162                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
9163     if (EndMBB) {
9164       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9165         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9166         .addMBB(EndMBB);
9167       MBB->addSuccessor(EndMBB);
9168       MBB->addSuccessor(NextMBB);
9169     }
9170 
9171     // NextMBB:
9172     //   %NextDestReg = LA 256(%ThisDestReg)
9173     //   %NextSrcReg = LA 256(%ThisSrcReg)
9174     //   %NextCountReg = AGHI %ThisCountReg, -1
9175     //   CGHI %NextCountReg, 0
9176     //   JLH LoopMBB
9177     //   # fall through to DoneMBB
9178     //
9179     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
9180     MBB = NextMBB;
9181     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
9182       .addReg(ThisDestReg).addImm(256).addReg(0);
9183     if (!HaveSingleBase)
9184       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
9185         .addReg(ThisSrcReg).addImm(256).addReg(0);
9186     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
9187       .addReg(ThisCountReg).addImm(-1);
9188     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9189       .addReg(NextCountReg).addImm(0);
9190     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9191       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9192       .addMBB(LoopMBB);
9193     MBB->addSuccessor(LoopMBB);
9194     MBB->addSuccessor(DoneMBB);
9195 
9196     MBB = DoneMBB;
9197     if (IsRegForm) {
9198       // DoneMBB:
9199       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
9200       // # Use EXecute Relative Long for the remainder of the bytes. The target
9201       //   instruction of the EXRL will have a length field of 1 since 0 is an
9202       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
9203       //   0xff) + 1.
9204       // # Fall through to AllDoneMBB.
9205       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9206       Register RemDestReg = HaveSingleBase ? RemSrcReg
9207         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9208       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
9209         .addReg(StartDestReg).addMBB(StartMBB)
9210         .addReg(NextDestReg).addMBB(NextMBB);
9211       if (!HaveSingleBase)
9212         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
9213           .addReg(StartSrcReg).addMBB(StartMBB)
9214           .addReg(NextSrcReg).addMBB(NextMBB);
9215       if (IsMemset)
9216         insertMemMemOp(MBB, MBB->end(),
9217                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
9218                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
9219       MachineInstrBuilder EXRL_MIB =
9220         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
9221           .addImm(Opcode)
9222           .addReg(LenAdjReg)
9223           .addReg(RemDestReg).addImm(DestDisp)
9224           .addReg(RemSrcReg).addImm(SrcDisp);
9225       MBB->addSuccessor(AllDoneMBB);
9226       MBB = AllDoneMBB;
9227       if (Opcode != SystemZ::MVC) {
9228         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
9229         if (EndMBB)
9230           MBB->addLiveIn(SystemZ::CC);
9231       }
9232     }
9233     MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9234   }
9235 
9236   // Handle any remaining bytes with straight-line code.
9237   while (ImmLength > 0) {
9238     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
9239     // The previous iteration might have created out-of-range displacements.
9240     // Apply them using LA/LAY if so.
9241     foldDisplIfNeeded(DestBase, DestDisp);
9242     foldDisplIfNeeded(SrcBase, SrcDisp);
9243     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
9244     DestDisp += ThisLength;
9245     SrcDisp += ThisLength;
9246     ImmLength -= ThisLength;
9247     // If there's another CLC to go, branch to the end if a difference
9248     // was found.
9249     if (EndMBB && ImmLength > 0) {
9250       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
9251       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9252         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9253         .addMBB(EndMBB);
9254       MBB->addSuccessor(EndMBB);
9255       MBB->addSuccessor(NextMBB);
9256       MBB = NextMBB;
9257     }
9258   }
9259   if (EndMBB) {
9260     MBB->addSuccessor(EndMBB);
9261     MBB = EndMBB;
9262     MBB->addLiveIn(SystemZ::CC);
9263   }
9264 
9265   MI.eraseFromParent();
9266   return MBB;
9267 }
9268 
9269 // Decompose string pseudo-instruction MI into a loop that continually performs
9270 // Opcode until CC != 3.
9271 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
9272     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9273   MachineFunction &MF = *MBB->getParent();
9274   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9275   MachineRegisterInfo &MRI = MF.getRegInfo();
9276   DebugLoc DL = MI.getDebugLoc();
9277 
9278   uint64_t End1Reg = MI.getOperand(0).getReg();
9279   uint64_t Start1Reg = MI.getOperand(1).getReg();
9280   uint64_t Start2Reg = MI.getOperand(2).getReg();
9281   uint64_t CharReg = MI.getOperand(3).getReg();
9282 
9283   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
9284   uint64_t This1Reg = MRI.createVirtualRegister(RC);
9285   uint64_t This2Reg = MRI.createVirtualRegister(RC);
9286   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
9287 
9288   MachineBasicBlock *StartMBB = MBB;
9289   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9290   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9291 
9292   //  StartMBB:
9293   //   # fall through to LoopMBB
9294   MBB->addSuccessor(LoopMBB);
9295 
9296   //  LoopMBB:
9297   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
9298   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
9299   //   R0L = %CharReg
9300   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
9301   //   JO LoopMBB
9302   //   # fall through to DoneMBB
9303   //
9304   // The load of R0L can be hoisted by post-RA LICM.
9305   MBB = LoopMBB;
9306 
9307   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
9308     .addReg(Start1Reg).addMBB(StartMBB)
9309     .addReg(End1Reg).addMBB(LoopMBB);
9310   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
9311     .addReg(Start2Reg).addMBB(StartMBB)
9312     .addReg(End2Reg).addMBB(LoopMBB);
9313   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
9314   BuildMI(MBB, DL, TII->get(Opcode))
9315     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
9316     .addReg(This1Reg).addReg(This2Reg);
9317   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9318     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
9319   MBB->addSuccessor(LoopMBB);
9320   MBB->addSuccessor(DoneMBB);
9321 
9322   DoneMBB->addLiveIn(SystemZ::CC);
9323 
9324   MI.eraseFromParent();
9325   return DoneMBB;
9326 }
9327 
9328 // Update TBEGIN instruction with final opcode and register clobbers.
9329 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
9330     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
9331     bool NoFloat) const {
9332   MachineFunction &MF = *MBB->getParent();
9333   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
9334   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9335 
9336   // Update opcode.
9337   MI.setDesc(TII->get(Opcode));
9338 
9339   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
9340   // Make sure to add the corresponding GRSM bits if they are missing.
9341   uint64_t Control = MI.getOperand(2).getImm();
9342   static const unsigned GPRControlBit[16] = {
9343     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
9344     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
9345   };
9346   Control |= GPRControlBit[15];
9347   if (TFI->hasFP(MF))
9348     Control |= GPRControlBit[11];
9349   MI.getOperand(2).setImm(Control);
9350 
9351   // Add GPR clobbers.
9352   for (int I = 0; I < 16; I++) {
9353     if ((Control & GPRControlBit[I]) == 0) {
9354       unsigned Reg = SystemZMC::GR64Regs[I];
9355       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9356     }
9357   }
9358 
9359   // Add FPR/VR clobbers.
9360   if (!NoFloat && (Control & 4) != 0) {
9361     if (Subtarget.hasVector()) {
9362       for (unsigned Reg : SystemZMC::VR128Regs) {
9363         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9364       }
9365     } else {
9366       for (unsigned Reg : SystemZMC::FP64Regs) {
9367         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9368       }
9369     }
9370   }
9371 
9372   return MBB;
9373 }
9374 
9375 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
9376     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9377   MachineFunction &MF = *MBB->getParent();
9378   MachineRegisterInfo *MRI = &MF.getRegInfo();
9379   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9380   DebugLoc DL = MI.getDebugLoc();
9381 
9382   Register SrcReg = MI.getOperand(0).getReg();
9383 
9384   // Create new virtual register of the same class as source.
9385   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
9386   Register DstReg = MRI->createVirtualRegister(RC);
9387 
9388   // Replace pseudo with a normal load-and-test that models the def as
9389   // well.
9390   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
9391     .addReg(SrcReg)
9392     .setMIFlags(MI.getFlags());
9393   MI.eraseFromParent();
9394 
9395   return MBB;
9396 }
9397 
9398 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
9399     MachineInstr &MI, MachineBasicBlock *MBB) const {
9400   MachineFunction &MF = *MBB->getParent();
9401   MachineRegisterInfo *MRI = &MF.getRegInfo();
9402   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9403   DebugLoc DL = MI.getDebugLoc();
9404   const unsigned ProbeSize = getStackProbeSize(MF);
9405   Register DstReg = MI.getOperand(0).getReg();
9406   Register SizeReg = MI.getOperand(2).getReg();
9407 
9408   MachineBasicBlock *StartMBB = MBB;
9409   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
9410   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
9411   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
9412   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
9413   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
9414 
9415   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
9416     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
9417 
9418   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9419   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9420 
9421   //  LoopTestMBB
9422   //  BRC TailTestMBB
9423   //  # fallthrough to LoopBodyMBB
9424   StartMBB->addSuccessor(LoopTestMBB);
9425   MBB = LoopTestMBB;
9426   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
9427     .addReg(SizeReg)
9428     .addMBB(StartMBB)
9429     .addReg(IncReg)
9430     .addMBB(LoopBodyMBB);
9431   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
9432     .addReg(PHIReg)
9433     .addImm(ProbeSize);
9434   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9435     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
9436     .addMBB(TailTestMBB);
9437   MBB->addSuccessor(LoopBodyMBB);
9438   MBB->addSuccessor(TailTestMBB);
9439 
9440   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
9441   //  J LoopTestMBB
9442   MBB = LoopBodyMBB;
9443   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
9444     .addReg(PHIReg)
9445     .addImm(ProbeSize);
9446   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
9447     .addReg(SystemZ::R15D)
9448     .addImm(ProbeSize);
9449   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9450     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
9451     .setMemRefs(VolLdMMO);
9452   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
9453   MBB->addSuccessor(LoopTestMBB);
9454 
9455   //  TailTestMBB
9456   //  BRC DoneMBB
9457   //  # fallthrough to TailMBB
9458   MBB = TailTestMBB;
9459   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9460     .addReg(PHIReg)
9461     .addImm(0);
9462   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9463     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9464     .addMBB(DoneMBB);
9465   MBB->addSuccessor(TailMBB);
9466   MBB->addSuccessor(DoneMBB);
9467 
9468   //  TailMBB
9469   //  # fallthrough to DoneMBB
9470   MBB = TailMBB;
9471   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
9472     .addReg(SystemZ::R15D)
9473     .addReg(PHIReg);
9474   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9475     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
9476     .setMemRefs(VolLdMMO);
9477   MBB->addSuccessor(DoneMBB);
9478 
9479   //  DoneMBB
9480   MBB = DoneMBB;
9481   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
9482     .addReg(SystemZ::R15D);
9483 
9484   MI.eraseFromParent();
9485   return DoneMBB;
9486 }
9487 
9488 SDValue SystemZTargetLowering::
9489 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
9490   MachineFunction &MF = DAG.getMachineFunction();
9491   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
9492   SDLoc DL(SP);
9493   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
9494                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
9495 }
9496 
9497 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
9498     MachineInstr &MI, MachineBasicBlock *MBB) const {
9499   switch (MI.getOpcode()) {
9500   case SystemZ::ADJCALLSTACKDOWN:
9501   case SystemZ::ADJCALLSTACKUP:
9502     return emitAdjCallStack(MI, MBB);
9503 
9504   case SystemZ::Select32:
9505   case SystemZ::Select64:
9506   case SystemZ::Select128:
9507   case SystemZ::SelectF32:
9508   case SystemZ::SelectF64:
9509   case SystemZ::SelectF128:
9510   case SystemZ::SelectVR32:
9511   case SystemZ::SelectVR64:
9512   case SystemZ::SelectVR128:
9513     return emitSelect(MI, MBB);
9514 
9515   case SystemZ::CondStore8Mux:
9516     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
9517   case SystemZ::CondStore8MuxInv:
9518     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
9519   case SystemZ::CondStore16Mux:
9520     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
9521   case SystemZ::CondStore16MuxInv:
9522     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
9523   case SystemZ::CondStore32Mux:
9524     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
9525   case SystemZ::CondStore32MuxInv:
9526     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
9527   case SystemZ::CondStore8:
9528     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
9529   case SystemZ::CondStore8Inv:
9530     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
9531   case SystemZ::CondStore16:
9532     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
9533   case SystemZ::CondStore16Inv:
9534     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
9535   case SystemZ::CondStore32:
9536     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
9537   case SystemZ::CondStore32Inv:
9538     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
9539   case SystemZ::CondStore64:
9540     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
9541   case SystemZ::CondStore64Inv:
9542     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
9543   case SystemZ::CondStoreF32:
9544     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
9545   case SystemZ::CondStoreF32Inv:
9546     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
9547   case SystemZ::CondStoreF64:
9548     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
9549   case SystemZ::CondStoreF64Inv:
9550     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
9551 
9552   case SystemZ::SCmp128Hi:
9553     return emitICmp128Hi(MI, MBB, false);
9554   case SystemZ::UCmp128Hi:
9555     return emitICmp128Hi(MI, MBB, true);
9556 
9557   case SystemZ::PAIR128:
9558     return emitPair128(MI, MBB);
9559   case SystemZ::AEXT128:
9560     return emitExt128(MI, MBB, false);
9561   case SystemZ::ZEXT128:
9562     return emitExt128(MI, MBB, true);
9563 
9564   case SystemZ::ATOMIC_SWAPW:
9565     return emitAtomicLoadBinary(MI, MBB, 0);
9566 
9567   case SystemZ::ATOMIC_LOADW_AR:
9568     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR);
9569   case SystemZ::ATOMIC_LOADW_AFI:
9570     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI);
9571 
9572   case SystemZ::ATOMIC_LOADW_SR:
9573     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR);
9574 
9575   case SystemZ::ATOMIC_LOADW_NR:
9576     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR);
9577   case SystemZ::ATOMIC_LOADW_NILH:
9578     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH);
9579 
9580   case SystemZ::ATOMIC_LOADW_OR:
9581     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR);
9582   case SystemZ::ATOMIC_LOADW_OILH:
9583     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH);
9584 
9585   case SystemZ::ATOMIC_LOADW_XR:
9586     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR);
9587   case SystemZ::ATOMIC_LOADW_XILF:
9588     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF);
9589 
9590   case SystemZ::ATOMIC_LOADW_NRi:
9591     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true);
9592   case SystemZ::ATOMIC_LOADW_NILHi:
9593     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true);
9594 
9595   case SystemZ::ATOMIC_LOADW_MIN:
9596     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE);
9597   case SystemZ::ATOMIC_LOADW_MAX:
9598     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE);
9599   case SystemZ::ATOMIC_LOADW_UMIN:
9600     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE);
9601   case SystemZ::ATOMIC_LOADW_UMAX:
9602     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE);
9603 
9604   case SystemZ::ATOMIC_CMP_SWAPW:
9605     return emitAtomicCmpSwapW(MI, MBB);
9606   case SystemZ::MVCImm:
9607   case SystemZ::MVCReg:
9608     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
9609   case SystemZ::NCImm:
9610     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
9611   case SystemZ::OCImm:
9612     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
9613   case SystemZ::XCImm:
9614   case SystemZ::XCReg:
9615     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9616   case SystemZ::CLCImm:
9617   case SystemZ::CLCReg:
9618     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9619   case SystemZ::MemsetImmImm:
9620   case SystemZ::MemsetImmReg:
9621   case SystemZ::MemsetRegImm:
9622   case SystemZ::MemsetRegReg:
9623     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9624   case SystemZ::CLSTLoop:
9625     return emitStringWrapper(MI, MBB, SystemZ::CLST);
9626   case SystemZ::MVSTLoop:
9627     return emitStringWrapper(MI, MBB, SystemZ::MVST);
9628   case SystemZ::SRSTLoop:
9629     return emitStringWrapper(MI, MBB, SystemZ::SRST);
9630   case SystemZ::TBEGIN:
9631     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9632   case SystemZ::TBEGIN_nofloat:
9633     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9634   case SystemZ::TBEGINC:
9635     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9636   case SystemZ::LTEBRCompare_Pseudo:
9637     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9638   case SystemZ::LTDBRCompare_Pseudo:
9639     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9640   case SystemZ::LTXBRCompare_Pseudo:
9641     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9642 
9643   case SystemZ::PROBED_ALLOCA:
9644     return emitProbedAlloca(MI, MBB);
9645 
9646   case TargetOpcode::STACKMAP:
9647   case TargetOpcode::PATCHPOINT:
9648     return emitPatchPoint(MI, MBB);
9649 
9650   default:
9651     llvm_unreachable("Unexpected instr type to insert");
9652   }
9653 }
9654 
9655 // This is only used by the isel schedulers, and is needed only to prevent
9656 // compiler from crashing when list-ilp is used.
9657 const TargetRegisterClass *
9658 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9659   if (VT == MVT::Untyped)
9660     return &SystemZ::ADDR128BitRegClass;
9661   return TargetLowering::getRepRegClassFor(VT);
9662 }
9663 
9664 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op,
9665                                                  SelectionDAG &DAG) const {
9666   SDLoc dl(Op);
9667   /*
9668    The rounding method is in FPC Byte 3 bits 6-7, and has the following
9669    settings:
9670      00 Round to nearest
9671      01 Round to 0
9672      10 Round to +inf
9673      11 Round to -inf
9674 
9675   FLT_ROUNDS, on the other hand, expects the following:
9676     -1 Undefined
9677      0 Round to 0
9678      1 Round to nearest
9679      2 Round to +inf
9680      3 Round to -inf
9681   */
9682 
9683   // Save FPC to register.
9684   SDValue Chain = Op.getOperand(0);
9685   SDValue EFPC(
9686       DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0);
9687   Chain = EFPC.getValue(1);
9688 
9689   // Transform as necessary
9690   SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC,
9691                              DAG.getConstant(3, dl, MVT::i32));
9692   // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1
9693   SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1,
9694                              DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1,
9695                                          DAG.getConstant(1, dl, MVT::i32)));
9696 
9697   SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2,
9698                                DAG.getConstant(1, dl, MVT::i32));
9699   RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType());
9700 
9701   return DAG.getMergeValues({RetVal, Chain}, dl);
9702 }
9703 
9704 SDValue SystemZTargetLowering::lowerVECREDUCE_ADD(SDValue Op,
9705                                                   SelectionDAG &DAG) const {
9706   EVT VT = Op.getValueType();
9707   Op = Op.getOperand(0);
9708   EVT OpVT = Op.getValueType();
9709 
9710   assert(OpVT.isVector() && "Operand type for VECREDUCE_ADD is not a vector.");
9711 
9712   SDLoc DL(Op);
9713 
9714   // load a 0 vector for the third operand of VSUM.
9715   SDValue Zero = DAG.getSplatBuildVector(OpVT, DL, DAG.getConstant(0, DL, VT));
9716 
9717   // execute VSUM.
9718   switch (OpVT.getScalarSizeInBits()) {
9719   case 8:
9720   case 16:
9721     Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Zero);
9722     [[fallthrough]];
9723   case 32:
9724   case 64:
9725     Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::i128, Op,
9726                      DAG.getBitcast(Op.getValueType(), Zero));
9727     break;
9728   case 128:
9729     break; // VSUM over v1i128 should not happen and would be a noop
9730   default:
9731     llvm_unreachable("Unexpected scalar size.");
9732   }
9733   // Cast to original vector type, retrieve last element.
9734   return DAG.getNode(
9735       ISD::EXTRACT_VECTOR_ELT, DL, VT, DAG.getBitcast(OpVT, Op),
9736       DAG.getConstant(OpVT.getVectorNumElements() - 1, DL, MVT::i32));
9737 }
9738