xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 #include <optional>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "systemz-lower"
33 
34 namespace {
35 // Represents information about a comparison.
36 struct Comparison {
37   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
38     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
39       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
40 
41   // The operands to the comparison.
42   SDValue Op0, Op1;
43 
44   // Chain if this is a strict floating-point comparison.
45   SDValue Chain;
46 
47   // The opcode that should be used to compare Op0 and Op1.
48   unsigned Opcode;
49 
50   // A SystemZICMP value.  Only used for integer comparisons.
51   unsigned ICmpType;
52 
53   // The mask of CC values that Opcode can produce.
54   unsigned CCValid;
55 
56   // The mask of CC values for which the original condition is true.
57   unsigned CCMask;
58 };
59 } // end anonymous namespace
60 
61 // Classify VT as either 32 or 64 bit.
62 static bool is32Bit(EVT VT) {
63   switch (VT.getSimpleVT().SimpleTy) {
64   case MVT::i32:
65     return true;
66   case MVT::i64:
67     return false;
68   default:
69     llvm_unreachable("Unsupported type");
70   }
71 }
72 
73 // Return a version of MachineOperand that can be safely used before the
74 // final use.
75 static MachineOperand earlyUseOperand(MachineOperand Op) {
76   if (Op.isReg())
77     Op.setIsKill(false);
78   return Op;
79 }
80 
81 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
82                                              const SystemZSubtarget &STI)
83     : TargetLowering(TM), Subtarget(STI) {
84   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
85 
86   auto *Regs = STI.getSpecialRegisters();
87 
88   // Set up the register classes.
89   if (Subtarget.hasHighWord())
90     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
91   else
92     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
93   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
94   if (!useSoftFloat()) {
95     if (Subtarget.hasVector()) {
96       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
98     } else {
99       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
100       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
101     }
102     if (Subtarget.hasVectorEnhancements1())
103       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
104     else
105       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
106 
107     if (Subtarget.hasVector()) {
108       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
113       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
114     }
115 
116     if (Subtarget.hasVector())
117       addRegisterClass(MVT::i128, &SystemZ::VR128BitRegClass);
118   }
119 
120   // Compute derived properties from the register classes
121   computeRegisterProperties(Subtarget.getRegisterInfo());
122 
123   // Set up special registers.
124   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
125 
126   // TODO: It may be better to default to latency-oriented scheduling, however
127   // LLVM's current latency-oriented scheduler can't handle physreg definitions
128   // such as SystemZ has with CC, so set this to the register-pressure
129   // scheduler, because it can.
130   setSchedulingPreference(Sched::RegPressure);
131 
132   setBooleanContents(ZeroOrOneBooleanContent);
133   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
134 
135   setMaxAtomicSizeInBitsSupported(128);
136 
137   // Instructions are strings of 2-byte aligned 2-byte values.
138   setMinFunctionAlignment(Align(2));
139   // For performance reasons we prefer 16-byte alignment.
140   setPrefFunctionAlignment(Align(16));
141 
142   // Handle operations that are handled in a similar way for all types.
143   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
144        I <= MVT::LAST_FP_VALUETYPE;
145        ++I) {
146     MVT VT = MVT::SimpleValueType(I);
147     if (isTypeLegal(VT)) {
148       // Lower SET_CC into an IPM-based sequence.
149       setOperationAction(ISD::SETCC, VT, Custom);
150       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
151       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
152 
153       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
154       setOperationAction(ISD::SELECT, VT, Expand);
155 
156       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
157       setOperationAction(ISD::SELECT_CC, VT, Custom);
158       setOperationAction(ISD::BR_CC,     VT, Custom);
159     }
160   }
161 
162   // Expand jump table branches as address arithmetic followed by an
163   // indirect jump.
164   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
165 
166   // Expand BRCOND into a BR_CC (see above).
167   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
168 
169   // Handle integer types except i128.
170   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
171        I <= MVT::LAST_INTEGER_VALUETYPE;
172        ++I) {
173     MVT VT = MVT::SimpleValueType(I);
174     if (isTypeLegal(VT) && VT != MVT::i128) {
175       setOperationAction(ISD::ABS, VT, Legal);
176 
177       // Expand individual DIV and REMs into DIVREMs.
178       setOperationAction(ISD::SDIV, VT, Expand);
179       setOperationAction(ISD::UDIV, VT, Expand);
180       setOperationAction(ISD::SREM, VT, Expand);
181       setOperationAction(ISD::UREM, VT, Expand);
182       setOperationAction(ISD::SDIVREM, VT, Custom);
183       setOperationAction(ISD::UDIVREM, VT, Custom);
184 
185       // Support addition/subtraction with overflow.
186       setOperationAction(ISD::SADDO, VT, Custom);
187       setOperationAction(ISD::SSUBO, VT, Custom);
188 
189       // Support addition/subtraction with carry.
190       setOperationAction(ISD::UADDO, VT, Custom);
191       setOperationAction(ISD::USUBO, VT, Custom);
192 
193       // Support carry in as value rather than glue.
194       setOperationAction(ISD::UADDO_CARRY, VT, Custom);
195       setOperationAction(ISD::USUBO_CARRY, VT, Custom);
196 
197       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
198       // stores, putting a serialization instruction after the stores.
199       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
200       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
201 
202       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
203       // available, or if the operand is constant.
204       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
205 
206       // Use POPCNT on z196 and above.
207       if (Subtarget.hasPopulationCount())
208         setOperationAction(ISD::CTPOP, VT, Custom);
209       else
210         setOperationAction(ISD::CTPOP, VT, Expand);
211 
212       // No special instructions for these.
213       setOperationAction(ISD::CTTZ,            VT, Expand);
214       setOperationAction(ISD::ROTR,            VT, Expand);
215 
216       // Use *MUL_LOHI where possible instead of MULH*.
217       setOperationAction(ISD::MULHS, VT, Expand);
218       setOperationAction(ISD::MULHU, VT, Expand);
219       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
220       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
221 
222       // Only z196 and above have native support for conversions to unsigned.
223       // On z10, promoting to i64 doesn't generate an inexact condition for
224       // values that are outside the i32 range but in the i64 range, so use
225       // the default expansion.
226       if (!Subtarget.hasFPExtension())
227         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
228 
229       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
230       // default to Expand, so need to be modified to Legal where appropriate.
231       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
232       if (Subtarget.hasFPExtension())
233         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
234 
235       // And similarly for STRICT_[SU]INT_TO_FP.
236       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
237       if (Subtarget.hasFPExtension())
238         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
239     }
240   }
241 
242   // Handle i128 if legal.
243   if (isTypeLegal(MVT::i128)) {
244     // No special instructions for these.
245     setOperationAction(ISD::SDIVREM,   MVT::i128, Expand);
246     setOperationAction(ISD::UDIVREM,   MVT::i128, Expand);
247     setOperationAction(ISD::SMUL_LOHI, MVT::i128, Expand);
248     setOperationAction(ISD::UMUL_LOHI, MVT::i128, Expand);
249     setOperationAction(ISD::ROTR,      MVT::i128, Expand);
250     setOperationAction(ISD::ROTL,      MVT::i128, Expand);
251     setOperationAction(ISD::MUL,       MVT::i128, Expand);
252     setOperationAction(ISD::MULHS,     MVT::i128, Expand);
253     setOperationAction(ISD::MULHU,     MVT::i128, Expand);
254     setOperationAction(ISD::SDIV,      MVT::i128, Expand);
255     setOperationAction(ISD::UDIV,      MVT::i128, Expand);
256     setOperationAction(ISD::SREM,      MVT::i128, Expand);
257     setOperationAction(ISD::UREM,      MVT::i128, Expand);
258     setOperationAction(ISD::CTLZ,      MVT::i128, Expand);
259     setOperationAction(ISD::CTTZ,      MVT::i128, Expand);
260 
261     // Support addition/subtraction with carry.
262     setOperationAction(ISD::UADDO, MVT::i128, Custom);
263     setOperationAction(ISD::USUBO, MVT::i128, Custom);
264     setOperationAction(ISD::UADDO_CARRY, MVT::i128, Custom);
265     setOperationAction(ISD::USUBO_CARRY, MVT::i128, Custom);
266 
267     // Use VPOPCT and add up partial results.
268     setOperationAction(ISD::CTPOP, MVT::i128, Custom);
269 
270     // We have to use libcalls for these.
271     setOperationAction(ISD::FP_TO_UINT, MVT::i128, LibCall);
272     setOperationAction(ISD::FP_TO_SINT, MVT::i128, LibCall);
273     setOperationAction(ISD::UINT_TO_FP, MVT::i128, LibCall);
274     setOperationAction(ISD::SINT_TO_FP, MVT::i128, LibCall);
275     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, LibCall);
276     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, LibCall);
277     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, LibCall);
278     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, LibCall);
279   }
280 
281   // Type legalization will convert 8- and 16-bit atomic operations into
282   // forms that operate on i32s (but still keeping the original memory VT).
283   // Lower them into full i32 operations.
284   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
285   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
286   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
287   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
288   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
289   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
290   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
291   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
292   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
293   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
294   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
295 
296   // Whether or not i128 is not a legal type, we need to custom lower
297   // the atomic operations in order to exploit SystemZ instructions.
298   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
299   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
300 
301   // We can use the CC result of compare-and-swap to implement
302   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
303   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
304   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
305   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
306 
307   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
308 
309   // Traps are legal, as we will convert them to "j .+2".
310   setOperationAction(ISD::TRAP, MVT::Other, Legal);
311 
312   // z10 has instructions for signed but not unsigned FP conversion.
313   // Handle unsigned 32-bit types as signed 64-bit types.
314   if (!Subtarget.hasFPExtension()) {
315     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
316     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
317     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
318     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
319   }
320 
321   // We have native support for a 64-bit CTLZ, via FLOGR.
322   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
323   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
324   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
325 
326   // On z15 we have native support for a 64-bit CTPOP.
327   if (Subtarget.hasMiscellaneousExtensions3()) {
328     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
329     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
330   }
331 
332   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
333   setOperationAction(ISD::OR, MVT::i64, Custom);
334 
335   // Expand 128 bit shifts without using a libcall.
336   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
337   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
338   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
339   setLibcallName(RTLIB::SRL_I128, nullptr);
340   setLibcallName(RTLIB::SHL_I128, nullptr);
341   setLibcallName(RTLIB::SRA_I128, nullptr);
342 
343   // Handle bitcast from fp128 to i128.
344   if (!isTypeLegal(MVT::i128))
345     setOperationAction(ISD::BITCAST, MVT::i128, Custom);
346 
347   // We have native instructions for i8, i16 and i32 extensions, but not i1.
348   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
349   for (MVT VT : MVT::integer_valuetypes()) {
350     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
351     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
352     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
353   }
354 
355   // Handle the various types of symbolic address.
356   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
357   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
358   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
359   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
360   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
361 
362   // We need to handle dynamic allocations specially because of the
363   // 160-byte area at the bottom of the stack.
364   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
365   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
366 
367   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
368   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
369 
370   // Handle prefetches with PFD or PFDRL.
371   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
372 
373   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
374     // Assume by default that all vector operations need to be expanded.
375     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
376       if (getOperationAction(Opcode, VT) == Legal)
377         setOperationAction(Opcode, VT, Expand);
378 
379     // Likewise all truncating stores and extending loads.
380     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
381       setTruncStoreAction(VT, InnerVT, Expand);
382       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
383       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
384       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
385     }
386 
387     if (isTypeLegal(VT)) {
388       // These operations are legal for anything that can be stored in a
389       // vector register, even if there is no native support for the format
390       // as such.  In particular, we can do these for v4f32 even though there
391       // are no specific instructions for that format.
392       setOperationAction(ISD::LOAD, VT, Legal);
393       setOperationAction(ISD::STORE, VT, Legal);
394       setOperationAction(ISD::VSELECT, VT, Legal);
395       setOperationAction(ISD::BITCAST, VT, Legal);
396       setOperationAction(ISD::UNDEF, VT, Legal);
397 
398       // Likewise, except that we need to replace the nodes with something
399       // more specific.
400       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
401       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
402     }
403   }
404 
405   // Handle integer vector types.
406   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
407     if (isTypeLegal(VT)) {
408       // These operations have direct equivalents.
409       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
410       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
411       setOperationAction(ISD::ADD, VT, Legal);
412       setOperationAction(ISD::SUB, VT, Legal);
413       if (VT != MVT::v2i64)
414         setOperationAction(ISD::MUL, VT, Legal);
415       setOperationAction(ISD::ABS, VT, Legal);
416       setOperationAction(ISD::AND, VT, Legal);
417       setOperationAction(ISD::OR, VT, Legal);
418       setOperationAction(ISD::XOR, VT, Legal);
419       if (Subtarget.hasVectorEnhancements1())
420         setOperationAction(ISD::CTPOP, VT, Legal);
421       else
422         setOperationAction(ISD::CTPOP, VT, Custom);
423       setOperationAction(ISD::CTTZ, VT, Legal);
424       setOperationAction(ISD::CTLZ, VT, Legal);
425 
426       // Convert a GPR scalar to a vector by inserting it into element 0.
427       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
428 
429       // Use a series of unpacks for extensions.
430       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
431       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
432 
433       // Detect shifts/rotates by a scalar amount and convert them into
434       // V*_BY_SCALAR.
435       setOperationAction(ISD::SHL, VT, Custom);
436       setOperationAction(ISD::SRA, VT, Custom);
437       setOperationAction(ISD::SRL, VT, Custom);
438       setOperationAction(ISD::ROTL, VT, Custom);
439 
440       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
441       // and inverting the result as necessary.
442       setOperationAction(ISD::SETCC, VT, Custom);
443     }
444   }
445 
446   if (Subtarget.hasVector()) {
447     // There should be no need to check for float types other than v2f64
448     // since <2 x f32> isn't a legal type.
449     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
450     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
451     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
452     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
453     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
454     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
455     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
456     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
457 
458     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
459     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
460     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
461     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
462     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
463     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
464     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
465     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
466   }
467 
468   if (Subtarget.hasVectorEnhancements2()) {
469     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
470     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
471     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
472     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
473     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
474     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
475     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
476     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
477 
478     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
479     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
480     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
481     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
482     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
483     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
484     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
485     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
486   }
487 
488   // Handle floating-point types.
489   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
490        I <= MVT::LAST_FP_VALUETYPE;
491        ++I) {
492     MVT VT = MVT::SimpleValueType(I);
493     if (isTypeLegal(VT)) {
494       // We can use FI for FRINT.
495       setOperationAction(ISD::FRINT, VT, Legal);
496 
497       // We can use the extended form of FI for other rounding operations.
498       if (Subtarget.hasFPExtension()) {
499         setOperationAction(ISD::FNEARBYINT, VT, Legal);
500         setOperationAction(ISD::FFLOOR, VT, Legal);
501         setOperationAction(ISD::FCEIL, VT, Legal);
502         setOperationAction(ISD::FTRUNC, VT, Legal);
503         setOperationAction(ISD::FROUND, VT, Legal);
504       }
505 
506       // No special instructions for these.
507       setOperationAction(ISD::FSIN, VT, Expand);
508       setOperationAction(ISD::FCOS, VT, Expand);
509       setOperationAction(ISD::FSINCOS, VT, Expand);
510       setOperationAction(ISD::FREM, VT, Expand);
511       setOperationAction(ISD::FPOW, VT, Expand);
512 
513       // Special treatment.
514       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
515 
516       // Handle constrained floating-point operations.
517       setOperationAction(ISD::STRICT_FADD, VT, Legal);
518       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
519       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
520       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
521       setOperationAction(ISD::STRICT_FMA, VT, Legal);
522       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
523       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
524       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
525       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
526       if (Subtarget.hasFPExtension()) {
527         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
528         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
529         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
530         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
531         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
532       }
533     }
534   }
535 
536   // Handle floating-point vector types.
537   if (Subtarget.hasVector()) {
538     // Scalar-to-vector conversion is just a subreg.
539     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
540     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
541 
542     // Some insertions and extractions can be done directly but others
543     // need to go via integers.
544     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
545     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
546     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
547     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
548 
549     // These operations have direct equivalents.
550     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
551     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
552     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
555     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
556     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
557     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
558     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
559     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
560     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
561     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
562     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
563     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
564 
565     // Handle constrained floating-point operations.
566     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
567     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
568     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
569     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
570     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
571     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
572     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
573     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
574     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
575     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
576     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
577     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
578 
579     setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
580     setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
581     setOperationAction(ISD::STRICT_FSETCC, MVT::v2f64, Custom);
582     setOperationAction(ISD::STRICT_FSETCC, MVT::v4f32, Custom);
583     if (Subtarget.hasVectorEnhancements1()) {
584       setOperationAction(ISD::STRICT_FSETCCS, MVT::v2f64, Custom);
585       setOperationAction(ISD::STRICT_FSETCCS, MVT::v4f32, Custom);
586     }
587   }
588 
589   // The vector enhancements facility 1 has instructions for these.
590   if (Subtarget.hasVectorEnhancements1()) {
591     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
592     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
593     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
594     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
595     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
596     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
597     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
598     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
599     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
600     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
601     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
602     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
603     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
604     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
605 
606     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
607     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
608     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
609     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
610 
611     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
612     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
613     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
614     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
615 
616     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
617     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
618     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
619     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
620 
621     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
622     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
623     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
624     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
625 
626     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
627     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
628     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
629     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
630 
631     // Handle constrained floating-point operations.
632     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
633     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
634     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
635     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
636     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
637     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
638     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
639     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
640     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
641     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
642     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
643     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
644     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
645                      MVT::v4f32, MVT::v2f64 }) {
646       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
647       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
648       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
649       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
650     }
651   }
652 
653   // We only have fused f128 multiply-addition on vector registers.
654   if (!Subtarget.hasVectorEnhancements1()) {
655     setOperationAction(ISD::FMA, MVT::f128, Expand);
656     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
657   }
658 
659   // We don't have a copysign instruction on vector registers.
660   if (Subtarget.hasVectorEnhancements1())
661     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
662 
663   // Needed so that we don't try to implement f128 constant loads using
664   // a load-and-extend of a f80 constant (in cases where the constant
665   // would fit in an f80).
666   for (MVT VT : MVT::fp_valuetypes())
667     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
668 
669   // We don't have extending load instruction on vector registers.
670   if (Subtarget.hasVectorEnhancements1()) {
671     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
672     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
673   }
674 
675   // Floating-point truncation and stores need to be done separately.
676   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
677   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
678   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
679 
680   // We have 64-bit FPR<->GPR moves, but need special handling for
681   // 32-bit forms.
682   if (!Subtarget.hasVector()) {
683     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
684     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
685   }
686 
687   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
688   // structure, but VAEND is a no-op.
689   setOperationAction(ISD::VASTART, MVT::Other, Custom);
690   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
691   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
692 
693   setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
694 
695   // Codes for which we want to perform some z-specific combinations.
696   setTargetDAGCombine({ISD::ZERO_EXTEND,
697                        ISD::SIGN_EXTEND,
698                        ISD::SIGN_EXTEND_INREG,
699                        ISD::LOAD,
700                        ISD::STORE,
701                        ISD::VECTOR_SHUFFLE,
702                        ISD::EXTRACT_VECTOR_ELT,
703                        ISD::FP_ROUND,
704                        ISD::STRICT_FP_ROUND,
705                        ISD::FP_EXTEND,
706                        ISD::SINT_TO_FP,
707                        ISD::UINT_TO_FP,
708                        ISD::STRICT_FP_EXTEND,
709                        ISD::BSWAP,
710                        ISD::SDIV,
711                        ISD::UDIV,
712                        ISD::SREM,
713                        ISD::UREM,
714                        ISD::INTRINSIC_VOID,
715                        ISD::INTRINSIC_W_CHAIN});
716 
717   // Handle intrinsics.
718   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
719   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
720 
721   // We want to use MVC in preference to even a single load/store pair.
722   MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
723   MaxStoresPerMemcpyOptSize = 0;
724 
725   // The main memset sequence is a byte store followed by an MVC.
726   // Two STC or MV..I stores win over that, but the kind of fused stores
727   // generated by target-independent code don't when the byte value is
728   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
729   // than "STC;MVC".  Handle the choice in target-specific code instead.
730   MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
731   MaxStoresPerMemsetOptSize = 0;
732 
733   // Default to having -disable-strictnode-mutation on
734   IsStrictFPEnabled = true;
735 
736   if (Subtarget.isTargetzOS()) {
737     struct RTLibCallMapping {
738       RTLIB::Libcall Code;
739       const char *Name;
740     };
741     static RTLibCallMapping RTLibCallCommon[] = {
742 #define HANDLE_LIBCALL(code, name) {RTLIB::code, name},
743 #include "ZOSLibcallNames.def"
744     };
745     for (auto &E : RTLibCallCommon)
746       setLibcallName(E.Code, E.Name);
747   }
748 }
749 
750 bool SystemZTargetLowering::useSoftFloat() const {
751   return Subtarget.hasSoftFloat();
752 }
753 
754 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
755                                               LLVMContext &, EVT VT) const {
756   if (!VT.isVector())
757     return MVT::i32;
758   return VT.changeVectorElementTypeToInteger();
759 }
760 
761 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
762     const MachineFunction &MF, EVT VT) const {
763   VT = VT.getScalarType();
764 
765   if (!VT.isSimple())
766     return false;
767 
768   switch (VT.getSimpleVT().SimpleTy) {
769   case MVT::f32:
770   case MVT::f64:
771     return true;
772   case MVT::f128:
773     return Subtarget.hasVectorEnhancements1();
774   default:
775     break;
776   }
777 
778   return false;
779 }
780 
781 // Return true if the constant can be generated with a vector instruction,
782 // such as VGM, VGMB or VREPI.
783 bool SystemZVectorConstantInfo::isVectorConstantLegal(
784     const SystemZSubtarget &Subtarget) {
785   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
786   if (!Subtarget.hasVector() ||
787       (isFP128 && !Subtarget.hasVectorEnhancements1()))
788     return false;
789 
790   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
791   // preferred way of creating all-zero and all-one vectors so give it
792   // priority over other methods below.
793   unsigned Mask = 0;
794   unsigned I = 0;
795   for (; I < SystemZ::VectorBytes; ++I) {
796     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
797     if (Byte == 0xff)
798       Mask |= 1ULL << I;
799     else if (Byte != 0)
800       break;
801   }
802   if (I == SystemZ::VectorBytes) {
803     Opcode = SystemZISD::BYTE_MASK;
804     OpVals.push_back(Mask);
805     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
806     return true;
807   }
808 
809   if (SplatBitSize > 64)
810     return false;
811 
812   auto tryValue = [&](uint64_t Value) -> bool {
813     // Try VECTOR REPLICATE IMMEDIATE
814     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
815     if (isInt<16>(SignedValue)) {
816       OpVals.push_back(((unsigned) SignedValue));
817       Opcode = SystemZISD::REPLICATE;
818       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
819                                SystemZ::VectorBits / SplatBitSize);
820       return true;
821     }
822     // Try VECTOR GENERATE MASK
823     unsigned Start, End;
824     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
825       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
826       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
827       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
828       OpVals.push_back(Start - (64 - SplatBitSize));
829       OpVals.push_back(End - (64 - SplatBitSize));
830       Opcode = SystemZISD::ROTATE_MASK;
831       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
832                                SystemZ::VectorBits / SplatBitSize);
833       return true;
834     }
835     return false;
836   };
837 
838   // First try assuming that any undefined bits above the highest set bit
839   // and below the lowest set bit are 1s.  This increases the likelihood of
840   // being able to use a sign-extended element value in VECTOR REPLICATE
841   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
842   uint64_t SplatBitsZ = SplatBits.getZExtValue();
843   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
844   unsigned LowerBits = llvm::countr_zero(SplatBitsZ);
845   unsigned UpperBits = llvm::countl_zero(SplatBitsZ);
846   uint64_t Lower = SplatUndefZ & maskTrailingOnes<uint64_t>(LowerBits);
847   uint64_t Upper = SplatUndefZ & maskLeadingOnes<uint64_t>(UpperBits);
848   if (tryValue(SplatBitsZ | Upper | Lower))
849     return true;
850 
851   // Now try assuming that any undefined bits between the first and
852   // last defined set bits are set.  This increases the chances of
853   // using a non-wraparound mask.
854   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
855   return tryValue(SplatBitsZ | Middle);
856 }
857 
858 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
859   if (IntImm.isSingleWord()) {
860     IntBits = APInt(128, IntImm.getZExtValue());
861     IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
862   } else
863     IntBits = IntImm;
864   assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
865 
866   // Find the smallest splat.
867   SplatBits = IntImm;
868   unsigned Width = SplatBits.getBitWidth();
869   while (Width > 8) {
870     unsigned HalfSize = Width / 2;
871     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
872     APInt LowValue = SplatBits.trunc(HalfSize);
873 
874     // If the two halves do not match, stop here.
875     if (HighValue != LowValue || 8 > HalfSize)
876       break;
877 
878     SplatBits = HighValue;
879     Width = HalfSize;
880   }
881   SplatUndef = 0;
882   SplatBitSize = Width;
883 }
884 
885 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
886   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
887   bool HasAnyUndefs;
888 
889   // Get IntBits by finding the 128 bit splat.
890   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
891                        true);
892 
893   // Get SplatBits by finding the 8 bit or greater splat.
894   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
895                        true);
896 }
897 
898 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
899                                          bool ForCodeSize) const {
900   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
901   if (Imm.isZero() || Imm.isNegZero())
902     return true;
903 
904   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
905 }
906 
907 /// Returns true if stack probing through inline assembly is requested.
908 bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
909   // If the function specifically requests inline stack probes, emit them.
910   if (MF.getFunction().hasFnAttribute("probe-stack"))
911     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
912            "inline-asm";
913   return false;
914 }
915 
916 TargetLowering::AtomicExpansionKind
917 SystemZTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
918   // Don't expand subword operations as they require special treatment.
919   if (RMW->getType()->isIntegerTy(8) || RMW->getType()->isIntegerTy(16))
920     return AtomicExpansionKind::None;
921 
922   // Don't expand if there is a target instruction available.
923   if (Subtarget.hasInterlockedAccess1() &&
924       (RMW->getType()->isIntegerTy(32) || RMW->getType()->isIntegerTy(64)) &&
925       (RMW->getOperation() == AtomicRMWInst::BinOp::Add ||
926        RMW->getOperation() == AtomicRMWInst::BinOp::Sub ||
927        RMW->getOperation() == AtomicRMWInst::BinOp::And ||
928        RMW->getOperation() == AtomicRMWInst::BinOp::Or ||
929        RMW->getOperation() == AtomicRMWInst::BinOp::Xor))
930     return AtomicExpansionKind::None;
931 
932   return AtomicExpansionKind::CmpXChg;
933 }
934 
935 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
936   // We can use CGFI or CLGFI.
937   return isInt<32>(Imm) || isUInt<32>(Imm);
938 }
939 
940 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
941   // We can use ALGFI or SLGFI.
942   return isUInt<32>(Imm) || isUInt<32>(-Imm);
943 }
944 
945 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
946     EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
947   // Unaligned accesses should never be slower than the expanded version.
948   // We check specifically for aligned accesses in the few cases where
949   // they are required.
950   if (Fast)
951     *Fast = 1;
952   return true;
953 }
954 
955 // Information about the addressing mode for a memory access.
956 struct AddressingMode {
957   // True if a long displacement is supported.
958   bool LongDisplacement;
959 
960   // True if use of index register is supported.
961   bool IndexReg;
962 
963   AddressingMode(bool LongDispl, bool IdxReg) :
964     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
965 };
966 
967 // Return the desired addressing mode for a Load which has only one use (in
968 // the same block) which is a Store.
969 static AddressingMode getLoadStoreAddrMode(bool HasVector,
970                                           Type *Ty) {
971   // With vector support a Load->Store combination may be combined to either
972   // an MVC or vector operations and it seems to work best to allow the
973   // vector addressing mode.
974   if (HasVector)
975     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
976 
977   // Otherwise only the MVC case is special.
978   bool MVC = Ty->isIntegerTy(8);
979   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
980 }
981 
982 // Return the addressing mode which seems most desirable given an LLVM
983 // Instruction pointer.
984 static AddressingMode
985 supportedAddressingMode(Instruction *I, bool HasVector) {
986   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
987     switch (II->getIntrinsicID()) {
988     default: break;
989     case Intrinsic::memset:
990     case Intrinsic::memmove:
991     case Intrinsic::memcpy:
992       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
993     }
994   }
995 
996   if (isa<LoadInst>(I) && I->hasOneUse()) {
997     auto *SingleUser = cast<Instruction>(*I->user_begin());
998     if (SingleUser->getParent() == I->getParent()) {
999       if (isa<ICmpInst>(SingleUser)) {
1000         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
1001           if (C->getBitWidth() <= 64 &&
1002               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
1003             // Comparison of memory with 16 bit signed / unsigned immediate
1004             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
1005       } else if (isa<StoreInst>(SingleUser))
1006         // Load->Store
1007         return getLoadStoreAddrMode(HasVector, I->getType());
1008     }
1009   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
1010     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
1011       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
1012         // Load->Store
1013         return getLoadStoreAddrMode(HasVector, LoadI->getType());
1014   }
1015 
1016   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
1017 
1018     // * Use LDE instead of LE/LEY for z13 to avoid partial register
1019     //   dependencies (LDE only supports small offsets).
1020     // * Utilize the vector registers to hold floating point
1021     //   values (vector load / store instructions only support small
1022     //   offsets).
1023 
1024     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
1025                          I->getOperand(0)->getType());
1026     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
1027     bool IsVectorAccess = MemAccessTy->isVectorTy();
1028 
1029     // A store of an extracted vector element will be combined into a VSTE type
1030     // instruction.
1031     if (!IsVectorAccess && isa<StoreInst>(I)) {
1032       Value *DataOp = I->getOperand(0);
1033       if (isa<ExtractElementInst>(DataOp))
1034         IsVectorAccess = true;
1035     }
1036 
1037     // A load which gets inserted into a vector element will be combined into a
1038     // VLE type instruction.
1039     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
1040       User *LoadUser = *I->user_begin();
1041       if (isa<InsertElementInst>(LoadUser))
1042         IsVectorAccess = true;
1043     }
1044 
1045     if (IsFPAccess || IsVectorAccess)
1046       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
1047   }
1048 
1049   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
1050 }
1051 
1052 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1053        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
1054   // Punt on globals for now, although they can be used in limited
1055   // RELATIVE LONG cases.
1056   if (AM.BaseGV)
1057     return false;
1058 
1059   // Require a 20-bit signed offset.
1060   if (!isInt<20>(AM.BaseOffs))
1061     return false;
1062 
1063   bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy();
1064   AddressingMode SupportedAM(!RequireD12, true);
1065   if (I != nullptr)
1066     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
1067 
1068   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
1069     return false;
1070 
1071   if (!SupportedAM.IndexReg)
1072     // No indexing allowed.
1073     return AM.Scale == 0;
1074   else
1075     // Indexing is OK but no scale factor can be applied.
1076     return AM.Scale == 0 || AM.Scale == 1;
1077 }
1078 
1079 bool SystemZTargetLowering::findOptimalMemOpLowering(
1080     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1081     unsigned SrcAS, const AttributeList &FuncAttributes) const {
1082   const int MVCFastLen = 16;
1083 
1084   if (Limit != ~unsigned(0)) {
1085     // Don't expand Op into scalar loads/stores in these cases:
1086     if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1087       return false; // Small memcpy: Use MVC
1088     if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1089       return false; // Small memset (first byte with STC/MVI): Use MVC
1090     if (Op.isZeroMemset())
1091       return false; // Memset zero: Use XC
1092   }
1093 
1094   return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1095                                                   SrcAS, FuncAttributes);
1096 }
1097 
1098 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1099                                    const AttributeList &FuncAttributes) const {
1100   return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1101 }
1102 
1103 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1104   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1105     return false;
1106   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue();
1107   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue();
1108   return FromBits > ToBits;
1109 }
1110 
1111 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1112   if (!FromVT.isInteger() || !ToVT.isInteger())
1113     return false;
1114   unsigned FromBits = FromVT.getFixedSizeInBits();
1115   unsigned ToBits = ToVT.getFixedSizeInBits();
1116   return FromBits > ToBits;
1117 }
1118 
1119 //===----------------------------------------------------------------------===//
1120 // Inline asm support
1121 //===----------------------------------------------------------------------===//
1122 
1123 TargetLowering::ConstraintType
1124 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1125   if (Constraint.size() == 1) {
1126     switch (Constraint[0]) {
1127     case 'a': // Address register
1128     case 'd': // Data register (equivalent to 'r')
1129     case 'f': // Floating-point register
1130     case 'h': // High-part register
1131     case 'r': // General-purpose register
1132     case 'v': // Vector register
1133       return C_RegisterClass;
1134 
1135     case 'Q': // Memory with base and unsigned 12-bit displacement
1136     case 'R': // Likewise, plus an index
1137     case 'S': // Memory with base and signed 20-bit displacement
1138     case 'T': // Likewise, plus an index
1139     case 'm': // Equivalent to 'T'.
1140       return C_Memory;
1141 
1142     case 'I': // Unsigned 8-bit constant
1143     case 'J': // Unsigned 12-bit constant
1144     case 'K': // Signed 16-bit constant
1145     case 'L': // Signed 20-bit displacement (on all targets we support)
1146     case 'M': // 0x7fffffff
1147       return C_Immediate;
1148 
1149     default:
1150       break;
1151     }
1152   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1153     switch (Constraint[1]) {
1154     case 'Q': // Address with base and unsigned 12-bit displacement
1155     case 'R': // Likewise, plus an index
1156     case 'S': // Address with base and signed 20-bit displacement
1157     case 'T': // Likewise, plus an index
1158       return C_Address;
1159 
1160     default:
1161       break;
1162     }
1163   }
1164   return TargetLowering::getConstraintType(Constraint);
1165 }
1166 
1167 TargetLowering::ConstraintWeight SystemZTargetLowering::
1168 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1169                                const char *constraint) const {
1170   ConstraintWeight weight = CW_Invalid;
1171   Value *CallOperandVal = info.CallOperandVal;
1172   // If we don't have a value, we can't do a match,
1173   // but allow it at the lowest weight.
1174   if (!CallOperandVal)
1175     return CW_Default;
1176   Type *type = CallOperandVal->getType();
1177   // Look at the constraint type.
1178   switch (*constraint) {
1179   default:
1180     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1181     break;
1182 
1183   case 'a': // Address register
1184   case 'd': // Data register (equivalent to 'r')
1185   case 'h': // High-part register
1186   case 'r': // General-purpose register
1187     weight = CallOperandVal->getType()->isIntegerTy() ? CW_Register : CW_Default;
1188     break;
1189 
1190   case 'f': // Floating-point register
1191     if (!useSoftFloat())
1192       weight = type->isFloatingPointTy() ? CW_Register : CW_Default;
1193     break;
1194 
1195   case 'v': // Vector register
1196     if (Subtarget.hasVector())
1197       weight = (type->isVectorTy() || type->isFloatingPointTy()) ? CW_Register
1198                                                                  : CW_Default;
1199     break;
1200 
1201   case 'I': // Unsigned 8-bit constant
1202     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1203       if (isUInt<8>(C->getZExtValue()))
1204         weight = CW_Constant;
1205     break;
1206 
1207   case 'J': // Unsigned 12-bit constant
1208     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1209       if (isUInt<12>(C->getZExtValue()))
1210         weight = CW_Constant;
1211     break;
1212 
1213   case 'K': // Signed 16-bit constant
1214     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1215       if (isInt<16>(C->getSExtValue()))
1216         weight = CW_Constant;
1217     break;
1218 
1219   case 'L': // Signed 20-bit displacement (on all targets we support)
1220     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1221       if (isInt<20>(C->getSExtValue()))
1222         weight = CW_Constant;
1223     break;
1224 
1225   case 'M': // 0x7fffffff
1226     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1227       if (C->getZExtValue() == 0x7fffffff)
1228         weight = CW_Constant;
1229     break;
1230   }
1231   return weight;
1232 }
1233 
1234 // Parse a "{tNNN}" register constraint for which the register type "t"
1235 // has already been verified.  MC is the class associated with "t" and
1236 // Map maps 0-based register numbers to LLVM register numbers.
1237 static std::pair<unsigned, const TargetRegisterClass *>
1238 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1239                     const unsigned *Map, unsigned Size) {
1240   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1241   if (isdigit(Constraint[2])) {
1242     unsigned Index;
1243     bool Failed =
1244         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1245     if (!Failed && Index < Size && Map[Index])
1246       return std::make_pair(Map[Index], RC);
1247   }
1248   return std::make_pair(0U, nullptr);
1249 }
1250 
1251 std::pair<unsigned, const TargetRegisterClass *>
1252 SystemZTargetLowering::getRegForInlineAsmConstraint(
1253     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1254   if (Constraint.size() == 1) {
1255     // GCC Constraint Letters
1256     switch (Constraint[0]) {
1257     default: break;
1258     case 'd': // Data register (equivalent to 'r')
1259     case 'r': // General-purpose register
1260       if (VT.getSizeInBits() == 64)
1261         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1262       else if (VT.getSizeInBits() == 128)
1263         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1264       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1265 
1266     case 'a': // Address register
1267       if (VT == MVT::i64)
1268         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1269       else if (VT == MVT::i128)
1270         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1271       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1272 
1273     case 'h': // High-part register (an LLVM extension)
1274       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1275 
1276     case 'f': // Floating-point register
1277       if (!useSoftFloat()) {
1278         if (VT.getSizeInBits() == 64)
1279           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1280         else if (VT.getSizeInBits() == 128)
1281           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1282         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1283       }
1284       break;
1285 
1286     case 'v': // Vector register
1287       if (Subtarget.hasVector()) {
1288         if (VT.getSizeInBits() == 32)
1289           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1290         if (VT.getSizeInBits() == 64)
1291           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1292         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1293       }
1294       break;
1295     }
1296   }
1297   if (Constraint.size() > 0 && Constraint[0] == '{') {
1298 
1299     // A clobber constraint (e.g. ~{f0}) will have MVT::Other which is illegal
1300     // to check the size on.
1301     auto getVTSizeInBits = [&VT]() {
1302       return VT == MVT::Other ? 0 : VT.getSizeInBits();
1303     };
1304 
1305     // We need to override the default register parsing for GPRs and FPRs
1306     // because the interpretation depends on VT.  The internal names of
1307     // the registers are also different from the external names
1308     // (F0D and F0S instead of F0, etc.).
1309     if (Constraint[1] == 'r') {
1310       if (getVTSizeInBits() == 32)
1311         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1312                                    SystemZMC::GR32Regs, 16);
1313       if (getVTSizeInBits() == 128)
1314         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1315                                    SystemZMC::GR128Regs, 16);
1316       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1317                                  SystemZMC::GR64Regs, 16);
1318     }
1319     if (Constraint[1] == 'f') {
1320       if (useSoftFloat())
1321         return std::make_pair(
1322             0u, static_cast<const TargetRegisterClass *>(nullptr));
1323       if (getVTSizeInBits() == 32)
1324         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1325                                    SystemZMC::FP32Regs, 16);
1326       if (getVTSizeInBits() == 128)
1327         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1328                                    SystemZMC::FP128Regs, 16);
1329       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1330                                  SystemZMC::FP64Regs, 16);
1331     }
1332     if (Constraint[1] == 'v') {
1333       if (!Subtarget.hasVector())
1334         return std::make_pair(
1335             0u, static_cast<const TargetRegisterClass *>(nullptr));
1336       if (getVTSizeInBits() == 32)
1337         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1338                                    SystemZMC::VR32Regs, 32);
1339       if (getVTSizeInBits() == 64)
1340         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1341                                    SystemZMC::VR64Regs, 32);
1342       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1343                                  SystemZMC::VR128Regs, 32);
1344     }
1345   }
1346   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1347 }
1348 
1349 // FIXME? Maybe this could be a TableGen attribute on some registers and
1350 // this table could be generated automatically from RegInfo.
1351 Register
1352 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1353                                          const MachineFunction &MF) const {
1354   Register Reg =
1355       StringSwitch<Register>(RegName)
1356           .Case("r4", Subtarget.isTargetXPLINK64() ? SystemZ::R4D : 0)
1357           .Case("r15", Subtarget.isTargetELF() ? SystemZ::R15D : 0)
1358           .Default(0);
1359 
1360   if (Reg)
1361     return Reg;
1362   report_fatal_error("Invalid register name global variable");
1363 }
1364 
1365 Register SystemZTargetLowering::getExceptionPointerRegister(
1366     const Constant *PersonalityFn) const {
1367   return Subtarget.isTargetXPLINK64() ? SystemZ::R1D : SystemZ::R6D;
1368 }
1369 
1370 Register SystemZTargetLowering::getExceptionSelectorRegister(
1371     const Constant *PersonalityFn) const {
1372   return Subtarget.isTargetXPLINK64() ? SystemZ::R2D : SystemZ::R7D;
1373 }
1374 
1375 void SystemZTargetLowering::LowerAsmOperandForConstraint(
1376     SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
1377     SelectionDAG &DAG) const {
1378   // Only support length 1 constraints for now.
1379   if (Constraint.size() == 1) {
1380     switch (Constraint[0]) {
1381     case 'I': // Unsigned 8-bit constant
1382       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1383         if (isUInt<8>(C->getZExtValue()))
1384           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1385                                               Op.getValueType()));
1386       return;
1387 
1388     case 'J': // Unsigned 12-bit constant
1389       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1390         if (isUInt<12>(C->getZExtValue()))
1391           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1392                                               Op.getValueType()));
1393       return;
1394 
1395     case 'K': // Signed 16-bit constant
1396       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1397         if (isInt<16>(C->getSExtValue()))
1398           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1399                                               Op.getValueType()));
1400       return;
1401 
1402     case 'L': // Signed 20-bit displacement (on all targets we support)
1403       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1404         if (isInt<20>(C->getSExtValue()))
1405           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1406                                               Op.getValueType()));
1407       return;
1408 
1409     case 'M': // 0x7fffffff
1410       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1411         if (C->getZExtValue() == 0x7fffffff)
1412           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1413                                               Op.getValueType()));
1414       return;
1415     }
1416   }
1417   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1418 }
1419 
1420 //===----------------------------------------------------------------------===//
1421 // Calling conventions
1422 //===----------------------------------------------------------------------===//
1423 
1424 #include "SystemZGenCallingConv.inc"
1425 
1426 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1427   CallingConv::ID) const {
1428   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1429                                            SystemZ::R14D, 0 };
1430   return ScratchRegs;
1431 }
1432 
1433 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1434                                                      Type *ToType) const {
1435   return isTruncateFree(FromType, ToType);
1436 }
1437 
1438 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1439   return CI->isTailCall();
1440 }
1441 
1442 // Value is a value that has been passed to us in the location described by VA
1443 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1444 // any loads onto Chain.
1445 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1446                                    CCValAssign &VA, SDValue Chain,
1447                                    SDValue Value) {
1448   // If the argument has been promoted from a smaller type, insert an
1449   // assertion to capture this.
1450   if (VA.getLocInfo() == CCValAssign::SExt)
1451     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1452                         DAG.getValueType(VA.getValVT()));
1453   else if (VA.getLocInfo() == CCValAssign::ZExt)
1454     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1455                         DAG.getValueType(VA.getValVT()));
1456 
1457   if (VA.isExtInLoc())
1458     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1459   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1460     // If this is a short vector argument loaded from the stack,
1461     // extend from i64 to full vector size and then bitcast.
1462     assert(VA.getLocVT() == MVT::i64);
1463     assert(VA.getValVT().isVector());
1464     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1465     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1466   } else
1467     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1468   return Value;
1469 }
1470 
1471 // Value is a value of type VA.getValVT() that we need to copy into
1472 // the location described by VA.  Return a copy of Value converted to
1473 // VA.getValVT().  The caller is responsible for handling indirect values.
1474 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1475                                    CCValAssign &VA, SDValue Value) {
1476   switch (VA.getLocInfo()) {
1477   case CCValAssign::SExt:
1478     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1479   case CCValAssign::ZExt:
1480     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1481   case CCValAssign::AExt:
1482     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1483   case CCValAssign::BCvt: {
1484     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1485     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
1486            VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
1487     // For an f32 vararg we need to first promote it to an f64 and then
1488     // bitcast it to an i64.
1489     if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
1490       Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
1491     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1492                             ? MVT::v2i64
1493                             : VA.getLocVT();
1494     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1495     // For ELF, this is a short vector argument to be stored to the stack,
1496     // bitcast to v2i64 and then extract first element.
1497     if (BitCastToType == MVT::v2i64)
1498       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1499                          DAG.getConstant(0, DL, MVT::i32));
1500     return Value;
1501   }
1502   case CCValAssign::Full:
1503     return Value;
1504   default:
1505     llvm_unreachable("Unhandled getLocInfo()");
1506   }
1507 }
1508 
1509 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1510   SDLoc DL(In);
1511   SDValue Lo, Hi;
1512   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1513     Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, In);
1514     Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
1515                      DAG.getNode(ISD::SRL, DL, MVT::i128, In,
1516                                  DAG.getConstant(64, DL, MVT::i32)));
1517   } else {
1518     std::tie(Lo, Hi) = DAG.SplitScalar(In, DL, MVT::i64, MVT::i64);
1519   }
1520 
1521   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1522                                     MVT::Untyped, Hi, Lo);
1523   return SDValue(Pair, 0);
1524 }
1525 
1526 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1527   SDLoc DL(In);
1528   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1529                                           DL, MVT::i64, In);
1530   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1531                                           DL, MVT::i64, In);
1532 
1533   if (DAG.getTargetLoweringInfo().isTypeLegal(MVT::i128)) {
1534     Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Lo);
1535     Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, Hi);
1536     Hi = DAG.getNode(ISD::SHL, DL, MVT::i128, Hi,
1537                      DAG.getConstant(64, DL, MVT::i32));
1538     return DAG.getNode(ISD::OR, DL, MVT::i128, Lo, Hi);
1539   } else {
1540     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1541   }
1542 }
1543 
1544 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1545     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1546     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
1547   EVT ValueVT = Val.getValueType();
1548   if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1549     // Inline assembly operand.
1550     Parts[0] = lowerI128ToGR128(DAG, DAG.getBitcast(MVT::i128, Val));
1551     return true;
1552   }
1553 
1554   return false;
1555 }
1556 
1557 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1558     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1559     MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
1560   if (ValueVT.getSizeInBits() == 128 && NumParts == 1 && PartVT == MVT::Untyped) {
1561     // Inline assembly operand.
1562     SDValue Res = lowerGR128ToI128(DAG, Parts[0]);
1563     return DAG.getBitcast(ValueVT, Res);
1564   }
1565 
1566   return SDValue();
1567 }
1568 
1569 SDValue SystemZTargetLowering::LowerFormalArguments(
1570     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1571     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1572     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1573   MachineFunction &MF = DAG.getMachineFunction();
1574   MachineFrameInfo &MFI = MF.getFrameInfo();
1575   MachineRegisterInfo &MRI = MF.getRegInfo();
1576   SystemZMachineFunctionInfo *FuncInfo =
1577       MF.getInfo<SystemZMachineFunctionInfo>();
1578   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1579   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1580 
1581   // Assign locations to all of the incoming arguments.
1582   SmallVector<CCValAssign, 16> ArgLocs;
1583   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1584   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1585   FuncInfo->setSizeOfFnParams(CCInfo.getStackSize());
1586 
1587   unsigned NumFixedGPRs = 0;
1588   unsigned NumFixedFPRs = 0;
1589   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1590     SDValue ArgValue;
1591     CCValAssign &VA = ArgLocs[I];
1592     EVT LocVT = VA.getLocVT();
1593     if (VA.isRegLoc()) {
1594       // Arguments passed in registers
1595       const TargetRegisterClass *RC;
1596       switch (LocVT.getSimpleVT().SimpleTy) {
1597       default:
1598         // Integers smaller than i64 should be promoted to i64.
1599         llvm_unreachable("Unexpected argument type");
1600       case MVT::i32:
1601         NumFixedGPRs += 1;
1602         RC = &SystemZ::GR32BitRegClass;
1603         break;
1604       case MVT::i64:
1605         NumFixedGPRs += 1;
1606         RC = &SystemZ::GR64BitRegClass;
1607         break;
1608       case MVT::f32:
1609         NumFixedFPRs += 1;
1610         RC = &SystemZ::FP32BitRegClass;
1611         break;
1612       case MVT::f64:
1613         NumFixedFPRs += 1;
1614         RC = &SystemZ::FP64BitRegClass;
1615         break;
1616       case MVT::f128:
1617         NumFixedFPRs += 2;
1618         RC = &SystemZ::FP128BitRegClass;
1619         break;
1620       case MVT::v16i8:
1621       case MVT::v8i16:
1622       case MVT::v4i32:
1623       case MVT::v2i64:
1624       case MVT::v4f32:
1625       case MVT::v2f64:
1626         RC = &SystemZ::VR128BitRegClass;
1627         break;
1628       }
1629 
1630       Register VReg = MRI.createVirtualRegister(RC);
1631       MRI.addLiveIn(VA.getLocReg(), VReg);
1632       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1633     } else {
1634       assert(VA.isMemLoc() && "Argument not register or memory");
1635 
1636       // Create the frame index object for this incoming parameter.
1637       // FIXME: Pre-include call frame size in the offset, should not
1638       // need to manually add it here.
1639       int64_t ArgSPOffset = VA.getLocMemOffset();
1640       if (Subtarget.isTargetXPLINK64()) {
1641         auto &XPRegs =
1642             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1643         ArgSPOffset += XPRegs.getCallFrameSize();
1644       }
1645       int FI =
1646           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1647 
1648       // Create the SelectionDAG nodes corresponding to a load
1649       // from this parameter.  Unpromoted ints and floats are
1650       // passed as right-justified 8-byte values.
1651       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1652       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1653         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1654                           DAG.getIntPtrConstant(4, DL));
1655       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1656                              MachinePointerInfo::getFixedStack(MF, FI));
1657     }
1658 
1659     // Convert the value of the argument register into the value that's
1660     // being passed.
1661     if (VA.getLocInfo() == CCValAssign::Indirect) {
1662       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1663                                    MachinePointerInfo()));
1664       // If the original argument was split (e.g. i128), we need
1665       // to load all parts of it here (using the same address).
1666       unsigned ArgIndex = Ins[I].OrigArgIndex;
1667       assert (Ins[I].PartOffset == 0);
1668       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1669         CCValAssign &PartVA = ArgLocs[I + 1];
1670         unsigned PartOffset = Ins[I + 1].PartOffset;
1671         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1672                                       DAG.getIntPtrConstant(PartOffset, DL));
1673         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1674                                      MachinePointerInfo()));
1675         ++I;
1676       }
1677     } else
1678       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1679   }
1680 
1681   if (IsVarArg && Subtarget.isTargetXPLINK64()) {
1682     // Save the number of non-varargs registers for later use by va_start, etc.
1683     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1684     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1685 
1686     auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1687         Subtarget.getSpecialRegisters());
1688 
1689     // Likewise the address (in the form of a frame index) of where the
1690     // first stack vararg would be.  The 1-byte size here is arbitrary.
1691     // FIXME: Pre-include call frame size in the offset, should not
1692     // need to manually add it here.
1693     int64_t VarArgOffset = CCInfo.getStackSize() + Regs->getCallFrameSize();
1694     int FI = MFI.CreateFixedObject(1, VarArgOffset, true);
1695     FuncInfo->setVarArgsFrameIndex(FI);
1696   }
1697 
1698   if (IsVarArg && Subtarget.isTargetELF()) {
1699     // Save the number of non-varargs registers for later use by va_start, etc.
1700     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1701     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1702 
1703     // Likewise the address (in the form of a frame index) of where the
1704     // first stack vararg would be.  The 1-byte size here is arbitrary.
1705     int64_t VarArgsOffset = CCInfo.getStackSize();
1706     FuncInfo->setVarArgsFrameIndex(
1707         MFI.CreateFixedObject(1, VarArgsOffset, true));
1708 
1709     // ...and a similar frame index for the caller-allocated save area
1710     // that will be used to store the incoming registers.
1711     int64_t RegSaveOffset =
1712       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1713     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1714     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1715 
1716     // Store the FPR varargs in the reserved frame slots.  (We store the
1717     // GPRs as part of the prologue.)
1718     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1719       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1720       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1721         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1722         int FI =
1723           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1724         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1725         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1726                                      &SystemZ::FP64BitRegClass);
1727         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1728         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1729                                  MachinePointerInfo::getFixedStack(MF, FI));
1730       }
1731       // Join the stores, which are independent of one another.
1732       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1733                           ArrayRef(&MemOps[NumFixedFPRs],
1734                                    SystemZ::ELFNumArgFPRs - NumFixedFPRs));
1735     }
1736   }
1737 
1738   if (Subtarget.isTargetXPLINK64()) {
1739     // Create virual register  for handling incoming "ADA" special register (R5)
1740     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
1741     Register ADAvReg = MRI.createVirtualRegister(RC);
1742     auto *Regs = static_cast<SystemZXPLINK64Registers *>(
1743         Subtarget.getSpecialRegisters());
1744     MRI.addLiveIn(Regs->getADARegister(), ADAvReg);
1745     FuncInfo->setADAVirtualRegister(ADAvReg);
1746   }
1747   return Chain;
1748 }
1749 
1750 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1751                               SmallVectorImpl<CCValAssign> &ArgLocs,
1752                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1753   // Punt if there are any indirect or stack arguments, or if the call
1754   // needs the callee-saved argument register R6, or if the call uses
1755   // the callee-saved register arguments SwiftSelf and SwiftError.
1756   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1757     CCValAssign &VA = ArgLocs[I];
1758     if (VA.getLocInfo() == CCValAssign::Indirect)
1759       return false;
1760     if (!VA.isRegLoc())
1761       return false;
1762     Register Reg = VA.getLocReg();
1763     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1764       return false;
1765     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1766       return false;
1767   }
1768   return true;
1769 }
1770 
1771 static SDValue getADAEntry(SelectionDAG &DAG, SDValue Val, SDLoc DL,
1772                            unsigned Offset, bool LoadAdr = false) {
1773   MachineFunction &MF = DAG.getMachineFunction();
1774   SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
1775   unsigned ADAvReg = MFI->getADAVirtualRegister();
1776   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1777 
1778   SDValue Reg = DAG.getRegister(ADAvReg, PtrVT);
1779   SDValue Ofs = DAG.getTargetConstant(Offset, DL, PtrVT);
1780 
1781   SDValue Result = DAG.getNode(SystemZISD::ADA_ENTRY, DL, PtrVT, Val, Reg, Ofs);
1782   if (!LoadAdr)
1783     Result = DAG.getLoad(
1784         PtrVT, DL, DAG.getEntryNode(), Result, MachinePointerInfo(), Align(8),
1785         MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant);
1786 
1787   return Result;
1788 }
1789 
1790 // ADA access using Global value
1791 // Note: for functions, address of descriptor is returned
1792 static SDValue getADAEntry(SelectionDAG &DAG, const GlobalValue *GV, SDLoc DL,
1793                            EVT PtrVT) {
1794   unsigned ADAtype;
1795   bool LoadAddr = false;
1796   const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV);
1797   bool IsFunction =
1798       (isa<Function>(GV)) || (GA && isa<Function>(GA->getAliaseeObject()));
1799   bool IsInternal = (GV->hasInternalLinkage() || GV->hasPrivateLinkage());
1800 
1801   if (IsFunction) {
1802     if (IsInternal) {
1803       ADAtype = SystemZII::MO_ADA_DIRECT_FUNC_DESC;
1804       LoadAddr = true;
1805     } else
1806       ADAtype = SystemZII::MO_ADA_INDIRECT_FUNC_DESC;
1807   } else {
1808     ADAtype = SystemZII::MO_ADA_DATA_SYMBOL_ADDR;
1809   }
1810   SDValue Val = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, ADAtype);
1811 
1812   return getADAEntry(DAG, Val, DL, 0, LoadAddr);
1813 }
1814 
1815 static bool getzOSCalleeAndADA(SelectionDAG &DAG, SDValue &Callee, SDValue &ADA,
1816                                SDLoc &DL, SDValue &Chain) {
1817   unsigned ADADelta = 0; // ADA offset in desc.
1818   unsigned EPADelta = 8; // EPA offset in desc.
1819   MachineFunction &MF = DAG.getMachineFunction();
1820   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1821 
1822   // XPLink calling convention.
1823   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1824     bool IsInternal = (G->getGlobal()->hasInternalLinkage() ||
1825                        G->getGlobal()->hasPrivateLinkage());
1826     if (IsInternal) {
1827       SystemZMachineFunctionInfo *MFI =
1828           MF.getInfo<SystemZMachineFunctionInfo>();
1829       unsigned ADAvReg = MFI->getADAVirtualRegister();
1830       ADA = DAG.getCopyFromReg(Chain, DL, ADAvReg, PtrVT);
1831       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1832       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1833       return true;
1834     } else {
1835       SDValue GA = DAG.getTargetGlobalAddress(
1836           G->getGlobal(), DL, PtrVT, 0, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1837       ADA = getADAEntry(DAG, GA, DL, ADADelta);
1838       Callee = getADAEntry(DAG, GA, DL, EPADelta);
1839     }
1840   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1841     SDValue ES = DAG.getTargetExternalSymbol(
1842         E->getSymbol(), PtrVT, SystemZII::MO_ADA_DIRECT_FUNC_DESC);
1843     ADA = getADAEntry(DAG, ES, DL, ADADelta);
1844     Callee = getADAEntry(DAG, ES, DL, EPADelta);
1845   } else {
1846     // Function pointer case
1847     ADA = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1848                       DAG.getConstant(ADADelta, DL, PtrVT));
1849     ADA = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), ADA,
1850                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1851     Callee = DAG.getNode(ISD::ADD, DL, PtrVT, Callee,
1852                          DAG.getConstant(EPADelta, DL, PtrVT));
1853     Callee = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Callee,
1854                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1855   }
1856   return false;
1857 }
1858 
1859 SDValue
1860 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1861                                  SmallVectorImpl<SDValue> &InVals) const {
1862   SelectionDAG &DAG = CLI.DAG;
1863   SDLoc &DL = CLI.DL;
1864   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1865   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1866   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1867   SDValue Chain = CLI.Chain;
1868   SDValue Callee = CLI.Callee;
1869   bool &IsTailCall = CLI.IsTailCall;
1870   CallingConv::ID CallConv = CLI.CallConv;
1871   bool IsVarArg = CLI.IsVarArg;
1872   MachineFunction &MF = DAG.getMachineFunction();
1873   EVT PtrVT = getPointerTy(MF.getDataLayout());
1874   LLVMContext &Ctx = *DAG.getContext();
1875   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1876 
1877   // FIXME: z/OS support to be added in later.
1878   if (Subtarget.isTargetXPLINK64())
1879     IsTailCall = false;
1880 
1881   // Analyze the operands of the call, assigning locations to each operand.
1882   SmallVector<CCValAssign, 16> ArgLocs;
1883   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1884   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1885 
1886   // We don't support GuaranteedTailCallOpt, only automatically-detected
1887   // sibling calls.
1888   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1889     IsTailCall = false;
1890 
1891   // Get a count of how many bytes are to be pushed on the stack.
1892   unsigned NumBytes = ArgCCInfo.getStackSize();
1893 
1894   // Mark the start of the call.
1895   if (!IsTailCall)
1896     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1897 
1898   // Copy argument values to their designated locations.
1899   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1900   SmallVector<SDValue, 8> MemOpChains;
1901   SDValue StackPtr;
1902   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1903     CCValAssign &VA = ArgLocs[I];
1904     SDValue ArgValue = OutVals[I];
1905 
1906     if (VA.getLocInfo() == CCValAssign::Indirect) {
1907       // Store the argument in a stack slot and pass its address.
1908       unsigned ArgIndex = Outs[I].OrigArgIndex;
1909       EVT SlotVT;
1910       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1911         // Allocate the full stack space for a promoted (and split) argument.
1912         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1913         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1914         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1915         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1916         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1917       } else {
1918         SlotVT = Outs[I].ArgVT;
1919       }
1920       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1921       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1922       MemOpChains.push_back(
1923           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1924                        MachinePointerInfo::getFixedStack(MF, FI)));
1925       // If the original argument was split (e.g. i128), we need
1926       // to store all parts of it here (and pass just one address).
1927       assert (Outs[I].PartOffset == 0);
1928       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1929         SDValue PartValue = OutVals[I + 1];
1930         unsigned PartOffset = Outs[I + 1].PartOffset;
1931         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1932                                       DAG.getIntPtrConstant(PartOffset, DL));
1933         MemOpChains.push_back(
1934             DAG.getStore(Chain, DL, PartValue, Address,
1935                          MachinePointerInfo::getFixedStack(MF, FI)));
1936         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1937                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1938         ++I;
1939       }
1940       ArgValue = SpillSlot;
1941     } else
1942       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1943 
1944     if (VA.isRegLoc()) {
1945       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1946       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1947       // and low values.
1948       if (VA.getLocVT() == MVT::i128)
1949         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1950       // Queue up the argument copies and emit them at the end.
1951       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1952     } else {
1953       assert(VA.isMemLoc() && "Argument not register or memory");
1954 
1955       // Work out the address of the stack slot.  Unpromoted ints and
1956       // floats are passed as right-justified 8-byte values.
1957       if (!StackPtr.getNode())
1958         StackPtr = DAG.getCopyFromReg(Chain, DL,
1959                                       Regs->getStackPointerRegister(), PtrVT);
1960       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1961                         VA.getLocMemOffset();
1962       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1963         Offset += 4;
1964       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1965                                     DAG.getIntPtrConstant(Offset, DL));
1966 
1967       // Emit the store.
1968       MemOpChains.push_back(
1969           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1970 
1971       // Although long doubles or vectors are passed through the stack when
1972       // they are vararg (non-fixed arguments), if a long double or vector
1973       // occupies the third and fourth slot of the argument list GPR3 should
1974       // still shadow the third slot of the argument list.
1975       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1976         SDValue ShadowArgValue =
1977             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1978                         DAG.getIntPtrConstant(1, DL));
1979         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1980       }
1981     }
1982   }
1983 
1984   // Join the stores, which are independent of one another.
1985   if (!MemOpChains.empty())
1986     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1987 
1988   // Accept direct calls by converting symbolic call addresses to the
1989   // associated Target* opcodes.  Force %r1 to be used for indirect
1990   // tail calls.
1991   SDValue Glue;
1992 
1993   if (Subtarget.isTargetXPLINK64()) {
1994     SDValue ADA;
1995     bool IsBRASL = getzOSCalleeAndADA(DAG, Callee, ADA, DL, Chain);
1996     if (!IsBRASL) {
1997       unsigned CalleeReg = static_cast<SystemZXPLINK64Registers *>(Regs)
1998                                ->getAddressOfCalleeRegister();
1999       Chain = DAG.getCopyToReg(Chain, DL, CalleeReg, Callee, Glue);
2000       Glue = Chain.getValue(1);
2001       Callee = DAG.getRegister(CalleeReg, Callee.getValueType());
2002     }
2003     RegsToPass.push_back(std::make_pair(
2004         static_cast<SystemZXPLINK64Registers *>(Regs)->getADARegister(), ADA));
2005   } else {
2006     if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2007       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
2008       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2009     } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2010       Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
2011       Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
2012     } else if (IsTailCall) {
2013       Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
2014       Glue = Chain.getValue(1);
2015       Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
2016     }
2017   }
2018 
2019   // Build a sequence of copy-to-reg nodes, chained and glued together.
2020   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
2021     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
2022                              RegsToPass[I].second, Glue);
2023     Glue = Chain.getValue(1);
2024   }
2025 
2026   // The first call operand is the chain and the second is the target address.
2027   SmallVector<SDValue, 8> Ops;
2028   Ops.push_back(Chain);
2029   Ops.push_back(Callee);
2030 
2031   // Add argument registers to the end of the list so that they are
2032   // known live into the call.
2033   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
2034     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
2035                                   RegsToPass[I].second.getValueType()));
2036 
2037   // Add a register mask operand representing the call-preserved registers.
2038   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2039   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2040   assert(Mask && "Missing call preserved mask for calling convention");
2041   Ops.push_back(DAG.getRegisterMask(Mask));
2042 
2043   // Glue the call to the argument copies, if any.
2044   if (Glue.getNode())
2045     Ops.push_back(Glue);
2046 
2047   // Emit the call.
2048   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2049   if (IsTailCall) {
2050     SDValue Ret = DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
2051     DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2052     return Ret;
2053   }
2054   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
2055   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2056   Glue = Chain.getValue(1);
2057 
2058   // Mark the end of the call, which is glued to the call itself.
2059   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
2060   Glue = Chain.getValue(1);
2061 
2062   // Assign locations to each value returned by this call.
2063   SmallVector<CCValAssign, 16> RetLocs;
2064   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
2065   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
2066 
2067   // Copy all of the result registers out of their specified physreg.
2068   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2069     CCValAssign &VA = RetLocs[I];
2070 
2071     // Copy the value out, gluing the copy to the end of the call sequence.
2072     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
2073                                           VA.getLocVT(), Glue);
2074     Chain = RetValue.getValue(1);
2075     Glue = RetValue.getValue(2);
2076 
2077     // Convert the value of the return register into the value that's
2078     // being returned.
2079     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
2080   }
2081 
2082   return Chain;
2083 }
2084 
2085 // Generate a call taking the given operands as arguments and returning a
2086 // result of type RetVT.
2087 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
2088     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
2089     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
2090     bool DoesNotReturn, bool IsReturnValueUsed) const {
2091   TargetLowering::ArgListTy Args;
2092   Args.reserve(Ops.size());
2093 
2094   TargetLowering::ArgListEntry Entry;
2095   for (SDValue Op : Ops) {
2096     Entry.Node = Op;
2097     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2098     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2099     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
2100     Args.push_back(Entry);
2101   }
2102 
2103   SDValue Callee =
2104       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
2105 
2106   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2107   TargetLowering::CallLoweringInfo CLI(DAG);
2108   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
2109   CLI.setDebugLoc(DL)
2110       .setChain(Chain)
2111       .setCallee(CallConv, RetTy, Callee, std::move(Args))
2112       .setNoReturn(DoesNotReturn)
2113       .setDiscardResult(!IsReturnValueUsed)
2114       .setSExtResult(SignExtend)
2115       .setZExtResult(!SignExtend);
2116   return LowerCallTo(CLI);
2117 }
2118 
2119 bool SystemZTargetLowering::
2120 CanLowerReturn(CallingConv::ID CallConv,
2121                MachineFunction &MF, bool isVarArg,
2122                const SmallVectorImpl<ISD::OutputArg> &Outs,
2123                LLVMContext &Context) const {
2124   // Special case that we cannot easily detect in RetCC_SystemZ since
2125   // i128 may not be a legal type.
2126   for (auto &Out : Outs)
2127     if (Out.ArgVT == MVT::i128)
2128       return false;
2129 
2130   SmallVector<CCValAssign, 16> RetLocs;
2131   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
2132   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
2133 }
2134 
2135 SDValue
2136 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2137                                    bool IsVarArg,
2138                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2139                                    const SmallVectorImpl<SDValue> &OutVals,
2140                                    const SDLoc &DL, SelectionDAG &DAG) const {
2141   MachineFunction &MF = DAG.getMachineFunction();
2142 
2143   // Assign locations to each returned value.
2144   SmallVector<CCValAssign, 16> RetLocs;
2145   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
2146   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
2147 
2148   // Quick exit for void returns
2149   if (RetLocs.empty())
2150     return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, Chain);
2151 
2152   if (CallConv == CallingConv::GHC)
2153     report_fatal_error("GHC functions return void only");
2154 
2155   // Copy the result values into the output registers.
2156   SDValue Glue;
2157   SmallVector<SDValue, 4> RetOps;
2158   RetOps.push_back(Chain);
2159   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
2160     CCValAssign &VA = RetLocs[I];
2161     SDValue RetValue = OutVals[I];
2162 
2163     // Make the return register live on exit.
2164     assert(VA.isRegLoc() && "Can only return in registers!");
2165 
2166     // Promote the value as required.
2167     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
2168 
2169     // Chain and glue the copies together.
2170     Register Reg = VA.getLocReg();
2171     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
2172     Glue = Chain.getValue(1);
2173     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
2174   }
2175 
2176   // Update chain and glue.
2177   RetOps[0] = Chain;
2178   if (Glue.getNode())
2179     RetOps.push_back(Glue);
2180 
2181   return DAG.getNode(SystemZISD::RET_GLUE, DL, MVT::Other, RetOps);
2182 }
2183 
2184 // Return true if Op is an intrinsic node with chain that returns the CC value
2185 // as its only (other) argument.  Provide the associated SystemZISD opcode and
2186 // the mask of valid CC values if so.
2187 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
2188                                       unsigned &CCValid) {
2189   unsigned Id = Op.getConstantOperandVal(1);
2190   switch (Id) {
2191   case Intrinsic::s390_tbegin:
2192     Opcode = SystemZISD::TBEGIN;
2193     CCValid = SystemZ::CCMASK_TBEGIN;
2194     return true;
2195 
2196   case Intrinsic::s390_tbegin_nofloat:
2197     Opcode = SystemZISD::TBEGIN_NOFLOAT;
2198     CCValid = SystemZ::CCMASK_TBEGIN;
2199     return true;
2200 
2201   case Intrinsic::s390_tend:
2202     Opcode = SystemZISD::TEND;
2203     CCValid = SystemZ::CCMASK_TEND;
2204     return true;
2205 
2206   default:
2207     return false;
2208   }
2209 }
2210 
2211 // Return true if Op is an intrinsic node without chain that returns the
2212 // CC value as its final argument.  Provide the associated SystemZISD
2213 // opcode and the mask of valid CC values if so.
2214 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2215   unsigned Id = Op.getConstantOperandVal(0);
2216   switch (Id) {
2217   case Intrinsic::s390_vpkshs:
2218   case Intrinsic::s390_vpksfs:
2219   case Intrinsic::s390_vpksgs:
2220     Opcode = SystemZISD::PACKS_CC;
2221     CCValid = SystemZ::CCMASK_VCMP;
2222     return true;
2223 
2224   case Intrinsic::s390_vpklshs:
2225   case Intrinsic::s390_vpklsfs:
2226   case Intrinsic::s390_vpklsgs:
2227     Opcode = SystemZISD::PACKLS_CC;
2228     CCValid = SystemZ::CCMASK_VCMP;
2229     return true;
2230 
2231   case Intrinsic::s390_vceqbs:
2232   case Intrinsic::s390_vceqhs:
2233   case Intrinsic::s390_vceqfs:
2234   case Intrinsic::s390_vceqgs:
2235     Opcode = SystemZISD::VICMPES;
2236     CCValid = SystemZ::CCMASK_VCMP;
2237     return true;
2238 
2239   case Intrinsic::s390_vchbs:
2240   case Intrinsic::s390_vchhs:
2241   case Intrinsic::s390_vchfs:
2242   case Intrinsic::s390_vchgs:
2243     Opcode = SystemZISD::VICMPHS;
2244     CCValid = SystemZ::CCMASK_VCMP;
2245     return true;
2246 
2247   case Intrinsic::s390_vchlbs:
2248   case Intrinsic::s390_vchlhs:
2249   case Intrinsic::s390_vchlfs:
2250   case Intrinsic::s390_vchlgs:
2251     Opcode = SystemZISD::VICMPHLS;
2252     CCValid = SystemZ::CCMASK_VCMP;
2253     return true;
2254 
2255   case Intrinsic::s390_vtm:
2256     Opcode = SystemZISD::VTM;
2257     CCValid = SystemZ::CCMASK_VCMP;
2258     return true;
2259 
2260   case Intrinsic::s390_vfaebs:
2261   case Intrinsic::s390_vfaehs:
2262   case Intrinsic::s390_vfaefs:
2263     Opcode = SystemZISD::VFAE_CC;
2264     CCValid = SystemZ::CCMASK_ANY;
2265     return true;
2266 
2267   case Intrinsic::s390_vfaezbs:
2268   case Intrinsic::s390_vfaezhs:
2269   case Intrinsic::s390_vfaezfs:
2270     Opcode = SystemZISD::VFAEZ_CC;
2271     CCValid = SystemZ::CCMASK_ANY;
2272     return true;
2273 
2274   case Intrinsic::s390_vfeebs:
2275   case Intrinsic::s390_vfeehs:
2276   case Intrinsic::s390_vfeefs:
2277     Opcode = SystemZISD::VFEE_CC;
2278     CCValid = SystemZ::CCMASK_ANY;
2279     return true;
2280 
2281   case Intrinsic::s390_vfeezbs:
2282   case Intrinsic::s390_vfeezhs:
2283   case Intrinsic::s390_vfeezfs:
2284     Opcode = SystemZISD::VFEEZ_CC;
2285     CCValid = SystemZ::CCMASK_ANY;
2286     return true;
2287 
2288   case Intrinsic::s390_vfenebs:
2289   case Intrinsic::s390_vfenehs:
2290   case Intrinsic::s390_vfenefs:
2291     Opcode = SystemZISD::VFENE_CC;
2292     CCValid = SystemZ::CCMASK_ANY;
2293     return true;
2294 
2295   case Intrinsic::s390_vfenezbs:
2296   case Intrinsic::s390_vfenezhs:
2297   case Intrinsic::s390_vfenezfs:
2298     Opcode = SystemZISD::VFENEZ_CC;
2299     CCValid = SystemZ::CCMASK_ANY;
2300     return true;
2301 
2302   case Intrinsic::s390_vistrbs:
2303   case Intrinsic::s390_vistrhs:
2304   case Intrinsic::s390_vistrfs:
2305     Opcode = SystemZISD::VISTR_CC;
2306     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2307     return true;
2308 
2309   case Intrinsic::s390_vstrcbs:
2310   case Intrinsic::s390_vstrchs:
2311   case Intrinsic::s390_vstrcfs:
2312     Opcode = SystemZISD::VSTRC_CC;
2313     CCValid = SystemZ::CCMASK_ANY;
2314     return true;
2315 
2316   case Intrinsic::s390_vstrczbs:
2317   case Intrinsic::s390_vstrczhs:
2318   case Intrinsic::s390_vstrczfs:
2319     Opcode = SystemZISD::VSTRCZ_CC;
2320     CCValid = SystemZ::CCMASK_ANY;
2321     return true;
2322 
2323   case Intrinsic::s390_vstrsb:
2324   case Intrinsic::s390_vstrsh:
2325   case Intrinsic::s390_vstrsf:
2326     Opcode = SystemZISD::VSTRS_CC;
2327     CCValid = SystemZ::CCMASK_ANY;
2328     return true;
2329 
2330   case Intrinsic::s390_vstrszb:
2331   case Intrinsic::s390_vstrszh:
2332   case Intrinsic::s390_vstrszf:
2333     Opcode = SystemZISD::VSTRSZ_CC;
2334     CCValid = SystemZ::CCMASK_ANY;
2335     return true;
2336 
2337   case Intrinsic::s390_vfcedbs:
2338   case Intrinsic::s390_vfcesbs:
2339     Opcode = SystemZISD::VFCMPES;
2340     CCValid = SystemZ::CCMASK_VCMP;
2341     return true;
2342 
2343   case Intrinsic::s390_vfchdbs:
2344   case Intrinsic::s390_vfchsbs:
2345     Opcode = SystemZISD::VFCMPHS;
2346     CCValid = SystemZ::CCMASK_VCMP;
2347     return true;
2348 
2349   case Intrinsic::s390_vfchedbs:
2350   case Intrinsic::s390_vfchesbs:
2351     Opcode = SystemZISD::VFCMPHES;
2352     CCValid = SystemZ::CCMASK_VCMP;
2353     return true;
2354 
2355   case Intrinsic::s390_vftcidb:
2356   case Intrinsic::s390_vftcisb:
2357     Opcode = SystemZISD::VFTCI;
2358     CCValid = SystemZ::CCMASK_VCMP;
2359     return true;
2360 
2361   case Intrinsic::s390_tdc:
2362     Opcode = SystemZISD::TDC;
2363     CCValid = SystemZ::CCMASK_TDC;
2364     return true;
2365 
2366   default:
2367     return false;
2368   }
2369 }
2370 
2371 // Emit an intrinsic with chain and an explicit CC register result.
2372 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2373                                            unsigned Opcode) {
2374   // Copy all operands except the intrinsic ID.
2375   unsigned NumOps = Op.getNumOperands();
2376   SmallVector<SDValue, 6> Ops;
2377   Ops.reserve(NumOps - 1);
2378   Ops.push_back(Op.getOperand(0));
2379   for (unsigned I = 2; I < NumOps; ++I)
2380     Ops.push_back(Op.getOperand(I));
2381 
2382   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2383   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2384   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2385   SDValue OldChain = SDValue(Op.getNode(), 1);
2386   SDValue NewChain = SDValue(Intr.getNode(), 1);
2387   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2388   return Intr.getNode();
2389 }
2390 
2391 // Emit an intrinsic with an explicit CC register result.
2392 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2393                                    unsigned Opcode) {
2394   // Copy all operands except the intrinsic ID.
2395   unsigned NumOps = Op.getNumOperands();
2396   SmallVector<SDValue, 6> Ops;
2397   Ops.reserve(NumOps - 1);
2398   for (unsigned I = 1; I < NumOps; ++I)
2399     Ops.push_back(Op.getOperand(I));
2400 
2401   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2402   return Intr.getNode();
2403 }
2404 
2405 // CC is a comparison that will be implemented using an integer or
2406 // floating-point comparison.  Return the condition code mask for
2407 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2408 // unsigned comparisons and clear for signed ones.  In the floating-point
2409 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2410 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2411 #define CONV(X) \
2412   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2413   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2414   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2415 
2416   switch (CC) {
2417   default:
2418     llvm_unreachable("Invalid integer condition!");
2419 
2420   CONV(EQ);
2421   CONV(NE);
2422   CONV(GT);
2423   CONV(GE);
2424   CONV(LT);
2425   CONV(LE);
2426 
2427   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2428   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2429   }
2430 #undef CONV
2431 }
2432 
2433 // If C can be converted to a comparison against zero, adjust the operands
2434 // as necessary.
2435 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2436   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2437     return;
2438 
2439   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2440   if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2441     return;
2442 
2443   int64_t Value = ConstOp1->getSExtValue();
2444   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2445       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2446       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2447       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2448     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2449     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2450   }
2451 }
2452 
2453 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2454 // adjust the operands as necessary.
2455 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2456                              Comparison &C) {
2457   // For us to make any changes, it must a comparison between a single-use
2458   // load and a constant.
2459   if (!C.Op0.hasOneUse() ||
2460       C.Op0.getOpcode() != ISD::LOAD ||
2461       C.Op1.getOpcode() != ISD::Constant)
2462     return;
2463 
2464   // We must have an 8- or 16-bit load.
2465   auto *Load = cast<LoadSDNode>(C.Op0);
2466   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2467   if ((NumBits != 8 && NumBits != 16) ||
2468       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2469     return;
2470 
2471   // The load must be an extending one and the constant must be within the
2472   // range of the unextended value.
2473   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2474   if (!ConstOp1 || ConstOp1->getValueSizeInBits(0) > 64)
2475     return;
2476   uint64_t Value = ConstOp1->getZExtValue();
2477   uint64_t Mask = (1 << NumBits) - 1;
2478   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2479     // Make sure that ConstOp1 is in range of C.Op0.
2480     int64_t SignedValue = ConstOp1->getSExtValue();
2481     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2482       return;
2483     if (C.ICmpType != SystemZICMP::SignedOnly) {
2484       // Unsigned comparison between two sign-extended values is equivalent
2485       // to unsigned comparison between two zero-extended values.
2486       Value &= Mask;
2487     } else if (NumBits == 8) {
2488       // Try to treat the comparison as unsigned, so that we can use CLI.
2489       // Adjust CCMask and Value as necessary.
2490       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2491         // Test whether the high bit of the byte is set.
2492         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2493       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2494         // Test whether the high bit of the byte is clear.
2495         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2496       else
2497         // No instruction exists for this combination.
2498         return;
2499       C.ICmpType = SystemZICMP::UnsignedOnly;
2500     }
2501   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2502     if (Value > Mask)
2503       return;
2504     // If the constant is in range, we can use any comparison.
2505     C.ICmpType = SystemZICMP::Any;
2506   } else
2507     return;
2508 
2509   // Make sure that the first operand is an i32 of the right extension type.
2510   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2511                               ISD::SEXTLOAD :
2512                               ISD::ZEXTLOAD);
2513   if (C.Op0.getValueType() != MVT::i32 ||
2514       Load->getExtensionType() != ExtType) {
2515     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2516                            Load->getBasePtr(), Load->getPointerInfo(),
2517                            Load->getMemoryVT(), Load->getAlign(),
2518                            Load->getMemOperand()->getFlags());
2519     // Update the chain uses.
2520     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2521   }
2522 
2523   // Make sure that the second operand is an i32 with the right value.
2524   if (C.Op1.getValueType() != MVT::i32 ||
2525       Value != ConstOp1->getZExtValue())
2526     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2527 }
2528 
2529 // Return true if Op is either an unextended load, or a load suitable
2530 // for integer register-memory comparisons of type ICmpType.
2531 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2532   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2533   if (Load) {
2534     // There are no instructions to compare a register with a memory byte.
2535     if (Load->getMemoryVT() == MVT::i8)
2536       return false;
2537     // Otherwise decide on extension type.
2538     switch (Load->getExtensionType()) {
2539     case ISD::NON_EXTLOAD:
2540       return true;
2541     case ISD::SEXTLOAD:
2542       return ICmpType != SystemZICMP::UnsignedOnly;
2543     case ISD::ZEXTLOAD:
2544       return ICmpType != SystemZICMP::SignedOnly;
2545     default:
2546       break;
2547     }
2548   }
2549   return false;
2550 }
2551 
2552 // Return true if it is better to swap the operands of C.
2553 static bool shouldSwapCmpOperands(const Comparison &C) {
2554   // Leave i128 and f128 comparisons alone, since they have no memory forms.
2555   if (C.Op0.getValueType() == MVT::i128)
2556     return false;
2557   if (C.Op0.getValueType() == MVT::f128)
2558     return false;
2559 
2560   // Always keep a floating-point constant second, since comparisons with
2561   // zero can use LOAD TEST and comparisons with other constants make a
2562   // natural memory operand.
2563   if (isa<ConstantFPSDNode>(C.Op1))
2564     return false;
2565 
2566   // Never swap comparisons with zero since there are many ways to optimize
2567   // those later.
2568   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2569   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2570     return false;
2571 
2572   // Also keep natural memory operands second if the loaded value is
2573   // only used here.  Several comparisons have memory forms.
2574   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2575     return false;
2576 
2577   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2578   // In that case we generally prefer the memory to be second.
2579   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2580     // The only exceptions are when the second operand is a constant and
2581     // we can use things like CHHSI.
2582     if (!ConstOp1)
2583       return true;
2584     // The unsigned memory-immediate instructions can handle 16-bit
2585     // unsigned integers.
2586     if (C.ICmpType != SystemZICMP::SignedOnly &&
2587         isUInt<16>(ConstOp1->getZExtValue()))
2588       return false;
2589     // The signed memory-immediate instructions can handle 16-bit
2590     // signed integers.
2591     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2592         isInt<16>(ConstOp1->getSExtValue()))
2593       return false;
2594     return true;
2595   }
2596 
2597   // Try to promote the use of CGFR and CLGFR.
2598   unsigned Opcode0 = C.Op0.getOpcode();
2599   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2600     return true;
2601   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2602     return true;
2603   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::AND &&
2604       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2605       C.Op0.getConstantOperandVal(1) == 0xffffffff)
2606     return true;
2607 
2608   return false;
2609 }
2610 
2611 // Check whether C tests for equality between X and Y and whether X - Y
2612 // or Y - X is also computed.  In that case it's better to compare the
2613 // result of the subtraction against zero.
2614 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2615                                  Comparison &C) {
2616   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2617       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2618     for (SDNode *N : C.Op0->uses()) {
2619       if (N->getOpcode() == ISD::SUB &&
2620           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2621            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2622         // Disable the nsw and nuw flags: the backend needs to handle
2623         // overflow as well during comparison elimination.
2624         SDNodeFlags Flags = N->getFlags();
2625         Flags.setNoSignedWrap(false);
2626         Flags.setNoUnsignedWrap(false);
2627         N->setFlags(Flags);
2628         C.Op0 = SDValue(N, 0);
2629         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2630         return;
2631       }
2632     }
2633   }
2634 }
2635 
2636 // Check whether C compares a floating-point value with zero and if that
2637 // floating-point value is also negated.  In this case we can use the
2638 // negation to set CC, so avoiding separate LOAD AND TEST and
2639 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2640 static void adjustForFNeg(Comparison &C) {
2641   // This optimization is invalid for strict comparisons, since FNEG
2642   // does not raise any exceptions.
2643   if (C.Chain)
2644     return;
2645   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2646   if (C1 && C1->isZero()) {
2647     for (SDNode *N : C.Op0->uses()) {
2648       if (N->getOpcode() == ISD::FNEG) {
2649         C.Op0 = SDValue(N, 0);
2650         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2651         return;
2652       }
2653     }
2654   }
2655 }
2656 
2657 // Check whether C compares (shl X, 32) with 0 and whether X is
2658 // also sign-extended.  In that case it is better to test the result
2659 // of the sign extension using LTGFR.
2660 //
2661 // This case is important because InstCombine transforms a comparison
2662 // with (sext (trunc X)) into a comparison with (shl X, 32).
2663 static void adjustForLTGFR(Comparison &C) {
2664   // Check for a comparison between (shl X, 32) and 0.
2665   if (C.Op0.getOpcode() == ISD::SHL && C.Op0.getValueType() == MVT::i64 &&
2666       C.Op1.getOpcode() == ISD::Constant && C.Op1->getAsZExtVal() == 0) {
2667     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2668     if (C1 && C1->getZExtValue() == 32) {
2669       SDValue ShlOp0 = C.Op0.getOperand(0);
2670       // See whether X has any SIGN_EXTEND_INREG uses.
2671       for (SDNode *N : ShlOp0->uses()) {
2672         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2673             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2674           C.Op0 = SDValue(N, 0);
2675           return;
2676         }
2677       }
2678     }
2679   }
2680 }
2681 
2682 // If C compares the truncation of an extending load, try to compare
2683 // the untruncated value instead.  This exposes more opportunities to
2684 // reuse CC.
2685 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2686                                Comparison &C) {
2687   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2688       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2689       C.Op1.getOpcode() == ISD::Constant &&
2690       cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
2691       C.Op1->getAsZExtVal() == 0) {
2692     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2693     if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <=
2694         C.Op0.getValueSizeInBits().getFixedValue()) {
2695       unsigned Type = L->getExtensionType();
2696       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2697           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2698         C.Op0 = C.Op0.getOperand(0);
2699         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2700       }
2701     }
2702   }
2703 }
2704 
2705 // Return true if shift operation N has an in-range constant shift value.
2706 // Store it in ShiftVal if so.
2707 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2708   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2709   if (!Shift)
2710     return false;
2711 
2712   uint64_t Amount = Shift->getZExtValue();
2713   if (Amount >= N.getValueSizeInBits())
2714     return false;
2715 
2716   ShiftVal = Amount;
2717   return true;
2718 }
2719 
2720 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2721 // instruction and whether the CC value is descriptive enough to handle
2722 // a comparison of type Opcode between the AND result and CmpVal.
2723 // CCMask says which comparison result is being tested and BitSize is
2724 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2725 // return the corresponding CC mask, otherwise return 0.
2726 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2727                                      uint64_t Mask, uint64_t CmpVal,
2728                                      unsigned ICmpType) {
2729   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2730 
2731   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2732   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2733       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2734     return 0;
2735 
2736   // Work out the masks for the lowest and highest bits.
2737   uint64_t High = llvm::bit_floor(Mask);
2738   uint64_t Low = uint64_t(1) << llvm::countr_zero(Mask);
2739 
2740   // Signed ordered comparisons are effectively unsigned if the sign
2741   // bit is dropped.
2742   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2743 
2744   // Check for equality comparisons with 0, or the equivalent.
2745   if (CmpVal == 0) {
2746     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2747       return SystemZ::CCMASK_TM_ALL_0;
2748     if (CCMask == SystemZ::CCMASK_CMP_NE)
2749       return SystemZ::CCMASK_TM_SOME_1;
2750   }
2751   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2752     if (CCMask == SystemZ::CCMASK_CMP_LT)
2753       return SystemZ::CCMASK_TM_ALL_0;
2754     if (CCMask == SystemZ::CCMASK_CMP_GE)
2755       return SystemZ::CCMASK_TM_SOME_1;
2756   }
2757   if (EffectivelyUnsigned && CmpVal < Low) {
2758     if (CCMask == SystemZ::CCMASK_CMP_LE)
2759       return SystemZ::CCMASK_TM_ALL_0;
2760     if (CCMask == SystemZ::CCMASK_CMP_GT)
2761       return SystemZ::CCMASK_TM_SOME_1;
2762   }
2763 
2764   // Check for equality comparisons with the mask, or the equivalent.
2765   if (CmpVal == Mask) {
2766     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2767       return SystemZ::CCMASK_TM_ALL_1;
2768     if (CCMask == SystemZ::CCMASK_CMP_NE)
2769       return SystemZ::CCMASK_TM_SOME_0;
2770   }
2771   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2772     if (CCMask == SystemZ::CCMASK_CMP_GT)
2773       return SystemZ::CCMASK_TM_ALL_1;
2774     if (CCMask == SystemZ::CCMASK_CMP_LE)
2775       return SystemZ::CCMASK_TM_SOME_0;
2776   }
2777   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2778     if (CCMask == SystemZ::CCMASK_CMP_GE)
2779       return SystemZ::CCMASK_TM_ALL_1;
2780     if (CCMask == SystemZ::CCMASK_CMP_LT)
2781       return SystemZ::CCMASK_TM_SOME_0;
2782   }
2783 
2784   // Check for ordered comparisons with the top bit.
2785   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2786     if (CCMask == SystemZ::CCMASK_CMP_LE)
2787       return SystemZ::CCMASK_TM_MSB_0;
2788     if (CCMask == SystemZ::CCMASK_CMP_GT)
2789       return SystemZ::CCMASK_TM_MSB_1;
2790   }
2791   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2792     if (CCMask == SystemZ::CCMASK_CMP_LT)
2793       return SystemZ::CCMASK_TM_MSB_0;
2794     if (CCMask == SystemZ::CCMASK_CMP_GE)
2795       return SystemZ::CCMASK_TM_MSB_1;
2796   }
2797 
2798   // If there are just two bits, we can do equality checks for Low and High
2799   // as well.
2800   if (Mask == Low + High) {
2801     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2802       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2803     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2804       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2805     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2806       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2807     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2808       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2809   }
2810 
2811   // Looks like we've exhausted our options.
2812   return 0;
2813 }
2814 
2815 // See whether C can be implemented as a TEST UNDER MASK instruction.
2816 // Update the arguments with the TM version if so.
2817 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2818                                    Comparison &C) {
2819   // Use VECTOR TEST UNDER MASK for i128 operations.
2820   if (C.Op0.getValueType() == MVT::i128) {
2821     // We can use VTM for EQ/NE comparisons of x & y against 0.
2822     if (C.Op0.getOpcode() == ISD::AND &&
2823         (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2824          C.CCMask == SystemZ::CCMASK_CMP_NE)) {
2825       auto *Mask = dyn_cast<ConstantSDNode>(C.Op1);
2826       if (Mask && Mask->getAPIntValue() == 0) {
2827         C.Opcode = SystemZISD::VTM;
2828         C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(1));
2829         C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, C.Op0.getOperand(0));
2830         C.CCValid = SystemZ::CCMASK_VCMP;
2831         if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2832           C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2833         else
2834           C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2835       }
2836     }
2837     return;
2838   }
2839 
2840   // Check that we have a comparison with a constant.
2841   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2842   if (!ConstOp1)
2843     return;
2844   uint64_t CmpVal = ConstOp1->getZExtValue();
2845 
2846   // Check whether the nonconstant input is an AND with a constant mask.
2847   Comparison NewC(C);
2848   uint64_t MaskVal;
2849   ConstantSDNode *Mask = nullptr;
2850   if (C.Op0.getOpcode() == ISD::AND) {
2851     NewC.Op0 = C.Op0.getOperand(0);
2852     NewC.Op1 = C.Op0.getOperand(1);
2853     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2854     if (!Mask)
2855       return;
2856     MaskVal = Mask->getZExtValue();
2857   } else {
2858     // There is no instruction to compare with a 64-bit immediate
2859     // so use TMHH instead if possible.  We need an unsigned ordered
2860     // comparison with an i64 immediate.
2861     if (NewC.Op0.getValueType() != MVT::i64 ||
2862         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2863         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2864         NewC.ICmpType == SystemZICMP::SignedOnly)
2865       return;
2866     // Convert LE and GT comparisons into LT and GE.
2867     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2868         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2869       if (CmpVal == uint64_t(-1))
2870         return;
2871       CmpVal += 1;
2872       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2873     }
2874     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2875     // be masked off without changing the result.
2876     MaskVal = -(CmpVal & -CmpVal);
2877     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2878   }
2879   if (!MaskVal)
2880     return;
2881 
2882   // Check whether the combination of mask, comparison value and comparison
2883   // type are suitable.
2884   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2885   unsigned NewCCMask, ShiftVal;
2886   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2887       NewC.Op0.getOpcode() == ISD::SHL &&
2888       isSimpleShift(NewC.Op0, ShiftVal) &&
2889       (MaskVal >> ShiftVal != 0) &&
2890       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2891       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2892                                         MaskVal >> ShiftVal,
2893                                         CmpVal >> ShiftVal,
2894                                         SystemZICMP::Any))) {
2895     NewC.Op0 = NewC.Op0.getOperand(0);
2896     MaskVal >>= ShiftVal;
2897   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2898              NewC.Op0.getOpcode() == ISD::SRL &&
2899              isSimpleShift(NewC.Op0, ShiftVal) &&
2900              (MaskVal << ShiftVal != 0) &&
2901              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2902              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2903                                                MaskVal << ShiftVal,
2904                                                CmpVal << ShiftVal,
2905                                                SystemZICMP::UnsignedOnly))) {
2906     NewC.Op0 = NewC.Op0.getOperand(0);
2907     MaskVal <<= ShiftVal;
2908   } else {
2909     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2910                                      NewC.ICmpType);
2911     if (!NewCCMask)
2912       return;
2913   }
2914 
2915   // Go ahead and make the change.
2916   C.Opcode = SystemZISD::TM;
2917   C.Op0 = NewC.Op0;
2918   if (Mask && Mask->getZExtValue() == MaskVal)
2919     C.Op1 = SDValue(Mask, 0);
2920   else
2921     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2922   C.CCValid = SystemZ::CCMASK_TM;
2923   C.CCMask = NewCCMask;
2924 }
2925 
2926 // Implement i128 comparison in vector registers.
2927 static void adjustICmp128(SelectionDAG &DAG, const SDLoc &DL,
2928                           Comparison &C) {
2929   if (C.Opcode != SystemZISD::ICMP)
2930     return;
2931   if (C.Op0.getValueType() != MVT::i128)
2932     return;
2933 
2934   // (In-)Equality comparisons can be implemented via VCEQGS.
2935   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2936       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2937     C.Opcode = SystemZISD::VICMPES;
2938     C.Op0 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op0);
2939     C.Op1 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, C.Op1);
2940     C.CCValid = SystemZ::CCMASK_VCMP;
2941     if (C.CCMask == SystemZ::CCMASK_CMP_EQ)
2942       C.CCMask = SystemZ::CCMASK_VCMP_ALL;
2943     else
2944       C.CCMask = SystemZ::CCMASK_VCMP_ALL ^ C.CCValid;
2945     return;
2946   }
2947 
2948   // Normalize other comparisons to GT.
2949   bool Swap = false, Invert = false;
2950   switch (C.CCMask) {
2951     case SystemZ::CCMASK_CMP_GT: break;
2952     case SystemZ::CCMASK_CMP_LT: Swap = true; break;
2953     case SystemZ::CCMASK_CMP_LE: Invert = true; break;
2954     case SystemZ::CCMASK_CMP_GE: Swap = Invert = true; break;
2955     default: llvm_unreachable("Invalid integer condition!");
2956   }
2957   if (Swap)
2958     std::swap(C.Op0, C.Op1);
2959 
2960   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2961     C.Opcode = SystemZISD::UCMP128HI;
2962   else
2963     C.Opcode = SystemZISD::SCMP128HI;
2964   C.CCValid = SystemZ::CCMASK_ANY;
2965   C.CCMask = SystemZ::CCMASK_1;
2966 
2967   if (Invert)
2968     C.CCMask ^= C.CCValid;
2969 }
2970 
2971 // See whether the comparison argument contains a redundant AND
2972 // and remove it if so.  This sometimes happens due to the generic
2973 // BRCOND expansion.
2974 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2975                                   Comparison &C) {
2976   if (C.Op0.getOpcode() != ISD::AND)
2977     return;
2978   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2979   if (!Mask || Mask->getValueSizeInBits(0) > 64)
2980     return;
2981   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2982   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2983     return;
2984 
2985   C.Op0 = C.Op0.getOperand(0);
2986 }
2987 
2988 // Return a Comparison that tests the condition-code result of intrinsic
2989 // node Call against constant integer CC using comparison code Cond.
2990 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2991 // and CCValid is the set of possible condition-code results.
2992 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2993                                   SDValue Call, unsigned CCValid, uint64_t CC,
2994                                   ISD::CondCode Cond) {
2995   Comparison C(Call, SDValue(), SDValue());
2996   C.Opcode = Opcode;
2997   C.CCValid = CCValid;
2998   if (Cond == ISD::SETEQ)
2999     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
3000     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
3001   else if (Cond == ISD::SETNE)
3002     // ...and the inverse of that.
3003     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
3004   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
3005     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
3006     // always true for CC>3.
3007     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
3008   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
3009     // ...and the inverse of that.
3010     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
3011   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
3012     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
3013     // always true for CC>3.
3014     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
3015   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
3016     // ...and the inverse of that.
3017     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
3018   else
3019     llvm_unreachable("Unexpected integer comparison type");
3020   C.CCMask &= CCValid;
3021   return C;
3022 }
3023 
3024 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
3025 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
3026                          ISD::CondCode Cond, const SDLoc &DL,
3027                          SDValue Chain = SDValue(),
3028                          bool IsSignaling = false) {
3029   if (CmpOp1.getOpcode() == ISD::Constant) {
3030     assert(!Chain);
3031     unsigned Opcode, CCValid;
3032     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
3033         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
3034         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
3035       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3036                              CmpOp1->getAsZExtVal(), Cond);
3037     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3038         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
3039         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
3040       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid,
3041                              CmpOp1->getAsZExtVal(), Cond);
3042   }
3043   Comparison C(CmpOp0, CmpOp1, Chain);
3044   C.CCMask = CCMaskForCondCode(Cond);
3045   if (C.Op0.getValueType().isFloatingPoint()) {
3046     C.CCValid = SystemZ::CCMASK_FCMP;
3047     if (!C.Chain)
3048       C.Opcode = SystemZISD::FCMP;
3049     else if (!IsSignaling)
3050       C.Opcode = SystemZISD::STRICT_FCMP;
3051     else
3052       C.Opcode = SystemZISD::STRICT_FCMPS;
3053     adjustForFNeg(C);
3054   } else {
3055     assert(!C.Chain);
3056     C.CCValid = SystemZ::CCMASK_ICMP;
3057     C.Opcode = SystemZISD::ICMP;
3058     // Choose the type of comparison.  Equality and inequality tests can
3059     // use either signed or unsigned comparisons.  The choice also doesn't
3060     // matter if both sign bits are known to be clear.  In those cases we
3061     // want to give the main isel code the freedom to choose whichever
3062     // form fits best.
3063     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
3064         C.CCMask == SystemZ::CCMASK_CMP_NE ||
3065         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
3066       C.ICmpType = SystemZICMP::Any;
3067     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
3068       C.ICmpType = SystemZICMP::UnsignedOnly;
3069     else
3070       C.ICmpType = SystemZICMP::SignedOnly;
3071     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
3072     adjustForRedundantAnd(DAG, DL, C);
3073     adjustZeroCmp(DAG, DL, C);
3074     adjustSubwordCmp(DAG, DL, C);
3075     adjustForSubtraction(DAG, DL, C);
3076     adjustForLTGFR(C);
3077     adjustICmpTruncate(DAG, DL, C);
3078   }
3079 
3080   if (shouldSwapCmpOperands(C)) {
3081     std::swap(C.Op0, C.Op1);
3082     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
3083   }
3084 
3085   adjustForTestUnderMask(DAG, DL, C);
3086   adjustICmp128(DAG, DL, C);
3087   return C;
3088 }
3089 
3090 // Emit the comparison instruction described by C.
3091 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
3092   if (!C.Op1.getNode()) {
3093     SDNode *Node;
3094     switch (C.Op0.getOpcode()) {
3095     case ISD::INTRINSIC_W_CHAIN:
3096       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
3097       return SDValue(Node, 0);
3098     case ISD::INTRINSIC_WO_CHAIN:
3099       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
3100       return SDValue(Node, Node->getNumValues() - 1);
3101     default:
3102       llvm_unreachable("Invalid comparison operands");
3103     }
3104   }
3105   if (C.Opcode == SystemZISD::ICMP)
3106     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
3107                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
3108   if (C.Opcode == SystemZISD::TM) {
3109     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
3110                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
3111     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
3112                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
3113   }
3114   if (C.Opcode == SystemZISD::VICMPES) {
3115     SDVTList VTs = DAG.getVTList(C.Op0.getValueType(), MVT::i32);
3116     SDValue Val = DAG.getNode(C.Opcode, DL, VTs, C.Op0, C.Op1);
3117     return SDValue(Val.getNode(), 1);
3118   }
3119   if (C.Chain) {
3120     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
3121     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
3122   }
3123   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
3124 }
3125 
3126 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
3127 // 64 bits.  Extend is the extension type to use.  Store the high part
3128 // in Hi and the low part in Lo.
3129 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
3130                             SDValue Op0, SDValue Op1, SDValue &Hi,
3131                             SDValue &Lo) {
3132   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
3133   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
3134   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
3135   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
3136                    DAG.getConstant(32, DL, MVT::i64));
3137   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
3138   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
3139 }
3140 
3141 // Lower a binary operation that produces two VT results, one in each
3142 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
3143 // and Opcode performs the GR128 operation.  Store the even register result
3144 // in Even and the odd register result in Odd.
3145 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3146                              unsigned Opcode, SDValue Op0, SDValue Op1,
3147                              SDValue &Even, SDValue &Odd) {
3148   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
3149   bool Is32Bit = is32Bit(VT);
3150   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
3151   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
3152 }
3153 
3154 // Return an i32 value that is 1 if the CC value produced by CCReg is
3155 // in the mask CCMask and 0 otherwise.  CC is known to have a value
3156 // in CCValid, so other values can be ignored.
3157 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
3158                          unsigned CCValid, unsigned CCMask) {
3159   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
3160                    DAG.getConstant(0, DL, MVT::i32),
3161                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
3162                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
3163   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
3164 }
3165 
3166 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
3167 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
3168 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
3169 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
3170 // floating-point comparisons.
3171 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
3172 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
3173   switch (CC) {
3174   case ISD::SETOEQ:
3175   case ISD::SETEQ:
3176     switch (Mode) {
3177     case CmpMode::Int:         return SystemZISD::VICMPE;
3178     case CmpMode::FP:          return SystemZISD::VFCMPE;
3179     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
3180     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
3181     }
3182     llvm_unreachable("Bad mode");
3183 
3184   case ISD::SETOGE:
3185   case ISD::SETGE:
3186     switch (Mode) {
3187     case CmpMode::Int:         return 0;
3188     case CmpMode::FP:          return SystemZISD::VFCMPHE;
3189     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
3190     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
3191     }
3192     llvm_unreachable("Bad mode");
3193 
3194   case ISD::SETOGT:
3195   case ISD::SETGT:
3196     switch (Mode) {
3197     case CmpMode::Int:         return SystemZISD::VICMPH;
3198     case CmpMode::FP:          return SystemZISD::VFCMPH;
3199     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
3200     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
3201     }
3202     llvm_unreachable("Bad mode");
3203 
3204   case ISD::SETUGT:
3205     switch (Mode) {
3206     case CmpMode::Int:         return SystemZISD::VICMPHL;
3207     case CmpMode::FP:          return 0;
3208     case CmpMode::StrictFP:    return 0;
3209     case CmpMode::SignalingFP: return 0;
3210     }
3211     llvm_unreachable("Bad mode");
3212 
3213   default:
3214     return 0;
3215   }
3216 }
3217 
3218 // Return the SystemZISD vector comparison operation for CC or its inverse,
3219 // or 0 if neither can be done directly.  Indicate in Invert whether the
3220 // result is for the inverse of CC.  Mode is as above.
3221 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
3222                                             bool &Invert) {
3223   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3224     Invert = false;
3225     return Opcode;
3226   }
3227 
3228   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
3229   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
3230     Invert = true;
3231     return Opcode;
3232   }
3233 
3234   return 0;
3235 }
3236 
3237 // Return a v2f64 that contains the extended form of elements Start and Start+1
3238 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
3239 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
3240                                   SDValue Op, SDValue Chain) {
3241   int Mask[] = { Start, -1, Start + 1, -1 };
3242   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
3243   if (Chain) {
3244     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
3245     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
3246   }
3247   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
3248 }
3249 
3250 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
3251 // producing a result of type VT.  If Chain is nonnull, return the strict form.
3252 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
3253                                             const SDLoc &DL, EVT VT,
3254                                             SDValue CmpOp0,
3255                                             SDValue CmpOp1,
3256                                             SDValue Chain) const {
3257   // There is no hardware support for v4f32 (unless we have the vector
3258   // enhancements facility 1), so extend the vector into two v2f64s
3259   // and compare those.
3260   if (CmpOp0.getValueType() == MVT::v4f32 &&
3261       !Subtarget.hasVectorEnhancements1()) {
3262     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
3263     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
3264     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
3265     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
3266     if (Chain) {
3267       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
3268       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
3269       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
3270       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3271       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
3272                             H1.getValue(1), L1.getValue(1),
3273                             HRes.getValue(1), LRes.getValue(1) };
3274       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3275       SDValue Ops[2] = { Res, NewChain };
3276       return DAG.getMergeValues(Ops, DL);
3277     }
3278     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3279     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3280     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3281   }
3282   if (Chain) {
3283     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3284     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3285   }
3286   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3287 }
3288 
3289 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3290 // an integer mask of type VT.  If Chain is nonnull, we have a strict
3291 // floating-point comparison.  If in addition IsSignaling is true, we have
3292 // a strict signaling floating-point comparison.
3293 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3294                                                 const SDLoc &DL, EVT VT,
3295                                                 ISD::CondCode CC,
3296                                                 SDValue CmpOp0,
3297                                                 SDValue CmpOp1,
3298                                                 SDValue Chain,
3299                                                 bool IsSignaling) const {
3300   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3301   assert (!Chain || IsFP);
3302   assert (!IsSignaling || Chain);
3303   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3304                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3305   bool Invert = false;
3306   SDValue Cmp;
3307   switch (CC) {
3308     // Handle tests for order using (or (ogt y x) (oge x y)).
3309   case ISD::SETUO:
3310     Invert = true;
3311     [[fallthrough]];
3312   case ISD::SETO: {
3313     assert(IsFP && "Unexpected integer comparison");
3314     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3315                               DL, VT, CmpOp1, CmpOp0, Chain);
3316     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3317                               DL, VT, CmpOp0, CmpOp1, Chain);
3318     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3319     if (Chain)
3320       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3321                           LT.getValue(1), GE.getValue(1));
3322     break;
3323   }
3324 
3325     // Handle <> tests using (or (ogt y x) (ogt x y)).
3326   case ISD::SETUEQ:
3327     Invert = true;
3328     [[fallthrough]];
3329   case ISD::SETONE: {
3330     assert(IsFP && "Unexpected integer comparison");
3331     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3332                               DL, VT, CmpOp1, CmpOp0, Chain);
3333     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3334                               DL, VT, CmpOp0, CmpOp1, Chain);
3335     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3336     if (Chain)
3337       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3338                           LT.getValue(1), GT.getValue(1));
3339     break;
3340   }
3341 
3342     // Otherwise a single comparison is enough.  It doesn't really
3343     // matter whether we try the inversion or the swap first, since
3344     // there are no cases where both work.
3345   default:
3346     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3347       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3348     else {
3349       CC = ISD::getSetCCSwappedOperands(CC);
3350       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3351         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3352       else
3353         llvm_unreachable("Unhandled comparison");
3354     }
3355     if (Chain)
3356       Chain = Cmp.getValue(1);
3357     break;
3358   }
3359   if (Invert) {
3360     SDValue Mask =
3361       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3362     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3363   }
3364   if (Chain && Chain.getNode() != Cmp.getNode()) {
3365     SDValue Ops[2] = { Cmp, Chain };
3366     Cmp = DAG.getMergeValues(Ops, DL);
3367   }
3368   return Cmp;
3369 }
3370 
3371 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3372                                           SelectionDAG &DAG) const {
3373   SDValue CmpOp0   = Op.getOperand(0);
3374   SDValue CmpOp1   = Op.getOperand(1);
3375   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3376   SDLoc DL(Op);
3377   EVT VT = Op.getValueType();
3378   if (VT.isVector())
3379     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3380 
3381   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3382   SDValue CCReg = emitCmp(DAG, DL, C);
3383   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3384 }
3385 
3386 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3387                                                   SelectionDAG &DAG,
3388                                                   bool IsSignaling) const {
3389   SDValue Chain    = Op.getOperand(0);
3390   SDValue CmpOp0   = Op.getOperand(1);
3391   SDValue CmpOp1   = Op.getOperand(2);
3392   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3393   SDLoc DL(Op);
3394   EVT VT = Op.getNode()->getValueType(0);
3395   if (VT.isVector()) {
3396     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3397                                    Chain, IsSignaling);
3398     return Res.getValue(Op.getResNo());
3399   }
3400 
3401   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3402   SDValue CCReg = emitCmp(DAG, DL, C);
3403   CCReg->setFlags(Op->getFlags());
3404   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3405   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3406   return DAG.getMergeValues(Ops, DL);
3407 }
3408 
3409 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3410   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3411   SDValue CmpOp0   = Op.getOperand(2);
3412   SDValue CmpOp1   = Op.getOperand(3);
3413   SDValue Dest     = Op.getOperand(4);
3414   SDLoc DL(Op);
3415 
3416   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3417   SDValue CCReg = emitCmp(DAG, DL, C);
3418   return DAG.getNode(
3419       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3420       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3421       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3422 }
3423 
3424 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3425 // allowing Pos and Neg to be wider than CmpOp.
3426 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3427   return (Neg.getOpcode() == ISD::SUB &&
3428           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3429           Neg.getConstantOperandVal(0) == 0 && Neg.getOperand(1) == Pos &&
3430           (Pos == CmpOp || (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3431                             Pos.getOperand(0) == CmpOp)));
3432 }
3433 
3434 // Return the absolute or negative absolute of Op; IsNegative decides which.
3435 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3436                            bool IsNegative) {
3437   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3438   if (IsNegative)
3439     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3440                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3441   return Op;
3442 }
3443 
3444 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3445                                               SelectionDAG &DAG) const {
3446   SDValue CmpOp0   = Op.getOperand(0);
3447   SDValue CmpOp1   = Op.getOperand(1);
3448   SDValue TrueOp   = Op.getOperand(2);
3449   SDValue FalseOp  = Op.getOperand(3);
3450   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3451   SDLoc DL(Op);
3452 
3453   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3454 
3455   // Check for absolute and negative-absolute selections, including those
3456   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3457   // This check supplements the one in DAGCombiner.
3458   if (C.Opcode == SystemZISD::ICMP && C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3459       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3460       C.Op1.getOpcode() == ISD::Constant &&
3461       cast<ConstantSDNode>(C.Op1)->getValueSizeInBits(0) <= 64 &&
3462       C.Op1->getAsZExtVal() == 0) {
3463     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3464       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3465     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3466       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3467   }
3468 
3469   SDValue CCReg = emitCmp(DAG, DL, C);
3470   SDValue Ops[] = {TrueOp, FalseOp,
3471                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3472                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3473 
3474   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3475 }
3476 
3477 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3478                                                   SelectionDAG &DAG) const {
3479   SDLoc DL(Node);
3480   const GlobalValue *GV = Node->getGlobal();
3481   int64_t Offset = Node->getOffset();
3482   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3483   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3484 
3485   SDValue Result;
3486   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3487     if (isInt<32>(Offset)) {
3488       // Assign anchors at 1<<12 byte boundaries.
3489       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3490       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3491       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3492 
3493       // The offset can be folded into the address if it is aligned to a
3494       // halfword.
3495       Offset -= Anchor;
3496       if (Offset != 0 && (Offset & 1) == 0) {
3497         SDValue Full =
3498           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3499         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3500         Offset = 0;
3501       }
3502     } else {
3503       // Conservatively load a constant offset greater than 32 bits into a
3504       // register below.
3505       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3506       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3507     }
3508   } else if (Subtarget.isTargetELF()) {
3509     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3510     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3511     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3512                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3513   } else if (Subtarget.isTargetzOS()) {
3514     Result = getADAEntry(DAG, GV, DL, PtrVT);
3515   } else
3516     llvm_unreachable("Unexpected Subtarget");
3517 
3518   // If there was a non-zero offset that we didn't fold, create an explicit
3519   // addition for it.
3520   if (Offset != 0)
3521     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3522                          DAG.getConstant(Offset, DL, PtrVT));
3523 
3524   return Result;
3525 }
3526 
3527 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3528                                                  SelectionDAG &DAG,
3529                                                  unsigned Opcode,
3530                                                  SDValue GOTOffset) const {
3531   SDLoc DL(Node);
3532   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3533   SDValue Chain = DAG.getEntryNode();
3534   SDValue Glue;
3535 
3536   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3537       CallingConv::GHC)
3538     report_fatal_error("In GHC calling convention TLS is not supported");
3539 
3540   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3541   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3542   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3543   Glue = Chain.getValue(1);
3544   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3545   Glue = Chain.getValue(1);
3546 
3547   // The first call operand is the chain and the second is the TLS symbol.
3548   SmallVector<SDValue, 8> Ops;
3549   Ops.push_back(Chain);
3550   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3551                                            Node->getValueType(0),
3552                                            0, 0));
3553 
3554   // Add argument registers to the end of the list so that they are
3555   // known live into the call.
3556   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3557   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3558 
3559   // Add a register mask operand representing the call-preserved registers.
3560   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3561   const uint32_t *Mask =
3562       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3563   assert(Mask && "Missing call preserved mask for calling convention");
3564   Ops.push_back(DAG.getRegisterMask(Mask));
3565 
3566   // Glue the call to the argument copies.
3567   Ops.push_back(Glue);
3568 
3569   // Emit the call.
3570   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3571   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3572   Glue = Chain.getValue(1);
3573 
3574   // Copy the return value from %r2.
3575   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3576 }
3577 
3578 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3579                                                   SelectionDAG &DAG) const {
3580   SDValue Chain = DAG.getEntryNode();
3581   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3582 
3583   // The high part of the thread pointer is in access register 0.
3584   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3585   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3586 
3587   // The low part of the thread pointer is in access register 1.
3588   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3589   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3590 
3591   // Merge them into a single 64-bit address.
3592   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3593                                     DAG.getConstant(32, DL, PtrVT));
3594   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3595 }
3596 
3597 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3598                                                      SelectionDAG &DAG) const {
3599   if (DAG.getTarget().useEmulatedTLS())
3600     return LowerToTLSEmulatedModel(Node, DAG);
3601   SDLoc DL(Node);
3602   const GlobalValue *GV = Node->getGlobal();
3603   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3604   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3605 
3606   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3607       CallingConv::GHC)
3608     report_fatal_error("In GHC calling convention TLS is not supported");
3609 
3610   SDValue TP = lowerThreadPointer(DL, DAG);
3611 
3612   // Get the offset of GA from the thread pointer, based on the TLS model.
3613   SDValue Offset;
3614   switch (model) {
3615     case TLSModel::GeneralDynamic: {
3616       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3617       SystemZConstantPoolValue *CPV =
3618         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3619 
3620       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3621       Offset = DAG.getLoad(
3622           PtrVT, DL, DAG.getEntryNode(), Offset,
3623           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3624 
3625       // Call __tls_get_offset to retrieve the offset.
3626       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3627       break;
3628     }
3629 
3630     case TLSModel::LocalDynamic: {
3631       // Load the GOT offset of the module ID.
3632       SystemZConstantPoolValue *CPV =
3633         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3634 
3635       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3636       Offset = DAG.getLoad(
3637           PtrVT, DL, DAG.getEntryNode(), Offset,
3638           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3639 
3640       // Call __tls_get_offset to retrieve the module base offset.
3641       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3642 
3643       // Note: The SystemZLDCleanupPass will remove redundant computations
3644       // of the module base offset.  Count total number of local-dynamic
3645       // accesses to trigger execution of that pass.
3646       SystemZMachineFunctionInfo* MFI =
3647         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3648       MFI->incNumLocalDynamicTLSAccesses();
3649 
3650       // Add the per-symbol offset.
3651       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3652 
3653       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3654       DTPOffset = DAG.getLoad(
3655           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3656           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3657 
3658       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3659       break;
3660     }
3661 
3662     case TLSModel::InitialExec: {
3663       // Load the offset from the GOT.
3664       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3665                                           SystemZII::MO_INDNTPOFF);
3666       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3667       Offset =
3668           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3669                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3670       break;
3671     }
3672 
3673     case TLSModel::LocalExec: {
3674       // Force the offset into the constant pool and load it from there.
3675       SystemZConstantPoolValue *CPV =
3676         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3677 
3678       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3679       Offset = DAG.getLoad(
3680           PtrVT, DL, DAG.getEntryNode(), Offset,
3681           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3682       break;
3683     }
3684   }
3685 
3686   // Add the base and offset together.
3687   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3688 }
3689 
3690 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3691                                                  SelectionDAG &DAG) const {
3692   SDLoc DL(Node);
3693   const BlockAddress *BA = Node->getBlockAddress();
3694   int64_t Offset = Node->getOffset();
3695   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3696 
3697   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3698   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3699   return Result;
3700 }
3701 
3702 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3703                                               SelectionDAG &DAG) const {
3704   SDLoc DL(JT);
3705   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3706   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3707 
3708   // Use LARL to load the address of the table.
3709   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3710 }
3711 
3712 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3713                                                  SelectionDAG &DAG) const {
3714   SDLoc DL(CP);
3715   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3716 
3717   SDValue Result;
3718   if (CP->isMachineConstantPoolEntry())
3719     Result =
3720         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3721   else
3722     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3723                                        CP->getOffset());
3724 
3725   // Use LARL to load the address of the constant pool entry.
3726   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3727 }
3728 
3729 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3730                                               SelectionDAG &DAG) const {
3731   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3732   MachineFunction &MF = DAG.getMachineFunction();
3733   MachineFrameInfo &MFI = MF.getFrameInfo();
3734   MFI.setFrameAddressIsTaken(true);
3735 
3736   SDLoc DL(Op);
3737   unsigned Depth = Op.getConstantOperandVal(0);
3738   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3739 
3740   // By definition, the frame address is the address of the back chain.  (In
3741   // the case of packed stack without backchain, return the address where the
3742   // backchain would have been stored. This will either be an unused space or
3743   // contain a saved register).
3744   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3745   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3746 
3747   if (Depth > 0) {
3748     // FIXME The frontend should detect this case.
3749     if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3750       report_fatal_error("Unsupported stack frame traversal count");
3751 
3752     SDValue Offset = DAG.getConstant(TFL->getBackchainOffset(MF), DL, PtrVT);
3753     while (Depth--) {
3754       BackChain = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), BackChain,
3755                               MachinePointerInfo());
3756       BackChain = DAG.getNode(ISD::ADD, DL, PtrVT, BackChain, Offset);
3757     }
3758   }
3759 
3760   return BackChain;
3761 }
3762 
3763 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3764                                                SelectionDAG &DAG) const {
3765   MachineFunction &MF = DAG.getMachineFunction();
3766   MachineFrameInfo &MFI = MF.getFrameInfo();
3767   MFI.setReturnAddressIsTaken(true);
3768 
3769   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3770     return SDValue();
3771 
3772   SDLoc DL(Op);
3773   unsigned Depth = Op.getConstantOperandVal(0);
3774   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3775 
3776   if (Depth > 0) {
3777     // FIXME The frontend should detect this case.
3778     if (!MF.getSubtarget<SystemZSubtarget>().hasBackChain())
3779       report_fatal_error("Unsupported stack frame traversal count");
3780 
3781     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3782     auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3783     int Offset = (TFL->usePackedStack(MF) ? -2 : 14) *
3784                  getTargetMachine().getPointerSize(0);
3785     SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, FrameAddr,
3786                               DAG.getConstant(Offset, DL, PtrVT));
3787     return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr,
3788                        MachinePointerInfo());
3789   }
3790 
3791   // Return R14D, which has the return address. Mark it an implicit live-in.
3792   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3793   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3794 }
3795 
3796 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3797                                             SelectionDAG &DAG) const {
3798   SDLoc DL(Op);
3799   SDValue In = Op.getOperand(0);
3800   EVT InVT = In.getValueType();
3801   EVT ResVT = Op.getValueType();
3802 
3803   // Convert loads directly.  This is normally done by DAGCombiner,
3804   // but we need this case for bitcasts that are created during lowering
3805   // and which are then lowered themselves.
3806   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3807     if (ISD::isNormalLoad(LoadN)) {
3808       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3809                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3810       // Update the chain uses.
3811       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3812       return NewLoad;
3813     }
3814 
3815   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3816     SDValue In64;
3817     if (Subtarget.hasHighWord()) {
3818       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3819                                        MVT::i64);
3820       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3821                                        MVT::i64, SDValue(U64, 0), In);
3822     } else {
3823       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3824       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3825                          DAG.getConstant(32, DL, MVT::i64));
3826     }
3827     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3828     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3829                                       DL, MVT::f32, Out64);
3830   }
3831   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3832     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3833     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3834                                              MVT::f64, SDValue(U64, 0), In);
3835     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3836     if (Subtarget.hasHighWord())
3837       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3838                                         MVT::i32, Out64);
3839     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3840                                 DAG.getConstant(32, DL, MVT::i64));
3841     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3842   }
3843   llvm_unreachable("Unexpected bitcast combination");
3844 }
3845 
3846 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3847                                             SelectionDAG &DAG) const {
3848 
3849   if (Subtarget.isTargetXPLINK64())
3850     return lowerVASTART_XPLINK(Op, DAG);
3851   else
3852     return lowerVASTART_ELF(Op, DAG);
3853 }
3854 
3855 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3856                                                    SelectionDAG &DAG) const {
3857   MachineFunction &MF = DAG.getMachineFunction();
3858   SystemZMachineFunctionInfo *FuncInfo =
3859       MF.getInfo<SystemZMachineFunctionInfo>();
3860 
3861   SDLoc DL(Op);
3862 
3863   // vastart just stores the address of the VarArgsFrameIndex slot into the
3864   // memory location argument.
3865   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3866   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3867   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3868   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3869                       MachinePointerInfo(SV));
3870 }
3871 
3872 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3873                                                 SelectionDAG &DAG) const {
3874   MachineFunction &MF = DAG.getMachineFunction();
3875   SystemZMachineFunctionInfo *FuncInfo =
3876     MF.getInfo<SystemZMachineFunctionInfo>();
3877   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3878 
3879   SDValue Chain   = Op.getOperand(0);
3880   SDValue Addr    = Op.getOperand(1);
3881   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3882   SDLoc DL(Op);
3883 
3884   // The initial values of each field.
3885   const unsigned NumFields = 4;
3886   SDValue Fields[NumFields] = {
3887     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3888     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3889     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3890     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3891   };
3892 
3893   // Store each field into its respective slot.
3894   SDValue MemOps[NumFields];
3895   unsigned Offset = 0;
3896   for (unsigned I = 0; I < NumFields; ++I) {
3897     SDValue FieldAddr = Addr;
3898     if (Offset != 0)
3899       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3900                               DAG.getIntPtrConstant(Offset, DL));
3901     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3902                              MachinePointerInfo(SV, Offset));
3903     Offset += 8;
3904   }
3905   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3906 }
3907 
3908 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3909                                            SelectionDAG &DAG) const {
3910   SDValue Chain      = Op.getOperand(0);
3911   SDValue DstPtr     = Op.getOperand(1);
3912   SDValue SrcPtr     = Op.getOperand(2);
3913   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3914   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3915   SDLoc DL(Op);
3916 
3917   uint32_t Sz =
3918       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3919   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3920                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3921                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3922                        MachinePointerInfo(SrcSV));
3923 }
3924 
3925 SDValue
3926 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3927                                                SelectionDAG &DAG) const {
3928   if (Subtarget.isTargetXPLINK64())
3929     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3930   else
3931     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3932 }
3933 
3934 SDValue
3935 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3936                                                       SelectionDAG &DAG) const {
3937   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3938   MachineFunction &MF = DAG.getMachineFunction();
3939   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3940   SDValue Chain = Op.getOperand(0);
3941   SDValue Size = Op.getOperand(1);
3942   SDValue Align = Op.getOperand(2);
3943   SDLoc DL(Op);
3944 
3945   // If user has set the no alignment function attribute, ignore
3946   // alloca alignments.
3947   uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
3948 
3949   uint64_t StackAlign = TFI->getStackAlignment();
3950   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3951   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3952 
3953   SDValue NeededSpace = Size;
3954 
3955   // Add extra space for alignment if needed.
3956   EVT PtrVT = getPointerTy(MF.getDataLayout());
3957   if (ExtraAlignSpace)
3958     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3959                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3960 
3961   bool IsSigned = false;
3962   bool DoesNotReturn = false;
3963   bool IsReturnValueUsed = false;
3964   EVT VT = Op.getValueType();
3965   SDValue AllocaCall =
3966       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace),
3967                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3968                        IsReturnValueUsed)
3969           .first;
3970 
3971   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3972   // to end of call in order to ensure it isn't broken up from the call
3973   // sequence.
3974   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3975   Register SPReg = Regs.getStackPointerRegister();
3976   Chain = AllocaCall.getValue(1);
3977   SDValue Glue = AllocaCall.getValue(2);
3978   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3979   Chain = NewSPRegNode.getValue(1);
3980 
3981   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3982   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3983   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3984 
3985   // Dynamically realign if needed.
3986   if (ExtraAlignSpace) {
3987     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3988                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3989     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3990                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3991   }
3992 
3993   SDValue Ops[2] = {Result, Chain};
3994   return DAG.getMergeValues(Ops, DL);
3995 }
3996 
3997 SDValue
3998 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
3999                                                    SelectionDAG &DAG) const {
4000   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
4001   MachineFunction &MF = DAG.getMachineFunction();
4002   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
4003   bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4004 
4005   SDValue Chain = Op.getOperand(0);
4006   SDValue Size  = Op.getOperand(1);
4007   SDValue Align = Op.getOperand(2);
4008   SDLoc DL(Op);
4009 
4010   // If user has set the no alignment function attribute, ignore
4011   // alloca alignments.
4012   uint64_t AlignVal = (RealignOpt ? Align->getAsZExtVal() : 0);
4013 
4014   uint64_t StackAlign = TFI->getStackAlignment();
4015   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
4016   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
4017 
4018   Register SPReg = getStackPointerRegisterToSaveRestore();
4019   SDValue NeededSpace = Size;
4020 
4021   // Get a reference to the stack pointer.
4022   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
4023 
4024   // If we need a backchain, save it now.
4025   SDValue Backchain;
4026   if (StoreBackchain)
4027     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4028                             MachinePointerInfo());
4029 
4030   // Add extra space for alignment if needed.
4031   if (ExtraAlignSpace)
4032     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
4033                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4034 
4035   // Get the new stack pointer value.
4036   SDValue NewSP;
4037   if (hasInlineStackProbe(MF)) {
4038     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
4039                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
4040     Chain = NewSP.getValue(1);
4041   }
4042   else {
4043     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
4044     // Copy the new stack pointer back.
4045     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
4046   }
4047 
4048   // The allocated data lives above the 160 bytes allocated for the standard
4049   // frame, plus any outgoing stack arguments.  We don't know how much that
4050   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
4051   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4052   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
4053 
4054   // Dynamically realign if needed.
4055   if (RequiredAlign > StackAlign) {
4056     Result =
4057       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
4058                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
4059     Result =
4060       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
4061                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
4062   }
4063 
4064   if (StoreBackchain)
4065     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4066                          MachinePointerInfo());
4067 
4068   SDValue Ops[2] = { Result, Chain };
4069   return DAG.getMergeValues(Ops, DL);
4070 }
4071 
4072 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
4073     SDValue Op, SelectionDAG &DAG) const {
4074   SDLoc DL(Op);
4075 
4076   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
4077 }
4078 
4079 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
4080                                               SelectionDAG &DAG) const {
4081   EVT VT = Op.getValueType();
4082   SDLoc DL(Op);
4083   SDValue Ops[2];
4084   if (is32Bit(VT))
4085     // Just do a normal 64-bit multiplication and extract the results.
4086     // We define this so that it can be used for constant division.
4087     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
4088                     Op.getOperand(1), Ops[1], Ops[0]);
4089   else if (Subtarget.hasMiscellaneousExtensions2())
4090     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
4091     // the high result in the even register.  ISD::SMUL_LOHI is defined to
4092     // return the low half first, so the results are in reverse order.
4093     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
4094                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4095   else {
4096     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
4097     //
4098     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
4099     //
4100     // but using the fact that the upper halves are either all zeros
4101     // or all ones:
4102     //
4103     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
4104     //
4105     // and grouping the right terms together since they are quicker than the
4106     // multiplication:
4107     //
4108     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
4109     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
4110     SDValue LL = Op.getOperand(0);
4111     SDValue RL = Op.getOperand(1);
4112     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
4113     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
4114     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4115     // the high result in the even register.  ISD::SMUL_LOHI is defined to
4116     // return the low half first, so the results are in reverse order.
4117     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4118                      LL, RL, Ops[1], Ops[0]);
4119     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
4120     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
4121     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
4122     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
4123   }
4124   return DAG.getMergeValues(Ops, DL);
4125 }
4126 
4127 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
4128                                               SelectionDAG &DAG) const {
4129   EVT VT = Op.getValueType();
4130   SDLoc DL(Op);
4131   SDValue Ops[2];
4132   if (is32Bit(VT))
4133     // Just do a normal 64-bit multiplication and extract the results.
4134     // We define this so that it can be used for constant division.
4135     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
4136                     Op.getOperand(1), Ops[1], Ops[0]);
4137   else
4138     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
4139     // the high result in the even register.  ISD::UMUL_LOHI is defined to
4140     // return the low half first, so the results are in reverse order.
4141     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
4142                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4143   return DAG.getMergeValues(Ops, DL);
4144 }
4145 
4146 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
4147                                             SelectionDAG &DAG) const {
4148   SDValue Op0 = Op.getOperand(0);
4149   SDValue Op1 = Op.getOperand(1);
4150   EVT VT = Op.getValueType();
4151   SDLoc DL(Op);
4152 
4153   // We use DSGF for 32-bit division.  This means the first operand must
4154   // always be 64-bit, and the second operand should be 32-bit whenever
4155   // that is possible, to improve performance.
4156   if (is32Bit(VT))
4157     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
4158   else if (DAG.ComputeNumSignBits(Op1) > 32)
4159     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
4160 
4161   // DSG(F) returns the remainder in the even register and the
4162   // quotient in the odd register.
4163   SDValue Ops[2];
4164   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
4165   return DAG.getMergeValues(Ops, DL);
4166 }
4167 
4168 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
4169                                             SelectionDAG &DAG) const {
4170   EVT VT = Op.getValueType();
4171   SDLoc DL(Op);
4172 
4173   // DL(G) returns the remainder in the even register and the
4174   // quotient in the odd register.
4175   SDValue Ops[2];
4176   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
4177                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
4178   return DAG.getMergeValues(Ops, DL);
4179 }
4180 
4181 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
4182   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
4183 
4184   // Get the known-zero masks for each operand.
4185   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
4186   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
4187                         DAG.computeKnownBits(Ops[1])};
4188 
4189   // See if the upper 32 bits of one operand and the lower 32 bits of the
4190   // other are known zero.  They are the low and high operands respectively.
4191   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
4192                        Known[1].Zero.getZExtValue() };
4193   unsigned High, Low;
4194   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
4195     High = 1, Low = 0;
4196   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
4197     High = 0, Low = 1;
4198   else
4199     return Op;
4200 
4201   SDValue LowOp = Ops[Low];
4202   SDValue HighOp = Ops[High];
4203 
4204   // If the high part is a constant, we're better off using IILH.
4205   if (HighOp.getOpcode() == ISD::Constant)
4206     return Op;
4207 
4208   // If the low part is a constant that is outside the range of LHI,
4209   // then we're better off using IILF.
4210   if (LowOp.getOpcode() == ISD::Constant) {
4211     int64_t Value = int32_t(LowOp->getAsZExtVal());
4212     if (!isInt<16>(Value))
4213       return Op;
4214   }
4215 
4216   // Check whether the high part is an AND that doesn't change the
4217   // high 32 bits and just masks out low bits.  We can skip it if so.
4218   if (HighOp.getOpcode() == ISD::AND &&
4219       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
4220     SDValue HighOp0 = HighOp.getOperand(0);
4221     uint64_t Mask = HighOp.getConstantOperandVal(1);
4222     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
4223       HighOp = HighOp0;
4224   }
4225 
4226   // Take advantage of the fact that all GR32 operations only change the
4227   // low 32 bits by truncating Low to an i32 and inserting it directly
4228   // using a subreg.  The interesting cases are those where the truncation
4229   // can be folded.
4230   SDLoc DL(Op);
4231   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
4232   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
4233                                    MVT::i64, HighOp, Low32);
4234 }
4235 
4236 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
4237 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
4238                                           SelectionDAG &DAG) const {
4239   SDNode *N = Op.getNode();
4240   SDValue LHS = N->getOperand(0);
4241   SDValue RHS = N->getOperand(1);
4242   SDLoc DL(N);
4243 
4244   if (N->getValueType(0) == MVT::i128) {
4245     unsigned BaseOp = 0;
4246     unsigned FlagOp = 0;
4247     switch (Op.getOpcode()) {
4248     default: llvm_unreachable("Unknown instruction!");
4249     case ISD::UADDO:
4250       BaseOp = ISD::ADD;
4251       FlagOp = SystemZISD::VACC;
4252       break;
4253     case ISD::USUBO:
4254       BaseOp = ISD::SUB;
4255       FlagOp = SystemZISD::VSCBI;
4256       break;
4257     }
4258     SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS);
4259     SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS);
4260     Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4261                        DAG.getValueType(MVT::i1));
4262     Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4263     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4264   }
4265 
4266   unsigned BaseOp = 0;
4267   unsigned CCValid = 0;
4268   unsigned CCMask = 0;
4269 
4270   switch (Op.getOpcode()) {
4271   default: llvm_unreachable("Unknown instruction!");
4272   case ISD::SADDO:
4273     BaseOp = SystemZISD::SADDO;
4274     CCValid = SystemZ::CCMASK_ARITH;
4275     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4276     break;
4277   case ISD::SSUBO:
4278     BaseOp = SystemZISD::SSUBO;
4279     CCValid = SystemZ::CCMASK_ARITH;
4280     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
4281     break;
4282   case ISD::UADDO:
4283     BaseOp = SystemZISD::UADDO;
4284     CCValid = SystemZ::CCMASK_LOGICAL;
4285     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4286     break;
4287   case ISD::USUBO:
4288     BaseOp = SystemZISD::USUBO;
4289     CCValid = SystemZ::CCMASK_LOGICAL;
4290     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4291     break;
4292   }
4293 
4294   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
4295   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
4296 
4297   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4298   if (N->getValueType(1) == MVT::i1)
4299     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4300 
4301   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4302 }
4303 
4304 static bool isAddCarryChain(SDValue Carry) {
4305   while (Carry.getOpcode() == ISD::UADDO_CARRY)
4306     Carry = Carry.getOperand(2);
4307   return Carry.getOpcode() == ISD::UADDO;
4308 }
4309 
4310 static bool isSubBorrowChain(SDValue Carry) {
4311   while (Carry.getOpcode() == ISD::USUBO_CARRY)
4312     Carry = Carry.getOperand(2);
4313   return Carry.getOpcode() == ISD::USUBO;
4314 }
4315 
4316 // Lower UADDO_CARRY/USUBO_CARRY nodes.
4317 SDValue SystemZTargetLowering::lowerUADDSUBO_CARRY(SDValue Op,
4318                                                    SelectionDAG &DAG) const {
4319 
4320   SDNode *N = Op.getNode();
4321   MVT VT = N->getSimpleValueType(0);
4322 
4323   // Let legalize expand this if it isn't a legal type yet.
4324   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4325     return SDValue();
4326 
4327   SDValue LHS = N->getOperand(0);
4328   SDValue RHS = N->getOperand(1);
4329   SDValue Carry = Op.getOperand(2);
4330   SDLoc DL(N);
4331 
4332   if (VT == MVT::i128) {
4333     unsigned BaseOp = 0;
4334     unsigned FlagOp = 0;
4335     switch (Op.getOpcode()) {
4336     default: llvm_unreachable("Unknown instruction!");
4337     case ISD::UADDO_CARRY:
4338       BaseOp = SystemZISD::VAC;
4339       FlagOp = SystemZISD::VACCC;
4340       break;
4341     case ISD::USUBO_CARRY:
4342       BaseOp = SystemZISD::VSBI;
4343       FlagOp = SystemZISD::VSBCBI;
4344       break;
4345     }
4346     Carry = DAG.getZExtOrTrunc(Carry, DL, MVT::i128);
4347     SDValue Result = DAG.getNode(BaseOp, DL, MVT::i128, LHS, RHS, Carry);
4348     SDValue Flag = DAG.getNode(FlagOp, DL, MVT::i128, LHS, RHS, Carry);
4349     Flag = DAG.getNode(ISD::AssertZext, DL, MVT::i128, Flag,
4350                        DAG.getValueType(MVT::i1));
4351     Flag = DAG.getZExtOrTrunc(Flag, DL, N->getValueType(1));
4352     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Flag);
4353   }
4354 
4355   unsigned BaseOp = 0;
4356   unsigned CCValid = 0;
4357   unsigned CCMask = 0;
4358 
4359   switch (Op.getOpcode()) {
4360   default: llvm_unreachable("Unknown instruction!");
4361   case ISD::UADDO_CARRY:
4362     if (!isAddCarryChain(Carry))
4363       return SDValue();
4364 
4365     BaseOp = SystemZISD::ADDCARRY;
4366     CCValid = SystemZ::CCMASK_LOGICAL;
4367     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4368     break;
4369   case ISD::USUBO_CARRY:
4370     if (!isSubBorrowChain(Carry))
4371       return SDValue();
4372 
4373     BaseOp = SystemZISD::SUBCARRY;
4374     CCValid = SystemZ::CCMASK_LOGICAL;
4375     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4376     break;
4377   }
4378 
4379   // Set the condition code from the carry flag.
4380   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4381                       DAG.getConstant(CCValid, DL, MVT::i32),
4382                       DAG.getConstant(CCMask, DL, MVT::i32));
4383 
4384   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4385   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4386 
4387   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4388   if (N->getValueType(1) == MVT::i1)
4389     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4390 
4391   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4392 }
4393 
4394 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4395                                           SelectionDAG &DAG) const {
4396   EVT VT = Op.getValueType();
4397   SDLoc DL(Op);
4398   Op = Op.getOperand(0);
4399 
4400   if (VT.getScalarSizeInBits() == 128) {
4401     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op);
4402     Op = DAG.getNode(ISD::CTPOP, DL, MVT::v2i64, Op);
4403     SDValue Tmp = DAG.getSplatBuildVector(MVT::v2i64, DL,
4404                                           DAG.getConstant(0, DL, MVT::i64));
4405     Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4406     return Op;
4407   }
4408 
4409   // Handle vector types via VPOPCT.
4410   if (VT.isVector()) {
4411     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4412     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4413     switch (VT.getScalarSizeInBits()) {
4414     case 8:
4415       break;
4416     case 16: {
4417       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4418       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4419       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4420       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4421       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4422       break;
4423     }
4424     case 32: {
4425       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4426                                             DAG.getConstant(0, DL, MVT::i32));
4427       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4428       break;
4429     }
4430     case 64: {
4431       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4432                                             DAG.getConstant(0, DL, MVT::i32));
4433       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4434       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4435       break;
4436     }
4437     default:
4438       llvm_unreachable("Unexpected type");
4439     }
4440     return Op;
4441   }
4442 
4443   // Get the known-zero mask for the operand.
4444   KnownBits Known = DAG.computeKnownBits(Op);
4445   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4446   if (NumSignificantBits == 0)
4447     return DAG.getConstant(0, DL, VT);
4448 
4449   // Skip known-zero high parts of the operand.
4450   int64_t OrigBitSize = VT.getSizeInBits();
4451   int64_t BitSize = llvm::bit_ceil(NumSignificantBits);
4452   BitSize = std::min(BitSize, OrigBitSize);
4453 
4454   // The POPCNT instruction counts the number of bits in each byte.
4455   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4456   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4457   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4458 
4459   // Add up per-byte counts in a binary tree.  All bits of Op at
4460   // position larger than BitSize remain zero throughout.
4461   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4462     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4463     if (BitSize != OrigBitSize)
4464       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4465                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4466     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4467   }
4468 
4469   // Extract overall result from high byte.
4470   if (BitSize > 8)
4471     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4472                      DAG.getConstant(BitSize - 8, DL, VT));
4473 
4474   return Op;
4475 }
4476 
4477 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4478                                                  SelectionDAG &DAG) const {
4479   SDLoc DL(Op);
4480   AtomicOrdering FenceOrdering =
4481       static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4482   SyncScope::ID FenceSSID =
4483       static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4484 
4485   // The only fence that needs an instruction is a sequentially-consistent
4486   // cross-thread fence.
4487   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4488       FenceSSID == SyncScope::System) {
4489     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4490                                       Op.getOperand(0)),
4491                    0);
4492   }
4493 
4494   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4495   return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4496 }
4497 
4498 // Op is an atomic load.  Lower it into a normal volatile load.
4499 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4500                                                 SelectionDAG &DAG) const {
4501   auto *Node = cast<AtomicSDNode>(Op.getNode());
4502   if (Node->getMemoryVT() == MVT::i128) {
4503     // Use same code to handle both legal and non-legal i128 types.
4504     SmallVector<SDValue, 2> Results;
4505     LowerOperationWrapper(Node, Results, DAG);
4506     return DAG.getMergeValues(Results, SDLoc(Op));
4507   }
4508   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4509                         Node->getChain(), Node->getBasePtr(),
4510                         Node->getMemoryVT(), Node->getMemOperand());
4511 }
4512 
4513 // Op is an atomic store.  Lower it into a normal volatile store.
4514 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4515                                                  SelectionDAG &DAG) const {
4516   auto *Node = cast<AtomicSDNode>(Op.getNode());
4517   if (Node->getMemoryVT() == MVT::i128) {
4518     // Use same code to handle both legal and non-legal i128 types.
4519     SmallVector<SDValue, 1> Results;
4520     LowerOperationWrapper(Node, Results, DAG);
4521     return DAG.getMergeValues(Results, SDLoc(Op));
4522   }
4523   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4524                                     Node->getBasePtr(), Node->getMemoryVT(),
4525                                     Node->getMemOperand());
4526   // We have to enforce sequential consistency by performing a
4527   // serialization operation after the store.
4528   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4529     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4530                                        MVT::Other, Chain), 0);
4531   return Chain;
4532 }
4533 
4534 // Prepare for a Compare And Swap for a subword operation. This needs to be
4535 // done in memory with 4 bytes at natural alignment.
4536 static void getCSAddressAndShifts(SDValue Addr, SelectionDAG &DAG, SDLoc DL,
4537                                   SDValue &AlignedAddr, SDValue &BitShift,
4538                                   SDValue &NegBitShift) {
4539   EVT PtrVT = Addr.getValueType();
4540   EVT WideVT = MVT::i32;
4541 
4542   // Get the address of the containing word.
4543   AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4544                             DAG.getConstant(-4, DL, PtrVT));
4545 
4546   // Get the number of bits that the word must be rotated left in order
4547   // to bring the field to the top bits of a GR32.
4548   BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4549                          DAG.getConstant(3, DL, PtrVT));
4550   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4551 
4552   // Get the complementing shift amount, for rotating a field in the top
4553   // bits back to its proper position.
4554   NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4555                             DAG.getConstant(0, DL, WideVT), BitShift);
4556 
4557 }
4558 
4559 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4560 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4561 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4562                                                    SelectionDAG &DAG,
4563                                                    unsigned Opcode) const {
4564   auto *Node = cast<AtomicSDNode>(Op.getNode());
4565 
4566   // 32-bit operations need no special handling.
4567   EVT NarrowVT = Node->getMemoryVT();
4568   EVT WideVT = MVT::i32;
4569   if (NarrowVT == WideVT)
4570     return Op;
4571 
4572   int64_t BitSize = NarrowVT.getSizeInBits();
4573   SDValue ChainIn = Node->getChain();
4574   SDValue Addr = Node->getBasePtr();
4575   SDValue Src2 = Node->getVal();
4576   MachineMemOperand *MMO = Node->getMemOperand();
4577   SDLoc DL(Node);
4578 
4579   // Convert atomic subtracts of constants into additions.
4580   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4581     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4582       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4583       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4584     }
4585 
4586   SDValue AlignedAddr, BitShift, NegBitShift;
4587   getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4588 
4589   // Extend the source operand to 32 bits and prepare it for the inner loop.
4590   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4591   // operations require the source to be shifted in advance.  (This shift
4592   // can be folded if the source is constant.)  For AND and NAND, the lower
4593   // bits must be set, while for other opcodes they should be left clear.
4594   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4595     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4596                        DAG.getConstant(32 - BitSize, DL, WideVT));
4597   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4598       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4599     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4600                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4601 
4602   // Construct the ATOMIC_LOADW_* node.
4603   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4604   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4605                     DAG.getConstant(BitSize, DL, WideVT) };
4606   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4607                                              NarrowVT, MMO);
4608 
4609   // Rotate the result of the final CS so that the field is in the lower
4610   // bits of a GR32, then truncate it.
4611   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4612                                     DAG.getConstant(BitSize, DL, WideVT));
4613   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4614 
4615   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4616   return DAG.getMergeValues(RetOps, DL);
4617 }
4618 
4619 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations into
4620 // ATOMIC_LOADW_SUBs and convert 32- and 64-bit operations into additions.
4621 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4622                                                     SelectionDAG &DAG) const {
4623   auto *Node = cast<AtomicSDNode>(Op.getNode());
4624   EVT MemVT = Node->getMemoryVT();
4625   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4626     // A full-width operation: negate and use LAA(G).
4627     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4628     assert(Subtarget.hasInterlockedAccess1() &&
4629            "Should have been expanded by AtomicExpand pass.");
4630     SDValue Src2 = Node->getVal();
4631     SDLoc DL(Src2);
4632     SDValue NegSrc2 =
4633       DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), Src2);
4634     return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4635                          Node->getChain(), Node->getBasePtr(), NegSrc2,
4636                          Node->getMemOperand());
4637   }
4638 
4639   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4640 }
4641 
4642 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4643 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4644                                                     SelectionDAG &DAG) const {
4645   auto *Node = cast<AtomicSDNode>(Op.getNode());
4646   SDValue ChainIn = Node->getOperand(0);
4647   SDValue Addr = Node->getOperand(1);
4648   SDValue CmpVal = Node->getOperand(2);
4649   SDValue SwapVal = Node->getOperand(3);
4650   MachineMemOperand *MMO = Node->getMemOperand();
4651   SDLoc DL(Node);
4652 
4653   if (Node->getMemoryVT() == MVT::i128) {
4654     // Use same code to handle both legal and non-legal i128 types.
4655     SmallVector<SDValue, 3> Results;
4656     LowerOperationWrapper(Node, Results, DAG);
4657     return DAG.getMergeValues(Results, DL);
4658   }
4659 
4660   // We have native support for 32-bit and 64-bit compare and swap, but we
4661   // still need to expand extracting the "success" result from the CC.
4662   EVT NarrowVT = Node->getMemoryVT();
4663   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4664   if (NarrowVT == WideVT) {
4665     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4666     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4667     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4668                                                DL, Tys, Ops, NarrowVT, MMO);
4669     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4670                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4671 
4672     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4673     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4674     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4675     return SDValue();
4676   }
4677 
4678   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4679   // via a fullword ATOMIC_CMP_SWAPW operation.
4680   int64_t BitSize = NarrowVT.getSizeInBits();
4681 
4682   SDValue AlignedAddr, BitShift, NegBitShift;
4683   getCSAddressAndShifts(Addr, DAG, DL, AlignedAddr, BitShift, NegBitShift);
4684 
4685   // Construct the ATOMIC_CMP_SWAPW node.
4686   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4687   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4688                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4689   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4690                                              VTList, Ops, NarrowVT, MMO);
4691   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4692                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4693 
4694   // emitAtomicCmpSwapW() will zero extend the result (original value).
4695   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4696                                 DAG.getValueType(NarrowVT));
4697   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4698   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4699   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4700   return SDValue();
4701 }
4702 
4703 MachineMemOperand::Flags
4704 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4705   // Because of how we convert atomic_load and atomic_store to normal loads and
4706   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4707   // since DAGCombine hasn't been updated to account for atomic, but non
4708   // volatile loads.  (See D57601)
4709   if (auto *SI = dyn_cast<StoreInst>(&I))
4710     if (SI->isAtomic())
4711       return MachineMemOperand::MOVolatile;
4712   if (auto *LI = dyn_cast<LoadInst>(&I))
4713     if (LI->isAtomic())
4714       return MachineMemOperand::MOVolatile;
4715   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4716     if (AI->isAtomic())
4717       return MachineMemOperand::MOVolatile;
4718   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4719     if (AI->isAtomic())
4720       return MachineMemOperand::MOVolatile;
4721   return MachineMemOperand::MONone;
4722 }
4723 
4724 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4725                                               SelectionDAG &DAG) const {
4726   MachineFunction &MF = DAG.getMachineFunction();
4727   auto *Regs = Subtarget.getSpecialRegisters();
4728   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4729     report_fatal_error("Variable-sized stack allocations are not supported "
4730                        "in GHC calling convention");
4731   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4732                             Regs->getStackPointerRegister(), Op.getValueType());
4733 }
4734 
4735 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4736                                                  SelectionDAG &DAG) const {
4737   MachineFunction &MF = DAG.getMachineFunction();
4738   auto *Regs = Subtarget.getSpecialRegisters();
4739   bool StoreBackchain = MF.getSubtarget<SystemZSubtarget>().hasBackChain();
4740 
4741   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4742     report_fatal_error("Variable-sized stack allocations are not supported "
4743                        "in GHC calling convention");
4744 
4745   SDValue Chain = Op.getOperand(0);
4746   SDValue NewSP = Op.getOperand(1);
4747   SDValue Backchain;
4748   SDLoc DL(Op);
4749 
4750   if (StoreBackchain) {
4751     SDValue OldSP = DAG.getCopyFromReg(
4752         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4753     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4754                             MachinePointerInfo());
4755   }
4756 
4757   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4758 
4759   if (StoreBackchain)
4760     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4761                          MachinePointerInfo());
4762 
4763   return Chain;
4764 }
4765 
4766 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4767                                              SelectionDAG &DAG) const {
4768   bool IsData = Op.getConstantOperandVal(4);
4769   if (!IsData)
4770     // Just preserve the chain.
4771     return Op.getOperand(0);
4772 
4773   SDLoc DL(Op);
4774   bool IsWrite = Op.getConstantOperandVal(2);
4775   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4776   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4777   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4778                    Op.getOperand(1)};
4779   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4780                                  Node->getVTList(), Ops,
4781                                  Node->getMemoryVT(), Node->getMemOperand());
4782 }
4783 
4784 // Convert condition code in CCReg to an i32 value.
4785 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4786   SDLoc DL(CCReg);
4787   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4788   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4789                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4790 }
4791 
4792 SDValue
4793 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4794                                               SelectionDAG &DAG) const {
4795   unsigned Opcode, CCValid;
4796   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4797     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4798     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4799     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4800     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4801     return SDValue();
4802   }
4803 
4804   return SDValue();
4805 }
4806 
4807 SDValue
4808 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4809                                                SelectionDAG &DAG) const {
4810   unsigned Opcode, CCValid;
4811   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4812     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4813     if (Op->getNumValues() == 1)
4814       return getCCResult(DAG, SDValue(Node, 0));
4815     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4816     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4817                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4818   }
4819 
4820   unsigned Id = Op.getConstantOperandVal(0);
4821   switch (Id) {
4822   case Intrinsic::thread_pointer:
4823     return lowerThreadPointer(SDLoc(Op), DAG);
4824 
4825   case Intrinsic::s390_vpdi:
4826     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4827                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4828 
4829   case Intrinsic::s390_vperm:
4830     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4831                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4832 
4833   case Intrinsic::s390_vuphb:
4834   case Intrinsic::s390_vuphh:
4835   case Intrinsic::s390_vuphf:
4836     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4837                        Op.getOperand(1));
4838 
4839   case Intrinsic::s390_vuplhb:
4840   case Intrinsic::s390_vuplhh:
4841   case Intrinsic::s390_vuplhf:
4842     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4843                        Op.getOperand(1));
4844 
4845   case Intrinsic::s390_vuplb:
4846   case Intrinsic::s390_vuplhw:
4847   case Intrinsic::s390_vuplf:
4848     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4849                        Op.getOperand(1));
4850 
4851   case Intrinsic::s390_vupllb:
4852   case Intrinsic::s390_vupllh:
4853   case Intrinsic::s390_vupllf:
4854     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4855                        Op.getOperand(1));
4856 
4857   case Intrinsic::s390_vsumb:
4858   case Intrinsic::s390_vsumh:
4859   case Intrinsic::s390_vsumgh:
4860   case Intrinsic::s390_vsumgf:
4861   case Intrinsic::s390_vsumqf:
4862   case Intrinsic::s390_vsumqg:
4863     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4864                        Op.getOperand(1), Op.getOperand(2));
4865 
4866   case Intrinsic::s390_vaq:
4867     return DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(),
4868                        Op.getOperand(1), Op.getOperand(2));
4869   case Intrinsic::s390_vaccb:
4870   case Intrinsic::s390_vacch:
4871   case Intrinsic::s390_vaccf:
4872   case Intrinsic::s390_vaccg:
4873   case Intrinsic::s390_vaccq:
4874     return DAG.getNode(SystemZISD::VACC, SDLoc(Op), Op.getValueType(),
4875                        Op.getOperand(1), Op.getOperand(2));
4876   case Intrinsic::s390_vacq:
4877     return DAG.getNode(SystemZISD::VAC, SDLoc(Op), Op.getValueType(),
4878                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4879   case Intrinsic::s390_vacccq:
4880     return DAG.getNode(SystemZISD::VACCC, SDLoc(Op), Op.getValueType(),
4881                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4882 
4883   case Intrinsic::s390_vsq:
4884     return DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(),
4885                        Op.getOperand(1), Op.getOperand(2));
4886   case Intrinsic::s390_vscbib:
4887   case Intrinsic::s390_vscbih:
4888   case Intrinsic::s390_vscbif:
4889   case Intrinsic::s390_vscbig:
4890   case Intrinsic::s390_vscbiq:
4891     return DAG.getNode(SystemZISD::VSCBI, SDLoc(Op), Op.getValueType(),
4892                        Op.getOperand(1), Op.getOperand(2));
4893   case Intrinsic::s390_vsbiq:
4894     return DAG.getNode(SystemZISD::VSBI, SDLoc(Op), Op.getValueType(),
4895                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4896   case Intrinsic::s390_vsbcbiq:
4897     return DAG.getNode(SystemZISD::VSBCBI, SDLoc(Op), Op.getValueType(),
4898                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4899   }
4900 
4901   return SDValue();
4902 }
4903 
4904 namespace {
4905 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4906 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4907 // Operand is the constant third operand, otherwise it is the number of
4908 // bytes in each element of the result.
4909 struct Permute {
4910   unsigned Opcode;
4911   unsigned Operand;
4912   unsigned char Bytes[SystemZ::VectorBytes];
4913 };
4914 }
4915 
4916 static const Permute PermuteForms[] = {
4917   // VMRHG
4918   { SystemZISD::MERGE_HIGH, 8,
4919     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4920   // VMRHF
4921   { SystemZISD::MERGE_HIGH, 4,
4922     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4923   // VMRHH
4924   { SystemZISD::MERGE_HIGH, 2,
4925     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4926   // VMRHB
4927   { SystemZISD::MERGE_HIGH, 1,
4928     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4929   // VMRLG
4930   { SystemZISD::MERGE_LOW, 8,
4931     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4932   // VMRLF
4933   { SystemZISD::MERGE_LOW, 4,
4934     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4935   // VMRLH
4936   { SystemZISD::MERGE_LOW, 2,
4937     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4938   // VMRLB
4939   { SystemZISD::MERGE_LOW, 1,
4940     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4941   // VPKG
4942   { SystemZISD::PACK, 4,
4943     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4944   // VPKF
4945   { SystemZISD::PACK, 2,
4946     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4947   // VPKH
4948   { SystemZISD::PACK, 1,
4949     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4950   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4951   { SystemZISD::PERMUTE_DWORDS, 4,
4952     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4953   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4954   { SystemZISD::PERMUTE_DWORDS, 1,
4955     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4956 };
4957 
4958 // Called after matching a vector shuffle against a particular pattern.
4959 // Both the original shuffle and the pattern have two vector operands.
4960 // OpNos[0] is the operand of the original shuffle that should be used for
4961 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4962 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4963 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4964 // for operands 0 and 1 of the pattern.
4965 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4966   if (OpNos[0] < 0) {
4967     if (OpNos[1] < 0)
4968       return false;
4969     OpNo0 = OpNo1 = OpNos[1];
4970   } else if (OpNos[1] < 0) {
4971     OpNo0 = OpNo1 = OpNos[0];
4972   } else {
4973     OpNo0 = OpNos[0];
4974     OpNo1 = OpNos[1];
4975   }
4976   return true;
4977 }
4978 
4979 // Bytes is a VPERM-like permute vector, except that -1 is used for
4980 // undefined bytes.  Return true if the VPERM can be implemented using P.
4981 // When returning true set OpNo0 to the VPERM operand that should be
4982 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4983 //
4984 // For example, if swapping the VPERM operands allows P to match, OpNo0
4985 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4986 // operand, but rewriting it to use two duplicated operands allows it to
4987 // match P, then OpNo0 and OpNo1 will be the same.
4988 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4989                          unsigned &OpNo0, unsigned &OpNo1) {
4990   int OpNos[] = { -1, -1 };
4991   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4992     int Elt = Bytes[I];
4993     if (Elt >= 0) {
4994       // Make sure that the two permute vectors use the same suboperand
4995       // byte number.  Only the operand numbers (the high bits) are
4996       // allowed to differ.
4997       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4998         return false;
4999       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
5000       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
5001       // Make sure that the operand mappings are consistent with previous
5002       // elements.
5003       if (OpNos[ModelOpNo] == 1 - RealOpNo)
5004         return false;
5005       OpNos[ModelOpNo] = RealOpNo;
5006     }
5007   }
5008   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5009 }
5010 
5011 // As above, but search for a matching permute.
5012 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
5013                                    unsigned &OpNo0, unsigned &OpNo1) {
5014   for (auto &P : PermuteForms)
5015     if (matchPermute(Bytes, P, OpNo0, OpNo1))
5016       return &P;
5017   return nullptr;
5018 }
5019 
5020 // Bytes is a VPERM-like permute vector, except that -1 is used for
5021 // undefined bytes.  This permute is an operand of an outer permute.
5022 // See whether redistributing the -1 bytes gives a shuffle that can be
5023 // implemented using P.  If so, set Transform to a VPERM-like permute vector
5024 // that, when applied to the result of P, gives the original permute in Bytes.
5025 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5026                                const Permute &P,
5027                                SmallVectorImpl<int> &Transform) {
5028   unsigned To = 0;
5029   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
5030     int Elt = Bytes[From];
5031     if (Elt < 0)
5032       // Byte number From of the result is undefined.
5033       Transform[From] = -1;
5034     else {
5035       while (P.Bytes[To] != Elt) {
5036         To += 1;
5037         if (To == SystemZ::VectorBytes)
5038           return false;
5039       }
5040       Transform[From] = To;
5041     }
5042   }
5043   return true;
5044 }
5045 
5046 // As above, but search for a matching permute.
5047 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
5048                                          SmallVectorImpl<int> &Transform) {
5049   for (auto &P : PermuteForms)
5050     if (matchDoublePermute(Bytes, P, Transform))
5051       return &P;
5052   return nullptr;
5053 }
5054 
5055 // Convert the mask of the given shuffle op into a byte-level mask,
5056 // as if it had type vNi8.
5057 static bool getVPermMask(SDValue ShuffleOp,
5058                          SmallVectorImpl<int> &Bytes) {
5059   EVT VT = ShuffleOp.getValueType();
5060   unsigned NumElements = VT.getVectorNumElements();
5061   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5062 
5063   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
5064     Bytes.resize(NumElements * BytesPerElement, -1);
5065     for (unsigned I = 0; I < NumElements; ++I) {
5066       int Index = VSN->getMaskElt(I);
5067       if (Index >= 0)
5068         for (unsigned J = 0; J < BytesPerElement; ++J)
5069           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5070     }
5071     return true;
5072   }
5073   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
5074       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
5075     unsigned Index = ShuffleOp.getConstantOperandVal(1);
5076     Bytes.resize(NumElements * BytesPerElement, -1);
5077     for (unsigned I = 0; I < NumElements; ++I)
5078       for (unsigned J = 0; J < BytesPerElement; ++J)
5079         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
5080     return true;
5081   }
5082   return false;
5083 }
5084 
5085 // Bytes is a VPERM-like permute vector, except that -1 is used for
5086 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
5087 // the result come from a contiguous sequence of bytes from one input.
5088 // Set Base to the selector for the first byte if so.
5089 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
5090                             unsigned BytesPerElement, int &Base) {
5091   Base = -1;
5092   for (unsigned I = 0; I < BytesPerElement; ++I) {
5093     if (Bytes[Start + I] >= 0) {
5094       unsigned Elem = Bytes[Start + I];
5095       if (Base < 0) {
5096         Base = Elem - I;
5097         // Make sure the bytes would come from one input operand.
5098         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
5099           return false;
5100       } else if (unsigned(Base) != Elem - I)
5101         return false;
5102     }
5103   }
5104   return true;
5105 }
5106 
5107 // Bytes is a VPERM-like permute vector, except that -1 is used for
5108 // undefined bytes.  Return true if it can be performed using VSLDB.
5109 // When returning true, set StartIndex to the shift amount and OpNo0
5110 // and OpNo1 to the VPERM operands that should be used as the first
5111 // and second shift operand respectively.
5112 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
5113                                unsigned &StartIndex, unsigned &OpNo0,
5114                                unsigned &OpNo1) {
5115   int OpNos[] = { -1, -1 };
5116   int Shift = -1;
5117   for (unsigned I = 0; I < 16; ++I) {
5118     int Index = Bytes[I];
5119     if (Index >= 0) {
5120       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
5121       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
5122       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
5123       if (Shift < 0)
5124         Shift = ExpectedShift;
5125       else if (Shift != ExpectedShift)
5126         return false;
5127       // Make sure that the operand mappings are consistent with previous
5128       // elements.
5129       if (OpNos[ModelOpNo] == 1 - RealOpNo)
5130         return false;
5131       OpNos[ModelOpNo] = RealOpNo;
5132     }
5133   }
5134   StartIndex = Shift;
5135   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
5136 }
5137 
5138 // Create a node that performs P on operands Op0 and Op1, casting the
5139 // operands to the appropriate type.  The type of the result is determined by P.
5140 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5141                               const Permute &P, SDValue Op0, SDValue Op1) {
5142   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
5143   // elements of a PACK are twice as wide as the outputs.
5144   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
5145                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
5146                       P.Operand);
5147   // Cast both operands to the appropriate type.
5148   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
5149                               SystemZ::VectorBytes / InBytes);
5150   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
5151   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
5152   SDValue Op;
5153   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
5154     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
5155     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
5156   } else if (P.Opcode == SystemZISD::PACK) {
5157     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
5158                                  SystemZ::VectorBytes / P.Operand);
5159     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
5160   } else {
5161     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
5162   }
5163   return Op;
5164 }
5165 
5166 static bool isZeroVector(SDValue N) {
5167   if (N->getOpcode() == ISD::BITCAST)
5168     N = N->getOperand(0);
5169   if (N->getOpcode() == ISD::SPLAT_VECTOR)
5170     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
5171       return Op->getZExtValue() == 0;
5172   return ISD::isBuildVectorAllZeros(N.getNode());
5173 }
5174 
5175 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
5176 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
5177   for (unsigned I = 0; I < Num ; I++)
5178     if (isZeroVector(Ops[I]))
5179       return I;
5180   return UINT32_MAX;
5181 }
5182 
5183 // Bytes is a VPERM-like permute vector, except that -1 is used for
5184 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
5185 // VSLDB or VPERM.
5186 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
5187                                      SDValue *Ops,
5188                                      const SmallVectorImpl<int> &Bytes) {
5189   for (unsigned I = 0; I < 2; ++I)
5190     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
5191 
5192   // First see whether VSLDB can be used.
5193   unsigned StartIndex, OpNo0, OpNo1;
5194   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
5195     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
5196                        Ops[OpNo1],
5197                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
5198 
5199   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
5200   // eliminate a zero vector by reusing any zero index in the permute vector.
5201   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
5202   if (ZeroVecIdx != UINT32_MAX) {
5203     bool MaskFirst = true;
5204     int ZeroIdx = -1;
5205     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5206       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5207       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5208       if (OpNo == ZeroVecIdx && I == 0) {
5209         // If the first byte is zero, use mask as first operand.
5210         ZeroIdx = 0;
5211         break;
5212       }
5213       if (OpNo != ZeroVecIdx && Byte == 0) {
5214         // If mask contains a zero, use it by placing that vector first.
5215         ZeroIdx = I + SystemZ::VectorBytes;
5216         MaskFirst = false;
5217         break;
5218       }
5219     }
5220     if (ZeroIdx != -1) {
5221       SDValue IndexNodes[SystemZ::VectorBytes];
5222       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
5223         if (Bytes[I] >= 0) {
5224           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5225           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
5226           if (OpNo == ZeroVecIdx)
5227             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
5228           else {
5229             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
5230             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
5231           }
5232         } else
5233           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5234       }
5235       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5236       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
5237       if (MaskFirst)
5238         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
5239                            Mask);
5240       else
5241         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
5242                            Mask);
5243     }
5244   }
5245 
5246   SDValue IndexNodes[SystemZ::VectorBytes];
5247   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5248     if (Bytes[I] >= 0)
5249       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
5250     else
5251       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
5252   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
5253   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
5254                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
5255 }
5256 
5257 namespace {
5258 // Describes a general N-operand vector shuffle.
5259 struct GeneralShuffle {
5260   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
5261   void addUndef();
5262   bool add(SDValue, unsigned);
5263   SDValue getNode(SelectionDAG &, const SDLoc &);
5264   void tryPrepareForUnpack();
5265   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
5266   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
5267 
5268   // The operands of the shuffle.
5269   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
5270 
5271   // Index I is -1 if byte I of the result is undefined.  Otherwise the
5272   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
5273   // Bytes[I] / SystemZ::VectorBytes.
5274   SmallVector<int, SystemZ::VectorBytes> Bytes;
5275 
5276   // The type of the shuffle result.
5277   EVT VT;
5278 
5279   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
5280   unsigned UnpackFromEltSize;
5281 };
5282 }
5283 
5284 // Add an extra undefined element to the shuffle.
5285 void GeneralShuffle::addUndef() {
5286   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5287   for (unsigned I = 0; I < BytesPerElement; ++I)
5288     Bytes.push_back(-1);
5289 }
5290 
5291 // Add an extra element to the shuffle, taking it from element Elem of Op.
5292 // A null Op indicates a vector input whose value will be calculated later;
5293 // there is at most one such input per shuffle and it always has the same
5294 // type as the result. Aborts and returns false if the source vector elements
5295 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
5296 // LLVM they become implicitly extended, but this is rare and not optimized.
5297 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
5298   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
5299 
5300   // The source vector can have wider elements than the result,
5301   // either through an explicit TRUNCATE or because of type legalization.
5302   // We want the least significant part.
5303   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
5304   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
5305 
5306   // Return false if the source elements are smaller than their destination
5307   // elements.
5308   if (FromBytesPerElement < BytesPerElement)
5309     return false;
5310 
5311   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
5312                    (FromBytesPerElement - BytesPerElement));
5313 
5314   // Look through things like shuffles and bitcasts.
5315   while (Op.getNode()) {
5316     if (Op.getOpcode() == ISD::BITCAST)
5317       Op = Op.getOperand(0);
5318     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
5319       // See whether the bytes we need come from a contiguous part of one
5320       // operand.
5321       SmallVector<int, SystemZ::VectorBytes> OpBytes;
5322       if (!getVPermMask(Op, OpBytes))
5323         break;
5324       int NewByte;
5325       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
5326         break;
5327       if (NewByte < 0) {
5328         addUndef();
5329         return true;
5330       }
5331       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
5332       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
5333     } else if (Op.isUndef()) {
5334       addUndef();
5335       return true;
5336     } else
5337       break;
5338   }
5339 
5340   // Make sure that the source of the extraction is in Ops.
5341   unsigned OpNo = 0;
5342   for (; OpNo < Ops.size(); ++OpNo)
5343     if (Ops[OpNo] == Op)
5344       break;
5345   if (OpNo == Ops.size())
5346     Ops.push_back(Op);
5347 
5348   // Add the element to Bytes.
5349   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
5350   for (unsigned I = 0; I < BytesPerElement; ++I)
5351     Bytes.push_back(Base + I);
5352 
5353   return true;
5354 }
5355 
5356 // Return SDNodes for the completed shuffle.
5357 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
5358   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
5359 
5360   if (Ops.size() == 0)
5361     return DAG.getUNDEF(VT);
5362 
5363   // Use a single unpack if possible as the last operation.
5364   tryPrepareForUnpack();
5365 
5366   // Make sure that there are at least two shuffle operands.
5367   if (Ops.size() == 1)
5368     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
5369 
5370   // Create a tree of shuffles, deferring root node until after the loop.
5371   // Try to redistribute the undefined elements of non-root nodes so that
5372   // the non-root shuffles match something like a pack or merge, then adjust
5373   // the parent node's permute vector to compensate for the new order.
5374   // Among other things, this copes with vectors like <2 x i16> that were
5375   // padded with undefined elements during type legalization.
5376   //
5377   // In the best case this redistribution will lead to the whole tree
5378   // using packs and merges.  It should rarely be a loss in other cases.
5379   unsigned Stride = 1;
5380   for (; Stride * 2 < Ops.size(); Stride *= 2) {
5381     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
5382       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5383 
5384       // Create a mask for just these two operands.
5385       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5386       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5387         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5388         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5389         if (OpNo == I)
5390           NewBytes[J] = Byte;
5391         else if (OpNo == I + Stride)
5392           NewBytes[J] = SystemZ::VectorBytes + Byte;
5393         else
5394           NewBytes[J] = -1;
5395       }
5396       // See if it would be better to reorganize NewMask to avoid using VPERM.
5397       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5398       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5399         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5400         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5401         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5402           if (NewBytes[J] >= 0) {
5403             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5404                    "Invalid double permute");
5405             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5406           } else
5407             assert(NewBytesMap[J] < 0 && "Invalid double permute");
5408         }
5409       } else {
5410         // Just use NewBytes on the operands.
5411         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5412         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5413           if (NewBytes[J] >= 0)
5414             Bytes[J] = I * SystemZ::VectorBytes + J;
5415       }
5416     }
5417   }
5418 
5419   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5420   if (Stride > 1) {
5421     Ops[1] = Ops[Stride];
5422     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5423       if (Bytes[I] >= int(SystemZ::VectorBytes))
5424         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5425   }
5426 
5427   // Look for an instruction that can do the permute without resorting
5428   // to VPERM.
5429   unsigned OpNo0, OpNo1;
5430   SDValue Op;
5431   if (unpackWasPrepared() && Ops[1].isUndef())
5432     Op = Ops[0];
5433   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5434     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5435   else
5436     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5437 
5438   Op = insertUnpackIfPrepared(DAG, DL, Op);
5439 
5440   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5441 }
5442 
5443 #ifndef NDEBUG
5444 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5445   dbgs() << Msg.c_str() << " { ";
5446   for (unsigned i = 0; i < Bytes.size(); i++)
5447     dbgs() << Bytes[i] << " ";
5448   dbgs() << "}\n";
5449 }
5450 #endif
5451 
5452 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5453 // after all else by removing the zero vector and the effect of the unpack on
5454 // Bytes.
5455 void GeneralShuffle::tryPrepareForUnpack() {
5456   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5457   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5458     return;
5459 
5460   // Only do this if removing the zero vector reduces the depth, otherwise
5461   // the critical path will increase with the final unpack.
5462   if (Ops.size() > 2 &&
5463       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5464     return;
5465 
5466   // Find an unpack that would allow removing the zero vector from Ops.
5467   UnpackFromEltSize = 1;
5468   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5469     bool MatchUnpack = true;
5470     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5471     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5472       unsigned ToEltSize = UnpackFromEltSize * 2;
5473       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5474       if (!IsZextByte)
5475         SrcBytes.push_back(Bytes[Elt]);
5476       if (Bytes[Elt] != -1) {
5477         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5478         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5479           MatchUnpack = false;
5480           break;
5481         }
5482       }
5483     }
5484     if (MatchUnpack) {
5485       if (Ops.size() == 2) {
5486         // Don't use unpack if a single source operand needs rearrangement.
5487         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5488           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5489             UnpackFromEltSize = UINT_MAX;
5490             return;
5491           }
5492       }
5493       break;
5494     }
5495   }
5496   if (UnpackFromEltSize > 4)
5497     return;
5498 
5499   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5500              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5501              << ".\n";
5502              dumpBytes(Bytes, "Original Bytes vector:"););
5503 
5504   // Apply the unpack in reverse to the Bytes array.
5505   unsigned B = 0;
5506   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5507     Elt += UnpackFromEltSize;
5508     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5509       Bytes[B] = Bytes[Elt];
5510   }
5511   while (B < SystemZ::VectorBytes)
5512     Bytes[B++] = -1;
5513 
5514   // Remove the zero vector from Ops
5515   Ops.erase(&Ops[ZeroVecOpNo]);
5516   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5517     if (Bytes[I] >= 0) {
5518       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5519       if (OpNo > ZeroVecOpNo)
5520         Bytes[I] -= SystemZ::VectorBytes;
5521     }
5522 
5523   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5524              dbgs() << "\n";);
5525 }
5526 
5527 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5528                                                const SDLoc &DL,
5529                                                SDValue Op) {
5530   if (!unpackWasPrepared())
5531     return Op;
5532   unsigned InBits = UnpackFromEltSize * 8;
5533   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5534                                 SystemZ::VectorBits / InBits);
5535   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5536   unsigned OutBits = InBits * 2;
5537   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5538                                SystemZ::VectorBits / OutBits);
5539   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5540 }
5541 
5542 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5543 static bool isScalarToVector(SDValue Op) {
5544   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5545     if (!Op.getOperand(I).isUndef())
5546       return false;
5547   return true;
5548 }
5549 
5550 // Return a vector of type VT that contains Value in the first element.
5551 // The other elements don't matter.
5552 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5553                                    SDValue Value) {
5554   // If we have a constant, replicate it to all elements and let the
5555   // BUILD_VECTOR lowering take care of it.
5556   if (Value.getOpcode() == ISD::Constant ||
5557       Value.getOpcode() == ISD::ConstantFP) {
5558     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5559     return DAG.getBuildVector(VT, DL, Ops);
5560   }
5561   if (Value.isUndef())
5562     return DAG.getUNDEF(VT);
5563   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5564 }
5565 
5566 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5567 // element 1.  Used for cases in which replication is cheap.
5568 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5569                                  SDValue Op0, SDValue Op1) {
5570   if (Op0.isUndef()) {
5571     if (Op1.isUndef())
5572       return DAG.getUNDEF(VT);
5573     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5574   }
5575   if (Op1.isUndef())
5576     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5577   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5578                      buildScalarToVector(DAG, DL, VT, Op0),
5579                      buildScalarToVector(DAG, DL, VT, Op1));
5580 }
5581 
5582 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5583 // vector for them.
5584 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5585                           SDValue Op1) {
5586   if (Op0.isUndef() && Op1.isUndef())
5587     return DAG.getUNDEF(MVT::v2i64);
5588   // If one of the two inputs is undefined then replicate the other one,
5589   // in order to avoid using another register unnecessarily.
5590   if (Op0.isUndef())
5591     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5592   else if (Op1.isUndef())
5593     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5594   else {
5595     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5596     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5597   }
5598   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5599 }
5600 
5601 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5602 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5603 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5604 // would benefit from this representation and return it if so.
5605 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5606                                      BuildVectorSDNode *BVN) {
5607   EVT VT = BVN->getValueType(0);
5608   unsigned NumElements = VT.getVectorNumElements();
5609 
5610   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5611   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5612   // need a BUILD_VECTOR, add an additional placeholder operand for that
5613   // BUILD_VECTOR and store its operands in ResidueOps.
5614   GeneralShuffle GS(VT);
5615   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5616   bool FoundOne = false;
5617   for (unsigned I = 0; I < NumElements; ++I) {
5618     SDValue Op = BVN->getOperand(I);
5619     if (Op.getOpcode() == ISD::TRUNCATE)
5620       Op = Op.getOperand(0);
5621     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5622         Op.getOperand(1).getOpcode() == ISD::Constant) {
5623       unsigned Elem = Op.getConstantOperandVal(1);
5624       if (!GS.add(Op.getOperand(0), Elem))
5625         return SDValue();
5626       FoundOne = true;
5627     } else if (Op.isUndef()) {
5628       GS.addUndef();
5629     } else {
5630       if (!GS.add(SDValue(), ResidueOps.size()))
5631         return SDValue();
5632       ResidueOps.push_back(BVN->getOperand(I));
5633     }
5634   }
5635 
5636   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5637   if (!FoundOne)
5638     return SDValue();
5639 
5640   // Create the BUILD_VECTOR for the remaining elements, if any.
5641   if (!ResidueOps.empty()) {
5642     while (ResidueOps.size() < NumElements)
5643       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5644     for (auto &Op : GS.Ops) {
5645       if (!Op.getNode()) {
5646         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5647         break;
5648       }
5649     }
5650   }
5651   return GS.getNode(DAG, SDLoc(BVN));
5652 }
5653 
5654 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5655   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5656     return true;
5657   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5658     return true;
5659   return false;
5660 }
5661 
5662 // Combine GPR scalar values Elems into a vector of type VT.
5663 SDValue
5664 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5665                                    SmallVectorImpl<SDValue> &Elems) const {
5666   // See whether there is a single replicated value.
5667   SDValue Single;
5668   unsigned int NumElements = Elems.size();
5669   unsigned int Count = 0;
5670   for (auto Elem : Elems) {
5671     if (!Elem.isUndef()) {
5672       if (!Single.getNode())
5673         Single = Elem;
5674       else if (Elem != Single) {
5675         Single = SDValue();
5676         break;
5677       }
5678       Count += 1;
5679     }
5680   }
5681   // There are three cases here:
5682   //
5683   // - if the only defined element is a loaded one, the best sequence
5684   //   is a replicating load.
5685   //
5686   // - otherwise, if the only defined element is an i64 value, we will
5687   //   end up with the same VLVGP sequence regardless of whether we short-cut
5688   //   for replication or fall through to the later code.
5689   //
5690   // - otherwise, if the only defined element is an i32 or smaller value,
5691   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5692   //   This is only a win if the single defined element is used more than once.
5693   //   In other cases we're better off using a single VLVGx.
5694   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5695     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5696 
5697   // If all elements are loads, use VLREP/VLEs (below).
5698   bool AllLoads = true;
5699   for (auto Elem : Elems)
5700     if (!isVectorElementLoad(Elem)) {
5701       AllLoads = false;
5702       break;
5703     }
5704 
5705   // The best way of building a v2i64 from two i64s is to use VLVGP.
5706   if (VT == MVT::v2i64 && !AllLoads)
5707     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5708 
5709   // Use a 64-bit merge high to combine two doubles.
5710   if (VT == MVT::v2f64 && !AllLoads)
5711     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5712 
5713   // Build v4f32 values directly from the FPRs:
5714   //
5715   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5716   //         V              V         VMRHF
5717   //      <ABxx>         <CDxx>
5718   //                V                 VMRHG
5719   //              <ABCD>
5720   if (VT == MVT::v4f32 && !AllLoads) {
5721     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5722     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5723     // Avoid unnecessary undefs by reusing the other operand.
5724     if (Op01.isUndef())
5725       Op01 = Op23;
5726     else if (Op23.isUndef())
5727       Op23 = Op01;
5728     // Merging identical replications is a no-op.
5729     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5730       return Op01;
5731     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5732     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5733     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5734                              DL, MVT::v2i64, Op01, Op23);
5735     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5736   }
5737 
5738   // Collect the constant terms.
5739   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5740   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5741 
5742   unsigned NumConstants = 0;
5743   for (unsigned I = 0; I < NumElements; ++I) {
5744     SDValue Elem = Elems[I];
5745     if (Elem.getOpcode() == ISD::Constant ||
5746         Elem.getOpcode() == ISD::ConstantFP) {
5747       NumConstants += 1;
5748       Constants[I] = Elem;
5749       Done[I] = true;
5750     }
5751   }
5752   // If there was at least one constant, fill in the other elements of
5753   // Constants with undefs to get a full vector constant and use that
5754   // as the starting point.
5755   SDValue Result;
5756   SDValue ReplicatedVal;
5757   if (NumConstants > 0) {
5758     for (unsigned I = 0; I < NumElements; ++I)
5759       if (!Constants[I].getNode())
5760         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5761     Result = DAG.getBuildVector(VT, DL, Constants);
5762   } else {
5763     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5764     // avoid a false dependency on any previous contents of the vector
5765     // register.
5766 
5767     // Use a VLREP if at least one element is a load. Make sure to replicate
5768     // the load with the most elements having its value.
5769     std::map<const SDNode*, unsigned> UseCounts;
5770     SDNode *LoadMaxUses = nullptr;
5771     for (unsigned I = 0; I < NumElements; ++I)
5772       if (isVectorElementLoad(Elems[I])) {
5773         SDNode *Ld = Elems[I].getNode();
5774         UseCounts[Ld]++;
5775         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5776           LoadMaxUses = Ld;
5777       }
5778     if (LoadMaxUses != nullptr) {
5779       ReplicatedVal = SDValue(LoadMaxUses, 0);
5780       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5781     } else {
5782       // Try to use VLVGP.
5783       unsigned I1 = NumElements / 2 - 1;
5784       unsigned I2 = NumElements - 1;
5785       bool Def1 = !Elems[I1].isUndef();
5786       bool Def2 = !Elems[I2].isUndef();
5787       if (Def1 || Def2) {
5788         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5789         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5790         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5791                              joinDwords(DAG, DL, Elem1, Elem2));
5792         Done[I1] = true;
5793         Done[I2] = true;
5794       } else
5795         Result = DAG.getUNDEF(VT);
5796     }
5797   }
5798 
5799   // Use VLVGx to insert the other elements.
5800   for (unsigned I = 0; I < NumElements; ++I)
5801     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5802       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5803                            DAG.getConstant(I, DL, MVT::i32));
5804   return Result;
5805 }
5806 
5807 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5808                                                  SelectionDAG &DAG) const {
5809   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5810   SDLoc DL(Op);
5811   EVT VT = Op.getValueType();
5812 
5813   if (BVN->isConstant()) {
5814     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5815       return Op;
5816 
5817     // Fall back to loading it from memory.
5818     return SDValue();
5819   }
5820 
5821   // See if we should use shuffles to construct the vector from other vectors.
5822   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5823     return Res;
5824 
5825   // Detect SCALAR_TO_VECTOR conversions.
5826   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5827     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5828 
5829   // Otherwise use buildVector to build the vector up from GPRs.
5830   unsigned NumElements = Op.getNumOperands();
5831   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5832   for (unsigned I = 0; I < NumElements; ++I)
5833     Ops[I] = Op.getOperand(I);
5834   return buildVector(DAG, DL, VT, Ops);
5835 }
5836 
5837 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5838                                                    SelectionDAG &DAG) const {
5839   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5840   SDLoc DL(Op);
5841   EVT VT = Op.getValueType();
5842   unsigned NumElements = VT.getVectorNumElements();
5843 
5844   if (VSN->isSplat()) {
5845     SDValue Op0 = Op.getOperand(0);
5846     unsigned Index = VSN->getSplatIndex();
5847     assert(Index < VT.getVectorNumElements() &&
5848            "Splat index should be defined and in first operand");
5849     // See whether the value we're splatting is directly available as a scalar.
5850     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5851         Op0.getOpcode() == ISD::BUILD_VECTOR)
5852       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5853     // Otherwise keep it as a vector-to-vector operation.
5854     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5855                        DAG.getTargetConstant(Index, DL, MVT::i32));
5856   }
5857 
5858   GeneralShuffle GS(VT);
5859   for (unsigned I = 0; I < NumElements; ++I) {
5860     int Elt = VSN->getMaskElt(I);
5861     if (Elt < 0)
5862       GS.addUndef();
5863     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5864                      unsigned(Elt) % NumElements))
5865       return SDValue();
5866   }
5867   return GS.getNode(DAG, SDLoc(VSN));
5868 }
5869 
5870 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5871                                                      SelectionDAG &DAG) const {
5872   SDLoc DL(Op);
5873   // Just insert the scalar into element 0 of an undefined vector.
5874   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5875                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5876                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5877 }
5878 
5879 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5880                                                       SelectionDAG &DAG) const {
5881   // Handle insertions of floating-point values.
5882   SDLoc DL(Op);
5883   SDValue Op0 = Op.getOperand(0);
5884   SDValue Op1 = Op.getOperand(1);
5885   SDValue Op2 = Op.getOperand(2);
5886   EVT VT = Op.getValueType();
5887 
5888   // Insertions into constant indices of a v2f64 can be done using VPDI.
5889   // However, if the inserted value is a bitcast or a constant then it's
5890   // better to use GPRs, as below.
5891   if (VT == MVT::v2f64 &&
5892       Op1.getOpcode() != ISD::BITCAST &&
5893       Op1.getOpcode() != ISD::ConstantFP &&
5894       Op2.getOpcode() == ISD::Constant) {
5895     uint64_t Index = Op2->getAsZExtVal();
5896     unsigned Mask = VT.getVectorNumElements() - 1;
5897     if (Index <= Mask)
5898       return Op;
5899   }
5900 
5901   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5902   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5903   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5904   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5905                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5906                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5907   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5908 }
5909 
5910 SDValue
5911 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5912                                                SelectionDAG &DAG) const {
5913   // Handle extractions of floating-point values.
5914   SDLoc DL(Op);
5915   SDValue Op0 = Op.getOperand(0);
5916   SDValue Op1 = Op.getOperand(1);
5917   EVT VT = Op.getValueType();
5918   EVT VecVT = Op0.getValueType();
5919 
5920   // Extractions of constant indices can be done directly.
5921   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5922     uint64_t Index = CIndexN->getZExtValue();
5923     unsigned Mask = VecVT.getVectorNumElements() - 1;
5924     if (Index <= Mask)
5925       return Op;
5926   }
5927 
5928   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5929   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5930   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5931   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5932                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5933   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5934 }
5935 
5936 SDValue SystemZTargetLowering::
5937 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5938   SDValue PackedOp = Op.getOperand(0);
5939   EVT OutVT = Op.getValueType();
5940   EVT InVT = PackedOp.getValueType();
5941   unsigned ToBits = OutVT.getScalarSizeInBits();
5942   unsigned FromBits = InVT.getScalarSizeInBits();
5943   do {
5944     FromBits *= 2;
5945     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5946                                  SystemZ::VectorBits / FromBits);
5947     PackedOp =
5948       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5949   } while (FromBits != ToBits);
5950   return PackedOp;
5951 }
5952 
5953 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5954 SDValue SystemZTargetLowering::
5955 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5956   SDValue PackedOp = Op.getOperand(0);
5957   SDLoc DL(Op);
5958   EVT OutVT = Op.getValueType();
5959   EVT InVT = PackedOp.getValueType();
5960   unsigned InNumElts = InVT.getVectorNumElements();
5961   unsigned OutNumElts = OutVT.getVectorNumElements();
5962   unsigned NumInPerOut = InNumElts / OutNumElts;
5963 
5964   SDValue ZeroVec =
5965     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5966 
5967   SmallVector<int, 16> Mask(InNumElts);
5968   unsigned ZeroVecElt = InNumElts;
5969   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5970     unsigned MaskElt = PackedElt * NumInPerOut;
5971     unsigned End = MaskElt + NumInPerOut - 1;
5972     for (; MaskElt < End; MaskElt++)
5973       Mask[MaskElt] = ZeroVecElt++;
5974     Mask[MaskElt] = PackedElt;
5975   }
5976   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5977   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5978 }
5979 
5980 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5981                                           unsigned ByScalar) const {
5982   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5983   SDValue Op0 = Op.getOperand(0);
5984   SDValue Op1 = Op.getOperand(1);
5985   SDLoc DL(Op);
5986   EVT VT = Op.getValueType();
5987   unsigned ElemBitSize = VT.getScalarSizeInBits();
5988 
5989   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5990   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5991     APInt SplatBits, SplatUndef;
5992     unsigned SplatBitSize;
5993     bool HasAnyUndefs;
5994     // Check for constant splats.  Use ElemBitSize as the minimum element
5995     // width and reject splats that need wider elements.
5996     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5997                              ElemBitSize, true) &&
5998         SplatBitSize == ElemBitSize) {
5999       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
6000                                       DL, MVT::i32);
6001       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6002     }
6003     // Check for variable splats.
6004     BitVector UndefElements;
6005     SDValue Splat = BVN->getSplatValue(&UndefElements);
6006     if (Splat) {
6007       // Since i32 is the smallest legal type, we either need a no-op
6008       // or a truncation.
6009       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
6010       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6011     }
6012   }
6013 
6014   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
6015   // and the shift amount is directly available in a GPR.
6016   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
6017     if (VSN->isSplat()) {
6018       SDValue VSNOp0 = VSN->getOperand(0);
6019       unsigned Index = VSN->getSplatIndex();
6020       assert(Index < VT.getVectorNumElements() &&
6021              "Splat index should be defined and in first operand");
6022       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
6023           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
6024         // Since i32 is the smallest legal type, we either need a no-op
6025         // or a truncation.
6026         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
6027                                     VSNOp0.getOperand(Index));
6028         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
6029       }
6030     }
6031   }
6032 
6033   // Otherwise just treat the current form as legal.
6034   return Op;
6035 }
6036 
6037 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
6038                                                SelectionDAG &DAG) const {
6039   SDLoc DL(Op);
6040   MVT ResultVT = Op.getSimpleValueType();
6041   SDValue Arg = Op.getOperand(0);
6042   auto CNode = cast<ConstantSDNode>(Op.getOperand(1));
6043   unsigned Check = CNode->getZExtValue();
6044 
6045   unsigned TDCMask = 0;
6046   if (Check & fcSNan)
6047     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
6048   if (Check & fcQNan)
6049     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
6050   if (Check & fcPosInf)
6051     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
6052   if (Check & fcNegInf)
6053     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
6054   if (Check & fcPosNormal)
6055     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
6056   if (Check & fcNegNormal)
6057     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
6058   if (Check & fcPosSubnormal)
6059     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
6060   if (Check & fcNegSubnormal)
6061     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
6062   if (Check & fcPosZero)
6063     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
6064   if (Check & fcNegZero)
6065     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
6066   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
6067 
6068   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
6069   return getCCResult(DAG, Intr);
6070 }
6071 
6072 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
6073                                               SelectionDAG &DAG) const {
6074   switch (Op.getOpcode()) {
6075   case ISD::FRAMEADDR:
6076     return lowerFRAMEADDR(Op, DAG);
6077   case ISD::RETURNADDR:
6078     return lowerRETURNADDR(Op, DAG);
6079   case ISD::BR_CC:
6080     return lowerBR_CC(Op, DAG);
6081   case ISD::SELECT_CC:
6082     return lowerSELECT_CC(Op, DAG);
6083   case ISD::SETCC:
6084     return lowerSETCC(Op, DAG);
6085   case ISD::STRICT_FSETCC:
6086     return lowerSTRICT_FSETCC(Op, DAG, false);
6087   case ISD::STRICT_FSETCCS:
6088     return lowerSTRICT_FSETCC(Op, DAG, true);
6089   case ISD::GlobalAddress:
6090     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
6091   case ISD::GlobalTLSAddress:
6092     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
6093   case ISD::BlockAddress:
6094     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
6095   case ISD::JumpTable:
6096     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
6097   case ISD::ConstantPool:
6098     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
6099   case ISD::BITCAST:
6100     return lowerBITCAST(Op, DAG);
6101   case ISD::VASTART:
6102     return lowerVASTART(Op, DAG);
6103   case ISD::VACOPY:
6104     return lowerVACOPY(Op, DAG);
6105   case ISD::DYNAMIC_STACKALLOC:
6106     return lowerDYNAMIC_STACKALLOC(Op, DAG);
6107   case ISD::GET_DYNAMIC_AREA_OFFSET:
6108     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
6109   case ISD::SMUL_LOHI:
6110     return lowerSMUL_LOHI(Op, DAG);
6111   case ISD::UMUL_LOHI:
6112     return lowerUMUL_LOHI(Op, DAG);
6113   case ISD::SDIVREM:
6114     return lowerSDIVREM(Op, DAG);
6115   case ISD::UDIVREM:
6116     return lowerUDIVREM(Op, DAG);
6117   case ISD::SADDO:
6118   case ISD::SSUBO:
6119   case ISD::UADDO:
6120   case ISD::USUBO:
6121     return lowerXALUO(Op, DAG);
6122   case ISD::UADDO_CARRY:
6123   case ISD::USUBO_CARRY:
6124     return lowerUADDSUBO_CARRY(Op, DAG);
6125   case ISD::OR:
6126     return lowerOR(Op, DAG);
6127   case ISD::CTPOP:
6128     return lowerCTPOP(Op, DAG);
6129   case ISD::ATOMIC_FENCE:
6130     return lowerATOMIC_FENCE(Op, DAG);
6131   case ISD::ATOMIC_SWAP:
6132     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
6133   case ISD::ATOMIC_STORE:
6134     return lowerATOMIC_STORE(Op, DAG);
6135   case ISD::ATOMIC_LOAD:
6136     return lowerATOMIC_LOAD(Op, DAG);
6137   case ISD::ATOMIC_LOAD_ADD:
6138     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
6139   case ISD::ATOMIC_LOAD_SUB:
6140     return lowerATOMIC_LOAD_SUB(Op, DAG);
6141   case ISD::ATOMIC_LOAD_AND:
6142     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
6143   case ISD::ATOMIC_LOAD_OR:
6144     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
6145   case ISD::ATOMIC_LOAD_XOR:
6146     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
6147   case ISD::ATOMIC_LOAD_NAND:
6148     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
6149   case ISD::ATOMIC_LOAD_MIN:
6150     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
6151   case ISD::ATOMIC_LOAD_MAX:
6152     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
6153   case ISD::ATOMIC_LOAD_UMIN:
6154     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
6155   case ISD::ATOMIC_LOAD_UMAX:
6156     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
6157   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
6158     return lowerATOMIC_CMP_SWAP(Op, DAG);
6159   case ISD::STACKSAVE:
6160     return lowerSTACKSAVE(Op, DAG);
6161   case ISD::STACKRESTORE:
6162     return lowerSTACKRESTORE(Op, DAG);
6163   case ISD::PREFETCH:
6164     return lowerPREFETCH(Op, DAG);
6165   case ISD::INTRINSIC_W_CHAIN:
6166     return lowerINTRINSIC_W_CHAIN(Op, DAG);
6167   case ISD::INTRINSIC_WO_CHAIN:
6168     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
6169   case ISD::BUILD_VECTOR:
6170     return lowerBUILD_VECTOR(Op, DAG);
6171   case ISD::VECTOR_SHUFFLE:
6172     return lowerVECTOR_SHUFFLE(Op, DAG);
6173   case ISD::SCALAR_TO_VECTOR:
6174     return lowerSCALAR_TO_VECTOR(Op, DAG);
6175   case ISD::INSERT_VECTOR_ELT:
6176     return lowerINSERT_VECTOR_ELT(Op, DAG);
6177   case ISD::EXTRACT_VECTOR_ELT:
6178     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
6179   case ISD::SIGN_EXTEND_VECTOR_INREG:
6180     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
6181   case ISD::ZERO_EXTEND_VECTOR_INREG:
6182     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
6183   case ISD::SHL:
6184     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
6185   case ISD::SRL:
6186     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
6187   case ISD::SRA:
6188     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
6189   case ISD::ROTL:
6190     return lowerShift(Op, DAG, SystemZISD::VROTL_BY_SCALAR);
6191   case ISD::IS_FPCLASS:
6192     return lowerIS_FPCLASS(Op, DAG);
6193   case ISD::GET_ROUNDING:
6194     return lowerGET_ROUNDING(Op, DAG);
6195   default:
6196     llvm_unreachable("Unexpected node to lower");
6197   }
6198 }
6199 
6200 // Lower operations with invalid operand or result types (currently used
6201 // only for 128-bit integer types).
6202 void
6203 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
6204                                              SmallVectorImpl<SDValue> &Results,
6205                                              SelectionDAG &DAG) const {
6206   switch (N->getOpcode()) {
6207   case ISD::ATOMIC_LOAD: {
6208     SDLoc DL(N);
6209     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
6210     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
6211     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6212     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
6213                                           DL, Tys, Ops, MVT::i128, MMO);
6214     Results.push_back(lowerGR128ToI128(DAG, Res));
6215     Results.push_back(Res.getValue(1));
6216     break;
6217   }
6218   case ISD::ATOMIC_STORE: {
6219     SDLoc DL(N);
6220     SDVTList Tys = DAG.getVTList(MVT::Other);
6221     SDValue Ops[] = {N->getOperand(0), lowerI128ToGR128(DAG, N->getOperand(1)),
6222                      N->getOperand(2)};
6223     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6224     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
6225                                           DL, Tys, Ops, MVT::i128, MMO);
6226     // We have to enforce sequential consistency by performing a
6227     // serialization operation after the store.
6228     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
6229         AtomicOrdering::SequentiallyConsistent)
6230       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
6231                                        MVT::Other, Res), 0);
6232     Results.push_back(Res);
6233     break;
6234   }
6235   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
6236     SDLoc DL(N);
6237     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
6238     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
6239                       lowerI128ToGR128(DAG, N->getOperand(2)),
6240                       lowerI128ToGR128(DAG, N->getOperand(3)) };
6241     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
6242     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
6243                                           DL, Tys, Ops, MVT::i128, MMO);
6244     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
6245                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
6246     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
6247     Results.push_back(lowerGR128ToI128(DAG, Res));
6248     Results.push_back(Success);
6249     Results.push_back(Res.getValue(2));
6250     break;
6251   }
6252   case ISD::BITCAST: {
6253     SDValue Src = N->getOperand(0);
6254     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
6255         !useSoftFloat()) {
6256       SDLoc DL(N);
6257       SDValue Lo, Hi;
6258       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
6259         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
6260         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
6261                          DAG.getConstant(1, DL, MVT::i32));
6262         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
6263                          DAG.getConstant(0, DL, MVT::i32));
6264       } else {
6265         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
6266                "Unrecognized register class for f128.");
6267         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
6268                                                   DL, MVT::f64, Src);
6269         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
6270                                                   DL, MVT::f64, Src);
6271         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
6272         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
6273       }
6274       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
6275     }
6276     break;
6277   }
6278   default:
6279     llvm_unreachable("Unexpected node to lower");
6280   }
6281 }
6282 
6283 void
6284 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
6285                                           SmallVectorImpl<SDValue> &Results,
6286                                           SelectionDAG &DAG) const {
6287   return LowerOperationWrapper(N, Results, DAG);
6288 }
6289 
6290 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
6291 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
6292   switch ((SystemZISD::NodeType)Opcode) {
6293     case SystemZISD::FIRST_NUMBER: break;
6294     OPCODE(RET_GLUE);
6295     OPCODE(CALL);
6296     OPCODE(SIBCALL);
6297     OPCODE(TLS_GDCALL);
6298     OPCODE(TLS_LDCALL);
6299     OPCODE(PCREL_WRAPPER);
6300     OPCODE(PCREL_OFFSET);
6301     OPCODE(ICMP);
6302     OPCODE(FCMP);
6303     OPCODE(STRICT_FCMP);
6304     OPCODE(STRICT_FCMPS);
6305     OPCODE(TM);
6306     OPCODE(BR_CCMASK);
6307     OPCODE(SELECT_CCMASK);
6308     OPCODE(ADJDYNALLOC);
6309     OPCODE(PROBED_ALLOCA);
6310     OPCODE(POPCNT);
6311     OPCODE(SMUL_LOHI);
6312     OPCODE(UMUL_LOHI);
6313     OPCODE(SDIVREM);
6314     OPCODE(UDIVREM);
6315     OPCODE(SADDO);
6316     OPCODE(SSUBO);
6317     OPCODE(UADDO);
6318     OPCODE(USUBO);
6319     OPCODE(ADDCARRY);
6320     OPCODE(SUBCARRY);
6321     OPCODE(GET_CCMASK);
6322     OPCODE(MVC);
6323     OPCODE(NC);
6324     OPCODE(OC);
6325     OPCODE(XC);
6326     OPCODE(CLC);
6327     OPCODE(MEMSET_MVC);
6328     OPCODE(STPCPY);
6329     OPCODE(STRCMP);
6330     OPCODE(SEARCH_STRING);
6331     OPCODE(IPM);
6332     OPCODE(TBEGIN);
6333     OPCODE(TBEGIN_NOFLOAT);
6334     OPCODE(TEND);
6335     OPCODE(BYTE_MASK);
6336     OPCODE(ROTATE_MASK);
6337     OPCODE(REPLICATE);
6338     OPCODE(JOIN_DWORDS);
6339     OPCODE(SPLAT);
6340     OPCODE(MERGE_HIGH);
6341     OPCODE(MERGE_LOW);
6342     OPCODE(SHL_DOUBLE);
6343     OPCODE(PERMUTE_DWORDS);
6344     OPCODE(PERMUTE);
6345     OPCODE(PACK);
6346     OPCODE(PACKS_CC);
6347     OPCODE(PACKLS_CC);
6348     OPCODE(UNPACK_HIGH);
6349     OPCODE(UNPACKL_HIGH);
6350     OPCODE(UNPACK_LOW);
6351     OPCODE(UNPACKL_LOW);
6352     OPCODE(VSHL_BY_SCALAR);
6353     OPCODE(VSRL_BY_SCALAR);
6354     OPCODE(VSRA_BY_SCALAR);
6355     OPCODE(VROTL_BY_SCALAR);
6356     OPCODE(VSUM);
6357     OPCODE(VACC);
6358     OPCODE(VSCBI);
6359     OPCODE(VAC);
6360     OPCODE(VSBI);
6361     OPCODE(VACCC);
6362     OPCODE(VSBCBI);
6363     OPCODE(VICMPE);
6364     OPCODE(VICMPH);
6365     OPCODE(VICMPHL);
6366     OPCODE(VICMPES);
6367     OPCODE(VICMPHS);
6368     OPCODE(VICMPHLS);
6369     OPCODE(VFCMPE);
6370     OPCODE(STRICT_VFCMPE);
6371     OPCODE(STRICT_VFCMPES);
6372     OPCODE(VFCMPH);
6373     OPCODE(STRICT_VFCMPH);
6374     OPCODE(STRICT_VFCMPHS);
6375     OPCODE(VFCMPHE);
6376     OPCODE(STRICT_VFCMPHE);
6377     OPCODE(STRICT_VFCMPHES);
6378     OPCODE(VFCMPES);
6379     OPCODE(VFCMPHS);
6380     OPCODE(VFCMPHES);
6381     OPCODE(VFTCI);
6382     OPCODE(VEXTEND);
6383     OPCODE(STRICT_VEXTEND);
6384     OPCODE(VROUND);
6385     OPCODE(STRICT_VROUND);
6386     OPCODE(VTM);
6387     OPCODE(SCMP128HI);
6388     OPCODE(UCMP128HI);
6389     OPCODE(VFAE_CC);
6390     OPCODE(VFAEZ_CC);
6391     OPCODE(VFEE_CC);
6392     OPCODE(VFEEZ_CC);
6393     OPCODE(VFENE_CC);
6394     OPCODE(VFENEZ_CC);
6395     OPCODE(VISTR_CC);
6396     OPCODE(VSTRC_CC);
6397     OPCODE(VSTRCZ_CC);
6398     OPCODE(VSTRS_CC);
6399     OPCODE(VSTRSZ_CC);
6400     OPCODE(TDC);
6401     OPCODE(ATOMIC_SWAPW);
6402     OPCODE(ATOMIC_LOADW_ADD);
6403     OPCODE(ATOMIC_LOADW_SUB);
6404     OPCODE(ATOMIC_LOADW_AND);
6405     OPCODE(ATOMIC_LOADW_OR);
6406     OPCODE(ATOMIC_LOADW_XOR);
6407     OPCODE(ATOMIC_LOADW_NAND);
6408     OPCODE(ATOMIC_LOADW_MIN);
6409     OPCODE(ATOMIC_LOADW_MAX);
6410     OPCODE(ATOMIC_LOADW_UMIN);
6411     OPCODE(ATOMIC_LOADW_UMAX);
6412     OPCODE(ATOMIC_CMP_SWAPW);
6413     OPCODE(ATOMIC_CMP_SWAP);
6414     OPCODE(ATOMIC_LOAD_128);
6415     OPCODE(ATOMIC_STORE_128);
6416     OPCODE(ATOMIC_CMP_SWAP_128);
6417     OPCODE(LRV);
6418     OPCODE(STRV);
6419     OPCODE(VLER);
6420     OPCODE(VSTER);
6421     OPCODE(PREFETCH);
6422     OPCODE(ADA_ENTRY);
6423   }
6424   return nullptr;
6425 #undef OPCODE
6426 }
6427 
6428 // Return true if VT is a vector whose elements are a whole number of bytes
6429 // in width. Also check for presence of vector support.
6430 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6431   if (!Subtarget.hasVector())
6432     return false;
6433 
6434   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6435 }
6436 
6437 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6438 // producing a result of type ResVT.  Op is a possibly bitcast version
6439 // of the input vector and Index is the index (based on type VecVT) that
6440 // should be extracted.  Return the new extraction if a simplification
6441 // was possible or if Force is true.
6442 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6443                                               EVT VecVT, SDValue Op,
6444                                               unsigned Index,
6445                                               DAGCombinerInfo &DCI,
6446                                               bool Force) const {
6447   SelectionDAG &DAG = DCI.DAG;
6448 
6449   // The number of bytes being extracted.
6450   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6451 
6452   for (;;) {
6453     unsigned Opcode = Op.getOpcode();
6454     if (Opcode == ISD::BITCAST)
6455       // Look through bitcasts.
6456       Op = Op.getOperand(0);
6457     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6458              canTreatAsByteVector(Op.getValueType())) {
6459       // Get a VPERM-like permute mask and see whether the bytes covered
6460       // by the extracted element are a contiguous sequence from one
6461       // source operand.
6462       SmallVector<int, SystemZ::VectorBytes> Bytes;
6463       if (!getVPermMask(Op, Bytes))
6464         break;
6465       int First;
6466       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6467                            BytesPerElement, First))
6468         break;
6469       if (First < 0)
6470         return DAG.getUNDEF(ResVT);
6471       // Make sure the contiguous sequence starts at a multiple of the
6472       // original element size.
6473       unsigned Byte = unsigned(First) % Bytes.size();
6474       if (Byte % BytesPerElement != 0)
6475         break;
6476       // We can get the extracted value directly from an input.
6477       Index = Byte / BytesPerElement;
6478       Op = Op.getOperand(unsigned(First) / Bytes.size());
6479       Force = true;
6480     } else if (Opcode == ISD::BUILD_VECTOR &&
6481                canTreatAsByteVector(Op.getValueType())) {
6482       // We can only optimize this case if the BUILD_VECTOR elements are
6483       // at least as wide as the extracted value.
6484       EVT OpVT = Op.getValueType();
6485       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6486       if (OpBytesPerElement < BytesPerElement)
6487         break;
6488       // Make sure that the least-significant bit of the extracted value
6489       // is the least significant bit of an input.
6490       unsigned End = (Index + 1) * BytesPerElement;
6491       if (End % OpBytesPerElement != 0)
6492         break;
6493       // We're extracting the low part of one operand of the BUILD_VECTOR.
6494       Op = Op.getOperand(End / OpBytesPerElement - 1);
6495       if (!Op.getValueType().isInteger()) {
6496         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6497         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6498         DCI.AddToWorklist(Op.getNode());
6499       }
6500       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6501       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6502       if (VT != ResVT) {
6503         DCI.AddToWorklist(Op.getNode());
6504         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6505       }
6506       return Op;
6507     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6508                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6509                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6510                canTreatAsByteVector(Op.getValueType()) &&
6511                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6512       // Make sure that only the unextended bits are significant.
6513       EVT ExtVT = Op.getValueType();
6514       EVT OpVT = Op.getOperand(0).getValueType();
6515       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6516       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6517       unsigned Byte = Index * BytesPerElement;
6518       unsigned SubByte = Byte % ExtBytesPerElement;
6519       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6520       if (SubByte < MinSubByte ||
6521           SubByte + BytesPerElement > ExtBytesPerElement)
6522         break;
6523       // Get the byte offset of the unextended element
6524       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6525       // ...then add the byte offset relative to that element.
6526       Byte += SubByte - MinSubByte;
6527       if (Byte % BytesPerElement != 0)
6528         break;
6529       Op = Op.getOperand(0);
6530       Index = Byte / BytesPerElement;
6531       Force = true;
6532     } else
6533       break;
6534   }
6535   if (Force) {
6536     if (Op.getValueType() != VecVT) {
6537       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6538       DCI.AddToWorklist(Op.getNode());
6539     }
6540     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6541                        DAG.getConstant(Index, DL, MVT::i32));
6542   }
6543   return SDValue();
6544 }
6545 
6546 // Optimize vector operations in scalar value Op on the basis that Op
6547 // is truncated to TruncVT.
6548 SDValue SystemZTargetLowering::combineTruncateExtract(
6549     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6550   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6551   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6552   // of type TruncVT.
6553   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6554       TruncVT.getSizeInBits() % 8 == 0) {
6555     SDValue Vec = Op.getOperand(0);
6556     EVT VecVT = Vec.getValueType();
6557     if (canTreatAsByteVector(VecVT)) {
6558       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6559         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6560         unsigned TruncBytes = TruncVT.getStoreSize();
6561         if (BytesPerElement % TruncBytes == 0) {
6562           // Calculate the value of Y' in the above description.  We are
6563           // splitting the original elements into Scale equal-sized pieces
6564           // and for truncation purposes want the last (least-significant)
6565           // of these pieces for IndexN.  This is easiest to do by calculating
6566           // the start index of the following element and then subtracting 1.
6567           unsigned Scale = BytesPerElement / TruncBytes;
6568           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6569 
6570           // Defer the creation of the bitcast from X to combineExtract,
6571           // which might be able to optimize the extraction.
6572           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6573                                    VecVT.getStoreSize() / TruncBytes);
6574           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6575           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6576         }
6577       }
6578     }
6579   }
6580   return SDValue();
6581 }
6582 
6583 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6584     SDNode *N, DAGCombinerInfo &DCI) const {
6585   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6586   SelectionDAG &DAG = DCI.DAG;
6587   SDValue N0 = N->getOperand(0);
6588   EVT VT = N->getValueType(0);
6589   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6590     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6591     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6592     if (TrueOp && FalseOp) {
6593       SDLoc DL(N0);
6594       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6595                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6596                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6597       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6598       // If N0 has multiple uses, change other uses as well.
6599       if (!N0.hasOneUse()) {
6600         SDValue TruncSelect =
6601           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6602         DCI.CombineTo(N0.getNode(), TruncSelect);
6603       }
6604       return NewSelect;
6605     }
6606   }
6607   return SDValue();
6608 }
6609 
6610 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6611     SDNode *N, DAGCombinerInfo &DCI) const {
6612   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6613   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6614   // into (select_cc LHS, RHS, -1, 0, COND)
6615   SelectionDAG &DAG = DCI.DAG;
6616   SDValue N0 = N->getOperand(0);
6617   EVT VT = N->getValueType(0);
6618   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6619   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6620     N0 = N0.getOperand(0);
6621   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6622     SDLoc DL(N0);
6623     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6624                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6625                       N0.getOperand(2) };
6626     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6627   }
6628   return SDValue();
6629 }
6630 
6631 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6632     SDNode *N, DAGCombinerInfo &DCI) const {
6633   // Convert (sext (ashr (shl X, C1), C2)) to
6634   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6635   // cheap as narrower ones.
6636   SelectionDAG &DAG = DCI.DAG;
6637   SDValue N0 = N->getOperand(0);
6638   EVT VT = N->getValueType(0);
6639   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6640     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6641     SDValue Inner = N0.getOperand(0);
6642     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6643       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6644         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6645         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6646         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6647         EVT ShiftVT = N0.getOperand(1).getValueType();
6648         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6649                                   Inner.getOperand(0));
6650         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6651                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6652                                                   ShiftVT));
6653         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6654                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6655       }
6656     }
6657   }
6658   return SDValue();
6659 }
6660 
6661 SDValue SystemZTargetLowering::combineMERGE(
6662     SDNode *N, DAGCombinerInfo &DCI) const {
6663   SelectionDAG &DAG = DCI.DAG;
6664   unsigned Opcode = N->getOpcode();
6665   SDValue Op0 = N->getOperand(0);
6666   SDValue Op1 = N->getOperand(1);
6667   if (Op0.getOpcode() == ISD::BITCAST)
6668     Op0 = Op0.getOperand(0);
6669   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6670     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6671     // for v4f32.
6672     if (Op1 == N->getOperand(0))
6673       return Op1;
6674     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6675     EVT VT = Op1.getValueType();
6676     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6677     if (ElemBytes <= 4) {
6678       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6679                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6680       EVT InVT = VT.changeVectorElementTypeToInteger();
6681       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6682                                    SystemZ::VectorBytes / ElemBytes / 2);
6683       if (VT != InVT) {
6684         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6685         DCI.AddToWorklist(Op1.getNode());
6686       }
6687       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6688       DCI.AddToWorklist(Op.getNode());
6689       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6690     }
6691   }
6692   return SDValue();
6693 }
6694 
6695 SDValue SystemZTargetLowering::combineLOAD(
6696     SDNode *N, DAGCombinerInfo &DCI) const {
6697   SelectionDAG &DAG = DCI.DAG;
6698   EVT LdVT = N->getValueType(0);
6699   SDLoc DL(N);
6700 
6701   // Replace an i128 load that is used solely to move its value into GPRs
6702   // by separate loads of both halves.
6703   if (LdVT == MVT::i128) {
6704     LoadSDNode *LD = cast<LoadSDNode>(N);
6705     if (!LD->isSimple() || !ISD::isNormalLoad(LD))
6706       return SDValue();
6707 
6708     // Scan through all users.
6709     SmallVector<std::pair<SDNode *, int>, 2> Users;
6710     int UsedElements = 0;
6711     for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
6712          UI != UIEnd; ++UI) {
6713       // Skip the uses of the chain.
6714       if (UI.getUse().getResNo() != 0)
6715         continue;
6716 
6717       // Verify every user is a TRUNCATE to i64 of the low or high half ...
6718       SDNode *User = *UI;
6719       int Index = 1;
6720       if (User->getOpcode() == ISD::SRL &&
6721           User->getOperand(1).getOpcode() == ISD::Constant &&
6722           User->getConstantOperandVal(1) == 64 && User->hasOneUse()) {
6723         User = *User->use_begin();
6724         Index = 0;
6725       }
6726       if (User->getOpcode() != ISD::TRUNCATE ||
6727           User->getValueType(0) != MVT::i64)
6728         return SDValue();
6729 
6730       // ... and no half is extracted twice.
6731       if (UsedElements & (1 << Index))
6732         return SDValue();
6733 
6734       UsedElements |= 1 << Index;
6735       Users.push_back(std::make_pair(User, Index));
6736     }
6737 
6738     // Rewrite each extraction as an independent load.
6739     SmallVector<SDValue, 2> ArgChains;
6740     for (auto UserAndIndex : Users) {
6741       SDNode *User = UserAndIndex.first;
6742       unsigned Offset = User->getValueType(0).getStoreSize() * UserAndIndex.second;
6743       SDValue Ptr =
6744         DAG.getMemBasePlusOffset(LD->getBasePtr(), TypeSize::getFixed(Offset), DL);
6745       SDValue EltLoad =
6746         DAG.getLoad(User->getValueType(0), DL, LD->getChain(), Ptr,
6747                     LD->getPointerInfo().getWithOffset(Offset),
6748                     LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
6749                     LD->getAAInfo());
6750 
6751       DCI.CombineTo(User, EltLoad, true);
6752       ArgChains.push_back(EltLoad.getValue(1));
6753     }
6754 
6755     // Collect all chains via TokenFactor.
6756     SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
6757                                 ArgChains);
6758     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
6759     DCI.AddToWorklist(Chain.getNode());
6760     return SDValue(N, 0);
6761   }
6762 
6763   if (LdVT.isVector() || LdVT.isInteger())
6764     return SDValue();
6765   // Transform a scalar load that is REPLICATEd as well as having other
6766   // use(s) to the form where the other use(s) use the first element of the
6767   // REPLICATE instead of the load. Otherwise instruction selection will not
6768   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6769   // point loads.
6770 
6771   SDValue Replicate;
6772   SmallVector<SDNode*, 8> OtherUses;
6773   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6774        UI != UE; ++UI) {
6775     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6776       if (Replicate)
6777         return SDValue(); // Should never happen
6778       Replicate = SDValue(*UI, 0);
6779     }
6780     else if (UI.getUse().getResNo() == 0)
6781       OtherUses.push_back(*UI);
6782   }
6783   if (!Replicate || OtherUses.empty())
6784     return SDValue();
6785 
6786   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6787                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6788   // Update uses of the loaded Value while preserving old chains.
6789   for (SDNode *U : OtherUses) {
6790     SmallVector<SDValue, 8> Ops;
6791     for (SDValue Op : U->ops())
6792       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6793     DAG.UpdateNodeOperands(U, Ops);
6794   }
6795   return SDValue(N, 0);
6796 }
6797 
6798 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6799   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6800     return true;
6801   if (Subtarget.hasVectorEnhancements2())
6802     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::i128)
6803       return true;
6804   return false;
6805 }
6806 
6807 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6808   if (!VT.isVector() || !VT.isSimple() ||
6809       VT.getSizeInBits() != 128 ||
6810       VT.getScalarSizeInBits() % 8 != 0)
6811     return false;
6812 
6813   unsigned NumElts = VT.getVectorNumElements();
6814   for (unsigned i = 0; i < NumElts; ++i) {
6815     if (M[i] < 0) continue; // ignore UNDEF indices
6816     if ((unsigned) M[i] != NumElts - 1 - i)
6817       return false;
6818   }
6819 
6820   return true;
6821 }
6822 
6823 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6824   for (auto *U : StoredVal->uses()) {
6825     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6826       EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6827       if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6828         continue;
6829     } else if (isa<BuildVectorSDNode>(U)) {
6830       SDValue BuildVector = SDValue(U, 0);
6831       if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6832           isOnlyUsedByStores(BuildVector, DAG))
6833         continue;
6834     }
6835     return false;
6836   }
6837   return true;
6838 }
6839 
6840 static bool isMovedFromParts(SDValue Val, SDValue &LoPart, SDValue &HiPart) {
6841   if (Val.getOpcode() != ISD::OR || !Val.getNode()->hasOneUse())
6842     return false;
6843 
6844   SDValue Op0 = Val.getOperand(0);
6845   SDValue Op1 = Val.getOperand(1);
6846 
6847   if (Op0.getOpcode() == ISD::SHL)
6848     std::swap(Op0, Op1);
6849   if (Op1.getOpcode() != ISD::SHL || !Op1.getNode()->hasOneUse() ||
6850       Op1.getOperand(1).getOpcode() != ISD::Constant ||
6851       Op1.getConstantOperandVal(1) != 64)
6852     return false;
6853   Op1 = Op1.getOperand(0);
6854 
6855   if (Op0.getOpcode() != ISD::ZERO_EXTEND || !Op0.getNode()->hasOneUse() ||
6856       Op0.getOperand(0).getValueType() != MVT::i64)
6857     return false;
6858   if (Op1.getOpcode() != ISD::ANY_EXTEND || !Op1.getNode()->hasOneUse() ||
6859       Op1.getOperand(0).getValueType() != MVT::i64)
6860     return false;
6861 
6862   LoPart = Op0.getOperand(0);
6863   HiPart = Op1.getOperand(0);
6864   return true;
6865 }
6866 
6867 SDValue SystemZTargetLowering::combineSTORE(
6868     SDNode *N, DAGCombinerInfo &DCI) const {
6869   SelectionDAG &DAG = DCI.DAG;
6870   auto *SN = cast<StoreSDNode>(N);
6871   auto &Op1 = N->getOperand(1);
6872   EVT MemVT = SN->getMemoryVT();
6873   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6874   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6875   // If X has wider elements then convert it to:
6876   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6877   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6878     if (SDValue Value =
6879             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6880       DCI.AddToWorklist(Value.getNode());
6881 
6882       // Rewrite the store with the new form of stored value.
6883       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6884                                SN->getBasePtr(), SN->getMemoryVT(),
6885                                SN->getMemOperand());
6886     }
6887   }
6888   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6889   if (!SN->isTruncatingStore() &&
6890       Op1.getOpcode() == ISD::BSWAP &&
6891       Op1.getNode()->hasOneUse() &&
6892       canLoadStoreByteSwapped(Op1.getValueType())) {
6893 
6894       SDValue BSwapOp = Op1.getOperand(0);
6895 
6896       if (BSwapOp.getValueType() == MVT::i16)
6897         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6898 
6899       SDValue Ops[] = {
6900         N->getOperand(0), BSwapOp, N->getOperand(2)
6901       };
6902 
6903       return
6904         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6905                                 Ops, MemVT, SN->getMemOperand());
6906     }
6907   // Combine STORE (element-swap) into VSTER
6908   if (!SN->isTruncatingStore() &&
6909       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6910       Op1.getNode()->hasOneUse() &&
6911       Subtarget.hasVectorEnhancements2()) {
6912     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6913     ArrayRef<int> ShuffleMask = SVN->getMask();
6914     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6915       SDValue Ops[] = {
6916         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6917       };
6918 
6919       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6920                                      DAG.getVTList(MVT::Other),
6921                                      Ops, MemVT, SN->getMemOperand());
6922     }
6923   }
6924 
6925   // Transform a store of an i128 moved from GPRs into two separate stores.
6926   if (MemVT == MVT::i128 && SN->isSimple() && ISD::isNormalStore(SN)) {
6927     SDValue LoPart, HiPart;
6928     if (isMovedFromParts(Op1, LoPart, HiPart)) {
6929       SDLoc DL(SN);
6930       SDValue Chain0 =
6931         DAG.getStore(SN->getChain(), DL, HiPart, SN->getBasePtr(),
6932                      SN->getPointerInfo(), SN->getOriginalAlign(),
6933                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
6934       SDValue Chain1 =
6935         DAG.getStore(SN->getChain(), DL, LoPart,
6936                      DAG.getObjectPtrOffset(DL, SN->getBasePtr(),
6937                                                 TypeSize::getFixed(8)),
6938                      SN->getPointerInfo().getWithOffset(8),
6939                      SN->getOriginalAlign(),
6940                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
6941 
6942       return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chain0, Chain1);
6943     }
6944   }
6945 
6946   // Replicate a reg or immediate with VREP instead of scalar multiply or
6947   // immediate load. It seems best to do this during the first DAGCombine as
6948   // it is straight-forward to handle the zero-extend node in the initial
6949   // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
6950   // extracting an i16 element from a v16i8 vector).
6951   if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
6952       isOnlyUsedByStores(Op1, DAG)) {
6953     SDValue Word = SDValue();
6954     EVT WordVT;
6955 
6956     // Find a replicated immediate and return it if found in Word and its
6957     // type in WordVT.
6958     auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
6959       // Some constants are better handled with a scalar store.
6960       if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
6961           isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
6962         return;
6963       SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
6964       if (VCI.isVectorConstantLegal(Subtarget) &&
6965           VCI.Opcode == SystemZISD::REPLICATE) {
6966         Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
6967         WordVT = VCI.VecVT.getScalarType();
6968       }
6969     };
6970 
6971     // Find a replicated register and return it if found in Word and its type
6972     // in WordVT.
6973     auto FindReplicatedReg = [&](SDValue MulOp) {
6974       EVT MulVT = MulOp.getValueType();
6975       if (MulOp->getOpcode() == ISD::MUL &&
6976           (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
6977         // Find a zero extended value and its type.
6978         SDValue LHS = MulOp->getOperand(0);
6979         if (LHS->getOpcode() == ISD::ZERO_EXTEND)
6980           WordVT = LHS->getOperand(0).getValueType();
6981         else if (LHS->getOpcode() == ISD::AssertZext)
6982           WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
6983         else
6984           return;
6985         // Find a replicating constant, e.g. 0x00010001.
6986         if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
6987           SystemZVectorConstantInfo VCI(
6988               APInt(MulVT.getSizeInBits(), C->getZExtValue()));
6989           if (VCI.isVectorConstantLegal(Subtarget) &&
6990               VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
6991               WordVT == VCI.VecVT.getScalarType())
6992             Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
6993         }
6994       }
6995     };
6996 
6997     if (isa<BuildVectorSDNode>(Op1) &&
6998         DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
6999       SDValue SplatVal = Op1->getOperand(0);
7000       if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
7001         FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
7002       else
7003         FindReplicatedReg(SplatVal);
7004     } else {
7005       if (auto *C = dyn_cast<ConstantSDNode>(Op1))
7006         FindReplicatedImm(C, MemVT.getStoreSize());
7007       else
7008         FindReplicatedReg(Op1);
7009     }
7010 
7011     if (Word != SDValue()) {
7012       assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
7013              "Bad type handling");
7014       unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
7015       EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
7016       SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
7017       return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
7018                           SN->getBasePtr(), SN->getMemOperand());
7019     }
7020   }
7021 
7022   return SDValue();
7023 }
7024 
7025 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
7026     SDNode *N, DAGCombinerInfo &DCI) const {
7027   SelectionDAG &DAG = DCI.DAG;
7028   // Combine element-swap (LOAD) into VLER
7029   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7030       N->getOperand(0).hasOneUse() &&
7031       Subtarget.hasVectorEnhancements2()) {
7032     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7033     ArrayRef<int> ShuffleMask = SVN->getMask();
7034     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
7035       SDValue Load = N->getOperand(0);
7036       LoadSDNode *LD = cast<LoadSDNode>(Load);
7037 
7038       // Create the element-swapping load.
7039       SDValue Ops[] = {
7040         LD->getChain(),    // Chain
7041         LD->getBasePtr()   // Ptr
7042       };
7043       SDValue ESLoad =
7044         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
7045                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
7046                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
7047 
7048       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
7049       // by the load dead.
7050       DCI.CombineTo(N, ESLoad);
7051 
7052       // Next, combine the load away, we give it a bogus result value but a real
7053       // chain result.  The result value is dead because the shuffle is dead.
7054       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
7055 
7056       // Return N so it doesn't get rechecked!
7057       return SDValue(N, 0);
7058     }
7059   }
7060 
7061   return SDValue();
7062 }
7063 
7064 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
7065     SDNode *N, DAGCombinerInfo &DCI) const {
7066   SelectionDAG &DAG = DCI.DAG;
7067 
7068   if (!Subtarget.hasVector())
7069     return SDValue();
7070 
7071   // Look through bitcasts that retain the number of vector elements.
7072   SDValue Op = N->getOperand(0);
7073   if (Op.getOpcode() == ISD::BITCAST &&
7074       Op.getValueType().isVector() &&
7075       Op.getOperand(0).getValueType().isVector() &&
7076       Op.getValueType().getVectorNumElements() ==
7077       Op.getOperand(0).getValueType().getVectorNumElements())
7078     Op = Op.getOperand(0);
7079 
7080   // Pull BSWAP out of a vector extraction.
7081   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
7082     EVT VecVT = Op.getValueType();
7083     EVT EltVT = VecVT.getVectorElementType();
7084     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
7085                      Op.getOperand(0), N->getOperand(1));
7086     DCI.AddToWorklist(Op.getNode());
7087     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
7088     if (EltVT != N->getValueType(0)) {
7089       DCI.AddToWorklist(Op.getNode());
7090       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
7091     }
7092     return Op;
7093   }
7094 
7095   // Try to simplify a vector extraction.
7096   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7097     SDValue Op0 = N->getOperand(0);
7098     EVT VecVT = Op0.getValueType();
7099     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
7100                           IndexN->getZExtValue(), DCI, false);
7101   }
7102   return SDValue();
7103 }
7104 
7105 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
7106     SDNode *N, DAGCombinerInfo &DCI) const {
7107   SelectionDAG &DAG = DCI.DAG;
7108   // (join_dwords X, X) == (replicate X)
7109   if (N->getOperand(0) == N->getOperand(1))
7110     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
7111                        N->getOperand(0));
7112   return SDValue();
7113 }
7114 
7115 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
7116   SDValue Chain1 = N1->getOperand(0);
7117   SDValue Chain2 = N2->getOperand(0);
7118 
7119   // Trivial case: both nodes take the same chain.
7120   if (Chain1 == Chain2)
7121     return Chain1;
7122 
7123   // FIXME - we could handle more complex cases via TokenFactor,
7124   // assuming we can verify that this would not create a cycle.
7125   return SDValue();
7126 }
7127 
7128 SDValue SystemZTargetLowering::combineFP_ROUND(
7129     SDNode *N, DAGCombinerInfo &DCI) const {
7130 
7131   if (!Subtarget.hasVector())
7132     return SDValue();
7133 
7134   // (fpround (extract_vector_elt X 0))
7135   // (fpround (extract_vector_elt X 1)) ->
7136   // (extract_vector_elt (VROUND X) 0)
7137   // (extract_vector_elt (VROUND X) 2)
7138   //
7139   // This is a special case since the target doesn't really support v2f32s.
7140   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7141   SelectionDAG &DAG = DCI.DAG;
7142   SDValue Op0 = N->getOperand(OpNo);
7143   if (N->getValueType(0) == MVT::f32 && Op0.hasOneUse() &&
7144       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7145       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
7146       Op0.getOperand(1).getOpcode() == ISD::Constant &&
7147       Op0.getConstantOperandVal(1) == 0) {
7148     SDValue Vec = Op0.getOperand(0);
7149     for (auto *U : Vec->uses()) {
7150       if (U != Op0.getNode() && U->hasOneUse() &&
7151           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7152           U->getOperand(0) == Vec &&
7153           U->getOperand(1).getOpcode() == ISD::Constant &&
7154           U->getConstantOperandVal(1) == 1) {
7155         SDValue OtherRound = SDValue(*U->use_begin(), 0);
7156         if (OtherRound.getOpcode() == N->getOpcode() &&
7157             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
7158             OtherRound.getValueType() == MVT::f32) {
7159           SDValue VRound, Chain;
7160           if (N->isStrictFPOpcode()) {
7161             Chain = MergeInputChains(N, OtherRound.getNode());
7162             if (!Chain)
7163               continue;
7164             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
7165                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
7166             Chain = VRound.getValue(1);
7167           } else
7168             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
7169                                  MVT::v4f32, Vec);
7170           DCI.AddToWorklist(VRound.getNode());
7171           SDValue Extract1 =
7172             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
7173                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
7174           DCI.AddToWorklist(Extract1.getNode());
7175           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
7176           if (Chain)
7177             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
7178           SDValue Extract0 =
7179             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
7180                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7181           if (Chain)
7182             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7183                                N->getVTList(), Extract0, Chain);
7184           return Extract0;
7185         }
7186       }
7187     }
7188   }
7189   return SDValue();
7190 }
7191 
7192 SDValue SystemZTargetLowering::combineFP_EXTEND(
7193     SDNode *N, DAGCombinerInfo &DCI) const {
7194 
7195   if (!Subtarget.hasVector())
7196     return SDValue();
7197 
7198   // (fpextend (extract_vector_elt X 0))
7199   // (fpextend (extract_vector_elt X 2)) ->
7200   // (extract_vector_elt (VEXTEND X) 0)
7201   // (extract_vector_elt (VEXTEND X) 1)
7202   //
7203   // This is a special case since the target doesn't really support v2f32s.
7204   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
7205   SelectionDAG &DAG = DCI.DAG;
7206   SDValue Op0 = N->getOperand(OpNo);
7207   if (N->getValueType(0) == MVT::f64 && Op0.hasOneUse() &&
7208       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7209       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
7210       Op0.getOperand(1).getOpcode() == ISD::Constant &&
7211       Op0.getConstantOperandVal(1) == 0) {
7212     SDValue Vec = Op0.getOperand(0);
7213     for (auto *U : Vec->uses()) {
7214       if (U != Op0.getNode() && U->hasOneUse() &&
7215           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7216           U->getOperand(0) == Vec &&
7217           U->getOperand(1).getOpcode() == ISD::Constant &&
7218           U->getConstantOperandVal(1) == 2) {
7219         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
7220         if (OtherExtend.getOpcode() == N->getOpcode() &&
7221             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
7222             OtherExtend.getValueType() == MVT::f64) {
7223           SDValue VExtend, Chain;
7224           if (N->isStrictFPOpcode()) {
7225             Chain = MergeInputChains(N, OtherExtend.getNode());
7226             if (!Chain)
7227               continue;
7228             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
7229                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
7230             Chain = VExtend.getValue(1);
7231           } else
7232             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
7233                                   MVT::v2f64, Vec);
7234           DCI.AddToWorklist(VExtend.getNode());
7235           SDValue Extract1 =
7236             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
7237                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
7238           DCI.AddToWorklist(Extract1.getNode());
7239           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
7240           if (Chain)
7241             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
7242           SDValue Extract0 =
7243             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
7244                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
7245           if (Chain)
7246             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
7247                                N->getVTList(), Extract0, Chain);
7248           return Extract0;
7249         }
7250       }
7251     }
7252   }
7253   return SDValue();
7254 }
7255 
7256 SDValue SystemZTargetLowering::combineINT_TO_FP(
7257     SDNode *N, DAGCombinerInfo &DCI) const {
7258   if (DCI.Level != BeforeLegalizeTypes)
7259     return SDValue();
7260   SelectionDAG &DAG = DCI.DAG;
7261   LLVMContext &Ctx = *DAG.getContext();
7262   unsigned Opcode = N->getOpcode();
7263   EVT OutVT = N->getValueType(0);
7264   Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
7265   SDValue Op = N->getOperand(0);
7266   unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
7267   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
7268 
7269   // Insert an extension before type-legalization to avoid scalarization, e.g.:
7270   // v2f64 = uint_to_fp v2i16
7271   // =>
7272   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
7273   if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
7274       OutScalarBits <= 64) {
7275     unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
7276     EVT ExtVT = EVT::getVectorVT(
7277         Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
7278     unsigned ExtOpcode =
7279         (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
7280     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
7281     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
7282   }
7283   return SDValue();
7284 }
7285 
7286 SDValue SystemZTargetLowering::combineBSWAP(
7287     SDNode *N, DAGCombinerInfo &DCI) const {
7288   SelectionDAG &DAG = DCI.DAG;
7289   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
7290   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7291       N->getOperand(0).hasOneUse() &&
7292       canLoadStoreByteSwapped(N->getValueType(0))) {
7293       SDValue Load = N->getOperand(0);
7294       LoadSDNode *LD = cast<LoadSDNode>(Load);
7295 
7296       // Create the byte-swapping load.
7297       SDValue Ops[] = {
7298         LD->getChain(),    // Chain
7299         LD->getBasePtr()   // Ptr
7300       };
7301       EVT LoadVT = N->getValueType(0);
7302       if (LoadVT == MVT::i16)
7303         LoadVT = MVT::i32;
7304       SDValue BSLoad =
7305         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
7306                                 DAG.getVTList(LoadVT, MVT::Other),
7307                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
7308 
7309       // If this is an i16 load, insert the truncate.
7310       SDValue ResVal = BSLoad;
7311       if (N->getValueType(0) == MVT::i16)
7312         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
7313 
7314       // First, combine the bswap away.  This makes the value produced by the
7315       // load dead.
7316       DCI.CombineTo(N, ResVal);
7317 
7318       // Next, combine the load away, we give it a bogus result value but a real
7319       // chain result.  The result value is dead because the bswap is dead.
7320       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7321 
7322       // Return N so it doesn't get rechecked!
7323       return SDValue(N, 0);
7324     }
7325 
7326   // Look through bitcasts that retain the number of vector elements.
7327   SDValue Op = N->getOperand(0);
7328   if (Op.getOpcode() == ISD::BITCAST &&
7329       Op.getValueType().isVector() &&
7330       Op.getOperand(0).getValueType().isVector() &&
7331       Op.getValueType().getVectorNumElements() ==
7332       Op.getOperand(0).getValueType().getVectorNumElements())
7333     Op = Op.getOperand(0);
7334 
7335   // Push BSWAP into a vector insertion if at least one side then simplifies.
7336   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
7337     SDValue Vec = Op.getOperand(0);
7338     SDValue Elt = Op.getOperand(1);
7339     SDValue Idx = Op.getOperand(2);
7340 
7341     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
7342         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
7343         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
7344         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
7345         (canLoadStoreByteSwapped(N->getValueType(0)) &&
7346          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
7347       EVT VecVT = N->getValueType(0);
7348       EVT EltVT = N->getValueType(0).getVectorElementType();
7349       if (VecVT != Vec.getValueType()) {
7350         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
7351         DCI.AddToWorklist(Vec.getNode());
7352       }
7353       if (EltVT != Elt.getValueType()) {
7354         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
7355         DCI.AddToWorklist(Elt.getNode());
7356       }
7357       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
7358       DCI.AddToWorklist(Vec.getNode());
7359       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
7360       DCI.AddToWorklist(Elt.getNode());
7361       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
7362                          Vec, Elt, Idx);
7363     }
7364   }
7365 
7366   // Push BSWAP into a vector shuffle if at least one side then simplifies.
7367   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
7368   if (SV && Op.hasOneUse()) {
7369     SDValue Op0 = Op.getOperand(0);
7370     SDValue Op1 = Op.getOperand(1);
7371 
7372     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
7373         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
7374         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
7375         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
7376       EVT VecVT = N->getValueType(0);
7377       if (VecVT != Op0.getValueType()) {
7378         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
7379         DCI.AddToWorklist(Op0.getNode());
7380       }
7381       if (VecVT != Op1.getValueType()) {
7382         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
7383         DCI.AddToWorklist(Op1.getNode());
7384       }
7385       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
7386       DCI.AddToWorklist(Op0.getNode());
7387       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
7388       DCI.AddToWorklist(Op1.getNode());
7389       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
7390     }
7391   }
7392 
7393   return SDValue();
7394 }
7395 
7396 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
7397   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
7398   // set by the CCReg instruction using the CCValid / CCMask masks,
7399   // If the CCReg instruction is itself a ICMP testing the condition
7400   // code set by some other instruction, see whether we can directly
7401   // use that condition code.
7402 
7403   // Verify that we have an ICMP against some constant.
7404   if (CCValid != SystemZ::CCMASK_ICMP)
7405     return false;
7406   auto *ICmp = CCReg.getNode();
7407   if (ICmp->getOpcode() != SystemZISD::ICMP)
7408     return false;
7409   auto *CompareLHS = ICmp->getOperand(0).getNode();
7410   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
7411   if (!CompareRHS)
7412     return false;
7413 
7414   // Optimize the case where CompareLHS is a SELECT_CCMASK.
7415   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
7416     // Verify that we have an appropriate mask for a EQ or NE comparison.
7417     bool Invert = false;
7418     if (CCMask == SystemZ::CCMASK_CMP_NE)
7419       Invert = !Invert;
7420     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
7421       return false;
7422 
7423     // Verify that the ICMP compares against one of select values.
7424     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
7425     if (!TrueVal)
7426       return false;
7427     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7428     if (!FalseVal)
7429       return false;
7430     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
7431       Invert = !Invert;
7432     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
7433       return false;
7434 
7435     // Compute the effective CC mask for the new branch or select.
7436     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
7437     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
7438     if (!NewCCValid || !NewCCMask)
7439       return false;
7440     CCValid = NewCCValid->getZExtValue();
7441     CCMask = NewCCMask->getZExtValue();
7442     if (Invert)
7443       CCMask ^= CCValid;
7444 
7445     // Return the updated CCReg link.
7446     CCReg = CompareLHS->getOperand(4);
7447     return true;
7448   }
7449 
7450   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
7451   if (CompareLHS->getOpcode() == ISD::SRA) {
7452     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
7453     if (!SRACount || SRACount->getZExtValue() != 30)
7454       return false;
7455     auto *SHL = CompareLHS->getOperand(0).getNode();
7456     if (SHL->getOpcode() != ISD::SHL)
7457       return false;
7458     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
7459     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
7460       return false;
7461     auto *IPM = SHL->getOperand(0).getNode();
7462     if (IPM->getOpcode() != SystemZISD::IPM)
7463       return false;
7464 
7465     // Avoid introducing CC spills (because SRA would clobber CC).
7466     if (!CompareLHS->hasOneUse())
7467       return false;
7468     // Verify that the ICMP compares against zero.
7469     if (CompareRHS->getZExtValue() != 0)
7470       return false;
7471 
7472     // Compute the effective CC mask for the new branch or select.
7473     CCMask = SystemZ::reverseCCMask(CCMask);
7474 
7475     // Return the updated CCReg link.
7476     CCReg = IPM->getOperand(0);
7477     return true;
7478   }
7479 
7480   return false;
7481 }
7482 
7483 SDValue SystemZTargetLowering::combineBR_CCMASK(
7484     SDNode *N, DAGCombinerInfo &DCI) const {
7485   SelectionDAG &DAG = DCI.DAG;
7486 
7487   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
7488   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7489   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7490   if (!CCValid || !CCMask)
7491     return SDValue();
7492 
7493   int CCValidVal = CCValid->getZExtValue();
7494   int CCMaskVal = CCMask->getZExtValue();
7495   SDValue Chain = N->getOperand(0);
7496   SDValue CCReg = N->getOperand(4);
7497 
7498   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7499     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
7500                        Chain,
7501                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7502                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7503                        N->getOperand(3), CCReg);
7504   return SDValue();
7505 }
7506 
7507 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7508     SDNode *N, DAGCombinerInfo &DCI) const {
7509   SelectionDAG &DAG = DCI.DAG;
7510 
7511   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7512   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7513   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7514   if (!CCValid || !CCMask)
7515     return SDValue();
7516 
7517   int CCValidVal = CCValid->getZExtValue();
7518   int CCMaskVal = CCMask->getZExtValue();
7519   SDValue CCReg = N->getOperand(4);
7520 
7521   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7522     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7523                        N->getOperand(0), N->getOperand(1),
7524                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7525                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7526                        CCReg);
7527   return SDValue();
7528 }
7529 
7530 
7531 SDValue SystemZTargetLowering::combineGET_CCMASK(
7532     SDNode *N, DAGCombinerInfo &DCI) const {
7533 
7534   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7535   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7536   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7537   if (!CCValid || !CCMask)
7538     return SDValue();
7539   int CCValidVal = CCValid->getZExtValue();
7540   int CCMaskVal = CCMask->getZExtValue();
7541 
7542   SDValue Select = N->getOperand(0);
7543   if (Select->getOpcode() == ISD::TRUNCATE)
7544     Select = Select->getOperand(0);
7545   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7546     return SDValue();
7547 
7548   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7549   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7550   if (!SelectCCValid || !SelectCCMask)
7551     return SDValue();
7552   int SelectCCValidVal = SelectCCValid->getZExtValue();
7553   int SelectCCMaskVal = SelectCCMask->getZExtValue();
7554 
7555   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7556   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7557   if (!TrueVal || !FalseVal)
7558     return SDValue();
7559   if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0)
7560     ;
7561   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1)
7562     SelectCCMaskVal ^= SelectCCValidVal;
7563   else
7564     return SDValue();
7565 
7566   if (SelectCCValidVal & ~CCValidVal)
7567     return SDValue();
7568   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7569     return SDValue();
7570 
7571   return Select->getOperand(4);
7572 }
7573 
7574 SDValue SystemZTargetLowering::combineIntDIVREM(
7575     SDNode *N, DAGCombinerInfo &DCI) const {
7576   SelectionDAG &DAG = DCI.DAG;
7577   EVT VT = N->getValueType(0);
7578   // In the case where the divisor is a vector of constants a cheaper
7579   // sequence of instructions can replace the divide. BuildSDIV is called to
7580   // do this during DAG combining, but it only succeeds when it can build a
7581   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7582   // since it is not Legal but Custom it can only happen before
7583   // legalization. Therefore we must scalarize this early before Combine
7584   // 1. For widened vectors, this is already the result of type legalization.
7585   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7586       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7587     return DAG.UnrollVectorOp(N);
7588   return SDValue();
7589 }
7590 
7591 SDValue SystemZTargetLowering::combineINTRINSIC(
7592     SDNode *N, DAGCombinerInfo &DCI) const {
7593   SelectionDAG &DAG = DCI.DAG;
7594 
7595   unsigned Id = N->getConstantOperandVal(1);
7596   switch (Id) {
7597   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7598   // or larger is simply a vector load.
7599   case Intrinsic::s390_vll:
7600   case Intrinsic::s390_vlrl:
7601     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7602       if (C->getZExtValue() >= 15)
7603         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7604                            N->getOperand(3), MachinePointerInfo());
7605     break;
7606   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7607   case Intrinsic::s390_vstl:
7608   case Intrinsic::s390_vstrl:
7609     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7610       if (C->getZExtValue() >= 15)
7611         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7612                             N->getOperand(4), MachinePointerInfo());
7613     break;
7614   }
7615 
7616   return SDValue();
7617 }
7618 
7619 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7620   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7621     return N->getOperand(0);
7622   return N;
7623 }
7624 
7625 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7626                                                  DAGCombinerInfo &DCI) const {
7627   switch(N->getOpcode()) {
7628   default: break;
7629   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
7630   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
7631   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
7632   case SystemZISD::MERGE_HIGH:
7633   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7634   case ISD::LOAD:               return combineLOAD(N, DCI);
7635   case ISD::STORE:              return combineSTORE(N, DCI);
7636   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7637   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7638   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7639   case ISD::STRICT_FP_ROUND:
7640   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7641   case ISD::STRICT_FP_EXTEND:
7642   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7643   case ISD::SINT_TO_FP:
7644   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7645   case ISD::BSWAP:              return combineBSWAP(N, DCI);
7646   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7647   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7648   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7649   case ISD::SDIV:
7650   case ISD::UDIV:
7651   case ISD::SREM:
7652   case ISD::UREM:               return combineIntDIVREM(N, DCI);
7653   case ISD::INTRINSIC_W_CHAIN:
7654   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7655   }
7656 
7657   return SDValue();
7658 }
7659 
7660 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7661 // are for Op.
7662 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7663                                     unsigned OpNo) {
7664   EVT VT = Op.getValueType();
7665   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7666   APInt SrcDemE;
7667   unsigned Opcode = Op.getOpcode();
7668   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7669     unsigned Id = Op.getConstantOperandVal(0);
7670     switch (Id) {
7671     case Intrinsic::s390_vpksh:   // PACKS
7672     case Intrinsic::s390_vpksf:
7673     case Intrinsic::s390_vpksg:
7674     case Intrinsic::s390_vpkshs:  // PACKS_CC
7675     case Intrinsic::s390_vpksfs:
7676     case Intrinsic::s390_vpksgs:
7677     case Intrinsic::s390_vpklsh:  // PACKLS
7678     case Intrinsic::s390_vpklsf:
7679     case Intrinsic::s390_vpklsg:
7680     case Intrinsic::s390_vpklshs: // PACKLS_CC
7681     case Intrinsic::s390_vpklsfs:
7682     case Intrinsic::s390_vpklsgs:
7683       // VECTOR PACK truncates the elements of two source vectors into one.
7684       SrcDemE = DemandedElts;
7685       if (OpNo == 2)
7686         SrcDemE.lshrInPlace(NumElts / 2);
7687       SrcDemE = SrcDemE.trunc(NumElts / 2);
7688       break;
7689       // VECTOR UNPACK extends half the elements of the source vector.
7690     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7691     case Intrinsic::s390_vuphh:
7692     case Intrinsic::s390_vuphf:
7693     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7694     case Intrinsic::s390_vuplhh:
7695     case Intrinsic::s390_vuplhf:
7696       SrcDemE = APInt(NumElts * 2, 0);
7697       SrcDemE.insertBits(DemandedElts, 0);
7698       break;
7699     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7700     case Intrinsic::s390_vuplhw:
7701     case Intrinsic::s390_vuplf:
7702     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7703     case Intrinsic::s390_vupllh:
7704     case Intrinsic::s390_vupllf:
7705       SrcDemE = APInt(NumElts * 2, 0);
7706       SrcDemE.insertBits(DemandedElts, NumElts);
7707       break;
7708     case Intrinsic::s390_vpdi: {
7709       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7710       SrcDemE = APInt(NumElts, 0);
7711       if (!DemandedElts[OpNo - 1])
7712         break;
7713       unsigned Mask = Op.getConstantOperandVal(3);
7714       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7715       // Demand input element 0 or 1, given by the mask bit value.
7716       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7717       break;
7718     }
7719     case Intrinsic::s390_vsldb: {
7720       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7721       assert(VT == MVT::v16i8 && "Unexpected type.");
7722       unsigned FirstIdx = Op.getConstantOperandVal(3);
7723       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7724       unsigned NumSrc0Els = 16 - FirstIdx;
7725       SrcDemE = APInt(NumElts, 0);
7726       if (OpNo == 1) {
7727         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7728         SrcDemE.insertBits(DemEls, FirstIdx);
7729       } else {
7730         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7731         SrcDemE.insertBits(DemEls, 0);
7732       }
7733       break;
7734     }
7735     case Intrinsic::s390_vperm:
7736       SrcDemE = APInt(NumElts, 1);
7737       break;
7738     default:
7739       llvm_unreachable("Unhandled intrinsic.");
7740       break;
7741     }
7742   } else {
7743     switch (Opcode) {
7744     case SystemZISD::JOIN_DWORDS:
7745       // Scalar operand.
7746       SrcDemE = APInt(1, 1);
7747       break;
7748     case SystemZISD::SELECT_CCMASK:
7749       SrcDemE = DemandedElts;
7750       break;
7751     default:
7752       llvm_unreachable("Unhandled opcode.");
7753       break;
7754     }
7755   }
7756   return SrcDemE;
7757 }
7758 
7759 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7760                                   const APInt &DemandedElts,
7761                                   const SelectionDAG &DAG, unsigned Depth,
7762                                   unsigned OpNo) {
7763   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7764   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7765   KnownBits LHSKnown =
7766       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7767   KnownBits RHSKnown =
7768       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7769   Known = LHSKnown.intersectWith(RHSKnown);
7770 }
7771 
7772 void
7773 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7774                                                      KnownBits &Known,
7775                                                      const APInt &DemandedElts,
7776                                                      const SelectionDAG &DAG,
7777                                                      unsigned Depth) const {
7778   Known.resetAll();
7779 
7780   // Intrinsic CC result is returned in the two low bits.
7781   unsigned tmp0, tmp1; // not used
7782   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7783     Known.Zero.setBitsFrom(2);
7784     return;
7785   }
7786   EVT VT = Op.getValueType();
7787   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7788     return;
7789   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7790           "KnownBits does not match VT in bitwidth");
7791   assert ((!VT.isVector() ||
7792            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7793           "DemandedElts does not match VT number of elements");
7794   unsigned BitWidth = Known.getBitWidth();
7795   unsigned Opcode = Op.getOpcode();
7796   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7797     bool IsLogical = false;
7798     unsigned Id = Op.getConstantOperandVal(0);
7799     switch (Id) {
7800     case Intrinsic::s390_vpksh:   // PACKS
7801     case Intrinsic::s390_vpksf:
7802     case Intrinsic::s390_vpksg:
7803     case Intrinsic::s390_vpkshs:  // PACKS_CC
7804     case Intrinsic::s390_vpksfs:
7805     case Intrinsic::s390_vpksgs:
7806     case Intrinsic::s390_vpklsh:  // PACKLS
7807     case Intrinsic::s390_vpklsf:
7808     case Intrinsic::s390_vpklsg:
7809     case Intrinsic::s390_vpklshs: // PACKLS_CC
7810     case Intrinsic::s390_vpklsfs:
7811     case Intrinsic::s390_vpklsgs:
7812     case Intrinsic::s390_vpdi:
7813     case Intrinsic::s390_vsldb:
7814     case Intrinsic::s390_vperm:
7815       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7816       break;
7817     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7818     case Intrinsic::s390_vuplhh:
7819     case Intrinsic::s390_vuplhf:
7820     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7821     case Intrinsic::s390_vupllh:
7822     case Intrinsic::s390_vupllf:
7823       IsLogical = true;
7824       [[fallthrough]];
7825     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7826     case Intrinsic::s390_vuphh:
7827     case Intrinsic::s390_vuphf:
7828     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7829     case Intrinsic::s390_vuplhw:
7830     case Intrinsic::s390_vuplf: {
7831       SDValue SrcOp = Op.getOperand(1);
7832       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7833       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7834       if (IsLogical) {
7835         Known = Known.zext(BitWidth);
7836       } else
7837         Known = Known.sext(BitWidth);
7838       break;
7839     }
7840     default:
7841       break;
7842     }
7843   } else {
7844     switch (Opcode) {
7845     case SystemZISD::JOIN_DWORDS:
7846     case SystemZISD::SELECT_CCMASK:
7847       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7848       break;
7849     case SystemZISD::REPLICATE: {
7850       SDValue SrcOp = Op.getOperand(0);
7851       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7852       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7853         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7854       break;
7855     }
7856     default:
7857       break;
7858     }
7859   }
7860 
7861   // Known has the width of the source operand(s). Adjust if needed to match
7862   // the passed bitwidth.
7863   if (Known.getBitWidth() != BitWidth)
7864     Known = Known.anyextOrTrunc(BitWidth);
7865 }
7866 
7867 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7868                                         const SelectionDAG &DAG, unsigned Depth,
7869                                         unsigned OpNo) {
7870   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7871   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7872   if (LHS == 1) return 1; // Early out.
7873   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7874   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7875   if (RHS == 1) return 1; // Early out.
7876   unsigned Common = std::min(LHS, RHS);
7877   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7878   EVT VT = Op.getValueType();
7879   unsigned VTBits = VT.getScalarSizeInBits();
7880   if (SrcBitWidth > VTBits) { // PACK
7881     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7882     if (Common > SrcExtraBits)
7883       return (Common - SrcExtraBits);
7884     return 1;
7885   }
7886   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7887   return Common;
7888 }
7889 
7890 unsigned
7891 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7892     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7893     unsigned Depth) const {
7894   if (Op.getResNo() != 0)
7895     return 1;
7896   unsigned Opcode = Op.getOpcode();
7897   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7898     unsigned Id = Op.getConstantOperandVal(0);
7899     switch (Id) {
7900     case Intrinsic::s390_vpksh:   // PACKS
7901     case Intrinsic::s390_vpksf:
7902     case Intrinsic::s390_vpksg:
7903     case Intrinsic::s390_vpkshs:  // PACKS_CC
7904     case Intrinsic::s390_vpksfs:
7905     case Intrinsic::s390_vpksgs:
7906     case Intrinsic::s390_vpklsh:  // PACKLS
7907     case Intrinsic::s390_vpklsf:
7908     case Intrinsic::s390_vpklsg:
7909     case Intrinsic::s390_vpklshs: // PACKLS_CC
7910     case Intrinsic::s390_vpklsfs:
7911     case Intrinsic::s390_vpklsgs:
7912     case Intrinsic::s390_vpdi:
7913     case Intrinsic::s390_vsldb:
7914     case Intrinsic::s390_vperm:
7915       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7916     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7917     case Intrinsic::s390_vuphh:
7918     case Intrinsic::s390_vuphf:
7919     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7920     case Intrinsic::s390_vuplhw:
7921     case Intrinsic::s390_vuplf: {
7922       SDValue PackedOp = Op.getOperand(1);
7923       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7924       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7925       EVT VT = Op.getValueType();
7926       unsigned VTBits = VT.getScalarSizeInBits();
7927       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7928       return Tmp;
7929     }
7930     default:
7931       break;
7932     }
7933   } else {
7934     switch (Opcode) {
7935     case SystemZISD::SELECT_CCMASK:
7936       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7937     default:
7938       break;
7939     }
7940   }
7941 
7942   return 1;
7943 }
7944 
7945 bool SystemZTargetLowering::
7946 isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op,
7947          const APInt &DemandedElts, const SelectionDAG &DAG,
7948          bool PoisonOnly, unsigned Depth) const {
7949   switch (Op->getOpcode()) {
7950   case SystemZISD::PCREL_WRAPPER:
7951   case SystemZISD::PCREL_OFFSET:
7952     return true;
7953   }
7954   return false;
7955 }
7956 
7957 unsigned
7958 SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
7959   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7960   unsigned StackAlign = TFI->getStackAlignment();
7961   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7962          "Unexpected stack alignment");
7963   // The default stack probe size is 4096 if the function has no
7964   // stack-probe-size attribute.
7965   unsigned StackProbeSize =
7966       MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096);
7967   // Round down to the stack alignment.
7968   StackProbeSize &= ~(StackAlign - 1);
7969   return StackProbeSize ? StackProbeSize : StackAlign;
7970 }
7971 
7972 //===----------------------------------------------------------------------===//
7973 // Custom insertion
7974 //===----------------------------------------------------------------------===//
7975 
7976 // Force base value Base into a register before MI.  Return the register.
7977 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7978                          const SystemZInstrInfo *TII) {
7979   MachineBasicBlock *MBB = MI.getParent();
7980   MachineFunction &MF = *MBB->getParent();
7981   MachineRegisterInfo &MRI = MF.getRegInfo();
7982 
7983   if (Base.isReg()) {
7984     // Copy Base into a new virtual register to help register coalescing in
7985     // cases with multiple uses.
7986     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7987     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7988       .add(Base);
7989     return Reg;
7990   }
7991 
7992   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7993   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7994       .add(Base)
7995       .addImm(0)
7996       .addReg(0);
7997   return Reg;
7998 }
7999 
8000 // The CC operand of MI might be missing a kill marker because there
8001 // were multiple uses of CC, and ISel didn't know which to mark.
8002 // Figure out whether MI should have had a kill marker.
8003 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
8004   // Scan forward through BB for a use/def of CC.
8005   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
8006   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
8007     const MachineInstr& mi = *miI;
8008     if (mi.readsRegister(SystemZ::CC))
8009       return false;
8010     if (mi.definesRegister(SystemZ::CC))
8011       break; // Should have kill-flag - update below.
8012   }
8013 
8014   // If we hit the end of the block, check whether CC is live into a
8015   // successor.
8016   if (miI == MBB->end()) {
8017     for (const MachineBasicBlock *Succ : MBB->successors())
8018       if (Succ->isLiveIn(SystemZ::CC))
8019         return false;
8020   }
8021 
8022   return true;
8023 }
8024 
8025 // Return true if it is OK for this Select pseudo-opcode to be cascaded
8026 // together with other Select pseudo-opcodes into a single basic-block with
8027 // a conditional jump around it.
8028 static bool isSelectPseudo(MachineInstr &MI) {
8029   switch (MI.getOpcode()) {
8030   case SystemZ::Select32:
8031   case SystemZ::Select64:
8032   case SystemZ::Select128:
8033   case SystemZ::SelectF32:
8034   case SystemZ::SelectF64:
8035   case SystemZ::SelectF128:
8036   case SystemZ::SelectVR32:
8037   case SystemZ::SelectVR64:
8038   case SystemZ::SelectVR128:
8039     return true;
8040 
8041   default:
8042     return false;
8043   }
8044 }
8045 
8046 // Helper function, which inserts PHI functions into SinkMBB:
8047 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
8048 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
8049 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
8050                                  MachineBasicBlock *TrueMBB,
8051                                  MachineBasicBlock *FalseMBB,
8052                                  MachineBasicBlock *SinkMBB) {
8053   MachineFunction *MF = TrueMBB->getParent();
8054   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
8055 
8056   MachineInstr *FirstMI = Selects.front();
8057   unsigned CCValid = FirstMI->getOperand(3).getImm();
8058   unsigned CCMask = FirstMI->getOperand(4).getImm();
8059 
8060   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
8061 
8062   // As we are creating the PHIs, we have to be careful if there is more than
8063   // one.  Later Selects may reference the results of earlier Selects, but later
8064   // PHIs have to reference the individual true/false inputs from earlier PHIs.
8065   // That also means that PHI construction must work forward from earlier to
8066   // later, and that the code must maintain a mapping from earlier PHI's
8067   // destination registers, and the registers that went into the PHI.
8068   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
8069 
8070   for (auto *MI : Selects) {
8071     Register DestReg = MI->getOperand(0).getReg();
8072     Register TrueReg = MI->getOperand(1).getReg();
8073     Register FalseReg = MI->getOperand(2).getReg();
8074 
8075     // If this Select we are generating is the opposite condition from
8076     // the jump we generated, then we have to swap the operands for the
8077     // PHI that is going to be generated.
8078     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
8079       std::swap(TrueReg, FalseReg);
8080 
8081     if (RegRewriteTable.contains(TrueReg))
8082       TrueReg = RegRewriteTable[TrueReg].first;
8083 
8084     if (RegRewriteTable.contains(FalseReg))
8085       FalseReg = RegRewriteTable[FalseReg].second;
8086 
8087     DebugLoc DL = MI->getDebugLoc();
8088     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
8089       .addReg(TrueReg).addMBB(TrueMBB)
8090       .addReg(FalseReg).addMBB(FalseMBB);
8091 
8092     // Add this PHI to the rewrite table.
8093     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
8094   }
8095 
8096   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
8097 }
8098 
8099 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
8100 MachineBasicBlock *
8101 SystemZTargetLowering::emitSelect(MachineInstr &MI,
8102                                   MachineBasicBlock *MBB) const {
8103   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
8104   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8105 
8106   unsigned CCValid = MI.getOperand(3).getImm();
8107   unsigned CCMask = MI.getOperand(4).getImm();
8108 
8109   // If we have a sequence of Select* pseudo instructions using the
8110   // same condition code value, we want to expand all of them into
8111   // a single pair of basic blocks using the same condition.
8112   SmallVector<MachineInstr*, 8> Selects;
8113   SmallVector<MachineInstr*, 8> DbgValues;
8114   Selects.push_back(&MI);
8115   unsigned Count = 0;
8116   for (MachineInstr &NextMI : llvm::make_range(
8117            std::next(MachineBasicBlock::iterator(MI)), MBB->end())) {
8118     if (isSelectPseudo(NextMI)) {
8119       assert(NextMI.getOperand(3).getImm() == CCValid &&
8120              "Bad CCValid operands since CC was not redefined.");
8121       if (NextMI.getOperand(4).getImm() == CCMask ||
8122           NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) {
8123         Selects.push_back(&NextMI);
8124         continue;
8125       }
8126       break;
8127     }
8128     if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook())
8129       break;
8130     bool User = false;
8131     for (auto *SelMI : Selects)
8132       if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) {
8133         User = true;
8134         break;
8135       }
8136     if (NextMI.isDebugInstr()) {
8137       if (User) {
8138         assert(NextMI.isDebugValue() && "Unhandled debug opcode.");
8139         DbgValues.push_back(&NextMI);
8140       }
8141     } else if (User || ++Count > 20)
8142       break;
8143   }
8144 
8145   MachineInstr *LastMI = Selects.back();
8146   bool CCKilled =
8147       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
8148   MachineBasicBlock *StartMBB = MBB;
8149   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
8150   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8151 
8152   // Unless CC was killed in the last Select instruction, mark it as
8153   // live-in to both FalseMBB and JoinMBB.
8154   if (!CCKilled) {
8155     FalseMBB->addLiveIn(SystemZ::CC);
8156     JoinMBB->addLiveIn(SystemZ::CC);
8157   }
8158 
8159   //  StartMBB:
8160   //   BRC CCMask, JoinMBB
8161   //   # fallthrough to FalseMBB
8162   MBB = StartMBB;
8163   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8164     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8165   MBB->addSuccessor(JoinMBB);
8166   MBB->addSuccessor(FalseMBB);
8167 
8168   //  FalseMBB:
8169   //   # fallthrough to JoinMBB
8170   MBB = FalseMBB;
8171   MBB->addSuccessor(JoinMBB);
8172 
8173   //  JoinMBB:
8174   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
8175   //  ...
8176   MBB = JoinMBB;
8177   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
8178   for (auto *SelMI : Selects)
8179     SelMI->eraseFromParent();
8180 
8181   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
8182   for (auto *DbgMI : DbgValues)
8183     MBB->splice(InsertPos, StartMBB, DbgMI);
8184 
8185   return JoinMBB;
8186 }
8187 
8188 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
8189 // StoreOpcode is the store to use and Invert says whether the store should
8190 // happen when the condition is false rather than true.  If a STORE ON
8191 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
8192 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
8193                                                         MachineBasicBlock *MBB,
8194                                                         unsigned StoreOpcode,
8195                                                         unsigned STOCOpcode,
8196                                                         bool Invert) const {
8197   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8198 
8199   Register SrcReg = MI.getOperand(0).getReg();
8200   MachineOperand Base = MI.getOperand(1);
8201   int64_t Disp = MI.getOperand(2).getImm();
8202   Register IndexReg = MI.getOperand(3).getReg();
8203   unsigned CCValid = MI.getOperand(4).getImm();
8204   unsigned CCMask = MI.getOperand(5).getImm();
8205   DebugLoc DL = MI.getDebugLoc();
8206 
8207   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
8208 
8209   // ISel pattern matching also adds a load memory operand of the same
8210   // address, so take special care to find the storing memory operand.
8211   MachineMemOperand *MMO = nullptr;
8212   for (auto *I : MI.memoperands())
8213     if (I->isStore()) {
8214       MMO = I;
8215       break;
8216     }
8217 
8218   // Use STOCOpcode if possible.  We could use different store patterns in
8219   // order to avoid matching the index register, but the performance trade-offs
8220   // might be more complicated in that case.
8221   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
8222     if (Invert)
8223       CCMask ^= CCValid;
8224 
8225     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
8226       .addReg(SrcReg)
8227       .add(Base)
8228       .addImm(Disp)
8229       .addImm(CCValid)
8230       .addImm(CCMask)
8231       .addMemOperand(MMO);
8232 
8233     MI.eraseFromParent();
8234     return MBB;
8235   }
8236 
8237   // Get the condition needed to branch around the store.
8238   if (!Invert)
8239     CCMask ^= CCValid;
8240 
8241   MachineBasicBlock *StartMBB = MBB;
8242   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
8243   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
8244 
8245   // Unless CC was killed in the CondStore instruction, mark it as
8246   // live-in to both FalseMBB and JoinMBB.
8247   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
8248     FalseMBB->addLiveIn(SystemZ::CC);
8249     JoinMBB->addLiveIn(SystemZ::CC);
8250   }
8251 
8252   //  StartMBB:
8253   //   BRC CCMask, JoinMBB
8254   //   # fallthrough to FalseMBB
8255   MBB = StartMBB;
8256   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8257     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
8258   MBB->addSuccessor(JoinMBB);
8259   MBB->addSuccessor(FalseMBB);
8260 
8261   //  FalseMBB:
8262   //   store %SrcReg, %Disp(%Index,%Base)
8263   //   # fallthrough to JoinMBB
8264   MBB = FalseMBB;
8265   BuildMI(MBB, DL, TII->get(StoreOpcode))
8266       .addReg(SrcReg)
8267       .add(Base)
8268       .addImm(Disp)
8269       .addReg(IndexReg)
8270       .addMemOperand(MMO);
8271   MBB->addSuccessor(JoinMBB);
8272 
8273   MI.eraseFromParent();
8274   return JoinMBB;
8275 }
8276 
8277 // Implement EmitInstrWithCustomInserter for pseudo [SU]Cmp128Hi instruction MI.
8278 MachineBasicBlock *
8279 SystemZTargetLowering::emitICmp128Hi(MachineInstr &MI,
8280                                      MachineBasicBlock *MBB,
8281                                      bool Unsigned) const {
8282   MachineFunction &MF = *MBB->getParent();
8283   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8284   MachineRegisterInfo &MRI = MF.getRegInfo();
8285 
8286   // Synthetic instruction to compare 128-bit values.
8287   // Sets CC 1 if Op0 > Op1, sets a different CC otherwise.
8288   Register Op0 = MI.getOperand(0).getReg();
8289   Register Op1 = MI.getOperand(1).getReg();
8290 
8291   MachineBasicBlock *StartMBB = MBB;
8292   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(MI, MBB);
8293   MachineBasicBlock *HiEqMBB = SystemZ::emitBlockAfter(StartMBB);
8294 
8295   //  StartMBB:
8296   //
8297   //  Use VECTOR ELEMENT COMPARE [LOGICAL] to compare the high parts.
8298   //  Swap the inputs to get:
8299   //    CC 1 if high(Op0) > high(Op1)
8300   //    CC 2 if high(Op0) < high(Op1)
8301   //    CC 0 if high(Op0) == high(Op1)
8302   //
8303   //  If CC != 0, we'd done, so jump over the next instruction.
8304   //
8305   //   VEC[L]G Op1, Op0
8306   //   JNE JoinMBB
8307   //   # fallthrough to HiEqMBB
8308   MBB = StartMBB;
8309   int HiOpcode = Unsigned? SystemZ::VECLG : SystemZ::VECG;
8310   BuildMI(MBB, MI.getDebugLoc(), TII->get(HiOpcode))
8311     .addReg(Op1).addReg(Op0);
8312   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
8313     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE).addMBB(JoinMBB);
8314   MBB->addSuccessor(JoinMBB);
8315   MBB->addSuccessor(HiEqMBB);
8316 
8317   //  HiEqMBB:
8318   //
8319   //  Otherwise, use VECTOR COMPARE HIGH LOGICAL.
8320   //  Since we already know the high parts are equal, the CC
8321   //  result will only depend on the low parts:
8322   //     CC 1 if low(Op0) > low(Op1)
8323   //     CC 3 if low(Op0) <= low(Op1)
8324   //
8325   //   VCHLGS Tmp, Op0, Op1
8326   //   # fallthrough to JoinMBB
8327   MBB = HiEqMBB;
8328   Register Temp = MRI.createVirtualRegister(&SystemZ::VR128BitRegClass);
8329   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::VCHLGS), Temp)
8330     .addReg(Op0).addReg(Op1);
8331   MBB->addSuccessor(JoinMBB);
8332 
8333   // Mark CC as live-in to JoinMBB.
8334   JoinMBB->addLiveIn(SystemZ::CC);
8335 
8336   MI.eraseFromParent();
8337   return JoinMBB;
8338 }
8339 
8340 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_LOADW_* or
8341 // ATOMIC_SWAPW instruction MI.  BinOpcode is the instruction that performs
8342 // the binary operation elided by "*", or 0 for ATOMIC_SWAPW.  Invert says
8343 // whether the field should be inverted after performing BinOpcode (e.g. for
8344 // NAND).
8345 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
8346     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
8347     bool Invert) const {
8348   MachineFunction &MF = *MBB->getParent();
8349   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8350   MachineRegisterInfo &MRI = MF.getRegInfo();
8351 
8352   // Extract the operands.  Base can be a register or a frame index.
8353   // Src2 can be a register or immediate.
8354   Register Dest = MI.getOperand(0).getReg();
8355   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8356   int64_t Disp = MI.getOperand(2).getImm();
8357   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
8358   Register BitShift = MI.getOperand(4).getReg();
8359   Register NegBitShift = MI.getOperand(5).getReg();
8360   unsigned BitSize = MI.getOperand(6).getImm();
8361   DebugLoc DL = MI.getDebugLoc();
8362 
8363   // Get the right opcodes for the displacement.
8364   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8365   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8366   assert(LOpcode && CSOpcode && "Displacement out of range");
8367 
8368   // Create virtual registers for temporary results.
8369   Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8370   Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8371   Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8372   Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8373   Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8374 
8375   // Insert a basic block for the main loop.
8376   MachineBasicBlock *StartMBB = MBB;
8377   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8378   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8379 
8380   //  StartMBB:
8381   //   ...
8382   //   %OrigVal = L Disp(%Base)
8383   //   # fall through to LoopMBB
8384   MBB = StartMBB;
8385   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8386   MBB->addSuccessor(LoopMBB);
8387 
8388   //  LoopMBB:
8389   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
8390   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8391   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
8392   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
8393   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
8394   //   JNE LoopMBB
8395   //   # fall through to DoneMBB
8396   MBB = LoopMBB;
8397   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8398     .addReg(OrigVal).addMBB(StartMBB)
8399     .addReg(Dest).addMBB(LoopMBB);
8400   BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8401     .addReg(OldVal).addReg(BitShift).addImm(0);
8402   if (Invert) {
8403     // Perform the operation normally and then invert every bit of the field.
8404     Register Tmp = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8405     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
8406     // XILF with the upper BitSize bits set.
8407     BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
8408       .addReg(Tmp).addImm(-1U << (32 - BitSize));
8409   } else if (BinOpcode)
8410     // A simply binary operation.
8411     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
8412         .addReg(RotatedOldVal)
8413         .add(Src2);
8414   else
8415     // Use RISBG to rotate Src2 into position and use it to replace the
8416     // field in RotatedOldVal.
8417     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
8418       .addReg(RotatedOldVal).addReg(Src2.getReg())
8419       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
8420   BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8421     .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8422   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8423       .addReg(OldVal)
8424       .addReg(NewVal)
8425       .add(Base)
8426       .addImm(Disp);
8427   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8428     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8429   MBB->addSuccessor(LoopMBB);
8430   MBB->addSuccessor(DoneMBB);
8431 
8432   MI.eraseFromParent();
8433   return DoneMBB;
8434 }
8435 
8436 // Implement EmitInstrWithCustomInserter for subword pseudo
8437 // ATOMIC_LOADW_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
8438 // instruction that should be used to compare the current field with the
8439 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
8440 // for when the current field should be kept.
8441 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
8442     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
8443     unsigned KeepOldMask) const {
8444   MachineFunction &MF = *MBB->getParent();
8445   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8446   MachineRegisterInfo &MRI = MF.getRegInfo();
8447 
8448   // Extract the operands.  Base can be a register or a frame index.
8449   Register Dest = MI.getOperand(0).getReg();
8450   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8451   int64_t Disp = MI.getOperand(2).getImm();
8452   Register Src2 = MI.getOperand(3).getReg();
8453   Register BitShift = MI.getOperand(4).getReg();
8454   Register NegBitShift = MI.getOperand(5).getReg();
8455   unsigned BitSize = MI.getOperand(6).getImm();
8456   DebugLoc DL = MI.getDebugLoc();
8457 
8458   // Get the right opcodes for the displacement.
8459   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8460   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8461   assert(LOpcode && CSOpcode && "Displacement out of range");
8462 
8463   // Create virtual registers for temporary results.
8464   Register OrigVal       = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8465   Register OldVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8466   Register NewVal        = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8467   Register RotatedOldVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8468   Register RotatedAltVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8469   Register RotatedNewVal = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
8470 
8471   // Insert 3 basic blocks for the loop.
8472   MachineBasicBlock *StartMBB  = MBB;
8473   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
8474   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
8475   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
8476   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
8477 
8478   //  StartMBB:
8479   //   ...
8480   //   %OrigVal     = L Disp(%Base)
8481   //   # fall through to LoopMBB
8482   MBB = StartMBB;
8483   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
8484   MBB->addSuccessor(LoopMBB);
8485 
8486   //  LoopMBB:
8487   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
8488   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
8489   //   CompareOpcode %RotatedOldVal, %Src2
8490   //   BRC KeepOldMask, UpdateMBB
8491   MBB = LoopMBB;
8492   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8493     .addReg(OrigVal).addMBB(StartMBB)
8494     .addReg(Dest).addMBB(UpdateMBB);
8495   BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
8496     .addReg(OldVal).addReg(BitShift).addImm(0);
8497   BuildMI(MBB, DL, TII->get(CompareOpcode))
8498     .addReg(RotatedOldVal).addReg(Src2);
8499   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8500     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
8501   MBB->addSuccessor(UpdateMBB);
8502   MBB->addSuccessor(UseAltMBB);
8503 
8504   //  UseAltMBB:
8505   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
8506   //   # fall through to UpdateMBB
8507   MBB = UseAltMBB;
8508   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
8509     .addReg(RotatedOldVal).addReg(Src2)
8510     .addImm(32).addImm(31 + BitSize).addImm(0);
8511   MBB->addSuccessor(UpdateMBB);
8512 
8513   //  UpdateMBB:
8514   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
8515   //                        [ %RotatedAltVal, UseAltMBB ]
8516   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
8517   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
8518   //   JNE LoopMBB
8519   //   # fall through to DoneMBB
8520   MBB = UpdateMBB;
8521   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
8522     .addReg(RotatedOldVal).addMBB(LoopMBB)
8523     .addReg(RotatedAltVal).addMBB(UseAltMBB);
8524   BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
8525     .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
8526   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
8527       .addReg(OldVal)
8528       .addReg(NewVal)
8529       .add(Base)
8530       .addImm(Disp);
8531   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8532     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8533   MBB->addSuccessor(LoopMBB);
8534   MBB->addSuccessor(DoneMBB);
8535 
8536   MI.eraseFromParent();
8537   return DoneMBB;
8538 }
8539 
8540 // Implement EmitInstrWithCustomInserter for subword pseudo ATOMIC_CMP_SWAPW
8541 // instruction MI.
8542 MachineBasicBlock *
8543 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8544                                           MachineBasicBlock *MBB) const {
8545   MachineFunction &MF = *MBB->getParent();
8546   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8547   MachineRegisterInfo &MRI = MF.getRegInfo();
8548 
8549   // Extract the operands.  Base can be a register or a frame index.
8550   Register Dest = MI.getOperand(0).getReg();
8551   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8552   int64_t Disp = MI.getOperand(2).getImm();
8553   Register CmpVal = MI.getOperand(3).getReg();
8554   Register OrigSwapVal = MI.getOperand(4).getReg();
8555   Register BitShift = MI.getOperand(5).getReg();
8556   Register NegBitShift = MI.getOperand(6).getReg();
8557   int64_t BitSize = MI.getOperand(7).getImm();
8558   DebugLoc DL = MI.getDebugLoc();
8559 
8560   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8561 
8562   // Get the right opcodes for the displacement and zero-extension.
8563   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8564   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8565   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8566   assert(LOpcode && CSOpcode && "Displacement out of range");
8567 
8568   // Create virtual registers for temporary results.
8569   Register OrigOldVal = MRI.createVirtualRegister(RC);
8570   Register OldVal = MRI.createVirtualRegister(RC);
8571   Register SwapVal = MRI.createVirtualRegister(RC);
8572   Register StoreVal = MRI.createVirtualRegister(RC);
8573   Register OldValRot = MRI.createVirtualRegister(RC);
8574   Register RetryOldVal = MRI.createVirtualRegister(RC);
8575   Register RetrySwapVal = MRI.createVirtualRegister(RC);
8576 
8577   // Insert 2 basic blocks for the loop.
8578   MachineBasicBlock *StartMBB = MBB;
8579   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8580   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8581   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
8582 
8583   //  StartMBB:
8584   //   ...
8585   //   %OrigOldVal     = L Disp(%Base)
8586   //   # fall through to LoopMBB
8587   MBB = StartMBB;
8588   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8589       .add(Base)
8590       .addImm(Disp)
8591       .addReg(0);
8592   MBB->addSuccessor(LoopMBB);
8593 
8594   //  LoopMBB:
8595   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8596   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8597   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
8598   //                      ^^ The low BitSize bits contain the field
8599   //                         of interest.
8600   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8601   //                      ^^ Replace the upper 32-BitSize bits of the
8602   //                         swap value with those that we loaded and rotated.
8603   //   %Dest = LL[CH] %OldValRot
8604   //   CR %Dest, %CmpVal
8605   //   JNE DoneMBB
8606   //   # Fall through to SetMBB
8607   MBB = LoopMBB;
8608   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8609     .addReg(OrigOldVal).addMBB(StartMBB)
8610     .addReg(RetryOldVal).addMBB(SetMBB);
8611   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8612     .addReg(OrigSwapVal).addMBB(StartMBB)
8613     .addReg(RetrySwapVal).addMBB(SetMBB);
8614   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8615     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8616   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8617     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8618   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8619     .addReg(OldValRot);
8620   BuildMI(MBB, DL, TII->get(SystemZ::CR))
8621     .addReg(Dest).addReg(CmpVal);
8622   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8623     .addImm(SystemZ::CCMASK_ICMP)
8624     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8625   MBB->addSuccessor(DoneMBB);
8626   MBB->addSuccessor(SetMBB);
8627 
8628   //  SetMBB:
8629   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8630   //                      ^^ Rotate the new field to its proper position.
8631   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
8632   //   JNE LoopMBB
8633   //   # fall through to ExitMBB
8634   MBB = SetMBB;
8635   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8636     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8637   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8638       .addReg(OldVal)
8639       .addReg(StoreVal)
8640       .add(Base)
8641       .addImm(Disp);
8642   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8643     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8644   MBB->addSuccessor(LoopMBB);
8645   MBB->addSuccessor(DoneMBB);
8646 
8647   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8648   // to the block after the loop.  At this point, CC may have been defined
8649   // either by the CR in LoopMBB or by the CS in SetMBB.
8650   if (!MI.registerDefIsDead(SystemZ::CC))
8651     DoneMBB->addLiveIn(SystemZ::CC);
8652 
8653   MI.eraseFromParent();
8654   return DoneMBB;
8655 }
8656 
8657 // Emit a move from two GR64s to a GR128.
8658 MachineBasicBlock *
8659 SystemZTargetLowering::emitPair128(MachineInstr &MI,
8660                                    MachineBasicBlock *MBB) const {
8661   MachineFunction &MF = *MBB->getParent();
8662   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8663   MachineRegisterInfo &MRI = MF.getRegInfo();
8664   DebugLoc DL = MI.getDebugLoc();
8665 
8666   Register Dest = MI.getOperand(0).getReg();
8667   Register Hi = MI.getOperand(1).getReg();
8668   Register Lo = MI.getOperand(2).getReg();
8669   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8670   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8671 
8672   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
8673   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
8674     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
8675   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8676     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
8677 
8678   MI.eraseFromParent();
8679   return MBB;
8680 }
8681 
8682 // Emit an extension from a GR64 to a GR128.  ClearEven is true
8683 // if the high register of the GR128 value must be cleared or false if
8684 // it's "don't care".
8685 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8686                                                      MachineBasicBlock *MBB,
8687                                                      bool ClearEven) const {
8688   MachineFunction &MF = *MBB->getParent();
8689   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8690   MachineRegisterInfo &MRI = MF.getRegInfo();
8691   DebugLoc DL = MI.getDebugLoc();
8692 
8693   Register Dest = MI.getOperand(0).getReg();
8694   Register Src = MI.getOperand(1).getReg();
8695   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8696 
8697   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8698   if (ClearEven) {
8699     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8700     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8701 
8702     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8703       .addImm(0);
8704     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8705       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8706     In128 = NewIn128;
8707   }
8708   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8709     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8710 
8711   MI.eraseFromParent();
8712   return MBB;
8713 }
8714 
8715 MachineBasicBlock *
8716 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8717                                          MachineBasicBlock *MBB,
8718                                          unsigned Opcode, bool IsMemset) const {
8719   MachineFunction &MF = *MBB->getParent();
8720   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8721   MachineRegisterInfo &MRI = MF.getRegInfo();
8722   DebugLoc DL = MI.getDebugLoc();
8723 
8724   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8725   uint64_t DestDisp = MI.getOperand(1).getImm();
8726   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8727   uint64_t SrcDisp;
8728 
8729   // Fold the displacement Disp if it is out of range.
8730   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8731     if (!isUInt<12>(Disp)) {
8732       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8733       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8734       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8735         .add(Base).addImm(Disp).addReg(0);
8736       Base = MachineOperand::CreateReg(Reg, false);
8737       Disp = 0;
8738     }
8739   };
8740 
8741   if (!IsMemset) {
8742     SrcBase = earlyUseOperand(MI.getOperand(2));
8743     SrcDisp = MI.getOperand(3).getImm();
8744   } else {
8745     SrcBase = DestBase;
8746     SrcDisp = DestDisp++;
8747     foldDisplIfNeeded(DestBase, DestDisp);
8748   }
8749 
8750   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8751   bool IsImmForm = LengthMO.isImm();
8752   bool IsRegForm = !IsImmForm;
8753 
8754   // Build and insert one Opcode of Length, with special treatment for memset.
8755   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8756                             MachineBasicBlock::iterator InsPos,
8757                             MachineOperand DBase, uint64_t DDisp,
8758                             MachineOperand SBase, uint64_t SDisp,
8759                             unsigned Length) -> void {
8760     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8761     if (IsMemset) {
8762       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8763       if (ByteMO.isImm())
8764         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8765           .add(SBase).addImm(SDisp).add(ByteMO);
8766       else
8767         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8768           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8769       if (--Length == 0)
8770         return;
8771     }
8772     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8773       .add(DBase).addImm(DDisp).addImm(Length)
8774       .add(SBase).addImm(SDisp)
8775       .setMemRefs(MI.memoperands());
8776   };
8777 
8778   bool NeedsLoop = false;
8779   uint64_t ImmLength = 0;
8780   Register LenAdjReg = SystemZ::NoRegister;
8781   if (IsImmForm) {
8782     ImmLength = LengthMO.getImm();
8783     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8784     if (ImmLength == 0) {
8785       MI.eraseFromParent();
8786       return MBB;
8787     }
8788     if (Opcode == SystemZ::CLC) {
8789       if (ImmLength > 3 * 256)
8790         // A two-CLC sequence is a clear win over a loop, not least because
8791         // it needs only one branch.  A three-CLC sequence needs the same
8792         // number of branches as a loop (i.e. 2), but is shorter.  That
8793         // brings us to lengths greater than 768 bytes.  It seems relatively
8794         // likely that a difference will be found within the first 768 bytes,
8795         // so we just optimize for the smallest number of branch
8796         // instructions, in order to avoid polluting the prediction buffer
8797         // too much.
8798         NeedsLoop = true;
8799     } else if (ImmLength > 6 * 256)
8800       // The heuristic we use is to prefer loops for anything that would
8801       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8802       // to choose between straight-line code and looping code, since the
8803       // time will be dominated by the MVCs themselves.
8804       NeedsLoop = true;
8805   } else {
8806     NeedsLoop = true;
8807     LenAdjReg = LengthMO.getReg();
8808   }
8809 
8810   // When generating more than one CLC, all but the last will need to
8811   // branch to the end when a difference is found.
8812   MachineBasicBlock *EndMBB =
8813       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8814            ? SystemZ::splitBlockAfter(MI, MBB)
8815            : nullptr);
8816 
8817   if (NeedsLoop) {
8818     Register StartCountReg =
8819       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8820     if (IsImmForm) {
8821       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8822       ImmLength &= 255;
8823     } else {
8824       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8825         .addReg(LenAdjReg)
8826         .addReg(0)
8827         .addImm(8);
8828     }
8829 
8830     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8831     auto loadZeroAddress = [&]() -> MachineOperand {
8832       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8833       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8834       return MachineOperand::CreateReg(Reg, false);
8835     };
8836     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8837       DestBase = loadZeroAddress();
8838     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8839       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8840 
8841     MachineBasicBlock *StartMBB = nullptr;
8842     MachineBasicBlock *LoopMBB = nullptr;
8843     MachineBasicBlock *NextMBB = nullptr;
8844     MachineBasicBlock *DoneMBB = nullptr;
8845     MachineBasicBlock *AllDoneMBB = nullptr;
8846 
8847     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8848     Register StartDestReg =
8849         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8850 
8851     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8852     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8853     Register ThisDestReg =
8854         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8855     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8856     Register NextDestReg =
8857         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8858     RC = &SystemZ::GR64BitRegClass;
8859     Register ThisCountReg = MRI.createVirtualRegister(RC);
8860     Register NextCountReg = MRI.createVirtualRegister(RC);
8861 
8862     if (IsRegForm) {
8863       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8864       StartMBB = SystemZ::emitBlockAfter(MBB);
8865       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8866       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8867       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8868 
8869       //  MBB:
8870       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8871       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8872         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8873       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8874         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8875         .addMBB(AllDoneMBB);
8876       MBB->addSuccessor(AllDoneMBB);
8877       if (!IsMemset)
8878         MBB->addSuccessor(StartMBB);
8879       else {
8880         // MemsetOneCheckMBB:
8881         // # Jump to MemsetOneMBB for a memset of length 1, or
8882         // # fall thru to StartMBB.
8883         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8884         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8885         MBB->addSuccessor(MemsetOneCheckMBB);
8886         MBB = MemsetOneCheckMBB;
8887         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8888           .addReg(LenAdjReg).addImm(-1);
8889         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8890           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8891           .addMBB(MemsetOneMBB);
8892         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8893         MBB->addSuccessor(StartMBB, {90, 100});
8894 
8895         // MemsetOneMBB:
8896         // # Jump back to AllDoneMBB after a single MVI or STC.
8897         MBB = MemsetOneMBB;
8898         insertMemMemOp(MBB, MBB->end(),
8899                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8900                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8901                        1);
8902         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8903         MBB->addSuccessor(AllDoneMBB);
8904       }
8905 
8906       // StartMBB:
8907       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8908       MBB = StartMBB;
8909       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8910         .addReg(StartCountReg).addImm(0);
8911       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8912         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8913         .addMBB(DoneMBB);
8914       MBB->addSuccessor(DoneMBB);
8915       MBB->addSuccessor(LoopMBB);
8916     }
8917     else {
8918       StartMBB = MBB;
8919       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8920       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8921       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8922 
8923       //  StartMBB:
8924       //   # fall through to LoopMBB
8925       MBB->addSuccessor(LoopMBB);
8926 
8927       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8928       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8929       if (EndMBB && !ImmLength)
8930         // If the loop handled the whole CLC range, DoneMBB will be empty with
8931         // CC live-through into EndMBB, so add it as live-in.
8932         DoneMBB->addLiveIn(SystemZ::CC);
8933     }
8934 
8935     //  LoopMBB:
8936     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8937     //                      [ %NextDestReg, NextMBB ]
8938     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8939     //                     [ %NextSrcReg, NextMBB ]
8940     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8941     //                       [ %NextCountReg, NextMBB ]
8942     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8943     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8944     //   ( JLH EndMBB )
8945     //
8946     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8947     MBB = LoopMBB;
8948     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8949       .addReg(StartDestReg).addMBB(StartMBB)
8950       .addReg(NextDestReg).addMBB(NextMBB);
8951     if (!HaveSingleBase)
8952       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8953         .addReg(StartSrcReg).addMBB(StartMBB)
8954         .addReg(NextSrcReg).addMBB(NextMBB);
8955     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8956       .addReg(StartCountReg).addMBB(StartMBB)
8957       .addReg(NextCountReg).addMBB(NextMBB);
8958     if (Opcode == SystemZ::MVC)
8959       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8960         .addImm(SystemZ::PFD_WRITE)
8961         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8962     insertMemMemOp(MBB, MBB->end(),
8963                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8964                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8965     if (EndMBB) {
8966       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8967         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8968         .addMBB(EndMBB);
8969       MBB->addSuccessor(EndMBB);
8970       MBB->addSuccessor(NextMBB);
8971     }
8972 
8973     // NextMBB:
8974     //   %NextDestReg = LA 256(%ThisDestReg)
8975     //   %NextSrcReg = LA 256(%ThisSrcReg)
8976     //   %NextCountReg = AGHI %ThisCountReg, -1
8977     //   CGHI %NextCountReg, 0
8978     //   JLH LoopMBB
8979     //   # fall through to DoneMBB
8980     //
8981     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8982     MBB = NextMBB;
8983     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8984       .addReg(ThisDestReg).addImm(256).addReg(0);
8985     if (!HaveSingleBase)
8986       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8987         .addReg(ThisSrcReg).addImm(256).addReg(0);
8988     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8989       .addReg(ThisCountReg).addImm(-1);
8990     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8991       .addReg(NextCountReg).addImm(0);
8992     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8993       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8994       .addMBB(LoopMBB);
8995     MBB->addSuccessor(LoopMBB);
8996     MBB->addSuccessor(DoneMBB);
8997 
8998     MBB = DoneMBB;
8999     if (IsRegForm) {
9000       // DoneMBB:
9001       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
9002       // # Use EXecute Relative Long for the remainder of the bytes. The target
9003       //   instruction of the EXRL will have a length field of 1 since 0 is an
9004       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
9005       //   0xff) + 1.
9006       // # Fall through to AllDoneMBB.
9007       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9008       Register RemDestReg = HaveSingleBase ? RemSrcReg
9009         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9010       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
9011         .addReg(StartDestReg).addMBB(StartMBB)
9012         .addReg(NextDestReg).addMBB(NextMBB);
9013       if (!HaveSingleBase)
9014         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
9015           .addReg(StartSrcReg).addMBB(StartMBB)
9016           .addReg(NextSrcReg).addMBB(NextMBB);
9017       if (IsMemset)
9018         insertMemMemOp(MBB, MBB->end(),
9019                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
9020                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
9021       MachineInstrBuilder EXRL_MIB =
9022         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
9023           .addImm(Opcode)
9024           .addReg(LenAdjReg)
9025           .addReg(RemDestReg).addImm(DestDisp)
9026           .addReg(RemSrcReg).addImm(SrcDisp);
9027       MBB->addSuccessor(AllDoneMBB);
9028       MBB = AllDoneMBB;
9029       if (Opcode != SystemZ::MVC) {
9030         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
9031         if (EndMBB)
9032           MBB->addLiveIn(SystemZ::CC);
9033       }
9034     }
9035     MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
9036   }
9037 
9038   // Handle any remaining bytes with straight-line code.
9039   while (ImmLength > 0) {
9040     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
9041     // The previous iteration might have created out-of-range displacements.
9042     // Apply them using LA/LAY if so.
9043     foldDisplIfNeeded(DestBase, DestDisp);
9044     foldDisplIfNeeded(SrcBase, SrcDisp);
9045     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
9046     DestDisp += ThisLength;
9047     SrcDisp += ThisLength;
9048     ImmLength -= ThisLength;
9049     // If there's another CLC to go, branch to the end if a difference
9050     // was found.
9051     if (EndMBB && ImmLength > 0) {
9052       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
9053       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9054         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
9055         .addMBB(EndMBB);
9056       MBB->addSuccessor(EndMBB);
9057       MBB->addSuccessor(NextMBB);
9058       MBB = NextMBB;
9059     }
9060   }
9061   if (EndMBB) {
9062     MBB->addSuccessor(EndMBB);
9063     MBB = EndMBB;
9064     MBB->addLiveIn(SystemZ::CC);
9065   }
9066 
9067   MI.eraseFromParent();
9068   return MBB;
9069 }
9070 
9071 // Decompose string pseudo-instruction MI into a loop that continually performs
9072 // Opcode until CC != 3.
9073 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
9074     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9075   MachineFunction &MF = *MBB->getParent();
9076   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9077   MachineRegisterInfo &MRI = MF.getRegInfo();
9078   DebugLoc DL = MI.getDebugLoc();
9079 
9080   uint64_t End1Reg = MI.getOperand(0).getReg();
9081   uint64_t Start1Reg = MI.getOperand(1).getReg();
9082   uint64_t Start2Reg = MI.getOperand(2).getReg();
9083   uint64_t CharReg = MI.getOperand(3).getReg();
9084 
9085   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
9086   uint64_t This1Reg = MRI.createVirtualRegister(RC);
9087   uint64_t This2Reg = MRI.createVirtualRegister(RC);
9088   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
9089 
9090   MachineBasicBlock *StartMBB = MBB;
9091   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
9092   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
9093 
9094   //  StartMBB:
9095   //   # fall through to LoopMBB
9096   MBB->addSuccessor(LoopMBB);
9097 
9098   //  LoopMBB:
9099   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
9100   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
9101   //   R0L = %CharReg
9102   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
9103   //   JO LoopMBB
9104   //   # fall through to DoneMBB
9105   //
9106   // The load of R0L can be hoisted by post-RA LICM.
9107   MBB = LoopMBB;
9108 
9109   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
9110     .addReg(Start1Reg).addMBB(StartMBB)
9111     .addReg(End1Reg).addMBB(LoopMBB);
9112   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
9113     .addReg(Start2Reg).addMBB(StartMBB)
9114     .addReg(End2Reg).addMBB(LoopMBB);
9115   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
9116   BuildMI(MBB, DL, TII->get(Opcode))
9117     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
9118     .addReg(This1Reg).addReg(This2Reg);
9119   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9120     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
9121   MBB->addSuccessor(LoopMBB);
9122   MBB->addSuccessor(DoneMBB);
9123 
9124   DoneMBB->addLiveIn(SystemZ::CC);
9125 
9126   MI.eraseFromParent();
9127   return DoneMBB;
9128 }
9129 
9130 // Update TBEGIN instruction with final opcode and register clobbers.
9131 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
9132     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
9133     bool NoFloat) const {
9134   MachineFunction &MF = *MBB->getParent();
9135   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
9136   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9137 
9138   // Update opcode.
9139   MI.setDesc(TII->get(Opcode));
9140 
9141   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
9142   // Make sure to add the corresponding GRSM bits if they are missing.
9143   uint64_t Control = MI.getOperand(2).getImm();
9144   static const unsigned GPRControlBit[16] = {
9145     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
9146     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
9147   };
9148   Control |= GPRControlBit[15];
9149   if (TFI->hasFP(MF))
9150     Control |= GPRControlBit[11];
9151   MI.getOperand(2).setImm(Control);
9152 
9153   // Add GPR clobbers.
9154   for (int I = 0; I < 16; I++) {
9155     if ((Control & GPRControlBit[I]) == 0) {
9156       unsigned Reg = SystemZMC::GR64Regs[I];
9157       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9158     }
9159   }
9160 
9161   // Add FPR/VR clobbers.
9162   if (!NoFloat && (Control & 4) != 0) {
9163     if (Subtarget.hasVector()) {
9164       for (unsigned Reg : SystemZMC::VR128Regs) {
9165         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9166       }
9167     } else {
9168       for (unsigned Reg : SystemZMC::FP64Regs) {
9169         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
9170       }
9171     }
9172   }
9173 
9174   return MBB;
9175 }
9176 
9177 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
9178     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
9179   MachineFunction &MF = *MBB->getParent();
9180   MachineRegisterInfo *MRI = &MF.getRegInfo();
9181   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9182   DebugLoc DL = MI.getDebugLoc();
9183 
9184   Register SrcReg = MI.getOperand(0).getReg();
9185 
9186   // Create new virtual register of the same class as source.
9187   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
9188   Register DstReg = MRI->createVirtualRegister(RC);
9189 
9190   // Replace pseudo with a normal load-and-test that models the def as
9191   // well.
9192   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
9193     .addReg(SrcReg)
9194     .setMIFlags(MI.getFlags());
9195   MI.eraseFromParent();
9196 
9197   return MBB;
9198 }
9199 
9200 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
9201     MachineInstr &MI, MachineBasicBlock *MBB) const {
9202   MachineFunction &MF = *MBB->getParent();
9203   MachineRegisterInfo *MRI = &MF.getRegInfo();
9204   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
9205   DebugLoc DL = MI.getDebugLoc();
9206   const unsigned ProbeSize = getStackProbeSize(MF);
9207   Register DstReg = MI.getOperand(0).getReg();
9208   Register SizeReg = MI.getOperand(2).getReg();
9209 
9210   MachineBasicBlock *StartMBB = MBB;
9211   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
9212   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
9213   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
9214   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
9215   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
9216 
9217   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
9218     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
9219 
9220   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9221   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
9222 
9223   //  LoopTestMBB
9224   //  BRC TailTestMBB
9225   //  # fallthrough to LoopBodyMBB
9226   StartMBB->addSuccessor(LoopTestMBB);
9227   MBB = LoopTestMBB;
9228   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
9229     .addReg(SizeReg)
9230     .addMBB(StartMBB)
9231     .addReg(IncReg)
9232     .addMBB(LoopBodyMBB);
9233   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
9234     .addReg(PHIReg)
9235     .addImm(ProbeSize);
9236   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9237     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
9238     .addMBB(TailTestMBB);
9239   MBB->addSuccessor(LoopBodyMBB);
9240   MBB->addSuccessor(TailTestMBB);
9241 
9242   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
9243   //  J LoopTestMBB
9244   MBB = LoopBodyMBB;
9245   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
9246     .addReg(PHIReg)
9247     .addImm(ProbeSize);
9248   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
9249     .addReg(SystemZ::R15D)
9250     .addImm(ProbeSize);
9251   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9252     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
9253     .setMemRefs(VolLdMMO);
9254   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
9255   MBB->addSuccessor(LoopTestMBB);
9256 
9257   //  TailTestMBB
9258   //  BRC DoneMBB
9259   //  # fallthrough to TailMBB
9260   MBB = TailTestMBB;
9261   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
9262     .addReg(PHIReg)
9263     .addImm(0);
9264   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
9265     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
9266     .addMBB(DoneMBB);
9267   MBB->addSuccessor(TailMBB);
9268   MBB->addSuccessor(DoneMBB);
9269 
9270   //  TailMBB
9271   //  # fallthrough to DoneMBB
9272   MBB = TailMBB;
9273   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
9274     .addReg(SystemZ::R15D)
9275     .addReg(PHIReg);
9276   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
9277     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
9278     .setMemRefs(VolLdMMO);
9279   MBB->addSuccessor(DoneMBB);
9280 
9281   //  DoneMBB
9282   MBB = DoneMBB;
9283   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
9284     .addReg(SystemZ::R15D);
9285 
9286   MI.eraseFromParent();
9287   return DoneMBB;
9288 }
9289 
9290 SDValue SystemZTargetLowering::
9291 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
9292   MachineFunction &MF = DAG.getMachineFunction();
9293   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
9294   SDLoc DL(SP);
9295   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
9296                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
9297 }
9298 
9299 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
9300     MachineInstr &MI, MachineBasicBlock *MBB) const {
9301   switch (MI.getOpcode()) {
9302   case SystemZ::Select32:
9303   case SystemZ::Select64:
9304   case SystemZ::Select128:
9305   case SystemZ::SelectF32:
9306   case SystemZ::SelectF64:
9307   case SystemZ::SelectF128:
9308   case SystemZ::SelectVR32:
9309   case SystemZ::SelectVR64:
9310   case SystemZ::SelectVR128:
9311     return emitSelect(MI, MBB);
9312 
9313   case SystemZ::CondStore8Mux:
9314     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
9315   case SystemZ::CondStore8MuxInv:
9316     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
9317   case SystemZ::CondStore16Mux:
9318     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
9319   case SystemZ::CondStore16MuxInv:
9320     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
9321   case SystemZ::CondStore32Mux:
9322     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
9323   case SystemZ::CondStore32MuxInv:
9324     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
9325   case SystemZ::CondStore8:
9326     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
9327   case SystemZ::CondStore8Inv:
9328     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
9329   case SystemZ::CondStore16:
9330     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
9331   case SystemZ::CondStore16Inv:
9332     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
9333   case SystemZ::CondStore32:
9334     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
9335   case SystemZ::CondStore32Inv:
9336     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
9337   case SystemZ::CondStore64:
9338     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
9339   case SystemZ::CondStore64Inv:
9340     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
9341   case SystemZ::CondStoreF32:
9342     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
9343   case SystemZ::CondStoreF32Inv:
9344     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
9345   case SystemZ::CondStoreF64:
9346     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
9347   case SystemZ::CondStoreF64Inv:
9348     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
9349 
9350   case SystemZ::SCmp128Hi:
9351     return emitICmp128Hi(MI, MBB, false);
9352   case SystemZ::UCmp128Hi:
9353     return emitICmp128Hi(MI, MBB, true);
9354 
9355   case SystemZ::PAIR128:
9356     return emitPair128(MI, MBB);
9357   case SystemZ::AEXT128:
9358     return emitExt128(MI, MBB, false);
9359   case SystemZ::ZEXT128:
9360     return emitExt128(MI, MBB, true);
9361 
9362   case SystemZ::ATOMIC_SWAPW:
9363     return emitAtomicLoadBinary(MI, MBB, 0);
9364 
9365   case SystemZ::ATOMIC_LOADW_AR:
9366     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR);
9367   case SystemZ::ATOMIC_LOADW_AFI:
9368     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI);
9369 
9370   case SystemZ::ATOMIC_LOADW_SR:
9371     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR);
9372 
9373   case SystemZ::ATOMIC_LOADW_NR:
9374     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR);
9375   case SystemZ::ATOMIC_LOADW_NILH:
9376     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH);
9377 
9378   case SystemZ::ATOMIC_LOADW_OR:
9379     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR);
9380   case SystemZ::ATOMIC_LOADW_OILH:
9381     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH);
9382 
9383   case SystemZ::ATOMIC_LOADW_XR:
9384     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR);
9385   case SystemZ::ATOMIC_LOADW_XILF:
9386     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF);
9387 
9388   case SystemZ::ATOMIC_LOADW_NRi:
9389     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, true);
9390   case SystemZ::ATOMIC_LOADW_NILHi:
9391     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, true);
9392 
9393   case SystemZ::ATOMIC_LOADW_MIN:
9394     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_LE);
9395   case SystemZ::ATOMIC_LOADW_MAX:
9396     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, SystemZ::CCMASK_CMP_GE);
9397   case SystemZ::ATOMIC_LOADW_UMIN:
9398     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_LE);
9399   case SystemZ::ATOMIC_LOADW_UMAX:
9400     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, SystemZ::CCMASK_CMP_GE);
9401 
9402   case SystemZ::ATOMIC_CMP_SWAPW:
9403     return emitAtomicCmpSwapW(MI, MBB);
9404   case SystemZ::MVCImm:
9405   case SystemZ::MVCReg:
9406     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
9407   case SystemZ::NCImm:
9408     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
9409   case SystemZ::OCImm:
9410     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
9411   case SystemZ::XCImm:
9412   case SystemZ::XCReg:
9413     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9414   case SystemZ::CLCImm:
9415   case SystemZ::CLCReg:
9416     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9417   case SystemZ::MemsetImmImm:
9418   case SystemZ::MemsetImmReg:
9419   case SystemZ::MemsetRegImm:
9420   case SystemZ::MemsetRegReg:
9421     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9422   case SystemZ::CLSTLoop:
9423     return emitStringWrapper(MI, MBB, SystemZ::CLST);
9424   case SystemZ::MVSTLoop:
9425     return emitStringWrapper(MI, MBB, SystemZ::MVST);
9426   case SystemZ::SRSTLoop:
9427     return emitStringWrapper(MI, MBB, SystemZ::SRST);
9428   case SystemZ::TBEGIN:
9429     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9430   case SystemZ::TBEGIN_nofloat:
9431     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9432   case SystemZ::TBEGINC:
9433     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9434   case SystemZ::LTEBRCompare_VecPseudo:
9435     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9436   case SystemZ::LTDBRCompare_VecPseudo:
9437     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9438   case SystemZ::LTXBRCompare_VecPseudo:
9439     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9440 
9441   case SystemZ::PROBED_ALLOCA:
9442     return emitProbedAlloca(MI, MBB);
9443 
9444   case TargetOpcode::STACKMAP:
9445   case TargetOpcode::PATCHPOINT:
9446     return emitPatchPoint(MI, MBB);
9447 
9448   default:
9449     llvm_unreachable("Unexpected instr type to insert");
9450   }
9451 }
9452 
9453 // This is only used by the isel schedulers, and is needed only to prevent
9454 // compiler from crashing when list-ilp is used.
9455 const TargetRegisterClass *
9456 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9457   if (VT == MVT::Untyped)
9458     return &SystemZ::ADDR128BitRegClass;
9459   return TargetLowering::getRepRegClassFor(VT);
9460 }
9461 
9462 SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op,
9463                                                  SelectionDAG &DAG) const {
9464   SDLoc dl(Op);
9465   /*
9466    The rounding method is in FPC Byte 3 bits 6-7, and has the following
9467    settings:
9468      00 Round to nearest
9469      01 Round to 0
9470      10 Round to +inf
9471      11 Round to -inf
9472 
9473   FLT_ROUNDS, on the other hand, expects the following:
9474     -1 Undefined
9475      0 Round to 0
9476      1 Round to nearest
9477      2 Round to +inf
9478      3 Round to -inf
9479   */
9480 
9481   // Save FPC to register.
9482   SDValue Chain = Op.getOperand(0);
9483   SDValue EFPC(
9484       DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0);
9485   Chain = EFPC.getValue(1);
9486 
9487   // Transform as necessary
9488   SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC,
9489                              DAG.getConstant(3, dl, MVT::i32));
9490   // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1
9491   SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1,
9492                              DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1,
9493                                          DAG.getConstant(1, dl, MVT::i32)));
9494 
9495   SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2,
9496                                DAG.getConstant(1, dl, MVT::i32));
9497   RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType());
9498 
9499   return DAG.getMergeValues({RetVal, Chain}, dl);
9500 }
9501