xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision fe6060f10f634930ff71b7c50291ddc610da2475)
10b57cec5SDimitry Andric //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements the SystemZTargetLowering class.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "SystemZISelLowering.h"
140b57cec5SDimitry Andric #include "SystemZCallingConv.h"
150b57cec5SDimitry Andric #include "SystemZConstantPoolValue.h"
160b57cec5SDimitry Andric #include "SystemZMachineFunctionInfo.h"
170b57cec5SDimitry Andric #include "SystemZTargetMachine.h"
180b57cec5SDimitry Andric #include "llvm/CodeGen/CallingConvLower.h"
190b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
200b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
210b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
220b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
23480093f4SDimitry Andric #include "llvm/IR/Intrinsics.h"
24480093f4SDimitry Andric #include "llvm/IR/IntrinsicsS390.h"
250b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
260b57cec5SDimitry Andric #include "llvm/Support/KnownBits.h"
270b57cec5SDimitry Andric #include <cctype>
280b57cec5SDimitry Andric 
290b57cec5SDimitry Andric using namespace llvm;
300b57cec5SDimitry Andric 
310b57cec5SDimitry Andric #define DEBUG_TYPE "systemz-lower"
320b57cec5SDimitry Andric 
330b57cec5SDimitry Andric namespace {
340b57cec5SDimitry Andric // Represents information about a comparison.
350b57cec5SDimitry Andric struct Comparison {
36480093f4SDimitry Andric   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37480093f4SDimitry Andric     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38480093f4SDimitry Andric       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
390b57cec5SDimitry Andric 
400b57cec5SDimitry Andric   // The operands to the comparison.
410b57cec5SDimitry Andric   SDValue Op0, Op1;
420b57cec5SDimitry Andric 
43480093f4SDimitry Andric   // Chain if this is a strict floating-point comparison.
44480093f4SDimitry Andric   SDValue Chain;
45480093f4SDimitry Andric 
460b57cec5SDimitry Andric   // The opcode that should be used to compare Op0 and Op1.
470b57cec5SDimitry Andric   unsigned Opcode;
480b57cec5SDimitry Andric 
490b57cec5SDimitry Andric   // A SystemZICMP value.  Only used for integer comparisons.
500b57cec5SDimitry Andric   unsigned ICmpType;
510b57cec5SDimitry Andric 
520b57cec5SDimitry Andric   // The mask of CC values that Opcode can produce.
530b57cec5SDimitry Andric   unsigned CCValid;
540b57cec5SDimitry Andric 
550b57cec5SDimitry Andric   // The mask of CC values for which the original condition is true.
560b57cec5SDimitry Andric   unsigned CCMask;
570b57cec5SDimitry Andric };
580b57cec5SDimitry Andric } // end anonymous namespace
590b57cec5SDimitry Andric 
600b57cec5SDimitry Andric // Classify VT as either 32 or 64 bit.
610b57cec5SDimitry Andric static bool is32Bit(EVT VT) {
620b57cec5SDimitry Andric   switch (VT.getSimpleVT().SimpleTy) {
630b57cec5SDimitry Andric   case MVT::i32:
640b57cec5SDimitry Andric     return true;
650b57cec5SDimitry Andric   case MVT::i64:
660b57cec5SDimitry Andric     return false;
670b57cec5SDimitry Andric   default:
680b57cec5SDimitry Andric     llvm_unreachable("Unsupported type");
690b57cec5SDimitry Andric   }
700b57cec5SDimitry Andric }
710b57cec5SDimitry Andric 
720b57cec5SDimitry Andric // Return a version of MachineOperand that can be safely used before the
730b57cec5SDimitry Andric // final use.
740b57cec5SDimitry Andric static MachineOperand earlyUseOperand(MachineOperand Op) {
750b57cec5SDimitry Andric   if (Op.isReg())
760b57cec5SDimitry Andric     Op.setIsKill(false);
770b57cec5SDimitry Andric   return Op;
780b57cec5SDimitry Andric }
790b57cec5SDimitry Andric 
800b57cec5SDimitry Andric SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
810b57cec5SDimitry Andric                                              const SystemZSubtarget &STI)
820b57cec5SDimitry Andric     : TargetLowering(TM), Subtarget(STI) {
830b57cec5SDimitry Andric   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
840b57cec5SDimitry Andric 
850b57cec5SDimitry Andric   // Set up the register classes.
860b57cec5SDimitry Andric   if (Subtarget.hasHighWord())
870b57cec5SDimitry Andric     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
880b57cec5SDimitry Andric   else
890b57cec5SDimitry Andric     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
900b57cec5SDimitry Andric   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
915ffd83dbSDimitry Andric   if (!useSoftFloat()) {
920b57cec5SDimitry Andric     if (Subtarget.hasVector()) {
930b57cec5SDimitry Andric       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
940b57cec5SDimitry Andric       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
950b57cec5SDimitry Andric     } else {
960b57cec5SDimitry Andric       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
970b57cec5SDimitry Andric       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
980b57cec5SDimitry Andric     }
990b57cec5SDimitry Andric     if (Subtarget.hasVectorEnhancements1())
1000b57cec5SDimitry Andric       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
1010b57cec5SDimitry Andric     else
1020b57cec5SDimitry Andric       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
1030b57cec5SDimitry Andric 
1040b57cec5SDimitry Andric     if (Subtarget.hasVector()) {
1050b57cec5SDimitry Andric       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
1060b57cec5SDimitry Andric       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
1070b57cec5SDimitry Andric       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
1080b57cec5SDimitry Andric       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
1090b57cec5SDimitry Andric       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
1100b57cec5SDimitry Andric       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
1110b57cec5SDimitry Andric     }
1125ffd83dbSDimitry Andric   }
1130b57cec5SDimitry Andric 
1140b57cec5SDimitry Andric   // Compute derived properties from the register classes
1150b57cec5SDimitry Andric   computeRegisterProperties(Subtarget.getRegisterInfo());
1160b57cec5SDimitry Andric 
1170b57cec5SDimitry Andric   // Set up special registers.
1180b57cec5SDimitry Andric   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
1190b57cec5SDimitry Andric 
1200b57cec5SDimitry Andric   // TODO: It may be better to default to latency-oriented scheduling, however
1210b57cec5SDimitry Andric   // LLVM's current latency-oriented scheduler can't handle physreg definitions
1220b57cec5SDimitry Andric   // such as SystemZ has with CC, so set this to the register-pressure
1230b57cec5SDimitry Andric   // scheduler, because it can.
1240b57cec5SDimitry Andric   setSchedulingPreference(Sched::RegPressure);
1250b57cec5SDimitry Andric 
1260b57cec5SDimitry Andric   setBooleanContents(ZeroOrOneBooleanContent);
1270b57cec5SDimitry Andric   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1280b57cec5SDimitry Andric 
1290b57cec5SDimitry Andric   // Instructions are strings of 2-byte aligned 2-byte values.
1308bcb0991SDimitry Andric   setMinFunctionAlignment(Align(2));
1310b57cec5SDimitry Andric   // For performance reasons we prefer 16-byte alignment.
1328bcb0991SDimitry Andric   setPrefFunctionAlignment(Align(16));
1330b57cec5SDimitry Andric 
1340b57cec5SDimitry Andric   // Handle operations that are handled in a similar way for all types.
1350b57cec5SDimitry Andric   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
1360b57cec5SDimitry Andric        I <= MVT::LAST_FP_VALUETYPE;
1370b57cec5SDimitry Andric        ++I) {
1380b57cec5SDimitry Andric     MVT VT = MVT::SimpleValueType(I);
1390b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
1400b57cec5SDimitry Andric       // Lower SET_CC into an IPM-based sequence.
1410b57cec5SDimitry Andric       setOperationAction(ISD::SETCC, VT, Custom);
142480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
1440b57cec5SDimitry Andric 
1450b57cec5SDimitry Andric       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
1460b57cec5SDimitry Andric       setOperationAction(ISD::SELECT, VT, Expand);
1470b57cec5SDimitry Andric 
1480b57cec5SDimitry Andric       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
1490b57cec5SDimitry Andric       setOperationAction(ISD::SELECT_CC, VT, Custom);
1500b57cec5SDimitry Andric       setOperationAction(ISD::BR_CC,     VT, Custom);
1510b57cec5SDimitry Andric     }
1520b57cec5SDimitry Andric   }
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric   // Expand jump table branches as address arithmetic followed by an
1550b57cec5SDimitry Andric   // indirect jump.
1560b57cec5SDimitry Andric   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1570b57cec5SDimitry Andric 
1580b57cec5SDimitry Andric   // Expand BRCOND into a BR_CC (see above).
1590b57cec5SDimitry Andric   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1600b57cec5SDimitry Andric 
1610b57cec5SDimitry Andric   // Handle integer types.
1620b57cec5SDimitry Andric   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
1630b57cec5SDimitry Andric        I <= MVT::LAST_INTEGER_VALUETYPE;
1640b57cec5SDimitry Andric        ++I) {
1650b57cec5SDimitry Andric     MVT VT = MVT::SimpleValueType(I);
1660b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
167e8d8bef9SDimitry Andric       setOperationAction(ISD::ABS, VT, Legal);
168e8d8bef9SDimitry Andric 
1690b57cec5SDimitry Andric       // Expand individual DIV and REMs into DIVREMs.
1700b57cec5SDimitry Andric       setOperationAction(ISD::SDIV, VT, Expand);
1710b57cec5SDimitry Andric       setOperationAction(ISD::UDIV, VT, Expand);
1720b57cec5SDimitry Andric       setOperationAction(ISD::SREM, VT, Expand);
1730b57cec5SDimitry Andric       setOperationAction(ISD::UREM, VT, Expand);
1740b57cec5SDimitry Andric       setOperationAction(ISD::SDIVREM, VT, Custom);
1750b57cec5SDimitry Andric       setOperationAction(ISD::UDIVREM, VT, Custom);
1760b57cec5SDimitry Andric 
1770b57cec5SDimitry Andric       // Support addition/subtraction with overflow.
1780b57cec5SDimitry Andric       setOperationAction(ISD::SADDO, VT, Custom);
1790b57cec5SDimitry Andric       setOperationAction(ISD::SSUBO, VT, Custom);
1800b57cec5SDimitry Andric 
1810b57cec5SDimitry Andric       // Support addition/subtraction with carry.
1820b57cec5SDimitry Andric       setOperationAction(ISD::UADDO, VT, Custom);
1830b57cec5SDimitry Andric       setOperationAction(ISD::USUBO, VT, Custom);
1840b57cec5SDimitry Andric 
1850b57cec5SDimitry Andric       // Support carry in as value rather than glue.
1860b57cec5SDimitry Andric       setOperationAction(ISD::ADDCARRY, VT, Custom);
1870b57cec5SDimitry Andric       setOperationAction(ISD::SUBCARRY, VT, Custom);
1880b57cec5SDimitry Andric 
1890b57cec5SDimitry Andric       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
1900b57cec5SDimitry Andric       // stores, putting a serialization instruction after the stores.
1910b57cec5SDimitry Andric       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
1920b57cec5SDimitry Andric       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
1930b57cec5SDimitry Andric 
1940b57cec5SDimitry Andric       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
1950b57cec5SDimitry Andric       // available, or if the operand is constant.
1960b57cec5SDimitry Andric       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
1970b57cec5SDimitry Andric 
1980b57cec5SDimitry Andric       // Use POPCNT on z196 and above.
1990b57cec5SDimitry Andric       if (Subtarget.hasPopulationCount())
2000b57cec5SDimitry Andric         setOperationAction(ISD::CTPOP, VT, Custom);
2010b57cec5SDimitry Andric       else
2020b57cec5SDimitry Andric         setOperationAction(ISD::CTPOP, VT, Expand);
2030b57cec5SDimitry Andric 
2040b57cec5SDimitry Andric       // No special instructions for these.
2050b57cec5SDimitry Andric       setOperationAction(ISD::CTTZ,            VT, Expand);
2060b57cec5SDimitry Andric       setOperationAction(ISD::ROTR,            VT, Expand);
2070b57cec5SDimitry Andric 
2080b57cec5SDimitry Andric       // Use *MUL_LOHI where possible instead of MULH*.
2090b57cec5SDimitry Andric       setOperationAction(ISD::MULHS, VT, Expand);
2100b57cec5SDimitry Andric       setOperationAction(ISD::MULHU, VT, Expand);
2110b57cec5SDimitry Andric       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
2120b57cec5SDimitry Andric       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
2130b57cec5SDimitry Andric 
2140b57cec5SDimitry Andric       // Only z196 and above have native support for conversions to unsigned.
2150b57cec5SDimitry Andric       // On z10, promoting to i64 doesn't generate an inexact condition for
2160b57cec5SDimitry Andric       // values that are outside the i32 range but in the i64 range, so use
2170b57cec5SDimitry Andric       // the default expansion.
2180b57cec5SDimitry Andric       if (!Subtarget.hasFPExtension())
2190b57cec5SDimitry Andric         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
2208bcb0991SDimitry Andric 
2218bcb0991SDimitry Andric       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
2228bcb0991SDimitry Andric       // default to Expand, so need to be modified to Legal where appropriate.
2238bcb0991SDimitry Andric       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
2248bcb0991SDimitry Andric       if (Subtarget.hasFPExtension())
2258bcb0991SDimitry Andric         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
226480093f4SDimitry Andric 
227480093f4SDimitry Andric       // And similarly for STRICT_[SU]INT_TO_FP.
228480093f4SDimitry Andric       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229480093f4SDimitry Andric       if (Subtarget.hasFPExtension())
230480093f4SDimitry Andric         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
2310b57cec5SDimitry Andric     }
2320b57cec5SDimitry Andric   }
2330b57cec5SDimitry Andric 
2340b57cec5SDimitry Andric   // Type legalization will convert 8- and 16-bit atomic operations into
2350b57cec5SDimitry Andric   // forms that operate on i32s (but still keeping the original memory VT).
2360b57cec5SDimitry Andric   // Lower them into full i32 operations.
2370b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
2380b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
2390b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
2400b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
2410b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
2420b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
2430b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
2440b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
2450b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
2460b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
2470b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
2480b57cec5SDimitry Andric 
2490b57cec5SDimitry Andric   // Even though i128 is not a legal type, we still need to custom lower
2500b57cec5SDimitry Andric   // the atomic operations in order to exploit SystemZ instructions.
2510b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
2520b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
2530b57cec5SDimitry Andric 
2540b57cec5SDimitry Andric   // We can use the CC result of compare-and-swap to implement
2550b57cec5SDimitry Andric   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
2560b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
2570b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
2580b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
2590b57cec5SDimitry Andric 
2600b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
2610b57cec5SDimitry Andric 
2620b57cec5SDimitry Andric   // Traps are legal, as we will convert them to "j .+2".
2630b57cec5SDimitry Andric   setOperationAction(ISD::TRAP, MVT::Other, Legal);
2640b57cec5SDimitry Andric 
2650b57cec5SDimitry Andric   // z10 has instructions for signed but not unsigned FP conversion.
2660b57cec5SDimitry Andric   // Handle unsigned 32-bit types as signed 64-bit types.
2670b57cec5SDimitry Andric   if (!Subtarget.hasFPExtension()) {
2680b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
2690b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
2720b57cec5SDimitry Andric   }
2730b57cec5SDimitry Andric 
2740b57cec5SDimitry Andric   // We have native support for a 64-bit CTLZ, via FLOGR.
2750b57cec5SDimitry Andric   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
2760b57cec5SDimitry Andric   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
2770b57cec5SDimitry Andric   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
2780b57cec5SDimitry Andric 
2798bcb0991SDimitry Andric   // On z15 we have native support for a 64-bit CTPOP.
2800b57cec5SDimitry Andric   if (Subtarget.hasMiscellaneousExtensions3()) {
2810b57cec5SDimitry Andric     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
2820b57cec5SDimitry Andric     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
2830b57cec5SDimitry Andric   }
2840b57cec5SDimitry Andric 
2850b57cec5SDimitry Andric   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
2860b57cec5SDimitry Andric   setOperationAction(ISD::OR, MVT::i64, Custom);
2870b57cec5SDimitry Andric 
28823408297SDimitry Andric   // Expand 128 bit shifts without using a libcall.
2890b57cec5SDimitry Andric   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
2900b57cec5SDimitry Andric   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
2910b57cec5SDimitry Andric   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
29223408297SDimitry Andric   setLibcallName(RTLIB::SRL_I128, nullptr);
29323408297SDimitry Andric   setLibcallName(RTLIB::SHL_I128, nullptr);
29423408297SDimitry Andric   setLibcallName(RTLIB::SRA_I128, nullptr);
2950b57cec5SDimitry Andric 
2960b57cec5SDimitry Andric   // We have native instructions for i8, i16 and i32 extensions, but not i1.
2970b57cec5SDimitry Andric   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
2980b57cec5SDimitry Andric   for (MVT VT : MVT::integer_valuetypes()) {
2990b57cec5SDimitry Andric     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
3000b57cec5SDimitry Andric     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
3010b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
3020b57cec5SDimitry Andric   }
3030b57cec5SDimitry Andric 
3040b57cec5SDimitry Andric   // Handle the various types of symbolic address.
3050b57cec5SDimitry Andric   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
3060b57cec5SDimitry Andric   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
3070b57cec5SDimitry Andric   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
3080b57cec5SDimitry Andric   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
3090b57cec5SDimitry Andric   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
3100b57cec5SDimitry Andric 
3110b57cec5SDimitry Andric   // We need to handle dynamic allocations specially because of the
3120b57cec5SDimitry Andric   // 160-byte area at the bottom of the stack.
3130b57cec5SDimitry Andric   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
3140b57cec5SDimitry Andric   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
3150b57cec5SDimitry Andric 
3160b57cec5SDimitry Andric   // Use custom expanders so that we can force the function to use
3170b57cec5SDimitry Andric   // a frame pointer.
3180b57cec5SDimitry Andric   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
3190b57cec5SDimitry Andric   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
3200b57cec5SDimitry Andric 
3210b57cec5SDimitry Andric   // Handle prefetches with PFD or PFDRL.
3220b57cec5SDimitry Andric   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
3230b57cec5SDimitry Andric 
3248bcb0991SDimitry Andric   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
3250b57cec5SDimitry Andric     // Assume by default that all vector operations need to be expanded.
3260b57cec5SDimitry Andric     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
3270b57cec5SDimitry Andric       if (getOperationAction(Opcode, VT) == Legal)
3280b57cec5SDimitry Andric         setOperationAction(Opcode, VT, Expand);
3290b57cec5SDimitry Andric 
3300b57cec5SDimitry Andric     // Likewise all truncating stores and extending loads.
3318bcb0991SDimitry Andric     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
3320b57cec5SDimitry Andric       setTruncStoreAction(VT, InnerVT, Expand);
3330b57cec5SDimitry Andric       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
3340b57cec5SDimitry Andric       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
3350b57cec5SDimitry Andric       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
3360b57cec5SDimitry Andric     }
3370b57cec5SDimitry Andric 
3380b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
3390b57cec5SDimitry Andric       // These operations are legal for anything that can be stored in a
3400b57cec5SDimitry Andric       // vector register, even if there is no native support for the format
3410b57cec5SDimitry Andric       // as such.  In particular, we can do these for v4f32 even though there
3420b57cec5SDimitry Andric       // are no specific instructions for that format.
3430b57cec5SDimitry Andric       setOperationAction(ISD::LOAD, VT, Legal);
3440b57cec5SDimitry Andric       setOperationAction(ISD::STORE, VT, Legal);
3450b57cec5SDimitry Andric       setOperationAction(ISD::VSELECT, VT, Legal);
3460b57cec5SDimitry Andric       setOperationAction(ISD::BITCAST, VT, Legal);
3470b57cec5SDimitry Andric       setOperationAction(ISD::UNDEF, VT, Legal);
3480b57cec5SDimitry Andric 
3490b57cec5SDimitry Andric       // Likewise, except that we need to replace the nodes with something
3500b57cec5SDimitry Andric       // more specific.
3510b57cec5SDimitry Andric       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
3520b57cec5SDimitry Andric       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
3530b57cec5SDimitry Andric     }
3540b57cec5SDimitry Andric   }
3550b57cec5SDimitry Andric 
3560b57cec5SDimitry Andric   // Handle integer vector types.
3578bcb0991SDimitry Andric   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
3580b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
3590b57cec5SDimitry Andric       // These operations have direct equivalents.
3600b57cec5SDimitry Andric       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
3610b57cec5SDimitry Andric       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
3620b57cec5SDimitry Andric       setOperationAction(ISD::ADD, VT, Legal);
3630b57cec5SDimitry Andric       setOperationAction(ISD::SUB, VT, Legal);
3640b57cec5SDimitry Andric       if (VT != MVT::v2i64)
3650b57cec5SDimitry Andric         setOperationAction(ISD::MUL, VT, Legal);
366e8d8bef9SDimitry Andric       setOperationAction(ISD::ABS, VT, Legal);
3670b57cec5SDimitry Andric       setOperationAction(ISD::AND, VT, Legal);
3680b57cec5SDimitry Andric       setOperationAction(ISD::OR, VT, Legal);
3690b57cec5SDimitry Andric       setOperationAction(ISD::XOR, VT, Legal);
3700b57cec5SDimitry Andric       if (Subtarget.hasVectorEnhancements1())
3710b57cec5SDimitry Andric         setOperationAction(ISD::CTPOP, VT, Legal);
3720b57cec5SDimitry Andric       else
3730b57cec5SDimitry Andric         setOperationAction(ISD::CTPOP, VT, Custom);
3740b57cec5SDimitry Andric       setOperationAction(ISD::CTTZ, VT, Legal);
3750b57cec5SDimitry Andric       setOperationAction(ISD::CTLZ, VT, Legal);
3760b57cec5SDimitry Andric 
3770b57cec5SDimitry Andric       // Convert a GPR scalar to a vector by inserting it into element 0.
3780b57cec5SDimitry Andric       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
3790b57cec5SDimitry Andric 
3800b57cec5SDimitry Andric       // Use a series of unpacks for extensions.
3810b57cec5SDimitry Andric       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
3820b57cec5SDimitry Andric       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
3830b57cec5SDimitry Andric 
3840b57cec5SDimitry Andric       // Detect shifts by a scalar amount and convert them into
3850b57cec5SDimitry Andric       // V*_BY_SCALAR.
3860b57cec5SDimitry Andric       setOperationAction(ISD::SHL, VT, Custom);
3870b57cec5SDimitry Andric       setOperationAction(ISD::SRA, VT, Custom);
3880b57cec5SDimitry Andric       setOperationAction(ISD::SRL, VT, Custom);
3890b57cec5SDimitry Andric 
3900b57cec5SDimitry Andric       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
3910b57cec5SDimitry Andric       // converted into ROTL.
3920b57cec5SDimitry Andric       setOperationAction(ISD::ROTL, VT, Expand);
3930b57cec5SDimitry Andric       setOperationAction(ISD::ROTR, VT, Expand);
3940b57cec5SDimitry Andric 
3950b57cec5SDimitry Andric       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
3960b57cec5SDimitry Andric       // and inverting the result as necessary.
3970b57cec5SDimitry Andric       setOperationAction(ISD::SETCC, VT, Custom);
398480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
399480093f4SDimitry Andric       if (Subtarget.hasVectorEnhancements1())
400480093f4SDimitry Andric         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
4010b57cec5SDimitry Andric     }
4020b57cec5SDimitry Andric   }
4030b57cec5SDimitry Andric 
4040b57cec5SDimitry Andric   if (Subtarget.hasVector()) {
4050b57cec5SDimitry Andric     // There should be no need to check for float types other than v2f64
4060b57cec5SDimitry Andric     // since <2 x f32> isn't a legal type.
4070b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
4080b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
4090b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
4100b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
4110b57cec5SDimitry Andric     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
4120b57cec5SDimitry Andric     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
4130b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
4140b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
4158bcb0991SDimitry Andric 
4168bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
4178bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
4188bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
4198bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
420480093f4SDimitry Andric     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
421480093f4SDimitry Andric     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
422480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
423480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
4240b57cec5SDimitry Andric   }
4250b57cec5SDimitry Andric 
4260b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements2()) {
4270b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
4280b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
4290b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
4300b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
4310b57cec5SDimitry Andric     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
4320b57cec5SDimitry Andric     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
4330b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
4340b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
4358bcb0991SDimitry Andric 
4368bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
4378bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
4388bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
4398bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
440480093f4SDimitry Andric     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
441480093f4SDimitry Andric     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
442480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
443480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
4440b57cec5SDimitry Andric   }
4450b57cec5SDimitry Andric 
4460b57cec5SDimitry Andric   // Handle floating-point types.
4470b57cec5SDimitry Andric   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
4480b57cec5SDimitry Andric        I <= MVT::LAST_FP_VALUETYPE;
4490b57cec5SDimitry Andric        ++I) {
4500b57cec5SDimitry Andric     MVT VT = MVT::SimpleValueType(I);
4510b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
4520b57cec5SDimitry Andric       // We can use FI for FRINT.
4530b57cec5SDimitry Andric       setOperationAction(ISD::FRINT, VT, Legal);
4540b57cec5SDimitry Andric 
4550b57cec5SDimitry Andric       // We can use the extended form of FI for other rounding operations.
4560b57cec5SDimitry Andric       if (Subtarget.hasFPExtension()) {
4570b57cec5SDimitry Andric         setOperationAction(ISD::FNEARBYINT, VT, Legal);
4580b57cec5SDimitry Andric         setOperationAction(ISD::FFLOOR, VT, Legal);
4590b57cec5SDimitry Andric         setOperationAction(ISD::FCEIL, VT, Legal);
4600b57cec5SDimitry Andric         setOperationAction(ISD::FTRUNC, VT, Legal);
4610b57cec5SDimitry Andric         setOperationAction(ISD::FROUND, VT, Legal);
4620b57cec5SDimitry Andric       }
4630b57cec5SDimitry Andric 
4640b57cec5SDimitry Andric       // No special instructions for these.
4650b57cec5SDimitry Andric       setOperationAction(ISD::FSIN, VT, Expand);
4660b57cec5SDimitry Andric       setOperationAction(ISD::FCOS, VT, Expand);
4670b57cec5SDimitry Andric       setOperationAction(ISD::FSINCOS, VT, Expand);
4680b57cec5SDimitry Andric       setOperationAction(ISD::FREM, VT, Expand);
4690b57cec5SDimitry Andric       setOperationAction(ISD::FPOW, VT, Expand);
4700b57cec5SDimitry Andric 
4710b57cec5SDimitry Andric       // Handle constrained floating-point operations.
4720b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FADD, VT, Legal);
4730b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
4740b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
4750b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
4760b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FMA, VT, Legal);
4770b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
4780b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
4790b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
4800b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
4810b57cec5SDimitry Andric       if (Subtarget.hasFPExtension()) {
4820b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
4830b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
4840b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
4850b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
4860b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
4870b57cec5SDimitry Andric       }
4880b57cec5SDimitry Andric     }
4890b57cec5SDimitry Andric   }
4900b57cec5SDimitry Andric 
4910b57cec5SDimitry Andric   // Handle floating-point vector types.
4920b57cec5SDimitry Andric   if (Subtarget.hasVector()) {
4930b57cec5SDimitry Andric     // Scalar-to-vector conversion is just a subreg.
4940b57cec5SDimitry Andric     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
4950b57cec5SDimitry Andric     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
4960b57cec5SDimitry Andric 
4970b57cec5SDimitry Andric     // Some insertions and extractions can be done directly but others
4980b57cec5SDimitry Andric     // need to go via integers.
4990b57cec5SDimitry Andric     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
5000b57cec5SDimitry Andric     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
5010b57cec5SDimitry Andric     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
5020b57cec5SDimitry Andric     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
5030b57cec5SDimitry Andric 
5040b57cec5SDimitry Andric     // These operations have direct equivalents.
5050b57cec5SDimitry Andric     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
5060b57cec5SDimitry Andric     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
5070b57cec5SDimitry Andric     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
5080b57cec5SDimitry Andric     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
5090b57cec5SDimitry Andric     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
5100b57cec5SDimitry Andric     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
5110b57cec5SDimitry Andric     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
5120b57cec5SDimitry Andric     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
5130b57cec5SDimitry Andric     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
5140b57cec5SDimitry Andric     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
5150b57cec5SDimitry Andric     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
5160b57cec5SDimitry Andric     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
5170b57cec5SDimitry Andric     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
5180b57cec5SDimitry Andric     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
5190b57cec5SDimitry Andric 
5200b57cec5SDimitry Andric     // Handle constrained floating-point operations.
5210b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
5220b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
5230b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
5240b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
5250b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
5260b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
5270b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
5280b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
5290b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
5300b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
5310b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
5320b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
5330b57cec5SDimitry Andric   }
5340b57cec5SDimitry Andric 
5350b57cec5SDimitry Andric   // The vector enhancements facility 1 has instructions for these.
5360b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements1()) {
5370b57cec5SDimitry Andric     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
5380b57cec5SDimitry Andric     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
5390b57cec5SDimitry Andric     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
5400b57cec5SDimitry Andric     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
5410b57cec5SDimitry Andric     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
5420b57cec5SDimitry Andric     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
5430b57cec5SDimitry Andric     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
5440b57cec5SDimitry Andric     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
5450b57cec5SDimitry Andric     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
5460b57cec5SDimitry Andric     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
5470b57cec5SDimitry Andric     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
5480b57cec5SDimitry Andric     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
5490b57cec5SDimitry Andric     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
5500b57cec5SDimitry Andric     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
5510b57cec5SDimitry Andric 
5520b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
5530b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
5540b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
5550b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
5560b57cec5SDimitry Andric 
5570b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
5580b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
5590b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
5600b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
5610b57cec5SDimitry Andric 
5620b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
5630b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
5640b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
5650b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
5660b57cec5SDimitry Andric 
5670b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
5680b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
5690b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
5700b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
5710b57cec5SDimitry Andric 
5720b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
5730b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
5740b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
5750b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
5760b57cec5SDimitry Andric 
5770b57cec5SDimitry Andric     // Handle constrained floating-point operations.
5780b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
5790b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
5800b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
5810b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
5820b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
5830b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
5840b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
5850b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
5860b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
5870b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
5880b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
5890b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
5900b57cec5SDimitry Andric     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
5910b57cec5SDimitry Andric                      MVT::v4f32, MVT::v2f64 }) {
5920b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
5930b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
594480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
595480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
5960b57cec5SDimitry Andric     }
5970b57cec5SDimitry Andric   }
5980b57cec5SDimitry Andric 
599480093f4SDimitry Andric   // We only have fused f128 multiply-addition on vector registers.
600480093f4SDimitry Andric   if (!Subtarget.hasVectorEnhancements1()) {
6010b57cec5SDimitry Andric     setOperationAction(ISD::FMA, MVT::f128, Expand);
602480093f4SDimitry Andric     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
603480093f4SDimitry Andric   }
6040b57cec5SDimitry Andric 
6050b57cec5SDimitry Andric   // We don't have a copysign instruction on vector registers.
6060b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements1())
6070b57cec5SDimitry Andric     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
6080b57cec5SDimitry Andric 
6090b57cec5SDimitry Andric   // Needed so that we don't try to implement f128 constant loads using
6100b57cec5SDimitry Andric   // a load-and-extend of a f80 constant (in cases where the constant
6110b57cec5SDimitry Andric   // would fit in an f80).
6120b57cec5SDimitry Andric   for (MVT VT : MVT::fp_valuetypes())
6130b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
6140b57cec5SDimitry Andric 
6150b57cec5SDimitry Andric   // We don't have extending load instruction on vector registers.
6160b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements1()) {
6170b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
6180b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
6190b57cec5SDimitry Andric   }
6200b57cec5SDimitry Andric 
6210b57cec5SDimitry Andric   // Floating-point truncation and stores need to be done separately.
6220b57cec5SDimitry Andric   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
6230b57cec5SDimitry Andric   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
6240b57cec5SDimitry Andric   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
6250b57cec5SDimitry Andric 
6260b57cec5SDimitry Andric   // We have 64-bit FPR<->GPR moves, but need special handling for
6270b57cec5SDimitry Andric   // 32-bit forms.
6280b57cec5SDimitry Andric   if (!Subtarget.hasVector()) {
6290b57cec5SDimitry Andric     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
6300b57cec5SDimitry Andric     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
6310b57cec5SDimitry Andric   }
6320b57cec5SDimitry Andric 
6330b57cec5SDimitry Andric   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
6340b57cec5SDimitry Andric   // structure, but VAEND is a no-op.
6350b57cec5SDimitry Andric   setOperationAction(ISD::VASTART, MVT::Other, Custom);
6360b57cec5SDimitry Andric   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
6370b57cec5SDimitry Andric   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
6380b57cec5SDimitry Andric 
6390b57cec5SDimitry Andric   // Codes for which we want to perform some z-specific combinations.
6400b57cec5SDimitry Andric   setTargetDAGCombine(ISD::ZERO_EXTEND);
6410b57cec5SDimitry Andric   setTargetDAGCombine(ISD::SIGN_EXTEND);
6420b57cec5SDimitry Andric   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
6430b57cec5SDimitry Andric   setTargetDAGCombine(ISD::LOAD);
6440b57cec5SDimitry Andric   setTargetDAGCombine(ISD::STORE);
6450b57cec5SDimitry Andric   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
6460b57cec5SDimitry Andric   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
6470b57cec5SDimitry Andric   setTargetDAGCombine(ISD::FP_ROUND);
648480093f4SDimitry Andric   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
6490b57cec5SDimitry Andric   setTargetDAGCombine(ISD::FP_EXTEND);
6505ffd83dbSDimitry Andric   setTargetDAGCombine(ISD::SINT_TO_FP);
6515ffd83dbSDimitry Andric   setTargetDAGCombine(ISD::UINT_TO_FP);
652480093f4SDimitry Andric   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
6530b57cec5SDimitry Andric   setTargetDAGCombine(ISD::BSWAP);
6540b57cec5SDimitry Andric   setTargetDAGCombine(ISD::SDIV);
6550b57cec5SDimitry Andric   setTargetDAGCombine(ISD::UDIV);
6560b57cec5SDimitry Andric   setTargetDAGCombine(ISD::SREM);
6570b57cec5SDimitry Andric   setTargetDAGCombine(ISD::UREM);
6585ffd83dbSDimitry Andric   setTargetDAGCombine(ISD::INTRINSIC_VOID);
6595ffd83dbSDimitry Andric   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
6600b57cec5SDimitry Andric 
6610b57cec5SDimitry Andric   // Handle intrinsics.
6620b57cec5SDimitry Andric   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
6630b57cec5SDimitry Andric   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
6640b57cec5SDimitry Andric 
6650b57cec5SDimitry Andric   // We want to use MVC in preference to even a single load/store pair.
6660b57cec5SDimitry Andric   MaxStoresPerMemcpy = 0;
6670b57cec5SDimitry Andric   MaxStoresPerMemcpyOptSize = 0;
6680b57cec5SDimitry Andric 
6690b57cec5SDimitry Andric   // The main memset sequence is a byte store followed by an MVC.
6700b57cec5SDimitry Andric   // Two STC or MV..I stores win over that, but the kind of fused stores
6710b57cec5SDimitry Andric   // generated by target-independent code don't when the byte value is
6720b57cec5SDimitry Andric   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
6730b57cec5SDimitry Andric   // than "STC;MVC".  Handle the choice in target-specific code instead.
6740b57cec5SDimitry Andric   MaxStoresPerMemset = 0;
6750b57cec5SDimitry Andric   MaxStoresPerMemsetOptSize = 0;
676480093f4SDimitry Andric 
677480093f4SDimitry Andric   // Default to having -disable-strictnode-mutation on
678480093f4SDimitry Andric   IsStrictFPEnabled = true;
6790b57cec5SDimitry Andric }
6800b57cec5SDimitry Andric 
6815ffd83dbSDimitry Andric bool SystemZTargetLowering::useSoftFloat() const {
6825ffd83dbSDimitry Andric   return Subtarget.hasSoftFloat();
6835ffd83dbSDimitry Andric }
6845ffd83dbSDimitry Andric 
6850b57cec5SDimitry Andric EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
6860b57cec5SDimitry Andric                                               LLVMContext &, EVT VT) const {
6870b57cec5SDimitry Andric   if (!VT.isVector())
6880b57cec5SDimitry Andric     return MVT::i32;
6890b57cec5SDimitry Andric   return VT.changeVectorElementTypeToInteger();
6900b57cec5SDimitry Andric }
6910b57cec5SDimitry Andric 
692480093f4SDimitry Andric bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
693480093f4SDimitry Andric     const MachineFunction &MF, EVT VT) const {
6940b57cec5SDimitry Andric   VT = VT.getScalarType();
6950b57cec5SDimitry Andric 
6960b57cec5SDimitry Andric   if (!VT.isSimple())
6970b57cec5SDimitry Andric     return false;
6980b57cec5SDimitry Andric 
6990b57cec5SDimitry Andric   switch (VT.getSimpleVT().SimpleTy) {
7000b57cec5SDimitry Andric   case MVT::f32:
7010b57cec5SDimitry Andric   case MVT::f64:
7020b57cec5SDimitry Andric     return true;
7030b57cec5SDimitry Andric   case MVT::f128:
7040b57cec5SDimitry Andric     return Subtarget.hasVectorEnhancements1();
7050b57cec5SDimitry Andric   default:
7060b57cec5SDimitry Andric     break;
7070b57cec5SDimitry Andric   }
7080b57cec5SDimitry Andric 
7090b57cec5SDimitry Andric   return false;
7100b57cec5SDimitry Andric }
7110b57cec5SDimitry Andric 
7120b57cec5SDimitry Andric // Return true if the constant can be generated with a vector instruction,
7130b57cec5SDimitry Andric // such as VGM, VGMB or VREPI.
7140b57cec5SDimitry Andric bool SystemZVectorConstantInfo::isVectorConstantLegal(
7150b57cec5SDimitry Andric     const SystemZSubtarget &Subtarget) {
7160b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
7170b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7180b57cec5SDimitry Andric   if (!Subtarget.hasVector() ||
7190b57cec5SDimitry Andric       (isFP128 && !Subtarget.hasVectorEnhancements1()))
7200b57cec5SDimitry Andric     return false;
7210b57cec5SDimitry Andric 
7220b57cec5SDimitry Andric   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
7230b57cec5SDimitry Andric   // preferred way of creating all-zero and all-one vectors so give it
7240b57cec5SDimitry Andric   // priority over other methods below.
7250b57cec5SDimitry Andric   unsigned Mask = 0;
7260b57cec5SDimitry Andric   unsigned I = 0;
7270b57cec5SDimitry Andric   for (; I < SystemZ::VectorBytes; ++I) {
7280b57cec5SDimitry Andric     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
7290b57cec5SDimitry Andric     if (Byte == 0xff)
7300b57cec5SDimitry Andric       Mask |= 1ULL << I;
7310b57cec5SDimitry Andric     else if (Byte != 0)
7320b57cec5SDimitry Andric       break;
7330b57cec5SDimitry Andric   }
7340b57cec5SDimitry Andric   if (I == SystemZ::VectorBytes) {
7350b57cec5SDimitry Andric     Opcode = SystemZISD::BYTE_MASK;
7360b57cec5SDimitry Andric     OpVals.push_back(Mask);
7370b57cec5SDimitry Andric     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
7380b57cec5SDimitry Andric     return true;
7390b57cec5SDimitry Andric   }
7400b57cec5SDimitry Andric 
7410b57cec5SDimitry Andric   if (SplatBitSize > 64)
7420b57cec5SDimitry Andric     return false;
7430b57cec5SDimitry Andric 
7440b57cec5SDimitry Andric   auto tryValue = [&](uint64_t Value) -> bool {
7450b57cec5SDimitry Andric     // Try VECTOR REPLICATE IMMEDIATE
7460b57cec5SDimitry Andric     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
7470b57cec5SDimitry Andric     if (isInt<16>(SignedValue)) {
7480b57cec5SDimitry Andric       OpVals.push_back(((unsigned) SignedValue));
7490b57cec5SDimitry Andric       Opcode = SystemZISD::REPLICATE;
7500b57cec5SDimitry Andric       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
7510b57cec5SDimitry Andric                                SystemZ::VectorBits / SplatBitSize);
7520b57cec5SDimitry Andric       return true;
7530b57cec5SDimitry Andric     }
7540b57cec5SDimitry Andric     // Try VECTOR GENERATE MASK
7550b57cec5SDimitry Andric     unsigned Start, End;
7560b57cec5SDimitry Andric     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
7570b57cec5SDimitry Andric       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
7580b57cec5SDimitry Andric       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
7590b57cec5SDimitry Andric       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
7600b57cec5SDimitry Andric       OpVals.push_back(Start - (64 - SplatBitSize));
7610b57cec5SDimitry Andric       OpVals.push_back(End - (64 - SplatBitSize));
7620b57cec5SDimitry Andric       Opcode = SystemZISD::ROTATE_MASK;
7630b57cec5SDimitry Andric       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
7640b57cec5SDimitry Andric                                SystemZ::VectorBits / SplatBitSize);
7650b57cec5SDimitry Andric       return true;
7660b57cec5SDimitry Andric     }
7670b57cec5SDimitry Andric     return false;
7680b57cec5SDimitry Andric   };
7690b57cec5SDimitry Andric 
7700b57cec5SDimitry Andric   // First try assuming that any undefined bits above the highest set bit
7710b57cec5SDimitry Andric   // and below the lowest set bit are 1s.  This increases the likelihood of
7720b57cec5SDimitry Andric   // being able to use a sign-extended element value in VECTOR REPLICATE
7730b57cec5SDimitry Andric   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
7740b57cec5SDimitry Andric   uint64_t SplatBitsZ = SplatBits.getZExtValue();
7750b57cec5SDimitry Andric   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
7760b57cec5SDimitry Andric   uint64_t Lower =
7770b57cec5SDimitry Andric       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
7780b57cec5SDimitry Andric   uint64_t Upper =
7790b57cec5SDimitry Andric       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
7800b57cec5SDimitry Andric   if (tryValue(SplatBitsZ | Upper | Lower))
7810b57cec5SDimitry Andric     return true;
7820b57cec5SDimitry Andric 
7830b57cec5SDimitry Andric   // Now try assuming that any undefined bits between the first and
7840b57cec5SDimitry Andric   // last defined set bits are set.  This increases the chances of
7850b57cec5SDimitry Andric   // using a non-wraparound mask.
7860b57cec5SDimitry Andric   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
7870b57cec5SDimitry Andric   return tryValue(SplatBitsZ | Middle);
7880b57cec5SDimitry Andric }
7890b57cec5SDimitry Andric 
7900b57cec5SDimitry Andric SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
7910b57cec5SDimitry Andric   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
7920b57cec5SDimitry Andric   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
7930b57cec5SDimitry Andric   SplatBits = FPImm.bitcastToAPInt();
7940b57cec5SDimitry Andric   unsigned Width = SplatBits.getBitWidth();
795e8d8bef9SDimitry Andric   IntBits <<= (SystemZ::VectorBits - Width);
796e8d8bef9SDimitry Andric 
797e8d8bef9SDimitry Andric   // Find the smallest splat.
7980b57cec5SDimitry Andric   while (Width > 8) {
7990b57cec5SDimitry Andric     unsigned HalfSize = Width / 2;
8000b57cec5SDimitry Andric     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
8010b57cec5SDimitry Andric     APInt LowValue = SplatBits.trunc(HalfSize);
8020b57cec5SDimitry Andric 
8030b57cec5SDimitry Andric     // If the two halves do not match, stop here.
8040b57cec5SDimitry Andric     if (HighValue != LowValue || 8 > HalfSize)
8050b57cec5SDimitry Andric       break;
8060b57cec5SDimitry Andric 
8070b57cec5SDimitry Andric     SplatBits = HighValue;
8080b57cec5SDimitry Andric     Width = HalfSize;
8090b57cec5SDimitry Andric   }
8100b57cec5SDimitry Andric   SplatUndef = 0;
8110b57cec5SDimitry Andric   SplatBitSize = Width;
8120b57cec5SDimitry Andric }
8130b57cec5SDimitry Andric 
8140b57cec5SDimitry Andric SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
8150b57cec5SDimitry Andric   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
8160b57cec5SDimitry Andric   bool HasAnyUndefs;
8170b57cec5SDimitry Andric 
8180b57cec5SDimitry Andric   // Get IntBits by finding the 128 bit splat.
8190b57cec5SDimitry Andric   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
8200b57cec5SDimitry Andric                        true);
8210b57cec5SDimitry Andric 
8220b57cec5SDimitry Andric   // Get SplatBits by finding the 8 bit or greater splat.
8230b57cec5SDimitry Andric   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
8240b57cec5SDimitry Andric                        true);
8250b57cec5SDimitry Andric }
8260b57cec5SDimitry Andric 
8270b57cec5SDimitry Andric bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
8280b57cec5SDimitry Andric                                          bool ForCodeSize) const {
8290b57cec5SDimitry Andric   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
8300b57cec5SDimitry Andric   if (Imm.isZero() || Imm.isNegZero())
8310b57cec5SDimitry Andric     return true;
8320b57cec5SDimitry Andric 
8330b57cec5SDimitry Andric   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
8340b57cec5SDimitry Andric }
8350b57cec5SDimitry Andric 
8365ffd83dbSDimitry Andric /// Returns true if stack probing through inline assembly is requested.
8375ffd83dbSDimitry Andric bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
8385ffd83dbSDimitry Andric   // If the function specifically requests inline stack probes, emit them.
8395ffd83dbSDimitry Andric   if (MF.getFunction().hasFnAttribute("probe-stack"))
8405ffd83dbSDimitry Andric     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
8415ffd83dbSDimitry Andric            "inline-asm";
8425ffd83dbSDimitry Andric   return false;
8435ffd83dbSDimitry Andric }
8445ffd83dbSDimitry Andric 
8450b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8460b57cec5SDimitry Andric   // We can use CGFI or CLGFI.
8470b57cec5SDimitry Andric   return isInt<32>(Imm) || isUInt<32>(Imm);
8480b57cec5SDimitry Andric }
8490b57cec5SDimitry Andric 
8500b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8510b57cec5SDimitry Andric   // We can use ALGFI or SLGFI.
8520b57cec5SDimitry Andric   return isUInt<32>(Imm) || isUInt<32>(-Imm);
8530b57cec5SDimitry Andric }
8540b57cec5SDimitry Andric 
8550b57cec5SDimitry Andric bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
856*fe6060f1SDimitry Andric     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
8570b57cec5SDimitry Andric   // Unaligned accesses should never be slower than the expanded version.
8580b57cec5SDimitry Andric   // We check specifically for aligned accesses in the few cases where
8590b57cec5SDimitry Andric   // they are required.
8600b57cec5SDimitry Andric   if (Fast)
8610b57cec5SDimitry Andric     *Fast = true;
8620b57cec5SDimitry Andric   return true;
8630b57cec5SDimitry Andric }
8640b57cec5SDimitry Andric 
8650b57cec5SDimitry Andric // Information about the addressing mode for a memory access.
8660b57cec5SDimitry Andric struct AddressingMode {
8670b57cec5SDimitry Andric   // True if a long displacement is supported.
8680b57cec5SDimitry Andric   bool LongDisplacement;
8690b57cec5SDimitry Andric 
8700b57cec5SDimitry Andric   // True if use of index register is supported.
8710b57cec5SDimitry Andric   bool IndexReg;
8720b57cec5SDimitry Andric 
8730b57cec5SDimitry Andric   AddressingMode(bool LongDispl, bool IdxReg) :
8740b57cec5SDimitry Andric     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
8750b57cec5SDimitry Andric };
8760b57cec5SDimitry Andric 
8770b57cec5SDimitry Andric // Return the desired addressing mode for a Load which has only one use (in
8780b57cec5SDimitry Andric // the same block) which is a Store.
8790b57cec5SDimitry Andric static AddressingMode getLoadStoreAddrMode(bool HasVector,
8800b57cec5SDimitry Andric                                           Type *Ty) {
8810b57cec5SDimitry Andric   // With vector support a Load->Store combination may be combined to either
8820b57cec5SDimitry Andric   // an MVC or vector operations and it seems to work best to allow the
8830b57cec5SDimitry Andric   // vector addressing mode.
8840b57cec5SDimitry Andric   if (HasVector)
8850b57cec5SDimitry Andric     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
8860b57cec5SDimitry Andric 
8870b57cec5SDimitry Andric   // Otherwise only the MVC case is special.
8880b57cec5SDimitry Andric   bool MVC = Ty->isIntegerTy(8);
8890b57cec5SDimitry Andric   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
8900b57cec5SDimitry Andric }
8910b57cec5SDimitry Andric 
8920b57cec5SDimitry Andric // Return the addressing mode which seems most desirable given an LLVM
8930b57cec5SDimitry Andric // Instruction pointer.
8940b57cec5SDimitry Andric static AddressingMode
8950b57cec5SDimitry Andric supportedAddressingMode(Instruction *I, bool HasVector) {
8960b57cec5SDimitry Andric   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
8970b57cec5SDimitry Andric     switch (II->getIntrinsicID()) {
8980b57cec5SDimitry Andric     default: break;
8990b57cec5SDimitry Andric     case Intrinsic::memset:
9000b57cec5SDimitry Andric     case Intrinsic::memmove:
9010b57cec5SDimitry Andric     case Intrinsic::memcpy:
9020b57cec5SDimitry Andric       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
9030b57cec5SDimitry Andric     }
9040b57cec5SDimitry Andric   }
9050b57cec5SDimitry Andric 
9060b57cec5SDimitry Andric   if (isa<LoadInst>(I) && I->hasOneUse()) {
9078bcb0991SDimitry Andric     auto *SingleUser = cast<Instruction>(*I->user_begin());
9080b57cec5SDimitry Andric     if (SingleUser->getParent() == I->getParent()) {
9090b57cec5SDimitry Andric       if (isa<ICmpInst>(SingleUser)) {
9100b57cec5SDimitry Andric         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
9110b57cec5SDimitry Andric           if (C->getBitWidth() <= 64 &&
9120b57cec5SDimitry Andric               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
9130b57cec5SDimitry Andric             // Comparison of memory with 16 bit signed / unsigned immediate
9140b57cec5SDimitry Andric             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
9150b57cec5SDimitry Andric       } else if (isa<StoreInst>(SingleUser))
9160b57cec5SDimitry Andric         // Load->Store
9170b57cec5SDimitry Andric         return getLoadStoreAddrMode(HasVector, I->getType());
9180b57cec5SDimitry Andric     }
9190b57cec5SDimitry Andric   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
9200b57cec5SDimitry Andric     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
9210b57cec5SDimitry Andric       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
9220b57cec5SDimitry Andric         // Load->Store
9230b57cec5SDimitry Andric         return getLoadStoreAddrMode(HasVector, LoadI->getType());
9240b57cec5SDimitry Andric   }
9250b57cec5SDimitry Andric 
9260b57cec5SDimitry Andric   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
9270b57cec5SDimitry Andric 
9280b57cec5SDimitry Andric     // * Use LDE instead of LE/LEY for z13 to avoid partial register
9290b57cec5SDimitry Andric     //   dependencies (LDE only supports small offsets).
9300b57cec5SDimitry Andric     // * Utilize the vector registers to hold floating point
9310b57cec5SDimitry Andric     //   values (vector load / store instructions only support small
9320b57cec5SDimitry Andric     //   offsets).
9330b57cec5SDimitry Andric 
9340b57cec5SDimitry Andric     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
9350b57cec5SDimitry Andric                          I->getOperand(0)->getType());
9360b57cec5SDimitry Andric     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
9370b57cec5SDimitry Andric     bool IsVectorAccess = MemAccessTy->isVectorTy();
9380b57cec5SDimitry Andric 
9390b57cec5SDimitry Andric     // A store of an extracted vector element will be combined into a VSTE type
9400b57cec5SDimitry Andric     // instruction.
9410b57cec5SDimitry Andric     if (!IsVectorAccess && isa<StoreInst>(I)) {
9420b57cec5SDimitry Andric       Value *DataOp = I->getOperand(0);
9430b57cec5SDimitry Andric       if (isa<ExtractElementInst>(DataOp))
9440b57cec5SDimitry Andric         IsVectorAccess = true;
9450b57cec5SDimitry Andric     }
9460b57cec5SDimitry Andric 
9470b57cec5SDimitry Andric     // A load which gets inserted into a vector element will be combined into a
9480b57cec5SDimitry Andric     // VLE type instruction.
9490b57cec5SDimitry Andric     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
9500b57cec5SDimitry Andric       User *LoadUser = *I->user_begin();
9510b57cec5SDimitry Andric       if (isa<InsertElementInst>(LoadUser))
9520b57cec5SDimitry Andric         IsVectorAccess = true;
9530b57cec5SDimitry Andric     }
9540b57cec5SDimitry Andric 
9550b57cec5SDimitry Andric     if (IsFPAccess || IsVectorAccess)
9560b57cec5SDimitry Andric       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
9570b57cec5SDimitry Andric   }
9580b57cec5SDimitry Andric 
9590b57cec5SDimitry Andric   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
9600b57cec5SDimitry Andric }
9610b57cec5SDimitry Andric 
9620b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
9630b57cec5SDimitry Andric        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
9640b57cec5SDimitry Andric   // Punt on globals for now, although they can be used in limited
9650b57cec5SDimitry Andric   // RELATIVE LONG cases.
9660b57cec5SDimitry Andric   if (AM.BaseGV)
9670b57cec5SDimitry Andric     return false;
9680b57cec5SDimitry Andric 
9690b57cec5SDimitry Andric   // Require a 20-bit signed offset.
9700b57cec5SDimitry Andric   if (!isInt<20>(AM.BaseOffs))
9710b57cec5SDimitry Andric     return false;
9720b57cec5SDimitry Andric 
9730b57cec5SDimitry Andric   AddressingMode SupportedAM(true, true);
9740b57cec5SDimitry Andric   if (I != nullptr)
9750b57cec5SDimitry Andric     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
9760b57cec5SDimitry Andric 
9770b57cec5SDimitry Andric   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
9780b57cec5SDimitry Andric     return false;
9790b57cec5SDimitry Andric 
9800b57cec5SDimitry Andric   if (!SupportedAM.IndexReg)
9810b57cec5SDimitry Andric     // No indexing allowed.
9820b57cec5SDimitry Andric     return AM.Scale == 0;
9830b57cec5SDimitry Andric   else
9840b57cec5SDimitry Andric     // Indexing is OK but no scale factor can be applied.
9850b57cec5SDimitry Andric     return AM.Scale == 0 || AM.Scale == 1;
9860b57cec5SDimitry Andric }
9870b57cec5SDimitry Andric 
9880b57cec5SDimitry Andric bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
9890b57cec5SDimitry Andric   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
9900b57cec5SDimitry Andric     return false;
991e8d8bef9SDimitry Andric   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
992e8d8bef9SDimitry Andric   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
9930b57cec5SDimitry Andric   return FromBits > ToBits;
9940b57cec5SDimitry Andric }
9950b57cec5SDimitry Andric 
9960b57cec5SDimitry Andric bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
9970b57cec5SDimitry Andric   if (!FromVT.isInteger() || !ToVT.isInteger())
9980b57cec5SDimitry Andric     return false;
999e8d8bef9SDimitry Andric   unsigned FromBits = FromVT.getFixedSizeInBits();
1000e8d8bef9SDimitry Andric   unsigned ToBits = ToVT.getFixedSizeInBits();
10010b57cec5SDimitry Andric   return FromBits > ToBits;
10020b57cec5SDimitry Andric }
10030b57cec5SDimitry Andric 
10040b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
10050b57cec5SDimitry Andric // Inline asm support
10060b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
10070b57cec5SDimitry Andric 
10080b57cec5SDimitry Andric TargetLowering::ConstraintType
10090b57cec5SDimitry Andric SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
10100b57cec5SDimitry Andric   if (Constraint.size() == 1) {
10110b57cec5SDimitry Andric     switch (Constraint[0]) {
10120b57cec5SDimitry Andric     case 'a': // Address register
10130b57cec5SDimitry Andric     case 'd': // Data register (equivalent to 'r')
10140b57cec5SDimitry Andric     case 'f': // Floating-point register
10150b57cec5SDimitry Andric     case 'h': // High-part register
10160b57cec5SDimitry Andric     case 'r': // General-purpose register
10170b57cec5SDimitry Andric     case 'v': // Vector register
10180b57cec5SDimitry Andric       return C_RegisterClass;
10190b57cec5SDimitry Andric 
10200b57cec5SDimitry Andric     case 'Q': // Memory with base and unsigned 12-bit displacement
10210b57cec5SDimitry Andric     case 'R': // Likewise, plus an index
10220b57cec5SDimitry Andric     case 'S': // Memory with base and signed 20-bit displacement
10230b57cec5SDimitry Andric     case 'T': // Likewise, plus an index
10240b57cec5SDimitry Andric     case 'm': // Equivalent to 'T'.
10250b57cec5SDimitry Andric       return C_Memory;
10260b57cec5SDimitry Andric 
10270b57cec5SDimitry Andric     case 'I': // Unsigned 8-bit constant
10280b57cec5SDimitry Andric     case 'J': // Unsigned 12-bit constant
10290b57cec5SDimitry Andric     case 'K': // Signed 16-bit constant
10300b57cec5SDimitry Andric     case 'L': // Signed 20-bit displacement (on all targets we support)
10310b57cec5SDimitry Andric     case 'M': // 0x7fffffff
10320b57cec5SDimitry Andric       return C_Immediate;
10330b57cec5SDimitry Andric 
10340b57cec5SDimitry Andric     default:
10350b57cec5SDimitry Andric       break;
10360b57cec5SDimitry Andric     }
10370b57cec5SDimitry Andric   }
10380b57cec5SDimitry Andric   return TargetLowering::getConstraintType(Constraint);
10390b57cec5SDimitry Andric }
10400b57cec5SDimitry Andric 
10410b57cec5SDimitry Andric TargetLowering::ConstraintWeight SystemZTargetLowering::
10420b57cec5SDimitry Andric getSingleConstraintMatchWeight(AsmOperandInfo &info,
10430b57cec5SDimitry Andric                                const char *constraint) const {
10440b57cec5SDimitry Andric   ConstraintWeight weight = CW_Invalid;
10450b57cec5SDimitry Andric   Value *CallOperandVal = info.CallOperandVal;
10460b57cec5SDimitry Andric   // If we don't have a value, we can't do a match,
10470b57cec5SDimitry Andric   // but allow it at the lowest weight.
10480b57cec5SDimitry Andric   if (!CallOperandVal)
10490b57cec5SDimitry Andric     return CW_Default;
10500b57cec5SDimitry Andric   Type *type = CallOperandVal->getType();
10510b57cec5SDimitry Andric   // Look at the constraint type.
10520b57cec5SDimitry Andric   switch (*constraint) {
10530b57cec5SDimitry Andric   default:
10540b57cec5SDimitry Andric     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10550b57cec5SDimitry Andric     break;
10560b57cec5SDimitry Andric 
10570b57cec5SDimitry Andric   case 'a': // Address register
10580b57cec5SDimitry Andric   case 'd': // Data register (equivalent to 'r')
10590b57cec5SDimitry Andric   case 'h': // High-part register
10600b57cec5SDimitry Andric   case 'r': // General-purpose register
10610b57cec5SDimitry Andric     if (CallOperandVal->getType()->isIntegerTy())
10620b57cec5SDimitry Andric       weight = CW_Register;
10630b57cec5SDimitry Andric     break;
10640b57cec5SDimitry Andric 
10650b57cec5SDimitry Andric   case 'f': // Floating-point register
10660b57cec5SDimitry Andric     if (type->isFloatingPointTy())
10670b57cec5SDimitry Andric       weight = CW_Register;
10680b57cec5SDimitry Andric     break;
10690b57cec5SDimitry Andric 
10700b57cec5SDimitry Andric   case 'v': // Vector register
10710b57cec5SDimitry Andric     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
10720b57cec5SDimitry Andric         Subtarget.hasVector())
10730b57cec5SDimitry Andric       weight = CW_Register;
10740b57cec5SDimitry Andric     break;
10750b57cec5SDimitry Andric 
10760b57cec5SDimitry Andric   case 'I': // Unsigned 8-bit constant
10770b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
10780b57cec5SDimitry Andric       if (isUInt<8>(C->getZExtValue()))
10790b57cec5SDimitry Andric         weight = CW_Constant;
10800b57cec5SDimitry Andric     break;
10810b57cec5SDimitry Andric 
10820b57cec5SDimitry Andric   case 'J': // Unsigned 12-bit constant
10830b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
10840b57cec5SDimitry Andric       if (isUInt<12>(C->getZExtValue()))
10850b57cec5SDimitry Andric         weight = CW_Constant;
10860b57cec5SDimitry Andric     break;
10870b57cec5SDimitry Andric 
10880b57cec5SDimitry Andric   case 'K': // Signed 16-bit constant
10890b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
10900b57cec5SDimitry Andric       if (isInt<16>(C->getSExtValue()))
10910b57cec5SDimitry Andric         weight = CW_Constant;
10920b57cec5SDimitry Andric     break;
10930b57cec5SDimitry Andric 
10940b57cec5SDimitry Andric   case 'L': // Signed 20-bit displacement (on all targets we support)
10950b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
10960b57cec5SDimitry Andric       if (isInt<20>(C->getSExtValue()))
10970b57cec5SDimitry Andric         weight = CW_Constant;
10980b57cec5SDimitry Andric     break;
10990b57cec5SDimitry Andric 
11000b57cec5SDimitry Andric   case 'M': // 0x7fffffff
11010b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
11020b57cec5SDimitry Andric       if (C->getZExtValue() == 0x7fffffff)
11030b57cec5SDimitry Andric         weight = CW_Constant;
11040b57cec5SDimitry Andric     break;
11050b57cec5SDimitry Andric   }
11060b57cec5SDimitry Andric   return weight;
11070b57cec5SDimitry Andric }
11080b57cec5SDimitry Andric 
11090b57cec5SDimitry Andric // Parse a "{tNNN}" register constraint for which the register type "t"
11100b57cec5SDimitry Andric // has already been verified.  MC is the class associated with "t" and
11110b57cec5SDimitry Andric // Map maps 0-based register numbers to LLVM register numbers.
11120b57cec5SDimitry Andric static std::pair<unsigned, const TargetRegisterClass *>
11130b57cec5SDimitry Andric parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
11140b57cec5SDimitry Andric                     const unsigned *Map, unsigned Size) {
11150b57cec5SDimitry Andric   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
11160b57cec5SDimitry Andric   if (isdigit(Constraint[2])) {
11170b57cec5SDimitry Andric     unsigned Index;
11180b57cec5SDimitry Andric     bool Failed =
11190b57cec5SDimitry Andric         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
11200b57cec5SDimitry Andric     if (!Failed && Index < Size && Map[Index])
11210b57cec5SDimitry Andric       return std::make_pair(Map[Index], RC);
11220b57cec5SDimitry Andric   }
11230b57cec5SDimitry Andric   return std::make_pair(0U, nullptr);
11240b57cec5SDimitry Andric }
11250b57cec5SDimitry Andric 
11260b57cec5SDimitry Andric std::pair<unsigned, const TargetRegisterClass *>
11270b57cec5SDimitry Andric SystemZTargetLowering::getRegForInlineAsmConstraint(
11280b57cec5SDimitry Andric     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
11290b57cec5SDimitry Andric   if (Constraint.size() == 1) {
11300b57cec5SDimitry Andric     // GCC Constraint Letters
11310b57cec5SDimitry Andric     switch (Constraint[0]) {
11320b57cec5SDimitry Andric     default: break;
11330b57cec5SDimitry Andric     case 'd': // Data register (equivalent to 'r')
11340b57cec5SDimitry Andric     case 'r': // General-purpose register
11350b57cec5SDimitry Andric       if (VT == MVT::i64)
11360b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
11370b57cec5SDimitry Andric       else if (VT == MVT::i128)
11380b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
11390b57cec5SDimitry Andric       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
11400b57cec5SDimitry Andric 
11410b57cec5SDimitry Andric     case 'a': // Address register
11420b57cec5SDimitry Andric       if (VT == MVT::i64)
11430b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
11440b57cec5SDimitry Andric       else if (VT == MVT::i128)
11450b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
11460b57cec5SDimitry Andric       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
11470b57cec5SDimitry Andric 
11480b57cec5SDimitry Andric     case 'h': // High-part register (an LLVM extension)
11490b57cec5SDimitry Andric       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
11500b57cec5SDimitry Andric 
11510b57cec5SDimitry Andric     case 'f': // Floating-point register
11525ffd83dbSDimitry Andric       if (!useSoftFloat()) {
11530b57cec5SDimitry Andric         if (VT == MVT::f64)
11540b57cec5SDimitry Andric           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
11550b57cec5SDimitry Andric         else if (VT == MVT::f128)
11560b57cec5SDimitry Andric           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
11570b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
11585ffd83dbSDimitry Andric       }
11595ffd83dbSDimitry Andric       break;
11600b57cec5SDimitry Andric     case 'v': // Vector register
11610b57cec5SDimitry Andric       if (Subtarget.hasVector()) {
11620b57cec5SDimitry Andric         if (VT == MVT::f32)
11630b57cec5SDimitry Andric           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
11640b57cec5SDimitry Andric         if (VT == MVT::f64)
11650b57cec5SDimitry Andric           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
11660b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
11670b57cec5SDimitry Andric       }
11680b57cec5SDimitry Andric       break;
11690b57cec5SDimitry Andric     }
11700b57cec5SDimitry Andric   }
11710b57cec5SDimitry Andric   if (Constraint.size() > 0 && Constraint[0] == '{') {
11720b57cec5SDimitry Andric     // We need to override the default register parsing for GPRs and FPRs
11730b57cec5SDimitry Andric     // because the interpretation depends on VT.  The internal names of
11740b57cec5SDimitry Andric     // the registers are also different from the external names
11750b57cec5SDimitry Andric     // (F0D and F0S instead of F0, etc.).
11760b57cec5SDimitry Andric     if (Constraint[1] == 'r') {
11770b57cec5SDimitry Andric       if (VT == MVT::i32)
11780b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
11790b57cec5SDimitry Andric                                    SystemZMC::GR32Regs, 16);
11800b57cec5SDimitry Andric       if (VT == MVT::i128)
11810b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
11820b57cec5SDimitry Andric                                    SystemZMC::GR128Regs, 16);
11830b57cec5SDimitry Andric       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
11840b57cec5SDimitry Andric                                  SystemZMC::GR64Regs, 16);
11850b57cec5SDimitry Andric     }
11860b57cec5SDimitry Andric     if (Constraint[1] == 'f') {
11875ffd83dbSDimitry Andric       if (useSoftFloat())
11885ffd83dbSDimitry Andric         return std::make_pair(
11895ffd83dbSDimitry Andric             0u, static_cast<const TargetRegisterClass *>(nullptr));
11900b57cec5SDimitry Andric       if (VT == MVT::f32)
11910b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
11920b57cec5SDimitry Andric                                    SystemZMC::FP32Regs, 16);
11930b57cec5SDimitry Andric       if (VT == MVT::f128)
11940b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
11950b57cec5SDimitry Andric                                    SystemZMC::FP128Regs, 16);
11960b57cec5SDimitry Andric       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
11970b57cec5SDimitry Andric                                  SystemZMC::FP64Regs, 16);
11980b57cec5SDimitry Andric     }
11990b57cec5SDimitry Andric     if (Constraint[1] == 'v') {
12005ffd83dbSDimitry Andric       if (!Subtarget.hasVector())
12015ffd83dbSDimitry Andric         return std::make_pair(
12025ffd83dbSDimitry Andric             0u, static_cast<const TargetRegisterClass *>(nullptr));
12030b57cec5SDimitry Andric       if (VT == MVT::f32)
12040b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
12050b57cec5SDimitry Andric                                    SystemZMC::VR32Regs, 32);
12060b57cec5SDimitry Andric       if (VT == MVT::f64)
12070b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
12080b57cec5SDimitry Andric                                    SystemZMC::VR64Regs, 32);
12090b57cec5SDimitry Andric       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
12100b57cec5SDimitry Andric                                  SystemZMC::VR128Regs, 32);
12110b57cec5SDimitry Andric     }
12120b57cec5SDimitry Andric   }
12130b57cec5SDimitry Andric   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12140b57cec5SDimitry Andric }
12150b57cec5SDimitry Andric 
12165ffd83dbSDimitry Andric // FIXME? Maybe this could be a TableGen attribute on some registers and
12175ffd83dbSDimitry Andric // this table could be generated automatically from RegInfo.
12185ffd83dbSDimitry Andric Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12195ffd83dbSDimitry Andric                                                   const MachineFunction &MF) const {
12205ffd83dbSDimitry Andric 
12215ffd83dbSDimitry Andric   Register Reg = StringSwitch<Register>(RegName)
12225ffd83dbSDimitry Andric                    .Case("r15", SystemZ::R15D)
12235ffd83dbSDimitry Andric                    .Default(0);
12245ffd83dbSDimitry Andric   if (Reg)
12255ffd83dbSDimitry Andric     return Reg;
12265ffd83dbSDimitry Andric   report_fatal_error("Invalid register name global variable");
12275ffd83dbSDimitry Andric }
12285ffd83dbSDimitry Andric 
12290b57cec5SDimitry Andric void SystemZTargetLowering::
12300b57cec5SDimitry Andric LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
12310b57cec5SDimitry Andric                              std::vector<SDValue> &Ops,
12320b57cec5SDimitry Andric                              SelectionDAG &DAG) const {
12330b57cec5SDimitry Andric   // Only support length 1 constraints for now.
12340b57cec5SDimitry Andric   if (Constraint.length() == 1) {
12350b57cec5SDimitry Andric     switch (Constraint[0]) {
12360b57cec5SDimitry Andric     case 'I': // Unsigned 8-bit constant
12370b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12380b57cec5SDimitry Andric         if (isUInt<8>(C->getZExtValue()))
12390b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
12400b57cec5SDimitry Andric                                               Op.getValueType()));
12410b57cec5SDimitry Andric       return;
12420b57cec5SDimitry Andric 
12430b57cec5SDimitry Andric     case 'J': // Unsigned 12-bit constant
12440b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12450b57cec5SDimitry Andric         if (isUInt<12>(C->getZExtValue()))
12460b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
12470b57cec5SDimitry Andric                                               Op.getValueType()));
12480b57cec5SDimitry Andric       return;
12490b57cec5SDimitry Andric 
12500b57cec5SDimitry Andric     case 'K': // Signed 16-bit constant
12510b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12520b57cec5SDimitry Andric         if (isInt<16>(C->getSExtValue()))
12530b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
12540b57cec5SDimitry Andric                                               Op.getValueType()));
12550b57cec5SDimitry Andric       return;
12560b57cec5SDimitry Andric 
12570b57cec5SDimitry Andric     case 'L': // Signed 20-bit displacement (on all targets we support)
12580b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12590b57cec5SDimitry Andric         if (isInt<20>(C->getSExtValue()))
12600b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
12610b57cec5SDimitry Andric                                               Op.getValueType()));
12620b57cec5SDimitry Andric       return;
12630b57cec5SDimitry Andric 
12640b57cec5SDimitry Andric     case 'M': // 0x7fffffff
12650b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12660b57cec5SDimitry Andric         if (C->getZExtValue() == 0x7fffffff)
12670b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
12680b57cec5SDimitry Andric                                               Op.getValueType()));
12690b57cec5SDimitry Andric       return;
12700b57cec5SDimitry Andric     }
12710b57cec5SDimitry Andric   }
12720b57cec5SDimitry Andric   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12730b57cec5SDimitry Andric }
12740b57cec5SDimitry Andric 
12750b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
12760b57cec5SDimitry Andric // Calling conventions
12770b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
12780b57cec5SDimitry Andric 
12790b57cec5SDimitry Andric #include "SystemZGenCallingConv.inc"
12800b57cec5SDimitry Andric 
12810b57cec5SDimitry Andric const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
12820b57cec5SDimitry Andric   CallingConv::ID) const {
12830b57cec5SDimitry Andric   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
12840b57cec5SDimitry Andric                                            SystemZ::R14D, 0 };
12850b57cec5SDimitry Andric   return ScratchRegs;
12860b57cec5SDimitry Andric }
12870b57cec5SDimitry Andric 
12880b57cec5SDimitry Andric bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
12890b57cec5SDimitry Andric                                                      Type *ToType) const {
12900b57cec5SDimitry Andric   return isTruncateFree(FromType, ToType);
12910b57cec5SDimitry Andric }
12920b57cec5SDimitry Andric 
12930b57cec5SDimitry Andric bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
12940b57cec5SDimitry Andric   return CI->isTailCall();
12950b57cec5SDimitry Andric }
12960b57cec5SDimitry Andric 
12970b57cec5SDimitry Andric // We do not yet support 128-bit single-element vector types.  If the user
12980b57cec5SDimitry Andric // attempts to use such types as function argument or return type, prefer
12990b57cec5SDimitry Andric // to error out instead of emitting code violating the ABI.
13000b57cec5SDimitry Andric static void VerifyVectorType(MVT VT, EVT ArgVT) {
13010b57cec5SDimitry Andric   if (ArgVT.isVector() && !VT.isVector())
13020b57cec5SDimitry Andric     report_fatal_error("Unsupported vector argument or return type");
13030b57cec5SDimitry Andric }
13040b57cec5SDimitry Andric 
13050b57cec5SDimitry Andric static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
13060b57cec5SDimitry Andric   for (unsigned i = 0; i < Ins.size(); ++i)
13070b57cec5SDimitry Andric     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
13080b57cec5SDimitry Andric }
13090b57cec5SDimitry Andric 
13100b57cec5SDimitry Andric static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
13110b57cec5SDimitry Andric   for (unsigned i = 0; i < Outs.size(); ++i)
13120b57cec5SDimitry Andric     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
13130b57cec5SDimitry Andric }
13140b57cec5SDimitry Andric 
13150b57cec5SDimitry Andric // Value is a value that has been passed to us in the location described by VA
13160b57cec5SDimitry Andric // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
13170b57cec5SDimitry Andric // any loads onto Chain.
13180b57cec5SDimitry Andric static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
13190b57cec5SDimitry Andric                                    CCValAssign &VA, SDValue Chain,
13200b57cec5SDimitry Andric                                    SDValue Value) {
13210b57cec5SDimitry Andric   // If the argument has been promoted from a smaller type, insert an
13220b57cec5SDimitry Andric   // assertion to capture this.
13230b57cec5SDimitry Andric   if (VA.getLocInfo() == CCValAssign::SExt)
13240b57cec5SDimitry Andric     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
13250b57cec5SDimitry Andric                         DAG.getValueType(VA.getValVT()));
13260b57cec5SDimitry Andric   else if (VA.getLocInfo() == CCValAssign::ZExt)
13270b57cec5SDimitry Andric     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
13280b57cec5SDimitry Andric                         DAG.getValueType(VA.getValVT()));
13290b57cec5SDimitry Andric 
13300b57cec5SDimitry Andric   if (VA.isExtInLoc())
13310b57cec5SDimitry Andric     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
13320b57cec5SDimitry Andric   else if (VA.getLocInfo() == CCValAssign::BCvt) {
13330b57cec5SDimitry Andric     // If this is a short vector argument loaded from the stack,
13340b57cec5SDimitry Andric     // extend from i64 to full vector size and then bitcast.
13350b57cec5SDimitry Andric     assert(VA.getLocVT() == MVT::i64);
13360b57cec5SDimitry Andric     assert(VA.getValVT().isVector());
13370b57cec5SDimitry Andric     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
13380b57cec5SDimitry Andric     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
13390b57cec5SDimitry Andric   } else
13400b57cec5SDimitry Andric     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
13410b57cec5SDimitry Andric   return Value;
13420b57cec5SDimitry Andric }
13430b57cec5SDimitry Andric 
13440b57cec5SDimitry Andric // Value is a value of type VA.getValVT() that we need to copy into
13450b57cec5SDimitry Andric // the location described by VA.  Return a copy of Value converted to
13460b57cec5SDimitry Andric // VA.getValVT().  The caller is responsible for handling indirect values.
13470b57cec5SDimitry Andric static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
13480b57cec5SDimitry Andric                                    CCValAssign &VA, SDValue Value) {
13490b57cec5SDimitry Andric   switch (VA.getLocInfo()) {
13500b57cec5SDimitry Andric   case CCValAssign::SExt:
13510b57cec5SDimitry Andric     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
13520b57cec5SDimitry Andric   case CCValAssign::ZExt:
13530b57cec5SDimitry Andric     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
13540b57cec5SDimitry Andric   case CCValAssign::AExt:
13550b57cec5SDimitry Andric     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
13560b57cec5SDimitry Andric   case CCValAssign::BCvt:
13570b57cec5SDimitry Andric     // If this is a short vector argument to be stored to the stack,
13580b57cec5SDimitry Andric     // bitcast to v2i64 and then extract first element.
13590b57cec5SDimitry Andric     assert(VA.getLocVT() == MVT::i64);
13600b57cec5SDimitry Andric     assert(VA.getValVT().isVector());
13610b57cec5SDimitry Andric     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
13620b57cec5SDimitry Andric     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
13630b57cec5SDimitry Andric                        DAG.getConstant(0, DL, MVT::i32));
13640b57cec5SDimitry Andric   case CCValAssign::Full:
13650b57cec5SDimitry Andric     return Value;
13660b57cec5SDimitry Andric   default:
13670b57cec5SDimitry Andric     llvm_unreachable("Unhandled getLocInfo()");
13680b57cec5SDimitry Andric   }
13690b57cec5SDimitry Andric }
13700b57cec5SDimitry Andric 
1371*fe6060f1SDimitry Andric static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1372*fe6060f1SDimitry Andric   SDLoc DL(In);
1373*fe6060f1SDimitry Andric   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1374*fe6060f1SDimitry Andric                            DAG.getIntPtrConstant(0, DL));
1375*fe6060f1SDimitry Andric   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1376*fe6060f1SDimitry Andric                            DAG.getIntPtrConstant(1, DL));
1377*fe6060f1SDimitry Andric   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1378*fe6060f1SDimitry Andric                                     MVT::Untyped, Hi, Lo);
1379*fe6060f1SDimitry Andric   return SDValue(Pair, 0);
1380*fe6060f1SDimitry Andric }
1381*fe6060f1SDimitry Andric 
1382*fe6060f1SDimitry Andric static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1383*fe6060f1SDimitry Andric   SDLoc DL(In);
1384*fe6060f1SDimitry Andric   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1385*fe6060f1SDimitry Andric                                           DL, MVT::i64, In);
1386*fe6060f1SDimitry Andric   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1387*fe6060f1SDimitry Andric                                           DL, MVT::i64, In);
1388*fe6060f1SDimitry Andric   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1389*fe6060f1SDimitry Andric }
1390*fe6060f1SDimitry Andric 
1391*fe6060f1SDimitry Andric bool SystemZTargetLowering::splitValueIntoRegisterParts(
1392*fe6060f1SDimitry Andric     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1393*fe6060f1SDimitry Andric     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1394*fe6060f1SDimitry Andric   EVT ValueVT = Val.getValueType();
1395*fe6060f1SDimitry Andric   assert((ValueVT != MVT::i128 ||
1396*fe6060f1SDimitry Andric           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1397*fe6060f1SDimitry Andric            (NumParts == 2 && PartVT == MVT::i64))) &&
1398*fe6060f1SDimitry Andric          "Unknown handling of i128 value.");
1399*fe6060f1SDimitry Andric   if (ValueVT == MVT::i128 && NumParts == 1) {
1400*fe6060f1SDimitry Andric     // Inline assembly operand.
1401*fe6060f1SDimitry Andric     Parts[0] = lowerI128ToGR128(DAG, Val);
1402*fe6060f1SDimitry Andric     return true;
1403*fe6060f1SDimitry Andric   }
1404*fe6060f1SDimitry Andric   return false;
1405*fe6060f1SDimitry Andric }
1406*fe6060f1SDimitry Andric 
1407*fe6060f1SDimitry Andric SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1408*fe6060f1SDimitry Andric     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1409*fe6060f1SDimitry Andric     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1410*fe6060f1SDimitry Andric   assert((ValueVT != MVT::i128 ||
1411*fe6060f1SDimitry Andric           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1412*fe6060f1SDimitry Andric            (NumParts == 2 && PartVT == MVT::i64))) &&
1413*fe6060f1SDimitry Andric          "Unknown handling of i128 value.");
1414*fe6060f1SDimitry Andric   if (ValueVT == MVT::i128 && NumParts == 1)
1415*fe6060f1SDimitry Andric     // Inline assembly operand.
1416*fe6060f1SDimitry Andric     return lowerGR128ToI128(DAG, Parts[0]);
1417*fe6060f1SDimitry Andric   return SDValue();
1418*fe6060f1SDimitry Andric }
1419*fe6060f1SDimitry Andric 
14200b57cec5SDimitry Andric SDValue SystemZTargetLowering::LowerFormalArguments(
14210b57cec5SDimitry Andric     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
14220b57cec5SDimitry Andric     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
14230b57cec5SDimitry Andric     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
14240b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
14250b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
14260b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
14270b57cec5SDimitry Andric   SystemZMachineFunctionInfo *FuncInfo =
14280b57cec5SDimitry Andric       MF.getInfo<SystemZMachineFunctionInfo>();
14290b57cec5SDimitry Andric   auto *TFL =
14300b57cec5SDimitry Andric       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
14310b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
14320b57cec5SDimitry Andric 
14330b57cec5SDimitry Andric   // Detect unsupported vector argument types.
14340b57cec5SDimitry Andric   if (Subtarget.hasVector())
14350b57cec5SDimitry Andric     VerifyVectorTypes(Ins);
14360b57cec5SDimitry Andric 
14370b57cec5SDimitry Andric   // Assign locations to all of the incoming arguments.
14380b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs;
14390b57cec5SDimitry Andric   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
14400b57cec5SDimitry Andric   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
14410b57cec5SDimitry Andric 
14420b57cec5SDimitry Andric   unsigned NumFixedGPRs = 0;
14430b57cec5SDimitry Andric   unsigned NumFixedFPRs = 0;
14440b57cec5SDimitry Andric   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
14450b57cec5SDimitry Andric     SDValue ArgValue;
14460b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[I];
14470b57cec5SDimitry Andric     EVT LocVT = VA.getLocVT();
14480b57cec5SDimitry Andric     if (VA.isRegLoc()) {
14490b57cec5SDimitry Andric       // Arguments passed in registers
14500b57cec5SDimitry Andric       const TargetRegisterClass *RC;
14510b57cec5SDimitry Andric       switch (LocVT.getSimpleVT().SimpleTy) {
14520b57cec5SDimitry Andric       default:
14530b57cec5SDimitry Andric         // Integers smaller than i64 should be promoted to i64.
14540b57cec5SDimitry Andric         llvm_unreachable("Unexpected argument type");
14550b57cec5SDimitry Andric       case MVT::i32:
14560b57cec5SDimitry Andric         NumFixedGPRs += 1;
14570b57cec5SDimitry Andric         RC = &SystemZ::GR32BitRegClass;
14580b57cec5SDimitry Andric         break;
14590b57cec5SDimitry Andric       case MVT::i64:
14600b57cec5SDimitry Andric         NumFixedGPRs += 1;
14610b57cec5SDimitry Andric         RC = &SystemZ::GR64BitRegClass;
14620b57cec5SDimitry Andric         break;
14630b57cec5SDimitry Andric       case MVT::f32:
14640b57cec5SDimitry Andric         NumFixedFPRs += 1;
14650b57cec5SDimitry Andric         RC = &SystemZ::FP32BitRegClass;
14660b57cec5SDimitry Andric         break;
14670b57cec5SDimitry Andric       case MVT::f64:
14680b57cec5SDimitry Andric         NumFixedFPRs += 1;
14690b57cec5SDimitry Andric         RC = &SystemZ::FP64BitRegClass;
14700b57cec5SDimitry Andric         break;
14710b57cec5SDimitry Andric       case MVT::v16i8:
14720b57cec5SDimitry Andric       case MVT::v8i16:
14730b57cec5SDimitry Andric       case MVT::v4i32:
14740b57cec5SDimitry Andric       case MVT::v2i64:
14750b57cec5SDimitry Andric       case MVT::v4f32:
14760b57cec5SDimitry Andric       case MVT::v2f64:
14770b57cec5SDimitry Andric         RC = &SystemZ::VR128BitRegClass;
14780b57cec5SDimitry Andric         break;
14790b57cec5SDimitry Andric       }
14800b57cec5SDimitry Andric 
14818bcb0991SDimitry Andric       Register VReg = MRI.createVirtualRegister(RC);
14820b57cec5SDimitry Andric       MRI.addLiveIn(VA.getLocReg(), VReg);
14830b57cec5SDimitry Andric       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
14840b57cec5SDimitry Andric     } else {
14850b57cec5SDimitry Andric       assert(VA.isMemLoc() && "Argument not register or memory");
14860b57cec5SDimitry Andric 
14870b57cec5SDimitry Andric       // Create the frame index object for this incoming parameter.
14880b57cec5SDimitry Andric       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
14890b57cec5SDimitry Andric                                      VA.getLocMemOffset(), true);
14900b57cec5SDimitry Andric 
14910b57cec5SDimitry Andric       // Create the SelectionDAG nodes corresponding to a load
14920b57cec5SDimitry Andric       // from this parameter.  Unpromoted ints and floats are
14930b57cec5SDimitry Andric       // passed as right-justified 8-byte values.
14940b57cec5SDimitry Andric       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
14950b57cec5SDimitry Andric       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
14960b57cec5SDimitry Andric         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
14970b57cec5SDimitry Andric                           DAG.getIntPtrConstant(4, DL));
14980b57cec5SDimitry Andric       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
14990b57cec5SDimitry Andric                              MachinePointerInfo::getFixedStack(MF, FI));
15000b57cec5SDimitry Andric     }
15010b57cec5SDimitry Andric 
15020b57cec5SDimitry Andric     // Convert the value of the argument register into the value that's
15030b57cec5SDimitry Andric     // being passed.
15040b57cec5SDimitry Andric     if (VA.getLocInfo() == CCValAssign::Indirect) {
15050b57cec5SDimitry Andric       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
15060b57cec5SDimitry Andric                                    MachinePointerInfo()));
15070b57cec5SDimitry Andric       // If the original argument was split (e.g. i128), we need
15080b57cec5SDimitry Andric       // to load all parts of it here (using the same address).
15090b57cec5SDimitry Andric       unsigned ArgIndex = Ins[I].OrigArgIndex;
15100b57cec5SDimitry Andric       assert (Ins[I].PartOffset == 0);
15110b57cec5SDimitry Andric       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
15120b57cec5SDimitry Andric         CCValAssign &PartVA = ArgLocs[I + 1];
15130b57cec5SDimitry Andric         unsigned PartOffset = Ins[I + 1].PartOffset;
15140b57cec5SDimitry Andric         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
15150b57cec5SDimitry Andric                                       DAG.getIntPtrConstant(PartOffset, DL));
15160b57cec5SDimitry Andric         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
15170b57cec5SDimitry Andric                                      MachinePointerInfo()));
15180b57cec5SDimitry Andric         ++I;
15190b57cec5SDimitry Andric       }
15200b57cec5SDimitry Andric     } else
15210b57cec5SDimitry Andric       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
15220b57cec5SDimitry Andric   }
15230b57cec5SDimitry Andric 
15240b57cec5SDimitry Andric   if (IsVarArg) {
15250b57cec5SDimitry Andric     // Save the number of non-varargs registers for later use by va_start, etc.
15260b57cec5SDimitry Andric     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
15270b57cec5SDimitry Andric     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
15280b57cec5SDimitry Andric 
15290b57cec5SDimitry Andric     // Likewise the address (in the form of a frame index) of where the
15300b57cec5SDimitry Andric     // first stack vararg would be.  The 1-byte size here is arbitrary.
15310b57cec5SDimitry Andric     int64_t StackSize = CCInfo.getNextStackOffset();
15320b57cec5SDimitry Andric     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
15330b57cec5SDimitry Andric 
15340b57cec5SDimitry Andric     // ...and a similar frame index for the caller-allocated save area
15350b57cec5SDimitry Andric     // that will be used to store the incoming registers.
15365ffd83dbSDimitry Andric     int64_t RegSaveOffset =
1537*fe6060f1SDimitry Andric       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
15380b57cec5SDimitry Andric     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
15390b57cec5SDimitry Andric     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
15400b57cec5SDimitry Andric 
15410b57cec5SDimitry Andric     // Store the FPR varargs in the reserved frame slots.  (We store the
15420b57cec5SDimitry Andric     // GPRs as part of the prologue.)
1543*fe6060f1SDimitry Andric     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1544*fe6060f1SDimitry Andric       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1545*fe6060f1SDimitry Andric       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1546*fe6060f1SDimitry Andric         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
15475ffd83dbSDimitry Andric         int FI =
1548*fe6060f1SDimitry Andric           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
15490b57cec5SDimitry Andric         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1550*fe6060f1SDimitry Andric         unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
15510b57cec5SDimitry Andric                                      &SystemZ::FP64BitRegClass);
15520b57cec5SDimitry Andric         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
15530b57cec5SDimitry Andric         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
15540b57cec5SDimitry Andric                                  MachinePointerInfo::getFixedStack(MF, FI));
15550b57cec5SDimitry Andric       }
15560b57cec5SDimitry Andric       // Join the stores, which are independent of one another.
15570b57cec5SDimitry Andric       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
15580b57cec5SDimitry Andric                           makeArrayRef(&MemOps[NumFixedFPRs],
1559*fe6060f1SDimitry Andric                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
15600b57cec5SDimitry Andric     }
15610b57cec5SDimitry Andric   }
15620b57cec5SDimitry Andric 
15630b57cec5SDimitry Andric   return Chain;
15640b57cec5SDimitry Andric }
15650b57cec5SDimitry Andric 
15660b57cec5SDimitry Andric static bool canUseSiblingCall(const CCState &ArgCCInfo,
15670b57cec5SDimitry Andric                               SmallVectorImpl<CCValAssign> &ArgLocs,
15680b57cec5SDimitry Andric                               SmallVectorImpl<ISD::OutputArg> &Outs) {
15690b57cec5SDimitry Andric   // Punt if there are any indirect or stack arguments, or if the call
15700b57cec5SDimitry Andric   // needs the callee-saved argument register R6, or if the call uses
15710b57cec5SDimitry Andric   // the callee-saved register arguments SwiftSelf and SwiftError.
15720b57cec5SDimitry Andric   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
15730b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[I];
15740b57cec5SDimitry Andric     if (VA.getLocInfo() == CCValAssign::Indirect)
15750b57cec5SDimitry Andric       return false;
15760b57cec5SDimitry Andric     if (!VA.isRegLoc())
15770b57cec5SDimitry Andric       return false;
15788bcb0991SDimitry Andric     Register Reg = VA.getLocReg();
15790b57cec5SDimitry Andric     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
15800b57cec5SDimitry Andric       return false;
15810b57cec5SDimitry Andric     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
15820b57cec5SDimitry Andric       return false;
15830b57cec5SDimitry Andric   }
15840b57cec5SDimitry Andric   return true;
15850b57cec5SDimitry Andric }
15860b57cec5SDimitry Andric 
15870b57cec5SDimitry Andric SDValue
15880b57cec5SDimitry Andric SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
15890b57cec5SDimitry Andric                                  SmallVectorImpl<SDValue> &InVals) const {
15900b57cec5SDimitry Andric   SelectionDAG &DAG = CLI.DAG;
15910b57cec5SDimitry Andric   SDLoc &DL = CLI.DL;
15920b57cec5SDimitry Andric   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
15930b57cec5SDimitry Andric   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
15940b57cec5SDimitry Andric   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
15950b57cec5SDimitry Andric   SDValue Chain = CLI.Chain;
15960b57cec5SDimitry Andric   SDValue Callee = CLI.Callee;
15970b57cec5SDimitry Andric   bool &IsTailCall = CLI.IsTailCall;
15980b57cec5SDimitry Andric   CallingConv::ID CallConv = CLI.CallConv;
15990b57cec5SDimitry Andric   bool IsVarArg = CLI.IsVarArg;
16000b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
16010b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(MF.getDataLayout());
16024652422eSDimitry Andric   LLVMContext &Ctx = *DAG.getContext();
16030b57cec5SDimitry Andric 
16040b57cec5SDimitry Andric   // Detect unsupported vector argument and return types.
16050b57cec5SDimitry Andric   if (Subtarget.hasVector()) {
16060b57cec5SDimitry Andric     VerifyVectorTypes(Outs);
16070b57cec5SDimitry Andric     VerifyVectorTypes(Ins);
16080b57cec5SDimitry Andric   }
16090b57cec5SDimitry Andric 
16100b57cec5SDimitry Andric   // Analyze the operands of the call, assigning locations to each operand.
16110b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs;
16124652422eSDimitry Andric   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
16130b57cec5SDimitry Andric   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
16140b57cec5SDimitry Andric 
16150b57cec5SDimitry Andric   // We don't support GuaranteedTailCallOpt, only automatically-detected
16160b57cec5SDimitry Andric   // sibling calls.
16170b57cec5SDimitry Andric   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
16180b57cec5SDimitry Andric     IsTailCall = false;
16190b57cec5SDimitry Andric 
16200b57cec5SDimitry Andric   // Get a count of how many bytes are to be pushed on the stack.
16210b57cec5SDimitry Andric   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
16220b57cec5SDimitry Andric 
16230b57cec5SDimitry Andric   // Mark the start of the call.
16240b57cec5SDimitry Andric   if (!IsTailCall)
16250b57cec5SDimitry Andric     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
16260b57cec5SDimitry Andric 
16270b57cec5SDimitry Andric   // Copy argument values to their designated locations.
16280b57cec5SDimitry Andric   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
16290b57cec5SDimitry Andric   SmallVector<SDValue, 8> MemOpChains;
16300b57cec5SDimitry Andric   SDValue StackPtr;
16310b57cec5SDimitry Andric   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
16320b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[I];
16330b57cec5SDimitry Andric     SDValue ArgValue = OutVals[I];
16340b57cec5SDimitry Andric 
16350b57cec5SDimitry Andric     if (VA.getLocInfo() == CCValAssign::Indirect) {
16360b57cec5SDimitry Andric       // Store the argument in a stack slot and pass its address.
16374652422eSDimitry Andric       unsigned ArgIndex = Outs[I].OrigArgIndex;
16384652422eSDimitry Andric       EVT SlotVT;
16394652422eSDimitry Andric       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
16404652422eSDimitry Andric         // Allocate the full stack space for a promoted (and split) argument.
16414652422eSDimitry Andric         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
16424652422eSDimitry Andric         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
16434652422eSDimitry Andric         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
16444652422eSDimitry Andric         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
16454652422eSDimitry Andric         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
16464652422eSDimitry Andric       } else {
16474652422eSDimitry Andric         SlotVT = Outs[I].ArgVT;
16484652422eSDimitry Andric       }
16494652422eSDimitry Andric       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
16500b57cec5SDimitry Andric       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
16510b57cec5SDimitry Andric       MemOpChains.push_back(
16520b57cec5SDimitry Andric           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
16530b57cec5SDimitry Andric                        MachinePointerInfo::getFixedStack(MF, FI)));
16540b57cec5SDimitry Andric       // If the original argument was split (e.g. i128), we need
16550b57cec5SDimitry Andric       // to store all parts of it here (and pass just one address).
16560b57cec5SDimitry Andric       assert (Outs[I].PartOffset == 0);
16570b57cec5SDimitry Andric       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
16580b57cec5SDimitry Andric         SDValue PartValue = OutVals[I + 1];
16590b57cec5SDimitry Andric         unsigned PartOffset = Outs[I + 1].PartOffset;
16600b57cec5SDimitry Andric         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
16610b57cec5SDimitry Andric                                       DAG.getIntPtrConstant(PartOffset, DL));
16620b57cec5SDimitry Andric         MemOpChains.push_back(
16630b57cec5SDimitry Andric             DAG.getStore(Chain, DL, PartValue, Address,
16640b57cec5SDimitry Andric                          MachinePointerInfo::getFixedStack(MF, FI)));
16654652422eSDimitry Andric         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
16664652422eSDimitry Andric                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
16670b57cec5SDimitry Andric         ++I;
16680b57cec5SDimitry Andric       }
16690b57cec5SDimitry Andric       ArgValue = SpillSlot;
16700b57cec5SDimitry Andric     } else
16710b57cec5SDimitry Andric       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
16720b57cec5SDimitry Andric 
16730b57cec5SDimitry Andric     if (VA.isRegLoc())
16740b57cec5SDimitry Andric       // Queue up the argument copies and emit them at the end.
16750b57cec5SDimitry Andric       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
16760b57cec5SDimitry Andric     else {
16770b57cec5SDimitry Andric       assert(VA.isMemLoc() && "Argument not register or memory");
16780b57cec5SDimitry Andric 
16790b57cec5SDimitry Andric       // Work out the address of the stack slot.  Unpromoted ints and
16800b57cec5SDimitry Andric       // floats are passed as right-justified 8-byte values.
16810b57cec5SDimitry Andric       if (!StackPtr.getNode())
16820b57cec5SDimitry Andric         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1683*fe6060f1SDimitry Andric       unsigned Offset = SystemZMC::ELFCallFrameSize + VA.getLocMemOffset();
16840b57cec5SDimitry Andric       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
16850b57cec5SDimitry Andric         Offset += 4;
16860b57cec5SDimitry Andric       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
16870b57cec5SDimitry Andric                                     DAG.getIntPtrConstant(Offset, DL));
16880b57cec5SDimitry Andric 
16890b57cec5SDimitry Andric       // Emit the store.
16900b57cec5SDimitry Andric       MemOpChains.push_back(
16910b57cec5SDimitry Andric           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
16920b57cec5SDimitry Andric     }
16930b57cec5SDimitry Andric   }
16940b57cec5SDimitry Andric 
16950b57cec5SDimitry Andric   // Join the stores, which are independent of one another.
16960b57cec5SDimitry Andric   if (!MemOpChains.empty())
16970b57cec5SDimitry Andric     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
16980b57cec5SDimitry Andric 
16990b57cec5SDimitry Andric   // Accept direct calls by converting symbolic call addresses to the
17000b57cec5SDimitry Andric   // associated Target* opcodes.  Force %r1 to be used for indirect
17010b57cec5SDimitry Andric   // tail calls.
17020b57cec5SDimitry Andric   SDValue Glue;
17030b57cec5SDimitry Andric   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
17040b57cec5SDimitry Andric     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
17050b57cec5SDimitry Andric     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
17060b57cec5SDimitry Andric   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
17070b57cec5SDimitry Andric     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
17080b57cec5SDimitry Andric     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
17090b57cec5SDimitry Andric   } else if (IsTailCall) {
17100b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
17110b57cec5SDimitry Andric     Glue = Chain.getValue(1);
17120b57cec5SDimitry Andric     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
17130b57cec5SDimitry Andric   }
17140b57cec5SDimitry Andric 
17150b57cec5SDimitry Andric   // Build a sequence of copy-to-reg nodes, chained and glued together.
17160b57cec5SDimitry Andric   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
17170b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
17180b57cec5SDimitry Andric                              RegsToPass[I].second, Glue);
17190b57cec5SDimitry Andric     Glue = Chain.getValue(1);
17200b57cec5SDimitry Andric   }
17210b57cec5SDimitry Andric 
17220b57cec5SDimitry Andric   // The first call operand is the chain and the second is the target address.
17230b57cec5SDimitry Andric   SmallVector<SDValue, 8> Ops;
17240b57cec5SDimitry Andric   Ops.push_back(Chain);
17250b57cec5SDimitry Andric   Ops.push_back(Callee);
17260b57cec5SDimitry Andric 
17270b57cec5SDimitry Andric   // Add argument registers to the end of the list so that they are
17280b57cec5SDimitry Andric   // known live into the call.
17290b57cec5SDimitry Andric   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
17300b57cec5SDimitry Andric     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
17310b57cec5SDimitry Andric                                   RegsToPass[I].second.getValueType()));
17320b57cec5SDimitry Andric 
17330b57cec5SDimitry Andric   // Add a register mask operand representing the call-preserved registers.
17340b57cec5SDimitry Andric   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
17350b57cec5SDimitry Andric   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
17360b57cec5SDimitry Andric   assert(Mask && "Missing call preserved mask for calling convention");
17370b57cec5SDimitry Andric   Ops.push_back(DAG.getRegisterMask(Mask));
17380b57cec5SDimitry Andric 
17390b57cec5SDimitry Andric   // Glue the call to the argument copies, if any.
17400b57cec5SDimitry Andric   if (Glue.getNode())
17410b57cec5SDimitry Andric     Ops.push_back(Glue);
17420b57cec5SDimitry Andric 
17430b57cec5SDimitry Andric   // Emit the call.
17440b57cec5SDimitry Andric   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
17450b57cec5SDimitry Andric   if (IsTailCall)
17460b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
17470b57cec5SDimitry Andric   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
17485ffd83dbSDimitry Andric   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
17490b57cec5SDimitry Andric   Glue = Chain.getValue(1);
17500b57cec5SDimitry Andric 
17510b57cec5SDimitry Andric   // Mark the end of the call, which is glued to the call itself.
17520b57cec5SDimitry Andric   Chain = DAG.getCALLSEQ_END(Chain,
17530b57cec5SDimitry Andric                              DAG.getConstant(NumBytes, DL, PtrVT, true),
17540b57cec5SDimitry Andric                              DAG.getConstant(0, DL, PtrVT, true),
17550b57cec5SDimitry Andric                              Glue, DL);
17560b57cec5SDimitry Andric   Glue = Chain.getValue(1);
17570b57cec5SDimitry Andric 
17580b57cec5SDimitry Andric   // Assign locations to each value returned by this call.
17590b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RetLocs;
17604652422eSDimitry Andric   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
17610b57cec5SDimitry Andric   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
17620b57cec5SDimitry Andric 
17630b57cec5SDimitry Andric   // Copy all of the result registers out of their specified physreg.
17640b57cec5SDimitry Andric   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
17650b57cec5SDimitry Andric     CCValAssign &VA = RetLocs[I];
17660b57cec5SDimitry Andric 
17670b57cec5SDimitry Andric     // Copy the value out, gluing the copy to the end of the call sequence.
17680b57cec5SDimitry Andric     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
17690b57cec5SDimitry Andric                                           VA.getLocVT(), Glue);
17700b57cec5SDimitry Andric     Chain = RetValue.getValue(1);
17710b57cec5SDimitry Andric     Glue = RetValue.getValue(2);
17720b57cec5SDimitry Andric 
17730b57cec5SDimitry Andric     // Convert the value of the return register into the value that's
17740b57cec5SDimitry Andric     // being returned.
17750b57cec5SDimitry Andric     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
17760b57cec5SDimitry Andric   }
17770b57cec5SDimitry Andric 
17780b57cec5SDimitry Andric   return Chain;
17790b57cec5SDimitry Andric }
17800b57cec5SDimitry Andric 
17810b57cec5SDimitry Andric bool SystemZTargetLowering::
17820b57cec5SDimitry Andric CanLowerReturn(CallingConv::ID CallConv,
17830b57cec5SDimitry Andric                MachineFunction &MF, bool isVarArg,
17840b57cec5SDimitry Andric                const SmallVectorImpl<ISD::OutputArg> &Outs,
17850b57cec5SDimitry Andric                LLVMContext &Context) const {
17860b57cec5SDimitry Andric   // Detect unsupported vector return types.
17870b57cec5SDimitry Andric   if (Subtarget.hasVector())
17880b57cec5SDimitry Andric     VerifyVectorTypes(Outs);
17890b57cec5SDimitry Andric 
17900b57cec5SDimitry Andric   // Special case that we cannot easily detect in RetCC_SystemZ since
17910b57cec5SDimitry Andric   // i128 is not a legal type.
17920b57cec5SDimitry Andric   for (auto &Out : Outs)
17930b57cec5SDimitry Andric     if (Out.ArgVT == MVT::i128)
17940b57cec5SDimitry Andric       return false;
17950b57cec5SDimitry Andric 
17960b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RetLocs;
17970b57cec5SDimitry Andric   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
17980b57cec5SDimitry Andric   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
17990b57cec5SDimitry Andric }
18000b57cec5SDimitry Andric 
18010b57cec5SDimitry Andric SDValue
18020b57cec5SDimitry Andric SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
18030b57cec5SDimitry Andric                                    bool IsVarArg,
18040b57cec5SDimitry Andric                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
18050b57cec5SDimitry Andric                                    const SmallVectorImpl<SDValue> &OutVals,
18060b57cec5SDimitry Andric                                    const SDLoc &DL, SelectionDAG &DAG) const {
18070b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
18080b57cec5SDimitry Andric 
18090b57cec5SDimitry Andric   // Detect unsupported vector return types.
18100b57cec5SDimitry Andric   if (Subtarget.hasVector())
18110b57cec5SDimitry Andric     VerifyVectorTypes(Outs);
18120b57cec5SDimitry Andric 
18130b57cec5SDimitry Andric   // Assign locations to each returned value.
18140b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RetLocs;
18150b57cec5SDimitry Andric   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
18160b57cec5SDimitry Andric   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
18170b57cec5SDimitry Andric 
18180b57cec5SDimitry Andric   // Quick exit for void returns
18190b57cec5SDimitry Andric   if (RetLocs.empty())
18200b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
18210b57cec5SDimitry Andric 
1822480093f4SDimitry Andric   if (CallConv == CallingConv::GHC)
1823480093f4SDimitry Andric     report_fatal_error("GHC functions return void only");
1824480093f4SDimitry Andric 
18250b57cec5SDimitry Andric   // Copy the result values into the output registers.
18260b57cec5SDimitry Andric   SDValue Glue;
18270b57cec5SDimitry Andric   SmallVector<SDValue, 4> RetOps;
18280b57cec5SDimitry Andric   RetOps.push_back(Chain);
18290b57cec5SDimitry Andric   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
18300b57cec5SDimitry Andric     CCValAssign &VA = RetLocs[I];
18310b57cec5SDimitry Andric     SDValue RetValue = OutVals[I];
18320b57cec5SDimitry Andric 
18330b57cec5SDimitry Andric     // Make the return register live on exit.
18340b57cec5SDimitry Andric     assert(VA.isRegLoc() && "Can only return in registers!");
18350b57cec5SDimitry Andric 
18360b57cec5SDimitry Andric     // Promote the value as required.
18370b57cec5SDimitry Andric     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
18380b57cec5SDimitry Andric 
18390b57cec5SDimitry Andric     // Chain and glue the copies together.
18408bcb0991SDimitry Andric     Register Reg = VA.getLocReg();
18410b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
18420b57cec5SDimitry Andric     Glue = Chain.getValue(1);
18430b57cec5SDimitry Andric     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
18440b57cec5SDimitry Andric   }
18450b57cec5SDimitry Andric 
18460b57cec5SDimitry Andric   // Update chain and glue.
18470b57cec5SDimitry Andric   RetOps[0] = Chain;
18480b57cec5SDimitry Andric   if (Glue.getNode())
18490b57cec5SDimitry Andric     RetOps.push_back(Glue);
18500b57cec5SDimitry Andric 
18510b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
18520b57cec5SDimitry Andric }
18530b57cec5SDimitry Andric 
18540b57cec5SDimitry Andric // Return true if Op is an intrinsic node with chain that returns the CC value
18550b57cec5SDimitry Andric // as its only (other) argument.  Provide the associated SystemZISD opcode and
18560b57cec5SDimitry Andric // the mask of valid CC values if so.
18570b57cec5SDimitry Andric static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
18580b57cec5SDimitry Andric                                       unsigned &CCValid) {
18590b57cec5SDimitry Andric   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
18600b57cec5SDimitry Andric   switch (Id) {
18610b57cec5SDimitry Andric   case Intrinsic::s390_tbegin:
18620b57cec5SDimitry Andric     Opcode = SystemZISD::TBEGIN;
18630b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_TBEGIN;
18640b57cec5SDimitry Andric     return true;
18650b57cec5SDimitry Andric 
18660b57cec5SDimitry Andric   case Intrinsic::s390_tbegin_nofloat:
18670b57cec5SDimitry Andric     Opcode = SystemZISD::TBEGIN_NOFLOAT;
18680b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_TBEGIN;
18690b57cec5SDimitry Andric     return true;
18700b57cec5SDimitry Andric 
18710b57cec5SDimitry Andric   case Intrinsic::s390_tend:
18720b57cec5SDimitry Andric     Opcode = SystemZISD::TEND;
18730b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_TEND;
18740b57cec5SDimitry Andric     return true;
18750b57cec5SDimitry Andric 
18760b57cec5SDimitry Andric   default:
18770b57cec5SDimitry Andric     return false;
18780b57cec5SDimitry Andric   }
18790b57cec5SDimitry Andric }
18800b57cec5SDimitry Andric 
18810b57cec5SDimitry Andric // Return true if Op is an intrinsic node without chain that returns the
18820b57cec5SDimitry Andric // CC value as its final argument.  Provide the associated SystemZISD
18830b57cec5SDimitry Andric // opcode and the mask of valid CC values if so.
18840b57cec5SDimitry Andric static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
18850b57cec5SDimitry Andric   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
18860b57cec5SDimitry Andric   switch (Id) {
18870b57cec5SDimitry Andric   case Intrinsic::s390_vpkshs:
18880b57cec5SDimitry Andric   case Intrinsic::s390_vpksfs:
18890b57cec5SDimitry Andric   case Intrinsic::s390_vpksgs:
18900b57cec5SDimitry Andric     Opcode = SystemZISD::PACKS_CC;
18910b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
18920b57cec5SDimitry Andric     return true;
18930b57cec5SDimitry Andric 
18940b57cec5SDimitry Andric   case Intrinsic::s390_vpklshs:
18950b57cec5SDimitry Andric   case Intrinsic::s390_vpklsfs:
18960b57cec5SDimitry Andric   case Intrinsic::s390_vpklsgs:
18970b57cec5SDimitry Andric     Opcode = SystemZISD::PACKLS_CC;
18980b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
18990b57cec5SDimitry Andric     return true;
19000b57cec5SDimitry Andric 
19010b57cec5SDimitry Andric   case Intrinsic::s390_vceqbs:
19020b57cec5SDimitry Andric   case Intrinsic::s390_vceqhs:
19030b57cec5SDimitry Andric   case Intrinsic::s390_vceqfs:
19040b57cec5SDimitry Andric   case Intrinsic::s390_vceqgs:
19050b57cec5SDimitry Andric     Opcode = SystemZISD::VICMPES;
19060b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19070b57cec5SDimitry Andric     return true;
19080b57cec5SDimitry Andric 
19090b57cec5SDimitry Andric   case Intrinsic::s390_vchbs:
19100b57cec5SDimitry Andric   case Intrinsic::s390_vchhs:
19110b57cec5SDimitry Andric   case Intrinsic::s390_vchfs:
19120b57cec5SDimitry Andric   case Intrinsic::s390_vchgs:
19130b57cec5SDimitry Andric     Opcode = SystemZISD::VICMPHS;
19140b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19150b57cec5SDimitry Andric     return true;
19160b57cec5SDimitry Andric 
19170b57cec5SDimitry Andric   case Intrinsic::s390_vchlbs:
19180b57cec5SDimitry Andric   case Intrinsic::s390_vchlhs:
19190b57cec5SDimitry Andric   case Intrinsic::s390_vchlfs:
19200b57cec5SDimitry Andric   case Intrinsic::s390_vchlgs:
19210b57cec5SDimitry Andric     Opcode = SystemZISD::VICMPHLS;
19220b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19230b57cec5SDimitry Andric     return true;
19240b57cec5SDimitry Andric 
19250b57cec5SDimitry Andric   case Intrinsic::s390_vtm:
19260b57cec5SDimitry Andric     Opcode = SystemZISD::VTM;
19270b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19280b57cec5SDimitry Andric     return true;
19290b57cec5SDimitry Andric 
19300b57cec5SDimitry Andric   case Intrinsic::s390_vfaebs:
19310b57cec5SDimitry Andric   case Intrinsic::s390_vfaehs:
19320b57cec5SDimitry Andric   case Intrinsic::s390_vfaefs:
19330b57cec5SDimitry Andric     Opcode = SystemZISD::VFAE_CC;
19340b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19350b57cec5SDimitry Andric     return true;
19360b57cec5SDimitry Andric 
19370b57cec5SDimitry Andric   case Intrinsic::s390_vfaezbs:
19380b57cec5SDimitry Andric   case Intrinsic::s390_vfaezhs:
19390b57cec5SDimitry Andric   case Intrinsic::s390_vfaezfs:
19400b57cec5SDimitry Andric     Opcode = SystemZISD::VFAEZ_CC;
19410b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19420b57cec5SDimitry Andric     return true;
19430b57cec5SDimitry Andric 
19440b57cec5SDimitry Andric   case Intrinsic::s390_vfeebs:
19450b57cec5SDimitry Andric   case Intrinsic::s390_vfeehs:
19460b57cec5SDimitry Andric   case Intrinsic::s390_vfeefs:
19470b57cec5SDimitry Andric     Opcode = SystemZISD::VFEE_CC;
19480b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19490b57cec5SDimitry Andric     return true;
19500b57cec5SDimitry Andric 
19510b57cec5SDimitry Andric   case Intrinsic::s390_vfeezbs:
19520b57cec5SDimitry Andric   case Intrinsic::s390_vfeezhs:
19530b57cec5SDimitry Andric   case Intrinsic::s390_vfeezfs:
19540b57cec5SDimitry Andric     Opcode = SystemZISD::VFEEZ_CC;
19550b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19560b57cec5SDimitry Andric     return true;
19570b57cec5SDimitry Andric 
19580b57cec5SDimitry Andric   case Intrinsic::s390_vfenebs:
19590b57cec5SDimitry Andric   case Intrinsic::s390_vfenehs:
19600b57cec5SDimitry Andric   case Intrinsic::s390_vfenefs:
19610b57cec5SDimitry Andric     Opcode = SystemZISD::VFENE_CC;
19620b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19630b57cec5SDimitry Andric     return true;
19640b57cec5SDimitry Andric 
19650b57cec5SDimitry Andric   case Intrinsic::s390_vfenezbs:
19660b57cec5SDimitry Andric   case Intrinsic::s390_vfenezhs:
19670b57cec5SDimitry Andric   case Intrinsic::s390_vfenezfs:
19680b57cec5SDimitry Andric     Opcode = SystemZISD::VFENEZ_CC;
19690b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19700b57cec5SDimitry Andric     return true;
19710b57cec5SDimitry Andric 
19720b57cec5SDimitry Andric   case Intrinsic::s390_vistrbs:
19730b57cec5SDimitry Andric   case Intrinsic::s390_vistrhs:
19740b57cec5SDimitry Andric   case Intrinsic::s390_vistrfs:
19750b57cec5SDimitry Andric     Opcode = SystemZISD::VISTR_CC;
19760b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
19770b57cec5SDimitry Andric     return true;
19780b57cec5SDimitry Andric 
19790b57cec5SDimitry Andric   case Intrinsic::s390_vstrcbs:
19800b57cec5SDimitry Andric   case Intrinsic::s390_vstrchs:
19810b57cec5SDimitry Andric   case Intrinsic::s390_vstrcfs:
19820b57cec5SDimitry Andric     Opcode = SystemZISD::VSTRC_CC;
19830b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19840b57cec5SDimitry Andric     return true;
19850b57cec5SDimitry Andric 
19860b57cec5SDimitry Andric   case Intrinsic::s390_vstrczbs:
19870b57cec5SDimitry Andric   case Intrinsic::s390_vstrczhs:
19880b57cec5SDimitry Andric   case Intrinsic::s390_vstrczfs:
19890b57cec5SDimitry Andric     Opcode = SystemZISD::VSTRCZ_CC;
19900b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19910b57cec5SDimitry Andric     return true;
19920b57cec5SDimitry Andric 
19930b57cec5SDimitry Andric   case Intrinsic::s390_vstrsb:
19940b57cec5SDimitry Andric   case Intrinsic::s390_vstrsh:
19950b57cec5SDimitry Andric   case Intrinsic::s390_vstrsf:
19960b57cec5SDimitry Andric     Opcode = SystemZISD::VSTRS_CC;
19970b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19980b57cec5SDimitry Andric     return true;
19990b57cec5SDimitry Andric 
20000b57cec5SDimitry Andric   case Intrinsic::s390_vstrszb:
20010b57cec5SDimitry Andric   case Intrinsic::s390_vstrszh:
20020b57cec5SDimitry Andric   case Intrinsic::s390_vstrszf:
20030b57cec5SDimitry Andric     Opcode = SystemZISD::VSTRSZ_CC;
20040b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20050b57cec5SDimitry Andric     return true;
20060b57cec5SDimitry Andric 
20070b57cec5SDimitry Andric   case Intrinsic::s390_vfcedbs:
20080b57cec5SDimitry Andric   case Intrinsic::s390_vfcesbs:
20090b57cec5SDimitry Andric     Opcode = SystemZISD::VFCMPES;
20100b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
20110b57cec5SDimitry Andric     return true;
20120b57cec5SDimitry Andric 
20130b57cec5SDimitry Andric   case Intrinsic::s390_vfchdbs:
20140b57cec5SDimitry Andric   case Intrinsic::s390_vfchsbs:
20150b57cec5SDimitry Andric     Opcode = SystemZISD::VFCMPHS;
20160b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
20170b57cec5SDimitry Andric     return true;
20180b57cec5SDimitry Andric 
20190b57cec5SDimitry Andric   case Intrinsic::s390_vfchedbs:
20200b57cec5SDimitry Andric   case Intrinsic::s390_vfchesbs:
20210b57cec5SDimitry Andric     Opcode = SystemZISD::VFCMPHES;
20220b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
20230b57cec5SDimitry Andric     return true;
20240b57cec5SDimitry Andric 
20250b57cec5SDimitry Andric   case Intrinsic::s390_vftcidb:
20260b57cec5SDimitry Andric   case Intrinsic::s390_vftcisb:
20270b57cec5SDimitry Andric     Opcode = SystemZISD::VFTCI;
20280b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
20290b57cec5SDimitry Andric     return true;
20300b57cec5SDimitry Andric 
20310b57cec5SDimitry Andric   case Intrinsic::s390_tdc:
20320b57cec5SDimitry Andric     Opcode = SystemZISD::TDC;
20330b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_TDC;
20340b57cec5SDimitry Andric     return true;
20350b57cec5SDimitry Andric 
20360b57cec5SDimitry Andric   default:
20370b57cec5SDimitry Andric     return false;
20380b57cec5SDimitry Andric   }
20390b57cec5SDimitry Andric }
20400b57cec5SDimitry Andric 
20410b57cec5SDimitry Andric // Emit an intrinsic with chain and an explicit CC register result.
20420b57cec5SDimitry Andric static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
20430b57cec5SDimitry Andric                                            unsigned Opcode) {
20440b57cec5SDimitry Andric   // Copy all operands except the intrinsic ID.
20450b57cec5SDimitry Andric   unsigned NumOps = Op.getNumOperands();
20460b57cec5SDimitry Andric   SmallVector<SDValue, 6> Ops;
20470b57cec5SDimitry Andric   Ops.reserve(NumOps - 1);
20480b57cec5SDimitry Andric   Ops.push_back(Op.getOperand(0));
20490b57cec5SDimitry Andric   for (unsigned I = 2; I < NumOps; ++I)
20500b57cec5SDimitry Andric     Ops.push_back(Op.getOperand(I));
20510b57cec5SDimitry Andric 
20520b57cec5SDimitry Andric   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
20530b57cec5SDimitry Andric   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
20540b57cec5SDimitry Andric   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
20550b57cec5SDimitry Andric   SDValue OldChain = SDValue(Op.getNode(), 1);
20560b57cec5SDimitry Andric   SDValue NewChain = SDValue(Intr.getNode(), 1);
20570b57cec5SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
20580b57cec5SDimitry Andric   return Intr.getNode();
20590b57cec5SDimitry Andric }
20600b57cec5SDimitry Andric 
20610b57cec5SDimitry Andric // Emit an intrinsic with an explicit CC register result.
20620b57cec5SDimitry Andric static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
20630b57cec5SDimitry Andric                                    unsigned Opcode) {
20640b57cec5SDimitry Andric   // Copy all operands except the intrinsic ID.
20650b57cec5SDimitry Andric   unsigned NumOps = Op.getNumOperands();
20660b57cec5SDimitry Andric   SmallVector<SDValue, 6> Ops;
20670b57cec5SDimitry Andric   Ops.reserve(NumOps - 1);
20680b57cec5SDimitry Andric   for (unsigned I = 1; I < NumOps; ++I)
20690b57cec5SDimitry Andric     Ops.push_back(Op.getOperand(I));
20700b57cec5SDimitry Andric 
20710b57cec5SDimitry Andric   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
20720b57cec5SDimitry Andric   return Intr.getNode();
20730b57cec5SDimitry Andric }
20740b57cec5SDimitry Andric 
20750b57cec5SDimitry Andric // CC is a comparison that will be implemented using an integer or
20760b57cec5SDimitry Andric // floating-point comparison.  Return the condition code mask for
20770b57cec5SDimitry Andric // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
20780b57cec5SDimitry Andric // unsigned comparisons and clear for signed ones.  In the floating-point
20790b57cec5SDimitry Andric // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
20800b57cec5SDimitry Andric static unsigned CCMaskForCondCode(ISD::CondCode CC) {
20810b57cec5SDimitry Andric #define CONV(X) \
20820b57cec5SDimitry Andric   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
20830b57cec5SDimitry Andric   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
20840b57cec5SDimitry Andric   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
20850b57cec5SDimitry Andric 
20860b57cec5SDimitry Andric   switch (CC) {
20870b57cec5SDimitry Andric   default:
20880b57cec5SDimitry Andric     llvm_unreachable("Invalid integer condition!");
20890b57cec5SDimitry Andric 
20900b57cec5SDimitry Andric   CONV(EQ);
20910b57cec5SDimitry Andric   CONV(NE);
20920b57cec5SDimitry Andric   CONV(GT);
20930b57cec5SDimitry Andric   CONV(GE);
20940b57cec5SDimitry Andric   CONV(LT);
20950b57cec5SDimitry Andric   CONV(LE);
20960b57cec5SDimitry Andric 
20970b57cec5SDimitry Andric   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
20980b57cec5SDimitry Andric   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
20990b57cec5SDimitry Andric   }
21000b57cec5SDimitry Andric #undef CONV
21010b57cec5SDimitry Andric }
21020b57cec5SDimitry Andric 
21030b57cec5SDimitry Andric // If C can be converted to a comparison against zero, adjust the operands
21040b57cec5SDimitry Andric // as necessary.
21050b57cec5SDimitry Andric static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
21060b57cec5SDimitry Andric   if (C.ICmpType == SystemZICMP::UnsignedOnly)
21070b57cec5SDimitry Andric     return;
21080b57cec5SDimitry Andric 
21090b57cec5SDimitry Andric   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
21100b57cec5SDimitry Andric   if (!ConstOp1)
21110b57cec5SDimitry Andric     return;
21120b57cec5SDimitry Andric 
21130b57cec5SDimitry Andric   int64_t Value = ConstOp1->getSExtValue();
21140b57cec5SDimitry Andric   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
21150b57cec5SDimitry Andric       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
21160b57cec5SDimitry Andric       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
21170b57cec5SDimitry Andric       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
21180b57cec5SDimitry Andric     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
21190b57cec5SDimitry Andric     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
21200b57cec5SDimitry Andric   }
21210b57cec5SDimitry Andric }
21220b57cec5SDimitry Andric 
21230b57cec5SDimitry Andric // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
21240b57cec5SDimitry Andric // adjust the operands as necessary.
21250b57cec5SDimitry Andric static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
21260b57cec5SDimitry Andric                              Comparison &C) {
21270b57cec5SDimitry Andric   // For us to make any changes, it must a comparison between a single-use
21280b57cec5SDimitry Andric   // load and a constant.
21290b57cec5SDimitry Andric   if (!C.Op0.hasOneUse() ||
21300b57cec5SDimitry Andric       C.Op0.getOpcode() != ISD::LOAD ||
21310b57cec5SDimitry Andric       C.Op1.getOpcode() != ISD::Constant)
21320b57cec5SDimitry Andric     return;
21330b57cec5SDimitry Andric 
21340b57cec5SDimitry Andric   // We must have an 8- or 16-bit load.
21350b57cec5SDimitry Andric   auto *Load = cast<LoadSDNode>(C.Op0);
21365ffd83dbSDimitry Andric   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
21375ffd83dbSDimitry Andric   if ((NumBits != 8 && NumBits != 16) ||
21385ffd83dbSDimitry Andric       NumBits != Load->getMemoryVT().getStoreSizeInBits())
21390b57cec5SDimitry Andric     return;
21400b57cec5SDimitry Andric 
21410b57cec5SDimitry Andric   // The load must be an extending one and the constant must be within the
21420b57cec5SDimitry Andric   // range of the unextended value.
21430b57cec5SDimitry Andric   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
21440b57cec5SDimitry Andric   uint64_t Value = ConstOp1->getZExtValue();
21450b57cec5SDimitry Andric   uint64_t Mask = (1 << NumBits) - 1;
21460b57cec5SDimitry Andric   if (Load->getExtensionType() == ISD::SEXTLOAD) {
21470b57cec5SDimitry Andric     // Make sure that ConstOp1 is in range of C.Op0.
21480b57cec5SDimitry Andric     int64_t SignedValue = ConstOp1->getSExtValue();
21490b57cec5SDimitry Andric     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
21500b57cec5SDimitry Andric       return;
21510b57cec5SDimitry Andric     if (C.ICmpType != SystemZICMP::SignedOnly) {
21520b57cec5SDimitry Andric       // Unsigned comparison between two sign-extended values is equivalent
21530b57cec5SDimitry Andric       // to unsigned comparison between two zero-extended values.
21540b57cec5SDimitry Andric       Value &= Mask;
21550b57cec5SDimitry Andric     } else if (NumBits == 8) {
21560b57cec5SDimitry Andric       // Try to treat the comparison as unsigned, so that we can use CLI.
21570b57cec5SDimitry Andric       // Adjust CCMask and Value as necessary.
21580b57cec5SDimitry Andric       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
21590b57cec5SDimitry Andric         // Test whether the high bit of the byte is set.
21600b57cec5SDimitry Andric         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
21610b57cec5SDimitry Andric       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
21620b57cec5SDimitry Andric         // Test whether the high bit of the byte is clear.
21630b57cec5SDimitry Andric         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
21640b57cec5SDimitry Andric       else
21650b57cec5SDimitry Andric         // No instruction exists for this combination.
21660b57cec5SDimitry Andric         return;
21670b57cec5SDimitry Andric       C.ICmpType = SystemZICMP::UnsignedOnly;
21680b57cec5SDimitry Andric     }
21690b57cec5SDimitry Andric   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
21700b57cec5SDimitry Andric     if (Value > Mask)
21710b57cec5SDimitry Andric       return;
21720b57cec5SDimitry Andric     // If the constant is in range, we can use any comparison.
21730b57cec5SDimitry Andric     C.ICmpType = SystemZICMP::Any;
21740b57cec5SDimitry Andric   } else
21750b57cec5SDimitry Andric     return;
21760b57cec5SDimitry Andric 
21770b57cec5SDimitry Andric   // Make sure that the first operand is an i32 of the right extension type.
21780b57cec5SDimitry Andric   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
21790b57cec5SDimitry Andric                               ISD::SEXTLOAD :
21800b57cec5SDimitry Andric                               ISD::ZEXTLOAD);
21810b57cec5SDimitry Andric   if (C.Op0.getValueType() != MVT::i32 ||
21820b57cec5SDimitry Andric       Load->getExtensionType() != ExtType) {
21830b57cec5SDimitry Andric     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
21840b57cec5SDimitry Andric                            Load->getBasePtr(), Load->getPointerInfo(),
21850b57cec5SDimitry Andric                            Load->getMemoryVT(), Load->getAlignment(),
21860b57cec5SDimitry Andric                            Load->getMemOperand()->getFlags());
21870b57cec5SDimitry Andric     // Update the chain uses.
21880b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
21890b57cec5SDimitry Andric   }
21900b57cec5SDimitry Andric 
21910b57cec5SDimitry Andric   // Make sure that the second operand is an i32 with the right value.
21920b57cec5SDimitry Andric   if (C.Op1.getValueType() != MVT::i32 ||
21930b57cec5SDimitry Andric       Value != ConstOp1->getZExtValue())
21940b57cec5SDimitry Andric     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
21950b57cec5SDimitry Andric }
21960b57cec5SDimitry Andric 
21970b57cec5SDimitry Andric // Return true if Op is either an unextended load, or a load suitable
21980b57cec5SDimitry Andric // for integer register-memory comparisons of type ICmpType.
21990b57cec5SDimitry Andric static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
22000b57cec5SDimitry Andric   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
22010b57cec5SDimitry Andric   if (Load) {
22020b57cec5SDimitry Andric     // There are no instructions to compare a register with a memory byte.
22030b57cec5SDimitry Andric     if (Load->getMemoryVT() == MVT::i8)
22040b57cec5SDimitry Andric       return false;
22050b57cec5SDimitry Andric     // Otherwise decide on extension type.
22060b57cec5SDimitry Andric     switch (Load->getExtensionType()) {
22070b57cec5SDimitry Andric     case ISD::NON_EXTLOAD:
22080b57cec5SDimitry Andric       return true;
22090b57cec5SDimitry Andric     case ISD::SEXTLOAD:
22100b57cec5SDimitry Andric       return ICmpType != SystemZICMP::UnsignedOnly;
22110b57cec5SDimitry Andric     case ISD::ZEXTLOAD:
22120b57cec5SDimitry Andric       return ICmpType != SystemZICMP::SignedOnly;
22130b57cec5SDimitry Andric     default:
22140b57cec5SDimitry Andric       break;
22150b57cec5SDimitry Andric     }
22160b57cec5SDimitry Andric   }
22170b57cec5SDimitry Andric   return false;
22180b57cec5SDimitry Andric }
22190b57cec5SDimitry Andric 
22200b57cec5SDimitry Andric // Return true if it is better to swap the operands of C.
22210b57cec5SDimitry Andric static bool shouldSwapCmpOperands(const Comparison &C) {
22220b57cec5SDimitry Andric   // Leave f128 comparisons alone, since they have no memory forms.
22230b57cec5SDimitry Andric   if (C.Op0.getValueType() == MVT::f128)
22240b57cec5SDimitry Andric     return false;
22250b57cec5SDimitry Andric 
22260b57cec5SDimitry Andric   // Always keep a floating-point constant second, since comparisons with
22270b57cec5SDimitry Andric   // zero can use LOAD TEST and comparisons with other constants make a
22280b57cec5SDimitry Andric   // natural memory operand.
22290b57cec5SDimitry Andric   if (isa<ConstantFPSDNode>(C.Op1))
22300b57cec5SDimitry Andric     return false;
22310b57cec5SDimitry Andric 
22320b57cec5SDimitry Andric   // Never swap comparisons with zero since there are many ways to optimize
22330b57cec5SDimitry Andric   // those later.
22340b57cec5SDimitry Andric   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
22350b57cec5SDimitry Andric   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
22360b57cec5SDimitry Andric     return false;
22370b57cec5SDimitry Andric 
22380b57cec5SDimitry Andric   // Also keep natural memory operands second if the loaded value is
22390b57cec5SDimitry Andric   // only used here.  Several comparisons have memory forms.
22400b57cec5SDimitry Andric   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
22410b57cec5SDimitry Andric     return false;
22420b57cec5SDimitry Andric 
22430b57cec5SDimitry Andric   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
22440b57cec5SDimitry Andric   // In that case we generally prefer the memory to be second.
22450b57cec5SDimitry Andric   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
22460b57cec5SDimitry Andric     // The only exceptions are when the second operand is a constant and
22470b57cec5SDimitry Andric     // we can use things like CHHSI.
22480b57cec5SDimitry Andric     if (!ConstOp1)
22490b57cec5SDimitry Andric       return true;
22500b57cec5SDimitry Andric     // The unsigned memory-immediate instructions can handle 16-bit
22510b57cec5SDimitry Andric     // unsigned integers.
22520b57cec5SDimitry Andric     if (C.ICmpType != SystemZICMP::SignedOnly &&
22530b57cec5SDimitry Andric         isUInt<16>(ConstOp1->getZExtValue()))
22540b57cec5SDimitry Andric       return false;
22550b57cec5SDimitry Andric     // The signed memory-immediate instructions can handle 16-bit
22560b57cec5SDimitry Andric     // signed integers.
22570b57cec5SDimitry Andric     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
22580b57cec5SDimitry Andric         isInt<16>(ConstOp1->getSExtValue()))
22590b57cec5SDimitry Andric       return false;
22600b57cec5SDimitry Andric     return true;
22610b57cec5SDimitry Andric   }
22620b57cec5SDimitry Andric 
22630b57cec5SDimitry Andric   // Try to promote the use of CGFR and CLGFR.
22640b57cec5SDimitry Andric   unsigned Opcode0 = C.Op0.getOpcode();
22650b57cec5SDimitry Andric   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
22660b57cec5SDimitry Andric     return true;
22670b57cec5SDimitry Andric   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
22680b57cec5SDimitry Andric     return true;
22690b57cec5SDimitry Andric   if (C.ICmpType != SystemZICMP::SignedOnly &&
22700b57cec5SDimitry Andric       Opcode0 == ISD::AND &&
22710b57cec5SDimitry Andric       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
22720b57cec5SDimitry Andric       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
22730b57cec5SDimitry Andric     return true;
22740b57cec5SDimitry Andric 
22750b57cec5SDimitry Andric   return false;
22760b57cec5SDimitry Andric }
22770b57cec5SDimitry Andric 
22780b57cec5SDimitry Andric // Check whether C tests for equality between X and Y and whether X - Y
22790b57cec5SDimitry Andric // or Y - X is also computed.  In that case it's better to compare the
22800b57cec5SDimitry Andric // result of the subtraction against zero.
22810b57cec5SDimitry Andric static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
22820b57cec5SDimitry Andric                                  Comparison &C) {
22830b57cec5SDimitry Andric   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
22840b57cec5SDimitry Andric       C.CCMask == SystemZ::CCMASK_CMP_NE) {
22850b57cec5SDimitry Andric     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
22860b57cec5SDimitry Andric       SDNode *N = *I;
22870b57cec5SDimitry Andric       if (N->getOpcode() == ISD::SUB &&
22880b57cec5SDimitry Andric           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
22890b57cec5SDimitry Andric            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
22900b57cec5SDimitry Andric         C.Op0 = SDValue(N, 0);
22910b57cec5SDimitry Andric         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
22920b57cec5SDimitry Andric         return;
22930b57cec5SDimitry Andric       }
22940b57cec5SDimitry Andric     }
22950b57cec5SDimitry Andric   }
22960b57cec5SDimitry Andric }
22970b57cec5SDimitry Andric 
22980b57cec5SDimitry Andric // Check whether C compares a floating-point value with zero and if that
22990b57cec5SDimitry Andric // floating-point value is also negated.  In this case we can use the
23000b57cec5SDimitry Andric // negation to set CC, so avoiding separate LOAD AND TEST and
23010b57cec5SDimitry Andric // LOAD (NEGATIVE/COMPLEMENT) instructions.
23020b57cec5SDimitry Andric static void adjustForFNeg(Comparison &C) {
2303480093f4SDimitry Andric   // This optimization is invalid for strict comparisons, since FNEG
2304480093f4SDimitry Andric   // does not raise any exceptions.
2305480093f4SDimitry Andric   if (C.Chain)
2306480093f4SDimitry Andric     return;
23070b57cec5SDimitry Andric   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
23080b57cec5SDimitry Andric   if (C1 && C1->isZero()) {
23090b57cec5SDimitry Andric     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
23100b57cec5SDimitry Andric       SDNode *N = *I;
23110b57cec5SDimitry Andric       if (N->getOpcode() == ISD::FNEG) {
23120b57cec5SDimitry Andric         C.Op0 = SDValue(N, 0);
23135ffd83dbSDimitry Andric         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
23140b57cec5SDimitry Andric         return;
23150b57cec5SDimitry Andric       }
23160b57cec5SDimitry Andric     }
23170b57cec5SDimitry Andric   }
23180b57cec5SDimitry Andric }
23190b57cec5SDimitry Andric 
23200b57cec5SDimitry Andric // Check whether C compares (shl X, 32) with 0 and whether X is
23210b57cec5SDimitry Andric // also sign-extended.  In that case it is better to test the result
23220b57cec5SDimitry Andric // of the sign extension using LTGFR.
23230b57cec5SDimitry Andric //
23240b57cec5SDimitry Andric // This case is important because InstCombine transforms a comparison
23250b57cec5SDimitry Andric // with (sext (trunc X)) into a comparison with (shl X, 32).
23260b57cec5SDimitry Andric static void adjustForLTGFR(Comparison &C) {
23270b57cec5SDimitry Andric   // Check for a comparison between (shl X, 32) and 0.
23280b57cec5SDimitry Andric   if (C.Op0.getOpcode() == ISD::SHL &&
23290b57cec5SDimitry Andric       C.Op0.getValueType() == MVT::i64 &&
23300b57cec5SDimitry Andric       C.Op1.getOpcode() == ISD::Constant &&
23310b57cec5SDimitry Andric       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
23320b57cec5SDimitry Andric     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
23330b57cec5SDimitry Andric     if (C1 && C1->getZExtValue() == 32) {
23340b57cec5SDimitry Andric       SDValue ShlOp0 = C.Op0.getOperand(0);
23350b57cec5SDimitry Andric       // See whether X has any SIGN_EXTEND_INREG uses.
23360b57cec5SDimitry Andric       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
23370b57cec5SDimitry Andric         SDNode *N = *I;
23380b57cec5SDimitry Andric         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
23390b57cec5SDimitry Andric             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
23400b57cec5SDimitry Andric           C.Op0 = SDValue(N, 0);
23410b57cec5SDimitry Andric           return;
23420b57cec5SDimitry Andric         }
23430b57cec5SDimitry Andric       }
23440b57cec5SDimitry Andric     }
23450b57cec5SDimitry Andric   }
23460b57cec5SDimitry Andric }
23470b57cec5SDimitry Andric 
23480b57cec5SDimitry Andric // If C compares the truncation of an extending load, try to compare
23490b57cec5SDimitry Andric // the untruncated value instead.  This exposes more opportunities to
23500b57cec5SDimitry Andric // reuse CC.
23510b57cec5SDimitry Andric static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
23520b57cec5SDimitry Andric                                Comparison &C) {
23530b57cec5SDimitry Andric   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
23540b57cec5SDimitry Andric       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
23550b57cec5SDimitry Andric       C.Op1.getOpcode() == ISD::Constant &&
23560b57cec5SDimitry Andric       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
23570b57cec5SDimitry Andric     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2358e8d8bef9SDimitry Andric     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2359e8d8bef9SDimitry Andric         C.Op0.getValueSizeInBits().getFixedSize()) {
23600b57cec5SDimitry Andric       unsigned Type = L->getExtensionType();
23610b57cec5SDimitry Andric       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
23620b57cec5SDimitry Andric           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
23630b57cec5SDimitry Andric         C.Op0 = C.Op0.getOperand(0);
23640b57cec5SDimitry Andric         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
23650b57cec5SDimitry Andric       }
23660b57cec5SDimitry Andric     }
23670b57cec5SDimitry Andric   }
23680b57cec5SDimitry Andric }
23690b57cec5SDimitry Andric 
23700b57cec5SDimitry Andric // Return true if shift operation N has an in-range constant shift value.
23710b57cec5SDimitry Andric // Store it in ShiftVal if so.
23720b57cec5SDimitry Andric static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
23730b57cec5SDimitry Andric   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
23740b57cec5SDimitry Andric   if (!Shift)
23750b57cec5SDimitry Andric     return false;
23760b57cec5SDimitry Andric 
23770b57cec5SDimitry Andric   uint64_t Amount = Shift->getZExtValue();
23780b57cec5SDimitry Andric   if (Amount >= N.getValueSizeInBits())
23790b57cec5SDimitry Andric     return false;
23800b57cec5SDimitry Andric 
23810b57cec5SDimitry Andric   ShiftVal = Amount;
23820b57cec5SDimitry Andric   return true;
23830b57cec5SDimitry Andric }
23840b57cec5SDimitry Andric 
23850b57cec5SDimitry Andric // Check whether an AND with Mask is suitable for a TEST UNDER MASK
23860b57cec5SDimitry Andric // instruction and whether the CC value is descriptive enough to handle
23870b57cec5SDimitry Andric // a comparison of type Opcode between the AND result and CmpVal.
23880b57cec5SDimitry Andric // CCMask says which comparison result is being tested and BitSize is
23890b57cec5SDimitry Andric // the number of bits in the operands.  If TEST UNDER MASK can be used,
23900b57cec5SDimitry Andric // return the corresponding CC mask, otherwise return 0.
23910b57cec5SDimitry Andric static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
23920b57cec5SDimitry Andric                                      uint64_t Mask, uint64_t CmpVal,
23930b57cec5SDimitry Andric                                      unsigned ICmpType) {
23940b57cec5SDimitry Andric   assert(Mask != 0 && "ANDs with zero should have been removed by now");
23950b57cec5SDimitry Andric 
23960b57cec5SDimitry Andric   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
23970b57cec5SDimitry Andric   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
23980b57cec5SDimitry Andric       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
23990b57cec5SDimitry Andric     return 0;
24000b57cec5SDimitry Andric 
24010b57cec5SDimitry Andric   // Work out the masks for the lowest and highest bits.
24020b57cec5SDimitry Andric   unsigned HighShift = 63 - countLeadingZeros(Mask);
24030b57cec5SDimitry Andric   uint64_t High = uint64_t(1) << HighShift;
24040b57cec5SDimitry Andric   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
24050b57cec5SDimitry Andric 
24060b57cec5SDimitry Andric   // Signed ordered comparisons are effectively unsigned if the sign
24070b57cec5SDimitry Andric   // bit is dropped.
24080b57cec5SDimitry Andric   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
24090b57cec5SDimitry Andric 
24100b57cec5SDimitry Andric   // Check for equality comparisons with 0, or the equivalent.
24110b57cec5SDimitry Andric   if (CmpVal == 0) {
24120b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_EQ)
24130b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_0;
24140b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE)
24150b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_1;
24160b57cec5SDimitry Andric   }
24170b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
24180b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LT)
24190b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_0;
24200b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GE)
24210b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_1;
24220b57cec5SDimitry Andric   }
24230b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal < Low) {
24240b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LE)
24250b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_0;
24260b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GT)
24270b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_1;
24280b57cec5SDimitry Andric   }
24290b57cec5SDimitry Andric 
24300b57cec5SDimitry Andric   // Check for equality comparisons with the mask, or the equivalent.
24310b57cec5SDimitry Andric   if (CmpVal == Mask) {
24320b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_EQ)
24330b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_1;
24340b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE)
24350b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_0;
24360b57cec5SDimitry Andric   }
24370b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
24380b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GT)
24390b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_1;
24400b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LE)
24410b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_0;
24420b57cec5SDimitry Andric   }
24430b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
24440b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GE)
24450b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_1;
24460b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LT)
24470b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_0;
24480b57cec5SDimitry Andric   }
24490b57cec5SDimitry Andric 
24500b57cec5SDimitry Andric   // Check for ordered comparisons with the top bit.
24510b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
24520b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LE)
24530b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MSB_0;
24540b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GT)
24550b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MSB_1;
24560b57cec5SDimitry Andric   }
24570b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
24580b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LT)
24590b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MSB_0;
24600b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GE)
24610b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MSB_1;
24620b57cec5SDimitry Andric   }
24630b57cec5SDimitry Andric 
24640b57cec5SDimitry Andric   // If there are just two bits, we can do equality checks for Low and High
24650b57cec5SDimitry Andric   // as well.
24660b57cec5SDimitry Andric   if (Mask == Low + High) {
24670b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
24680b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MIXED_MSB_0;
24690b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
24700b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
24710b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
24720b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MIXED_MSB_1;
24730b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
24740b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
24750b57cec5SDimitry Andric   }
24760b57cec5SDimitry Andric 
24770b57cec5SDimitry Andric   // Looks like we've exhausted our options.
24780b57cec5SDimitry Andric   return 0;
24790b57cec5SDimitry Andric }
24800b57cec5SDimitry Andric 
24810b57cec5SDimitry Andric // See whether C can be implemented as a TEST UNDER MASK instruction.
24820b57cec5SDimitry Andric // Update the arguments with the TM version if so.
24830b57cec5SDimitry Andric static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
24840b57cec5SDimitry Andric                                    Comparison &C) {
24850b57cec5SDimitry Andric   // Check that we have a comparison with a constant.
24860b57cec5SDimitry Andric   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
24870b57cec5SDimitry Andric   if (!ConstOp1)
24880b57cec5SDimitry Andric     return;
24890b57cec5SDimitry Andric   uint64_t CmpVal = ConstOp1->getZExtValue();
24900b57cec5SDimitry Andric 
24910b57cec5SDimitry Andric   // Check whether the nonconstant input is an AND with a constant mask.
24920b57cec5SDimitry Andric   Comparison NewC(C);
24930b57cec5SDimitry Andric   uint64_t MaskVal;
24940b57cec5SDimitry Andric   ConstantSDNode *Mask = nullptr;
24950b57cec5SDimitry Andric   if (C.Op0.getOpcode() == ISD::AND) {
24960b57cec5SDimitry Andric     NewC.Op0 = C.Op0.getOperand(0);
24970b57cec5SDimitry Andric     NewC.Op1 = C.Op0.getOperand(1);
24980b57cec5SDimitry Andric     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
24990b57cec5SDimitry Andric     if (!Mask)
25000b57cec5SDimitry Andric       return;
25010b57cec5SDimitry Andric     MaskVal = Mask->getZExtValue();
25020b57cec5SDimitry Andric   } else {
25030b57cec5SDimitry Andric     // There is no instruction to compare with a 64-bit immediate
25040b57cec5SDimitry Andric     // so use TMHH instead if possible.  We need an unsigned ordered
25050b57cec5SDimitry Andric     // comparison with an i64 immediate.
25060b57cec5SDimitry Andric     if (NewC.Op0.getValueType() != MVT::i64 ||
25070b57cec5SDimitry Andric         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
25080b57cec5SDimitry Andric         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
25090b57cec5SDimitry Andric         NewC.ICmpType == SystemZICMP::SignedOnly)
25100b57cec5SDimitry Andric       return;
25110b57cec5SDimitry Andric     // Convert LE and GT comparisons into LT and GE.
25120b57cec5SDimitry Andric     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
25130b57cec5SDimitry Andric         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
25140b57cec5SDimitry Andric       if (CmpVal == uint64_t(-1))
25150b57cec5SDimitry Andric         return;
25160b57cec5SDimitry Andric       CmpVal += 1;
25170b57cec5SDimitry Andric       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
25180b57cec5SDimitry Andric     }
25190b57cec5SDimitry Andric     // If the low N bits of Op1 are zero than the low N bits of Op0 can
25200b57cec5SDimitry Andric     // be masked off without changing the result.
25210b57cec5SDimitry Andric     MaskVal = -(CmpVal & -CmpVal);
25220b57cec5SDimitry Andric     NewC.ICmpType = SystemZICMP::UnsignedOnly;
25230b57cec5SDimitry Andric   }
25240b57cec5SDimitry Andric   if (!MaskVal)
25250b57cec5SDimitry Andric     return;
25260b57cec5SDimitry Andric 
25270b57cec5SDimitry Andric   // Check whether the combination of mask, comparison value and comparison
25280b57cec5SDimitry Andric   // type are suitable.
25290b57cec5SDimitry Andric   unsigned BitSize = NewC.Op0.getValueSizeInBits();
25300b57cec5SDimitry Andric   unsigned NewCCMask, ShiftVal;
25310b57cec5SDimitry Andric   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
25320b57cec5SDimitry Andric       NewC.Op0.getOpcode() == ISD::SHL &&
25330b57cec5SDimitry Andric       isSimpleShift(NewC.Op0, ShiftVal) &&
25340b57cec5SDimitry Andric       (MaskVal >> ShiftVal != 0) &&
25350b57cec5SDimitry Andric       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
25360b57cec5SDimitry Andric       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
25370b57cec5SDimitry Andric                                         MaskVal >> ShiftVal,
25380b57cec5SDimitry Andric                                         CmpVal >> ShiftVal,
25390b57cec5SDimitry Andric                                         SystemZICMP::Any))) {
25400b57cec5SDimitry Andric     NewC.Op0 = NewC.Op0.getOperand(0);
25410b57cec5SDimitry Andric     MaskVal >>= ShiftVal;
25420b57cec5SDimitry Andric   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
25430b57cec5SDimitry Andric              NewC.Op0.getOpcode() == ISD::SRL &&
25440b57cec5SDimitry Andric              isSimpleShift(NewC.Op0, ShiftVal) &&
25450b57cec5SDimitry Andric              (MaskVal << ShiftVal != 0) &&
25460b57cec5SDimitry Andric              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
25470b57cec5SDimitry Andric              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
25480b57cec5SDimitry Andric                                                MaskVal << ShiftVal,
25490b57cec5SDimitry Andric                                                CmpVal << ShiftVal,
25500b57cec5SDimitry Andric                                                SystemZICMP::UnsignedOnly))) {
25510b57cec5SDimitry Andric     NewC.Op0 = NewC.Op0.getOperand(0);
25520b57cec5SDimitry Andric     MaskVal <<= ShiftVal;
25530b57cec5SDimitry Andric   } else {
25540b57cec5SDimitry Andric     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
25550b57cec5SDimitry Andric                                      NewC.ICmpType);
25560b57cec5SDimitry Andric     if (!NewCCMask)
25570b57cec5SDimitry Andric       return;
25580b57cec5SDimitry Andric   }
25590b57cec5SDimitry Andric 
25600b57cec5SDimitry Andric   // Go ahead and make the change.
25610b57cec5SDimitry Andric   C.Opcode = SystemZISD::TM;
25620b57cec5SDimitry Andric   C.Op0 = NewC.Op0;
25630b57cec5SDimitry Andric   if (Mask && Mask->getZExtValue() == MaskVal)
25640b57cec5SDimitry Andric     C.Op1 = SDValue(Mask, 0);
25650b57cec5SDimitry Andric   else
25660b57cec5SDimitry Andric     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
25670b57cec5SDimitry Andric   C.CCValid = SystemZ::CCMASK_TM;
25680b57cec5SDimitry Andric   C.CCMask = NewCCMask;
25690b57cec5SDimitry Andric }
25700b57cec5SDimitry Andric 
25710b57cec5SDimitry Andric // See whether the comparison argument contains a redundant AND
25720b57cec5SDimitry Andric // and remove it if so.  This sometimes happens due to the generic
25730b57cec5SDimitry Andric // BRCOND expansion.
25740b57cec5SDimitry Andric static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
25750b57cec5SDimitry Andric                                   Comparison &C) {
25760b57cec5SDimitry Andric   if (C.Op0.getOpcode() != ISD::AND)
25770b57cec5SDimitry Andric     return;
25780b57cec5SDimitry Andric   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
25790b57cec5SDimitry Andric   if (!Mask)
25800b57cec5SDimitry Andric     return;
25810b57cec5SDimitry Andric   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
25820b57cec5SDimitry Andric   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
25830b57cec5SDimitry Andric     return;
25840b57cec5SDimitry Andric 
25850b57cec5SDimitry Andric   C.Op0 = C.Op0.getOperand(0);
25860b57cec5SDimitry Andric }
25870b57cec5SDimitry Andric 
25880b57cec5SDimitry Andric // Return a Comparison that tests the condition-code result of intrinsic
25890b57cec5SDimitry Andric // node Call against constant integer CC using comparison code Cond.
25900b57cec5SDimitry Andric // Opcode is the opcode of the SystemZISD operation for the intrinsic
25910b57cec5SDimitry Andric // and CCValid is the set of possible condition-code results.
25920b57cec5SDimitry Andric static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
25930b57cec5SDimitry Andric                                   SDValue Call, unsigned CCValid, uint64_t CC,
25940b57cec5SDimitry Andric                                   ISD::CondCode Cond) {
2595480093f4SDimitry Andric   Comparison C(Call, SDValue(), SDValue());
25960b57cec5SDimitry Andric   C.Opcode = Opcode;
25970b57cec5SDimitry Andric   C.CCValid = CCValid;
25980b57cec5SDimitry Andric   if (Cond == ISD::SETEQ)
25990b57cec5SDimitry Andric     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
26000b57cec5SDimitry Andric     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
26010b57cec5SDimitry Andric   else if (Cond == ISD::SETNE)
26020b57cec5SDimitry Andric     // ...and the inverse of that.
26030b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
26040b57cec5SDimitry Andric   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
26050b57cec5SDimitry Andric     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
26060b57cec5SDimitry Andric     // always true for CC>3.
26070b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
26080b57cec5SDimitry Andric   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
26090b57cec5SDimitry Andric     // ...and the inverse of that.
26100b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
26110b57cec5SDimitry Andric   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
26120b57cec5SDimitry Andric     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
26130b57cec5SDimitry Andric     // always true for CC>3.
26140b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
26150b57cec5SDimitry Andric   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
26160b57cec5SDimitry Andric     // ...and the inverse of that.
26170b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
26180b57cec5SDimitry Andric   else
26190b57cec5SDimitry Andric     llvm_unreachable("Unexpected integer comparison type");
26200b57cec5SDimitry Andric   C.CCMask &= CCValid;
26210b57cec5SDimitry Andric   return C;
26220b57cec5SDimitry Andric }
26230b57cec5SDimitry Andric 
26240b57cec5SDimitry Andric // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
26250b57cec5SDimitry Andric static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2626480093f4SDimitry Andric                          ISD::CondCode Cond, const SDLoc &DL,
2627480093f4SDimitry Andric                          SDValue Chain = SDValue(),
2628480093f4SDimitry Andric                          bool IsSignaling = false) {
26290b57cec5SDimitry Andric   if (CmpOp1.getOpcode() == ISD::Constant) {
2630480093f4SDimitry Andric     assert(!Chain);
26310b57cec5SDimitry Andric     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
26320b57cec5SDimitry Andric     unsigned Opcode, CCValid;
26330b57cec5SDimitry Andric     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
26340b57cec5SDimitry Andric         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
26350b57cec5SDimitry Andric         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
26360b57cec5SDimitry Andric       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
26370b57cec5SDimitry Andric     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
26380b57cec5SDimitry Andric         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
26390b57cec5SDimitry Andric         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
26400b57cec5SDimitry Andric       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
26410b57cec5SDimitry Andric   }
2642480093f4SDimitry Andric   Comparison C(CmpOp0, CmpOp1, Chain);
26430b57cec5SDimitry Andric   C.CCMask = CCMaskForCondCode(Cond);
26440b57cec5SDimitry Andric   if (C.Op0.getValueType().isFloatingPoint()) {
26450b57cec5SDimitry Andric     C.CCValid = SystemZ::CCMASK_FCMP;
2646480093f4SDimitry Andric     if (!C.Chain)
26470b57cec5SDimitry Andric       C.Opcode = SystemZISD::FCMP;
2648480093f4SDimitry Andric     else if (!IsSignaling)
2649480093f4SDimitry Andric       C.Opcode = SystemZISD::STRICT_FCMP;
2650480093f4SDimitry Andric     else
2651480093f4SDimitry Andric       C.Opcode = SystemZISD::STRICT_FCMPS;
26520b57cec5SDimitry Andric     adjustForFNeg(C);
26530b57cec5SDimitry Andric   } else {
2654480093f4SDimitry Andric     assert(!C.Chain);
26550b57cec5SDimitry Andric     C.CCValid = SystemZ::CCMASK_ICMP;
26560b57cec5SDimitry Andric     C.Opcode = SystemZISD::ICMP;
26570b57cec5SDimitry Andric     // Choose the type of comparison.  Equality and inequality tests can
26580b57cec5SDimitry Andric     // use either signed or unsigned comparisons.  The choice also doesn't
26590b57cec5SDimitry Andric     // matter if both sign bits are known to be clear.  In those cases we
26600b57cec5SDimitry Andric     // want to give the main isel code the freedom to choose whichever
26610b57cec5SDimitry Andric     // form fits best.
26620b57cec5SDimitry Andric     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
26630b57cec5SDimitry Andric         C.CCMask == SystemZ::CCMASK_CMP_NE ||
26640b57cec5SDimitry Andric         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
26650b57cec5SDimitry Andric       C.ICmpType = SystemZICMP::Any;
26660b57cec5SDimitry Andric     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
26670b57cec5SDimitry Andric       C.ICmpType = SystemZICMP::UnsignedOnly;
26680b57cec5SDimitry Andric     else
26690b57cec5SDimitry Andric       C.ICmpType = SystemZICMP::SignedOnly;
26700b57cec5SDimitry Andric     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
26710b57cec5SDimitry Andric     adjustForRedundantAnd(DAG, DL, C);
26720b57cec5SDimitry Andric     adjustZeroCmp(DAG, DL, C);
26730b57cec5SDimitry Andric     adjustSubwordCmp(DAG, DL, C);
26740b57cec5SDimitry Andric     adjustForSubtraction(DAG, DL, C);
26750b57cec5SDimitry Andric     adjustForLTGFR(C);
26760b57cec5SDimitry Andric     adjustICmpTruncate(DAG, DL, C);
26770b57cec5SDimitry Andric   }
26780b57cec5SDimitry Andric 
26790b57cec5SDimitry Andric   if (shouldSwapCmpOperands(C)) {
26800b57cec5SDimitry Andric     std::swap(C.Op0, C.Op1);
26815ffd83dbSDimitry Andric     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
26820b57cec5SDimitry Andric   }
26830b57cec5SDimitry Andric 
26840b57cec5SDimitry Andric   adjustForTestUnderMask(DAG, DL, C);
26850b57cec5SDimitry Andric   return C;
26860b57cec5SDimitry Andric }
26870b57cec5SDimitry Andric 
26880b57cec5SDimitry Andric // Emit the comparison instruction described by C.
26890b57cec5SDimitry Andric static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
26900b57cec5SDimitry Andric   if (!C.Op1.getNode()) {
26910b57cec5SDimitry Andric     SDNode *Node;
26920b57cec5SDimitry Andric     switch (C.Op0.getOpcode()) {
26930b57cec5SDimitry Andric     case ISD::INTRINSIC_W_CHAIN:
26940b57cec5SDimitry Andric       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
26950b57cec5SDimitry Andric       return SDValue(Node, 0);
26960b57cec5SDimitry Andric     case ISD::INTRINSIC_WO_CHAIN:
26970b57cec5SDimitry Andric       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
26980b57cec5SDimitry Andric       return SDValue(Node, Node->getNumValues() - 1);
26990b57cec5SDimitry Andric     default:
27000b57cec5SDimitry Andric       llvm_unreachable("Invalid comparison operands");
27010b57cec5SDimitry Andric     }
27020b57cec5SDimitry Andric   }
27030b57cec5SDimitry Andric   if (C.Opcode == SystemZISD::ICMP)
27040b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
27058bcb0991SDimitry Andric                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
27060b57cec5SDimitry Andric   if (C.Opcode == SystemZISD::TM) {
27070b57cec5SDimitry Andric     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
27080b57cec5SDimitry Andric                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
27090b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
27108bcb0991SDimitry Andric                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
27110b57cec5SDimitry Andric   }
2712480093f4SDimitry Andric   if (C.Chain) {
2713480093f4SDimitry Andric     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2714480093f4SDimitry Andric     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2715480093f4SDimitry Andric   }
27160b57cec5SDimitry Andric   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
27170b57cec5SDimitry Andric }
27180b57cec5SDimitry Andric 
27190b57cec5SDimitry Andric // Implement a 32-bit *MUL_LOHI operation by extending both operands to
27200b57cec5SDimitry Andric // 64 bits.  Extend is the extension type to use.  Store the high part
27210b57cec5SDimitry Andric // in Hi and the low part in Lo.
27220b57cec5SDimitry Andric static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
27230b57cec5SDimitry Andric                             SDValue Op0, SDValue Op1, SDValue &Hi,
27240b57cec5SDimitry Andric                             SDValue &Lo) {
27250b57cec5SDimitry Andric   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
27260b57cec5SDimitry Andric   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
27270b57cec5SDimitry Andric   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
27280b57cec5SDimitry Andric   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
27290b57cec5SDimitry Andric                    DAG.getConstant(32, DL, MVT::i64));
27300b57cec5SDimitry Andric   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
27310b57cec5SDimitry Andric   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
27320b57cec5SDimitry Andric }
27330b57cec5SDimitry Andric 
27340b57cec5SDimitry Andric // Lower a binary operation that produces two VT results, one in each
27350b57cec5SDimitry Andric // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
27360b57cec5SDimitry Andric // and Opcode performs the GR128 operation.  Store the even register result
27370b57cec5SDimitry Andric // in Even and the odd register result in Odd.
27380b57cec5SDimitry Andric static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
27390b57cec5SDimitry Andric                              unsigned Opcode, SDValue Op0, SDValue Op1,
27400b57cec5SDimitry Andric                              SDValue &Even, SDValue &Odd) {
27410b57cec5SDimitry Andric   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
27420b57cec5SDimitry Andric   bool Is32Bit = is32Bit(VT);
27430b57cec5SDimitry Andric   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
27440b57cec5SDimitry Andric   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
27450b57cec5SDimitry Andric }
27460b57cec5SDimitry Andric 
27470b57cec5SDimitry Andric // Return an i32 value that is 1 if the CC value produced by CCReg is
27480b57cec5SDimitry Andric // in the mask CCMask and 0 otherwise.  CC is known to have a value
27490b57cec5SDimitry Andric // in CCValid, so other values can be ignored.
27500b57cec5SDimitry Andric static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
27510b57cec5SDimitry Andric                          unsigned CCValid, unsigned CCMask) {
27520b57cec5SDimitry Andric   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
27530b57cec5SDimitry Andric                    DAG.getConstant(0, DL, MVT::i32),
27548bcb0991SDimitry Andric                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
27558bcb0991SDimitry Andric                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
27560b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
27570b57cec5SDimitry Andric }
27580b57cec5SDimitry Andric 
27590b57cec5SDimitry Andric // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2760480093f4SDimitry Andric // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2761480093f4SDimitry Andric // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2762480093f4SDimitry Andric // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2763480093f4SDimitry Andric // floating-point comparisons.
2764480093f4SDimitry Andric enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2765480093f4SDimitry Andric static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
27660b57cec5SDimitry Andric   switch (CC) {
27670b57cec5SDimitry Andric   case ISD::SETOEQ:
27680b57cec5SDimitry Andric   case ISD::SETEQ:
2769480093f4SDimitry Andric     switch (Mode) {
2770480093f4SDimitry Andric     case CmpMode::Int:         return SystemZISD::VICMPE;
2771480093f4SDimitry Andric     case CmpMode::FP:          return SystemZISD::VFCMPE;
2772480093f4SDimitry Andric     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2773480093f4SDimitry Andric     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2774480093f4SDimitry Andric     }
2775480093f4SDimitry Andric     llvm_unreachable("Bad mode");
27760b57cec5SDimitry Andric 
27770b57cec5SDimitry Andric   case ISD::SETOGE:
27780b57cec5SDimitry Andric   case ISD::SETGE:
2779480093f4SDimitry Andric     switch (Mode) {
2780480093f4SDimitry Andric     case CmpMode::Int:         return 0;
2781480093f4SDimitry Andric     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2782480093f4SDimitry Andric     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2783480093f4SDimitry Andric     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2784480093f4SDimitry Andric     }
2785480093f4SDimitry Andric     llvm_unreachable("Bad mode");
27860b57cec5SDimitry Andric 
27870b57cec5SDimitry Andric   case ISD::SETOGT:
27880b57cec5SDimitry Andric   case ISD::SETGT:
2789480093f4SDimitry Andric     switch (Mode) {
2790480093f4SDimitry Andric     case CmpMode::Int:         return SystemZISD::VICMPH;
2791480093f4SDimitry Andric     case CmpMode::FP:          return SystemZISD::VFCMPH;
2792480093f4SDimitry Andric     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2793480093f4SDimitry Andric     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2794480093f4SDimitry Andric     }
2795480093f4SDimitry Andric     llvm_unreachable("Bad mode");
27960b57cec5SDimitry Andric 
27970b57cec5SDimitry Andric   case ISD::SETUGT:
2798480093f4SDimitry Andric     switch (Mode) {
2799480093f4SDimitry Andric     case CmpMode::Int:         return SystemZISD::VICMPHL;
2800480093f4SDimitry Andric     case CmpMode::FP:          return 0;
2801480093f4SDimitry Andric     case CmpMode::StrictFP:    return 0;
2802480093f4SDimitry Andric     case CmpMode::SignalingFP: return 0;
2803480093f4SDimitry Andric     }
2804480093f4SDimitry Andric     llvm_unreachable("Bad mode");
28050b57cec5SDimitry Andric 
28060b57cec5SDimitry Andric   default:
28070b57cec5SDimitry Andric     return 0;
28080b57cec5SDimitry Andric   }
28090b57cec5SDimitry Andric }
28100b57cec5SDimitry Andric 
28110b57cec5SDimitry Andric // Return the SystemZISD vector comparison operation for CC or its inverse,
28120b57cec5SDimitry Andric // or 0 if neither can be done directly.  Indicate in Invert whether the
2813480093f4SDimitry Andric // result is for the inverse of CC.  Mode is as above.
2814480093f4SDimitry Andric static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
28150b57cec5SDimitry Andric                                             bool &Invert) {
2816480093f4SDimitry Andric   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
28170b57cec5SDimitry Andric     Invert = false;
28180b57cec5SDimitry Andric     return Opcode;
28190b57cec5SDimitry Andric   }
28200b57cec5SDimitry Andric 
2821480093f4SDimitry Andric   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2822480093f4SDimitry Andric   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
28230b57cec5SDimitry Andric     Invert = true;
28240b57cec5SDimitry Andric     return Opcode;
28250b57cec5SDimitry Andric   }
28260b57cec5SDimitry Andric 
28270b57cec5SDimitry Andric   return 0;
28280b57cec5SDimitry Andric }
28290b57cec5SDimitry Andric 
28300b57cec5SDimitry Andric // Return a v2f64 that contains the extended form of elements Start and Start+1
2831480093f4SDimitry Andric // of v4f32 value Op.  If Chain is nonnull, return the strict form.
28320b57cec5SDimitry Andric static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2833480093f4SDimitry Andric                                   SDValue Op, SDValue Chain) {
28340b57cec5SDimitry Andric   int Mask[] = { Start, -1, Start + 1, -1 };
28350b57cec5SDimitry Andric   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2836480093f4SDimitry Andric   if (Chain) {
2837480093f4SDimitry Andric     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2838480093f4SDimitry Andric     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2839480093f4SDimitry Andric   }
28400b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
28410b57cec5SDimitry Andric }
28420b57cec5SDimitry Andric 
28430b57cec5SDimitry Andric // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2844480093f4SDimitry Andric // producing a result of type VT.  If Chain is nonnull, return the strict form.
28450b57cec5SDimitry Andric SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
28460b57cec5SDimitry Andric                                             const SDLoc &DL, EVT VT,
28470b57cec5SDimitry Andric                                             SDValue CmpOp0,
2848480093f4SDimitry Andric                                             SDValue CmpOp1,
2849480093f4SDimitry Andric                                             SDValue Chain) const {
28500b57cec5SDimitry Andric   // There is no hardware support for v4f32 (unless we have the vector
28510b57cec5SDimitry Andric   // enhancements facility 1), so extend the vector into two v2f64s
28520b57cec5SDimitry Andric   // and compare those.
28530b57cec5SDimitry Andric   if (CmpOp0.getValueType() == MVT::v4f32 &&
28540b57cec5SDimitry Andric       !Subtarget.hasVectorEnhancements1()) {
2855480093f4SDimitry Andric     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2856480093f4SDimitry Andric     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2857480093f4SDimitry Andric     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2858480093f4SDimitry Andric     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2859480093f4SDimitry Andric     if (Chain) {
2860480093f4SDimitry Andric       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2861480093f4SDimitry Andric       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2862480093f4SDimitry Andric       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2863480093f4SDimitry Andric       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2864480093f4SDimitry Andric       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2865480093f4SDimitry Andric                             H1.getValue(1), L1.getValue(1),
2866480093f4SDimitry Andric                             HRes.getValue(1), LRes.getValue(1) };
2867480093f4SDimitry Andric       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2868480093f4SDimitry Andric       SDValue Ops[2] = { Res, NewChain };
2869480093f4SDimitry Andric       return DAG.getMergeValues(Ops, DL);
2870480093f4SDimitry Andric     }
28710b57cec5SDimitry Andric     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
28720b57cec5SDimitry Andric     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
28730b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
28740b57cec5SDimitry Andric   }
2875480093f4SDimitry Andric   if (Chain) {
2876480093f4SDimitry Andric     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2877480093f4SDimitry Andric     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2878480093f4SDimitry Andric   }
28790b57cec5SDimitry Andric   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
28800b57cec5SDimitry Andric }
28810b57cec5SDimitry Andric 
28820b57cec5SDimitry Andric // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2883480093f4SDimitry Andric // an integer mask of type VT.  If Chain is nonnull, we have a strict
2884480093f4SDimitry Andric // floating-point comparison.  If in addition IsSignaling is true, we have
2885480093f4SDimitry Andric // a strict signaling floating-point comparison.
28860b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
28870b57cec5SDimitry Andric                                                 const SDLoc &DL, EVT VT,
28880b57cec5SDimitry Andric                                                 ISD::CondCode CC,
28890b57cec5SDimitry Andric                                                 SDValue CmpOp0,
2890480093f4SDimitry Andric                                                 SDValue CmpOp1,
2891480093f4SDimitry Andric                                                 SDValue Chain,
2892480093f4SDimitry Andric                                                 bool IsSignaling) const {
28930b57cec5SDimitry Andric   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2894480093f4SDimitry Andric   assert (!Chain || IsFP);
2895480093f4SDimitry Andric   assert (!IsSignaling || Chain);
2896480093f4SDimitry Andric   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2897480093f4SDimitry Andric                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
28980b57cec5SDimitry Andric   bool Invert = false;
28990b57cec5SDimitry Andric   SDValue Cmp;
29000b57cec5SDimitry Andric   switch (CC) {
29010b57cec5SDimitry Andric     // Handle tests for order using (or (ogt y x) (oge x y)).
29020b57cec5SDimitry Andric   case ISD::SETUO:
29030b57cec5SDimitry Andric     Invert = true;
29040b57cec5SDimitry Andric     LLVM_FALLTHROUGH;
29050b57cec5SDimitry Andric   case ISD::SETO: {
29060b57cec5SDimitry Andric     assert(IsFP && "Unexpected integer comparison");
2907480093f4SDimitry Andric     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2908480093f4SDimitry Andric                               DL, VT, CmpOp1, CmpOp0, Chain);
2909480093f4SDimitry Andric     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2910480093f4SDimitry Andric                               DL, VT, CmpOp0, CmpOp1, Chain);
29110b57cec5SDimitry Andric     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2912480093f4SDimitry Andric     if (Chain)
2913480093f4SDimitry Andric       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2914480093f4SDimitry Andric                           LT.getValue(1), GE.getValue(1));
29150b57cec5SDimitry Andric     break;
29160b57cec5SDimitry Andric   }
29170b57cec5SDimitry Andric 
29180b57cec5SDimitry Andric     // Handle <> tests using (or (ogt y x) (ogt x y)).
29190b57cec5SDimitry Andric   case ISD::SETUEQ:
29200b57cec5SDimitry Andric     Invert = true;
29210b57cec5SDimitry Andric     LLVM_FALLTHROUGH;
29220b57cec5SDimitry Andric   case ISD::SETONE: {
29230b57cec5SDimitry Andric     assert(IsFP && "Unexpected integer comparison");
2924480093f4SDimitry Andric     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2925480093f4SDimitry Andric                               DL, VT, CmpOp1, CmpOp0, Chain);
2926480093f4SDimitry Andric     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2927480093f4SDimitry Andric                               DL, VT, CmpOp0, CmpOp1, Chain);
29280b57cec5SDimitry Andric     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2929480093f4SDimitry Andric     if (Chain)
2930480093f4SDimitry Andric       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2931480093f4SDimitry Andric                           LT.getValue(1), GT.getValue(1));
29320b57cec5SDimitry Andric     break;
29330b57cec5SDimitry Andric   }
29340b57cec5SDimitry Andric 
29350b57cec5SDimitry Andric     // Otherwise a single comparison is enough.  It doesn't really
29360b57cec5SDimitry Andric     // matter whether we try the inversion or the swap first, since
29370b57cec5SDimitry Andric     // there are no cases where both work.
29380b57cec5SDimitry Andric   default:
2939480093f4SDimitry Andric     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2940480093f4SDimitry Andric       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
29410b57cec5SDimitry Andric     else {
29420b57cec5SDimitry Andric       CC = ISD::getSetCCSwappedOperands(CC);
2943480093f4SDimitry Andric       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2944480093f4SDimitry Andric         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
29450b57cec5SDimitry Andric       else
29460b57cec5SDimitry Andric         llvm_unreachable("Unhandled comparison");
29470b57cec5SDimitry Andric     }
2948480093f4SDimitry Andric     if (Chain)
2949480093f4SDimitry Andric       Chain = Cmp.getValue(1);
29500b57cec5SDimitry Andric     break;
29510b57cec5SDimitry Andric   }
29520b57cec5SDimitry Andric   if (Invert) {
29530b57cec5SDimitry Andric     SDValue Mask =
29540b57cec5SDimitry Andric       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
29550b57cec5SDimitry Andric     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
29560b57cec5SDimitry Andric   }
2957480093f4SDimitry Andric   if (Chain && Chain.getNode() != Cmp.getNode()) {
2958480093f4SDimitry Andric     SDValue Ops[2] = { Cmp, Chain };
2959480093f4SDimitry Andric     Cmp = DAG.getMergeValues(Ops, DL);
2960480093f4SDimitry Andric   }
29610b57cec5SDimitry Andric   return Cmp;
29620b57cec5SDimitry Andric }
29630b57cec5SDimitry Andric 
29640b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
29650b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
29660b57cec5SDimitry Andric   SDValue CmpOp0   = Op.getOperand(0);
29670b57cec5SDimitry Andric   SDValue CmpOp1   = Op.getOperand(1);
29680b57cec5SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
29690b57cec5SDimitry Andric   SDLoc DL(Op);
29700b57cec5SDimitry Andric   EVT VT = Op.getValueType();
29710b57cec5SDimitry Andric   if (VT.isVector())
29720b57cec5SDimitry Andric     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
29730b57cec5SDimitry Andric 
29740b57cec5SDimitry Andric   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
29750b57cec5SDimitry Andric   SDValue CCReg = emitCmp(DAG, DL, C);
29760b57cec5SDimitry Andric   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
29770b57cec5SDimitry Andric }
29780b57cec5SDimitry Andric 
2979480093f4SDimitry Andric SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2980480093f4SDimitry Andric                                                   SelectionDAG &DAG,
2981480093f4SDimitry Andric                                                   bool IsSignaling) const {
2982480093f4SDimitry Andric   SDValue Chain    = Op.getOperand(0);
2983480093f4SDimitry Andric   SDValue CmpOp0   = Op.getOperand(1);
2984480093f4SDimitry Andric   SDValue CmpOp1   = Op.getOperand(2);
2985480093f4SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2986480093f4SDimitry Andric   SDLoc DL(Op);
2987480093f4SDimitry Andric   EVT VT = Op.getNode()->getValueType(0);
2988480093f4SDimitry Andric   if (VT.isVector()) {
2989480093f4SDimitry Andric     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2990480093f4SDimitry Andric                                    Chain, IsSignaling);
2991480093f4SDimitry Andric     return Res.getValue(Op.getResNo());
2992480093f4SDimitry Andric   }
2993480093f4SDimitry Andric 
2994480093f4SDimitry Andric   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2995480093f4SDimitry Andric   SDValue CCReg = emitCmp(DAG, DL, C);
2996480093f4SDimitry Andric   CCReg->setFlags(Op->getFlags());
2997480093f4SDimitry Andric   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2998480093f4SDimitry Andric   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2999480093f4SDimitry Andric   return DAG.getMergeValues(Ops, DL);
3000480093f4SDimitry Andric }
3001480093f4SDimitry Andric 
30020b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
30030b57cec5SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
30040b57cec5SDimitry Andric   SDValue CmpOp0   = Op.getOperand(2);
30050b57cec5SDimitry Andric   SDValue CmpOp1   = Op.getOperand(3);
30060b57cec5SDimitry Andric   SDValue Dest     = Op.getOperand(4);
30070b57cec5SDimitry Andric   SDLoc DL(Op);
30080b57cec5SDimitry Andric 
30090b57cec5SDimitry Andric   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
30100b57cec5SDimitry Andric   SDValue CCReg = emitCmp(DAG, DL, C);
30118bcb0991SDimitry Andric   return DAG.getNode(
30128bcb0991SDimitry Andric       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
30138bcb0991SDimitry Andric       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
30148bcb0991SDimitry Andric       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
30150b57cec5SDimitry Andric }
30160b57cec5SDimitry Andric 
30170b57cec5SDimitry Andric // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
30180b57cec5SDimitry Andric // allowing Pos and Neg to be wider than CmpOp.
30190b57cec5SDimitry Andric static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
30200b57cec5SDimitry Andric   return (Neg.getOpcode() == ISD::SUB &&
30210b57cec5SDimitry Andric           Neg.getOperand(0).getOpcode() == ISD::Constant &&
30220b57cec5SDimitry Andric           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
30230b57cec5SDimitry Andric           Neg.getOperand(1) == Pos &&
30240b57cec5SDimitry Andric           (Pos == CmpOp ||
30250b57cec5SDimitry Andric            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
30260b57cec5SDimitry Andric             Pos.getOperand(0) == CmpOp)));
30270b57cec5SDimitry Andric }
30280b57cec5SDimitry Andric 
30290b57cec5SDimitry Andric // Return the absolute or negative absolute of Op; IsNegative decides which.
30300b57cec5SDimitry Andric static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
30310b57cec5SDimitry Andric                            bool IsNegative) {
3032e8d8bef9SDimitry Andric   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
30330b57cec5SDimitry Andric   if (IsNegative)
30340b57cec5SDimitry Andric     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
30350b57cec5SDimitry Andric                      DAG.getConstant(0, DL, Op.getValueType()), Op);
30360b57cec5SDimitry Andric   return Op;
30370b57cec5SDimitry Andric }
30380b57cec5SDimitry Andric 
30390b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
30400b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
30410b57cec5SDimitry Andric   SDValue CmpOp0   = Op.getOperand(0);
30420b57cec5SDimitry Andric   SDValue CmpOp1   = Op.getOperand(1);
30430b57cec5SDimitry Andric   SDValue TrueOp   = Op.getOperand(2);
30440b57cec5SDimitry Andric   SDValue FalseOp  = Op.getOperand(3);
30450b57cec5SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
30460b57cec5SDimitry Andric   SDLoc DL(Op);
30470b57cec5SDimitry Andric 
30480b57cec5SDimitry Andric   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
30490b57cec5SDimitry Andric 
30500b57cec5SDimitry Andric   // Check for absolute and negative-absolute selections, including those
30510b57cec5SDimitry Andric   // where the comparison value is sign-extended (for LPGFR and LNGFR).
30520b57cec5SDimitry Andric   // This check supplements the one in DAGCombiner.
30530b57cec5SDimitry Andric   if (C.Opcode == SystemZISD::ICMP &&
30540b57cec5SDimitry Andric       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
30550b57cec5SDimitry Andric       C.CCMask != SystemZ::CCMASK_CMP_NE &&
30560b57cec5SDimitry Andric       C.Op1.getOpcode() == ISD::Constant &&
30570b57cec5SDimitry Andric       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
30580b57cec5SDimitry Andric     if (isAbsolute(C.Op0, TrueOp, FalseOp))
30590b57cec5SDimitry Andric       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
30600b57cec5SDimitry Andric     if (isAbsolute(C.Op0, FalseOp, TrueOp))
30610b57cec5SDimitry Andric       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
30620b57cec5SDimitry Andric   }
30630b57cec5SDimitry Andric 
30640b57cec5SDimitry Andric   SDValue CCReg = emitCmp(DAG, DL, C);
30658bcb0991SDimitry Andric   SDValue Ops[] = {TrueOp, FalseOp,
30668bcb0991SDimitry Andric                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
30678bcb0991SDimitry Andric                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
30680b57cec5SDimitry Andric 
30690b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
30700b57cec5SDimitry Andric }
30710b57cec5SDimitry Andric 
30720b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
30730b57cec5SDimitry Andric                                                   SelectionDAG &DAG) const {
30740b57cec5SDimitry Andric   SDLoc DL(Node);
30750b57cec5SDimitry Andric   const GlobalValue *GV = Node->getGlobal();
30760b57cec5SDimitry Andric   int64_t Offset = Node->getOffset();
30770b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
30780b57cec5SDimitry Andric   CodeModel::Model CM = DAG.getTarget().getCodeModel();
30790b57cec5SDimitry Andric 
30800b57cec5SDimitry Andric   SDValue Result;
30810b57cec5SDimitry Andric   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3082480093f4SDimitry Andric     if (isInt<32>(Offset)) {
30830b57cec5SDimitry Andric       // Assign anchors at 1<<12 byte boundaries.
30840b57cec5SDimitry Andric       uint64_t Anchor = Offset & ~uint64_t(0xfff);
30850b57cec5SDimitry Andric       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
30860b57cec5SDimitry Andric       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
30870b57cec5SDimitry Andric 
3088480093f4SDimitry Andric       // The offset can be folded into the address if it is aligned to a
3089480093f4SDimitry Andric       // halfword.
30900b57cec5SDimitry Andric       Offset -= Anchor;
30910b57cec5SDimitry Andric       if (Offset != 0 && (Offset & 1) == 0) {
3092480093f4SDimitry Andric         SDValue Full =
3093480093f4SDimitry Andric           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
30940b57cec5SDimitry Andric         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
30950b57cec5SDimitry Andric         Offset = 0;
30960b57cec5SDimitry Andric       }
30970b57cec5SDimitry Andric     } else {
3098480093f4SDimitry Andric       // Conservatively load a constant offset greater than 32 bits into a
3099480093f4SDimitry Andric       // register below.
3100480093f4SDimitry Andric       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3101480093f4SDimitry Andric       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3102480093f4SDimitry Andric     }
3103480093f4SDimitry Andric   } else {
31040b57cec5SDimitry Andric     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
31050b57cec5SDimitry Andric     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
31060b57cec5SDimitry Andric     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
31070b57cec5SDimitry Andric                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
31080b57cec5SDimitry Andric   }
31090b57cec5SDimitry Andric 
31100b57cec5SDimitry Andric   // If there was a non-zero offset that we didn't fold, create an explicit
31110b57cec5SDimitry Andric   // addition for it.
31120b57cec5SDimitry Andric   if (Offset != 0)
31130b57cec5SDimitry Andric     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
31140b57cec5SDimitry Andric                          DAG.getConstant(Offset, DL, PtrVT));
31150b57cec5SDimitry Andric 
31160b57cec5SDimitry Andric   return Result;
31170b57cec5SDimitry Andric }
31180b57cec5SDimitry Andric 
31190b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
31200b57cec5SDimitry Andric                                                  SelectionDAG &DAG,
31210b57cec5SDimitry Andric                                                  unsigned Opcode,
31220b57cec5SDimitry Andric                                                  SDValue GOTOffset) const {
31230b57cec5SDimitry Andric   SDLoc DL(Node);
31240b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
31250b57cec5SDimitry Andric   SDValue Chain = DAG.getEntryNode();
31260b57cec5SDimitry Andric   SDValue Glue;
31270b57cec5SDimitry Andric 
3128480093f4SDimitry Andric   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3129480093f4SDimitry Andric       CallingConv::GHC)
3130480093f4SDimitry Andric     report_fatal_error("In GHC calling convention TLS is not supported");
3131480093f4SDimitry Andric 
31320b57cec5SDimitry Andric   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
31330b57cec5SDimitry Andric   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
31340b57cec5SDimitry Andric   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
31350b57cec5SDimitry Andric   Glue = Chain.getValue(1);
31360b57cec5SDimitry Andric   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
31370b57cec5SDimitry Andric   Glue = Chain.getValue(1);
31380b57cec5SDimitry Andric 
31390b57cec5SDimitry Andric   // The first call operand is the chain and the second is the TLS symbol.
31400b57cec5SDimitry Andric   SmallVector<SDValue, 8> Ops;
31410b57cec5SDimitry Andric   Ops.push_back(Chain);
31420b57cec5SDimitry Andric   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
31430b57cec5SDimitry Andric                                            Node->getValueType(0),
31440b57cec5SDimitry Andric                                            0, 0));
31450b57cec5SDimitry Andric 
31460b57cec5SDimitry Andric   // Add argument registers to the end of the list so that they are
31470b57cec5SDimitry Andric   // known live into the call.
31480b57cec5SDimitry Andric   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
31490b57cec5SDimitry Andric   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
31500b57cec5SDimitry Andric 
31510b57cec5SDimitry Andric   // Add a register mask operand representing the call-preserved registers.
31520b57cec5SDimitry Andric   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
31530b57cec5SDimitry Andric   const uint32_t *Mask =
31540b57cec5SDimitry Andric       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
31550b57cec5SDimitry Andric   assert(Mask && "Missing call preserved mask for calling convention");
31560b57cec5SDimitry Andric   Ops.push_back(DAG.getRegisterMask(Mask));
31570b57cec5SDimitry Andric 
31580b57cec5SDimitry Andric   // Glue the call to the argument copies.
31590b57cec5SDimitry Andric   Ops.push_back(Glue);
31600b57cec5SDimitry Andric 
31610b57cec5SDimitry Andric   // Emit the call.
31620b57cec5SDimitry Andric   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
31630b57cec5SDimitry Andric   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
31640b57cec5SDimitry Andric   Glue = Chain.getValue(1);
31650b57cec5SDimitry Andric 
31660b57cec5SDimitry Andric   // Copy the return value from %r2.
31670b57cec5SDimitry Andric   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
31680b57cec5SDimitry Andric }
31690b57cec5SDimitry Andric 
31700b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
31710b57cec5SDimitry Andric                                                   SelectionDAG &DAG) const {
31720b57cec5SDimitry Andric   SDValue Chain = DAG.getEntryNode();
31730b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
31740b57cec5SDimitry Andric 
31750b57cec5SDimitry Andric   // The high part of the thread pointer is in access register 0.
31760b57cec5SDimitry Andric   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
31770b57cec5SDimitry Andric   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
31780b57cec5SDimitry Andric 
31790b57cec5SDimitry Andric   // The low part of the thread pointer is in access register 1.
31800b57cec5SDimitry Andric   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
31810b57cec5SDimitry Andric   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
31820b57cec5SDimitry Andric 
31830b57cec5SDimitry Andric   // Merge them into a single 64-bit address.
31840b57cec5SDimitry Andric   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
31850b57cec5SDimitry Andric                                     DAG.getConstant(32, DL, PtrVT));
31860b57cec5SDimitry Andric   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
31870b57cec5SDimitry Andric }
31880b57cec5SDimitry Andric 
31890b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
31900b57cec5SDimitry Andric                                                      SelectionDAG &DAG) const {
31910b57cec5SDimitry Andric   if (DAG.getTarget().useEmulatedTLS())
31920b57cec5SDimitry Andric     return LowerToTLSEmulatedModel(Node, DAG);
31930b57cec5SDimitry Andric   SDLoc DL(Node);
31940b57cec5SDimitry Andric   const GlobalValue *GV = Node->getGlobal();
31950b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
31960b57cec5SDimitry Andric   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
31970b57cec5SDimitry Andric 
3198480093f4SDimitry Andric   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3199480093f4SDimitry Andric       CallingConv::GHC)
3200480093f4SDimitry Andric     report_fatal_error("In GHC calling convention TLS is not supported");
3201480093f4SDimitry Andric 
32020b57cec5SDimitry Andric   SDValue TP = lowerThreadPointer(DL, DAG);
32030b57cec5SDimitry Andric 
32040b57cec5SDimitry Andric   // Get the offset of GA from the thread pointer, based on the TLS model.
32050b57cec5SDimitry Andric   SDValue Offset;
32060b57cec5SDimitry Andric   switch (model) {
32070b57cec5SDimitry Andric     case TLSModel::GeneralDynamic: {
32080b57cec5SDimitry Andric       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
32090b57cec5SDimitry Andric       SystemZConstantPoolValue *CPV =
32100b57cec5SDimitry Andric         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
32110b57cec5SDimitry Andric 
32125ffd83dbSDimitry Andric       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
32130b57cec5SDimitry Andric       Offset = DAG.getLoad(
32140b57cec5SDimitry Andric           PtrVT, DL, DAG.getEntryNode(), Offset,
32150b57cec5SDimitry Andric           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
32160b57cec5SDimitry Andric 
32170b57cec5SDimitry Andric       // Call __tls_get_offset to retrieve the offset.
32180b57cec5SDimitry Andric       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
32190b57cec5SDimitry Andric       break;
32200b57cec5SDimitry Andric     }
32210b57cec5SDimitry Andric 
32220b57cec5SDimitry Andric     case TLSModel::LocalDynamic: {
32230b57cec5SDimitry Andric       // Load the GOT offset of the module ID.
32240b57cec5SDimitry Andric       SystemZConstantPoolValue *CPV =
32250b57cec5SDimitry Andric         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
32260b57cec5SDimitry Andric 
32275ffd83dbSDimitry Andric       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
32280b57cec5SDimitry Andric       Offset = DAG.getLoad(
32290b57cec5SDimitry Andric           PtrVT, DL, DAG.getEntryNode(), Offset,
32300b57cec5SDimitry Andric           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
32310b57cec5SDimitry Andric 
32320b57cec5SDimitry Andric       // Call __tls_get_offset to retrieve the module base offset.
32330b57cec5SDimitry Andric       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
32340b57cec5SDimitry Andric 
32350b57cec5SDimitry Andric       // Note: The SystemZLDCleanupPass will remove redundant computations
32360b57cec5SDimitry Andric       // of the module base offset.  Count total number of local-dynamic
32370b57cec5SDimitry Andric       // accesses to trigger execution of that pass.
32380b57cec5SDimitry Andric       SystemZMachineFunctionInfo* MFI =
32390b57cec5SDimitry Andric         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
32400b57cec5SDimitry Andric       MFI->incNumLocalDynamicTLSAccesses();
32410b57cec5SDimitry Andric 
32420b57cec5SDimitry Andric       // Add the per-symbol offset.
32430b57cec5SDimitry Andric       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
32440b57cec5SDimitry Andric 
32455ffd83dbSDimitry Andric       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
32460b57cec5SDimitry Andric       DTPOffset = DAG.getLoad(
32470b57cec5SDimitry Andric           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
32480b57cec5SDimitry Andric           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
32490b57cec5SDimitry Andric 
32500b57cec5SDimitry Andric       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
32510b57cec5SDimitry Andric       break;
32520b57cec5SDimitry Andric     }
32530b57cec5SDimitry Andric 
32540b57cec5SDimitry Andric     case TLSModel::InitialExec: {
32550b57cec5SDimitry Andric       // Load the offset from the GOT.
32560b57cec5SDimitry Andric       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
32570b57cec5SDimitry Andric                                           SystemZII::MO_INDNTPOFF);
32580b57cec5SDimitry Andric       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
32590b57cec5SDimitry Andric       Offset =
32600b57cec5SDimitry Andric           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
32610b57cec5SDimitry Andric                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
32620b57cec5SDimitry Andric       break;
32630b57cec5SDimitry Andric     }
32640b57cec5SDimitry Andric 
32650b57cec5SDimitry Andric     case TLSModel::LocalExec: {
32660b57cec5SDimitry Andric       // Force the offset into the constant pool and load it from there.
32670b57cec5SDimitry Andric       SystemZConstantPoolValue *CPV =
32680b57cec5SDimitry Andric         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
32690b57cec5SDimitry Andric 
32705ffd83dbSDimitry Andric       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
32710b57cec5SDimitry Andric       Offset = DAG.getLoad(
32720b57cec5SDimitry Andric           PtrVT, DL, DAG.getEntryNode(), Offset,
32730b57cec5SDimitry Andric           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
32740b57cec5SDimitry Andric       break;
32750b57cec5SDimitry Andric     }
32760b57cec5SDimitry Andric   }
32770b57cec5SDimitry Andric 
32780b57cec5SDimitry Andric   // Add the base and offset together.
32790b57cec5SDimitry Andric   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
32800b57cec5SDimitry Andric }
32810b57cec5SDimitry Andric 
32820b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
32830b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
32840b57cec5SDimitry Andric   SDLoc DL(Node);
32850b57cec5SDimitry Andric   const BlockAddress *BA = Node->getBlockAddress();
32860b57cec5SDimitry Andric   int64_t Offset = Node->getOffset();
32870b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
32880b57cec5SDimitry Andric 
32890b57cec5SDimitry Andric   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
32900b57cec5SDimitry Andric   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
32910b57cec5SDimitry Andric   return Result;
32920b57cec5SDimitry Andric }
32930b57cec5SDimitry Andric 
32940b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
32950b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
32960b57cec5SDimitry Andric   SDLoc DL(JT);
32970b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
32980b57cec5SDimitry Andric   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
32990b57cec5SDimitry Andric 
33000b57cec5SDimitry Andric   // Use LARL to load the address of the table.
33010b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
33020b57cec5SDimitry Andric }
33030b57cec5SDimitry Andric 
33040b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
33050b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
33060b57cec5SDimitry Andric   SDLoc DL(CP);
33070b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
33080b57cec5SDimitry Andric 
33090b57cec5SDimitry Andric   SDValue Result;
33100b57cec5SDimitry Andric   if (CP->isMachineConstantPoolEntry())
33115ffd83dbSDimitry Andric     Result =
33125ffd83dbSDimitry Andric         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
33130b57cec5SDimitry Andric   else
33145ffd83dbSDimitry Andric     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
33155ffd83dbSDimitry Andric                                        CP->getOffset());
33160b57cec5SDimitry Andric 
33170b57cec5SDimitry Andric   // Use LARL to load the address of the constant pool entry.
33180b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
33190b57cec5SDimitry Andric }
33200b57cec5SDimitry Andric 
33210b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
33220b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
33235ffd83dbSDimitry Andric   auto *TFL =
33245ffd83dbSDimitry Andric       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
33250b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
33260b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
33270b57cec5SDimitry Andric   MFI.setFrameAddressIsTaken(true);
33280b57cec5SDimitry Andric 
33290b57cec5SDimitry Andric   SDLoc DL(Op);
33300b57cec5SDimitry Andric   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
33310b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
33320b57cec5SDimitry Andric 
3333*fe6060f1SDimitry Andric   // By definition, the frame address is the address of the back chain.  (In
3334*fe6060f1SDimitry Andric   // the case of packed stack without backchain, return the address where the
3335*fe6060f1SDimitry Andric   // backchain would have been stored. This will either be an unused space or
3336*fe6060f1SDimitry Andric   // contain a saved register).
3337480093f4SDimitry Andric   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
33380b57cec5SDimitry Andric   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
33390b57cec5SDimitry Andric 
33400b57cec5SDimitry Andric   // FIXME The frontend should detect this case.
33410b57cec5SDimitry Andric   if (Depth > 0) {
33420b57cec5SDimitry Andric     report_fatal_error("Unsupported stack frame traversal count");
33430b57cec5SDimitry Andric   }
33440b57cec5SDimitry Andric 
33450b57cec5SDimitry Andric   return BackChain;
33460b57cec5SDimitry Andric }
33470b57cec5SDimitry Andric 
33480b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
33490b57cec5SDimitry Andric                                                SelectionDAG &DAG) const {
33500b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
33510b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
33520b57cec5SDimitry Andric   MFI.setReturnAddressIsTaken(true);
33530b57cec5SDimitry Andric 
33540b57cec5SDimitry Andric   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
33550b57cec5SDimitry Andric     return SDValue();
33560b57cec5SDimitry Andric 
33570b57cec5SDimitry Andric   SDLoc DL(Op);
33580b57cec5SDimitry Andric   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
33590b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
33600b57cec5SDimitry Andric 
33610b57cec5SDimitry Andric   // FIXME The frontend should detect this case.
33620b57cec5SDimitry Andric   if (Depth > 0) {
33630b57cec5SDimitry Andric     report_fatal_error("Unsupported stack frame traversal count");
33640b57cec5SDimitry Andric   }
33650b57cec5SDimitry Andric 
33660b57cec5SDimitry Andric   // Return R14D, which has the return address. Mark it an implicit live-in.
33670b57cec5SDimitry Andric   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
33680b57cec5SDimitry Andric   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
33690b57cec5SDimitry Andric }
33700b57cec5SDimitry Andric 
33710b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
33720b57cec5SDimitry Andric                                             SelectionDAG &DAG) const {
33730b57cec5SDimitry Andric   SDLoc DL(Op);
33740b57cec5SDimitry Andric   SDValue In = Op.getOperand(0);
33750b57cec5SDimitry Andric   EVT InVT = In.getValueType();
33760b57cec5SDimitry Andric   EVT ResVT = Op.getValueType();
33770b57cec5SDimitry Andric 
33780b57cec5SDimitry Andric   // Convert loads directly.  This is normally done by DAGCombiner,
33790b57cec5SDimitry Andric   // but we need this case for bitcasts that are created during lowering
33800b57cec5SDimitry Andric   // and which are then lowered themselves.
33810b57cec5SDimitry Andric   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
33820b57cec5SDimitry Andric     if (ISD::isNormalLoad(LoadN)) {
33830b57cec5SDimitry Andric       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
33840b57cec5SDimitry Andric                                     LoadN->getBasePtr(), LoadN->getMemOperand());
33850b57cec5SDimitry Andric       // Update the chain uses.
33860b57cec5SDimitry Andric       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
33870b57cec5SDimitry Andric       return NewLoad;
33880b57cec5SDimitry Andric     }
33890b57cec5SDimitry Andric 
33900b57cec5SDimitry Andric   if (InVT == MVT::i32 && ResVT == MVT::f32) {
33910b57cec5SDimitry Andric     SDValue In64;
33920b57cec5SDimitry Andric     if (Subtarget.hasHighWord()) {
33930b57cec5SDimitry Andric       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
33940b57cec5SDimitry Andric                                        MVT::i64);
33950b57cec5SDimitry Andric       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
33960b57cec5SDimitry Andric                                        MVT::i64, SDValue(U64, 0), In);
33970b57cec5SDimitry Andric     } else {
33980b57cec5SDimitry Andric       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
33990b57cec5SDimitry Andric       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
34000b57cec5SDimitry Andric                          DAG.getConstant(32, DL, MVT::i64));
34010b57cec5SDimitry Andric     }
34020b57cec5SDimitry Andric     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
34030b57cec5SDimitry Andric     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
34040b57cec5SDimitry Andric                                       DL, MVT::f32, Out64);
34050b57cec5SDimitry Andric   }
34060b57cec5SDimitry Andric   if (InVT == MVT::f32 && ResVT == MVT::i32) {
34070b57cec5SDimitry Andric     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
34080b57cec5SDimitry Andric     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
34090b57cec5SDimitry Andric                                              MVT::f64, SDValue(U64, 0), In);
34100b57cec5SDimitry Andric     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
34110b57cec5SDimitry Andric     if (Subtarget.hasHighWord())
34120b57cec5SDimitry Andric       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
34130b57cec5SDimitry Andric                                         MVT::i32, Out64);
34140b57cec5SDimitry Andric     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
34150b57cec5SDimitry Andric                                 DAG.getConstant(32, DL, MVT::i64));
34160b57cec5SDimitry Andric     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
34170b57cec5SDimitry Andric   }
34180b57cec5SDimitry Andric   llvm_unreachable("Unexpected bitcast combination");
34190b57cec5SDimitry Andric }
34200b57cec5SDimitry Andric 
34210b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
34220b57cec5SDimitry Andric                                             SelectionDAG &DAG) const {
34230b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
34240b57cec5SDimitry Andric   SystemZMachineFunctionInfo *FuncInfo =
34250b57cec5SDimitry Andric     MF.getInfo<SystemZMachineFunctionInfo>();
34260b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
34270b57cec5SDimitry Andric 
34280b57cec5SDimitry Andric   SDValue Chain   = Op.getOperand(0);
34290b57cec5SDimitry Andric   SDValue Addr    = Op.getOperand(1);
34300b57cec5SDimitry Andric   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
34310b57cec5SDimitry Andric   SDLoc DL(Op);
34320b57cec5SDimitry Andric 
34330b57cec5SDimitry Andric   // The initial values of each field.
34340b57cec5SDimitry Andric   const unsigned NumFields = 4;
34350b57cec5SDimitry Andric   SDValue Fields[NumFields] = {
34360b57cec5SDimitry Andric     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
34370b57cec5SDimitry Andric     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
34380b57cec5SDimitry Andric     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
34390b57cec5SDimitry Andric     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
34400b57cec5SDimitry Andric   };
34410b57cec5SDimitry Andric 
34420b57cec5SDimitry Andric   // Store each field into its respective slot.
34430b57cec5SDimitry Andric   SDValue MemOps[NumFields];
34440b57cec5SDimitry Andric   unsigned Offset = 0;
34450b57cec5SDimitry Andric   for (unsigned I = 0; I < NumFields; ++I) {
34460b57cec5SDimitry Andric     SDValue FieldAddr = Addr;
34470b57cec5SDimitry Andric     if (Offset != 0)
34480b57cec5SDimitry Andric       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
34490b57cec5SDimitry Andric                               DAG.getIntPtrConstant(Offset, DL));
34500b57cec5SDimitry Andric     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
34510b57cec5SDimitry Andric                              MachinePointerInfo(SV, Offset));
34520b57cec5SDimitry Andric     Offset += 8;
34530b57cec5SDimitry Andric   }
34540b57cec5SDimitry Andric   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
34550b57cec5SDimitry Andric }
34560b57cec5SDimitry Andric 
34570b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
34580b57cec5SDimitry Andric                                            SelectionDAG &DAG) const {
34590b57cec5SDimitry Andric   SDValue Chain      = Op.getOperand(0);
34600b57cec5SDimitry Andric   SDValue DstPtr     = Op.getOperand(1);
34610b57cec5SDimitry Andric   SDValue SrcPtr     = Op.getOperand(2);
34620b57cec5SDimitry Andric   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
34630b57cec5SDimitry Andric   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
34640b57cec5SDimitry Andric   SDLoc DL(Op);
34650b57cec5SDimitry Andric 
34660b57cec5SDimitry Andric   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
34675ffd83dbSDimitry Andric                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
34685ffd83dbSDimitry Andric                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
34695ffd83dbSDimitry Andric                        MachinePointerInfo(SrcSV));
34700b57cec5SDimitry Andric }
34710b57cec5SDimitry Andric 
34720b57cec5SDimitry Andric SDValue SystemZTargetLowering::
34730b57cec5SDimitry Andric lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
34740b57cec5SDimitry Andric   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
34750b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
34760b57cec5SDimitry Andric   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
34770b57cec5SDimitry Andric   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
34780b57cec5SDimitry Andric 
34790b57cec5SDimitry Andric   SDValue Chain = Op.getOperand(0);
34800b57cec5SDimitry Andric   SDValue Size  = Op.getOperand(1);
34810b57cec5SDimitry Andric   SDValue Align = Op.getOperand(2);
34820b57cec5SDimitry Andric   SDLoc DL(Op);
34830b57cec5SDimitry Andric 
34840b57cec5SDimitry Andric   // If user has set the no alignment function attribute, ignore
34850b57cec5SDimitry Andric   // alloca alignments.
3486e8d8bef9SDimitry Andric   uint64_t AlignVal =
3487e8d8bef9SDimitry Andric       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
34880b57cec5SDimitry Andric 
34890b57cec5SDimitry Andric   uint64_t StackAlign = TFI->getStackAlignment();
34900b57cec5SDimitry Andric   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
34910b57cec5SDimitry Andric   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
34920b57cec5SDimitry Andric 
3493e8d8bef9SDimitry Andric   Register SPReg = getStackPointerRegisterToSaveRestore();
34940b57cec5SDimitry Andric   SDValue NeededSpace = Size;
34950b57cec5SDimitry Andric 
34960b57cec5SDimitry Andric   // Get a reference to the stack pointer.
34970b57cec5SDimitry Andric   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
34980b57cec5SDimitry Andric 
34990b57cec5SDimitry Andric   // If we need a backchain, save it now.
35000b57cec5SDimitry Andric   SDValue Backchain;
35010b57cec5SDimitry Andric   if (StoreBackchain)
3502e8d8bef9SDimitry Andric     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3503e8d8bef9SDimitry Andric                             MachinePointerInfo());
35040b57cec5SDimitry Andric 
35050b57cec5SDimitry Andric   // Add extra space for alignment if needed.
35060b57cec5SDimitry Andric   if (ExtraAlignSpace)
35070b57cec5SDimitry Andric     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
35080b57cec5SDimitry Andric                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
35090b57cec5SDimitry Andric 
35100b57cec5SDimitry Andric   // Get the new stack pointer value.
35115ffd83dbSDimitry Andric   SDValue NewSP;
35125ffd83dbSDimitry Andric   if (hasInlineStackProbe(MF)) {
35135ffd83dbSDimitry Andric     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
35145ffd83dbSDimitry Andric                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
35155ffd83dbSDimitry Andric     Chain = NewSP.getValue(1);
35165ffd83dbSDimitry Andric   }
35175ffd83dbSDimitry Andric   else {
35185ffd83dbSDimitry Andric     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
35190b57cec5SDimitry Andric     // Copy the new stack pointer back.
35200b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
35215ffd83dbSDimitry Andric   }
35220b57cec5SDimitry Andric 
35230b57cec5SDimitry Andric   // The allocated data lives above the 160 bytes allocated for the standard
35240b57cec5SDimitry Andric   // frame, plus any outgoing stack arguments.  We don't know how much that
35250b57cec5SDimitry Andric   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
35260b57cec5SDimitry Andric   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
35270b57cec5SDimitry Andric   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
35280b57cec5SDimitry Andric 
35290b57cec5SDimitry Andric   // Dynamically realign if needed.
35300b57cec5SDimitry Andric   if (RequiredAlign > StackAlign) {
35310b57cec5SDimitry Andric     Result =
35320b57cec5SDimitry Andric       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
35330b57cec5SDimitry Andric                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
35340b57cec5SDimitry Andric     Result =
35350b57cec5SDimitry Andric       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
35360b57cec5SDimitry Andric                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
35370b57cec5SDimitry Andric   }
35380b57cec5SDimitry Andric 
35390b57cec5SDimitry Andric   if (StoreBackchain)
3540e8d8bef9SDimitry Andric     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3541e8d8bef9SDimitry Andric                          MachinePointerInfo());
35420b57cec5SDimitry Andric 
35430b57cec5SDimitry Andric   SDValue Ops[2] = { Result, Chain };
35440b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
35450b57cec5SDimitry Andric }
35460b57cec5SDimitry Andric 
35470b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
35480b57cec5SDimitry Andric     SDValue Op, SelectionDAG &DAG) const {
35490b57cec5SDimitry Andric   SDLoc DL(Op);
35500b57cec5SDimitry Andric 
35510b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
35520b57cec5SDimitry Andric }
35530b57cec5SDimitry Andric 
35540b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
35550b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
35560b57cec5SDimitry Andric   EVT VT = Op.getValueType();
35570b57cec5SDimitry Andric   SDLoc DL(Op);
35580b57cec5SDimitry Andric   SDValue Ops[2];
35590b57cec5SDimitry Andric   if (is32Bit(VT))
35600b57cec5SDimitry Andric     // Just do a normal 64-bit multiplication and extract the results.
35610b57cec5SDimitry Andric     // We define this so that it can be used for constant division.
35620b57cec5SDimitry Andric     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
35630b57cec5SDimitry Andric                     Op.getOperand(1), Ops[1], Ops[0]);
35640b57cec5SDimitry Andric   else if (Subtarget.hasMiscellaneousExtensions2())
35650b57cec5SDimitry Andric     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
35660b57cec5SDimitry Andric     // the high result in the even register.  ISD::SMUL_LOHI is defined to
35670b57cec5SDimitry Andric     // return the low half first, so the results are in reverse order.
35680b57cec5SDimitry Andric     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
35690b57cec5SDimitry Andric                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
35700b57cec5SDimitry Andric   else {
35710b57cec5SDimitry Andric     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
35720b57cec5SDimitry Andric     //
35730b57cec5SDimitry Andric     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
35740b57cec5SDimitry Andric     //
35750b57cec5SDimitry Andric     // but using the fact that the upper halves are either all zeros
35760b57cec5SDimitry Andric     // or all ones:
35770b57cec5SDimitry Andric     //
35780b57cec5SDimitry Andric     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
35790b57cec5SDimitry Andric     //
35800b57cec5SDimitry Andric     // and grouping the right terms together since they are quicker than the
35810b57cec5SDimitry Andric     // multiplication:
35820b57cec5SDimitry Andric     //
35830b57cec5SDimitry Andric     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
35840b57cec5SDimitry Andric     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
35850b57cec5SDimitry Andric     SDValue LL = Op.getOperand(0);
35860b57cec5SDimitry Andric     SDValue RL = Op.getOperand(1);
35870b57cec5SDimitry Andric     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
35880b57cec5SDimitry Andric     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
35890b57cec5SDimitry Andric     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
35900b57cec5SDimitry Andric     // the high result in the even register.  ISD::SMUL_LOHI is defined to
35910b57cec5SDimitry Andric     // return the low half first, so the results are in reverse order.
35920b57cec5SDimitry Andric     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
35930b57cec5SDimitry Andric                      LL, RL, Ops[1], Ops[0]);
35940b57cec5SDimitry Andric     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
35950b57cec5SDimitry Andric     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
35960b57cec5SDimitry Andric     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
35970b57cec5SDimitry Andric     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
35980b57cec5SDimitry Andric   }
35990b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
36000b57cec5SDimitry Andric }
36010b57cec5SDimitry Andric 
36020b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
36030b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
36040b57cec5SDimitry Andric   EVT VT = Op.getValueType();
36050b57cec5SDimitry Andric   SDLoc DL(Op);
36060b57cec5SDimitry Andric   SDValue Ops[2];
36070b57cec5SDimitry Andric   if (is32Bit(VT))
36080b57cec5SDimitry Andric     // Just do a normal 64-bit multiplication and extract the results.
36090b57cec5SDimitry Andric     // We define this so that it can be used for constant division.
36100b57cec5SDimitry Andric     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
36110b57cec5SDimitry Andric                     Op.getOperand(1), Ops[1], Ops[0]);
36120b57cec5SDimitry Andric   else
36130b57cec5SDimitry Andric     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
36140b57cec5SDimitry Andric     // the high result in the even register.  ISD::UMUL_LOHI is defined to
36150b57cec5SDimitry Andric     // return the low half first, so the results are in reverse order.
36160b57cec5SDimitry Andric     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
36170b57cec5SDimitry Andric                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
36180b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
36190b57cec5SDimitry Andric }
36200b57cec5SDimitry Andric 
36210b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
36220b57cec5SDimitry Andric                                             SelectionDAG &DAG) const {
36230b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
36240b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
36250b57cec5SDimitry Andric   EVT VT = Op.getValueType();
36260b57cec5SDimitry Andric   SDLoc DL(Op);
36270b57cec5SDimitry Andric 
36280b57cec5SDimitry Andric   // We use DSGF for 32-bit division.  This means the first operand must
36290b57cec5SDimitry Andric   // always be 64-bit, and the second operand should be 32-bit whenever
36300b57cec5SDimitry Andric   // that is possible, to improve performance.
36310b57cec5SDimitry Andric   if (is32Bit(VT))
36320b57cec5SDimitry Andric     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
36330b57cec5SDimitry Andric   else if (DAG.ComputeNumSignBits(Op1) > 32)
36340b57cec5SDimitry Andric     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
36350b57cec5SDimitry Andric 
36360b57cec5SDimitry Andric   // DSG(F) returns the remainder in the even register and the
36370b57cec5SDimitry Andric   // quotient in the odd register.
36380b57cec5SDimitry Andric   SDValue Ops[2];
36390b57cec5SDimitry Andric   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
36400b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
36410b57cec5SDimitry Andric }
36420b57cec5SDimitry Andric 
36430b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
36440b57cec5SDimitry Andric                                             SelectionDAG &DAG) const {
36450b57cec5SDimitry Andric   EVT VT = Op.getValueType();
36460b57cec5SDimitry Andric   SDLoc DL(Op);
36470b57cec5SDimitry Andric 
36480b57cec5SDimitry Andric   // DL(G) returns the remainder in the even register and the
36490b57cec5SDimitry Andric   // quotient in the odd register.
36500b57cec5SDimitry Andric   SDValue Ops[2];
36510b57cec5SDimitry Andric   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
36520b57cec5SDimitry Andric                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
36530b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
36540b57cec5SDimitry Andric }
36550b57cec5SDimitry Andric 
36560b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
36570b57cec5SDimitry Andric   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
36580b57cec5SDimitry Andric 
36590b57cec5SDimitry Andric   // Get the known-zero masks for each operand.
36600b57cec5SDimitry Andric   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
36610b57cec5SDimitry Andric   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
36620b57cec5SDimitry Andric                         DAG.computeKnownBits(Ops[1])};
36630b57cec5SDimitry Andric 
36640b57cec5SDimitry Andric   // See if the upper 32 bits of one operand and the lower 32 bits of the
36650b57cec5SDimitry Andric   // other are known zero.  They are the low and high operands respectively.
36660b57cec5SDimitry Andric   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
36670b57cec5SDimitry Andric                        Known[1].Zero.getZExtValue() };
36680b57cec5SDimitry Andric   unsigned High, Low;
36690b57cec5SDimitry Andric   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
36700b57cec5SDimitry Andric     High = 1, Low = 0;
36710b57cec5SDimitry Andric   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
36720b57cec5SDimitry Andric     High = 0, Low = 1;
36730b57cec5SDimitry Andric   else
36740b57cec5SDimitry Andric     return Op;
36750b57cec5SDimitry Andric 
36760b57cec5SDimitry Andric   SDValue LowOp = Ops[Low];
36770b57cec5SDimitry Andric   SDValue HighOp = Ops[High];
36780b57cec5SDimitry Andric 
36790b57cec5SDimitry Andric   // If the high part is a constant, we're better off using IILH.
36800b57cec5SDimitry Andric   if (HighOp.getOpcode() == ISD::Constant)
36810b57cec5SDimitry Andric     return Op;
36820b57cec5SDimitry Andric 
36830b57cec5SDimitry Andric   // If the low part is a constant that is outside the range of LHI,
36840b57cec5SDimitry Andric   // then we're better off using IILF.
36850b57cec5SDimitry Andric   if (LowOp.getOpcode() == ISD::Constant) {
36860b57cec5SDimitry Andric     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
36870b57cec5SDimitry Andric     if (!isInt<16>(Value))
36880b57cec5SDimitry Andric       return Op;
36890b57cec5SDimitry Andric   }
36900b57cec5SDimitry Andric 
36910b57cec5SDimitry Andric   // Check whether the high part is an AND that doesn't change the
36920b57cec5SDimitry Andric   // high 32 bits and just masks out low bits.  We can skip it if so.
36930b57cec5SDimitry Andric   if (HighOp.getOpcode() == ISD::AND &&
36940b57cec5SDimitry Andric       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
36950b57cec5SDimitry Andric     SDValue HighOp0 = HighOp.getOperand(0);
36960b57cec5SDimitry Andric     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
36970b57cec5SDimitry Andric     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
36980b57cec5SDimitry Andric       HighOp = HighOp0;
36990b57cec5SDimitry Andric   }
37000b57cec5SDimitry Andric 
37010b57cec5SDimitry Andric   // Take advantage of the fact that all GR32 operations only change the
37020b57cec5SDimitry Andric   // low 32 bits by truncating Low to an i32 and inserting it directly
37030b57cec5SDimitry Andric   // using a subreg.  The interesting cases are those where the truncation
37040b57cec5SDimitry Andric   // can be folded.
37050b57cec5SDimitry Andric   SDLoc DL(Op);
37060b57cec5SDimitry Andric   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
37070b57cec5SDimitry Andric   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
37080b57cec5SDimitry Andric                                    MVT::i64, HighOp, Low32);
37090b57cec5SDimitry Andric }
37100b57cec5SDimitry Andric 
37110b57cec5SDimitry Andric // Lower SADDO/SSUBO/UADDO/USUBO nodes.
37120b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
37130b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
37140b57cec5SDimitry Andric   SDNode *N = Op.getNode();
37150b57cec5SDimitry Andric   SDValue LHS = N->getOperand(0);
37160b57cec5SDimitry Andric   SDValue RHS = N->getOperand(1);
37170b57cec5SDimitry Andric   SDLoc DL(N);
37180b57cec5SDimitry Andric   unsigned BaseOp = 0;
37190b57cec5SDimitry Andric   unsigned CCValid = 0;
37200b57cec5SDimitry Andric   unsigned CCMask = 0;
37210b57cec5SDimitry Andric 
37220b57cec5SDimitry Andric   switch (Op.getOpcode()) {
37230b57cec5SDimitry Andric   default: llvm_unreachable("Unknown instruction!");
37240b57cec5SDimitry Andric   case ISD::SADDO:
37250b57cec5SDimitry Andric     BaseOp = SystemZISD::SADDO;
37260b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ARITH;
37270b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
37280b57cec5SDimitry Andric     break;
37290b57cec5SDimitry Andric   case ISD::SSUBO:
37300b57cec5SDimitry Andric     BaseOp = SystemZISD::SSUBO;
37310b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ARITH;
37320b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
37330b57cec5SDimitry Andric     break;
37340b57cec5SDimitry Andric   case ISD::UADDO:
37350b57cec5SDimitry Andric     BaseOp = SystemZISD::UADDO;
37360b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_LOGICAL;
37370b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
37380b57cec5SDimitry Andric     break;
37390b57cec5SDimitry Andric   case ISD::USUBO:
37400b57cec5SDimitry Andric     BaseOp = SystemZISD::USUBO;
37410b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_LOGICAL;
37420b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
37430b57cec5SDimitry Andric     break;
37440b57cec5SDimitry Andric   }
37450b57cec5SDimitry Andric 
37460b57cec5SDimitry Andric   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
37470b57cec5SDimitry Andric   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
37480b57cec5SDimitry Andric 
37490b57cec5SDimitry Andric   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
37500b57cec5SDimitry Andric   if (N->getValueType(1) == MVT::i1)
37510b57cec5SDimitry Andric     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
37520b57cec5SDimitry Andric 
37530b57cec5SDimitry Andric   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
37540b57cec5SDimitry Andric }
37550b57cec5SDimitry Andric 
37560b57cec5SDimitry Andric static bool isAddCarryChain(SDValue Carry) {
37570b57cec5SDimitry Andric   while (Carry.getOpcode() == ISD::ADDCARRY)
37580b57cec5SDimitry Andric     Carry = Carry.getOperand(2);
37590b57cec5SDimitry Andric   return Carry.getOpcode() == ISD::UADDO;
37600b57cec5SDimitry Andric }
37610b57cec5SDimitry Andric 
37620b57cec5SDimitry Andric static bool isSubBorrowChain(SDValue Carry) {
37630b57cec5SDimitry Andric   while (Carry.getOpcode() == ISD::SUBCARRY)
37640b57cec5SDimitry Andric     Carry = Carry.getOperand(2);
37650b57cec5SDimitry Andric   return Carry.getOpcode() == ISD::USUBO;
37660b57cec5SDimitry Andric }
37670b57cec5SDimitry Andric 
37680b57cec5SDimitry Andric // Lower ADDCARRY/SUBCARRY nodes.
37690b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
37700b57cec5SDimitry Andric                                                 SelectionDAG &DAG) const {
37710b57cec5SDimitry Andric 
37720b57cec5SDimitry Andric   SDNode *N = Op.getNode();
37730b57cec5SDimitry Andric   MVT VT = N->getSimpleValueType(0);
37740b57cec5SDimitry Andric 
37750b57cec5SDimitry Andric   // Let legalize expand this if it isn't a legal type yet.
37760b57cec5SDimitry Andric   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
37770b57cec5SDimitry Andric     return SDValue();
37780b57cec5SDimitry Andric 
37790b57cec5SDimitry Andric   SDValue LHS = N->getOperand(0);
37800b57cec5SDimitry Andric   SDValue RHS = N->getOperand(1);
37810b57cec5SDimitry Andric   SDValue Carry = Op.getOperand(2);
37820b57cec5SDimitry Andric   SDLoc DL(N);
37830b57cec5SDimitry Andric   unsigned BaseOp = 0;
37840b57cec5SDimitry Andric   unsigned CCValid = 0;
37850b57cec5SDimitry Andric   unsigned CCMask = 0;
37860b57cec5SDimitry Andric 
37870b57cec5SDimitry Andric   switch (Op.getOpcode()) {
37880b57cec5SDimitry Andric   default: llvm_unreachable("Unknown instruction!");
37890b57cec5SDimitry Andric   case ISD::ADDCARRY:
37900b57cec5SDimitry Andric     if (!isAddCarryChain(Carry))
37910b57cec5SDimitry Andric       return SDValue();
37920b57cec5SDimitry Andric 
37930b57cec5SDimitry Andric     BaseOp = SystemZISD::ADDCARRY;
37940b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_LOGICAL;
37950b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
37960b57cec5SDimitry Andric     break;
37970b57cec5SDimitry Andric   case ISD::SUBCARRY:
37980b57cec5SDimitry Andric     if (!isSubBorrowChain(Carry))
37990b57cec5SDimitry Andric       return SDValue();
38000b57cec5SDimitry Andric 
38010b57cec5SDimitry Andric     BaseOp = SystemZISD::SUBCARRY;
38020b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_LOGICAL;
38030b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
38040b57cec5SDimitry Andric     break;
38050b57cec5SDimitry Andric   }
38060b57cec5SDimitry Andric 
38070b57cec5SDimitry Andric   // Set the condition code from the carry flag.
38080b57cec5SDimitry Andric   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
38090b57cec5SDimitry Andric                       DAG.getConstant(CCValid, DL, MVT::i32),
38100b57cec5SDimitry Andric                       DAG.getConstant(CCMask, DL, MVT::i32));
38110b57cec5SDimitry Andric 
38120b57cec5SDimitry Andric   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
38130b57cec5SDimitry Andric   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
38140b57cec5SDimitry Andric 
38150b57cec5SDimitry Andric   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
38160b57cec5SDimitry Andric   if (N->getValueType(1) == MVT::i1)
38170b57cec5SDimitry Andric     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
38180b57cec5SDimitry Andric 
38190b57cec5SDimitry Andric   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
38200b57cec5SDimitry Andric }
38210b57cec5SDimitry Andric 
38220b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
38230b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
38240b57cec5SDimitry Andric   EVT VT = Op.getValueType();
38250b57cec5SDimitry Andric   SDLoc DL(Op);
38260b57cec5SDimitry Andric   Op = Op.getOperand(0);
38270b57cec5SDimitry Andric 
38280b57cec5SDimitry Andric   // Handle vector types via VPOPCT.
38290b57cec5SDimitry Andric   if (VT.isVector()) {
38300b57cec5SDimitry Andric     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
38310b57cec5SDimitry Andric     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
38320b57cec5SDimitry Andric     switch (VT.getScalarSizeInBits()) {
38330b57cec5SDimitry Andric     case 8:
38340b57cec5SDimitry Andric       break;
38350b57cec5SDimitry Andric     case 16: {
38360b57cec5SDimitry Andric       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
38370b57cec5SDimitry Andric       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
38380b57cec5SDimitry Andric       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
38390b57cec5SDimitry Andric       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
38400b57cec5SDimitry Andric       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
38410b57cec5SDimitry Andric       break;
38420b57cec5SDimitry Andric     }
38430b57cec5SDimitry Andric     case 32: {
38440b57cec5SDimitry Andric       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
38450b57cec5SDimitry Andric                                             DAG.getConstant(0, DL, MVT::i32));
38460b57cec5SDimitry Andric       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
38470b57cec5SDimitry Andric       break;
38480b57cec5SDimitry Andric     }
38490b57cec5SDimitry Andric     case 64: {
38500b57cec5SDimitry Andric       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
38510b57cec5SDimitry Andric                                             DAG.getConstant(0, DL, MVT::i32));
38520b57cec5SDimitry Andric       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
38530b57cec5SDimitry Andric       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
38540b57cec5SDimitry Andric       break;
38550b57cec5SDimitry Andric     }
38560b57cec5SDimitry Andric     default:
38570b57cec5SDimitry Andric       llvm_unreachable("Unexpected type");
38580b57cec5SDimitry Andric     }
38590b57cec5SDimitry Andric     return Op;
38600b57cec5SDimitry Andric   }
38610b57cec5SDimitry Andric 
38620b57cec5SDimitry Andric   // Get the known-zero mask for the operand.
38630b57cec5SDimitry Andric   KnownBits Known = DAG.computeKnownBits(Op);
3864480093f4SDimitry Andric   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
38650b57cec5SDimitry Andric   if (NumSignificantBits == 0)
38660b57cec5SDimitry Andric     return DAG.getConstant(0, DL, VT);
38670b57cec5SDimitry Andric 
38680b57cec5SDimitry Andric   // Skip known-zero high parts of the operand.
38690b57cec5SDimitry Andric   int64_t OrigBitSize = VT.getSizeInBits();
38700b57cec5SDimitry Andric   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
38710b57cec5SDimitry Andric   BitSize = std::min(BitSize, OrigBitSize);
38720b57cec5SDimitry Andric 
38730b57cec5SDimitry Andric   // The POPCNT instruction counts the number of bits in each byte.
38740b57cec5SDimitry Andric   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
38750b57cec5SDimitry Andric   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
38760b57cec5SDimitry Andric   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
38770b57cec5SDimitry Andric 
38780b57cec5SDimitry Andric   // Add up per-byte counts in a binary tree.  All bits of Op at
38790b57cec5SDimitry Andric   // position larger than BitSize remain zero throughout.
38800b57cec5SDimitry Andric   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
38810b57cec5SDimitry Andric     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
38820b57cec5SDimitry Andric     if (BitSize != OrigBitSize)
38830b57cec5SDimitry Andric       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
38840b57cec5SDimitry Andric                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
38850b57cec5SDimitry Andric     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
38860b57cec5SDimitry Andric   }
38870b57cec5SDimitry Andric 
38880b57cec5SDimitry Andric   // Extract overall result from high byte.
38890b57cec5SDimitry Andric   if (BitSize > 8)
38900b57cec5SDimitry Andric     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
38910b57cec5SDimitry Andric                      DAG.getConstant(BitSize - 8, DL, VT));
38920b57cec5SDimitry Andric 
38930b57cec5SDimitry Andric   return Op;
38940b57cec5SDimitry Andric }
38950b57cec5SDimitry Andric 
38960b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
38970b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
38980b57cec5SDimitry Andric   SDLoc DL(Op);
38990b57cec5SDimitry Andric   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
39000b57cec5SDimitry Andric     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
39010b57cec5SDimitry Andric   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
39020b57cec5SDimitry Andric     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
39030b57cec5SDimitry Andric 
39040b57cec5SDimitry Andric   // The only fence that needs an instruction is a sequentially-consistent
39050b57cec5SDimitry Andric   // cross-thread fence.
39060b57cec5SDimitry Andric   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
39070b57cec5SDimitry Andric       FenceSSID == SyncScope::System) {
39080b57cec5SDimitry Andric     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
39090b57cec5SDimitry Andric                                       Op.getOperand(0)),
39100b57cec5SDimitry Andric                    0);
39110b57cec5SDimitry Andric   }
39120b57cec5SDimitry Andric 
39130b57cec5SDimitry Andric   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
39140b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
39150b57cec5SDimitry Andric }
39160b57cec5SDimitry Andric 
39170b57cec5SDimitry Andric // Op is an atomic load.  Lower it into a normal volatile load.
39180b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
39190b57cec5SDimitry Andric                                                 SelectionDAG &DAG) const {
39200b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
39210b57cec5SDimitry Andric   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
39220b57cec5SDimitry Andric                         Node->getChain(), Node->getBasePtr(),
39230b57cec5SDimitry Andric                         Node->getMemoryVT(), Node->getMemOperand());
39240b57cec5SDimitry Andric }
39250b57cec5SDimitry Andric 
39260b57cec5SDimitry Andric // Op is an atomic store.  Lower it into a normal volatile store.
39270b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
39280b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
39290b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
39300b57cec5SDimitry Andric   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
39310b57cec5SDimitry Andric                                     Node->getBasePtr(), Node->getMemoryVT(),
39320b57cec5SDimitry Andric                                     Node->getMemOperand());
39330b57cec5SDimitry Andric   // We have to enforce sequential consistency by performing a
39340b57cec5SDimitry Andric   // serialization operation after the store.
3935*fe6060f1SDimitry Andric   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
39360b57cec5SDimitry Andric     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
39370b57cec5SDimitry Andric                                        MVT::Other, Chain), 0);
39380b57cec5SDimitry Andric   return Chain;
39390b57cec5SDimitry Andric }
39400b57cec5SDimitry Andric 
39410b57cec5SDimitry Andric // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
39420b57cec5SDimitry Andric // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
39430b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
39440b57cec5SDimitry Andric                                                    SelectionDAG &DAG,
39450b57cec5SDimitry Andric                                                    unsigned Opcode) const {
39460b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
39470b57cec5SDimitry Andric 
39480b57cec5SDimitry Andric   // 32-bit operations need no code outside the main loop.
39490b57cec5SDimitry Andric   EVT NarrowVT = Node->getMemoryVT();
39500b57cec5SDimitry Andric   EVT WideVT = MVT::i32;
39510b57cec5SDimitry Andric   if (NarrowVT == WideVT)
39520b57cec5SDimitry Andric     return Op;
39530b57cec5SDimitry Andric 
39540b57cec5SDimitry Andric   int64_t BitSize = NarrowVT.getSizeInBits();
39550b57cec5SDimitry Andric   SDValue ChainIn = Node->getChain();
39560b57cec5SDimitry Andric   SDValue Addr = Node->getBasePtr();
39570b57cec5SDimitry Andric   SDValue Src2 = Node->getVal();
39580b57cec5SDimitry Andric   MachineMemOperand *MMO = Node->getMemOperand();
39590b57cec5SDimitry Andric   SDLoc DL(Node);
39600b57cec5SDimitry Andric   EVT PtrVT = Addr.getValueType();
39610b57cec5SDimitry Andric 
39620b57cec5SDimitry Andric   // Convert atomic subtracts of constants into additions.
39630b57cec5SDimitry Andric   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
39640b57cec5SDimitry Andric     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
39650b57cec5SDimitry Andric       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
39660b57cec5SDimitry Andric       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
39670b57cec5SDimitry Andric     }
39680b57cec5SDimitry Andric 
39690b57cec5SDimitry Andric   // Get the address of the containing word.
39700b57cec5SDimitry Andric   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
39710b57cec5SDimitry Andric                                     DAG.getConstant(-4, DL, PtrVT));
39720b57cec5SDimitry Andric 
39730b57cec5SDimitry Andric   // Get the number of bits that the word must be rotated left in order
39740b57cec5SDimitry Andric   // to bring the field to the top bits of a GR32.
39750b57cec5SDimitry Andric   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
39760b57cec5SDimitry Andric                                  DAG.getConstant(3, DL, PtrVT));
39770b57cec5SDimitry Andric   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
39780b57cec5SDimitry Andric 
39790b57cec5SDimitry Andric   // Get the complementing shift amount, for rotating a field in the top
39800b57cec5SDimitry Andric   // bits back to its proper position.
39810b57cec5SDimitry Andric   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
39820b57cec5SDimitry Andric                                     DAG.getConstant(0, DL, WideVT), BitShift);
39830b57cec5SDimitry Andric 
39840b57cec5SDimitry Andric   // Extend the source operand to 32 bits and prepare it for the inner loop.
39850b57cec5SDimitry Andric   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
39860b57cec5SDimitry Andric   // operations require the source to be shifted in advance.  (This shift
39870b57cec5SDimitry Andric   // can be folded if the source is constant.)  For AND and NAND, the lower
39880b57cec5SDimitry Andric   // bits must be set, while for other opcodes they should be left clear.
39890b57cec5SDimitry Andric   if (Opcode != SystemZISD::ATOMIC_SWAPW)
39900b57cec5SDimitry Andric     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
39910b57cec5SDimitry Andric                        DAG.getConstant(32 - BitSize, DL, WideVT));
39920b57cec5SDimitry Andric   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
39930b57cec5SDimitry Andric       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
39940b57cec5SDimitry Andric     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
39950b57cec5SDimitry Andric                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
39960b57cec5SDimitry Andric 
39970b57cec5SDimitry Andric   // Construct the ATOMIC_LOADW_* node.
39980b57cec5SDimitry Andric   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
39990b57cec5SDimitry Andric   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
40000b57cec5SDimitry Andric                     DAG.getConstant(BitSize, DL, WideVT) };
40010b57cec5SDimitry Andric   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
40020b57cec5SDimitry Andric                                              NarrowVT, MMO);
40030b57cec5SDimitry Andric 
40040b57cec5SDimitry Andric   // Rotate the result of the final CS so that the field is in the lower
40050b57cec5SDimitry Andric   // bits of a GR32, then truncate it.
40060b57cec5SDimitry Andric   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
40070b57cec5SDimitry Andric                                     DAG.getConstant(BitSize, DL, WideVT));
40080b57cec5SDimitry Andric   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
40090b57cec5SDimitry Andric 
40100b57cec5SDimitry Andric   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
40110b57cec5SDimitry Andric   return DAG.getMergeValues(RetOps, DL);
40120b57cec5SDimitry Andric }
40130b57cec5SDimitry Andric 
40140b57cec5SDimitry Andric // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
40150b57cec5SDimitry Andric // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
40160b57cec5SDimitry Andric // operations into additions.
40170b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
40180b57cec5SDimitry Andric                                                     SelectionDAG &DAG) const {
40190b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
40200b57cec5SDimitry Andric   EVT MemVT = Node->getMemoryVT();
40210b57cec5SDimitry Andric   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
40220b57cec5SDimitry Andric     // A full-width operation.
40230b57cec5SDimitry Andric     assert(Op.getValueType() == MemVT && "Mismatched VTs");
40240b57cec5SDimitry Andric     SDValue Src2 = Node->getVal();
40250b57cec5SDimitry Andric     SDValue NegSrc2;
40260b57cec5SDimitry Andric     SDLoc DL(Src2);
40270b57cec5SDimitry Andric 
40280b57cec5SDimitry Andric     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
40290b57cec5SDimitry Andric       // Use an addition if the operand is constant and either LAA(G) is
40300b57cec5SDimitry Andric       // available or the negative value is in the range of A(G)FHI.
40310b57cec5SDimitry Andric       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
40320b57cec5SDimitry Andric       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
40330b57cec5SDimitry Andric         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
40340b57cec5SDimitry Andric     } else if (Subtarget.hasInterlockedAccess1())
40350b57cec5SDimitry Andric       // Use LAA(G) if available.
40360b57cec5SDimitry Andric       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
40370b57cec5SDimitry Andric                             Src2);
40380b57cec5SDimitry Andric 
40390b57cec5SDimitry Andric     if (NegSrc2.getNode())
40400b57cec5SDimitry Andric       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
40410b57cec5SDimitry Andric                            Node->getChain(), Node->getBasePtr(), NegSrc2,
40420b57cec5SDimitry Andric                            Node->getMemOperand());
40430b57cec5SDimitry Andric 
40440b57cec5SDimitry Andric     // Use the node as-is.
40450b57cec5SDimitry Andric     return Op;
40460b57cec5SDimitry Andric   }
40470b57cec5SDimitry Andric 
40480b57cec5SDimitry Andric   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
40490b57cec5SDimitry Andric }
40500b57cec5SDimitry Andric 
40510b57cec5SDimitry Andric // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
40520b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
40530b57cec5SDimitry Andric                                                     SelectionDAG &DAG) const {
40540b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
40550b57cec5SDimitry Andric   SDValue ChainIn = Node->getOperand(0);
40560b57cec5SDimitry Andric   SDValue Addr = Node->getOperand(1);
40570b57cec5SDimitry Andric   SDValue CmpVal = Node->getOperand(2);
40580b57cec5SDimitry Andric   SDValue SwapVal = Node->getOperand(3);
40590b57cec5SDimitry Andric   MachineMemOperand *MMO = Node->getMemOperand();
40600b57cec5SDimitry Andric   SDLoc DL(Node);
40610b57cec5SDimitry Andric 
40620b57cec5SDimitry Andric   // We have native support for 32-bit and 64-bit compare and swap, but we
40630b57cec5SDimitry Andric   // still need to expand extracting the "success" result from the CC.
40640b57cec5SDimitry Andric   EVT NarrowVT = Node->getMemoryVT();
40650b57cec5SDimitry Andric   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
40660b57cec5SDimitry Andric   if (NarrowVT == WideVT) {
40670b57cec5SDimitry Andric     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
40680b57cec5SDimitry Andric     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
40690b57cec5SDimitry Andric     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
40700b57cec5SDimitry Andric                                                DL, Tys, Ops, NarrowVT, MMO);
40710b57cec5SDimitry Andric     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
40720b57cec5SDimitry Andric                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
40730b57cec5SDimitry Andric 
40740b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
40750b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
40760b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
40770b57cec5SDimitry Andric     return SDValue();
40780b57cec5SDimitry Andric   }
40790b57cec5SDimitry Andric 
40800b57cec5SDimitry Andric   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
40810b57cec5SDimitry Andric   // via a fullword ATOMIC_CMP_SWAPW operation.
40820b57cec5SDimitry Andric   int64_t BitSize = NarrowVT.getSizeInBits();
40830b57cec5SDimitry Andric   EVT PtrVT = Addr.getValueType();
40840b57cec5SDimitry Andric 
40850b57cec5SDimitry Andric   // Get the address of the containing word.
40860b57cec5SDimitry Andric   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
40870b57cec5SDimitry Andric                                     DAG.getConstant(-4, DL, PtrVT));
40880b57cec5SDimitry Andric 
40890b57cec5SDimitry Andric   // Get the number of bits that the word must be rotated left in order
40900b57cec5SDimitry Andric   // to bring the field to the top bits of a GR32.
40910b57cec5SDimitry Andric   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
40920b57cec5SDimitry Andric                                  DAG.getConstant(3, DL, PtrVT));
40930b57cec5SDimitry Andric   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
40940b57cec5SDimitry Andric 
40950b57cec5SDimitry Andric   // Get the complementing shift amount, for rotating a field in the top
40960b57cec5SDimitry Andric   // bits back to its proper position.
40970b57cec5SDimitry Andric   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
40980b57cec5SDimitry Andric                                     DAG.getConstant(0, DL, WideVT), BitShift);
40990b57cec5SDimitry Andric 
41000b57cec5SDimitry Andric   // Construct the ATOMIC_CMP_SWAPW node.
41010b57cec5SDimitry Andric   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
41020b57cec5SDimitry Andric   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
41030b57cec5SDimitry Andric                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
41040b57cec5SDimitry Andric   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
41050b57cec5SDimitry Andric                                              VTList, Ops, NarrowVT, MMO);
41060b57cec5SDimitry Andric   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
41070b57cec5SDimitry Andric                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
41080b57cec5SDimitry Andric 
4109*fe6060f1SDimitry Andric   // emitAtomicCmpSwapW() will zero extend the result (original value).
4110*fe6060f1SDimitry Andric   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4111*fe6060f1SDimitry Andric                                 DAG.getValueType(NarrowVT));
4112*fe6060f1SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
41130b57cec5SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
41140b57cec5SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
41150b57cec5SDimitry Andric   return SDValue();
41160b57cec5SDimitry Andric }
41170b57cec5SDimitry Andric 
41180b57cec5SDimitry Andric MachineMemOperand::Flags
41195ffd83dbSDimitry Andric SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
41200b57cec5SDimitry Andric   // Because of how we convert atomic_load and atomic_store to normal loads and
41210b57cec5SDimitry Andric   // stores in the DAG, we need to ensure that the MMOs are marked volatile
41220b57cec5SDimitry Andric   // since DAGCombine hasn't been updated to account for atomic, but non
41230b57cec5SDimitry Andric   // volatile loads.  (See D57601)
41240b57cec5SDimitry Andric   if (auto *SI = dyn_cast<StoreInst>(&I))
41250b57cec5SDimitry Andric     if (SI->isAtomic())
41260b57cec5SDimitry Andric       return MachineMemOperand::MOVolatile;
41270b57cec5SDimitry Andric   if (auto *LI = dyn_cast<LoadInst>(&I))
41280b57cec5SDimitry Andric     if (LI->isAtomic())
41290b57cec5SDimitry Andric       return MachineMemOperand::MOVolatile;
41300b57cec5SDimitry Andric   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
41310b57cec5SDimitry Andric     if (AI->isAtomic())
41320b57cec5SDimitry Andric       return MachineMemOperand::MOVolatile;
41330b57cec5SDimitry Andric   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
41340b57cec5SDimitry Andric     if (AI->isAtomic())
41350b57cec5SDimitry Andric       return MachineMemOperand::MOVolatile;
41360b57cec5SDimitry Andric   return MachineMemOperand::MONone;
41370b57cec5SDimitry Andric }
41380b57cec5SDimitry Andric 
41390b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
41400b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
41410b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
41420b57cec5SDimitry Andric   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4143480093f4SDimitry Andric   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4144480093f4SDimitry Andric     report_fatal_error("Variable-sized stack allocations are not supported "
4145480093f4SDimitry Andric                        "in GHC calling convention");
41460b57cec5SDimitry Andric   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
41470b57cec5SDimitry Andric                             SystemZ::R15D, Op.getValueType());
41480b57cec5SDimitry Andric }
41490b57cec5SDimitry Andric 
41500b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
41510b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
41520b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
41530b57cec5SDimitry Andric   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
41540b57cec5SDimitry Andric   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
41550b57cec5SDimitry Andric 
4156480093f4SDimitry Andric   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4157480093f4SDimitry Andric     report_fatal_error("Variable-sized stack allocations are not supported "
4158480093f4SDimitry Andric                        "in GHC calling convention");
4159480093f4SDimitry Andric 
41600b57cec5SDimitry Andric   SDValue Chain = Op.getOperand(0);
41610b57cec5SDimitry Andric   SDValue NewSP = Op.getOperand(1);
41620b57cec5SDimitry Andric   SDValue Backchain;
41630b57cec5SDimitry Andric   SDLoc DL(Op);
41640b57cec5SDimitry Andric 
41650b57cec5SDimitry Andric   if (StoreBackchain) {
41660b57cec5SDimitry Andric     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4167e8d8bef9SDimitry Andric     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4168e8d8bef9SDimitry Andric                             MachinePointerInfo());
41690b57cec5SDimitry Andric   }
41700b57cec5SDimitry Andric 
41710b57cec5SDimitry Andric   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
41720b57cec5SDimitry Andric 
41730b57cec5SDimitry Andric   if (StoreBackchain)
4174e8d8bef9SDimitry Andric     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4175e8d8bef9SDimitry Andric                          MachinePointerInfo());
41760b57cec5SDimitry Andric 
41770b57cec5SDimitry Andric   return Chain;
41780b57cec5SDimitry Andric }
41790b57cec5SDimitry Andric 
41800b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
41810b57cec5SDimitry Andric                                              SelectionDAG &DAG) const {
41820b57cec5SDimitry Andric   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
41830b57cec5SDimitry Andric   if (!IsData)
41840b57cec5SDimitry Andric     // Just preserve the chain.
41850b57cec5SDimitry Andric     return Op.getOperand(0);
41860b57cec5SDimitry Andric 
41870b57cec5SDimitry Andric   SDLoc DL(Op);
41880b57cec5SDimitry Andric   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
41890b57cec5SDimitry Andric   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
41900b57cec5SDimitry Andric   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
41918bcb0991SDimitry Andric   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
41928bcb0991SDimitry Andric                    Op.getOperand(1)};
41930b57cec5SDimitry Andric   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
41940b57cec5SDimitry Andric                                  Node->getVTList(), Ops,
41950b57cec5SDimitry Andric                                  Node->getMemoryVT(), Node->getMemOperand());
41960b57cec5SDimitry Andric }
41970b57cec5SDimitry Andric 
41980b57cec5SDimitry Andric // Convert condition code in CCReg to an i32 value.
41990b57cec5SDimitry Andric static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
42000b57cec5SDimitry Andric   SDLoc DL(CCReg);
42010b57cec5SDimitry Andric   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
42020b57cec5SDimitry Andric   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
42030b57cec5SDimitry Andric                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
42040b57cec5SDimitry Andric }
42050b57cec5SDimitry Andric 
42060b57cec5SDimitry Andric SDValue
42070b57cec5SDimitry Andric SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
42080b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
42090b57cec5SDimitry Andric   unsigned Opcode, CCValid;
42100b57cec5SDimitry Andric   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
42110b57cec5SDimitry Andric     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
42120b57cec5SDimitry Andric     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
42130b57cec5SDimitry Andric     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
42140b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
42150b57cec5SDimitry Andric     return SDValue();
42160b57cec5SDimitry Andric   }
42170b57cec5SDimitry Andric 
42180b57cec5SDimitry Andric   return SDValue();
42190b57cec5SDimitry Andric }
42200b57cec5SDimitry Andric 
42210b57cec5SDimitry Andric SDValue
42220b57cec5SDimitry Andric SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
42230b57cec5SDimitry Andric                                                SelectionDAG &DAG) const {
42240b57cec5SDimitry Andric   unsigned Opcode, CCValid;
42250b57cec5SDimitry Andric   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
42260b57cec5SDimitry Andric     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
42270b57cec5SDimitry Andric     if (Op->getNumValues() == 1)
42280b57cec5SDimitry Andric       return getCCResult(DAG, SDValue(Node, 0));
42290b57cec5SDimitry Andric     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
42300b57cec5SDimitry Andric     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
42310b57cec5SDimitry Andric                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
42320b57cec5SDimitry Andric   }
42330b57cec5SDimitry Andric 
42340b57cec5SDimitry Andric   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
42350b57cec5SDimitry Andric   switch (Id) {
42360b57cec5SDimitry Andric   case Intrinsic::thread_pointer:
42370b57cec5SDimitry Andric     return lowerThreadPointer(SDLoc(Op), DAG);
42380b57cec5SDimitry Andric 
42390b57cec5SDimitry Andric   case Intrinsic::s390_vpdi:
42400b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
42410b57cec5SDimitry Andric                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
42420b57cec5SDimitry Andric 
42430b57cec5SDimitry Andric   case Intrinsic::s390_vperm:
42440b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
42450b57cec5SDimitry Andric                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
42460b57cec5SDimitry Andric 
42470b57cec5SDimitry Andric   case Intrinsic::s390_vuphb:
42480b57cec5SDimitry Andric   case Intrinsic::s390_vuphh:
42490b57cec5SDimitry Andric   case Intrinsic::s390_vuphf:
42500b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
42510b57cec5SDimitry Andric                        Op.getOperand(1));
42520b57cec5SDimitry Andric 
42530b57cec5SDimitry Andric   case Intrinsic::s390_vuplhb:
42540b57cec5SDimitry Andric   case Intrinsic::s390_vuplhh:
42550b57cec5SDimitry Andric   case Intrinsic::s390_vuplhf:
42560b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
42570b57cec5SDimitry Andric                        Op.getOperand(1));
42580b57cec5SDimitry Andric 
42590b57cec5SDimitry Andric   case Intrinsic::s390_vuplb:
42600b57cec5SDimitry Andric   case Intrinsic::s390_vuplhw:
42610b57cec5SDimitry Andric   case Intrinsic::s390_vuplf:
42620b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
42630b57cec5SDimitry Andric                        Op.getOperand(1));
42640b57cec5SDimitry Andric 
42650b57cec5SDimitry Andric   case Intrinsic::s390_vupllb:
42660b57cec5SDimitry Andric   case Intrinsic::s390_vupllh:
42670b57cec5SDimitry Andric   case Intrinsic::s390_vupllf:
42680b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
42690b57cec5SDimitry Andric                        Op.getOperand(1));
42700b57cec5SDimitry Andric 
42710b57cec5SDimitry Andric   case Intrinsic::s390_vsumb:
42720b57cec5SDimitry Andric   case Intrinsic::s390_vsumh:
42730b57cec5SDimitry Andric   case Intrinsic::s390_vsumgh:
42740b57cec5SDimitry Andric   case Intrinsic::s390_vsumgf:
42750b57cec5SDimitry Andric   case Intrinsic::s390_vsumqf:
42760b57cec5SDimitry Andric   case Intrinsic::s390_vsumqg:
42770b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
42780b57cec5SDimitry Andric                        Op.getOperand(1), Op.getOperand(2));
42790b57cec5SDimitry Andric   }
42800b57cec5SDimitry Andric 
42810b57cec5SDimitry Andric   return SDValue();
42820b57cec5SDimitry Andric }
42830b57cec5SDimitry Andric 
42840b57cec5SDimitry Andric namespace {
42850b57cec5SDimitry Andric // Says that SystemZISD operation Opcode can be used to perform the equivalent
42860b57cec5SDimitry Andric // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
42870b57cec5SDimitry Andric // Operand is the constant third operand, otherwise it is the number of
42880b57cec5SDimitry Andric // bytes in each element of the result.
42890b57cec5SDimitry Andric struct Permute {
42900b57cec5SDimitry Andric   unsigned Opcode;
42910b57cec5SDimitry Andric   unsigned Operand;
42920b57cec5SDimitry Andric   unsigned char Bytes[SystemZ::VectorBytes];
42930b57cec5SDimitry Andric };
42940b57cec5SDimitry Andric }
42950b57cec5SDimitry Andric 
42960b57cec5SDimitry Andric static const Permute PermuteForms[] = {
42970b57cec5SDimitry Andric   // VMRHG
42980b57cec5SDimitry Andric   { SystemZISD::MERGE_HIGH, 8,
42990b57cec5SDimitry Andric     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
43000b57cec5SDimitry Andric   // VMRHF
43010b57cec5SDimitry Andric   { SystemZISD::MERGE_HIGH, 4,
43020b57cec5SDimitry Andric     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
43030b57cec5SDimitry Andric   // VMRHH
43040b57cec5SDimitry Andric   { SystemZISD::MERGE_HIGH, 2,
43050b57cec5SDimitry Andric     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
43060b57cec5SDimitry Andric   // VMRHB
43070b57cec5SDimitry Andric   { SystemZISD::MERGE_HIGH, 1,
43080b57cec5SDimitry Andric     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
43090b57cec5SDimitry Andric   // VMRLG
43100b57cec5SDimitry Andric   { SystemZISD::MERGE_LOW, 8,
43110b57cec5SDimitry Andric     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
43120b57cec5SDimitry Andric   // VMRLF
43130b57cec5SDimitry Andric   { SystemZISD::MERGE_LOW, 4,
43140b57cec5SDimitry Andric     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
43150b57cec5SDimitry Andric   // VMRLH
43160b57cec5SDimitry Andric   { SystemZISD::MERGE_LOW, 2,
43170b57cec5SDimitry Andric     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
43180b57cec5SDimitry Andric   // VMRLB
43190b57cec5SDimitry Andric   { SystemZISD::MERGE_LOW, 1,
43200b57cec5SDimitry Andric     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
43210b57cec5SDimitry Andric   // VPKG
43220b57cec5SDimitry Andric   { SystemZISD::PACK, 4,
43230b57cec5SDimitry Andric     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
43240b57cec5SDimitry Andric   // VPKF
43250b57cec5SDimitry Andric   { SystemZISD::PACK, 2,
43260b57cec5SDimitry Andric     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
43270b57cec5SDimitry Andric   // VPKH
43280b57cec5SDimitry Andric   { SystemZISD::PACK, 1,
43290b57cec5SDimitry Andric     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
43300b57cec5SDimitry Andric   // VPDI V1, V2, 4  (low half of V1, high half of V2)
43310b57cec5SDimitry Andric   { SystemZISD::PERMUTE_DWORDS, 4,
43320b57cec5SDimitry Andric     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
43330b57cec5SDimitry Andric   // VPDI V1, V2, 1  (high half of V1, low half of V2)
43340b57cec5SDimitry Andric   { SystemZISD::PERMUTE_DWORDS, 1,
43350b57cec5SDimitry Andric     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
43360b57cec5SDimitry Andric };
43370b57cec5SDimitry Andric 
43380b57cec5SDimitry Andric // Called after matching a vector shuffle against a particular pattern.
43390b57cec5SDimitry Andric // Both the original shuffle and the pattern have two vector operands.
43400b57cec5SDimitry Andric // OpNos[0] is the operand of the original shuffle that should be used for
43410b57cec5SDimitry Andric // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
43420b57cec5SDimitry Andric // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
43430b57cec5SDimitry Andric // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
43440b57cec5SDimitry Andric // for operands 0 and 1 of the pattern.
43450b57cec5SDimitry Andric static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
43460b57cec5SDimitry Andric   if (OpNos[0] < 0) {
43470b57cec5SDimitry Andric     if (OpNos[1] < 0)
43480b57cec5SDimitry Andric       return false;
43490b57cec5SDimitry Andric     OpNo0 = OpNo1 = OpNos[1];
43500b57cec5SDimitry Andric   } else if (OpNos[1] < 0) {
43510b57cec5SDimitry Andric     OpNo0 = OpNo1 = OpNos[0];
43520b57cec5SDimitry Andric   } else {
43530b57cec5SDimitry Andric     OpNo0 = OpNos[0];
43540b57cec5SDimitry Andric     OpNo1 = OpNos[1];
43550b57cec5SDimitry Andric   }
43560b57cec5SDimitry Andric   return true;
43570b57cec5SDimitry Andric }
43580b57cec5SDimitry Andric 
43590b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
43600b57cec5SDimitry Andric // undefined bytes.  Return true if the VPERM can be implemented using P.
43610b57cec5SDimitry Andric // When returning true set OpNo0 to the VPERM operand that should be
43620b57cec5SDimitry Andric // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
43630b57cec5SDimitry Andric //
43640b57cec5SDimitry Andric // For example, if swapping the VPERM operands allows P to match, OpNo0
43650b57cec5SDimitry Andric // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
43660b57cec5SDimitry Andric // operand, but rewriting it to use two duplicated operands allows it to
43670b57cec5SDimitry Andric // match P, then OpNo0 and OpNo1 will be the same.
43680b57cec5SDimitry Andric static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
43690b57cec5SDimitry Andric                          unsigned &OpNo0, unsigned &OpNo1) {
43700b57cec5SDimitry Andric   int OpNos[] = { -1, -1 };
43710b57cec5SDimitry Andric   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
43720b57cec5SDimitry Andric     int Elt = Bytes[I];
43730b57cec5SDimitry Andric     if (Elt >= 0) {
43740b57cec5SDimitry Andric       // Make sure that the two permute vectors use the same suboperand
43750b57cec5SDimitry Andric       // byte number.  Only the operand numbers (the high bits) are
43760b57cec5SDimitry Andric       // allowed to differ.
43770b57cec5SDimitry Andric       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
43780b57cec5SDimitry Andric         return false;
43790b57cec5SDimitry Andric       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
43800b57cec5SDimitry Andric       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
43810b57cec5SDimitry Andric       // Make sure that the operand mappings are consistent with previous
43820b57cec5SDimitry Andric       // elements.
43830b57cec5SDimitry Andric       if (OpNos[ModelOpNo] == 1 - RealOpNo)
43840b57cec5SDimitry Andric         return false;
43850b57cec5SDimitry Andric       OpNos[ModelOpNo] = RealOpNo;
43860b57cec5SDimitry Andric     }
43870b57cec5SDimitry Andric   }
43880b57cec5SDimitry Andric   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
43890b57cec5SDimitry Andric }
43900b57cec5SDimitry Andric 
43910b57cec5SDimitry Andric // As above, but search for a matching permute.
43920b57cec5SDimitry Andric static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
43930b57cec5SDimitry Andric                                    unsigned &OpNo0, unsigned &OpNo1) {
43940b57cec5SDimitry Andric   for (auto &P : PermuteForms)
43950b57cec5SDimitry Andric     if (matchPermute(Bytes, P, OpNo0, OpNo1))
43960b57cec5SDimitry Andric       return &P;
43970b57cec5SDimitry Andric   return nullptr;
43980b57cec5SDimitry Andric }
43990b57cec5SDimitry Andric 
44000b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
44010b57cec5SDimitry Andric // undefined bytes.  This permute is an operand of an outer permute.
44020b57cec5SDimitry Andric // See whether redistributing the -1 bytes gives a shuffle that can be
44030b57cec5SDimitry Andric // implemented using P.  If so, set Transform to a VPERM-like permute vector
44040b57cec5SDimitry Andric // that, when applied to the result of P, gives the original permute in Bytes.
44050b57cec5SDimitry Andric static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
44060b57cec5SDimitry Andric                                const Permute &P,
44070b57cec5SDimitry Andric                                SmallVectorImpl<int> &Transform) {
44080b57cec5SDimitry Andric   unsigned To = 0;
44090b57cec5SDimitry Andric   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
44100b57cec5SDimitry Andric     int Elt = Bytes[From];
44110b57cec5SDimitry Andric     if (Elt < 0)
44120b57cec5SDimitry Andric       // Byte number From of the result is undefined.
44130b57cec5SDimitry Andric       Transform[From] = -1;
44140b57cec5SDimitry Andric     else {
44150b57cec5SDimitry Andric       while (P.Bytes[To] != Elt) {
44160b57cec5SDimitry Andric         To += 1;
44170b57cec5SDimitry Andric         if (To == SystemZ::VectorBytes)
44180b57cec5SDimitry Andric           return false;
44190b57cec5SDimitry Andric       }
44200b57cec5SDimitry Andric       Transform[From] = To;
44210b57cec5SDimitry Andric     }
44220b57cec5SDimitry Andric   }
44230b57cec5SDimitry Andric   return true;
44240b57cec5SDimitry Andric }
44250b57cec5SDimitry Andric 
44260b57cec5SDimitry Andric // As above, but search for a matching permute.
44270b57cec5SDimitry Andric static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
44280b57cec5SDimitry Andric                                          SmallVectorImpl<int> &Transform) {
44290b57cec5SDimitry Andric   for (auto &P : PermuteForms)
44300b57cec5SDimitry Andric     if (matchDoublePermute(Bytes, P, Transform))
44310b57cec5SDimitry Andric       return &P;
44320b57cec5SDimitry Andric   return nullptr;
44330b57cec5SDimitry Andric }
44340b57cec5SDimitry Andric 
44350b57cec5SDimitry Andric // Convert the mask of the given shuffle op into a byte-level mask,
44360b57cec5SDimitry Andric // as if it had type vNi8.
44370b57cec5SDimitry Andric static bool getVPermMask(SDValue ShuffleOp,
44380b57cec5SDimitry Andric                          SmallVectorImpl<int> &Bytes) {
44390b57cec5SDimitry Andric   EVT VT = ShuffleOp.getValueType();
44400b57cec5SDimitry Andric   unsigned NumElements = VT.getVectorNumElements();
44410b57cec5SDimitry Andric   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
44420b57cec5SDimitry Andric 
44430b57cec5SDimitry Andric   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
44440b57cec5SDimitry Andric     Bytes.resize(NumElements * BytesPerElement, -1);
44450b57cec5SDimitry Andric     for (unsigned I = 0; I < NumElements; ++I) {
44460b57cec5SDimitry Andric       int Index = VSN->getMaskElt(I);
44470b57cec5SDimitry Andric       if (Index >= 0)
44480b57cec5SDimitry Andric         for (unsigned J = 0; J < BytesPerElement; ++J)
44490b57cec5SDimitry Andric           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
44500b57cec5SDimitry Andric     }
44510b57cec5SDimitry Andric     return true;
44520b57cec5SDimitry Andric   }
44530b57cec5SDimitry Andric   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
44540b57cec5SDimitry Andric       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
44550b57cec5SDimitry Andric     unsigned Index = ShuffleOp.getConstantOperandVal(1);
44560b57cec5SDimitry Andric     Bytes.resize(NumElements * BytesPerElement, -1);
44570b57cec5SDimitry Andric     for (unsigned I = 0; I < NumElements; ++I)
44580b57cec5SDimitry Andric       for (unsigned J = 0; J < BytesPerElement; ++J)
44590b57cec5SDimitry Andric         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
44600b57cec5SDimitry Andric     return true;
44610b57cec5SDimitry Andric   }
44620b57cec5SDimitry Andric   return false;
44630b57cec5SDimitry Andric }
44640b57cec5SDimitry Andric 
44650b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
44660b57cec5SDimitry Andric // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
44670b57cec5SDimitry Andric // the result come from a contiguous sequence of bytes from one input.
44680b57cec5SDimitry Andric // Set Base to the selector for the first byte if so.
44690b57cec5SDimitry Andric static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
44700b57cec5SDimitry Andric                             unsigned BytesPerElement, int &Base) {
44710b57cec5SDimitry Andric   Base = -1;
44720b57cec5SDimitry Andric   for (unsigned I = 0; I < BytesPerElement; ++I) {
44730b57cec5SDimitry Andric     if (Bytes[Start + I] >= 0) {
44740b57cec5SDimitry Andric       unsigned Elem = Bytes[Start + I];
44750b57cec5SDimitry Andric       if (Base < 0) {
44760b57cec5SDimitry Andric         Base = Elem - I;
44770b57cec5SDimitry Andric         // Make sure the bytes would come from one input operand.
44780b57cec5SDimitry Andric         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
44790b57cec5SDimitry Andric           return false;
44800b57cec5SDimitry Andric       } else if (unsigned(Base) != Elem - I)
44810b57cec5SDimitry Andric         return false;
44820b57cec5SDimitry Andric     }
44830b57cec5SDimitry Andric   }
44840b57cec5SDimitry Andric   return true;
44850b57cec5SDimitry Andric }
44860b57cec5SDimitry Andric 
44870b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
44885ffd83dbSDimitry Andric // undefined bytes.  Return true if it can be performed using VSLDB.
44890b57cec5SDimitry Andric // When returning true, set StartIndex to the shift amount and OpNo0
44900b57cec5SDimitry Andric // and OpNo1 to the VPERM operands that should be used as the first
44910b57cec5SDimitry Andric // and second shift operand respectively.
44920b57cec5SDimitry Andric static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
44930b57cec5SDimitry Andric                                unsigned &StartIndex, unsigned &OpNo0,
44940b57cec5SDimitry Andric                                unsigned &OpNo1) {
44950b57cec5SDimitry Andric   int OpNos[] = { -1, -1 };
44960b57cec5SDimitry Andric   int Shift = -1;
44970b57cec5SDimitry Andric   for (unsigned I = 0; I < 16; ++I) {
44980b57cec5SDimitry Andric     int Index = Bytes[I];
44990b57cec5SDimitry Andric     if (Index >= 0) {
45000b57cec5SDimitry Andric       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
45010b57cec5SDimitry Andric       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
45020b57cec5SDimitry Andric       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
45030b57cec5SDimitry Andric       if (Shift < 0)
45040b57cec5SDimitry Andric         Shift = ExpectedShift;
45050b57cec5SDimitry Andric       else if (Shift != ExpectedShift)
45060b57cec5SDimitry Andric         return false;
45070b57cec5SDimitry Andric       // Make sure that the operand mappings are consistent with previous
45080b57cec5SDimitry Andric       // elements.
45090b57cec5SDimitry Andric       if (OpNos[ModelOpNo] == 1 - RealOpNo)
45100b57cec5SDimitry Andric         return false;
45110b57cec5SDimitry Andric       OpNos[ModelOpNo] = RealOpNo;
45120b57cec5SDimitry Andric     }
45130b57cec5SDimitry Andric   }
45140b57cec5SDimitry Andric   StartIndex = Shift;
45150b57cec5SDimitry Andric   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
45160b57cec5SDimitry Andric }
45170b57cec5SDimitry Andric 
45180b57cec5SDimitry Andric // Create a node that performs P on operands Op0 and Op1, casting the
45190b57cec5SDimitry Andric // operands to the appropriate type.  The type of the result is determined by P.
45200b57cec5SDimitry Andric static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
45210b57cec5SDimitry Andric                               const Permute &P, SDValue Op0, SDValue Op1) {
45220b57cec5SDimitry Andric   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
45230b57cec5SDimitry Andric   // elements of a PACK are twice as wide as the outputs.
45240b57cec5SDimitry Andric   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
45250b57cec5SDimitry Andric                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
45260b57cec5SDimitry Andric                       P.Operand);
45270b57cec5SDimitry Andric   // Cast both operands to the appropriate type.
45280b57cec5SDimitry Andric   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
45290b57cec5SDimitry Andric                               SystemZ::VectorBytes / InBytes);
45300b57cec5SDimitry Andric   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
45310b57cec5SDimitry Andric   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
45320b57cec5SDimitry Andric   SDValue Op;
45330b57cec5SDimitry Andric   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
45348bcb0991SDimitry Andric     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
45350b57cec5SDimitry Andric     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
45360b57cec5SDimitry Andric   } else if (P.Opcode == SystemZISD::PACK) {
45370b57cec5SDimitry Andric     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
45380b57cec5SDimitry Andric                                  SystemZ::VectorBytes / P.Operand);
45390b57cec5SDimitry Andric     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
45400b57cec5SDimitry Andric   } else {
45410b57cec5SDimitry Andric     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
45420b57cec5SDimitry Andric   }
45430b57cec5SDimitry Andric   return Op;
45440b57cec5SDimitry Andric }
45450b57cec5SDimitry Andric 
45465ffd83dbSDimitry Andric static bool isZeroVector(SDValue N) {
45475ffd83dbSDimitry Andric   if (N->getOpcode() == ISD::BITCAST)
45485ffd83dbSDimitry Andric     N = N->getOperand(0);
45495ffd83dbSDimitry Andric   if (N->getOpcode() == ISD::SPLAT_VECTOR)
45505ffd83dbSDimitry Andric     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
45515ffd83dbSDimitry Andric       return Op->getZExtValue() == 0;
45525ffd83dbSDimitry Andric   return ISD::isBuildVectorAllZeros(N.getNode());
45535ffd83dbSDimitry Andric }
45545ffd83dbSDimitry Andric 
45555ffd83dbSDimitry Andric // Return the index of the zero/undef vector, or UINT32_MAX if not found.
45565ffd83dbSDimitry Andric static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
45575ffd83dbSDimitry Andric   for (unsigned I = 0; I < Num ; I++)
45585ffd83dbSDimitry Andric     if (isZeroVector(Ops[I]))
45595ffd83dbSDimitry Andric       return I;
45605ffd83dbSDimitry Andric   return UINT32_MAX;
45615ffd83dbSDimitry Andric }
45625ffd83dbSDimitry Andric 
45630b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
45640b57cec5SDimitry Andric // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
45655ffd83dbSDimitry Andric // VSLDB or VPERM.
45660b57cec5SDimitry Andric static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
45670b57cec5SDimitry Andric                                      SDValue *Ops,
45680b57cec5SDimitry Andric                                      const SmallVectorImpl<int> &Bytes) {
45690b57cec5SDimitry Andric   for (unsigned I = 0; I < 2; ++I)
45700b57cec5SDimitry Andric     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
45710b57cec5SDimitry Andric 
45725ffd83dbSDimitry Andric   // First see whether VSLDB can be used.
45730b57cec5SDimitry Andric   unsigned StartIndex, OpNo0, OpNo1;
45740b57cec5SDimitry Andric   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
45750b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
45768bcb0991SDimitry Andric                        Ops[OpNo1],
45778bcb0991SDimitry Andric                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
45780b57cec5SDimitry Andric 
45795ffd83dbSDimitry Andric   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
45805ffd83dbSDimitry Andric   // eliminate a zero vector by reusing any zero index in the permute vector.
45815ffd83dbSDimitry Andric   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
45825ffd83dbSDimitry Andric   if (ZeroVecIdx != UINT32_MAX) {
45835ffd83dbSDimitry Andric     bool MaskFirst = true;
45845ffd83dbSDimitry Andric     int ZeroIdx = -1;
45855ffd83dbSDimitry Andric     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
45865ffd83dbSDimitry Andric       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
45875ffd83dbSDimitry Andric       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
45885ffd83dbSDimitry Andric       if (OpNo == ZeroVecIdx && I == 0) {
45895ffd83dbSDimitry Andric         // If the first byte is zero, use mask as first operand.
45905ffd83dbSDimitry Andric         ZeroIdx = 0;
45915ffd83dbSDimitry Andric         break;
45925ffd83dbSDimitry Andric       }
45935ffd83dbSDimitry Andric       if (OpNo != ZeroVecIdx && Byte == 0) {
45945ffd83dbSDimitry Andric         // If mask contains a zero, use it by placing that vector first.
45955ffd83dbSDimitry Andric         ZeroIdx = I + SystemZ::VectorBytes;
45965ffd83dbSDimitry Andric         MaskFirst = false;
45975ffd83dbSDimitry Andric         break;
45985ffd83dbSDimitry Andric       }
45995ffd83dbSDimitry Andric     }
46005ffd83dbSDimitry Andric     if (ZeroIdx != -1) {
46015ffd83dbSDimitry Andric       SDValue IndexNodes[SystemZ::VectorBytes];
46025ffd83dbSDimitry Andric       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
46035ffd83dbSDimitry Andric         if (Bytes[I] >= 0) {
46045ffd83dbSDimitry Andric           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
46055ffd83dbSDimitry Andric           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
46065ffd83dbSDimitry Andric           if (OpNo == ZeroVecIdx)
46075ffd83dbSDimitry Andric             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
46085ffd83dbSDimitry Andric           else {
46095ffd83dbSDimitry Andric             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
46105ffd83dbSDimitry Andric             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
46115ffd83dbSDimitry Andric           }
46125ffd83dbSDimitry Andric         } else
46135ffd83dbSDimitry Andric           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
46145ffd83dbSDimitry Andric       }
46155ffd83dbSDimitry Andric       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
46165ffd83dbSDimitry Andric       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
46175ffd83dbSDimitry Andric       if (MaskFirst)
46185ffd83dbSDimitry Andric         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
46195ffd83dbSDimitry Andric                            Mask);
46205ffd83dbSDimitry Andric       else
46215ffd83dbSDimitry Andric         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
46225ffd83dbSDimitry Andric                            Mask);
46235ffd83dbSDimitry Andric     }
46245ffd83dbSDimitry Andric   }
46255ffd83dbSDimitry Andric 
46260b57cec5SDimitry Andric   SDValue IndexNodes[SystemZ::VectorBytes];
46270b57cec5SDimitry Andric   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
46280b57cec5SDimitry Andric     if (Bytes[I] >= 0)
46290b57cec5SDimitry Andric       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
46300b57cec5SDimitry Andric     else
46310b57cec5SDimitry Andric       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
46320b57cec5SDimitry Andric   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
46335ffd83dbSDimitry Andric   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
46345ffd83dbSDimitry Andric                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
46350b57cec5SDimitry Andric }
46360b57cec5SDimitry Andric 
46370b57cec5SDimitry Andric namespace {
46380b57cec5SDimitry Andric // Describes a general N-operand vector shuffle.
46390b57cec5SDimitry Andric struct GeneralShuffle {
46405ffd83dbSDimitry Andric   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
46410b57cec5SDimitry Andric   void addUndef();
46420b57cec5SDimitry Andric   bool add(SDValue, unsigned);
46430b57cec5SDimitry Andric   SDValue getNode(SelectionDAG &, const SDLoc &);
46445ffd83dbSDimitry Andric   void tryPrepareForUnpack();
46455ffd83dbSDimitry Andric   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
46465ffd83dbSDimitry Andric   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
46470b57cec5SDimitry Andric 
46480b57cec5SDimitry Andric   // The operands of the shuffle.
46490b57cec5SDimitry Andric   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
46500b57cec5SDimitry Andric 
46510b57cec5SDimitry Andric   // Index I is -1 if byte I of the result is undefined.  Otherwise the
46520b57cec5SDimitry Andric   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
46530b57cec5SDimitry Andric   // Bytes[I] / SystemZ::VectorBytes.
46540b57cec5SDimitry Andric   SmallVector<int, SystemZ::VectorBytes> Bytes;
46550b57cec5SDimitry Andric 
46560b57cec5SDimitry Andric   // The type of the shuffle result.
46570b57cec5SDimitry Andric   EVT VT;
46585ffd83dbSDimitry Andric 
46595ffd83dbSDimitry Andric   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
46605ffd83dbSDimitry Andric   unsigned UnpackFromEltSize;
46610b57cec5SDimitry Andric };
46620b57cec5SDimitry Andric }
46630b57cec5SDimitry Andric 
46640b57cec5SDimitry Andric // Add an extra undefined element to the shuffle.
46650b57cec5SDimitry Andric void GeneralShuffle::addUndef() {
46660b57cec5SDimitry Andric   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
46670b57cec5SDimitry Andric   for (unsigned I = 0; I < BytesPerElement; ++I)
46680b57cec5SDimitry Andric     Bytes.push_back(-1);
46690b57cec5SDimitry Andric }
46700b57cec5SDimitry Andric 
46710b57cec5SDimitry Andric // Add an extra element to the shuffle, taking it from element Elem of Op.
46720b57cec5SDimitry Andric // A null Op indicates a vector input whose value will be calculated later;
46730b57cec5SDimitry Andric // there is at most one such input per shuffle and it always has the same
46740b57cec5SDimitry Andric // type as the result. Aborts and returns false if the source vector elements
46750b57cec5SDimitry Andric // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
46760b57cec5SDimitry Andric // LLVM they become implicitly extended, but this is rare and not optimized.
46770b57cec5SDimitry Andric bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
46780b57cec5SDimitry Andric   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
46790b57cec5SDimitry Andric 
46800b57cec5SDimitry Andric   // The source vector can have wider elements than the result,
46810b57cec5SDimitry Andric   // either through an explicit TRUNCATE or because of type legalization.
46820b57cec5SDimitry Andric   // We want the least significant part.
46830b57cec5SDimitry Andric   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
46840b57cec5SDimitry Andric   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
46850b57cec5SDimitry Andric 
46860b57cec5SDimitry Andric   // Return false if the source elements are smaller than their destination
46870b57cec5SDimitry Andric   // elements.
46880b57cec5SDimitry Andric   if (FromBytesPerElement < BytesPerElement)
46890b57cec5SDimitry Andric     return false;
46900b57cec5SDimitry Andric 
46910b57cec5SDimitry Andric   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
46920b57cec5SDimitry Andric                    (FromBytesPerElement - BytesPerElement));
46930b57cec5SDimitry Andric 
46940b57cec5SDimitry Andric   // Look through things like shuffles and bitcasts.
46950b57cec5SDimitry Andric   while (Op.getNode()) {
46960b57cec5SDimitry Andric     if (Op.getOpcode() == ISD::BITCAST)
46970b57cec5SDimitry Andric       Op = Op.getOperand(0);
46980b57cec5SDimitry Andric     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
46990b57cec5SDimitry Andric       // See whether the bytes we need come from a contiguous part of one
47000b57cec5SDimitry Andric       // operand.
47010b57cec5SDimitry Andric       SmallVector<int, SystemZ::VectorBytes> OpBytes;
47020b57cec5SDimitry Andric       if (!getVPermMask(Op, OpBytes))
47030b57cec5SDimitry Andric         break;
47040b57cec5SDimitry Andric       int NewByte;
47050b57cec5SDimitry Andric       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
47060b57cec5SDimitry Andric         break;
47070b57cec5SDimitry Andric       if (NewByte < 0) {
47080b57cec5SDimitry Andric         addUndef();
47090b57cec5SDimitry Andric         return true;
47100b57cec5SDimitry Andric       }
47110b57cec5SDimitry Andric       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
47120b57cec5SDimitry Andric       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
47130b57cec5SDimitry Andric     } else if (Op.isUndef()) {
47140b57cec5SDimitry Andric       addUndef();
47150b57cec5SDimitry Andric       return true;
47160b57cec5SDimitry Andric     } else
47170b57cec5SDimitry Andric       break;
47180b57cec5SDimitry Andric   }
47190b57cec5SDimitry Andric 
47200b57cec5SDimitry Andric   // Make sure that the source of the extraction is in Ops.
47210b57cec5SDimitry Andric   unsigned OpNo = 0;
47220b57cec5SDimitry Andric   for (; OpNo < Ops.size(); ++OpNo)
47230b57cec5SDimitry Andric     if (Ops[OpNo] == Op)
47240b57cec5SDimitry Andric       break;
47250b57cec5SDimitry Andric   if (OpNo == Ops.size())
47260b57cec5SDimitry Andric     Ops.push_back(Op);
47270b57cec5SDimitry Andric 
47280b57cec5SDimitry Andric   // Add the element to Bytes.
47290b57cec5SDimitry Andric   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
47300b57cec5SDimitry Andric   for (unsigned I = 0; I < BytesPerElement; ++I)
47310b57cec5SDimitry Andric     Bytes.push_back(Base + I);
47320b57cec5SDimitry Andric 
47330b57cec5SDimitry Andric   return true;
47340b57cec5SDimitry Andric }
47350b57cec5SDimitry Andric 
47360b57cec5SDimitry Andric // Return SDNodes for the completed shuffle.
47370b57cec5SDimitry Andric SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
47380b57cec5SDimitry Andric   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
47390b57cec5SDimitry Andric 
47400b57cec5SDimitry Andric   if (Ops.size() == 0)
47410b57cec5SDimitry Andric     return DAG.getUNDEF(VT);
47420b57cec5SDimitry Andric 
47435ffd83dbSDimitry Andric   // Use a single unpack if possible as the last operation.
47445ffd83dbSDimitry Andric   tryPrepareForUnpack();
47455ffd83dbSDimitry Andric 
47460b57cec5SDimitry Andric   // Make sure that there are at least two shuffle operands.
47470b57cec5SDimitry Andric   if (Ops.size() == 1)
47480b57cec5SDimitry Andric     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
47490b57cec5SDimitry Andric 
47500b57cec5SDimitry Andric   // Create a tree of shuffles, deferring root node until after the loop.
47510b57cec5SDimitry Andric   // Try to redistribute the undefined elements of non-root nodes so that
47520b57cec5SDimitry Andric   // the non-root shuffles match something like a pack or merge, then adjust
47530b57cec5SDimitry Andric   // the parent node's permute vector to compensate for the new order.
47540b57cec5SDimitry Andric   // Among other things, this copes with vectors like <2 x i16> that were
47550b57cec5SDimitry Andric   // padded with undefined elements during type legalization.
47560b57cec5SDimitry Andric   //
47570b57cec5SDimitry Andric   // In the best case this redistribution will lead to the whole tree
47580b57cec5SDimitry Andric   // using packs and merges.  It should rarely be a loss in other cases.
47590b57cec5SDimitry Andric   unsigned Stride = 1;
47600b57cec5SDimitry Andric   for (; Stride * 2 < Ops.size(); Stride *= 2) {
47610b57cec5SDimitry Andric     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
47620b57cec5SDimitry Andric       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
47630b57cec5SDimitry Andric 
47640b57cec5SDimitry Andric       // Create a mask for just these two operands.
47650b57cec5SDimitry Andric       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
47660b57cec5SDimitry Andric       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
47670b57cec5SDimitry Andric         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
47680b57cec5SDimitry Andric         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
47690b57cec5SDimitry Andric         if (OpNo == I)
47700b57cec5SDimitry Andric           NewBytes[J] = Byte;
47710b57cec5SDimitry Andric         else if (OpNo == I + Stride)
47720b57cec5SDimitry Andric           NewBytes[J] = SystemZ::VectorBytes + Byte;
47730b57cec5SDimitry Andric         else
47740b57cec5SDimitry Andric           NewBytes[J] = -1;
47750b57cec5SDimitry Andric       }
47760b57cec5SDimitry Andric       // See if it would be better to reorganize NewMask to avoid using VPERM.
47770b57cec5SDimitry Andric       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
47780b57cec5SDimitry Andric       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
47790b57cec5SDimitry Andric         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
47800b57cec5SDimitry Andric         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
47810b57cec5SDimitry Andric         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
47820b57cec5SDimitry Andric           if (NewBytes[J] >= 0) {
47830b57cec5SDimitry Andric             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
47840b57cec5SDimitry Andric                    "Invalid double permute");
47850b57cec5SDimitry Andric             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
47860b57cec5SDimitry Andric           } else
47870b57cec5SDimitry Andric             assert(NewBytesMap[J] < 0 && "Invalid double permute");
47880b57cec5SDimitry Andric         }
47890b57cec5SDimitry Andric       } else {
47900b57cec5SDimitry Andric         // Just use NewBytes on the operands.
47910b57cec5SDimitry Andric         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
47920b57cec5SDimitry Andric         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
47930b57cec5SDimitry Andric           if (NewBytes[J] >= 0)
47940b57cec5SDimitry Andric             Bytes[J] = I * SystemZ::VectorBytes + J;
47950b57cec5SDimitry Andric       }
47960b57cec5SDimitry Andric     }
47970b57cec5SDimitry Andric   }
47980b57cec5SDimitry Andric 
47990b57cec5SDimitry Andric   // Now we just have 2 inputs.  Put the second operand in Ops[1].
48000b57cec5SDimitry Andric   if (Stride > 1) {
48010b57cec5SDimitry Andric     Ops[1] = Ops[Stride];
48020b57cec5SDimitry Andric     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
48030b57cec5SDimitry Andric       if (Bytes[I] >= int(SystemZ::VectorBytes))
48040b57cec5SDimitry Andric         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
48050b57cec5SDimitry Andric   }
48060b57cec5SDimitry Andric 
48070b57cec5SDimitry Andric   // Look for an instruction that can do the permute without resorting
48080b57cec5SDimitry Andric   // to VPERM.
48090b57cec5SDimitry Andric   unsigned OpNo0, OpNo1;
48100b57cec5SDimitry Andric   SDValue Op;
48115ffd83dbSDimitry Andric   if (unpackWasPrepared() && Ops[1].isUndef())
48125ffd83dbSDimitry Andric     Op = Ops[0];
48135ffd83dbSDimitry Andric   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
48140b57cec5SDimitry Andric     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
48150b57cec5SDimitry Andric   else
48160b57cec5SDimitry Andric     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
48175ffd83dbSDimitry Andric 
48185ffd83dbSDimitry Andric   Op = insertUnpackIfPrepared(DAG, DL, Op);
48195ffd83dbSDimitry Andric 
48200b57cec5SDimitry Andric   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
48210b57cec5SDimitry Andric }
48220b57cec5SDimitry Andric 
48235ffd83dbSDimitry Andric #ifndef NDEBUG
48245ffd83dbSDimitry Andric static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
48255ffd83dbSDimitry Andric   dbgs() << Msg.c_str() << " { ";
48265ffd83dbSDimitry Andric   for (unsigned i = 0; i < Bytes.size(); i++)
48275ffd83dbSDimitry Andric     dbgs() << Bytes[i] << " ";
48285ffd83dbSDimitry Andric   dbgs() << "}\n";
48295ffd83dbSDimitry Andric }
48305ffd83dbSDimitry Andric #endif
48315ffd83dbSDimitry Andric 
48325ffd83dbSDimitry Andric // If the Bytes vector matches an unpack operation, prepare to do the unpack
48335ffd83dbSDimitry Andric // after all else by removing the zero vector and the effect of the unpack on
48345ffd83dbSDimitry Andric // Bytes.
48355ffd83dbSDimitry Andric void GeneralShuffle::tryPrepareForUnpack() {
48365ffd83dbSDimitry Andric   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
48375ffd83dbSDimitry Andric   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
48385ffd83dbSDimitry Andric     return;
48395ffd83dbSDimitry Andric 
48405ffd83dbSDimitry Andric   // Only do this if removing the zero vector reduces the depth, otherwise
48415ffd83dbSDimitry Andric   // the critical path will increase with the final unpack.
48425ffd83dbSDimitry Andric   if (Ops.size() > 2 &&
48435ffd83dbSDimitry Andric       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
48445ffd83dbSDimitry Andric     return;
48455ffd83dbSDimitry Andric 
48465ffd83dbSDimitry Andric   // Find an unpack that would allow removing the zero vector from Ops.
48475ffd83dbSDimitry Andric   UnpackFromEltSize = 1;
48485ffd83dbSDimitry Andric   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
48495ffd83dbSDimitry Andric     bool MatchUnpack = true;
48505ffd83dbSDimitry Andric     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
48515ffd83dbSDimitry Andric     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
48525ffd83dbSDimitry Andric       unsigned ToEltSize = UnpackFromEltSize * 2;
48535ffd83dbSDimitry Andric       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
48545ffd83dbSDimitry Andric       if (!IsZextByte)
48555ffd83dbSDimitry Andric         SrcBytes.push_back(Bytes[Elt]);
48565ffd83dbSDimitry Andric       if (Bytes[Elt] != -1) {
48575ffd83dbSDimitry Andric         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
48585ffd83dbSDimitry Andric         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
48595ffd83dbSDimitry Andric           MatchUnpack = false;
48605ffd83dbSDimitry Andric           break;
48615ffd83dbSDimitry Andric         }
48625ffd83dbSDimitry Andric       }
48635ffd83dbSDimitry Andric     }
48645ffd83dbSDimitry Andric     if (MatchUnpack) {
48655ffd83dbSDimitry Andric       if (Ops.size() == 2) {
48665ffd83dbSDimitry Andric         // Don't use unpack if a single source operand needs rearrangement.
48675ffd83dbSDimitry Andric         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
48685ffd83dbSDimitry Andric           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
48695ffd83dbSDimitry Andric             UnpackFromEltSize = UINT_MAX;
48705ffd83dbSDimitry Andric             return;
48715ffd83dbSDimitry Andric           }
48725ffd83dbSDimitry Andric       }
48735ffd83dbSDimitry Andric       break;
48745ffd83dbSDimitry Andric     }
48755ffd83dbSDimitry Andric   }
48765ffd83dbSDimitry Andric   if (UnpackFromEltSize > 4)
48775ffd83dbSDimitry Andric     return;
48785ffd83dbSDimitry Andric 
48795ffd83dbSDimitry Andric   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
48805ffd83dbSDimitry Andric              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
48815ffd83dbSDimitry Andric              << ".\n";
48825ffd83dbSDimitry Andric              dumpBytes(Bytes, "Original Bytes vector:"););
48835ffd83dbSDimitry Andric 
48845ffd83dbSDimitry Andric   // Apply the unpack in reverse to the Bytes array.
48855ffd83dbSDimitry Andric   unsigned B = 0;
48865ffd83dbSDimitry Andric   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
48875ffd83dbSDimitry Andric     Elt += UnpackFromEltSize;
48885ffd83dbSDimitry Andric     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
48895ffd83dbSDimitry Andric       Bytes[B] = Bytes[Elt];
48905ffd83dbSDimitry Andric   }
48915ffd83dbSDimitry Andric   while (B < SystemZ::VectorBytes)
48925ffd83dbSDimitry Andric     Bytes[B++] = -1;
48935ffd83dbSDimitry Andric 
48945ffd83dbSDimitry Andric   // Remove the zero vector from Ops
48955ffd83dbSDimitry Andric   Ops.erase(&Ops[ZeroVecOpNo]);
48965ffd83dbSDimitry Andric   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
48975ffd83dbSDimitry Andric     if (Bytes[I] >= 0) {
48985ffd83dbSDimitry Andric       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
48995ffd83dbSDimitry Andric       if (OpNo > ZeroVecOpNo)
49005ffd83dbSDimitry Andric         Bytes[I] -= SystemZ::VectorBytes;
49015ffd83dbSDimitry Andric     }
49025ffd83dbSDimitry Andric 
49035ffd83dbSDimitry Andric   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
49045ffd83dbSDimitry Andric              dbgs() << "\n";);
49055ffd83dbSDimitry Andric }
49065ffd83dbSDimitry Andric 
49075ffd83dbSDimitry Andric SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
49085ffd83dbSDimitry Andric                                                const SDLoc &DL,
49095ffd83dbSDimitry Andric                                                SDValue Op) {
49105ffd83dbSDimitry Andric   if (!unpackWasPrepared())
49115ffd83dbSDimitry Andric     return Op;
49125ffd83dbSDimitry Andric   unsigned InBits = UnpackFromEltSize * 8;
49135ffd83dbSDimitry Andric   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
49145ffd83dbSDimitry Andric                                 SystemZ::VectorBits / InBits);
49155ffd83dbSDimitry Andric   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
49165ffd83dbSDimitry Andric   unsigned OutBits = InBits * 2;
49175ffd83dbSDimitry Andric   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
49185ffd83dbSDimitry Andric                                SystemZ::VectorBits / OutBits);
49195ffd83dbSDimitry Andric   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
49205ffd83dbSDimitry Andric }
49215ffd83dbSDimitry Andric 
49220b57cec5SDimitry Andric // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
49230b57cec5SDimitry Andric static bool isScalarToVector(SDValue Op) {
49240b57cec5SDimitry Andric   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
49250b57cec5SDimitry Andric     if (!Op.getOperand(I).isUndef())
49260b57cec5SDimitry Andric       return false;
49270b57cec5SDimitry Andric   return true;
49280b57cec5SDimitry Andric }
49290b57cec5SDimitry Andric 
49300b57cec5SDimitry Andric // Return a vector of type VT that contains Value in the first element.
49310b57cec5SDimitry Andric // The other elements don't matter.
49320b57cec5SDimitry Andric static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
49330b57cec5SDimitry Andric                                    SDValue Value) {
49340b57cec5SDimitry Andric   // If we have a constant, replicate it to all elements and let the
49350b57cec5SDimitry Andric   // BUILD_VECTOR lowering take care of it.
49360b57cec5SDimitry Andric   if (Value.getOpcode() == ISD::Constant ||
49370b57cec5SDimitry Andric       Value.getOpcode() == ISD::ConstantFP) {
49380b57cec5SDimitry Andric     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
49390b57cec5SDimitry Andric     return DAG.getBuildVector(VT, DL, Ops);
49400b57cec5SDimitry Andric   }
49410b57cec5SDimitry Andric   if (Value.isUndef())
49420b57cec5SDimitry Andric     return DAG.getUNDEF(VT);
49430b57cec5SDimitry Andric   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
49440b57cec5SDimitry Andric }
49450b57cec5SDimitry Andric 
49460b57cec5SDimitry Andric // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
49470b57cec5SDimitry Andric // element 1.  Used for cases in which replication is cheap.
49480b57cec5SDimitry Andric static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
49490b57cec5SDimitry Andric                                  SDValue Op0, SDValue Op1) {
49500b57cec5SDimitry Andric   if (Op0.isUndef()) {
49510b57cec5SDimitry Andric     if (Op1.isUndef())
49520b57cec5SDimitry Andric       return DAG.getUNDEF(VT);
49530b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
49540b57cec5SDimitry Andric   }
49550b57cec5SDimitry Andric   if (Op1.isUndef())
49560b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
49570b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
49580b57cec5SDimitry Andric                      buildScalarToVector(DAG, DL, VT, Op0),
49590b57cec5SDimitry Andric                      buildScalarToVector(DAG, DL, VT, Op1));
49600b57cec5SDimitry Andric }
49610b57cec5SDimitry Andric 
49620b57cec5SDimitry Andric // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
49630b57cec5SDimitry Andric // vector for them.
49640b57cec5SDimitry Andric static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
49650b57cec5SDimitry Andric                           SDValue Op1) {
49660b57cec5SDimitry Andric   if (Op0.isUndef() && Op1.isUndef())
49670b57cec5SDimitry Andric     return DAG.getUNDEF(MVT::v2i64);
49680b57cec5SDimitry Andric   // If one of the two inputs is undefined then replicate the other one,
49690b57cec5SDimitry Andric   // in order to avoid using another register unnecessarily.
49700b57cec5SDimitry Andric   if (Op0.isUndef())
49710b57cec5SDimitry Andric     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
49720b57cec5SDimitry Andric   else if (Op1.isUndef())
49730b57cec5SDimitry Andric     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
49740b57cec5SDimitry Andric   else {
49750b57cec5SDimitry Andric     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
49760b57cec5SDimitry Andric     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
49770b57cec5SDimitry Andric   }
49780b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
49790b57cec5SDimitry Andric }
49800b57cec5SDimitry Andric 
49810b57cec5SDimitry Andric // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
49820b57cec5SDimitry Andric // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
49830b57cec5SDimitry Andric // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
49840b57cec5SDimitry Andric // would benefit from this representation and return it if so.
49850b57cec5SDimitry Andric static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
49860b57cec5SDimitry Andric                                      BuildVectorSDNode *BVN) {
49870b57cec5SDimitry Andric   EVT VT = BVN->getValueType(0);
49880b57cec5SDimitry Andric   unsigned NumElements = VT.getVectorNumElements();
49890b57cec5SDimitry Andric 
49900b57cec5SDimitry Andric   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
49910b57cec5SDimitry Andric   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
49920b57cec5SDimitry Andric   // need a BUILD_VECTOR, add an additional placeholder operand for that
49930b57cec5SDimitry Andric   // BUILD_VECTOR and store its operands in ResidueOps.
49940b57cec5SDimitry Andric   GeneralShuffle GS(VT);
49950b57cec5SDimitry Andric   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
49960b57cec5SDimitry Andric   bool FoundOne = false;
49970b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I) {
49980b57cec5SDimitry Andric     SDValue Op = BVN->getOperand(I);
49990b57cec5SDimitry Andric     if (Op.getOpcode() == ISD::TRUNCATE)
50000b57cec5SDimitry Andric       Op = Op.getOperand(0);
50010b57cec5SDimitry Andric     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
50020b57cec5SDimitry Andric         Op.getOperand(1).getOpcode() == ISD::Constant) {
50030b57cec5SDimitry Andric       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
50040b57cec5SDimitry Andric       if (!GS.add(Op.getOperand(0), Elem))
50050b57cec5SDimitry Andric         return SDValue();
50060b57cec5SDimitry Andric       FoundOne = true;
50070b57cec5SDimitry Andric     } else if (Op.isUndef()) {
50080b57cec5SDimitry Andric       GS.addUndef();
50090b57cec5SDimitry Andric     } else {
50100b57cec5SDimitry Andric       if (!GS.add(SDValue(), ResidueOps.size()))
50110b57cec5SDimitry Andric         return SDValue();
50120b57cec5SDimitry Andric       ResidueOps.push_back(BVN->getOperand(I));
50130b57cec5SDimitry Andric     }
50140b57cec5SDimitry Andric   }
50150b57cec5SDimitry Andric 
50160b57cec5SDimitry Andric   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
50170b57cec5SDimitry Andric   if (!FoundOne)
50180b57cec5SDimitry Andric     return SDValue();
50190b57cec5SDimitry Andric 
50200b57cec5SDimitry Andric   // Create the BUILD_VECTOR for the remaining elements, if any.
50210b57cec5SDimitry Andric   if (!ResidueOps.empty()) {
50220b57cec5SDimitry Andric     while (ResidueOps.size() < NumElements)
50230b57cec5SDimitry Andric       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
50240b57cec5SDimitry Andric     for (auto &Op : GS.Ops) {
50250b57cec5SDimitry Andric       if (!Op.getNode()) {
50260b57cec5SDimitry Andric         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
50270b57cec5SDimitry Andric         break;
50280b57cec5SDimitry Andric       }
50290b57cec5SDimitry Andric     }
50300b57cec5SDimitry Andric   }
50310b57cec5SDimitry Andric   return GS.getNode(DAG, SDLoc(BVN));
50320b57cec5SDimitry Andric }
50330b57cec5SDimitry Andric 
50340b57cec5SDimitry Andric bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
50350b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
50360b57cec5SDimitry Andric     return true;
50370b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
50380b57cec5SDimitry Andric     return true;
50390b57cec5SDimitry Andric   return false;
50400b57cec5SDimitry Andric }
50410b57cec5SDimitry Andric 
50420b57cec5SDimitry Andric // Combine GPR scalar values Elems into a vector of type VT.
50430b57cec5SDimitry Andric SDValue
50440b57cec5SDimitry Andric SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
50450b57cec5SDimitry Andric                                    SmallVectorImpl<SDValue> &Elems) const {
50460b57cec5SDimitry Andric   // See whether there is a single replicated value.
50470b57cec5SDimitry Andric   SDValue Single;
50480b57cec5SDimitry Andric   unsigned int NumElements = Elems.size();
50490b57cec5SDimitry Andric   unsigned int Count = 0;
50500b57cec5SDimitry Andric   for (auto Elem : Elems) {
50510b57cec5SDimitry Andric     if (!Elem.isUndef()) {
50520b57cec5SDimitry Andric       if (!Single.getNode())
50530b57cec5SDimitry Andric         Single = Elem;
50540b57cec5SDimitry Andric       else if (Elem != Single) {
50550b57cec5SDimitry Andric         Single = SDValue();
50560b57cec5SDimitry Andric         break;
50570b57cec5SDimitry Andric       }
50580b57cec5SDimitry Andric       Count += 1;
50590b57cec5SDimitry Andric     }
50600b57cec5SDimitry Andric   }
50610b57cec5SDimitry Andric   // There are three cases here:
50620b57cec5SDimitry Andric   //
50630b57cec5SDimitry Andric   // - if the only defined element is a loaded one, the best sequence
50640b57cec5SDimitry Andric   //   is a replicating load.
50650b57cec5SDimitry Andric   //
50660b57cec5SDimitry Andric   // - otherwise, if the only defined element is an i64 value, we will
50670b57cec5SDimitry Andric   //   end up with the same VLVGP sequence regardless of whether we short-cut
50680b57cec5SDimitry Andric   //   for replication or fall through to the later code.
50690b57cec5SDimitry Andric   //
50700b57cec5SDimitry Andric   // - otherwise, if the only defined element is an i32 or smaller value,
50710b57cec5SDimitry Andric   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
50720b57cec5SDimitry Andric   //   This is only a win if the single defined element is used more than once.
50730b57cec5SDimitry Andric   //   In other cases we're better off using a single VLVGx.
50740b57cec5SDimitry Andric   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
50750b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
50760b57cec5SDimitry Andric 
50770b57cec5SDimitry Andric   // If all elements are loads, use VLREP/VLEs (below).
50780b57cec5SDimitry Andric   bool AllLoads = true;
50790b57cec5SDimitry Andric   for (auto Elem : Elems)
50800b57cec5SDimitry Andric     if (!isVectorElementLoad(Elem)) {
50810b57cec5SDimitry Andric       AllLoads = false;
50820b57cec5SDimitry Andric       break;
50830b57cec5SDimitry Andric     }
50840b57cec5SDimitry Andric 
50850b57cec5SDimitry Andric   // The best way of building a v2i64 from two i64s is to use VLVGP.
50860b57cec5SDimitry Andric   if (VT == MVT::v2i64 && !AllLoads)
50870b57cec5SDimitry Andric     return joinDwords(DAG, DL, Elems[0], Elems[1]);
50880b57cec5SDimitry Andric 
50890b57cec5SDimitry Andric   // Use a 64-bit merge high to combine two doubles.
50900b57cec5SDimitry Andric   if (VT == MVT::v2f64 && !AllLoads)
50910b57cec5SDimitry Andric     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
50920b57cec5SDimitry Andric 
50930b57cec5SDimitry Andric   // Build v4f32 values directly from the FPRs:
50940b57cec5SDimitry Andric   //
50950b57cec5SDimitry Andric   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
50960b57cec5SDimitry Andric   //         V              V         VMRHF
50970b57cec5SDimitry Andric   //      <ABxx>         <CDxx>
50980b57cec5SDimitry Andric   //                V                 VMRHG
50990b57cec5SDimitry Andric   //              <ABCD>
51000b57cec5SDimitry Andric   if (VT == MVT::v4f32 && !AllLoads) {
51010b57cec5SDimitry Andric     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
51020b57cec5SDimitry Andric     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
51030b57cec5SDimitry Andric     // Avoid unnecessary undefs by reusing the other operand.
51040b57cec5SDimitry Andric     if (Op01.isUndef())
51050b57cec5SDimitry Andric       Op01 = Op23;
51060b57cec5SDimitry Andric     else if (Op23.isUndef())
51070b57cec5SDimitry Andric       Op23 = Op01;
51080b57cec5SDimitry Andric     // Merging identical replications is a no-op.
51090b57cec5SDimitry Andric     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
51100b57cec5SDimitry Andric       return Op01;
51110b57cec5SDimitry Andric     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
51120b57cec5SDimitry Andric     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
51130b57cec5SDimitry Andric     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
51140b57cec5SDimitry Andric                              DL, MVT::v2i64, Op01, Op23);
51150b57cec5SDimitry Andric     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
51160b57cec5SDimitry Andric   }
51170b57cec5SDimitry Andric 
51180b57cec5SDimitry Andric   // Collect the constant terms.
51190b57cec5SDimitry Andric   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
51200b57cec5SDimitry Andric   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
51210b57cec5SDimitry Andric 
51220b57cec5SDimitry Andric   unsigned NumConstants = 0;
51230b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I) {
51240b57cec5SDimitry Andric     SDValue Elem = Elems[I];
51250b57cec5SDimitry Andric     if (Elem.getOpcode() == ISD::Constant ||
51260b57cec5SDimitry Andric         Elem.getOpcode() == ISD::ConstantFP) {
51270b57cec5SDimitry Andric       NumConstants += 1;
51280b57cec5SDimitry Andric       Constants[I] = Elem;
51290b57cec5SDimitry Andric       Done[I] = true;
51300b57cec5SDimitry Andric     }
51310b57cec5SDimitry Andric   }
51320b57cec5SDimitry Andric   // If there was at least one constant, fill in the other elements of
51330b57cec5SDimitry Andric   // Constants with undefs to get a full vector constant and use that
51340b57cec5SDimitry Andric   // as the starting point.
51350b57cec5SDimitry Andric   SDValue Result;
51360b57cec5SDimitry Andric   SDValue ReplicatedVal;
51370b57cec5SDimitry Andric   if (NumConstants > 0) {
51380b57cec5SDimitry Andric     for (unsigned I = 0; I < NumElements; ++I)
51390b57cec5SDimitry Andric       if (!Constants[I].getNode())
51400b57cec5SDimitry Andric         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
51410b57cec5SDimitry Andric     Result = DAG.getBuildVector(VT, DL, Constants);
51420b57cec5SDimitry Andric   } else {
51430b57cec5SDimitry Andric     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
51440b57cec5SDimitry Andric     // avoid a false dependency on any previous contents of the vector
51450b57cec5SDimitry Andric     // register.
51460b57cec5SDimitry Andric 
51470b57cec5SDimitry Andric     // Use a VLREP if at least one element is a load. Make sure to replicate
51480b57cec5SDimitry Andric     // the load with the most elements having its value.
51490b57cec5SDimitry Andric     std::map<const SDNode*, unsigned> UseCounts;
51500b57cec5SDimitry Andric     SDNode *LoadMaxUses = nullptr;
51510b57cec5SDimitry Andric     for (unsigned I = 0; I < NumElements; ++I)
51520b57cec5SDimitry Andric       if (isVectorElementLoad(Elems[I])) {
51530b57cec5SDimitry Andric         SDNode *Ld = Elems[I].getNode();
51540b57cec5SDimitry Andric         UseCounts[Ld]++;
51550b57cec5SDimitry Andric         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
51560b57cec5SDimitry Andric           LoadMaxUses = Ld;
51570b57cec5SDimitry Andric       }
51580b57cec5SDimitry Andric     if (LoadMaxUses != nullptr) {
51590b57cec5SDimitry Andric       ReplicatedVal = SDValue(LoadMaxUses, 0);
51600b57cec5SDimitry Andric       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
51610b57cec5SDimitry Andric     } else {
51620b57cec5SDimitry Andric       // Try to use VLVGP.
51630b57cec5SDimitry Andric       unsigned I1 = NumElements / 2 - 1;
51640b57cec5SDimitry Andric       unsigned I2 = NumElements - 1;
51650b57cec5SDimitry Andric       bool Def1 = !Elems[I1].isUndef();
51660b57cec5SDimitry Andric       bool Def2 = !Elems[I2].isUndef();
51670b57cec5SDimitry Andric       if (Def1 || Def2) {
51680b57cec5SDimitry Andric         SDValue Elem1 = Elems[Def1 ? I1 : I2];
51690b57cec5SDimitry Andric         SDValue Elem2 = Elems[Def2 ? I2 : I1];
51700b57cec5SDimitry Andric         Result = DAG.getNode(ISD::BITCAST, DL, VT,
51710b57cec5SDimitry Andric                              joinDwords(DAG, DL, Elem1, Elem2));
51720b57cec5SDimitry Andric         Done[I1] = true;
51730b57cec5SDimitry Andric         Done[I2] = true;
51740b57cec5SDimitry Andric       } else
51750b57cec5SDimitry Andric         Result = DAG.getUNDEF(VT);
51760b57cec5SDimitry Andric     }
51770b57cec5SDimitry Andric   }
51780b57cec5SDimitry Andric 
51790b57cec5SDimitry Andric   // Use VLVGx to insert the other elements.
51800b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I)
51810b57cec5SDimitry Andric     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
51820b57cec5SDimitry Andric       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
51830b57cec5SDimitry Andric                            DAG.getConstant(I, DL, MVT::i32));
51840b57cec5SDimitry Andric   return Result;
51850b57cec5SDimitry Andric }
51860b57cec5SDimitry Andric 
51870b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
51880b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
51890b57cec5SDimitry Andric   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
51900b57cec5SDimitry Andric   SDLoc DL(Op);
51910b57cec5SDimitry Andric   EVT VT = Op.getValueType();
51920b57cec5SDimitry Andric 
51930b57cec5SDimitry Andric   if (BVN->isConstant()) {
51940b57cec5SDimitry Andric     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
51950b57cec5SDimitry Andric       return Op;
51960b57cec5SDimitry Andric 
51970b57cec5SDimitry Andric     // Fall back to loading it from memory.
51980b57cec5SDimitry Andric     return SDValue();
51990b57cec5SDimitry Andric   }
52000b57cec5SDimitry Andric 
52010b57cec5SDimitry Andric   // See if we should use shuffles to construct the vector from other vectors.
52020b57cec5SDimitry Andric   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
52030b57cec5SDimitry Andric     return Res;
52040b57cec5SDimitry Andric 
52050b57cec5SDimitry Andric   // Detect SCALAR_TO_VECTOR conversions.
52060b57cec5SDimitry Andric   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
52070b57cec5SDimitry Andric     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
52080b57cec5SDimitry Andric 
52090b57cec5SDimitry Andric   // Otherwise use buildVector to build the vector up from GPRs.
52100b57cec5SDimitry Andric   unsigned NumElements = Op.getNumOperands();
52110b57cec5SDimitry Andric   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
52120b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I)
52130b57cec5SDimitry Andric     Ops[I] = Op.getOperand(I);
52140b57cec5SDimitry Andric   return buildVector(DAG, DL, VT, Ops);
52150b57cec5SDimitry Andric }
52160b57cec5SDimitry Andric 
52170b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
52180b57cec5SDimitry Andric                                                    SelectionDAG &DAG) const {
52190b57cec5SDimitry Andric   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
52200b57cec5SDimitry Andric   SDLoc DL(Op);
52210b57cec5SDimitry Andric   EVT VT = Op.getValueType();
52220b57cec5SDimitry Andric   unsigned NumElements = VT.getVectorNumElements();
52230b57cec5SDimitry Andric 
52240b57cec5SDimitry Andric   if (VSN->isSplat()) {
52250b57cec5SDimitry Andric     SDValue Op0 = Op.getOperand(0);
52260b57cec5SDimitry Andric     unsigned Index = VSN->getSplatIndex();
52270b57cec5SDimitry Andric     assert(Index < VT.getVectorNumElements() &&
52280b57cec5SDimitry Andric            "Splat index should be defined and in first operand");
52290b57cec5SDimitry Andric     // See whether the value we're splatting is directly available as a scalar.
52300b57cec5SDimitry Andric     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
52310b57cec5SDimitry Andric         Op0.getOpcode() == ISD::BUILD_VECTOR)
52320b57cec5SDimitry Andric       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
52330b57cec5SDimitry Andric     // Otherwise keep it as a vector-to-vector operation.
52340b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
52358bcb0991SDimitry Andric                        DAG.getTargetConstant(Index, DL, MVT::i32));
52360b57cec5SDimitry Andric   }
52370b57cec5SDimitry Andric 
52380b57cec5SDimitry Andric   GeneralShuffle GS(VT);
52390b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I) {
52400b57cec5SDimitry Andric     int Elt = VSN->getMaskElt(I);
52410b57cec5SDimitry Andric     if (Elt < 0)
52420b57cec5SDimitry Andric       GS.addUndef();
52430b57cec5SDimitry Andric     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
52440b57cec5SDimitry Andric                      unsigned(Elt) % NumElements))
52450b57cec5SDimitry Andric       return SDValue();
52460b57cec5SDimitry Andric   }
52470b57cec5SDimitry Andric   return GS.getNode(DAG, SDLoc(VSN));
52480b57cec5SDimitry Andric }
52490b57cec5SDimitry Andric 
52500b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
52510b57cec5SDimitry Andric                                                      SelectionDAG &DAG) const {
52520b57cec5SDimitry Andric   SDLoc DL(Op);
52530b57cec5SDimitry Andric   // Just insert the scalar into element 0 of an undefined vector.
52540b57cec5SDimitry Andric   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
52550b57cec5SDimitry Andric                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
52560b57cec5SDimitry Andric                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
52570b57cec5SDimitry Andric }
52580b57cec5SDimitry Andric 
52590b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
52600b57cec5SDimitry Andric                                                       SelectionDAG &DAG) const {
52610b57cec5SDimitry Andric   // Handle insertions of floating-point values.
52620b57cec5SDimitry Andric   SDLoc DL(Op);
52630b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
52640b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
52650b57cec5SDimitry Andric   SDValue Op2 = Op.getOperand(2);
52660b57cec5SDimitry Andric   EVT VT = Op.getValueType();
52670b57cec5SDimitry Andric 
52680b57cec5SDimitry Andric   // Insertions into constant indices of a v2f64 can be done using VPDI.
52690b57cec5SDimitry Andric   // However, if the inserted value is a bitcast or a constant then it's
52700b57cec5SDimitry Andric   // better to use GPRs, as below.
52710b57cec5SDimitry Andric   if (VT == MVT::v2f64 &&
52720b57cec5SDimitry Andric       Op1.getOpcode() != ISD::BITCAST &&
52730b57cec5SDimitry Andric       Op1.getOpcode() != ISD::ConstantFP &&
52740b57cec5SDimitry Andric       Op2.getOpcode() == ISD::Constant) {
52750b57cec5SDimitry Andric     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
52760b57cec5SDimitry Andric     unsigned Mask = VT.getVectorNumElements() - 1;
52770b57cec5SDimitry Andric     if (Index <= Mask)
52780b57cec5SDimitry Andric       return Op;
52790b57cec5SDimitry Andric   }
52800b57cec5SDimitry Andric 
52810b57cec5SDimitry Andric   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
52820b57cec5SDimitry Andric   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
52830b57cec5SDimitry Andric   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
52840b57cec5SDimitry Andric   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
52850b57cec5SDimitry Andric                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
52860b57cec5SDimitry Andric                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
52870b57cec5SDimitry Andric   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
52880b57cec5SDimitry Andric }
52890b57cec5SDimitry Andric 
52900b57cec5SDimitry Andric SDValue
52910b57cec5SDimitry Andric SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
52920b57cec5SDimitry Andric                                                SelectionDAG &DAG) const {
52930b57cec5SDimitry Andric   // Handle extractions of floating-point values.
52940b57cec5SDimitry Andric   SDLoc DL(Op);
52950b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
52960b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
52970b57cec5SDimitry Andric   EVT VT = Op.getValueType();
52980b57cec5SDimitry Andric   EVT VecVT = Op0.getValueType();
52990b57cec5SDimitry Andric 
53000b57cec5SDimitry Andric   // Extractions of constant indices can be done directly.
53010b57cec5SDimitry Andric   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
53020b57cec5SDimitry Andric     uint64_t Index = CIndexN->getZExtValue();
53030b57cec5SDimitry Andric     unsigned Mask = VecVT.getVectorNumElements() - 1;
53040b57cec5SDimitry Andric     if (Index <= Mask)
53050b57cec5SDimitry Andric       return Op;
53060b57cec5SDimitry Andric   }
53070b57cec5SDimitry Andric 
53080b57cec5SDimitry Andric   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
53090b57cec5SDimitry Andric   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
53100b57cec5SDimitry Andric   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
53110b57cec5SDimitry Andric   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
53120b57cec5SDimitry Andric                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
53130b57cec5SDimitry Andric   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
53140b57cec5SDimitry Andric }
53150b57cec5SDimitry Andric 
53165ffd83dbSDimitry Andric SDValue SystemZTargetLowering::
53175ffd83dbSDimitry Andric lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
53180b57cec5SDimitry Andric   SDValue PackedOp = Op.getOperand(0);
53190b57cec5SDimitry Andric   EVT OutVT = Op.getValueType();
53200b57cec5SDimitry Andric   EVT InVT = PackedOp.getValueType();
53210b57cec5SDimitry Andric   unsigned ToBits = OutVT.getScalarSizeInBits();
53220b57cec5SDimitry Andric   unsigned FromBits = InVT.getScalarSizeInBits();
53230b57cec5SDimitry Andric   do {
53240b57cec5SDimitry Andric     FromBits *= 2;
53250b57cec5SDimitry Andric     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
53260b57cec5SDimitry Andric                                  SystemZ::VectorBits / FromBits);
53275ffd83dbSDimitry Andric     PackedOp =
53285ffd83dbSDimitry Andric       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
53290b57cec5SDimitry Andric   } while (FromBits != ToBits);
53300b57cec5SDimitry Andric   return PackedOp;
53310b57cec5SDimitry Andric }
53320b57cec5SDimitry Andric 
53335ffd83dbSDimitry Andric // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
53345ffd83dbSDimitry Andric SDValue SystemZTargetLowering::
53355ffd83dbSDimitry Andric lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
53365ffd83dbSDimitry Andric   SDValue PackedOp = Op.getOperand(0);
53375ffd83dbSDimitry Andric   SDLoc DL(Op);
53385ffd83dbSDimitry Andric   EVT OutVT = Op.getValueType();
53395ffd83dbSDimitry Andric   EVT InVT = PackedOp.getValueType();
53405ffd83dbSDimitry Andric   unsigned InNumElts = InVT.getVectorNumElements();
53415ffd83dbSDimitry Andric   unsigned OutNumElts = OutVT.getVectorNumElements();
53425ffd83dbSDimitry Andric   unsigned NumInPerOut = InNumElts / OutNumElts;
53435ffd83dbSDimitry Andric 
53445ffd83dbSDimitry Andric   SDValue ZeroVec =
53455ffd83dbSDimitry Andric     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
53465ffd83dbSDimitry Andric 
53475ffd83dbSDimitry Andric   SmallVector<int, 16> Mask(InNumElts);
53485ffd83dbSDimitry Andric   unsigned ZeroVecElt = InNumElts;
53495ffd83dbSDimitry Andric   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
53505ffd83dbSDimitry Andric     unsigned MaskElt = PackedElt * NumInPerOut;
53515ffd83dbSDimitry Andric     unsigned End = MaskElt + NumInPerOut - 1;
53525ffd83dbSDimitry Andric     for (; MaskElt < End; MaskElt++)
53535ffd83dbSDimitry Andric       Mask[MaskElt] = ZeroVecElt++;
53545ffd83dbSDimitry Andric     Mask[MaskElt] = PackedElt;
53555ffd83dbSDimitry Andric   }
53565ffd83dbSDimitry Andric   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
53575ffd83dbSDimitry Andric   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
53585ffd83dbSDimitry Andric }
53595ffd83dbSDimitry Andric 
53600b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
53610b57cec5SDimitry Andric                                           unsigned ByScalar) const {
53620b57cec5SDimitry Andric   // Look for cases where a vector shift can use the *_BY_SCALAR form.
53630b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
53640b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
53650b57cec5SDimitry Andric   SDLoc DL(Op);
53660b57cec5SDimitry Andric   EVT VT = Op.getValueType();
53670b57cec5SDimitry Andric   unsigned ElemBitSize = VT.getScalarSizeInBits();
53680b57cec5SDimitry Andric 
53690b57cec5SDimitry Andric   // See whether the shift vector is a splat represented as BUILD_VECTOR.
53700b57cec5SDimitry Andric   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
53710b57cec5SDimitry Andric     APInt SplatBits, SplatUndef;
53720b57cec5SDimitry Andric     unsigned SplatBitSize;
53730b57cec5SDimitry Andric     bool HasAnyUndefs;
53740b57cec5SDimitry Andric     // Check for constant splats.  Use ElemBitSize as the minimum element
53750b57cec5SDimitry Andric     // width and reject splats that need wider elements.
53760b57cec5SDimitry Andric     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
53770b57cec5SDimitry Andric                              ElemBitSize, true) &&
53780b57cec5SDimitry Andric         SplatBitSize == ElemBitSize) {
53790b57cec5SDimitry Andric       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
53800b57cec5SDimitry Andric                                       DL, MVT::i32);
53810b57cec5SDimitry Andric       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
53820b57cec5SDimitry Andric     }
53830b57cec5SDimitry Andric     // Check for variable splats.
53840b57cec5SDimitry Andric     BitVector UndefElements;
53850b57cec5SDimitry Andric     SDValue Splat = BVN->getSplatValue(&UndefElements);
53860b57cec5SDimitry Andric     if (Splat) {
53870b57cec5SDimitry Andric       // Since i32 is the smallest legal type, we either need a no-op
53880b57cec5SDimitry Andric       // or a truncation.
53890b57cec5SDimitry Andric       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
53900b57cec5SDimitry Andric       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
53910b57cec5SDimitry Andric     }
53920b57cec5SDimitry Andric   }
53930b57cec5SDimitry Andric 
53940b57cec5SDimitry Andric   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
53950b57cec5SDimitry Andric   // and the shift amount is directly available in a GPR.
53960b57cec5SDimitry Andric   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
53970b57cec5SDimitry Andric     if (VSN->isSplat()) {
53980b57cec5SDimitry Andric       SDValue VSNOp0 = VSN->getOperand(0);
53990b57cec5SDimitry Andric       unsigned Index = VSN->getSplatIndex();
54000b57cec5SDimitry Andric       assert(Index < VT.getVectorNumElements() &&
54010b57cec5SDimitry Andric              "Splat index should be defined and in first operand");
54020b57cec5SDimitry Andric       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
54030b57cec5SDimitry Andric           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
54040b57cec5SDimitry Andric         // Since i32 is the smallest legal type, we either need a no-op
54050b57cec5SDimitry Andric         // or a truncation.
54060b57cec5SDimitry Andric         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
54070b57cec5SDimitry Andric                                     VSNOp0.getOperand(Index));
54080b57cec5SDimitry Andric         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
54090b57cec5SDimitry Andric       }
54100b57cec5SDimitry Andric     }
54110b57cec5SDimitry Andric   }
54120b57cec5SDimitry Andric 
54130b57cec5SDimitry Andric   // Otherwise just treat the current form as legal.
54140b57cec5SDimitry Andric   return Op;
54150b57cec5SDimitry Andric }
54160b57cec5SDimitry Andric 
54170b57cec5SDimitry Andric SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
54180b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
54190b57cec5SDimitry Andric   switch (Op.getOpcode()) {
54200b57cec5SDimitry Andric   case ISD::FRAMEADDR:
54210b57cec5SDimitry Andric     return lowerFRAMEADDR(Op, DAG);
54220b57cec5SDimitry Andric   case ISD::RETURNADDR:
54230b57cec5SDimitry Andric     return lowerRETURNADDR(Op, DAG);
54240b57cec5SDimitry Andric   case ISD::BR_CC:
54250b57cec5SDimitry Andric     return lowerBR_CC(Op, DAG);
54260b57cec5SDimitry Andric   case ISD::SELECT_CC:
54270b57cec5SDimitry Andric     return lowerSELECT_CC(Op, DAG);
54280b57cec5SDimitry Andric   case ISD::SETCC:
54290b57cec5SDimitry Andric     return lowerSETCC(Op, DAG);
5430480093f4SDimitry Andric   case ISD::STRICT_FSETCC:
5431480093f4SDimitry Andric     return lowerSTRICT_FSETCC(Op, DAG, false);
5432480093f4SDimitry Andric   case ISD::STRICT_FSETCCS:
5433480093f4SDimitry Andric     return lowerSTRICT_FSETCC(Op, DAG, true);
54340b57cec5SDimitry Andric   case ISD::GlobalAddress:
54350b57cec5SDimitry Andric     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
54360b57cec5SDimitry Andric   case ISD::GlobalTLSAddress:
54370b57cec5SDimitry Andric     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
54380b57cec5SDimitry Andric   case ISD::BlockAddress:
54390b57cec5SDimitry Andric     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
54400b57cec5SDimitry Andric   case ISD::JumpTable:
54410b57cec5SDimitry Andric     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
54420b57cec5SDimitry Andric   case ISD::ConstantPool:
54430b57cec5SDimitry Andric     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
54440b57cec5SDimitry Andric   case ISD::BITCAST:
54450b57cec5SDimitry Andric     return lowerBITCAST(Op, DAG);
54460b57cec5SDimitry Andric   case ISD::VASTART:
54470b57cec5SDimitry Andric     return lowerVASTART(Op, DAG);
54480b57cec5SDimitry Andric   case ISD::VACOPY:
54490b57cec5SDimitry Andric     return lowerVACOPY(Op, DAG);
54500b57cec5SDimitry Andric   case ISD::DYNAMIC_STACKALLOC:
54510b57cec5SDimitry Andric     return lowerDYNAMIC_STACKALLOC(Op, DAG);
54520b57cec5SDimitry Andric   case ISD::GET_DYNAMIC_AREA_OFFSET:
54530b57cec5SDimitry Andric     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
54540b57cec5SDimitry Andric   case ISD::SMUL_LOHI:
54550b57cec5SDimitry Andric     return lowerSMUL_LOHI(Op, DAG);
54560b57cec5SDimitry Andric   case ISD::UMUL_LOHI:
54570b57cec5SDimitry Andric     return lowerUMUL_LOHI(Op, DAG);
54580b57cec5SDimitry Andric   case ISD::SDIVREM:
54590b57cec5SDimitry Andric     return lowerSDIVREM(Op, DAG);
54600b57cec5SDimitry Andric   case ISD::UDIVREM:
54610b57cec5SDimitry Andric     return lowerUDIVREM(Op, DAG);
54620b57cec5SDimitry Andric   case ISD::SADDO:
54630b57cec5SDimitry Andric   case ISD::SSUBO:
54640b57cec5SDimitry Andric   case ISD::UADDO:
54650b57cec5SDimitry Andric   case ISD::USUBO:
54660b57cec5SDimitry Andric     return lowerXALUO(Op, DAG);
54670b57cec5SDimitry Andric   case ISD::ADDCARRY:
54680b57cec5SDimitry Andric   case ISD::SUBCARRY:
54690b57cec5SDimitry Andric     return lowerADDSUBCARRY(Op, DAG);
54700b57cec5SDimitry Andric   case ISD::OR:
54710b57cec5SDimitry Andric     return lowerOR(Op, DAG);
54720b57cec5SDimitry Andric   case ISD::CTPOP:
54730b57cec5SDimitry Andric     return lowerCTPOP(Op, DAG);
54740b57cec5SDimitry Andric   case ISD::ATOMIC_FENCE:
54750b57cec5SDimitry Andric     return lowerATOMIC_FENCE(Op, DAG);
54760b57cec5SDimitry Andric   case ISD::ATOMIC_SWAP:
54770b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
54780b57cec5SDimitry Andric   case ISD::ATOMIC_STORE:
54790b57cec5SDimitry Andric     return lowerATOMIC_STORE(Op, DAG);
54800b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD:
54810b57cec5SDimitry Andric     return lowerATOMIC_LOAD(Op, DAG);
54820b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_ADD:
54830b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
54840b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_SUB:
54850b57cec5SDimitry Andric     return lowerATOMIC_LOAD_SUB(Op, DAG);
54860b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_AND:
54870b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
54880b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_OR:
54890b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
54900b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_XOR:
54910b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
54920b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_NAND:
54930b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
54940b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_MIN:
54950b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
54960b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_MAX:
54970b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
54980b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_UMIN:
54990b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
55000b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_UMAX:
55010b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
55020b57cec5SDimitry Andric   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
55030b57cec5SDimitry Andric     return lowerATOMIC_CMP_SWAP(Op, DAG);
55040b57cec5SDimitry Andric   case ISD::STACKSAVE:
55050b57cec5SDimitry Andric     return lowerSTACKSAVE(Op, DAG);
55060b57cec5SDimitry Andric   case ISD::STACKRESTORE:
55070b57cec5SDimitry Andric     return lowerSTACKRESTORE(Op, DAG);
55080b57cec5SDimitry Andric   case ISD::PREFETCH:
55090b57cec5SDimitry Andric     return lowerPREFETCH(Op, DAG);
55100b57cec5SDimitry Andric   case ISD::INTRINSIC_W_CHAIN:
55110b57cec5SDimitry Andric     return lowerINTRINSIC_W_CHAIN(Op, DAG);
55120b57cec5SDimitry Andric   case ISD::INTRINSIC_WO_CHAIN:
55130b57cec5SDimitry Andric     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
55140b57cec5SDimitry Andric   case ISD::BUILD_VECTOR:
55150b57cec5SDimitry Andric     return lowerBUILD_VECTOR(Op, DAG);
55160b57cec5SDimitry Andric   case ISD::VECTOR_SHUFFLE:
55170b57cec5SDimitry Andric     return lowerVECTOR_SHUFFLE(Op, DAG);
55180b57cec5SDimitry Andric   case ISD::SCALAR_TO_VECTOR:
55190b57cec5SDimitry Andric     return lowerSCALAR_TO_VECTOR(Op, DAG);
55200b57cec5SDimitry Andric   case ISD::INSERT_VECTOR_ELT:
55210b57cec5SDimitry Andric     return lowerINSERT_VECTOR_ELT(Op, DAG);
55220b57cec5SDimitry Andric   case ISD::EXTRACT_VECTOR_ELT:
55230b57cec5SDimitry Andric     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
55240b57cec5SDimitry Andric   case ISD::SIGN_EXTEND_VECTOR_INREG:
55255ffd83dbSDimitry Andric     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
55260b57cec5SDimitry Andric   case ISD::ZERO_EXTEND_VECTOR_INREG:
55275ffd83dbSDimitry Andric     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
55280b57cec5SDimitry Andric   case ISD::SHL:
55290b57cec5SDimitry Andric     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
55300b57cec5SDimitry Andric   case ISD::SRL:
55310b57cec5SDimitry Andric     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
55320b57cec5SDimitry Andric   case ISD::SRA:
55330b57cec5SDimitry Andric     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
55340b57cec5SDimitry Andric   default:
55350b57cec5SDimitry Andric     llvm_unreachable("Unexpected node to lower");
55360b57cec5SDimitry Andric   }
55370b57cec5SDimitry Andric }
55380b57cec5SDimitry Andric 
55390b57cec5SDimitry Andric // Lower operations with invalid operand or result types (currently used
55400b57cec5SDimitry Andric // only for 128-bit integer types).
55410b57cec5SDimitry Andric void
55420b57cec5SDimitry Andric SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
55430b57cec5SDimitry Andric                                              SmallVectorImpl<SDValue> &Results,
55440b57cec5SDimitry Andric                                              SelectionDAG &DAG) const {
55450b57cec5SDimitry Andric   switch (N->getOpcode()) {
55460b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD: {
55470b57cec5SDimitry Andric     SDLoc DL(N);
55480b57cec5SDimitry Andric     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
55490b57cec5SDimitry Andric     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
55500b57cec5SDimitry Andric     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
55510b57cec5SDimitry Andric     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
55520b57cec5SDimitry Andric                                           DL, Tys, Ops, MVT::i128, MMO);
55530b57cec5SDimitry Andric     Results.push_back(lowerGR128ToI128(DAG, Res));
55540b57cec5SDimitry Andric     Results.push_back(Res.getValue(1));
55550b57cec5SDimitry Andric     break;
55560b57cec5SDimitry Andric   }
55570b57cec5SDimitry Andric   case ISD::ATOMIC_STORE: {
55580b57cec5SDimitry Andric     SDLoc DL(N);
55590b57cec5SDimitry Andric     SDVTList Tys = DAG.getVTList(MVT::Other);
55600b57cec5SDimitry Andric     SDValue Ops[] = { N->getOperand(0),
55610b57cec5SDimitry Andric                       lowerI128ToGR128(DAG, N->getOperand(2)),
55620b57cec5SDimitry Andric                       N->getOperand(1) };
55630b57cec5SDimitry Andric     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
55640b57cec5SDimitry Andric     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
55650b57cec5SDimitry Andric                                           DL, Tys, Ops, MVT::i128, MMO);
55660b57cec5SDimitry Andric     // We have to enforce sequential consistency by performing a
55670b57cec5SDimitry Andric     // serialization operation after the store.
5568*fe6060f1SDimitry Andric     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
55690b57cec5SDimitry Andric         AtomicOrdering::SequentiallyConsistent)
55700b57cec5SDimitry Andric       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
55710b57cec5SDimitry Andric                                        MVT::Other, Res), 0);
55720b57cec5SDimitry Andric     Results.push_back(Res);
55730b57cec5SDimitry Andric     break;
55740b57cec5SDimitry Andric   }
55750b57cec5SDimitry Andric   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
55760b57cec5SDimitry Andric     SDLoc DL(N);
55770b57cec5SDimitry Andric     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
55780b57cec5SDimitry Andric     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
55790b57cec5SDimitry Andric                       lowerI128ToGR128(DAG, N->getOperand(2)),
55800b57cec5SDimitry Andric                       lowerI128ToGR128(DAG, N->getOperand(3)) };
55810b57cec5SDimitry Andric     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
55820b57cec5SDimitry Andric     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
55830b57cec5SDimitry Andric                                           DL, Tys, Ops, MVT::i128, MMO);
55840b57cec5SDimitry Andric     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
55850b57cec5SDimitry Andric                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
55860b57cec5SDimitry Andric     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
55870b57cec5SDimitry Andric     Results.push_back(lowerGR128ToI128(DAG, Res));
55880b57cec5SDimitry Andric     Results.push_back(Success);
55890b57cec5SDimitry Andric     Results.push_back(Res.getValue(2));
55900b57cec5SDimitry Andric     break;
55910b57cec5SDimitry Andric   }
55920b57cec5SDimitry Andric   default:
55930b57cec5SDimitry Andric     llvm_unreachable("Unexpected node to lower");
55940b57cec5SDimitry Andric   }
55950b57cec5SDimitry Andric }
55960b57cec5SDimitry Andric 
55970b57cec5SDimitry Andric void
55980b57cec5SDimitry Andric SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
55990b57cec5SDimitry Andric                                           SmallVectorImpl<SDValue> &Results,
56000b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
56010b57cec5SDimitry Andric   return LowerOperationWrapper(N, Results, DAG);
56020b57cec5SDimitry Andric }
56030b57cec5SDimitry Andric 
56040b57cec5SDimitry Andric const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
56050b57cec5SDimitry Andric #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
56060b57cec5SDimitry Andric   switch ((SystemZISD::NodeType)Opcode) {
56070b57cec5SDimitry Andric     case SystemZISD::FIRST_NUMBER: break;
56080b57cec5SDimitry Andric     OPCODE(RET_FLAG);
56090b57cec5SDimitry Andric     OPCODE(CALL);
56100b57cec5SDimitry Andric     OPCODE(SIBCALL);
56110b57cec5SDimitry Andric     OPCODE(TLS_GDCALL);
56120b57cec5SDimitry Andric     OPCODE(TLS_LDCALL);
56130b57cec5SDimitry Andric     OPCODE(PCREL_WRAPPER);
56140b57cec5SDimitry Andric     OPCODE(PCREL_OFFSET);
56150b57cec5SDimitry Andric     OPCODE(ICMP);
56160b57cec5SDimitry Andric     OPCODE(FCMP);
5617480093f4SDimitry Andric     OPCODE(STRICT_FCMP);
5618480093f4SDimitry Andric     OPCODE(STRICT_FCMPS);
56190b57cec5SDimitry Andric     OPCODE(TM);
56200b57cec5SDimitry Andric     OPCODE(BR_CCMASK);
56210b57cec5SDimitry Andric     OPCODE(SELECT_CCMASK);
56220b57cec5SDimitry Andric     OPCODE(ADJDYNALLOC);
56235ffd83dbSDimitry Andric     OPCODE(PROBED_ALLOCA);
56240b57cec5SDimitry Andric     OPCODE(POPCNT);
56250b57cec5SDimitry Andric     OPCODE(SMUL_LOHI);
56260b57cec5SDimitry Andric     OPCODE(UMUL_LOHI);
56270b57cec5SDimitry Andric     OPCODE(SDIVREM);
56280b57cec5SDimitry Andric     OPCODE(UDIVREM);
56290b57cec5SDimitry Andric     OPCODE(SADDO);
56300b57cec5SDimitry Andric     OPCODE(SSUBO);
56310b57cec5SDimitry Andric     OPCODE(UADDO);
56320b57cec5SDimitry Andric     OPCODE(USUBO);
56330b57cec5SDimitry Andric     OPCODE(ADDCARRY);
56340b57cec5SDimitry Andric     OPCODE(SUBCARRY);
56350b57cec5SDimitry Andric     OPCODE(GET_CCMASK);
56360b57cec5SDimitry Andric     OPCODE(MVC);
56370b57cec5SDimitry Andric     OPCODE(MVC_LOOP);
56380b57cec5SDimitry Andric     OPCODE(NC);
56390b57cec5SDimitry Andric     OPCODE(NC_LOOP);
56400b57cec5SDimitry Andric     OPCODE(OC);
56410b57cec5SDimitry Andric     OPCODE(OC_LOOP);
56420b57cec5SDimitry Andric     OPCODE(XC);
56430b57cec5SDimitry Andric     OPCODE(XC_LOOP);
56440b57cec5SDimitry Andric     OPCODE(CLC);
56450b57cec5SDimitry Andric     OPCODE(CLC_LOOP);
56460b57cec5SDimitry Andric     OPCODE(STPCPY);
56470b57cec5SDimitry Andric     OPCODE(STRCMP);
56480b57cec5SDimitry Andric     OPCODE(SEARCH_STRING);
56490b57cec5SDimitry Andric     OPCODE(IPM);
56500b57cec5SDimitry Andric     OPCODE(MEMBARRIER);
56510b57cec5SDimitry Andric     OPCODE(TBEGIN);
56520b57cec5SDimitry Andric     OPCODE(TBEGIN_NOFLOAT);
56530b57cec5SDimitry Andric     OPCODE(TEND);
56540b57cec5SDimitry Andric     OPCODE(BYTE_MASK);
56550b57cec5SDimitry Andric     OPCODE(ROTATE_MASK);
56560b57cec5SDimitry Andric     OPCODE(REPLICATE);
56570b57cec5SDimitry Andric     OPCODE(JOIN_DWORDS);
56580b57cec5SDimitry Andric     OPCODE(SPLAT);
56590b57cec5SDimitry Andric     OPCODE(MERGE_HIGH);
56600b57cec5SDimitry Andric     OPCODE(MERGE_LOW);
56610b57cec5SDimitry Andric     OPCODE(SHL_DOUBLE);
56620b57cec5SDimitry Andric     OPCODE(PERMUTE_DWORDS);
56630b57cec5SDimitry Andric     OPCODE(PERMUTE);
56640b57cec5SDimitry Andric     OPCODE(PACK);
56650b57cec5SDimitry Andric     OPCODE(PACKS_CC);
56660b57cec5SDimitry Andric     OPCODE(PACKLS_CC);
56670b57cec5SDimitry Andric     OPCODE(UNPACK_HIGH);
56680b57cec5SDimitry Andric     OPCODE(UNPACKL_HIGH);
56690b57cec5SDimitry Andric     OPCODE(UNPACK_LOW);
56700b57cec5SDimitry Andric     OPCODE(UNPACKL_LOW);
56710b57cec5SDimitry Andric     OPCODE(VSHL_BY_SCALAR);
56720b57cec5SDimitry Andric     OPCODE(VSRL_BY_SCALAR);
56730b57cec5SDimitry Andric     OPCODE(VSRA_BY_SCALAR);
56740b57cec5SDimitry Andric     OPCODE(VSUM);
56750b57cec5SDimitry Andric     OPCODE(VICMPE);
56760b57cec5SDimitry Andric     OPCODE(VICMPH);
56770b57cec5SDimitry Andric     OPCODE(VICMPHL);
56780b57cec5SDimitry Andric     OPCODE(VICMPES);
56790b57cec5SDimitry Andric     OPCODE(VICMPHS);
56800b57cec5SDimitry Andric     OPCODE(VICMPHLS);
56810b57cec5SDimitry Andric     OPCODE(VFCMPE);
5682480093f4SDimitry Andric     OPCODE(STRICT_VFCMPE);
5683480093f4SDimitry Andric     OPCODE(STRICT_VFCMPES);
56840b57cec5SDimitry Andric     OPCODE(VFCMPH);
5685480093f4SDimitry Andric     OPCODE(STRICT_VFCMPH);
5686480093f4SDimitry Andric     OPCODE(STRICT_VFCMPHS);
56870b57cec5SDimitry Andric     OPCODE(VFCMPHE);
5688480093f4SDimitry Andric     OPCODE(STRICT_VFCMPHE);
5689480093f4SDimitry Andric     OPCODE(STRICT_VFCMPHES);
56900b57cec5SDimitry Andric     OPCODE(VFCMPES);
56910b57cec5SDimitry Andric     OPCODE(VFCMPHS);
56920b57cec5SDimitry Andric     OPCODE(VFCMPHES);
56930b57cec5SDimitry Andric     OPCODE(VFTCI);
56940b57cec5SDimitry Andric     OPCODE(VEXTEND);
5695480093f4SDimitry Andric     OPCODE(STRICT_VEXTEND);
56960b57cec5SDimitry Andric     OPCODE(VROUND);
5697480093f4SDimitry Andric     OPCODE(STRICT_VROUND);
56980b57cec5SDimitry Andric     OPCODE(VTM);
56990b57cec5SDimitry Andric     OPCODE(VFAE_CC);
57000b57cec5SDimitry Andric     OPCODE(VFAEZ_CC);
57010b57cec5SDimitry Andric     OPCODE(VFEE_CC);
57020b57cec5SDimitry Andric     OPCODE(VFEEZ_CC);
57030b57cec5SDimitry Andric     OPCODE(VFENE_CC);
57040b57cec5SDimitry Andric     OPCODE(VFENEZ_CC);
57050b57cec5SDimitry Andric     OPCODE(VISTR_CC);
57060b57cec5SDimitry Andric     OPCODE(VSTRC_CC);
57070b57cec5SDimitry Andric     OPCODE(VSTRCZ_CC);
57080b57cec5SDimitry Andric     OPCODE(VSTRS_CC);
57090b57cec5SDimitry Andric     OPCODE(VSTRSZ_CC);
57100b57cec5SDimitry Andric     OPCODE(TDC);
57110b57cec5SDimitry Andric     OPCODE(ATOMIC_SWAPW);
57120b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_ADD);
57130b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_SUB);
57140b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_AND);
57150b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_OR);
57160b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_XOR);
57170b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_NAND);
57180b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_MIN);
57190b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_MAX);
57200b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_UMIN);
57210b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_UMAX);
57220b57cec5SDimitry Andric     OPCODE(ATOMIC_CMP_SWAPW);
57230b57cec5SDimitry Andric     OPCODE(ATOMIC_CMP_SWAP);
57240b57cec5SDimitry Andric     OPCODE(ATOMIC_LOAD_128);
57250b57cec5SDimitry Andric     OPCODE(ATOMIC_STORE_128);
57260b57cec5SDimitry Andric     OPCODE(ATOMIC_CMP_SWAP_128);
57270b57cec5SDimitry Andric     OPCODE(LRV);
57280b57cec5SDimitry Andric     OPCODE(STRV);
57290b57cec5SDimitry Andric     OPCODE(VLER);
57300b57cec5SDimitry Andric     OPCODE(VSTER);
57310b57cec5SDimitry Andric     OPCODE(PREFETCH);
57320b57cec5SDimitry Andric   }
57330b57cec5SDimitry Andric   return nullptr;
57340b57cec5SDimitry Andric #undef OPCODE
57350b57cec5SDimitry Andric }
57360b57cec5SDimitry Andric 
57370b57cec5SDimitry Andric // Return true if VT is a vector whose elements are a whole number of bytes
57380b57cec5SDimitry Andric // in width. Also check for presence of vector support.
57390b57cec5SDimitry Andric bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
57400b57cec5SDimitry Andric   if (!Subtarget.hasVector())
57410b57cec5SDimitry Andric     return false;
57420b57cec5SDimitry Andric 
57430b57cec5SDimitry Andric   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
57440b57cec5SDimitry Andric }
57450b57cec5SDimitry Andric 
57460b57cec5SDimitry Andric // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
57470b57cec5SDimitry Andric // producing a result of type ResVT.  Op is a possibly bitcast version
57480b57cec5SDimitry Andric // of the input vector and Index is the index (based on type VecVT) that
57490b57cec5SDimitry Andric // should be extracted.  Return the new extraction if a simplification
57500b57cec5SDimitry Andric // was possible or if Force is true.
57510b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
57520b57cec5SDimitry Andric                                               EVT VecVT, SDValue Op,
57530b57cec5SDimitry Andric                                               unsigned Index,
57540b57cec5SDimitry Andric                                               DAGCombinerInfo &DCI,
57550b57cec5SDimitry Andric                                               bool Force) const {
57560b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
57570b57cec5SDimitry Andric 
57580b57cec5SDimitry Andric   // The number of bytes being extracted.
57590b57cec5SDimitry Andric   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
57600b57cec5SDimitry Andric 
57610b57cec5SDimitry Andric   for (;;) {
57620b57cec5SDimitry Andric     unsigned Opcode = Op.getOpcode();
57630b57cec5SDimitry Andric     if (Opcode == ISD::BITCAST)
57640b57cec5SDimitry Andric       // Look through bitcasts.
57650b57cec5SDimitry Andric       Op = Op.getOperand(0);
57660b57cec5SDimitry Andric     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
57670b57cec5SDimitry Andric              canTreatAsByteVector(Op.getValueType())) {
57680b57cec5SDimitry Andric       // Get a VPERM-like permute mask and see whether the bytes covered
57690b57cec5SDimitry Andric       // by the extracted element are a contiguous sequence from one
57700b57cec5SDimitry Andric       // source operand.
57710b57cec5SDimitry Andric       SmallVector<int, SystemZ::VectorBytes> Bytes;
57720b57cec5SDimitry Andric       if (!getVPermMask(Op, Bytes))
57730b57cec5SDimitry Andric         break;
57740b57cec5SDimitry Andric       int First;
57750b57cec5SDimitry Andric       if (!getShuffleInput(Bytes, Index * BytesPerElement,
57760b57cec5SDimitry Andric                            BytesPerElement, First))
57770b57cec5SDimitry Andric         break;
57780b57cec5SDimitry Andric       if (First < 0)
57790b57cec5SDimitry Andric         return DAG.getUNDEF(ResVT);
57800b57cec5SDimitry Andric       // Make sure the contiguous sequence starts at a multiple of the
57810b57cec5SDimitry Andric       // original element size.
57820b57cec5SDimitry Andric       unsigned Byte = unsigned(First) % Bytes.size();
57830b57cec5SDimitry Andric       if (Byte % BytesPerElement != 0)
57840b57cec5SDimitry Andric         break;
57850b57cec5SDimitry Andric       // We can get the extracted value directly from an input.
57860b57cec5SDimitry Andric       Index = Byte / BytesPerElement;
57870b57cec5SDimitry Andric       Op = Op.getOperand(unsigned(First) / Bytes.size());
57880b57cec5SDimitry Andric       Force = true;
57890b57cec5SDimitry Andric     } else if (Opcode == ISD::BUILD_VECTOR &&
57900b57cec5SDimitry Andric                canTreatAsByteVector(Op.getValueType())) {
57910b57cec5SDimitry Andric       // We can only optimize this case if the BUILD_VECTOR elements are
57920b57cec5SDimitry Andric       // at least as wide as the extracted value.
57930b57cec5SDimitry Andric       EVT OpVT = Op.getValueType();
57940b57cec5SDimitry Andric       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
57950b57cec5SDimitry Andric       if (OpBytesPerElement < BytesPerElement)
57960b57cec5SDimitry Andric         break;
57970b57cec5SDimitry Andric       // Make sure that the least-significant bit of the extracted value
57980b57cec5SDimitry Andric       // is the least significant bit of an input.
57990b57cec5SDimitry Andric       unsigned End = (Index + 1) * BytesPerElement;
58000b57cec5SDimitry Andric       if (End % OpBytesPerElement != 0)
58010b57cec5SDimitry Andric         break;
58020b57cec5SDimitry Andric       // We're extracting the low part of one operand of the BUILD_VECTOR.
58030b57cec5SDimitry Andric       Op = Op.getOperand(End / OpBytesPerElement - 1);
58040b57cec5SDimitry Andric       if (!Op.getValueType().isInteger()) {
58050b57cec5SDimitry Andric         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
58060b57cec5SDimitry Andric         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
58070b57cec5SDimitry Andric         DCI.AddToWorklist(Op.getNode());
58080b57cec5SDimitry Andric       }
58090b57cec5SDimitry Andric       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
58100b57cec5SDimitry Andric       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
58110b57cec5SDimitry Andric       if (VT != ResVT) {
58120b57cec5SDimitry Andric         DCI.AddToWorklist(Op.getNode());
58130b57cec5SDimitry Andric         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
58140b57cec5SDimitry Andric       }
58150b57cec5SDimitry Andric       return Op;
58160b57cec5SDimitry Andric     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
58170b57cec5SDimitry Andric                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
58180b57cec5SDimitry Andric                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
58190b57cec5SDimitry Andric                canTreatAsByteVector(Op.getValueType()) &&
58200b57cec5SDimitry Andric                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
58210b57cec5SDimitry Andric       // Make sure that only the unextended bits are significant.
58220b57cec5SDimitry Andric       EVT ExtVT = Op.getValueType();
58230b57cec5SDimitry Andric       EVT OpVT = Op.getOperand(0).getValueType();
58240b57cec5SDimitry Andric       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
58250b57cec5SDimitry Andric       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
58260b57cec5SDimitry Andric       unsigned Byte = Index * BytesPerElement;
58270b57cec5SDimitry Andric       unsigned SubByte = Byte % ExtBytesPerElement;
58280b57cec5SDimitry Andric       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
58290b57cec5SDimitry Andric       if (SubByte < MinSubByte ||
58300b57cec5SDimitry Andric           SubByte + BytesPerElement > ExtBytesPerElement)
58310b57cec5SDimitry Andric         break;
58320b57cec5SDimitry Andric       // Get the byte offset of the unextended element
58330b57cec5SDimitry Andric       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
58340b57cec5SDimitry Andric       // ...then add the byte offset relative to that element.
58350b57cec5SDimitry Andric       Byte += SubByte - MinSubByte;
58360b57cec5SDimitry Andric       if (Byte % BytesPerElement != 0)
58370b57cec5SDimitry Andric         break;
58380b57cec5SDimitry Andric       Op = Op.getOperand(0);
58390b57cec5SDimitry Andric       Index = Byte / BytesPerElement;
58400b57cec5SDimitry Andric       Force = true;
58410b57cec5SDimitry Andric     } else
58420b57cec5SDimitry Andric       break;
58430b57cec5SDimitry Andric   }
58440b57cec5SDimitry Andric   if (Force) {
58450b57cec5SDimitry Andric     if (Op.getValueType() != VecVT) {
58460b57cec5SDimitry Andric       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
58470b57cec5SDimitry Andric       DCI.AddToWorklist(Op.getNode());
58480b57cec5SDimitry Andric     }
58490b57cec5SDimitry Andric     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
58500b57cec5SDimitry Andric                        DAG.getConstant(Index, DL, MVT::i32));
58510b57cec5SDimitry Andric   }
58520b57cec5SDimitry Andric   return SDValue();
58530b57cec5SDimitry Andric }
58540b57cec5SDimitry Andric 
58550b57cec5SDimitry Andric // Optimize vector operations in scalar value Op on the basis that Op
58560b57cec5SDimitry Andric // is truncated to TruncVT.
58570b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineTruncateExtract(
58580b57cec5SDimitry Andric     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
58590b57cec5SDimitry Andric   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
58600b57cec5SDimitry Andric   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
58610b57cec5SDimitry Andric   // of type TruncVT.
58620b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
58630b57cec5SDimitry Andric       TruncVT.getSizeInBits() % 8 == 0) {
58640b57cec5SDimitry Andric     SDValue Vec = Op.getOperand(0);
58650b57cec5SDimitry Andric     EVT VecVT = Vec.getValueType();
58660b57cec5SDimitry Andric     if (canTreatAsByteVector(VecVT)) {
58670b57cec5SDimitry Andric       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
58680b57cec5SDimitry Andric         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
58690b57cec5SDimitry Andric         unsigned TruncBytes = TruncVT.getStoreSize();
58700b57cec5SDimitry Andric         if (BytesPerElement % TruncBytes == 0) {
58710b57cec5SDimitry Andric           // Calculate the value of Y' in the above description.  We are
58720b57cec5SDimitry Andric           // splitting the original elements into Scale equal-sized pieces
58730b57cec5SDimitry Andric           // and for truncation purposes want the last (least-significant)
58740b57cec5SDimitry Andric           // of these pieces for IndexN.  This is easiest to do by calculating
58750b57cec5SDimitry Andric           // the start index of the following element and then subtracting 1.
58760b57cec5SDimitry Andric           unsigned Scale = BytesPerElement / TruncBytes;
58770b57cec5SDimitry Andric           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
58780b57cec5SDimitry Andric 
58790b57cec5SDimitry Andric           // Defer the creation of the bitcast from X to combineExtract,
58800b57cec5SDimitry Andric           // which might be able to optimize the extraction.
58810b57cec5SDimitry Andric           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
58820b57cec5SDimitry Andric                                    VecVT.getStoreSize() / TruncBytes);
58830b57cec5SDimitry Andric           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
58840b57cec5SDimitry Andric           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
58850b57cec5SDimitry Andric         }
58860b57cec5SDimitry Andric       }
58870b57cec5SDimitry Andric     }
58880b57cec5SDimitry Andric   }
58890b57cec5SDimitry Andric   return SDValue();
58900b57cec5SDimitry Andric }
58910b57cec5SDimitry Andric 
58920b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineZERO_EXTEND(
58930b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
58940b57cec5SDimitry Andric   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
58950b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
58960b57cec5SDimitry Andric   SDValue N0 = N->getOperand(0);
58970b57cec5SDimitry Andric   EVT VT = N->getValueType(0);
58980b57cec5SDimitry Andric   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
58990b57cec5SDimitry Andric     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
59000b57cec5SDimitry Andric     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
59010b57cec5SDimitry Andric     if (TrueOp && FalseOp) {
59020b57cec5SDimitry Andric       SDLoc DL(N0);
59030b57cec5SDimitry Andric       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
59040b57cec5SDimitry Andric                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
59050b57cec5SDimitry Andric                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
59060b57cec5SDimitry Andric       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
59070b57cec5SDimitry Andric       // If N0 has multiple uses, change other uses as well.
59080b57cec5SDimitry Andric       if (!N0.hasOneUse()) {
59090b57cec5SDimitry Andric         SDValue TruncSelect =
59100b57cec5SDimitry Andric           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
59110b57cec5SDimitry Andric         DCI.CombineTo(N0.getNode(), TruncSelect);
59120b57cec5SDimitry Andric       }
59130b57cec5SDimitry Andric       return NewSelect;
59140b57cec5SDimitry Andric     }
59150b57cec5SDimitry Andric   }
59160b57cec5SDimitry Andric   return SDValue();
59170b57cec5SDimitry Andric }
59180b57cec5SDimitry Andric 
59190b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
59200b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
59210b57cec5SDimitry Andric   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
59220b57cec5SDimitry Andric   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
59230b57cec5SDimitry Andric   // into (select_cc LHS, RHS, -1, 0, COND)
59240b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
59250b57cec5SDimitry Andric   SDValue N0 = N->getOperand(0);
59260b57cec5SDimitry Andric   EVT VT = N->getValueType(0);
59270b57cec5SDimitry Andric   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
59280b57cec5SDimitry Andric   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
59290b57cec5SDimitry Andric     N0 = N0.getOperand(0);
59300b57cec5SDimitry Andric   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
59310b57cec5SDimitry Andric     SDLoc DL(N0);
59320b57cec5SDimitry Andric     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
59330b57cec5SDimitry Andric                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
59340b57cec5SDimitry Andric                       N0.getOperand(2) };
59350b57cec5SDimitry Andric     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
59360b57cec5SDimitry Andric   }
59370b57cec5SDimitry Andric   return SDValue();
59380b57cec5SDimitry Andric }
59390b57cec5SDimitry Andric 
59400b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSIGN_EXTEND(
59410b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
59420b57cec5SDimitry Andric   // Convert (sext (ashr (shl X, C1), C2)) to
59430b57cec5SDimitry Andric   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
59440b57cec5SDimitry Andric   // cheap as narrower ones.
59450b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
59460b57cec5SDimitry Andric   SDValue N0 = N->getOperand(0);
59470b57cec5SDimitry Andric   EVT VT = N->getValueType(0);
59480b57cec5SDimitry Andric   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
59490b57cec5SDimitry Andric     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
59500b57cec5SDimitry Andric     SDValue Inner = N0.getOperand(0);
59510b57cec5SDimitry Andric     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
59520b57cec5SDimitry Andric       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
59530b57cec5SDimitry Andric         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
59540b57cec5SDimitry Andric         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
59550b57cec5SDimitry Andric         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
59560b57cec5SDimitry Andric         EVT ShiftVT = N0.getOperand(1).getValueType();
59570b57cec5SDimitry Andric         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
59580b57cec5SDimitry Andric                                   Inner.getOperand(0));
59590b57cec5SDimitry Andric         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
59600b57cec5SDimitry Andric                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
59610b57cec5SDimitry Andric                                                   ShiftVT));
59620b57cec5SDimitry Andric         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
59630b57cec5SDimitry Andric                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
59640b57cec5SDimitry Andric       }
59650b57cec5SDimitry Andric     }
59660b57cec5SDimitry Andric   }
59670b57cec5SDimitry Andric   return SDValue();
59680b57cec5SDimitry Andric }
59690b57cec5SDimitry Andric 
59700b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineMERGE(
59710b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
59720b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
59730b57cec5SDimitry Andric   unsigned Opcode = N->getOpcode();
59740b57cec5SDimitry Andric   SDValue Op0 = N->getOperand(0);
59750b57cec5SDimitry Andric   SDValue Op1 = N->getOperand(1);
59760b57cec5SDimitry Andric   if (Op0.getOpcode() == ISD::BITCAST)
59770b57cec5SDimitry Andric     Op0 = Op0.getOperand(0);
59780b57cec5SDimitry Andric   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
59790b57cec5SDimitry Andric     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
59800b57cec5SDimitry Andric     // for v4f32.
59810b57cec5SDimitry Andric     if (Op1 == N->getOperand(0))
59820b57cec5SDimitry Andric       return Op1;
59830b57cec5SDimitry Andric     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
59840b57cec5SDimitry Andric     EVT VT = Op1.getValueType();
59850b57cec5SDimitry Andric     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
59860b57cec5SDimitry Andric     if (ElemBytes <= 4) {
59870b57cec5SDimitry Andric       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
59880b57cec5SDimitry Andric                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
59890b57cec5SDimitry Andric       EVT InVT = VT.changeVectorElementTypeToInteger();
59900b57cec5SDimitry Andric       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
59910b57cec5SDimitry Andric                                    SystemZ::VectorBytes / ElemBytes / 2);
59920b57cec5SDimitry Andric       if (VT != InVT) {
59930b57cec5SDimitry Andric         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
59940b57cec5SDimitry Andric         DCI.AddToWorklist(Op1.getNode());
59950b57cec5SDimitry Andric       }
59960b57cec5SDimitry Andric       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
59970b57cec5SDimitry Andric       DCI.AddToWorklist(Op.getNode());
59980b57cec5SDimitry Andric       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
59990b57cec5SDimitry Andric     }
60000b57cec5SDimitry Andric   }
60010b57cec5SDimitry Andric   return SDValue();
60020b57cec5SDimitry Andric }
60030b57cec5SDimitry Andric 
60040b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineLOAD(
60050b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
60060b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
60070b57cec5SDimitry Andric   EVT LdVT = N->getValueType(0);
60080b57cec5SDimitry Andric   if (LdVT.isVector() || LdVT.isInteger())
60090b57cec5SDimitry Andric     return SDValue();
60100b57cec5SDimitry Andric   // Transform a scalar load that is REPLICATEd as well as having other
60110b57cec5SDimitry Andric   // use(s) to the form where the other use(s) use the first element of the
60120b57cec5SDimitry Andric   // REPLICATE instead of the load. Otherwise instruction selection will not
60130b57cec5SDimitry Andric   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
60140b57cec5SDimitry Andric   // point loads.
60150b57cec5SDimitry Andric 
60160b57cec5SDimitry Andric   SDValue Replicate;
60170b57cec5SDimitry Andric   SmallVector<SDNode*, 8> OtherUses;
60180b57cec5SDimitry Andric   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
60190b57cec5SDimitry Andric        UI != UE; ++UI) {
60200b57cec5SDimitry Andric     if (UI->getOpcode() == SystemZISD::REPLICATE) {
60210b57cec5SDimitry Andric       if (Replicate)
60220b57cec5SDimitry Andric         return SDValue(); // Should never happen
60230b57cec5SDimitry Andric       Replicate = SDValue(*UI, 0);
60240b57cec5SDimitry Andric     }
60250b57cec5SDimitry Andric     else if (UI.getUse().getResNo() == 0)
60260b57cec5SDimitry Andric       OtherUses.push_back(*UI);
60270b57cec5SDimitry Andric   }
60280b57cec5SDimitry Andric   if (!Replicate || OtherUses.empty())
60290b57cec5SDimitry Andric     return SDValue();
60300b57cec5SDimitry Andric 
60310b57cec5SDimitry Andric   SDLoc DL(N);
60320b57cec5SDimitry Andric   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
60330b57cec5SDimitry Andric                               Replicate, DAG.getConstant(0, DL, MVT::i32));
60340b57cec5SDimitry Andric   // Update uses of the loaded Value while preserving old chains.
60350b57cec5SDimitry Andric   for (SDNode *U : OtherUses) {
60360b57cec5SDimitry Andric     SmallVector<SDValue, 8> Ops;
60370b57cec5SDimitry Andric     for (SDValue Op : U->ops())
60380b57cec5SDimitry Andric       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
60390b57cec5SDimitry Andric     DAG.UpdateNodeOperands(U, Ops);
60400b57cec5SDimitry Andric   }
60410b57cec5SDimitry Andric   return SDValue(N, 0);
60420b57cec5SDimitry Andric }
60430b57cec5SDimitry Andric 
60440b57cec5SDimitry Andric bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
60450b57cec5SDimitry Andric   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
60460b57cec5SDimitry Andric     return true;
60470b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements2())
60480b57cec5SDimitry Andric     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
60490b57cec5SDimitry Andric       return true;
60500b57cec5SDimitry Andric   return false;
60510b57cec5SDimitry Andric }
60520b57cec5SDimitry Andric 
60530b57cec5SDimitry Andric static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
60540b57cec5SDimitry Andric   if (!VT.isVector() || !VT.isSimple() ||
60550b57cec5SDimitry Andric       VT.getSizeInBits() != 128 ||
60560b57cec5SDimitry Andric       VT.getScalarSizeInBits() % 8 != 0)
60570b57cec5SDimitry Andric     return false;
60580b57cec5SDimitry Andric 
60590b57cec5SDimitry Andric   unsigned NumElts = VT.getVectorNumElements();
60600b57cec5SDimitry Andric   for (unsigned i = 0; i < NumElts; ++i) {
60610b57cec5SDimitry Andric     if (M[i] < 0) continue; // ignore UNDEF indices
60620b57cec5SDimitry Andric     if ((unsigned) M[i] != NumElts - 1 - i)
60630b57cec5SDimitry Andric       return false;
60640b57cec5SDimitry Andric   }
60650b57cec5SDimitry Andric 
60660b57cec5SDimitry Andric   return true;
60670b57cec5SDimitry Andric }
60680b57cec5SDimitry Andric 
60690b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSTORE(
60700b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
60710b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
60720b57cec5SDimitry Andric   auto *SN = cast<StoreSDNode>(N);
60730b57cec5SDimitry Andric   auto &Op1 = N->getOperand(1);
60740b57cec5SDimitry Andric   EVT MemVT = SN->getMemoryVT();
60750b57cec5SDimitry Andric   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
60760b57cec5SDimitry Andric   // for the extraction to be done on a vMiN value, so that we can use VSTE.
60770b57cec5SDimitry Andric   // If X has wider elements then convert it to:
60780b57cec5SDimitry Andric   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
60790b57cec5SDimitry Andric   if (MemVT.isInteger() && SN->isTruncatingStore()) {
60800b57cec5SDimitry Andric     if (SDValue Value =
60810b57cec5SDimitry Andric             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
60820b57cec5SDimitry Andric       DCI.AddToWorklist(Value.getNode());
60830b57cec5SDimitry Andric 
60840b57cec5SDimitry Andric       // Rewrite the store with the new form of stored value.
60850b57cec5SDimitry Andric       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
60860b57cec5SDimitry Andric                                SN->getBasePtr(), SN->getMemoryVT(),
60870b57cec5SDimitry Andric                                SN->getMemOperand());
60880b57cec5SDimitry Andric     }
60890b57cec5SDimitry Andric   }
60900b57cec5SDimitry Andric   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
60910b57cec5SDimitry Andric   if (!SN->isTruncatingStore() &&
60920b57cec5SDimitry Andric       Op1.getOpcode() == ISD::BSWAP &&
60930b57cec5SDimitry Andric       Op1.getNode()->hasOneUse() &&
60940b57cec5SDimitry Andric       canLoadStoreByteSwapped(Op1.getValueType())) {
60950b57cec5SDimitry Andric 
60960b57cec5SDimitry Andric       SDValue BSwapOp = Op1.getOperand(0);
60970b57cec5SDimitry Andric 
60980b57cec5SDimitry Andric       if (BSwapOp.getValueType() == MVT::i16)
60990b57cec5SDimitry Andric         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
61000b57cec5SDimitry Andric 
61010b57cec5SDimitry Andric       SDValue Ops[] = {
61020b57cec5SDimitry Andric         N->getOperand(0), BSwapOp, N->getOperand(2)
61030b57cec5SDimitry Andric       };
61040b57cec5SDimitry Andric 
61050b57cec5SDimitry Andric       return
61060b57cec5SDimitry Andric         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
61070b57cec5SDimitry Andric                                 Ops, MemVT, SN->getMemOperand());
61080b57cec5SDimitry Andric     }
61090b57cec5SDimitry Andric   // Combine STORE (element-swap) into VSTER
61100b57cec5SDimitry Andric   if (!SN->isTruncatingStore() &&
61110b57cec5SDimitry Andric       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
61120b57cec5SDimitry Andric       Op1.getNode()->hasOneUse() &&
61130b57cec5SDimitry Andric       Subtarget.hasVectorEnhancements2()) {
61140b57cec5SDimitry Andric     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
61150b57cec5SDimitry Andric     ArrayRef<int> ShuffleMask = SVN->getMask();
61160b57cec5SDimitry Andric     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
61170b57cec5SDimitry Andric       SDValue Ops[] = {
61180b57cec5SDimitry Andric         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
61190b57cec5SDimitry Andric       };
61200b57cec5SDimitry Andric 
61210b57cec5SDimitry Andric       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
61220b57cec5SDimitry Andric                                      DAG.getVTList(MVT::Other),
61230b57cec5SDimitry Andric                                      Ops, MemVT, SN->getMemOperand());
61240b57cec5SDimitry Andric     }
61250b57cec5SDimitry Andric   }
61260b57cec5SDimitry Andric 
61270b57cec5SDimitry Andric   return SDValue();
61280b57cec5SDimitry Andric }
61290b57cec5SDimitry Andric 
61300b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
61310b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
61320b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
61330b57cec5SDimitry Andric   // Combine element-swap (LOAD) into VLER
61340b57cec5SDimitry Andric   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
61350b57cec5SDimitry Andric       N->getOperand(0).hasOneUse() &&
61360b57cec5SDimitry Andric       Subtarget.hasVectorEnhancements2()) {
61370b57cec5SDimitry Andric     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
61380b57cec5SDimitry Andric     ArrayRef<int> ShuffleMask = SVN->getMask();
61390b57cec5SDimitry Andric     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
61400b57cec5SDimitry Andric       SDValue Load = N->getOperand(0);
61410b57cec5SDimitry Andric       LoadSDNode *LD = cast<LoadSDNode>(Load);
61420b57cec5SDimitry Andric 
61430b57cec5SDimitry Andric       // Create the element-swapping load.
61440b57cec5SDimitry Andric       SDValue Ops[] = {
61450b57cec5SDimitry Andric         LD->getChain(),    // Chain
61460b57cec5SDimitry Andric         LD->getBasePtr()   // Ptr
61470b57cec5SDimitry Andric       };
61480b57cec5SDimitry Andric       SDValue ESLoad =
61490b57cec5SDimitry Andric         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
61500b57cec5SDimitry Andric                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
61510b57cec5SDimitry Andric                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
61520b57cec5SDimitry Andric 
61530b57cec5SDimitry Andric       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
61540b57cec5SDimitry Andric       // by the load dead.
61550b57cec5SDimitry Andric       DCI.CombineTo(N, ESLoad);
61560b57cec5SDimitry Andric 
61570b57cec5SDimitry Andric       // Next, combine the load away, we give it a bogus result value but a real
61580b57cec5SDimitry Andric       // chain result.  The result value is dead because the shuffle is dead.
61590b57cec5SDimitry Andric       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
61600b57cec5SDimitry Andric 
61610b57cec5SDimitry Andric       // Return N so it doesn't get rechecked!
61620b57cec5SDimitry Andric       return SDValue(N, 0);
61630b57cec5SDimitry Andric     }
61640b57cec5SDimitry Andric   }
61650b57cec5SDimitry Andric 
61660b57cec5SDimitry Andric   return SDValue();
61670b57cec5SDimitry Andric }
61680b57cec5SDimitry Andric 
61690b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
61700b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
61710b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
61720b57cec5SDimitry Andric 
61730b57cec5SDimitry Andric   if (!Subtarget.hasVector())
61740b57cec5SDimitry Andric     return SDValue();
61750b57cec5SDimitry Andric 
61760b57cec5SDimitry Andric   // Look through bitcasts that retain the number of vector elements.
61770b57cec5SDimitry Andric   SDValue Op = N->getOperand(0);
61780b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::BITCAST &&
61790b57cec5SDimitry Andric       Op.getValueType().isVector() &&
61800b57cec5SDimitry Andric       Op.getOperand(0).getValueType().isVector() &&
61810b57cec5SDimitry Andric       Op.getValueType().getVectorNumElements() ==
61820b57cec5SDimitry Andric       Op.getOperand(0).getValueType().getVectorNumElements())
61830b57cec5SDimitry Andric     Op = Op.getOperand(0);
61840b57cec5SDimitry Andric 
61850b57cec5SDimitry Andric   // Pull BSWAP out of a vector extraction.
61860b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
61870b57cec5SDimitry Andric     EVT VecVT = Op.getValueType();
61880b57cec5SDimitry Andric     EVT EltVT = VecVT.getVectorElementType();
61890b57cec5SDimitry Andric     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
61900b57cec5SDimitry Andric                      Op.getOperand(0), N->getOperand(1));
61910b57cec5SDimitry Andric     DCI.AddToWorklist(Op.getNode());
61920b57cec5SDimitry Andric     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
61930b57cec5SDimitry Andric     if (EltVT != N->getValueType(0)) {
61940b57cec5SDimitry Andric       DCI.AddToWorklist(Op.getNode());
61950b57cec5SDimitry Andric       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
61960b57cec5SDimitry Andric     }
61970b57cec5SDimitry Andric     return Op;
61980b57cec5SDimitry Andric   }
61990b57cec5SDimitry Andric 
62000b57cec5SDimitry Andric   // Try to simplify a vector extraction.
62010b57cec5SDimitry Andric   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
62020b57cec5SDimitry Andric     SDValue Op0 = N->getOperand(0);
62030b57cec5SDimitry Andric     EVT VecVT = Op0.getValueType();
62040b57cec5SDimitry Andric     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
62050b57cec5SDimitry Andric                           IndexN->getZExtValue(), DCI, false);
62060b57cec5SDimitry Andric   }
62070b57cec5SDimitry Andric   return SDValue();
62080b57cec5SDimitry Andric }
62090b57cec5SDimitry Andric 
62100b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineJOIN_DWORDS(
62110b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
62120b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
62130b57cec5SDimitry Andric   // (join_dwords X, X) == (replicate X)
62140b57cec5SDimitry Andric   if (N->getOperand(0) == N->getOperand(1))
62150b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
62160b57cec5SDimitry Andric                        N->getOperand(0));
62170b57cec5SDimitry Andric   return SDValue();
62180b57cec5SDimitry Andric }
62190b57cec5SDimitry Andric 
6220480093f4SDimitry Andric static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6221480093f4SDimitry Andric   SDValue Chain1 = N1->getOperand(0);
6222480093f4SDimitry Andric   SDValue Chain2 = N2->getOperand(0);
6223480093f4SDimitry Andric 
6224480093f4SDimitry Andric   // Trivial case: both nodes take the same chain.
6225480093f4SDimitry Andric   if (Chain1 == Chain2)
6226480093f4SDimitry Andric     return Chain1;
6227480093f4SDimitry Andric 
6228480093f4SDimitry Andric   // FIXME - we could handle more complex cases via TokenFactor,
6229480093f4SDimitry Andric   // assuming we can verify that this would not create a cycle.
6230480093f4SDimitry Andric   return SDValue();
6231480093f4SDimitry Andric }
6232480093f4SDimitry Andric 
62330b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineFP_ROUND(
62340b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
62350b57cec5SDimitry Andric 
62360b57cec5SDimitry Andric   if (!Subtarget.hasVector())
62370b57cec5SDimitry Andric     return SDValue();
62380b57cec5SDimitry Andric 
62390b57cec5SDimitry Andric   // (fpround (extract_vector_elt X 0))
62400b57cec5SDimitry Andric   // (fpround (extract_vector_elt X 1)) ->
62410b57cec5SDimitry Andric   // (extract_vector_elt (VROUND X) 0)
62420b57cec5SDimitry Andric   // (extract_vector_elt (VROUND X) 2)
62430b57cec5SDimitry Andric   //
62440b57cec5SDimitry Andric   // This is a special case since the target doesn't really support v2f32s.
6245480093f4SDimitry Andric   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
62460b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
6247480093f4SDimitry Andric   SDValue Op0 = N->getOperand(OpNo);
62480b57cec5SDimitry Andric   if (N->getValueType(0) == MVT::f32 &&
62490b57cec5SDimitry Andric       Op0.hasOneUse() &&
62500b57cec5SDimitry Andric       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
62510b57cec5SDimitry Andric       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
62520b57cec5SDimitry Andric       Op0.getOperand(1).getOpcode() == ISD::Constant &&
62530b57cec5SDimitry Andric       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
62540b57cec5SDimitry Andric     SDValue Vec = Op0.getOperand(0);
62550b57cec5SDimitry Andric     for (auto *U : Vec->uses()) {
62560b57cec5SDimitry Andric       if (U != Op0.getNode() &&
62570b57cec5SDimitry Andric           U->hasOneUse() &&
62580b57cec5SDimitry Andric           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
62590b57cec5SDimitry Andric           U->getOperand(0) == Vec &&
62600b57cec5SDimitry Andric           U->getOperand(1).getOpcode() == ISD::Constant &&
62610b57cec5SDimitry Andric           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
62620b57cec5SDimitry Andric         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6263480093f4SDimitry Andric         if (OtherRound.getOpcode() == N->getOpcode() &&
6264480093f4SDimitry Andric             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
62650b57cec5SDimitry Andric             OtherRound.getValueType() == MVT::f32) {
6266480093f4SDimitry Andric           SDValue VRound, Chain;
6267480093f4SDimitry Andric           if (N->isStrictFPOpcode()) {
6268480093f4SDimitry Andric             Chain = MergeInputChains(N, OtherRound.getNode());
6269480093f4SDimitry Andric             if (!Chain)
6270480093f4SDimitry Andric               continue;
6271480093f4SDimitry Andric             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6272480093f4SDimitry Andric                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6273480093f4SDimitry Andric             Chain = VRound.getValue(1);
6274480093f4SDimitry Andric           } else
6275480093f4SDimitry Andric             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
62760b57cec5SDimitry Andric                                  MVT::v4f32, Vec);
62770b57cec5SDimitry Andric           DCI.AddToWorklist(VRound.getNode());
62780b57cec5SDimitry Andric           SDValue Extract1 =
62790b57cec5SDimitry Andric             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
62800b57cec5SDimitry Andric                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
62810b57cec5SDimitry Andric           DCI.AddToWorklist(Extract1.getNode());
62820b57cec5SDimitry Andric           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6283480093f4SDimitry Andric           if (Chain)
6284480093f4SDimitry Andric             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
62850b57cec5SDimitry Andric           SDValue Extract0 =
62860b57cec5SDimitry Andric             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
62870b57cec5SDimitry Andric                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6288480093f4SDimitry Andric           if (Chain)
6289480093f4SDimitry Andric             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6290480093f4SDimitry Andric                                N->getVTList(), Extract0, Chain);
62910b57cec5SDimitry Andric           return Extract0;
62920b57cec5SDimitry Andric         }
62930b57cec5SDimitry Andric       }
62940b57cec5SDimitry Andric     }
62950b57cec5SDimitry Andric   }
62960b57cec5SDimitry Andric   return SDValue();
62970b57cec5SDimitry Andric }
62980b57cec5SDimitry Andric 
62990b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineFP_EXTEND(
63000b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
63010b57cec5SDimitry Andric 
63020b57cec5SDimitry Andric   if (!Subtarget.hasVector())
63030b57cec5SDimitry Andric     return SDValue();
63040b57cec5SDimitry Andric 
63050b57cec5SDimitry Andric   // (fpextend (extract_vector_elt X 0))
63060b57cec5SDimitry Andric   // (fpextend (extract_vector_elt X 2)) ->
63070b57cec5SDimitry Andric   // (extract_vector_elt (VEXTEND X) 0)
63080b57cec5SDimitry Andric   // (extract_vector_elt (VEXTEND X) 1)
63090b57cec5SDimitry Andric   //
63100b57cec5SDimitry Andric   // This is a special case since the target doesn't really support v2f32s.
6311480093f4SDimitry Andric   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
63120b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
6313480093f4SDimitry Andric   SDValue Op0 = N->getOperand(OpNo);
63140b57cec5SDimitry Andric   if (N->getValueType(0) == MVT::f64 &&
63150b57cec5SDimitry Andric       Op0.hasOneUse() &&
63160b57cec5SDimitry Andric       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
63170b57cec5SDimitry Andric       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
63180b57cec5SDimitry Andric       Op0.getOperand(1).getOpcode() == ISD::Constant &&
63190b57cec5SDimitry Andric       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
63200b57cec5SDimitry Andric     SDValue Vec = Op0.getOperand(0);
63210b57cec5SDimitry Andric     for (auto *U : Vec->uses()) {
63220b57cec5SDimitry Andric       if (U != Op0.getNode() &&
63230b57cec5SDimitry Andric           U->hasOneUse() &&
63240b57cec5SDimitry Andric           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
63250b57cec5SDimitry Andric           U->getOperand(0) == Vec &&
63260b57cec5SDimitry Andric           U->getOperand(1).getOpcode() == ISD::Constant &&
63270b57cec5SDimitry Andric           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
63280b57cec5SDimitry Andric         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6329480093f4SDimitry Andric         if (OtherExtend.getOpcode() == N->getOpcode() &&
6330480093f4SDimitry Andric             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
63310b57cec5SDimitry Andric             OtherExtend.getValueType() == MVT::f64) {
6332480093f4SDimitry Andric           SDValue VExtend, Chain;
6333480093f4SDimitry Andric           if (N->isStrictFPOpcode()) {
6334480093f4SDimitry Andric             Chain = MergeInputChains(N, OtherExtend.getNode());
6335480093f4SDimitry Andric             if (!Chain)
6336480093f4SDimitry Andric               continue;
6337480093f4SDimitry Andric             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6338480093f4SDimitry Andric                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6339480093f4SDimitry Andric             Chain = VExtend.getValue(1);
6340480093f4SDimitry Andric           } else
6341480093f4SDimitry Andric             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
63420b57cec5SDimitry Andric                                   MVT::v2f64, Vec);
63430b57cec5SDimitry Andric           DCI.AddToWorklist(VExtend.getNode());
63440b57cec5SDimitry Andric           SDValue Extract1 =
63450b57cec5SDimitry Andric             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
63460b57cec5SDimitry Andric                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
63470b57cec5SDimitry Andric           DCI.AddToWorklist(Extract1.getNode());
63480b57cec5SDimitry Andric           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6349480093f4SDimitry Andric           if (Chain)
6350480093f4SDimitry Andric             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
63510b57cec5SDimitry Andric           SDValue Extract0 =
63520b57cec5SDimitry Andric             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
63530b57cec5SDimitry Andric                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6354480093f4SDimitry Andric           if (Chain)
6355480093f4SDimitry Andric             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6356480093f4SDimitry Andric                                N->getVTList(), Extract0, Chain);
63570b57cec5SDimitry Andric           return Extract0;
63580b57cec5SDimitry Andric         }
63590b57cec5SDimitry Andric       }
63600b57cec5SDimitry Andric     }
63610b57cec5SDimitry Andric   }
63620b57cec5SDimitry Andric   return SDValue();
63630b57cec5SDimitry Andric }
63640b57cec5SDimitry Andric 
63655ffd83dbSDimitry Andric SDValue SystemZTargetLowering::combineINT_TO_FP(
63665ffd83dbSDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
63675ffd83dbSDimitry Andric   if (DCI.Level != BeforeLegalizeTypes)
63685ffd83dbSDimitry Andric     return SDValue();
63695ffd83dbSDimitry Andric   unsigned Opcode = N->getOpcode();
63705ffd83dbSDimitry Andric   EVT OutVT = N->getValueType(0);
63715ffd83dbSDimitry Andric   SelectionDAG &DAG = DCI.DAG;
63725ffd83dbSDimitry Andric   SDValue Op = N->getOperand(0);
63735ffd83dbSDimitry Andric   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
63745ffd83dbSDimitry Andric   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
63755ffd83dbSDimitry Andric 
63765ffd83dbSDimitry Andric   // Insert an extension before type-legalization to avoid scalarization, e.g.:
63775ffd83dbSDimitry Andric   // v2f64 = uint_to_fp v2i16
63785ffd83dbSDimitry Andric   // =>
63795ffd83dbSDimitry Andric   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
63805ffd83dbSDimitry Andric   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
63815ffd83dbSDimitry Andric     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
63825ffd83dbSDimitry Andric                                  OutVT.getVectorNumElements());
63835ffd83dbSDimitry Andric     unsigned ExtOpcode =
63845ffd83dbSDimitry Andric       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
63855ffd83dbSDimitry Andric     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
63865ffd83dbSDimitry Andric     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
63875ffd83dbSDimitry Andric   }
63885ffd83dbSDimitry Andric   return SDValue();
63895ffd83dbSDimitry Andric }
63905ffd83dbSDimitry Andric 
63910b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineBSWAP(
63920b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
63930b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
63940b57cec5SDimitry Andric   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
63950b57cec5SDimitry Andric   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
63960b57cec5SDimitry Andric       N->getOperand(0).hasOneUse() &&
63970b57cec5SDimitry Andric       canLoadStoreByteSwapped(N->getValueType(0))) {
63980b57cec5SDimitry Andric       SDValue Load = N->getOperand(0);
63990b57cec5SDimitry Andric       LoadSDNode *LD = cast<LoadSDNode>(Load);
64000b57cec5SDimitry Andric 
64010b57cec5SDimitry Andric       // Create the byte-swapping load.
64020b57cec5SDimitry Andric       SDValue Ops[] = {
64030b57cec5SDimitry Andric         LD->getChain(),    // Chain
64040b57cec5SDimitry Andric         LD->getBasePtr()   // Ptr
64050b57cec5SDimitry Andric       };
64060b57cec5SDimitry Andric       EVT LoadVT = N->getValueType(0);
64070b57cec5SDimitry Andric       if (LoadVT == MVT::i16)
64080b57cec5SDimitry Andric         LoadVT = MVT::i32;
64090b57cec5SDimitry Andric       SDValue BSLoad =
64100b57cec5SDimitry Andric         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
64110b57cec5SDimitry Andric                                 DAG.getVTList(LoadVT, MVT::Other),
64120b57cec5SDimitry Andric                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
64130b57cec5SDimitry Andric 
64140b57cec5SDimitry Andric       // If this is an i16 load, insert the truncate.
64150b57cec5SDimitry Andric       SDValue ResVal = BSLoad;
64160b57cec5SDimitry Andric       if (N->getValueType(0) == MVT::i16)
64170b57cec5SDimitry Andric         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
64180b57cec5SDimitry Andric 
64190b57cec5SDimitry Andric       // First, combine the bswap away.  This makes the value produced by the
64200b57cec5SDimitry Andric       // load dead.
64210b57cec5SDimitry Andric       DCI.CombineTo(N, ResVal);
64220b57cec5SDimitry Andric 
64230b57cec5SDimitry Andric       // Next, combine the load away, we give it a bogus result value but a real
64240b57cec5SDimitry Andric       // chain result.  The result value is dead because the bswap is dead.
64250b57cec5SDimitry Andric       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
64260b57cec5SDimitry Andric 
64270b57cec5SDimitry Andric       // Return N so it doesn't get rechecked!
64280b57cec5SDimitry Andric       return SDValue(N, 0);
64290b57cec5SDimitry Andric     }
64300b57cec5SDimitry Andric 
64310b57cec5SDimitry Andric   // Look through bitcasts that retain the number of vector elements.
64320b57cec5SDimitry Andric   SDValue Op = N->getOperand(0);
64330b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::BITCAST &&
64340b57cec5SDimitry Andric       Op.getValueType().isVector() &&
64350b57cec5SDimitry Andric       Op.getOperand(0).getValueType().isVector() &&
64360b57cec5SDimitry Andric       Op.getValueType().getVectorNumElements() ==
64370b57cec5SDimitry Andric       Op.getOperand(0).getValueType().getVectorNumElements())
64380b57cec5SDimitry Andric     Op = Op.getOperand(0);
64390b57cec5SDimitry Andric 
64400b57cec5SDimitry Andric   // Push BSWAP into a vector insertion if at least one side then simplifies.
64410b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
64420b57cec5SDimitry Andric     SDValue Vec = Op.getOperand(0);
64430b57cec5SDimitry Andric     SDValue Elt = Op.getOperand(1);
64440b57cec5SDimitry Andric     SDValue Idx = Op.getOperand(2);
64450b57cec5SDimitry Andric 
64460b57cec5SDimitry Andric     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
64470b57cec5SDimitry Andric         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
64480b57cec5SDimitry Andric         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
64490b57cec5SDimitry Andric         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
64500b57cec5SDimitry Andric         (canLoadStoreByteSwapped(N->getValueType(0)) &&
64510b57cec5SDimitry Andric          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
64520b57cec5SDimitry Andric       EVT VecVT = N->getValueType(0);
64530b57cec5SDimitry Andric       EVT EltVT = N->getValueType(0).getVectorElementType();
64540b57cec5SDimitry Andric       if (VecVT != Vec.getValueType()) {
64550b57cec5SDimitry Andric         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
64560b57cec5SDimitry Andric         DCI.AddToWorklist(Vec.getNode());
64570b57cec5SDimitry Andric       }
64580b57cec5SDimitry Andric       if (EltVT != Elt.getValueType()) {
64590b57cec5SDimitry Andric         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
64600b57cec5SDimitry Andric         DCI.AddToWorklist(Elt.getNode());
64610b57cec5SDimitry Andric       }
64620b57cec5SDimitry Andric       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
64630b57cec5SDimitry Andric       DCI.AddToWorklist(Vec.getNode());
64640b57cec5SDimitry Andric       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
64650b57cec5SDimitry Andric       DCI.AddToWorklist(Elt.getNode());
64660b57cec5SDimitry Andric       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
64670b57cec5SDimitry Andric                          Vec, Elt, Idx);
64680b57cec5SDimitry Andric     }
64690b57cec5SDimitry Andric   }
64700b57cec5SDimitry Andric 
64710b57cec5SDimitry Andric   // Push BSWAP into a vector shuffle if at least one side then simplifies.
64720b57cec5SDimitry Andric   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
64730b57cec5SDimitry Andric   if (SV && Op.hasOneUse()) {
64740b57cec5SDimitry Andric     SDValue Op0 = Op.getOperand(0);
64750b57cec5SDimitry Andric     SDValue Op1 = Op.getOperand(1);
64760b57cec5SDimitry Andric 
64770b57cec5SDimitry Andric     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
64780b57cec5SDimitry Andric         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
64790b57cec5SDimitry Andric         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
64800b57cec5SDimitry Andric         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
64810b57cec5SDimitry Andric       EVT VecVT = N->getValueType(0);
64820b57cec5SDimitry Andric       if (VecVT != Op0.getValueType()) {
64830b57cec5SDimitry Andric         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
64840b57cec5SDimitry Andric         DCI.AddToWorklist(Op0.getNode());
64850b57cec5SDimitry Andric       }
64860b57cec5SDimitry Andric       if (VecVT != Op1.getValueType()) {
64870b57cec5SDimitry Andric         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
64880b57cec5SDimitry Andric         DCI.AddToWorklist(Op1.getNode());
64890b57cec5SDimitry Andric       }
64900b57cec5SDimitry Andric       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
64910b57cec5SDimitry Andric       DCI.AddToWorklist(Op0.getNode());
64920b57cec5SDimitry Andric       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
64930b57cec5SDimitry Andric       DCI.AddToWorklist(Op1.getNode());
64940b57cec5SDimitry Andric       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
64950b57cec5SDimitry Andric     }
64960b57cec5SDimitry Andric   }
64970b57cec5SDimitry Andric 
64980b57cec5SDimitry Andric   return SDValue();
64990b57cec5SDimitry Andric }
65000b57cec5SDimitry Andric 
65010b57cec5SDimitry Andric static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
65020b57cec5SDimitry Andric   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
65030b57cec5SDimitry Andric   // set by the CCReg instruction using the CCValid / CCMask masks,
65040b57cec5SDimitry Andric   // If the CCReg instruction is itself a ICMP testing the condition
65050b57cec5SDimitry Andric   // code set by some other instruction, see whether we can directly
65060b57cec5SDimitry Andric   // use that condition code.
65070b57cec5SDimitry Andric 
65080b57cec5SDimitry Andric   // Verify that we have an ICMP against some constant.
65090b57cec5SDimitry Andric   if (CCValid != SystemZ::CCMASK_ICMP)
65100b57cec5SDimitry Andric     return false;
65110b57cec5SDimitry Andric   auto *ICmp = CCReg.getNode();
65120b57cec5SDimitry Andric   if (ICmp->getOpcode() != SystemZISD::ICMP)
65130b57cec5SDimitry Andric     return false;
65140b57cec5SDimitry Andric   auto *CompareLHS = ICmp->getOperand(0).getNode();
65150b57cec5SDimitry Andric   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
65160b57cec5SDimitry Andric   if (!CompareRHS)
65170b57cec5SDimitry Andric     return false;
65180b57cec5SDimitry Andric 
65190b57cec5SDimitry Andric   // Optimize the case where CompareLHS is a SELECT_CCMASK.
65200b57cec5SDimitry Andric   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
65210b57cec5SDimitry Andric     // Verify that we have an appropriate mask for a EQ or NE comparison.
65220b57cec5SDimitry Andric     bool Invert = false;
65230b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE)
65240b57cec5SDimitry Andric       Invert = !Invert;
65250b57cec5SDimitry Andric     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
65260b57cec5SDimitry Andric       return false;
65270b57cec5SDimitry Andric 
65280b57cec5SDimitry Andric     // Verify that the ICMP compares against one of select values.
65290b57cec5SDimitry Andric     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
65300b57cec5SDimitry Andric     if (!TrueVal)
65310b57cec5SDimitry Andric       return false;
65320b57cec5SDimitry Andric     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
65330b57cec5SDimitry Andric     if (!FalseVal)
65340b57cec5SDimitry Andric       return false;
65350b57cec5SDimitry Andric     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
65360b57cec5SDimitry Andric       Invert = !Invert;
65370b57cec5SDimitry Andric     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
65380b57cec5SDimitry Andric       return false;
65390b57cec5SDimitry Andric 
65400b57cec5SDimitry Andric     // Compute the effective CC mask for the new branch or select.
65410b57cec5SDimitry Andric     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
65420b57cec5SDimitry Andric     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
65430b57cec5SDimitry Andric     if (!NewCCValid || !NewCCMask)
65440b57cec5SDimitry Andric       return false;
65450b57cec5SDimitry Andric     CCValid = NewCCValid->getZExtValue();
65460b57cec5SDimitry Andric     CCMask = NewCCMask->getZExtValue();
65470b57cec5SDimitry Andric     if (Invert)
65480b57cec5SDimitry Andric       CCMask ^= CCValid;
65490b57cec5SDimitry Andric 
65500b57cec5SDimitry Andric     // Return the updated CCReg link.
65510b57cec5SDimitry Andric     CCReg = CompareLHS->getOperand(4);
65520b57cec5SDimitry Andric     return true;
65530b57cec5SDimitry Andric   }
65540b57cec5SDimitry Andric 
65550b57cec5SDimitry Andric   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
65560b57cec5SDimitry Andric   if (CompareLHS->getOpcode() == ISD::SRA) {
65570b57cec5SDimitry Andric     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
65580b57cec5SDimitry Andric     if (!SRACount || SRACount->getZExtValue() != 30)
65590b57cec5SDimitry Andric       return false;
65600b57cec5SDimitry Andric     auto *SHL = CompareLHS->getOperand(0).getNode();
65610b57cec5SDimitry Andric     if (SHL->getOpcode() != ISD::SHL)
65620b57cec5SDimitry Andric       return false;
65630b57cec5SDimitry Andric     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
65640b57cec5SDimitry Andric     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
65650b57cec5SDimitry Andric       return false;
65660b57cec5SDimitry Andric     auto *IPM = SHL->getOperand(0).getNode();
65670b57cec5SDimitry Andric     if (IPM->getOpcode() != SystemZISD::IPM)
65680b57cec5SDimitry Andric       return false;
65690b57cec5SDimitry Andric 
65700b57cec5SDimitry Andric     // Avoid introducing CC spills (because SRA would clobber CC).
65710b57cec5SDimitry Andric     if (!CompareLHS->hasOneUse())
65720b57cec5SDimitry Andric       return false;
65730b57cec5SDimitry Andric     // Verify that the ICMP compares against zero.
65740b57cec5SDimitry Andric     if (CompareRHS->getZExtValue() != 0)
65750b57cec5SDimitry Andric       return false;
65760b57cec5SDimitry Andric 
65770b57cec5SDimitry Andric     // Compute the effective CC mask for the new branch or select.
65785ffd83dbSDimitry Andric     CCMask = SystemZ::reverseCCMask(CCMask);
65790b57cec5SDimitry Andric 
65800b57cec5SDimitry Andric     // Return the updated CCReg link.
65810b57cec5SDimitry Andric     CCReg = IPM->getOperand(0);
65820b57cec5SDimitry Andric     return true;
65830b57cec5SDimitry Andric   }
65840b57cec5SDimitry Andric 
65850b57cec5SDimitry Andric   return false;
65860b57cec5SDimitry Andric }
65870b57cec5SDimitry Andric 
65880b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineBR_CCMASK(
65890b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
65900b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
65910b57cec5SDimitry Andric 
65920b57cec5SDimitry Andric   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
65930b57cec5SDimitry Andric   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
65940b57cec5SDimitry Andric   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
65950b57cec5SDimitry Andric   if (!CCValid || !CCMask)
65960b57cec5SDimitry Andric     return SDValue();
65970b57cec5SDimitry Andric 
65980b57cec5SDimitry Andric   int CCValidVal = CCValid->getZExtValue();
65990b57cec5SDimitry Andric   int CCMaskVal = CCMask->getZExtValue();
66000b57cec5SDimitry Andric   SDValue Chain = N->getOperand(0);
66010b57cec5SDimitry Andric   SDValue CCReg = N->getOperand(4);
66020b57cec5SDimitry Andric 
66030b57cec5SDimitry Andric   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
66040b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
66050b57cec5SDimitry Andric                        Chain,
66068bcb0991SDimitry Andric                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
66078bcb0991SDimitry Andric                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
66080b57cec5SDimitry Andric                        N->getOperand(3), CCReg);
66090b57cec5SDimitry Andric   return SDValue();
66100b57cec5SDimitry Andric }
66110b57cec5SDimitry Andric 
66120b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSELECT_CCMASK(
66130b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
66140b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
66150b57cec5SDimitry Andric 
66160b57cec5SDimitry Andric   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
66170b57cec5SDimitry Andric   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
66180b57cec5SDimitry Andric   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
66190b57cec5SDimitry Andric   if (!CCValid || !CCMask)
66200b57cec5SDimitry Andric     return SDValue();
66210b57cec5SDimitry Andric 
66220b57cec5SDimitry Andric   int CCValidVal = CCValid->getZExtValue();
66230b57cec5SDimitry Andric   int CCMaskVal = CCMask->getZExtValue();
66240b57cec5SDimitry Andric   SDValue CCReg = N->getOperand(4);
66250b57cec5SDimitry Andric 
66260b57cec5SDimitry Andric   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
66270b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
66288bcb0991SDimitry Andric                        N->getOperand(0), N->getOperand(1),
66298bcb0991SDimitry Andric                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
66308bcb0991SDimitry Andric                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
66310b57cec5SDimitry Andric                        CCReg);
66320b57cec5SDimitry Andric   return SDValue();
66330b57cec5SDimitry Andric }
66340b57cec5SDimitry Andric 
66350b57cec5SDimitry Andric 
66360b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineGET_CCMASK(
66370b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
66380b57cec5SDimitry Andric 
66390b57cec5SDimitry Andric   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
66400b57cec5SDimitry Andric   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
66410b57cec5SDimitry Andric   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
66420b57cec5SDimitry Andric   if (!CCValid || !CCMask)
66430b57cec5SDimitry Andric     return SDValue();
66440b57cec5SDimitry Andric   int CCValidVal = CCValid->getZExtValue();
66450b57cec5SDimitry Andric   int CCMaskVal = CCMask->getZExtValue();
66460b57cec5SDimitry Andric 
66470b57cec5SDimitry Andric   SDValue Select = N->getOperand(0);
66480b57cec5SDimitry Andric   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
66490b57cec5SDimitry Andric     return SDValue();
66500b57cec5SDimitry Andric 
66510b57cec5SDimitry Andric   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
66520b57cec5SDimitry Andric   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
66530b57cec5SDimitry Andric   if (!SelectCCValid || !SelectCCMask)
66540b57cec5SDimitry Andric     return SDValue();
66550b57cec5SDimitry Andric   int SelectCCValidVal = SelectCCValid->getZExtValue();
66560b57cec5SDimitry Andric   int SelectCCMaskVal = SelectCCMask->getZExtValue();
66570b57cec5SDimitry Andric 
66580b57cec5SDimitry Andric   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
66590b57cec5SDimitry Andric   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
66600b57cec5SDimitry Andric   if (!TrueVal || !FalseVal)
66610b57cec5SDimitry Andric     return SDValue();
66620b57cec5SDimitry Andric   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
66630b57cec5SDimitry Andric     ;
66640b57cec5SDimitry Andric   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
66650b57cec5SDimitry Andric     SelectCCMaskVal ^= SelectCCValidVal;
66660b57cec5SDimitry Andric   else
66670b57cec5SDimitry Andric     return SDValue();
66680b57cec5SDimitry Andric 
66690b57cec5SDimitry Andric   if (SelectCCValidVal & ~CCValidVal)
66700b57cec5SDimitry Andric     return SDValue();
66710b57cec5SDimitry Andric   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
66720b57cec5SDimitry Andric     return SDValue();
66730b57cec5SDimitry Andric 
66740b57cec5SDimitry Andric   return Select->getOperand(4);
66750b57cec5SDimitry Andric }
66760b57cec5SDimitry Andric 
66770b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineIntDIVREM(
66780b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
66790b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
66800b57cec5SDimitry Andric   EVT VT = N->getValueType(0);
66810b57cec5SDimitry Andric   // In the case where the divisor is a vector of constants a cheaper
66820b57cec5SDimitry Andric   // sequence of instructions can replace the divide. BuildSDIV is called to
66830b57cec5SDimitry Andric   // do this during DAG combining, but it only succeeds when it can build a
66840b57cec5SDimitry Andric   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
66850b57cec5SDimitry Andric   // since it is not Legal but Custom it can only happen before
66860b57cec5SDimitry Andric   // legalization. Therefore we must scalarize this early before Combine
66870b57cec5SDimitry Andric   // 1. For widened vectors, this is already the result of type legalization.
66880b57cec5SDimitry Andric   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
66890b57cec5SDimitry Andric       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
66900b57cec5SDimitry Andric     return DAG.UnrollVectorOp(N);
66910b57cec5SDimitry Andric   return SDValue();
66920b57cec5SDimitry Andric }
66930b57cec5SDimitry Andric 
66945ffd83dbSDimitry Andric SDValue SystemZTargetLowering::combineINTRINSIC(
66955ffd83dbSDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
66965ffd83dbSDimitry Andric   SelectionDAG &DAG = DCI.DAG;
66975ffd83dbSDimitry Andric 
66985ffd83dbSDimitry Andric   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
66995ffd83dbSDimitry Andric   switch (Id) {
67005ffd83dbSDimitry Andric   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
67015ffd83dbSDimitry Andric   // or larger is simply a vector load.
67025ffd83dbSDimitry Andric   case Intrinsic::s390_vll:
67035ffd83dbSDimitry Andric   case Intrinsic::s390_vlrl:
67045ffd83dbSDimitry Andric     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
67055ffd83dbSDimitry Andric       if (C->getZExtValue() >= 15)
67065ffd83dbSDimitry Andric         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
67075ffd83dbSDimitry Andric                            N->getOperand(3), MachinePointerInfo());
67085ffd83dbSDimitry Andric     break;
67095ffd83dbSDimitry Andric   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
67105ffd83dbSDimitry Andric   case Intrinsic::s390_vstl:
67115ffd83dbSDimitry Andric   case Intrinsic::s390_vstrl:
67125ffd83dbSDimitry Andric     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
67135ffd83dbSDimitry Andric       if (C->getZExtValue() >= 15)
67145ffd83dbSDimitry Andric         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
67155ffd83dbSDimitry Andric                             N->getOperand(4), MachinePointerInfo());
67165ffd83dbSDimitry Andric     break;
67175ffd83dbSDimitry Andric   }
67185ffd83dbSDimitry Andric 
67195ffd83dbSDimitry Andric   return SDValue();
67205ffd83dbSDimitry Andric }
67215ffd83dbSDimitry Andric 
67220b57cec5SDimitry Andric SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
67230b57cec5SDimitry Andric   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
67240b57cec5SDimitry Andric     return N->getOperand(0);
67250b57cec5SDimitry Andric   return N;
67260b57cec5SDimitry Andric }
67270b57cec5SDimitry Andric 
67280b57cec5SDimitry Andric SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
67290b57cec5SDimitry Andric                                                  DAGCombinerInfo &DCI) const {
67300b57cec5SDimitry Andric   switch(N->getOpcode()) {
67310b57cec5SDimitry Andric   default: break;
67320b57cec5SDimitry Andric   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
67330b57cec5SDimitry Andric   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
67340b57cec5SDimitry Andric   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
67350b57cec5SDimitry Andric   case SystemZISD::MERGE_HIGH:
67360b57cec5SDimitry Andric   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
67370b57cec5SDimitry Andric   case ISD::LOAD:               return combineLOAD(N, DCI);
67380b57cec5SDimitry Andric   case ISD::STORE:              return combineSTORE(N, DCI);
67390b57cec5SDimitry Andric   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
67400b57cec5SDimitry Andric   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
67410b57cec5SDimitry Andric   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6742480093f4SDimitry Andric   case ISD::STRICT_FP_ROUND:
67430b57cec5SDimitry Andric   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6744480093f4SDimitry Andric   case ISD::STRICT_FP_EXTEND:
67450b57cec5SDimitry Andric   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
67465ffd83dbSDimitry Andric   case ISD::SINT_TO_FP:
67475ffd83dbSDimitry Andric   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
67480b57cec5SDimitry Andric   case ISD::BSWAP:              return combineBSWAP(N, DCI);
67490b57cec5SDimitry Andric   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
67500b57cec5SDimitry Andric   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
67510b57cec5SDimitry Andric   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
67520b57cec5SDimitry Andric   case ISD::SDIV:
67530b57cec5SDimitry Andric   case ISD::UDIV:
67540b57cec5SDimitry Andric   case ISD::SREM:
67550b57cec5SDimitry Andric   case ISD::UREM:               return combineIntDIVREM(N, DCI);
67565ffd83dbSDimitry Andric   case ISD::INTRINSIC_W_CHAIN:
67575ffd83dbSDimitry Andric   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
67580b57cec5SDimitry Andric   }
67590b57cec5SDimitry Andric 
67600b57cec5SDimitry Andric   return SDValue();
67610b57cec5SDimitry Andric }
67620b57cec5SDimitry Andric 
67630b57cec5SDimitry Andric // Return the demanded elements for the OpNo source operand of Op. DemandedElts
67640b57cec5SDimitry Andric // are for Op.
67650b57cec5SDimitry Andric static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
67660b57cec5SDimitry Andric                                     unsigned OpNo) {
67670b57cec5SDimitry Andric   EVT VT = Op.getValueType();
67680b57cec5SDimitry Andric   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
67690b57cec5SDimitry Andric   APInt SrcDemE;
67700b57cec5SDimitry Andric   unsigned Opcode = Op.getOpcode();
67710b57cec5SDimitry Andric   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
67720b57cec5SDimitry Andric     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
67730b57cec5SDimitry Andric     switch (Id) {
67740b57cec5SDimitry Andric     case Intrinsic::s390_vpksh:   // PACKS
67750b57cec5SDimitry Andric     case Intrinsic::s390_vpksf:
67760b57cec5SDimitry Andric     case Intrinsic::s390_vpksg:
67770b57cec5SDimitry Andric     case Intrinsic::s390_vpkshs:  // PACKS_CC
67780b57cec5SDimitry Andric     case Intrinsic::s390_vpksfs:
67790b57cec5SDimitry Andric     case Intrinsic::s390_vpksgs:
67800b57cec5SDimitry Andric     case Intrinsic::s390_vpklsh:  // PACKLS
67810b57cec5SDimitry Andric     case Intrinsic::s390_vpklsf:
67820b57cec5SDimitry Andric     case Intrinsic::s390_vpklsg:
67830b57cec5SDimitry Andric     case Intrinsic::s390_vpklshs: // PACKLS_CC
67840b57cec5SDimitry Andric     case Intrinsic::s390_vpklsfs:
67850b57cec5SDimitry Andric     case Intrinsic::s390_vpklsgs:
67860b57cec5SDimitry Andric       // VECTOR PACK truncates the elements of two source vectors into one.
67870b57cec5SDimitry Andric       SrcDemE = DemandedElts;
67880b57cec5SDimitry Andric       if (OpNo == 2)
67890b57cec5SDimitry Andric         SrcDemE.lshrInPlace(NumElts / 2);
67900b57cec5SDimitry Andric       SrcDemE = SrcDemE.trunc(NumElts / 2);
67910b57cec5SDimitry Andric       break;
67920b57cec5SDimitry Andric       // VECTOR UNPACK extends half the elements of the source vector.
67930b57cec5SDimitry Andric     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
67940b57cec5SDimitry Andric     case Intrinsic::s390_vuphh:
67950b57cec5SDimitry Andric     case Intrinsic::s390_vuphf:
67960b57cec5SDimitry Andric     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
67970b57cec5SDimitry Andric     case Intrinsic::s390_vuplhh:
67980b57cec5SDimitry Andric     case Intrinsic::s390_vuplhf:
67990b57cec5SDimitry Andric       SrcDemE = APInt(NumElts * 2, 0);
68000b57cec5SDimitry Andric       SrcDemE.insertBits(DemandedElts, 0);
68010b57cec5SDimitry Andric       break;
68020b57cec5SDimitry Andric     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
68030b57cec5SDimitry Andric     case Intrinsic::s390_vuplhw:
68040b57cec5SDimitry Andric     case Intrinsic::s390_vuplf:
68050b57cec5SDimitry Andric     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
68060b57cec5SDimitry Andric     case Intrinsic::s390_vupllh:
68070b57cec5SDimitry Andric     case Intrinsic::s390_vupllf:
68080b57cec5SDimitry Andric       SrcDemE = APInt(NumElts * 2, 0);
68090b57cec5SDimitry Andric       SrcDemE.insertBits(DemandedElts, NumElts);
68100b57cec5SDimitry Andric       break;
68110b57cec5SDimitry Andric     case Intrinsic::s390_vpdi: {
68120b57cec5SDimitry Andric       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
68130b57cec5SDimitry Andric       SrcDemE = APInt(NumElts, 0);
68140b57cec5SDimitry Andric       if (!DemandedElts[OpNo - 1])
68150b57cec5SDimitry Andric         break;
68160b57cec5SDimitry Andric       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
68170b57cec5SDimitry Andric       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
68180b57cec5SDimitry Andric       // Demand input element 0 or 1, given by the mask bit value.
68190b57cec5SDimitry Andric       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
68200b57cec5SDimitry Andric       break;
68210b57cec5SDimitry Andric     }
68220b57cec5SDimitry Andric     case Intrinsic::s390_vsldb: {
68230b57cec5SDimitry Andric       // VECTOR SHIFT LEFT DOUBLE BY BYTE
68240b57cec5SDimitry Andric       assert(VT == MVT::v16i8 && "Unexpected type.");
68250b57cec5SDimitry Andric       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
68260b57cec5SDimitry Andric       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
68270b57cec5SDimitry Andric       unsigned NumSrc0Els = 16 - FirstIdx;
68280b57cec5SDimitry Andric       SrcDemE = APInt(NumElts, 0);
68290b57cec5SDimitry Andric       if (OpNo == 1) {
68300b57cec5SDimitry Andric         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
68310b57cec5SDimitry Andric         SrcDemE.insertBits(DemEls, FirstIdx);
68320b57cec5SDimitry Andric       } else {
68330b57cec5SDimitry Andric         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
68340b57cec5SDimitry Andric         SrcDemE.insertBits(DemEls, 0);
68350b57cec5SDimitry Andric       }
68360b57cec5SDimitry Andric       break;
68370b57cec5SDimitry Andric     }
68380b57cec5SDimitry Andric     case Intrinsic::s390_vperm:
68390b57cec5SDimitry Andric       SrcDemE = APInt(NumElts, 1);
68400b57cec5SDimitry Andric       break;
68410b57cec5SDimitry Andric     default:
68420b57cec5SDimitry Andric       llvm_unreachable("Unhandled intrinsic.");
68430b57cec5SDimitry Andric       break;
68440b57cec5SDimitry Andric     }
68450b57cec5SDimitry Andric   } else {
68460b57cec5SDimitry Andric     switch (Opcode) {
68470b57cec5SDimitry Andric     case SystemZISD::JOIN_DWORDS:
68480b57cec5SDimitry Andric       // Scalar operand.
68490b57cec5SDimitry Andric       SrcDemE = APInt(1, 1);
68500b57cec5SDimitry Andric       break;
68510b57cec5SDimitry Andric     case SystemZISD::SELECT_CCMASK:
68520b57cec5SDimitry Andric       SrcDemE = DemandedElts;
68530b57cec5SDimitry Andric       break;
68540b57cec5SDimitry Andric     default:
68550b57cec5SDimitry Andric       llvm_unreachable("Unhandled opcode.");
68560b57cec5SDimitry Andric       break;
68570b57cec5SDimitry Andric     }
68580b57cec5SDimitry Andric   }
68590b57cec5SDimitry Andric   return SrcDemE;
68600b57cec5SDimitry Andric }
68610b57cec5SDimitry Andric 
68620b57cec5SDimitry Andric static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
68630b57cec5SDimitry Andric                                   const APInt &DemandedElts,
68640b57cec5SDimitry Andric                                   const SelectionDAG &DAG, unsigned Depth,
68650b57cec5SDimitry Andric                                   unsigned OpNo) {
68660b57cec5SDimitry Andric   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
68670b57cec5SDimitry Andric   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
68680b57cec5SDimitry Andric   KnownBits LHSKnown =
68690b57cec5SDimitry Andric       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
68700b57cec5SDimitry Andric   KnownBits RHSKnown =
68710b57cec5SDimitry Andric       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6872e8d8bef9SDimitry Andric   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
68730b57cec5SDimitry Andric }
68740b57cec5SDimitry Andric 
68750b57cec5SDimitry Andric void
68760b57cec5SDimitry Andric SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
68770b57cec5SDimitry Andric                                                      KnownBits &Known,
68780b57cec5SDimitry Andric                                                      const APInt &DemandedElts,
68790b57cec5SDimitry Andric                                                      const SelectionDAG &DAG,
68800b57cec5SDimitry Andric                                                      unsigned Depth) const {
68810b57cec5SDimitry Andric   Known.resetAll();
68820b57cec5SDimitry Andric 
68830b57cec5SDimitry Andric   // Intrinsic CC result is returned in the two low bits.
68840b57cec5SDimitry Andric   unsigned tmp0, tmp1; // not used
68850b57cec5SDimitry Andric   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
68860b57cec5SDimitry Andric     Known.Zero.setBitsFrom(2);
68870b57cec5SDimitry Andric     return;
68880b57cec5SDimitry Andric   }
68890b57cec5SDimitry Andric   EVT VT = Op.getValueType();
68900b57cec5SDimitry Andric   if (Op.getResNo() != 0 || VT == MVT::Untyped)
68910b57cec5SDimitry Andric     return;
68920b57cec5SDimitry Andric   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
68930b57cec5SDimitry Andric           "KnownBits does not match VT in bitwidth");
68940b57cec5SDimitry Andric   assert ((!VT.isVector() ||
68950b57cec5SDimitry Andric            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
68960b57cec5SDimitry Andric           "DemandedElts does not match VT number of elements");
68970b57cec5SDimitry Andric   unsigned BitWidth = Known.getBitWidth();
68980b57cec5SDimitry Andric   unsigned Opcode = Op.getOpcode();
68990b57cec5SDimitry Andric   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
69000b57cec5SDimitry Andric     bool IsLogical = false;
69010b57cec5SDimitry Andric     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
69020b57cec5SDimitry Andric     switch (Id) {
69030b57cec5SDimitry Andric     case Intrinsic::s390_vpksh:   // PACKS
69040b57cec5SDimitry Andric     case Intrinsic::s390_vpksf:
69050b57cec5SDimitry Andric     case Intrinsic::s390_vpksg:
69060b57cec5SDimitry Andric     case Intrinsic::s390_vpkshs:  // PACKS_CC
69070b57cec5SDimitry Andric     case Intrinsic::s390_vpksfs:
69080b57cec5SDimitry Andric     case Intrinsic::s390_vpksgs:
69090b57cec5SDimitry Andric     case Intrinsic::s390_vpklsh:  // PACKLS
69100b57cec5SDimitry Andric     case Intrinsic::s390_vpklsf:
69110b57cec5SDimitry Andric     case Intrinsic::s390_vpklsg:
69120b57cec5SDimitry Andric     case Intrinsic::s390_vpklshs: // PACKLS_CC
69130b57cec5SDimitry Andric     case Intrinsic::s390_vpklsfs:
69140b57cec5SDimitry Andric     case Intrinsic::s390_vpklsgs:
69150b57cec5SDimitry Andric     case Intrinsic::s390_vpdi:
69160b57cec5SDimitry Andric     case Intrinsic::s390_vsldb:
69170b57cec5SDimitry Andric     case Intrinsic::s390_vperm:
69180b57cec5SDimitry Andric       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
69190b57cec5SDimitry Andric       break;
69200b57cec5SDimitry Andric     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
69210b57cec5SDimitry Andric     case Intrinsic::s390_vuplhh:
69220b57cec5SDimitry Andric     case Intrinsic::s390_vuplhf:
69230b57cec5SDimitry Andric     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
69240b57cec5SDimitry Andric     case Intrinsic::s390_vupllh:
69250b57cec5SDimitry Andric     case Intrinsic::s390_vupllf:
69260b57cec5SDimitry Andric       IsLogical = true;
69270b57cec5SDimitry Andric       LLVM_FALLTHROUGH;
69280b57cec5SDimitry Andric     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
69290b57cec5SDimitry Andric     case Intrinsic::s390_vuphh:
69300b57cec5SDimitry Andric     case Intrinsic::s390_vuphf:
69310b57cec5SDimitry Andric     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
69320b57cec5SDimitry Andric     case Intrinsic::s390_vuplhw:
69330b57cec5SDimitry Andric     case Intrinsic::s390_vuplf: {
69340b57cec5SDimitry Andric       SDValue SrcOp = Op.getOperand(1);
69350b57cec5SDimitry Andric       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
69360b57cec5SDimitry Andric       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
69370b57cec5SDimitry Andric       if (IsLogical) {
69385ffd83dbSDimitry Andric         Known = Known.zext(BitWidth);
69390b57cec5SDimitry Andric       } else
69400b57cec5SDimitry Andric         Known = Known.sext(BitWidth);
69410b57cec5SDimitry Andric       break;
69420b57cec5SDimitry Andric     }
69430b57cec5SDimitry Andric     default:
69440b57cec5SDimitry Andric       break;
69450b57cec5SDimitry Andric     }
69460b57cec5SDimitry Andric   } else {
69470b57cec5SDimitry Andric     switch (Opcode) {
69480b57cec5SDimitry Andric     case SystemZISD::JOIN_DWORDS:
69490b57cec5SDimitry Andric     case SystemZISD::SELECT_CCMASK:
69500b57cec5SDimitry Andric       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
69510b57cec5SDimitry Andric       break;
69520b57cec5SDimitry Andric     case SystemZISD::REPLICATE: {
69530b57cec5SDimitry Andric       SDValue SrcOp = Op.getOperand(0);
69540b57cec5SDimitry Andric       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
69550b57cec5SDimitry Andric       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
69560b57cec5SDimitry Andric         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
69570b57cec5SDimitry Andric       break;
69580b57cec5SDimitry Andric     }
69590b57cec5SDimitry Andric     default:
69600b57cec5SDimitry Andric       break;
69610b57cec5SDimitry Andric     }
69620b57cec5SDimitry Andric   }
69630b57cec5SDimitry Andric 
69640b57cec5SDimitry Andric   // Known has the width of the source operand(s). Adjust if needed to match
69650b57cec5SDimitry Andric   // the passed bitwidth.
69660b57cec5SDimitry Andric   if (Known.getBitWidth() != BitWidth)
69675ffd83dbSDimitry Andric     Known = Known.anyextOrTrunc(BitWidth);
69680b57cec5SDimitry Andric }
69690b57cec5SDimitry Andric 
69700b57cec5SDimitry Andric static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
69710b57cec5SDimitry Andric                                         const SelectionDAG &DAG, unsigned Depth,
69720b57cec5SDimitry Andric                                         unsigned OpNo) {
69730b57cec5SDimitry Andric   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
69740b57cec5SDimitry Andric   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
69750b57cec5SDimitry Andric   if (LHS == 1) return 1; // Early out.
69760b57cec5SDimitry Andric   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
69770b57cec5SDimitry Andric   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
69780b57cec5SDimitry Andric   if (RHS == 1) return 1; // Early out.
69790b57cec5SDimitry Andric   unsigned Common = std::min(LHS, RHS);
69800b57cec5SDimitry Andric   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
69810b57cec5SDimitry Andric   EVT VT = Op.getValueType();
69820b57cec5SDimitry Andric   unsigned VTBits = VT.getScalarSizeInBits();
69830b57cec5SDimitry Andric   if (SrcBitWidth > VTBits) { // PACK
69840b57cec5SDimitry Andric     unsigned SrcExtraBits = SrcBitWidth - VTBits;
69850b57cec5SDimitry Andric     if (Common > SrcExtraBits)
69860b57cec5SDimitry Andric       return (Common - SrcExtraBits);
69870b57cec5SDimitry Andric     return 1;
69880b57cec5SDimitry Andric   }
69890b57cec5SDimitry Andric   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
69900b57cec5SDimitry Andric   return Common;
69910b57cec5SDimitry Andric }
69920b57cec5SDimitry Andric 
69930b57cec5SDimitry Andric unsigned
69940b57cec5SDimitry Andric SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
69950b57cec5SDimitry Andric     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
69960b57cec5SDimitry Andric     unsigned Depth) const {
69970b57cec5SDimitry Andric   if (Op.getResNo() != 0)
69980b57cec5SDimitry Andric     return 1;
69990b57cec5SDimitry Andric   unsigned Opcode = Op.getOpcode();
70000b57cec5SDimitry Andric   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
70010b57cec5SDimitry Andric     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
70020b57cec5SDimitry Andric     switch (Id) {
70030b57cec5SDimitry Andric     case Intrinsic::s390_vpksh:   // PACKS
70040b57cec5SDimitry Andric     case Intrinsic::s390_vpksf:
70050b57cec5SDimitry Andric     case Intrinsic::s390_vpksg:
70060b57cec5SDimitry Andric     case Intrinsic::s390_vpkshs:  // PACKS_CC
70070b57cec5SDimitry Andric     case Intrinsic::s390_vpksfs:
70080b57cec5SDimitry Andric     case Intrinsic::s390_vpksgs:
70090b57cec5SDimitry Andric     case Intrinsic::s390_vpklsh:  // PACKLS
70100b57cec5SDimitry Andric     case Intrinsic::s390_vpklsf:
70110b57cec5SDimitry Andric     case Intrinsic::s390_vpklsg:
70120b57cec5SDimitry Andric     case Intrinsic::s390_vpklshs: // PACKLS_CC
70130b57cec5SDimitry Andric     case Intrinsic::s390_vpklsfs:
70140b57cec5SDimitry Andric     case Intrinsic::s390_vpklsgs:
70150b57cec5SDimitry Andric     case Intrinsic::s390_vpdi:
70160b57cec5SDimitry Andric     case Intrinsic::s390_vsldb:
70170b57cec5SDimitry Andric     case Intrinsic::s390_vperm:
70180b57cec5SDimitry Andric       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
70190b57cec5SDimitry Andric     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
70200b57cec5SDimitry Andric     case Intrinsic::s390_vuphh:
70210b57cec5SDimitry Andric     case Intrinsic::s390_vuphf:
70220b57cec5SDimitry Andric     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
70230b57cec5SDimitry Andric     case Intrinsic::s390_vuplhw:
70240b57cec5SDimitry Andric     case Intrinsic::s390_vuplf: {
70250b57cec5SDimitry Andric       SDValue PackedOp = Op.getOperand(1);
70260b57cec5SDimitry Andric       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
70270b57cec5SDimitry Andric       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
70280b57cec5SDimitry Andric       EVT VT = Op.getValueType();
70290b57cec5SDimitry Andric       unsigned VTBits = VT.getScalarSizeInBits();
70300b57cec5SDimitry Andric       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
70310b57cec5SDimitry Andric       return Tmp;
70320b57cec5SDimitry Andric     }
70330b57cec5SDimitry Andric     default:
70340b57cec5SDimitry Andric       break;
70350b57cec5SDimitry Andric     }
70360b57cec5SDimitry Andric   } else {
70370b57cec5SDimitry Andric     switch (Opcode) {
70380b57cec5SDimitry Andric     case SystemZISD::SELECT_CCMASK:
70390b57cec5SDimitry Andric       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
70400b57cec5SDimitry Andric     default:
70410b57cec5SDimitry Andric       break;
70420b57cec5SDimitry Andric     }
70430b57cec5SDimitry Andric   }
70440b57cec5SDimitry Andric 
70450b57cec5SDimitry Andric   return 1;
70460b57cec5SDimitry Andric }
70470b57cec5SDimitry Andric 
70485ffd83dbSDimitry Andric unsigned
70495ffd83dbSDimitry Andric SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
70505ffd83dbSDimitry Andric   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
70515ffd83dbSDimitry Andric   unsigned StackAlign = TFI->getStackAlignment();
70525ffd83dbSDimitry Andric   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
70535ffd83dbSDimitry Andric          "Unexpected stack alignment");
70545ffd83dbSDimitry Andric   // The default stack probe size is 4096 if the function has no
70555ffd83dbSDimitry Andric   // stack-probe-size attribute.
70565ffd83dbSDimitry Andric   unsigned StackProbeSize = 4096;
70575ffd83dbSDimitry Andric   const Function &Fn = MF.getFunction();
70585ffd83dbSDimitry Andric   if (Fn.hasFnAttribute("stack-probe-size"))
70595ffd83dbSDimitry Andric     Fn.getFnAttribute("stack-probe-size")
70605ffd83dbSDimitry Andric         .getValueAsString()
70615ffd83dbSDimitry Andric         .getAsInteger(0, StackProbeSize);
70625ffd83dbSDimitry Andric   // Round down to the stack alignment.
70635ffd83dbSDimitry Andric   StackProbeSize &= ~(StackAlign - 1);
70645ffd83dbSDimitry Andric   return StackProbeSize ? StackProbeSize : StackAlign;
70655ffd83dbSDimitry Andric }
70665ffd83dbSDimitry Andric 
70670b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
70680b57cec5SDimitry Andric // Custom insertion
70690b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
70700b57cec5SDimitry Andric 
70710b57cec5SDimitry Andric // Force base value Base into a register before MI.  Return the register.
70720b57cec5SDimitry Andric static Register forceReg(MachineInstr &MI, MachineOperand &Base,
70730b57cec5SDimitry Andric                          const SystemZInstrInfo *TII) {
70740b57cec5SDimitry Andric   if (Base.isReg())
70750b57cec5SDimitry Andric     return Base.getReg();
70760b57cec5SDimitry Andric 
70770b57cec5SDimitry Andric   MachineBasicBlock *MBB = MI.getParent();
70780b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
70790b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
70800b57cec5SDimitry Andric 
70810b57cec5SDimitry Andric   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
70820b57cec5SDimitry Andric   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
70830b57cec5SDimitry Andric       .add(Base)
70840b57cec5SDimitry Andric       .addImm(0)
70850b57cec5SDimitry Andric       .addReg(0);
70860b57cec5SDimitry Andric   return Reg;
70870b57cec5SDimitry Andric }
70880b57cec5SDimitry Andric 
70890b57cec5SDimitry Andric // The CC operand of MI might be missing a kill marker because there
70900b57cec5SDimitry Andric // were multiple uses of CC, and ISel didn't know which to mark.
70910b57cec5SDimitry Andric // Figure out whether MI should have had a kill marker.
70920b57cec5SDimitry Andric static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
70930b57cec5SDimitry Andric   // Scan forward through BB for a use/def of CC.
70940b57cec5SDimitry Andric   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
70950b57cec5SDimitry Andric   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
70960b57cec5SDimitry Andric     const MachineInstr& mi = *miI;
70970b57cec5SDimitry Andric     if (mi.readsRegister(SystemZ::CC))
70980b57cec5SDimitry Andric       return false;
70990b57cec5SDimitry Andric     if (mi.definesRegister(SystemZ::CC))
71000b57cec5SDimitry Andric       break; // Should have kill-flag - update below.
71010b57cec5SDimitry Andric   }
71020b57cec5SDimitry Andric 
71030b57cec5SDimitry Andric   // If we hit the end of the block, check whether CC is live into a
71040b57cec5SDimitry Andric   // successor.
71050b57cec5SDimitry Andric   if (miI == MBB->end()) {
71060b57cec5SDimitry Andric     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
71070b57cec5SDimitry Andric       if ((*SI)->isLiveIn(SystemZ::CC))
71080b57cec5SDimitry Andric         return false;
71090b57cec5SDimitry Andric   }
71100b57cec5SDimitry Andric 
71110b57cec5SDimitry Andric   return true;
71120b57cec5SDimitry Andric }
71130b57cec5SDimitry Andric 
71140b57cec5SDimitry Andric // Return true if it is OK for this Select pseudo-opcode to be cascaded
71150b57cec5SDimitry Andric // together with other Select pseudo-opcodes into a single basic-block with
71160b57cec5SDimitry Andric // a conditional jump around it.
71170b57cec5SDimitry Andric static bool isSelectPseudo(MachineInstr &MI) {
71180b57cec5SDimitry Andric   switch (MI.getOpcode()) {
71190b57cec5SDimitry Andric   case SystemZ::Select32:
71200b57cec5SDimitry Andric   case SystemZ::Select64:
71210b57cec5SDimitry Andric   case SystemZ::SelectF32:
71220b57cec5SDimitry Andric   case SystemZ::SelectF64:
71230b57cec5SDimitry Andric   case SystemZ::SelectF128:
71240b57cec5SDimitry Andric   case SystemZ::SelectVR32:
71250b57cec5SDimitry Andric   case SystemZ::SelectVR64:
71260b57cec5SDimitry Andric   case SystemZ::SelectVR128:
71270b57cec5SDimitry Andric     return true;
71280b57cec5SDimitry Andric 
71290b57cec5SDimitry Andric   default:
71300b57cec5SDimitry Andric     return false;
71310b57cec5SDimitry Andric   }
71320b57cec5SDimitry Andric }
71330b57cec5SDimitry Andric 
71340b57cec5SDimitry Andric // Helper function, which inserts PHI functions into SinkMBB:
71350b57cec5SDimitry Andric //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
71368bcb0991SDimitry Andric // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
71378bcb0991SDimitry Andric static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
71380b57cec5SDimitry Andric                                  MachineBasicBlock *TrueMBB,
71390b57cec5SDimitry Andric                                  MachineBasicBlock *FalseMBB,
71400b57cec5SDimitry Andric                                  MachineBasicBlock *SinkMBB) {
71410b57cec5SDimitry Andric   MachineFunction *MF = TrueMBB->getParent();
71420b57cec5SDimitry Andric   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
71430b57cec5SDimitry Andric 
71448bcb0991SDimitry Andric   MachineInstr *FirstMI = Selects.front();
71458bcb0991SDimitry Andric   unsigned CCValid = FirstMI->getOperand(3).getImm();
71468bcb0991SDimitry Andric   unsigned CCMask = FirstMI->getOperand(4).getImm();
71470b57cec5SDimitry Andric 
71480b57cec5SDimitry Andric   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
71490b57cec5SDimitry Andric 
71500b57cec5SDimitry Andric   // As we are creating the PHIs, we have to be careful if there is more than
71510b57cec5SDimitry Andric   // one.  Later Selects may reference the results of earlier Selects, but later
71520b57cec5SDimitry Andric   // PHIs have to reference the individual true/false inputs from earlier PHIs.
71530b57cec5SDimitry Andric   // That also means that PHI construction must work forward from earlier to
71540b57cec5SDimitry Andric   // later, and that the code must maintain a mapping from earlier PHI's
71550b57cec5SDimitry Andric   // destination registers, and the registers that went into the PHI.
71560b57cec5SDimitry Andric   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
71570b57cec5SDimitry Andric 
71588bcb0991SDimitry Andric   for (auto MI : Selects) {
71598bcb0991SDimitry Andric     Register DestReg = MI->getOperand(0).getReg();
71608bcb0991SDimitry Andric     Register TrueReg = MI->getOperand(1).getReg();
71618bcb0991SDimitry Andric     Register FalseReg = MI->getOperand(2).getReg();
71620b57cec5SDimitry Andric 
71630b57cec5SDimitry Andric     // If this Select we are generating is the opposite condition from
71640b57cec5SDimitry Andric     // the jump we generated, then we have to swap the operands for the
71650b57cec5SDimitry Andric     // PHI that is going to be generated.
71668bcb0991SDimitry Andric     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
71670b57cec5SDimitry Andric       std::swap(TrueReg, FalseReg);
71680b57cec5SDimitry Andric 
71690b57cec5SDimitry Andric     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
71700b57cec5SDimitry Andric       TrueReg = RegRewriteTable[TrueReg].first;
71710b57cec5SDimitry Andric 
71720b57cec5SDimitry Andric     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
71730b57cec5SDimitry Andric       FalseReg = RegRewriteTable[FalseReg].second;
71740b57cec5SDimitry Andric 
71758bcb0991SDimitry Andric     DebugLoc DL = MI->getDebugLoc();
71760b57cec5SDimitry Andric     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
71770b57cec5SDimitry Andric       .addReg(TrueReg).addMBB(TrueMBB)
71780b57cec5SDimitry Andric       .addReg(FalseReg).addMBB(FalseMBB);
71790b57cec5SDimitry Andric 
71800b57cec5SDimitry Andric     // Add this PHI to the rewrite table.
71810b57cec5SDimitry Andric     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
71820b57cec5SDimitry Andric   }
71830b57cec5SDimitry Andric 
71840b57cec5SDimitry Andric   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
71850b57cec5SDimitry Andric }
71860b57cec5SDimitry Andric 
71870b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
71880b57cec5SDimitry Andric MachineBasicBlock *
71890b57cec5SDimitry Andric SystemZTargetLowering::emitSelect(MachineInstr &MI,
71900b57cec5SDimitry Andric                                   MachineBasicBlock *MBB) const {
71918bcb0991SDimitry Andric   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
71920b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
71930b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
71940b57cec5SDimitry Andric 
71950b57cec5SDimitry Andric   unsigned CCValid = MI.getOperand(3).getImm();
71960b57cec5SDimitry Andric   unsigned CCMask = MI.getOperand(4).getImm();
71970b57cec5SDimitry Andric 
71980b57cec5SDimitry Andric   // If we have a sequence of Select* pseudo instructions using the
71990b57cec5SDimitry Andric   // same condition code value, we want to expand all of them into
72000b57cec5SDimitry Andric   // a single pair of basic blocks using the same condition.
72018bcb0991SDimitry Andric   SmallVector<MachineInstr*, 8> Selects;
72028bcb0991SDimitry Andric   SmallVector<MachineInstr*, 8> DbgValues;
72038bcb0991SDimitry Andric   Selects.push_back(&MI);
72048bcb0991SDimitry Andric   unsigned Count = 0;
72058bcb0991SDimitry Andric   for (MachineBasicBlock::iterator NextMIIt =
72068bcb0991SDimitry Andric          std::next(MachineBasicBlock::iterator(MI));
72078bcb0991SDimitry Andric        NextMIIt != MBB->end(); ++NextMIIt) {
72088bcb0991SDimitry Andric     if (isSelectPseudo(*NextMIIt)) {
72098bcb0991SDimitry Andric       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
72108bcb0991SDimitry Andric              "Bad CCValid operands since CC was not redefined.");
72118bcb0991SDimitry Andric       if (NextMIIt->getOperand(4).getImm() == CCMask ||
72128bcb0991SDimitry Andric           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
72138bcb0991SDimitry Andric         Selects.push_back(&*NextMIIt);
72148bcb0991SDimitry Andric         continue;
72158bcb0991SDimitry Andric       }
72168bcb0991SDimitry Andric       break;
72178bcb0991SDimitry Andric     }
721813138422SDimitry Andric     if (NextMIIt->definesRegister(SystemZ::CC) ||
721913138422SDimitry Andric         NextMIIt->usesCustomInsertionHook())
722013138422SDimitry Andric       break;
72218bcb0991SDimitry Andric     bool User = false;
72228bcb0991SDimitry Andric     for (auto SelMI : Selects)
72238bcb0991SDimitry Andric       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
72248bcb0991SDimitry Andric         User = true;
72258bcb0991SDimitry Andric         break;
72268bcb0991SDimitry Andric       }
72278bcb0991SDimitry Andric     if (NextMIIt->isDebugInstr()) {
72288bcb0991SDimitry Andric       if (User) {
72298bcb0991SDimitry Andric         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
72308bcb0991SDimitry Andric         DbgValues.push_back(&*NextMIIt);
72318bcb0991SDimitry Andric       }
72328bcb0991SDimitry Andric     }
72338bcb0991SDimitry Andric     else if (User || ++Count > 20)
72348bcb0991SDimitry Andric       break;
72350b57cec5SDimitry Andric   }
72360b57cec5SDimitry Andric 
72378bcb0991SDimitry Andric   MachineInstr *LastMI = Selects.back();
72388bcb0991SDimitry Andric   bool CCKilled =
72398bcb0991SDimitry Andric       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
72400b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
72415ffd83dbSDimitry Andric   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
72425ffd83dbSDimitry Andric   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
72430b57cec5SDimitry Andric 
72440b57cec5SDimitry Andric   // Unless CC was killed in the last Select instruction, mark it as
72450b57cec5SDimitry Andric   // live-in to both FalseMBB and JoinMBB.
72468bcb0991SDimitry Andric   if (!CCKilled) {
72470b57cec5SDimitry Andric     FalseMBB->addLiveIn(SystemZ::CC);
72480b57cec5SDimitry Andric     JoinMBB->addLiveIn(SystemZ::CC);
72490b57cec5SDimitry Andric   }
72500b57cec5SDimitry Andric 
72510b57cec5SDimitry Andric   //  StartMBB:
72520b57cec5SDimitry Andric   //   BRC CCMask, JoinMBB
72530b57cec5SDimitry Andric   //   # fallthrough to FalseMBB
72540b57cec5SDimitry Andric   MBB = StartMBB;
72558bcb0991SDimitry Andric   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
72560b57cec5SDimitry Andric     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
72570b57cec5SDimitry Andric   MBB->addSuccessor(JoinMBB);
72580b57cec5SDimitry Andric   MBB->addSuccessor(FalseMBB);
72590b57cec5SDimitry Andric 
72600b57cec5SDimitry Andric   //  FalseMBB:
72610b57cec5SDimitry Andric   //   # fallthrough to JoinMBB
72620b57cec5SDimitry Andric   MBB = FalseMBB;
72630b57cec5SDimitry Andric   MBB->addSuccessor(JoinMBB);
72640b57cec5SDimitry Andric 
72650b57cec5SDimitry Andric   //  JoinMBB:
72660b57cec5SDimitry Andric   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
72670b57cec5SDimitry Andric   //  ...
72680b57cec5SDimitry Andric   MBB = JoinMBB;
72698bcb0991SDimitry Andric   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
72708bcb0991SDimitry Andric   for (auto SelMI : Selects)
72718bcb0991SDimitry Andric     SelMI->eraseFromParent();
72720b57cec5SDimitry Andric 
72738bcb0991SDimitry Andric   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
72748bcb0991SDimitry Andric   for (auto DbgMI : DbgValues)
72758bcb0991SDimitry Andric     MBB->splice(InsertPos, StartMBB, DbgMI);
72768bcb0991SDimitry Andric 
72770b57cec5SDimitry Andric   return JoinMBB;
72780b57cec5SDimitry Andric }
72790b57cec5SDimitry Andric 
72800b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
72810b57cec5SDimitry Andric // StoreOpcode is the store to use and Invert says whether the store should
72820b57cec5SDimitry Andric // happen when the condition is false rather than true.  If a STORE ON
72830b57cec5SDimitry Andric // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
72840b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
72850b57cec5SDimitry Andric                                                         MachineBasicBlock *MBB,
72860b57cec5SDimitry Andric                                                         unsigned StoreOpcode,
72870b57cec5SDimitry Andric                                                         unsigned STOCOpcode,
72880b57cec5SDimitry Andric                                                         bool Invert) const {
72890b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
72900b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
72910b57cec5SDimitry Andric 
72928bcb0991SDimitry Andric   Register SrcReg = MI.getOperand(0).getReg();
72930b57cec5SDimitry Andric   MachineOperand Base = MI.getOperand(1);
72940b57cec5SDimitry Andric   int64_t Disp = MI.getOperand(2).getImm();
72958bcb0991SDimitry Andric   Register IndexReg = MI.getOperand(3).getReg();
72960b57cec5SDimitry Andric   unsigned CCValid = MI.getOperand(4).getImm();
72970b57cec5SDimitry Andric   unsigned CCMask = MI.getOperand(5).getImm();
72980b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
72990b57cec5SDimitry Andric 
73000b57cec5SDimitry Andric   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
73010b57cec5SDimitry Andric 
73020b57cec5SDimitry Andric   // ISel pattern matching also adds a load memory operand of the same
73030b57cec5SDimitry Andric   // address, so take special care to find the storing memory operand.
73040b57cec5SDimitry Andric   MachineMemOperand *MMO = nullptr;
73050b57cec5SDimitry Andric   for (auto *I : MI.memoperands())
73060b57cec5SDimitry Andric     if (I->isStore()) {
73070b57cec5SDimitry Andric       MMO = I;
73080b57cec5SDimitry Andric       break;
73090b57cec5SDimitry Andric     }
73100b57cec5SDimitry Andric 
7311e8d8bef9SDimitry Andric   // Use STOCOpcode if possible.  We could use different store patterns in
7312e8d8bef9SDimitry Andric   // order to avoid matching the index register, but the performance trade-offs
7313e8d8bef9SDimitry Andric   // might be more complicated in that case.
7314e8d8bef9SDimitry Andric   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7315e8d8bef9SDimitry Andric     if (Invert)
7316e8d8bef9SDimitry Andric       CCMask ^= CCValid;
7317e8d8bef9SDimitry Andric 
73180b57cec5SDimitry Andric     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
73190b57cec5SDimitry Andric       .addReg(SrcReg)
73200b57cec5SDimitry Andric       .add(Base)
73210b57cec5SDimitry Andric       .addImm(Disp)
73220b57cec5SDimitry Andric       .addImm(CCValid)
73230b57cec5SDimitry Andric       .addImm(CCMask)
73240b57cec5SDimitry Andric       .addMemOperand(MMO);
73250b57cec5SDimitry Andric 
73260b57cec5SDimitry Andric     MI.eraseFromParent();
73270b57cec5SDimitry Andric     return MBB;
73280b57cec5SDimitry Andric   }
73290b57cec5SDimitry Andric 
73300b57cec5SDimitry Andric   // Get the condition needed to branch around the store.
73310b57cec5SDimitry Andric   if (!Invert)
73320b57cec5SDimitry Andric     CCMask ^= CCValid;
73330b57cec5SDimitry Andric 
73340b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
73355ffd83dbSDimitry Andric   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
73365ffd83dbSDimitry Andric   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
73370b57cec5SDimitry Andric 
73380b57cec5SDimitry Andric   // Unless CC was killed in the CondStore instruction, mark it as
73390b57cec5SDimitry Andric   // live-in to both FalseMBB and JoinMBB.
73400b57cec5SDimitry Andric   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
73410b57cec5SDimitry Andric     FalseMBB->addLiveIn(SystemZ::CC);
73420b57cec5SDimitry Andric     JoinMBB->addLiveIn(SystemZ::CC);
73430b57cec5SDimitry Andric   }
73440b57cec5SDimitry Andric 
73450b57cec5SDimitry Andric   //  StartMBB:
73460b57cec5SDimitry Andric   //   BRC CCMask, JoinMBB
73470b57cec5SDimitry Andric   //   # fallthrough to FalseMBB
73480b57cec5SDimitry Andric   MBB = StartMBB;
73490b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
73500b57cec5SDimitry Andric     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
73510b57cec5SDimitry Andric   MBB->addSuccessor(JoinMBB);
73520b57cec5SDimitry Andric   MBB->addSuccessor(FalseMBB);
73530b57cec5SDimitry Andric 
73540b57cec5SDimitry Andric   //  FalseMBB:
73550b57cec5SDimitry Andric   //   store %SrcReg, %Disp(%Index,%Base)
73560b57cec5SDimitry Andric   //   # fallthrough to JoinMBB
73570b57cec5SDimitry Andric   MBB = FalseMBB;
73580b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(StoreOpcode))
73590b57cec5SDimitry Andric       .addReg(SrcReg)
73600b57cec5SDimitry Andric       .add(Base)
73610b57cec5SDimitry Andric       .addImm(Disp)
7362e8d8bef9SDimitry Andric       .addReg(IndexReg)
7363e8d8bef9SDimitry Andric       .addMemOperand(MMO);
73640b57cec5SDimitry Andric   MBB->addSuccessor(JoinMBB);
73650b57cec5SDimitry Andric 
73660b57cec5SDimitry Andric   MI.eraseFromParent();
73670b57cec5SDimitry Andric   return JoinMBB;
73680b57cec5SDimitry Andric }
73690b57cec5SDimitry Andric 
73700b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
73710b57cec5SDimitry Andric // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
73720b57cec5SDimitry Andric // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
73730b57cec5SDimitry Andric // BitSize is the width of the field in bits, or 0 if this is a partword
73740b57cec5SDimitry Andric // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
73750b57cec5SDimitry Andric // is one of the operands.  Invert says whether the field should be
73760b57cec5SDimitry Andric // inverted after performing BinOpcode (e.g. for NAND).
73770b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
73780b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
73790b57cec5SDimitry Andric     unsigned BitSize, bool Invert) const {
73800b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
73810b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
73820b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
73830b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
73840b57cec5SDimitry Andric   bool IsSubWord = (BitSize < 32);
73850b57cec5SDimitry Andric 
73860b57cec5SDimitry Andric   // Extract the operands.  Base can be a register or a frame index.
73870b57cec5SDimitry Andric   // Src2 can be a register or immediate.
73888bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
73890b57cec5SDimitry Andric   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
73900b57cec5SDimitry Andric   int64_t Disp = MI.getOperand(2).getImm();
73910b57cec5SDimitry Andric   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
73920b57cec5SDimitry Andric   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
73930b57cec5SDimitry Andric   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
73940b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
73950b57cec5SDimitry Andric   if (IsSubWord)
73960b57cec5SDimitry Andric     BitSize = MI.getOperand(6).getImm();
73970b57cec5SDimitry Andric 
73980b57cec5SDimitry Andric   // Subword operations use 32-bit registers.
73990b57cec5SDimitry Andric   const TargetRegisterClass *RC = (BitSize <= 32 ?
74000b57cec5SDimitry Andric                                    &SystemZ::GR32BitRegClass :
74010b57cec5SDimitry Andric                                    &SystemZ::GR64BitRegClass);
74020b57cec5SDimitry Andric   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
74030b57cec5SDimitry Andric   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
74040b57cec5SDimitry Andric 
74050b57cec5SDimitry Andric   // Get the right opcodes for the displacement.
74060b57cec5SDimitry Andric   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
74070b57cec5SDimitry Andric   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
74080b57cec5SDimitry Andric   assert(LOpcode && CSOpcode && "Displacement out of range");
74090b57cec5SDimitry Andric 
74100b57cec5SDimitry Andric   // Create virtual registers for temporary results.
74110b57cec5SDimitry Andric   Register OrigVal       = MRI.createVirtualRegister(RC);
74120b57cec5SDimitry Andric   Register OldVal        = MRI.createVirtualRegister(RC);
74130b57cec5SDimitry Andric   Register NewVal        = (BinOpcode || IsSubWord ?
74140b57cec5SDimitry Andric                             MRI.createVirtualRegister(RC) : Src2.getReg());
74150b57cec5SDimitry Andric   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
74160b57cec5SDimitry Andric   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
74170b57cec5SDimitry Andric 
74180b57cec5SDimitry Andric   // Insert a basic block for the main loop.
74190b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
74205ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
74215ffd83dbSDimitry Andric   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
74220b57cec5SDimitry Andric 
74230b57cec5SDimitry Andric   //  StartMBB:
74240b57cec5SDimitry Andric   //   ...
74250b57cec5SDimitry Andric   //   %OrigVal = L Disp(%Base)
7426*fe6060f1SDimitry Andric   //   # fall through to LoopMBB
74270b57cec5SDimitry Andric   MBB = StartMBB;
74280b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
74290b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
74300b57cec5SDimitry Andric 
74310b57cec5SDimitry Andric   //  LoopMBB:
74320b57cec5SDimitry Andric   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
74330b57cec5SDimitry Andric   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
74340b57cec5SDimitry Andric   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
74350b57cec5SDimitry Andric   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
74360b57cec5SDimitry Andric   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
74370b57cec5SDimitry Andric   //   JNE LoopMBB
7438*fe6060f1SDimitry Andric   //   # fall through to DoneMBB
74390b57cec5SDimitry Andric   MBB = LoopMBB;
74400b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
74410b57cec5SDimitry Andric     .addReg(OrigVal).addMBB(StartMBB)
74420b57cec5SDimitry Andric     .addReg(Dest).addMBB(LoopMBB);
74430b57cec5SDimitry Andric   if (IsSubWord)
74440b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
74450b57cec5SDimitry Andric       .addReg(OldVal).addReg(BitShift).addImm(0);
74460b57cec5SDimitry Andric   if (Invert) {
74470b57cec5SDimitry Andric     // Perform the operation normally and then invert every bit of the field.
74488bcb0991SDimitry Andric     Register Tmp = MRI.createVirtualRegister(RC);
74490b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
74500b57cec5SDimitry Andric     if (BitSize <= 32)
74510b57cec5SDimitry Andric       // XILF with the upper BitSize bits set.
74520b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
74530b57cec5SDimitry Andric         .addReg(Tmp).addImm(-1U << (32 - BitSize));
74540b57cec5SDimitry Andric     else {
74550b57cec5SDimitry Andric       // Use LCGR and add -1 to the result, which is more compact than
74560b57cec5SDimitry Andric       // an XILF, XILH pair.
74578bcb0991SDimitry Andric       Register Tmp2 = MRI.createVirtualRegister(RC);
74580b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
74590b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
74600b57cec5SDimitry Andric         .addReg(Tmp2).addImm(-1);
74610b57cec5SDimitry Andric     }
74620b57cec5SDimitry Andric   } else if (BinOpcode)
74630b57cec5SDimitry Andric     // A simply binary operation.
74640b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
74650b57cec5SDimitry Andric         .addReg(RotatedOldVal)
74660b57cec5SDimitry Andric         .add(Src2);
74670b57cec5SDimitry Andric   else if (IsSubWord)
74680b57cec5SDimitry Andric     // Use RISBG to rotate Src2 into position and use it to replace the
74690b57cec5SDimitry Andric     // field in RotatedOldVal.
74700b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
74710b57cec5SDimitry Andric       .addReg(RotatedOldVal).addReg(Src2.getReg())
74720b57cec5SDimitry Andric       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
74730b57cec5SDimitry Andric   if (IsSubWord)
74740b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
74750b57cec5SDimitry Andric       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
74760b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
74770b57cec5SDimitry Andric       .addReg(OldVal)
74780b57cec5SDimitry Andric       .addReg(NewVal)
74790b57cec5SDimitry Andric       .add(Base)
74800b57cec5SDimitry Andric       .addImm(Disp);
74810b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
74820b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
74830b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
74840b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
74850b57cec5SDimitry Andric 
74860b57cec5SDimitry Andric   MI.eraseFromParent();
74870b57cec5SDimitry Andric   return DoneMBB;
74880b57cec5SDimitry Andric }
74890b57cec5SDimitry Andric 
74900b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo
74910b57cec5SDimitry Andric // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
74920b57cec5SDimitry Andric // instruction that should be used to compare the current field with the
74930b57cec5SDimitry Andric // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
74940b57cec5SDimitry Andric // for when the current field should be kept.  BitSize is the width of
74950b57cec5SDimitry Andric // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
74960b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
74970b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
74980b57cec5SDimitry Andric     unsigned KeepOldMask, unsigned BitSize) const {
74990b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
75000b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
75010b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
75020b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
75030b57cec5SDimitry Andric   bool IsSubWord = (BitSize < 32);
75040b57cec5SDimitry Andric 
75050b57cec5SDimitry Andric   // Extract the operands.  Base can be a register or a frame index.
75068bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
75070b57cec5SDimitry Andric   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
75080b57cec5SDimitry Andric   int64_t Disp = MI.getOperand(2).getImm();
75090b57cec5SDimitry Andric   Register Src2 = MI.getOperand(3).getReg();
75100b57cec5SDimitry Andric   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
75110b57cec5SDimitry Andric   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
75120b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
75130b57cec5SDimitry Andric   if (IsSubWord)
75140b57cec5SDimitry Andric     BitSize = MI.getOperand(6).getImm();
75150b57cec5SDimitry Andric 
75160b57cec5SDimitry Andric   // Subword operations use 32-bit registers.
75170b57cec5SDimitry Andric   const TargetRegisterClass *RC = (BitSize <= 32 ?
75180b57cec5SDimitry Andric                                    &SystemZ::GR32BitRegClass :
75190b57cec5SDimitry Andric                                    &SystemZ::GR64BitRegClass);
75200b57cec5SDimitry Andric   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
75210b57cec5SDimitry Andric   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
75220b57cec5SDimitry Andric 
75230b57cec5SDimitry Andric   // Get the right opcodes for the displacement.
75240b57cec5SDimitry Andric   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
75250b57cec5SDimitry Andric   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
75260b57cec5SDimitry Andric   assert(LOpcode && CSOpcode && "Displacement out of range");
75270b57cec5SDimitry Andric 
75280b57cec5SDimitry Andric   // Create virtual registers for temporary results.
75290b57cec5SDimitry Andric   Register OrigVal       = MRI.createVirtualRegister(RC);
75300b57cec5SDimitry Andric   Register OldVal        = MRI.createVirtualRegister(RC);
75310b57cec5SDimitry Andric   Register NewVal        = MRI.createVirtualRegister(RC);
75320b57cec5SDimitry Andric   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
75330b57cec5SDimitry Andric   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
75340b57cec5SDimitry Andric   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
75350b57cec5SDimitry Andric 
75360b57cec5SDimitry Andric   // Insert 3 basic blocks for the loop.
75370b57cec5SDimitry Andric   MachineBasicBlock *StartMBB  = MBB;
75385ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
75395ffd83dbSDimitry Andric   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
75405ffd83dbSDimitry Andric   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
75415ffd83dbSDimitry Andric   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
75420b57cec5SDimitry Andric 
75430b57cec5SDimitry Andric   //  StartMBB:
75440b57cec5SDimitry Andric   //   ...
75450b57cec5SDimitry Andric   //   %OrigVal     = L Disp(%Base)
7546*fe6060f1SDimitry Andric   //   # fall through to LoopMBB
75470b57cec5SDimitry Andric   MBB = StartMBB;
75480b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
75490b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
75500b57cec5SDimitry Andric 
75510b57cec5SDimitry Andric   //  LoopMBB:
75520b57cec5SDimitry Andric   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
75530b57cec5SDimitry Andric   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
75540b57cec5SDimitry Andric   //   CompareOpcode %RotatedOldVal, %Src2
75550b57cec5SDimitry Andric   //   BRC KeepOldMask, UpdateMBB
75560b57cec5SDimitry Andric   MBB = LoopMBB;
75570b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
75580b57cec5SDimitry Andric     .addReg(OrigVal).addMBB(StartMBB)
75590b57cec5SDimitry Andric     .addReg(Dest).addMBB(UpdateMBB);
75600b57cec5SDimitry Andric   if (IsSubWord)
75610b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
75620b57cec5SDimitry Andric       .addReg(OldVal).addReg(BitShift).addImm(0);
75630b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(CompareOpcode))
75640b57cec5SDimitry Andric     .addReg(RotatedOldVal).addReg(Src2);
75650b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
75660b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
75670b57cec5SDimitry Andric   MBB->addSuccessor(UpdateMBB);
75680b57cec5SDimitry Andric   MBB->addSuccessor(UseAltMBB);
75690b57cec5SDimitry Andric 
75700b57cec5SDimitry Andric   //  UseAltMBB:
75710b57cec5SDimitry Andric   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7572*fe6060f1SDimitry Andric   //   # fall through to UpdateMBB
75730b57cec5SDimitry Andric   MBB = UseAltMBB;
75740b57cec5SDimitry Andric   if (IsSubWord)
75750b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
75760b57cec5SDimitry Andric       .addReg(RotatedOldVal).addReg(Src2)
75770b57cec5SDimitry Andric       .addImm(32).addImm(31 + BitSize).addImm(0);
75780b57cec5SDimitry Andric   MBB->addSuccessor(UpdateMBB);
75790b57cec5SDimitry Andric 
75800b57cec5SDimitry Andric   //  UpdateMBB:
75810b57cec5SDimitry Andric   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
75820b57cec5SDimitry Andric   //                        [ %RotatedAltVal, UseAltMBB ]
75830b57cec5SDimitry Andric   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
75840b57cec5SDimitry Andric   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
75850b57cec5SDimitry Andric   //   JNE LoopMBB
7586*fe6060f1SDimitry Andric   //   # fall through to DoneMBB
75870b57cec5SDimitry Andric   MBB = UpdateMBB;
75880b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
75890b57cec5SDimitry Andric     .addReg(RotatedOldVal).addMBB(LoopMBB)
75900b57cec5SDimitry Andric     .addReg(RotatedAltVal).addMBB(UseAltMBB);
75910b57cec5SDimitry Andric   if (IsSubWord)
75920b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
75930b57cec5SDimitry Andric       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
75940b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
75950b57cec5SDimitry Andric       .addReg(OldVal)
75960b57cec5SDimitry Andric       .addReg(NewVal)
75970b57cec5SDimitry Andric       .add(Base)
75980b57cec5SDimitry Andric       .addImm(Disp);
75990b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
76000b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
76010b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
76020b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
76030b57cec5SDimitry Andric 
76040b57cec5SDimitry Andric   MI.eraseFromParent();
76050b57cec5SDimitry Andric   return DoneMBB;
76060b57cec5SDimitry Andric }
76070b57cec5SDimitry Andric 
76080b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
76090b57cec5SDimitry Andric // instruction MI.
76100b57cec5SDimitry Andric MachineBasicBlock *
76110b57cec5SDimitry Andric SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
76120b57cec5SDimitry Andric                                           MachineBasicBlock *MBB) const {
76130b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
76140b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
76150b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
76160b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
76170b57cec5SDimitry Andric 
76180b57cec5SDimitry Andric   // Extract the operands.  Base can be a register or a frame index.
76198bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
76200b57cec5SDimitry Andric   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
76210b57cec5SDimitry Andric   int64_t Disp = MI.getOperand(2).getImm();
7622*fe6060f1SDimitry Andric   Register CmpVal = MI.getOperand(3).getReg();
76238bcb0991SDimitry Andric   Register OrigSwapVal = MI.getOperand(4).getReg();
76248bcb0991SDimitry Andric   Register BitShift = MI.getOperand(5).getReg();
76258bcb0991SDimitry Andric   Register NegBitShift = MI.getOperand(6).getReg();
76260b57cec5SDimitry Andric   int64_t BitSize = MI.getOperand(7).getImm();
76270b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
76280b57cec5SDimitry Andric 
76290b57cec5SDimitry Andric   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
76300b57cec5SDimitry Andric 
7631*fe6060f1SDimitry Andric   // Get the right opcodes for the displacement and zero-extension.
76320b57cec5SDimitry Andric   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
76330b57cec5SDimitry Andric   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7634*fe6060f1SDimitry Andric   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
76350b57cec5SDimitry Andric   assert(LOpcode && CSOpcode && "Displacement out of range");
76360b57cec5SDimitry Andric 
76370b57cec5SDimitry Andric   // Create virtual registers for temporary results.
76388bcb0991SDimitry Andric   Register OrigOldVal = MRI.createVirtualRegister(RC);
76398bcb0991SDimitry Andric   Register OldVal = MRI.createVirtualRegister(RC);
76408bcb0991SDimitry Andric   Register SwapVal = MRI.createVirtualRegister(RC);
76418bcb0991SDimitry Andric   Register StoreVal = MRI.createVirtualRegister(RC);
7642*fe6060f1SDimitry Andric   Register OldValRot = MRI.createVirtualRegister(RC);
76438bcb0991SDimitry Andric   Register RetryOldVal = MRI.createVirtualRegister(RC);
76448bcb0991SDimitry Andric   Register RetrySwapVal = MRI.createVirtualRegister(RC);
76450b57cec5SDimitry Andric 
76460b57cec5SDimitry Andric   // Insert 2 basic blocks for the loop.
76470b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
76485ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
76495ffd83dbSDimitry Andric   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
76505ffd83dbSDimitry Andric   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
76510b57cec5SDimitry Andric 
76520b57cec5SDimitry Andric   //  StartMBB:
76530b57cec5SDimitry Andric   //   ...
76540b57cec5SDimitry Andric   //   %OrigOldVal     = L Disp(%Base)
7655*fe6060f1SDimitry Andric   //   # fall through to LoopMBB
76560b57cec5SDimitry Andric   MBB = StartMBB;
76570b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
76580b57cec5SDimitry Andric       .add(Base)
76590b57cec5SDimitry Andric       .addImm(Disp)
76600b57cec5SDimitry Andric       .addReg(0);
76610b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
76620b57cec5SDimitry Andric 
76630b57cec5SDimitry Andric   //  LoopMBB:
76640b57cec5SDimitry Andric   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
76650b57cec5SDimitry Andric   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7666*fe6060f1SDimitry Andric   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
76670b57cec5SDimitry Andric   //                      ^^ The low BitSize bits contain the field
76680b57cec5SDimitry Andric   //                         of interest.
7669*fe6060f1SDimitry Andric   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
76700b57cec5SDimitry Andric   //                      ^^ Replace the upper 32-BitSize bits of the
7671*fe6060f1SDimitry Andric   //                         swap value with those that we loaded and rotated.
7672*fe6060f1SDimitry Andric   //   %Dest = LL[CH] %OldValRot
7673*fe6060f1SDimitry Andric   //   CR %Dest, %CmpVal
76740b57cec5SDimitry Andric   //   JNE DoneMBB
76750b57cec5SDimitry Andric   //   # Fall through to SetMBB
76760b57cec5SDimitry Andric   MBB = LoopMBB;
76770b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
76780b57cec5SDimitry Andric     .addReg(OrigOldVal).addMBB(StartMBB)
76790b57cec5SDimitry Andric     .addReg(RetryOldVal).addMBB(SetMBB);
76800b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
76810b57cec5SDimitry Andric     .addReg(OrigSwapVal).addMBB(StartMBB)
76820b57cec5SDimitry Andric     .addReg(RetrySwapVal).addMBB(SetMBB);
7683*fe6060f1SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
76840b57cec5SDimitry Andric     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7685*fe6060f1SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7686*fe6060f1SDimitry Andric     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7687*fe6060f1SDimitry Andric   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7688*fe6060f1SDimitry Andric     .addReg(OldValRot);
76890b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7690*fe6060f1SDimitry Andric     .addReg(Dest).addReg(CmpVal);
76910b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
76920b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_ICMP)
76930b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
76940b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
76950b57cec5SDimitry Andric   MBB->addSuccessor(SetMBB);
76960b57cec5SDimitry Andric 
76970b57cec5SDimitry Andric   //  SetMBB:
76980b57cec5SDimitry Andric   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
76990b57cec5SDimitry Andric   //                      ^^ Rotate the new field to its proper position.
7700*fe6060f1SDimitry Andric   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
77010b57cec5SDimitry Andric   //   JNE LoopMBB
7702*fe6060f1SDimitry Andric   //   # fall through to ExitMBB
77030b57cec5SDimitry Andric   MBB = SetMBB;
77040b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
77050b57cec5SDimitry Andric     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
77060b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
77070b57cec5SDimitry Andric       .addReg(OldVal)
77080b57cec5SDimitry Andric       .addReg(StoreVal)
77090b57cec5SDimitry Andric       .add(Base)
77100b57cec5SDimitry Andric       .addImm(Disp);
77110b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
77120b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
77130b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
77140b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
77150b57cec5SDimitry Andric 
77160b57cec5SDimitry Andric   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
77170b57cec5SDimitry Andric   // to the block after the loop.  At this point, CC may have been defined
77180b57cec5SDimitry Andric   // either by the CR in LoopMBB or by the CS in SetMBB.
77190b57cec5SDimitry Andric   if (!MI.registerDefIsDead(SystemZ::CC))
77200b57cec5SDimitry Andric     DoneMBB->addLiveIn(SystemZ::CC);
77210b57cec5SDimitry Andric 
77220b57cec5SDimitry Andric   MI.eraseFromParent();
77230b57cec5SDimitry Andric   return DoneMBB;
77240b57cec5SDimitry Andric }
77250b57cec5SDimitry Andric 
77260b57cec5SDimitry Andric // Emit a move from two GR64s to a GR128.
77270b57cec5SDimitry Andric MachineBasicBlock *
77280b57cec5SDimitry Andric SystemZTargetLowering::emitPair128(MachineInstr &MI,
77290b57cec5SDimitry Andric                                    MachineBasicBlock *MBB) const {
77300b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
77310b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
77320b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
77330b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
77340b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
77350b57cec5SDimitry Andric 
77368bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
77378bcb0991SDimitry Andric   Register Hi = MI.getOperand(1).getReg();
77388bcb0991SDimitry Andric   Register Lo = MI.getOperand(2).getReg();
77398bcb0991SDimitry Andric   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
77408bcb0991SDimitry Andric   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
77410b57cec5SDimitry Andric 
77420b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
77430b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
77440b57cec5SDimitry Andric     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
77450b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
77460b57cec5SDimitry Andric     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
77470b57cec5SDimitry Andric 
77480b57cec5SDimitry Andric   MI.eraseFromParent();
77490b57cec5SDimitry Andric   return MBB;
77500b57cec5SDimitry Andric }
77510b57cec5SDimitry Andric 
77520b57cec5SDimitry Andric // Emit an extension from a GR64 to a GR128.  ClearEven is true
77530b57cec5SDimitry Andric // if the high register of the GR128 value must be cleared or false if
77540b57cec5SDimitry Andric // it's "don't care".
77550b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
77560b57cec5SDimitry Andric                                                      MachineBasicBlock *MBB,
77570b57cec5SDimitry Andric                                                      bool ClearEven) const {
77580b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
77590b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
77600b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
77610b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
77620b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
77630b57cec5SDimitry Andric 
77648bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
77658bcb0991SDimitry Andric   Register Src = MI.getOperand(1).getReg();
77668bcb0991SDimitry Andric   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
77670b57cec5SDimitry Andric 
77680b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
77690b57cec5SDimitry Andric   if (ClearEven) {
77708bcb0991SDimitry Andric     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
77718bcb0991SDimitry Andric     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
77720b57cec5SDimitry Andric 
77730b57cec5SDimitry Andric     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
77740b57cec5SDimitry Andric       .addImm(0);
77750b57cec5SDimitry Andric     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
77760b57cec5SDimitry Andric       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
77770b57cec5SDimitry Andric     In128 = NewIn128;
77780b57cec5SDimitry Andric   }
77790b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
77800b57cec5SDimitry Andric     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
77810b57cec5SDimitry Andric 
77820b57cec5SDimitry Andric   MI.eraseFromParent();
77830b57cec5SDimitry Andric   return MBB;
77840b57cec5SDimitry Andric }
77850b57cec5SDimitry Andric 
77860b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
77870b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
77880b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
77890b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
77900b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
77910b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
77920b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
77930b57cec5SDimitry Andric 
77940b57cec5SDimitry Andric   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
77950b57cec5SDimitry Andric   uint64_t DestDisp = MI.getOperand(1).getImm();
77960b57cec5SDimitry Andric   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
77970b57cec5SDimitry Andric   uint64_t SrcDisp = MI.getOperand(3).getImm();
7798*fe6060f1SDimitry Andric   MachineOperand &LengthMO = MI.getOperand(4);
7799*fe6060f1SDimitry Andric   uint64_t ImmLength = LengthMO.isImm() ? LengthMO.getImm() : 0;
7800*fe6060f1SDimitry Andric   Register LenMinus1Reg =
7801*fe6060f1SDimitry Andric       LengthMO.isReg() ? LengthMO.getReg() : SystemZ::NoRegister;
78020b57cec5SDimitry Andric 
78030b57cec5SDimitry Andric   // When generating more than one CLC, all but the last will need to
78040b57cec5SDimitry Andric   // branch to the end when a difference is found.
7805*fe6060f1SDimitry Andric   MachineBasicBlock *EndMBB = (ImmLength > 256 && Opcode == SystemZ::CLC
7806*fe6060f1SDimitry Andric                                    ? SystemZ::splitBlockAfter(MI, MBB)
7807*fe6060f1SDimitry Andric                                    : nullptr);
78080b57cec5SDimitry Andric 
78090b57cec5SDimitry Andric   // Check for the loop form, in which operand 5 is the trip count.
78100b57cec5SDimitry Andric   if (MI.getNumExplicitOperands() > 5) {
7811*fe6060f1SDimitry Andric     Register StartCountReg = MI.getOperand(5).getReg();
78120b57cec5SDimitry Andric     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
78130b57cec5SDimitry Andric 
7814*fe6060f1SDimitry Andric     auto loadZeroAddress = [&]() -> MachineOperand {
7815*fe6060f1SDimitry Andric       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7816*fe6060f1SDimitry Andric       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
7817*fe6060f1SDimitry Andric       return MachineOperand::CreateReg(Reg, false);
7818*fe6060f1SDimitry Andric     };
7819*fe6060f1SDimitry Andric     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
7820*fe6060f1SDimitry Andric       DestBase = loadZeroAddress();
7821*fe6060f1SDimitry Andric     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
7822*fe6060f1SDimitry Andric       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
7823*fe6060f1SDimitry Andric 
7824*fe6060f1SDimitry Andric     MachineBasicBlock *StartMBB = nullptr;
7825*fe6060f1SDimitry Andric     MachineBasicBlock *LoopMBB = nullptr;
7826*fe6060f1SDimitry Andric     MachineBasicBlock *NextMBB = nullptr;
7827*fe6060f1SDimitry Andric     MachineBasicBlock *DoneMBB = nullptr;
7828*fe6060f1SDimitry Andric     MachineBasicBlock *AllDoneMBB = nullptr;
7829*fe6060f1SDimitry Andric 
78300b57cec5SDimitry Andric     Register StartSrcReg = forceReg(MI, SrcBase, TII);
7831*fe6060f1SDimitry Andric     Register StartDestReg =
7832*fe6060f1SDimitry Andric         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
78330b57cec5SDimitry Andric 
78340b57cec5SDimitry Andric     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
78350b57cec5SDimitry Andric     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7836*fe6060f1SDimitry Andric     Register ThisDestReg =
7837*fe6060f1SDimitry Andric         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
78380b57cec5SDimitry Andric     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7839*fe6060f1SDimitry Andric     Register NextDestReg =
7840*fe6060f1SDimitry Andric         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
78410b57cec5SDimitry Andric     RC = &SystemZ::GR64BitRegClass;
78420b57cec5SDimitry Andric     Register ThisCountReg = MRI.createVirtualRegister(RC);
78430b57cec5SDimitry Andric     Register NextCountReg = MRI.createVirtualRegister(RC);
78440b57cec5SDimitry Andric 
7845*fe6060f1SDimitry Andric     if (LengthMO.isReg()) {
7846*fe6060f1SDimitry Andric       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7847*fe6060f1SDimitry Andric       StartMBB = SystemZ::emitBlockAfter(MBB);
7848*fe6060f1SDimitry Andric       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7849*fe6060f1SDimitry Andric       NextMBB = LoopMBB;
7850*fe6060f1SDimitry Andric       DoneMBB = SystemZ::emitBlockAfter(LoopMBB);
7851*fe6060f1SDimitry Andric 
7852*fe6060f1SDimitry Andric       //  MBB:
7853*fe6060f1SDimitry Andric       //   # Jump to AllDoneMBB if LenMinus1Reg is -1, or fall thru to StartMBB.
7854*fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7855*fe6060f1SDimitry Andric         .addReg(LenMinus1Reg).addImm(-1);
7856*fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7857*fe6060f1SDimitry Andric         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7858*fe6060f1SDimitry Andric         .addMBB(AllDoneMBB);
7859*fe6060f1SDimitry Andric       MBB->addSuccessor(AllDoneMBB);
7860*fe6060f1SDimitry Andric       MBB->addSuccessor(StartMBB);
78610b57cec5SDimitry Andric 
78620b57cec5SDimitry Andric       // StartMBB:
7863*fe6060f1SDimitry Andric       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
7864*fe6060f1SDimitry Andric       MBB = StartMBB;
7865*fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7866*fe6060f1SDimitry Andric         .addReg(StartCountReg).addImm(0);
7867*fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7868*fe6060f1SDimitry Andric         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7869*fe6060f1SDimitry Andric         .addMBB(DoneMBB);
7870*fe6060f1SDimitry Andric       MBB->addSuccessor(DoneMBB);
78710b57cec5SDimitry Andric       MBB->addSuccessor(LoopMBB);
7872*fe6060f1SDimitry Andric     }
7873*fe6060f1SDimitry Andric     else {
7874*fe6060f1SDimitry Andric       StartMBB = MBB;
7875*fe6060f1SDimitry Andric       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7876*fe6060f1SDimitry Andric       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7877*fe6060f1SDimitry Andric       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7878*fe6060f1SDimitry Andric 
7879*fe6060f1SDimitry Andric       //  StartMBB:
7880*fe6060f1SDimitry Andric       //   # fall through to LoopMBB
7881*fe6060f1SDimitry Andric       MBB->addSuccessor(LoopMBB);
7882*fe6060f1SDimitry Andric 
7883*fe6060f1SDimitry Andric       DestBase = MachineOperand::CreateReg(NextDestReg, false);
7884*fe6060f1SDimitry Andric       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7885*fe6060f1SDimitry Andric       ImmLength &= 255;
7886*fe6060f1SDimitry Andric       if (EndMBB && !ImmLength)
7887*fe6060f1SDimitry Andric         // If the loop handled the whole CLC range, DoneMBB will be empty with
7888*fe6060f1SDimitry Andric         // CC live-through into EndMBB, so add it as live-in.
7889*fe6060f1SDimitry Andric         DoneMBB->addLiveIn(SystemZ::CC);
7890*fe6060f1SDimitry Andric     }
78910b57cec5SDimitry Andric 
78920b57cec5SDimitry Andric     //  LoopMBB:
78930b57cec5SDimitry Andric     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
78940b57cec5SDimitry Andric     //                      [ %NextDestReg, NextMBB ]
78950b57cec5SDimitry Andric     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
78960b57cec5SDimitry Andric     //                     [ %NextSrcReg, NextMBB ]
78970b57cec5SDimitry Andric     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
78980b57cec5SDimitry Andric     //                       [ %NextCountReg, NextMBB ]
78990b57cec5SDimitry Andric     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
79000b57cec5SDimitry Andric     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
79010b57cec5SDimitry Andric     //   ( JLH EndMBB )
79020b57cec5SDimitry Andric     //
79030b57cec5SDimitry Andric     // The prefetch is used only for MVC.  The JLH is used only for CLC.
79040b57cec5SDimitry Andric     MBB = LoopMBB;
79050b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
79060b57cec5SDimitry Andric       .addReg(StartDestReg).addMBB(StartMBB)
79070b57cec5SDimitry Andric       .addReg(NextDestReg).addMBB(NextMBB);
79080b57cec5SDimitry Andric     if (!HaveSingleBase)
79090b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
79100b57cec5SDimitry Andric         .addReg(StartSrcReg).addMBB(StartMBB)
79110b57cec5SDimitry Andric         .addReg(NextSrcReg).addMBB(NextMBB);
79120b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
79130b57cec5SDimitry Andric       .addReg(StartCountReg).addMBB(StartMBB)
79140b57cec5SDimitry Andric       .addReg(NextCountReg).addMBB(NextMBB);
79150b57cec5SDimitry Andric     if (Opcode == SystemZ::MVC)
79160b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
79170b57cec5SDimitry Andric         .addImm(SystemZ::PFD_WRITE)
79180b57cec5SDimitry Andric         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
79190b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(Opcode))
79200b57cec5SDimitry Andric       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
79210b57cec5SDimitry Andric       .addReg(ThisSrcReg).addImm(SrcDisp);
79220b57cec5SDimitry Andric     if (EndMBB) {
79230b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
79240b57cec5SDimitry Andric         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
79250b57cec5SDimitry Andric         .addMBB(EndMBB);
79260b57cec5SDimitry Andric       MBB->addSuccessor(EndMBB);
79270b57cec5SDimitry Andric       MBB->addSuccessor(NextMBB);
79280b57cec5SDimitry Andric     }
79290b57cec5SDimitry Andric 
79300b57cec5SDimitry Andric     // NextMBB:
79310b57cec5SDimitry Andric     //   %NextDestReg = LA 256(%ThisDestReg)
79320b57cec5SDimitry Andric     //   %NextSrcReg = LA 256(%ThisSrcReg)
79330b57cec5SDimitry Andric     //   %NextCountReg = AGHI %ThisCountReg, -1
79340b57cec5SDimitry Andric     //   CGHI %NextCountReg, 0
79350b57cec5SDimitry Andric     //   JLH LoopMBB
7936*fe6060f1SDimitry Andric     //   # fall through to DoneMBB
79370b57cec5SDimitry Andric     //
79380b57cec5SDimitry Andric     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
79390b57cec5SDimitry Andric     MBB = NextMBB;
79400b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
79410b57cec5SDimitry Andric       .addReg(ThisDestReg).addImm(256).addReg(0);
79420b57cec5SDimitry Andric     if (!HaveSingleBase)
79430b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
79440b57cec5SDimitry Andric         .addReg(ThisSrcReg).addImm(256).addReg(0);
79450b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
79460b57cec5SDimitry Andric       .addReg(ThisCountReg).addImm(-1);
79470b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
79480b57cec5SDimitry Andric       .addReg(NextCountReg).addImm(0);
79490b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
79500b57cec5SDimitry Andric       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
79510b57cec5SDimitry Andric       .addMBB(LoopMBB);
79520b57cec5SDimitry Andric     MBB->addSuccessor(LoopMBB);
79530b57cec5SDimitry Andric     MBB->addSuccessor(DoneMBB);
79540b57cec5SDimitry Andric 
79550b57cec5SDimitry Andric     MBB = DoneMBB;
7956*fe6060f1SDimitry Andric     if (LengthMO.isReg()) {
7957*fe6060f1SDimitry Andric       // DoneMBB:
7958*fe6060f1SDimitry Andric       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
7959*fe6060f1SDimitry Andric       // # Use EXecute Relative Long for the remainder of the bytes. The target
7960*fe6060f1SDimitry Andric       //   instruction of the EXRL will have a length field of 1 since 0 is an
7961*fe6060f1SDimitry Andric       //   illegal value. The number of bytes processed becomes (%LenMinus1Reg &
7962*fe6060f1SDimitry Andric       //   0xff) + 1.
7963*fe6060f1SDimitry Andric       // # Fall through to AllDoneMBB.
7964*fe6060f1SDimitry Andric       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7965*fe6060f1SDimitry Andric       Register RemDestReg = HaveSingleBase ? RemSrcReg
7966*fe6060f1SDimitry Andric         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7967*fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
7968*fe6060f1SDimitry Andric         .addReg(StartDestReg).addMBB(StartMBB)
7969*fe6060f1SDimitry Andric         .addReg(NextDestReg).addMBB(LoopMBB);
7970*fe6060f1SDimitry Andric       if (!HaveSingleBase)
7971*fe6060f1SDimitry Andric         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
7972*fe6060f1SDimitry Andric           .addReg(StartSrcReg).addMBB(StartMBB)
7973*fe6060f1SDimitry Andric           .addReg(NextSrcReg).addMBB(LoopMBB);
7974*fe6060f1SDimitry Andric       MRI.constrainRegClass(LenMinus1Reg, &SystemZ::ADDR64BitRegClass);
7975*fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
7976*fe6060f1SDimitry Andric         .addImm(Opcode)
7977*fe6060f1SDimitry Andric         .addReg(LenMinus1Reg)
7978*fe6060f1SDimitry Andric         .addReg(RemDestReg).addImm(DestDisp)
7979*fe6060f1SDimitry Andric         .addReg(RemSrcReg).addImm(SrcDisp);
7980*fe6060f1SDimitry Andric       MBB->addSuccessor(AllDoneMBB);
7981*fe6060f1SDimitry Andric       MBB = AllDoneMBB;
79820b57cec5SDimitry Andric     }
7983*fe6060f1SDimitry Andric   }
7984*fe6060f1SDimitry Andric 
79850b57cec5SDimitry Andric   // Handle any remaining bytes with straight-line code.
7986*fe6060f1SDimitry Andric   while (ImmLength > 0) {
7987*fe6060f1SDimitry Andric     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
79880b57cec5SDimitry Andric     // The previous iteration might have created out-of-range displacements.
79890b57cec5SDimitry Andric     // Apply them using LAY if so.
79900b57cec5SDimitry Andric     if (!isUInt<12>(DestDisp)) {
79918bcb0991SDimitry Andric       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
79920b57cec5SDimitry Andric       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
79930b57cec5SDimitry Andric           .add(DestBase)
79940b57cec5SDimitry Andric           .addImm(DestDisp)
79950b57cec5SDimitry Andric           .addReg(0);
79960b57cec5SDimitry Andric       DestBase = MachineOperand::CreateReg(Reg, false);
79970b57cec5SDimitry Andric       DestDisp = 0;
79980b57cec5SDimitry Andric     }
79990b57cec5SDimitry Andric     if (!isUInt<12>(SrcDisp)) {
80008bcb0991SDimitry Andric       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
80010b57cec5SDimitry Andric       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
80020b57cec5SDimitry Andric           .add(SrcBase)
80030b57cec5SDimitry Andric           .addImm(SrcDisp)
80040b57cec5SDimitry Andric           .addReg(0);
80050b57cec5SDimitry Andric       SrcBase = MachineOperand::CreateReg(Reg, false);
80060b57cec5SDimitry Andric       SrcDisp = 0;
80070b57cec5SDimitry Andric     }
80080b57cec5SDimitry Andric     BuildMI(*MBB, MI, DL, TII->get(Opcode))
80090b57cec5SDimitry Andric         .add(DestBase)
80100b57cec5SDimitry Andric         .addImm(DestDisp)
80110b57cec5SDimitry Andric         .addImm(ThisLength)
80120b57cec5SDimitry Andric         .add(SrcBase)
80130b57cec5SDimitry Andric         .addImm(SrcDisp)
80140b57cec5SDimitry Andric         .setMemRefs(MI.memoperands());
80150b57cec5SDimitry Andric     DestDisp += ThisLength;
80160b57cec5SDimitry Andric     SrcDisp += ThisLength;
8017*fe6060f1SDimitry Andric     ImmLength -= ThisLength;
80180b57cec5SDimitry Andric     // If there's another CLC to go, branch to the end if a difference
80190b57cec5SDimitry Andric     // was found.
8020*fe6060f1SDimitry Andric     if (EndMBB && ImmLength > 0) {
80215ffd83dbSDimitry Andric       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
80220b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
80230b57cec5SDimitry Andric         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
80240b57cec5SDimitry Andric         .addMBB(EndMBB);
80250b57cec5SDimitry Andric       MBB->addSuccessor(EndMBB);
80260b57cec5SDimitry Andric       MBB->addSuccessor(NextMBB);
80270b57cec5SDimitry Andric       MBB = NextMBB;
80280b57cec5SDimitry Andric     }
80290b57cec5SDimitry Andric   }
80300b57cec5SDimitry Andric   if (EndMBB) {
80310b57cec5SDimitry Andric     MBB->addSuccessor(EndMBB);
80320b57cec5SDimitry Andric     MBB = EndMBB;
80330b57cec5SDimitry Andric     MBB->addLiveIn(SystemZ::CC);
80340b57cec5SDimitry Andric   }
80350b57cec5SDimitry Andric 
80360b57cec5SDimitry Andric   MI.eraseFromParent();
80370b57cec5SDimitry Andric   return MBB;
80380b57cec5SDimitry Andric }
80390b57cec5SDimitry Andric 
80400b57cec5SDimitry Andric // Decompose string pseudo-instruction MI into a loop that continually performs
80410b57cec5SDimitry Andric // Opcode until CC != 3.
80420b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
80430b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
80440b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
80450b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
80460b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
80470b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
80480b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
80490b57cec5SDimitry Andric 
80500b57cec5SDimitry Andric   uint64_t End1Reg = MI.getOperand(0).getReg();
80510b57cec5SDimitry Andric   uint64_t Start1Reg = MI.getOperand(1).getReg();
80520b57cec5SDimitry Andric   uint64_t Start2Reg = MI.getOperand(2).getReg();
80530b57cec5SDimitry Andric   uint64_t CharReg = MI.getOperand(3).getReg();
80540b57cec5SDimitry Andric 
80550b57cec5SDimitry Andric   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
80560b57cec5SDimitry Andric   uint64_t This1Reg = MRI.createVirtualRegister(RC);
80570b57cec5SDimitry Andric   uint64_t This2Reg = MRI.createVirtualRegister(RC);
80580b57cec5SDimitry Andric   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
80590b57cec5SDimitry Andric 
80600b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
80615ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
80625ffd83dbSDimitry Andric   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
80630b57cec5SDimitry Andric 
80640b57cec5SDimitry Andric   //  StartMBB:
8065*fe6060f1SDimitry Andric   //   # fall through to LoopMBB
80660b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
80670b57cec5SDimitry Andric 
80680b57cec5SDimitry Andric   //  LoopMBB:
80690b57cec5SDimitry Andric   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
80700b57cec5SDimitry Andric   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
80710b57cec5SDimitry Andric   //   R0L = %CharReg
80720b57cec5SDimitry Andric   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
80730b57cec5SDimitry Andric   //   JO LoopMBB
8074*fe6060f1SDimitry Andric   //   # fall through to DoneMBB
80750b57cec5SDimitry Andric   //
80760b57cec5SDimitry Andric   // The load of R0L can be hoisted by post-RA LICM.
80770b57cec5SDimitry Andric   MBB = LoopMBB;
80780b57cec5SDimitry Andric 
80790b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
80800b57cec5SDimitry Andric     .addReg(Start1Reg).addMBB(StartMBB)
80810b57cec5SDimitry Andric     .addReg(End1Reg).addMBB(LoopMBB);
80820b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
80830b57cec5SDimitry Andric     .addReg(Start2Reg).addMBB(StartMBB)
80840b57cec5SDimitry Andric     .addReg(End2Reg).addMBB(LoopMBB);
80850b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
80860b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(Opcode))
80870b57cec5SDimitry Andric     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
80880b57cec5SDimitry Andric     .addReg(This1Reg).addReg(This2Reg);
80890b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
80900b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
80910b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
80920b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
80930b57cec5SDimitry Andric 
80940b57cec5SDimitry Andric   DoneMBB->addLiveIn(SystemZ::CC);
80950b57cec5SDimitry Andric 
80960b57cec5SDimitry Andric   MI.eraseFromParent();
80970b57cec5SDimitry Andric   return DoneMBB;
80980b57cec5SDimitry Andric }
80990b57cec5SDimitry Andric 
81000b57cec5SDimitry Andric // Update TBEGIN instruction with final opcode and register clobbers.
81010b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
81020b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
81030b57cec5SDimitry Andric     bool NoFloat) const {
81040b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
81050b57cec5SDimitry Andric   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
81060b57cec5SDimitry Andric   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
81070b57cec5SDimitry Andric 
81080b57cec5SDimitry Andric   // Update opcode.
81090b57cec5SDimitry Andric   MI.setDesc(TII->get(Opcode));
81100b57cec5SDimitry Andric 
81110b57cec5SDimitry Andric   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
81120b57cec5SDimitry Andric   // Make sure to add the corresponding GRSM bits if they are missing.
81130b57cec5SDimitry Andric   uint64_t Control = MI.getOperand(2).getImm();
81140b57cec5SDimitry Andric   static const unsigned GPRControlBit[16] = {
81150b57cec5SDimitry Andric     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
81160b57cec5SDimitry Andric     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
81170b57cec5SDimitry Andric   };
81180b57cec5SDimitry Andric   Control |= GPRControlBit[15];
81190b57cec5SDimitry Andric   if (TFI->hasFP(MF))
81200b57cec5SDimitry Andric     Control |= GPRControlBit[11];
81210b57cec5SDimitry Andric   MI.getOperand(2).setImm(Control);
81220b57cec5SDimitry Andric 
81230b57cec5SDimitry Andric   // Add GPR clobbers.
81240b57cec5SDimitry Andric   for (int I = 0; I < 16; I++) {
81250b57cec5SDimitry Andric     if ((Control & GPRControlBit[I]) == 0) {
81260b57cec5SDimitry Andric       unsigned Reg = SystemZMC::GR64Regs[I];
81270b57cec5SDimitry Andric       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
81280b57cec5SDimitry Andric     }
81290b57cec5SDimitry Andric   }
81300b57cec5SDimitry Andric 
81310b57cec5SDimitry Andric   // Add FPR/VR clobbers.
81320b57cec5SDimitry Andric   if (!NoFloat && (Control & 4) != 0) {
81330b57cec5SDimitry Andric     if (Subtarget.hasVector()) {
81340b57cec5SDimitry Andric       for (int I = 0; I < 32; I++) {
81350b57cec5SDimitry Andric         unsigned Reg = SystemZMC::VR128Regs[I];
81360b57cec5SDimitry Andric         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
81370b57cec5SDimitry Andric       }
81380b57cec5SDimitry Andric     } else {
81390b57cec5SDimitry Andric       for (int I = 0; I < 16; I++) {
81400b57cec5SDimitry Andric         unsigned Reg = SystemZMC::FP64Regs[I];
81410b57cec5SDimitry Andric         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
81420b57cec5SDimitry Andric       }
81430b57cec5SDimitry Andric     }
81440b57cec5SDimitry Andric   }
81450b57cec5SDimitry Andric 
81460b57cec5SDimitry Andric   return MBB;
81470b57cec5SDimitry Andric }
81480b57cec5SDimitry Andric 
81490b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
81500b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
81510b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
81520b57cec5SDimitry Andric   MachineRegisterInfo *MRI = &MF.getRegInfo();
81530b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
81540b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
81550b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
81560b57cec5SDimitry Andric 
81578bcb0991SDimitry Andric   Register SrcReg = MI.getOperand(0).getReg();
81580b57cec5SDimitry Andric 
81590b57cec5SDimitry Andric   // Create new virtual register of the same class as source.
81600b57cec5SDimitry Andric   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
81618bcb0991SDimitry Andric   Register DstReg = MRI->createVirtualRegister(RC);
81620b57cec5SDimitry Andric 
81630b57cec5SDimitry Andric   // Replace pseudo with a normal load-and-test that models the def as
81640b57cec5SDimitry Andric   // well.
81650b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8166480093f4SDimitry Andric     .addReg(SrcReg)
8167480093f4SDimitry Andric     .setMIFlags(MI.getFlags());
81680b57cec5SDimitry Andric   MI.eraseFromParent();
81690b57cec5SDimitry Andric 
81700b57cec5SDimitry Andric   return MBB;
81710b57cec5SDimitry Andric }
81720b57cec5SDimitry Andric 
81735ffd83dbSDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
81745ffd83dbSDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB) const {
81755ffd83dbSDimitry Andric   MachineFunction &MF = *MBB->getParent();
81765ffd83dbSDimitry Andric   MachineRegisterInfo *MRI = &MF.getRegInfo();
81775ffd83dbSDimitry Andric   const SystemZInstrInfo *TII =
81785ffd83dbSDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
81795ffd83dbSDimitry Andric   DebugLoc DL = MI.getDebugLoc();
81805ffd83dbSDimitry Andric   const unsigned ProbeSize = getStackProbeSize(MF);
81815ffd83dbSDimitry Andric   Register DstReg = MI.getOperand(0).getReg();
81825ffd83dbSDimitry Andric   Register SizeReg = MI.getOperand(2).getReg();
81835ffd83dbSDimitry Andric 
81845ffd83dbSDimitry Andric   MachineBasicBlock *StartMBB = MBB;
81855ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
81865ffd83dbSDimitry Andric   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
81875ffd83dbSDimitry Andric   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
81885ffd83dbSDimitry Andric   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
81895ffd83dbSDimitry Andric   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
81905ffd83dbSDimitry Andric 
81915ffd83dbSDimitry Andric   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
81925ffd83dbSDimitry Andric     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
81935ffd83dbSDimitry Andric 
81945ffd83dbSDimitry Andric   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
81955ffd83dbSDimitry Andric   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
81965ffd83dbSDimitry Andric 
81975ffd83dbSDimitry Andric   //  LoopTestMBB
81985ffd83dbSDimitry Andric   //  BRC TailTestMBB
81995ffd83dbSDimitry Andric   //  # fallthrough to LoopBodyMBB
82005ffd83dbSDimitry Andric   StartMBB->addSuccessor(LoopTestMBB);
82015ffd83dbSDimitry Andric   MBB = LoopTestMBB;
82025ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
82035ffd83dbSDimitry Andric     .addReg(SizeReg)
82045ffd83dbSDimitry Andric     .addMBB(StartMBB)
82055ffd83dbSDimitry Andric     .addReg(IncReg)
82065ffd83dbSDimitry Andric     .addMBB(LoopBodyMBB);
82075ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
82085ffd83dbSDimitry Andric     .addReg(PHIReg)
82095ffd83dbSDimitry Andric     .addImm(ProbeSize);
82105ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
82115ffd83dbSDimitry Andric     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
82125ffd83dbSDimitry Andric     .addMBB(TailTestMBB);
82135ffd83dbSDimitry Andric   MBB->addSuccessor(LoopBodyMBB);
82145ffd83dbSDimitry Andric   MBB->addSuccessor(TailTestMBB);
82155ffd83dbSDimitry Andric 
82165ffd83dbSDimitry Andric   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
82175ffd83dbSDimitry Andric   //  J LoopTestMBB
82185ffd83dbSDimitry Andric   MBB = LoopBodyMBB;
82195ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
82205ffd83dbSDimitry Andric     .addReg(PHIReg)
82215ffd83dbSDimitry Andric     .addImm(ProbeSize);
82225ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
82235ffd83dbSDimitry Andric     .addReg(SystemZ::R15D)
82245ffd83dbSDimitry Andric     .addImm(ProbeSize);
82255ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
82265ffd83dbSDimitry Andric     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
82275ffd83dbSDimitry Andric     .setMemRefs(VolLdMMO);
82285ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
82295ffd83dbSDimitry Andric   MBB->addSuccessor(LoopTestMBB);
82305ffd83dbSDimitry Andric 
82315ffd83dbSDimitry Andric   //  TailTestMBB
82325ffd83dbSDimitry Andric   //  BRC DoneMBB
82335ffd83dbSDimitry Andric   //  # fallthrough to TailMBB
82345ffd83dbSDimitry Andric   MBB = TailTestMBB;
82355ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
82365ffd83dbSDimitry Andric     .addReg(PHIReg)
82375ffd83dbSDimitry Andric     .addImm(0);
82385ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
82395ffd83dbSDimitry Andric     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
82405ffd83dbSDimitry Andric     .addMBB(DoneMBB);
82415ffd83dbSDimitry Andric   MBB->addSuccessor(TailMBB);
82425ffd83dbSDimitry Andric   MBB->addSuccessor(DoneMBB);
82435ffd83dbSDimitry Andric 
82445ffd83dbSDimitry Andric   //  TailMBB
82455ffd83dbSDimitry Andric   //  # fallthrough to DoneMBB
82465ffd83dbSDimitry Andric   MBB = TailMBB;
82475ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
82485ffd83dbSDimitry Andric     .addReg(SystemZ::R15D)
82495ffd83dbSDimitry Andric     .addReg(PHIReg);
82505ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
82515ffd83dbSDimitry Andric     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
82525ffd83dbSDimitry Andric     .setMemRefs(VolLdMMO);
82535ffd83dbSDimitry Andric   MBB->addSuccessor(DoneMBB);
82545ffd83dbSDimitry Andric 
82555ffd83dbSDimitry Andric   //  DoneMBB
82565ffd83dbSDimitry Andric   MBB = DoneMBB;
82575ffd83dbSDimitry Andric   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
82585ffd83dbSDimitry Andric     .addReg(SystemZ::R15D);
82595ffd83dbSDimitry Andric 
82605ffd83dbSDimitry Andric   MI.eraseFromParent();
82615ffd83dbSDimitry Andric   return DoneMBB;
82625ffd83dbSDimitry Andric }
82635ffd83dbSDimitry Andric 
8264e8d8bef9SDimitry Andric SDValue SystemZTargetLowering::
8265e8d8bef9SDimitry Andric getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8266e8d8bef9SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
8267e8d8bef9SDimitry Andric   auto *TFL =
8268e8d8bef9SDimitry Andric       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
8269e8d8bef9SDimitry Andric   SDLoc DL(SP);
8270e8d8bef9SDimitry Andric   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8271e8d8bef9SDimitry Andric                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8272e8d8bef9SDimitry Andric }
8273e8d8bef9SDimitry Andric 
82740b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
82750b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB) const {
82760b57cec5SDimitry Andric   switch (MI.getOpcode()) {
82770b57cec5SDimitry Andric   case SystemZ::Select32:
82780b57cec5SDimitry Andric   case SystemZ::Select64:
82790b57cec5SDimitry Andric   case SystemZ::SelectF32:
82800b57cec5SDimitry Andric   case SystemZ::SelectF64:
82810b57cec5SDimitry Andric   case SystemZ::SelectF128:
82820b57cec5SDimitry Andric   case SystemZ::SelectVR32:
82830b57cec5SDimitry Andric   case SystemZ::SelectVR64:
82840b57cec5SDimitry Andric   case SystemZ::SelectVR128:
82850b57cec5SDimitry Andric     return emitSelect(MI, MBB);
82860b57cec5SDimitry Andric 
82870b57cec5SDimitry Andric   case SystemZ::CondStore8Mux:
82880b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
82890b57cec5SDimitry Andric   case SystemZ::CondStore8MuxInv:
82900b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
82910b57cec5SDimitry Andric   case SystemZ::CondStore16Mux:
82920b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
82930b57cec5SDimitry Andric   case SystemZ::CondStore16MuxInv:
82940b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
82950b57cec5SDimitry Andric   case SystemZ::CondStore32Mux:
82960b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
82970b57cec5SDimitry Andric   case SystemZ::CondStore32MuxInv:
82980b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
82990b57cec5SDimitry Andric   case SystemZ::CondStore8:
83000b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
83010b57cec5SDimitry Andric   case SystemZ::CondStore8Inv:
83020b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
83030b57cec5SDimitry Andric   case SystemZ::CondStore16:
83040b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
83050b57cec5SDimitry Andric   case SystemZ::CondStore16Inv:
83060b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
83070b57cec5SDimitry Andric   case SystemZ::CondStore32:
83080b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
83090b57cec5SDimitry Andric   case SystemZ::CondStore32Inv:
83100b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
83110b57cec5SDimitry Andric   case SystemZ::CondStore64:
83120b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
83130b57cec5SDimitry Andric   case SystemZ::CondStore64Inv:
83140b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
83150b57cec5SDimitry Andric   case SystemZ::CondStoreF32:
83160b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
83170b57cec5SDimitry Andric   case SystemZ::CondStoreF32Inv:
83180b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
83190b57cec5SDimitry Andric   case SystemZ::CondStoreF64:
83200b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
83210b57cec5SDimitry Andric   case SystemZ::CondStoreF64Inv:
83220b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
83230b57cec5SDimitry Andric 
83240b57cec5SDimitry Andric   case SystemZ::PAIR128:
83250b57cec5SDimitry Andric     return emitPair128(MI, MBB);
83260b57cec5SDimitry Andric   case SystemZ::AEXT128:
83270b57cec5SDimitry Andric     return emitExt128(MI, MBB, false);
83280b57cec5SDimitry Andric   case SystemZ::ZEXT128:
83290b57cec5SDimitry Andric     return emitExt128(MI, MBB, true);
83300b57cec5SDimitry Andric 
83310b57cec5SDimitry Andric   case SystemZ::ATOMIC_SWAPW:
83320b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, 0, 0);
83330b57cec5SDimitry Andric   case SystemZ::ATOMIC_SWAP_32:
83340b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, 0, 32);
83350b57cec5SDimitry Andric   case SystemZ::ATOMIC_SWAP_64:
83360b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, 0, 64);
83370b57cec5SDimitry Andric 
83380b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_AR:
83390b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
83400b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_AFI:
83410b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
83420b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AR:
83430b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
83440b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AHI:
83450b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
83460b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AFI:
83470b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
83480b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AGR:
83490b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
83500b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AGHI:
83510b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
83520b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AGFI:
83530b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
83540b57cec5SDimitry Andric 
83550b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_SR:
83560b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
83570b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_SR:
83580b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
83590b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_SGR:
83600b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
83610b57cec5SDimitry Andric 
83620b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_NR:
83630b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
83640b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_NILH:
83650b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
83660b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NR:
83670b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
83680b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILL:
83690b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
83700b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILH:
83710b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
83720b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILF:
83730b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
83740b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NGR:
83750b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
83760b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILL64:
83770b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
83780b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILH64:
83790b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
83800b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHL64:
83810b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
83820b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHH64:
83830b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
83840b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILF64:
83850b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
83860b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHF64:
83870b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
83880b57cec5SDimitry Andric 
83890b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_OR:
83900b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
83910b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_OILH:
83920b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
83930b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OR:
83940b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
83950b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILL:
83960b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
83970b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILH:
83980b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
83990b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILF:
84000b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
84010b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OGR:
84020b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
84030b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILL64:
84040b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
84050b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILH64:
84060b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
84070b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OIHL64:
84080b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
84090b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OIHH64:
84100b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
84110b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILF64:
84120b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
84130b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OIHF64:
84140b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
84150b57cec5SDimitry Andric 
84160b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_XR:
84170b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
84180b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_XILF:
84190b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
84200b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XR:
84210b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
84220b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XILF:
84230b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
84240b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XGR:
84250b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
84260b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XILF64:
84270b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
84280b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XIHF64:
84290b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
84300b57cec5SDimitry Andric 
84310b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_NRi:
84320b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
84330b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_NILHi:
84340b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
84350b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NRi:
84360b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
84370b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILLi:
84380b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
84390b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILHi:
84400b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
84410b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILFi:
84420b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
84430b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NGRi:
84440b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
84450b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILL64i:
84460b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
84470b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILH64i:
84480b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
84490b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHL64i:
84500b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
84510b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHH64i:
84520b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
84530b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILF64i:
84540b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
84550b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHF64i:
84560b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
84570b57cec5SDimitry Andric 
84580b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_MIN:
84590b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
84600b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 0);
84610b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_MIN_32:
84620b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
84630b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 32);
84640b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_MIN_64:
84650b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
84660b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 64);
84670b57cec5SDimitry Andric 
84680b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_MAX:
84690b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
84700b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 0);
84710b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_MAX_32:
84720b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
84730b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 32);
84740b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_MAX_64:
84750b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
84760b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 64);
84770b57cec5SDimitry Andric 
84780b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_UMIN:
84790b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
84800b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 0);
84810b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_UMIN_32:
84820b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
84830b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 32);
84840b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_UMIN_64:
84850b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
84860b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 64);
84870b57cec5SDimitry Andric 
84880b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_UMAX:
84890b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
84900b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 0);
84910b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_UMAX_32:
84920b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
84930b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 32);
84940b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_UMAX_64:
84950b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
84960b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 64);
84970b57cec5SDimitry Andric 
84980b57cec5SDimitry Andric   case SystemZ::ATOMIC_CMP_SWAPW:
84990b57cec5SDimitry Andric     return emitAtomicCmpSwapW(MI, MBB);
85000b57cec5SDimitry Andric   case SystemZ::MVCSequence:
85010b57cec5SDimitry Andric   case SystemZ::MVCLoop:
85020b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
85030b57cec5SDimitry Andric   case SystemZ::NCSequence:
85040b57cec5SDimitry Andric   case SystemZ::NCLoop:
85050b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
85060b57cec5SDimitry Andric   case SystemZ::OCSequence:
85070b57cec5SDimitry Andric   case SystemZ::OCLoop:
85080b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
85090b57cec5SDimitry Andric   case SystemZ::XCSequence:
85100b57cec5SDimitry Andric   case SystemZ::XCLoop:
8511*fe6060f1SDimitry Andric   case SystemZ::XCLoopVarLen:
85120b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
85130b57cec5SDimitry Andric   case SystemZ::CLCSequence:
85140b57cec5SDimitry Andric   case SystemZ::CLCLoop:
85150b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
85160b57cec5SDimitry Andric   case SystemZ::CLSTLoop:
85170b57cec5SDimitry Andric     return emitStringWrapper(MI, MBB, SystemZ::CLST);
85180b57cec5SDimitry Andric   case SystemZ::MVSTLoop:
85190b57cec5SDimitry Andric     return emitStringWrapper(MI, MBB, SystemZ::MVST);
85200b57cec5SDimitry Andric   case SystemZ::SRSTLoop:
85210b57cec5SDimitry Andric     return emitStringWrapper(MI, MBB, SystemZ::SRST);
85220b57cec5SDimitry Andric   case SystemZ::TBEGIN:
85230b57cec5SDimitry Andric     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
85240b57cec5SDimitry Andric   case SystemZ::TBEGIN_nofloat:
85250b57cec5SDimitry Andric     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
85260b57cec5SDimitry Andric   case SystemZ::TBEGINC:
85270b57cec5SDimitry Andric     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
85280b57cec5SDimitry Andric   case SystemZ::LTEBRCompare_VecPseudo:
85290b57cec5SDimitry Andric     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
85300b57cec5SDimitry Andric   case SystemZ::LTDBRCompare_VecPseudo:
85310b57cec5SDimitry Andric     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
85320b57cec5SDimitry Andric   case SystemZ::LTXBRCompare_VecPseudo:
85330b57cec5SDimitry Andric     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
85340b57cec5SDimitry Andric 
85355ffd83dbSDimitry Andric   case SystemZ::PROBED_ALLOCA:
85365ffd83dbSDimitry Andric     return emitProbedAlloca(MI, MBB);
85375ffd83dbSDimitry Andric 
85380b57cec5SDimitry Andric   case TargetOpcode::STACKMAP:
85390b57cec5SDimitry Andric   case TargetOpcode::PATCHPOINT:
85400b57cec5SDimitry Andric     return emitPatchPoint(MI, MBB);
85410b57cec5SDimitry Andric 
85420b57cec5SDimitry Andric   default:
85430b57cec5SDimitry Andric     llvm_unreachable("Unexpected instr type to insert");
85440b57cec5SDimitry Andric   }
85450b57cec5SDimitry Andric }
85460b57cec5SDimitry Andric 
85470b57cec5SDimitry Andric // This is only used by the isel schedulers, and is needed only to prevent
85480b57cec5SDimitry Andric // compiler from crashing when list-ilp is used.
85490b57cec5SDimitry Andric const TargetRegisterClass *
85500b57cec5SDimitry Andric SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
85510b57cec5SDimitry Andric   if (VT == MVT::Untyped)
85520b57cec5SDimitry Andric     return &SystemZ::ADDR128BitRegClass;
85530b57cec5SDimitry Andric   return TargetLowering::getRepRegClassFor(VT);
85540b57cec5SDimitry Andric }
8555