10b57cec5SDimitry Andric //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file implements the SystemZTargetLowering class. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric #include "SystemZISelLowering.h" 140b57cec5SDimitry Andric #include "SystemZCallingConv.h" 150b57cec5SDimitry Andric #include "SystemZConstantPoolValue.h" 160b57cec5SDimitry Andric #include "SystemZMachineFunctionInfo.h" 170b57cec5SDimitry Andric #include "SystemZTargetMachine.h" 180b57cec5SDimitry Andric #include "llvm/CodeGen/CallingConvLower.h" 190b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 200b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 210b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 220b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 23480093f4SDimitry Andric #include "llvm/IR/Intrinsics.h" 24480093f4SDimitry Andric #include "llvm/IR/IntrinsicsS390.h" 250b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 260b57cec5SDimitry Andric #include "llvm/Support/KnownBits.h" 270b57cec5SDimitry Andric #include <cctype> 280b57cec5SDimitry Andric 290b57cec5SDimitry Andric using namespace llvm; 300b57cec5SDimitry Andric 310b57cec5SDimitry Andric #define DEBUG_TYPE "systemz-lower" 320b57cec5SDimitry Andric 330b57cec5SDimitry Andric namespace { 340b57cec5SDimitry Andric // Represents information about a comparison. 350b57cec5SDimitry Andric struct Comparison { 36480093f4SDimitry Andric Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37480093f4SDimitry Andric : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38480093f4SDimitry Andric Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 390b57cec5SDimitry Andric 400b57cec5SDimitry Andric // The operands to the comparison. 410b57cec5SDimitry Andric SDValue Op0, Op1; 420b57cec5SDimitry Andric 43480093f4SDimitry Andric // Chain if this is a strict floating-point comparison. 44480093f4SDimitry Andric SDValue Chain; 45480093f4SDimitry Andric 460b57cec5SDimitry Andric // The opcode that should be used to compare Op0 and Op1. 470b57cec5SDimitry Andric unsigned Opcode; 480b57cec5SDimitry Andric 490b57cec5SDimitry Andric // A SystemZICMP value. Only used for integer comparisons. 500b57cec5SDimitry Andric unsigned ICmpType; 510b57cec5SDimitry Andric 520b57cec5SDimitry Andric // The mask of CC values that Opcode can produce. 530b57cec5SDimitry Andric unsigned CCValid; 540b57cec5SDimitry Andric 550b57cec5SDimitry Andric // The mask of CC values for which the original condition is true. 560b57cec5SDimitry Andric unsigned CCMask; 570b57cec5SDimitry Andric }; 580b57cec5SDimitry Andric } // end anonymous namespace 590b57cec5SDimitry Andric 600b57cec5SDimitry Andric // Classify VT as either 32 or 64 bit. 610b57cec5SDimitry Andric static bool is32Bit(EVT VT) { 620b57cec5SDimitry Andric switch (VT.getSimpleVT().SimpleTy) { 630b57cec5SDimitry Andric case MVT::i32: 640b57cec5SDimitry Andric return true; 650b57cec5SDimitry Andric case MVT::i64: 660b57cec5SDimitry Andric return false; 670b57cec5SDimitry Andric default: 680b57cec5SDimitry Andric llvm_unreachable("Unsupported type"); 690b57cec5SDimitry Andric } 700b57cec5SDimitry Andric } 710b57cec5SDimitry Andric 720b57cec5SDimitry Andric // Return a version of MachineOperand that can be safely used before the 730b57cec5SDimitry Andric // final use. 740b57cec5SDimitry Andric static MachineOperand earlyUseOperand(MachineOperand Op) { 750b57cec5SDimitry Andric if (Op.isReg()) 760b57cec5SDimitry Andric Op.setIsKill(false); 770b57cec5SDimitry Andric return Op; 780b57cec5SDimitry Andric } 790b57cec5SDimitry Andric 800b57cec5SDimitry Andric SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 810b57cec5SDimitry Andric const SystemZSubtarget &STI) 820b57cec5SDimitry Andric : TargetLowering(TM), Subtarget(STI) { 830b57cec5SDimitry Andric MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 840b57cec5SDimitry Andric 850b57cec5SDimitry Andric // Set up the register classes. 860b57cec5SDimitry Andric if (Subtarget.hasHighWord()) 870b57cec5SDimitry Andric addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 880b57cec5SDimitry Andric else 890b57cec5SDimitry Andric addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 900b57cec5SDimitry Andric addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 915ffd83dbSDimitry Andric if (!useSoftFloat()) { 920b57cec5SDimitry Andric if (Subtarget.hasVector()) { 930b57cec5SDimitry Andric addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 940b57cec5SDimitry Andric addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 950b57cec5SDimitry Andric } else { 960b57cec5SDimitry Andric addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 970b57cec5SDimitry Andric addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 980b57cec5SDimitry Andric } 990b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) 1000b57cec5SDimitry Andric addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 1010b57cec5SDimitry Andric else 1020b57cec5SDimitry Andric addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 1030b57cec5SDimitry Andric 1040b57cec5SDimitry Andric if (Subtarget.hasVector()) { 1050b57cec5SDimitry Andric addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 1060b57cec5SDimitry Andric addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 1070b57cec5SDimitry Andric addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 1080b57cec5SDimitry Andric addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 1090b57cec5SDimitry Andric addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 1100b57cec5SDimitry Andric addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 1110b57cec5SDimitry Andric } 1125ffd83dbSDimitry Andric } 1130b57cec5SDimitry Andric 1140b57cec5SDimitry Andric // Compute derived properties from the register classes 1150b57cec5SDimitry Andric computeRegisterProperties(Subtarget.getRegisterInfo()); 1160b57cec5SDimitry Andric 1170b57cec5SDimitry Andric // Set up special registers. 1180b57cec5SDimitry Andric setStackPointerRegisterToSaveRestore(SystemZ::R15D); 1190b57cec5SDimitry Andric 1200b57cec5SDimitry Andric // TODO: It may be better to default to latency-oriented scheduling, however 1210b57cec5SDimitry Andric // LLVM's current latency-oriented scheduler can't handle physreg definitions 1220b57cec5SDimitry Andric // such as SystemZ has with CC, so set this to the register-pressure 1230b57cec5SDimitry Andric // scheduler, because it can. 1240b57cec5SDimitry Andric setSchedulingPreference(Sched::RegPressure); 1250b57cec5SDimitry Andric 1260b57cec5SDimitry Andric setBooleanContents(ZeroOrOneBooleanContent); 1270b57cec5SDimitry Andric setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1280b57cec5SDimitry Andric 1290b57cec5SDimitry Andric // Instructions are strings of 2-byte aligned 2-byte values. 1308bcb0991SDimitry Andric setMinFunctionAlignment(Align(2)); 1310b57cec5SDimitry Andric // For performance reasons we prefer 16-byte alignment. 1328bcb0991SDimitry Andric setPrefFunctionAlignment(Align(16)); 1330b57cec5SDimitry Andric 1340b57cec5SDimitry Andric // Handle operations that are handled in a similar way for all types. 1350b57cec5SDimitry Andric for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 1360b57cec5SDimitry Andric I <= MVT::LAST_FP_VALUETYPE; 1370b57cec5SDimitry Andric ++I) { 1380b57cec5SDimitry Andric MVT VT = MVT::SimpleValueType(I); 1390b57cec5SDimitry Andric if (isTypeLegal(VT)) { 1400b57cec5SDimitry Andric // Lower SET_CC into an IPM-based sequence. 1410b57cec5SDimitry Andric setOperationAction(ISD::SETCC, VT, Custom); 142480093f4SDimitry Andric setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143480093f4SDimitry Andric setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 1440b57cec5SDimitry Andric 1450b57cec5SDimitry Andric // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 1460b57cec5SDimitry Andric setOperationAction(ISD::SELECT, VT, Expand); 1470b57cec5SDimitry Andric 1480b57cec5SDimitry Andric // Lower SELECT_CC and BR_CC into separate comparisons and branches. 1490b57cec5SDimitry Andric setOperationAction(ISD::SELECT_CC, VT, Custom); 1500b57cec5SDimitry Andric setOperationAction(ISD::BR_CC, VT, Custom); 1510b57cec5SDimitry Andric } 1520b57cec5SDimitry Andric } 1530b57cec5SDimitry Andric 1540b57cec5SDimitry Andric // Expand jump table branches as address arithmetic followed by an 1550b57cec5SDimitry Andric // indirect jump. 1560b57cec5SDimitry Andric setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1570b57cec5SDimitry Andric 1580b57cec5SDimitry Andric // Expand BRCOND into a BR_CC (see above). 1590b57cec5SDimitry Andric setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1600b57cec5SDimitry Andric 1610b57cec5SDimitry Andric // Handle integer types. 1620b57cec5SDimitry Andric for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 1630b57cec5SDimitry Andric I <= MVT::LAST_INTEGER_VALUETYPE; 1640b57cec5SDimitry Andric ++I) { 1650b57cec5SDimitry Andric MVT VT = MVT::SimpleValueType(I); 1660b57cec5SDimitry Andric if (isTypeLegal(VT)) { 167e8d8bef9SDimitry Andric setOperationAction(ISD::ABS, VT, Legal); 168e8d8bef9SDimitry Andric 1690b57cec5SDimitry Andric // Expand individual DIV and REMs into DIVREMs. 1700b57cec5SDimitry Andric setOperationAction(ISD::SDIV, VT, Expand); 1710b57cec5SDimitry Andric setOperationAction(ISD::UDIV, VT, Expand); 1720b57cec5SDimitry Andric setOperationAction(ISD::SREM, VT, Expand); 1730b57cec5SDimitry Andric setOperationAction(ISD::UREM, VT, Expand); 1740b57cec5SDimitry Andric setOperationAction(ISD::SDIVREM, VT, Custom); 1750b57cec5SDimitry Andric setOperationAction(ISD::UDIVREM, VT, Custom); 1760b57cec5SDimitry Andric 1770b57cec5SDimitry Andric // Support addition/subtraction with overflow. 1780b57cec5SDimitry Andric setOperationAction(ISD::SADDO, VT, Custom); 1790b57cec5SDimitry Andric setOperationAction(ISD::SSUBO, VT, Custom); 1800b57cec5SDimitry Andric 1810b57cec5SDimitry Andric // Support addition/subtraction with carry. 1820b57cec5SDimitry Andric setOperationAction(ISD::UADDO, VT, Custom); 1830b57cec5SDimitry Andric setOperationAction(ISD::USUBO, VT, Custom); 1840b57cec5SDimitry Andric 1850b57cec5SDimitry Andric // Support carry in as value rather than glue. 1860b57cec5SDimitry Andric setOperationAction(ISD::ADDCARRY, VT, Custom); 1870b57cec5SDimitry Andric setOperationAction(ISD::SUBCARRY, VT, Custom); 1880b57cec5SDimitry Andric 1890b57cec5SDimitry Andric // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 1900b57cec5SDimitry Andric // stores, putting a serialization instruction after the stores. 1910b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 1920b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 1930b57cec5SDimitry Andric 1940b57cec5SDimitry Andric // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 1950b57cec5SDimitry Andric // available, or if the operand is constant. 1960b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 1970b57cec5SDimitry Andric 1980b57cec5SDimitry Andric // Use POPCNT on z196 and above. 1990b57cec5SDimitry Andric if (Subtarget.hasPopulationCount()) 2000b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, VT, Custom); 2010b57cec5SDimitry Andric else 2020b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, VT, Expand); 2030b57cec5SDimitry Andric 2040b57cec5SDimitry Andric // No special instructions for these. 2050b57cec5SDimitry Andric setOperationAction(ISD::CTTZ, VT, Expand); 2060b57cec5SDimitry Andric setOperationAction(ISD::ROTR, VT, Expand); 2070b57cec5SDimitry Andric 2080b57cec5SDimitry Andric // Use *MUL_LOHI where possible instead of MULH*. 2090b57cec5SDimitry Andric setOperationAction(ISD::MULHS, VT, Expand); 2100b57cec5SDimitry Andric setOperationAction(ISD::MULHU, VT, Expand); 2110b57cec5SDimitry Andric setOperationAction(ISD::SMUL_LOHI, VT, Custom); 2120b57cec5SDimitry Andric setOperationAction(ISD::UMUL_LOHI, VT, Custom); 2130b57cec5SDimitry Andric 2140b57cec5SDimitry Andric // Only z196 and above have native support for conversions to unsigned. 2150b57cec5SDimitry Andric // On z10, promoting to i64 doesn't generate an inexact condition for 2160b57cec5SDimitry Andric // values that are outside the i32 range but in the i64 range, so use 2170b57cec5SDimitry Andric // the default expansion. 2180b57cec5SDimitry Andric if (!Subtarget.hasFPExtension()) 2190b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, VT, Expand); 2208bcb0991SDimitry Andric 2218bcb0991SDimitry Andric // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 2228bcb0991SDimitry Andric // default to Expand, so need to be modified to Legal where appropriate. 2238bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 2248bcb0991SDimitry Andric if (Subtarget.hasFPExtension()) 2258bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 226480093f4SDimitry Andric 227480093f4SDimitry Andric // And similarly for STRICT_[SU]INT_TO_FP. 228480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 229480093f4SDimitry Andric if (Subtarget.hasFPExtension()) 230480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 2310b57cec5SDimitry Andric } 2320b57cec5SDimitry Andric } 2330b57cec5SDimitry Andric 2340b57cec5SDimitry Andric // Type legalization will convert 8- and 16-bit atomic operations into 2350b57cec5SDimitry Andric // forms that operate on i32s (but still keeping the original memory VT). 2360b57cec5SDimitry Andric // Lower them into full i32 operations. 2370b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 2380b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 2390b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 2400b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 2410b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 2420b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 2430b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 2440b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 2450b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 2460b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 2470b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 2480b57cec5SDimitry Andric 2490b57cec5SDimitry Andric // Even though i128 is not a legal type, we still need to custom lower 2500b57cec5SDimitry Andric // the atomic operations in order to exploit SystemZ instructions. 2510b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 2520b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 2530b57cec5SDimitry Andric 2540b57cec5SDimitry Andric // We can use the CC result of compare-and-swap to implement 2550b57cec5SDimitry Andric // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 2560b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 2570b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 2580b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 2590b57cec5SDimitry Andric 2600b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 2610b57cec5SDimitry Andric 2620b57cec5SDimitry Andric // Traps are legal, as we will convert them to "j .+2". 2630b57cec5SDimitry Andric setOperationAction(ISD::TRAP, MVT::Other, Legal); 2640b57cec5SDimitry Andric 2650b57cec5SDimitry Andric // z10 has instructions for signed but not unsigned FP conversion. 2660b57cec5SDimitry Andric // Handle unsigned 32-bit types as signed 64-bit types. 2670b57cec5SDimitry Andric if (!Subtarget.hasFPExtension()) { 2680b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 2690b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 270480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 271480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 2720b57cec5SDimitry Andric } 2730b57cec5SDimitry Andric 2740b57cec5SDimitry Andric // We have native support for a 64-bit CTLZ, via FLOGR. 2750b57cec5SDimitry Andric setOperationAction(ISD::CTLZ, MVT::i32, Promote); 2760b57cec5SDimitry Andric setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 2770b57cec5SDimitry Andric setOperationAction(ISD::CTLZ, MVT::i64, Legal); 2780b57cec5SDimitry Andric 2798bcb0991SDimitry Andric // On z15 we have native support for a 64-bit CTPOP. 2800b57cec5SDimitry Andric if (Subtarget.hasMiscellaneousExtensions3()) { 2810b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, MVT::i32, Promote); 2820b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, MVT::i64, Legal); 2830b57cec5SDimitry Andric } 2840b57cec5SDimitry Andric 2850b57cec5SDimitry Andric // Give LowerOperation the chance to replace 64-bit ORs with subregs. 2860b57cec5SDimitry Andric setOperationAction(ISD::OR, MVT::i64, Custom); 2870b57cec5SDimitry Andric 28823408297SDimitry Andric // Expand 128 bit shifts without using a libcall. 2890b57cec5SDimitry Andric setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 2900b57cec5SDimitry Andric setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 2910b57cec5SDimitry Andric setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 29223408297SDimitry Andric setLibcallName(RTLIB::SRL_I128, nullptr); 29323408297SDimitry Andric setLibcallName(RTLIB::SHL_I128, nullptr); 29423408297SDimitry Andric setLibcallName(RTLIB::SRA_I128, nullptr); 2950b57cec5SDimitry Andric 2960b57cec5SDimitry Andric // We have native instructions for i8, i16 and i32 extensions, but not i1. 2970b57cec5SDimitry Andric setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 2980b57cec5SDimitry Andric for (MVT VT : MVT::integer_valuetypes()) { 2990b57cec5SDimitry Andric setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 3000b57cec5SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 3010b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 3020b57cec5SDimitry Andric } 3030b57cec5SDimitry Andric 3040b57cec5SDimitry Andric // Handle the various types of symbolic address. 3050b57cec5SDimitry Andric setOperationAction(ISD::ConstantPool, PtrVT, Custom); 3060b57cec5SDimitry Andric setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 3070b57cec5SDimitry Andric setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 3080b57cec5SDimitry Andric setOperationAction(ISD::BlockAddress, PtrVT, Custom); 3090b57cec5SDimitry Andric setOperationAction(ISD::JumpTable, PtrVT, Custom); 3100b57cec5SDimitry Andric 3110b57cec5SDimitry Andric // We need to handle dynamic allocations specially because of the 3120b57cec5SDimitry Andric // 160-byte area at the bottom of the stack. 3130b57cec5SDimitry Andric setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 3140b57cec5SDimitry Andric setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 3150b57cec5SDimitry Andric 3160b57cec5SDimitry Andric // Use custom expanders so that we can force the function to use 3170b57cec5SDimitry Andric // a frame pointer. 3180b57cec5SDimitry Andric setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 3190b57cec5SDimitry Andric setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 3200b57cec5SDimitry Andric 3210b57cec5SDimitry Andric // Handle prefetches with PFD or PFDRL. 3220b57cec5SDimitry Andric setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 3230b57cec5SDimitry Andric 3248bcb0991SDimitry Andric for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 3250b57cec5SDimitry Andric // Assume by default that all vector operations need to be expanded. 3260b57cec5SDimitry Andric for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 3270b57cec5SDimitry Andric if (getOperationAction(Opcode, VT) == Legal) 3280b57cec5SDimitry Andric setOperationAction(Opcode, VT, Expand); 3290b57cec5SDimitry Andric 3300b57cec5SDimitry Andric // Likewise all truncating stores and extending loads. 3318bcb0991SDimitry Andric for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 3320b57cec5SDimitry Andric setTruncStoreAction(VT, InnerVT, Expand); 3330b57cec5SDimitry Andric setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 3340b57cec5SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 3350b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 3360b57cec5SDimitry Andric } 3370b57cec5SDimitry Andric 3380b57cec5SDimitry Andric if (isTypeLegal(VT)) { 3390b57cec5SDimitry Andric // These operations are legal for anything that can be stored in a 3400b57cec5SDimitry Andric // vector register, even if there is no native support for the format 3410b57cec5SDimitry Andric // as such. In particular, we can do these for v4f32 even though there 3420b57cec5SDimitry Andric // are no specific instructions for that format. 3430b57cec5SDimitry Andric setOperationAction(ISD::LOAD, VT, Legal); 3440b57cec5SDimitry Andric setOperationAction(ISD::STORE, VT, Legal); 3450b57cec5SDimitry Andric setOperationAction(ISD::VSELECT, VT, Legal); 3460b57cec5SDimitry Andric setOperationAction(ISD::BITCAST, VT, Legal); 3470b57cec5SDimitry Andric setOperationAction(ISD::UNDEF, VT, Legal); 3480b57cec5SDimitry Andric 3490b57cec5SDimitry Andric // Likewise, except that we need to replace the nodes with something 3500b57cec5SDimitry Andric // more specific. 3510b57cec5SDimitry Andric setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 3520b57cec5SDimitry Andric setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 3530b57cec5SDimitry Andric } 3540b57cec5SDimitry Andric } 3550b57cec5SDimitry Andric 3560b57cec5SDimitry Andric // Handle integer vector types. 3578bcb0991SDimitry Andric for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 3580b57cec5SDimitry Andric if (isTypeLegal(VT)) { 3590b57cec5SDimitry Andric // These operations have direct equivalents. 3600b57cec5SDimitry Andric setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 3610b57cec5SDimitry Andric setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 3620b57cec5SDimitry Andric setOperationAction(ISD::ADD, VT, Legal); 3630b57cec5SDimitry Andric setOperationAction(ISD::SUB, VT, Legal); 3640b57cec5SDimitry Andric if (VT != MVT::v2i64) 3650b57cec5SDimitry Andric setOperationAction(ISD::MUL, VT, Legal); 366e8d8bef9SDimitry Andric setOperationAction(ISD::ABS, VT, Legal); 3670b57cec5SDimitry Andric setOperationAction(ISD::AND, VT, Legal); 3680b57cec5SDimitry Andric setOperationAction(ISD::OR, VT, Legal); 3690b57cec5SDimitry Andric setOperationAction(ISD::XOR, VT, Legal); 3700b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) 3710b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, VT, Legal); 3720b57cec5SDimitry Andric else 3730b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, VT, Custom); 3740b57cec5SDimitry Andric setOperationAction(ISD::CTTZ, VT, Legal); 3750b57cec5SDimitry Andric setOperationAction(ISD::CTLZ, VT, Legal); 3760b57cec5SDimitry Andric 3770b57cec5SDimitry Andric // Convert a GPR scalar to a vector by inserting it into element 0. 3780b57cec5SDimitry Andric setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 3790b57cec5SDimitry Andric 3800b57cec5SDimitry Andric // Use a series of unpacks for extensions. 3810b57cec5SDimitry Andric setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 3820b57cec5SDimitry Andric setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 3830b57cec5SDimitry Andric 3840b57cec5SDimitry Andric // Detect shifts by a scalar amount and convert them into 3850b57cec5SDimitry Andric // V*_BY_SCALAR. 3860b57cec5SDimitry Andric setOperationAction(ISD::SHL, VT, Custom); 3870b57cec5SDimitry Andric setOperationAction(ISD::SRA, VT, Custom); 3880b57cec5SDimitry Andric setOperationAction(ISD::SRL, VT, Custom); 3890b57cec5SDimitry Andric 3900b57cec5SDimitry Andric // At present ROTL isn't matched by DAGCombiner. ROTR should be 3910b57cec5SDimitry Andric // converted into ROTL. 3920b57cec5SDimitry Andric setOperationAction(ISD::ROTL, VT, Expand); 3930b57cec5SDimitry Andric setOperationAction(ISD::ROTR, VT, Expand); 3940b57cec5SDimitry Andric 3950b57cec5SDimitry Andric // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 3960b57cec5SDimitry Andric // and inverting the result as necessary. 3970b57cec5SDimitry Andric setOperationAction(ISD::SETCC, VT, Custom); 398480093f4SDimitry Andric setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 399480093f4SDimitry Andric if (Subtarget.hasVectorEnhancements1()) 400480093f4SDimitry Andric setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 4010b57cec5SDimitry Andric } 4020b57cec5SDimitry Andric } 4030b57cec5SDimitry Andric 4040b57cec5SDimitry Andric if (Subtarget.hasVector()) { 4050b57cec5SDimitry Andric // There should be no need to check for float types other than v2f64 4060b57cec5SDimitry Andric // since <2 x f32> isn't a legal type. 4070b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 4080b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 4090b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 4100b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 4110b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 4120b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 4130b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 4140b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 4158bcb0991SDimitry Andric 4168bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 4178bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 4188bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 4198bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 420480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 421480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 422480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 423480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 4240b57cec5SDimitry Andric } 4250b57cec5SDimitry Andric 4260b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements2()) { 4270b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 4280b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 4290b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 4300b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 4310b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 4320b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 4330b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 4340b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 4358bcb0991SDimitry Andric 4368bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 4378bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 4388bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 4398bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 440480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 441480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 442480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 443480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 4440b57cec5SDimitry Andric } 4450b57cec5SDimitry Andric 4460b57cec5SDimitry Andric // Handle floating-point types. 4470b57cec5SDimitry Andric for (unsigned I = MVT::FIRST_FP_VALUETYPE; 4480b57cec5SDimitry Andric I <= MVT::LAST_FP_VALUETYPE; 4490b57cec5SDimitry Andric ++I) { 4500b57cec5SDimitry Andric MVT VT = MVT::SimpleValueType(I); 4510b57cec5SDimitry Andric if (isTypeLegal(VT)) { 4520b57cec5SDimitry Andric // We can use FI for FRINT. 4530b57cec5SDimitry Andric setOperationAction(ISD::FRINT, VT, Legal); 4540b57cec5SDimitry Andric 4550b57cec5SDimitry Andric // We can use the extended form of FI for other rounding operations. 4560b57cec5SDimitry Andric if (Subtarget.hasFPExtension()) { 4570b57cec5SDimitry Andric setOperationAction(ISD::FNEARBYINT, VT, Legal); 4580b57cec5SDimitry Andric setOperationAction(ISD::FFLOOR, VT, Legal); 4590b57cec5SDimitry Andric setOperationAction(ISD::FCEIL, VT, Legal); 4600b57cec5SDimitry Andric setOperationAction(ISD::FTRUNC, VT, Legal); 4610b57cec5SDimitry Andric setOperationAction(ISD::FROUND, VT, Legal); 4620b57cec5SDimitry Andric } 4630b57cec5SDimitry Andric 4640b57cec5SDimitry Andric // No special instructions for these. 4650b57cec5SDimitry Andric setOperationAction(ISD::FSIN, VT, Expand); 4660b57cec5SDimitry Andric setOperationAction(ISD::FCOS, VT, Expand); 4670b57cec5SDimitry Andric setOperationAction(ISD::FSINCOS, VT, Expand); 4680b57cec5SDimitry Andric setOperationAction(ISD::FREM, VT, Expand); 4690b57cec5SDimitry Andric setOperationAction(ISD::FPOW, VT, Expand); 4700b57cec5SDimitry Andric 4710b57cec5SDimitry Andric // Handle constrained floating-point operations. 4720b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FADD, VT, Legal); 4730b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSUB, VT, Legal); 4740b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMUL, VT, Legal); 4750b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FDIV, VT, Legal); 4760b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMA, VT, Legal); 4770b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 4780b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FRINT, VT, Legal); 4790b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 4800b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 4810b57cec5SDimitry Andric if (Subtarget.hasFPExtension()) { 4820b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 4830b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 4840b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 4850b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FROUND, VT, Legal); 4860b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 4870b57cec5SDimitry Andric } 4880b57cec5SDimitry Andric } 4890b57cec5SDimitry Andric } 4900b57cec5SDimitry Andric 4910b57cec5SDimitry Andric // Handle floating-point vector types. 4920b57cec5SDimitry Andric if (Subtarget.hasVector()) { 4930b57cec5SDimitry Andric // Scalar-to-vector conversion is just a subreg. 4940b57cec5SDimitry Andric setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 4950b57cec5SDimitry Andric setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 4960b57cec5SDimitry Andric 4970b57cec5SDimitry Andric // Some insertions and extractions can be done directly but others 4980b57cec5SDimitry Andric // need to go via integers. 4990b57cec5SDimitry Andric setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 5000b57cec5SDimitry Andric setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 5010b57cec5SDimitry Andric setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 5020b57cec5SDimitry Andric setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 5030b57cec5SDimitry Andric 5040b57cec5SDimitry Andric // These operations have direct equivalents. 5050b57cec5SDimitry Andric setOperationAction(ISD::FADD, MVT::v2f64, Legal); 5060b57cec5SDimitry Andric setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 5070b57cec5SDimitry Andric setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 5080b57cec5SDimitry Andric setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 5090b57cec5SDimitry Andric setOperationAction(ISD::FMA, MVT::v2f64, Legal); 5100b57cec5SDimitry Andric setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 5110b57cec5SDimitry Andric setOperationAction(ISD::FABS, MVT::v2f64, Legal); 5120b57cec5SDimitry Andric setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 5130b57cec5SDimitry Andric setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 5140b57cec5SDimitry Andric setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 5150b57cec5SDimitry Andric setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 5160b57cec5SDimitry Andric setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 5170b57cec5SDimitry Andric setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 5180b57cec5SDimitry Andric setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 5190b57cec5SDimitry Andric 5200b57cec5SDimitry Andric // Handle constrained floating-point operations. 5210b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 5220b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 5230b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 5240b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 5250b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 5260b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 5270b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 5280b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 5290b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 5300b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 5310b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 5320b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 5330b57cec5SDimitry Andric } 5340b57cec5SDimitry Andric 5350b57cec5SDimitry Andric // The vector enhancements facility 1 has instructions for these. 5360b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) { 5370b57cec5SDimitry Andric setOperationAction(ISD::FADD, MVT::v4f32, Legal); 5380b57cec5SDimitry Andric setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 5390b57cec5SDimitry Andric setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 5400b57cec5SDimitry Andric setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 5410b57cec5SDimitry Andric setOperationAction(ISD::FMA, MVT::v4f32, Legal); 5420b57cec5SDimitry Andric setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 5430b57cec5SDimitry Andric setOperationAction(ISD::FABS, MVT::v4f32, Legal); 5440b57cec5SDimitry Andric setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 5450b57cec5SDimitry Andric setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 5460b57cec5SDimitry Andric setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 5470b57cec5SDimitry Andric setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 5480b57cec5SDimitry Andric setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 5490b57cec5SDimitry Andric setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 5500b57cec5SDimitry Andric setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 5510b57cec5SDimitry Andric 5520b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 5530b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 5540b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 5550b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 5560b57cec5SDimitry Andric 5570b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 5580b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 5590b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 5600b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 5610b57cec5SDimitry Andric 5620b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 5630b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 5640b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 5650b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 5660b57cec5SDimitry Andric 5670b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 5680b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 5690b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 5700b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 5710b57cec5SDimitry Andric 5720b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 5730b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 5740b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 5750b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 5760b57cec5SDimitry Andric 5770b57cec5SDimitry Andric // Handle constrained floating-point operations. 5780b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 5790b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 5800b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 5810b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 5820b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 5830b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 5840b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 5850b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 5860b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 5870b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 5880b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 5890b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 5900b57cec5SDimitry Andric for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 5910b57cec5SDimitry Andric MVT::v4f32, MVT::v2f64 }) { 5920b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 5930b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 594480093f4SDimitry Andric setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 595480093f4SDimitry Andric setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 5960b57cec5SDimitry Andric } 5970b57cec5SDimitry Andric } 5980b57cec5SDimitry Andric 599480093f4SDimitry Andric // We only have fused f128 multiply-addition on vector registers. 600480093f4SDimitry Andric if (!Subtarget.hasVectorEnhancements1()) { 6010b57cec5SDimitry Andric setOperationAction(ISD::FMA, MVT::f128, Expand); 602480093f4SDimitry Andric setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 603480093f4SDimitry Andric } 6040b57cec5SDimitry Andric 6050b57cec5SDimitry Andric // We don't have a copysign instruction on vector registers. 6060b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) 6070b57cec5SDimitry Andric setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 6080b57cec5SDimitry Andric 6090b57cec5SDimitry Andric // Needed so that we don't try to implement f128 constant loads using 6100b57cec5SDimitry Andric // a load-and-extend of a f80 constant (in cases where the constant 6110b57cec5SDimitry Andric // would fit in an f80). 6120b57cec5SDimitry Andric for (MVT VT : MVT::fp_valuetypes()) 6130b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 6140b57cec5SDimitry Andric 6150b57cec5SDimitry Andric // We don't have extending load instruction on vector registers. 6160b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) { 6170b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 6180b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 6190b57cec5SDimitry Andric } 6200b57cec5SDimitry Andric 6210b57cec5SDimitry Andric // Floating-point truncation and stores need to be done separately. 6220b57cec5SDimitry Andric setTruncStoreAction(MVT::f64, MVT::f32, Expand); 6230b57cec5SDimitry Andric setTruncStoreAction(MVT::f128, MVT::f32, Expand); 6240b57cec5SDimitry Andric setTruncStoreAction(MVT::f128, MVT::f64, Expand); 6250b57cec5SDimitry Andric 6260b57cec5SDimitry Andric // We have 64-bit FPR<->GPR moves, but need special handling for 6270b57cec5SDimitry Andric // 32-bit forms. 6280b57cec5SDimitry Andric if (!Subtarget.hasVector()) { 6290b57cec5SDimitry Andric setOperationAction(ISD::BITCAST, MVT::i32, Custom); 6300b57cec5SDimitry Andric setOperationAction(ISD::BITCAST, MVT::f32, Custom); 6310b57cec5SDimitry Andric } 6320b57cec5SDimitry Andric 6330b57cec5SDimitry Andric // VASTART and VACOPY need to deal with the SystemZ-specific varargs 6340b57cec5SDimitry Andric // structure, but VAEND is a no-op. 6350b57cec5SDimitry Andric setOperationAction(ISD::VASTART, MVT::Other, Custom); 6360b57cec5SDimitry Andric setOperationAction(ISD::VACOPY, MVT::Other, Custom); 6370b57cec5SDimitry Andric setOperationAction(ISD::VAEND, MVT::Other, Expand); 6380b57cec5SDimitry Andric 6390b57cec5SDimitry Andric // Codes for which we want to perform some z-specific combinations. 6400b57cec5SDimitry Andric setTargetDAGCombine(ISD::ZERO_EXTEND); 6410b57cec5SDimitry Andric setTargetDAGCombine(ISD::SIGN_EXTEND); 6420b57cec5SDimitry Andric setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 6430b57cec5SDimitry Andric setTargetDAGCombine(ISD::LOAD); 6440b57cec5SDimitry Andric setTargetDAGCombine(ISD::STORE); 6450b57cec5SDimitry Andric setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 6460b57cec5SDimitry Andric setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 6470b57cec5SDimitry Andric setTargetDAGCombine(ISD::FP_ROUND); 648480093f4SDimitry Andric setTargetDAGCombine(ISD::STRICT_FP_ROUND); 6490b57cec5SDimitry Andric setTargetDAGCombine(ISD::FP_EXTEND); 6505ffd83dbSDimitry Andric setTargetDAGCombine(ISD::SINT_TO_FP); 6515ffd83dbSDimitry Andric setTargetDAGCombine(ISD::UINT_TO_FP); 652480093f4SDimitry Andric setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 6530b57cec5SDimitry Andric setTargetDAGCombine(ISD::BSWAP); 6540b57cec5SDimitry Andric setTargetDAGCombine(ISD::SDIV); 6550b57cec5SDimitry Andric setTargetDAGCombine(ISD::UDIV); 6560b57cec5SDimitry Andric setTargetDAGCombine(ISD::SREM); 6570b57cec5SDimitry Andric setTargetDAGCombine(ISD::UREM); 6585ffd83dbSDimitry Andric setTargetDAGCombine(ISD::INTRINSIC_VOID); 6595ffd83dbSDimitry Andric setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 6600b57cec5SDimitry Andric 6610b57cec5SDimitry Andric // Handle intrinsics. 6620b57cec5SDimitry Andric setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 6630b57cec5SDimitry Andric setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 6640b57cec5SDimitry Andric 6650b57cec5SDimitry Andric // We want to use MVC in preference to even a single load/store pair. 6660b57cec5SDimitry Andric MaxStoresPerMemcpy = 0; 6670b57cec5SDimitry Andric MaxStoresPerMemcpyOptSize = 0; 6680b57cec5SDimitry Andric 6690b57cec5SDimitry Andric // The main memset sequence is a byte store followed by an MVC. 6700b57cec5SDimitry Andric // Two STC or MV..I stores win over that, but the kind of fused stores 6710b57cec5SDimitry Andric // generated by target-independent code don't when the byte value is 6720b57cec5SDimitry Andric // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 6730b57cec5SDimitry Andric // than "STC;MVC". Handle the choice in target-specific code instead. 6740b57cec5SDimitry Andric MaxStoresPerMemset = 0; 6750b57cec5SDimitry Andric MaxStoresPerMemsetOptSize = 0; 676480093f4SDimitry Andric 677480093f4SDimitry Andric // Default to having -disable-strictnode-mutation on 678480093f4SDimitry Andric IsStrictFPEnabled = true; 6790b57cec5SDimitry Andric } 6800b57cec5SDimitry Andric 6815ffd83dbSDimitry Andric bool SystemZTargetLowering::useSoftFloat() const { 6825ffd83dbSDimitry Andric return Subtarget.hasSoftFloat(); 6835ffd83dbSDimitry Andric } 6845ffd83dbSDimitry Andric 6850b57cec5SDimitry Andric EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 6860b57cec5SDimitry Andric LLVMContext &, EVT VT) const { 6870b57cec5SDimitry Andric if (!VT.isVector()) 6880b57cec5SDimitry Andric return MVT::i32; 6890b57cec5SDimitry Andric return VT.changeVectorElementTypeToInteger(); 6900b57cec5SDimitry Andric } 6910b57cec5SDimitry Andric 692480093f4SDimitry Andric bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 693480093f4SDimitry Andric const MachineFunction &MF, EVT VT) const { 6940b57cec5SDimitry Andric VT = VT.getScalarType(); 6950b57cec5SDimitry Andric 6960b57cec5SDimitry Andric if (!VT.isSimple()) 6970b57cec5SDimitry Andric return false; 6980b57cec5SDimitry Andric 6990b57cec5SDimitry Andric switch (VT.getSimpleVT().SimpleTy) { 7000b57cec5SDimitry Andric case MVT::f32: 7010b57cec5SDimitry Andric case MVT::f64: 7020b57cec5SDimitry Andric return true; 7030b57cec5SDimitry Andric case MVT::f128: 7040b57cec5SDimitry Andric return Subtarget.hasVectorEnhancements1(); 7050b57cec5SDimitry Andric default: 7060b57cec5SDimitry Andric break; 7070b57cec5SDimitry Andric } 7080b57cec5SDimitry Andric 7090b57cec5SDimitry Andric return false; 7100b57cec5SDimitry Andric } 7110b57cec5SDimitry Andric 7120b57cec5SDimitry Andric // Return true if the constant can be generated with a vector instruction, 7130b57cec5SDimitry Andric // such as VGM, VGMB or VREPI. 7140b57cec5SDimitry Andric bool SystemZVectorConstantInfo::isVectorConstantLegal( 7150b57cec5SDimitry Andric const SystemZSubtarget &Subtarget) { 7160b57cec5SDimitry Andric const SystemZInstrInfo *TII = 7170b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7180b57cec5SDimitry Andric if (!Subtarget.hasVector() || 7190b57cec5SDimitry Andric (isFP128 && !Subtarget.hasVectorEnhancements1())) 7200b57cec5SDimitry Andric return false; 7210b57cec5SDimitry Andric 7220b57cec5SDimitry Andric // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 7230b57cec5SDimitry Andric // preferred way of creating all-zero and all-one vectors so give it 7240b57cec5SDimitry Andric // priority over other methods below. 7250b57cec5SDimitry Andric unsigned Mask = 0; 7260b57cec5SDimitry Andric unsigned I = 0; 7270b57cec5SDimitry Andric for (; I < SystemZ::VectorBytes; ++I) { 7280b57cec5SDimitry Andric uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 7290b57cec5SDimitry Andric if (Byte == 0xff) 7300b57cec5SDimitry Andric Mask |= 1ULL << I; 7310b57cec5SDimitry Andric else if (Byte != 0) 7320b57cec5SDimitry Andric break; 7330b57cec5SDimitry Andric } 7340b57cec5SDimitry Andric if (I == SystemZ::VectorBytes) { 7350b57cec5SDimitry Andric Opcode = SystemZISD::BYTE_MASK; 7360b57cec5SDimitry Andric OpVals.push_back(Mask); 7370b57cec5SDimitry Andric VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 7380b57cec5SDimitry Andric return true; 7390b57cec5SDimitry Andric } 7400b57cec5SDimitry Andric 7410b57cec5SDimitry Andric if (SplatBitSize > 64) 7420b57cec5SDimitry Andric return false; 7430b57cec5SDimitry Andric 7440b57cec5SDimitry Andric auto tryValue = [&](uint64_t Value) -> bool { 7450b57cec5SDimitry Andric // Try VECTOR REPLICATE IMMEDIATE 7460b57cec5SDimitry Andric int64_t SignedValue = SignExtend64(Value, SplatBitSize); 7470b57cec5SDimitry Andric if (isInt<16>(SignedValue)) { 7480b57cec5SDimitry Andric OpVals.push_back(((unsigned) SignedValue)); 7490b57cec5SDimitry Andric Opcode = SystemZISD::REPLICATE; 7500b57cec5SDimitry Andric VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 7510b57cec5SDimitry Andric SystemZ::VectorBits / SplatBitSize); 7520b57cec5SDimitry Andric return true; 7530b57cec5SDimitry Andric } 7540b57cec5SDimitry Andric // Try VECTOR GENERATE MASK 7550b57cec5SDimitry Andric unsigned Start, End; 7560b57cec5SDimitry Andric if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 7570b57cec5SDimitry Andric // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 7580b57cec5SDimitry Andric // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 7590b57cec5SDimitry Andric // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 7600b57cec5SDimitry Andric OpVals.push_back(Start - (64 - SplatBitSize)); 7610b57cec5SDimitry Andric OpVals.push_back(End - (64 - SplatBitSize)); 7620b57cec5SDimitry Andric Opcode = SystemZISD::ROTATE_MASK; 7630b57cec5SDimitry Andric VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 7640b57cec5SDimitry Andric SystemZ::VectorBits / SplatBitSize); 7650b57cec5SDimitry Andric return true; 7660b57cec5SDimitry Andric } 7670b57cec5SDimitry Andric return false; 7680b57cec5SDimitry Andric }; 7690b57cec5SDimitry Andric 7700b57cec5SDimitry Andric // First try assuming that any undefined bits above the highest set bit 7710b57cec5SDimitry Andric // and below the lowest set bit are 1s. This increases the likelihood of 7720b57cec5SDimitry Andric // being able to use a sign-extended element value in VECTOR REPLICATE 7730b57cec5SDimitry Andric // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 7740b57cec5SDimitry Andric uint64_t SplatBitsZ = SplatBits.getZExtValue(); 7750b57cec5SDimitry Andric uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 7760b57cec5SDimitry Andric uint64_t Lower = 7770b57cec5SDimitry Andric (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 7780b57cec5SDimitry Andric uint64_t Upper = 7790b57cec5SDimitry Andric (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 7800b57cec5SDimitry Andric if (tryValue(SplatBitsZ | Upper | Lower)) 7810b57cec5SDimitry Andric return true; 7820b57cec5SDimitry Andric 7830b57cec5SDimitry Andric // Now try assuming that any undefined bits between the first and 7840b57cec5SDimitry Andric // last defined set bits are set. This increases the chances of 7850b57cec5SDimitry Andric // using a non-wraparound mask. 7860b57cec5SDimitry Andric uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 7870b57cec5SDimitry Andric return tryValue(SplatBitsZ | Middle); 7880b57cec5SDimitry Andric } 7890b57cec5SDimitry Andric 7900b57cec5SDimitry Andric SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 7910b57cec5SDimitry Andric IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 7920b57cec5SDimitry Andric isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 7930b57cec5SDimitry Andric SplatBits = FPImm.bitcastToAPInt(); 7940b57cec5SDimitry Andric unsigned Width = SplatBits.getBitWidth(); 795e8d8bef9SDimitry Andric IntBits <<= (SystemZ::VectorBits - Width); 796e8d8bef9SDimitry Andric 797e8d8bef9SDimitry Andric // Find the smallest splat. 7980b57cec5SDimitry Andric while (Width > 8) { 7990b57cec5SDimitry Andric unsigned HalfSize = Width / 2; 8000b57cec5SDimitry Andric APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 8010b57cec5SDimitry Andric APInt LowValue = SplatBits.trunc(HalfSize); 8020b57cec5SDimitry Andric 8030b57cec5SDimitry Andric // If the two halves do not match, stop here. 8040b57cec5SDimitry Andric if (HighValue != LowValue || 8 > HalfSize) 8050b57cec5SDimitry Andric break; 8060b57cec5SDimitry Andric 8070b57cec5SDimitry Andric SplatBits = HighValue; 8080b57cec5SDimitry Andric Width = HalfSize; 8090b57cec5SDimitry Andric } 8100b57cec5SDimitry Andric SplatUndef = 0; 8110b57cec5SDimitry Andric SplatBitSize = Width; 8120b57cec5SDimitry Andric } 8130b57cec5SDimitry Andric 8140b57cec5SDimitry Andric SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 8150b57cec5SDimitry Andric assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 8160b57cec5SDimitry Andric bool HasAnyUndefs; 8170b57cec5SDimitry Andric 8180b57cec5SDimitry Andric // Get IntBits by finding the 128 bit splat. 8190b57cec5SDimitry Andric BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 8200b57cec5SDimitry Andric true); 8210b57cec5SDimitry Andric 8220b57cec5SDimitry Andric // Get SplatBits by finding the 8 bit or greater splat. 8230b57cec5SDimitry Andric BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 8240b57cec5SDimitry Andric true); 8250b57cec5SDimitry Andric } 8260b57cec5SDimitry Andric 8270b57cec5SDimitry Andric bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 8280b57cec5SDimitry Andric bool ForCodeSize) const { 8290b57cec5SDimitry Andric // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 8300b57cec5SDimitry Andric if (Imm.isZero() || Imm.isNegZero()) 8310b57cec5SDimitry Andric return true; 8320b57cec5SDimitry Andric 8330b57cec5SDimitry Andric return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 8340b57cec5SDimitry Andric } 8350b57cec5SDimitry Andric 8365ffd83dbSDimitry Andric /// Returns true if stack probing through inline assembly is requested. 8375ffd83dbSDimitry Andric bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 8385ffd83dbSDimitry Andric // If the function specifically requests inline stack probes, emit them. 8395ffd83dbSDimitry Andric if (MF.getFunction().hasFnAttribute("probe-stack")) 8405ffd83dbSDimitry Andric return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 8415ffd83dbSDimitry Andric "inline-asm"; 8425ffd83dbSDimitry Andric return false; 8435ffd83dbSDimitry Andric } 8445ffd83dbSDimitry Andric 8450b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 8460b57cec5SDimitry Andric // We can use CGFI or CLGFI. 8470b57cec5SDimitry Andric return isInt<32>(Imm) || isUInt<32>(Imm); 8480b57cec5SDimitry Andric } 8490b57cec5SDimitry Andric 8500b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 8510b57cec5SDimitry Andric // We can use ALGFI or SLGFI. 8520b57cec5SDimitry Andric return isUInt<32>(Imm) || isUInt<32>(-Imm); 8530b57cec5SDimitry Andric } 8540b57cec5SDimitry Andric 8550b57cec5SDimitry Andric bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 856*fe6060f1SDimitry Andric EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 8570b57cec5SDimitry Andric // Unaligned accesses should never be slower than the expanded version. 8580b57cec5SDimitry Andric // We check specifically for aligned accesses in the few cases where 8590b57cec5SDimitry Andric // they are required. 8600b57cec5SDimitry Andric if (Fast) 8610b57cec5SDimitry Andric *Fast = true; 8620b57cec5SDimitry Andric return true; 8630b57cec5SDimitry Andric } 8640b57cec5SDimitry Andric 8650b57cec5SDimitry Andric // Information about the addressing mode for a memory access. 8660b57cec5SDimitry Andric struct AddressingMode { 8670b57cec5SDimitry Andric // True if a long displacement is supported. 8680b57cec5SDimitry Andric bool LongDisplacement; 8690b57cec5SDimitry Andric 8700b57cec5SDimitry Andric // True if use of index register is supported. 8710b57cec5SDimitry Andric bool IndexReg; 8720b57cec5SDimitry Andric 8730b57cec5SDimitry Andric AddressingMode(bool LongDispl, bool IdxReg) : 8740b57cec5SDimitry Andric LongDisplacement(LongDispl), IndexReg(IdxReg) {} 8750b57cec5SDimitry Andric }; 8760b57cec5SDimitry Andric 8770b57cec5SDimitry Andric // Return the desired addressing mode for a Load which has only one use (in 8780b57cec5SDimitry Andric // the same block) which is a Store. 8790b57cec5SDimitry Andric static AddressingMode getLoadStoreAddrMode(bool HasVector, 8800b57cec5SDimitry Andric Type *Ty) { 8810b57cec5SDimitry Andric // With vector support a Load->Store combination may be combined to either 8820b57cec5SDimitry Andric // an MVC or vector operations and it seems to work best to allow the 8830b57cec5SDimitry Andric // vector addressing mode. 8840b57cec5SDimitry Andric if (HasVector) 8850b57cec5SDimitry Andric return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 8860b57cec5SDimitry Andric 8870b57cec5SDimitry Andric // Otherwise only the MVC case is special. 8880b57cec5SDimitry Andric bool MVC = Ty->isIntegerTy(8); 8890b57cec5SDimitry Andric return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 8900b57cec5SDimitry Andric } 8910b57cec5SDimitry Andric 8920b57cec5SDimitry Andric // Return the addressing mode which seems most desirable given an LLVM 8930b57cec5SDimitry Andric // Instruction pointer. 8940b57cec5SDimitry Andric static AddressingMode 8950b57cec5SDimitry Andric supportedAddressingMode(Instruction *I, bool HasVector) { 8960b57cec5SDimitry Andric if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 8970b57cec5SDimitry Andric switch (II->getIntrinsicID()) { 8980b57cec5SDimitry Andric default: break; 8990b57cec5SDimitry Andric case Intrinsic::memset: 9000b57cec5SDimitry Andric case Intrinsic::memmove: 9010b57cec5SDimitry Andric case Intrinsic::memcpy: 9020b57cec5SDimitry Andric return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 9030b57cec5SDimitry Andric } 9040b57cec5SDimitry Andric } 9050b57cec5SDimitry Andric 9060b57cec5SDimitry Andric if (isa<LoadInst>(I) && I->hasOneUse()) { 9078bcb0991SDimitry Andric auto *SingleUser = cast<Instruction>(*I->user_begin()); 9080b57cec5SDimitry Andric if (SingleUser->getParent() == I->getParent()) { 9090b57cec5SDimitry Andric if (isa<ICmpInst>(SingleUser)) { 9100b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 9110b57cec5SDimitry Andric if (C->getBitWidth() <= 64 && 9120b57cec5SDimitry Andric (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 9130b57cec5SDimitry Andric // Comparison of memory with 16 bit signed / unsigned immediate 9140b57cec5SDimitry Andric return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 9150b57cec5SDimitry Andric } else if (isa<StoreInst>(SingleUser)) 9160b57cec5SDimitry Andric // Load->Store 9170b57cec5SDimitry Andric return getLoadStoreAddrMode(HasVector, I->getType()); 9180b57cec5SDimitry Andric } 9190b57cec5SDimitry Andric } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 9200b57cec5SDimitry Andric if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 9210b57cec5SDimitry Andric if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 9220b57cec5SDimitry Andric // Load->Store 9230b57cec5SDimitry Andric return getLoadStoreAddrMode(HasVector, LoadI->getType()); 9240b57cec5SDimitry Andric } 9250b57cec5SDimitry Andric 9260b57cec5SDimitry Andric if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 9270b57cec5SDimitry Andric 9280b57cec5SDimitry Andric // * Use LDE instead of LE/LEY for z13 to avoid partial register 9290b57cec5SDimitry Andric // dependencies (LDE only supports small offsets). 9300b57cec5SDimitry Andric // * Utilize the vector registers to hold floating point 9310b57cec5SDimitry Andric // values (vector load / store instructions only support small 9320b57cec5SDimitry Andric // offsets). 9330b57cec5SDimitry Andric 9340b57cec5SDimitry Andric Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 9350b57cec5SDimitry Andric I->getOperand(0)->getType()); 9360b57cec5SDimitry Andric bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 9370b57cec5SDimitry Andric bool IsVectorAccess = MemAccessTy->isVectorTy(); 9380b57cec5SDimitry Andric 9390b57cec5SDimitry Andric // A store of an extracted vector element will be combined into a VSTE type 9400b57cec5SDimitry Andric // instruction. 9410b57cec5SDimitry Andric if (!IsVectorAccess && isa<StoreInst>(I)) { 9420b57cec5SDimitry Andric Value *DataOp = I->getOperand(0); 9430b57cec5SDimitry Andric if (isa<ExtractElementInst>(DataOp)) 9440b57cec5SDimitry Andric IsVectorAccess = true; 9450b57cec5SDimitry Andric } 9460b57cec5SDimitry Andric 9470b57cec5SDimitry Andric // A load which gets inserted into a vector element will be combined into a 9480b57cec5SDimitry Andric // VLE type instruction. 9490b57cec5SDimitry Andric if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 9500b57cec5SDimitry Andric User *LoadUser = *I->user_begin(); 9510b57cec5SDimitry Andric if (isa<InsertElementInst>(LoadUser)) 9520b57cec5SDimitry Andric IsVectorAccess = true; 9530b57cec5SDimitry Andric } 9540b57cec5SDimitry Andric 9550b57cec5SDimitry Andric if (IsFPAccess || IsVectorAccess) 9560b57cec5SDimitry Andric return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 9570b57cec5SDimitry Andric } 9580b57cec5SDimitry Andric 9590b57cec5SDimitry Andric return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 9600b57cec5SDimitry Andric } 9610b57cec5SDimitry Andric 9620b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 9630b57cec5SDimitry Andric const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 9640b57cec5SDimitry Andric // Punt on globals for now, although they can be used in limited 9650b57cec5SDimitry Andric // RELATIVE LONG cases. 9660b57cec5SDimitry Andric if (AM.BaseGV) 9670b57cec5SDimitry Andric return false; 9680b57cec5SDimitry Andric 9690b57cec5SDimitry Andric // Require a 20-bit signed offset. 9700b57cec5SDimitry Andric if (!isInt<20>(AM.BaseOffs)) 9710b57cec5SDimitry Andric return false; 9720b57cec5SDimitry Andric 9730b57cec5SDimitry Andric AddressingMode SupportedAM(true, true); 9740b57cec5SDimitry Andric if (I != nullptr) 9750b57cec5SDimitry Andric SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 9760b57cec5SDimitry Andric 9770b57cec5SDimitry Andric if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 9780b57cec5SDimitry Andric return false; 9790b57cec5SDimitry Andric 9800b57cec5SDimitry Andric if (!SupportedAM.IndexReg) 9810b57cec5SDimitry Andric // No indexing allowed. 9820b57cec5SDimitry Andric return AM.Scale == 0; 9830b57cec5SDimitry Andric else 9840b57cec5SDimitry Andric // Indexing is OK but no scale factor can be applied. 9850b57cec5SDimitry Andric return AM.Scale == 0 || AM.Scale == 1; 9860b57cec5SDimitry Andric } 9870b57cec5SDimitry Andric 9880b57cec5SDimitry Andric bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 9890b57cec5SDimitry Andric if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 9900b57cec5SDimitry Andric return false; 991e8d8bef9SDimitry Andric unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 992e8d8bef9SDimitry Andric unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 9930b57cec5SDimitry Andric return FromBits > ToBits; 9940b57cec5SDimitry Andric } 9950b57cec5SDimitry Andric 9960b57cec5SDimitry Andric bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 9970b57cec5SDimitry Andric if (!FromVT.isInteger() || !ToVT.isInteger()) 9980b57cec5SDimitry Andric return false; 999e8d8bef9SDimitry Andric unsigned FromBits = FromVT.getFixedSizeInBits(); 1000e8d8bef9SDimitry Andric unsigned ToBits = ToVT.getFixedSizeInBits(); 10010b57cec5SDimitry Andric return FromBits > ToBits; 10020b57cec5SDimitry Andric } 10030b57cec5SDimitry Andric 10040b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 10050b57cec5SDimitry Andric // Inline asm support 10060b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 10070b57cec5SDimitry Andric 10080b57cec5SDimitry Andric TargetLowering::ConstraintType 10090b57cec5SDimitry Andric SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 10100b57cec5SDimitry Andric if (Constraint.size() == 1) { 10110b57cec5SDimitry Andric switch (Constraint[0]) { 10120b57cec5SDimitry Andric case 'a': // Address register 10130b57cec5SDimitry Andric case 'd': // Data register (equivalent to 'r') 10140b57cec5SDimitry Andric case 'f': // Floating-point register 10150b57cec5SDimitry Andric case 'h': // High-part register 10160b57cec5SDimitry Andric case 'r': // General-purpose register 10170b57cec5SDimitry Andric case 'v': // Vector register 10180b57cec5SDimitry Andric return C_RegisterClass; 10190b57cec5SDimitry Andric 10200b57cec5SDimitry Andric case 'Q': // Memory with base and unsigned 12-bit displacement 10210b57cec5SDimitry Andric case 'R': // Likewise, plus an index 10220b57cec5SDimitry Andric case 'S': // Memory with base and signed 20-bit displacement 10230b57cec5SDimitry Andric case 'T': // Likewise, plus an index 10240b57cec5SDimitry Andric case 'm': // Equivalent to 'T'. 10250b57cec5SDimitry Andric return C_Memory; 10260b57cec5SDimitry Andric 10270b57cec5SDimitry Andric case 'I': // Unsigned 8-bit constant 10280b57cec5SDimitry Andric case 'J': // Unsigned 12-bit constant 10290b57cec5SDimitry Andric case 'K': // Signed 16-bit constant 10300b57cec5SDimitry Andric case 'L': // Signed 20-bit displacement (on all targets we support) 10310b57cec5SDimitry Andric case 'M': // 0x7fffffff 10320b57cec5SDimitry Andric return C_Immediate; 10330b57cec5SDimitry Andric 10340b57cec5SDimitry Andric default: 10350b57cec5SDimitry Andric break; 10360b57cec5SDimitry Andric } 10370b57cec5SDimitry Andric } 10380b57cec5SDimitry Andric return TargetLowering::getConstraintType(Constraint); 10390b57cec5SDimitry Andric } 10400b57cec5SDimitry Andric 10410b57cec5SDimitry Andric TargetLowering::ConstraintWeight SystemZTargetLowering:: 10420b57cec5SDimitry Andric getSingleConstraintMatchWeight(AsmOperandInfo &info, 10430b57cec5SDimitry Andric const char *constraint) const { 10440b57cec5SDimitry Andric ConstraintWeight weight = CW_Invalid; 10450b57cec5SDimitry Andric Value *CallOperandVal = info.CallOperandVal; 10460b57cec5SDimitry Andric // If we don't have a value, we can't do a match, 10470b57cec5SDimitry Andric // but allow it at the lowest weight. 10480b57cec5SDimitry Andric if (!CallOperandVal) 10490b57cec5SDimitry Andric return CW_Default; 10500b57cec5SDimitry Andric Type *type = CallOperandVal->getType(); 10510b57cec5SDimitry Andric // Look at the constraint type. 10520b57cec5SDimitry Andric switch (*constraint) { 10530b57cec5SDimitry Andric default: 10540b57cec5SDimitry Andric weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10550b57cec5SDimitry Andric break; 10560b57cec5SDimitry Andric 10570b57cec5SDimitry Andric case 'a': // Address register 10580b57cec5SDimitry Andric case 'd': // Data register (equivalent to 'r') 10590b57cec5SDimitry Andric case 'h': // High-part register 10600b57cec5SDimitry Andric case 'r': // General-purpose register 10610b57cec5SDimitry Andric if (CallOperandVal->getType()->isIntegerTy()) 10620b57cec5SDimitry Andric weight = CW_Register; 10630b57cec5SDimitry Andric break; 10640b57cec5SDimitry Andric 10650b57cec5SDimitry Andric case 'f': // Floating-point register 10660b57cec5SDimitry Andric if (type->isFloatingPointTy()) 10670b57cec5SDimitry Andric weight = CW_Register; 10680b57cec5SDimitry Andric break; 10690b57cec5SDimitry Andric 10700b57cec5SDimitry Andric case 'v': // Vector register 10710b57cec5SDimitry Andric if ((type->isVectorTy() || type->isFloatingPointTy()) && 10720b57cec5SDimitry Andric Subtarget.hasVector()) 10730b57cec5SDimitry Andric weight = CW_Register; 10740b57cec5SDimitry Andric break; 10750b57cec5SDimitry Andric 10760b57cec5SDimitry Andric case 'I': // Unsigned 8-bit constant 10770b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 10780b57cec5SDimitry Andric if (isUInt<8>(C->getZExtValue())) 10790b57cec5SDimitry Andric weight = CW_Constant; 10800b57cec5SDimitry Andric break; 10810b57cec5SDimitry Andric 10820b57cec5SDimitry Andric case 'J': // Unsigned 12-bit constant 10830b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 10840b57cec5SDimitry Andric if (isUInt<12>(C->getZExtValue())) 10850b57cec5SDimitry Andric weight = CW_Constant; 10860b57cec5SDimitry Andric break; 10870b57cec5SDimitry Andric 10880b57cec5SDimitry Andric case 'K': // Signed 16-bit constant 10890b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 10900b57cec5SDimitry Andric if (isInt<16>(C->getSExtValue())) 10910b57cec5SDimitry Andric weight = CW_Constant; 10920b57cec5SDimitry Andric break; 10930b57cec5SDimitry Andric 10940b57cec5SDimitry Andric case 'L': // Signed 20-bit displacement (on all targets we support) 10950b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 10960b57cec5SDimitry Andric if (isInt<20>(C->getSExtValue())) 10970b57cec5SDimitry Andric weight = CW_Constant; 10980b57cec5SDimitry Andric break; 10990b57cec5SDimitry Andric 11000b57cec5SDimitry Andric case 'M': // 0x7fffffff 11010b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 11020b57cec5SDimitry Andric if (C->getZExtValue() == 0x7fffffff) 11030b57cec5SDimitry Andric weight = CW_Constant; 11040b57cec5SDimitry Andric break; 11050b57cec5SDimitry Andric } 11060b57cec5SDimitry Andric return weight; 11070b57cec5SDimitry Andric } 11080b57cec5SDimitry Andric 11090b57cec5SDimitry Andric // Parse a "{tNNN}" register constraint for which the register type "t" 11100b57cec5SDimitry Andric // has already been verified. MC is the class associated with "t" and 11110b57cec5SDimitry Andric // Map maps 0-based register numbers to LLVM register numbers. 11120b57cec5SDimitry Andric static std::pair<unsigned, const TargetRegisterClass *> 11130b57cec5SDimitry Andric parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 11140b57cec5SDimitry Andric const unsigned *Map, unsigned Size) { 11150b57cec5SDimitry Andric assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 11160b57cec5SDimitry Andric if (isdigit(Constraint[2])) { 11170b57cec5SDimitry Andric unsigned Index; 11180b57cec5SDimitry Andric bool Failed = 11190b57cec5SDimitry Andric Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 11200b57cec5SDimitry Andric if (!Failed && Index < Size && Map[Index]) 11210b57cec5SDimitry Andric return std::make_pair(Map[Index], RC); 11220b57cec5SDimitry Andric } 11230b57cec5SDimitry Andric return std::make_pair(0U, nullptr); 11240b57cec5SDimitry Andric } 11250b57cec5SDimitry Andric 11260b57cec5SDimitry Andric std::pair<unsigned, const TargetRegisterClass *> 11270b57cec5SDimitry Andric SystemZTargetLowering::getRegForInlineAsmConstraint( 11280b57cec5SDimitry Andric const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 11290b57cec5SDimitry Andric if (Constraint.size() == 1) { 11300b57cec5SDimitry Andric // GCC Constraint Letters 11310b57cec5SDimitry Andric switch (Constraint[0]) { 11320b57cec5SDimitry Andric default: break; 11330b57cec5SDimitry Andric case 'd': // Data register (equivalent to 'r') 11340b57cec5SDimitry Andric case 'r': // General-purpose register 11350b57cec5SDimitry Andric if (VT == MVT::i64) 11360b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::GR64BitRegClass); 11370b57cec5SDimitry Andric else if (VT == MVT::i128) 11380b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::GR128BitRegClass); 11390b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::GR32BitRegClass); 11400b57cec5SDimitry Andric 11410b57cec5SDimitry Andric case 'a': // Address register 11420b57cec5SDimitry Andric if (VT == MVT::i64) 11430b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 11440b57cec5SDimitry Andric else if (VT == MVT::i128) 11450b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 11460b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 11470b57cec5SDimitry Andric 11480b57cec5SDimitry Andric case 'h': // High-part register (an LLVM extension) 11490b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 11500b57cec5SDimitry Andric 11510b57cec5SDimitry Andric case 'f': // Floating-point register 11525ffd83dbSDimitry Andric if (!useSoftFloat()) { 11530b57cec5SDimitry Andric if (VT == MVT::f64) 11540b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::FP64BitRegClass); 11550b57cec5SDimitry Andric else if (VT == MVT::f128) 11560b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::FP128BitRegClass); 11570b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::FP32BitRegClass); 11585ffd83dbSDimitry Andric } 11595ffd83dbSDimitry Andric break; 11600b57cec5SDimitry Andric case 'v': // Vector register 11610b57cec5SDimitry Andric if (Subtarget.hasVector()) { 11620b57cec5SDimitry Andric if (VT == MVT::f32) 11630b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::VR32BitRegClass); 11640b57cec5SDimitry Andric if (VT == MVT::f64) 11650b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::VR64BitRegClass); 11660b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::VR128BitRegClass); 11670b57cec5SDimitry Andric } 11680b57cec5SDimitry Andric break; 11690b57cec5SDimitry Andric } 11700b57cec5SDimitry Andric } 11710b57cec5SDimitry Andric if (Constraint.size() > 0 && Constraint[0] == '{') { 11720b57cec5SDimitry Andric // We need to override the default register parsing for GPRs and FPRs 11730b57cec5SDimitry Andric // because the interpretation depends on VT. The internal names of 11740b57cec5SDimitry Andric // the registers are also different from the external names 11750b57cec5SDimitry Andric // (F0D and F0S instead of F0, etc.). 11760b57cec5SDimitry Andric if (Constraint[1] == 'r') { 11770b57cec5SDimitry Andric if (VT == MVT::i32) 11780b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 11790b57cec5SDimitry Andric SystemZMC::GR32Regs, 16); 11800b57cec5SDimitry Andric if (VT == MVT::i128) 11810b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 11820b57cec5SDimitry Andric SystemZMC::GR128Regs, 16); 11830b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 11840b57cec5SDimitry Andric SystemZMC::GR64Regs, 16); 11850b57cec5SDimitry Andric } 11860b57cec5SDimitry Andric if (Constraint[1] == 'f') { 11875ffd83dbSDimitry Andric if (useSoftFloat()) 11885ffd83dbSDimitry Andric return std::make_pair( 11895ffd83dbSDimitry Andric 0u, static_cast<const TargetRegisterClass *>(nullptr)); 11900b57cec5SDimitry Andric if (VT == MVT::f32) 11910b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 11920b57cec5SDimitry Andric SystemZMC::FP32Regs, 16); 11930b57cec5SDimitry Andric if (VT == MVT::f128) 11940b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 11950b57cec5SDimitry Andric SystemZMC::FP128Regs, 16); 11960b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 11970b57cec5SDimitry Andric SystemZMC::FP64Regs, 16); 11980b57cec5SDimitry Andric } 11990b57cec5SDimitry Andric if (Constraint[1] == 'v') { 12005ffd83dbSDimitry Andric if (!Subtarget.hasVector()) 12015ffd83dbSDimitry Andric return std::make_pair( 12025ffd83dbSDimitry Andric 0u, static_cast<const TargetRegisterClass *>(nullptr)); 12030b57cec5SDimitry Andric if (VT == MVT::f32) 12040b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 12050b57cec5SDimitry Andric SystemZMC::VR32Regs, 32); 12060b57cec5SDimitry Andric if (VT == MVT::f64) 12070b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 12080b57cec5SDimitry Andric SystemZMC::VR64Regs, 32); 12090b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 12100b57cec5SDimitry Andric SystemZMC::VR128Regs, 32); 12110b57cec5SDimitry Andric } 12120b57cec5SDimitry Andric } 12130b57cec5SDimitry Andric return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12140b57cec5SDimitry Andric } 12150b57cec5SDimitry Andric 12165ffd83dbSDimitry Andric // FIXME? Maybe this could be a TableGen attribute on some registers and 12175ffd83dbSDimitry Andric // this table could be generated automatically from RegInfo. 12185ffd83dbSDimitry Andric Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 12195ffd83dbSDimitry Andric const MachineFunction &MF) const { 12205ffd83dbSDimitry Andric 12215ffd83dbSDimitry Andric Register Reg = StringSwitch<Register>(RegName) 12225ffd83dbSDimitry Andric .Case("r15", SystemZ::R15D) 12235ffd83dbSDimitry Andric .Default(0); 12245ffd83dbSDimitry Andric if (Reg) 12255ffd83dbSDimitry Andric return Reg; 12265ffd83dbSDimitry Andric report_fatal_error("Invalid register name global variable"); 12275ffd83dbSDimitry Andric } 12285ffd83dbSDimitry Andric 12290b57cec5SDimitry Andric void SystemZTargetLowering:: 12300b57cec5SDimitry Andric LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 12310b57cec5SDimitry Andric std::vector<SDValue> &Ops, 12320b57cec5SDimitry Andric SelectionDAG &DAG) const { 12330b57cec5SDimitry Andric // Only support length 1 constraints for now. 12340b57cec5SDimitry Andric if (Constraint.length() == 1) { 12350b57cec5SDimitry Andric switch (Constraint[0]) { 12360b57cec5SDimitry Andric case 'I': // Unsigned 8-bit constant 12370b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 12380b57cec5SDimitry Andric if (isUInt<8>(C->getZExtValue())) 12390b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 12400b57cec5SDimitry Andric Op.getValueType())); 12410b57cec5SDimitry Andric return; 12420b57cec5SDimitry Andric 12430b57cec5SDimitry Andric case 'J': // Unsigned 12-bit constant 12440b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 12450b57cec5SDimitry Andric if (isUInt<12>(C->getZExtValue())) 12460b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 12470b57cec5SDimitry Andric Op.getValueType())); 12480b57cec5SDimitry Andric return; 12490b57cec5SDimitry Andric 12500b57cec5SDimitry Andric case 'K': // Signed 16-bit constant 12510b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 12520b57cec5SDimitry Andric if (isInt<16>(C->getSExtValue())) 12530b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 12540b57cec5SDimitry Andric Op.getValueType())); 12550b57cec5SDimitry Andric return; 12560b57cec5SDimitry Andric 12570b57cec5SDimitry Andric case 'L': // Signed 20-bit displacement (on all targets we support) 12580b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 12590b57cec5SDimitry Andric if (isInt<20>(C->getSExtValue())) 12600b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 12610b57cec5SDimitry Andric Op.getValueType())); 12620b57cec5SDimitry Andric return; 12630b57cec5SDimitry Andric 12640b57cec5SDimitry Andric case 'M': // 0x7fffffff 12650b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 12660b57cec5SDimitry Andric if (C->getZExtValue() == 0x7fffffff) 12670b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 12680b57cec5SDimitry Andric Op.getValueType())); 12690b57cec5SDimitry Andric return; 12700b57cec5SDimitry Andric } 12710b57cec5SDimitry Andric } 12720b57cec5SDimitry Andric TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 12730b57cec5SDimitry Andric } 12740b57cec5SDimitry Andric 12750b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 12760b57cec5SDimitry Andric // Calling conventions 12770b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 12780b57cec5SDimitry Andric 12790b57cec5SDimitry Andric #include "SystemZGenCallingConv.inc" 12800b57cec5SDimitry Andric 12810b57cec5SDimitry Andric const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 12820b57cec5SDimitry Andric CallingConv::ID) const { 12830b57cec5SDimitry Andric static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 12840b57cec5SDimitry Andric SystemZ::R14D, 0 }; 12850b57cec5SDimitry Andric return ScratchRegs; 12860b57cec5SDimitry Andric } 12870b57cec5SDimitry Andric 12880b57cec5SDimitry Andric bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 12890b57cec5SDimitry Andric Type *ToType) const { 12900b57cec5SDimitry Andric return isTruncateFree(FromType, ToType); 12910b57cec5SDimitry Andric } 12920b57cec5SDimitry Andric 12930b57cec5SDimitry Andric bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 12940b57cec5SDimitry Andric return CI->isTailCall(); 12950b57cec5SDimitry Andric } 12960b57cec5SDimitry Andric 12970b57cec5SDimitry Andric // We do not yet support 128-bit single-element vector types. If the user 12980b57cec5SDimitry Andric // attempts to use such types as function argument or return type, prefer 12990b57cec5SDimitry Andric // to error out instead of emitting code violating the ABI. 13000b57cec5SDimitry Andric static void VerifyVectorType(MVT VT, EVT ArgVT) { 13010b57cec5SDimitry Andric if (ArgVT.isVector() && !VT.isVector()) 13020b57cec5SDimitry Andric report_fatal_error("Unsupported vector argument or return type"); 13030b57cec5SDimitry Andric } 13040b57cec5SDimitry Andric 13050b57cec5SDimitry Andric static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 13060b57cec5SDimitry Andric for (unsigned i = 0; i < Ins.size(); ++i) 13070b57cec5SDimitry Andric VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 13080b57cec5SDimitry Andric } 13090b57cec5SDimitry Andric 13100b57cec5SDimitry Andric static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 13110b57cec5SDimitry Andric for (unsigned i = 0; i < Outs.size(); ++i) 13120b57cec5SDimitry Andric VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 13130b57cec5SDimitry Andric } 13140b57cec5SDimitry Andric 13150b57cec5SDimitry Andric // Value is a value that has been passed to us in the location described by VA 13160b57cec5SDimitry Andric // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 13170b57cec5SDimitry Andric // any loads onto Chain. 13180b57cec5SDimitry Andric static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 13190b57cec5SDimitry Andric CCValAssign &VA, SDValue Chain, 13200b57cec5SDimitry Andric SDValue Value) { 13210b57cec5SDimitry Andric // If the argument has been promoted from a smaller type, insert an 13220b57cec5SDimitry Andric // assertion to capture this. 13230b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::SExt) 13240b57cec5SDimitry Andric Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 13250b57cec5SDimitry Andric DAG.getValueType(VA.getValVT())); 13260b57cec5SDimitry Andric else if (VA.getLocInfo() == CCValAssign::ZExt) 13270b57cec5SDimitry Andric Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 13280b57cec5SDimitry Andric DAG.getValueType(VA.getValVT())); 13290b57cec5SDimitry Andric 13300b57cec5SDimitry Andric if (VA.isExtInLoc()) 13310b57cec5SDimitry Andric Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 13320b57cec5SDimitry Andric else if (VA.getLocInfo() == CCValAssign::BCvt) { 13330b57cec5SDimitry Andric // If this is a short vector argument loaded from the stack, 13340b57cec5SDimitry Andric // extend from i64 to full vector size and then bitcast. 13350b57cec5SDimitry Andric assert(VA.getLocVT() == MVT::i64); 13360b57cec5SDimitry Andric assert(VA.getValVT().isVector()); 13370b57cec5SDimitry Andric Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 13380b57cec5SDimitry Andric Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 13390b57cec5SDimitry Andric } else 13400b57cec5SDimitry Andric assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 13410b57cec5SDimitry Andric return Value; 13420b57cec5SDimitry Andric } 13430b57cec5SDimitry Andric 13440b57cec5SDimitry Andric // Value is a value of type VA.getValVT() that we need to copy into 13450b57cec5SDimitry Andric // the location described by VA. Return a copy of Value converted to 13460b57cec5SDimitry Andric // VA.getValVT(). The caller is responsible for handling indirect values. 13470b57cec5SDimitry Andric static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 13480b57cec5SDimitry Andric CCValAssign &VA, SDValue Value) { 13490b57cec5SDimitry Andric switch (VA.getLocInfo()) { 13500b57cec5SDimitry Andric case CCValAssign::SExt: 13510b57cec5SDimitry Andric return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 13520b57cec5SDimitry Andric case CCValAssign::ZExt: 13530b57cec5SDimitry Andric return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 13540b57cec5SDimitry Andric case CCValAssign::AExt: 13550b57cec5SDimitry Andric return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 13560b57cec5SDimitry Andric case CCValAssign::BCvt: 13570b57cec5SDimitry Andric // If this is a short vector argument to be stored to the stack, 13580b57cec5SDimitry Andric // bitcast to v2i64 and then extract first element. 13590b57cec5SDimitry Andric assert(VA.getLocVT() == MVT::i64); 13600b57cec5SDimitry Andric assert(VA.getValVT().isVector()); 13610b57cec5SDimitry Andric Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 13620b57cec5SDimitry Andric return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 13630b57cec5SDimitry Andric DAG.getConstant(0, DL, MVT::i32)); 13640b57cec5SDimitry Andric case CCValAssign::Full: 13650b57cec5SDimitry Andric return Value; 13660b57cec5SDimitry Andric default: 13670b57cec5SDimitry Andric llvm_unreachable("Unhandled getLocInfo()"); 13680b57cec5SDimitry Andric } 13690b57cec5SDimitry Andric } 13700b57cec5SDimitry Andric 1371*fe6060f1SDimitry Andric static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1372*fe6060f1SDimitry Andric SDLoc DL(In); 1373*fe6060f1SDimitry Andric SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1374*fe6060f1SDimitry Andric DAG.getIntPtrConstant(0, DL)); 1375*fe6060f1SDimitry Andric SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1376*fe6060f1SDimitry Andric DAG.getIntPtrConstant(1, DL)); 1377*fe6060f1SDimitry Andric SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1378*fe6060f1SDimitry Andric MVT::Untyped, Hi, Lo); 1379*fe6060f1SDimitry Andric return SDValue(Pair, 0); 1380*fe6060f1SDimitry Andric } 1381*fe6060f1SDimitry Andric 1382*fe6060f1SDimitry Andric static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1383*fe6060f1SDimitry Andric SDLoc DL(In); 1384*fe6060f1SDimitry Andric SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1385*fe6060f1SDimitry Andric DL, MVT::i64, In); 1386*fe6060f1SDimitry Andric SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1387*fe6060f1SDimitry Andric DL, MVT::i64, In); 1388*fe6060f1SDimitry Andric return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1389*fe6060f1SDimitry Andric } 1390*fe6060f1SDimitry Andric 1391*fe6060f1SDimitry Andric bool SystemZTargetLowering::splitValueIntoRegisterParts( 1392*fe6060f1SDimitry Andric SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1393*fe6060f1SDimitry Andric unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 1394*fe6060f1SDimitry Andric EVT ValueVT = Val.getValueType(); 1395*fe6060f1SDimitry Andric assert((ValueVT != MVT::i128 || 1396*fe6060f1SDimitry Andric ((NumParts == 1 && PartVT == MVT::Untyped) || 1397*fe6060f1SDimitry Andric (NumParts == 2 && PartVT == MVT::i64))) && 1398*fe6060f1SDimitry Andric "Unknown handling of i128 value."); 1399*fe6060f1SDimitry Andric if (ValueVT == MVT::i128 && NumParts == 1) { 1400*fe6060f1SDimitry Andric // Inline assembly operand. 1401*fe6060f1SDimitry Andric Parts[0] = lowerI128ToGR128(DAG, Val); 1402*fe6060f1SDimitry Andric return true; 1403*fe6060f1SDimitry Andric } 1404*fe6060f1SDimitry Andric return false; 1405*fe6060f1SDimitry Andric } 1406*fe6060f1SDimitry Andric 1407*fe6060f1SDimitry Andric SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1408*fe6060f1SDimitry Andric SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1409*fe6060f1SDimitry Andric MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 1410*fe6060f1SDimitry Andric assert((ValueVT != MVT::i128 || 1411*fe6060f1SDimitry Andric ((NumParts == 1 && PartVT == MVT::Untyped) || 1412*fe6060f1SDimitry Andric (NumParts == 2 && PartVT == MVT::i64))) && 1413*fe6060f1SDimitry Andric "Unknown handling of i128 value."); 1414*fe6060f1SDimitry Andric if (ValueVT == MVT::i128 && NumParts == 1) 1415*fe6060f1SDimitry Andric // Inline assembly operand. 1416*fe6060f1SDimitry Andric return lowerGR128ToI128(DAG, Parts[0]); 1417*fe6060f1SDimitry Andric return SDValue(); 1418*fe6060f1SDimitry Andric } 1419*fe6060f1SDimitry Andric 14200b57cec5SDimitry Andric SDValue SystemZTargetLowering::LowerFormalArguments( 14210b57cec5SDimitry Andric SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 14220b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 14230b57cec5SDimitry Andric SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 14240b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 14250b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 14260b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 14270b57cec5SDimitry Andric SystemZMachineFunctionInfo *FuncInfo = 14280b57cec5SDimitry Andric MF.getInfo<SystemZMachineFunctionInfo>(); 14290b57cec5SDimitry Andric auto *TFL = 14300b57cec5SDimitry Andric static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 14310b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 14320b57cec5SDimitry Andric 14330b57cec5SDimitry Andric // Detect unsupported vector argument types. 14340b57cec5SDimitry Andric if (Subtarget.hasVector()) 14350b57cec5SDimitry Andric VerifyVectorTypes(Ins); 14360b57cec5SDimitry Andric 14370b57cec5SDimitry Andric // Assign locations to all of the incoming arguments. 14380b57cec5SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs; 14390b57cec5SDimitry Andric SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 14400b57cec5SDimitry Andric CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 14410b57cec5SDimitry Andric 14420b57cec5SDimitry Andric unsigned NumFixedGPRs = 0; 14430b57cec5SDimitry Andric unsigned NumFixedFPRs = 0; 14440b57cec5SDimitry Andric for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 14450b57cec5SDimitry Andric SDValue ArgValue; 14460b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[I]; 14470b57cec5SDimitry Andric EVT LocVT = VA.getLocVT(); 14480b57cec5SDimitry Andric if (VA.isRegLoc()) { 14490b57cec5SDimitry Andric // Arguments passed in registers 14500b57cec5SDimitry Andric const TargetRegisterClass *RC; 14510b57cec5SDimitry Andric switch (LocVT.getSimpleVT().SimpleTy) { 14520b57cec5SDimitry Andric default: 14530b57cec5SDimitry Andric // Integers smaller than i64 should be promoted to i64. 14540b57cec5SDimitry Andric llvm_unreachable("Unexpected argument type"); 14550b57cec5SDimitry Andric case MVT::i32: 14560b57cec5SDimitry Andric NumFixedGPRs += 1; 14570b57cec5SDimitry Andric RC = &SystemZ::GR32BitRegClass; 14580b57cec5SDimitry Andric break; 14590b57cec5SDimitry Andric case MVT::i64: 14600b57cec5SDimitry Andric NumFixedGPRs += 1; 14610b57cec5SDimitry Andric RC = &SystemZ::GR64BitRegClass; 14620b57cec5SDimitry Andric break; 14630b57cec5SDimitry Andric case MVT::f32: 14640b57cec5SDimitry Andric NumFixedFPRs += 1; 14650b57cec5SDimitry Andric RC = &SystemZ::FP32BitRegClass; 14660b57cec5SDimitry Andric break; 14670b57cec5SDimitry Andric case MVT::f64: 14680b57cec5SDimitry Andric NumFixedFPRs += 1; 14690b57cec5SDimitry Andric RC = &SystemZ::FP64BitRegClass; 14700b57cec5SDimitry Andric break; 14710b57cec5SDimitry Andric case MVT::v16i8: 14720b57cec5SDimitry Andric case MVT::v8i16: 14730b57cec5SDimitry Andric case MVT::v4i32: 14740b57cec5SDimitry Andric case MVT::v2i64: 14750b57cec5SDimitry Andric case MVT::v4f32: 14760b57cec5SDimitry Andric case MVT::v2f64: 14770b57cec5SDimitry Andric RC = &SystemZ::VR128BitRegClass; 14780b57cec5SDimitry Andric break; 14790b57cec5SDimitry Andric } 14800b57cec5SDimitry Andric 14818bcb0991SDimitry Andric Register VReg = MRI.createVirtualRegister(RC); 14820b57cec5SDimitry Andric MRI.addLiveIn(VA.getLocReg(), VReg); 14830b57cec5SDimitry Andric ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 14840b57cec5SDimitry Andric } else { 14850b57cec5SDimitry Andric assert(VA.isMemLoc() && "Argument not register or memory"); 14860b57cec5SDimitry Andric 14870b57cec5SDimitry Andric // Create the frame index object for this incoming parameter. 14880b57cec5SDimitry Andric int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 14890b57cec5SDimitry Andric VA.getLocMemOffset(), true); 14900b57cec5SDimitry Andric 14910b57cec5SDimitry Andric // Create the SelectionDAG nodes corresponding to a load 14920b57cec5SDimitry Andric // from this parameter. Unpromoted ints and floats are 14930b57cec5SDimitry Andric // passed as right-justified 8-byte values. 14940b57cec5SDimitry Andric SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 14950b57cec5SDimitry Andric if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 14960b57cec5SDimitry Andric FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 14970b57cec5SDimitry Andric DAG.getIntPtrConstant(4, DL)); 14980b57cec5SDimitry Andric ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 14990b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI)); 15000b57cec5SDimitry Andric } 15010b57cec5SDimitry Andric 15020b57cec5SDimitry Andric // Convert the value of the argument register into the value that's 15030b57cec5SDimitry Andric // being passed. 15040b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect) { 15050b57cec5SDimitry Andric InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 15060b57cec5SDimitry Andric MachinePointerInfo())); 15070b57cec5SDimitry Andric // If the original argument was split (e.g. i128), we need 15080b57cec5SDimitry Andric // to load all parts of it here (using the same address). 15090b57cec5SDimitry Andric unsigned ArgIndex = Ins[I].OrigArgIndex; 15100b57cec5SDimitry Andric assert (Ins[I].PartOffset == 0); 15110b57cec5SDimitry Andric while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 15120b57cec5SDimitry Andric CCValAssign &PartVA = ArgLocs[I + 1]; 15130b57cec5SDimitry Andric unsigned PartOffset = Ins[I + 1].PartOffset; 15140b57cec5SDimitry Andric SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 15150b57cec5SDimitry Andric DAG.getIntPtrConstant(PartOffset, DL)); 15160b57cec5SDimitry Andric InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 15170b57cec5SDimitry Andric MachinePointerInfo())); 15180b57cec5SDimitry Andric ++I; 15190b57cec5SDimitry Andric } 15200b57cec5SDimitry Andric } else 15210b57cec5SDimitry Andric InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 15220b57cec5SDimitry Andric } 15230b57cec5SDimitry Andric 15240b57cec5SDimitry Andric if (IsVarArg) { 15250b57cec5SDimitry Andric // Save the number of non-varargs registers for later use by va_start, etc. 15260b57cec5SDimitry Andric FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 15270b57cec5SDimitry Andric FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 15280b57cec5SDimitry Andric 15290b57cec5SDimitry Andric // Likewise the address (in the form of a frame index) of where the 15300b57cec5SDimitry Andric // first stack vararg would be. The 1-byte size here is arbitrary. 15310b57cec5SDimitry Andric int64_t StackSize = CCInfo.getNextStackOffset(); 15320b57cec5SDimitry Andric FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 15330b57cec5SDimitry Andric 15340b57cec5SDimitry Andric // ...and a similar frame index for the caller-allocated save area 15350b57cec5SDimitry Andric // that will be used to store the incoming registers. 15365ffd83dbSDimitry Andric int64_t RegSaveOffset = 1537*fe6060f1SDimitry Andric -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 15380b57cec5SDimitry Andric unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 15390b57cec5SDimitry Andric FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 15400b57cec5SDimitry Andric 15410b57cec5SDimitry Andric // Store the FPR varargs in the reserved frame slots. (We store the 15420b57cec5SDimitry Andric // GPRs as part of the prologue.) 1543*fe6060f1SDimitry Andric if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1544*fe6060f1SDimitry Andric SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1545*fe6060f1SDimitry Andric for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1546*fe6060f1SDimitry Andric unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 15475ffd83dbSDimitry Andric int FI = 1548*fe6060f1SDimitry Andric MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 15490b57cec5SDimitry Andric SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1550*fe6060f1SDimitry Andric unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 15510b57cec5SDimitry Andric &SystemZ::FP64BitRegClass); 15520b57cec5SDimitry Andric SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 15530b57cec5SDimitry Andric MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 15540b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI)); 15550b57cec5SDimitry Andric } 15560b57cec5SDimitry Andric // Join the stores, which are independent of one another. 15570b57cec5SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 15580b57cec5SDimitry Andric makeArrayRef(&MemOps[NumFixedFPRs], 1559*fe6060f1SDimitry Andric SystemZ::ELFNumArgFPRs-NumFixedFPRs)); 15600b57cec5SDimitry Andric } 15610b57cec5SDimitry Andric } 15620b57cec5SDimitry Andric 15630b57cec5SDimitry Andric return Chain; 15640b57cec5SDimitry Andric } 15650b57cec5SDimitry Andric 15660b57cec5SDimitry Andric static bool canUseSiblingCall(const CCState &ArgCCInfo, 15670b57cec5SDimitry Andric SmallVectorImpl<CCValAssign> &ArgLocs, 15680b57cec5SDimitry Andric SmallVectorImpl<ISD::OutputArg> &Outs) { 15690b57cec5SDimitry Andric // Punt if there are any indirect or stack arguments, or if the call 15700b57cec5SDimitry Andric // needs the callee-saved argument register R6, or if the call uses 15710b57cec5SDimitry Andric // the callee-saved register arguments SwiftSelf and SwiftError. 15720b57cec5SDimitry Andric for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 15730b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[I]; 15740b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect) 15750b57cec5SDimitry Andric return false; 15760b57cec5SDimitry Andric if (!VA.isRegLoc()) 15770b57cec5SDimitry Andric return false; 15788bcb0991SDimitry Andric Register Reg = VA.getLocReg(); 15790b57cec5SDimitry Andric if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 15800b57cec5SDimitry Andric return false; 15810b57cec5SDimitry Andric if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 15820b57cec5SDimitry Andric return false; 15830b57cec5SDimitry Andric } 15840b57cec5SDimitry Andric return true; 15850b57cec5SDimitry Andric } 15860b57cec5SDimitry Andric 15870b57cec5SDimitry Andric SDValue 15880b57cec5SDimitry Andric SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 15890b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals) const { 15900b57cec5SDimitry Andric SelectionDAG &DAG = CLI.DAG; 15910b57cec5SDimitry Andric SDLoc &DL = CLI.DL; 15920b57cec5SDimitry Andric SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 15930b57cec5SDimitry Andric SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 15940b57cec5SDimitry Andric SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 15950b57cec5SDimitry Andric SDValue Chain = CLI.Chain; 15960b57cec5SDimitry Andric SDValue Callee = CLI.Callee; 15970b57cec5SDimitry Andric bool &IsTailCall = CLI.IsTailCall; 15980b57cec5SDimitry Andric CallingConv::ID CallConv = CLI.CallConv; 15990b57cec5SDimitry Andric bool IsVarArg = CLI.IsVarArg; 16000b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 16010b57cec5SDimitry Andric EVT PtrVT = getPointerTy(MF.getDataLayout()); 16024652422eSDimitry Andric LLVMContext &Ctx = *DAG.getContext(); 16030b57cec5SDimitry Andric 16040b57cec5SDimitry Andric // Detect unsupported vector argument and return types. 16050b57cec5SDimitry Andric if (Subtarget.hasVector()) { 16060b57cec5SDimitry Andric VerifyVectorTypes(Outs); 16070b57cec5SDimitry Andric VerifyVectorTypes(Ins); 16080b57cec5SDimitry Andric } 16090b57cec5SDimitry Andric 16100b57cec5SDimitry Andric // Analyze the operands of the call, assigning locations to each operand. 16110b57cec5SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs; 16124652422eSDimitry Andric SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 16130b57cec5SDimitry Andric ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 16140b57cec5SDimitry Andric 16150b57cec5SDimitry Andric // We don't support GuaranteedTailCallOpt, only automatically-detected 16160b57cec5SDimitry Andric // sibling calls. 16170b57cec5SDimitry Andric if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 16180b57cec5SDimitry Andric IsTailCall = false; 16190b57cec5SDimitry Andric 16200b57cec5SDimitry Andric // Get a count of how many bytes are to be pushed on the stack. 16210b57cec5SDimitry Andric unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 16220b57cec5SDimitry Andric 16230b57cec5SDimitry Andric // Mark the start of the call. 16240b57cec5SDimitry Andric if (!IsTailCall) 16250b57cec5SDimitry Andric Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 16260b57cec5SDimitry Andric 16270b57cec5SDimitry Andric // Copy argument values to their designated locations. 16280b57cec5SDimitry Andric SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 16290b57cec5SDimitry Andric SmallVector<SDValue, 8> MemOpChains; 16300b57cec5SDimitry Andric SDValue StackPtr; 16310b57cec5SDimitry Andric for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 16320b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[I]; 16330b57cec5SDimitry Andric SDValue ArgValue = OutVals[I]; 16340b57cec5SDimitry Andric 16350b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect) { 16360b57cec5SDimitry Andric // Store the argument in a stack slot and pass its address. 16374652422eSDimitry Andric unsigned ArgIndex = Outs[I].OrigArgIndex; 16384652422eSDimitry Andric EVT SlotVT; 16394652422eSDimitry Andric if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 16404652422eSDimitry Andric // Allocate the full stack space for a promoted (and split) argument. 16414652422eSDimitry Andric Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 16424652422eSDimitry Andric EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 16434652422eSDimitry Andric MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 16444652422eSDimitry Andric unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 16454652422eSDimitry Andric SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 16464652422eSDimitry Andric } else { 16474652422eSDimitry Andric SlotVT = Outs[I].ArgVT; 16484652422eSDimitry Andric } 16494652422eSDimitry Andric SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 16500b57cec5SDimitry Andric int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 16510b57cec5SDimitry Andric MemOpChains.push_back( 16520b57cec5SDimitry Andric DAG.getStore(Chain, DL, ArgValue, SpillSlot, 16530b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI))); 16540b57cec5SDimitry Andric // If the original argument was split (e.g. i128), we need 16550b57cec5SDimitry Andric // to store all parts of it here (and pass just one address). 16560b57cec5SDimitry Andric assert (Outs[I].PartOffset == 0); 16570b57cec5SDimitry Andric while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 16580b57cec5SDimitry Andric SDValue PartValue = OutVals[I + 1]; 16590b57cec5SDimitry Andric unsigned PartOffset = Outs[I + 1].PartOffset; 16600b57cec5SDimitry Andric SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 16610b57cec5SDimitry Andric DAG.getIntPtrConstant(PartOffset, DL)); 16620b57cec5SDimitry Andric MemOpChains.push_back( 16630b57cec5SDimitry Andric DAG.getStore(Chain, DL, PartValue, Address, 16640b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI))); 16654652422eSDimitry Andric assert((PartOffset + PartValue.getValueType().getStoreSize() <= 16664652422eSDimitry Andric SlotVT.getStoreSize()) && "Not enough space for argument part!"); 16670b57cec5SDimitry Andric ++I; 16680b57cec5SDimitry Andric } 16690b57cec5SDimitry Andric ArgValue = SpillSlot; 16700b57cec5SDimitry Andric } else 16710b57cec5SDimitry Andric ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 16720b57cec5SDimitry Andric 16730b57cec5SDimitry Andric if (VA.isRegLoc()) 16740b57cec5SDimitry Andric // Queue up the argument copies and emit them at the end. 16750b57cec5SDimitry Andric RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 16760b57cec5SDimitry Andric else { 16770b57cec5SDimitry Andric assert(VA.isMemLoc() && "Argument not register or memory"); 16780b57cec5SDimitry Andric 16790b57cec5SDimitry Andric // Work out the address of the stack slot. Unpromoted ints and 16800b57cec5SDimitry Andric // floats are passed as right-justified 8-byte values. 16810b57cec5SDimitry Andric if (!StackPtr.getNode()) 16820b57cec5SDimitry Andric StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1683*fe6060f1SDimitry Andric unsigned Offset = SystemZMC::ELFCallFrameSize + VA.getLocMemOffset(); 16840b57cec5SDimitry Andric if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 16850b57cec5SDimitry Andric Offset += 4; 16860b57cec5SDimitry Andric SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 16870b57cec5SDimitry Andric DAG.getIntPtrConstant(Offset, DL)); 16880b57cec5SDimitry Andric 16890b57cec5SDimitry Andric // Emit the store. 16900b57cec5SDimitry Andric MemOpChains.push_back( 16910b57cec5SDimitry Andric DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 16920b57cec5SDimitry Andric } 16930b57cec5SDimitry Andric } 16940b57cec5SDimitry Andric 16950b57cec5SDimitry Andric // Join the stores, which are independent of one another. 16960b57cec5SDimitry Andric if (!MemOpChains.empty()) 16970b57cec5SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 16980b57cec5SDimitry Andric 16990b57cec5SDimitry Andric // Accept direct calls by converting symbolic call addresses to the 17000b57cec5SDimitry Andric // associated Target* opcodes. Force %r1 to be used for indirect 17010b57cec5SDimitry Andric // tail calls. 17020b57cec5SDimitry Andric SDValue Glue; 17030b57cec5SDimitry Andric if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 17040b57cec5SDimitry Andric Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 17050b57cec5SDimitry Andric Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 17060b57cec5SDimitry Andric } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 17070b57cec5SDimitry Andric Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 17080b57cec5SDimitry Andric Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 17090b57cec5SDimitry Andric } else if (IsTailCall) { 17100b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 17110b57cec5SDimitry Andric Glue = Chain.getValue(1); 17120b57cec5SDimitry Andric Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 17130b57cec5SDimitry Andric } 17140b57cec5SDimitry Andric 17150b57cec5SDimitry Andric // Build a sequence of copy-to-reg nodes, chained and glued together. 17160b57cec5SDimitry Andric for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 17170b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 17180b57cec5SDimitry Andric RegsToPass[I].second, Glue); 17190b57cec5SDimitry Andric Glue = Chain.getValue(1); 17200b57cec5SDimitry Andric } 17210b57cec5SDimitry Andric 17220b57cec5SDimitry Andric // The first call operand is the chain and the second is the target address. 17230b57cec5SDimitry Andric SmallVector<SDValue, 8> Ops; 17240b57cec5SDimitry Andric Ops.push_back(Chain); 17250b57cec5SDimitry Andric Ops.push_back(Callee); 17260b57cec5SDimitry Andric 17270b57cec5SDimitry Andric // Add argument registers to the end of the list so that they are 17280b57cec5SDimitry Andric // known live into the call. 17290b57cec5SDimitry Andric for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 17300b57cec5SDimitry Andric Ops.push_back(DAG.getRegister(RegsToPass[I].first, 17310b57cec5SDimitry Andric RegsToPass[I].second.getValueType())); 17320b57cec5SDimitry Andric 17330b57cec5SDimitry Andric // Add a register mask operand representing the call-preserved registers. 17340b57cec5SDimitry Andric const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 17350b57cec5SDimitry Andric const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 17360b57cec5SDimitry Andric assert(Mask && "Missing call preserved mask for calling convention"); 17370b57cec5SDimitry Andric Ops.push_back(DAG.getRegisterMask(Mask)); 17380b57cec5SDimitry Andric 17390b57cec5SDimitry Andric // Glue the call to the argument copies, if any. 17400b57cec5SDimitry Andric if (Glue.getNode()) 17410b57cec5SDimitry Andric Ops.push_back(Glue); 17420b57cec5SDimitry Andric 17430b57cec5SDimitry Andric // Emit the call. 17440b57cec5SDimitry Andric SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 17450b57cec5SDimitry Andric if (IsTailCall) 17460b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 17470b57cec5SDimitry Andric Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 17485ffd83dbSDimitry Andric DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 17490b57cec5SDimitry Andric Glue = Chain.getValue(1); 17500b57cec5SDimitry Andric 17510b57cec5SDimitry Andric // Mark the end of the call, which is glued to the call itself. 17520b57cec5SDimitry Andric Chain = DAG.getCALLSEQ_END(Chain, 17530b57cec5SDimitry Andric DAG.getConstant(NumBytes, DL, PtrVT, true), 17540b57cec5SDimitry Andric DAG.getConstant(0, DL, PtrVT, true), 17550b57cec5SDimitry Andric Glue, DL); 17560b57cec5SDimitry Andric Glue = Chain.getValue(1); 17570b57cec5SDimitry Andric 17580b57cec5SDimitry Andric // Assign locations to each value returned by this call. 17590b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RetLocs; 17604652422eSDimitry Andric CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 17610b57cec5SDimitry Andric RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 17620b57cec5SDimitry Andric 17630b57cec5SDimitry Andric // Copy all of the result registers out of their specified physreg. 17640b57cec5SDimitry Andric for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 17650b57cec5SDimitry Andric CCValAssign &VA = RetLocs[I]; 17660b57cec5SDimitry Andric 17670b57cec5SDimitry Andric // Copy the value out, gluing the copy to the end of the call sequence. 17680b57cec5SDimitry Andric SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 17690b57cec5SDimitry Andric VA.getLocVT(), Glue); 17700b57cec5SDimitry Andric Chain = RetValue.getValue(1); 17710b57cec5SDimitry Andric Glue = RetValue.getValue(2); 17720b57cec5SDimitry Andric 17730b57cec5SDimitry Andric // Convert the value of the return register into the value that's 17740b57cec5SDimitry Andric // being returned. 17750b57cec5SDimitry Andric InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 17760b57cec5SDimitry Andric } 17770b57cec5SDimitry Andric 17780b57cec5SDimitry Andric return Chain; 17790b57cec5SDimitry Andric } 17800b57cec5SDimitry Andric 17810b57cec5SDimitry Andric bool SystemZTargetLowering:: 17820b57cec5SDimitry Andric CanLowerReturn(CallingConv::ID CallConv, 17830b57cec5SDimitry Andric MachineFunction &MF, bool isVarArg, 17840b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 17850b57cec5SDimitry Andric LLVMContext &Context) const { 17860b57cec5SDimitry Andric // Detect unsupported vector return types. 17870b57cec5SDimitry Andric if (Subtarget.hasVector()) 17880b57cec5SDimitry Andric VerifyVectorTypes(Outs); 17890b57cec5SDimitry Andric 17900b57cec5SDimitry Andric // Special case that we cannot easily detect in RetCC_SystemZ since 17910b57cec5SDimitry Andric // i128 is not a legal type. 17920b57cec5SDimitry Andric for (auto &Out : Outs) 17930b57cec5SDimitry Andric if (Out.ArgVT == MVT::i128) 17940b57cec5SDimitry Andric return false; 17950b57cec5SDimitry Andric 17960b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RetLocs; 17970b57cec5SDimitry Andric CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 17980b57cec5SDimitry Andric return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 17990b57cec5SDimitry Andric } 18000b57cec5SDimitry Andric 18010b57cec5SDimitry Andric SDValue 18020b57cec5SDimitry Andric SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 18030b57cec5SDimitry Andric bool IsVarArg, 18040b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 18050b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, 18060b57cec5SDimitry Andric const SDLoc &DL, SelectionDAG &DAG) const { 18070b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 18080b57cec5SDimitry Andric 18090b57cec5SDimitry Andric // Detect unsupported vector return types. 18100b57cec5SDimitry Andric if (Subtarget.hasVector()) 18110b57cec5SDimitry Andric VerifyVectorTypes(Outs); 18120b57cec5SDimitry Andric 18130b57cec5SDimitry Andric // Assign locations to each returned value. 18140b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RetLocs; 18150b57cec5SDimitry Andric CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 18160b57cec5SDimitry Andric RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 18170b57cec5SDimitry Andric 18180b57cec5SDimitry Andric // Quick exit for void returns 18190b57cec5SDimitry Andric if (RetLocs.empty()) 18200b57cec5SDimitry Andric return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 18210b57cec5SDimitry Andric 1822480093f4SDimitry Andric if (CallConv == CallingConv::GHC) 1823480093f4SDimitry Andric report_fatal_error("GHC functions return void only"); 1824480093f4SDimitry Andric 18250b57cec5SDimitry Andric // Copy the result values into the output registers. 18260b57cec5SDimitry Andric SDValue Glue; 18270b57cec5SDimitry Andric SmallVector<SDValue, 4> RetOps; 18280b57cec5SDimitry Andric RetOps.push_back(Chain); 18290b57cec5SDimitry Andric for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 18300b57cec5SDimitry Andric CCValAssign &VA = RetLocs[I]; 18310b57cec5SDimitry Andric SDValue RetValue = OutVals[I]; 18320b57cec5SDimitry Andric 18330b57cec5SDimitry Andric // Make the return register live on exit. 18340b57cec5SDimitry Andric assert(VA.isRegLoc() && "Can only return in registers!"); 18350b57cec5SDimitry Andric 18360b57cec5SDimitry Andric // Promote the value as required. 18370b57cec5SDimitry Andric RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 18380b57cec5SDimitry Andric 18390b57cec5SDimitry Andric // Chain and glue the copies together. 18408bcb0991SDimitry Andric Register Reg = VA.getLocReg(); 18410b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 18420b57cec5SDimitry Andric Glue = Chain.getValue(1); 18430b57cec5SDimitry Andric RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 18440b57cec5SDimitry Andric } 18450b57cec5SDimitry Andric 18460b57cec5SDimitry Andric // Update chain and glue. 18470b57cec5SDimitry Andric RetOps[0] = Chain; 18480b57cec5SDimitry Andric if (Glue.getNode()) 18490b57cec5SDimitry Andric RetOps.push_back(Glue); 18500b57cec5SDimitry Andric 18510b57cec5SDimitry Andric return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 18520b57cec5SDimitry Andric } 18530b57cec5SDimitry Andric 18540b57cec5SDimitry Andric // Return true if Op is an intrinsic node with chain that returns the CC value 18550b57cec5SDimitry Andric // as its only (other) argument. Provide the associated SystemZISD opcode and 18560b57cec5SDimitry Andric // the mask of valid CC values if so. 18570b57cec5SDimitry Andric static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 18580b57cec5SDimitry Andric unsigned &CCValid) { 18590b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 18600b57cec5SDimitry Andric switch (Id) { 18610b57cec5SDimitry Andric case Intrinsic::s390_tbegin: 18620b57cec5SDimitry Andric Opcode = SystemZISD::TBEGIN; 18630b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_TBEGIN; 18640b57cec5SDimitry Andric return true; 18650b57cec5SDimitry Andric 18660b57cec5SDimitry Andric case Intrinsic::s390_tbegin_nofloat: 18670b57cec5SDimitry Andric Opcode = SystemZISD::TBEGIN_NOFLOAT; 18680b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_TBEGIN; 18690b57cec5SDimitry Andric return true; 18700b57cec5SDimitry Andric 18710b57cec5SDimitry Andric case Intrinsic::s390_tend: 18720b57cec5SDimitry Andric Opcode = SystemZISD::TEND; 18730b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_TEND; 18740b57cec5SDimitry Andric return true; 18750b57cec5SDimitry Andric 18760b57cec5SDimitry Andric default: 18770b57cec5SDimitry Andric return false; 18780b57cec5SDimitry Andric } 18790b57cec5SDimitry Andric } 18800b57cec5SDimitry Andric 18810b57cec5SDimitry Andric // Return true if Op is an intrinsic node without chain that returns the 18820b57cec5SDimitry Andric // CC value as its final argument. Provide the associated SystemZISD 18830b57cec5SDimitry Andric // opcode and the mask of valid CC values if so. 18840b57cec5SDimitry Andric static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 18850b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 18860b57cec5SDimitry Andric switch (Id) { 18870b57cec5SDimitry Andric case Intrinsic::s390_vpkshs: 18880b57cec5SDimitry Andric case Intrinsic::s390_vpksfs: 18890b57cec5SDimitry Andric case Intrinsic::s390_vpksgs: 18900b57cec5SDimitry Andric Opcode = SystemZISD::PACKS_CC; 18910b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 18920b57cec5SDimitry Andric return true; 18930b57cec5SDimitry Andric 18940b57cec5SDimitry Andric case Intrinsic::s390_vpklshs: 18950b57cec5SDimitry Andric case Intrinsic::s390_vpklsfs: 18960b57cec5SDimitry Andric case Intrinsic::s390_vpklsgs: 18970b57cec5SDimitry Andric Opcode = SystemZISD::PACKLS_CC; 18980b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 18990b57cec5SDimitry Andric return true; 19000b57cec5SDimitry Andric 19010b57cec5SDimitry Andric case Intrinsic::s390_vceqbs: 19020b57cec5SDimitry Andric case Intrinsic::s390_vceqhs: 19030b57cec5SDimitry Andric case Intrinsic::s390_vceqfs: 19040b57cec5SDimitry Andric case Intrinsic::s390_vceqgs: 19050b57cec5SDimitry Andric Opcode = SystemZISD::VICMPES; 19060b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 19070b57cec5SDimitry Andric return true; 19080b57cec5SDimitry Andric 19090b57cec5SDimitry Andric case Intrinsic::s390_vchbs: 19100b57cec5SDimitry Andric case Intrinsic::s390_vchhs: 19110b57cec5SDimitry Andric case Intrinsic::s390_vchfs: 19120b57cec5SDimitry Andric case Intrinsic::s390_vchgs: 19130b57cec5SDimitry Andric Opcode = SystemZISD::VICMPHS; 19140b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 19150b57cec5SDimitry Andric return true; 19160b57cec5SDimitry Andric 19170b57cec5SDimitry Andric case Intrinsic::s390_vchlbs: 19180b57cec5SDimitry Andric case Intrinsic::s390_vchlhs: 19190b57cec5SDimitry Andric case Intrinsic::s390_vchlfs: 19200b57cec5SDimitry Andric case Intrinsic::s390_vchlgs: 19210b57cec5SDimitry Andric Opcode = SystemZISD::VICMPHLS; 19220b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 19230b57cec5SDimitry Andric return true; 19240b57cec5SDimitry Andric 19250b57cec5SDimitry Andric case Intrinsic::s390_vtm: 19260b57cec5SDimitry Andric Opcode = SystemZISD::VTM; 19270b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 19280b57cec5SDimitry Andric return true; 19290b57cec5SDimitry Andric 19300b57cec5SDimitry Andric case Intrinsic::s390_vfaebs: 19310b57cec5SDimitry Andric case Intrinsic::s390_vfaehs: 19320b57cec5SDimitry Andric case Intrinsic::s390_vfaefs: 19330b57cec5SDimitry Andric Opcode = SystemZISD::VFAE_CC; 19340b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19350b57cec5SDimitry Andric return true; 19360b57cec5SDimitry Andric 19370b57cec5SDimitry Andric case Intrinsic::s390_vfaezbs: 19380b57cec5SDimitry Andric case Intrinsic::s390_vfaezhs: 19390b57cec5SDimitry Andric case Intrinsic::s390_vfaezfs: 19400b57cec5SDimitry Andric Opcode = SystemZISD::VFAEZ_CC; 19410b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19420b57cec5SDimitry Andric return true; 19430b57cec5SDimitry Andric 19440b57cec5SDimitry Andric case Intrinsic::s390_vfeebs: 19450b57cec5SDimitry Andric case Intrinsic::s390_vfeehs: 19460b57cec5SDimitry Andric case Intrinsic::s390_vfeefs: 19470b57cec5SDimitry Andric Opcode = SystemZISD::VFEE_CC; 19480b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19490b57cec5SDimitry Andric return true; 19500b57cec5SDimitry Andric 19510b57cec5SDimitry Andric case Intrinsic::s390_vfeezbs: 19520b57cec5SDimitry Andric case Intrinsic::s390_vfeezhs: 19530b57cec5SDimitry Andric case Intrinsic::s390_vfeezfs: 19540b57cec5SDimitry Andric Opcode = SystemZISD::VFEEZ_CC; 19550b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19560b57cec5SDimitry Andric return true; 19570b57cec5SDimitry Andric 19580b57cec5SDimitry Andric case Intrinsic::s390_vfenebs: 19590b57cec5SDimitry Andric case Intrinsic::s390_vfenehs: 19600b57cec5SDimitry Andric case Intrinsic::s390_vfenefs: 19610b57cec5SDimitry Andric Opcode = SystemZISD::VFENE_CC; 19620b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19630b57cec5SDimitry Andric return true; 19640b57cec5SDimitry Andric 19650b57cec5SDimitry Andric case Intrinsic::s390_vfenezbs: 19660b57cec5SDimitry Andric case Intrinsic::s390_vfenezhs: 19670b57cec5SDimitry Andric case Intrinsic::s390_vfenezfs: 19680b57cec5SDimitry Andric Opcode = SystemZISD::VFENEZ_CC; 19690b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19700b57cec5SDimitry Andric return true; 19710b57cec5SDimitry Andric 19720b57cec5SDimitry Andric case Intrinsic::s390_vistrbs: 19730b57cec5SDimitry Andric case Intrinsic::s390_vistrhs: 19740b57cec5SDimitry Andric case Intrinsic::s390_vistrfs: 19750b57cec5SDimitry Andric Opcode = SystemZISD::VISTR_CC; 19760b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 19770b57cec5SDimitry Andric return true; 19780b57cec5SDimitry Andric 19790b57cec5SDimitry Andric case Intrinsic::s390_vstrcbs: 19800b57cec5SDimitry Andric case Intrinsic::s390_vstrchs: 19810b57cec5SDimitry Andric case Intrinsic::s390_vstrcfs: 19820b57cec5SDimitry Andric Opcode = SystemZISD::VSTRC_CC; 19830b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19840b57cec5SDimitry Andric return true; 19850b57cec5SDimitry Andric 19860b57cec5SDimitry Andric case Intrinsic::s390_vstrczbs: 19870b57cec5SDimitry Andric case Intrinsic::s390_vstrczhs: 19880b57cec5SDimitry Andric case Intrinsic::s390_vstrczfs: 19890b57cec5SDimitry Andric Opcode = SystemZISD::VSTRCZ_CC; 19900b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19910b57cec5SDimitry Andric return true; 19920b57cec5SDimitry Andric 19930b57cec5SDimitry Andric case Intrinsic::s390_vstrsb: 19940b57cec5SDimitry Andric case Intrinsic::s390_vstrsh: 19950b57cec5SDimitry Andric case Intrinsic::s390_vstrsf: 19960b57cec5SDimitry Andric Opcode = SystemZISD::VSTRS_CC; 19970b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 19980b57cec5SDimitry Andric return true; 19990b57cec5SDimitry Andric 20000b57cec5SDimitry Andric case Intrinsic::s390_vstrszb: 20010b57cec5SDimitry Andric case Intrinsic::s390_vstrszh: 20020b57cec5SDimitry Andric case Intrinsic::s390_vstrszf: 20030b57cec5SDimitry Andric Opcode = SystemZISD::VSTRSZ_CC; 20040b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 20050b57cec5SDimitry Andric return true; 20060b57cec5SDimitry Andric 20070b57cec5SDimitry Andric case Intrinsic::s390_vfcedbs: 20080b57cec5SDimitry Andric case Intrinsic::s390_vfcesbs: 20090b57cec5SDimitry Andric Opcode = SystemZISD::VFCMPES; 20100b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20110b57cec5SDimitry Andric return true; 20120b57cec5SDimitry Andric 20130b57cec5SDimitry Andric case Intrinsic::s390_vfchdbs: 20140b57cec5SDimitry Andric case Intrinsic::s390_vfchsbs: 20150b57cec5SDimitry Andric Opcode = SystemZISD::VFCMPHS; 20160b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20170b57cec5SDimitry Andric return true; 20180b57cec5SDimitry Andric 20190b57cec5SDimitry Andric case Intrinsic::s390_vfchedbs: 20200b57cec5SDimitry Andric case Intrinsic::s390_vfchesbs: 20210b57cec5SDimitry Andric Opcode = SystemZISD::VFCMPHES; 20220b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20230b57cec5SDimitry Andric return true; 20240b57cec5SDimitry Andric 20250b57cec5SDimitry Andric case Intrinsic::s390_vftcidb: 20260b57cec5SDimitry Andric case Intrinsic::s390_vftcisb: 20270b57cec5SDimitry Andric Opcode = SystemZISD::VFTCI; 20280b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20290b57cec5SDimitry Andric return true; 20300b57cec5SDimitry Andric 20310b57cec5SDimitry Andric case Intrinsic::s390_tdc: 20320b57cec5SDimitry Andric Opcode = SystemZISD::TDC; 20330b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_TDC; 20340b57cec5SDimitry Andric return true; 20350b57cec5SDimitry Andric 20360b57cec5SDimitry Andric default: 20370b57cec5SDimitry Andric return false; 20380b57cec5SDimitry Andric } 20390b57cec5SDimitry Andric } 20400b57cec5SDimitry Andric 20410b57cec5SDimitry Andric // Emit an intrinsic with chain and an explicit CC register result. 20420b57cec5SDimitry Andric static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 20430b57cec5SDimitry Andric unsigned Opcode) { 20440b57cec5SDimitry Andric // Copy all operands except the intrinsic ID. 20450b57cec5SDimitry Andric unsigned NumOps = Op.getNumOperands(); 20460b57cec5SDimitry Andric SmallVector<SDValue, 6> Ops; 20470b57cec5SDimitry Andric Ops.reserve(NumOps - 1); 20480b57cec5SDimitry Andric Ops.push_back(Op.getOperand(0)); 20490b57cec5SDimitry Andric for (unsigned I = 2; I < NumOps; ++I) 20500b57cec5SDimitry Andric Ops.push_back(Op.getOperand(I)); 20510b57cec5SDimitry Andric 20520b57cec5SDimitry Andric assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 20530b57cec5SDimitry Andric SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 20540b57cec5SDimitry Andric SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 20550b57cec5SDimitry Andric SDValue OldChain = SDValue(Op.getNode(), 1); 20560b57cec5SDimitry Andric SDValue NewChain = SDValue(Intr.getNode(), 1); 20570b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 20580b57cec5SDimitry Andric return Intr.getNode(); 20590b57cec5SDimitry Andric } 20600b57cec5SDimitry Andric 20610b57cec5SDimitry Andric // Emit an intrinsic with an explicit CC register result. 20620b57cec5SDimitry Andric static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 20630b57cec5SDimitry Andric unsigned Opcode) { 20640b57cec5SDimitry Andric // Copy all operands except the intrinsic ID. 20650b57cec5SDimitry Andric unsigned NumOps = Op.getNumOperands(); 20660b57cec5SDimitry Andric SmallVector<SDValue, 6> Ops; 20670b57cec5SDimitry Andric Ops.reserve(NumOps - 1); 20680b57cec5SDimitry Andric for (unsigned I = 1; I < NumOps; ++I) 20690b57cec5SDimitry Andric Ops.push_back(Op.getOperand(I)); 20700b57cec5SDimitry Andric 20710b57cec5SDimitry Andric SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 20720b57cec5SDimitry Andric return Intr.getNode(); 20730b57cec5SDimitry Andric } 20740b57cec5SDimitry Andric 20750b57cec5SDimitry Andric // CC is a comparison that will be implemented using an integer or 20760b57cec5SDimitry Andric // floating-point comparison. Return the condition code mask for 20770b57cec5SDimitry Andric // a branch on true. In the integer case, CCMASK_CMP_UO is set for 20780b57cec5SDimitry Andric // unsigned comparisons and clear for signed ones. In the floating-point 20790b57cec5SDimitry Andric // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 20800b57cec5SDimitry Andric static unsigned CCMaskForCondCode(ISD::CondCode CC) { 20810b57cec5SDimitry Andric #define CONV(X) \ 20820b57cec5SDimitry Andric case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 20830b57cec5SDimitry Andric case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 20840b57cec5SDimitry Andric case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 20850b57cec5SDimitry Andric 20860b57cec5SDimitry Andric switch (CC) { 20870b57cec5SDimitry Andric default: 20880b57cec5SDimitry Andric llvm_unreachable("Invalid integer condition!"); 20890b57cec5SDimitry Andric 20900b57cec5SDimitry Andric CONV(EQ); 20910b57cec5SDimitry Andric CONV(NE); 20920b57cec5SDimitry Andric CONV(GT); 20930b57cec5SDimitry Andric CONV(GE); 20940b57cec5SDimitry Andric CONV(LT); 20950b57cec5SDimitry Andric CONV(LE); 20960b57cec5SDimitry Andric 20970b57cec5SDimitry Andric case ISD::SETO: return SystemZ::CCMASK_CMP_O; 20980b57cec5SDimitry Andric case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 20990b57cec5SDimitry Andric } 21000b57cec5SDimitry Andric #undef CONV 21010b57cec5SDimitry Andric } 21020b57cec5SDimitry Andric 21030b57cec5SDimitry Andric // If C can be converted to a comparison against zero, adjust the operands 21040b57cec5SDimitry Andric // as necessary. 21050b57cec5SDimitry Andric static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 21060b57cec5SDimitry Andric if (C.ICmpType == SystemZICMP::UnsignedOnly) 21070b57cec5SDimitry Andric return; 21080b57cec5SDimitry Andric 21090b57cec5SDimitry Andric auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 21100b57cec5SDimitry Andric if (!ConstOp1) 21110b57cec5SDimitry Andric return; 21120b57cec5SDimitry Andric 21130b57cec5SDimitry Andric int64_t Value = ConstOp1->getSExtValue(); 21140b57cec5SDimitry Andric if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 21150b57cec5SDimitry Andric (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 21160b57cec5SDimitry Andric (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 21170b57cec5SDimitry Andric (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 21180b57cec5SDimitry Andric C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 21190b57cec5SDimitry Andric C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 21200b57cec5SDimitry Andric } 21210b57cec5SDimitry Andric } 21220b57cec5SDimitry Andric 21230b57cec5SDimitry Andric // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 21240b57cec5SDimitry Andric // adjust the operands as necessary. 21250b57cec5SDimitry Andric static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 21260b57cec5SDimitry Andric Comparison &C) { 21270b57cec5SDimitry Andric // For us to make any changes, it must a comparison between a single-use 21280b57cec5SDimitry Andric // load and a constant. 21290b57cec5SDimitry Andric if (!C.Op0.hasOneUse() || 21300b57cec5SDimitry Andric C.Op0.getOpcode() != ISD::LOAD || 21310b57cec5SDimitry Andric C.Op1.getOpcode() != ISD::Constant) 21320b57cec5SDimitry Andric return; 21330b57cec5SDimitry Andric 21340b57cec5SDimitry Andric // We must have an 8- or 16-bit load. 21350b57cec5SDimitry Andric auto *Load = cast<LoadSDNode>(C.Op0); 21365ffd83dbSDimitry Andric unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 21375ffd83dbSDimitry Andric if ((NumBits != 8 && NumBits != 16) || 21385ffd83dbSDimitry Andric NumBits != Load->getMemoryVT().getStoreSizeInBits()) 21390b57cec5SDimitry Andric return; 21400b57cec5SDimitry Andric 21410b57cec5SDimitry Andric // The load must be an extending one and the constant must be within the 21420b57cec5SDimitry Andric // range of the unextended value. 21430b57cec5SDimitry Andric auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 21440b57cec5SDimitry Andric uint64_t Value = ConstOp1->getZExtValue(); 21450b57cec5SDimitry Andric uint64_t Mask = (1 << NumBits) - 1; 21460b57cec5SDimitry Andric if (Load->getExtensionType() == ISD::SEXTLOAD) { 21470b57cec5SDimitry Andric // Make sure that ConstOp1 is in range of C.Op0. 21480b57cec5SDimitry Andric int64_t SignedValue = ConstOp1->getSExtValue(); 21490b57cec5SDimitry Andric if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 21500b57cec5SDimitry Andric return; 21510b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::SignedOnly) { 21520b57cec5SDimitry Andric // Unsigned comparison between two sign-extended values is equivalent 21530b57cec5SDimitry Andric // to unsigned comparison between two zero-extended values. 21540b57cec5SDimitry Andric Value &= Mask; 21550b57cec5SDimitry Andric } else if (NumBits == 8) { 21560b57cec5SDimitry Andric // Try to treat the comparison as unsigned, so that we can use CLI. 21570b57cec5SDimitry Andric // Adjust CCMask and Value as necessary. 21580b57cec5SDimitry Andric if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 21590b57cec5SDimitry Andric // Test whether the high bit of the byte is set. 21600b57cec5SDimitry Andric Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 21610b57cec5SDimitry Andric else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 21620b57cec5SDimitry Andric // Test whether the high bit of the byte is clear. 21630b57cec5SDimitry Andric Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 21640b57cec5SDimitry Andric else 21650b57cec5SDimitry Andric // No instruction exists for this combination. 21660b57cec5SDimitry Andric return; 21670b57cec5SDimitry Andric C.ICmpType = SystemZICMP::UnsignedOnly; 21680b57cec5SDimitry Andric } 21690b57cec5SDimitry Andric } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 21700b57cec5SDimitry Andric if (Value > Mask) 21710b57cec5SDimitry Andric return; 21720b57cec5SDimitry Andric // If the constant is in range, we can use any comparison. 21730b57cec5SDimitry Andric C.ICmpType = SystemZICMP::Any; 21740b57cec5SDimitry Andric } else 21750b57cec5SDimitry Andric return; 21760b57cec5SDimitry Andric 21770b57cec5SDimitry Andric // Make sure that the first operand is an i32 of the right extension type. 21780b57cec5SDimitry Andric ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 21790b57cec5SDimitry Andric ISD::SEXTLOAD : 21800b57cec5SDimitry Andric ISD::ZEXTLOAD); 21810b57cec5SDimitry Andric if (C.Op0.getValueType() != MVT::i32 || 21820b57cec5SDimitry Andric Load->getExtensionType() != ExtType) { 21830b57cec5SDimitry Andric C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 21840b57cec5SDimitry Andric Load->getBasePtr(), Load->getPointerInfo(), 21850b57cec5SDimitry Andric Load->getMemoryVT(), Load->getAlignment(), 21860b57cec5SDimitry Andric Load->getMemOperand()->getFlags()); 21870b57cec5SDimitry Andric // Update the chain uses. 21880b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 21890b57cec5SDimitry Andric } 21900b57cec5SDimitry Andric 21910b57cec5SDimitry Andric // Make sure that the second operand is an i32 with the right value. 21920b57cec5SDimitry Andric if (C.Op1.getValueType() != MVT::i32 || 21930b57cec5SDimitry Andric Value != ConstOp1->getZExtValue()) 21940b57cec5SDimitry Andric C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 21950b57cec5SDimitry Andric } 21960b57cec5SDimitry Andric 21970b57cec5SDimitry Andric // Return true if Op is either an unextended load, or a load suitable 21980b57cec5SDimitry Andric // for integer register-memory comparisons of type ICmpType. 21990b57cec5SDimitry Andric static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 22000b57cec5SDimitry Andric auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 22010b57cec5SDimitry Andric if (Load) { 22020b57cec5SDimitry Andric // There are no instructions to compare a register with a memory byte. 22030b57cec5SDimitry Andric if (Load->getMemoryVT() == MVT::i8) 22040b57cec5SDimitry Andric return false; 22050b57cec5SDimitry Andric // Otherwise decide on extension type. 22060b57cec5SDimitry Andric switch (Load->getExtensionType()) { 22070b57cec5SDimitry Andric case ISD::NON_EXTLOAD: 22080b57cec5SDimitry Andric return true; 22090b57cec5SDimitry Andric case ISD::SEXTLOAD: 22100b57cec5SDimitry Andric return ICmpType != SystemZICMP::UnsignedOnly; 22110b57cec5SDimitry Andric case ISD::ZEXTLOAD: 22120b57cec5SDimitry Andric return ICmpType != SystemZICMP::SignedOnly; 22130b57cec5SDimitry Andric default: 22140b57cec5SDimitry Andric break; 22150b57cec5SDimitry Andric } 22160b57cec5SDimitry Andric } 22170b57cec5SDimitry Andric return false; 22180b57cec5SDimitry Andric } 22190b57cec5SDimitry Andric 22200b57cec5SDimitry Andric // Return true if it is better to swap the operands of C. 22210b57cec5SDimitry Andric static bool shouldSwapCmpOperands(const Comparison &C) { 22220b57cec5SDimitry Andric // Leave f128 comparisons alone, since they have no memory forms. 22230b57cec5SDimitry Andric if (C.Op0.getValueType() == MVT::f128) 22240b57cec5SDimitry Andric return false; 22250b57cec5SDimitry Andric 22260b57cec5SDimitry Andric // Always keep a floating-point constant second, since comparisons with 22270b57cec5SDimitry Andric // zero can use LOAD TEST and comparisons with other constants make a 22280b57cec5SDimitry Andric // natural memory operand. 22290b57cec5SDimitry Andric if (isa<ConstantFPSDNode>(C.Op1)) 22300b57cec5SDimitry Andric return false; 22310b57cec5SDimitry Andric 22320b57cec5SDimitry Andric // Never swap comparisons with zero since there are many ways to optimize 22330b57cec5SDimitry Andric // those later. 22340b57cec5SDimitry Andric auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 22350b57cec5SDimitry Andric if (ConstOp1 && ConstOp1->getZExtValue() == 0) 22360b57cec5SDimitry Andric return false; 22370b57cec5SDimitry Andric 22380b57cec5SDimitry Andric // Also keep natural memory operands second if the loaded value is 22390b57cec5SDimitry Andric // only used here. Several comparisons have memory forms. 22400b57cec5SDimitry Andric if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 22410b57cec5SDimitry Andric return false; 22420b57cec5SDimitry Andric 22430b57cec5SDimitry Andric // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 22440b57cec5SDimitry Andric // In that case we generally prefer the memory to be second. 22450b57cec5SDimitry Andric if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 22460b57cec5SDimitry Andric // The only exceptions are when the second operand is a constant and 22470b57cec5SDimitry Andric // we can use things like CHHSI. 22480b57cec5SDimitry Andric if (!ConstOp1) 22490b57cec5SDimitry Andric return true; 22500b57cec5SDimitry Andric // The unsigned memory-immediate instructions can handle 16-bit 22510b57cec5SDimitry Andric // unsigned integers. 22520b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::SignedOnly && 22530b57cec5SDimitry Andric isUInt<16>(ConstOp1->getZExtValue())) 22540b57cec5SDimitry Andric return false; 22550b57cec5SDimitry Andric // The signed memory-immediate instructions can handle 16-bit 22560b57cec5SDimitry Andric // signed integers. 22570b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::UnsignedOnly && 22580b57cec5SDimitry Andric isInt<16>(ConstOp1->getSExtValue())) 22590b57cec5SDimitry Andric return false; 22600b57cec5SDimitry Andric return true; 22610b57cec5SDimitry Andric } 22620b57cec5SDimitry Andric 22630b57cec5SDimitry Andric // Try to promote the use of CGFR and CLGFR. 22640b57cec5SDimitry Andric unsigned Opcode0 = C.Op0.getOpcode(); 22650b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 22660b57cec5SDimitry Andric return true; 22670b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 22680b57cec5SDimitry Andric return true; 22690b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::SignedOnly && 22700b57cec5SDimitry Andric Opcode0 == ISD::AND && 22710b57cec5SDimitry Andric C.Op0.getOperand(1).getOpcode() == ISD::Constant && 22720b57cec5SDimitry Andric cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 22730b57cec5SDimitry Andric return true; 22740b57cec5SDimitry Andric 22750b57cec5SDimitry Andric return false; 22760b57cec5SDimitry Andric } 22770b57cec5SDimitry Andric 22780b57cec5SDimitry Andric // Check whether C tests for equality between X and Y and whether X - Y 22790b57cec5SDimitry Andric // or Y - X is also computed. In that case it's better to compare the 22800b57cec5SDimitry Andric // result of the subtraction against zero. 22810b57cec5SDimitry Andric static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 22820b57cec5SDimitry Andric Comparison &C) { 22830b57cec5SDimitry Andric if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 22840b57cec5SDimitry Andric C.CCMask == SystemZ::CCMASK_CMP_NE) { 22850b57cec5SDimitry Andric for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 22860b57cec5SDimitry Andric SDNode *N = *I; 22870b57cec5SDimitry Andric if (N->getOpcode() == ISD::SUB && 22880b57cec5SDimitry Andric ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 22890b57cec5SDimitry Andric (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 22900b57cec5SDimitry Andric C.Op0 = SDValue(N, 0); 22910b57cec5SDimitry Andric C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 22920b57cec5SDimitry Andric return; 22930b57cec5SDimitry Andric } 22940b57cec5SDimitry Andric } 22950b57cec5SDimitry Andric } 22960b57cec5SDimitry Andric } 22970b57cec5SDimitry Andric 22980b57cec5SDimitry Andric // Check whether C compares a floating-point value with zero and if that 22990b57cec5SDimitry Andric // floating-point value is also negated. In this case we can use the 23000b57cec5SDimitry Andric // negation to set CC, so avoiding separate LOAD AND TEST and 23010b57cec5SDimitry Andric // LOAD (NEGATIVE/COMPLEMENT) instructions. 23020b57cec5SDimitry Andric static void adjustForFNeg(Comparison &C) { 2303480093f4SDimitry Andric // This optimization is invalid for strict comparisons, since FNEG 2304480093f4SDimitry Andric // does not raise any exceptions. 2305480093f4SDimitry Andric if (C.Chain) 2306480093f4SDimitry Andric return; 23070b57cec5SDimitry Andric auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 23080b57cec5SDimitry Andric if (C1 && C1->isZero()) { 23090b57cec5SDimitry Andric for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 23100b57cec5SDimitry Andric SDNode *N = *I; 23110b57cec5SDimitry Andric if (N->getOpcode() == ISD::FNEG) { 23120b57cec5SDimitry Andric C.Op0 = SDValue(N, 0); 23135ffd83dbSDimitry Andric C.CCMask = SystemZ::reverseCCMask(C.CCMask); 23140b57cec5SDimitry Andric return; 23150b57cec5SDimitry Andric } 23160b57cec5SDimitry Andric } 23170b57cec5SDimitry Andric } 23180b57cec5SDimitry Andric } 23190b57cec5SDimitry Andric 23200b57cec5SDimitry Andric // Check whether C compares (shl X, 32) with 0 and whether X is 23210b57cec5SDimitry Andric // also sign-extended. In that case it is better to test the result 23220b57cec5SDimitry Andric // of the sign extension using LTGFR. 23230b57cec5SDimitry Andric // 23240b57cec5SDimitry Andric // This case is important because InstCombine transforms a comparison 23250b57cec5SDimitry Andric // with (sext (trunc X)) into a comparison with (shl X, 32). 23260b57cec5SDimitry Andric static void adjustForLTGFR(Comparison &C) { 23270b57cec5SDimitry Andric // Check for a comparison between (shl X, 32) and 0. 23280b57cec5SDimitry Andric if (C.Op0.getOpcode() == ISD::SHL && 23290b57cec5SDimitry Andric C.Op0.getValueType() == MVT::i64 && 23300b57cec5SDimitry Andric C.Op1.getOpcode() == ISD::Constant && 23310b57cec5SDimitry Andric cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 23320b57cec5SDimitry Andric auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 23330b57cec5SDimitry Andric if (C1 && C1->getZExtValue() == 32) { 23340b57cec5SDimitry Andric SDValue ShlOp0 = C.Op0.getOperand(0); 23350b57cec5SDimitry Andric // See whether X has any SIGN_EXTEND_INREG uses. 23360b57cec5SDimitry Andric for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 23370b57cec5SDimitry Andric SDNode *N = *I; 23380b57cec5SDimitry Andric if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 23390b57cec5SDimitry Andric cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 23400b57cec5SDimitry Andric C.Op0 = SDValue(N, 0); 23410b57cec5SDimitry Andric return; 23420b57cec5SDimitry Andric } 23430b57cec5SDimitry Andric } 23440b57cec5SDimitry Andric } 23450b57cec5SDimitry Andric } 23460b57cec5SDimitry Andric } 23470b57cec5SDimitry Andric 23480b57cec5SDimitry Andric // If C compares the truncation of an extending load, try to compare 23490b57cec5SDimitry Andric // the untruncated value instead. This exposes more opportunities to 23500b57cec5SDimitry Andric // reuse CC. 23510b57cec5SDimitry Andric static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 23520b57cec5SDimitry Andric Comparison &C) { 23530b57cec5SDimitry Andric if (C.Op0.getOpcode() == ISD::TRUNCATE && 23540b57cec5SDimitry Andric C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 23550b57cec5SDimitry Andric C.Op1.getOpcode() == ISD::Constant && 23560b57cec5SDimitry Andric cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 23570b57cec5SDimitry Andric auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2358e8d8bef9SDimitry Andric if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2359e8d8bef9SDimitry Andric C.Op0.getValueSizeInBits().getFixedSize()) { 23600b57cec5SDimitry Andric unsigned Type = L->getExtensionType(); 23610b57cec5SDimitry Andric if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 23620b57cec5SDimitry Andric (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 23630b57cec5SDimitry Andric C.Op0 = C.Op0.getOperand(0); 23640b57cec5SDimitry Andric C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 23650b57cec5SDimitry Andric } 23660b57cec5SDimitry Andric } 23670b57cec5SDimitry Andric } 23680b57cec5SDimitry Andric } 23690b57cec5SDimitry Andric 23700b57cec5SDimitry Andric // Return true if shift operation N has an in-range constant shift value. 23710b57cec5SDimitry Andric // Store it in ShiftVal if so. 23720b57cec5SDimitry Andric static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 23730b57cec5SDimitry Andric auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 23740b57cec5SDimitry Andric if (!Shift) 23750b57cec5SDimitry Andric return false; 23760b57cec5SDimitry Andric 23770b57cec5SDimitry Andric uint64_t Amount = Shift->getZExtValue(); 23780b57cec5SDimitry Andric if (Amount >= N.getValueSizeInBits()) 23790b57cec5SDimitry Andric return false; 23800b57cec5SDimitry Andric 23810b57cec5SDimitry Andric ShiftVal = Amount; 23820b57cec5SDimitry Andric return true; 23830b57cec5SDimitry Andric } 23840b57cec5SDimitry Andric 23850b57cec5SDimitry Andric // Check whether an AND with Mask is suitable for a TEST UNDER MASK 23860b57cec5SDimitry Andric // instruction and whether the CC value is descriptive enough to handle 23870b57cec5SDimitry Andric // a comparison of type Opcode between the AND result and CmpVal. 23880b57cec5SDimitry Andric // CCMask says which comparison result is being tested and BitSize is 23890b57cec5SDimitry Andric // the number of bits in the operands. If TEST UNDER MASK can be used, 23900b57cec5SDimitry Andric // return the corresponding CC mask, otherwise return 0. 23910b57cec5SDimitry Andric static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 23920b57cec5SDimitry Andric uint64_t Mask, uint64_t CmpVal, 23930b57cec5SDimitry Andric unsigned ICmpType) { 23940b57cec5SDimitry Andric assert(Mask != 0 && "ANDs with zero should have been removed by now"); 23950b57cec5SDimitry Andric 23960b57cec5SDimitry Andric // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 23970b57cec5SDimitry Andric if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 23980b57cec5SDimitry Andric !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 23990b57cec5SDimitry Andric return 0; 24000b57cec5SDimitry Andric 24010b57cec5SDimitry Andric // Work out the masks for the lowest and highest bits. 24020b57cec5SDimitry Andric unsigned HighShift = 63 - countLeadingZeros(Mask); 24030b57cec5SDimitry Andric uint64_t High = uint64_t(1) << HighShift; 24040b57cec5SDimitry Andric uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 24050b57cec5SDimitry Andric 24060b57cec5SDimitry Andric // Signed ordered comparisons are effectively unsigned if the sign 24070b57cec5SDimitry Andric // bit is dropped. 24080b57cec5SDimitry Andric bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 24090b57cec5SDimitry Andric 24100b57cec5SDimitry Andric // Check for equality comparisons with 0, or the equivalent. 24110b57cec5SDimitry Andric if (CmpVal == 0) { 24120b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_EQ) 24130b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_0; 24140b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE) 24150b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_1; 24160b57cec5SDimitry Andric } 24170b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 24180b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LT) 24190b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_0; 24200b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GE) 24210b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_1; 24220b57cec5SDimitry Andric } 24230b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal < Low) { 24240b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LE) 24250b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_0; 24260b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GT) 24270b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_1; 24280b57cec5SDimitry Andric } 24290b57cec5SDimitry Andric 24300b57cec5SDimitry Andric // Check for equality comparisons with the mask, or the equivalent. 24310b57cec5SDimitry Andric if (CmpVal == Mask) { 24320b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_EQ) 24330b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_1; 24340b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE) 24350b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_0; 24360b57cec5SDimitry Andric } 24370b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 24380b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GT) 24390b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_1; 24400b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LE) 24410b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_0; 24420b57cec5SDimitry Andric } 24430b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 24440b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GE) 24450b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_1; 24460b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LT) 24470b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_0; 24480b57cec5SDimitry Andric } 24490b57cec5SDimitry Andric 24500b57cec5SDimitry Andric // Check for ordered comparisons with the top bit. 24510b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 24520b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LE) 24530b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MSB_0; 24540b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GT) 24550b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MSB_1; 24560b57cec5SDimitry Andric } 24570b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 24580b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LT) 24590b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MSB_0; 24600b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GE) 24610b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MSB_1; 24620b57cec5SDimitry Andric } 24630b57cec5SDimitry Andric 24640b57cec5SDimitry Andric // If there are just two bits, we can do equality checks for Low and High 24650b57cec5SDimitry Andric // as well. 24660b57cec5SDimitry Andric if (Mask == Low + High) { 24670b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 24680b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MIXED_MSB_0; 24690b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 24700b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 24710b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 24720b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MIXED_MSB_1; 24730b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 24740b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 24750b57cec5SDimitry Andric } 24760b57cec5SDimitry Andric 24770b57cec5SDimitry Andric // Looks like we've exhausted our options. 24780b57cec5SDimitry Andric return 0; 24790b57cec5SDimitry Andric } 24800b57cec5SDimitry Andric 24810b57cec5SDimitry Andric // See whether C can be implemented as a TEST UNDER MASK instruction. 24820b57cec5SDimitry Andric // Update the arguments with the TM version if so. 24830b57cec5SDimitry Andric static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 24840b57cec5SDimitry Andric Comparison &C) { 24850b57cec5SDimitry Andric // Check that we have a comparison with a constant. 24860b57cec5SDimitry Andric auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 24870b57cec5SDimitry Andric if (!ConstOp1) 24880b57cec5SDimitry Andric return; 24890b57cec5SDimitry Andric uint64_t CmpVal = ConstOp1->getZExtValue(); 24900b57cec5SDimitry Andric 24910b57cec5SDimitry Andric // Check whether the nonconstant input is an AND with a constant mask. 24920b57cec5SDimitry Andric Comparison NewC(C); 24930b57cec5SDimitry Andric uint64_t MaskVal; 24940b57cec5SDimitry Andric ConstantSDNode *Mask = nullptr; 24950b57cec5SDimitry Andric if (C.Op0.getOpcode() == ISD::AND) { 24960b57cec5SDimitry Andric NewC.Op0 = C.Op0.getOperand(0); 24970b57cec5SDimitry Andric NewC.Op1 = C.Op0.getOperand(1); 24980b57cec5SDimitry Andric Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 24990b57cec5SDimitry Andric if (!Mask) 25000b57cec5SDimitry Andric return; 25010b57cec5SDimitry Andric MaskVal = Mask->getZExtValue(); 25020b57cec5SDimitry Andric } else { 25030b57cec5SDimitry Andric // There is no instruction to compare with a 64-bit immediate 25040b57cec5SDimitry Andric // so use TMHH instead if possible. We need an unsigned ordered 25050b57cec5SDimitry Andric // comparison with an i64 immediate. 25060b57cec5SDimitry Andric if (NewC.Op0.getValueType() != MVT::i64 || 25070b57cec5SDimitry Andric NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 25080b57cec5SDimitry Andric NewC.CCMask == SystemZ::CCMASK_CMP_NE || 25090b57cec5SDimitry Andric NewC.ICmpType == SystemZICMP::SignedOnly) 25100b57cec5SDimitry Andric return; 25110b57cec5SDimitry Andric // Convert LE and GT comparisons into LT and GE. 25120b57cec5SDimitry Andric if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 25130b57cec5SDimitry Andric NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 25140b57cec5SDimitry Andric if (CmpVal == uint64_t(-1)) 25150b57cec5SDimitry Andric return; 25160b57cec5SDimitry Andric CmpVal += 1; 25170b57cec5SDimitry Andric NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 25180b57cec5SDimitry Andric } 25190b57cec5SDimitry Andric // If the low N bits of Op1 are zero than the low N bits of Op0 can 25200b57cec5SDimitry Andric // be masked off without changing the result. 25210b57cec5SDimitry Andric MaskVal = -(CmpVal & -CmpVal); 25220b57cec5SDimitry Andric NewC.ICmpType = SystemZICMP::UnsignedOnly; 25230b57cec5SDimitry Andric } 25240b57cec5SDimitry Andric if (!MaskVal) 25250b57cec5SDimitry Andric return; 25260b57cec5SDimitry Andric 25270b57cec5SDimitry Andric // Check whether the combination of mask, comparison value and comparison 25280b57cec5SDimitry Andric // type are suitable. 25290b57cec5SDimitry Andric unsigned BitSize = NewC.Op0.getValueSizeInBits(); 25300b57cec5SDimitry Andric unsigned NewCCMask, ShiftVal; 25310b57cec5SDimitry Andric if (NewC.ICmpType != SystemZICMP::SignedOnly && 25320b57cec5SDimitry Andric NewC.Op0.getOpcode() == ISD::SHL && 25330b57cec5SDimitry Andric isSimpleShift(NewC.Op0, ShiftVal) && 25340b57cec5SDimitry Andric (MaskVal >> ShiftVal != 0) && 25350b57cec5SDimitry Andric ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 25360b57cec5SDimitry Andric (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 25370b57cec5SDimitry Andric MaskVal >> ShiftVal, 25380b57cec5SDimitry Andric CmpVal >> ShiftVal, 25390b57cec5SDimitry Andric SystemZICMP::Any))) { 25400b57cec5SDimitry Andric NewC.Op0 = NewC.Op0.getOperand(0); 25410b57cec5SDimitry Andric MaskVal >>= ShiftVal; 25420b57cec5SDimitry Andric } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 25430b57cec5SDimitry Andric NewC.Op0.getOpcode() == ISD::SRL && 25440b57cec5SDimitry Andric isSimpleShift(NewC.Op0, ShiftVal) && 25450b57cec5SDimitry Andric (MaskVal << ShiftVal != 0) && 25460b57cec5SDimitry Andric ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 25470b57cec5SDimitry Andric (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 25480b57cec5SDimitry Andric MaskVal << ShiftVal, 25490b57cec5SDimitry Andric CmpVal << ShiftVal, 25500b57cec5SDimitry Andric SystemZICMP::UnsignedOnly))) { 25510b57cec5SDimitry Andric NewC.Op0 = NewC.Op0.getOperand(0); 25520b57cec5SDimitry Andric MaskVal <<= ShiftVal; 25530b57cec5SDimitry Andric } else { 25540b57cec5SDimitry Andric NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 25550b57cec5SDimitry Andric NewC.ICmpType); 25560b57cec5SDimitry Andric if (!NewCCMask) 25570b57cec5SDimitry Andric return; 25580b57cec5SDimitry Andric } 25590b57cec5SDimitry Andric 25600b57cec5SDimitry Andric // Go ahead and make the change. 25610b57cec5SDimitry Andric C.Opcode = SystemZISD::TM; 25620b57cec5SDimitry Andric C.Op0 = NewC.Op0; 25630b57cec5SDimitry Andric if (Mask && Mask->getZExtValue() == MaskVal) 25640b57cec5SDimitry Andric C.Op1 = SDValue(Mask, 0); 25650b57cec5SDimitry Andric else 25660b57cec5SDimitry Andric C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 25670b57cec5SDimitry Andric C.CCValid = SystemZ::CCMASK_TM; 25680b57cec5SDimitry Andric C.CCMask = NewCCMask; 25690b57cec5SDimitry Andric } 25700b57cec5SDimitry Andric 25710b57cec5SDimitry Andric // See whether the comparison argument contains a redundant AND 25720b57cec5SDimitry Andric // and remove it if so. This sometimes happens due to the generic 25730b57cec5SDimitry Andric // BRCOND expansion. 25740b57cec5SDimitry Andric static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 25750b57cec5SDimitry Andric Comparison &C) { 25760b57cec5SDimitry Andric if (C.Op0.getOpcode() != ISD::AND) 25770b57cec5SDimitry Andric return; 25780b57cec5SDimitry Andric auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 25790b57cec5SDimitry Andric if (!Mask) 25800b57cec5SDimitry Andric return; 25810b57cec5SDimitry Andric KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 25820b57cec5SDimitry Andric if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 25830b57cec5SDimitry Andric return; 25840b57cec5SDimitry Andric 25850b57cec5SDimitry Andric C.Op0 = C.Op0.getOperand(0); 25860b57cec5SDimitry Andric } 25870b57cec5SDimitry Andric 25880b57cec5SDimitry Andric // Return a Comparison that tests the condition-code result of intrinsic 25890b57cec5SDimitry Andric // node Call against constant integer CC using comparison code Cond. 25900b57cec5SDimitry Andric // Opcode is the opcode of the SystemZISD operation for the intrinsic 25910b57cec5SDimitry Andric // and CCValid is the set of possible condition-code results. 25920b57cec5SDimitry Andric static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 25930b57cec5SDimitry Andric SDValue Call, unsigned CCValid, uint64_t CC, 25940b57cec5SDimitry Andric ISD::CondCode Cond) { 2595480093f4SDimitry Andric Comparison C(Call, SDValue(), SDValue()); 25960b57cec5SDimitry Andric C.Opcode = Opcode; 25970b57cec5SDimitry Andric C.CCValid = CCValid; 25980b57cec5SDimitry Andric if (Cond == ISD::SETEQ) 25990b57cec5SDimitry Andric // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 26000b57cec5SDimitry Andric C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 26010b57cec5SDimitry Andric else if (Cond == ISD::SETNE) 26020b57cec5SDimitry Andric // ...and the inverse of that. 26030b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 26040b57cec5SDimitry Andric else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 26050b57cec5SDimitry Andric // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 26060b57cec5SDimitry Andric // always true for CC>3. 26070b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 26080b57cec5SDimitry Andric else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 26090b57cec5SDimitry Andric // ...and the inverse of that. 26100b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 26110b57cec5SDimitry Andric else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 26120b57cec5SDimitry Andric // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 26130b57cec5SDimitry Andric // always true for CC>3. 26140b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 26150b57cec5SDimitry Andric else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 26160b57cec5SDimitry Andric // ...and the inverse of that. 26170b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 26180b57cec5SDimitry Andric else 26190b57cec5SDimitry Andric llvm_unreachable("Unexpected integer comparison type"); 26200b57cec5SDimitry Andric C.CCMask &= CCValid; 26210b57cec5SDimitry Andric return C; 26220b57cec5SDimitry Andric } 26230b57cec5SDimitry Andric 26240b57cec5SDimitry Andric // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 26250b57cec5SDimitry Andric static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2626480093f4SDimitry Andric ISD::CondCode Cond, const SDLoc &DL, 2627480093f4SDimitry Andric SDValue Chain = SDValue(), 2628480093f4SDimitry Andric bool IsSignaling = false) { 26290b57cec5SDimitry Andric if (CmpOp1.getOpcode() == ISD::Constant) { 2630480093f4SDimitry Andric assert(!Chain); 26310b57cec5SDimitry Andric uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 26320b57cec5SDimitry Andric unsigned Opcode, CCValid; 26330b57cec5SDimitry Andric if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 26340b57cec5SDimitry Andric CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 26350b57cec5SDimitry Andric isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 26360b57cec5SDimitry Andric return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 26370b57cec5SDimitry Andric if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 26380b57cec5SDimitry Andric CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 26390b57cec5SDimitry Andric isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 26400b57cec5SDimitry Andric return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 26410b57cec5SDimitry Andric } 2642480093f4SDimitry Andric Comparison C(CmpOp0, CmpOp1, Chain); 26430b57cec5SDimitry Andric C.CCMask = CCMaskForCondCode(Cond); 26440b57cec5SDimitry Andric if (C.Op0.getValueType().isFloatingPoint()) { 26450b57cec5SDimitry Andric C.CCValid = SystemZ::CCMASK_FCMP; 2646480093f4SDimitry Andric if (!C.Chain) 26470b57cec5SDimitry Andric C.Opcode = SystemZISD::FCMP; 2648480093f4SDimitry Andric else if (!IsSignaling) 2649480093f4SDimitry Andric C.Opcode = SystemZISD::STRICT_FCMP; 2650480093f4SDimitry Andric else 2651480093f4SDimitry Andric C.Opcode = SystemZISD::STRICT_FCMPS; 26520b57cec5SDimitry Andric adjustForFNeg(C); 26530b57cec5SDimitry Andric } else { 2654480093f4SDimitry Andric assert(!C.Chain); 26550b57cec5SDimitry Andric C.CCValid = SystemZ::CCMASK_ICMP; 26560b57cec5SDimitry Andric C.Opcode = SystemZISD::ICMP; 26570b57cec5SDimitry Andric // Choose the type of comparison. Equality and inequality tests can 26580b57cec5SDimitry Andric // use either signed or unsigned comparisons. The choice also doesn't 26590b57cec5SDimitry Andric // matter if both sign bits are known to be clear. In those cases we 26600b57cec5SDimitry Andric // want to give the main isel code the freedom to choose whichever 26610b57cec5SDimitry Andric // form fits best. 26620b57cec5SDimitry Andric if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 26630b57cec5SDimitry Andric C.CCMask == SystemZ::CCMASK_CMP_NE || 26640b57cec5SDimitry Andric (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 26650b57cec5SDimitry Andric C.ICmpType = SystemZICMP::Any; 26660b57cec5SDimitry Andric else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 26670b57cec5SDimitry Andric C.ICmpType = SystemZICMP::UnsignedOnly; 26680b57cec5SDimitry Andric else 26690b57cec5SDimitry Andric C.ICmpType = SystemZICMP::SignedOnly; 26700b57cec5SDimitry Andric C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 26710b57cec5SDimitry Andric adjustForRedundantAnd(DAG, DL, C); 26720b57cec5SDimitry Andric adjustZeroCmp(DAG, DL, C); 26730b57cec5SDimitry Andric adjustSubwordCmp(DAG, DL, C); 26740b57cec5SDimitry Andric adjustForSubtraction(DAG, DL, C); 26750b57cec5SDimitry Andric adjustForLTGFR(C); 26760b57cec5SDimitry Andric adjustICmpTruncate(DAG, DL, C); 26770b57cec5SDimitry Andric } 26780b57cec5SDimitry Andric 26790b57cec5SDimitry Andric if (shouldSwapCmpOperands(C)) { 26800b57cec5SDimitry Andric std::swap(C.Op0, C.Op1); 26815ffd83dbSDimitry Andric C.CCMask = SystemZ::reverseCCMask(C.CCMask); 26820b57cec5SDimitry Andric } 26830b57cec5SDimitry Andric 26840b57cec5SDimitry Andric adjustForTestUnderMask(DAG, DL, C); 26850b57cec5SDimitry Andric return C; 26860b57cec5SDimitry Andric } 26870b57cec5SDimitry Andric 26880b57cec5SDimitry Andric // Emit the comparison instruction described by C. 26890b57cec5SDimitry Andric static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 26900b57cec5SDimitry Andric if (!C.Op1.getNode()) { 26910b57cec5SDimitry Andric SDNode *Node; 26920b57cec5SDimitry Andric switch (C.Op0.getOpcode()) { 26930b57cec5SDimitry Andric case ISD::INTRINSIC_W_CHAIN: 26940b57cec5SDimitry Andric Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 26950b57cec5SDimitry Andric return SDValue(Node, 0); 26960b57cec5SDimitry Andric case ISD::INTRINSIC_WO_CHAIN: 26970b57cec5SDimitry Andric Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 26980b57cec5SDimitry Andric return SDValue(Node, Node->getNumValues() - 1); 26990b57cec5SDimitry Andric default: 27000b57cec5SDimitry Andric llvm_unreachable("Invalid comparison operands"); 27010b57cec5SDimitry Andric } 27020b57cec5SDimitry Andric } 27030b57cec5SDimitry Andric if (C.Opcode == SystemZISD::ICMP) 27040b57cec5SDimitry Andric return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 27058bcb0991SDimitry Andric DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 27060b57cec5SDimitry Andric if (C.Opcode == SystemZISD::TM) { 27070b57cec5SDimitry Andric bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 27080b57cec5SDimitry Andric bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 27090b57cec5SDimitry Andric return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 27108bcb0991SDimitry Andric DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 27110b57cec5SDimitry Andric } 2712480093f4SDimitry Andric if (C.Chain) { 2713480093f4SDimitry Andric SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2714480093f4SDimitry Andric return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2715480093f4SDimitry Andric } 27160b57cec5SDimitry Andric return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 27170b57cec5SDimitry Andric } 27180b57cec5SDimitry Andric 27190b57cec5SDimitry Andric // Implement a 32-bit *MUL_LOHI operation by extending both operands to 27200b57cec5SDimitry Andric // 64 bits. Extend is the extension type to use. Store the high part 27210b57cec5SDimitry Andric // in Hi and the low part in Lo. 27220b57cec5SDimitry Andric static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 27230b57cec5SDimitry Andric SDValue Op0, SDValue Op1, SDValue &Hi, 27240b57cec5SDimitry Andric SDValue &Lo) { 27250b57cec5SDimitry Andric Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 27260b57cec5SDimitry Andric Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 27270b57cec5SDimitry Andric SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 27280b57cec5SDimitry Andric Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 27290b57cec5SDimitry Andric DAG.getConstant(32, DL, MVT::i64)); 27300b57cec5SDimitry Andric Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 27310b57cec5SDimitry Andric Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 27320b57cec5SDimitry Andric } 27330b57cec5SDimitry Andric 27340b57cec5SDimitry Andric // Lower a binary operation that produces two VT results, one in each 27350b57cec5SDimitry Andric // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 27360b57cec5SDimitry Andric // and Opcode performs the GR128 operation. Store the even register result 27370b57cec5SDimitry Andric // in Even and the odd register result in Odd. 27380b57cec5SDimitry Andric static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 27390b57cec5SDimitry Andric unsigned Opcode, SDValue Op0, SDValue Op1, 27400b57cec5SDimitry Andric SDValue &Even, SDValue &Odd) { 27410b57cec5SDimitry Andric SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 27420b57cec5SDimitry Andric bool Is32Bit = is32Bit(VT); 27430b57cec5SDimitry Andric Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 27440b57cec5SDimitry Andric Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 27450b57cec5SDimitry Andric } 27460b57cec5SDimitry Andric 27470b57cec5SDimitry Andric // Return an i32 value that is 1 if the CC value produced by CCReg is 27480b57cec5SDimitry Andric // in the mask CCMask and 0 otherwise. CC is known to have a value 27490b57cec5SDimitry Andric // in CCValid, so other values can be ignored. 27500b57cec5SDimitry Andric static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 27510b57cec5SDimitry Andric unsigned CCValid, unsigned CCMask) { 27520b57cec5SDimitry Andric SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 27530b57cec5SDimitry Andric DAG.getConstant(0, DL, MVT::i32), 27548bcb0991SDimitry Andric DAG.getTargetConstant(CCValid, DL, MVT::i32), 27558bcb0991SDimitry Andric DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 27560b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 27570b57cec5SDimitry Andric } 27580b57cec5SDimitry Andric 27590b57cec5SDimitry Andric // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2760480093f4SDimitry Andric // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2761480093f4SDimitry Andric // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2762480093f4SDimitry Andric // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2763480093f4SDimitry Andric // floating-point comparisons. 2764480093f4SDimitry Andric enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2765480093f4SDimitry Andric static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 27660b57cec5SDimitry Andric switch (CC) { 27670b57cec5SDimitry Andric case ISD::SETOEQ: 27680b57cec5SDimitry Andric case ISD::SETEQ: 2769480093f4SDimitry Andric switch (Mode) { 2770480093f4SDimitry Andric case CmpMode::Int: return SystemZISD::VICMPE; 2771480093f4SDimitry Andric case CmpMode::FP: return SystemZISD::VFCMPE; 2772480093f4SDimitry Andric case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2773480093f4SDimitry Andric case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2774480093f4SDimitry Andric } 2775480093f4SDimitry Andric llvm_unreachable("Bad mode"); 27760b57cec5SDimitry Andric 27770b57cec5SDimitry Andric case ISD::SETOGE: 27780b57cec5SDimitry Andric case ISD::SETGE: 2779480093f4SDimitry Andric switch (Mode) { 2780480093f4SDimitry Andric case CmpMode::Int: return 0; 2781480093f4SDimitry Andric case CmpMode::FP: return SystemZISD::VFCMPHE; 2782480093f4SDimitry Andric case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2783480093f4SDimitry Andric case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2784480093f4SDimitry Andric } 2785480093f4SDimitry Andric llvm_unreachable("Bad mode"); 27860b57cec5SDimitry Andric 27870b57cec5SDimitry Andric case ISD::SETOGT: 27880b57cec5SDimitry Andric case ISD::SETGT: 2789480093f4SDimitry Andric switch (Mode) { 2790480093f4SDimitry Andric case CmpMode::Int: return SystemZISD::VICMPH; 2791480093f4SDimitry Andric case CmpMode::FP: return SystemZISD::VFCMPH; 2792480093f4SDimitry Andric case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2793480093f4SDimitry Andric case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2794480093f4SDimitry Andric } 2795480093f4SDimitry Andric llvm_unreachable("Bad mode"); 27960b57cec5SDimitry Andric 27970b57cec5SDimitry Andric case ISD::SETUGT: 2798480093f4SDimitry Andric switch (Mode) { 2799480093f4SDimitry Andric case CmpMode::Int: return SystemZISD::VICMPHL; 2800480093f4SDimitry Andric case CmpMode::FP: return 0; 2801480093f4SDimitry Andric case CmpMode::StrictFP: return 0; 2802480093f4SDimitry Andric case CmpMode::SignalingFP: return 0; 2803480093f4SDimitry Andric } 2804480093f4SDimitry Andric llvm_unreachable("Bad mode"); 28050b57cec5SDimitry Andric 28060b57cec5SDimitry Andric default: 28070b57cec5SDimitry Andric return 0; 28080b57cec5SDimitry Andric } 28090b57cec5SDimitry Andric } 28100b57cec5SDimitry Andric 28110b57cec5SDimitry Andric // Return the SystemZISD vector comparison operation for CC or its inverse, 28120b57cec5SDimitry Andric // or 0 if neither can be done directly. Indicate in Invert whether the 2813480093f4SDimitry Andric // result is for the inverse of CC. Mode is as above. 2814480093f4SDimitry Andric static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 28150b57cec5SDimitry Andric bool &Invert) { 2816480093f4SDimitry Andric if (unsigned Opcode = getVectorComparison(CC, Mode)) { 28170b57cec5SDimitry Andric Invert = false; 28180b57cec5SDimitry Andric return Opcode; 28190b57cec5SDimitry Andric } 28200b57cec5SDimitry Andric 2821480093f4SDimitry Andric CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2822480093f4SDimitry Andric if (unsigned Opcode = getVectorComparison(CC, Mode)) { 28230b57cec5SDimitry Andric Invert = true; 28240b57cec5SDimitry Andric return Opcode; 28250b57cec5SDimitry Andric } 28260b57cec5SDimitry Andric 28270b57cec5SDimitry Andric return 0; 28280b57cec5SDimitry Andric } 28290b57cec5SDimitry Andric 28300b57cec5SDimitry Andric // Return a v2f64 that contains the extended form of elements Start and Start+1 2831480093f4SDimitry Andric // of v4f32 value Op. If Chain is nonnull, return the strict form. 28320b57cec5SDimitry Andric static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2833480093f4SDimitry Andric SDValue Op, SDValue Chain) { 28340b57cec5SDimitry Andric int Mask[] = { Start, -1, Start + 1, -1 }; 28350b57cec5SDimitry Andric Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2836480093f4SDimitry Andric if (Chain) { 2837480093f4SDimitry Andric SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2838480093f4SDimitry Andric return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2839480093f4SDimitry Andric } 28400b57cec5SDimitry Andric return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 28410b57cec5SDimitry Andric } 28420b57cec5SDimitry Andric 28430b57cec5SDimitry Andric // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2844480093f4SDimitry Andric // producing a result of type VT. If Chain is nonnull, return the strict form. 28450b57cec5SDimitry Andric SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 28460b57cec5SDimitry Andric const SDLoc &DL, EVT VT, 28470b57cec5SDimitry Andric SDValue CmpOp0, 2848480093f4SDimitry Andric SDValue CmpOp1, 2849480093f4SDimitry Andric SDValue Chain) const { 28500b57cec5SDimitry Andric // There is no hardware support for v4f32 (unless we have the vector 28510b57cec5SDimitry Andric // enhancements facility 1), so extend the vector into two v2f64s 28520b57cec5SDimitry Andric // and compare those. 28530b57cec5SDimitry Andric if (CmpOp0.getValueType() == MVT::v4f32 && 28540b57cec5SDimitry Andric !Subtarget.hasVectorEnhancements1()) { 2855480093f4SDimitry Andric SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2856480093f4SDimitry Andric SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2857480093f4SDimitry Andric SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2858480093f4SDimitry Andric SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2859480093f4SDimitry Andric if (Chain) { 2860480093f4SDimitry Andric SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2861480093f4SDimitry Andric SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2862480093f4SDimitry Andric SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2863480093f4SDimitry Andric SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2864480093f4SDimitry Andric SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2865480093f4SDimitry Andric H1.getValue(1), L1.getValue(1), 2866480093f4SDimitry Andric HRes.getValue(1), LRes.getValue(1) }; 2867480093f4SDimitry Andric SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2868480093f4SDimitry Andric SDValue Ops[2] = { Res, NewChain }; 2869480093f4SDimitry Andric return DAG.getMergeValues(Ops, DL); 2870480093f4SDimitry Andric } 28710b57cec5SDimitry Andric SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 28720b57cec5SDimitry Andric SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 28730b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 28740b57cec5SDimitry Andric } 2875480093f4SDimitry Andric if (Chain) { 2876480093f4SDimitry Andric SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2877480093f4SDimitry Andric return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2878480093f4SDimitry Andric } 28790b57cec5SDimitry Andric return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 28800b57cec5SDimitry Andric } 28810b57cec5SDimitry Andric 28820b57cec5SDimitry Andric // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2883480093f4SDimitry Andric // an integer mask of type VT. If Chain is nonnull, we have a strict 2884480093f4SDimitry Andric // floating-point comparison. If in addition IsSignaling is true, we have 2885480093f4SDimitry Andric // a strict signaling floating-point comparison. 28860b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 28870b57cec5SDimitry Andric const SDLoc &DL, EVT VT, 28880b57cec5SDimitry Andric ISD::CondCode CC, 28890b57cec5SDimitry Andric SDValue CmpOp0, 2890480093f4SDimitry Andric SDValue CmpOp1, 2891480093f4SDimitry Andric SDValue Chain, 2892480093f4SDimitry Andric bool IsSignaling) const { 28930b57cec5SDimitry Andric bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2894480093f4SDimitry Andric assert (!Chain || IsFP); 2895480093f4SDimitry Andric assert (!IsSignaling || Chain); 2896480093f4SDimitry Andric CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2897480093f4SDimitry Andric Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 28980b57cec5SDimitry Andric bool Invert = false; 28990b57cec5SDimitry Andric SDValue Cmp; 29000b57cec5SDimitry Andric switch (CC) { 29010b57cec5SDimitry Andric // Handle tests for order using (or (ogt y x) (oge x y)). 29020b57cec5SDimitry Andric case ISD::SETUO: 29030b57cec5SDimitry Andric Invert = true; 29040b57cec5SDimitry Andric LLVM_FALLTHROUGH; 29050b57cec5SDimitry Andric case ISD::SETO: { 29060b57cec5SDimitry Andric assert(IsFP && "Unexpected integer comparison"); 2907480093f4SDimitry Andric SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2908480093f4SDimitry Andric DL, VT, CmpOp1, CmpOp0, Chain); 2909480093f4SDimitry Andric SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2910480093f4SDimitry Andric DL, VT, CmpOp0, CmpOp1, Chain); 29110b57cec5SDimitry Andric Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2912480093f4SDimitry Andric if (Chain) 2913480093f4SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2914480093f4SDimitry Andric LT.getValue(1), GE.getValue(1)); 29150b57cec5SDimitry Andric break; 29160b57cec5SDimitry Andric } 29170b57cec5SDimitry Andric 29180b57cec5SDimitry Andric // Handle <> tests using (or (ogt y x) (ogt x y)). 29190b57cec5SDimitry Andric case ISD::SETUEQ: 29200b57cec5SDimitry Andric Invert = true; 29210b57cec5SDimitry Andric LLVM_FALLTHROUGH; 29220b57cec5SDimitry Andric case ISD::SETONE: { 29230b57cec5SDimitry Andric assert(IsFP && "Unexpected integer comparison"); 2924480093f4SDimitry Andric SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2925480093f4SDimitry Andric DL, VT, CmpOp1, CmpOp0, Chain); 2926480093f4SDimitry Andric SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2927480093f4SDimitry Andric DL, VT, CmpOp0, CmpOp1, Chain); 29280b57cec5SDimitry Andric Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2929480093f4SDimitry Andric if (Chain) 2930480093f4SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2931480093f4SDimitry Andric LT.getValue(1), GT.getValue(1)); 29320b57cec5SDimitry Andric break; 29330b57cec5SDimitry Andric } 29340b57cec5SDimitry Andric 29350b57cec5SDimitry Andric // Otherwise a single comparison is enough. It doesn't really 29360b57cec5SDimitry Andric // matter whether we try the inversion or the swap first, since 29370b57cec5SDimitry Andric // there are no cases where both work. 29380b57cec5SDimitry Andric default: 2939480093f4SDimitry Andric if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2940480093f4SDimitry Andric Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 29410b57cec5SDimitry Andric else { 29420b57cec5SDimitry Andric CC = ISD::getSetCCSwappedOperands(CC); 2943480093f4SDimitry Andric if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2944480093f4SDimitry Andric Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 29450b57cec5SDimitry Andric else 29460b57cec5SDimitry Andric llvm_unreachable("Unhandled comparison"); 29470b57cec5SDimitry Andric } 2948480093f4SDimitry Andric if (Chain) 2949480093f4SDimitry Andric Chain = Cmp.getValue(1); 29500b57cec5SDimitry Andric break; 29510b57cec5SDimitry Andric } 29520b57cec5SDimitry Andric if (Invert) { 29530b57cec5SDimitry Andric SDValue Mask = 29540b57cec5SDimitry Andric DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 29550b57cec5SDimitry Andric Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 29560b57cec5SDimitry Andric } 2957480093f4SDimitry Andric if (Chain && Chain.getNode() != Cmp.getNode()) { 2958480093f4SDimitry Andric SDValue Ops[2] = { Cmp, Chain }; 2959480093f4SDimitry Andric Cmp = DAG.getMergeValues(Ops, DL); 2960480093f4SDimitry Andric } 29610b57cec5SDimitry Andric return Cmp; 29620b57cec5SDimitry Andric } 29630b57cec5SDimitry Andric 29640b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 29650b57cec5SDimitry Andric SelectionDAG &DAG) const { 29660b57cec5SDimitry Andric SDValue CmpOp0 = Op.getOperand(0); 29670b57cec5SDimitry Andric SDValue CmpOp1 = Op.getOperand(1); 29680b57cec5SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 29690b57cec5SDimitry Andric SDLoc DL(Op); 29700b57cec5SDimitry Andric EVT VT = Op.getValueType(); 29710b57cec5SDimitry Andric if (VT.isVector()) 29720b57cec5SDimitry Andric return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 29730b57cec5SDimitry Andric 29740b57cec5SDimitry Andric Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 29750b57cec5SDimitry Andric SDValue CCReg = emitCmp(DAG, DL, C); 29760b57cec5SDimitry Andric return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 29770b57cec5SDimitry Andric } 29780b57cec5SDimitry Andric 2979480093f4SDimitry Andric SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2980480093f4SDimitry Andric SelectionDAG &DAG, 2981480093f4SDimitry Andric bool IsSignaling) const { 2982480093f4SDimitry Andric SDValue Chain = Op.getOperand(0); 2983480093f4SDimitry Andric SDValue CmpOp0 = Op.getOperand(1); 2984480093f4SDimitry Andric SDValue CmpOp1 = Op.getOperand(2); 2985480093f4SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2986480093f4SDimitry Andric SDLoc DL(Op); 2987480093f4SDimitry Andric EVT VT = Op.getNode()->getValueType(0); 2988480093f4SDimitry Andric if (VT.isVector()) { 2989480093f4SDimitry Andric SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2990480093f4SDimitry Andric Chain, IsSignaling); 2991480093f4SDimitry Andric return Res.getValue(Op.getResNo()); 2992480093f4SDimitry Andric } 2993480093f4SDimitry Andric 2994480093f4SDimitry Andric Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2995480093f4SDimitry Andric SDValue CCReg = emitCmp(DAG, DL, C); 2996480093f4SDimitry Andric CCReg->setFlags(Op->getFlags()); 2997480093f4SDimitry Andric SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2998480093f4SDimitry Andric SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2999480093f4SDimitry Andric return DAG.getMergeValues(Ops, DL); 3000480093f4SDimitry Andric } 3001480093f4SDimitry Andric 30020b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 30030b57cec5SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 30040b57cec5SDimitry Andric SDValue CmpOp0 = Op.getOperand(2); 30050b57cec5SDimitry Andric SDValue CmpOp1 = Op.getOperand(3); 30060b57cec5SDimitry Andric SDValue Dest = Op.getOperand(4); 30070b57cec5SDimitry Andric SDLoc DL(Op); 30080b57cec5SDimitry Andric 30090b57cec5SDimitry Andric Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 30100b57cec5SDimitry Andric SDValue CCReg = emitCmp(DAG, DL, C); 30118bcb0991SDimitry Andric return DAG.getNode( 30128bcb0991SDimitry Andric SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 30138bcb0991SDimitry Andric DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 30148bcb0991SDimitry Andric DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 30150b57cec5SDimitry Andric } 30160b57cec5SDimitry Andric 30170b57cec5SDimitry Andric // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 30180b57cec5SDimitry Andric // allowing Pos and Neg to be wider than CmpOp. 30190b57cec5SDimitry Andric static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 30200b57cec5SDimitry Andric return (Neg.getOpcode() == ISD::SUB && 30210b57cec5SDimitry Andric Neg.getOperand(0).getOpcode() == ISD::Constant && 30220b57cec5SDimitry Andric cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 30230b57cec5SDimitry Andric Neg.getOperand(1) == Pos && 30240b57cec5SDimitry Andric (Pos == CmpOp || 30250b57cec5SDimitry Andric (Pos.getOpcode() == ISD::SIGN_EXTEND && 30260b57cec5SDimitry Andric Pos.getOperand(0) == CmpOp))); 30270b57cec5SDimitry Andric } 30280b57cec5SDimitry Andric 30290b57cec5SDimitry Andric // Return the absolute or negative absolute of Op; IsNegative decides which. 30300b57cec5SDimitry Andric static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 30310b57cec5SDimitry Andric bool IsNegative) { 3032e8d8bef9SDimitry Andric Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 30330b57cec5SDimitry Andric if (IsNegative) 30340b57cec5SDimitry Andric Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 30350b57cec5SDimitry Andric DAG.getConstant(0, DL, Op.getValueType()), Op); 30360b57cec5SDimitry Andric return Op; 30370b57cec5SDimitry Andric } 30380b57cec5SDimitry Andric 30390b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 30400b57cec5SDimitry Andric SelectionDAG &DAG) const { 30410b57cec5SDimitry Andric SDValue CmpOp0 = Op.getOperand(0); 30420b57cec5SDimitry Andric SDValue CmpOp1 = Op.getOperand(1); 30430b57cec5SDimitry Andric SDValue TrueOp = Op.getOperand(2); 30440b57cec5SDimitry Andric SDValue FalseOp = Op.getOperand(3); 30450b57cec5SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 30460b57cec5SDimitry Andric SDLoc DL(Op); 30470b57cec5SDimitry Andric 30480b57cec5SDimitry Andric Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 30490b57cec5SDimitry Andric 30500b57cec5SDimitry Andric // Check for absolute and negative-absolute selections, including those 30510b57cec5SDimitry Andric // where the comparison value is sign-extended (for LPGFR and LNGFR). 30520b57cec5SDimitry Andric // This check supplements the one in DAGCombiner. 30530b57cec5SDimitry Andric if (C.Opcode == SystemZISD::ICMP && 30540b57cec5SDimitry Andric C.CCMask != SystemZ::CCMASK_CMP_EQ && 30550b57cec5SDimitry Andric C.CCMask != SystemZ::CCMASK_CMP_NE && 30560b57cec5SDimitry Andric C.Op1.getOpcode() == ISD::Constant && 30570b57cec5SDimitry Andric cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 30580b57cec5SDimitry Andric if (isAbsolute(C.Op0, TrueOp, FalseOp)) 30590b57cec5SDimitry Andric return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 30600b57cec5SDimitry Andric if (isAbsolute(C.Op0, FalseOp, TrueOp)) 30610b57cec5SDimitry Andric return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 30620b57cec5SDimitry Andric } 30630b57cec5SDimitry Andric 30640b57cec5SDimitry Andric SDValue CCReg = emitCmp(DAG, DL, C); 30658bcb0991SDimitry Andric SDValue Ops[] = {TrueOp, FalseOp, 30668bcb0991SDimitry Andric DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 30678bcb0991SDimitry Andric DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 30680b57cec5SDimitry Andric 30690b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 30700b57cec5SDimitry Andric } 30710b57cec5SDimitry Andric 30720b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 30730b57cec5SDimitry Andric SelectionDAG &DAG) const { 30740b57cec5SDimitry Andric SDLoc DL(Node); 30750b57cec5SDimitry Andric const GlobalValue *GV = Node->getGlobal(); 30760b57cec5SDimitry Andric int64_t Offset = Node->getOffset(); 30770b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 30780b57cec5SDimitry Andric CodeModel::Model CM = DAG.getTarget().getCodeModel(); 30790b57cec5SDimitry Andric 30800b57cec5SDimitry Andric SDValue Result; 30810b57cec5SDimitry Andric if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3082480093f4SDimitry Andric if (isInt<32>(Offset)) { 30830b57cec5SDimitry Andric // Assign anchors at 1<<12 byte boundaries. 30840b57cec5SDimitry Andric uint64_t Anchor = Offset & ~uint64_t(0xfff); 30850b57cec5SDimitry Andric Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 30860b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 30870b57cec5SDimitry Andric 3088480093f4SDimitry Andric // The offset can be folded into the address if it is aligned to a 3089480093f4SDimitry Andric // halfword. 30900b57cec5SDimitry Andric Offset -= Anchor; 30910b57cec5SDimitry Andric if (Offset != 0 && (Offset & 1) == 0) { 3092480093f4SDimitry Andric SDValue Full = 3093480093f4SDimitry Andric DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 30940b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 30950b57cec5SDimitry Andric Offset = 0; 30960b57cec5SDimitry Andric } 30970b57cec5SDimitry Andric } else { 3098480093f4SDimitry Andric // Conservatively load a constant offset greater than 32 bits into a 3099480093f4SDimitry Andric // register below. 3100480093f4SDimitry Andric Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3101480093f4SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3102480093f4SDimitry Andric } 3103480093f4SDimitry Andric } else { 31040b57cec5SDimitry Andric Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 31050b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 31060b57cec5SDimitry Andric Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 31070b57cec5SDimitry Andric MachinePointerInfo::getGOT(DAG.getMachineFunction())); 31080b57cec5SDimitry Andric } 31090b57cec5SDimitry Andric 31100b57cec5SDimitry Andric // If there was a non-zero offset that we didn't fold, create an explicit 31110b57cec5SDimitry Andric // addition for it. 31120b57cec5SDimitry Andric if (Offset != 0) 31130b57cec5SDimitry Andric Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 31140b57cec5SDimitry Andric DAG.getConstant(Offset, DL, PtrVT)); 31150b57cec5SDimitry Andric 31160b57cec5SDimitry Andric return Result; 31170b57cec5SDimitry Andric } 31180b57cec5SDimitry Andric 31190b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 31200b57cec5SDimitry Andric SelectionDAG &DAG, 31210b57cec5SDimitry Andric unsigned Opcode, 31220b57cec5SDimitry Andric SDValue GOTOffset) const { 31230b57cec5SDimitry Andric SDLoc DL(Node); 31240b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 31250b57cec5SDimitry Andric SDValue Chain = DAG.getEntryNode(); 31260b57cec5SDimitry Andric SDValue Glue; 31270b57cec5SDimitry Andric 3128480093f4SDimitry Andric if (DAG.getMachineFunction().getFunction().getCallingConv() == 3129480093f4SDimitry Andric CallingConv::GHC) 3130480093f4SDimitry Andric report_fatal_error("In GHC calling convention TLS is not supported"); 3131480093f4SDimitry Andric 31320b57cec5SDimitry Andric // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 31330b57cec5SDimitry Andric SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 31340b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 31350b57cec5SDimitry Andric Glue = Chain.getValue(1); 31360b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 31370b57cec5SDimitry Andric Glue = Chain.getValue(1); 31380b57cec5SDimitry Andric 31390b57cec5SDimitry Andric // The first call operand is the chain and the second is the TLS symbol. 31400b57cec5SDimitry Andric SmallVector<SDValue, 8> Ops; 31410b57cec5SDimitry Andric Ops.push_back(Chain); 31420b57cec5SDimitry Andric Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 31430b57cec5SDimitry Andric Node->getValueType(0), 31440b57cec5SDimitry Andric 0, 0)); 31450b57cec5SDimitry Andric 31460b57cec5SDimitry Andric // Add argument registers to the end of the list so that they are 31470b57cec5SDimitry Andric // known live into the call. 31480b57cec5SDimitry Andric Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 31490b57cec5SDimitry Andric Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 31500b57cec5SDimitry Andric 31510b57cec5SDimitry Andric // Add a register mask operand representing the call-preserved registers. 31520b57cec5SDimitry Andric const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 31530b57cec5SDimitry Andric const uint32_t *Mask = 31540b57cec5SDimitry Andric TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 31550b57cec5SDimitry Andric assert(Mask && "Missing call preserved mask for calling convention"); 31560b57cec5SDimitry Andric Ops.push_back(DAG.getRegisterMask(Mask)); 31570b57cec5SDimitry Andric 31580b57cec5SDimitry Andric // Glue the call to the argument copies. 31590b57cec5SDimitry Andric Ops.push_back(Glue); 31600b57cec5SDimitry Andric 31610b57cec5SDimitry Andric // Emit the call. 31620b57cec5SDimitry Andric SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 31630b57cec5SDimitry Andric Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 31640b57cec5SDimitry Andric Glue = Chain.getValue(1); 31650b57cec5SDimitry Andric 31660b57cec5SDimitry Andric // Copy the return value from %r2. 31670b57cec5SDimitry Andric return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 31680b57cec5SDimitry Andric } 31690b57cec5SDimitry Andric 31700b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 31710b57cec5SDimitry Andric SelectionDAG &DAG) const { 31720b57cec5SDimitry Andric SDValue Chain = DAG.getEntryNode(); 31730b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 31740b57cec5SDimitry Andric 31750b57cec5SDimitry Andric // The high part of the thread pointer is in access register 0. 31760b57cec5SDimitry Andric SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 31770b57cec5SDimitry Andric TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 31780b57cec5SDimitry Andric 31790b57cec5SDimitry Andric // The low part of the thread pointer is in access register 1. 31800b57cec5SDimitry Andric SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 31810b57cec5SDimitry Andric TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 31820b57cec5SDimitry Andric 31830b57cec5SDimitry Andric // Merge them into a single 64-bit address. 31840b57cec5SDimitry Andric SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 31850b57cec5SDimitry Andric DAG.getConstant(32, DL, PtrVT)); 31860b57cec5SDimitry Andric return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 31870b57cec5SDimitry Andric } 31880b57cec5SDimitry Andric 31890b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 31900b57cec5SDimitry Andric SelectionDAG &DAG) const { 31910b57cec5SDimitry Andric if (DAG.getTarget().useEmulatedTLS()) 31920b57cec5SDimitry Andric return LowerToTLSEmulatedModel(Node, DAG); 31930b57cec5SDimitry Andric SDLoc DL(Node); 31940b57cec5SDimitry Andric const GlobalValue *GV = Node->getGlobal(); 31950b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 31960b57cec5SDimitry Andric TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 31970b57cec5SDimitry Andric 3198480093f4SDimitry Andric if (DAG.getMachineFunction().getFunction().getCallingConv() == 3199480093f4SDimitry Andric CallingConv::GHC) 3200480093f4SDimitry Andric report_fatal_error("In GHC calling convention TLS is not supported"); 3201480093f4SDimitry Andric 32020b57cec5SDimitry Andric SDValue TP = lowerThreadPointer(DL, DAG); 32030b57cec5SDimitry Andric 32040b57cec5SDimitry Andric // Get the offset of GA from the thread pointer, based on the TLS model. 32050b57cec5SDimitry Andric SDValue Offset; 32060b57cec5SDimitry Andric switch (model) { 32070b57cec5SDimitry Andric case TLSModel::GeneralDynamic: { 32080b57cec5SDimitry Andric // Load the GOT offset of the tls_index (module ID / per-symbol offset). 32090b57cec5SDimitry Andric SystemZConstantPoolValue *CPV = 32100b57cec5SDimitry Andric SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 32110b57cec5SDimitry Andric 32125ffd83dbSDimitry Andric Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 32130b57cec5SDimitry Andric Offset = DAG.getLoad( 32140b57cec5SDimitry Andric PtrVT, DL, DAG.getEntryNode(), Offset, 32150b57cec5SDimitry Andric MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 32160b57cec5SDimitry Andric 32170b57cec5SDimitry Andric // Call __tls_get_offset to retrieve the offset. 32180b57cec5SDimitry Andric Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 32190b57cec5SDimitry Andric break; 32200b57cec5SDimitry Andric } 32210b57cec5SDimitry Andric 32220b57cec5SDimitry Andric case TLSModel::LocalDynamic: { 32230b57cec5SDimitry Andric // Load the GOT offset of the module ID. 32240b57cec5SDimitry Andric SystemZConstantPoolValue *CPV = 32250b57cec5SDimitry Andric SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 32260b57cec5SDimitry Andric 32275ffd83dbSDimitry Andric Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 32280b57cec5SDimitry Andric Offset = DAG.getLoad( 32290b57cec5SDimitry Andric PtrVT, DL, DAG.getEntryNode(), Offset, 32300b57cec5SDimitry Andric MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 32310b57cec5SDimitry Andric 32320b57cec5SDimitry Andric // Call __tls_get_offset to retrieve the module base offset. 32330b57cec5SDimitry Andric Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 32340b57cec5SDimitry Andric 32350b57cec5SDimitry Andric // Note: The SystemZLDCleanupPass will remove redundant computations 32360b57cec5SDimitry Andric // of the module base offset. Count total number of local-dynamic 32370b57cec5SDimitry Andric // accesses to trigger execution of that pass. 32380b57cec5SDimitry Andric SystemZMachineFunctionInfo* MFI = 32390b57cec5SDimitry Andric DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 32400b57cec5SDimitry Andric MFI->incNumLocalDynamicTLSAccesses(); 32410b57cec5SDimitry Andric 32420b57cec5SDimitry Andric // Add the per-symbol offset. 32430b57cec5SDimitry Andric CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 32440b57cec5SDimitry Andric 32455ffd83dbSDimitry Andric SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 32460b57cec5SDimitry Andric DTPOffset = DAG.getLoad( 32470b57cec5SDimitry Andric PtrVT, DL, DAG.getEntryNode(), DTPOffset, 32480b57cec5SDimitry Andric MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 32490b57cec5SDimitry Andric 32500b57cec5SDimitry Andric Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 32510b57cec5SDimitry Andric break; 32520b57cec5SDimitry Andric } 32530b57cec5SDimitry Andric 32540b57cec5SDimitry Andric case TLSModel::InitialExec: { 32550b57cec5SDimitry Andric // Load the offset from the GOT. 32560b57cec5SDimitry Andric Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 32570b57cec5SDimitry Andric SystemZII::MO_INDNTPOFF); 32580b57cec5SDimitry Andric Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 32590b57cec5SDimitry Andric Offset = 32600b57cec5SDimitry Andric DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 32610b57cec5SDimitry Andric MachinePointerInfo::getGOT(DAG.getMachineFunction())); 32620b57cec5SDimitry Andric break; 32630b57cec5SDimitry Andric } 32640b57cec5SDimitry Andric 32650b57cec5SDimitry Andric case TLSModel::LocalExec: { 32660b57cec5SDimitry Andric // Force the offset into the constant pool and load it from there. 32670b57cec5SDimitry Andric SystemZConstantPoolValue *CPV = 32680b57cec5SDimitry Andric SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 32690b57cec5SDimitry Andric 32705ffd83dbSDimitry Andric Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 32710b57cec5SDimitry Andric Offset = DAG.getLoad( 32720b57cec5SDimitry Andric PtrVT, DL, DAG.getEntryNode(), Offset, 32730b57cec5SDimitry Andric MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 32740b57cec5SDimitry Andric break; 32750b57cec5SDimitry Andric } 32760b57cec5SDimitry Andric } 32770b57cec5SDimitry Andric 32780b57cec5SDimitry Andric // Add the base and offset together. 32790b57cec5SDimitry Andric return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 32800b57cec5SDimitry Andric } 32810b57cec5SDimitry Andric 32820b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 32830b57cec5SDimitry Andric SelectionDAG &DAG) const { 32840b57cec5SDimitry Andric SDLoc DL(Node); 32850b57cec5SDimitry Andric const BlockAddress *BA = Node->getBlockAddress(); 32860b57cec5SDimitry Andric int64_t Offset = Node->getOffset(); 32870b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 32880b57cec5SDimitry Andric 32890b57cec5SDimitry Andric SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 32900b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 32910b57cec5SDimitry Andric return Result; 32920b57cec5SDimitry Andric } 32930b57cec5SDimitry Andric 32940b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 32950b57cec5SDimitry Andric SelectionDAG &DAG) const { 32960b57cec5SDimitry Andric SDLoc DL(JT); 32970b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 32980b57cec5SDimitry Andric SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 32990b57cec5SDimitry Andric 33000b57cec5SDimitry Andric // Use LARL to load the address of the table. 33010b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 33020b57cec5SDimitry Andric } 33030b57cec5SDimitry Andric 33040b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 33050b57cec5SDimitry Andric SelectionDAG &DAG) const { 33060b57cec5SDimitry Andric SDLoc DL(CP); 33070b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 33080b57cec5SDimitry Andric 33090b57cec5SDimitry Andric SDValue Result; 33100b57cec5SDimitry Andric if (CP->isMachineConstantPoolEntry()) 33115ffd83dbSDimitry Andric Result = 33125ffd83dbSDimitry Andric DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 33130b57cec5SDimitry Andric else 33145ffd83dbSDimitry Andric Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 33155ffd83dbSDimitry Andric CP->getOffset()); 33160b57cec5SDimitry Andric 33170b57cec5SDimitry Andric // Use LARL to load the address of the constant pool entry. 33180b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 33190b57cec5SDimitry Andric } 33200b57cec5SDimitry Andric 33210b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 33220b57cec5SDimitry Andric SelectionDAG &DAG) const { 33235ffd83dbSDimitry Andric auto *TFL = 33245ffd83dbSDimitry Andric static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 33250b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 33260b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 33270b57cec5SDimitry Andric MFI.setFrameAddressIsTaken(true); 33280b57cec5SDimitry Andric 33290b57cec5SDimitry Andric SDLoc DL(Op); 33300b57cec5SDimitry Andric unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 33310b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 33320b57cec5SDimitry Andric 3333*fe6060f1SDimitry Andric // By definition, the frame address is the address of the back chain. (In 3334*fe6060f1SDimitry Andric // the case of packed stack without backchain, return the address where the 3335*fe6060f1SDimitry Andric // backchain would have been stored. This will either be an unused space or 3336*fe6060f1SDimitry Andric // contain a saved register). 3337480093f4SDimitry Andric int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 33380b57cec5SDimitry Andric SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 33390b57cec5SDimitry Andric 33400b57cec5SDimitry Andric // FIXME The frontend should detect this case. 33410b57cec5SDimitry Andric if (Depth > 0) { 33420b57cec5SDimitry Andric report_fatal_error("Unsupported stack frame traversal count"); 33430b57cec5SDimitry Andric } 33440b57cec5SDimitry Andric 33450b57cec5SDimitry Andric return BackChain; 33460b57cec5SDimitry Andric } 33470b57cec5SDimitry Andric 33480b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 33490b57cec5SDimitry Andric SelectionDAG &DAG) const { 33500b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 33510b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 33520b57cec5SDimitry Andric MFI.setReturnAddressIsTaken(true); 33530b57cec5SDimitry Andric 33540b57cec5SDimitry Andric if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 33550b57cec5SDimitry Andric return SDValue(); 33560b57cec5SDimitry Andric 33570b57cec5SDimitry Andric SDLoc DL(Op); 33580b57cec5SDimitry Andric unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 33590b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 33600b57cec5SDimitry Andric 33610b57cec5SDimitry Andric // FIXME The frontend should detect this case. 33620b57cec5SDimitry Andric if (Depth > 0) { 33630b57cec5SDimitry Andric report_fatal_error("Unsupported stack frame traversal count"); 33640b57cec5SDimitry Andric } 33650b57cec5SDimitry Andric 33660b57cec5SDimitry Andric // Return R14D, which has the return address. Mark it an implicit live-in. 33670b57cec5SDimitry Andric unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 33680b57cec5SDimitry Andric return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 33690b57cec5SDimitry Andric } 33700b57cec5SDimitry Andric 33710b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 33720b57cec5SDimitry Andric SelectionDAG &DAG) const { 33730b57cec5SDimitry Andric SDLoc DL(Op); 33740b57cec5SDimitry Andric SDValue In = Op.getOperand(0); 33750b57cec5SDimitry Andric EVT InVT = In.getValueType(); 33760b57cec5SDimitry Andric EVT ResVT = Op.getValueType(); 33770b57cec5SDimitry Andric 33780b57cec5SDimitry Andric // Convert loads directly. This is normally done by DAGCombiner, 33790b57cec5SDimitry Andric // but we need this case for bitcasts that are created during lowering 33800b57cec5SDimitry Andric // and which are then lowered themselves. 33810b57cec5SDimitry Andric if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 33820b57cec5SDimitry Andric if (ISD::isNormalLoad(LoadN)) { 33830b57cec5SDimitry Andric SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 33840b57cec5SDimitry Andric LoadN->getBasePtr(), LoadN->getMemOperand()); 33850b57cec5SDimitry Andric // Update the chain uses. 33860b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 33870b57cec5SDimitry Andric return NewLoad; 33880b57cec5SDimitry Andric } 33890b57cec5SDimitry Andric 33900b57cec5SDimitry Andric if (InVT == MVT::i32 && ResVT == MVT::f32) { 33910b57cec5SDimitry Andric SDValue In64; 33920b57cec5SDimitry Andric if (Subtarget.hasHighWord()) { 33930b57cec5SDimitry Andric SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 33940b57cec5SDimitry Andric MVT::i64); 33950b57cec5SDimitry Andric In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 33960b57cec5SDimitry Andric MVT::i64, SDValue(U64, 0), In); 33970b57cec5SDimitry Andric } else { 33980b57cec5SDimitry Andric In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 33990b57cec5SDimitry Andric In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 34000b57cec5SDimitry Andric DAG.getConstant(32, DL, MVT::i64)); 34010b57cec5SDimitry Andric } 34020b57cec5SDimitry Andric SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 34030b57cec5SDimitry Andric return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 34040b57cec5SDimitry Andric DL, MVT::f32, Out64); 34050b57cec5SDimitry Andric } 34060b57cec5SDimitry Andric if (InVT == MVT::f32 && ResVT == MVT::i32) { 34070b57cec5SDimitry Andric SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 34080b57cec5SDimitry Andric SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 34090b57cec5SDimitry Andric MVT::f64, SDValue(U64, 0), In); 34100b57cec5SDimitry Andric SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 34110b57cec5SDimitry Andric if (Subtarget.hasHighWord()) 34120b57cec5SDimitry Andric return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 34130b57cec5SDimitry Andric MVT::i32, Out64); 34140b57cec5SDimitry Andric SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 34150b57cec5SDimitry Andric DAG.getConstant(32, DL, MVT::i64)); 34160b57cec5SDimitry Andric return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 34170b57cec5SDimitry Andric } 34180b57cec5SDimitry Andric llvm_unreachable("Unexpected bitcast combination"); 34190b57cec5SDimitry Andric } 34200b57cec5SDimitry Andric 34210b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 34220b57cec5SDimitry Andric SelectionDAG &DAG) const { 34230b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 34240b57cec5SDimitry Andric SystemZMachineFunctionInfo *FuncInfo = 34250b57cec5SDimitry Andric MF.getInfo<SystemZMachineFunctionInfo>(); 34260b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 34270b57cec5SDimitry Andric 34280b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 34290b57cec5SDimitry Andric SDValue Addr = Op.getOperand(1); 34300b57cec5SDimitry Andric const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 34310b57cec5SDimitry Andric SDLoc DL(Op); 34320b57cec5SDimitry Andric 34330b57cec5SDimitry Andric // The initial values of each field. 34340b57cec5SDimitry Andric const unsigned NumFields = 4; 34350b57cec5SDimitry Andric SDValue Fields[NumFields] = { 34360b57cec5SDimitry Andric DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 34370b57cec5SDimitry Andric DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 34380b57cec5SDimitry Andric DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 34390b57cec5SDimitry Andric DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 34400b57cec5SDimitry Andric }; 34410b57cec5SDimitry Andric 34420b57cec5SDimitry Andric // Store each field into its respective slot. 34430b57cec5SDimitry Andric SDValue MemOps[NumFields]; 34440b57cec5SDimitry Andric unsigned Offset = 0; 34450b57cec5SDimitry Andric for (unsigned I = 0; I < NumFields; ++I) { 34460b57cec5SDimitry Andric SDValue FieldAddr = Addr; 34470b57cec5SDimitry Andric if (Offset != 0) 34480b57cec5SDimitry Andric FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 34490b57cec5SDimitry Andric DAG.getIntPtrConstant(Offset, DL)); 34500b57cec5SDimitry Andric MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 34510b57cec5SDimitry Andric MachinePointerInfo(SV, Offset)); 34520b57cec5SDimitry Andric Offset += 8; 34530b57cec5SDimitry Andric } 34540b57cec5SDimitry Andric return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 34550b57cec5SDimitry Andric } 34560b57cec5SDimitry Andric 34570b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 34580b57cec5SDimitry Andric SelectionDAG &DAG) const { 34590b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 34600b57cec5SDimitry Andric SDValue DstPtr = Op.getOperand(1); 34610b57cec5SDimitry Andric SDValue SrcPtr = Op.getOperand(2); 34620b57cec5SDimitry Andric const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 34630b57cec5SDimitry Andric const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 34640b57cec5SDimitry Andric SDLoc DL(Op); 34650b57cec5SDimitry Andric 34660b57cec5SDimitry Andric return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 34675ffd83dbSDimitry Andric Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 34685ffd83dbSDimitry Andric /*isTailCall*/ false, MachinePointerInfo(DstSV), 34695ffd83dbSDimitry Andric MachinePointerInfo(SrcSV)); 34700b57cec5SDimitry Andric } 34710b57cec5SDimitry Andric 34720b57cec5SDimitry Andric SDValue SystemZTargetLowering:: 34730b57cec5SDimitry Andric lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 34740b57cec5SDimitry Andric const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 34750b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 34760b57cec5SDimitry Andric bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 34770b57cec5SDimitry Andric bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 34780b57cec5SDimitry Andric 34790b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 34800b57cec5SDimitry Andric SDValue Size = Op.getOperand(1); 34810b57cec5SDimitry Andric SDValue Align = Op.getOperand(2); 34820b57cec5SDimitry Andric SDLoc DL(Op); 34830b57cec5SDimitry Andric 34840b57cec5SDimitry Andric // If user has set the no alignment function attribute, ignore 34850b57cec5SDimitry Andric // alloca alignments. 3486e8d8bef9SDimitry Andric uint64_t AlignVal = 3487e8d8bef9SDimitry Andric (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 34880b57cec5SDimitry Andric 34890b57cec5SDimitry Andric uint64_t StackAlign = TFI->getStackAlignment(); 34900b57cec5SDimitry Andric uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 34910b57cec5SDimitry Andric uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 34920b57cec5SDimitry Andric 3493e8d8bef9SDimitry Andric Register SPReg = getStackPointerRegisterToSaveRestore(); 34940b57cec5SDimitry Andric SDValue NeededSpace = Size; 34950b57cec5SDimitry Andric 34960b57cec5SDimitry Andric // Get a reference to the stack pointer. 34970b57cec5SDimitry Andric SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 34980b57cec5SDimitry Andric 34990b57cec5SDimitry Andric // If we need a backchain, save it now. 35000b57cec5SDimitry Andric SDValue Backchain; 35010b57cec5SDimitry Andric if (StoreBackchain) 3502e8d8bef9SDimitry Andric Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3503e8d8bef9SDimitry Andric MachinePointerInfo()); 35040b57cec5SDimitry Andric 35050b57cec5SDimitry Andric // Add extra space for alignment if needed. 35060b57cec5SDimitry Andric if (ExtraAlignSpace) 35070b57cec5SDimitry Andric NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 35080b57cec5SDimitry Andric DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 35090b57cec5SDimitry Andric 35100b57cec5SDimitry Andric // Get the new stack pointer value. 35115ffd83dbSDimitry Andric SDValue NewSP; 35125ffd83dbSDimitry Andric if (hasInlineStackProbe(MF)) { 35135ffd83dbSDimitry Andric NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 35145ffd83dbSDimitry Andric DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 35155ffd83dbSDimitry Andric Chain = NewSP.getValue(1); 35165ffd83dbSDimitry Andric } 35175ffd83dbSDimitry Andric else { 35185ffd83dbSDimitry Andric NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 35190b57cec5SDimitry Andric // Copy the new stack pointer back. 35200b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 35215ffd83dbSDimitry Andric } 35220b57cec5SDimitry Andric 35230b57cec5SDimitry Andric // The allocated data lives above the 160 bytes allocated for the standard 35240b57cec5SDimitry Andric // frame, plus any outgoing stack arguments. We don't know how much that 35250b57cec5SDimitry Andric // amounts to yet, so emit a special ADJDYNALLOC placeholder. 35260b57cec5SDimitry Andric SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 35270b57cec5SDimitry Andric SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 35280b57cec5SDimitry Andric 35290b57cec5SDimitry Andric // Dynamically realign if needed. 35300b57cec5SDimitry Andric if (RequiredAlign > StackAlign) { 35310b57cec5SDimitry Andric Result = 35320b57cec5SDimitry Andric DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 35330b57cec5SDimitry Andric DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 35340b57cec5SDimitry Andric Result = 35350b57cec5SDimitry Andric DAG.getNode(ISD::AND, DL, MVT::i64, Result, 35360b57cec5SDimitry Andric DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 35370b57cec5SDimitry Andric } 35380b57cec5SDimitry Andric 35390b57cec5SDimitry Andric if (StoreBackchain) 3540e8d8bef9SDimitry Andric Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3541e8d8bef9SDimitry Andric MachinePointerInfo()); 35420b57cec5SDimitry Andric 35430b57cec5SDimitry Andric SDValue Ops[2] = { Result, Chain }; 35440b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 35450b57cec5SDimitry Andric } 35460b57cec5SDimitry Andric 35470b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 35480b57cec5SDimitry Andric SDValue Op, SelectionDAG &DAG) const { 35490b57cec5SDimitry Andric SDLoc DL(Op); 35500b57cec5SDimitry Andric 35510b57cec5SDimitry Andric return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 35520b57cec5SDimitry Andric } 35530b57cec5SDimitry Andric 35540b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 35550b57cec5SDimitry Andric SelectionDAG &DAG) const { 35560b57cec5SDimitry Andric EVT VT = Op.getValueType(); 35570b57cec5SDimitry Andric SDLoc DL(Op); 35580b57cec5SDimitry Andric SDValue Ops[2]; 35590b57cec5SDimitry Andric if (is32Bit(VT)) 35600b57cec5SDimitry Andric // Just do a normal 64-bit multiplication and extract the results. 35610b57cec5SDimitry Andric // We define this so that it can be used for constant division. 35620b57cec5SDimitry Andric lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 35630b57cec5SDimitry Andric Op.getOperand(1), Ops[1], Ops[0]); 35640b57cec5SDimitry Andric else if (Subtarget.hasMiscellaneousExtensions2()) 35650b57cec5SDimitry Andric // SystemZISD::SMUL_LOHI returns the low result in the odd register and 35660b57cec5SDimitry Andric // the high result in the even register. ISD::SMUL_LOHI is defined to 35670b57cec5SDimitry Andric // return the low half first, so the results are in reverse order. 35680b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 35690b57cec5SDimitry Andric Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 35700b57cec5SDimitry Andric else { 35710b57cec5SDimitry Andric // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 35720b57cec5SDimitry Andric // 35730b57cec5SDimitry Andric // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 35740b57cec5SDimitry Andric // 35750b57cec5SDimitry Andric // but using the fact that the upper halves are either all zeros 35760b57cec5SDimitry Andric // or all ones: 35770b57cec5SDimitry Andric // 35780b57cec5SDimitry Andric // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 35790b57cec5SDimitry Andric // 35800b57cec5SDimitry Andric // and grouping the right terms together since they are quicker than the 35810b57cec5SDimitry Andric // multiplication: 35820b57cec5SDimitry Andric // 35830b57cec5SDimitry Andric // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 35840b57cec5SDimitry Andric SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 35850b57cec5SDimitry Andric SDValue LL = Op.getOperand(0); 35860b57cec5SDimitry Andric SDValue RL = Op.getOperand(1); 35870b57cec5SDimitry Andric SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 35880b57cec5SDimitry Andric SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 35890b57cec5SDimitry Andric // SystemZISD::UMUL_LOHI returns the low result in the odd register and 35900b57cec5SDimitry Andric // the high result in the even register. ISD::SMUL_LOHI is defined to 35910b57cec5SDimitry Andric // return the low half first, so the results are in reverse order. 35920b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 35930b57cec5SDimitry Andric LL, RL, Ops[1], Ops[0]); 35940b57cec5SDimitry Andric SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 35950b57cec5SDimitry Andric SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 35960b57cec5SDimitry Andric SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 35970b57cec5SDimitry Andric Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 35980b57cec5SDimitry Andric } 35990b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 36000b57cec5SDimitry Andric } 36010b57cec5SDimitry Andric 36020b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 36030b57cec5SDimitry Andric SelectionDAG &DAG) const { 36040b57cec5SDimitry Andric EVT VT = Op.getValueType(); 36050b57cec5SDimitry Andric SDLoc DL(Op); 36060b57cec5SDimitry Andric SDValue Ops[2]; 36070b57cec5SDimitry Andric if (is32Bit(VT)) 36080b57cec5SDimitry Andric // Just do a normal 64-bit multiplication and extract the results. 36090b57cec5SDimitry Andric // We define this so that it can be used for constant division. 36100b57cec5SDimitry Andric lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 36110b57cec5SDimitry Andric Op.getOperand(1), Ops[1], Ops[0]); 36120b57cec5SDimitry Andric else 36130b57cec5SDimitry Andric // SystemZISD::UMUL_LOHI returns the low result in the odd register and 36140b57cec5SDimitry Andric // the high result in the even register. ISD::UMUL_LOHI is defined to 36150b57cec5SDimitry Andric // return the low half first, so the results are in reverse order. 36160b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 36170b57cec5SDimitry Andric Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 36180b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 36190b57cec5SDimitry Andric } 36200b57cec5SDimitry Andric 36210b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 36220b57cec5SDimitry Andric SelectionDAG &DAG) const { 36230b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 36240b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 36250b57cec5SDimitry Andric EVT VT = Op.getValueType(); 36260b57cec5SDimitry Andric SDLoc DL(Op); 36270b57cec5SDimitry Andric 36280b57cec5SDimitry Andric // We use DSGF for 32-bit division. This means the first operand must 36290b57cec5SDimitry Andric // always be 64-bit, and the second operand should be 32-bit whenever 36300b57cec5SDimitry Andric // that is possible, to improve performance. 36310b57cec5SDimitry Andric if (is32Bit(VT)) 36320b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 36330b57cec5SDimitry Andric else if (DAG.ComputeNumSignBits(Op1) > 32) 36340b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 36350b57cec5SDimitry Andric 36360b57cec5SDimitry Andric // DSG(F) returns the remainder in the even register and the 36370b57cec5SDimitry Andric // quotient in the odd register. 36380b57cec5SDimitry Andric SDValue Ops[2]; 36390b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 36400b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 36410b57cec5SDimitry Andric } 36420b57cec5SDimitry Andric 36430b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 36440b57cec5SDimitry Andric SelectionDAG &DAG) const { 36450b57cec5SDimitry Andric EVT VT = Op.getValueType(); 36460b57cec5SDimitry Andric SDLoc DL(Op); 36470b57cec5SDimitry Andric 36480b57cec5SDimitry Andric // DL(G) returns the remainder in the even register and the 36490b57cec5SDimitry Andric // quotient in the odd register. 36500b57cec5SDimitry Andric SDValue Ops[2]; 36510b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 36520b57cec5SDimitry Andric Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 36530b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 36540b57cec5SDimitry Andric } 36550b57cec5SDimitry Andric 36560b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 36570b57cec5SDimitry Andric assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 36580b57cec5SDimitry Andric 36590b57cec5SDimitry Andric // Get the known-zero masks for each operand. 36600b57cec5SDimitry Andric SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 36610b57cec5SDimitry Andric KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 36620b57cec5SDimitry Andric DAG.computeKnownBits(Ops[1])}; 36630b57cec5SDimitry Andric 36640b57cec5SDimitry Andric // See if the upper 32 bits of one operand and the lower 32 bits of the 36650b57cec5SDimitry Andric // other are known zero. They are the low and high operands respectively. 36660b57cec5SDimitry Andric uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 36670b57cec5SDimitry Andric Known[1].Zero.getZExtValue() }; 36680b57cec5SDimitry Andric unsigned High, Low; 36690b57cec5SDimitry Andric if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 36700b57cec5SDimitry Andric High = 1, Low = 0; 36710b57cec5SDimitry Andric else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 36720b57cec5SDimitry Andric High = 0, Low = 1; 36730b57cec5SDimitry Andric else 36740b57cec5SDimitry Andric return Op; 36750b57cec5SDimitry Andric 36760b57cec5SDimitry Andric SDValue LowOp = Ops[Low]; 36770b57cec5SDimitry Andric SDValue HighOp = Ops[High]; 36780b57cec5SDimitry Andric 36790b57cec5SDimitry Andric // If the high part is a constant, we're better off using IILH. 36800b57cec5SDimitry Andric if (HighOp.getOpcode() == ISD::Constant) 36810b57cec5SDimitry Andric return Op; 36820b57cec5SDimitry Andric 36830b57cec5SDimitry Andric // If the low part is a constant that is outside the range of LHI, 36840b57cec5SDimitry Andric // then we're better off using IILF. 36850b57cec5SDimitry Andric if (LowOp.getOpcode() == ISD::Constant) { 36860b57cec5SDimitry Andric int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 36870b57cec5SDimitry Andric if (!isInt<16>(Value)) 36880b57cec5SDimitry Andric return Op; 36890b57cec5SDimitry Andric } 36900b57cec5SDimitry Andric 36910b57cec5SDimitry Andric // Check whether the high part is an AND that doesn't change the 36920b57cec5SDimitry Andric // high 32 bits and just masks out low bits. We can skip it if so. 36930b57cec5SDimitry Andric if (HighOp.getOpcode() == ISD::AND && 36940b57cec5SDimitry Andric HighOp.getOperand(1).getOpcode() == ISD::Constant) { 36950b57cec5SDimitry Andric SDValue HighOp0 = HighOp.getOperand(0); 36960b57cec5SDimitry Andric uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 36970b57cec5SDimitry Andric if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 36980b57cec5SDimitry Andric HighOp = HighOp0; 36990b57cec5SDimitry Andric } 37000b57cec5SDimitry Andric 37010b57cec5SDimitry Andric // Take advantage of the fact that all GR32 operations only change the 37020b57cec5SDimitry Andric // low 32 bits by truncating Low to an i32 and inserting it directly 37030b57cec5SDimitry Andric // using a subreg. The interesting cases are those where the truncation 37040b57cec5SDimitry Andric // can be folded. 37050b57cec5SDimitry Andric SDLoc DL(Op); 37060b57cec5SDimitry Andric SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 37070b57cec5SDimitry Andric return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 37080b57cec5SDimitry Andric MVT::i64, HighOp, Low32); 37090b57cec5SDimitry Andric } 37100b57cec5SDimitry Andric 37110b57cec5SDimitry Andric // Lower SADDO/SSUBO/UADDO/USUBO nodes. 37120b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 37130b57cec5SDimitry Andric SelectionDAG &DAG) const { 37140b57cec5SDimitry Andric SDNode *N = Op.getNode(); 37150b57cec5SDimitry Andric SDValue LHS = N->getOperand(0); 37160b57cec5SDimitry Andric SDValue RHS = N->getOperand(1); 37170b57cec5SDimitry Andric SDLoc DL(N); 37180b57cec5SDimitry Andric unsigned BaseOp = 0; 37190b57cec5SDimitry Andric unsigned CCValid = 0; 37200b57cec5SDimitry Andric unsigned CCMask = 0; 37210b57cec5SDimitry Andric 37220b57cec5SDimitry Andric switch (Op.getOpcode()) { 37230b57cec5SDimitry Andric default: llvm_unreachable("Unknown instruction!"); 37240b57cec5SDimitry Andric case ISD::SADDO: 37250b57cec5SDimitry Andric BaseOp = SystemZISD::SADDO; 37260b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ARITH; 37270b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 37280b57cec5SDimitry Andric break; 37290b57cec5SDimitry Andric case ISD::SSUBO: 37300b57cec5SDimitry Andric BaseOp = SystemZISD::SSUBO; 37310b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ARITH; 37320b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 37330b57cec5SDimitry Andric break; 37340b57cec5SDimitry Andric case ISD::UADDO: 37350b57cec5SDimitry Andric BaseOp = SystemZISD::UADDO; 37360b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_LOGICAL; 37370b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 37380b57cec5SDimitry Andric break; 37390b57cec5SDimitry Andric case ISD::USUBO: 37400b57cec5SDimitry Andric BaseOp = SystemZISD::USUBO; 37410b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_LOGICAL; 37420b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 37430b57cec5SDimitry Andric break; 37440b57cec5SDimitry Andric } 37450b57cec5SDimitry Andric 37460b57cec5SDimitry Andric SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 37470b57cec5SDimitry Andric SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 37480b57cec5SDimitry Andric 37490b57cec5SDimitry Andric SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 37500b57cec5SDimitry Andric if (N->getValueType(1) == MVT::i1) 37510b57cec5SDimitry Andric SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 37520b57cec5SDimitry Andric 37530b57cec5SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 37540b57cec5SDimitry Andric } 37550b57cec5SDimitry Andric 37560b57cec5SDimitry Andric static bool isAddCarryChain(SDValue Carry) { 37570b57cec5SDimitry Andric while (Carry.getOpcode() == ISD::ADDCARRY) 37580b57cec5SDimitry Andric Carry = Carry.getOperand(2); 37590b57cec5SDimitry Andric return Carry.getOpcode() == ISD::UADDO; 37600b57cec5SDimitry Andric } 37610b57cec5SDimitry Andric 37620b57cec5SDimitry Andric static bool isSubBorrowChain(SDValue Carry) { 37630b57cec5SDimitry Andric while (Carry.getOpcode() == ISD::SUBCARRY) 37640b57cec5SDimitry Andric Carry = Carry.getOperand(2); 37650b57cec5SDimitry Andric return Carry.getOpcode() == ISD::USUBO; 37660b57cec5SDimitry Andric } 37670b57cec5SDimitry Andric 37680b57cec5SDimitry Andric // Lower ADDCARRY/SUBCARRY nodes. 37690b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 37700b57cec5SDimitry Andric SelectionDAG &DAG) const { 37710b57cec5SDimitry Andric 37720b57cec5SDimitry Andric SDNode *N = Op.getNode(); 37730b57cec5SDimitry Andric MVT VT = N->getSimpleValueType(0); 37740b57cec5SDimitry Andric 37750b57cec5SDimitry Andric // Let legalize expand this if it isn't a legal type yet. 37760b57cec5SDimitry Andric if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 37770b57cec5SDimitry Andric return SDValue(); 37780b57cec5SDimitry Andric 37790b57cec5SDimitry Andric SDValue LHS = N->getOperand(0); 37800b57cec5SDimitry Andric SDValue RHS = N->getOperand(1); 37810b57cec5SDimitry Andric SDValue Carry = Op.getOperand(2); 37820b57cec5SDimitry Andric SDLoc DL(N); 37830b57cec5SDimitry Andric unsigned BaseOp = 0; 37840b57cec5SDimitry Andric unsigned CCValid = 0; 37850b57cec5SDimitry Andric unsigned CCMask = 0; 37860b57cec5SDimitry Andric 37870b57cec5SDimitry Andric switch (Op.getOpcode()) { 37880b57cec5SDimitry Andric default: llvm_unreachable("Unknown instruction!"); 37890b57cec5SDimitry Andric case ISD::ADDCARRY: 37900b57cec5SDimitry Andric if (!isAddCarryChain(Carry)) 37910b57cec5SDimitry Andric return SDValue(); 37920b57cec5SDimitry Andric 37930b57cec5SDimitry Andric BaseOp = SystemZISD::ADDCARRY; 37940b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_LOGICAL; 37950b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 37960b57cec5SDimitry Andric break; 37970b57cec5SDimitry Andric case ISD::SUBCARRY: 37980b57cec5SDimitry Andric if (!isSubBorrowChain(Carry)) 37990b57cec5SDimitry Andric return SDValue(); 38000b57cec5SDimitry Andric 38010b57cec5SDimitry Andric BaseOp = SystemZISD::SUBCARRY; 38020b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_LOGICAL; 38030b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 38040b57cec5SDimitry Andric break; 38050b57cec5SDimitry Andric } 38060b57cec5SDimitry Andric 38070b57cec5SDimitry Andric // Set the condition code from the carry flag. 38080b57cec5SDimitry Andric Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 38090b57cec5SDimitry Andric DAG.getConstant(CCValid, DL, MVT::i32), 38100b57cec5SDimitry Andric DAG.getConstant(CCMask, DL, MVT::i32)); 38110b57cec5SDimitry Andric 38120b57cec5SDimitry Andric SDVTList VTs = DAG.getVTList(VT, MVT::i32); 38130b57cec5SDimitry Andric SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 38140b57cec5SDimitry Andric 38150b57cec5SDimitry Andric SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 38160b57cec5SDimitry Andric if (N->getValueType(1) == MVT::i1) 38170b57cec5SDimitry Andric SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 38180b57cec5SDimitry Andric 38190b57cec5SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 38200b57cec5SDimitry Andric } 38210b57cec5SDimitry Andric 38220b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 38230b57cec5SDimitry Andric SelectionDAG &DAG) const { 38240b57cec5SDimitry Andric EVT VT = Op.getValueType(); 38250b57cec5SDimitry Andric SDLoc DL(Op); 38260b57cec5SDimitry Andric Op = Op.getOperand(0); 38270b57cec5SDimitry Andric 38280b57cec5SDimitry Andric // Handle vector types via VPOPCT. 38290b57cec5SDimitry Andric if (VT.isVector()) { 38300b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 38310b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 38320b57cec5SDimitry Andric switch (VT.getScalarSizeInBits()) { 38330b57cec5SDimitry Andric case 8: 38340b57cec5SDimitry Andric break; 38350b57cec5SDimitry Andric case 16: { 38360b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 38370b57cec5SDimitry Andric SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 38380b57cec5SDimitry Andric SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 38390b57cec5SDimitry Andric Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 38400b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 38410b57cec5SDimitry Andric break; 38420b57cec5SDimitry Andric } 38430b57cec5SDimitry Andric case 32: { 38440b57cec5SDimitry Andric SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 38450b57cec5SDimitry Andric DAG.getConstant(0, DL, MVT::i32)); 38460b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 38470b57cec5SDimitry Andric break; 38480b57cec5SDimitry Andric } 38490b57cec5SDimitry Andric case 64: { 38500b57cec5SDimitry Andric SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 38510b57cec5SDimitry Andric DAG.getConstant(0, DL, MVT::i32)); 38520b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 38530b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 38540b57cec5SDimitry Andric break; 38550b57cec5SDimitry Andric } 38560b57cec5SDimitry Andric default: 38570b57cec5SDimitry Andric llvm_unreachable("Unexpected type"); 38580b57cec5SDimitry Andric } 38590b57cec5SDimitry Andric return Op; 38600b57cec5SDimitry Andric } 38610b57cec5SDimitry Andric 38620b57cec5SDimitry Andric // Get the known-zero mask for the operand. 38630b57cec5SDimitry Andric KnownBits Known = DAG.computeKnownBits(Op); 3864480093f4SDimitry Andric unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 38650b57cec5SDimitry Andric if (NumSignificantBits == 0) 38660b57cec5SDimitry Andric return DAG.getConstant(0, DL, VT); 38670b57cec5SDimitry Andric 38680b57cec5SDimitry Andric // Skip known-zero high parts of the operand. 38690b57cec5SDimitry Andric int64_t OrigBitSize = VT.getSizeInBits(); 38700b57cec5SDimitry Andric int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 38710b57cec5SDimitry Andric BitSize = std::min(BitSize, OrigBitSize); 38720b57cec5SDimitry Andric 38730b57cec5SDimitry Andric // The POPCNT instruction counts the number of bits in each byte. 38740b57cec5SDimitry Andric Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 38750b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 38760b57cec5SDimitry Andric Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 38770b57cec5SDimitry Andric 38780b57cec5SDimitry Andric // Add up per-byte counts in a binary tree. All bits of Op at 38790b57cec5SDimitry Andric // position larger than BitSize remain zero throughout. 38800b57cec5SDimitry Andric for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 38810b57cec5SDimitry Andric SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 38820b57cec5SDimitry Andric if (BitSize != OrigBitSize) 38830b57cec5SDimitry Andric Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 38840b57cec5SDimitry Andric DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 38850b57cec5SDimitry Andric Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 38860b57cec5SDimitry Andric } 38870b57cec5SDimitry Andric 38880b57cec5SDimitry Andric // Extract overall result from high byte. 38890b57cec5SDimitry Andric if (BitSize > 8) 38900b57cec5SDimitry Andric Op = DAG.getNode(ISD::SRL, DL, VT, Op, 38910b57cec5SDimitry Andric DAG.getConstant(BitSize - 8, DL, VT)); 38920b57cec5SDimitry Andric 38930b57cec5SDimitry Andric return Op; 38940b57cec5SDimitry Andric } 38950b57cec5SDimitry Andric 38960b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 38970b57cec5SDimitry Andric SelectionDAG &DAG) const { 38980b57cec5SDimitry Andric SDLoc DL(Op); 38990b57cec5SDimitry Andric AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 39000b57cec5SDimitry Andric cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 39010b57cec5SDimitry Andric SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 39020b57cec5SDimitry Andric cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 39030b57cec5SDimitry Andric 39040b57cec5SDimitry Andric // The only fence that needs an instruction is a sequentially-consistent 39050b57cec5SDimitry Andric // cross-thread fence. 39060b57cec5SDimitry Andric if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 39070b57cec5SDimitry Andric FenceSSID == SyncScope::System) { 39080b57cec5SDimitry Andric return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 39090b57cec5SDimitry Andric Op.getOperand(0)), 39100b57cec5SDimitry Andric 0); 39110b57cec5SDimitry Andric } 39120b57cec5SDimitry Andric 39130b57cec5SDimitry Andric // MEMBARRIER is a compiler barrier; it codegens to a no-op. 39140b57cec5SDimitry Andric return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 39150b57cec5SDimitry Andric } 39160b57cec5SDimitry Andric 39170b57cec5SDimitry Andric // Op is an atomic load. Lower it into a normal volatile load. 39180b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 39190b57cec5SDimitry Andric SelectionDAG &DAG) const { 39200b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 39210b57cec5SDimitry Andric return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 39220b57cec5SDimitry Andric Node->getChain(), Node->getBasePtr(), 39230b57cec5SDimitry Andric Node->getMemoryVT(), Node->getMemOperand()); 39240b57cec5SDimitry Andric } 39250b57cec5SDimitry Andric 39260b57cec5SDimitry Andric // Op is an atomic store. Lower it into a normal volatile store. 39270b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 39280b57cec5SDimitry Andric SelectionDAG &DAG) const { 39290b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 39300b57cec5SDimitry Andric SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 39310b57cec5SDimitry Andric Node->getBasePtr(), Node->getMemoryVT(), 39320b57cec5SDimitry Andric Node->getMemOperand()); 39330b57cec5SDimitry Andric // We have to enforce sequential consistency by performing a 39340b57cec5SDimitry Andric // serialization operation after the store. 3935*fe6060f1SDimitry Andric if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 39360b57cec5SDimitry Andric Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 39370b57cec5SDimitry Andric MVT::Other, Chain), 0); 39380b57cec5SDimitry Andric return Chain; 39390b57cec5SDimitry Andric } 39400b57cec5SDimitry Andric 39410b57cec5SDimitry Andric // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 39420b57cec5SDimitry Andric // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 39430b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 39440b57cec5SDimitry Andric SelectionDAG &DAG, 39450b57cec5SDimitry Andric unsigned Opcode) const { 39460b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 39470b57cec5SDimitry Andric 39480b57cec5SDimitry Andric // 32-bit operations need no code outside the main loop. 39490b57cec5SDimitry Andric EVT NarrowVT = Node->getMemoryVT(); 39500b57cec5SDimitry Andric EVT WideVT = MVT::i32; 39510b57cec5SDimitry Andric if (NarrowVT == WideVT) 39520b57cec5SDimitry Andric return Op; 39530b57cec5SDimitry Andric 39540b57cec5SDimitry Andric int64_t BitSize = NarrowVT.getSizeInBits(); 39550b57cec5SDimitry Andric SDValue ChainIn = Node->getChain(); 39560b57cec5SDimitry Andric SDValue Addr = Node->getBasePtr(); 39570b57cec5SDimitry Andric SDValue Src2 = Node->getVal(); 39580b57cec5SDimitry Andric MachineMemOperand *MMO = Node->getMemOperand(); 39590b57cec5SDimitry Andric SDLoc DL(Node); 39600b57cec5SDimitry Andric EVT PtrVT = Addr.getValueType(); 39610b57cec5SDimitry Andric 39620b57cec5SDimitry Andric // Convert atomic subtracts of constants into additions. 39630b57cec5SDimitry Andric if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 39640b57cec5SDimitry Andric if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 39650b57cec5SDimitry Andric Opcode = SystemZISD::ATOMIC_LOADW_ADD; 39660b57cec5SDimitry Andric Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 39670b57cec5SDimitry Andric } 39680b57cec5SDimitry Andric 39690b57cec5SDimitry Andric // Get the address of the containing word. 39700b57cec5SDimitry Andric SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 39710b57cec5SDimitry Andric DAG.getConstant(-4, DL, PtrVT)); 39720b57cec5SDimitry Andric 39730b57cec5SDimitry Andric // Get the number of bits that the word must be rotated left in order 39740b57cec5SDimitry Andric // to bring the field to the top bits of a GR32. 39750b57cec5SDimitry Andric SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 39760b57cec5SDimitry Andric DAG.getConstant(3, DL, PtrVT)); 39770b57cec5SDimitry Andric BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 39780b57cec5SDimitry Andric 39790b57cec5SDimitry Andric // Get the complementing shift amount, for rotating a field in the top 39800b57cec5SDimitry Andric // bits back to its proper position. 39810b57cec5SDimitry Andric SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 39820b57cec5SDimitry Andric DAG.getConstant(0, DL, WideVT), BitShift); 39830b57cec5SDimitry Andric 39840b57cec5SDimitry Andric // Extend the source operand to 32 bits and prepare it for the inner loop. 39850b57cec5SDimitry Andric // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 39860b57cec5SDimitry Andric // operations require the source to be shifted in advance. (This shift 39870b57cec5SDimitry Andric // can be folded if the source is constant.) For AND and NAND, the lower 39880b57cec5SDimitry Andric // bits must be set, while for other opcodes they should be left clear. 39890b57cec5SDimitry Andric if (Opcode != SystemZISD::ATOMIC_SWAPW) 39900b57cec5SDimitry Andric Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 39910b57cec5SDimitry Andric DAG.getConstant(32 - BitSize, DL, WideVT)); 39920b57cec5SDimitry Andric if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 39930b57cec5SDimitry Andric Opcode == SystemZISD::ATOMIC_LOADW_NAND) 39940b57cec5SDimitry Andric Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 39950b57cec5SDimitry Andric DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 39960b57cec5SDimitry Andric 39970b57cec5SDimitry Andric // Construct the ATOMIC_LOADW_* node. 39980b57cec5SDimitry Andric SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 39990b57cec5SDimitry Andric SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 40000b57cec5SDimitry Andric DAG.getConstant(BitSize, DL, WideVT) }; 40010b57cec5SDimitry Andric SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 40020b57cec5SDimitry Andric NarrowVT, MMO); 40030b57cec5SDimitry Andric 40040b57cec5SDimitry Andric // Rotate the result of the final CS so that the field is in the lower 40050b57cec5SDimitry Andric // bits of a GR32, then truncate it. 40060b57cec5SDimitry Andric SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 40070b57cec5SDimitry Andric DAG.getConstant(BitSize, DL, WideVT)); 40080b57cec5SDimitry Andric SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 40090b57cec5SDimitry Andric 40100b57cec5SDimitry Andric SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 40110b57cec5SDimitry Andric return DAG.getMergeValues(RetOps, DL); 40120b57cec5SDimitry Andric } 40130b57cec5SDimitry Andric 40140b57cec5SDimitry Andric // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 40150b57cec5SDimitry Andric // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 40160b57cec5SDimitry Andric // operations into additions. 40170b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 40180b57cec5SDimitry Andric SelectionDAG &DAG) const { 40190b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 40200b57cec5SDimitry Andric EVT MemVT = Node->getMemoryVT(); 40210b57cec5SDimitry Andric if (MemVT == MVT::i32 || MemVT == MVT::i64) { 40220b57cec5SDimitry Andric // A full-width operation. 40230b57cec5SDimitry Andric assert(Op.getValueType() == MemVT && "Mismatched VTs"); 40240b57cec5SDimitry Andric SDValue Src2 = Node->getVal(); 40250b57cec5SDimitry Andric SDValue NegSrc2; 40260b57cec5SDimitry Andric SDLoc DL(Src2); 40270b57cec5SDimitry Andric 40280b57cec5SDimitry Andric if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 40290b57cec5SDimitry Andric // Use an addition if the operand is constant and either LAA(G) is 40300b57cec5SDimitry Andric // available or the negative value is in the range of A(G)FHI. 40310b57cec5SDimitry Andric int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 40320b57cec5SDimitry Andric if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 40330b57cec5SDimitry Andric NegSrc2 = DAG.getConstant(Value, DL, MemVT); 40340b57cec5SDimitry Andric } else if (Subtarget.hasInterlockedAccess1()) 40350b57cec5SDimitry Andric // Use LAA(G) if available. 40360b57cec5SDimitry Andric NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 40370b57cec5SDimitry Andric Src2); 40380b57cec5SDimitry Andric 40390b57cec5SDimitry Andric if (NegSrc2.getNode()) 40400b57cec5SDimitry Andric return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 40410b57cec5SDimitry Andric Node->getChain(), Node->getBasePtr(), NegSrc2, 40420b57cec5SDimitry Andric Node->getMemOperand()); 40430b57cec5SDimitry Andric 40440b57cec5SDimitry Andric // Use the node as-is. 40450b57cec5SDimitry Andric return Op; 40460b57cec5SDimitry Andric } 40470b57cec5SDimitry Andric 40480b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 40490b57cec5SDimitry Andric } 40500b57cec5SDimitry Andric 40510b57cec5SDimitry Andric // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 40520b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 40530b57cec5SDimitry Andric SelectionDAG &DAG) const { 40540b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 40550b57cec5SDimitry Andric SDValue ChainIn = Node->getOperand(0); 40560b57cec5SDimitry Andric SDValue Addr = Node->getOperand(1); 40570b57cec5SDimitry Andric SDValue CmpVal = Node->getOperand(2); 40580b57cec5SDimitry Andric SDValue SwapVal = Node->getOperand(3); 40590b57cec5SDimitry Andric MachineMemOperand *MMO = Node->getMemOperand(); 40600b57cec5SDimitry Andric SDLoc DL(Node); 40610b57cec5SDimitry Andric 40620b57cec5SDimitry Andric // We have native support for 32-bit and 64-bit compare and swap, but we 40630b57cec5SDimitry Andric // still need to expand extracting the "success" result from the CC. 40640b57cec5SDimitry Andric EVT NarrowVT = Node->getMemoryVT(); 40650b57cec5SDimitry Andric EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 40660b57cec5SDimitry Andric if (NarrowVT == WideVT) { 40670b57cec5SDimitry Andric SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 40680b57cec5SDimitry Andric SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 40690b57cec5SDimitry Andric SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 40700b57cec5SDimitry Andric DL, Tys, Ops, NarrowVT, MMO); 40710b57cec5SDimitry Andric SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 40720b57cec5SDimitry Andric SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 40730b57cec5SDimitry Andric 40740b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 40750b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 40760b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 40770b57cec5SDimitry Andric return SDValue(); 40780b57cec5SDimitry Andric } 40790b57cec5SDimitry Andric 40800b57cec5SDimitry Andric // Convert 8-bit and 16-bit compare and swap to a loop, implemented 40810b57cec5SDimitry Andric // via a fullword ATOMIC_CMP_SWAPW operation. 40820b57cec5SDimitry Andric int64_t BitSize = NarrowVT.getSizeInBits(); 40830b57cec5SDimitry Andric EVT PtrVT = Addr.getValueType(); 40840b57cec5SDimitry Andric 40850b57cec5SDimitry Andric // Get the address of the containing word. 40860b57cec5SDimitry Andric SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 40870b57cec5SDimitry Andric DAG.getConstant(-4, DL, PtrVT)); 40880b57cec5SDimitry Andric 40890b57cec5SDimitry Andric // Get the number of bits that the word must be rotated left in order 40900b57cec5SDimitry Andric // to bring the field to the top bits of a GR32. 40910b57cec5SDimitry Andric SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 40920b57cec5SDimitry Andric DAG.getConstant(3, DL, PtrVT)); 40930b57cec5SDimitry Andric BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 40940b57cec5SDimitry Andric 40950b57cec5SDimitry Andric // Get the complementing shift amount, for rotating a field in the top 40960b57cec5SDimitry Andric // bits back to its proper position. 40970b57cec5SDimitry Andric SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 40980b57cec5SDimitry Andric DAG.getConstant(0, DL, WideVT), BitShift); 40990b57cec5SDimitry Andric 41000b57cec5SDimitry Andric // Construct the ATOMIC_CMP_SWAPW node. 41010b57cec5SDimitry Andric SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 41020b57cec5SDimitry Andric SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 41030b57cec5SDimitry Andric NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 41040b57cec5SDimitry Andric SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 41050b57cec5SDimitry Andric VTList, Ops, NarrowVT, MMO); 41060b57cec5SDimitry Andric SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 41070b57cec5SDimitry Andric SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 41080b57cec5SDimitry Andric 4109*fe6060f1SDimitry Andric // emitAtomicCmpSwapW() will zero extend the result (original value). 4110*fe6060f1SDimitry Andric SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4111*fe6060f1SDimitry Andric DAG.getValueType(NarrowVT)); 4112*fe6060f1SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 41130b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 41140b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 41150b57cec5SDimitry Andric return SDValue(); 41160b57cec5SDimitry Andric } 41170b57cec5SDimitry Andric 41180b57cec5SDimitry Andric MachineMemOperand::Flags 41195ffd83dbSDimitry Andric SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 41200b57cec5SDimitry Andric // Because of how we convert atomic_load and atomic_store to normal loads and 41210b57cec5SDimitry Andric // stores in the DAG, we need to ensure that the MMOs are marked volatile 41220b57cec5SDimitry Andric // since DAGCombine hasn't been updated to account for atomic, but non 41230b57cec5SDimitry Andric // volatile loads. (See D57601) 41240b57cec5SDimitry Andric if (auto *SI = dyn_cast<StoreInst>(&I)) 41250b57cec5SDimitry Andric if (SI->isAtomic()) 41260b57cec5SDimitry Andric return MachineMemOperand::MOVolatile; 41270b57cec5SDimitry Andric if (auto *LI = dyn_cast<LoadInst>(&I)) 41280b57cec5SDimitry Andric if (LI->isAtomic()) 41290b57cec5SDimitry Andric return MachineMemOperand::MOVolatile; 41300b57cec5SDimitry Andric if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 41310b57cec5SDimitry Andric if (AI->isAtomic()) 41320b57cec5SDimitry Andric return MachineMemOperand::MOVolatile; 41330b57cec5SDimitry Andric if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 41340b57cec5SDimitry Andric if (AI->isAtomic()) 41350b57cec5SDimitry Andric return MachineMemOperand::MOVolatile; 41360b57cec5SDimitry Andric return MachineMemOperand::MONone; 41370b57cec5SDimitry Andric } 41380b57cec5SDimitry Andric 41390b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 41400b57cec5SDimitry Andric SelectionDAG &DAG) const { 41410b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 41420b57cec5SDimitry Andric MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4143480093f4SDimitry Andric if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4144480093f4SDimitry Andric report_fatal_error("Variable-sized stack allocations are not supported " 4145480093f4SDimitry Andric "in GHC calling convention"); 41460b57cec5SDimitry Andric return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 41470b57cec5SDimitry Andric SystemZ::R15D, Op.getValueType()); 41480b57cec5SDimitry Andric } 41490b57cec5SDimitry Andric 41500b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 41510b57cec5SDimitry Andric SelectionDAG &DAG) const { 41520b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 41530b57cec5SDimitry Andric MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 41540b57cec5SDimitry Andric bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 41550b57cec5SDimitry Andric 4156480093f4SDimitry Andric if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4157480093f4SDimitry Andric report_fatal_error("Variable-sized stack allocations are not supported " 4158480093f4SDimitry Andric "in GHC calling convention"); 4159480093f4SDimitry Andric 41600b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 41610b57cec5SDimitry Andric SDValue NewSP = Op.getOperand(1); 41620b57cec5SDimitry Andric SDValue Backchain; 41630b57cec5SDimitry Andric SDLoc DL(Op); 41640b57cec5SDimitry Andric 41650b57cec5SDimitry Andric if (StoreBackchain) { 41660b57cec5SDimitry Andric SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4167e8d8bef9SDimitry Andric Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4168e8d8bef9SDimitry Andric MachinePointerInfo()); 41690b57cec5SDimitry Andric } 41700b57cec5SDimitry Andric 41710b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 41720b57cec5SDimitry Andric 41730b57cec5SDimitry Andric if (StoreBackchain) 4174e8d8bef9SDimitry Andric Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4175e8d8bef9SDimitry Andric MachinePointerInfo()); 41760b57cec5SDimitry Andric 41770b57cec5SDimitry Andric return Chain; 41780b57cec5SDimitry Andric } 41790b57cec5SDimitry Andric 41800b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 41810b57cec5SDimitry Andric SelectionDAG &DAG) const { 41820b57cec5SDimitry Andric bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 41830b57cec5SDimitry Andric if (!IsData) 41840b57cec5SDimitry Andric // Just preserve the chain. 41850b57cec5SDimitry Andric return Op.getOperand(0); 41860b57cec5SDimitry Andric 41870b57cec5SDimitry Andric SDLoc DL(Op); 41880b57cec5SDimitry Andric bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 41890b57cec5SDimitry Andric unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 41900b57cec5SDimitry Andric auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 41918bcb0991SDimitry Andric SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 41928bcb0991SDimitry Andric Op.getOperand(1)}; 41930b57cec5SDimitry Andric return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 41940b57cec5SDimitry Andric Node->getVTList(), Ops, 41950b57cec5SDimitry Andric Node->getMemoryVT(), Node->getMemOperand()); 41960b57cec5SDimitry Andric } 41970b57cec5SDimitry Andric 41980b57cec5SDimitry Andric // Convert condition code in CCReg to an i32 value. 41990b57cec5SDimitry Andric static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 42000b57cec5SDimitry Andric SDLoc DL(CCReg); 42010b57cec5SDimitry Andric SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 42020b57cec5SDimitry Andric return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 42030b57cec5SDimitry Andric DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 42040b57cec5SDimitry Andric } 42050b57cec5SDimitry Andric 42060b57cec5SDimitry Andric SDValue 42070b57cec5SDimitry Andric SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 42080b57cec5SDimitry Andric SelectionDAG &DAG) const { 42090b57cec5SDimitry Andric unsigned Opcode, CCValid; 42100b57cec5SDimitry Andric if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 42110b57cec5SDimitry Andric assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 42120b57cec5SDimitry Andric SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 42130b57cec5SDimitry Andric SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 42140b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 42150b57cec5SDimitry Andric return SDValue(); 42160b57cec5SDimitry Andric } 42170b57cec5SDimitry Andric 42180b57cec5SDimitry Andric return SDValue(); 42190b57cec5SDimitry Andric } 42200b57cec5SDimitry Andric 42210b57cec5SDimitry Andric SDValue 42220b57cec5SDimitry Andric SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 42230b57cec5SDimitry Andric SelectionDAG &DAG) const { 42240b57cec5SDimitry Andric unsigned Opcode, CCValid; 42250b57cec5SDimitry Andric if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 42260b57cec5SDimitry Andric SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 42270b57cec5SDimitry Andric if (Op->getNumValues() == 1) 42280b57cec5SDimitry Andric return getCCResult(DAG, SDValue(Node, 0)); 42290b57cec5SDimitry Andric assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 42300b57cec5SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 42310b57cec5SDimitry Andric SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 42320b57cec5SDimitry Andric } 42330b57cec5SDimitry Andric 42340b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 42350b57cec5SDimitry Andric switch (Id) { 42360b57cec5SDimitry Andric case Intrinsic::thread_pointer: 42370b57cec5SDimitry Andric return lowerThreadPointer(SDLoc(Op), DAG); 42380b57cec5SDimitry Andric 42390b57cec5SDimitry Andric case Intrinsic::s390_vpdi: 42400b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 42410b57cec5SDimitry Andric Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 42420b57cec5SDimitry Andric 42430b57cec5SDimitry Andric case Intrinsic::s390_vperm: 42440b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 42450b57cec5SDimitry Andric Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 42460b57cec5SDimitry Andric 42470b57cec5SDimitry Andric case Intrinsic::s390_vuphb: 42480b57cec5SDimitry Andric case Intrinsic::s390_vuphh: 42490b57cec5SDimitry Andric case Intrinsic::s390_vuphf: 42500b57cec5SDimitry Andric return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 42510b57cec5SDimitry Andric Op.getOperand(1)); 42520b57cec5SDimitry Andric 42530b57cec5SDimitry Andric case Intrinsic::s390_vuplhb: 42540b57cec5SDimitry Andric case Intrinsic::s390_vuplhh: 42550b57cec5SDimitry Andric case Intrinsic::s390_vuplhf: 42560b57cec5SDimitry Andric return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 42570b57cec5SDimitry Andric Op.getOperand(1)); 42580b57cec5SDimitry Andric 42590b57cec5SDimitry Andric case Intrinsic::s390_vuplb: 42600b57cec5SDimitry Andric case Intrinsic::s390_vuplhw: 42610b57cec5SDimitry Andric case Intrinsic::s390_vuplf: 42620b57cec5SDimitry Andric return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 42630b57cec5SDimitry Andric Op.getOperand(1)); 42640b57cec5SDimitry Andric 42650b57cec5SDimitry Andric case Intrinsic::s390_vupllb: 42660b57cec5SDimitry Andric case Intrinsic::s390_vupllh: 42670b57cec5SDimitry Andric case Intrinsic::s390_vupllf: 42680b57cec5SDimitry Andric return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 42690b57cec5SDimitry Andric Op.getOperand(1)); 42700b57cec5SDimitry Andric 42710b57cec5SDimitry Andric case Intrinsic::s390_vsumb: 42720b57cec5SDimitry Andric case Intrinsic::s390_vsumh: 42730b57cec5SDimitry Andric case Intrinsic::s390_vsumgh: 42740b57cec5SDimitry Andric case Intrinsic::s390_vsumgf: 42750b57cec5SDimitry Andric case Intrinsic::s390_vsumqf: 42760b57cec5SDimitry Andric case Intrinsic::s390_vsumqg: 42770b57cec5SDimitry Andric return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 42780b57cec5SDimitry Andric Op.getOperand(1), Op.getOperand(2)); 42790b57cec5SDimitry Andric } 42800b57cec5SDimitry Andric 42810b57cec5SDimitry Andric return SDValue(); 42820b57cec5SDimitry Andric } 42830b57cec5SDimitry Andric 42840b57cec5SDimitry Andric namespace { 42850b57cec5SDimitry Andric // Says that SystemZISD operation Opcode can be used to perform the equivalent 42860b57cec5SDimitry Andric // of a VPERM with permute vector Bytes. If Opcode takes three operands, 42870b57cec5SDimitry Andric // Operand is the constant third operand, otherwise it is the number of 42880b57cec5SDimitry Andric // bytes in each element of the result. 42890b57cec5SDimitry Andric struct Permute { 42900b57cec5SDimitry Andric unsigned Opcode; 42910b57cec5SDimitry Andric unsigned Operand; 42920b57cec5SDimitry Andric unsigned char Bytes[SystemZ::VectorBytes]; 42930b57cec5SDimitry Andric }; 42940b57cec5SDimitry Andric } 42950b57cec5SDimitry Andric 42960b57cec5SDimitry Andric static const Permute PermuteForms[] = { 42970b57cec5SDimitry Andric // VMRHG 42980b57cec5SDimitry Andric { SystemZISD::MERGE_HIGH, 8, 42990b57cec5SDimitry Andric { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 43000b57cec5SDimitry Andric // VMRHF 43010b57cec5SDimitry Andric { SystemZISD::MERGE_HIGH, 4, 43020b57cec5SDimitry Andric { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 43030b57cec5SDimitry Andric // VMRHH 43040b57cec5SDimitry Andric { SystemZISD::MERGE_HIGH, 2, 43050b57cec5SDimitry Andric { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 43060b57cec5SDimitry Andric // VMRHB 43070b57cec5SDimitry Andric { SystemZISD::MERGE_HIGH, 1, 43080b57cec5SDimitry Andric { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 43090b57cec5SDimitry Andric // VMRLG 43100b57cec5SDimitry Andric { SystemZISD::MERGE_LOW, 8, 43110b57cec5SDimitry Andric { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 43120b57cec5SDimitry Andric // VMRLF 43130b57cec5SDimitry Andric { SystemZISD::MERGE_LOW, 4, 43140b57cec5SDimitry Andric { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 43150b57cec5SDimitry Andric // VMRLH 43160b57cec5SDimitry Andric { SystemZISD::MERGE_LOW, 2, 43170b57cec5SDimitry Andric { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 43180b57cec5SDimitry Andric // VMRLB 43190b57cec5SDimitry Andric { SystemZISD::MERGE_LOW, 1, 43200b57cec5SDimitry Andric { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 43210b57cec5SDimitry Andric // VPKG 43220b57cec5SDimitry Andric { SystemZISD::PACK, 4, 43230b57cec5SDimitry Andric { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 43240b57cec5SDimitry Andric // VPKF 43250b57cec5SDimitry Andric { SystemZISD::PACK, 2, 43260b57cec5SDimitry Andric { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 43270b57cec5SDimitry Andric // VPKH 43280b57cec5SDimitry Andric { SystemZISD::PACK, 1, 43290b57cec5SDimitry Andric { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 43300b57cec5SDimitry Andric // VPDI V1, V2, 4 (low half of V1, high half of V2) 43310b57cec5SDimitry Andric { SystemZISD::PERMUTE_DWORDS, 4, 43320b57cec5SDimitry Andric { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 43330b57cec5SDimitry Andric // VPDI V1, V2, 1 (high half of V1, low half of V2) 43340b57cec5SDimitry Andric { SystemZISD::PERMUTE_DWORDS, 1, 43350b57cec5SDimitry Andric { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 43360b57cec5SDimitry Andric }; 43370b57cec5SDimitry Andric 43380b57cec5SDimitry Andric // Called after matching a vector shuffle against a particular pattern. 43390b57cec5SDimitry Andric // Both the original shuffle and the pattern have two vector operands. 43400b57cec5SDimitry Andric // OpNos[0] is the operand of the original shuffle that should be used for 43410b57cec5SDimitry Andric // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 43420b57cec5SDimitry Andric // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 43430b57cec5SDimitry Andric // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 43440b57cec5SDimitry Andric // for operands 0 and 1 of the pattern. 43450b57cec5SDimitry Andric static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 43460b57cec5SDimitry Andric if (OpNos[0] < 0) { 43470b57cec5SDimitry Andric if (OpNos[1] < 0) 43480b57cec5SDimitry Andric return false; 43490b57cec5SDimitry Andric OpNo0 = OpNo1 = OpNos[1]; 43500b57cec5SDimitry Andric } else if (OpNos[1] < 0) { 43510b57cec5SDimitry Andric OpNo0 = OpNo1 = OpNos[0]; 43520b57cec5SDimitry Andric } else { 43530b57cec5SDimitry Andric OpNo0 = OpNos[0]; 43540b57cec5SDimitry Andric OpNo1 = OpNos[1]; 43550b57cec5SDimitry Andric } 43560b57cec5SDimitry Andric return true; 43570b57cec5SDimitry Andric } 43580b57cec5SDimitry Andric 43590b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 43600b57cec5SDimitry Andric // undefined bytes. Return true if the VPERM can be implemented using P. 43610b57cec5SDimitry Andric // When returning true set OpNo0 to the VPERM operand that should be 43620b57cec5SDimitry Andric // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 43630b57cec5SDimitry Andric // 43640b57cec5SDimitry Andric // For example, if swapping the VPERM operands allows P to match, OpNo0 43650b57cec5SDimitry Andric // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 43660b57cec5SDimitry Andric // operand, but rewriting it to use two duplicated operands allows it to 43670b57cec5SDimitry Andric // match P, then OpNo0 and OpNo1 will be the same. 43680b57cec5SDimitry Andric static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 43690b57cec5SDimitry Andric unsigned &OpNo0, unsigned &OpNo1) { 43700b57cec5SDimitry Andric int OpNos[] = { -1, -1 }; 43710b57cec5SDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 43720b57cec5SDimitry Andric int Elt = Bytes[I]; 43730b57cec5SDimitry Andric if (Elt >= 0) { 43740b57cec5SDimitry Andric // Make sure that the two permute vectors use the same suboperand 43750b57cec5SDimitry Andric // byte number. Only the operand numbers (the high bits) are 43760b57cec5SDimitry Andric // allowed to differ. 43770b57cec5SDimitry Andric if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 43780b57cec5SDimitry Andric return false; 43790b57cec5SDimitry Andric int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 43800b57cec5SDimitry Andric int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 43810b57cec5SDimitry Andric // Make sure that the operand mappings are consistent with previous 43820b57cec5SDimitry Andric // elements. 43830b57cec5SDimitry Andric if (OpNos[ModelOpNo] == 1 - RealOpNo) 43840b57cec5SDimitry Andric return false; 43850b57cec5SDimitry Andric OpNos[ModelOpNo] = RealOpNo; 43860b57cec5SDimitry Andric } 43870b57cec5SDimitry Andric } 43880b57cec5SDimitry Andric return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 43890b57cec5SDimitry Andric } 43900b57cec5SDimitry Andric 43910b57cec5SDimitry Andric // As above, but search for a matching permute. 43920b57cec5SDimitry Andric static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 43930b57cec5SDimitry Andric unsigned &OpNo0, unsigned &OpNo1) { 43940b57cec5SDimitry Andric for (auto &P : PermuteForms) 43950b57cec5SDimitry Andric if (matchPermute(Bytes, P, OpNo0, OpNo1)) 43960b57cec5SDimitry Andric return &P; 43970b57cec5SDimitry Andric return nullptr; 43980b57cec5SDimitry Andric } 43990b57cec5SDimitry Andric 44000b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 44010b57cec5SDimitry Andric // undefined bytes. This permute is an operand of an outer permute. 44020b57cec5SDimitry Andric // See whether redistributing the -1 bytes gives a shuffle that can be 44030b57cec5SDimitry Andric // implemented using P. If so, set Transform to a VPERM-like permute vector 44040b57cec5SDimitry Andric // that, when applied to the result of P, gives the original permute in Bytes. 44050b57cec5SDimitry Andric static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 44060b57cec5SDimitry Andric const Permute &P, 44070b57cec5SDimitry Andric SmallVectorImpl<int> &Transform) { 44080b57cec5SDimitry Andric unsigned To = 0; 44090b57cec5SDimitry Andric for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 44100b57cec5SDimitry Andric int Elt = Bytes[From]; 44110b57cec5SDimitry Andric if (Elt < 0) 44120b57cec5SDimitry Andric // Byte number From of the result is undefined. 44130b57cec5SDimitry Andric Transform[From] = -1; 44140b57cec5SDimitry Andric else { 44150b57cec5SDimitry Andric while (P.Bytes[To] != Elt) { 44160b57cec5SDimitry Andric To += 1; 44170b57cec5SDimitry Andric if (To == SystemZ::VectorBytes) 44180b57cec5SDimitry Andric return false; 44190b57cec5SDimitry Andric } 44200b57cec5SDimitry Andric Transform[From] = To; 44210b57cec5SDimitry Andric } 44220b57cec5SDimitry Andric } 44230b57cec5SDimitry Andric return true; 44240b57cec5SDimitry Andric } 44250b57cec5SDimitry Andric 44260b57cec5SDimitry Andric // As above, but search for a matching permute. 44270b57cec5SDimitry Andric static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 44280b57cec5SDimitry Andric SmallVectorImpl<int> &Transform) { 44290b57cec5SDimitry Andric for (auto &P : PermuteForms) 44300b57cec5SDimitry Andric if (matchDoublePermute(Bytes, P, Transform)) 44310b57cec5SDimitry Andric return &P; 44320b57cec5SDimitry Andric return nullptr; 44330b57cec5SDimitry Andric } 44340b57cec5SDimitry Andric 44350b57cec5SDimitry Andric // Convert the mask of the given shuffle op into a byte-level mask, 44360b57cec5SDimitry Andric // as if it had type vNi8. 44370b57cec5SDimitry Andric static bool getVPermMask(SDValue ShuffleOp, 44380b57cec5SDimitry Andric SmallVectorImpl<int> &Bytes) { 44390b57cec5SDimitry Andric EVT VT = ShuffleOp.getValueType(); 44400b57cec5SDimitry Andric unsigned NumElements = VT.getVectorNumElements(); 44410b57cec5SDimitry Andric unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 44420b57cec5SDimitry Andric 44430b57cec5SDimitry Andric if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 44440b57cec5SDimitry Andric Bytes.resize(NumElements * BytesPerElement, -1); 44450b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) { 44460b57cec5SDimitry Andric int Index = VSN->getMaskElt(I); 44470b57cec5SDimitry Andric if (Index >= 0) 44480b57cec5SDimitry Andric for (unsigned J = 0; J < BytesPerElement; ++J) 44490b57cec5SDimitry Andric Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 44500b57cec5SDimitry Andric } 44510b57cec5SDimitry Andric return true; 44520b57cec5SDimitry Andric } 44530b57cec5SDimitry Andric if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 44540b57cec5SDimitry Andric isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 44550b57cec5SDimitry Andric unsigned Index = ShuffleOp.getConstantOperandVal(1); 44560b57cec5SDimitry Andric Bytes.resize(NumElements * BytesPerElement, -1); 44570b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 44580b57cec5SDimitry Andric for (unsigned J = 0; J < BytesPerElement; ++J) 44590b57cec5SDimitry Andric Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 44600b57cec5SDimitry Andric return true; 44610b57cec5SDimitry Andric } 44620b57cec5SDimitry Andric return false; 44630b57cec5SDimitry Andric } 44640b57cec5SDimitry Andric 44650b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 44660b57cec5SDimitry Andric // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 44670b57cec5SDimitry Andric // the result come from a contiguous sequence of bytes from one input. 44680b57cec5SDimitry Andric // Set Base to the selector for the first byte if so. 44690b57cec5SDimitry Andric static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 44700b57cec5SDimitry Andric unsigned BytesPerElement, int &Base) { 44710b57cec5SDimitry Andric Base = -1; 44720b57cec5SDimitry Andric for (unsigned I = 0; I < BytesPerElement; ++I) { 44730b57cec5SDimitry Andric if (Bytes[Start + I] >= 0) { 44740b57cec5SDimitry Andric unsigned Elem = Bytes[Start + I]; 44750b57cec5SDimitry Andric if (Base < 0) { 44760b57cec5SDimitry Andric Base = Elem - I; 44770b57cec5SDimitry Andric // Make sure the bytes would come from one input operand. 44780b57cec5SDimitry Andric if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 44790b57cec5SDimitry Andric return false; 44800b57cec5SDimitry Andric } else if (unsigned(Base) != Elem - I) 44810b57cec5SDimitry Andric return false; 44820b57cec5SDimitry Andric } 44830b57cec5SDimitry Andric } 44840b57cec5SDimitry Andric return true; 44850b57cec5SDimitry Andric } 44860b57cec5SDimitry Andric 44870b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 44885ffd83dbSDimitry Andric // undefined bytes. Return true if it can be performed using VSLDB. 44890b57cec5SDimitry Andric // When returning true, set StartIndex to the shift amount and OpNo0 44900b57cec5SDimitry Andric // and OpNo1 to the VPERM operands that should be used as the first 44910b57cec5SDimitry Andric // and second shift operand respectively. 44920b57cec5SDimitry Andric static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 44930b57cec5SDimitry Andric unsigned &StartIndex, unsigned &OpNo0, 44940b57cec5SDimitry Andric unsigned &OpNo1) { 44950b57cec5SDimitry Andric int OpNos[] = { -1, -1 }; 44960b57cec5SDimitry Andric int Shift = -1; 44970b57cec5SDimitry Andric for (unsigned I = 0; I < 16; ++I) { 44980b57cec5SDimitry Andric int Index = Bytes[I]; 44990b57cec5SDimitry Andric if (Index >= 0) { 45000b57cec5SDimitry Andric int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 45010b57cec5SDimitry Andric int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 45020b57cec5SDimitry Andric int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 45030b57cec5SDimitry Andric if (Shift < 0) 45040b57cec5SDimitry Andric Shift = ExpectedShift; 45050b57cec5SDimitry Andric else if (Shift != ExpectedShift) 45060b57cec5SDimitry Andric return false; 45070b57cec5SDimitry Andric // Make sure that the operand mappings are consistent with previous 45080b57cec5SDimitry Andric // elements. 45090b57cec5SDimitry Andric if (OpNos[ModelOpNo] == 1 - RealOpNo) 45100b57cec5SDimitry Andric return false; 45110b57cec5SDimitry Andric OpNos[ModelOpNo] = RealOpNo; 45120b57cec5SDimitry Andric } 45130b57cec5SDimitry Andric } 45140b57cec5SDimitry Andric StartIndex = Shift; 45150b57cec5SDimitry Andric return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 45160b57cec5SDimitry Andric } 45170b57cec5SDimitry Andric 45180b57cec5SDimitry Andric // Create a node that performs P on operands Op0 and Op1, casting the 45190b57cec5SDimitry Andric // operands to the appropriate type. The type of the result is determined by P. 45200b57cec5SDimitry Andric static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 45210b57cec5SDimitry Andric const Permute &P, SDValue Op0, SDValue Op1) { 45220b57cec5SDimitry Andric // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 45230b57cec5SDimitry Andric // elements of a PACK are twice as wide as the outputs. 45240b57cec5SDimitry Andric unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 45250b57cec5SDimitry Andric P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 45260b57cec5SDimitry Andric P.Operand); 45270b57cec5SDimitry Andric // Cast both operands to the appropriate type. 45280b57cec5SDimitry Andric MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 45290b57cec5SDimitry Andric SystemZ::VectorBytes / InBytes); 45300b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 45310b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 45320b57cec5SDimitry Andric SDValue Op; 45330b57cec5SDimitry Andric if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 45348bcb0991SDimitry Andric SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 45350b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 45360b57cec5SDimitry Andric } else if (P.Opcode == SystemZISD::PACK) { 45370b57cec5SDimitry Andric MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 45380b57cec5SDimitry Andric SystemZ::VectorBytes / P.Operand); 45390b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 45400b57cec5SDimitry Andric } else { 45410b57cec5SDimitry Andric Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 45420b57cec5SDimitry Andric } 45430b57cec5SDimitry Andric return Op; 45440b57cec5SDimitry Andric } 45450b57cec5SDimitry Andric 45465ffd83dbSDimitry Andric static bool isZeroVector(SDValue N) { 45475ffd83dbSDimitry Andric if (N->getOpcode() == ISD::BITCAST) 45485ffd83dbSDimitry Andric N = N->getOperand(0); 45495ffd83dbSDimitry Andric if (N->getOpcode() == ISD::SPLAT_VECTOR) 45505ffd83dbSDimitry Andric if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 45515ffd83dbSDimitry Andric return Op->getZExtValue() == 0; 45525ffd83dbSDimitry Andric return ISD::isBuildVectorAllZeros(N.getNode()); 45535ffd83dbSDimitry Andric } 45545ffd83dbSDimitry Andric 45555ffd83dbSDimitry Andric // Return the index of the zero/undef vector, or UINT32_MAX if not found. 45565ffd83dbSDimitry Andric static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 45575ffd83dbSDimitry Andric for (unsigned I = 0; I < Num ; I++) 45585ffd83dbSDimitry Andric if (isZeroVector(Ops[I])) 45595ffd83dbSDimitry Andric return I; 45605ffd83dbSDimitry Andric return UINT32_MAX; 45615ffd83dbSDimitry Andric } 45625ffd83dbSDimitry Andric 45630b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 45640b57cec5SDimitry Andric // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 45655ffd83dbSDimitry Andric // VSLDB or VPERM. 45660b57cec5SDimitry Andric static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 45670b57cec5SDimitry Andric SDValue *Ops, 45680b57cec5SDimitry Andric const SmallVectorImpl<int> &Bytes) { 45690b57cec5SDimitry Andric for (unsigned I = 0; I < 2; ++I) 45700b57cec5SDimitry Andric Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 45710b57cec5SDimitry Andric 45725ffd83dbSDimitry Andric // First see whether VSLDB can be used. 45730b57cec5SDimitry Andric unsigned StartIndex, OpNo0, OpNo1; 45740b57cec5SDimitry Andric if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 45750b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 45768bcb0991SDimitry Andric Ops[OpNo1], 45778bcb0991SDimitry Andric DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 45780b57cec5SDimitry Andric 45795ffd83dbSDimitry Andric // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 45805ffd83dbSDimitry Andric // eliminate a zero vector by reusing any zero index in the permute vector. 45815ffd83dbSDimitry Andric unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 45825ffd83dbSDimitry Andric if (ZeroVecIdx != UINT32_MAX) { 45835ffd83dbSDimitry Andric bool MaskFirst = true; 45845ffd83dbSDimitry Andric int ZeroIdx = -1; 45855ffd83dbSDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 45865ffd83dbSDimitry Andric unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 45875ffd83dbSDimitry Andric unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 45885ffd83dbSDimitry Andric if (OpNo == ZeroVecIdx && I == 0) { 45895ffd83dbSDimitry Andric // If the first byte is zero, use mask as first operand. 45905ffd83dbSDimitry Andric ZeroIdx = 0; 45915ffd83dbSDimitry Andric break; 45925ffd83dbSDimitry Andric } 45935ffd83dbSDimitry Andric if (OpNo != ZeroVecIdx && Byte == 0) { 45945ffd83dbSDimitry Andric // If mask contains a zero, use it by placing that vector first. 45955ffd83dbSDimitry Andric ZeroIdx = I + SystemZ::VectorBytes; 45965ffd83dbSDimitry Andric MaskFirst = false; 45975ffd83dbSDimitry Andric break; 45985ffd83dbSDimitry Andric } 45995ffd83dbSDimitry Andric } 46005ffd83dbSDimitry Andric if (ZeroIdx != -1) { 46015ffd83dbSDimitry Andric SDValue IndexNodes[SystemZ::VectorBytes]; 46025ffd83dbSDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 46035ffd83dbSDimitry Andric if (Bytes[I] >= 0) { 46045ffd83dbSDimitry Andric unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 46055ffd83dbSDimitry Andric unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 46065ffd83dbSDimitry Andric if (OpNo == ZeroVecIdx) 46075ffd83dbSDimitry Andric IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 46085ffd83dbSDimitry Andric else { 46095ffd83dbSDimitry Andric unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 46105ffd83dbSDimitry Andric IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 46115ffd83dbSDimitry Andric } 46125ffd83dbSDimitry Andric } else 46135ffd83dbSDimitry Andric IndexNodes[I] = DAG.getUNDEF(MVT::i32); 46145ffd83dbSDimitry Andric } 46155ffd83dbSDimitry Andric SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 46165ffd83dbSDimitry Andric SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 46175ffd83dbSDimitry Andric if (MaskFirst) 46185ffd83dbSDimitry Andric return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 46195ffd83dbSDimitry Andric Mask); 46205ffd83dbSDimitry Andric else 46215ffd83dbSDimitry Andric return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 46225ffd83dbSDimitry Andric Mask); 46235ffd83dbSDimitry Andric } 46245ffd83dbSDimitry Andric } 46255ffd83dbSDimitry Andric 46260b57cec5SDimitry Andric SDValue IndexNodes[SystemZ::VectorBytes]; 46270b57cec5SDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 46280b57cec5SDimitry Andric if (Bytes[I] >= 0) 46290b57cec5SDimitry Andric IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 46300b57cec5SDimitry Andric else 46310b57cec5SDimitry Andric IndexNodes[I] = DAG.getUNDEF(MVT::i32); 46320b57cec5SDimitry Andric SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 46335ffd83dbSDimitry Andric return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 46345ffd83dbSDimitry Andric (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 46350b57cec5SDimitry Andric } 46360b57cec5SDimitry Andric 46370b57cec5SDimitry Andric namespace { 46380b57cec5SDimitry Andric // Describes a general N-operand vector shuffle. 46390b57cec5SDimitry Andric struct GeneralShuffle { 46405ffd83dbSDimitry Andric GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 46410b57cec5SDimitry Andric void addUndef(); 46420b57cec5SDimitry Andric bool add(SDValue, unsigned); 46430b57cec5SDimitry Andric SDValue getNode(SelectionDAG &, const SDLoc &); 46445ffd83dbSDimitry Andric void tryPrepareForUnpack(); 46455ffd83dbSDimitry Andric bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 46465ffd83dbSDimitry Andric SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 46470b57cec5SDimitry Andric 46480b57cec5SDimitry Andric // The operands of the shuffle. 46490b57cec5SDimitry Andric SmallVector<SDValue, SystemZ::VectorBytes> Ops; 46500b57cec5SDimitry Andric 46510b57cec5SDimitry Andric // Index I is -1 if byte I of the result is undefined. Otherwise the 46520b57cec5SDimitry Andric // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 46530b57cec5SDimitry Andric // Bytes[I] / SystemZ::VectorBytes. 46540b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> Bytes; 46550b57cec5SDimitry Andric 46560b57cec5SDimitry Andric // The type of the shuffle result. 46570b57cec5SDimitry Andric EVT VT; 46585ffd83dbSDimitry Andric 46595ffd83dbSDimitry Andric // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 46605ffd83dbSDimitry Andric unsigned UnpackFromEltSize; 46610b57cec5SDimitry Andric }; 46620b57cec5SDimitry Andric } 46630b57cec5SDimitry Andric 46640b57cec5SDimitry Andric // Add an extra undefined element to the shuffle. 46650b57cec5SDimitry Andric void GeneralShuffle::addUndef() { 46660b57cec5SDimitry Andric unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 46670b57cec5SDimitry Andric for (unsigned I = 0; I < BytesPerElement; ++I) 46680b57cec5SDimitry Andric Bytes.push_back(-1); 46690b57cec5SDimitry Andric } 46700b57cec5SDimitry Andric 46710b57cec5SDimitry Andric // Add an extra element to the shuffle, taking it from element Elem of Op. 46720b57cec5SDimitry Andric // A null Op indicates a vector input whose value will be calculated later; 46730b57cec5SDimitry Andric // there is at most one such input per shuffle and it always has the same 46740b57cec5SDimitry Andric // type as the result. Aborts and returns false if the source vector elements 46750b57cec5SDimitry Andric // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 46760b57cec5SDimitry Andric // LLVM they become implicitly extended, but this is rare and not optimized. 46770b57cec5SDimitry Andric bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 46780b57cec5SDimitry Andric unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 46790b57cec5SDimitry Andric 46800b57cec5SDimitry Andric // The source vector can have wider elements than the result, 46810b57cec5SDimitry Andric // either through an explicit TRUNCATE or because of type legalization. 46820b57cec5SDimitry Andric // We want the least significant part. 46830b57cec5SDimitry Andric EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 46840b57cec5SDimitry Andric unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 46850b57cec5SDimitry Andric 46860b57cec5SDimitry Andric // Return false if the source elements are smaller than their destination 46870b57cec5SDimitry Andric // elements. 46880b57cec5SDimitry Andric if (FromBytesPerElement < BytesPerElement) 46890b57cec5SDimitry Andric return false; 46900b57cec5SDimitry Andric 46910b57cec5SDimitry Andric unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 46920b57cec5SDimitry Andric (FromBytesPerElement - BytesPerElement)); 46930b57cec5SDimitry Andric 46940b57cec5SDimitry Andric // Look through things like shuffles and bitcasts. 46950b57cec5SDimitry Andric while (Op.getNode()) { 46960b57cec5SDimitry Andric if (Op.getOpcode() == ISD::BITCAST) 46970b57cec5SDimitry Andric Op = Op.getOperand(0); 46980b57cec5SDimitry Andric else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 46990b57cec5SDimitry Andric // See whether the bytes we need come from a contiguous part of one 47000b57cec5SDimitry Andric // operand. 47010b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> OpBytes; 47020b57cec5SDimitry Andric if (!getVPermMask(Op, OpBytes)) 47030b57cec5SDimitry Andric break; 47040b57cec5SDimitry Andric int NewByte; 47050b57cec5SDimitry Andric if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 47060b57cec5SDimitry Andric break; 47070b57cec5SDimitry Andric if (NewByte < 0) { 47080b57cec5SDimitry Andric addUndef(); 47090b57cec5SDimitry Andric return true; 47100b57cec5SDimitry Andric } 47110b57cec5SDimitry Andric Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 47120b57cec5SDimitry Andric Byte = unsigned(NewByte) % SystemZ::VectorBytes; 47130b57cec5SDimitry Andric } else if (Op.isUndef()) { 47140b57cec5SDimitry Andric addUndef(); 47150b57cec5SDimitry Andric return true; 47160b57cec5SDimitry Andric } else 47170b57cec5SDimitry Andric break; 47180b57cec5SDimitry Andric } 47190b57cec5SDimitry Andric 47200b57cec5SDimitry Andric // Make sure that the source of the extraction is in Ops. 47210b57cec5SDimitry Andric unsigned OpNo = 0; 47220b57cec5SDimitry Andric for (; OpNo < Ops.size(); ++OpNo) 47230b57cec5SDimitry Andric if (Ops[OpNo] == Op) 47240b57cec5SDimitry Andric break; 47250b57cec5SDimitry Andric if (OpNo == Ops.size()) 47260b57cec5SDimitry Andric Ops.push_back(Op); 47270b57cec5SDimitry Andric 47280b57cec5SDimitry Andric // Add the element to Bytes. 47290b57cec5SDimitry Andric unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 47300b57cec5SDimitry Andric for (unsigned I = 0; I < BytesPerElement; ++I) 47310b57cec5SDimitry Andric Bytes.push_back(Base + I); 47320b57cec5SDimitry Andric 47330b57cec5SDimitry Andric return true; 47340b57cec5SDimitry Andric } 47350b57cec5SDimitry Andric 47360b57cec5SDimitry Andric // Return SDNodes for the completed shuffle. 47370b57cec5SDimitry Andric SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 47380b57cec5SDimitry Andric assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 47390b57cec5SDimitry Andric 47400b57cec5SDimitry Andric if (Ops.size() == 0) 47410b57cec5SDimitry Andric return DAG.getUNDEF(VT); 47420b57cec5SDimitry Andric 47435ffd83dbSDimitry Andric // Use a single unpack if possible as the last operation. 47445ffd83dbSDimitry Andric tryPrepareForUnpack(); 47455ffd83dbSDimitry Andric 47460b57cec5SDimitry Andric // Make sure that there are at least two shuffle operands. 47470b57cec5SDimitry Andric if (Ops.size() == 1) 47480b57cec5SDimitry Andric Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 47490b57cec5SDimitry Andric 47500b57cec5SDimitry Andric // Create a tree of shuffles, deferring root node until after the loop. 47510b57cec5SDimitry Andric // Try to redistribute the undefined elements of non-root nodes so that 47520b57cec5SDimitry Andric // the non-root shuffles match something like a pack or merge, then adjust 47530b57cec5SDimitry Andric // the parent node's permute vector to compensate for the new order. 47540b57cec5SDimitry Andric // Among other things, this copes with vectors like <2 x i16> that were 47550b57cec5SDimitry Andric // padded with undefined elements during type legalization. 47560b57cec5SDimitry Andric // 47570b57cec5SDimitry Andric // In the best case this redistribution will lead to the whole tree 47580b57cec5SDimitry Andric // using packs and merges. It should rarely be a loss in other cases. 47590b57cec5SDimitry Andric unsigned Stride = 1; 47600b57cec5SDimitry Andric for (; Stride * 2 < Ops.size(); Stride *= 2) { 47610b57cec5SDimitry Andric for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 47620b57cec5SDimitry Andric SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 47630b57cec5SDimitry Andric 47640b57cec5SDimitry Andric // Create a mask for just these two operands. 47650b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 47660b57cec5SDimitry Andric for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 47670b57cec5SDimitry Andric unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 47680b57cec5SDimitry Andric unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 47690b57cec5SDimitry Andric if (OpNo == I) 47700b57cec5SDimitry Andric NewBytes[J] = Byte; 47710b57cec5SDimitry Andric else if (OpNo == I + Stride) 47720b57cec5SDimitry Andric NewBytes[J] = SystemZ::VectorBytes + Byte; 47730b57cec5SDimitry Andric else 47740b57cec5SDimitry Andric NewBytes[J] = -1; 47750b57cec5SDimitry Andric } 47760b57cec5SDimitry Andric // See if it would be better to reorganize NewMask to avoid using VPERM. 47770b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 47780b57cec5SDimitry Andric if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 47790b57cec5SDimitry Andric Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 47800b57cec5SDimitry Andric // Applying NewBytesMap to Ops[I] gets back to NewBytes. 47810b57cec5SDimitry Andric for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 47820b57cec5SDimitry Andric if (NewBytes[J] >= 0) { 47830b57cec5SDimitry Andric assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 47840b57cec5SDimitry Andric "Invalid double permute"); 47850b57cec5SDimitry Andric Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 47860b57cec5SDimitry Andric } else 47870b57cec5SDimitry Andric assert(NewBytesMap[J] < 0 && "Invalid double permute"); 47880b57cec5SDimitry Andric } 47890b57cec5SDimitry Andric } else { 47900b57cec5SDimitry Andric // Just use NewBytes on the operands. 47910b57cec5SDimitry Andric Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 47920b57cec5SDimitry Andric for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 47930b57cec5SDimitry Andric if (NewBytes[J] >= 0) 47940b57cec5SDimitry Andric Bytes[J] = I * SystemZ::VectorBytes + J; 47950b57cec5SDimitry Andric } 47960b57cec5SDimitry Andric } 47970b57cec5SDimitry Andric } 47980b57cec5SDimitry Andric 47990b57cec5SDimitry Andric // Now we just have 2 inputs. Put the second operand in Ops[1]. 48000b57cec5SDimitry Andric if (Stride > 1) { 48010b57cec5SDimitry Andric Ops[1] = Ops[Stride]; 48020b57cec5SDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 48030b57cec5SDimitry Andric if (Bytes[I] >= int(SystemZ::VectorBytes)) 48040b57cec5SDimitry Andric Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 48050b57cec5SDimitry Andric } 48060b57cec5SDimitry Andric 48070b57cec5SDimitry Andric // Look for an instruction that can do the permute without resorting 48080b57cec5SDimitry Andric // to VPERM. 48090b57cec5SDimitry Andric unsigned OpNo0, OpNo1; 48100b57cec5SDimitry Andric SDValue Op; 48115ffd83dbSDimitry Andric if (unpackWasPrepared() && Ops[1].isUndef()) 48125ffd83dbSDimitry Andric Op = Ops[0]; 48135ffd83dbSDimitry Andric else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 48140b57cec5SDimitry Andric Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 48150b57cec5SDimitry Andric else 48160b57cec5SDimitry Andric Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 48175ffd83dbSDimitry Andric 48185ffd83dbSDimitry Andric Op = insertUnpackIfPrepared(DAG, DL, Op); 48195ffd83dbSDimitry Andric 48200b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, DL, VT, Op); 48210b57cec5SDimitry Andric } 48220b57cec5SDimitry Andric 48235ffd83dbSDimitry Andric #ifndef NDEBUG 48245ffd83dbSDimitry Andric static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 48255ffd83dbSDimitry Andric dbgs() << Msg.c_str() << " { "; 48265ffd83dbSDimitry Andric for (unsigned i = 0; i < Bytes.size(); i++) 48275ffd83dbSDimitry Andric dbgs() << Bytes[i] << " "; 48285ffd83dbSDimitry Andric dbgs() << "}\n"; 48295ffd83dbSDimitry Andric } 48305ffd83dbSDimitry Andric #endif 48315ffd83dbSDimitry Andric 48325ffd83dbSDimitry Andric // If the Bytes vector matches an unpack operation, prepare to do the unpack 48335ffd83dbSDimitry Andric // after all else by removing the zero vector and the effect of the unpack on 48345ffd83dbSDimitry Andric // Bytes. 48355ffd83dbSDimitry Andric void GeneralShuffle::tryPrepareForUnpack() { 48365ffd83dbSDimitry Andric uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 48375ffd83dbSDimitry Andric if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 48385ffd83dbSDimitry Andric return; 48395ffd83dbSDimitry Andric 48405ffd83dbSDimitry Andric // Only do this if removing the zero vector reduces the depth, otherwise 48415ffd83dbSDimitry Andric // the critical path will increase with the final unpack. 48425ffd83dbSDimitry Andric if (Ops.size() > 2 && 48435ffd83dbSDimitry Andric Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 48445ffd83dbSDimitry Andric return; 48455ffd83dbSDimitry Andric 48465ffd83dbSDimitry Andric // Find an unpack that would allow removing the zero vector from Ops. 48475ffd83dbSDimitry Andric UnpackFromEltSize = 1; 48485ffd83dbSDimitry Andric for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 48495ffd83dbSDimitry Andric bool MatchUnpack = true; 48505ffd83dbSDimitry Andric SmallVector<int, SystemZ::VectorBytes> SrcBytes; 48515ffd83dbSDimitry Andric for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 48525ffd83dbSDimitry Andric unsigned ToEltSize = UnpackFromEltSize * 2; 48535ffd83dbSDimitry Andric bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 48545ffd83dbSDimitry Andric if (!IsZextByte) 48555ffd83dbSDimitry Andric SrcBytes.push_back(Bytes[Elt]); 48565ffd83dbSDimitry Andric if (Bytes[Elt] != -1) { 48575ffd83dbSDimitry Andric unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 48585ffd83dbSDimitry Andric if (IsZextByte != (OpNo == ZeroVecOpNo)) { 48595ffd83dbSDimitry Andric MatchUnpack = false; 48605ffd83dbSDimitry Andric break; 48615ffd83dbSDimitry Andric } 48625ffd83dbSDimitry Andric } 48635ffd83dbSDimitry Andric } 48645ffd83dbSDimitry Andric if (MatchUnpack) { 48655ffd83dbSDimitry Andric if (Ops.size() == 2) { 48665ffd83dbSDimitry Andric // Don't use unpack if a single source operand needs rearrangement. 48675ffd83dbSDimitry Andric for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 48685ffd83dbSDimitry Andric if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 48695ffd83dbSDimitry Andric UnpackFromEltSize = UINT_MAX; 48705ffd83dbSDimitry Andric return; 48715ffd83dbSDimitry Andric } 48725ffd83dbSDimitry Andric } 48735ffd83dbSDimitry Andric break; 48745ffd83dbSDimitry Andric } 48755ffd83dbSDimitry Andric } 48765ffd83dbSDimitry Andric if (UnpackFromEltSize > 4) 48775ffd83dbSDimitry Andric return; 48785ffd83dbSDimitry Andric 48795ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 48805ffd83dbSDimitry Andric << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 48815ffd83dbSDimitry Andric << ".\n"; 48825ffd83dbSDimitry Andric dumpBytes(Bytes, "Original Bytes vector:");); 48835ffd83dbSDimitry Andric 48845ffd83dbSDimitry Andric // Apply the unpack in reverse to the Bytes array. 48855ffd83dbSDimitry Andric unsigned B = 0; 48865ffd83dbSDimitry Andric for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 48875ffd83dbSDimitry Andric Elt += UnpackFromEltSize; 48885ffd83dbSDimitry Andric for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 48895ffd83dbSDimitry Andric Bytes[B] = Bytes[Elt]; 48905ffd83dbSDimitry Andric } 48915ffd83dbSDimitry Andric while (B < SystemZ::VectorBytes) 48925ffd83dbSDimitry Andric Bytes[B++] = -1; 48935ffd83dbSDimitry Andric 48945ffd83dbSDimitry Andric // Remove the zero vector from Ops 48955ffd83dbSDimitry Andric Ops.erase(&Ops[ZeroVecOpNo]); 48965ffd83dbSDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 48975ffd83dbSDimitry Andric if (Bytes[I] >= 0) { 48985ffd83dbSDimitry Andric unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 48995ffd83dbSDimitry Andric if (OpNo > ZeroVecOpNo) 49005ffd83dbSDimitry Andric Bytes[I] -= SystemZ::VectorBytes; 49015ffd83dbSDimitry Andric } 49025ffd83dbSDimitry Andric 49035ffd83dbSDimitry Andric LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 49045ffd83dbSDimitry Andric dbgs() << "\n";); 49055ffd83dbSDimitry Andric } 49065ffd83dbSDimitry Andric 49075ffd83dbSDimitry Andric SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 49085ffd83dbSDimitry Andric const SDLoc &DL, 49095ffd83dbSDimitry Andric SDValue Op) { 49105ffd83dbSDimitry Andric if (!unpackWasPrepared()) 49115ffd83dbSDimitry Andric return Op; 49125ffd83dbSDimitry Andric unsigned InBits = UnpackFromEltSize * 8; 49135ffd83dbSDimitry Andric EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 49145ffd83dbSDimitry Andric SystemZ::VectorBits / InBits); 49155ffd83dbSDimitry Andric SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 49165ffd83dbSDimitry Andric unsigned OutBits = InBits * 2; 49175ffd83dbSDimitry Andric EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 49185ffd83dbSDimitry Andric SystemZ::VectorBits / OutBits); 49195ffd83dbSDimitry Andric return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 49205ffd83dbSDimitry Andric } 49215ffd83dbSDimitry Andric 49220b57cec5SDimitry Andric // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 49230b57cec5SDimitry Andric static bool isScalarToVector(SDValue Op) { 49240b57cec5SDimitry Andric for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 49250b57cec5SDimitry Andric if (!Op.getOperand(I).isUndef()) 49260b57cec5SDimitry Andric return false; 49270b57cec5SDimitry Andric return true; 49280b57cec5SDimitry Andric } 49290b57cec5SDimitry Andric 49300b57cec5SDimitry Andric // Return a vector of type VT that contains Value in the first element. 49310b57cec5SDimitry Andric // The other elements don't matter. 49320b57cec5SDimitry Andric static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 49330b57cec5SDimitry Andric SDValue Value) { 49340b57cec5SDimitry Andric // If we have a constant, replicate it to all elements and let the 49350b57cec5SDimitry Andric // BUILD_VECTOR lowering take care of it. 49360b57cec5SDimitry Andric if (Value.getOpcode() == ISD::Constant || 49370b57cec5SDimitry Andric Value.getOpcode() == ISD::ConstantFP) { 49380b57cec5SDimitry Andric SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 49390b57cec5SDimitry Andric return DAG.getBuildVector(VT, DL, Ops); 49400b57cec5SDimitry Andric } 49410b57cec5SDimitry Andric if (Value.isUndef()) 49420b57cec5SDimitry Andric return DAG.getUNDEF(VT); 49430b57cec5SDimitry Andric return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 49440b57cec5SDimitry Andric } 49450b57cec5SDimitry Andric 49460b57cec5SDimitry Andric // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 49470b57cec5SDimitry Andric // element 1. Used for cases in which replication is cheap. 49480b57cec5SDimitry Andric static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 49490b57cec5SDimitry Andric SDValue Op0, SDValue Op1) { 49500b57cec5SDimitry Andric if (Op0.isUndef()) { 49510b57cec5SDimitry Andric if (Op1.isUndef()) 49520b57cec5SDimitry Andric return DAG.getUNDEF(VT); 49530b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 49540b57cec5SDimitry Andric } 49550b57cec5SDimitry Andric if (Op1.isUndef()) 49560b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 49570b57cec5SDimitry Andric return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 49580b57cec5SDimitry Andric buildScalarToVector(DAG, DL, VT, Op0), 49590b57cec5SDimitry Andric buildScalarToVector(DAG, DL, VT, Op1)); 49600b57cec5SDimitry Andric } 49610b57cec5SDimitry Andric 49620b57cec5SDimitry Andric // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 49630b57cec5SDimitry Andric // vector for them. 49640b57cec5SDimitry Andric static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 49650b57cec5SDimitry Andric SDValue Op1) { 49660b57cec5SDimitry Andric if (Op0.isUndef() && Op1.isUndef()) 49670b57cec5SDimitry Andric return DAG.getUNDEF(MVT::v2i64); 49680b57cec5SDimitry Andric // If one of the two inputs is undefined then replicate the other one, 49690b57cec5SDimitry Andric // in order to avoid using another register unnecessarily. 49700b57cec5SDimitry Andric if (Op0.isUndef()) 49710b57cec5SDimitry Andric Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 49720b57cec5SDimitry Andric else if (Op1.isUndef()) 49730b57cec5SDimitry Andric Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 49740b57cec5SDimitry Andric else { 49750b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 49760b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 49770b57cec5SDimitry Andric } 49780b57cec5SDimitry Andric return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 49790b57cec5SDimitry Andric } 49800b57cec5SDimitry Andric 49810b57cec5SDimitry Andric // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 49820b57cec5SDimitry Andric // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 49830b57cec5SDimitry Andric // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 49840b57cec5SDimitry Andric // would benefit from this representation and return it if so. 49850b57cec5SDimitry Andric static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 49860b57cec5SDimitry Andric BuildVectorSDNode *BVN) { 49870b57cec5SDimitry Andric EVT VT = BVN->getValueType(0); 49880b57cec5SDimitry Andric unsigned NumElements = VT.getVectorNumElements(); 49890b57cec5SDimitry Andric 49900b57cec5SDimitry Andric // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 49910b57cec5SDimitry Andric // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 49920b57cec5SDimitry Andric // need a BUILD_VECTOR, add an additional placeholder operand for that 49930b57cec5SDimitry Andric // BUILD_VECTOR and store its operands in ResidueOps. 49940b57cec5SDimitry Andric GeneralShuffle GS(VT); 49950b57cec5SDimitry Andric SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 49960b57cec5SDimitry Andric bool FoundOne = false; 49970b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) { 49980b57cec5SDimitry Andric SDValue Op = BVN->getOperand(I); 49990b57cec5SDimitry Andric if (Op.getOpcode() == ISD::TRUNCATE) 50000b57cec5SDimitry Andric Op = Op.getOperand(0); 50010b57cec5SDimitry Andric if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 50020b57cec5SDimitry Andric Op.getOperand(1).getOpcode() == ISD::Constant) { 50030b57cec5SDimitry Andric unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 50040b57cec5SDimitry Andric if (!GS.add(Op.getOperand(0), Elem)) 50050b57cec5SDimitry Andric return SDValue(); 50060b57cec5SDimitry Andric FoundOne = true; 50070b57cec5SDimitry Andric } else if (Op.isUndef()) { 50080b57cec5SDimitry Andric GS.addUndef(); 50090b57cec5SDimitry Andric } else { 50100b57cec5SDimitry Andric if (!GS.add(SDValue(), ResidueOps.size())) 50110b57cec5SDimitry Andric return SDValue(); 50120b57cec5SDimitry Andric ResidueOps.push_back(BVN->getOperand(I)); 50130b57cec5SDimitry Andric } 50140b57cec5SDimitry Andric } 50150b57cec5SDimitry Andric 50160b57cec5SDimitry Andric // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 50170b57cec5SDimitry Andric if (!FoundOne) 50180b57cec5SDimitry Andric return SDValue(); 50190b57cec5SDimitry Andric 50200b57cec5SDimitry Andric // Create the BUILD_VECTOR for the remaining elements, if any. 50210b57cec5SDimitry Andric if (!ResidueOps.empty()) { 50220b57cec5SDimitry Andric while (ResidueOps.size() < NumElements) 50230b57cec5SDimitry Andric ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 50240b57cec5SDimitry Andric for (auto &Op : GS.Ops) { 50250b57cec5SDimitry Andric if (!Op.getNode()) { 50260b57cec5SDimitry Andric Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 50270b57cec5SDimitry Andric break; 50280b57cec5SDimitry Andric } 50290b57cec5SDimitry Andric } 50300b57cec5SDimitry Andric } 50310b57cec5SDimitry Andric return GS.getNode(DAG, SDLoc(BVN)); 50320b57cec5SDimitry Andric } 50330b57cec5SDimitry Andric 50340b57cec5SDimitry Andric bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 50350b57cec5SDimitry Andric if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 50360b57cec5SDimitry Andric return true; 50370b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 50380b57cec5SDimitry Andric return true; 50390b57cec5SDimitry Andric return false; 50400b57cec5SDimitry Andric } 50410b57cec5SDimitry Andric 50420b57cec5SDimitry Andric // Combine GPR scalar values Elems into a vector of type VT. 50430b57cec5SDimitry Andric SDValue 50440b57cec5SDimitry Andric SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 50450b57cec5SDimitry Andric SmallVectorImpl<SDValue> &Elems) const { 50460b57cec5SDimitry Andric // See whether there is a single replicated value. 50470b57cec5SDimitry Andric SDValue Single; 50480b57cec5SDimitry Andric unsigned int NumElements = Elems.size(); 50490b57cec5SDimitry Andric unsigned int Count = 0; 50500b57cec5SDimitry Andric for (auto Elem : Elems) { 50510b57cec5SDimitry Andric if (!Elem.isUndef()) { 50520b57cec5SDimitry Andric if (!Single.getNode()) 50530b57cec5SDimitry Andric Single = Elem; 50540b57cec5SDimitry Andric else if (Elem != Single) { 50550b57cec5SDimitry Andric Single = SDValue(); 50560b57cec5SDimitry Andric break; 50570b57cec5SDimitry Andric } 50580b57cec5SDimitry Andric Count += 1; 50590b57cec5SDimitry Andric } 50600b57cec5SDimitry Andric } 50610b57cec5SDimitry Andric // There are three cases here: 50620b57cec5SDimitry Andric // 50630b57cec5SDimitry Andric // - if the only defined element is a loaded one, the best sequence 50640b57cec5SDimitry Andric // is a replicating load. 50650b57cec5SDimitry Andric // 50660b57cec5SDimitry Andric // - otherwise, if the only defined element is an i64 value, we will 50670b57cec5SDimitry Andric // end up with the same VLVGP sequence regardless of whether we short-cut 50680b57cec5SDimitry Andric // for replication or fall through to the later code. 50690b57cec5SDimitry Andric // 50700b57cec5SDimitry Andric // - otherwise, if the only defined element is an i32 or smaller value, 50710b57cec5SDimitry Andric // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 50720b57cec5SDimitry Andric // This is only a win if the single defined element is used more than once. 50730b57cec5SDimitry Andric // In other cases we're better off using a single VLVGx. 50740b57cec5SDimitry Andric if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 50750b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 50760b57cec5SDimitry Andric 50770b57cec5SDimitry Andric // If all elements are loads, use VLREP/VLEs (below). 50780b57cec5SDimitry Andric bool AllLoads = true; 50790b57cec5SDimitry Andric for (auto Elem : Elems) 50800b57cec5SDimitry Andric if (!isVectorElementLoad(Elem)) { 50810b57cec5SDimitry Andric AllLoads = false; 50820b57cec5SDimitry Andric break; 50830b57cec5SDimitry Andric } 50840b57cec5SDimitry Andric 50850b57cec5SDimitry Andric // The best way of building a v2i64 from two i64s is to use VLVGP. 50860b57cec5SDimitry Andric if (VT == MVT::v2i64 && !AllLoads) 50870b57cec5SDimitry Andric return joinDwords(DAG, DL, Elems[0], Elems[1]); 50880b57cec5SDimitry Andric 50890b57cec5SDimitry Andric // Use a 64-bit merge high to combine two doubles. 50900b57cec5SDimitry Andric if (VT == MVT::v2f64 && !AllLoads) 50910b57cec5SDimitry Andric return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 50920b57cec5SDimitry Andric 50930b57cec5SDimitry Andric // Build v4f32 values directly from the FPRs: 50940b57cec5SDimitry Andric // 50950b57cec5SDimitry Andric // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 50960b57cec5SDimitry Andric // V V VMRHF 50970b57cec5SDimitry Andric // <ABxx> <CDxx> 50980b57cec5SDimitry Andric // V VMRHG 50990b57cec5SDimitry Andric // <ABCD> 51000b57cec5SDimitry Andric if (VT == MVT::v4f32 && !AllLoads) { 51010b57cec5SDimitry Andric SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 51020b57cec5SDimitry Andric SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 51030b57cec5SDimitry Andric // Avoid unnecessary undefs by reusing the other operand. 51040b57cec5SDimitry Andric if (Op01.isUndef()) 51050b57cec5SDimitry Andric Op01 = Op23; 51060b57cec5SDimitry Andric else if (Op23.isUndef()) 51070b57cec5SDimitry Andric Op23 = Op01; 51080b57cec5SDimitry Andric // Merging identical replications is a no-op. 51090b57cec5SDimitry Andric if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 51100b57cec5SDimitry Andric return Op01; 51110b57cec5SDimitry Andric Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 51120b57cec5SDimitry Andric Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 51130b57cec5SDimitry Andric SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 51140b57cec5SDimitry Andric DL, MVT::v2i64, Op01, Op23); 51150b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, DL, VT, Op); 51160b57cec5SDimitry Andric } 51170b57cec5SDimitry Andric 51180b57cec5SDimitry Andric // Collect the constant terms. 51190b57cec5SDimitry Andric SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 51200b57cec5SDimitry Andric SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 51210b57cec5SDimitry Andric 51220b57cec5SDimitry Andric unsigned NumConstants = 0; 51230b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) { 51240b57cec5SDimitry Andric SDValue Elem = Elems[I]; 51250b57cec5SDimitry Andric if (Elem.getOpcode() == ISD::Constant || 51260b57cec5SDimitry Andric Elem.getOpcode() == ISD::ConstantFP) { 51270b57cec5SDimitry Andric NumConstants += 1; 51280b57cec5SDimitry Andric Constants[I] = Elem; 51290b57cec5SDimitry Andric Done[I] = true; 51300b57cec5SDimitry Andric } 51310b57cec5SDimitry Andric } 51320b57cec5SDimitry Andric // If there was at least one constant, fill in the other elements of 51330b57cec5SDimitry Andric // Constants with undefs to get a full vector constant and use that 51340b57cec5SDimitry Andric // as the starting point. 51350b57cec5SDimitry Andric SDValue Result; 51360b57cec5SDimitry Andric SDValue ReplicatedVal; 51370b57cec5SDimitry Andric if (NumConstants > 0) { 51380b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 51390b57cec5SDimitry Andric if (!Constants[I].getNode()) 51400b57cec5SDimitry Andric Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 51410b57cec5SDimitry Andric Result = DAG.getBuildVector(VT, DL, Constants); 51420b57cec5SDimitry Andric } else { 51430b57cec5SDimitry Andric // Otherwise try to use VLREP or VLVGP to start the sequence in order to 51440b57cec5SDimitry Andric // avoid a false dependency on any previous contents of the vector 51450b57cec5SDimitry Andric // register. 51460b57cec5SDimitry Andric 51470b57cec5SDimitry Andric // Use a VLREP if at least one element is a load. Make sure to replicate 51480b57cec5SDimitry Andric // the load with the most elements having its value. 51490b57cec5SDimitry Andric std::map<const SDNode*, unsigned> UseCounts; 51500b57cec5SDimitry Andric SDNode *LoadMaxUses = nullptr; 51510b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 51520b57cec5SDimitry Andric if (isVectorElementLoad(Elems[I])) { 51530b57cec5SDimitry Andric SDNode *Ld = Elems[I].getNode(); 51540b57cec5SDimitry Andric UseCounts[Ld]++; 51550b57cec5SDimitry Andric if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 51560b57cec5SDimitry Andric LoadMaxUses = Ld; 51570b57cec5SDimitry Andric } 51580b57cec5SDimitry Andric if (LoadMaxUses != nullptr) { 51590b57cec5SDimitry Andric ReplicatedVal = SDValue(LoadMaxUses, 0); 51600b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 51610b57cec5SDimitry Andric } else { 51620b57cec5SDimitry Andric // Try to use VLVGP. 51630b57cec5SDimitry Andric unsigned I1 = NumElements / 2 - 1; 51640b57cec5SDimitry Andric unsigned I2 = NumElements - 1; 51650b57cec5SDimitry Andric bool Def1 = !Elems[I1].isUndef(); 51660b57cec5SDimitry Andric bool Def2 = !Elems[I2].isUndef(); 51670b57cec5SDimitry Andric if (Def1 || Def2) { 51680b57cec5SDimitry Andric SDValue Elem1 = Elems[Def1 ? I1 : I2]; 51690b57cec5SDimitry Andric SDValue Elem2 = Elems[Def2 ? I2 : I1]; 51700b57cec5SDimitry Andric Result = DAG.getNode(ISD::BITCAST, DL, VT, 51710b57cec5SDimitry Andric joinDwords(DAG, DL, Elem1, Elem2)); 51720b57cec5SDimitry Andric Done[I1] = true; 51730b57cec5SDimitry Andric Done[I2] = true; 51740b57cec5SDimitry Andric } else 51750b57cec5SDimitry Andric Result = DAG.getUNDEF(VT); 51760b57cec5SDimitry Andric } 51770b57cec5SDimitry Andric } 51780b57cec5SDimitry Andric 51790b57cec5SDimitry Andric // Use VLVGx to insert the other elements. 51800b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 51810b57cec5SDimitry Andric if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 51820b57cec5SDimitry Andric Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 51830b57cec5SDimitry Andric DAG.getConstant(I, DL, MVT::i32)); 51840b57cec5SDimitry Andric return Result; 51850b57cec5SDimitry Andric } 51860b57cec5SDimitry Andric 51870b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 51880b57cec5SDimitry Andric SelectionDAG &DAG) const { 51890b57cec5SDimitry Andric auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 51900b57cec5SDimitry Andric SDLoc DL(Op); 51910b57cec5SDimitry Andric EVT VT = Op.getValueType(); 51920b57cec5SDimitry Andric 51930b57cec5SDimitry Andric if (BVN->isConstant()) { 51940b57cec5SDimitry Andric if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 51950b57cec5SDimitry Andric return Op; 51960b57cec5SDimitry Andric 51970b57cec5SDimitry Andric // Fall back to loading it from memory. 51980b57cec5SDimitry Andric return SDValue(); 51990b57cec5SDimitry Andric } 52000b57cec5SDimitry Andric 52010b57cec5SDimitry Andric // See if we should use shuffles to construct the vector from other vectors. 52020b57cec5SDimitry Andric if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 52030b57cec5SDimitry Andric return Res; 52040b57cec5SDimitry Andric 52050b57cec5SDimitry Andric // Detect SCALAR_TO_VECTOR conversions. 52060b57cec5SDimitry Andric if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 52070b57cec5SDimitry Andric return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 52080b57cec5SDimitry Andric 52090b57cec5SDimitry Andric // Otherwise use buildVector to build the vector up from GPRs. 52100b57cec5SDimitry Andric unsigned NumElements = Op.getNumOperands(); 52110b57cec5SDimitry Andric SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 52120b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 52130b57cec5SDimitry Andric Ops[I] = Op.getOperand(I); 52140b57cec5SDimitry Andric return buildVector(DAG, DL, VT, Ops); 52150b57cec5SDimitry Andric } 52160b57cec5SDimitry Andric 52170b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 52180b57cec5SDimitry Andric SelectionDAG &DAG) const { 52190b57cec5SDimitry Andric auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 52200b57cec5SDimitry Andric SDLoc DL(Op); 52210b57cec5SDimitry Andric EVT VT = Op.getValueType(); 52220b57cec5SDimitry Andric unsigned NumElements = VT.getVectorNumElements(); 52230b57cec5SDimitry Andric 52240b57cec5SDimitry Andric if (VSN->isSplat()) { 52250b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 52260b57cec5SDimitry Andric unsigned Index = VSN->getSplatIndex(); 52270b57cec5SDimitry Andric assert(Index < VT.getVectorNumElements() && 52280b57cec5SDimitry Andric "Splat index should be defined and in first operand"); 52290b57cec5SDimitry Andric // See whether the value we're splatting is directly available as a scalar. 52300b57cec5SDimitry Andric if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 52310b57cec5SDimitry Andric Op0.getOpcode() == ISD::BUILD_VECTOR) 52320b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 52330b57cec5SDimitry Andric // Otherwise keep it as a vector-to-vector operation. 52340b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 52358bcb0991SDimitry Andric DAG.getTargetConstant(Index, DL, MVT::i32)); 52360b57cec5SDimitry Andric } 52370b57cec5SDimitry Andric 52380b57cec5SDimitry Andric GeneralShuffle GS(VT); 52390b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) { 52400b57cec5SDimitry Andric int Elt = VSN->getMaskElt(I); 52410b57cec5SDimitry Andric if (Elt < 0) 52420b57cec5SDimitry Andric GS.addUndef(); 52430b57cec5SDimitry Andric else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 52440b57cec5SDimitry Andric unsigned(Elt) % NumElements)) 52450b57cec5SDimitry Andric return SDValue(); 52460b57cec5SDimitry Andric } 52470b57cec5SDimitry Andric return GS.getNode(DAG, SDLoc(VSN)); 52480b57cec5SDimitry Andric } 52490b57cec5SDimitry Andric 52500b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 52510b57cec5SDimitry Andric SelectionDAG &DAG) const { 52520b57cec5SDimitry Andric SDLoc DL(Op); 52530b57cec5SDimitry Andric // Just insert the scalar into element 0 of an undefined vector. 52540b57cec5SDimitry Andric return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 52550b57cec5SDimitry Andric Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 52560b57cec5SDimitry Andric Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 52570b57cec5SDimitry Andric } 52580b57cec5SDimitry Andric 52590b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 52600b57cec5SDimitry Andric SelectionDAG &DAG) const { 52610b57cec5SDimitry Andric // Handle insertions of floating-point values. 52620b57cec5SDimitry Andric SDLoc DL(Op); 52630b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 52640b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 52650b57cec5SDimitry Andric SDValue Op2 = Op.getOperand(2); 52660b57cec5SDimitry Andric EVT VT = Op.getValueType(); 52670b57cec5SDimitry Andric 52680b57cec5SDimitry Andric // Insertions into constant indices of a v2f64 can be done using VPDI. 52690b57cec5SDimitry Andric // However, if the inserted value is a bitcast or a constant then it's 52700b57cec5SDimitry Andric // better to use GPRs, as below. 52710b57cec5SDimitry Andric if (VT == MVT::v2f64 && 52720b57cec5SDimitry Andric Op1.getOpcode() != ISD::BITCAST && 52730b57cec5SDimitry Andric Op1.getOpcode() != ISD::ConstantFP && 52740b57cec5SDimitry Andric Op2.getOpcode() == ISD::Constant) { 52750b57cec5SDimitry Andric uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 52760b57cec5SDimitry Andric unsigned Mask = VT.getVectorNumElements() - 1; 52770b57cec5SDimitry Andric if (Index <= Mask) 52780b57cec5SDimitry Andric return Op; 52790b57cec5SDimitry Andric } 52800b57cec5SDimitry Andric 52810b57cec5SDimitry Andric // Otherwise bitcast to the equivalent integer form and insert via a GPR. 52820b57cec5SDimitry Andric MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 52830b57cec5SDimitry Andric MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 52840b57cec5SDimitry Andric SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 52850b57cec5SDimitry Andric DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 52860b57cec5SDimitry Andric DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 52870b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, DL, VT, Res); 52880b57cec5SDimitry Andric } 52890b57cec5SDimitry Andric 52900b57cec5SDimitry Andric SDValue 52910b57cec5SDimitry Andric SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 52920b57cec5SDimitry Andric SelectionDAG &DAG) const { 52930b57cec5SDimitry Andric // Handle extractions of floating-point values. 52940b57cec5SDimitry Andric SDLoc DL(Op); 52950b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 52960b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 52970b57cec5SDimitry Andric EVT VT = Op.getValueType(); 52980b57cec5SDimitry Andric EVT VecVT = Op0.getValueType(); 52990b57cec5SDimitry Andric 53000b57cec5SDimitry Andric // Extractions of constant indices can be done directly. 53010b57cec5SDimitry Andric if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 53020b57cec5SDimitry Andric uint64_t Index = CIndexN->getZExtValue(); 53030b57cec5SDimitry Andric unsigned Mask = VecVT.getVectorNumElements() - 1; 53040b57cec5SDimitry Andric if (Index <= Mask) 53050b57cec5SDimitry Andric return Op; 53060b57cec5SDimitry Andric } 53070b57cec5SDimitry Andric 53080b57cec5SDimitry Andric // Otherwise bitcast to the equivalent integer form and extract via a GPR. 53090b57cec5SDimitry Andric MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 53100b57cec5SDimitry Andric MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 53110b57cec5SDimitry Andric SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 53120b57cec5SDimitry Andric DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 53130b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, DL, VT, Res); 53140b57cec5SDimitry Andric } 53150b57cec5SDimitry Andric 53165ffd83dbSDimitry Andric SDValue SystemZTargetLowering:: 53175ffd83dbSDimitry Andric lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 53180b57cec5SDimitry Andric SDValue PackedOp = Op.getOperand(0); 53190b57cec5SDimitry Andric EVT OutVT = Op.getValueType(); 53200b57cec5SDimitry Andric EVT InVT = PackedOp.getValueType(); 53210b57cec5SDimitry Andric unsigned ToBits = OutVT.getScalarSizeInBits(); 53220b57cec5SDimitry Andric unsigned FromBits = InVT.getScalarSizeInBits(); 53230b57cec5SDimitry Andric do { 53240b57cec5SDimitry Andric FromBits *= 2; 53250b57cec5SDimitry Andric EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 53260b57cec5SDimitry Andric SystemZ::VectorBits / FromBits); 53275ffd83dbSDimitry Andric PackedOp = 53285ffd83dbSDimitry Andric DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 53290b57cec5SDimitry Andric } while (FromBits != ToBits); 53300b57cec5SDimitry Andric return PackedOp; 53310b57cec5SDimitry Andric } 53320b57cec5SDimitry Andric 53335ffd83dbSDimitry Andric // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 53345ffd83dbSDimitry Andric SDValue SystemZTargetLowering:: 53355ffd83dbSDimitry Andric lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 53365ffd83dbSDimitry Andric SDValue PackedOp = Op.getOperand(0); 53375ffd83dbSDimitry Andric SDLoc DL(Op); 53385ffd83dbSDimitry Andric EVT OutVT = Op.getValueType(); 53395ffd83dbSDimitry Andric EVT InVT = PackedOp.getValueType(); 53405ffd83dbSDimitry Andric unsigned InNumElts = InVT.getVectorNumElements(); 53415ffd83dbSDimitry Andric unsigned OutNumElts = OutVT.getVectorNumElements(); 53425ffd83dbSDimitry Andric unsigned NumInPerOut = InNumElts / OutNumElts; 53435ffd83dbSDimitry Andric 53445ffd83dbSDimitry Andric SDValue ZeroVec = 53455ffd83dbSDimitry Andric DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 53465ffd83dbSDimitry Andric 53475ffd83dbSDimitry Andric SmallVector<int, 16> Mask(InNumElts); 53485ffd83dbSDimitry Andric unsigned ZeroVecElt = InNumElts; 53495ffd83dbSDimitry Andric for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 53505ffd83dbSDimitry Andric unsigned MaskElt = PackedElt * NumInPerOut; 53515ffd83dbSDimitry Andric unsigned End = MaskElt + NumInPerOut - 1; 53525ffd83dbSDimitry Andric for (; MaskElt < End; MaskElt++) 53535ffd83dbSDimitry Andric Mask[MaskElt] = ZeroVecElt++; 53545ffd83dbSDimitry Andric Mask[MaskElt] = PackedElt; 53555ffd83dbSDimitry Andric } 53565ffd83dbSDimitry Andric SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 53575ffd83dbSDimitry Andric return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 53585ffd83dbSDimitry Andric } 53595ffd83dbSDimitry Andric 53600b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 53610b57cec5SDimitry Andric unsigned ByScalar) const { 53620b57cec5SDimitry Andric // Look for cases where a vector shift can use the *_BY_SCALAR form. 53630b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 53640b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 53650b57cec5SDimitry Andric SDLoc DL(Op); 53660b57cec5SDimitry Andric EVT VT = Op.getValueType(); 53670b57cec5SDimitry Andric unsigned ElemBitSize = VT.getScalarSizeInBits(); 53680b57cec5SDimitry Andric 53690b57cec5SDimitry Andric // See whether the shift vector is a splat represented as BUILD_VECTOR. 53700b57cec5SDimitry Andric if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 53710b57cec5SDimitry Andric APInt SplatBits, SplatUndef; 53720b57cec5SDimitry Andric unsigned SplatBitSize; 53730b57cec5SDimitry Andric bool HasAnyUndefs; 53740b57cec5SDimitry Andric // Check for constant splats. Use ElemBitSize as the minimum element 53750b57cec5SDimitry Andric // width and reject splats that need wider elements. 53760b57cec5SDimitry Andric if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 53770b57cec5SDimitry Andric ElemBitSize, true) && 53780b57cec5SDimitry Andric SplatBitSize == ElemBitSize) { 53790b57cec5SDimitry Andric SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 53800b57cec5SDimitry Andric DL, MVT::i32); 53810b57cec5SDimitry Andric return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 53820b57cec5SDimitry Andric } 53830b57cec5SDimitry Andric // Check for variable splats. 53840b57cec5SDimitry Andric BitVector UndefElements; 53850b57cec5SDimitry Andric SDValue Splat = BVN->getSplatValue(&UndefElements); 53860b57cec5SDimitry Andric if (Splat) { 53870b57cec5SDimitry Andric // Since i32 is the smallest legal type, we either need a no-op 53880b57cec5SDimitry Andric // or a truncation. 53890b57cec5SDimitry Andric SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 53900b57cec5SDimitry Andric return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 53910b57cec5SDimitry Andric } 53920b57cec5SDimitry Andric } 53930b57cec5SDimitry Andric 53940b57cec5SDimitry Andric // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 53950b57cec5SDimitry Andric // and the shift amount is directly available in a GPR. 53960b57cec5SDimitry Andric if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 53970b57cec5SDimitry Andric if (VSN->isSplat()) { 53980b57cec5SDimitry Andric SDValue VSNOp0 = VSN->getOperand(0); 53990b57cec5SDimitry Andric unsigned Index = VSN->getSplatIndex(); 54000b57cec5SDimitry Andric assert(Index < VT.getVectorNumElements() && 54010b57cec5SDimitry Andric "Splat index should be defined and in first operand"); 54020b57cec5SDimitry Andric if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 54030b57cec5SDimitry Andric VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 54040b57cec5SDimitry Andric // Since i32 is the smallest legal type, we either need a no-op 54050b57cec5SDimitry Andric // or a truncation. 54060b57cec5SDimitry Andric SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 54070b57cec5SDimitry Andric VSNOp0.getOperand(Index)); 54080b57cec5SDimitry Andric return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 54090b57cec5SDimitry Andric } 54100b57cec5SDimitry Andric } 54110b57cec5SDimitry Andric } 54120b57cec5SDimitry Andric 54130b57cec5SDimitry Andric // Otherwise just treat the current form as legal. 54140b57cec5SDimitry Andric return Op; 54150b57cec5SDimitry Andric } 54160b57cec5SDimitry Andric 54170b57cec5SDimitry Andric SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 54180b57cec5SDimitry Andric SelectionDAG &DAG) const { 54190b57cec5SDimitry Andric switch (Op.getOpcode()) { 54200b57cec5SDimitry Andric case ISD::FRAMEADDR: 54210b57cec5SDimitry Andric return lowerFRAMEADDR(Op, DAG); 54220b57cec5SDimitry Andric case ISD::RETURNADDR: 54230b57cec5SDimitry Andric return lowerRETURNADDR(Op, DAG); 54240b57cec5SDimitry Andric case ISD::BR_CC: 54250b57cec5SDimitry Andric return lowerBR_CC(Op, DAG); 54260b57cec5SDimitry Andric case ISD::SELECT_CC: 54270b57cec5SDimitry Andric return lowerSELECT_CC(Op, DAG); 54280b57cec5SDimitry Andric case ISD::SETCC: 54290b57cec5SDimitry Andric return lowerSETCC(Op, DAG); 5430480093f4SDimitry Andric case ISD::STRICT_FSETCC: 5431480093f4SDimitry Andric return lowerSTRICT_FSETCC(Op, DAG, false); 5432480093f4SDimitry Andric case ISD::STRICT_FSETCCS: 5433480093f4SDimitry Andric return lowerSTRICT_FSETCC(Op, DAG, true); 54340b57cec5SDimitry Andric case ISD::GlobalAddress: 54350b57cec5SDimitry Andric return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 54360b57cec5SDimitry Andric case ISD::GlobalTLSAddress: 54370b57cec5SDimitry Andric return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 54380b57cec5SDimitry Andric case ISD::BlockAddress: 54390b57cec5SDimitry Andric return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 54400b57cec5SDimitry Andric case ISD::JumpTable: 54410b57cec5SDimitry Andric return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 54420b57cec5SDimitry Andric case ISD::ConstantPool: 54430b57cec5SDimitry Andric return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 54440b57cec5SDimitry Andric case ISD::BITCAST: 54450b57cec5SDimitry Andric return lowerBITCAST(Op, DAG); 54460b57cec5SDimitry Andric case ISD::VASTART: 54470b57cec5SDimitry Andric return lowerVASTART(Op, DAG); 54480b57cec5SDimitry Andric case ISD::VACOPY: 54490b57cec5SDimitry Andric return lowerVACOPY(Op, DAG); 54500b57cec5SDimitry Andric case ISD::DYNAMIC_STACKALLOC: 54510b57cec5SDimitry Andric return lowerDYNAMIC_STACKALLOC(Op, DAG); 54520b57cec5SDimitry Andric case ISD::GET_DYNAMIC_AREA_OFFSET: 54530b57cec5SDimitry Andric return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 54540b57cec5SDimitry Andric case ISD::SMUL_LOHI: 54550b57cec5SDimitry Andric return lowerSMUL_LOHI(Op, DAG); 54560b57cec5SDimitry Andric case ISD::UMUL_LOHI: 54570b57cec5SDimitry Andric return lowerUMUL_LOHI(Op, DAG); 54580b57cec5SDimitry Andric case ISD::SDIVREM: 54590b57cec5SDimitry Andric return lowerSDIVREM(Op, DAG); 54600b57cec5SDimitry Andric case ISD::UDIVREM: 54610b57cec5SDimitry Andric return lowerUDIVREM(Op, DAG); 54620b57cec5SDimitry Andric case ISD::SADDO: 54630b57cec5SDimitry Andric case ISD::SSUBO: 54640b57cec5SDimitry Andric case ISD::UADDO: 54650b57cec5SDimitry Andric case ISD::USUBO: 54660b57cec5SDimitry Andric return lowerXALUO(Op, DAG); 54670b57cec5SDimitry Andric case ISD::ADDCARRY: 54680b57cec5SDimitry Andric case ISD::SUBCARRY: 54690b57cec5SDimitry Andric return lowerADDSUBCARRY(Op, DAG); 54700b57cec5SDimitry Andric case ISD::OR: 54710b57cec5SDimitry Andric return lowerOR(Op, DAG); 54720b57cec5SDimitry Andric case ISD::CTPOP: 54730b57cec5SDimitry Andric return lowerCTPOP(Op, DAG); 54740b57cec5SDimitry Andric case ISD::ATOMIC_FENCE: 54750b57cec5SDimitry Andric return lowerATOMIC_FENCE(Op, DAG); 54760b57cec5SDimitry Andric case ISD::ATOMIC_SWAP: 54770b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 54780b57cec5SDimitry Andric case ISD::ATOMIC_STORE: 54790b57cec5SDimitry Andric return lowerATOMIC_STORE(Op, DAG); 54800b57cec5SDimitry Andric case ISD::ATOMIC_LOAD: 54810b57cec5SDimitry Andric return lowerATOMIC_LOAD(Op, DAG); 54820b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_ADD: 54830b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 54840b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_SUB: 54850b57cec5SDimitry Andric return lowerATOMIC_LOAD_SUB(Op, DAG); 54860b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_AND: 54870b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 54880b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_OR: 54890b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 54900b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_XOR: 54910b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 54920b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_NAND: 54930b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 54940b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_MIN: 54950b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 54960b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_MAX: 54970b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 54980b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_UMIN: 54990b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 55000b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_UMAX: 55010b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 55020b57cec5SDimitry Andric case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 55030b57cec5SDimitry Andric return lowerATOMIC_CMP_SWAP(Op, DAG); 55040b57cec5SDimitry Andric case ISD::STACKSAVE: 55050b57cec5SDimitry Andric return lowerSTACKSAVE(Op, DAG); 55060b57cec5SDimitry Andric case ISD::STACKRESTORE: 55070b57cec5SDimitry Andric return lowerSTACKRESTORE(Op, DAG); 55080b57cec5SDimitry Andric case ISD::PREFETCH: 55090b57cec5SDimitry Andric return lowerPREFETCH(Op, DAG); 55100b57cec5SDimitry Andric case ISD::INTRINSIC_W_CHAIN: 55110b57cec5SDimitry Andric return lowerINTRINSIC_W_CHAIN(Op, DAG); 55120b57cec5SDimitry Andric case ISD::INTRINSIC_WO_CHAIN: 55130b57cec5SDimitry Andric return lowerINTRINSIC_WO_CHAIN(Op, DAG); 55140b57cec5SDimitry Andric case ISD::BUILD_VECTOR: 55150b57cec5SDimitry Andric return lowerBUILD_VECTOR(Op, DAG); 55160b57cec5SDimitry Andric case ISD::VECTOR_SHUFFLE: 55170b57cec5SDimitry Andric return lowerVECTOR_SHUFFLE(Op, DAG); 55180b57cec5SDimitry Andric case ISD::SCALAR_TO_VECTOR: 55190b57cec5SDimitry Andric return lowerSCALAR_TO_VECTOR(Op, DAG); 55200b57cec5SDimitry Andric case ISD::INSERT_VECTOR_ELT: 55210b57cec5SDimitry Andric return lowerINSERT_VECTOR_ELT(Op, DAG); 55220b57cec5SDimitry Andric case ISD::EXTRACT_VECTOR_ELT: 55230b57cec5SDimitry Andric return lowerEXTRACT_VECTOR_ELT(Op, DAG); 55240b57cec5SDimitry Andric case ISD::SIGN_EXTEND_VECTOR_INREG: 55255ffd83dbSDimitry Andric return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 55260b57cec5SDimitry Andric case ISD::ZERO_EXTEND_VECTOR_INREG: 55275ffd83dbSDimitry Andric return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 55280b57cec5SDimitry Andric case ISD::SHL: 55290b57cec5SDimitry Andric return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 55300b57cec5SDimitry Andric case ISD::SRL: 55310b57cec5SDimitry Andric return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 55320b57cec5SDimitry Andric case ISD::SRA: 55330b57cec5SDimitry Andric return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 55340b57cec5SDimitry Andric default: 55350b57cec5SDimitry Andric llvm_unreachable("Unexpected node to lower"); 55360b57cec5SDimitry Andric } 55370b57cec5SDimitry Andric } 55380b57cec5SDimitry Andric 55390b57cec5SDimitry Andric // Lower operations with invalid operand or result types (currently used 55400b57cec5SDimitry Andric // only for 128-bit integer types). 55410b57cec5SDimitry Andric void 55420b57cec5SDimitry Andric SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 55430b57cec5SDimitry Andric SmallVectorImpl<SDValue> &Results, 55440b57cec5SDimitry Andric SelectionDAG &DAG) const { 55450b57cec5SDimitry Andric switch (N->getOpcode()) { 55460b57cec5SDimitry Andric case ISD::ATOMIC_LOAD: { 55470b57cec5SDimitry Andric SDLoc DL(N); 55480b57cec5SDimitry Andric SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 55490b57cec5SDimitry Andric SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 55500b57cec5SDimitry Andric MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 55510b57cec5SDimitry Andric SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 55520b57cec5SDimitry Andric DL, Tys, Ops, MVT::i128, MMO); 55530b57cec5SDimitry Andric Results.push_back(lowerGR128ToI128(DAG, Res)); 55540b57cec5SDimitry Andric Results.push_back(Res.getValue(1)); 55550b57cec5SDimitry Andric break; 55560b57cec5SDimitry Andric } 55570b57cec5SDimitry Andric case ISD::ATOMIC_STORE: { 55580b57cec5SDimitry Andric SDLoc DL(N); 55590b57cec5SDimitry Andric SDVTList Tys = DAG.getVTList(MVT::Other); 55600b57cec5SDimitry Andric SDValue Ops[] = { N->getOperand(0), 55610b57cec5SDimitry Andric lowerI128ToGR128(DAG, N->getOperand(2)), 55620b57cec5SDimitry Andric N->getOperand(1) }; 55630b57cec5SDimitry Andric MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 55640b57cec5SDimitry Andric SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 55650b57cec5SDimitry Andric DL, Tys, Ops, MVT::i128, MMO); 55660b57cec5SDimitry Andric // We have to enforce sequential consistency by performing a 55670b57cec5SDimitry Andric // serialization operation after the store. 5568*fe6060f1SDimitry Andric if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 55690b57cec5SDimitry Andric AtomicOrdering::SequentiallyConsistent) 55700b57cec5SDimitry Andric Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 55710b57cec5SDimitry Andric MVT::Other, Res), 0); 55720b57cec5SDimitry Andric Results.push_back(Res); 55730b57cec5SDimitry Andric break; 55740b57cec5SDimitry Andric } 55750b57cec5SDimitry Andric case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 55760b57cec5SDimitry Andric SDLoc DL(N); 55770b57cec5SDimitry Andric SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 55780b57cec5SDimitry Andric SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 55790b57cec5SDimitry Andric lowerI128ToGR128(DAG, N->getOperand(2)), 55800b57cec5SDimitry Andric lowerI128ToGR128(DAG, N->getOperand(3)) }; 55810b57cec5SDimitry Andric MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 55820b57cec5SDimitry Andric SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 55830b57cec5SDimitry Andric DL, Tys, Ops, MVT::i128, MMO); 55840b57cec5SDimitry Andric SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 55850b57cec5SDimitry Andric SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 55860b57cec5SDimitry Andric Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 55870b57cec5SDimitry Andric Results.push_back(lowerGR128ToI128(DAG, Res)); 55880b57cec5SDimitry Andric Results.push_back(Success); 55890b57cec5SDimitry Andric Results.push_back(Res.getValue(2)); 55900b57cec5SDimitry Andric break; 55910b57cec5SDimitry Andric } 55920b57cec5SDimitry Andric default: 55930b57cec5SDimitry Andric llvm_unreachable("Unexpected node to lower"); 55940b57cec5SDimitry Andric } 55950b57cec5SDimitry Andric } 55960b57cec5SDimitry Andric 55970b57cec5SDimitry Andric void 55980b57cec5SDimitry Andric SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 55990b57cec5SDimitry Andric SmallVectorImpl<SDValue> &Results, 56000b57cec5SDimitry Andric SelectionDAG &DAG) const { 56010b57cec5SDimitry Andric return LowerOperationWrapper(N, Results, DAG); 56020b57cec5SDimitry Andric } 56030b57cec5SDimitry Andric 56040b57cec5SDimitry Andric const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 56050b57cec5SDimitry Andric #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 56060b57cec5SDimitry Andric switch ((SystemZISD::NodeType)Opcode) { 56070b57cec5SDimitry Andric case SystemZISD::FIRST_NUMBER: break; 56080b57cec5SDimitry Andric OPCODE(RET_FLAG); 56090b57cec5SDimitry Andric OPCODE(CALL); 56100b57cec5SDimitry Andric OPCODE(SIBCALL); 56110b57cec5SDimitry Andric OPCODE(TLS_GDCALL); 56120b57cec5SDimitry Andric OPCODE(TLS_LDCALL); 56130b57cec5SDimitry Andric OPCODE(PCREL_WRAPPER); 56140b57cec5SDimitry Andric OPCODE(PCREL_OFFSET); 56150b57cec5SDimitry Andric OPCODE(ICMP); 56160b57cec5SDimitry Andric OPCODE(FCMP); 5617480093f4SDimitry Andric OPCODE(STRICT_FCMP); 5618480093f4SDimitry Andric OPCODE(STRICT_FCMPS); 56190b57cec5SDimitry Andric OPCODE(TM); 56200b57cec5SDimitry Andric OPCODE(BR_CCMASK); 56210b57cec5SDimitry Andric OPCODE(SELECT_CCMASK); 56220b57cec5SDimitry Andric OPCODE(ADJDYNALLOC); 56235ffd83dbSDimitry Andric OPCODE(PROBED_ALLOCA); 56240b57cec5SDimitry Andric OPCODE(POPCNT); 56250b57cec5SDimitry Andric OPCODE(SMUL_LOHI); 56260b57cec5SDimitry Andric OPCODE(UMUL_LOHI); 56270b57cec5SDimitry Andric OPCODE(SDIVREM); 56280b57cec5SDimitry Andric OPCODE(UDIVREM); 56290b57cec5SDimitry Andric OPCODE(SADDO); 56300b57cec5SDimitry Andric OPCODE(SSUBO); 56310b57cec5SDimitry Andric OPCODE(UADDO); 56320b57cec5SDimitry Andric OPCODE(USUBO); 56330b57cec5SDimitry Andric OPCODE(ADDCARRY); 56340b57cec5SDimitry Andric OPCODE(SUBCARRY); 56350b57cec5SDimitry Andric OPCODE(GET_CCMASK); 56360b57cec5SDimitry Andric OPCODE(MVC); 56370b57cec5SDimitry Andric OPCODE(MVC_LOOP); 56380b57cec5SDimitry Andric OPCODE(NC); 56390b57cec5SDimitry Andric OPCODE(NC_LOOP); 56400b57cec5SDimitry Andric OPCODE(OC); 56410b57cec5SDimitry Andric OPCODE(OC_LOOP); 56420b57cec5SDimitry Andric OPCODE(XC); 56430b57cec5SDimitry Andric OPCODE(XC_LOOP); 56440b57cec5SDimitry Andric OPCODE(CLC); 56450b57cec5SDimitry Andric OPCODE(CLC_LOOP); 56460b57cec5SDimitry Andric OPCODE(STPCPY); 56470b57cec5SDimitry Andric OPCODE(STRCMP); 56480b57cec5SDimitry Andric OPCODE(SEARCH_STRING); 56490b57cec5SDimitry Andric OPCODE(IPM); 56500b57cec5SDimitry Andric OPCODE(MEMBARRIER); 56510b57cec5SDimitry Andric OPCODE(TBEGIN); 56520b57cec5SDimitry Andric OPCODE(TBEGIN_NOFLOAT); 56530b57cec5SDimitry Andric OPCODE(TEND); 56540b57cec5SDimitry Andric OPCODE(BYTE_MASK); 56550b57cec5SDimitry Andric OPCODE(ROTATE_MASK); 56560b57cec5SDimitry Andric OPCODE(REPLICATE); 56570b57cec5SDimitry Andric OPCODE(JOIN_DWORDS); 56580b57cec5SDimitry Andric OPCODE(SPLAT); 56590b57cec5SDimitry Andric OPCODE(MERGE_HIGH); 56600b57cec5SDimitry Andric OPCODE(MERGE_LOW); 56610b57cec5SDimitry Andric OPCODE(SHL_DOUBLE); 56620b57cec5SDimitry Andric OPCODE(PERMUTE_DWORDS); 56630b57cec5SDimitry Andric OPCODE(PERMUTE); 56640b57cec5SDimitry Andric OPCODE(PACK); 56650b57cec5SDimitry Andric OPCODE(PACKS_CC); 56660b57cec5SDimitry Andric OPCODE(PACKLS_CC); 56670b57cec5SDimitry Andric OPCODE(UNPACK_HIGH); 56680b57cec5SDimitry Andric OPCODE(UNPACKL_HIGH); 56690b57cec5SDimitry Andric OPCODE(UNPACK_LOW); 56700b57cec5SDimitry Andric OPCODE(UNPACKL_LOW); 56710b57cec5SDimitry Andric OPCODE(VSHL_BY_SCALAR); 56720b57cec5SDimitry Andric OPCODE(VSRL_BY_SCALAR); 56730b57cec5SDimitry Andric OPCODE(VSRA_BY_SCALAR); 56740b57cec5SDimitry Andric OPCODE(VSUM); 56750b57cec5SDimitry Andric OPCODE(VICMPE); 56760b57cec5SDimitry Andric OPCODE(VICMPH); 56770b57cec5SDimitry Andric OPCODE(VICMPHL); 56780b57cec5SDimitry Andric OPCODE(VICMPES); 56790b57cec5SDimitry Andric OPCODE(VICMPHS); 56800b57cec5SDimitry Andric OPCODE(VICMPHLS); 56810b57cec5SDimitry Andric OPCODE(VFCMPE); 5682480093f4SDimitry Andric OPCODE(STRICT_VFCMPE); 5683480093f4SDimitry Andric OPCODE(STRICT_VFCMPES); 56840b57cec5SDimitry Andric OPCODE(VFCMPH); 5685480093f4SDimitry Andric OPCODE(STRICT_VFCMPH); 5686480093f4SDimitry Andric OPCODE(STRICT_VFCMPHS); 56870b57cec5SDimitry Andric OPCODE(VFCMPHE); 5688480093f4SDimitry Andric OPCODE(STRICT_VFCMPHE); 5689480093f4SDimitry Andric OPCODE(STRICT_VFCMPHES); 56900b57cec5SDimitry Andric OPCODE(VFCMPES); 56910b57cec5SDimitry Andric OPCODE(VFCMPHS); 56920b57cec5SDimitry Andric OPCODE(VFCMPHES); 56930b57cec5SDimitry Andric OPCODE(VFTCI); 56940b57cec5SDimitry Andric OPCODE(VEXTEND); 5695480093f4SDimitry Andric OPCODE(STRICT_VEXTEND); 56960b57cec5SDimitry Andric OPCODE(VROUND); 5697480093f4SDimitry Andric OPCODE(STRICT_VROUND); 56980b57cec5SDimitry Andric OPCODE(VTM); 56990b57cec5SDimitry Andric OPCODE(VFAE_CC); 57000b57cec5SDimitry Andric OPCODE(VFAEZ_CC); 57010b57cec5SDimitry Andric OPCODE(VFEE_CC); 57020b57cec5SDimitry Andric OPCODE(VFEEZ_CC); 57030b57cec5SDimitry Andric OPCODE(VFENE_CC); 57040b57cec5SDimitry Andric OPCODE(VFENEZ_CC); 57050b57cec5SDimitry Andric OPCODE(VISTR_CC); 57060b57cec5SDimitry Andric OPCODE(VSTRC_CC); 57070b57cec5SDimitry Andric OPCODE(VSTRCZ_CC); 57080b57cec5SDimitry Andric OPCODE(VSTRS_CC); 57090b57cec5SDimitry Andric OPCODE(VSTRSZ_CC); 57100b57cec5SDimitry Andric OPCODE(TDC); 57110b57cec5SDimitry Andric OPCODE(ATOMIC_SWAPW); 57120b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_ADD); 57130b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_SUB); 57140b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_AND); 57150b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_OR); 57160b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_XOR); 57170b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_NAND); 57180b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_MIN); 57190b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_MAX); 57200b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_UMIN); 57210b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_UMAX); 57220b57cec5SDimitry Andric OPCODE(ATOMIC_CMP_SWAPW); 57230b57cec5SDimitry Andric OPCODE(ATOMIC_CMP_SWAP); 57240b57cec5SDimitry Andric OPCODE(ATOMIC_LOAD_128); 57250b57cec5SDimitry Andric OPCODE(ATOMIC_STORE_128); 57260b57cec5SDimitry Andric OPCODE(ATOMIC_CMP_SWAP_128); 57270b57cec5SDimitry Andric OPCODE(LRV); 57280b57cec5SDimitry Andric OPCODE(STRV); 57290b57cec5SDimitry Andric OPCODE(VLER); 57300b57cec5SDimitry Andric OPCODE(VSTER); 57310b57cec5SDimitry Andric OPCODE(PREFETCH); 57320b57cec5SDimitry Andric } 57330b57cec5SDimitry Andric return nullptr; 57340b57cec5SDimitry Andric #undef OPCODE 57350b57cec5SDimitry Andric } 57360b57cec5SDimitry Andric 57370b57cec5SDimitry Andric // Return true if VT is a vector whose elements are a whole number of bytes 57380b57cec5SDimitry Andric // in width. Also check for presence of vector support. 57390b57cec5SDimitry Andric bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 57400b57cec5SDimitry Andric if (!Subtarget.hasVector()) 57410b57cec5SDimitry Andric return false; 57420b57cec5SDimitry Andric 57430b57cec5SDimitry Andric return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 57440b57cec5SDimitry Andric } 57450b57cec5SDimitry Andric 57460b57cec5SDimitry Andric // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 57470b57cec5SDimitry Andric // producing a result of type ResVT. Op is a possibly bitcast version 57480b57cec5SDimitry Andric // of the input vector and Index is the index (based on type VecVT) that 57490b57cec5SDimitry Andric // should be extracted. Return the new extraction if a simplification 57500b57cec5SDimitry Andric // was possible or if Force is true. 57510b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 57520b57cec5SDimitry Andric EVT VecVT, SDValue Op, 57530b57cec5SDimitry Andric unsigned Index, 57540b57cec5SDimitry Andric DAGCombinerInfo &DCI, 57550b57cec5SDimitry Andric bool Force) const { 57560b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 57570b57cec5SDimitry Andric 57580b57cec5SDimitry Andric // The number of bytes being extracted. 57590b57cec5SDimitry Andric unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 57600b57cec5SDimitry Andric 57610b57cec5SDimitry Andric for (;;) { 57620b57cec5SDimitry Andric unsigned Opcode = Op.getOpcode(); 57630b57cec5SDimitry Andric if (Opcode == ISD::BITCAST) 57640b57cec5SDimitry Andric // Look through bitcasts. 57650b57cec5SDimitry Andric Op = Op.getOperand(0); 57660b57cec5SDimitry Andric else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 57670b57cec5SDimitry Andric canTreatAsByteVector(Op.getValueType())) { 57680b57cec5SDimitry Andric // Get a VPERM-like permute mask and see whether the bytes covered 57690b57cec5SDimitry Andric // by the extracted element are a contiguous sequence from one 57700b57cec5SDimitry Andric // source operand. 57710b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> Bytes; 57720b57cec5SDimitry Andric if (!getVPermMask(Op, Bytes)) 57730b57cec5SDimitry Andric break; 57740b57cec5SDimitry Andric int First; 57750b57cec5SDimitry Andric if (!getShuffleInput(Bytes, Index * BytesPerElement, 57760b57cec5SDimitry Andric BytesPerElement, First)) 57770b57cec5SDimitry Andric break; 57780b57cec5SDimitry Andric if (First < 0) 57790b57cec5SDimitry Andric return DAG.getUNDEF(ResVT); 57800b57cec5SDimitry Andric // Make sure the contiguous sequence starts at a multiple of the 57810b57cec5SDimitry Andric // original element size. 57820b57cec5SDimitry Andric unsigned Byte = unsigned(First) % Bytes.size(); 57830b57cec5SDimitry Andric if (Byte % BytesPerElement != 0) 57840b57cec5SDimitry Andric break; 57850b57cec5SDimitry Andric // We can get the extracted value directly from an input. 57860b57cec5SDimitry Andric Index = Byte / BytesPerElement; 57870b57cec5SDimitry Andric Op = Op.getOperand(unsigned(First) / Bytes.size()); 57880b57cec5SDimitry Andric Force = true; 57890b57cec5SDimitry Andric } else if (Opcode == ISD::BUILD_VECTOR && 57900b57cec5SDimitry Andric canTreatAsByteVector(Op.getValueType())) { 57910b57cec5SDimitry Andric // We can only optimize this case if the BUILD_VECTOR elements are 57920b57cec5SDimitry Andric // at least as wide as the extracted value. 57930b57cec5SDimitry Andric EVT OpVT = Op.getValueType(); 57940b57cec5SDimitry Andric unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 57950b57cec5SDimitry Andric if (OpBytesPerElement < BytesPerElement) 57960b57cec5SDimitry Andric break; 57970b57cec5SDimitry Andric // Make sure that the least-significant bit of the extracted value 57980b57cec5SDimitry Andric // is the least significant bit of an input. 57990b57cec5SDimitry Andric unsigned End = (Index + 1) * BytesPerElement; 58000b57cec5SDimitry Andric if (End % OpBytesPerElement != 0) 58010b57cec5SDimitry Andric break; 58020b57cec5SDimitry Andric // We're extracting the low part of one operand of the BUILD_VECTOR. 58030b57cec5SDimitry Andric Op = Op.getOperand(End / OpBytesPerElement - 1); 58040b57cec5SDimitry Andric if (!Op.getValueType().isInteger()) { 58050b57cec5SDimitry Andric EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 58060b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 58070b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 58080b57cec5SDimitry Andric } 58090b57cec5SDimitry Andric EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 58100b57cec5SDimitry Andric Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 58110b57cec5SDimitry Andric if (VT != ResVT) { 58120b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 58130b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 58140b57cec5SDimitry Andric } 58150b57cec5SDimitry Andric return Op; 58160b57cec5SDimitry Andric } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 58170b57cec5SDimitry Andric Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 58180b57cec5SDimitry Andric Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 58190b57cec5SDimitry Andric canTreatAsByteVector(Op.getValueType()) && 58200b57cec5SDimitry Andric canTreatAsByteVector(Op.getOperand(0).getValueType())) { 58210b57cec5SDimitry Andric // Make sure that only the unextended bits are significant. 58220b57cec5SDimitry Andric EVT ExtVT = Op.getValueType(); 58230b57cec5SDimitry Andric EVT OpVT = Op.getOperand(0).getValueType(); 58240b57cec5SDimitry Andric unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 58250b57cec5SDimitry Andric unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 58260b57cec5SDimitry Andric unsigned Byte = Index * BytesPerElement; 58270b57cec5SDimitry Andric unsigned SubByte = Byte % ExtBytesPerElement; 58280b57cec5SDimitry Andric unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 58290b57cec5SDimitry Andric if (SubByte < MinSubByte || 58300b57cec5SDimitry Andric SubByte + BytesPerElement > ExtBytesPerElement) 58310b57cec5SDimitry Andric break; 58320b57cec5SDimitry Andric // Get the byte offset of the unextended element 58330b57cec5SDimitry Andric Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 58340b57cec5SDimitry Andric // ...then add the byte offset relative to that element. 58350b57cec5SDimitry Andric Byte += SubByte - MinSubByte; 58360b57cec5SDimitry Andric if (Byte % BytesPerElement != 0) 58370b57cec5SDimitry Andric break; 58380b57cec5SDimitry Andric Op = Op.getOperand(0); 58390b57cec5SDimitry Andric Index = Byte / BytesPerElement; 58400b57cec5SDimitry Andric Force = true; 58410b57cec5SDimitry Andric } else 58420b57cec5SDimitry Andric break; 58430b57cec5SDimitry Andric } 58440b57cec5SDimitry Andric if (Force) { 58450b57cec5SDimitry Andric if (Op.getValueType() != VecVT) { 58460b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 58470b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 58480b57cec5SDimitry Andric } 58490b57cec5SDimitry Andric return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 58500b57cec5SDimitry Andric DAG.getConstant(Index, DL, MVT::i32)); 58510b57cec5SDimitry Andric } 58520b57cec5SDimitry Andric return SDValue(); 58530b57cec5SDimitry Andric } 58540b57cec5SDimitry Andric 58550b57cec5SDimitry Andric // Optimize vector operations in scalar value Op on the basis that Op 58560b57cec5SDimitry Andric // is truncated to TruncVT. 58570b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineTruncateExtract( 58580b57cec5SDimitry Andric const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 58590b57cec5SDimitry Andric // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 58600b57cec5SDimitry Andric // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 58610b57cec5SDimitry Andric // of type TruncVT. 58620b57cec5SDimitry Andric if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 58630b57cec5SDimitry Andric TruncVT.getSizeInBits() % 8 == 0) { 58640b57cec5SDimitry Andric SDValue Vec = Op.getOperand(0); 58650b57cec5SDimitry Andric EVT VecVT = Vec.getValueType(); 58660b57cec5SDimitry Andric if (canTreatAsByteVector(VecVT)) { 58670b57cec5SDimitry Andric if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 58680b57cec5SDimitry Andric unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 58690b57cec5SDimitry Andric unsigned TruncBytes = TruncVT.getStoreSize(); 58700b57cec5SDimitry Andric if (BytesPerElement % TruncBytes == 0) { 58710b57cec5SDimitry Andric // Calculate the value of Y' in the above description. We are 58720b57cec5SDimitry Andric // splitting the original elements into Scale equal-sized pieces 58730b57cec5SDimitry Andric // and for truncation purposes want the last (least-significant) 58740b57cec5SDimitry Andric // of these pieces for IndexN. This is easiest to do by calculating 58750b57cec5SDimitry Andric // the start index of the following element and then subtracting 1. 58760b57cec5SDimitry Andric unsigned Scale = BytesPerElement / TruncBytes; 58770b57cec5SDimitry Andric unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 58780b57cec5SDimitry Andric 58790b57cec5SDimitry Andric // Defer the creation of the bitcast from X to combineExtract, 58800b57cec5SDimitry Andric // which might be able to optimize the extraction. 58810b57cec5SDimitry Andric VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 58820b57cec5SDimitry Andric VecVT.getStoreSize() / TruncBytes); 58830b57cec5SDimitry Andric EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 58840b57cec5SDimitry Andric return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 58850b57cec5SDimitry Andric } 58860b57cec5SDimitry Andric } 58870b57cec5SDimitry Andric } 58880b57cec5SDimitry Andric } 58890b57cec5SDimitry Andric return SDValue(); 58900b57cec5SDimitry Andric } 58910b57cec5SDimitry Andric 58920b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineZERO_EXTEND( 58930b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 58940b57cec5SDimitry Andric // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 58950b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 58960b57cec5SDimitry Andric SDValue N0 = N->getOperand(0); 58970b57cec5SDimitry Andric EVT VT = N->getValueType(0); 58980b57cec5SDimitry Andric if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 58990b57cec5SDimitry Andric auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 59000b57cec5SDimitry Andric auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 59010b57cec5SDimitry Andric if (TrueOp && FalseOp) { 59020b57cec5SDimitry Andric SDLoc DL(N0); 59030b57cec5SDimitry Andric SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 59040b57cec5SDimitry Andric DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 59050b57cec5SDimitry Andric N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 59060b57cec5SDimitry Andric SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 59070b57cec5SDimitry Andric // If N0 has multiple uses, change other uses as well. 59080b57cec5SDimitry Andric if (!N0.hasOneUse()) { 59090b57cec5SDimitry Andric SDValue TruncSelect = 59100b57cec5SDimitry Andric DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 59110b57cec5SDimitry Andric DCI.CombineTo(N0.getNode(), TruncSelect); 59120b57cec5SDimitry Andric } 59130b57cec5SDimitry Andric return NewSelect; 59140b57cec5SDimitry Andric } 59150b57cec5SDimitry Andric } 59160b57cec5SDimitry Andric return SDValue(); 59170b57cec5SDimitry Andric } 59180b57cec5SDimitry Andric 59190b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 59200b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 59210b57cec5SDimitry Andric // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 59220b57cec5SDimitry Andric // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 59230b57cec5SDimitry Andric // into (select_cc LHS, RHS, -1, 0, COND) 59240b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 59250b57cec5SDimitry Andric SDValue N0 = N->getOperand(0); 59260b57cec5SDimitry Andric EVT VT = N->getValueType(0); 59270b57cec5SDimitry Andric EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 59280b57cec5SDimitry Andric if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 59290b57cec5SDimitry Andric N0 = N0.getOperand(0); 59300b57cec5SDimitry Andric if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 59310b57cec5SDimitry Andric SDLoc DL(N0); 59320b57cec5SDimitry Andric SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 59330b57cec5SDimitry Andric DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 59340b57cec5SDimitry Andric N0.getOperand(2) }; 59350b57cec5SDimitry Andric return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 59360b57cec5SDimitry Andric } 59370b57cec5SDimitry Andric return SDValue(); 59380b57cec5SDimitry Andric } 59390b57cec5SDimitry Andric 59400b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSIGN_EXTEND( 59410b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 59420b57cec5SDimitry Andric // Convert (sext (ashr (shl X, C1), C2)) to 59430b57cec5SDimitry Andric // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 59440b57cec5SDimitry Andric // cheap as narrower ones. 59450b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 59460b57cec5SDimitry Andric SDValue N0 = N->getOperand(0); 59470b57cec5SDimitry Andric EVT VT = N->getValueType(0); 59480b57cec5SDimitry Andric if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 59490b57cec5SDimitry Andric auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 59500b57cec5SDimitry Andric SDValue Inner = N0.getOperand(0); 59510b57cec5SDimitry Andric if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 59520b57cec5SDimitry Andric if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 59530b57cec5SDimitry Andric unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 59540b57cec5SDimitry Andric unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 59550b57cec5SDimitry Andric unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 59560b57cec5SDimitry Andric EVT ShiftVT = N0.getOperand(1).getValueType(); 59570b57cec5SDimitry Andric SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 59580b57cec5SDimitry Andric Inner.getOperand(0)); 59590b57cec5SDimitry Andric SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 59600b57cec5SDimitry Andric DAG.getConstant(NewShlAmt, SDLoc(Inner), 59610b57cec5SDimitry Andric ShiftVT)); 59620b57cec5SDimitry Andric return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 59630b57cec5SDimitry Andric DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 59640b57cec5SDimitry Andric } 59650b57cec5SDimitry Andric } 59660b57cec5SDimitry Andric } 59670b57cec5SDimitry Andric return SDValue(); 59680b57cec5SDimitry Andric } 59690b57cec5SDimitry Andric 59700b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineMERGE( 59710b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 59720b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 59730b57cec5SDimitry Andric unsigned Opcode = N->getOpcode(); 59740b57cec5SDimitry Andric SDValue Op0 = N->getOperand(0); 59750b57cec5SDimitry Andric SDValue Op1 = N->getOperand(1); 59760b57cec5SDimitry Andric if (Op0.getOpcode() == ISD::BITCAST) 59770b57cec5SDimitry Andric Op0 = Op0.getOperand(0); 59780b57cec5SDimitry Andric if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 59790b57cec5SDimitry Andric // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 59800b57cec5SDimitry Andric // for v4f32. 59810b57cec5SDimitry Andric if (Op1 == N->getOperand(0)) 59820b57cec5SDimitry Andric return Op1; 59830b57cec5SDimitry Andric // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 59840b57cec5SDimitry Andric EVT VT = Op1.getValueType(); 59850b57cec5SDimitry Andric unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 59860b57cec5SDimitry Andric if (ElemBytes <= 4) { 59870b57cec5SDimitry Andric Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 59880b57cec5SDimitry Andric SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 59890b57cec5SDimitry Andric EVT InVT = VT.changeVectorElementTypeToInteger(); 59900b57cec5SDimitry Andric EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 59910b57cec5SDimitry Andric SystemZ::VectorBytes / ElemBytes / 2); 59920b57cec5SDimitry Andric if (VT != InVT) { 59930b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 59940b57cec5SDimitry Andric DCI.AddToWorklist(Op1.getNode()); 59950b57cec5SDimitry Andric } 59960b57cec5SDimitry Andric SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 59970b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 59980b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 59990b57cec5SDimitry Andric } 60000b57cec5SDimitry Andric } 60010b57cec5SDimitry Andric return SDValue(); 60020b57cec5SDimitry Andric } 60030b57cec5SDimitry Andric 60040b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineLOAD( 60050b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 60060b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 60070b57cec5SDimitry Andric EVT LdVT = N->getValueType(0); 60080b57cec5SDimitry Andric if (LdVT.isVector() || LdVT.isInteger()) 60090b57cec5SDimitry Andric return SDValue(); 60100b57cec5SDimitry Andric // Transform a scalar load that is REPLICATEd as well as having other 60110b57cec5SDimitry Andric // use(s) to the form where the other use(s) use the first element of the 60120b57cec5SDimitry Andric // REPLICATE instead of the load. Otherwise instruction selection will not 60130b57cec5SDimitry Andric // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 60140b57cec5SDimitry Andric // point loads. 60150b57cec5SDimitry Andric 60160b57cec5SDimitry Andric SDValue Replicate; 60170b57cec5SDimitry Andric SmallVector<SDNode*, 8> OtherUses; 60180b57cec5SDimitry Andric for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 60190b57cec5SDimitry Andric UI != UE; ++UI) { 60200b57cec5SDimitry Andric if (UI->getOpcode() == SystemZISD::REPLICATE) { 60210b57cec5SDimitry Andric if (Replicate) 60220b57cec5SDimitry Andric return SDValue(); // Should never happen 60230b57cec5SDimitry Andric Replicate = SDValue(*UI, 0); 60240b57cec5SDimitry Andric } 60250b57cec5SDimitry Andric else if (UI.getUse().getResNo() == 0) 60260b57cec5SDimitry Andric OtherUses.push_back(*UI); 60270b57cec5SDimitry Andric } 60280b57cec5SDimitry Andric if (!Replicate || OtherUses.empty()) 60290b57cec5SDimitry Andric return SDValue(); 60300b57cec5SDimitry Andric 60310b57cec5SDimitry Andric SDLoc DL(N); 60320b57cec5SDimitry Andric SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 60330b57cec5SDimitry Andric Replicate, DAG.getConstant(0, DL, MVT::i32)); 60340b57cec5SDimitry Andric // Update uses of the loaded Value while preserving old chains. 60350b57cec5SDimitry Andric for (SDNode *U : OtherUses) { 60360b57cec5SDimitry Andric SmallVector<SDValue, 8> Ops; 60370b57cec5SDimitry Andric for (SDValue Op : U->ops()) 60380b57cec5SDimitry Andric Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 60390b57cec5SDimitry Andric DAG.UpdateNodeOperands(U, Ops); 60400b57cec5SDimitry Andric } 60410b57cec5SDimitry Andric return SDValue(N, 0); 60420b57cec5SDimitry Andric } 60430b57cec5SDimitry Andric 60440b57cec5SDimitry Andric bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 60450b57cec5SDimitry Andric if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 60460b57cec5SDimitry Andric return true; 60470b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements2()) 60480b57cec5SDimitry Andric if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 60490b57cec5SDimitry Andric return true; 60500b57cec5SDimitry Andric return false; 60510b57cec5SDimitry Andric } 60520b57cec5SDimitry Andric 60530b57cec5SDimitry Andric static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 60540b57cec5SDimitry Andric if (!VT.isVector() || !VT.isSimple() || 60550b57cec5SDimitry Andric VT.getSizeInBits() != 128 || 60560b57cec5SDimitry Andric VT.getScalarSizeInBits() % 8 != 0) 60570b57cec5SDimitry Andric return false; 60580b57cec5SDimitry Andric 60590b57cec5SDimitry Andric unsigned NumElts = VT.getVectorNumElements(); 60600b57cec5SDimitry Andric for (unsigned i = 0; i < NumElts; ++i) { 60610b57cec5SDimitry Andric if (M[i] < 0) continue; // ignore UNDEF indices 60620b57cec5SDimitry Andric if ((unsigned) M[i] != NumElts - 1 - i) 60630b57cec5SDimitry Andric return false; 60640b57cec5SDimitry Andric } 60650b57cec5SDimitry Andric 60660b57cec5SDimitry Andric return true; 60670b57cec5SDimitry Andric } 60680b57cec5SDimitry Andric 60690b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSTORE( 60700b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 60710b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 60720b57cec5SDimitry Andric auto *SN = cast<StoreSDNode>(N); 60730b57cec5SDimitry Andric auto &Op1 = N->getOperand(1); 60740b57cec5SDimitry Andric EVT MemVT = SN->getMemoryVT(); 60750b57cec5SDimitry Andric // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 60760b57cec5SDimitry Andric // for the extraction to be done on a vMiN value, so that we can use VSTE. 60770b57cec5SDimitry Andric // If X has wider elements then convert it to: 60780b57cec5SDimitry Andric // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 60790b57cec5SDimitry Andric if (MemVT.isInteger() && SN->isTruncatingStore()) { 60800b57cec5SDimitry Andric if (SDValue Value = 60810b57cec5SDimitry Andric combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 60820b57cec5SDimitry Andric DCI.AddToWorklist(Value.getNode()); 60830b57cec5SDimitry Andric 60840b57cec5SDimitry Andric // Rewrite the store with the new form of stored value. 60850b57cec5SDimitry Andric return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 60860b57cec5SDimitry Andric SN->getBasePtr(), SN->getMemoryVT(), 60870b57cec5SDimitry Andric SN->getMemOperand()); 60880b57cec5SDimitry Andric } 60890b57cec5SDimitry Andric } 60900b57cec5SDimitry Andric // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 60910b57cec5SDimitry Andric if (!SN->isTruncatingStore() && 60920b57cec5SDimitry Andric Op1.getOpcode() == ISD::BSWAP && 60930b57cec5SDimitry Andric Op1.getNode()->hasOneUse() && 60940b57cec5SDimitry Andric canLoadStoreByteSwapped(Op1.getValueType())) { 60950b57cec5SDimitry Andric 60960b57cec5SDimitry Andric SDValue BSwapOp = Op1.getOperand(0); 60970b57cec5SDimitry Andric 60980b57cec5SDimitry Andric if (BSwapOp.getValueType() == MVT::i16) 60990b57cec5SDimitry Andric BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 61000b57cec5SDimitry Andric 61010b57cec5SDimitry Andric SDValue Ops[] = { 61020b57cec5SDimitry Andric N->getOperand(0), BSwapOp, N->getOperand(2) 61030b57cec5SDimitry Andric }; 61040b57cec5SDimitry Andric 61050b57cec5SDimitry Andric return 61060b57cec5SDimitry Andric DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 61070b57cec5SDimitry Andric Ops, MemVT, SN->getMemOperand()); 61080b57cec5SDimitry Andric } 61090b57cec5SDimitry Andric // Combine STORE (element-swap) into VSTER 61100b57cec5SDimitry Andric if (!SN->isTruncatingStore() && 61110b57cec5SDimitry Andric Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 61120b57cec5SDimitry Andric Op1.getNode()->hasOneUse() && 61130b57cec5SDimitry Andric Subtarget.hasVectorEnhancements2()) { 61140b57cec5SDimitry Andric ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 61150b57cec5SDimitry Andric ArrayRef<int> ShuffleMask = SVN->getMask(); 61160b57cec5SDimitry Andric if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 61170b57cec5SDimitry Andric SDValue Ops[] = { 61180b57cec5SDimitry Andric N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 61190b57cec5SDimitry Andric }; 61200b57cec5SDimitry Andric 61210b57cec5SDimitry Andric return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 61220b57cec5SDimitry Andric DAG.getVTList(MVT::Other), 61230b57cec5SDimitry Andric Ops, MemVT, SN->getMemOperand()); 61240b57cec5SDimitry Andric } 61250b57cec5SDimitry Andric } 61260b57cec5SDimitry Andric 61270b57cec5SDimitry Andric return SDValue(); 61280b57cec5SDimitry Andric } 61290b57cec5SDimitry Andric 61300b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 61310b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 61320b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 61330b57cec5SDimitry Andric // Combine element-swap (LOAD) into VLER 61340b57cec5SDimitry Andric if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 61350b57cec5SDimitry Andric N->getOperand(0).hasOneUse() && 61360b57cec5SDimitry Andric Subtarget.hasVectorEnhancements2()) { 61370b57cec5SDimitry Andric ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 61380b57cec5SDimitry Andric ArrayRef<int> ShuffleMask = SVN->getMask(); 61390b57cec5SDimitry Andric if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 61400b57cec5SDimitry Andric SDValue Load = N->getOperand(0); 61410b57cec5SDimitry Andric LoadSDNode *LD = cast<LoadSDNode>(Load); 61420b57cec5SDimitry Andric 61430b57cec5SDimitry Andric // Create the element-swapping load. 61440b57cec5SDimitry Andric SDValue Ops[] = { 61450b57cec5SDimitry Andric LD->getChain(), // Chain 61460b57cec5SDimitry Andric LD->getBasePtr() // Ptr 61470b57cec5SDimitry Andric }; 61480b57cec5SDimitry Andric SDValue ESLoad = 61490b57cec5SDimitry Andric DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 61500b57cec5SDimitry Andric DAG.getVTList(LD->getValueType(0), MVT::Other), 61510b57cec5SDimitry Andric Ops, LD->getMemoryVT(), LD->getMemOperand()); 61520b57cec5SDimitry Andric 61530b57cec5SDimitry Andric // First, combine the VECTOR_SHUFFLE away. This makes the value produced 61540b57cec5SDimitry Andric // by the load dead. 61550b57cec5SDimitry Andric DCI.CombineTo(N, ESLoad); 61560b57cec5SDimitry Andric 61570b57cec5SDimitry Andric // Next, combine the load away, we give it a bogus result value but a real 61580b57cec5SDimitry Andric // chain result. The result value is dead because the shuffle is dead. 61590b57cec5SDimitry Andric DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 61600b57cec5SDimitry Andric 61610b57cec5SDimitry Andric // Return N so it doesn't get rechecked! 61620b57cec5SDimitry Andric return SDValue(N, 0); 61630b57cec5SDimitry Andric } 61640b57cec5SDimitry Andric } 61650b57cec5SDimitry Andric 61660b57cec5SDimitry Andric return SDValue(); 61670b57cec5SDimitry Andric } 61680b57cec5SDimitry Andric 61690b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 61700b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 61710b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 61720b57cec5SDimitry Andric 61730b57cec5SDimitry Andric if (!Subtarget.hasVector()) 61740b57cec5SDimitry Andric return SDValue(); 61750b57cec5SDimitry Andric 61760b57cec5SDimitry Andric // Look through bitcasts that retain the number of vector elements. 61770b57cec5SDimitry Andric SDValue Op = N->getOperand(0); 61780b57cec5SDimitry Andric if (Op.getOpcode() == ISD::BITCAST && 61790b57cec5SDimitry Andric Op.getValueType().isVector() && 61800b57cec5SDimitry Andric Op.getOperand(0).getValueType().isVector() && 61810b57cec5SDimitry Andric Op.getValueType().getVectorNumElements() == 61820b57cec5SDimitry Andric Op.getOperand(0).getValueType().getVectorNumElements()) 61830b57cec5SDimitry Andric Op = Op.getOperand(0); 61840b57cec5SDimitry Andric 61850b57cec5SDimitry Andric // Pull BSWAP out of a vector extraction. 61860b57cec5SDimitry Andric if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 61870b57cec5SDimitry Andric EVT VecVT = Op.getValueType(); 61880b57cec5SDimitry Andric EVT EltVT = VecVT.getVectorElementType(); 61890b57cec5SDimitry Andric Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 61900b57cec5SDimitry Andric Op.getOperand(0), N->getOperand(1)); 61910b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 61920b57cec5SDimitry Andric Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 61930b57cec5SDimitry Andric if (EltVT != N->getValueType(0)) { 61940b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 61950b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 61960b57cec5SDimitry Andric } 61970b57cec5SDimitry Andric return Op; 61980b57cec5SDimitry Andric } 61990b57cec5SDimitry Andric 62000b57cec5SDimitry Andric // Try to simplify a vector extraction. 62010b57cec5SDimitry Andric if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 62020b57cec5SDimitry Andric SDValue Op0 = N->getOperand(0); 62030b57cec5SDimitry Andric EVT VecVT = Op0.getValueType(); 62040b57cec5SDimitry Andric return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 62050b57cec5SDimitry Andric IndexN->getZExtValue(), DCI, false); 62060b57cec5SDimitry Andric } 62070b57cec5SDimitry Andric return SDValue(); 62080b57cec5SDimitry Andric } 62090b57cec5SDimitry Andric 62100b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineJOIN_DWORDS( 62110b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 62120b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 62130b57cec5SDimitry Andric // (join_dwords X, X) == (replicate X) 62140b57cec5SDimitry Andric if (N->getOperand(0) == N->getOperand(1)) 62150b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 62160b57cec5SDimitry Andric N->getOperand(0)); 62170b57cec5SDimitry Andric return SDValue(); 62180b57cec5SDimitry Andric } 62190b57cec5SDimitry Andric 6220480093f4SDimitry Andric static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6221480093f4SDimitry Andric SDValue Chain1 = N1->getOperand(0); 6222480093f4SDimitry Andric SDValue Chain2 = N2->getOperand(0); 6223480093f4SDimitry Andric 6224480093f4SDimitry Andric // Trivial case: both nodes take the same chain. 6225480093f4SDimitry Andric if (Chain1 == Chain2) 6226480093f4SDimitry Andric return Chain1; 6227480093f4SDimitry Andric 6228480093f4SDimitry Andric // FIXME - we could handle more complex cases via TokenFactor, 6229480093f4SDimitry Andric // assuming we can verify that this would not create a cycle. 6230480093f4SDimitry Andric return SDValue(); 6231480093f4SDimitry Andric } 6232480093f4SDimitry Andric 62330b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineFP_ROUND( 62340b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 62350b57cec5SDimitry Andric 62360b57cec5SDimitry Andric if (!Subtarget.hasVector()) 62370b57cec5SDimitry Andric return SDValue(); 62380b57cec5SDimitry Andric 62390b57cec5SDimitry Andric // (fpround (extract_vector_elt X 0)) 62400b57cec5SDimitry Andric // (fpround (extract_vector_elt X 1)) -> 62410b57cec5SDimitry Andric // (extract_vector_elt (VROUND X) 0) 62420b57cec5SDimitry Andric // (extract_vector_elt (VROUND X) 2) 62430b57cec5SDimitry Andric // 62440b57cec5SDimitry Andric // This is a special case since the target doesn't really support v2f32s. 6245480093f4SDimitry Andric unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 62460b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 6247480093f4SDimitry Andric SDValue Op0 = N->getOperand(OpNo); 62480b57cec5SDimitry Andric if (N->getValueType(0) == MVT::f32 && 62490b57cec5SDimitry Andric Op0.hasOneUse() && 62500b57cec5SDimitry Andric Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 62510b57cec5SDimitry Andric Op0.getOperand(0).getValueType() == MVT::v2f64 && 62520b57cec5SDimitry Andric Op0.getOperand(1).getOpcode() == ISD::Constant && 62530b57cec5SDimitry Andric cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 62540b57cec5SDimitry Andric SDValue Vec = Op0.getOperand(0); 62550b57cec5SDimitry Andric for (auto *U : Vec->uses()) { 62560b57cec5SDimitry Andric if (U != Op0.getNode() && 62570b57cec5SDimitry Andric U->hasOneUse() && 62580b57cec5SDimitry Andric U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 62590b57cec5SDimitry Andric U->getOperand(0) == Vec && 62600b57cec5SDimitry Andric U->getOperand(1).getOpcode() == ISD::Constant && 62610b57cec5SDimitry Andric cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 62620b57cec5SDimitry Andric SDValue OtherRound = SDValue(*U->use_begin(), 0); 6263480093f4SDimitry Andric if (OtherRound.getOpcode() == N->getOpcode() && 6264480093f4SDimitry Andric OtherRound.getOperand(OpNo) == SDValue(U, 0) && 62650b57cec5SDimitry Andric OtherRound.getValueType() == MVT::f32) { 6266480093f4SDimitry Andric SDValue VRound, Chain; 6267480093f4SDimitry Andric if (N->isStrictFPOpcode()) { 6268480093f4SDimitry Andric Chain = MergeInputChains(N, OtherRound.getNode()); 6269480093f4SDimitry Andric if (!Chain) 6270480093f4SDimitry Andric continue; 6271480093f4SDimitry Andric VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6272480093f4SDimitry Andric {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6273480093f4SDimitry Andric Chain = VRound.getValue(1); 6274480093f4SDimitry Andric } else 6275480093f4SDimitry Andric VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 62760b57cec5SDimitry Andric MVT::v4f32, Vec); 62770b57cec5SDimitry Andric DCI.AddToWorklist(VRound.getNode()); 62780b57cec5SDimitry Andric SDValue Extract1 = 62790b57cec5SDimitry Andric DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 62800b57cec5SDimitry Andric VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 62810b57cec5SDimitry Andric DCI.AddToWorklist(Extract1.getNode()); 62820b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6283480093f4SDimitry Andric if (Chain) 6284480093f4SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 62850b57cec5SDimitry Andric SDValue Extract0 = 62860b57cec5SDimitry Andric DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 62870b57cec5SDimitry Andric VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6288480093f4SDimitry Andric if (Chain) 6289480093f4SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6290480093f4SDimitry Andric N->getVTList(), Extract0, Chain); 62910b57cec5SDimitry Andric return Extract0; 62920b57cec5SDimitry Andric } 62930b57cec5SDimitry Andric } 62940b57cec5SDimitry Andric } 62950b57cec5SDimitry Andric } 62960b57cec5SDimitry Andric return SDValue(); 62970b57cec5SDimitry Andric } 62980b57cec5SDimitry Andric 62990b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineFP_EXTEND( 63000b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 63010b57cec5SDimitry Andric 63020b57cec5SDimitry Andric if (!Subtarget.hasVector()) 63030b57cec5SDimitry Andric return SDValue(); 63040b57cec5SDimitry Andric 63050b57cec5SDimitry Andric // (fpextend (extract_vector_elt X 0)) 63060b57cec5SDimitry Andric // (fpextend (extract_vector_elt X 2)) -> 63070b57cec5SDimitry Andric // (extract_vector_elt (VEXTEND X) 0) 63080b57cec5SDimitry Andric // (extract_vector_elt (VEXTEND X) 1) 63090b57cec5SDimitry Andric // 63100b57cec5SDimitry Andric // This is a special case since the target doesn't really support v2f32s. 6311480093f4SDimitry Andric unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 63120b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 6313480093f4SDimitry Andric SDValue Op0 = N->getOperand(OpNo); 63140b57cec5SDimitry Andric if (N->getValueType(0) == MVT::f64 && 63150b57cec5SDimitry Andric Op0.hasOneUse() && 63160b57cec5SDimitry Andric Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 63170b57cec5SDimitry Andric Op0.getOperand(0).getValueType() == MVT::v4f32 && 63180b57cec5SDimitry Andric Op0.getOperand(1).getOpcode() == ISD::Constant && 63190b57cec5SDimitry Andric cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 63200b57cec5SDimitry Andric SDValue Vec = Op0.getOperand(0); 63210b57cec5SDimitry Andric for (auto *U : Vec->uses()) { 63220b57cec5SDimitry Andric if (U != Op0.getNode() && 63230b57cec5SDimitry Andric U->hasOneUse() && 63240b57cec5SDimitry Andric U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 63250b57cec5SDimitry Andric U->getOperand(0) == Vec && 63260b57cec5SDimitry Andric U->getOperand(1).getOpcode() == ISD::Constant && 63270b57cec5SDimitry Andric cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 63280b57cec5SDimitry Andric SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6329480093f4SDimitry Andric if (OtherExtend.getOpcode() == N->getOpcode() && 6330480093f4SDimitry Andric OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 63310b57cec5SDimitry Andric OtherExtend.getValueType() == MVT::f64) { 6332480093f4SDimitry Andric SDValue VExtend, Chain; 6333480093f4SDimitry Andric if (N->isStrictFPOpcode()) { 6334480093f4SDimitry Andric Chain = MergeInputChains(N, OtherExtend.getNode()); 6335480093f4SDimitry Andric if (!Chain) 6336480093f4SDimitry Andric continue; 6337480093f4SDimitry Andric VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6338480093f4SDimitry Andric {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6339480093f4SDimitry Andric Chain = VExtend.getValue(1); 6340480093f4SDimitry Andric } else 6341480093f4SDimitry Andric VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 63420b57cec5SDimitry Andric MVT::v2f64, Vec); 63430b57cec5SDimitry Andric DCI.AddToWorklist(VExtend.getNode()); 63440b57cec5SDimitry Andric SDValue Extract1 = 63450b57cec5SDimitry Andric DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 63460b57cec5SDimitry Andric VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 63470b57cec5SDimitry Andric DCI.AddToWorklist(Extract1.getNode()); 63480b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6349480093f4SDimitry Andric if (Chain) 6350480093f4SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 63510b57cec5SDimitry Andric SDValue Extract0 = 63520b57cec5SDimitry Andric DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 63530b57cec5SDimitry Andric VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6354480093f4SDimitry Andric if (Chain) 6355480093f4SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6356480093f4SDimitry Andric N->getVTList(), Extract0, Chain); 63570b57cec5SDimitry Andric return Extract0; 63580b57cec5SDimitry Andric } 63590b57cec5SDimitry Andric } 63600b57cec5SDimitry Andric } 63610b57cec5SDimitry Andric } 63620b57cec5SDimitry Andric return SDValue(); 63630b57cec5SDimitry Andric } 63640b57cec5SDimitry Andric 63655ffd83dbSDimitry Andric SDValue SystemZTargetLowering::combineINT_TO_FP( 63665ffd83dbSDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 63675ffd83dbSDimitry Andric if (DCI.Level != BeforeLegalizeTypes) 63685ffd83dbSDimitry Andric return SDValue(); 63695ffd83dbSDimitry Andric unsigned Opcode = N->getOpcode(); 63705ffd83dbSDimitry Andric EVT OutVT = N->getValueType(0); 63715ffd83dbSDimitry Andric SelectionDAG &DAG = DCI.DAG; 63725ffd83dbSDimitry Andric SDValue Op = N->getOperand(0); 63735ffd83dbSDimitry Andric unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 63745ffd83dbSDimitry Andric unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 63755ffd83dbSDimitry Andric 63765ffd83dbSDimitry Andric // Insert an extension before type-legalization to avoid scalarization, e.g.: 63775ffd83dbSDimitry Andric // v2f64 = uint_to_fp v2i16 63785ffd83dbSDimitry Andric // => 63795ffd83dbSDimitry Andric // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 63805ffd83dbSDimitry Andric if (OutVT.isVector() && OutScalarBits > InScalarBits) { 63815ffd83dbSDimitry Andric MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 63825ffd83dbSDimitry Andric OutVT.getVectorNumElements()); 63835ffd83dbSDimitry Andric unsigned ExtOpcode = 63845ffd83dbSDimitry Andric (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 63855ffd83dbSDimitry Andric SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 63865ffd83dbSDimitry Andric return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 63875ffd83dbSDimitry Andric } 63885ffd83dbSDimitry Andric return SDValue(); 63895ffd83dbSDimitry Andric } 63905ffd83dbSDimitry Andric 63910b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineBSWAP( 63920b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 63930b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 63940b57cec5SDimitry Andric // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 63950b57cec5SDimitry Andric if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 63960b57cec5SDimitry Andric N->getOperand(0).hasOneUse() && 63970b57cec5SDimitry Andric canLoadStoreByteSwapped(N->getValueType(0))) { 63980b57cec5SDimitry Andric SDValue Load = N->getOperand(0); 63990b57cec5SDimitry Andric LoadSDNode *LD = cast<LoadSDNode>(Load); 64000b57cec5SDimitry Andric 64010b57cec5SDimitry Andric // Create the byte-swapping load. 64020b57cec5SDimitry Andric SDValue Ops[] = { 64030b57cec5SDimitry Andric LD->getChain(), // Chain 64040b57cec5SDimitry Andric LD->getBasePtr() // Ptr 64050b57cec5SDimitry Andric }; 64060b57cec5SDimitry Andric EVT LoadVT = N->getValueType(0); 64070b57cec5SDimitry Andric if (LoadVT == MVT::i16) 64080b57cec5SDimitry Andric LoadVT = MVT::i32; 64090b57cec5SDimitry Andric SDValue BSLoad = 64100b57cec5SDimitry Andric DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 64110b57cec5SDimitry Andric DAG.getVTList(LoadVT, MVT::Other), 64120b57cec5SDimitry Andric Ops, LD->getMemoryVT(), LD->getMemOperand()); 64130b57cec5SDimitry Andric 64140b57cec5SDimitry Andric // If this is an i16 load, insert the truncate. 64150b57cec5SDimitry Andric SDValue ResVal = BSLoad; 64160b57cec5SDimitry Andric if (N->getValueType(0) == MVT::i16) 64170b57cec5SDimitry Andric ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 64180b57cec5SDimitry Andric 64190b57cec5SDimitry Andric // First, combine the bswap away. This makes the value produced by the 64200b57cec5SDimitry Andric // load dead. 64210b57cec5SDimitry Andric DCI.CombineTo(N, ResVal); 64220b57cec5SDimitry Andric 64230b57cec5SDimitry Andric // Next, combine the load away, we give it a bogus result value but a real 64240b57cec5SDimitry Andric // chain result. The result value is dead because the bswap is dead. 64250b57cec5SDimitry Andric DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 64260b57cec5SDimitry Andric 64270b57cec5SDimitry Andric // Return N so it doesn't get rechecked! 64280b57cec5SDimitry Andric return SDValue(N, 0); 64290b57cec5SDimitry Andric } 64300b57cec5SDimitry Andric 64310b57cec5SDimitry Andric // Look through bitcasts that retain the number of vector elements. 64320b57cec5SDimitry Andric SDValue Op = N->getOperand(0); 64330b57cec5SDimitry Andric if (Op.getOpcode() == ISD::BITCAST && 64340b57cec5SDimitry Andric Op.getValueType().isVector() && 64350b57cec5SDimitry Andric Op.getOperand(0).getValueType().isVector() && 64360b57cec5SDimitry Andric Op.getValueType().getVectorNumElements() == 64370b57cec5SDimitry Andric Op.getOperand(0).getValueType().getVectorNumElements()) 64380b57cec5SDimitry Andric Op = Op.getOperand(0); 64390b57cec5SDimitry Andric 64400b57cec5SDimitry Andric // Push BSWAP into a vector insertion if at least one side then simplifies. 64410b57cec5SDimitry Andric if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 64420b57cec5SDimitry Andric SDValue Vec = Op.getOperand(0); 64430b57cec5SDimitry Andric SDValue Elt = Op.getOperand(1); 64440b57cec5SDimitry Andric SDValue Idx = Op.getOperand(2); 64450b57cec5SDimitry Andric 64460b57cec5SDimitry Andric if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 64470b57cec5SDimitry Andric Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 64480b57cec5SDimitry Andric DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 64490b57cec5SDimitry Andric Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 64500b57cec5SDimitry Andric (canLoadStoreByteSwapped(N->getValueType(0)) && 64510b57cec5SDimitry Andric ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 64520b57cec5SDimitry Andric EVT VecVT = N->getValueType(0); 64530b57cec5SDimitry Andric EVT EltVT = N->getValueType(0).getVectorElementType(); 64540b57cec5SDimitry Andric if (VecVT != Vec.getValueType()) { 64550b57cec5SDimitry Andric Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 64560b57cec5SDimitry Andric DCI.AddToWorklist(Vec.getNode()); 64570b57cec5SDimitry Andric } 64580b57cec5SDimitry Andric if (EltVT != Elt.getValueType()) { 64590b57cec5SDimitry Andric Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 64600b57cec5SDimitry Andric DCI.AddToWorklist(Elt.getNode()); 64610b57cec5SDimitry Andric } 64620b57cec5SDimitry Andric Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 64630b57cec5SDimitry Andric DCI.AddToWorklist(Vec.getNode()); 64640b57cec5SDimitry Andric Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 64650b57cec5SDimitry Andric DCI.AddToWorklist(Elt.getNode()); 64660b57cec5SDimitry Andric return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 64670b57cec5SDimitry Andric Vec, Elt, Idx); 64680b57cec5SDimitry Andric } 64690b57cec5SDimitry Andric } 64700b57cec5SDimitry Andric 64710b57cec5SDimitry Andric // Push BSWAP into a vector shuffle if at least one side then simplifies. 64720b57cec5SDimitry Andric ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 64730b57cec5SDimitry Andric if (SV && Op.hasOneUse()) { 64740b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 64750b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 64760b57cec5SDimitry Andric 64770b57cec5SDimitry Andric if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 64780b57cec5SDimitry Andric Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 64790b57cec5SDimitry Andric DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 64800b57cec5SDimitry Andric Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 64810b57cec5SDimitry Andric EVT VecVT = N->getValueType(0); 64820b57cec5SDimitry Andric if (VecVT != Op0.getValueType()) { 64830b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 64840b57cec5SDimitry Andric DCI.AddToWorklist(Op0.getNode()); 64850b57cec5SDimitry Andric } 64860b57cec5SDimitry Andric if (VecVT != Op1.getValueType()) { 64870b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 64880b57cec5SDimitry Andric DCI.AddToWorklist(Op1.getNode()); 64890b57cec5SDimitry Andric } 64900b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 64910b57cec5SDimitry Andric DCI.AddToWorklist(Op0.getNode()); 64920b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 64930b57cec5SDimitry Andric DCI.AddToWorklist(Op1.getNode()); 64940b57cec5SDimitry Andric return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 64950b57cec5SDimitry Andric } 64960b57cec5SDimitry Andric } 64970b57cec5SDimitry Andric 64980b57cec5SDimitry Andric return SDValue(); 64990b57cec5SDimitry Andric } 65000b57cec5SDimitry Andric 65010b57cec5SDimitry Andric static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 65020b57cec5SDimitry Andric // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 65030b57cec5SDimitry Andric // set by the CCReg instruction using the CCValid / CCMask masks, 65040b57cec5SDimitry Andric // If the CCReg instruction is itself a ICMP testing the condition 65050b57cec5SDimitry Andric // code set by some other instruction, see whether we can directly 65060b57cec5SDimitry Andric // use that condition code. 65070b57cec5SDimitry Andric 65080b57cec5SDimitry Andric // Verify that we have an ICMP against some constant. 65090b57cec5SDimitry Andric if (CCValid != SystemZ::CCMASK_ICMP) 65100b57cec5SDimitry Andric return false; 65110b57cec5SDimitry Andric auto *ICmp = CCReg.getNode(); 65120b57cec5SDimitry Andric if (ICmp->getOpcode() != SystemZISD::ICMP) 65130b57cec5SDimitry Andric return false; 65140b57cec5SDimitry Andric auto *CompareLHS = ICmp->getOperand(0).getNode(); 65150b57cec5SDimitry Andric auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 65160b57cec5SDimitry Andric if (!CompareRHS) 65170b57cec5SDimitry Andric return false; 65180b57cec5SDimitry Andric 65190b57cec5SDimitry Andric // Optimize the case where CompareLHS is a SELECT_CCMASK. 65200b57cec5SDimitry Andric if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 65210b57cec5SDimitry Andric // Verify that we have an appropriate mask for a EQ or NE comparison. 65220b57cec5SDimitry Andric bool Invert = false; 65230b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE) 65240b57cec5SDimitry Andric Invert = !Invert; 65250b57cec5SDimitry Andric else if (CCMask != SystemZ::CCMASK_CMP_EQ) 65260b57cec5SDimitry Andric return false; 65270b57cec5SDimitry Andric 65280b57cec5SDimitry Andric // Verify that the ICMP compares against one of select values. 65290b57cec5SDimitry Andric auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 65300b57cec5SDimitry Andric if (!TrueVal) 65310b57cec5SDimitry Andric return false; 65320b57cec5SDimitry Andric auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 65330b57cec5SDimitry Andric if (!FalseVal) 65340b57cec5SDimitry Andric return false; 65350b57cec5SDimitry Andric if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 65360b57cec5SDimitry Andric Invert = !Invert; 65370b57cec5SDimitry Andric else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 65380b57cec5SDimitry Andric return false; 65390b57cec5SDimitry Andric 65400b57cec5SDimitry Andric // Compute the effective CC mask for the new branch or select. 65410b57cec5SDimitry Andric auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 65420b57cec5SDimitry Andric auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 65430b57cec5SDimitry Andric if (!NewCCValid || !NewCCMask) 65440b57cec5SDimitry Andric return false; 65450b57cec5SDimitry Andric CCValid = NewCCValid->getZExtValue(); 65460b57cec5SDimitry Andric CCMask = NewCCMask->getZExtValue(); 65470b57cec5SDimitry Andric if (Invert) 65480b57cec5SDimitry Andric CCMask ^= CCValid; 65490b57cec5SDimitry Andric 65500b57cec5SDimitry Andric // Return the updated CCReg link. 65510b57cec5SDimitry Andric CCReg = CompareLHS->getOperand(4); 65520b57cec5SDimitry Andric return true; 65530b57cec5SDimitry Andric } 65540b57cec5SDimitry Andric 65550b57cec5SDimitry Andric // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 65560b57cec5SDimitry Andric if (CompareLHS->getOpcode() == ISD::SRA) { 65570b57cec5SDimitry Andric auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 65580b57cec5SDimitry Andric if (!SRACount || SRACount->getZExtValue() != 30) 65590b57cec5SDimitry Andric return false; 65600b57cec5SDimitry Andric auto *SHL = CompareLHS->getOperand(0).getNode(); 65610b57cec5SDimitry Andric if (SHL->getOpcode() != ISD::SHL) 65620b57cec5SDimitry Andric return false; 65630b57cec5SDimitry Andric auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 65640b57cec5SDimitry Andric if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 65650b57cec5SDimitry Andric return false; 65660b57cec5SDimitry Andric auto *IPM = SHL->getOperand(0).getNode(); 65670b57cec5SDimitry Andric if (IPM->getOpcode() != SystemZISD::IPM) 65680b57cec5SDimitry Andric return false; 65690b57cec5SDimitry Andric 65700b57cec5SDimitry Andric // Avoid introducing CC spills (because SRA would clobber CC). 65710b57cec5SDimitry Andric if (!CompareLHS->hasOneUse()) 65720b57cec5SDimitry Andric return false; 65730b57cec5SDimitry Andric // Verify that the ICMP compares against zero. 65740b57cec5SDimitry Andric if (CompareRHS->getZExtValue() != 0) 65750b57cec5SDimitry Andric return false; 65760b57cec5SDimitry Andric 65770b57cec5SDimitry Andric // Compute the effective CC mask for the new branch or select. 65785ffd83dbSDimitry Andric CCMask = SystemZ::reverseCCMask(CCMask); 65790b57cec5SDimitry Andric 65800b57cec5SDimitry Andric // Return the updated CCReg link. 65810b57cec5SDimitry Andric CCReg = IPM->getOperand(0); 65820b57cec5SDimitry Andric return true; 65830b57cec5SDimitry Andric } 65840b57cec5SDimitry Andric 65850b57cec5SDimitry Andric return false; 65860b57cec5SDimitry Andric } 65870b57cec5SDimitry Andric 65880b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineBR_CCMASK( 65890b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 65900b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 65910b57cec5SDimitry Andric 65920b57cec5SDimitry Andric // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 65930b57cec5SDimitry Andric auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 65940b57cec5SDimitry Andric auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 65950b57cec5SDimitry Andric if (!CCValid || !CCMask) 65960b57cec5SDimitry Andric return SDValue(); 65970b57cec5SDimitry Andric 65980b57cec5SDimitry Andric int CCValidVal = CCValid->getZExtValue(); 65990b57cec5SDimitry Andric int CCMaskVal = CCMask->getZExtValue(); 66000b57cec5SDimitry Andric SDValue Chain = N->getOperand(0); 66010b57cec5SDimitry Andric SDValue CCReg = N->getOperand(4); 66020b57cec5SDimitry Andric 66030b57cec5SDimitry Andric if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 66040b57cec5SDimitry Andric return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 66050b57cec5SDimitry Andric Chain, 66068bcb0991SDimitry Andric DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 66078bcb0991SDimitry Andric DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 66080b57cec5SDimitry Andric N->getOperand(3), CCReg); 66090b57cec5SDimitry Andric return SDValue(); 66100b57cec5SDimitry Andric } 66110b57cec5SDimitry Andric 66120b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSELECT_CCMASK( 66130b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 66140b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 66150b57cec5SDimitry Andric 66160b57cec5SDimitry Andric // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 66170b57cec5SDimitry Andric auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 66180b57cec5SDimitry Andric auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 66190b57cec5SDimitry Andric if (!CCValid || !CCMask) 66200b57cec5SDimitry Andric return SDValue(); 66210b57cec5SDimitry Andric 66220b57cec5SDimitry Andric int CCValidVal = CCValid->getZExtValue(); 66230b57cec5SDimitry Andric int CCMaskVal = CCMask->getZExtValue(); 66240b57cec5SDimitry Andric SDValue CCReg = N->getOperand(4); 66250b57cec5SDimitry Andric 66260b57cec5SDimitry Andric if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 66270b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 66288bcb0991SDimitry Andric N->getOperand(0), N->getOperand(1), 66298bcb0991SDimitry Andric DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 66308bcb0991SDimitry Andric DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 66310b57cec5SDimitry Andric CCReg); 66320b57cec5SDimitry Andric return SDValue(); 66330b57cec5SDimitry Andric } 66340b57cec5SDimitry Andric 66350b57cec5SDimitry Andric 66360b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineGET_CCMASK( 66370b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 66380b57cec5SDimitry Andric 66390b57cec5SDimitry Andric // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 66400b57cec5SDimitry Andric auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 66410b57cec5SDimitry Andric auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 66420b57cec5SDimitry Andric if (!CCValid || !CCMask) 66430b57cec5SDimitry Andric return SDValue(); 66440b57cec5SDimitry Andric int CCValidVal = CCValid->getZExtValue(); 66450b57cec5SDimitry Andric int CCMaskVal = CCMask->getZExtValue(); 66460b57cec5SDimitry Andric 66470b57cec5SDimitry Andric SDValue Select = N->getOperand(0); 66480b57cec5SDimitry Andric if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 66490b57cec5SDimitry Andric return SDValue(); 66500b57cec5SDimitry Andric 66510b57cec5SDimitry Andric auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 66520b57cec5SDimitry Andric auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 66530b57cec5SDimitry Andric if (!SelectCCValid || !SelectCCMask) 66540b57cec5SDimitry Andric return SDValue(); 66550b57cec5SDimitry Andric int SelectCCValidVal = SelectCCValid->getZExtValue(); 66560b57cec5SDimitry Andric int SelectCCMaskVal = SelectCCMask->getZExtValue(); 66570b57cec5SDimitry Andric 66580b57cec5SDimitry Andric auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 66590b57cec5SDimitry Andric auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 66600b57cec5SDimitry Andric if (!TrueVal || !FalseVal) 66610b57cec5SDimitry Andric return SDValue(); 66620b57cec5SDimitry Andric if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 66630b57cec5SDimitry Andric ; 66640b57cec5SDimitry Andric else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 66650b57cec5SDimitry Andric SelectCCMaskVal ^= SelectCCValidVal; 66660b57cec5SDimitry Andric else 66670b57cec5SDimitry Andric return SDValue(); 66680b57cec5SDimitry Andric 66690b57cec5SDimitry Andric if (SelectCCValidVal & ~CCValidVal) 66700b57cec5SDimitry Andric return SDValue(); 66710b57cec5SDimitry Andric if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 66720b57cec5SDimitry Andric return SDValue(); 66730b57cec5SDimitry Andric 66740b57cec5SDimitry Andric return Select->getOperand(4); 66750b57cec5SDimitry Andric } 66760b57cec5SDimitry Andric 66770b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineIntDIVREM( 66780b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 66790b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 66800b57cec5SDimitry Andric EVT VT = N->getValueType(0); 66810b57cec5SDimitry Andric // In the case where the divisor is a vector of constants a cheaper 66820b57cec5SDimitry Andric // sequence of instructions can replace the divide. BuildSDIV is called to 66830b57cec5SDimitry Andric // do this during DAG combining, but it only succeeds when it can build a 66840b57cec5SDimitry Andric // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 66850b57cec5SDimitry Andric // since it is not Legal but Custom it can only happen before 66860b57cec5SDimitry Andric // legalization. Therefore we must scalarize this early before Combine 66870b57cec5SDimitry Andric // 1. For widened vectors, this is already the result of type legalization. 66880b57cec5SDimitry Andric if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 66890b57cec5SDimitry Andric DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 66900b57cec5SDimitry Andric return DAG.UnrollVectorOp(N); 66910b57cec5SDimitry Andric return SDValue(); 66920b57cec5SDimitry Andric } 66930b57cec5SDimitry Andric 66945ffd83dbSDimitry Andric SDValue SystemZTargetLowering::combineINTRINSIC( 66955ffd83dbSDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 66965ffd83dbSDimitry Andric SelectionDAG &DAG = DCI.DAG; 66975ffd83dbSDimitry Andric 66985ffd83dbSDimitry Andric unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 66995ffd83dbSDimitry Andric switch (Id) { 67005ffd83dbSDimitry Andric // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 67015ffd83dbSDimitry Andric // or larger is simply a vector load. 67025ffd83dbSDimitry Andric case Intrinsic::s390_vll: 67035ffd83dbSDimitry Andric case Intrinsic::s390_vlrl: 67045ffd83dbSDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 67055ffd83dbSDimitry Andric if (C->getZExtValue() >= 15) 67065ffd83dbSDimitry Andric return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 67075ffd83dbSDimitry Andric N->getOperand(3), MachinePointerInfo()); 67085ffd83dbSDimitry Andric break; 67095ffd83dbSDimitry Andric // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 67105ffd83dbSDimitry Andric case Intrinsic::s390_vstl: 67115ffd83dbSDimitry Andric case Intrinsic::s390_vstrl: 67125ffd83dbSDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 67135ffd83dbSDimitry Andric if (C->getZExtValue() >= 15) 67145ffd83dbSDimitry Andric return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 67155ffd83dbSDimitry Andric N->getOperand(4), MachinePointerInfo()); 67165ffd83dbSDimitry Andric break; 67175ffd83dbSDimitry Andric } 67185ffd83dbSDimitry Andric 67195ffd83dbSDimitry Andric return SDValue(); 67205ffd83dbSDimitry Andric } 67215ffd83dbSDimitry Andric 67220b57cec5SDimitry Andric SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 67230b57cec5SDimitry Andric if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 67240b57cec5SDimitry Andric return N->getOperand(0); 67250b57cec5SDimitry Andric return N; 67260b57cec5SDimitry Andric } 67270b57cec5SDimitry Andric 67280b57cec5SDimitry Andric SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 67290b57cec5SDimitry Andric DAGCombinerInfo &DCI) const { 67300b57cec5SDimitry Andric switch(N->getOpcode()) { 67310b57cec5SDimitry Andric default: break; 67320b57cec5SDimitry Andric case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 67330b57cec5SDimitry Andric case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 67340b57cec5SDimitry Andric case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 67350b57cec5SDimitry Andric case SystemZISD::MERGE_HIGH: 67360b57cec5SDimitry Andric case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 67370b57cec5SDimitry Andric case ISD::LOAD: return combineLOAD(N, DCI); 67380b57cec5SDimitry Andric case ISD::STORE: return combineSTORE(N, DCI); 67390b57cec5SDimitry Andric case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 67400b57cec5SDimitry Andric case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 67410b57cec5SDimitry Andric case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6742480093f4SDimitry Andric case ISD::STRICT_FP_ROUND: 67430b57cec5SDimitry Andric case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6744480093f4SDimitry Andric case ISD::STRICT_FP_EXTEND: 67450b57cec5SDimitry Andric case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 67465ffd83dbSDimitry Andric case ISD::SINT_TO_FP: 67475ffd83dbSDimitry Andric case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 67480b57cec5SDimitry Andric case ISD::BSWAP: return combineBSWAP(N, DCI); 67490b57cec5SDimitry Andric case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 67500b57cec5SDimitry Andric case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 67510b57cec5SDimitry Andric case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 67520b57cec5SDimitry Andric case ISD::SDIV: 67530b57cec5SDimitry Andric case ISD::UDIV: 67540b57cec5SDimitry Andric case ISD::SREM: 67550b57cec5SDimitry Andric case ISD::UREM: return combineIntDIVREM(N, DCI); 67565ffd83dbSDimitry Andric case ISD::INTRINSIC_W_CHAIN: 67575ffd83dbSDimitry Andric case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 67580b57cec5SDimitry Andric } 67590b57cec5SDimitry Andric 67600b57cec5SDimitry Andric return SDValue(); 67610b57cec5SDimitry Andric } 67620b57cec5SDimitry Andric 67630b57cec5SDimitry Andric // Return the demanded elements for the OpNo source operand of Op. DemandedElts 67640b57cec5SDimitry Andric // are for Op. 67650b57cec5SDimitry Andric static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 67660b57cec5SDimitry Andric unsigned OpNo) { 67670b57cec5SDimitry Andric EVT VT = Op.getValueType(); 67680b57cec5SDimitry Andric unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 67690b57cec5SDimitry Andric APInt SrcDemE; 67700b57cec5SDimitry Andric unsigned Opcode = Op.getOpcode(); 67710b57cec5SDimitry Andric if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 67720b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 67730b57cec5SDimitry Andric switch (Id) { 67740b57cec5SDimitry Andric case Intrinsic::s390_vpksh: // PACKS 67750b57cec5SDimitry Andric case Intrinsic::s390_vpksf: 67760b57cec5SDimitry Andric case Intrinsic::s390_vpksg: 67770b57cec5SDimitry Andric case Intrinsic::s390_vpkshs: // PACKS_CC 67780b57cec5SDimitry Andric case Intrinsic::s390_vpksfs: 67790b57cec5SDimitry Andric case Intrinsic::s390_vpksgs: 67800b57cec5SDimitry Andric case Intrinsic::s390_vpklsh: // PACKLS 67810b57cec5SDimitry Andric case Intrinsic::s390_vpklsf: 67820b57cec5SDimitry Andric case Intrinsic::s390_vpklsg: 67830b57cec5SDimitry Andric case Intrinsic::s390_vpklshs: // PACKLS_CC 67840b57cec5SDimitry Andric case Intrinsic::s390_vpklsfs: 67850b57cec5SDimitry Andric case Intrinsic::s390_vpklsgs: 67860b57cec5SDimitry Andric // VECTOR PACK truncates the elements of two source vectors into one. 67870b57cec5SDimitry Andric SrcDemE = DemandedElts; 67880b57cec5SDimitry Andric if (OpNo == 2) 67890b57cec5SDimitry Andric SrcDemE.lshrInPlace(NumElts / 2); 67900b57cec5SDimitry Andric SrcDemE = SrcDemE.trunc(NumElts / 2); 67910b57cec5SDimitry Andric break; 67920b57cec5SDimitry Andric // VECTOR UNPACK extends half the elements of the source vector. 67930b57cec5SDimitry Andric case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 67940b57cec5SDimitry Andric case Intrinsic::s390_vuphh: 67950b57cec5SDimitry Andric case Intrinsic::s390_vuphf: 67960b57cec5SDimitry Andric case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 67970b57cec5SDimitry Andric case Intrinsic::s390_vuplhh: 67980b57cec5SDimitry Andric case Intrinsic::s390_vuplhf: 67990b57cec5SDimitry Andric SrcDemE = APInt(NumElts * 2, 0); 68000b57cec5SDimitry Andric SrcDemE.insertBits(DemandedElts, 0); 68010b57cec5SDimitry Andric break; 68020b57cec5SDimitry Andric case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 68030b57cec5SDimitry Andric case Intrinsic::s390_vuplhw: 68040b57cec5SDimitry Andric case Intrinsic::s390_vuplf: 68050b57cec5SDimitry Andric case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 68060b57cec5SDimitry Andric case Intrinsic::s390_vupllh: 68070b57cec5SDimitry Andric case Intrinsic::s390_vupllf: 68080b57cec5SDimitry Andric SrcDemE = APInt(NumElts * 2, 0); 68090b57cec5SDimitry Andric SrcDemE.insertBits(DemandedElts, NumElts); 68100b57cec5SDimitry Andric break; 68110b57cec5SDimitry Andric case Intrinsic::s390_vpdi: { 68120b57cec5SDimitry Andric // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 68130b57cec5SDimitry Andric SrcDemE = APInt(NumElts, 0); 68140b57cec5SDimitry Andric if (!DemandedElts[OpNo - 1]) 68150b57cec5SDimitry Andric break; 68160b57cec5SDimitry Andric unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 68170b57cec5SDimitry Andric unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 68180b57cec5SDimitry Andric // Demand input element 0 or 1, given by the mask bit value. 68190b57cec5SDimitry Andric SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 68200b57cec5SDimitry Andric break; 68210b57cec5SDimitry Andric } 68220b57cec5SDimitry Andric case Intrinsic::s390_vsldb: { 68230b57cec5SDimitry Andric // VECTOR SHIFT LEFT DOUBLE BY BYTE 68240b57cec5SDimitry Andric assert(VT == MVT::v16i8 && "Unexpected type."); 68250b57cec5SDimitry Andric unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 68260b57cec5SDimitry Andric assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 68270b57cec5SDimitry Andric unsigned NumSrc0Els = 16 - FirstIdx; 68280b57cec5SDimitry Andric SrcDemE = APInt(NumElts, 0); 68290b57cec5SDimitry Andric if (OpNo == 1) { 68300b57cec5SDimitry Andric APInt DemEls = DemandedElts.trunc(NumSrc0Els); 68310b57cec5SDimitry Andric SrcDemE.insertBits(DemEls, FirstIdx); 68320b57cec5SDimitry Andric } else { 68330b57cec5SDimitry Andric APInt DemEls = DemandedElts.lshr(NumSrc0Els); 68340b57cec5SDimitry Andric SrcDemE.insertBits(DemEls, 0); 68350b57cec5SDimitry Andric } 68360b57cec5SDimitry Andric break; 68370b57cec5SDimitry Andric } 68380b57cec5SDimitry Andric case Intrinsic::s390_vperm: 68390b57cec5SDimitry Andric SrcDemE = APInt(NumElts, 1); 68400b57cec5SDimitry Andric break; 68410b57cec5SDimitry Andric default: 68420b57cec5SDimitry Andric llvm_unreachable("Unhandled intrinsic."); 68430b57cec5SDimitry Andric break; 68440b57cec5SDimitry Andric } 68450b57cec5SDimitry Andric } else { 68460b57cec5SDimitry Andric switch (Opcode) { 68470b57cec5SDimitry Andric case SystemZISD::JOIN_DWORDS: 68480b57cec5SDimitry Andric // Scalar operand. 68490b57cec5SDimitry Andric SrcDemE = APInt(1, 1); 68500b57cec5SDimitry Andric break; 68510b57cec5SDimitry Andric case SystemZISD::SELECT_CCMASK: 68520b57cec5SDimitry Andric SrcDemE = DemandedElts; 68530b57cec5SDimitry Andric break; 68540b57cec5SDimitry Andric default: 68550b57cec5SDimitry Andric llvm_unreachable("Unhandled opcode."); 68560b57cec5SDimitry Andric break; 68570b57cec5SDimitry Andric } 68580b57cec5SDimitry Andric } 68590b57cec5SDimitry Andric return SrcDemE; 68600b57cec5SDimitry Andric } 68610b57cec5SDimitry Andric 68620b57cec5SDimitry Andric static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 68630b57cec5SDimitry Andric const APInt &DemandedElts, 68640b57cec5SDimitry Andric const SelectionDAG &DAG, unsigned Depth, 68650b57cec5SDimitry Andric unsigned OpNo) { 68660b57cec5SDimitry Andric APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 68670b57cec5SDimitry Andric APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 68680b57cec5SDimitry Andric KnownBits LHSKnown = 68690b57cec5SDimitry Andric DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 68700b57cec5SDimitry Andric KnownBits RHSKnown = 68710b57cec5SDimitry Andric DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6872e8d8bef9SDimitry Andric Known = KnownBits::commonBits(LHSKnown, RHSKnown); 68730b57cec5SDimitry Andric } 68740b57cec5SDimitry Andric 68750b57cec5SDimitry Andric void 68760b57cec5SDimitry Andric SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 68770b57cec5SDimitry Andric KnownBits &Known, 68780b57cec5SDimitry Andric const APInt &DemandedElts, 68790b57cec5SDimitry Andric const SelectionDAG &DAG, 68800b57cec5SDimitry Andric unsigned Depth) const { 68810b57cec5SDimitry Andric Known.resetAll(); 68820b57cec5SDimitry Andric 68830b57cec5SDimitry Andric // Intrinsic CC result is returned in the two low bits. 68840b57cec5SDimitry Andric unsigned tmp0, tmp1; // not used 68850b57cec5SDimitry Andric if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 68860b57cec5SDimitry Andric Known.Zero.setBitsFrom(2); 68870b57cec5SDimitry Andric return; 68880b57cec5SDimitry Andric } 68890b57cec5SDimitry Andric EVT VT = Op.getValueType(); 68900b57cec5SDimitry Andric if (Op.getResNo() != 0 || VT == MVT::Untyped) 68910b57cec5SDimitry Andric return; 68920b57cec5SDimitry Andric assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 68930b57cec5SDimitry Andric "KnownBits does not match VT in bitwidth"); 68940b57cec5SDimitry Andric assert ((!VT.isVector() || 68950b57cec5SDimitry Andric (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 68960b57cec5SDimitry Andric "DemandedElts does not match VT number of elements"); 68970b57cec5SDimitry Andric unsigned BitWidth = Known.getBitWidth(); 68980b57cec5SDimitry Andric unsigned Opcode = Op.getOpcode(); 68990b57cec5SDimitry Andric if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 69000b57cec5SDimitry Andric bool IsLogical = false; 69010b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 69020b57cec5SDimitry Andric switch (Id) { 69030b57cec5SDimitry Andric case Intrinsic::s390_vpksh: // PACKS 69040b57cec5SDimitry Andric case Intrinsic::s390_vpksf: 69050b57cec5SDimitry Andric case Intrinsic::s390_vpksg: 69060b57cec5SDimitry Andric case Intrinsic::s390_vpkshs: // PACKS_CC 69070b57cec5SDimitry Andric case Intrinsic::s390_vpksfs: 69080b57cec5SDimitry Andric case Intrinsic::s390_vpksgs: 69090b57cec5SDimitry Andric case Intrinsic::s390_vpklsh: // PACKLS 69100b57cec5SDimitry Andric case Intrinsic::s390_vpklsf: 69110b57cec5SDimitry Andric case Intrinsic::s390_vpklsg: 69120b57cec5SDimitry Andric case Intrinsic::s390_vpklshs: // PACKLS_CC 69130b57cec5SDimitry Andric case Intrinsic::s390_vpklsfs: 69140b57cec5SDimitry Andric case Intrinsic::s390_vpklsgs: 69150b57cec5SDimitry Andric case Intrinsic::s390_vpdi: 69160b57cec5SDimitry Andric case Intrinsic::s390_vsldb: 69170b57cec5SDimitry Andric case Intrinsic::s390_vperm: 69180b57cec5SDimitry Andric computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 69190b57cec5SDimitry Andric break; 69200b57cec5SDimitry Andric case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 69210b57cec5SDimitry Andric case Intrinsic::s390_vuplhh: 69220b57cec5SDimitry Andric case Intrinsic::s390_vuplhf: 69230b57cec5SDimitry Andric case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 69240b57cec5SDimitry Andric case Intrinsic::s390_vupllh: 69250b57cec5SDimitry Andric case Intrinsic::s390_vupllf: 69260b57cec5SDimitry Andric IsLogical = true; 69270b57cec5SDimitry Andric LLVM_FALLTHROUGH; 69280b57cec5SDimitry Andric case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 69290b57cec5SDimitry Andric case Intrinsic::s390_vuphh: 69300b57cec5SDimitry Andric case Intrinsic::s390_vuphf: 69310b57cec5SDimitry Andric case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 69320b57cec5SDimitry Andric case Intrinsic::s390_vuplhw: 69330b57cec5SDimitry Andric case Intrinsic::s390_vuplf: { 69340b57cec5SDimitry Andric SDValue SrcOp = Op.getOperand(1); 69350b57cec5SDimitry Andric APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 69360b57cec5SDimitry Andric Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 69370b57cec5SDimitry Andric if (IsLogical) { 69385ffd83dbSDimitry Andric Known = Known.zext(BitWidth); 69390b57cec5SDimitry Andric } else 69400b57cec5SDimitry Andric Known = Known.sext(BitWidth); 69410b57cec5SDimitry Andric break; 69420b57cec5SDimitry Andric } 69430b57cec5SDimitry Andric default: 69440b57cec5SDimitry Andric break; 69450b57cec5SDimitry Andric } 69460b57cec5SDimitry Andric } else { 69470b57cec5SDimitry Andric switch (Opcode) { 69480b57cec5SDimitry Andric case SystemZISD::JOIN_DWORDS: 69490b57cec5SDimitry Andric case SystemZISD::SELECT_CCMASK: 69500b57cec5SDimitry Andric computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 69510b57cec5SDimitry Andric break; 69520b57cec5SDimitry Andric case SystemZISD::REPLICATE: { 69530b57cec5SDimitry Andric SDValue SrcOp = Op.getOperand(0); 69540b57cec5SDimitry Andric Known = DAG.computeKnownBits(SrcOp, Depth + 1); 69550b57cec5SDimitry Andric if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 69560b57cec5SDimitry Andric Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 69570b57cec5SDimitry Andric break; 69580b57cec5SDimitry Andric } 69590b57cec5SDimitry Andric default: 69600b57cec5SDimitry Andric break; 69610b57cec5SDimitry Andric } 69620b57cec5SDimitry Andric } 69630b57cec5SDimitry Andric 69640b57cec5SDimitry Andric // Known has the width of the source operand(s). Adjust if needed to match 69650b57cec5SDimitry Andric // the passed bitwidth. 69660b57cec5SDimitry Andric if (Known.getBitWidth() != BitWidth) 69675ffd83dbSDimitry Andric Known = Known.anyextOrTrunc(BitWidth); 69680b57cec5SDimitry Andric } 69690b57cec5SDimitry Andric 69700b57cec5SDimitry Andric static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 69710b57cec5SDimitry Andric const SelectionDAG &DAG, unsigned Depth, 69720b57cec5SDimitry Andric unsigned OpNo) { 69730b57cec5SDimitry Andric APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 69740b57cec5SDimitry Andric unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 69750b57cec5SDimitry Andric if (LHS == 1) return 1; // Early out. 69760b57cec5SDimitry Andric APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 69770b57cec5SDimitry Andric unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 69780b57cec5SDimitry Andric if (RHS == 1) return 1; // Early out. 69790b57cec5SDimitry Andric unsigned Common = std::min(LHS, RHS); 69800b57cec5SDimitry Andric unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 69810b57cec5SDimitry Andric EVT VT = Op.getValueType(); 69820b57cec5SDimitry Andric unsigned VTBits = VT.getScalarSizeInBits(); 69830b57cec5SDimitry Andric if (SrcBitWidth > VTBits) { // PACK 69840b57cec5SDimitry Andric unsigned SrcExtraBits = SrcBitWidth - VTBits; 69850b57cec5SDimitry Andric if (Common > SrcExtraBits) 69860b57cec5SDimitry Andric return (Common - SrcExtraBits); 69870b57cec5SDimitry Andric return 1; 69880b57cec5SDimitry Andric } 69890b57cec5SDimitry Andric assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 69900b57cec5SDimitry Andric return Common; 69910b57cec5SDimitry Andric } 69920b57cec5SDimitry Andric 69930b57cec5SDimitry Andric unsigned 69940b57cec5SDimitry Andric SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 69950b57cec5SDimitry Andric SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 69960b57cec5SDimitry Andric unsigned Depth) const { 69970b57cec5SDimitry Andric if (Op.getResNo() != 0) 69980b57cec5SDimitry Andric return 1; 69990b57cec5SDimitry Andric unsigned Opcode = Op.getOpcode(); 70000b57cec5SDimitry Andric if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 70010b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 70020b57cec5SDimitry Andric switch (Id) { 70030b57cec5SDimitry Andric case Intrinsic::s390_vpksh: // PACKS 70040b57cec5SDimitry Andric case Intrinsic::s390_vpksf: 70050b57cec5SDimitry Andric case Intrinsic::s390_vpksg: 70060b57cec5SDimitry Andric case Intrinsic::s390_vpkshs: // PACKS_CC 70070b57cec5SDimitry Andric case Intrinsic::s390_vpksfs: 70080b57cec5SDimitry Andric case Intrinsic::s390_vpksgs: 70090b57cec5SDimitry Andric case Intrinsic::s390_vpklsh: // PACKLS 70100b57cec5SDimitry Andric case Intrinsic::s390_vpklsf: 70110b57cec5SDimitry Andric case Intrinsic::s390_vpklsg: 70120b57cec5SDimitry Andric case Intrinsic::s390_vpklshs: // PACKLS_CC 70130b57cec5SDimitry Andric case Intrinsic::s390_vpklsfs: 70140b57cec5SDimitry Andric case Intrinsic::s390_vpklsgs: 70150b57cec5SDimitry Andric case Intrinsic::s390_vpdi: 70160b57cec5SDimitry Andric case Intrinsic::s390_vsldb: 70170b57cec5SDimitry Andric case Intrinsic::s390_vperm: 70180b57cec5SDimitry Andric return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 70190b57cec5SDimitry Andric case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 70200b57cec5SDimitry Andric case Intrinsic::s390_vuphh: 70210b57cec5SDimitry Andric case Intrinsic::s390_vuphf: 70220b57cec5SDimitry Andric case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 70230b57cec5SDimitry Andric case Intrinsic::s390_vuplhw: 70240b57cec5SDimitry Andric case Intrinsic::s390_vuplf: { 70250b57cec5SDimitry Andric SDValue PackedOp = Op.getOperand(1); 70260b57cec5SDimitry Andric APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 70270b57cec5SDimitry Andric unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 70280b57cec5SDimitry Andric EVT VT = Op.getValueType(); 70290b57cec5SDimitry Andric unsigned VTBits = VT.getScalarSizeInBits(); 70300b57cec5SDimitry Andric Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 70310b57cec5SDimitry Andric return Tmp; 70320b57cec5SDimitry Andric } 70330b57cec5SDimitry Andric default: 70340b57cec5SDimitry Andric break; 70350b57cec5SDimitry Andric } 70360b57cec5SDimitry Andric } else { 70370b57cec5SDimitry Andric switch (Opcode) { 70380b57cec5SDimitry Andric case SystemZISD::SELECT_CCMASK: 70390b57cec5SDimitry Andric return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 70400b57cec5SDimitry Andric default: 70410b57cec5SDimitry Andric break; 70420b57cec5SDimitry Andric } 70430b57cec5SDimitry Andric } 70440b57cec5SDimitry Andric 70450b57cec5SDimitry Andric return 1; 70460b57cec5SDimitry Andric } 70470b57cec5SDimitry Andric 70485ffd83dbSDimitry Andric unsigned 70495ffd83dbSDimitry Andric SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 70505ffd83dbSDimitry Andric const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 70515ffd83dbSDimitry Andric unsigned StackAlign = TFI->getStackAlignment(); 70525ffd83dbSDimitry Andric assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 70535ffd83dbSDimitry Andric "Unexpected stack alignment"); 70545ffd83dbSDimitry Andric // The default stack probe size is 4096 if the function has no 70555ffd83dbSDimitry Andric // stack-probe-size attribute. 70565ffd83dbSDimitry Andric unsigned StackProbeSize = 4096; 70575ffd83dbSDimitry Andric const Function &Fn = MF.getFunction(); 70585ffd83dbSDimitry Andric if (Fn.hasFnAttribute("stack-probe-size")) 70595ffd83dbSDimitry Andric Fn.getFnAttribute("stack-probe-size") 70605ffd83dbSDimitry Andric .getValueAsString() 70615ffd83dbSDimitry Andric .getAsInteger(0, StackProbeSize); 70625ffd83dbSDimitry Andric // Round down to the stack alignment. 70635ffd83dbSDimitry Andric StackProbeSize &= ~(StackAlign - 1); 70645ffd83dbSDimitry Andric return StackProbeSize ? StackProbeSize : StackAlign; 70655ffd83dbSDimitry Andric } 70665ffd83dbSDimitry Andric 70670b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 70680b57cec5SDimitry Andric // Custom insertion 70690b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 70700b57cec5SDimitry Andric 70710b57cec5SDimitry Andric // Force base value Base into a register before MI. Return the register. 70720b57cec5SDimitry Andric static Register forceReg(MachineInstr &MI, MachineOperand &Base, 70730b57cec5SDimitry Andric const SystemZInstrInfo *TII) { 70740b57cec5SDimitry Andric if (Base.isReg()) 70750b57cec5SDimitry Andric return Base.getReg(); 70760b57cec5SDimitry Andric 70770b57cec5SDimitry Andric MachineBasicBlock *MBB = MI.getParent(); 70780b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 70790b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 70800b57cec5SDimitry Andric 70810b57cec5SDimitry Andric Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 70820b57cec5SDimitry Andric BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 70830b57cec5SDimitry Andric .add(Base) 70840b57cec5SDimitry Andric .addImm(0) 70850b57cec5SDimitry Andric .addReg(0); 70860b57cec5SDimitry Andric return Reg; 70870b57cec5SDimitry Andric } 70880b57cec5SDimitry Andric 70890b57cec5SDimitry Andric // The CC operand of MI might be missing a kill marker because there 70900b57cec5SDimitry Andric // were multiple uses of CC, and ISel didn't know which to mark. 70910b57cec5SDimitry Andric // Figure out whether MI should have had a kill marker. 70920b57cec5SDimitry Andric static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 70930b57cec5SDimitry Andric // Scan forward through BB for a use/def of CC. 70940b57cec5SDimitry Andric MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 70950b57cec5SDimitry Andric for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 70960b57cec5SDimitry Andric const MachineInstr& mi = *miI; 70970b57cec5SDimitry Andric if (mi.readsRegister(SystemZ::CC)) 70980b57cec5SDimitry Andric return false; 70990b57cec5SDimitry Andric if (mi.definesRegister(SystemZ::CC)) 71000b57cec5SDimitry Andric break; // Should have kill-flag - update below. 71010b57cec5SDimitry Andric } 71020b57cec5SDimitry Andric 71030b57cec5SDimitry Andric // If we hit the end of the block, check whether CC is live into a 71040b57cec5SDimitry Andric // successor. 71050b57cec5SDimitry Andric if (miI == MBB->end()) { 71060b57cec5SDimitry Andric for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 71070b57cec5SDimitry Andric if ((*SI)->isLiveIn(SystemZ::CC)) 71080b57cec5SDimitry Andric return false; 71090b57cec5SDimitry Andric } 71100b57cec5SDimitry Andric 71110b57cec5SDimitry Andric return true; 71120b57cec5SDimitry Andric } 71130b57cec5SDimitry Andric 71140b57cec5SDimitry Andric // Return true if it is OK for this Select pseudo-opcode to be cascaded 71150b57cec5SDimitry Andric // together with other Select pseudo-opcodes into a single basic-block with 71160b57cec5SDimitry Andric // a conditional jump around it. 71170b57cec5SDimitry Andric static bool isSelectPseudo(MachineInstr &MI) { 71180b57cec5SDimitry Andric switch (MI.getOpcode()) { 71190b57cec5SDimitry Andric case SystemZ::Select32: 71200b57cec5SDimitry Andric case SystemZ::Select64: 71210b57cec5SDimitry Andric case SystemZ::SelectF32: 71220b57cec5SDimitry Andric case SystemZ::SelectF64: 71230b57cec5SDimitry Andric case SystemZ::SelectF128: 71240b57cec5SDimitry Andric case SystemZ::SelectVR32: 71250b57cec5SDimitry Andric case SystemZ::SelectVR64: 71260b57cec5SDimitry Andric case SystemZ::SelectVR128: 71270b57cec5SDimitry Andric return true; 71280b57cec5SDimitry Andric 71290b57cec5SDimitry Andric default: 71300b57cec5SDimitry Andric return false; 71310b57cec5SDimitry Andric } 71320b57cec5SDimitry Andric } 71330b57cec5SDimitry Andric 71340b57cec5SDimitry Andric // Helper function, which inserts PHI functions into SinkMBB: 71350b57cec5SDimitry Andric // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 71368bcb0991SDimitry Andric // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 71378bcb0991SDimitry Andric static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 71380b57cec5SDimitry Andric MachineBasicBlock *TrueMBB, 71390b57cec5SDimitry Andric MachineBasicBlock *FalseMBB, 71400b57cec5SDimitry Andric MachineBasicBlock *SinkMBB) { 71410b57cec5SDimitry Andric MachineFunction *MF = TrueMBB->getParent(); 71420b57cec5SDimitry Andric const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 71430b57cec5SDimitry Andric 71448bcb0991SDimitry Andric MachineInstr *FirstMI = Selects.front(); 71458bcb0991SDimitry Andric unsigned CCValid = FirstMI->getOperand(3).getImm(); 71468bcb0991SDimitry Andric unsigned CCMask = FirstMI->getOperand(4).getImm(); 71470b57cec5SDimitry Andric 71480b57cec5SDimitry Andric MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 71490b57cec5SDimitry Andric 71500b57cec5SDimitry Andric // As we are creating the PHIs, we have to be careful if there is more than 71510b57cec5SDimitry Andric // one. Later Selects may reference the results of earlier Selects, but later 71520b57cec5SDimitry Andric // PHIs have to reference the individual true/false inputs from earlier PHIs. 71530b57cec5SDimitry Andric // That also means that PHI construction must work forward from earlier to 71540b57cec5SDimitry Andric // later, and that the code must maintain a mapping from earlier PHI's 71550b57cec5SDimitry Andric // destination registers, and the registers that went into the PHI. 71560b57cec5SDimitry Andric DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 71570b57cec5SDimitry Andric 71588bcb0991SDimitry Andric for (auto MI : Selects) { 71598bcb0991SDimitry Andric Register DestReg = MI->getOperand(0).getReg(); 71608bcb0991SDimitry Andric Register TrueReg = MI->getOperand(1).getReg(); 71618bcb0991SDimitry Andric Register FalseReg = MI->getOperand(2).getReg(); 71620b57cec5SDimitry Andric 71630b57cec5SDimitry Andric // If this Select we are generating is the opposite condition from 71640b57cec5SDimitry Andric // the jump we generated, then we have to swap the operands for the 71650b57cec5SDimitry Andric // PHI that is going to be generated. 71668bcb0991SDimitry Andric if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 71670b57cec5SDimitry Andric std::swap(TrueReg, FalseReg); 71680b57cec5SDimitry Andric 71690b57cec5SDimitry Andric if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 71700b57cec5SDimitry Andric TrueReg = RegRewriteTable[TrueReg].first; 71710b57cec5SDimitry Andric 71720b57cec5SDimitry Andric if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 71730b57cec5SDimitry Andric FalseReg = RegRewriteTable[FalseReg].second; 71740b57cec5SDimitry Andric 71758bcb0991SDimitry Andric DebugLoc DL = MI->getDebugLoc(); 71760b57cec5SDimitry Andric BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 71770b57cec5SDimitry Andric .addReg(TrueReg).addMBB(TrueMBB) 71780b57cec5SDimitry Andric .addReg(FalseReg).addMBB(FalseMBB); 71790b57cec5SDimitry Andric 71800b57cec5SDimitry Andric // Add this PHI to the rewrite table. 71810b57cec5SDimitry Andric RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 71820b57cec5SDimitry Andric } 71830b57cec5SDimitry Andric 71840b57cec5SDimitry Andric MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 71850b57cec5SDimitry Andric } 71860b57cec5SDimitry Andric 71870b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 71880b57cec5SDimitry Andric MachineBasicBlock * 71890b57cec5SDimitry Andric SystemZTargetLowering::emitSelect(MachineInstr &MI, 71900b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 71918bcb0991SDimitry Andric assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 71920b57cec5SDimitry Andric const SystemZInstrInfo *TII = 71930b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 71940b57cec5SDimitry Andric 71950b57cec5SDimitry Andric unsigned CCValid = MI.getOperand(3).getImm(); 71960b57cec5SDimitry Andric unsigned CCMask = MI.getOperand(4).getImm(); 71970b57cec5SDimitry Andric 71980b57cec5SDimitry Andric // If we have a sequence of Select* pseudo instructions using the 71990b57cec5SDimitry Andric // same condition code value, we want to expand all of them into 72000b57cec5SDimitry Andric // a single pair of basic blocks using the same condition. 72018bcb0991SDimitry Andric SmallVector<MachineInstr*, 8> Selects; 72028bcb0991SDimitry Andric SmallVector<MachineInstr*, 8> DbgValues; 72038bcb0991SDimitry Andric Selects.push_back(&MI); 72048bcb0991SDimitry Andric unsigned Count = 0; 72058bcb0991SDimitry Andric for (MachineBasicBlock::iterator NextMIIt = 72068bcb0991SDimitry Andric std::next(MachineBasicBlock::iterator(MI)); 72078bcb0991SDimitry Andric NextMIIt != MBB->end(); ++NextMIIt) { 72088bcb0991SDimitry Andric if (isSelectPseudo(*NextMIIt)) { 72098bcb0991SDimitry Andric assert(NextMIIt->getOperand(3).getImm() == CCValid && 72108bcb0991SDimitry Andric "Bad CCValid operands since CC was not redefined."); 72118bcb0991SDimitry Andric if (NextMIIt->getOperand(4).getImm() == CCMask || 72128bcb0991SDimitry Andric NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 72138bcb0991SDimitry Andric Selects.push_back(&*NextMIIt); 72148bcb0991SDimitry Andric continue; 72158bcb0991SDimitry Andric } 72168bcb0991SDimitry Andric break; 72178bcb0991SDimitry Andric } 721813138422SDimitry Andric if (NextMIIt->definesRegister(SystemZ::CC) || 721913138422SDimitry Andric NextMIIt->usesCustomInsertionHook()) 722013138422SDimitry Andric break; 72218bcb0991SDimitry Andric bool User = false; 72228bcb0991SDimitry Andric for (auto SelMI : Selects) 72238bcb0991SDimitry Andric if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 72248bcb0991SDimitry Andric User = true; 72258bcb0991SDimitry Andric break; 72268bcb0991SDimitry Andric } 72278bcb0991SDimitry Andric if (NextMIIt->isDebugInstr()) { 72288bcb0991SDimitry Andric if (User) { 72298bcb0991SDimitry Andric assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 72308bcb0991SDimitry Andric DbgValues.push_back(&*NextMIIt); 72318bcb0991SDimitry Andric } 72328bcb0991SDimitry Andric } 72338bcb0991SDimitry Andric else if (User || ++Count > 20) 72348bcb0991SDimitry Andric break; 72350b57cec5SDimitry Andric } 72360b57cec5SDimitry Andric 72378bcb0991SDimitry Andric MachineInstr *LastMI = Selects.back(); 72388bcb0991SDimitry Andric bool CCKilled = 72398bcb0991SDimitry Andric (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 72400b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 72415ffd83dbSDimitry Andric MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 72425ffd83dbSDimitry Andric MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 72430b57cec5SDimitry Andric 72440b57cec5SDimitry Andric // Unless CC was killed in the last Select instruction, mark it as 72450b57cec5SDimitry Andric // live-in to both FalseMBB and JoinMBB. 72468bcb0991SDimitry Andric if (!CCKilled) { 72470b57cec5SDimitry Andric FalseMBB->addLiveIn(SystemZ::CC); 72480b57cec5SDimitry Andric JoinMBB->addLiveIn(SystemZ::CC); 72490b57cec5SDimitry Andric } 72500b57cec5SDimitry Andric 72510b57cec5SDimitry Andric // StartMBB: 72520b57cec5SDimitry Andric // BRC CCMask, JoinMBB 72530b57cec5SDimitry Andric // # fallthrough to FalseMBB 72540b57cec5SDimitry Andric MBB = StartMBB; 72558bcb0991SDimitry Andric BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 72560b57cec5SDimitry Andric .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 72570b57cec5SDimitry Andric MBB->addSuccessor(JoinMBB); 72580b57cec5SDimitry Andric MBB->addSuccessor(FalseMBB); 72590b57cec5SDimitry Andric 72600b57cec5SDimitry Andric // FalseMBB: 72610b57cec5SDimitry Andric // # fallthrough to JoinMBB 72620b57cec5SDimitry Andric MBB = FalseMBB; 72630b57cec5SDimitry Andric MBB->addSuccessor(JoinMBB); 72640b57cec5SDimitry Andric 72650b57cec5SDimitry Andric // JoinMBB: 72660b57cec5SDimitry Andric // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 72670b57cec5SDimitry Andric // ... 72680b57cec5SDimitry Andric MBB = JoinMBB; 72698bcb0991SDimitry Andric createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 72708bcb0991SDimitry Andric for (auto SelMI : Selects) 72718bcb0991SDimitry Andric SelMI->eraseFromParent(); 72720b57cec5SDimitry Andric 72738bcb0991SDimitry Andric MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 72748bcb0991SDimitry Andric for (auto DbgMI : DbgValues) 72758bcb0991SDimitry Andric MBB->splice(InsertPos, StartMBB, DbgMI); 72768bcb0991SDimitry Andric 72770b57cec5SDimitry Andric return JoinMBB; 72780b57cec5SDimitry Andric } 72790b57cec5SDimitry Andric 72800b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 72810b57cec5SDimitry Andric // StoreOpcode is the store to use and Invert says whether the store should 72820b57cec5SDimitry Andric // happen when the condition is false rather than true. If a STORE ON 72830b57cec5SDimitry Andric // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 72840b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 72850b57cec5SDimitry Andric MachineBasicBlock *MBB, 72860b57cec5SDimitry Andric unsigned StoreOpcode, 72870b57cec5SDimitry Andric unsigned STOCOpcode, 72880b57cec5SDimitry Andric bool Invert) const { 72890b57cec5SDimitry Andric const SystemZInstrInfo *TII = 72900b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 72910b57cec5SDimitry Andric 72928bcb0991SDimitry Andric Register SrcReg = MI.getOperand(0).getReg(); 72930b57cec5SDimitry Andric MachineOperand Base = MI.getOperand(1); 72940b57cec5SDimitry Andric int64_t Disp = MI.getOperand(2).getImm(); 72958bcb0991SDimitry Andric Register IndexReg = MI.getOperand(3).getReg(); 72960b57cec5SDimitry Andric unsigned CCValid = MI.getOperand(4).getImm(); 72970b57cec5SDimitry Andric unsigned CCMask = MI.getOperand(5).getImm(); 72980b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 72990b57cec5SDimitry Andric 73000b57cec5SDimitry Andric StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 73010b57cec5SDimitry Andric 73020b57cec5SDimitry Andric // ISel pattern matching also adds a load memory operand of the same 73030b57cec5SDimitry Andric // address, so take special care to find the storing memory operand. 73040b57cec5SDimitry Andric MachineMemOperand *MMO = nullptr; 73050b57cec5SDimitry Andric for (auto *I : MI.memoperands()) 73060b57cec5SDimitry Andric if (I->isStore()) { 73070b57cec5SDimitry Andric MMO = I; 73080b57cec5SDimitry Andric break; 73090b57cec5SDimitry Andric } 73100b57cec5SDimitry Andric 7311e8d8bef9SDimitry Andric // Use STOCOpcode if possible. We could use different store patterns in 7312e8d8bef9SDimitry Andric // order to avoid matching the index register, but the performance trade-offs 7313e8d8bef9SDimitry Andric // might be more complicated in that case. 7314e8d8bef9SDimitry Andric if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7315e8d8bef9SDimitry Andric if (Invert) 7316e8d8bef9SDimitry Andric CCMask ^= CCValid; 7317e8d8bef9SDimitry Andric 73180b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 73190b57cec5SDimitry Andric .addReg(SrcReg) 73200b57cec5SDimitry Andric .add(Base) 73210b57cec5SDimitry Andric .addImm(Disp) 73220b57cec5SDimitry Andric .addImm(CCValid) 73230b57cec5SDimitry Andric .addImm(CCMask) 73240b57cec5SDimitry Andric .addMemOperand(MMO); 73250b57cec5SDimitry Andric 73260b57cec5SDimitry Andric MI.eraseFromParent(); 73270b57cec5SDimitry Andric return MBB; 73280b57cec5SDimitry Andric } 73290b57cec5SDimitry Andric 73300b57cec5SDimitry Andric // Get the condition needed to branch around the store. 73310b57cec5SDimitry Andric if (!Invert) 73320b57cec5SDimitry Andric CCMask ^= CCValid; 73330b57cec5SDimitry Andric 73340b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 73355ffd83dbSDimitry Andric MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 73365ffd83dbSDimitry Andric MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 73370b57cec5SDimitry Andric 73380b57cec5SDimitry Andric // Unless CC was killed in the CondStore instruction, mark it as 73390b57cec5SDimitry Andric // live-in to both FalseMBB and JoinMBB. 73400b57cec5SDimitry Andric if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 73410b57cec5SDimitry Andric FalseMBB->addLiveIn(SystemZ::CC); 73420b57cec5SDimitry Andric JoinMBB->addLiveIn(SystemZ::CC); 73430b57cec5SDimitry Andric } 73440b57cec5SDimitry Andric 73450b57cec5SDimitry Andric // StartMBB: 73460b57cec5SDimitry Andric // BRC CCMask, JoinMBB 73470b57cec5SDimitry Andric // # fallthrough to FalseMBB 73480b57cec5SDimitry Andric MBB = StartMBB; 73490b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 73500b57cec5SDimitry Andric .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 73510b57cec5SDimitry Andric MBB->addSuccessor(JoinMBB); 73520b57cec5SDimitry Andric MBB->addSuccessor(FalseMBB); 73530b57cec5SDimitry Andric 73540b57cec5SDimitry Andric // FalseMBB: 73550b57cec5SDimitry Andric // store %SrcReg, %Disp(%Index,%Base) 73560b57cec5SDimitry Andric // # fallthrough to JoinMBB 73570b57cec5SDimitry Andric MBB = FalseMBB; 73580b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(StoreOpcode)) 73590b57cec5SDimitry Andric .addReg(SrcReg) 73600b57cec5SDimitry Andric .add(Base) 73610b57cec5SDimitry Andric .addImm(Disp) 7362e8d8bef9SDimitry Andric .addReg(IndexReg) 7363e8d8bef9SDimitry Andric .addMemOperand(MMO); 73640b57cec5SDimitry Andric MBB->addSuccessor(JoinMBB); 73650b57cec5SDimitry Andric 73660b57cec5SDimitry Andric MI.eraseFromParent(); 73670b57cec5SDimitry Andric return JoinMBB; 73680b57cec5SDimitry Andric } 73690b57cec5SDimitry Andric 73700b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 73710b57cec5SDimitry Andric // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 73720b57cec5SDimitry Andric // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 73730b57cec5SDimitry Andric // BitSize is the width of the field in bits, or 0 if this is a partword 73740b57cec5SDimitry Andric // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 73750b57cec5SDimitry Andric // is one of the operands. Invert says whether the field should be 73760b57cec5SDimitry Andric // inverted after performing BinOpcode (e.g. for NAND). 73770b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 73780b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 73790b57cec5SDimitry Andric unsigned BitSize, bool Invert) const { 73800b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 73810b57cec5SDimitry Andric const SystemZInstrInfo *TII = 73820b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 73830b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 73840b57cec5SDimitry Andric bool IsSubWord = (BitSize < 32); 73850b57cec5SDimitry Andric 73860b57cec5SDimitry Andric // Extract the operands. Base can be a register or a frame index. 73870b57cec5SDimitry Andric // Src2 can be a register or immediate. 73888bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 73890b57cec5SDimitry Andric MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 73900b57cec5SDimitry Andric int64_t Disp = MI.getOperand(2).getImm(); 73910b57cec5SDimitry Andric MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 73920b57cec5SDimitry Andric Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 73930b57cec5SDimitry Andric Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 73940b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 73950b57cec5SDimitry Andric if (IsSubWord) 73960b57cec5SDimitry Andric BitSize = MI.getOperand(6).getImm(); 73970b57cec5SDimitry Andric 73980b57cec5SDimitry Andric // Subword operations use 32-bit registers. 73990b57cec5SDimitry Andric const TargetRegisterClass *RC = (BitSize <= 32 ? 74000b57cec5SDimitry Andric &SystemZ::GR32BitRegClass : 74010b57cec5SDimitry Andric &SystemZ::GR64BitRegClass); 74020b57cec5SDimitry Andric unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 74030b57cec5SDimitry Andric unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 74040b57cec5SDimitry Andric 74050b57cec5SDimitry Andric // Get the right opcodes for the displacement. 74060b57cec5SDimitry Andric LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 74070b57cec5SDimitry Andric CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 74080b57cec5SDimitry Andric assert(LOpcode && CSOpcode && "Displacement out of range"); 74090b57cec5SDimitry Andric 74100b57cec5SDimitry Andric // Create virtual registers for temporary results. 74110b57cec5SDimitry Andric Register OrigVal = MRI.createVirtualRegister(RC); 74120b57cec5SDimitry Andric Register OldVal = MRI.createVirtualRegister(RC); 74130b57cec5SDimitry Andric Register NewVal = (BinOpcode || IsSubWord ? 74140b57cec5SDimitry Andric MRI.createVirtualRegister(RC) : Src2.getReg()); 74150b57cec5SDimitry Andric Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 74160b57cec5SDimitry Andric Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 74170b57cec5SDimitry Andric 74180b57cec5SDimitry Andric // Insert a basic block for the main loop. 74190b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 74205ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 74215ffd83dbSDimitry Andric MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 74220b57cec5SDimitry Andric 74230b57cec5SDimitry Andric // StartMBB: 74240b57cec5SDimitry Andric // ... 74250b57cec5SDimitry Andric // %OrigVal = L Disp(%Base) 7426*fe6060f1SDimitry Andric // # fall through to LoopMBB 74270b57cec5SDimitry Andric MBB = StartMBB; 74280b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 74290b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 74300b57cec5SDimitry Andric 74310b57cec5SDimitry Andric // LoopMBB: 74320b57cec5SDimitry Andric // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 74330b57cec5SDimitry Andric // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 74340b57cec5SDimitry Andric // %RotatedNewVal = OP %RotatedOldVal, %Src2 74350b57cec5SDimitry Andric // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 74360b57cec5SDimitry Andric // %Dest = CS %OldVal, %NewVal, Disp(%Base) 74370b57cec5SDimitry Andric // JNE LoopMBB 7438*fe6060f1SDimitry Andric // # fall through to DoneMBB 74390b57cec5SDimitry Andric MBB = LoopMBB; 74400b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 74410b57cec5SDimitry Andric .addReg(OrigVal).addMBB(StartMBB) 74420b57cec5SDimitry Andric .addReg(Dest).addMBB(LoopMBB); 74430b57cec5SDimitry Andric if (IsSubWord) 74440b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 74450b57cec5SDimitry Andric .addReg(OldVal).addReg(BitShift).addImm(0); 74460b57cec5SDimitry Andric if (Invert) { 74470b57cec5SDimitry Andric // Perform the operation normally and then invert every bit of the field. 74488bcb0991SDimitry Andric Register Tmp = MRI.createVirtualRegister(RC); 74490b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 74500b57cec5SDimitry Andric if (BitSize <= 32) 74510b57cec5SDimitry Andric // XILF with the upper BitSize bits set. 74520b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 74530b57cec5SDimitry Andric .addReg(Tmp).addImm(-1U << (32 - BitSize)); 74540b57cec5SDimitry Andric else { 74550b57cec5SDimitry Andric // Use LCGR and add -1 to the result, which is more compact than 74560b57cec5SDimitry Andric // an XILF, XILH pair. 74578bcb0991SDimitry Andric Register Tmp2 = MRI.createVirtualRegister(RC); 74580b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 74590b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 74600b57cec5SDimitry Andric .addReg(Tmp2).addImm(-1); 74610b57cec5SDimitry Andric } 74620b57cec5SDimitry Andric } else if (BinOpcode) 74630b57cec5SDimitry Andric // A simply binary operation. 74640b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 74650b57cec5SDimitry Andric .addReg(RotatedOldVal) 74660b57cec5SDimitry Andric .add(Src2); 74670b57cec5SDimitry Andric else if (IsSubWord) 74680b57cec5SDimitry Andric // Use RISBG to rotate Src2 into position and use it to replace the 74690b57cec5SDimitry Andric // field in RotatedOldVal. 74700b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 74710b57cec5SDimitry Andric .addReg(RotatedOldVal).addReg(Src2.getReg()) 74720b57cec5SDimitry Andric .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 74730b57cec5SDimitry Andric if (IsSubWord) 74740b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 74750b57cec5SDimitry Andric .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 74760b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 74770b57cec5SDimitry Andric .addReg(OldVal) 74780b57cec5SDimitry Andric .addReg(NewVal) 74790b57cec5SDimitry Andric .add(Base) 74800b57cec5SDimitry Andric .addImm(Disp); 74810b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 74820b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 74830b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 74840b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 74850b57cec5SDimitry Andric 74860b57cec5SDimitry Andric MI.eraseFromParent(); 74870b57cec5SDimitry Andric return DoneMBB; 74880b57cec5SDimitry Andric } 74890b57cec5SDimitry Andric 74900b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo 74910b57cec5SDimitry Andric // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 74920b57cec5SDimitry Andric // instruction that should be used to compare the current field with the 74930b57cec5SDimitry Andric // minimum or maximum value. KeepOldMask is the BRC condition-code mask 74940b57cec5SDimitry Andric // for when the current field should be kept. BitSize is the width of 74950b57cec5SDimitry Andric // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 74960b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 74970b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 74980b57cec5SDimitry Andric unsigned KeepOldMask, unsigned BitSize) const { 74990b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 75000b57cec5SDimitry Andric const SystemZInstrInfo *TII = 75010b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 75020b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 75030b57cec5SDimitry Andric bool IsSubWord = (BitSize < 32); 75040b57cec5SDimitry Andric 75050b57cec5SDimitry Andric // Extract the operands. Base can be a register or a frame index. 75068bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 75070b57cec5SDimitry Andric MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 75080b57cec5SDimitry Andric int64_t Disp = MI.getOperand(2).getImm(); 75090b57cec5SDimitry Andric Register Src2 = MI.getOperand(3).getReg(); 75100b57cec5SDimitry Andric Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 75110b57cec5SDimitry Andric Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 75120b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 75130b57cec5SDimitry Andric if (IsSubWord) 75140b57cec5SDimitry Andric BitSize = MI.getOperand(6).getImm(); 75150b57cec5SDimitry Andric 75160b57cec5SDimitry Andric // Subword operations use 32-bit registers. 75170b57cec5SDimitry Andric const TargetRegisterClass *RC = (BitSize <= 32 ? 75180b57cec5SDimitry Andric &SystemZ::GR32BitRegClass : 75190b57cec5SDimitry Andric &SystemZ::GR64BitRegClass); 75200b57cec5SDimitry Andric unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 75210b57cec5SDimitry Andric unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 75220b57cec5SDimitry Andric 75230b57cec5SDimitry Andric // Get the right opcodes for the displacement. 75240b57cec5SDimitry Andric LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 75250b57cec5SDimitry Andric CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 75260b57cec5SDimitry Andric assert(LOpcode && CSOpcode && "Displacement out of range"); 75270b57cec5SDimitry Andric 75280b57cec5SDimitry Andric // Create virtual registers for temporary results. 75290b57cec5SDimitry Andric Register OrigVal = MRI.createVirtualRegister(RC); 75300b57cec5SDimitry Andric Register OldVal = MRI.createVirtualRegister(RC); 75310b57cec5SDimitry Andric Register NewVal = MRI.createVirtualRegister(RC); 75320b57cec5SDimitry Andric Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 75330b57cec5SDimitry Andric Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 75340b57cec5SDimitry Andric Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 75350b57cec5SDimitry Andric 75360b57cec5SDimitry Andric // Insert 3 basic blocks for the loop. 75370b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 75385ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 75395ffd83dbSDimitry Andric MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 75405ffd83dbSDimitry Andric MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 75415ffd83dbSDimitry Andric MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 75420b57cec5SDimitry Andric 75430b57cec5SDimitry Andric // StartMBB: 75440b57cec5SDimitry Andric // ... 75450b57cec5SDimitry Andric // %OrigVal = L Disp(%Base) 7546*fe6060f1SDimitry Andric // # fall through to LoopMBB 75470b57cec5SDimitry Andric MBB = StartMBB; 75480b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 75490b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 75500b57cec5SDimitry Andric 75510b57cec5SDimitry Andric // LoopMBB: 75520b57cec5SDimitry Andric // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 75530b57cec5SDimitry Andric // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 75540b57cec5SDimitry Andric // CompareOpcode %RotatedOldVal, %Src2 75550b57cec5SDimitry Andric // BRC KeepOldMask, UpdateMBB 75560b57cec5SDimitry Andric MBB = LoopMBB; 75570b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 75580b57cec5SDimitry Andric .addReg(OrigVal).addMBB(StartMBB) 75590b57cec5SDimitry Andric .addReg(Dest).addMBB(UpdateMBB); 75600b57cec5SDimitry Andric if (IsSubWord) 75610b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 75620b57cec5SDimitry Andric .addReg(OldVal).addReg(BitShift).addImm(0); 75630b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(CompareOpcode)) 75640b57cec5SDimitry Andric .addReg(RotatedOldVal).addReg(Src2); 75650b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 75660b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 75670b57cec5SDimitry Andric MBB->addSuccessor(UpdateMBB); 75680b57cec5SDimitry Andric MBB->addSuccessor(UseAltMBB); 75690b57cec5SDimitry Andric 75700b57cec5SDimitry Andric // UseAltMBB: 75710b57cec5SDimitry Andric // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7572*fe6060f1SDimitry Andric // # fall through to UpdateMBB 75730b57cec5SDimitry Andric MBB = UseAltMBB; 75740b57cec5SDimitry Andric if (IsSubWord) 75750b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 75760b57cec5SDimitry Andric .addReg(RotatedOldVal).addReg(Src2) 75770b57cec5SDimitry Andric .addImm(32).addImm(31 + BitSize).addImm(0); 75780b57cec5SDimitry Andric MBB->addSuccessor(UpdateMBB); 75790b57cec5SDimitry Andric 75800b57cec5SDimitry Andric // UpdateMBB: 75810b57cec5SDimitry Andric // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 75820b57cec5SDimitry Andric // [ %RotatedAltVal, UseAltMBB ] 75830b57cec5SDimitry Andric // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 75840b57cec5SDimitry Andric // %Dest = CS %OldVal, %NewVal, Disp(%Base) 75850b57cec5SDimitry Andric // JNE LoopMBB 7586*fe6060f1SDimitry Andric // # fall through to DoneMBB 75870b57cec5SDimitry Andric MBB = UpdateMBB; 75880b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 75890b57cec5SDimitry Andric .addReg(RotatedOldVal).addMBB(LoopMBB) 75900b57cec5SDimitry Andric .addReg(RotatedAltVal).addMBB(UseAltMBB); 75910b57cec5SDimitry Andric if (IsSubWord) 75920b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 75930b57cec5SDimitry Andric .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 75940b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 75950b57cec5SDimitry Andric .addReg(OldVal) 75960b57cec5SDimitry Andric .addReg(NewVal) 75970b57cec5SDimitry Andric .add(Base) 75980b57cec5SDimitry Andric .addImm(Disp); 75990b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 76000b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 76010b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 76020b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 76030b57cec5SDimitry Andric 76040b57cec5SDimitry Andric MI.eraseFromParent(); 76050b57cec5SDimitry Andric return DoneMBB; 76060b57cec5SDimitry Andric } 76070b57cec5SDimitry Andric 76080b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 76090b57cec5SDimitry Andric // instruction MI. 76100b57cec5SDimitry Andric MachineBasicBlock * 76110b57cec5SDimitry Andric SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 76120b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 76130b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 76140b57cec5SDimitry Andric const SystemZInstrInfo *TII = 76150b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 76160b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 76170b57cec5SDimitry Andric 76180b57cec5SDimitry Andric // Extract the operands. Base can be a register or a frame index. 76198bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 76200b57cec5SDimitry Andric MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 76210b57cec5SDimitry Andric int64_t Disp = MI.getOperand(2).getImm(); 7622*fe6060f1SDimitry Andric Register CmpVal = MI.getOperand(3).getReg(); 76238bcb0991SDimitry Andric Register OrigSwapVal = MI.getOperand(4).getReg(); 76248bcb0991SDimitry Andric Register BitShift = MI.getOperand(5).getReg(); 76258bcb0991SDimitry Andric Register NegBitShift = MI.getOperand(6).getReg(); 76260b57cec5SDimitry Andric int64_t BitSize = MI.getOperand(7).getImm(); 76270b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 76280b57cec5SDimitry Andric 76290b57cec5SDimitry Andric const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 76300b57cec5SDimitry Andric 7631*fe6060f1SDimitry Andric // Get the right opcodes for the displacement and zero-extension. 76320b57cec5SDimitry Andric unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 76330b57cec5SDimitry Andric unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7634*fe6060f1SDimitry Andric unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 76350b57cec5SDimitry Andric assert(LOpcode && CSOpcode && "Displacement out of range"); 76360b57cec5SDimitry Andric 76370b57cec5SDimitry Andric // Create virtual registers for temporary results. 76388bcb0991SDimitry Andric Register OrigOldVal = MRI.createVirtualRegister(RC); 76398bcb0991SDimitry Andric Register OldVal = MRI.createVirtualRegister(RC); 76408bcb0991SDimitry Andric Register SwapVal = MRI.createVirtualRegister(RC); 76418bcb0991SDimitry Andric Register StoreVal = MRI.createVirtualRegister(RC); 7642*fe6060f1SDimitry Andric Register OldValRot = MRI.createVirtualRegister(RC); 76438bcb0991SDimitry Andric Register RetryOldVal = MRI.createVirtualRegister(RC); 76448bcb0991SDimitry Andric Register RetrySwapVal = MRI.createVirtualRegister(RC); 76450b57cec5SDimitry Andric 76460b57cec5SDimitry Andric // Insert 2 basic blocks for the loop. 76470b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 76485ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 76495ffd83dbSDimitry Andric MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 76505ffd83dbSDimitry Andric MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 76510b57cec5SDimitry Andric 76520b57cec5SDimitry Andric // StartMBB: 76530b57cec5SDimitry Andric // ... 76540b57cec5SDimitry Andric // %OrigOldVal = L Disp(%Base) 7655*fe6060f1SDimitry Andric // # fall through to LoopMBB 76560b57cec5SDimitry Andric MBB = StartMBB; 76570b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 76580b57cec5SDimitry Andric .add(Base) 76590b57cec5SDimitry Andric .addImm(Disp) 76600b57cec5SDimitry Andric .addReg(0); 76610b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 76620b57cec5SDimitry Andric 76630b57cec5SDimitry Andric // LoopMBB: 76640b57cec5SDimitry Andric // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 76650b57cec5SDimitry Andric // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7666*fe6060f1SDimitry Andric // %OldValRot = RLL %OldVal, BitSize(%BitShift) 76670b57cec5SDimitry Andric // ^^ The low BitSize bits contain the field 76680b57cec5SDimitry Andric // of interest. 7669*fe6060f1SDimitry Andric // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 76700b57cec5SDimitry Andric // ^^ Replace the upper 32-BitSize bits of the 7671*fe6060f1SDimitry Andric // swap value with those that we loaded and rotated. 7672*fe6060f1SDimitry Andric // %Dest = LL[CH] %OldValRot 7673*fe6060f1SDimitry Andric // CR %Dest, %CmpVal 76740b57cec5SDimitry Andric // JNE DoneMBB 76750b57cec5SDimitry Andric // # Fall through to SetMBB 76760b57cec5SDimitry Andric MBB = LoopMBB; 76770b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 76780b57cec5SDimitry Andric .addReg(OrigOldVal).addMBB(StartMBB) 76790b57cec5SDimitry Andric .addReg(RetryOldVal).addMBB(SetMBB); 76800b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 76810b57cec5SDimitry Andric .addReg(OrigSwapVal).addMBB(StartMBB) 76820b57cec5SDimitry Andric .addReg(RetrySwapVal).addMBB(SetMBB); 7683*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 76840b57cec5SDimitry Andric .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7685*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7686*fe6060f1SDimitry Andric .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 7687*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 7688*fe6060f1SDimitry Andric .addReg(OldValRot); 76890b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7690*fe6060f1SDimitry Andric .addReg(Dest).addReg(CmpVal); 76910b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 76920b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP) 76930b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 76940b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 76950b57cec5SDimitry Andric MBB->addSuccessor(SetMBB); 76960b57cec5SDimitry Andric 76970b57cec5SDimitry Andric // SetMBB: 76980b57cec5SDimitry Andric // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 76990b57cec5SDimitry Andric // ^^ Rotate the new field to its proper position. 7700*fe6060f1SDimitry Andric // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 77010b57cec5SDimitry Andric // JNE LoopMBB 7702*fe6060f1SDimitry Andric // # fall through to ExitMBB 77030b57cec5SDimitry Andric MBB = SetMBB; 77040b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 77050b57cec5SDimitry Andric .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 77060b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 77070b57cec5SDimitry Andric .addReg(OldVal) 77080b57cec5SDimitry Andric .addReg(StoreVal) 77090b57cec5SDimitry Andric .add(Base) 77100b57cec5SDimitry Andric .addImm(Disp); 77110b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 77120b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 77130b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 77140b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 77150b57cec5SDimitry Andric 77160b57cec5SDimitry Andric // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 77170b57cec5SDimitry Andric // to the block after the loop. At this point, CC may have been defined 77180b57cec5SDimitry Andric // either by the CR in LoopMBB or by the CS in SetMBB. 77190b57cec5SDimitry Andric if (!MI.registerDefIsDead(SystemZ::CC)) 77200b57cec5SDimitry Andric DoneMBB->addLiveIn(SystemZ::CC); 77210b57cec5SDimitry Andric 77220b57cec5SDimitry Andric MI.eraseFromParent(); 77230b57cec5SDimitry Andric return DoneMBB; 77240b57cec5SDimitry Andric } 77250b57cec5SDimitry Andric 77260b57cec5SDimitry Andric // Emit a move from two GR64s to a GR128. 77270b57cec5SDimitry Andric MachineBasicBlock * 77280b57cec5SDimitry Andric SystemZTargetLowering::emitPair128(MachineInstr &MI, 77290b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 77300b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 77310b57cec5SDimitry Andric const SystemZInstrInfo *TII = 77320b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 77330b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 77340b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 77350b57cec5SDimitry Andric 77368bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 77378bcb0991SDimitry Andric Register Hi = MI.getOperand(1).getReg(); 77388bcb0991SDimitry Andric Register Lo = MI.getOperand(2).getReg(); 77398bcb0991SDimitry Andric Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 77408bcb0991SDimitry Andric Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 77410b57cec5SDimitry Andric 77420b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 77430b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 77440b57cec5SDimitry Andric .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 77450b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 77460b57cec5SDimitry Andric .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 77470b57cec5SDimitry Andric 77480b57cec5SDimitry Andric MI.eraseFromParent(); 77490b57cec5SDimitry Andric return MBB; 77500b57cec5SDimitry Andric } 77510b57cec5SDimitry Andric 77520b57cec5SDimitry Andric // Emit an extension from a GR64 to a GR128. ClearEven is true 77530b57cec5SDimitry Andric // if the high register of the GR128 value must be cleared or false if 77540b57cec5SDimitry Andric // it's "don't care". 77550b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 77560b57cec5SDimitry Andric MachineBasicBlock *MBB, 77570b57cec5SDimitry Andric bool ClearEven) const { 77580b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 77590b57cec5SDimitry Andric const SystemZInstrInfo *TII = 77600b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 77610b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 77620b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 77630b57cec5SDimitry Andric 77648bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 77658bcb0991SDimitry Andric Register Src = MI.getOperand(1).getReg(); 77668bcb0991SDimitry Andric Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 77670b57cec5SDimitry Andric 77680b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 77690b57cec5SDimitry Andric if (ClearEven) { 77708bcb0991SDimitry Andric Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 77718bcb0991SDimitry Andric Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 77720b57cec5SDimitry Andric 77730b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 77740b57cec5SDimitry Andric .addImm(0); 77750b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 77760b57cec5SDimitry Andric .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 77770b57cec5SDimitry Andric In128 = NewIn128; 77780b57cec5SDimitry Andric } 77790b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 77800b57cec5SDimitry Andric .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 77810b57cec5SDimitry Andric 77820b57cec5SDimitry Andric MI.eraseFromParent(); 77830b57cec5SDimitry Andric return MBB; 77840b57cec5SDimitry Andric } 77850b57cec5SDimitry Andric 77860b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 77870b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 77880b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 77890b57cec5SDimitry Andric const SystemZInstrInfo *TII = 77900b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 77910b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 77920b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 77930b57cec5SDimitry Andric 77940b57cec5SDimitry Andric MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 77950b57cec5SDimitry Andric uint64_t DestDisp = MI.getOperand(1).getImm(); 77960b57cec5SDimitry Andric MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 77970b57cec5SDimitry Andric uint64_t SrcDisp = MI.getOperand(3).getImm(); 7798*fe6060f1SDimitry Andric MachineOperand &LengthMO = MI.getOperand(4); 7799*fe6060f1SDimitry Andric uint64_t ImmLength = LengthMO.isImm() ? LengthMO.getImm() : 0; 7800*fe6060f1SDimitry Andric Register LenMinus1Reg = 7801*fe6060f1SDimitry Andric LengthMO.isReg() ? LengthMO.getReg() : SystemZ::NoRegister; 78020b57cec5SDimitry Andric 78030b57cec5SDimitry Andric // When generating more than one CLC, all but the last will need to 78040b57cec5SDimitry Andric // branch to the end when a difference is found. 7805*fe6060f1SDimitry Andric MachineBasicBlock *EndMBB = (ImmLength > 256 && Opcode == SystemZ::CLC 7806*fe6060f1SDimitry Andric ? SystemZ::splitBlockAfter(MI, MBB) 7807*fe6060f1SDimitry Andric : nullptr); 78080b57cec5SDimitry Andric 78090b57cec5SDimitry Andric // Check for the loop form, in which operand 5 is the trip count. 78100b57cec5SDimitry Andric if (MI.getNumExplicitOperands() > 5) { 7811*fe6060f1SDimitry Andric Register StartCountReg = MI.getOperand(5).getReg(); 78120b57cec5SDimitry Andric bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 78130b57cec5SDimitry Andric 7814*fe6060f1SDimitry Andric auto loadZeroAddress = [&]() -> MachineOperand { 7815*fe6060f1SDimitry Andric Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7816*fe6060f1SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 7817*fe6060f1SDimitry Andric return MachineOperand::CreateReg(Reg, false); 7818*fe6060f1SDimitry Andric }; 7819*fe6060f1SDimitry Andric if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 7820*fe6060f1SDimitry Andric DestBase = loadZeroAddress(); 7821*fe6060f1SDimitry Andric if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 7822*fe6060f1SDimitry Andric SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 7823*fe6060f1SDimitry Andric 7824*fe6060f1SDimitry Andric MachineBasicBlock *StartMBB = nullptr; 7825*fe6060f1SDimitry Andric MachineBasicBlock *LoopMBB = nullptr; 7826*fe6060f1SDimitry Andric MachineBasicBlock *NextMBB = nullptr; 7827*fe6060f1SDimitry Andric MachineBasicBlock *DoneMBB = nullptr; 7828*fe6060f1SDimitry Andric MachineBasicBlock *AllDoneMBB = nullptr; 7829*fe6060f1SDimitry Andric 78300b57cec5SDimitry Andric Register StartSrcReg = forceReg(MI, SrcBase, TII); 7831*fe6060f1SDimitry Andric Register StartDestReg = 7832*fe6060f1SDimitry Andric (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 78330b57cec5SDimitry Andric 78340b57cec5SDimitry Andric const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 78350b57cec5SDimitry Andric Register ThisSrcReg = MRI.createVirtualRegister(RC); 7836*fe6060f1SDimitry Andric Register ThisDestReg = 7837*fe6060f1SDimitry Andric (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 78380b57cec5SDimitry Andric Register NextSrcReg = MRI.createVirtualRegister(RC); 7839*fe6060f1SDimitry Andric Register NextDestReg = 7840*fe6060f1SDimitry Andric (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 78410b57cec5SDimitry Andric RC = &SystemZ::GR64BitRegClass; 78420b57cec5SDimitry Andric Register ThisCountReg = MRI.createVirtualRegister(RC); 78430b57cec5SDimitry Andric Register NextCountReg = MRI.createVirtualRegister(RC); 78440b57cec5SDimitry Andric 7845*fe6060f1SDimitry Andric if (LengthMO.isReg()) { 7846*fe6060f1SDimitry Andric AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7847*fe6060f1SDimitry Andric StartMBB = SystemZ::emitBlockAfter(MBB); 7848*fe6060f1SDimitry Andric LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7849*fe6060f1SDimitry Andric NextMBB = LoopMBB; 7850*fe6060f1SDimitry Andric DoneMBB = SystemZ::emitBlockAfter(LoopMBB); 7851*fe6060f1SDimitry Andric 7852*fe6060f1SDimitry Andric // MBB: 7853*fe6060f1SDimitry Andric // # Jump to AllDoneMBB if LenMinus1Reg is -1, or fall thru to StartMBB. 7854*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7855*fe6060f1SDimitry Andric .addReg(LenMinus1Reg).addImm(-1); 7856*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7857*fe6060f1SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 7858*fe6060f1SDimitry Andric .addMBB(AllDoneMBB); 7859*fe6060f1SDimitry Andric MBB->addSuccessor(AllDoneMBB); 7860*fe6060f1SDimitry Andric MBB->addSuccessor(StartMBB); 78610b57cec5SDimitry Andric 78620b57cec5SDimitry Andric // StartMBB: 7863*fe6060f1SDimitry Andric // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 7864*fe6060f1SDimitry Andric MBB = StartMBB; 7865*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7866*fe6060f1SDimitry Andric .addReg(StartCountReg).addImm(0); 7867*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7868*fe6060f1SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 7869*fe6060f1SDimitry Andric .addMBB(DoneMBB); 7870*fe6060f1SDimitry Andric MBB->addSuccessor(DoneMBB); 78710b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 7872*fe6060f1SDimitry Andric } 7873*fe6060f1SDimitry Andric else { 7874*fe6060f1SDimitry Andric StartMBB = MBB; 7875*fe6060f1SDimitry Andric DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7876*fe6060f1SDimitry Andric LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7877*fe6060f1SDimitry Andric NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 7878*fe6060f1SDimitry Andric 7879*fe6060f1SDimitry Andric // StartMBB: 7880*fe6060f1SDimitry Andric // # fall through to LoopMBB 7881*fe6060f1SDimitry Andric MBB->addSuccessor(LoopMBB); 7882*fe6060f1SDimitry Andric 7883*fe6060f1SDimitry Andric DestBase = MachineOperand::CreateReg(NextDestReg, false); 7884*fe6060f1SDimitry Andric SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7885*fe6060f1SDimitry Andric ImmLength &= 255; 7886*fe6060f1SDimitry Andric if (EndMBB && !ImmLength) 7887*fe6060f1SDimitry Andric // If the loop handled the whole CLC range, DoneMBB will be empty with 7888*fe6060f1SDimitry Andric // CC live-through into EndMBB, so add it as live-in. 7889*fe6060f1SDimitry Andric DoneMBB->addLiveIn(SystemZ::CC); 7890*fe6060f1SDimitry Andric } 78910b57cec5SDimitry Andric 78920b57cec5SDimitry Andric // LoopMBB: 78930b57cec5SDimitry Andric // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 78940b57cec5SDimitry Andric // [ %NextDestReg, NextMBB ] 78950b57cec5SDimitry Andric // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 78960b57cec5SDimitry Andric // [ %NextSrcReg, NextMBB ] 78970b57cec5SDimitry Andric // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 78980b57cec5SDimitry Andric // [ %NextCountReg, NextMBB ] 78990b57cec5SDimitry Andric // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 79000b57cec5SDimitry Andric // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 79010b57cec5SDimitry Andric // ( JLH EndMBB ) 79020b57cec5SDimitry Andric // 79030b57cec5SDimitry Andric // The prefetch is used only for MVC. The JLH is used only for CLC. 79040b57cec5SDimitry Andric MBB = LoopMBB; 79050b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 79060b57cec5SDimitry Andric .addReg(StartDestReg).addMBB(StartMBB) 79070b57cec5SDimitry Andric .addReg(NextDestReg).addMBB(NextMBB); 79080b57cec5SDimitry Andric if (!HaveSingleBase) 79090b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 79100b57cec5SDimitry Andric .addReg(StartSrcReg).addMBB(StartMBB) 79110b57cec5SDimitry Andric .addReg(NextSrcReg).addMBB(NextMBB); 79120b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 79130b57cec5SDimitry Andric .addReg(StartCountReg).addMBB(StartMBB) 79140b57cec5SDimitry Andric .addReg(NextCountReg).addMBB(NextMBB); 79150b57cec5SDimitry Andric if (Opcode == SystemZ::MVC) 79160b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 79170b57cec5SDimitry Andric .addImm(SystemZ::PFD_WRITE) 79180b57cec5SDimitry Andric .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 79190b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(Opcode)) 79200b57cec5SDimitry Andric .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 79210b57cec5SDimitry Andric .addReg(ThisSrcReg).addImm(SrcDisp); 79220b57cec5SDimitry Andric if (EndMBB) { 79230b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 79240b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 79250b57cec5SDimitry Andric .addMBB(EndMBB); 79260b57cec5SDimitry Andric MBB->addSuccessor(EndMBB); 79270b57cec5SDimitry Andric MBB->addSuccessor(NextMBB); 79280b57cec5SDimitry Andric } 79290b57cec5SDimitry Andric 79300b57cec5SDimitry Andric // NextMBB: 79310b57cec5SDimitry Andric // %NextDestReg = LA 256(%ThisDestReg) 79320b57cec5SDimitry Andric // %NextSrcReg = LA 256(%ThisSrcReg) 79330b57cec5SDimitry Andric // %NextCountReg = AGHI %ThisCountReg, -1 79340b57cec5SDimitry Andric // CGHI %NextCountReg, 0 79350b57cec5SDimitry Andric // JLH LoopMBB 7936*fe6060f1SDimitry Andric // # fall through to DoneMBB 79370b57cec5SDimitry Andric // 79380b57cec5SDimitry Andric // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 79390b57cec5SDimitry Andric MBB = NextMBB; 79400b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 79410b57cec5SDimitry Andric .addReg(ThisDestReg).addImm(256).addReg(0); 79420b57cec5SDimitry Andric if (!HaveSingleBase) 79430b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 79440b57cec5SDimitry Andric .addReg(ThisSrcReg).addImm(256).addReg(0); 79450b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 79460b57cec5SDimitry Andric .addReg(ThisCountReg).addImm(-1); 79470b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 79480b57cec5SDimitry Andric .addReg(NextCountReg).addImm(0); 79490b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 79500b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 79510b57cec5SDimitry Andric .addMBB(LoopMBB); 79520b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 79530b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 79540b57cec5SDimitry Andric 79550b57cec5SDimitry Andric MBB = DoneMBB; 7956*fe6060f1SDimitry Andric if (LengthMO.isReg()) { 7957*fe6060f1SDimitry Andric // DoneMBB: 7958*fe6060f1SDimitry Andric // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 7959*fe6060f1SDimitry Andric // # Use EXecute Relative Long for the remainder of the bytes. The target 7960*fe6060f1SDimitry Andric // instruction of the EXRL will have a length field of 1 since 0 is an 7961*fe6060f1SDimitry Andric // illegal value. The number of bytes processed becomes (%LenMinus1Reg & 7962*fe6060f1SDimitry Andric // 0xff) + 1. 7963*fe6060f1SDimitry Andric // # Fall through to AllDoneMBB. 7964*fe6060f1SDimitry Andric Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7965*fe6060f1SDimitry Andric Register RemDestReg = HaveSingleBase ? RemSrcReg 7966*fe6060f1SDimitry Andric : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7967*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 7968*fe6060f1SDimitry Andric .addReg(StartDestReg).addMBB(StartMBB) 7969*fe6060f1SDimitry Andric .addReg(NextDestReg).addMBB(LoopMBB); 7970*fe6060f1SDimitry Andric if (!HaveSingleBase) 7971*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 7972*fe6060f1SDimitry Andric .addReg(StartSrcReg).addMBB(StartMBB) 7973*fe6060f1SDimitry Andric .addReg(NextSrcReg).addMBB(LoopMBB); 7974*fe6060f1SDimitry Andric MRI.constrainRegClass(LenMinus1Reg, &SystemZ::ADDR64BitRegClass); 7975*fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 7976*fe6060f1SDimitry Andric .addImm(Opcode) 7977*fe6060f1SDimitry Andric .addReg(LenMinus1Reg) 7978*fe6060f1SDimitry Andric .addReg(RemDestReg).addImm(DestDisp) 7979*fe6060f1SDimitry Andric .addReg(RemSrcReg).addImm(SrcDisp); 7980*fe6060f1SDimitry Andric MBB->addSuccessor(AllDoneMBB); 7981*fe6060f1SDimitry Andric MBB = AllDoneMBB; 79820b57cec5SDimitry Andric } 7983*fe6060f1SDimitry Andric } 7984*fe6060f1SDimitry Andric 79850b57cec5SDimitry Andric // Handle any remaining bytes with straight-line code. 7986*fe6060f1SDimitry Andric while (ImmLength > 0) { 7987*fe6060f1SDimitry Andric uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 79880b57cec5SDimitry Andric // The previous iteration might have created out-of-range displacements. 79890b57cec5SDimitry Andric // Apply them using LAY if so. 79900b57cec5SDimitry Andric if (!isUInt<12>(DestDisp)) { 79918bcb0991SDimitry Andric Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 79920b57cec5SDimitry Andric BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 79930b57cec5SDimitry Andric .add(DestBase) 79940b57cec5SDimitry Andric .addImm(DestDisp) 79950b57cec5SDimitry Andric .addReg(0); 79960b57cec5SDimitry Andric DestBase = MachineOperand::CreateReg(Reg, false); 79970b57cec5SDimitry Andric DestDisp = 0; 79980b57cec5SDimitry Andric } 79990b57cec5SDimitry Andric if (!isUInt<12>(SrcDisp)) { 80008bcb0991SDimitry Andric Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 80010b57cec5SDimitry Andric BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 80020b57cec5SDimitry Andric .add(SrcBase) 80030b57cec5SDimitry Andric .addImm(SrcDisp) 80040b57cec5SDimitry Andric .addReg(0); 80050b57cec5SDimitry Andric SrcBase = MachineOperand::CreateReg(Reg, false); 80060b57cec5SDimitry Andric SrcDisp = 0; 80070b57cec5SDimitry Andric } 80080b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(Opcode)) 80090b57cec5SDimitry Andric .add(DestBase) 80100b57cec5SDimitry Andric .addImm(DestDisp) 80110b57cec5SDimitry Andric .addImm(ThisLength) 80120b57cec5SDimitry Andric .add(SrcBase) 80130b57cec5SDimitry Andric .addImm(SrcDisp) 80140b57cec5SDimitry Andric .setMemRefs(MI.memoperands()); 80150b57cec5SDimitry Andric DestDisp += ThisLength; 80160b57cec5SDimitry Andric SrcDisp += ThisLength; 8017*fe6060f1SDimitry Andric ImmLength -= ThisLength; 80180b57cec5SDimitry Andric // If there's another CLC to go, branch to the end if a difference 80190b57cec5SDimitry Andric // was found. 8020*fe6060f1SDimitry Andric if (EndMBB && ImmLength > 0) { 80215ffd83dbSDimitry Andric MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 80220b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 80230b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 80240b57cec5SDimitry Andric .addMBB(EndMBB); 80250b57cec5SDimitry Andric MBB->addSuccessor(EndMBB); 80260b57cec5SDimitry Andric MBB->addSuccessor(NextMBB); 80270b57cec5SDimitry Andric MBB = NextMBB; 80280b57cec5SDimitry Andric } 80290b57cec5SDimitry Andric } 80300b57cec5SDimitry Andric if (EndMBB) { 80310b57cec5SDimitry Andric MBB->addSuccessor(EndMBB); 80320b57cec5SDimitry Andric MBB = EndMBB; 80330b57cec5SDimitry Andric MBB->addLiveIn(SystemZ::CC); 80340b57cec5SDimitry Andric } 80350b57cec5SDimitry Andric 80360b57cec5SDimitry Andric MI.eraseFromParent(); 80370b57cec5SDimitry Andric return MBB; 80380b57cec5SDimitry Andric } 80390b57cec5SDimitry Andric 80400b57cec5SDimitry Andric // Decompose string pseudo-instruction MI into a loop that continually performs 80410b57cec5SDimitry Andric // Opcode until CC != 3. 80420b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 80430b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 80440b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 80450b57cec5SDimitry Andric const SystemZInstrInfo *TII = 80460b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 80470b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 80480b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 80490b57cec5SDimitry Andric 80500b57cec5SDimitry Andric uint64_t End1Reg = MI.getOperand(0).getReg(); 80510b57cec5SDimitry Andric uint64_t Start1Reg = MI.getOperand(1).getReg(); 80520b57cec5SDimitry Andric uint64_t Start2Reg = MI.getOperand(2).getReg(); 80530b57cec5SDimitry Andric uint64_t CharReg = MI.getOperand(3).getReg(); 80540b57cec5SDimitry Andric 80550b57cec5SDimitry Andric const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 80560b57cec5SDimitry Andric uint64_t This1Reg = MRI.createVirtualRegister(RC); 80570b57cec5SDimitry Andric uint64_t This2Reg = MRI.createVirtualRegister(RC); 80580b57cec5SDimitry Andric uint64_t End2Reg = MRI.createVirtualRegister(RC); 80590b57cec5SDimitry Andric 80600b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 80615ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 80625ffd83dbSDimitry Andric MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 80630b57cec5SDimitry Andric 80640b57cec5SDimitry Andric // StartMBB: 8065*fe6060f1SDimitry Andric // # fall through to LoopMBB 80660b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 80670b57cec5SDimitry Andric 80680b57cec5SDimitry Andric // LoopMBB: 80690b57cec5SDimitry Andric // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 80700b57cec5SDimitry Andric // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 80710b57cec5SDimitry Andric // R0L = %CharReg 80720b57cec5SDimitry Andric // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 80730b57cec5SDimitry Andric // JO LoopMBB 8074*fe6060f1SDimitry Andric // # fall through to DoneMBB 80750b57cec5SDimitry Andric // 80760b57cec5SDimitry Andric // The load of R0L can be hoisted by post-RA LICM. 80770b57cec5SDimitry Andric MBB = LoopMBB; 80780b57cec5SDimitry Andric 80790b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 80800b57cec5SDimitry Andric .addReg(Start1Reg).addMBB(StartMBB) 80810b57cec5SDimitry Andric .addReg(End1Reg).addMBB(LoopMBB); 80820b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 80830b57cec5SDimitry Andric .addReg(Start2Reg).addMBB(StartMBB) 80840b57cec5SDimitry Andric .addReg(End2Reg).addMBB(LoopMBB); 80850b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 80860b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(Opcode)) 80870b57cec5SDimitry Andric .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 80880b57cec5SDimitry Andric .addReg(This1Reg).addReg(This2Reg); 80890b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 80900b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 80910b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 80920b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 80930b57cec5SDimitry Andric 80940b57cec5SDimitry Andric DoneMBB->addLiveIn(SystemZ::CC); 80950b57cec5SDimitry Andric 80960b57cec5SDimitry Andric MI.eraseFromParent(); 80970b57cec5SDimitry Andric return DoneMBB; 80980b57cec5SDimitry Andric } 80990b57cec5SDimitry Andric 81000b57cec5SDimitry Andric // Update TBEGIN instruction with final opcode and register clobbers. 81010b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 81020b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 81030b57cec5SDimitry Andric bool NoFloat) const { 81040b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 81050b57cec5SDimitry Andric const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 81060b57cec5SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 81070b57cec5SDimitry Andric 81080b57cec5SDimitry Andric // Update opcode. 81090b57cec5SDimitry Andric MI.setDesc(TII->get(Opcode)); 81100b57cec5SDimitry Andric 81110b57cec5SDimitry Andric // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 81120b57cec5SDimitry Andric // Make sure to add the corresponding GRSM bits if they are missing. 81130b57cec5SDimitry Andric uint64_t Control = MI.getOperand(2).getImm(); 81140b57cec5SDimitry Andric static const unsigned GPRControlBit[16] = { 81150b57cec5SDimitry Andric 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 81160b57cec5SDimitry Andric 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 81170b57cec5SDimitry Andric }; 81180b57cec5SDimitry Andric Control |= GPRControlBit[15]; 81190b57cec5SDimitry Andric if (TFI->hasFP(MF)) 81200b57cec5SDimitry Andric Control |= GPRControlBit[11]; 81210b57cec5SDimitry Andric MI.getOperand(2).setImm(Control); 81220b57cec5SDimitry Andric 81230b57cec5SDimitry Andric // Add GPR clobbers. 81240b57cec5SDimitry Andric for (int I = 0; I < 16; I++) { 81250b57cec5SDimitry Andric if ((Control & GPRControlBit[I]) == 0) { 81260b57cec5SDimitry Andric unsigned Reg = SystemZMC::GR64Regs[I]; 81270b57cec5SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 81280b57cec5SDimitry Andric } 81290b57cec5SDimitry Andric } 81300b57cec5SDimitry Andric 81310b57cec5SDimitry Andric // Add FPR/VR clobbers. 81320b57cec5SDimitry Andric if (!NoFloat && (Control & 4) != 0) { 81330b57cec5SDimitry Andric if (Subtarget.hasVector()) { 81340b57cec5SDimitry Andric for (int I = 0; I < 32; I++) { 81350b57cec5SDimitry Andric unsigned Reg = SystemZMC::VR128Regs[I]; 81360b57cec5SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 81370b57cec5SDimitry Andric } 81380b57cec5SDimitry Andric } else { 81390b57cec5SDimitry Andric for (int I = 0; I < 16; I++) { 81400b57cec5SDimitry Andric unsigned Reg = SystemZMC::FP64Regs[I]; 81410b57cec5SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 81420b57cec5SDimitry Andric } 81430b57cec5SDimitry Andric } 81440b57cec5SDimitry Andric } 81450b57cec5SDimitry Andric 81460b57cec5SDimitry Andric return MBB; 81470b57cec5SDimitry Andric } 81480b57cec5SDimitry Andric 81490b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 81500b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 81510b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 81520b57cec5SDimitry Andric MachineRegisterInfo *MRI = &MF.getRegInfo(); 81530b57cec5SDimitry Andric const SystemZInstrInfo *TII = 81540b57cec5SDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 81550b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 81560b57cec5SDimitry Andric 81578bcb0991SDimitry Andric Register SrcReg = MI.getOperand(0).getReg(); 81580b57cec5SDimitry Andric 81590b57cec5SDimitry Andric // Create new virtual register of the same class as source. 81600b57cec5SDimitry Andric const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 81618bcb0991SDimitry Andric Register DstReg = MRI->createVirtualRegister(RC); 81620b57cec5SDimitry Andric 81630b57cec5SDimitry Andric // Replace pseudo with a normal load-and-test that models the def as 81640b57cec5SDimitry Andric // well. 81650b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8166480093f4SDimitry Andric .addReg(SrcReg) 8167480093f4SDimitry Andric .setMIFlags(MI.getFlags()); 81680b57cec5SDimitry Andric MI.eraseFromParent(); 81690b57cec5SDimitry Andric 81700b57cec5SDimitry Andric return MBB; 81710b57cec5SDimitry Andric } 81720b57cec5SDimitry Andric 81735ffd83dbSDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 81745ffd83dbSDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB) const { 81755ffd83dbSDimitry Andric MachineFunction &MF = *MBB->getParent(); 81765ffd83dbSDimitry Andric MachineRegisterInfo *MRI = &MF.getRegInfo(); 81775ffd83dbSDimitry Andric const SystemZInstrInfo *TII = 81785ffd83dbSDimitry Andric static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 81795ffd83dbSDimitry Andric DebugLoc DL = MI.getDebugLoc(); 81805ffd83dbSDimitry Andric const unsigned ProbeSize = getStackProbeSize(MF); 81815ffd83dbSDimitry Andric Register DstReg = MI.getOperand(0).getReg(); 81825ffd83dbSDimitry Andric Register SizeReg = MI.getOperand(2).getReg(); 81835ffd83dbSDimitry Andric 81845ffd83dbSDimitry Andric MachineBasicBlock *StartMBB = MBB; 81855ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 81865ffd83dbSDimitry Andric MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 81875ffd83dbSDimitry Andric MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 81885ffd83dbSDimitry Andric MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 81895ffd83dbSDimitry Andric MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 81905ffd83dbSDimitry Andric 81915ffd83dbSDimitry Andric MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 81925ffd83dbSDimitry Andric MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 81935ffd83dbSDimitry Andric 81945ffd83dbSDimitry Andric Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 81955ffd83dbSDimitry Andric Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 81965ffd83dbSDimitry Andric 81975ffd83dbSDimitry Andric // LoopTestMBB 81985ffd83dbSDimitry Andric // BRC TailTestMBB 81995ffd83dbSDimitry Andric // # fallthrough to LoopBodyMBB 82005ffd83dbSDimitry Andric StartMBB->addSuccessor(LoopTestMBB); 82015ffd83dbSDimitry Andric MBB = LoopTestMBB; 82025ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 82035ffd83dbSDimitry Andric .addReg(SizeReg) 82045ffd83dbSDimitry Andric .addMBB(StartMBB) 82055ffd83dbSDimitry Andric .addReg(IncReg) 82065ffd83dbSDimitry Andric .addMBB(LoopBodyMBB); 82075ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 82085ffd83dbSDimitry Andric .addReg(PHIReg) 82095ffd83dbSDimitry Andric .addImm(ProbeSize); 82105ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 82115ffd83dbSDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 82125ffd83dbSDimitry Andric .addMBB(TailTestMBB); 82135ffd83dbSDimitry Andric MBB->addSuccessor(LoopBodyMBB); 82145ffd83dbSDimitry Andric MBB->addSuccessor(TailTestMBB); 82155ffd83dbSDimitry Andric 82165ffd83dbSDimitry Andric // LoopBodyMBB: Allocate and probe by means of a volatile compare. 82175ffd83dbSDimitry Andric // J LoopTestMBB 82185ffd83dbSDimitry Andric MBB = LoopBodyMBB; 82195ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 82205ffd83dbSDimitry Andric .addReg(PHIReg) 82215ffd83dbSDimitry Andric .addImm(ProbeSize); 82225ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 82235ffd83dbSDimitry Andric .addReg(SystemZ::R15D) 82245ffd83dbSDimitry Andric .addImm(ProbeSize); 82255ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 82265ffd83dbSDimitry Andric .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 82275ffd83dbSDimitry Andric .setMemRefs(VolLdMMO); 82285ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 82295ffd83dbSDimitry Andric MBB->addSuccessor(LoopTestMBB); 82305ffd83dbSDimitry Andric 82315ffd83dbSDimitry Andric // TailTestMBB 82325ffd83dbSDimitry Andric // BRC DoneMBB 82335ffd83dbSDimitry Andric // # fallthrough to TailMBB 82345ffd83dbSDimitry Andric MBB = TailTestMBB; 82355ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 82365ffd83dbSDimitry Andric .addReg(PHIReg) 82375ffd83dbSDimitry Andric .addImm(0); 82385ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 82395ffd83dbSDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 82405ffd83dbSDimitry Andric .addMBB(DoneMBB); 82415ffd83dbSDimitry Andric MBB->addSuccessor(TailMBB); 82425ffd83dbSDimitry Andric MBB->addSuccessor(DoneMBB); 82435ffd83dbSDimitry Andric 82445ffd83dbSDimitry Andric // TailMBB 82455ffd83dbSDimitry Andric // # fallthrough to DoneMBB 82465ffd83dbSDimitry Andric MBB = TailMBB; 82475ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 82485ffd83dbSDimitry Andric .addReg(SystemZ::R15D) 82495ffd83dbSDimitry Andric .addReg(PHIReg); 82505ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 82515ffd83dbSDimitry Andric .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 82525ffd83dbSDimitry Andric .setMemRefs(VolLdMMO); 82535ffd83dbSDimitry Andric MBB->addSuccessor(DoneMBB); 82545ffd83dbSDimitry Andric 82555ffd83dbSDimitry Andric // DoneMBB 82565ffd83dbSDimitry Andric MBB = DoneMBB; 82575ffd83dbSDimitry Andric BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 82585ffd83dbSDimitry Andric .addReg(SystemZ::R15D); 82595ffd83dbSDimitry Andric 82605ffd83dbSDimitry Andric MI.eraseFromParent(); 82615ffd83dbSDimitry Andric return DoneMBB; 82625ffd83dbSDimitry Andric } 82635ffd83dbSDimitry Andric 8264e8d8bef9SDimitry Andric SDValue SystemZTargetLowering:: 8265e8d8bef9SDimitry Andric getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8266e8d8bef9SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 8267e8d8bef9SDimitry Andric auto *TFL = 8268e8d8bef9SDimitry Andric static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 8269e8d8bef9SDimitry Andric SDLoc DL(SP); 8270e8d8bef9SDimitry Andric return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8271e8d8bef9SDimitry Andric DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8272e8d8bef9SDimitry Andric } 8273e8d8bef9SDimitry Andric 82740b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 82750b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB) const { 82760b57cec5SDimitry Andric switch (MI.getOpcode()) { 82770b57cec5SDimitry Andric case SystemZ::Select32: 82780b57cec5SDimitry Andric case SystemZ::Select64: 82790b57cec5SDimitry Andric case SystemZ::SelectF32: 82800b57cec5SDimitry Andric case SystemZ::SelectF64: 82810b57cec5SDimitry Andric case SystemZ::SelectF128: 82820b57cec5SDimitry Andric case SystemZ::SelectVR32: 82830b57cec5SDimitry Andric case SystemZ::SelectVR64: 82840b57cec5SDimitry Andric case SystemZ::SelectVR128: 82850b57cec5SDimitry Andric return emitSelect(MI, MBB); 82860b57cec5SDimitry Andric 82870b57cec5SDimitry Andric case SystemZ::CondStore8Mux: 82880b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 82890b57cec5SDimitry Andric case SystemZ::CondStore8MuxInv: 82900b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 82910b57cec5SDimitry Andric case SystemZ::CondStore16Mux: 82920b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 82930b57cec5SDimitry Andric case SystemZ::CondStore16MuxInv: 82940b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 82950b57cec5SDimitry Andric case SystemZ::CondStore32Mux: 82960b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 82970b57cec5SDimitry Andric case SystemZ::CondStore32MuxInv: 82980b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 82990b57cec5SDimitry Andric case SystemZ::CondStore8: 83000b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 83010b57cec5SDimitry Andric case SystemZ::CondStore8Inv: 83020b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 83030b57cec5SDimitry Andric case SystemZ::CondStore16: 83040b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 83050b57cec5SDimitry Andric case SystemZ::CondStore16Inv: 83060b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 83070b57cec5SDimitry Andric case SystemZ::CondStore32: 83080b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 83090b57cec5SDimitry Andric case SystemZ::CondStore32Inv: 83100b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 83110b57cec5SDimitry Andric case SystemZ::CondStore64: 83120b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 83130b57cec5SDimitry Andric case SystemZ::CondStore64Inv: 83140b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 83150b57cec5SDimitry Andric case SystemZ::CondStoreF32: 83160b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 83170b57cec5SDimitry Andric case SystemZ::CondStoreF32Inv: 83180b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 83190b57cec5SDimitry Andric case SystemZ::CondStoreF64: 83200b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 83210b57cec5SDimitry Andric case SystemZ::CondStoreF64Inv: 83220b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 83230b57cec5SDimitry Andric 83240b57cec5SDimitry Andric case SystemZ::PAIR128: 83250b57cec5SDimitry Andric return emitPair128(MI, MBB); 83260b57cec5SDimitry Andric case SystemZ::AEXT128: 83270b57cec5SDimitry Andric return emitExt128(MI, MBB, false); 83280b57cec5SDimitry Andric case SystemZ::ZEXT128: 83290b57cec5SDimitry Andric return emitExt128(MI, MBB, true); 83300b57cec5SDimitry Andric 83310b57cec5SDimitry Andric case SystemZ::ATOMIC_SWAPW: 83320b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, 0, 0); 83330b57cec5SDimitry Andric case SystemZ::ATOMIC_SWAP_32: 83340b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, 0, 32); 83350b57cec5SDimitry Andric case SystemZ::ATOMIC_SWAP_64: 83360b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, 0, 64); 83370b57cec5SDimitry Andric 83380b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_AR: 83390b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 83400b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_AFI: 83410b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 83420b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AR: 83430b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 83440b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AHI: 83450b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 83460b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AFI: 83470b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 83480b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AGR: 83490b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 83500b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AGHI: 83510b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 83520b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AGFI: 83530b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 83540b57cec5SDimitry Andric 83550b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_SR: 83560b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 83570b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_SR: 83580b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 83590b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_SGR: 83600b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 83610b57cec5SDimitry Andric 83620b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_NR: 83630b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 83640b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_NILH: 83650b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 83660b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NR: 83670b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 83680b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILL: 83690b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 83700b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILH: 83710b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 83720b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILF: 83730b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 83740b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NGR: 83750b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 83760b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILL64: 83770b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 83780b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILH64: 83790b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 83800b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHL64: 83810b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 83820b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHH64: 83830b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 83840b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILF64: 83850b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 83860b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHF64: 83870b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 83880b57cec5SDimitry Andric 83890b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_OR: 83900b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 83910b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_OILH: 83920b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 83930b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OR: 83940b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 83950b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILL: 83960b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 83970b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILH: 83980b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 83990b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILF: 84000b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 84010b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OGR: 84020b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 84030b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILL64: 84040b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 84050b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILH64: 84060b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 84070b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OIHL64: 84080b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 84090b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OIHH64: 84100b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 84110b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILF64: 84120b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 84130b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OIHF64: 84140b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 84150b57cec5SDimitry Andric 84160b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_XR: 84170b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 84180b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_XILF: 84190b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 84200b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XR: 84210b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 84220b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XILF: 84230b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 84240b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XGR: 84250b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 84260b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XILF64: 84270b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 84280b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XIHF64: 84290b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 84300b57cec5SDimitry Andric 84310b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_NRi: 84320b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 84330b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_NILHi: 84340b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 84350b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NRi: 84360b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 84370b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILLi: 84380b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 84390b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILHi: 84400b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 84410b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILFi: 84420b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 84430b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NGRi: 84440b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 84450b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILL64i: 84460b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 84470b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILH64i: 84480b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 84490b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHL64i: 84500b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 84510b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHH64i: 84520b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 84530b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILF64i: 84540b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 84550b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHF64i: 84560b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 84570b57cec5SDimitry Andric 84580b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_MIN: 84590b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 84600b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 0); 84610b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_MIN_32: 84620b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 84630b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 32); 84640b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_MIN_64: 84650b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 84660b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 64); 84670b57cec5SDimitry Andric 84680b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_MAX: 84690b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 84700b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 0); 84710b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_MAX_32: 84720b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 84730b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 32); 84740b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_MAX_64: 84750b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 84760b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 64); 84770b57cec5SDimitry Andric 84780b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_UMIN: 84790b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 84800b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 0); 84810b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_UMIN_32: 84820b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 84830b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 32); 84840b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_UMIN_64: 84850b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 84860b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 64); 84870b57cec5SDimitry Andric 84880b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_UMAX: 84890b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 84900b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 0); 84910b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_UMAX_32: 84920b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 84930b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 32); 84940b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_UMAX_64: 84950b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 84960b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 64); 84970b57cec5SDimitry Andric 84980b57cec5SDimitry Andric case SystemZ::ATOMIC_CMP_SWAPW: 84990b57cec5SDimitry Andric return emitAtomicCmpSwapW(MI, MBB); 85000b57cec5SDimitry Andric case SystemZ::MVCSequence: 85010b57cec5SDimitry Andric case SystemZ::MVCLoop: 85020b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 85030b57cec5SDimitry Andric case SystemZ::NCSequence: 85040b57cec5SDimitry Andric case SystemZ::NCLoop: 85050b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::NC); 85060b57cec5SDimitry Andric case SystemZ::OCSequence: 85070b57cec5SDimitry Andric case SystemZ::OCLoop: 85080b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::OC); 85090b57cec5SDimitry Andric case SystemZ::XCSequence: 85100b57cec5SDimitry Andric case SystemZ::XCLoop: 8511*fe6060f1SDimitry Andric case SystemZ::XCLoopVarLen: 85120b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::XC); 85130b57cec5SDimitry Andric case SystemZ::CLCSequence: 85140b57cec5SDimitry Andric case SystemZ::CLCLoop: 85150b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 85160b57cec5SDimitry Andric case SystemZ::CLSTLoop: 85170b57cec5SDimitry Andric return emitStringWrapper(MI, MBB, SystemZ::CLST); 85180b57cec5SDimitry Andric case SystemZ::MVSTLoop: 85190b57cec5SDimitry Andric return emitStringWrapper(MI, MBB, SystemZ::MVST); 85200b57cec5SDimitry Andric case SystemZ::SRSTLoop: 85210b57cec5SDimitry Andric return emitStringWrapper(MI, MBB, SystemZ::SRST); 85220b57cec5SDimitry Andric case SystemZ::TBEGIN: 85230b57cec5SDimitry Andric return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 85240b57cec5SDimitry Andric case SystemZ::TBEGIN_nofloat: 85250b57cec5SDimitry Andric return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 85260b57cec5SDimitry Andric case SystemZ::TBEGINC: 85270b57cec5SDimitry Andric return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 85280b57cec5SDimitry Andric case SystemZ::LTEBRCompare_VecPseudo: 85290b57cec5SDimitry Andric return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 85300b57cec5SDimitry Andric case SystemZ::LTDBRCompare_VecPseudo: 85310b57cec5SDimitry Andric return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 85320b57cec5SDimitry Andric case SystemZ::LTXBRCompare_VecPseudo: 85330b57cec5SDimitry Andric return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 85340b57cec5SDimitry Andric 85355ffd83dbSDimitry Andric case SystemZ::PROBED_ALLOCA: 85365ffd83dbSDimitry Andric return emitProbedAlloca(MI, MBB); 85375ffd83dbSDimitry Andric 85380b57cec5SDimitry Andric case TargetOpcode::STACKMAP: 85390b57cec5SDimitry Andric case TargetOpcode::PATCHPOINT: 85400b57cec5SDimitry Andric return emitPatchPoint(MI, MBB); 85410b57cec5SDimitry Andric 85420b57cec5SDimitry Andric default: 85430b57cec5SDimitry Andric llvm_unreachable("Unexpected instr type to insert"); 85440b57cec5SDimitry Andric } 85450b57cec5SDimitry Andric } 85460b57cec5SDimitry Andric 85470b57cec5SDimitry Andric // This is only used by the isel schedulers, and is needed only to prevent 85480b57cec5SDimitry Andric // compiler from crashing when list-ilp is used. 85490b57cec5SDimitry Andric const TargetRegisterClass * 85500b57cec5SDimitry Andric SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 85510b57cec5SDimitry Andric if (VT == MVT::Untyped) 85520b57cec5SDimitry Andric return &SystemZ::ADDR128BitRegClass; 85530b57cec5SDimitry Andric return TargetLowering::getRepRegClassFor(VT); 85540b57cec5SDimitry Andric } 8555