10b57cec5SDimitry Andric //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file implements the SystemZTargetLowering class. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric #include "SystemZISelLowering.h" 140b57cec5SDimitry Andric #include "SystemZCallingConv.h" 150b57cec5SDimitry Andric #include "SystemZConstantPoolValue.h" 160b57cec5SDimitry Andric #include "SystemZMachineFunctionInfo.h" 170b57cec5SDimitry Andric #include "SystemZTargetMachine.h" 180b57cec5SDimitry Andric #include "llvm/CodeGen/CallingConvLower.h" 190b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 200b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 210b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 220b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 23480093f4SDimitry Andric #include "llvm/IR/Intrinsics.h" 24480093f4SDimitry Andric #include "llvm/IR/IntrinsicsS390.h" 250b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 260b57cec5SDimitry Andric #include "llvm/Support/KnownBits.h" 270b57cec5SDimitry Andric #include <cctype> 28bdd1243dSDimitry Andric #include <optional> 290b57cec5SDimitry Andric 300b57cec5SDimitry Andric using namespace llvm; 310b57cec5SDimitry Andric 320b57cec5SDimitry Andric #define DEBUG_TYPE "systemz-lower" 330b57cec5SDimitry Andric 340b57cec5SDimitry Andric namespace { 350b57cec5SDimitry Andric // Represents information about a comparison. 360b57cec5SDimitry Andric struct Comparison { 37480093f4SDimitry Andric Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 38480093f4SDimitry Andric : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 39480093f4SDimitry Andric Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 400b57cec5SDimitry Andric 410b57cec5SDimitry Andric // The operands to the comparison. 420b57cec5SDimitry Andric SDValue Op0, Op1; 430b57cec5SDimitry Andric 44480093f4SDimitry Andric // Chain if this is a strict floating-point comparison. 45480093f4SDimitry Andric SDValue Chain; 46480093f4SDimitry Andric 470b57cec5SDimitry Andric // The opcode that should be used to compare Op0 and Op1. 480b57cec5SDimitry Andric unsigned Opcode; 490b57cec5SDimitry Andric 500b57cec5SDimitry Andric // A SystemZICMP value. Only used for integer comparisons. 510b57cec5SDimitry Andric unsigned ICmpType; 520b57cec5SDimitry Andric 530b57cec5SDimitry Andric // The mask of CC values that Opcode can produce. 540b57cec5SDimitry Andric unsigned CCValid; 550b57cec5SDimitry Andric 560b57cec5SDimitry Andric // The mask of CC values for which the original condition is true. 570b57cec5SDimitry Andric unsigned CCMask; 580b57cec5SDimitry Andric }; 590b57cec5SDimitry Andric } // end anonymous namespace 600b57cec5SDimitry Andric 610b57cec5SDimitry Andric // Classify VT as either 32 or 64 bit. 620b57cec5SDimitry Andric static bool is32Bit(EVT VT) { 630b57cec5SDimitry Andric switch (VT.getSimpleVT().SimpleTy) { 640b57cec5SDimitry Andric case MVT::i32: 650b57cec5SDimitry Andric return true; 660b57cec5SDimitry Andric case MVT::i64: 670b57cec5SDimitry Andric return false; 680b57cec5SDimitry Andric default: 690b57cec5SDimitry Andric llvm_unreachable("Unsupported type"); 700b57cec5SDimitry Andric } 710b57cec5SDimitry Andric } 720b57cec5SDimitry Andric 730b57cec5SDimitry Andric // Return a version of MachineOperand that can be safely used before the 740b57cec5SDimitry Andric // final use. 750b57cec5SDimitry Andric static MachineOperand earlyUseOperand(MachineOperand Op) { 760b57cec5SDimitry Andric if (Op.isReg()) 770b57cec5SDimitry Andric Op.setIsKill(false); 780b57cec5SDimitry Andric return Op; 790b57cec5SDimitry Andric } 800b57cec5SDimitry Andric 810b57cec5SDimitry Andric SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 820b57cec5SDimitry Andric const SystemZSubtarget &STI) 830b57cec5SDimitry Andric : TargetLowering(TM), Subtarget(STI) { 8481ad6265SDimitry Andric MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 850b57cec5SDimitry Andric 86349cc55cSDimitry Andric auto *Regs = STI.getSpecialRegisters(); 87349cc55cSDimitry Andric 880b57cec5SDimitry Andric // Set up the register classes. 890b57cec5SDimitry Andric if (Subtarget.hasHighWord()) 900b57cec5SDimitry Andric addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 910b57cec5SDimitry Andric else 920b57cec5SDimitry Andric addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 930b57cec5SDimitry Andric addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 945ffd83dbSDimitry Andric if (!useSoftFloat()) { 950b57cec5SDimitry Andric if (Subtarget.hasVector()) { 960b57cec5SDimitry Andric addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 970b57cec5SDimitry Andric addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 980b57cec5SDimitry Andric } else { 990b57cec5SDimitry Andric addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 1000b57cec5SDimitry Andric addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 1010b57cec5SDimitry Andric } 1020b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) 1030b57cec5SDimitry Andric addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 1040b57cec5SDimitry Andric else 1050b57cec5SDimitry Andric addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 1060b57cec5SDimitry Andric 1070b57cec5SDimitry Andric if (Subtarget.hasVector()) { 1080b57cec5SDimitry Andric addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 1090b57cec5SDimitry Andric addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 1100b57cec5SDimitry Andric addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 1110b57cec5SDimitry Andric addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 1120b57cec5SDimitry Andric addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 1130b57cec5SDimitry Andric addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 1140b57cec5SDimitry Andric } 1155ffd83dbSDimitry Andric } 1160b57cec5SDimitry Andric 1170b57cec5SDimitry Andric // Compute derived properties from the register classes 1180b57cec5SDimitry Andric computeRegisterProperties(Subtarget.getRegisterInfo()); 1190b57cec5SDimitry Andric 1200b57cec5SDimitry Andric // Set up special registers. 121349cc55cSDimitry Andric setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 1220b57cec5SDimitry Andric 1230b57cec5SDimitry Andric // TODO: It may be better to default to latency-oriented scheduling, however 1240b57cec5SDimitry Andric // LLVM's current latency-oriented scheduler can't handle physreg definitions 1250b57cec5SDimitry Andric // such as SystemZ has with CC, so set this to the register-pressure 1260b57cec5SDimitry Andric // scheduler, because it can. 1270b57cec5SDimitry Andric setSchedulingPreference(Sched::RegPressure); 1280b57cec5SDimitry Andric 1290b57cec5SDimitry Andric setBooleanContents(ZeroOrOneBooleanContent); 1300b57cec5SDimitry Andric setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1310b57cec5SDimitry Andric 1320b57cec5SDimitry Andric // Instructions are strings of 2-byte aligned 2-byte values. 1338bcb0991SDimitry Andric setMinFunctionAlignment(Align(2)); 1340b57cec5SDimitry Andric // For performance reasons we prefer 16-byte alignment. 1358bcb0991SDimitry Andric setPrefFunctionAlignment(Align(16)); 1360b57cec5SDimitry Andric 1370b57cec5SDimitry Andric // Handle operations that are handled in a similar way for all types. 1380b57cec5SDimitry Andric for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 1390b57cec5SDimitry Andric I <= MVT::LAST_FP_VALUETYPE; 1400b57cec5SDimitry Andric ++I) { 1410b57cec5SDimitry Andric MVT VT = MVT::SimpleValueType(I); 1420b57cec5SDimitry Andric if (isTypeLegal(VT)) { 1430b57cec5SDimitry Andric // Lower SET_CC into an IPM-based sequence. 1440b57cec5SDimitry Andric setOperationAction(ISD::SETCC, VT, Custom); 145480093f4SDimitry Andric setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 146480093f4SDimitry Andric setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 1470b57cec5SDimitry Andric 1480b57cec5SDimitry Andric // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 1490b57cec5SDimitry Andric setOperationAction(ISD::SELECT, VT, Expand); 1500b57cec5SDimitry Andric 1510b57cec5SDimitry Andric // Lower SELECT_CC and BR_CC into separate comparisons and branches. 1520b57cec5SDimitry Andric setOperationAction(ISD::SELECT_CC, VT, Custom); 1530b57cec5SDimitry Andric setOperationAction(ISD::BR_CC, VT, Custom); 1540b57cec5SDimitry Andric } 1550b57cec5SDimitry Andric } 1560b57cec5SDimitry Andric 1570b57cec5SDimitry Andric // Expand jump table branches as address arithmetic followed by an 1580b57cec5SDimitry Andric // indirect jump. 1590b57cec5SDimitry Andric setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1600b57cec5SDimitry Andric 1610b57cec5SDimitry Andric // Expand BRCOND into a BR_CC (see above). 1620b57cec5SDimitry Andric setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1630b57cec5SDimitry Andric 1640b57cec5SDimitry Andric // Handle integer types. 1650b57cec5SDimitry Andric for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 1660b57cec5SDimitry Andric I <= MVT::LAST_INTEGER_VALUETYPE; 1670b57cec5SDimitry Andric ++I) { 1680b57cec5SDimitry Andric MVT VT = MVT::SimpleValueType(I); 1690b57cec5SDimitry Andric if (isTypeLegal(VT)) { 170e8d8bef9SDimitry Andric setOperationAction(ISD::ABS, VT, Legal); 171e8d8bef9SDimitry Andric 1720b57cec5SDimitry Andric // Expand individual DIV and REMs into DIVREMs. 1730b57cec5SDimitry Andric setOperationAction(ISD::SDIV, VT, Expand); 1740b57cec5SDimitry Andric setOperationAction(ISD::UDIV, VT, Expand); 1750b57cec5SDimitry Andric setOperationAction(ISD::SREM, VT, Expand); 1760b57cec5SDimitry Andric setOperationAction(ISD::UREM, VT, Expand); 1770b57cec5SDimitry Andric setOperationAction(ISD::SDIVREM, VT, Custom); 1780b57cec5SDimitry Andric setOperationAction(ISD::UDIVREM, VT, Custom); 1790b57cec5SDimitry Andric 1800b57cec5SDimitry Andric // Support addition/subtraction with overflow. 1810b57cec5SDimitry Andric setOperationAction(ISD::SADDO, VT, Custom); 1820b57cec5SDimitry Andric setOperationAction(ISD::SSUBO, VT, Custom); 1830b57cec5SDimitry Andric 1840b57cec5SDimitry Andric // Support addition/subtraction with carry. 1850b57cec5SDimitry Andric setOperationAction(ISD::UADDO, VT, Custom); 1860b57cec5SDimitry Andric setOperationAction(ISD::USUBO, VT, Custom); 1870b57cec5SDimitry Andric 1880b57cec5SDimitry Andric // Support carry in as value rather than glue. 1890b57cec5SDimitry Andric setOperationAction(ISD::ADDCARRY, VT, Custom); 1900b57cec5SDimitry Andric setOperationAction(ISD::SUBCARRY, VT, Custom); 1910b57cec5SDimitry Andric 1920b57cec5SDimitry Andric // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 1930b57cec5SDimitry Andric // stores, putting a serialization instruction after the stores. 1940b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 1950b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 1960b57cec5SDimitry Andric 1970b57cec5SDimitry Andric // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 1980b57cec5SDimitry Andric // available, or if the operand is constant. 1990b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 2000b57cec5SDimitry Andric 2010b57cec5SDimitry Andric // Use POPCNT on z196 and above. 2020b57cec5SDimitry Andric if (Subtarget.hasPopulationCount()) 2030b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, VT, Custom); 2040b57cec5SDimitry Andric else 2050b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, VT, Expand); 2060b57cec5SDimitry Andric 2070b57cec5SDimitry Andric // No special instructions for these. 2080b57cec5SDimitry Andric setOperationAction(ISD::CTTZ, VT, Expand); 2090b57cec5SDimitry Andric setOperationAction(ISD::ROTR, VT, Expand); 2100b57cec5SDimitry Andric 2110b57cec5SDimitry Andric // Use *MUL_LOHI where possible instead of MULH*. 2120b57cec5SDimitry Andric setOperationAction(ISD::MULHS, VT, Expand); 2130b57cec5SDimitry Andric setOperationAction(ISD::MULHU, VT, Expand); 2140b57cec5SDimitry Andric setOperationAction(ISD::SMUL_LOHI, VT, Custom); 2150b57cec5SDimitry Andric setOperationAction(ISD::UMUL_LOHI, VT, Custom); 2160b57cec5SDimitry Andric 2170b57cec5SDimitry Andric // Only z196 and above have native support for conversions to unsigned. 2180b57cec5SDimitry Andric // On z10, promoting to i64 doesn't generate an inexact condition for 2190b57cec5SDimitry Andric // values that are outside the i32 range but in the i64 range, so use 2200b57cec5SDimitry Andric // the default expansion. 2210b57cec5SDimitry Andric if (!Subtarget.hasFPExtension()) 2220b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, VT, Expand); 2238bcb0991SDimitry Andric 2248bcb0991SDimitry Andric // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 2258bcb0991SDimitry Andric // default to Expand, so need to be modified to Legal where appropriate. 2268bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 2278bcb0991SDimitry Andric if (Subtarget.hasFPExtension()) 2288bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 229480093f4SDimitry Andric 230480093f4SDimitry Andric // And similarly for STRICT_[SU]INT_TO_FP. 231480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 232480093f4SDimitry Andric if (Subtarget.hasFPExtension()) 233480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 2340b57cec5SDimitry Andric } 2350b57cec5SDimitry Andric } 2360b57cec5SDimitry Andric 2370b57cec5SDimitry Andric // Type legalization will convert 8- and 16-bit atomic operations into 2380b57cec5SDimitry Andric // forms that operate on i32s (but still keeping the original memory VT). 2390b57cec5SDimitry Andric // Lower them into full i32 operations. 2400b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 2410b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 2420b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 2430b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 2440b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 2450b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 2460b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 2470b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 2480b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 2490b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 2500b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 2510b57cec5SDimitry Andric 2520b57cec5SDimitry Andric // Even though i128 is not a legal type, we still need to custom lower 2530b57cec5SDimitry Andric // the atomic operations in order to exploit SystemZ instructions. 2540b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 2550b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 2560b57cec5SDimitry Andric 2570b57cec5SDimitry Andric // We can use the CC result of compare-and-swap to implement 2580b57cec5SDimitry Andric // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 2590b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 2600b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 2610b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 2620b57cec5SDimitry Andric 2630b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 2640b57cec5SDimitry Andric 2650b57cec5SDimitry Andric // Traps are legal, as we will convert them to "j .+2". 2660b57cec5SDimitry Andric setOperationAction(ISD::TRAP, MVT::Other, Legal); 2670b57cec5SDimitry Andric 2680b57cec5SDimitry Andric // z10 has instructions for signed but not unsigned FP conversion. 2690b57cec5SDimitry Andric // Handle unsigned 32-bit types as signed 64-bit types. 2700b57cec5SDimitry Andric if (!Subtarget.hasFPExtension()) { 2710b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 2720b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 273480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 274480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 2750b57cec5SDimitry Andric } 2760b57cec5SDimitry Andric 2770b57cec5SDimitry Andric // We have native support for a 64-bit CTLZ, via FLOGR. 2780b57cec5SDimitry Andric setOperationAction(ISD::CTLZ, MVT::i32, Promote); 2790b57cec5SDimitry Andric setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 2800b57cec5SDimitry Andric setOperationAction(ISD::CTLZ, MVT::i64, Legal); 2810b57cec5SDimitry Andric 2828bcb0991SDimitry Andric // On z15 we have native support for a 64-bit CTPOP. 2830b57cec5SDimitry Andric if (Subtarget.hasMiscellaneousExtensions3()) { 2840b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, MVT::i32, Promote); 2850b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, MVT::i64, Legal); 2860b57cec5SDimitry Andric } 2870b57cec5SDimitry Andric 2880b57cec5SDimitry Andric // Give LowerOperation the chance to replace 64-bit ORs with subregs. 2890b57cec5SDimitry Andric setOperationAction(ISD::OR, MVT::i64, Custom); 2900b57cec5SDimitry Andric 29123408297SDimitry Andric // Expand 128 bit shifts without using a libcall. 2920b57cec5SDimitry Andric setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 2930b57cec5SDimitry Andric setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 2940b57cec5SDimitry Andric setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 29523408297SDimitry Andric setLibcallName(RTLIB::SRL_I128, nullptr); 29623408297SDimitry Andric setLibcallName(RTLIB::SHL_I128, nullptr); 29723408297SDimitry Andric setLibcallName(RTLIB::SRA_I128, nullptr); 2980b57cec5SDimitry Andric 299349cc55cSDimitry Andric // Handle bitcast from fp128 to i128. 300349cc55cSDimitry Andric setOperationAction(ISD::BITCAST, MVT::i128, Custom); 301349cc55cSDimitry Andric 3020b57cec5SDimitry Andric // We have native instructions for i8, i16 and i32 extensions, but not i1. 3030b57cec5SDimitry Andric setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 3040b57cec5SDimitry Andric for (MVT VT : MVT::integer_valuetypes()) { 3050b57cec5SDimitry Andric setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 3060b57cec5SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 3070b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 3080b57cec5SDimitry Andric } 3090b57cec5SDimitry Andric 3100b57cec5SDimitry Andric // Handle the various types of symbolic address. 3110b57cec5SDimitry Andric setOperationAction(ISD::ConstantPool, PtrVT, Custom); 3120b57cec5SDimitry Andric setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 3130b57cec5SDimitry Andric setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 3140b57cec5SDimitry Andric setOperationAction(ISD::BlockAddress, PtrVT, Custom); 3150b57cec5SDimitry Andric setOperationAction(ISD::JumpTable, PtrVT, Custom); 3160b57cec5SDimitry Andric 3170b57cec5SDimitry Andric // We need to handle dynamic allocations specially because of the 3180b57cec5SDimitry Andric // 160-byte area at the bottom of the stack. 3190b57cec5SDimitry Andric setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 3200b57cec5SDimitry Andric setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 3210b57cec5SDimitry Andric 3220b57cec5SDimitry Andric setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 3230b57cec5SDimitry Andric setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 3240b57cec5SDimitry Andric 3250b57cec5SDimitry Andric // Handle prefetches with PFD or PFDRL. 3260b57cec5SDimitry Andric setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 3270b57cec5SDimitry Andric 3288bcb0991SDimitry Andric for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 3290b57cec5SDimitry Andric // Assume by default that all vector operations need to be expanded. 3300b57cec5SDimitry Andric for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 3310b57cec5SDimitry Andric if (getOperationAction(Opcode, VT) == Legal) 3320b57cec5SDimitry Andric setOperationAction(Opcode, VT, Expand); 3330b57cec5SDimitry Andric 3340b57cec5SDimitry Andric // Likewise all truncating stores and extending loads. 3358bcb0991SDimitry Andric for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 3360b57cec5SDimitry Andric setTruncStoreAction(VT, InnerVT, Expand); 3370b57cec5SDimitry Andric setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 3380b57cec5SDimitry Andric setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 3390b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 3400b57cec5SDimitry Andric } 3410b57cec5SDimitry Andric 3420b57cec5SDimitry Andric if (isTypeLegal(VT)) { 3430b57cec5SDimitry Andric // These operations are legal for anything that can be stored in a 3440b57cec5SDimitry Andric // vector register, even if there is no native support for the format 3450b57cec5SDimitry Andric // as such. In particular, we can do these for v4f32 even though there 3460b57cec5SDimitry Andric // are no specific instructions for that format. 3470b57cec5SDimitry Andric setOperationAction(ISD::LOAD, VT, Legal); 3480b57cec5SDimitry Andric setOperationAction(ISD::STORE, VT, Legal); 3490b57cec5SDimitry Andric setOperationAction(ISD::VSELECT, VT, Legal); 3500b57cec5SDimitry Andric setOperationAction(ISD::BITCAST, VT, Legal); 3510b57cec5SDimitry Andric setOperationAction(ISD::UNDEF, VT, Legal); 3520b57cec5SDimitry Andric 3530b57cec5SDimitry Andric // Likewise, except that we need to replace the nodes with something 3540b57cec5SDimitry Andric // more specific. 3550b57cec5SDimitry Andric setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 3560b57cec5SDimitry Andric setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 3570b57cec5SDimitry Andric } 3580b57cec5SDimitry Andric } 3590b57cec5SDimitry Andric 3600b57cec5SDimitry Andric // Handle integer vector types. 3618bcb0991SDimitry Andric for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 3620b57cec5SDimitry Andric if (isTypeLegal(VT)) { 3630b57cec5SDimitry Andric // These operations have direct equivalents. 3640b57cec5SDimitry Andric setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 3650b57cec5SDimitry Andric setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 3660b57cec5SDimitry Andric setOperationAction(ISD::ADD, VT, Legal); 3670b57cec5SDimitry Andric setOperationAction(ISD::SUB, VT, Legal); 3680b57cec5SDimitry Andric if (VT != MVT::v2i64) 3690b57cec5SDimitry Andric setOperationAction(ISD::MUL, VT, Legal); 370e8d8bef9SDimitry Andric setOperationAction(ISD::ABS, VT, Legal); 3710b57cec5SDimitry Andric setOperationAction(ISD::AND, VT, Legal); 3720b57cec5SDimitry Andric setOperationAction(ISD::OR, VT, Legal); 3730b57cec5SDimitry Andric setOperationAction(ISD::XOR, VT, Legal); 3740b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) 3750b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, VT, Legal); 3760b57cec5SDimitry Andric else 3770b57cec5SDimitry Andric setOperationAction(ISD::CTPOP, VT, Custom); 3780b57cec5SDimitry Andric setOperationAction(ISD::CTTZ, VT, Legal); 3790b57cec5SDimitry Andric setOperationAction(ISD::CTLZ, VT, Legal); 3800b57cec5SDimitry Andric 3810b57cec5SDimitry Andric // Convert a GPR scalar to a vector by inserting it into element 0. 3820b57cec5SDimitry Andric setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 3830b57cec5SDimitry Andric 3840b57cec5SDimitry Andric // Use a series of unpacks for extensions. 3850b57cec5SDimitry Andric setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 3860b57cec5SDimitry Andric setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 3870b57cec5SDimitry Andric 3880b57cec5SDimitry Andric // Detect shifts by a scalar amount and convert them into 3890b57cec5SDimitry Andric // V*_BY_SCALAR. 3900b57cec5SDimitry Andric setOperationAction(ISD::SHL, VT, Custom); 3910b57cec5SDimitry Andric setOperationAction(ISD::SRA, VT, Custom); 3920b57cec5SDimitry Andric setOperationAction(ISD::SRL, VT, Custom); 3930b57cec5SDimitry Andric 3940b57cec5SDimitry Andric // At present ROTL isn't matched by DAGCombiner. ROTR should be 3950b57cec5SDimitry Andric // converted into ROTL. 3960b57cec5SDimitry Andric setOperationAction(ISD::ROTL, VT, Expand); 3970b57cec5SDimitry Andric setOperationAction(ISD::ROTR, VT, Expand); 3980b57cec5SDimitry Andric 3990b57cec5SDimitry Andric // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 4000b57cec5SDimitry Andric // and inverting the result as necessary. 4010b57cec5SDimitry Andric setOperationAction(ISD::SETCC, VT, Custom); 402480093f4SDimitry Andric setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 403480093f4SDimitry Andric if (Subtarget.hasVectorEnhancements1()) 404480093f4SDimitry Andric setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 4050b57cec5SDimitry Andric } 4060b57cec5SDimitry Andric } 4070b57cec5SDimitry Andric 4080b57cec5SDimitry Andric if (Subtarget.hasVector()) { 4090b57cec5SDimitry Andric // There should be no need to check for float types other than v2f64 4100b57cec5SDimitry Andric // since <2 x f32> isn't a legal type. 4110b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 4120b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 4130b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 4140b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 4150b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 4160b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 4170b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 4180b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 4198bcb0991SDimitry Andric 4208bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 4218bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 4228bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 4238bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 424480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 425480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 426480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 427480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 4280b57cec5SDimitry Andric } 4290b57cec5SDimitry Andric 4300b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements2()) { 4310b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 4320b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 4330b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 4340b57cec5SDimitry Andric setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 4350b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 4360b57cec5SDimitry Andric setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 4370b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 4380b57cec5SDimitry Andric setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 4398bcb0991SDimitry Andric 4408bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 4418bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 4428bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 4438bcb0991SDimitry Andric setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 444480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 445480093f4SDimitry Andric setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 446480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 447480093f4SDimitry Andric setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 4480b57cec5SDimitry Andric } 4490b57cec5SDimitry Andric 4500b57cec5SDimitry Andric // Handle floating-point types. 4510b57cec5SDimitry Andric for (unsigned I = MVT::FIRST_FP_VALUETYPE; 4520b57cec5SDimitry Andric I <= MVT::LAST_FP_VALUETYPE; 4530b57cec5SDimitry Andric ++I) { 4540b57cec5SDimitry Andric MVT VT = MVT::SimpleValueType(I); 4550b57cec5SDimitry Andric if (isTypeLegal(VT)) { 4560b57cec5SDimitry Andric // We can use FI for FRINT. 4570b57cec5SDimitry Andric setOperationAction(ISD::FRINT, VT, Legal); 4580b57cec5SDimitry Andric 4590b57cec5SDimitry Andric // We can use the extended form of FI for other rounding operations. 4600b57cec5SDimitry Andric if (Subtarget.hasFPExtension()) { 4610b57cec5SDimitry Andric setOperationAction(ISD::FNEARBYINT, VT, Legal); 4620b57cec5SDimitry Andric setOperationAction(ISD::FFLOOR, VT, Legal); 4630b57cec5SDimitry Andric setOperationAction(ISD::FCEIL, VT, Legal); 4640b57cec5SDimitry Andric setOperationAction(ISD::FTRUNC, VT, Legal); 4650b57cec5SDimitry Andric setOperationAction(ISD::FROUND, VT, Legal); 4660b57cec5SDimitry Andric } 4670b57cec5SDimitry Andric 4680b57cec5SDimitry Andric // No special instructions for these. 4690b57cec5SDimitry Andric setOperationAction(ISD::FSIN, VT, Expand); 4700b57cec5SDimitry Andric setOperationAction(ISD::FCOS, VT, Expand); 4710b57cec5SDimitry Andric setOperationAction(ISD::FSINCOS, VT, Expand); 4720b57cec5SDimitry Andric setOperationAction(ISD::FREM, VT, Expand); 4730b57cec5SDimitry Andric setOperationAction(ISD::FPOW, VT, Expand); 4740b57cec5SDimitry Andric 47581ad6265SDimitry Andric // Special treatment. 47681ad6265SDimitry Andric setOperationAction(ISD::IS_FPCLASS, VT, Custom); 47781ad6265SDimitry Andric 4780b57cec5SDimitry Andric // Handle constrained floating-point operations. 4790b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FADD, VT, Legal); 4800b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSUB, VT, Legal); 4810b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMUL, VT, Legal); 4820b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FDIV, VT, Legal); 4830b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMA, VT, Legal); 4840b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 4850b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FRINT, VT, Legal); 4860b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 4870b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 4880b57cec5SDimitry Andric if (Subtarget.hasFPExtension()) { 4890b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 4900b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 4910b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 4920b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FROUND, VT, Legal); 4930b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 4940b57cec5SDimitry Andric } 4950b57cec5SDimitry Andric } 4960b57cec5SDimitry Andric } 4970b57cec5SDimitry Andric 4980b57cec5SDimitry Andric // Handle floating-point vector types. 4990b57cec5SDimitry Andric if (Subtarget.hasVector()) { 5000b57cec5SDimitry Andric // Scalar-to-vector conversion is just a subreg. 5010b57cec5SDimitry Andric setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 5020b57cec5SDimitry Andric setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 5030b57cec5SDimitry Andric 5040b57cec5SDimitry Andric // Some insertions and extractions can be done directly but others 5050b57cec5SDimitry Andric // need to go via integers. 5060b57cec5SDimitry Andric setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 5070b57cec5SDimitry Andric setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 5080b57cec5SDimitry Andric setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 5090b57cec5SDimitry Andric setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 5100b57cec5SDimitry Andric 5110b57cec5SDimitry Andric // These operations have direct equivalents. 5120b57cec5SDimitry Andric setOperationAction(ISD::FADD, MVT::v2f64, Legal); 5130b57cec5SDimitry Andric setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 5140b57cec5SDimitry Andric setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 5150b57cec5SDimitry Andric setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 5160b57cec5SDimitry Andric setOperationAction(ISD::FMA, MVT::v2f64, Legal); 5170b57cec5SDimitry Andric setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 5180b57cec5SDimitry Andric setOperationAction(ISD::FABS, MVT::v2f64, Legal); 5190b57cec5SDimitry Andric setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 5200b57cec5SDimitry Andric setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 5210b57cec5SDimitry Andric setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 5220b57cec5SDimitry Andric setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 5230b57cec5SDimitry Andric setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 5240b57cec5SDimitry Andric setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 5250b57cec5SDimitry Andric setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 5260b57cec5SDimitry Andric 5270b57cec5SDimitry Andric // Handle constrained floating-point operations. 5280b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 5290b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 5300b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 5310b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 5320b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 5330b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 5340b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 5350b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 5360b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 5370b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 5380b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 5390b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 5400b57cec5SDimitry Andric } 5410b57cec5SDimitry Andric 5420b57cec5SDimitry Andric // The vector enhancements facility 1 has instructions for these. 5430b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) { 5440b57cec5SDimitry Andric setOperationAction(ISD::FADD, MVT::v4f32, Legal); 5450b57cec5SDimitry Andric setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 5460b57cec5SDimitry Andric setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 5470b57cec5SDimitry Andric setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 5480b57cec5SDimitry Andric setOperationAction(ISD::FMA, MVT::v4f32, Legal); 5490b57cec5SDimitry Andric setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 5500b57cec5SDimitry Andric setOperationAction(ISD::FABS, MVT::v4f32, Legal); 5510b57cec5SDimitry Andric setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 5520b57cec5SDimitry Andric setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 5530b57cec5SDimitry Andric setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 5540b57cec5SDimitry Andric setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 5550b57cec5SDimitry Andric setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 5560b57cec5SDimitry Andric setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 5570b57cec5SDimitry Andric setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 5580b57cec5SDimitry Andric 5590b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 5600b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 5610b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 5620b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 5630b57cec5SDimitry Andric 5640b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 5650b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 5660b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 5670b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 5680b57cec5SDimitry Andric 5690b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 5700b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 5710b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 5720b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 5730b57cec5SDimitry Andric 5740b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 5750b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 5760b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 5770b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 5780b57cec5SDimitry Andric 5790b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 5800b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 5810b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 5820b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 5830b57cec5SDimitry Andric 5840b57cec5SDimitry Andric // Handle constrained floating-point operations. 5850b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 5860b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 5870b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 5880b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 5890b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 5900b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 5910b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 5920b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 5930b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 5940b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 5950b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 5960b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 5970b57cec5SDimitry Andric for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 5980b57cec5SDimitry Andric MVT::v4f32, MVT::v2f64 }) { 5990b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 6000b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 601480093f4SDimitry Andric setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 602480093f4SDimitry Andric setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 6030b57cec5SDimitry Andric } 6040b57cec5SDimitry Andric } 6050b57cec5SDimitry Andric 606480093f4SDimitry Andric // We only have fused f128 multiply-addition on vector registers. 607480093f4SDimitry Andric if (!Subtarget.hasVectorEnhancements1()) { 6080b57cec5SDimitry Andric setOperationAction(ISD::FMA, MVT::f128, Expand); 609480093f4SDimitry Andric setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 610480093f4SDimitry Andric } 6110b57cec5SDimitry Andric 6120b57cec5SDimitry Andric // We don't have a copysign instruction on vector registers. 6130b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) 6140b57cec5SDimitry Andric setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 6150b57cec5SDimitry Andric 6160b57cec5SDimitry Andric // Needed so that we don't try to implement f128 constant loads using 6170b57cec5SDimitry Andric // a load-and-extend of a f80 constant (in cases where the constant 6180b57cec5SDimitry Andric // would fit in an f80). 6190b57cec5SDimitry Andric for (MVT VT : MVT::fp_valuetypes()) 6200b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 6210b57cec5SDimitry Andric 6220b57cec5SDimitry Andric // We don't have extending load instruction on vector registers. 6230b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements1()) { 6240b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 6250b57cec5SDimitry Andric setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 6260b57cec5SDimitry Andric } 6270b57cec5SDimitry Andric 6280b57cec5SDimitry Andric // Floating-point truncation and stores need to be done separately. 6290b57cec5SDimitry Andric setTruncStoreAction(MVT::f64, MVT::f32, Expand); 6300b57cec5SDimitry Andric setTruncStoreAction(MVT::f128, MVT::f32, Expand); 6310b57cec5SDimitry Andric setTruncStoreAction(MVT::f128, MVT::f64, Expand); 6320b57cec5SDimitry Andric 6330b57cec5SDimitry Andric // We have 64-bit FPR<->GPR moves, but need special handling for 6340b57cec5SDimitry Andric // 32-bit forms. 6350b57cec5SDimitry Andric if (!Subtarget.hasVector()) { 6360b57cec5SDimitry Andric setOperationAction(ISD::BITCAST, MVT::i32, Custom); 6370b57cec5SDimitry Andric setOperationAction(ISD::BITCAST, MVT::f32, Custom); 6380b57cec5SDimitry Andric } 6390b57cec5SDimitry Andric 6400b57cec5SDimitry Andric // VASTART and VACOPY need to deal with the SystemZ-specific varargs 6410b57cec5SDimitry Andric // structure, but VAEND is a no-op. 6420b57cec5SDimitry Andric setOperationAction(ISD::VASTART, MVT::Other, Custom); 6430b57cec5SDimitry Andric setOperationAction(ISD::VACOPY, MVT::Other, Custom); 6440b57cec5SDimitry Andric setOperationAction(ISD::VAEND, MVT::Other, Expand); 6450b57cec5SDimitry Andric 646bdd1243dSDimitry Andric setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); 647bdd1243dSDimitry Andric 6480b57cec5SDimitry Andric // Codes for which we want to perform some z-specific combinations. 64981ad6265SDimitry Andric setTargetDAGCombine({ISD::ZERO_EXTEND, 65081ad6265SDimitry Andric ISD::SIGN_EXTEND, 65181ad6265SDimitry Andric ISD::SIGN_EXTEND_INREG, 65281ad6265SDimitry Andric ISD::LOAD, 65381ad6265SDimitry Andric ISD::STORE, 65481ad6265SDimitry Andric ISD::VECTOR_SHUFFLE, 65581ad6265SDimitry Andric ISD::EXTRACT_VECTOR_ELT, 65681ad6265SDimitry Andric ISD::FP_ROUND, 65781ad6265SDimitry Andric ISD::STRICT_FP_ROUND, 65881ad6265SDimitry Andric ISD::FP_EXTEND, 65981ad6265SDimitry Andric ISD::SINT_TO_FP, 66081ad6265SDimitry Andric ISD::UINT_TO_FP, 66181ad6265SDimitry Andric ISD::STRICT_FP_EXTEND, 66281ad6265SDimitry Andric ISD::BSWAP, 66381ad6265SDimitry Andric ISD::SDIV, 66481ad6265SDimitry Andric ISD::UDIV, 66581ad6265SDimitry Andric ISD::SREM, 66681ad6265SDimitry Andric ISD::UREM, 66781ad6265SDimitry Andric ISD::INTRINSIC_VOID, 66881ad6265SDimitry Andric ISD::INTRINSIC_W_CHAIN}); 6690b57cec5SDimitry Andric 6700b57cec5SDimitry Andric // Handle intrinsics. 6710b57cec5SDimitry Andric setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 6720b57cec5SDimitry Andric setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 6730b57cec5SDimitry Andric 6740b57cec5SDimitry Andric // We want to use MVC in preference to even a single load/store pair. 67581ad6265SDimitry Andric MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0; 6760b57cec5SDimitry Andric MaxStoresPerMemcpyOptSize = 0; 6770b57cec5SDimitry Andric 6780b57cec5SDimitry Andric // The main memset sequence is a byte store followed by an MVC. 6790b57cec5SDimitry Andric // Two STC or MV..I stores win over that, but the kind of fused stores 6800b57cec5SDimitry Andric // generated by target-independent code don't when the byte value is 6810b57cec5SDimitry Andric // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 6820b57cec5SDimitry Andric // than "STC;MVC". Handle the choice in target-specific code instead. 68381ad6265SDimitry Andric MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0; 6840b57cec5SDimitry Andric MaxStoresPerMemsetOptSize = 0; 685480093f4SDimitry Andric 686480093f4SDimitry Andric // Default to having -disable-strictnode-mutation on 687480093f4SDimitry Andric IsStrictFPEnabled = true; 6880b57cec5SDimitry Andric } 6890b57cec5SDimitry Andric 6905ffd83dbSDimitry Andric bool SystemZTargetLowering::useSoftFloat() const { 6915ffd83dbSDimitry Andric return Subtarget.hasSoftFloat(); 6925ffd83dbSDimitry Andric } 6935ffd83dbSDimitry Andric 6940b57cec5SDimitry Andric EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 6950b57cec5SDimitry Andric LLVMContext &, EVT VT) const { 6960b57cec5SDimitry Andric if (!VT.isVector()) 6970b57cec5SDimitry Andric return MVT::i32; 6980b57cec5SDimitry Andric return VT.changeVectorElementTypeToInteger(); 6990b57cec5SDimitry Andric } 7000b57cec5SDimitry Andric 701480093f4SDimitry Andric bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 702480093f4SDimitry Andric const MachineFunction &MF, EVT VT) const { 7030b57cec5SDimitry Andric VT = VT.getScalarType(); 7040b57cec5SDimitry Andric 7050b57cec5SDimitry Andric if (!VT.isSimple()) 7060b57cec5SDimitry Andric return false; 7070b57cec5SDimitry Andric 7080b57cec5SDimitry Andric switch (VT.getSimpleVT().SimpleTy) { 7090b57cec5SDimitry Andric case MVT::f32: 7100b57cec5SDimitry Andric case MVT::f64: 7110b57cec5SDimitry Andric return true; 7120b57cec5SDimitry Andric case MVT::f128: 7130b57cec5SDimitry Andric return Subtarget.hasVectorEnhancements1(); 7140b57cec5SDimitry Andric default: 7150b57cec5SDimitry Andric break; 7160b57cec5SDimitry Andric } 7170b57cec5SDimitry Andric 7180b57cec5SDimitry Andric return false; 7190b57cec5SDimitry Andric } 7200b57cec5SDimitry Andric 7210b57cec5SDimitry Andric // Return true if the constant can be generated with a vector instruction, 7220b57cec5SDimitry Andric // such as VGM, VGMB or VREPI. 7230b57cec5SDimitry Andric bool SystemZVectorConstantInfo::isVectorConstantLegal( 7240b57cec5SDimitry Andric const SystemZSubtarget &Subtarget) { 72581ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7260b57cec5SDimitry Andric if (!Subtarget.hasVector() || 7270b57cec5SDimitry Andric (isFP128 && !Subtarget.hasVectorEnhancements1())) 7280b57cec5SDimitry Andric return false; 7290b57cec5SDimitry Andric 7300b57cec5SDimitry Andric // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 7310b57cec5SDimitry Andric // preferred way of creating all-zero and all-one vectors so give it 7320b57cec5SDimitry Andric // priority over other methods below. 7330b57cec5SDimitry Andric unsigned Mask = 0; 7340b57cec5SDimitry Andric unsigned I = 0; 7350b57cec5SDimitry Andric for (; I < SystemZ::VectorBytes; ++I) { 7360b57cec5SDimitry Andric uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 7370b57cec5SDimitry Andric if (Byte == 0xff) 7380b57cec5SDimitry Andric Mask |= 1ULL << I; 7390b57cec5SDimitry Andric else if (Byte != 0) 7400b57cec5SDimitry Andric break; 7410b57cec5SDimitry Andric } 7420b57cec5SDimitry Andric if (I == SystemZ::VectorBytes) { 7430b57cec5SDimitry Andric Opcode = SystemZISD::BYTE_MASK; 7440b57cec5SDimitry Andric OpVals.push_back(Mask); 7450b57cec5SDimitry Andric VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 7460b57cec5SDimitry Andric return true; 7470b57cec5SDimitry Andric } 7480b57cec5SDimitry Andric 7490b57cec5SDimitry Andric if (SplatBitSize > 64) 7500b57cec5SDimitry Andric return false; 7510b57cec5SDimitry Andric 7520b57cec5SDimitry Andric auto tryValue = [&](uint64_t Value) -> bool { 7530b57cec5SDimitry Andric // Try VECTOR REPLICATE IMMEDIATE 7540b57cec5SDimitry Andric int64_t SignedValue = SignExtend64(Value, SplatBitSize); 7550b57cec5SDimitry Andric if (isInt<16>(SignedValue)) { 7560b57cec5SDimitry Andric OpVals.push_back(((unsigned) SignedValue)); 7570b57cec5SDimitry Andric Opcode = SystemZISD::REPLICATE; 7580b57cec5SDimitry Andric VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 7590b57cec5SDimitry Andric SystemZ::VectorBits / SplatBitSize); 7600b57cec5SDimitry Andric return true; 7610b57cec5SDimitry Andric } 7620b57cec5SDimitry Andric // Try VECTOR GENERATE MASK 7630b57cec5SDimitry Andric unsigned Start, End; 7640b57cec5SDimitry Andric if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 7650b57cec5SDimitry Andric // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 7660b57cec5SDimitry Andric // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 7670b57cec5SDimitry Andric // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 7680b57cec5SDimitry Andric OpVals.push_back(Start - (64 - SplatBitSize)); 7690b57cec5SDimitry Andric OpVals.push_back(End - (64 - SplatBitSize)); 7700b57cec5SDimitry Andric Opcode = SystemZISD::ROTATE_MASK; 7710b57cec5SDimitry Andric VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 7720b57cec5SDimitry Andric SystemZ::VectorBits / SplatBitSize); 7730b57cec5SDimitry Andric return true; 7740b57cec5SDimitry Andric } 7750b57cec5SDimitry Andric return false; 7760b57cec5SDimitry Andric }; 7770b57cec5SDimitry Andric 7780b57cec5SDimitry Andric // First try assuming that any undefined bits above the highest set bit 7790b57cec5SDimitry Andric // and below the lowest set bit are 1s. This increases the likelihood of 7800b57cec5SDimitry Andric // being able to use a sign-extended element value in VECTOR REPLICATE 7810b57cec5SDimitry Andric // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 7820b57cec5SDimitry Andric uint64_t SplatBitsZ = SplatBits.getZExtValue(); 7830b57cec5SDimitry Andric uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 7840b57cec5SDimitry Andric uint64_t Lower = 7850b57cec5SDimitry Andric (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 7860b57cec5SDimitry Andric uint64_t Upper = 7870b57cec5SDimitry Andric (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 7880b57cec5SDimitry Andric if (tryValue(SplatBitsZ | Upper | Lower)) 7890b57cec5SDimitry Andric return true; 7900b57cec5SDimitry Andric 7910b57cec5SDimitry Andric // Now try assuming that any undefined bits between the first and 7920b57cec5SDimitry Andric // last defined set bits are set. This increases the chances of 7930b57cec5SDimitry Andric // using a non-wraparound mask. 7940b57cec5SDimitry Andric uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 7950b57cec5SDimitry Andric return tryValue(SplatBitsZ | Middle); 7960b57cec5SDimitry Andric } 7970b57cec5SDimitry Andric 79881ad6265SDimitry Andric SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) { 79981ad6265SDimitry Andric if (IntImm.isSingleWord()) { 80081ad6265SDimitry Andric IntBits = APInt(128, IntImm.getZExtValue()); 80181ad6265SDimitry Andric IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth()); 80281ad6265SDimitry Andric } else 80381ad6265SDimitry Andric IntBits = IntImm; 80481ad6265SDimitry Andric assert(IntBits.getBitWidth() == 128 && "Unsupported APInt."); 805e8d8bef9SDimitry Andric 806e8d8bef9SDimitry Andric // Find the smallest splat. 80781ad6265SDimitry Andric SplatBits = IntImm; 80881ad6265SDimitry Andric unsigned Width = SplatBits.getBitWidth(); 8090b57cec5SDimitry Andric while (Width > 8) { 8100b57cec5SDimitry Andric unsigned HalfSize = Width / 2; 8110b57cec5SDimitry Andric APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 8120b57cec5SDimitry Andric APInt LowValue = SplatBits.trunc(HalfSize); 8130b57cec5SDimitry Andric 8140b57cec5SDimitry Andric // If the two halves do not match, stop here. 8150b57cec5SDimitry Andric if (HighValue != LowValue || 8 > HalfSize) 8160b57cec5SDimitry Andric break; 8170b57cec5SDimitry Andric 8180b57cec5SDimitry Andric SplatBits = HighValue; 8190b57cec5SDimitry Andric Width = HalfSize; 8200b57cec5SDimitry Andric } 8210b57cec5SDimitry Andric SplatUndef = 0; 8220b57cec5SDimitry Andric SplatBitSize = Width; 8230b57cec5SDimitry Andric } 8240b57cec5SDimitry Andric 8250b57cec5SDimitry Andric SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 8260b57cec5SDimitry Andric assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 8270b57cec5SDimitry Andric bool HasAnyUndefs; 8280b57cec5SDimitry Andric 8290b57cec5SDimitry Andric // Get IntBits by finding the 128 bit splat. 8300b57cec5SDimitry Andric BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 8310b57cec5SDimitry Andric true); 8320b57cec5SDimitry Andric 8330b57cec5SDimitry Andric // Get SplatBits by finding the 8 bit or greater splat. 8340b57cec5SDimitry Andric BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 8350b57cec5SDimitry Andric true); 8360b57cec5SDimitry Andric } 8370b57cec5SDimitry Andric 8380b57cec5SDimitry Andric bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 8390b57cec5SDimitry Andric bool ForCodeSize) const { 8400b57cec5SDimitry Andric // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 8410b57cec5SDimitry Andric if (Imm.isZero() || Imm.isNegZero()) 8420b57cec5SDimitry Andric return true; 8430b57cec5SDimitry Andric 8440b57cec5SDimitry Andric return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 8450b57cec5SDimitry Andric } 8460b57cec5SDimitry Andric 8475ffd83dbSDimitry Andric /// Returns true if stack probing through inline assembly is requested. 848bdd1243dSDimitry Andric bool SystemZTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { 8495ffd83dbSDimitry Andric // If the function specifically requests inline stack probes, emit them. 8505ffd83dbSDimitry Andric if (MF.getFunction().hasFnAttribute("probe-stack")) 8515ffd83dbSDimitry Andric return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 8525ffd83dbSDimitry Andric "inline-asm"; 8535ffd83dbSDimitry Andric return false; 8545ffd83dbSDimitry Andric } 8555ffd83dbSDimitry Andric 8560b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 8570b57cec5SDimitry Andric // We can use CGFI or CLGFI. 8580b57cec5SDimitry Andric return isInt<32>(Imm) || isUInt<32>(Imm); 8590b57cec5SDimitry Andric } 8600b57cec5SDimitry Andric 8610b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 8620b57cec5SDimitry Andric // We can use ALGFI or SLGFI. 8630b57cec5SDimitry Andric return isUInt<32>(Imm) || isUInt<32>(-Imm); 8640b57cec5SDimitry Andric } 8650b57cec5SDimitry Andric 8660b57cec5SDimitry Andric bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 867bdd1243dSDimitry Andric EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { 8680b57cec5SDimitry Andric // Unaligned accesses should never be slower than the expanded version. 8690b57cec5SDimitry Andric // We check specifically for aligned accesses in the few cases where 8700b57cec5SDimitry Andric // they are required. 8710b57cec5SDimitry Andric if (Fast) 872bdd1243dSDimitry Andric *Fast = 1; 8730b57cec5SDimitry Andric return true; 8740b57cec5SDimitry Andric } 8750b57cec5SDimitry Andric 8760b57cec5SDimitry Andric // Information about the addressing mode for a memory access. 8770b57cec5SDimitry Andric struct AddressingMode { 8780b57cec5SDimitry Andric // True if a long displacement is supported. 8790b57cec5SDimitry Andric bool LongDisplacement; 8800b57cec5SDimitry Andric 8810b57cec5SDimitry Andric // True if use of index register is supported. 8820b57cec5SDimitry Andric bool IndexReg; 8830b57cec5SDimitry Andric 8840b57cec5SDimitry Andric AddressingMode(bool LongDispl, bool IdxReg) : 8850b57cec5SDimitry Andric LongDisplacement(LongDispl), IndexReg(IdxReg) {} 8860b57cec5SDimitry Andric }; 8870b57cec5SDimitry Andric 8880b57cec5SDimitry Andric // Return the desired addressing mode for a Load which has only one use (in 8890b57cec5SDimitry Andric // the same block) which is a Store. 8900b57cec5SDimitry Andric static AddressingMode getLoadStoreAddrMode(bool HasVector, 8910b57cec5SDimitry Andric Type *Ty) { 8920b57cec5SDimitry Andric // With vector support a Load->Store combination may be combined to either 8930b57cec5SDimitry Andric // an MVC or vector operations and it seems to work best to allow the 8940b57cec5SDimitry Andric // vector addressing mode. 8950b57cec5SDimitry Andric if (HasVector) 8960b57cec5SDimitry Andric return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 8970b57cec5SDimitry Andric 8980b57cec5SDimitry Andric // Otherwise only the MVC case is special. 8990b57cec5SDimitry Andric bool MVC = Ty->isIntegerTy(8); 9000b57cec5SDimitry Andric return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 9010b57cec5SDimitry Andric } 9020b57cec5SDimitry Andric 9030b57cec5SDimitry Andric // Return the addressing mode which seems most desirable given an LLVM 9040b57cec5SDimitry Andric // Instruction pointer. 9050b57cec5SDimitry Andric static AddressingMode 9060b57cec5SDimitry Andric supportedAddressingMode(Instruction *I, bool HasVector) { 9070b57cec5SDimitry Andric if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 9080b57cec5SDimitry Andric switch (II->getIntrinsicID()) { 9090b57cec5SDimitry Andric default: break; 9100b57cec5SDimitry Andric case Intrinsic::memset: 9110b57cec5SDimitry Andric case Intrinsic::memmove: 9120b57cec5SDimitry Andric case Intrinsic::memcpy: 9130b57cec5SDimitry Andric return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 9140b57cec5SDimitry Andric } 9150b57cec5SDimitry Andric } 9160b57cec5SDimitry Andric 9170b57cec5SDimitry Andric if (isa<LoadInst>(I) && I->hasOneUse()) { 9188bcb0991SDimitry Andric auto *SingleUser = cast<Instruction>(*I->user_begin()); 9190b57cec5SDimitry Andric if (SingleUser->getParent() == I->getParent()) { 9200b57cec5SDimitry Andric if (isa<ICmpInst>(SingleUser)) { 9210b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 9220b57cec5SDimitry Andric if (C->getBitWidth() <= 64 && 9230b57cec5SDimitry Andric (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 9240b57cec5SDimitry Andric // Comparison of memory with 16 bit signed / unsigned immediate 9250b57cec5SDimitry Andric return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 9260b57cec5SDimitry Andric } else if (isa<StoreInst>(SingleUser)) 9270b57cec5SDimitry Andric // Load->Store 9280b57cec5SDimitry Andric return getLoadStoreAddrMode(HasVector, I->getType()); 9290b57cec5SDimitry Andric } 9300b57cec5SDimitry Andric } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 9310b57cec5SDimitry Andric if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 9320b57cec5SDimitry Andric if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 9330b57cec5SDimitry Andric // Load->Store 9340b57cec5SDimitry Andric return getLoadStoreAddrMode(HasVector, LoadI->getType()); 9350b57cec5SDimitry Andric } 9360b57cec5SDimitry Andric 9370b57cec5SDimitry Andric if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 9380b57cec5SDimitry Andric 9390b57cec5SDimitry Andric // * Use LDE instead of LE/LEY for z13 to avoid partial register 9400b57cec5SDimitry Andric // dependencies (LDE only supports small offsets). 9410b57cec5SDimitry Andric // * Utilize the vector registers to hold floating point 9420b57cec5SDimitry Andric // values (vector load / store instructions only support small 9430b57cec5SDimitry Andric // offsets). 9440b57cec5SDimitry Andric 9450b57cec5SDimitry Andric Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 9460b57cec5SDimitry Andric I->getOperand(0)->getType()); 9470b57cec5SDimitry Andric bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 9480b57cec5SDimitry Andric bool IsVectorAccess = MemAccessTy->isVectorTy(); 9490b57cec5SDimitry Andric 9500b57cec5SDimitry Andric // A store of an extracted vector element will be combined into a VSTE type 9510b57cec5SDimitry Andric // instruction. 9520b57cec5SDimitry Andric if (!IsVectorAccess && isa<StoreInst>(I)) { 9530b57cec5SDimitry Andric Value *DataOp = I->getOperand(0); 9540b57cec5SDimitry Andric if (isa<ExtractElementInst>(DataOp)) 9550b57cec5SDimitry Andric IsVectorAccess = true; 9560b57cec5SDimitry Andric } 9570b57cec5SDimitry Andric 9580b57cec5SDimitry Andric // A load which gets inserted into a vector element will be combined into a 9590b57cec5SDimitry Andric // VLE type instruction. 9600b57cec5SDimitry Andric if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 9610b57cec5SDimitry Andric User *LoadUser = *I->user_begin(); 9620b57cec5SDimitry Andric if (isa<InsertElementInst>(LoadUser)) 9630b57cec5SDimitry Andric IsVectorAccess = true; 9640b57cec5SDimitry Andric } 9650b57cec5SDimitry Andric 9660b57cec5SDimitry Andric if (IsFPAccess || IsVectorAccess) 9670b57cec5SDimitry Andric return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 9680b57cec5SDimitry Andric } 9690b57cec5SDimitry Andric 9700b57cec5SDimitry Andric return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 9710b57cec5SDimitry Andric } 9720b57cec5SDimitry Andric 9730b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 9740b57cec5SDimitry Andric const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 9750b57cec5SDimitry Andric // Punt on globals for now, although they can be used in limited 9760b57cec5SDimitry Andric // RELATIVE LONG cases. 9770b57cec5SDimitry Andric if (AM.BaseGV) 9780b57cec5SDimitry Andric return false; 9790b57cec5SDimitry Andric 9800b57cec5SDimitry Andric // Require a 20-bit signed offset. 9810b57cec5SDimitry Andric if (!isInt<20>(AM.BaseOffs)) 9820b57cec5SDimitry Andric return false; 9830b57cec5SDimitry Andric 98481ad6265SDimitry Andric bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy(); 98581ad6265SDimitry Andric AddressingMode SupportedAM(!RequireD12, true); 9860b57cec5SDimitry Andric if (I != nullptr) 9870b57cec5SDimitry Andric SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 9880b57cec5SDimitry Andric 9890b57cec5SDimitry Andric if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 9900b57cec5SDimitry Andric return false; 9910b57cec5SDimitry Andric 9920b57cec5SDimitry Andric if (!SupportedAM.IndexReg) 9930b57cec5SDimitry Andric // No indexing allowed. 9940b57cec5SDimitry Andric return AM.Scale == 0; 9950b57cec5SDimitry Andric else 9960b57cec5SDimitry Andric // Indexing is OK but no scale factor can be applied. 9970b57cec5SDimitry Andric return AM.Scale == 0 || AM.Scale == 1; 9980b57cec5SDimitry Andric } 9990b57cec5SDimitry Andric 100081ad6265SDimitry Andric bool SystemZTargetLowering::findOptimalMemOpLowering( 100181ad6265SDimitry Andric std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 100281ad6265SDimitry Andric unsigned SrcAS, const AttributeList &FuncAttributes) const { 100381ad6265SDimitry Andric const int MVCFastLen = 16; 100481ad6265SDimitry Andric 100581ad6265SDimitry Andric if (Limit != ~unsigned(0)) { 100681ad6265SDimitry Andric // Don't expand Op into scalar loads/stores in these cases: 100781ad6265SDimitry Andric if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen) 100881ad6265SDimitry Andric return false; // Small memcpy: Use MVC 100981ad6265SDimitry Andric if (Op.isMemset() && Op.size() - 1 <= MVCFastLen) 101081ad6265SDimitry Andric return false; // Small memset (first byte with STC/MVI): Use MVC 101181ad6265SDimitry Andric if (Op.isZeroMemset()) 101281ad6265SDimitry Andric return false; // Memset zero: Use XC 101381ad6265SDimitry Andric } 101481ad6265SDimitry Andric 101581ad6265SDimitry Andric return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS, 101681ad6265SDimitry Andric SrcAS, FuncAttributes); 101781ad6265SDimitry Andric } 101881ad6265SDimitry Andric 101981ad6265SDimitry Andric EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op, 102081ad6265SDimitry Andric const AttributeList &FuncAttributes) const { 102181ad6265SDimitry Andric return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other; 102281ad6265SDimitry Andric } 102381ad6265SDimitry Andric 10240b57cec5SDimitry Andric bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 10250b57cec5SDimitry Andric if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 10260b57cec5SDimitry Andric return false; 1027bdd1243dSDimitry Andric unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedValue(); 1028bdd1243dSDimitry Andric unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedValue(); 10290b57cec5SDimitry Andric return FromBits > ToBits; 10300b57cec5SDimitry Andric } 10310b57cec5SDimitry Andric 10320b57cec5SDimitry Andric bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 10330b57cec5SDimitry Andric if (!FromVT.isInteger() || !ToVT.isInteger()) 10340b57cec5SDimitry Andric return false; 1035e8d8bef9SDimitry Andric unsigned FromBits = FromVT.getFixedSizeInBits(); 1036e8d8bef9SDimitry Andric unsigned ToBits = ToVT.getFixedSizeInBits(); 10370b57cec5SDimitry Andric return FromBits > ToBits; 10380b57cec5SDimitry Andric } 10390b57cec5SDimitry Andric 10400b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 10410b57cec5SDimitry Andric // Inline asm support 10420b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 10430b57cec5SDimitry Andric 10440b57cec5SDimitry Andric TargetLowering::ConstraintType 10450b57cec5SDimitry Andric SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 10460b57cec5SDimitry Andric if (Constraint.size() == 1) { 10470b57cec5SDimitry Andric switch (Constraint[0]) { 10480b57cec5SDimitry Andric case 'a': // Address register 10490b57cec5SDimitry Andric case 'd': // Data register (equivalent to 'r') 10500b57cec5SDimitry Andric case 'f': // Floating-point register 10510b57cec5SDimitry Andric case 'h': // High-part register 10520b57cec5SDimitry Andric case 'r': // General-purpose register 10530b57cec5SDimitry Andric case 'v': // Vector register 10540b57cec5SDimitry Andric return C_RegisterClass; 10550b57cec5SDimitry Andric 10560b57cec5SDimitry Andric case 'Q': // Memory with base and unsigned 12-bit displacement 10570b57cec5SDimitry Andric case 'R': // Likewise, plus an index 10580b57cec5SDimitry Andric case 'S': // Memory with base and signed 20-bit displacement 10590b57cec5SDimitry Andric case 'T': // Likewise, plus an index 10600b57cec5SDimitry Andric case 'm': // Equivalent to 'T'. 10610b57cec5SDimitry Andric return C_Memory; 10620b57cec5SDimitry Andric 10630b57cec5SDimitry Andric case 'I': // Unsigned 8-bit constant 10640b57cec5SDimitry Andric case 'J': // Unsigned 12-bit constant 10650b57cec5SDimitry Andric case 'K': // Signed 16-bit constant 10660b57cec5SDimitry Andric case 'L': // Signed 20-bit displacement (on all targets we support) 10670b57cec5SDimitry Andric case 'M': // 0x7fffffff 10680b57cec5SDimitry Andric return C_Immediate; 10690b57cec5SDimitry Andric 10700b57cec5SDimitry Andric default: 10710b57cec5SDimitry Andric break; 10720b57cec5SDimitry Andric } 107381ad6265SDimitry Andric } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { 107481ad6265SDimitry Andric switch (Constraint[1]) { 107581ad6265SDimitry Andric case 'Q': // Address with base and unsigned 12-bit displacement 107681ad6265SDimitry Andric case 'R': // Likewise, plus an index 107781ad6265SDimitry Andric case 'S': // Address with base and signed 20-bit displacement 107881ad6265SDimitry Andric case 'T': // Likewise, plus an index 107981ad6265SDimitry Andric return C_Address; 108081ad6265SDimitry Andric 108181ad6265SDimitry Andric default: 108281ad6265SDimitry Andric break; 108381ad6265SDimitry Andric } 10840b57cec5SDimitry Andric } 10850b57cec5SDimitry Andric return TargetLowering::getConstraintType(Constraint); 10860b57cec5SDimitry Andric } 10870b57cec5SDimitry Andric 10880b57cec5SDimitry Andric TargetLowering::ConstraintWeight SystemZTargetLowering:: 10890b57cec5SDimitry Andric getSingleConstraintMatchWeight(AsmOperandInfo &info, 10900b57cec5SDimitry Andric const char *constraint) const { 10910b57cec5SDimitry Andric ConstraintWeight weight = CW_Invalid; 10920b57cec5SDimitry Andric Value *CallOperandVal = info.CallOperandVal; 10930b57cec5SDimitry Andric // If we don't have a value, we can't do a match, 10940b57cec5SDimitry Andric // but allow it at the lowest weight. 10950b57cec5SDimitry Andric if (!CallOperandVal) 10960b57cec5SDimitry Andric return CW_Default; 10970b57cec5SDimitry Andric Type *type = CallOperandVal->getType(); 10980b57cec5SDimitry Andric // Look at the constraint type. 10990b57cec5SDimitry Andric switch (*constraint) { 11000b57cec5SDimitry Andric default: 11010b57cec5SDimitry Andric weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11020b57cec5SDimitry Andric break; 11030b57cec5SDimitry Andric 11040b57cec5SDimitry Andric case 'a': // Address register 11050b57cec5SDimitry Andric case 'd': // Data register (equivalent to 'r') 11060b57cec5SDimitry Andric case 'h': // High-part register 11070b57cec5SDimitry Andric case 'r': // General-purpose register 11080b57cec5SDimitry Andric if (CallOperandVal->getType()->isIntegerTy()) 11090b57cec5SDimitry Andric weight = CW_Register; 11100b57cec5SDimitry Andric break; 11110b57cec5SDimitry Andric 11120b57cec5SDimitry Andric case 'f': // Floating-point register 11130b57cec5SDimitry Andric if (type->isFloatingPointTy()) 11140b57cec5SDimitry Andric weight = CW_Register; 11150b57cec5SDimitry Andric break; 11160b57cec5SDimitry Andric 11170b57cec5SDimitry Andric case 'v': // Vector register 11180b57cec5SDimitry Andric if ((type->isVectorTy() || type->isFloatingPointTy()) && 11190b57cec5SDimitry Andric Subtarget.hasVector()) 11200b57cec5SDimitry Andric weight = CW_Register; 11210b57cec5SDimitry Andric break; 11220b57cec5SDimitry Andric 11230b57cec5SDimitry Andric case 'I': // Unsigned 8-bit constant 11240b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 11250b57cec5SDimitry Andric if (isUInt<8>(C->getZExtValue())) 11260b57cec5SDimitry Andric weight = CW_Constant; 11270b57cec5SDimitry Andric break; 11280b57cec5SDimitry Andric 11290b57cec5SDimitry Andric case 'J': // Unsigned 12-bit constant 11300b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 11310b57cec5SDimitry Andric if (isUInt<12>(C->getZExtValue())) 11320b57cec5SDimitry Andric weight = CW_Constant; 11330b57cec5SDimitry Andric break; 11340b57cec5SDimitry Andric 11350b57cec5SDimitry Andric case 'K': // Signed 16-bit constant 11360b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 11370b57cec5SDimitry Andric if (isInt<16>(C->getSExtValue())) 11380b57cec5SDimitry Andric weight = CW_Constant; 11390b57cec5SDimitry Andric break; 11400b57cec5SDimitry Andric 11410b57cec5SDimitry Andric case 'L': // Signed 20-bit displacement (on all targets we support) 11420b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 11430b57cec5SDimitry Andric if (isInt<20>(C->getSExtValue())) 11440b57cec5SDimitry Andric weight = CW_Constant; 11450b57cec5SDimitry Andric break; 11460b57cec5SDimitry Andric 11470b57cec5SDimitry Andric case 'M': // 0x7fffffff 11480b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 11490b57cec5SDimitry Andric if (C->getZExtValue() == 0x7fffffff) 11500b57cec5SDimitry Andric weight = CW_Constant; 11510b57cec5SDimitry Andric break; 11520b57cec5SDimitry Andric } 11530b57cec5SDimitry Andric return weight; 11540b57cec5SDimitry Andric } 11550b57cec5SDimitry Andric 11560b57cec5SDimitry Andric // Parse a "{tNNN}" register constraint for which the register type "t" 11570b57cec5SDimitry Andric // has already been verified. MC is the class associated with "t" and 11580b57cec5SDimitry Andric // Map maps 0-based register numbers to LLVM register numbers. 11590b57cec5SDimitry Andric static std::pair<unsigned, const TargetRegisterClass *> 11600b57cec5SDimitry Andric parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 11610b57cec5SDimitry Andric const unsigned *Map, unsigned Size) { 11620b57cec5SDimitry Andric assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 11630b57cec5SDimitry Andric if (isdigit(Constraint[2])) { 11640b57cec5SDimitry Andric unsigned Index; 11650b57cec5SDimitry Andric bool Failed = 11660b57cec5SDimitry Andric Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 11670b57cec5SDimitry Andric if (!Failed && Index < Size && Map[Index]) 11680b57cec5SDimitry Andric return std::make_pair(Map[Index], RC); 11690b57cec5SDimitry Andric } 11700b57cec5SDimitry Andric return std::make_pair(0U, nullptr); 11710b57cec5SDimitry Andric } 11720b57cec5SDimitry Andric 11730b57cec5SDimitry Andric std::pair<unsigned, const TargetRegisterClass *> 11740b57cec5SDimitry Andric SystemZTargetLowering::getRegForInlineAsmConstraint( 11750b57cec5SDimitry Andric const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 11760b57cec5SDimitry Andric if (Constraint.size() == 1) { 11770b57cec5SDimitry Andric // GCC Constraint Letters 11780b57cec5SDimitry Andric switch (Constraint[0]) { 11790b57cec5SDimitry Andric default: break; 11800b57cec5SDimitry Andric case 'd': // Data register (equivalent to 'r') 11810b57cec5SDimitry Andric case 'r': // General-purpose register 11820b57cec5SDimitry Andric if (VT == MVT::i64) 11830b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::GR64BitRegClass); 11840b57cec5SDimitry Andric else if (VT == MVT::i128) 11850b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::GR128BitRegClass); 11860b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::GR32BitRegClass); 11870b57cec5SDimitry Andric 11880b57cec5SDimitry Andric case 'a': // Address register 11890b57cec5SDimitry Andric if (VT == MVT::i64) 11900b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 11910b57cec5SDimitry Andric else if (VT == MVT::i128) 11920b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 11930b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 11940b57cec5SDimitry Andric 11950b57cec5SDimitry Andric case 'h': // High-part register (an LLVM extension) 11960b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 11970b57cec5SDimitry Andric 11980b57cec5SDimitry Andric case 'f': // Floating-point register 11995ffd83dbSDimitry Andric if (!useSoftFloat()) { 12000b57cec5SDimitry Andric if (VT == MVT::f64) 12010b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::FP64BitRegClass); 12020b57cec5SDimitry Andric else if (VT == MVT::f128) 12030b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::FP128BitRegClass); 12040b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::FP32BitRegClass); 12055ffd83dbSDimitry Andric } 12065ffd83dbSDimitry Andric break; 12070b57cec5SDimitry Andric case 'v': // Vector register 12080b57cec5SDimitry Andric if (Subtarget.hasVector()) { 12090b57cec5SDimitry Andric if (VT == MVT::f32) 12100b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::VR32BitRegClass); 12110b57cec5SDimitry Andric if (VT == MVT::f64) 12120b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::VR64BitRegClass); 12130b57cec5SDimitry Andric return std::make_pair(0U, &SystemZ::VR128BitRegClass); 12140b57cec5SDimitry Andric } 12150b57cec5SDimitry Andric break; 12160b57cec5SDimitry Andric } 12170b57cec5SDimitry Andric } 12180b57cec5SDimitry Andric if (Constraint.size() > 0 && Constraint[0] == '{') { 12190b57cec5SDimitry Andric // We need to override the default register parsing for GPRs and FPRs 12200b57cec5SDimitry Andric // because the interpretation depends on VT. The internal names of 12210b57cec5SDimitry Andric // the registers are also different from the external names 12220b57cec5SDimitry Andric // (F0D and F0S instead of F0, etc.). 12230b57cec5SDimitry Andric if (Constraint[1] == 'r') { 12240b57cec5SDimitry Andric if (VT == MVT::i32) 12250b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 12260b57cec5SDimitry Andric SystemZMC::GR32Regs, 16); 12270b57cec5SDimitry Andric if (VT == MVT::i128) 12280b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 12290b57cec5SDimitry Andric SystemZMC::GR128Regs, 16); 12300b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 12310b57cec5SDimitry Andric SystemZMC::GR64Regs, 16); 12320b57cec5SDimitry Andric } 12330b57cec5SDimitry Andric if (Constraint[1] == 'f') { 12345ffd83dbSDimitry Andric if (useSoftFloat()) 12355ffd83dbSDimitry Andric return std::make_pair( 12365ffd83dbSDimitry Andric 0u, static_cast<const TargetRegisterClass *>(nullptr)); 12370b57cec5SDimitry Andric if (VT == MVT::f32) 12380b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 12390b57cec5SDimitry Andric SystemZMC::FP32Regs, 16); 12400b57cec5SDimitry Andric if (VT == MVT::f128) 12410b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 12420b57cec5SDimitry Andric SystemZMC::FP128Regs, 16); 12430b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 12440b57cec5SDimitry Andric SystemZMC::FP64Regs, 16); 12450b57cec5SDimitry Andric } 12460b57cec5SDimitry Andric if (Constraint[1] == 'v') { 12475ffd83dbSDimitry Andric if (!Subtarget.hasVector()) 12485ffd83dbSDimitry Andric return std::make_pair( 12495ffd83dbSDimitry Andric 0u, static_cast<const TargetRegisterClass *>(nullptr)); 12500b57cec5SDimitry Andric if (VT == MVT::f32) 12510b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 12520b57cec5SDimitry Andric SystemZMC::VR32Regs, 32); 12530b57cec5SDimitry Andric if (VT == MVT::f64) 12540b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 12550b57cec5SDimitry Andric SystemZMC::VR64Regs, 32); 12560b57cec5SDimitry Andric return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 12570b57cec5SDimitry Andric SystemZMC::VR128Regs, 32); 12580b57cec5SDimitry Andric } 12590b57cec5SDimitry Andric } 12600b57cec5SDimitry Andric return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 12610b57cec5SDimitry Andric } 12620b57cec5SDimitry Andric 12635ffd83dbSDimitry Andric // FIXME? Maybe this could be a TableGen attribute on some registers and 12645ffd83dbSDimitry Andric // this table could be generated automatically from RegInfo. 126581ad6265SDimitry Andric Register 126681ad6265SDimitry Andric SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 12675ffd83dbSDimitry Andric const MachineFunction &MF) const { 126881ad6265SDimitry Andric const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 12695ffd83dbSDimitry Andric 127081ad6265SDimitry Andric Register Reg = 127181ad6265SDimitry Andric StringSwitch<Register>(RegName) 127281ad6265SDimitry Andric .Case("r4", Subtarget->isTargetXPLINK64() ? SystemZ::R4D : 0) 127381ad6265SDimitry Andric .Case("r15", Subtarget->isTargetELF() ? SystemZ::R15D : 0) 12745ffd83dbSDimitry Andric .Default(0); 127581ad6265SDimitry Andric 12765ffd83dbSDimitry Andric if (Reg) 12775ffd83dbSDimitry Andric return Reg; 12785ffd83dbSDimitry Andric report_fatal_error("Invalid register name global variable"); 12795ffd83dbSDimitry Andric } 12805ffd83dbSDimitry Andric 12810b57cec5SDimitry Andric void SystemZTargetLowering:: 12820b57cec5SDimitry Andric LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 12830b57cec5SDimitry Andric std::vector<SDValue> &Ops, 12840b57cec5SDimitry Andric SelectionDAG &DAG) const { 12850b57cec5SDimitry Andric // Only support length 1 constraints for now. 12860b57cec5SDimitry Andric if (Constraint.length() == 1) { 12870b57cec5SDimitry Andric switch (Constraint[0]) { 12880b57cec5SDimitry Andric case 'I': // Unsigned 8-bit constant 12890b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 12900b57cec5SDimitry Andric if (isUInt<8>(C->getZExtValue())) 12910b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 12920b57cec5SDimitry Andric Op.getValueType())); 12930b57cec5SDimitry Andric return; 12940b57cec5SDimitry Andric 12950b57cec5SDimitry Andric case 'J': // Unsigned 12-bit constant 12960b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 12970b57cec5SDimitry Andric if (isUInt<12>(C->getZExtValue())) 12980b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 12990b57cec5SDimitry Andric Op.getValueType())); 13000b57cec5SDimitry Andric return; 13010b57cec5SDimitry Andric 13020b57cec5SDimitry Andric case 'K': // Signed 16-bit constant 13030b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 13040b57cec5SDimitry Andric if (isInt<16>(C->getSExtValue())) 13050b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 13060b57cec5SDimitry Andric Op.getValueType())); 13070b57cec5SDimitry Andric return; 13080b57cec5SDimitry Andric 13090b57cec5SDimitry Andric case 'L': // Signed 20-bit displacement (on all targets we support) 13100b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 13110b57cec5SDimitry Andric if (isInt<20>(C->getSExtValue())) 13120b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 13130b57cec5SDimitry Andric Op.getValueType())); 13140b57cec5SDimitry Andric return; 13150b57cec5SDimitry Andric 13160b57cec5SDimitry Andric case 'M': // 0x7fffffff 13170b57cec5SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op)) 13180b57cec5SDimitry Andric if (C->getZExtValue() == 0x7fffffff) 13190b57cec5SDimitry Andric Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 13200b57cec5SDimitry Andric Op.getValueType())); 13210b57cec5SDimitry Andric return; 13220b57cec5SDimitry Andric } 13230b57cec5SDimitry Andric } 13240b57cec5SDimitry Andric TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 13250b57cec5SDimitry Andric } 13260b57cec5SDimitry Andric 13270b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 13280b57cec5SDimitry Andric // Calling conventions 13290b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 13300b57cec5SDimitry Andric 13310b57cec5SDimitry Andric #include "SystemZGenCallingConv.inc" 13320b57cec5SDimitry Andric 13330b57cec5SDimitry Andric const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 13340b57cec5SDimitry Andric CallingConv::ID) const { 13350b57cec5SDimitry Andric static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 13360b57cec5SDimitry Andric SystemZ::R14D, 0 }; 13370b57cec5SDimitry Andric return ScratchRegs; 13380b57cec5SDimitry Andric } 13390b57cec5SDimitry Andric 13400b57cec5SDimitry Andric bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 13410b57cec5SDimitry Andric Type *ToType) const { 13420b57cec5SDimitry Andric return isTruncateFree(FromType, ToType); 13430b57cec5SDimitry Andric } 13440b57cec5SDimitry Andric 13450b57cec5SDimitry Andric bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 13460b57cec5SDimitry Andric return CI->isTailCall(); 13470b57cec5SDimitry Andric } 13480b57cec5SDimitry Andric 13490b57cec5SDimitry Andric // We do not yet support 128-bit single-element vector types. If the user 13500b57cec5SDimitry Andric // attempts to use such types as function argument or return type, prefer 13510b57cec5SDimitry Andric // to error out instead of emitting code violating the ABI. 13520b57cec5SDimitry Andric static void VerifyVectorType(MVT VT, EVT ArgVT) { 13530b57cec5SDimitry Andric if (ArgVT.isVector() && !VT.isVector()) 13540b57cec5SDimitry Andric report_fatal_error("Unsupported vector argument or return type"); 13550b57cec5SDimitry Andric } 13560b57cec5SDimitry Andric 13570b57cec5SDimitry Andric static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 13580b57cec5SDimitry Andric for (unsigned i = 0; i < Ins.size(); ++i) 13590b57cec5SDimitry Andric VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 13600b57cec5SDimitry Andric } 13610b57cec5SDimitry Andric 13620b57cec5SDimitry Andric static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 13630b57cec5SDimitry Andric for (unsigned i = 0; i < Outs.size(); ++i) 13640b57cec5SDimitry Andric VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 13650b57cec5SDimitry Andric } 13660b57cec5SDimitry Andric 13670b57cec5SDimitry Andric // Value is a value that has been passed to us in the location described by VA 13680b57cec5SDimitry Andric // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 13690b57cec5SDimitry Andric // any loads onto Chain. 13700b57cec5SDimitry Andric static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 13710b57cec5SDimitry Andric CCValAssign &VA, SDValue Chain, 13720b57cec5SDimitry Andric SDValue Value) { 13730b57cec5SDimitry Andric // If the argument has been promoted from a smaller type, insert an 13740b57cec5SDimitry Andric // assertion to capture this. 13750b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::SExt) 13760b57cec5SDimitry Andric Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 13770b57cec5SDimitry Andric DAG.getValueType(VA.getValVT())); 13780b57cec5SDimitry Andric else if (VA.getLocInfo() == CCValAssign::ZExt) 13790b57cec5SDimitry Andric Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 13800b57cec5SDimitry Andric DAG.getValueType(VA.getValVT())); 13810b57cec5SDimitry Andric 13820b57cec5SDimitry Andric if (VA.isExtInLoc()) 13830b57cec5SDimitry Andric Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 13840b57cec5SDimitry Andric else if (VA.getLocInfo() == CCValAssign::BCvt) { 13850b57cec5SDimitry Andric // If this is a short vector argument loaded from the stack, 13860b57cec5SDimitry Andric // extend from i64 to full vector size and then bitcast. 13870b57cec5SDimitry Andric assert(VA.getLocVT() == MVT::i64); 13880b57cec5SDimitry Andric assert(VA.getValVT().isVector()); 13890b57cec5SDimitry Andric Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 13900b57cec5SDimitry Andric Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 13910b57cec5SDimitry Andric } else 13920b57cec5SDimitry Andric assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 13930b57cec5SDimitry Andric return Value; 13940b57cec5SDimitry Andric } 13950b57cec5SDimitry Andric 13960b57cec5SDimitry Andric // Value is a value of type VA.getValVT() that we need to copy into 13970b57cec5SDimitry Andric // the location described by VA. Return a copy of Value converted to 13980b57cec5SDimitry Andric // VA.getValVT(). The caller is responsible for handling indirect values. 13990b57cec5SDimitry Andric static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 14000b57cec5SDimitry Andric CCValAssign &VA, SDValue Value) { 14010b57cec5SDimitry Andric switch (VA.getLocInfo()) { 14020b57cec5SDimitry Andric case CCValAssign::SExt: 14030b57cec5SDimitry Andric return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 14040b57cec5SDimitry Andric case CCValAssign::ZExt: 14050b57cec5SDimitry Andric return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 14060b57cec5SDimitry Andric case CCValAssign::AExt: 14070b57cec5SDimitry Andric return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1408349cc55cSDimitry Andric case CCValAssign::BCvt: { 1409349cc55cSDimitry Andric assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1410fcaf7f86SDimitry Andric assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || 1411fcaf7f86SDimitry Andric VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); 1412fcaf7f86SDimitry Andric // For an f32 vararg we need to first promote it to an f64 and then 1413fcaf7f86SDimitry Andric // bitcast it to an i64. 1414fcaf7f86SDimitry Andric if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) 1415fcaf7f86SDimitry Andric Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value); 1416349cc55cSDimitry Andric MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1417349cc55cSDimitry Andric ? MVT::v2i64 1418349cc55cSDimitry Andric : VA.getLocVT(); 1419349cc55cSDimitry Andric Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1420349cc55cSDimitry Andric // For ELF, this is a short vector argument to be stored to the stack, 14210b57cec5SDimitry Andric // bitcast to v2i64 and then extract first element. 1422349cc55cSDimitry Andric if (BitCastToType == MVT::v2i64) 14230b57cec5SDimitry Andric return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 14240b57cec5SDimitry Andric DAG.getConstant(0, DL, MVT::i32)); 1425349cc55cSDimitry Andric return Value; 1426349cc55cSDimitry Andric } 14270b57cec5SDimitry Andric case CCValAssign::Full: 14280b57cec5SDimitry Andric return Value; 14290b57cec5SDimitry Andric default: 14300b57cec5SDimitry Andric llvm_unreachable("Unhandled getLocInfo()"); 14310b57cec5SDimitry Andric } 14320b57cec5SDimitry Andric } 14330b57cec5SDimitry Andric 1434fe6060f1SDimitry Andric static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1435fe6060f1SDimitry Andric SDLoc DL(In); 1436fe6060f1SDimitry Andric SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1437fe6060f1SDimitry Andric DAG.getIntPtrConstant(0, DL)); 1438fe6060f1SDimitry Andric SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1439fe6060f1SDimitry Andric DAG.getIntPtrConstant(1, DL)); 1440fe6060f1SDimitry Andric SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1441fe6060f1SDimitry Andric MVT::Untyped, Hi, Lo); 1442fe6060f1SDimitry Andric return SDValue(Pair, 0); 1443fe6060f1SDimitry Andric } 1444fe6060f1SDimitry Andric 1445fe6060f1SDimitry Andric static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1446fe6060f1SDimitry Andric SDLoc DL(In); 1447fe6060f1SDimitry Andric SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1448fe6060f1SDimitry Andric DL, MVT::i64, In); 1449fe6060f1SDimitry Andric SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1450fe6060f1SDimitry Andric DL, MVT::i64, In); 1451fe6060f1SDimitry Andric return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1452fe6060f1SDimitry Andric } 1453fe6060f1SDimitry Andric 1454fe6060f1SDimitry Andric bool SystemZTargetLowering::splitValueIntoRegisterParts( 1455fe6060f1SDimitry Andric SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1456bdd1243dSDimitry Andric unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { 1457fe6060f1SDimitry Andric EVT ValueVT = Val.getValueType(); 1458fe6060f1SDimitry Andric assert((ValueVT != MVT::i128 || 1459fe6060f1SDimitry Andric ((NumParts == 1 && PartVT == MVT::Untyped) || 1460fe6060f1SDimitry Andric (NumParts == 2 && PartVT == MVT::i64))) && 1461fe6060f1SDimitry Andric "Unknown handling of i128 value."); 1462fe6060f1SDimitry Andric if (ValueVT == MVT::i128 && NumParts == 1) { 1463fe6060f1SDimitry Andric // Inline assembly operand. 1464fe6060f1SDimitry Andric Parts[0] = lowerI128ToGR128(DAG, Val); 1465fe6060f1SDimitry Andric return true; 1466fe6060f1SDimitry Andric } 1467fe6060f1SDimitry Andric return false; 1468fe6060f1SDimitry Andric } 1469fe6060f1SDimitry Andric 1470fe6060f1SDimitry Andric SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1471fe6060f1SDimitry Andric SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1472bdd1243dSDimitry Andric MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { 1473fe6060f1SDimitry Andric assert((ValueVT != MVT::i128 || 1474fe6060f1SDimitry Andric ((NumParts == 1 && PartVT == MVT::Untyped) || 1475fe6060f1SDimitry Andric (NumParts == 2 && PartVT == MVT::i64))) && 1476fe6060f1SDimitry Andric "Unknown handling of i128 value."); 1477fe6060f1SDimitry Andric if (ValueVT == MVT::i128 && NumParts == 1) 1478fe6060f1SDimitry Andric // Inline assembly operand. 1479fe6060f1SDimitry Andric return lowerGR128ToI128(DAG, Parts[0]); 1480fe6060f1SDimitry Andric return SDValue(); 1481fe6060f1SDimitry Andric } 1482fe6060f1SDimitry Andric 14830b57cec5SDimitry Andric SDValue SystemZTargetLowering::LowerFormalArguments( 14840b57cec5SDimitry Andric SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 14850b57cec5SDimitry Andric const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 14860b57cec5SDimitry Andric SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 14870b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 14880b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 14890b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 14900b57cec5SDimitry Andric SystemZMachineFunctionInfo *FuncInfo = 14910b57cec5SDimitry Andric MF.getInfo<SystemZMachineFunctionInfo>(); 1492349cc55cSDimitry Andric auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 14930b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 14940b57cec5SDimitry Andric 14950b57cec5SDimitry Andric // Detect unsupported vector argument types. 14960b57cec5SDimitry Andric if (Subtarget.hasVector()) 14970b57cec5SDimitry Andric VerifyVectorTypes(Ins); 14980b57cec5SDimitry Andric 14990b57cec5SDimitry Andric // Assign locations to all of the incoming arguments. 15000b57cec5SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs; 15010b57cec5SDimitry Andric SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 15020b57cec5SDimitry Andric CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 15030b57cec5SDimitry Andric 15040b57cec5SDimitry Andric unsigned NumFixedGPRs = 0; 15050b57cec5SDimitry Andric unsigned NumFixedFPRs = 0; 15060b57cec5SDimitry Andric for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 15070b57cec5SDimitry Andric SDValue ArgValue; 15080b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[I]; 15090b57cec5SDimitry Andric EVT LocVT = VA.getLocVT(); 15100b57cec5SDimitry Andric if (VA.isRegLoc()) { 15110b57cec5SDimitry Andric // Arguments passed in registers 15120b57cec5SDimitry Andric const TargetRegisterClass *RC; 15130b57cec5SDimitry Andric switch (LocVT.getSimpleVT().SimpleTy) { 15140b57cec5SDimitry Andric default: 15150b57cec5SDimitry Andric // Integers smaller than i64 should be promoted to i64. 15160b57cec5SDimitry Andric llvm_unreachable("Unexpected argument type"); 15170b57cec5SDimitry Andric case MVT::i32: 15180b57cec5SDimitry Andric NumFixedGPRs += 1; 15190b57cec5SDimitry Andric RC = &SystemZ::GR32BitRegClass; 15200b57cec5SDimitry Andric break; 15210b57cec5SDimitry Andric case MVT::i64: 15220b57cec5SDimitry Andric NumFixedGPRs += 1; 15230b57cec5SDimitry Andric RC = &SystemZ::GR64BitRegClass; 15240b57cec5SDimitry Andric break; 15250b57cec5SDimitry Andric case MVT::f32: 15260b57cec5SDimitry Andric NumFixedFPRs += 1; 15270b57cec5SDimitry Andric RC = &SystemZ::FP32BitRegClass; 15280b57cec5SDimitry Andric break; 15290b57cec5SDimitry Andric case MVT::f64: 15300b57cec5SDimitry Andric NumFixedFPRs += 1; 15310b57cec5SDimitry Andric RC = &SystemZ::FP64BitRegClass; 15320b57cec5SDimitry Andric break; 1533349cc55cSDimitry Andric case MVT::f128: 1534349cc55cSDimitry Andric NumFixedFPRs += 2; 1535349cc55cSDimitry Andric RC = &SystemZ::FP128BitRegClass; 1536349cc55cSDimitry Andric break; 15370b57cec5SDimitry Andric case MVT::v16i8: 15380b57cec5SDimitry Andric case MVT::v8i16: 15390b57cec5SDimitry Andric case MVT::v4i32: 15400b57cec5SDimitry Andric case MVT::v2i64: 15410b57cec5SDimitry Andric case MVT::v4f32: 15420b57cec5SDimitry Andric case MVT::v2f64: 15430b57cec5SDimitry Andric RC = &SystemZ::VR128BitRegClass; 15440b57cec5SDimitry Andric break; 15450b57cec5SDimitry Andric } 15460b57cec5SDimitry Andric 15478bcb0991SDimitry Andric Register VReg = MRI.createVirtualRegister(RC); 15480b57cec5SDimitry Andric MRI.addLiveIn(VA.getLocReg(), VReg); 15490b57cec5SDimitry Andric ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 15500b57cec5SDimitry Andric } else { 15510b57cec5SDimitry Andric assert(VA.isMemLoc() && "Argument not register or memory"); 15520b57cec5SDimitry Andric 15530b57cec5SDimitry Andric // Create the frame index object for this incoming parameter. 15540eae32dcSDimitry Andric // FIXME: Pre-include call frame size in the offset, should not 15550eae32dcSDimitry Andric // need to manually add it here. 15560eae32dcSDimitry Andric int64_t ArgSPOffset = VA.getLocMemOffset(); 15570eae32dcSDimitry Andric if (Subtarget.isTargetXPLINK64()) { 15580eae32dcSDimitry Andric auto &XPRegs = 15590eae32dcSDimitry Andric Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 15600eae32dcSDimitry Andric ArgSPOffset += XPRegs.getCallFrameSize(); 15610eae32dcSDimitry Andric } 15620eae32dcSDimitry Andric int FI = 15630eae32dcSDimitry Andric MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 15640b57cec5SDimitry Andric 15650b57cec5SDimitry Andric // Create the SelectionDAG nodes corresponding to a load 15660b57cec5SDimitry Andric // from this parameter. Unpromoted ints and floats are 15670b57cec5SDimitry Andric // passed as right-justified 8-byte values. 15680b57cec5SDimitry Andric SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 15690b57cec5SDimitry Andric if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 15700b57cec5SDimitry Andric FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 15710b57cec5SDimitry Andric DAG.getIntPtrConstant(4, DL)); 15720b57cec5SDimitry Andric ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 15730b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI)); 15740b57cec5SDimitry Andric } 15750b57cec5SDimitry Andric 15760b57cec5SDimitry Andric // Convert the value of the argument register into the value that's 15770b57cec5SDimitry Andric // being passed. 15780b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect) { 15790b57cec5SDimitry Andric InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 15800b57cec5SDimitry Andric MachinePointerInfo())); 15810b57cec5SDimitry Andric // If the original argument was split (e.g. i128), we need 15820b57cec5SDimitry Andric // to load all parts of it here (using the same address). 15830b57cec5SDimitry Andric unsigned ArgIndex = Ins[I].OrigArgIndex; 15840b57cec5SDimitry Andric assert (Ins[I].PartOffset == 0); 15850b57cec5SDimitry Andric while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 15860b57cec5SDimitry Andric CCValAssign &PartVA = ArgLocs[I + 1]; 15870b57cec5SDimitry Andric unsigned PartOffset = Ins[I + 1].PartOffset; 15880b57cec5SDimitry Andric SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 15890b57cec5SDimitry Andric DAG.getIntPtrConstant(PartOffset, DL)); 15900b57cec5SDimitry Andric InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 15910b57cec5SDimitry Andric MachinePointerInfo())); 15920b57cec5SDimitry Andric ++I; 15930b57cec5SDimitry Andric } 15940b57cec5SDimitry Andric } else 15950b57cec5SDimitry Andric InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 15960b57cec5SDimitry Andric } 15970b57cec5SDimitry Andric 1598349cc55cSDimitry Andric // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. 1599349cc55cSDimitry Andric if (IsVarArg && Subtarget.isTargetELF()) { 16000b57cec5SDimitry Andric // Save the number of non-varargs registers for later use by va_start, etc. 16010b57cec5SDimitry Andric FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 16020b57cec5SDimitry Andric FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 16030b57cec5SDimitry Andric 16040b57cec5SDimitry Andric // Likewise the address (in the form of a frame index) of where the 16050b57cec5SDimitry Andric // first stack vararg would be. The 1-byte size here is arbitrary. 16060b57cec5SDimitry Andric int64_t StackSize = CCInfo.getNextStackOffset(); 16070b57cec5SDimitry Andric FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 16080b57cec5SDimitry Andric 16090b57cec5SDimitry Andric // ...and a similar frame index for the caller-allocated save area 16100b57cec5SDimitry Andric // that will be used to store the incoming registers. 16115ffd83dbSDimitry Andric int64_t RegSaveOffset = 1612fe6060f1SDimitry Andric -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 16130b57cec5SDimitry Andric unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 16140b57cec5SDimitry Andric FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 16150b57cec5SDimitry Andric 16160b57cec5SDimitry Andric // Store the FPR varargs in the reserved frame slots. (We store the 16170b57cec5SDimitry Andric // GPRs as part of the prologue.) 1618fe6060f1SDimitry Andric if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1619fe6060f1SDimitry Andric SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1620fe6060f1SDimitry Andric for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1621fe6060f1SDimitry Andric unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 16225ffd83dbSDimitry Andric int FI = 1623fe6060f1SDimitry Andric MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 16240b57cec5SDimitry Andric SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 162504eeddc0SDimitry Andric Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 16260b57cec5SDimitry Andric &SystemZ::FP64BitRegClass); 16270b57cec5SDimitry Andric SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 16280b57cec5SDimitry Andric MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 16290b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI)); 16300b57cec5SDimitry Andric } 16310b57cec5SDimitry Andric // Join the stores, which are independent of one another. 16320b57cec5SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1633bdd1243dSDimitry Andric ArrayRef(&MemOps[NumFixedFPRs], 1634fe6060f1SDimitry Andric SystemZ::ELFNumArgFPRs - NumFixedFPRs)); 16350b57cec5SDimitry Andric } 16360b57cec5SDimitry Andric } 16370b57cec5SDimitry Andric 1638349cc55cSDimitry Andric // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special 1639349cc55cSDimitry Andric // register (R5) 16400b57cec5SDimitry Andric return Chain; 16410b57cec5SDimitry Andric } 16420b57cec5SDimitry Andric 16430b57cec5SDimitry Andric static bool canUseSiblingCall(const CCState &ArgCCInfo, 16440b57cec5SDimitry Andric SmallVectorImpl<CCValAssign> &ArgLocs, 16450b57cec5SDimitry Andric SmallVectorImpl<ISD::OutputArg> &Outs) { 16460b57cec5SDimitry Andric // Punt if there are any indirect or stack arguments, or if the call 16470b57cec5SDimitry Andric // needs the callee-saved argument register R6, or if the call uses 16480b57cec5SDimitry Andric // the callee-saved register arguments SwiftSelf and SwiftError. 16490b57cec5SDimitry Andric for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 16500b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[I]; 16510b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect) 16520b57cec5SDimitry Andric return false; 16530b57cec5SDimitry Andric if (!VA.isRegLoc()) 16540b57cec5SDimitry Andric return false; 16558bcb0991SDimitry Andric Register Reg = VA.getLocReg(); 16560b57cec5SDimitry Andric if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 16570b57cec5SDimitry Andric return false; 16580b57cec5SDimitry Andric if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 16590b57cec5SDimitry Andric return false; 16600b57cec5SDimitry Andric } 16610b57cec5SDimitry Andric return true; 16620b57cec5SDimitry Andric } 16630b57cec5SDimitry Andric 16640b57cec5SDimitry Andric SDValue 16650b57cec5SDimitry Andric SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 16660b57cec5SDimitry Andric SmallVectorImpl<SDValue> &InVals) const { 16670b57cec5SDimitry Andric SelectionDAG &DAG = CLI.DAG; 16680b57cec5SDimitry Andric SDLoc &DL = CLI.DL; 16690b57cec5SDimitry Andric SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 16700b57cec5SDimitry Andric SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 16710b57cec5SDimitry Andric SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 16720b57cec5SDimitry Andric SDValue Chain = CLI.Chain; 16730b57cec5SDimitry Andric SDValue Callee = CLI.Callee; 16740b57cec5SDimitry Andric bool &IsTailCall = CLI.IsTailCall; 16750b57cec5SDimitry Andric CallingConv::ID CallConv = CLI.CallConv; 16760b57cec5SDimitry Andric bool IsVarArg = CLI.IsVarArg; 16770b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 16780b57cec5SDimitry Andric EVT PtrVT = getPointerTy(MF.getDataLayout()); 16794652422eSDimitry Andric LLVMContext &Ctx = *DAG.getContext(); 1680349cc55cSDimitry Andric SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1681349cc55cSDimitry Andric 1682349cc55cSDimitry Andric // FIXME: z/OS support to be added in later. 1683349cc55cSDimitry Andric if (Subtarget.isTargetXPLINK64()) 1684349cc55cSDimitry Andric IsTailCall = false; 16850b57cec5SDimitry Andric 16860b57cec5SDimitry Andric // Detect unsupported vector argument and return types. 16870b57cec5SDimitry Andric if (Subtarget.hasVector()) { 16880b57cec5SDimitry Andric VerifyVectorTypes(Outs); 16890b57cec5SDimitry Andric VerifyVectorTypes(Ins); 16900b57cec5SDimitry Andric } 16910b57cec5SDimitry Andric 16920b57cec5SDimitry Andric // Analyze the operands of the call, assigning locations to each operand. 16930b57cec5SDimitry Andric SmallVector<CCValAssign, 16> ArgLocs; 16944652422eSDimitry Andric SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 16950b57cec5SDimitry Andric ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 16960b57cec5SDimitry Andric 16970b57cec5SDimitry Andric // We don't support GuaranteedTailCallOpt, only automatically-detected 16980b57cec5SDimitry Andric // sibling calls. 16990b57cec5SDimitry Andric if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 17000b57cec5SDimitry Andric IsTailCall = false; 17010b57cec5SDimitry Andric 17020b57cec5SDimitry Andric // Get a count of how many bytes are to be pushed on the stack. 17030b57cec5SDimitry Andric unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 17040b57cec5SDimitry Andric 1705349cc55cSDimitry Andric if (Subtarget.isTargetXPLINK64()) 1706349cc55cSDimitry Andric // Although the XPLINK specifications for AMODE64 state that minimum size 1707349cc55cSDimitry Andric // of the param area is minimum 32 bytes and no rounding is otherwise 1708349cc55cSDimitry Andric // specified, we round this area in 64 bytes increments to be compatible 1709349cc55cSDimitry Andric // with existing compilers. 1710349cc55cSDimitry Andric NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); 1711349cc55cSDimitry Andric 17120b57cec5SDimitry Andric // Mark the start of the call. 17130b57cec5SDimitry Andric if (!IsTailCall) 17140b57cec5SDimitry Andric Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 17150b57cec5SDimitry Andric 17160b57cec5SDimitry Andric // Copy argument values to their designated locations. 17170b57cec5SDimitry Andric SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 17180b57cec5SDimitry Andric SmallVector<SDValue, 8> MemOpChains; 17190b57cec5SDimitry Andric SDValue StackPtr; 17200b57cec5SDimitry Andric for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 17210b57cec5SDimitry Andric CCValAssign &VA = ArgLocs[I]; 17220b57cec5SDimitry Andric SDValue ArgValue = OutVals[I]; 17230b57cec5SDimitry Andric 17240b57cec5SDimitry Andric if (VA.getLocInfo() == CCValAssign::Indirect) { 17250b57cec5SDimitry Andric // Store the argument in a stack slot and pass its address. 17264652422eSDimitry Andric unsigned ArgIndex = Outs[I].OrigArgIndex; 17274652422eSDimitry Andric EVT SlotVT; 17284652422eSDimitry Andric if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 17294652422eSDimitry Andric // Allocate the full stack space for a promoted (and split) argument. 17304652422eSDimitry Andric Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 17314652422eSDimitry Andric EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 17324652422eSDimitry Andric MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 17334652422eSDimitry Andric unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 17344652422eSDimitry Andric SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 17354652422eSDimitry Andric } else { 17364652422eSDimitry Andric SlotVT = Outs[I].ArgVT; 17374652422eSDimitry Andric } 17384652422eSDimitry Andric SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 17390b57cec5SDimitry Andric int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 17400b57cec5SDimitry Andric MemOpChains.push_back( 17410b57cec5SDimitry Andric DAG.getStore(Chain, DL, ArgValue, SpillSlot, 17420b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI))); 17430b57cec5SDimitry Andric // If the original argument was split (e.g. i128), we need 17440b57cec5SDimitry Andric // to store all parts of it here (and pass just one address). 17450b57cec5SDimitry Andric assert (Outs[I].PartOffset == 0); 17460b57cec5SDimitry Andric while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 17470b57cec5SDimitry Andric SDValue PartValue = OutVals[I + 1]; 17480b57cec5SDimitry Andric unsigned PartOffset = Outs[I + 1].PartOffset; 17490b57cec5SDimitry Andric SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 17500b57cec5SDimitry Andric DAG.getIntPtrConstant(PartOffset, DL)); 17510b57cec5SDimitry Andric MemOpChains.push_back( 17520b57cec5SDimitry Andric DAG.getStore(Chain, DL, PartValue, Address, 17530b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI))); 17544652422eSDimitry Andric assert((PartOffset + PartValue.getValueType().getStoreSize() <= 17554652422eSDimitry Andric SlotVT.getStoreSize()) && "Not enough space for argument part!"); 17560b57cec5SDimitry Andric ++I; 17570b57cec5SDimitry Andric } 17580b57cec5SDimitry Andric ArgValue = SpillSlot; 17590b57cec5SDimitry Andric } else 17600b57cec5SDimitry Andric ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 17610b57cec5SDimitry Andric 1762349cc55cSDimitry Andric if (VA.isRegLoc()) { 1763349cc55cSDimitry Andric // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1764349cc55cSDimitry Andric // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1765349cc55cSDimitry Andric // and low values. 1766349cc55cSDimitry Andric if (VA.getLocVT() == MVT::i128) 1767349cc55cSDimitry Andric ArgValue = lowerI128ToGR128(DAG, ArgValue); 17680b57cec5SDimitry Andric // Queue up the argument copies and emit them at the end. 17690b57cec5SDimitry Andric RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1770349cc55cSDimitry Andric } else { 17710b57cec5SDimitry Andric assert(VA.isMemLoc() && "Argument not register or memory"); 17720b57cec5SDimitry Andric 17730b57cec5SDimitry Andric // Work out the address of the stack slot. Unpromoted ints and 17740b57cec5SDimitry Andric // floats are passed as right-justified 8-byte values. 17750b57cec5SDimitry Andric if (!StackPtr.getNode()) 1776349cc55cSDimitry Andric StackPtr = DAG.getCopyFromReg(Chain, DL, 1777349cc55cSDimitry Andric Regs->getStackPointerRegister(), PtrVT); 1778349cc55cSDimitry Andric unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1779349cc55cSDimitry Andric VA.getLocMemOffset(); 17800b57cec5SDimitry Andric if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 17810b57cec5SDimitry Andric Offset += 4; 17820b57cec5SDimitry Andric SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 17830b57cec5SDimitry Andric DAG.getIntPtrConstant(Offset, DL)); 17840b57cec5SDimitry Andric 17850b57cec5SDimitry Andric // Emit the store. 17860b57cec5SDimitry Andric MemOpChains.push_back( 17870b57cec5SDimitry Andric DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1788349cc55cSDimitry Andric 1789349cc55cSDimitry Andric // Although long doubles or vectors are passed through the stack when 1790349cc55cSDimitry Andric // they are vararg (non-fixed arguments), if a long double or vector 1791349cc55cSDimitry Andric // occupies the third and fourth slot of the argument list GPR3 should 1792349cc55cSDimitry Andric // still shadow the third slot of the argument list. 1793349cc55cSDimitry Andric if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1794349cc55cSDimitry Andric SDValue ShadowArgValue = 1795349cc55cSDimitry Andric DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1796349cc55cSDimitry Andric DAG.getIntPtrConstant(1, DL)); 1797349cc55cSDimitry Andric RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1798349cc55cSDimitry Andric } 17990b57cec5SDimitry Andric } 18000b57cec5SDimitry Andric } 18010b57cec5SDimitry Andric 18020b57cec5SDimitry Andric // Join the stores, which are independent of one another. 18030b57cec5SDimitry Andric if (!MemOpChains.empty()) 18040b57cec5SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 18050b57cec5SDimitry Andric 18060b57cec5SDimitry Andric // Accept direct calls by converting symbolic call addresses to the 18070b57cec5SDimitry Andric // associated Target* opcodes. Force %r1 to be used for indirect 18080b57cec5SDimitry Andric // tail calls. 18090b57cec5SDimitry Andric SDValue Glue; 1810349cc55cSDimitry Andric // FIXME: Add support for XPLINK using the ADA register. 18110b57cec5SDimitry Andric if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 18120b57cec5SDimitry Andric Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 18130b57cec5SDimitry Andric Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 18140b57cec5SDimitry Andric } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 18150b57cec5SDimitry Andric Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 18160b57cec5SDimitry Andric Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 18170b57cec5SDimitry Andric } else if (IsTailCall) { 18180b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 18190b57cec5SDimitry Andric Glue = Chain.getValue(1); 18200b57cec5SDimitry Andric Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 18210b57cec5SDimitry Andric } 18220b57cec5SDimitry Andric 18230b57cec5SDimitry Andric // Build a sequence of copy-to-reg nodes, chained and glued together. 18240b57cec5SDimitry Andric for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 18250b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 18260b57cec5SDimitry Andric RegsToPass[I].second, Glue); 18270b57cec5SDimitry Andric Glue = Chain.getValue(1); 18280b57cec5SDimitry Andric } 18290b57cec5SDimitry Andric 18300b57cec5SDimitry Andric // The first call operand is the chain and the second is the target address. 18310b57cec5SDimitry Andric SmallVector<SDValue, 8> Ops; 18320b57cec5SDimitry Andric Ops.push_back(Chain); 18330b57cec5SDimitry Andric Ops.push_back(Callee); 18340b57cec5SDimitry Andric 18350b57cec5SDimitry Andric // Add argument registers to the end of the list so that they are 18360b57cec5SDimitry Andric // known live into the call. 18370b57cec5SDimitry Andric for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 18380b57cec5SDimitry Andric Ops.push_back(DAG.getRegister(RegsToPass[I].first, 18390b57cec5SDimitry Andric RegsToPass[I].second.getValueType())); 18400b57cec5SDimitry Andric 18410b57cec5SDimitry Andric // Add a register mask operand representing the call-preserved registers. 18420b57cec5SDimitry Andric const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 18430b57cec5SDimitry Andric const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 18440b57cec5SDimitry Andric assert(Mask && "Missing call preserved mask for calling convention"); 18450b57cec5SDimitry Andric Ops.push_back(DAG.getRegisterMask(Mask)); 18460b57cec5SDimitry Andric 18470b57cec5SDimitry Andric // Glue the call to the argument copies, if any. 18480b57cec5SDimitry Andric if (Glue.getNode()) 18490b57cec5SDimitry Andric Ops.push_back(Glue); 18500b57cec5SDimitry Andric 18510b57cec5SDimitry Andric // Emit the call. 18520b57cec5SDimitry Andric SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 18530b57cec5SDimitry Andric if (IsTailCall) 18540b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 18550b57cec5SDimitry Andric Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 18565ffd83dbSDimitry Andric DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 18570b57cec5SDimitry Andric Glue = Chain.getValue(1); 18580b57cec5SDimitry Andric 18590b57cec5SDimitry Andric // Mark the end of the call, which is glued to the call itself. 1860bdd1243dSDimitry Andric Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL); 18610b57cec5SDimitry Andric Glue = Chain.getValue(1); 18620b57cec5SDimitry Andric 18630b57cec5SDimitry Andric // Assign locations to each value returned by this call. 18640b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RetLocs; 18654652422eSDimitry Andric CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 18660b57cec5SDimitry Andric RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 18670b57cec5SDimitry Andric 18680b57cec5SDimitry Andric // Copy all of the result registers out of their specified physreg. 18690b57cec5SDimitry Andric for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 18700b57cec5SDimitry Andric CCValAssign &VA = RetLocs[I]; 18710b57cec5SDimitry Andric 18720b57cec5SDimitry Andric // Copy the value out, gluing the copy to the end of the call sequence. 18730b57cec5SDimitry Andric SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 18740b57cec5SDimitry Andric VA.getLocVT(), Glue); 18750b57cec5SDimitry Andric Chain = RetValue.getValue(1); 18760b57cec5SDimitry Andric Glue = RetValue.getValue(2); 18770b57cec5SDimitry Andric 18780b57cec5SDimitry Andric // Convert the value of the return register into the value that's 18790b57cec5SDimitry Andric // being returned. 18800b57cec5SDimitry Andric InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 18810b57cec5SDimitry Andric } 18820b57cec5SDimitry Andric 18830b57cec5SDimitry Andric return Chain; 18840b57cec5SDimitry Andric } 18850b57cec5SDimitry Andric 188681ad6265SDimitry Andric // Generate a call taking the given operands as arguments and returning a 188781ad6265SDimitry Andric // result of type RetVT. 188881ad6265SDimitry Andric std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 188981ad6265SDimitry Andric SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 189081ad6265SDimitry Andric ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 189181ad6265SDimitry Andric bool DoesNotReturn, bool IsReturnValueUsed) const { 189281ad6265SDimitry Andric TargetLowering::ArgListTy Args; 189381ad6265SDimitry Andric Args.reserve(Ops.size()); 189481ad6265SDimitry Andric 189581ad6265SDimitry Andric TargetLowering::ArgListEntry Entry; 189681ad6265SDimitry Andric for (SDValue Op : Ops) { 189781ad6265SDimitry Andric Entry.Node = Op; 189881ad6265SDimitry Andric Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 189981ad6265SDimitry Andric Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 190081ad6265SDimitry Andric Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 190181ad6265SDimitry Andric Args.push_back(Entry); 190281ad6265SDimitry Andric } 190381ad6265SDimitry Andric 190481ad6265SDimitry Andric SDValue Callee = 190581ad6265SDimitry Andric DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 190681ad6265SDimitry Andric 190781ad6265SDimitry Andric Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 190881ad6265SDimitry Andric TargetLowering::CallLoweringInfo CLI(DAG); 190981ad6265SDimitry Andric bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 191081ad6265SDimitry Andric CLI.setDebugLoc(DL) 191181ad6265SDimitry Andric .setChain(Chain) 191281ad6265SDimitry Andric .setCallee(CallConv, RetTy, Callee, std::move(Args)) 191381ad6265SDimitry Andric .setNoReturn(DoesNotReturn) 191481ad6265SDimitry Andric .setDiscardResult(!IsReturnValueUsed) 191581ad6265SDimitry Andric .setSExtResult(SignExtend) 191681ad6265SDimitry Andric .setZExtResult(!SignExtend); 191781ad6265SDimitry Andric return LowerCallTo(CLI); 191881ad6265SDimitry Andric } 191981ad6265SDimitry Andric 19200b57cec5SDimitry Andric bool SystemZTargetLowering:: 19210b57cec5SDimitry Andric CanLowerReturn(CallingConv::ID CallConv, 19220b57cec5SDimitry Andric MachineFunction &MF, bool isVarArg, 19230b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 19240b57cec5SDimitry Andric LLVMContext &Context) const { 19250b57cec5SDimitry Andric // Detect unsupported vector return types. 19260b57cec5SDimitry Andric if (Subtarget.hasVector()) 19270b57cec5SDimitry Andric VerifyVectorTypes(Outs); 19280b57cec5SDimitry Andric 19290b57cec5SDimitry Andric // Special case that we cannot easily detect in RetCC_SystemZ since 19300b57cec5SDimitry Andric // i128 is not a legal type. 19310b57cec5SDimitry Andric for (auto &Out : Outs) 19320b57cec5SDimitry Andric if (Out.ArgVT == MVT::i128) 19330b57cec5SDimitry Andric return false; 19340b57cec5SDimitry Andric 19350b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RetLocs; 19360b57cec5SDimitry Andric CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 19370b57cec5SDimitry Andric return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 19380b57cec5SDimitry Andric } 19390b57cec5SDimitry Andric 19400b57cec5SDimitry Andric SDValue 19410b57cec5SDimitry Andric SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 19420b57cec5SDimitry Andric bool IsVarArg, 19430b57cec5SDimitry Andric const SmallVectorImpl<ISD::OutputArg> &Outs, 19440b57cec5SDimitry Andric const SmallVectorImpl<SDValue> &OutVals, 19450b57cec5SDimitry Andric const SDLoc &DL, SelectionDAG &DAG) const { 19460b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 19470b57cec5SDimitry Andric 19480b57cec5SDimitry Andric // Detect unsupported vector return types. 19490b57cec5SDimitry Andric if (Subtarget.hasVector()) 19500b57cec5SDimitry Andric VerifyVectorTypes(Outs); 19510b57cec5SDimitry Andric 19520b57cec5SDimitry Andric // Assign locations to each returned value. 19530b57cec5SDimitry Andric SmallVector<CCValAssign, 16> RetLocs; 19540b57cec5SDimitry Andric CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 19550b57cec5SDimitry Andric RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 19560b57cec5SDimitry Andric 19570b57cec5SDimitry Andric // Quick exit for void returns 19580b57cec5SDimitry Andric if (RetLocs.empty()) 19590b57cec5SDimitry Andric return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 19600b57cec5SDimitry Andric 1961480093f4SDimitry Andric if (CallConv == CallingConv::GHC) 1962480093f4SDimitry Andric report_fatal_error("GHC functions return void only"); 1963480093f4SDimitry Andric 19640b57cec5SDimitry Andric // Copy the result values into the output registers. 19650b57cec5SDimitry Andric SDValue Glue; 19660b57cec5SDimitry Andric SmallVector<SDValue, 4> RetOps; 19670b57cec5SDimitry Andric RetOps.push_back(Chain); 19680b57cec5SDimitry Andric for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 19690b57cec5SDimitry Andric CCValAssign &VA = RetLocs[I]; 19700b57cec5SDimitry Andric SDValue RetValue = OutVals[I]; 19710b57cec5SDimitry Andric 19720b57cec5SDimitry Andric // Make the return register live on exit. 19730b57cec5SDimitry Andric assert(VA.isRegLoc() && "Can only return in registers!"); 19740b57cec5SDimitry Andric 19750b57cec5SDimitry Andric // Promote the value as required. 19760b57cec5SDimitry Andric RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 19770b57cec5SDimitry Andric 19780b57cec5SDimitry Andric // Chain and glue the copies together. 19798bcb0991SDimitry Andric Register Reg = VA.getLocReg(); 19800b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 19810b57cec5SDimitry Andric Glue = Chain.getValue(1); 19820b57cec5SDimitry Andric RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 19830b57cec5SDimitry Andric } 19840b57cec5SDimitry Andric 19850b57cec5SDimitry Andric // Update chain and glue. 19860b57cec5SDimitry Andric RetOps[0] = Chain; 19870b57cec5SDimitry Andric if (Glue.getNode()) 19880b57cec5SDimitry Andric RetOps.push_back(Glue); 19890b57cec5SDimitry Andric 19900b57cec5SDimitry Andric return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 19910b57cec5SDimitry Andric } 19920b57cec5SDimitry Andric 19930b57cec5SDimitry Andric // Return true if Op is an intrinsic node with chain that returns the CC value 19940b57cec5SDimitry Andric // as its only (other) argument. Provide the associated SystemZISD opcode and 19950b57cec5SDimitry Andric // the mask of valid CC values if so. 19960b57cec5SDimitry Andric static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 19970b57cec5SDimitry Andric unsigned &CCValid) { 19980b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 19990b57cec5SDimitry Andric switch (Id) { 20000b57cec5SDimitry Andric case Intrinsic::s390_tbegin: 20010b57cec5SDimitry Andric Opcode = SystemZISD::TBEGIN; 20020b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_TBEGIN; 20030b57cec5SDimitry Andric return true; 20040b57cec5SDimitry Andric 20050b57cec5SDimitry Andric case Intrinsic::s390_tbegin_nofloat: 20060b57cec5SDimitry Andric Opcode = SystemZISD::TBEGIN_NOFLOAT; 20070b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_TBEGIN; 20080b57cec5SDimitry Andric return true; 20090b57cec5SDimitry Andric 20100b57cec5SDimitry Andric case Intrinsic::s390_tend: 20110b57cec5SDimitry Andric Opcode = SystemZISD::TEND; 20120b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_TEND; 20130b57cec5SDimitry Andric return true; 20140b57cec5SDimitry Andric 20150b57cec5SDimitry Andric default: 20160b57cec5SDimitry Andric return false; 20170b57cec5SDimitry Andric } 20180b57cec5SDimitry Andric } 20190b57cec5SDimitry Andric 20200b57cec5SDimitry Andric // Return true if Op is an intrinsic node without chain that returns the 20210b57cec5SDimitry Andric // CC value as its final argument. Provide the associated SystemZISD 20220b57cec5SDimitry Andric // opcode and the mask of valid CC values if so. 20230b57cec5SDimitry Andric static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 20240b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 20250b57cec5SDimitry Andric switch (Id) { 20260b57cec5SDimitry Andric case Intrinsic::s390_vpkshs: 20270b57cec5SDimitry Andric case Intrinsic::s390_vpksfs: 20280b57cec5SDimitry Andric case Intrinsic::s390_vpksgs: 20290b57cec5SDimitry Andric Opcode = SystemZISD::PACKS_CC; 20300b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20310b57cec5SDimitry Andric return true; 20320b57cec5SDimitry Andric 20330b57cec5SDimitry Andric case Intrinsic::s390_vpklshs: 20340b57cec5SDimitry Andric case Intrinsic::s390_vpklsfs: 20350b57cec5SDimitry Andric case Intrinsic::s390_vpklsgs: 20360b57cec5SDimitry Andric Opcode = SystemZISD::PACKLS_CC; 20370b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20380b57cec5SDimitry Andric return true; 20390b57cec5SDimitry Andric 20400b57cec5SDimitry Andric case Intrinsic::s390_vceqbs: 20410b57cec5SDimitry Andric case Intrinsic::s390_vceqhs: 20420b57cec5SDimitry Andric case Intrinsic::s390_vceqfs: 20430b57cec5SDimitry Andric case Intrinsic::s390_vceqgs: 20440b57cec5SDimitry Andric Opcode = SystemZISD::VICMPES; 20450b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20460b57cec5SDimitry Andric return true; 20470b57cec5SDimitry Andric 20480b57cec5SDimitry Andric case Intrinsic::s390_vchbs: 20490b57cec5SDimitry Andric case Intrinsic::s390_vchhs: 20500b57cec5SDimitry Andric case Intrinsic::s390_vchfs: 20510b57cec5SDimitry Andric case Intrinsic::s390_vchgs: 20520b57cec5SDimitry Andric Opcode = SystemZISD::VICMPHS; 20530b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20540b57cec5SDimitry Andric return true; 20550b57cec5SDimitry Andric 20560b57cec5SDimitry Andric case Intrinsic::s390_vchlbs: 20570b57cec5SDimitry Andric case Intrinsic::s390_vchlhs: 20580b57cec5SDimitry Andric case Intrinsic::s390_vchlfs: 20590b57cec5SDimitry Andric case Intrinsic::s390_vchlgs: 20600b57cec5SDimitry Andric Opcode = SystemZISD::VICMPHLS; 20610b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20620b57cec5SDimitry Andric return true; 20630b57cec5SDimitry Andric 20640b57cec5SDimitry Andric case Intrinsic::s390_vtm: 20650b57cec5SDimitry Andric Opcode = SystemZISD::VTM; 20660b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 20670b57cec5SDimitry Andric return true; 20680b57cec5SDimitry Andric 20690b57cec5SDimitry Andric case Intrinsic::s390_vfaebs: 20700b57cec5SDimitry Andric case Intrinsic::s390_vfaehs: 20710b57cec5SDimitry Andric case Intrinsic::s390_vfaefs: 20720b57cec5SDimitry Andric Opcode = SystemZISD::VFAE_CC; 20730b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 20740b57cec5SDimitry Andric return true; 20750b57cec5SDimitry Andric 20760b57cec5SDimitry Andric case Intrinsic::s390_vfaezbs: 20770b57cec5SDimitry Andric case Intrinsic::s390_vfaezhs: 20780b57cec5SDimitry Andric case Intrinsic::s390_vfaezfs: 20790b57cec5SDimitry Andric Opcode = SystemZISD::VFAEZ_CC; 20800b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 20810b57cec5SDimitry Andric return true; 20820b57cec5SDimitry Andric 20830b57cec5SDimitry Andric case Intrinsic::s390_vfeebs: 20840b57cec5SDimitry Andric case Intrinsic::s390_vfeehs: 20850b57cec5SDimitry Andric case Intrinsic::s390_vfeefs: 20860b57cec5SDimitry Andric Opcode = SystemZISD::VFEE_CC; 20870b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 20880b57cec5SDimitry Andric return true; 20890b57cec5SDimitry Andric 20900b57cec5SDimitry Andric case Intrinsic::s390_vfeezbs: 20910b57cec5SDimitry Andric case Intrinsic::s390_vfeezhs: 20920b57cec5SDimitry Andric case Intrinsic::s390_vfeezfs: 20930b57cec5SDimitry Andric Opcode = SystemZISD::VFEEZ_CC; 20940b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 20950b57cec5SDimitry Andric return true; 20960b57cec5SDimitry Andric 20970b57cec5SDimitry Andric case Intrinsic::s390_vfenebs: 20980b57cec5SDimitry Andric case Intrinsic::s390_vfenehs: 20990b57cec5SDimitry Andric case Intrinsic::s390_vfenefs: 21000b57cec5SDimitry Andric Opcode = SystemZISD::VFENE_CC; 21010b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 21020b57cec5SDimitry Andric return true; 21030b57cec5SDimitry Andric 21040b57cec5SDimitry Andric case Intrinsic::s390_vfenezbs: 21050b57cec5SDimitry Andric case Intrinsic::s390_vfenezhs: 21060b57cec5SDimitry Andric case Intrinsic::s390_vfenezfs: 21070b57cec5SDimitry Andric Opcode = SystemZISD::VFENEZ_CC; 21080b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 21090b57cec5SDimitry Andric return true; 21100b57cec5SDimitry Andric 21110b57cec5SDimitry Andric case Intrinsic::s390_vistrbs: 21120b57cec5SDimitry Andric case Intrinsic::s390_vistrhs: 21130b57cec5SDimitry Andric case Intrinsic::s390_vistrfs: 21140b57cec5SDimitry Andric Opcode = SystemZISD::VISTR_CC; 21150b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 21160b57cec5SDimitry Andric return true; 21170b57cec5SDimitry Andric 21180b57cec5SDimitry Andric case Intrinsic::s390_vstrcbs: 21190b57cec5SDimitry Andric case Intrinsic::s390_vstrchs: 21200b57cec5SDimitry Andric case Intrinsic::s390_vstrcfs: 21210b57cec5SDimitry Andric Opcode = SystemZISD::VSTRC_CC; 21220b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 21230b57cec5SDimitry Andric return true; 21240b57cec5SDimitry Andric 21250b57cec5SDimitry Andric case Intrinsic::s390_vstrczbs: 21260b57cec5SDimitry Andric case Intrinsic::s390_vstrczhs: 21270b57cec5SDimitry Andric case Intrinsic::s390_vstrczfs: 21280b57cec5SDimitry Andric Opcode = SystemZISD::VSTRCZ_CC; 21290b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 21300b57cec5SDimitry Andric return true; 21310b57cec5SDimitry Andric 21320b57cec5SDimitry Andric case Intrinsic::s390_vstrsb: 21330b57cec5SDimitry Andric case Intrinsic::s390_vstrsh: 21340b57cec5SDimitry Andric case Intrinsic::s390_vstrsf: 21350b57cec5SDimitry Andric Opcode = SystemZISD::VSTRS_CC; 21360b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 21370b57cec5SDimitry Andric return true; 21380b57cec5SDimitry Andric 21390b57cec5SDimitry Andric case Intrinsic::s390_vstrszb: 21400b57cec5SDimitry Andric case Intrinsic::s390_vstrszh: 21410b57cec5SDimitry Andric case Intrinsic::s390_vstrszf: 21420b57cec5SDimitry Andric Opcode = SystemZISD::VSTRSZ_CC; 21430b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ANY; 21440b57cec5SDimitry Andric return true; 21450b57cec5SDimitry Andric 21460b57cec5SDimitry Andric case Intrinsic::s390_vfcedbs: 21470b57cec5SDimitry Andric case Intrinsic::s390_vfcesbs: 21480b57cec5SDimitry Andric Opcode = SystemZISD::VFCMPES; 21490b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 21500b57cec5SDimitry Andric return true; 21510b57cec5SDimitry Andric 21520b57cec5SDimitry Andric case Intrinsic::s390_vfchdbs: 21530b57cec5SDimitry Andric case Intrinsic::s390_vfchsbs: 21540b57cec5SDimitry Andric Opcode = SystemZISD::VFCMPHS; 21550b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 21560b57cec5SDimitry Andric return true; 21570b57cec5SDimitry Andric 21580b57cec5SDimitry Andric case Intrinsic::s390_vfchedbs: 21590b57cec5SDimitry Andric case Intrinsic::s390_vfchesbs: 21600b57cec5SDimitry Andric Opcode = SystemZISD::VFCMPHES; 21610b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 21620b57cec5SDimitry Andric return true; 21630b57cec5SDimitry Andric 21640b57cec5SDimitry Andric case Intrinsic::s390_vftcidb: 21650b57cec5SDimitry Andric case Intrinsic::s390_vftcisb: 21660b57cec5SDimitry Andric Opcode = SystemZISD::VFTCI; 21670b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_VCMP; 21680b57cec5SDimitry Andric return true; 21690b57cec5SDimitry Andric 21700b57cec5SDimitry Andric case Intrinsic::s390_tdc: 21710b57cec5SDimitry Andric Opcode = SystemZISD::TDC; 21720b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_TDC; 21730b57cec5SDimitry Andric return true; 21740b57cec5SDimitry Andric 21750b57cec5SDimitry Andric default: 21760b57cec5SDimitry Andric return false; 21770b57cec5SDimitry Andric } 21780b57cec5SDimitry Andric } 21790b57cec5SDimitry Andric 21800b57cec5SDimitry Andric // Emit an intrinsic with chain and an explicit CC register result. 21810b57cec5SDimitry Andric static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 21820b57cec5SDimitry Andric unsigned Opcode) { 21830b57cec5SDimitry Andric // Copy all operands except the intrinsic ID. 21840b57cec5SDimitry Andric unsigned NumOps = Op.getNumOperands(); 21850b57cec5SDimitry Andric SmallVector<SDValue, 6> Ops; 21860b57cec5SDimitry Andric Ops.reserve(NumOps - 1); 21870b57cec5SDimitry Andric Ops.push_back(Op.getOperand(0)); 21880b57cec5SDimitry Andric for (unsigned I = 2; I < NumOps; ++I) 21890b57cec5SDimitry Andric Ops.push_back(Op.getOperand(I)); 21900b57cec5SDimitry Andric 21910b57cec5SDimitry Andric assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 21920b57cec5SDimitry Andric SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 21930b57cec5SDimitry Andric SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 21940b57cec5SDimitry Andric SDValue OldChain = SDValue(Op.getNode(), 1); 21950b57cec5SDimitry Andric SDValue NewChain = SDValue(Intr.getNode(), 1); 21960b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 21970b57cec5SDimitry Andric return Intr.getNode(); 21980b57cec5SDimitry Andric } 21990b57cec5SDimitry Andric 22000b57cec5SDimitry Andric // Emit an intrinsic with an explicit CC register result. 22010b57cec5SDimitry Andric static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 22020b57cec5SDimitry Andric unsigned Opcode) { 22030b57cec5SDimitry Andric // Copy all operands except the intrinsic ID. 22040b57cec5SDimitry Andric unsigned NumOps = Op.getNumOperands(); 22050b57cec5SDimitry Andric SmallVector<SDValue, 6> Ops; 22060b57cec5SDimitry Andric Ops.reserve(NumOps - 1); 22070b57cec5SDimitry Andric for (unsigned I = 1; I < NumOps; ++I) 22080b57cec5SDimitry Andric Ops.push_back(Op.getOperand(I)); 22090b57cec5SDimitry Andric 22100b57cec5SDimitry Andric SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 22110b57cec5SDimitry Andric return Intr.getNode(); 22120b57cec5SDimitry Andric } 22130b57cec5SDimitry Andric 22140b57cec5SDimitry Andric // CC is a comparison that will be implemented using an integer or 22150b57cec5SDimitry Andric // floating-point comparison. Return the condition code mask for 22160b57cec5SDimitry Andric // a branch on true. In the integer case, CCMASK_CMP_UO is set for 22170b57cec5SDimitry Andric // unsigned comparisons and clear for signed ones. In the floating-point 22180b57cec5SDimitry Andric // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 22190b57cec5SDimitry Andric static unsigned CCMaskForCondCode(ISD::CondCode CC) { 22200b57cec5SDimitry Andric #define CONV(X) \ 22210b57cec5SDimitry Andric case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 22220b57cec5SDimitry Andric case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 22230b57cec5SDimitry Andric case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 22240b57cec5SDimitry Andric 22250b57cec5SDimitry Andric switch (CC) { 22260b57cec5SDimitry Andric default: 22270b57cec5SDimitry Andric llvm_unreachable("Invalid integer condition!"); 22280b57cec5SDimitry Andric 22290b57cec5SDimitry Andric CONV(EQ); 22300b57cec5SDimitry Andric CONV(NE); 22310b57cec5SDimitry Andric CONV(GT); 22320b57cec5SDimitry Andric CONV(GE); 22330b57cec5SDimitry Andric CONV(LT); 22340b57cec5SDimitry Andric CONV(LE); 22350b57cec5SDimitry Andric 22360b57cec5SDimitry Andric case ISD::SETO: return SystemZ::CCMASK_CMP_O; 22370b57cec5SDimitry Andric case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 22380b57cec5SDimitry Andric } 22390b57cec5SDimitry Andric #undef CONV 22400b57cec5SDimitry Andric } 22410b57cec5SDimitry Andric 22420b57cec5SDimitry Andric // If C can be converted to a comparison against zero, adjust the operands 22430b57cec5SDimitry Andric // as necessary. 22440b57cec5SDimitry Andric static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 22450b57cec5SDimitry Andric if (C.ICmpType == SystemZICMP::UnsignedOnly) 22460b57cec5SDimitry Andric return; 22470b57cec5SDimitry Andric 22480b57cec5SDimitry Andric auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 22490b57cec5SDimitry Andric if (!ConstOp1) 22500b57cec5SDimitry Andric return; 22510b57cec5SDimitry Andric 22520b57cec5SDimitry Andric int64_t Value = ConstOp1->getSExtValue(); 22530b57cec5SDimitry Andric if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 22540b57cec5SDimitry Andric (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 22550b57cec5SDimitry Andric (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 22560b57cec5SDimitry Andric (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 22570b57cec5SDimitry Andric C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 22580b57cec5SDimitry Andric C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 22590b57cec5SDimitry Andric } 22600b57cec5SDimitry Andric } 22610b57cec5SDimitry Andric 22620b57cec5SDimitry Andric // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 22630b57cec5SDimitry Andric // adjust the operands as necessary. 22640b57cec5SDimitry Andric static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 22650b57cec5SDimitry Andric Comparison &C) { 22660b57cec5SDimitry Andric // For us to make any changes, it must a comparison between a single-use 22670b57cec5SDimitry Andric // load and a constant. 22680b57cec5SDimitry Andric if (!C.Op0.hasOneUse() || 22690b57cec5SDimitry Andric C.Op0.getOpcode() != ISD::LOAD || 22700b57cec5SDimitry Andric C.Op1.getOpcode() != ISD::Constant) 22710b57cec5SDimitry Andric return; 22720b57cec5SDimitry Andric 22730b57cec5SDimitry Andric // We must have an 8- or 16-bit load. 22740b57cec5SDimitry Andric auto *Load = cast<LoadSDNode>(C.Op0); 22755ffd83dbSDimitry Andric unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 22765ffd83dbSDimitry Andric if ((NumBits != 8 && NumBits != 16) || 22775ffd83dbSDimitry Andric NumBits != Load->getMemoryVT().getStoreSizeInBits()) 22780b57cec5SDimitry Andric return; 22790b57cec5SDimitry Andric 22800b57cec5SDimitry Andric // The load must be an extending one and the constant must be within the 22810b57cec5SDimitry Andric // range of the unextended value. 22820b57cec5SDimitry Andric auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 22830b57cec5SDimitry Andric uint64_t Value = ConstOp1->getZExtValue(); 22840b57cec5SDimitry Andric uint64_t Mask = (1 << NumBits) - 1; 22850b57cec5SDimitry Andric if (Load->getExtensionType() == ISD::SEXTLOAD) { 22860b57cec5SDimitry Andric // Make sure that ConstOp1 is in range of C.Op0. 22870b57cec5SDimitry Andric int64_t SignedValue = ConstOp1->getSExtValue(); 22880b57cec5SDimitry Andric if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 22890b57cec5SDimitry Andric return; 22900b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::SignedOnly) { 22910b57cec5SDimitry Andric // Unsigned comparison between two sign-extended values is equivalent 22920b57cec5SDimitry Andric // to unsigned comparison between two zero-extended values. 22930b57cec5SDimitry Andric Value &= Mask; 22940b57cec5SDimitry Andric } else if (NumBits == 8) { 22950b57cec5SDimitry Andric // Try to treat the comparison as unsigned, so that we can use CLI. 22960b57cec5SDimitry Andric // Adjust CCMask and Value as necessary. 22970b57cec5SDimitry Andric if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 22980b57cec5SDimitry Andric // Test whether the high bit of the byte is set. 22990b57cec5SDimitry Andric Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 23000b57cec5SDimitry Andric else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 23010b57cec5SDimitry Andric // Test whether the high bit of the byte is clear. 23020b57cec5SDimitry Andric Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 23030b57cec5SDimitry Andric else 23040b57cec5SDimitry Andric // No instruction exists for this combination. 23050b57cec5SDimitry Andric return; 23060b57cec5SDimitry Andric C.ICmpType = SystemZICMP::UnsignedOnly; 23070b57cec5SDimitry Andric } 23080b57cec5SDimitry Andric } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 23090b57cec5SDimitry Andric if (Value > Mask) 23100b57cec5SDimitry Andric return; 23110b57cec5SDimitry Andric // If the constant is in range, we can use any comparison. 23120b57cec5SDimitry Andric C.ICmpType = SystemZICMP::Any; 23130b57cec5SDimitry Andric } else 23140b57cec5SDimitry Andric return; 23150b57cec5SDimitry Andric 23160b57cec5SDimitry Andric // Make sure that the first operand is an i32 of the right extension type. 23170b57cec5SDimitry Andric ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 23180b57cec5SDimitry Andric ISD::SEXTLOAD : 23190b57cec5SDimitry Andric ISD::ZEXTLOAD); 23200b57cec5SDimitry Andric if (C.Op0.getValueType() != MVT::i32 || 23210b57cec5SDimitry Andric Load->getExtensionType() != ExtType) { 23220b57cec5SDimitry Andric C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 23230b57cec5SDimitry Andric Load->getBasePtr(), Load->getPointerInfo(), 232481ad6265SDimitry Andric Load->getMemoryVT(), Load->getAlign(), 23250b57cec5SDimitry Andric Load->getMemOperand()->getFlags()); 23260b57cec5SDimitry Andric // Update the chain uses. 23270b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 23280b57cec5SDimitry Andric } 23290b57cec5SDimitry Andric 23300b57cec5SDimitry Andric // Make sure that the second operand is an i32 with the right value. 23310b57cec5SDimitry Andric if (C.Op1.getValueType() != MVT::i32 || 23320b57cec5SDimitry Andric Value != ConstOp1->getZExtValue()) 23330b57cec5SDimitry Andric C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 23340b57cec5SDimitry Andric } 23350b57cec5SDimitry Andric 23360b57cec5SDimitry Andric // Return true if Op is either an unextended load, or a load suitable 23370b57cec5SDimitry Andric // for integer register-memory comparisons of type ICmpType. 23380b57cec5SDimitry Andric static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 23390b57cec5SDimitry Andric auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 23400b57cec5SDimitry Andric if (Load) { 23410b57cec5SDimitry Andric // There are no instructions to compare a register with a memory byte. 23420b57cec5SDimitry Andric if (Load->getMemoryVT() == MVT::i8) 23430b57cec5SDimitry Andric return false; 23440b57cec5SDimitry Andric // Otherwise decide on extension type. 23450b57cec5SDimitry Andric switch (Load->getExtensionType()) { 23460b57cec5SDimitry Andric case ISD::NON_EXTLOAD: 23470b57cec5SDimitry Andric return true; 23480b57cec5SDimitry Andric case ISD::SEXTLOAD: 23490b57cec5SDimitry Andric return ICmpType != SystemZICMP::UnsignedOnly; 23500b57cec5SDimitry Andric case ISD::ZEXTLOAD: 23510b57cec5SDimitry Andric return ICmpType != SystemZICMP::SignedOnly; 23520b57cec5SDimitry Andric default: 23530b57cec5SDimitry Andric break; 23540b57cec5SDimitry Andric } 23550b57cec5SDimitry Andric } 23560b57cec5SDimitry Andric return false; 23570b57cec5SDimitry Andric } 23580b57cec5SDimitry Andric 23590b57cec5SDimitry Andric // Return true if it is better to swap the operands of C. 23600b57cec5SDimitry Andric static bool shouldSwapCmpOperands(const Comparison &C) { 23610b57cec5SDimitry Andric // Leave f128 comparisons alone, since they have no memory forms. 23620b57cec5SDimitry Andric if (C.Op0.getValueType() == MVT::f128) 23630b57cec5SDimitry Andric return false; 23640b57cec5SDimitry Andric 23650b57cec5SDimitry Andric // Always keep a floating-point constant second, since comparisons with 23660b57cec5SDimitry Andric // zero can use LOAD TEST and comparisons with other constants make a 23670b57cec5SDimitry Andric // natural memory operand. 23680b57cec5SDimitry Andric if (isa<ConstantFPSDNode>(C.Op1)) 23690b57cec5SDimitry Andric return false; 23700b57cec5SDimitry Andric 23710b57cec5SDimitry Andric // Never swap comparisons with zero since there are many ways to optimize 23720b57cec5SDimitry Andric // those later. 23730b57cec5SDimitry Andric auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 23740b57cec5SDimitry Andric if (ConstOp1 && ConstOp1->getZExtValue() == 0) 23750b57cec5SDimitry Andric return false; 23760b57cec5SDimitry Andric 23770b57cec5SDimitry Andric // Also keep natural memory operands second if the loaded value is 23780b57cec5SDimitry Andric // only used here. Several comparisons have memory forms. 23790b57cec5SDimitry Andric if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 23800b57cec5SDimitry Andric return false; 23810b57cec5SDimitry Andric 23820b57cec5SDimitry Andric // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 23830b57cec5SDimitry Andric // In that case we generally prefer the memory to be second. 23840b57cec5SDimitry Andric if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 23850b57cec5SDimitry Andric // The only exceptions are when the second operand is a constant and 23860b57cec5SDimitry Andric // we can use things like CHHSI. 23870b57cec5SDimitry Andric if (!ConstOp1) 23880b57cec5SDimitry Andric return true; 23890b57cec5SDimitry Andric // The unsigned memory-immediate instructions can handle 16-bit 23900b57cec5SDimitry Andric // unsigned integers. 23910b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::SignedOnly && 23920b57cec5SDimitry Andric isUInt<16>(ConstOp1->getZExtValue())) 23930b57cec5SDimitry Andric return false; 23940b57cec5SDimitry Andric // The signed memory-immediate instructions can handle 16-bit 23950b57cec5SDimitry Andric // signed integers. 23960b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::UnsignedOnly && 23970b57cec5SDimitry Andric isInt<16>(ConstOp1->getSExtValue())) 23980b57cec5SDimitry Andric return false; 23990b57cec5SDimitry Andric return true; 24000b57cec5SDimitry Andric } 24010b57cec5SDimitry Andric 24020b57cec5SDimitry Andric // Try to promote the use of CGFR and CLGFR. 24030b57cec5SDimitry Andric unsigned Opcode0 = C.Op0.getOpcode(); 24040b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 24050b57cec5SDimitry Andric return true; 24060b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 24070b57cec5SDimitry Andric return true; 24080b57cec5SDimitry Andric if (C.ICmpType != SystemZICMP::SignedOnly && 24090b57cec5SDimitry Andric Opcode0 == ISD::AND && 24100b57cec5SDimitry Andric C.Op0.getOperand(1).getOpcode() == ISD::Constant && 24110b57cec5SDimitry Andric cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 24120b57cec5SDimitry Andric return true; 24130b57cec5SDimitry Andric 24140b57cec5SDimitry Andric return false; 24150b57cec5SDimitry Andric } 24160b57cec5SDimitry Andric 24170b57cec5SDimitry Andric // Check whether C tests for equality between X and Y and whether X - Y 24180b57cec5SDimitry Andric // or Y - X is also computed. In that case it's better to compare the 24190b57cec5SDimitry Andric // result of the subtraction against zero. 24200b57cec5SDimitry Andric static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 24210b57cec5SDimitry Andric Comparison &C) { 24220b57cec5SDimitry Andric if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 24230b57cec5SDimitry Andric C.CCMask == SystemZ::CCMASK_CMP_NE) { 2424349cc55cSDimitry Andric for (SDNode *N : C.Op0->uses()) { 24250b57cec5SDimitry Andric if (N->getOpcode() == ISD::SUB && 24260b57cec5SDimitry Andric ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 24270b57cec5SDimitry Andric (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 24280b57cec5SDimitry Andric C.Op0 = SDValue(N, 0); 24290b57cec5SDimitry Andric C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 24300b57cec5SDimitry Andric return; 24310b57cec5SDimitry Andric } 24320b57cec5SDimitry Andric } 24330b57cec5SDimitry Andric } 24340b57cec5SDimitry Andric } 24350b57cec5SDimitry Andric 24360b57cec5SDimitry Andric // Check whether C compares a floating-point value with zero and if that 24370b57cec5SDimitry Andric // floating-point value is also negated. In this case we can use the 24380b57cec5SDimitry Andric // negation to set CC, so avoiding separate LOAD AND TEST and 24390b57cec5SDimitry Andric // LOAD (NEGATIVE/COMPLEMENT) instructions. 24400b57cec5SDimitry Andric static void adjustForFNeg(Comparison &C) { 2441480093f4SDimitry Andric // This optimization is invalid for strict comparisons, since FNEG 2442480093f4SDimitry Andric // does not raise any exceptions. 2443480093f4SDimitry Andric if (C.Chain) 2444480093f4SDimitry Andric return; 24450b57cec5SDimitry Andric auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 24460b57cec5SDimitry Andric if (C1 && C1->isZero()) { 2447349cc55cSDimitry Andric for (SDNode *N : C.Op0->uses()) { 24480b57cec5SDimitry Andric if (N->getOpcode() == ISD::FNEG) { 24490b57cec5SDimitry Andric C.Op0 = SDValue(N, 0); 24505ffd83dbSDimitry Andric C.CCMask = SystemZ::reverseCCMask(C.CCMask); 24510b57cec5SDimitry Andric return; 24520b57cec5SDimitry Andric } 24530b57cec5SDimitry Andric } 24540b57cec5SDimitry Andric } 24550b57cec5SDimitry Andric } 24560b57cec5SDimitry Andric 24570b57cec5SDimitry Andric // Check whether C compares (shl X, 32) with 0 and whether X is 24580b57cec5SDimitry Andric // also sign-extended. In that case it is better to test the result 24590b57cec5SDimitry Andric // of the sign extension using LTGFR. 24600b57cec5SDimitry Andric // 24610b57cec5SDimitry Andric // This case is important because InstCombine transforms a comparison 24620b57cec5SDimitry Andric // with (sext (trunc X)) into a comparison with (shl X, 32). 24630b57cec5SDimitry Andric static void adjustForLTGFR(Comparison &C) { 24640b57cec5SDimitry Andric // Check for a comparison between (shl X, 32) and 0. 24650b57cec5SDimitry Andric if (C.Op0.getOpcode() == ISD::SHL && 24660b57cec5SDimitry Andric C.Op0.getValueType() == MVT::i64 && 24670b57cec5SDimitry Andric C.Op1.getOpcode() == ISD::Constant && 24680b57cec5SDimitry Andric cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 24690b57cec5SDimitry Andric auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 24700b57cec5SDimitry Andric if (C1 && C1->getZExtValue() == 32) { 24710b57cec5SDimitry Andric SDValue ShlOp0 = C.Op0.getOperand(0); 24720b57cec5SDimitry Andric // See whether X has any SIGN_EXTEND_INREG uses. 2473349cc55cSDimitry Andric for (SDNode *N : ShlOp0->uses()) { 24740b57cec5SDimitry Andric if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 24750b57cec5SDimitry Andric cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 24760b57cec5SDimitry Andric C.Op0 = SDValue(N, 0); 24770b57cec5SDimitry Andric return; 24780b57cec5SDimitry Andric } 24790b57cec5SDimitry Andric } 24800b57cec5SDimitry Andric } 24810b57cec5SDimitry Andric } 24820b57cec5SDimitry Andric } 24830b57cec5SDimitry Andric 24840b57cec5SDimitry Andric // If C compares the truncation of an extending load, try to compare 24850b57cec5SDimitry Andric // the untruncated value instead. This exposes more opportunities to 24860b57cec5SDimitry Andric // reuse CC. 24870b57cec5SDimitry Andric static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 24880b57cec5SDimitry Andric Comparison &C) { 24890b57cec5SDimitry Andric if (C.Op0.getOpcode() == ISD::TRUNCATE && 24900b57cec5SDimitry Andric C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 24910b57cec5SDimitry Andric C.Op1.getOpcode() == ISD::Constant && 24920b57cec5SDimitry Andric cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 24930b57cec5SDimitry Andric auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2494bdd1243dSDimitry Andric if (L->getMemoryVT().getStoreSizeInBits().getFixedValue() <= 2495bdd1243dSDimitry Andric C.Op0.getValueSizeInBits().getFixedValue()) { 24960b57cec5SDimitry Andric unsigned Type = L->getExtensionType(); 24970b57cec5SDimitry Andric if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 24980b57cec5SDimitry Andric (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 24990b57cec5SDimitry Andric C.Op0 = C.Op0.getOperand(0); 25000b57cec5SDimitry Andric C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 25010b57cec5SDimitry Andric } 25020b57cec5SDimitry Andric } 25030b57cec5SDimitry Andric } 25040b57cec5SDimitry Andric } 25050b57cec5SDimitry Andric 25060b57cec5SDimitry Andric // Return true if shift operation N has an in-range constant shift value. 25070b57cec5SDimitry Andric // Store it in ShiftVal if so. 25080b57cec5SDimitry Andric static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 25090b57cec5SDimitry Andric auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 25100b57cec5SDimitry Andric if (!Shift) 25110b57cec5SDimitry Andric return false; 25120b57cec5SDimitry Andric 25130b57cec5SDimitry Andric uint64_t Amount = Shift->getZExtValue(); 25140b57cec5SDimitry Andric if (Amount >= N.getValueSizeInBits()) 25150b57cec5SDimitry Andric return false; 25160b57cec5SDimitry Andric 25170b57cec5SDimitry Andric ShiftVal = Amount; 25180b57cec5SDimitry Andric return true; 25190b57cec5SDimitry Andric } 25200b57cec5SDimitry Andric 25210b57cec5SDimitry Andric // Check whether an AND with Mask is suitable for a TEST UNDER MASK 25220b57cec5SDimitry Andric // instruction and whether the CC value is descriptive enough to handle 25230b57cec5SDimitry Andric // a comparison of type Opcode between the AND result and CmpVal. 25240b57cec5SDimitry Andric // CCMask says which comparison result is being tested and BitSize is 25250b57cec5SDimitry Andric // the number of bits in the operands. If TEST UNDER MASK can be used, 25260b57cec5SDimitry Andric // return the corresponding CC mask, otherwise return 0. 25270b57cec5SDimitry Andric static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 25280b57cec5SDimitry Andric uint64_t Mask, uint64_t CmpVal, 25290b57cec5SDimitry Andric unsigned ICmpType) { 25300b57cec5SDimitry Andric assert(Mask != 0 && "ANDs with zero should have been removed by now"); 25310b57cec5SDimitry Andric 25320b57cec5SDimitry Andric // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 25330b57cec5SDimitry Andric if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 25340b57cec5SDimitry Andric !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 25350b57cec5SDimitry Andric return 0; 25360b57cec5SDimitry Andric 25370b57cec5SDimitry Andric // Work out the masks for the lowest and highest bits. 25380b57cec5SDimitry Andric unsigned HighShift = 63 - countLeadingZeros(Mask); 25390b57cec5SDimitry Andric uint64_t High = uint64_t(1) << HighShift; 25400b57cec5SDimitry Andric uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 25410b57cec5SDimitry Andric 25420b57cec5SDimitry Andric // Signed ordered comparisons are effectively unsigned if the sign 25430b57cec5SDimitry Andric // bit is dropped. 25440b57cec5SDimitry Andric bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 25450b57cec5SDimitry Andric 25460b57cec5SDimitry Andric // Check for equality comparisons with 0, or the equivalent. 25470b57cec5SDimitry Andric if (CmpVal == 0) { 25480b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_EQ) 25490b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_0; 25500b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE) 25510b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_1; 25520b57cec5SDimitry Andric } 25530b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 25540b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LT) 25550b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_0; 25560b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GE) 25570b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_1; 25580b57cec5SDimitry Andric } 25590b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal < Low) { 25600b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LE) 25610b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_0; 25620b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GT) 25630b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_1; 25640b57cec5SDimitry Andric } 25650b57cec5SDimitry Andric 25660b57cec5SDimitry Andric // Check for equality comparisons with the mask, or the equivalent. 25670b57cec5SDimitry Andric if (CmpVal == Mask) { 25680b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_EQ) 25690b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_1; 25700b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE) 25710b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_0; 25720b57cec5SDimitry Andric } 25730b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 25740b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GT) 25750b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_1; 25760b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LE) 25770b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_0; 25780b57cec5SDimitry Andric } 25790b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 25800b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GE) 25810b57cec5SDimitry Andric return SystemZ::CCMASK_TM_ALL_1; 25820b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LT) 25830b57cec5SDimitry Andric return SystemZ::CCMASK_TM_SOME_0; 25840b57cec5SDimitry Andric } 25850b57cec5SDimitry Andric 25860b57cec5SDimitry Andric // Check for ordered comparisons with the top bit. 25870b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 25880b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LE) 25890b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MSB_0; 25900b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GT) 25910b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MSB_1; 25920b57cec5SDimitry Andric } 25930b57cec5SDimitry Andric if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 25940b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_LT) 25950b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MSB_0; 25960b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_GE) 25970b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MSB_1; 25980b57cec5SDimitry Andric } 25990b57cec5SDimitry Andric 26000b57cec5SDimitry Andric // If there are just two bits, we can do equality checks for Low and High 26010b57cec5SDimitry Andric // as well. 26020b57cec5SDimitry Andric if (Mask == Low + High) { 26030b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 26040b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MIXED_MSB_0; 26050b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 26060b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 26070b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 26080b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MIXED_MSB_1; 26090b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 26100b57cec5SDimitry Andric return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 26110b57cec5SDimitry Andric } 26120b57cec5SDimitry Andric 26130b57cec5SDimitry Andric // Looks like we've exhausted our options. 26140b57cec5SDimitry Andric return 0; 26150b57cec5SDimitry Andric } 26160b57cec5SDimitry Andric 26170b57cec5SDimitry Andric // See whether C can be implemented as a TEST UNDER MASK instruction. 26180b57cec5SDimitry Andric // Update the arguments with the TM version if so. 26190b57cec5SDimitry Andric static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 26200b57cec5SDimitry Andric Comparison &C) { 26210b57cec5SDimitry Andric // Check that we have a comparison with a constant. 26220b57cec5SDimitry Andric auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 26230b57cec5SDimitry Andric if (!ConstOp1) 26240b57cec5SDimitry Andric return; 26250b57cec5SDimitry Andric uint64_t CmpVal = ConstOp1->getZExtValue(); 26260b57cec5SDimitry Andric 26270b57cec5SDimitry Andric // Check whether the nonconstant input is an AND with a constant mask. 26280b57cec5SDimitry Andric Comparison NewC(C); 26290b57cec5SDimitry Andric uint64_t MaskVal; 26300b57cec5SDimitry Andric ConstantSDNode *Mask = nullptr; 26310b57cec5SDimitry Andric if (C.Op0.getOpcode() == ISD::AND) { 26320b57cec5SDimitry Andric NewC.Op0 = C.Op0.getOperand(0); 26330b57cec5SDimitry Andric NewC.Op1 = C.Op0.getOperand(1); 26340b57cec5SDimitry Andric Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 26350b57cec5SDimitry Andric if (!Mask) 26360b57cec5SDimitry Andric return; 26370b57cec5SDimitry Andric MaskVal = Mask->getZExtValue(); 26380b57cec5SDimitry Andric } else { 26390b57cec5SDimitry Andric // There is no instruction to compare with a 64-bit immediate 26400b57cec5SDimitry Andric // so use TMHH instead if possible. We need an unsigned ordered 26410b57cec5SDimitry Andric // comparison with an i64 immediate. 26420b57cec5SDimitry Andric if (NewC.Op0.getValueType() != MVT::i64 || 26430b57cec5SDimitry Andric NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 26440b57cec5SDimitry Andric NewC.CCMask == SystemZ::CCMASK_CMP_NE || 26450b57cec5SDimitry Andric NewC.ICmpType == SystemZICMP::SignedOnly) 26460b57cec5SDimitry Andric return; 26470b57cec5SDimitry Andric // Convert LE and GT comparisons into LT and GE. 26480b57cec5SDimitry Andric if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 26490b57cec5SDimitry Andric NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 26500b57cec5SDimitry Andric if (CmpVal == uint64_t(-1)) 26510b57cec5SDimitry Andric return; 26520b57cec5SDimitry Andric CmpVal += 1; 26530b57cec5SDimitry Andric NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 26540b57cec5SDimitry Andric } 26550b57cec5SDimitry Andric // If the low N bits of Op1 are zero than the low N bits of Op0 can 26560b57cec5SDimitry Andric // be masked off without changing the result. 26570b57cec5SDimitry Andric MaskVal = -(CmpVal & -CmpVal); 26580b57cec5SDimitry Andric NewC.ICmpType = SystemZICMP::UnsignedOnly; 26590b57cec5SDimitry Andric } 26600b57cec5SDimitry Andric if (!MaskVal) 26610b57cec5SDimitry Andric return; 26620b57cec5SDimitry Andric 26630b57cec5SDimitry Andric // Check whether the combination of mask, comparison value and comparison 26640b57cec5SDimitry Andric // type are suitable. 26650b57cec5SDimitry Andric unsigned BitSize = NewC.Op0.getValueSizeInBits(); 26660b57cec5SDimitry Andric unsigned NewCCMask, ShiftVal; 26670b57cec5SDimitry Andric if (NewC.ICmpType != SystemZICMP::SignedOnly && 26680b57cec5SDimitry Andric NewC.Op0.getOpcode() == ISD::SHL && 26690b57cec5SDimitry Andric isSimpleShift(NewC.Op0, ShiftVal) && 26700b57cec5SDimitry Andric (MaskVal >> ShiftVal != 0) && 26710b57cec5SDimitry Andric ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 26720b57cec5SDimitry Andric (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 26730b57cec5SDimitry Andric MaskVal >> ShiftVal, 26740b57cec5SDimitry Andric CmpVal >> ShiftVal, 26750b57cec5SDimitry Andric SystemZICMP::Any))) { 26760b57cec5SDimitry Andric NewC.Op0 = NewC.Op0.getOperand(0); 26770b57cec5SDimitry Andric MaskVal >>= ShiftVal; 26780b57cec5SDimitry Andric } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 26790b57cec5SDimitry Andric NewC.Op0.getOpcode() == ISD::SRL && 26800b57cec5SDimitry Andric isSimpleShift(NewC.Op0, ShiftVal) && 26810b57cec5SDimitry Andric (MaskVal << ShiftVal != 0) && 26820b57cec5SDimitry Andric ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 26830b57cec5SDimitry Andric (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 26840b57cec5SDimitry Andric MaskVal << ShiftVal, 26850b57cec5SDimitry Andric CmpVal << ShiftVal, 26860b57cec5SDimitry Andric SystemZICMP::UnsignedOnly))) { 26870b57cec5SDimitry Andric NewC.Op0 = NewC.Op0.getOperand(0); 26880b57cec5SDimitry Andric MaskVal <<= ShiftVal; 26890b57cec5SDimitry Andric } else { 26900b57cec5SDimitry Andric NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 26910b57cec5SDimitry Andric NewC.ICmpType); 26920b57cec5SDimitry Andric if (!NewCCMask) 26930b57cec5SDimitry Andric return; 26940b57cec5SDimitry Andric } 26950b57cec5SDimitry Andric 26960b57cec5SDimitry Andric // Go ahead and make the change. 26970b57cec5SDimitry Andric C.Opcode = SystemZISD::TM; 26980b57cec5SDimitry Andric C.Op0 = NewC.Op0; 26990b57cec5SDimitry Andric if (Mask && Mask->getZExtValue() == MaskVal) 27000b57cec5SDimitry Andric C.Op1 = SDValue(Mask, 0); 27010b57cec5SDimitry Andric else 27020b57cec5SDimitry Andric C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 27030b57cec5SDimitry Andric C.CCValid = SystemZ::CCMASK_TM; 27040b57cec5SDimitry Andric C.CCMask = NewCCMask; 27050b57cec5SDimitry Andric } 27060b57cec5SDimitry Andric 27070b57cec5SDimitry Andric // See whether the comparison argument contains a redundant AND 27080b57cec5SDimitry Andric // and remove it if so. This sometimes happens due to the generic 27090b57cec5SDimitry Andric // BRCOND expansion. 27100b57cec5SDimitry Andric static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 27110b57cec5SDimitry Andric Comparison &C) { 27120b57cec5SDimitry Andric if (C.Op0.getOpcode() != ISD::AND) 27130b57cec5SDimitry Andric return; 27140b57cec5SDimitry Andric auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 27150b57cec5SDimitry Andric if (!Mask) 27160b57cec5SDimitry Andric return; 27170b57cec5SDimitry Andric KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 27180b57cec5SDimitry Andric if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 27190b57cec5SDimitry Andric return; 27200b57cec5SDimitry Andric 27210b57cec5SDimitry Andric C.Op0 = C.Op0.getOperand(0); 27220b57cec5SDimitry Andric } 27230b57cec5SDimitry Andric 27240b57cec5SDimitry Andric // Return a Comparison that tests the condition-code result of intrinsic 27250b57cec5SDimitry Andric // node Call against constant integer CC using comparison code Cond. 27260b57cec5SDimitry Andric // Opcode is the opcode of the SystemZISD operation for the intrinsic 27270b57cec5SDimitry Andric // and CCValid is the set of possible condition-code results. 27280b57cec5SDimitry Andric static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 27290b57cec5SDimitry Andric SDValue Call, unsigned CCValid, uint64_t CC, 27300b57cec5SDimitry Andric ISD::CondCode Cond) { 2731480093f4SDimitry Andric Comparison C(Call, SDValue(), SDValue()); 27320b57cec5SDimitry Andric C.Opcode = Opcode; 27330b57cec5SDimitry Andric C.CCValid = CCValid; 27340b57cec5SDimitry Andric if (Cond == ISD::SETEQ) 27350b57cec5SDimitry Andric // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 27360b57cec5SDimitry Andric C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 27370b57cec5SDimitry Andric else if (Cond == ISD::SETNE) 27380b57cec5SDimitry Andric // ...and the inverse of that. 27390b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 27400b57cec5SDimitry Andric else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 27410b57cec5SDimitry Andric // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 27420b57cec5SDimitry Andric // always true for CC>3. 27430b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 27440b57cec5SDimitry Andric else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 27450b57cec5SDimitry Andric // ...and the inverse of that. 27460b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 27470b57cec5SDimitry Andric else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 27480b57cec5SDimitry Andric // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 27490b57cec5SDimitry Andric // always true for CC>3. 27500b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 27510b57cec5SDimitry Andric else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 27520b57cec5SDimitry Andric // ...and the inverse of that. 27530b57cec5SDimitry Andric C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 27540b57cec5SDimitry Andric else 27550b57cec5SDimitry Andric llvm_unreachable("Unexpected integer comparison type"); 27560b57cec5SDimitry Andric C.CCMask &= CCValid; 27570b57cec5SDimitry Andric return C; 27580b57cec5SDimitry Andric } 27590b57cec5SDimitry Andric 27600b57cec5SDimitry Andric // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 27610b57cec5SDimitry Andric static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2762480093f4SDimitry Andric ISD::CondCode Cond, const SDLoc &DL, 2763480093f4SDimitry Andric SDValue Chain = SDValue(), 2764480093f4SDimitry Andric bool IsSignaling = false) { 27650b57cec5SDimitry Andric if (CmpOp1.getOpcode() == ISD::Constant) { 2766480093f4SDimitry Andric assert(!Chain); 27670b57cec5SDimitry Andric uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 27680b57cec5SDimitry Andric unsigned Opcode, CCValid; 27690b57cec5SDimitry Andric if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 27700b57cec5SDimitry Andric CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 27710b57cec5SDimitry Andric isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 27720b57cec5SDimitry Andric return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 27730b57cec5SDimitry Andric if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 27740b57cec5SDimitry Andric CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 27750b57cec5SDimitry Andric isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 27760b57cec5SDimitry Andric return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 27770b57cec5SDimitry Andric } 2778480093f4SDimitry Andric Comparison C(CmpOp0, CmpOp1, Chain); 27790b57cec5SDimitry Andric C.CCMask = CCMaskForCondCode(Cond); 27800b57cec5SDimitry Andric if (C.Op0.getValueType().isFloatingPoint()) { 27810b57cec5SDimitry Andric C.CCValid = SystemZ::CCMASK_FCMP; 2782480093f4SDimitry Andric if (!C.Chain) 27830b57cec5SDimitry Andric C.Opcode = SystemZISD::FCMP; 2784480093f4SDimitry Andric else if (!IsSignaling) 2785480093f4SDimitry Andric C.Opcode = SystemZISD::STRICT_FCMP; 2786480093f4SDimitry Andric else 2787480093f4SDimitry Andric C.Opcode = SystemZISD::STRICT_FCMPS; 27880b57cec5SDimitry Andric adjustForFNeg(C); 27890b57cec5SDimitry Andric } else { 2790480093f4SDimitry Andric assert(!C.Chain); 27910b57cec5SDimitry Andric C.CCValid = SystemZ::CCMASK_ICMP; 27920b57cec5SDimitry Andric C.Opcode = SystemZISD::ICMP; 27930b57cec5SDimitry Andric // Choose the type of comparison. Equality and inequality tests can 27940b57cec5SDimitry Andric // use either signed or unsigned comparisons. The choice also doesn't 27950b57cec5SDimitry Andric // matter if both sign bits are known to be clear. In those cases we 27960b57cec5SDimitry Andric // want to give the main isel code the freedom to choose whichever 27970b57cec5SDimitry Andric // form fits best. 27980b57cec5SDimitry Andric if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 27990b57cec5SDimitry Andric C.CCMask == SystemZ::CCMASK_CMP_NE || 28000b57cec5SDimitry Andric (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 28010b57cec5SDimitry Andric C.ICmpType = SystemZICMP::Any; 28020b57cec5SDimitry Andric else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 28030b57cec5SDimitry Andric C.ICmpType = SystemZICMP::UnsignedOnly; 28040b57cec5SDimitry Andric else 28050b57cec5SDimitry Andric C.ICmpType = SystemZICMP::SignedOnly; 28060b57cec5SDimitry Andric C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 28070b57cec5SDimitry Andric adjustForRedundantAnd(DAG, DL, C); 28080b57cec5SDimitry Andric adjustZeroCmp(DAG, DL, C); 28090b57cec5SDimitry Andric adjustSubwordCmp(DAG, DL, C); 28100b57cec5SDimitry Andric adjustForSubtraction(DAG, DL, C); 28110b57cec5SDimitry Andric adjustForLTGFR(C); 28120b57cec5SDimitry Andric adjustICmpTruncate(DAG, DL, C); 28130b57cec5SDimitry Andric } 28140b57cec5SDimitry Andric 28150b57cec5SDimitry Andric if (shouldSwapCmpOperands(C)) { 28160b57cec5SDimitry Andric std::swap(C.Op0, C.Op1); 28175ffd83dbSDimitry Andric C.CCMask = SystemZ::reverseCCMask(C.CCMask); 28180b57cec5SDimitry Andric } 28190b57cec5SDimitry Andric 28200b57cec5SDimitry Andric adjustForTestUnderMask(DAG, DL, C); 28210b57cec5SDimitry Andric return C; 28220b57cec5SDimitry Andric } 28230b57cec5SDimitry Andric 28240b57cec5SDimitry Andric // Emit the comparison instruction described by C. 28250b57cec5SDimitry Andric static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 28260b57cec5SDimitry Andric if (!C.Op1.getNode()) { 28270b57cec5SDimitry Andric SDNode *Node; 28280b57cec5SDimitry Andric switch (C.Op0.getOpcode()) { 28290b57cec5SDimitry Andric case ISD::INTRINSIC_W_CHAIN: 28300b57cec5SDimitry Andric Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 28310b57cec5SDimitry Andric return SDValue(Node, 0); 28320b57cec5SDimitry Andric case ISD::INTRINSIC_WO_CHAIN: 28330b57cec5SDimitry Andric Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 28340b57cec5SDimitry Andric return SDValue(Node, Node->getNumValues() - 1); 28350b57cec5SDimitry Andric default: 28360b57cec5SDimitry Andric llvm_unreachable("Invalid comparison operands"); 28370b57cec5SDimitry Andric } 28380b57cec5SDimitry Andric } 28390b57cec5SDimitry Andric if (C.Opcode == SystemZISD::ICMP) 28400b57cec5SDimitry Andric return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 28418bcb0991SDimitry Andric DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 28420b57cec5SDimitry Andric if (C.Opcode == SystemZISD::TM) { 28430b57cec5SDimitry Andric bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 28440b57cec5SDimitry Andric bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 28450b57cec5SDimitry Andric return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 28468bcb0991SDimitry Andric DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 28470b57cec5SDimitry Andric } 2848480093f4SDimitry Andric if (C.Chain) { 2849480093f4SDimitry Andric SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2850480093f4SDimitry Andric return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2851480093f4SDimitry Andric } 28520b57cec5SDimitry Andric return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 28530b57cec5SDimitry Andric } 28540b57cec5SDimitry Andric 28550b57cec5SDimitry Andric // Implement a 32-bit *MUL_LOHI operation by extending both operands to 28560b57cec5SDimitry Andric // 64 bits. Extend is the extension type to use. Store the high part 28570b57cec5SDimitry Andric // in Hi and the low part in Lo. 28580b57cec5SDimitry Andric static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 28590b57cec5SDimitry Andric SDValue Op0, SDValue Op1, SDValue &Hi, 28600b57cec5SDimitry Andric SDValue &Lo) { 28610b57cec5SDimitry Andric Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 28620b57cec5SDimitry Andric Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 28630b57cec5SDimitry Andric SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 28640b57cec5SDimitry Andric Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 28650b57cec5SDimitry Andric DAG.getConstant(32, DL, MVT::i64)); 28660b57cec5SDimitry Andric Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 28670b57cec5SDimitry Andric Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 28680b57cec5SDimitry Andric } 28690b57cec5SDimitry Andric 28700b57cec5SDimitry Andric // Lower a binary operation that produces two VT results, one in each 28710b57cec5SDimitry Andric // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 28720b57cec5SDimitry Andric // and Opcode performs the GR128 operation. Store the even register result 28730b57cec5SDimitry Andric // in Even and the odd register result in Odd. 28740b57cec5SDimitry Andric static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 28750b57cec5SDimitry Andric unsigned Opcode, SDValue Op0, SDValue Op1, 28760b57cec5SDimitry Andric SDValue &Even, SDValue &Odd) { 28770b57cec5SDimitry Andric SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 28780b57cec5SDimitry Andric bool Is32Bit = is32Bit(VT); 28790b57cec5SDimitry Andric Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 28800b57cec5SDimitry Andric Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 28810b57cec5SDimitry Andric } 28820b57cec5SDimitry Andric 28830b57cec5SDimitry Andric // Return an i32 value that is 1 if the CC value produced by CCReg is 28840b57cec5SDimitry Andric // in the mask CCMask and 0 otherwise. CC is known to have a value 28850b57cec5SDimitry Andric // in CCValid, so other values can be ignored. 28860b57cec5SDimitry Andric static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 28870b57cec5SDimitry Andric unsigned CCValid, unsigned CCMask) { 28880b57cec5SDimitry Andric SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 28890b57cec5SDimitry Andric DAG.getConstant(0, DL, MVT::i32), 28908bcb0991SDimitry Andric DAG.getTargetConstant(CCValid, DL, MVT::i32), 28918bcb0991SDimitry Andric DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 28920b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 28930b57cec5SDimitry Andric } 28940b57cec5SDimitry Andric 28950b57cec5SDimitry Andric // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2896480093f4SDimitry Andric // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2897480093f4SDimitry Andric // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2898480093f4SDimitry Andric // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2899480093f4SDimitry Andric // floating-point comparisons. 2900480093f4SDimitry Andric enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2901480093f4SDimitry Andric static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 29020b57cec5SDimitry Andric switch (CC) { 29030b57cec5SDimitry Andric case ISD::SETOEQ: 29040b57cec5SDimitry Andric case ISD::SETEQ: 2905480093f4SDimitry Andric switch (Mode) { 2906480093f4SDimitry Andric case CmpMode::Int: return SystemZISD::VICMPE; 2907480093f4SDimitry Andric case CmpMode::FP: return SystemZISD::VFCMPE; 2908480093f4SDimitry Andric case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2909480093f4SDimitry Andric case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2910480093f4SDimitry Andric } 2911480093f4SDimitry Andric llvm_unreachable("Bad mode"); 29120b57cec5SDimitry Andric 29130b57cec5SDimitry Andric case ISD::SETOGE: 29140b57cec5SDimitry Andric case ISD::SETGE: 2915480093f4SDimitry Andric switch (Mode) { 2916480093f4SDimitry Andric case CmpMode::Int: return 0; 2917480093f4SDimitry Andric case CmpMode::FP: return SystemZISD::VFCMPHE; 2918480093f4SDimitry Andric case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2919480093f4SDimitry Andric case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2920480093f4SDimitry Andric } 2921480093f4SDimitry Andric llvm_unreachable("Bad mode"); 29220b57cec5SDimitry Andric 29230b57cec5SDimitry Andric case ISD::SETOGT: 29240b57cec5SDimitry Andric case ISD::SETGT: 2925480093f4SDimitry Andric switch (Mode) { 2926480093f4SDimitry Andric case CmpMode::Int: return SystemZISD::VICMPH; 2927480093f4SDimitry Andric case CmpMode::FP: return SystemZISD::VFCMPH; 2928480093f4SDimitry Andric case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2929480093f4SDimitry Andric case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2930480093f4SDimitry Andric } 2931480093f4SDimitry Andric llvm_unreachable("Bad mode"); 29320b57cec5SDimitry Andric 29330b57cec5SDimitry Andric case ISD::SETUGT: 2934480093f4SDimitry Andric switch (Mode) { 2935480093f4SDimitry Andric case CmpMode::Int: return SystemZISD::VICMPHL; 2936480093f4SDimitry Andric case CmpMode::FP: return 0; 2937480093f4SDimitry Andric case CmpMode::StrictFP: return 0; 2938480093f4SDimitry Andric case CmpMode::SignalingFP: return 0; 2939480093f4SDimitry Andric } 2940480093f4SDimitry Andric llvm_unreachable("Bad mode"); 29410b57cec5SDimitry Andric 29420b57cec5SDimitry Andric default: 29430b57cec5SDimitry Andric return 0; 29440b57cec5SDimitry Andric } 29450b57cec5SDimitry Andric } 29460b57cec5SDimitry Andric 29470b57cec5SDimitry Andric // Return the SystemZISD vector comparison operation for CC or its inverse, 29480b57cec5SDimitry Andric // or 0 if neither can be done directly. Indicate in Invert whether the 2949480093f4SDimitry Andric // result is for the inverse of CC. Mode is as above. 2950480093f4SDimitry Andric static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 29510b57cec5SDimitry Andric bool &Invert) { 2952480093f4SDimitry Andric if (unsigned Opcode = getVectorComparison(CC, Mode)) { 29530b57cec5SDimitry Andric Invert = false; 29540b57cec5SDimitry Andric return Opcode; 29550b57cec5SDimitry Andric } 29560b57cec5SDimitry Andric 2957480093f4SDimitry Andric CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2958480093f4SDimitry Andric if (unsigned Opcode = getVectorComparison(CC, Mode)) { 29590b57cec5SDimitry Andric Invert = true; 29600b57cec5SDimitry Andric return Opcode; 29610b57cec5SDimitry Andric } 29620b57cec5SDimitry Andric 29630b57cec5SDimitry Andric return 0; 29640b57cec5SDimitry Andric } 29650b57cec5SDimitry Andric 29660b57cec5SDimitry Andric // Return a v2f64 that contains the extended form of elements Start and Start+1 2967480093f4SDimitry Andric // of v4f32 value Op. If Chain is nonnull, return the strict form. 29680b57cec5SDimitry Andric static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2969480093f4SDimitry Andric SDValue Op, SDValue Chain) { 29700b57cec5SDimitry Andric int Mask[] = { Start, -1, Start + 1, -1 }; 29710b57cec5SDimitry Andric Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2972480093f4SDimitry Andric if (Chain) { 2973480093f4SDimitry Andric SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2974480093f4SDimitry Andric return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2975480093f4SDimitry Andric } 29760b57cec5SDimitry Andric return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 29770b57cec5SDimitry Andric } 29780b57cec5SDimitry Andric 29790b57cec5SDimitry Andric // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2980480093f4SDimitry Andric // producing a result of type VT. If Chain is nonnull, return the strict form. 29810b57cec5SDimitry Andric SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 29820b57cec5SDimitry Andric const SDLoc &DL, EVT VT, 29830b57cec5SDimitry Andric SDValue CmpOp0, 2984480093f4SDimitry Andric SDValue CmpOp1, 2985480093f4SDimitry Andric SDValue Chain) const { 29860b57cec5SDimitry Andric // There is no hardware support for v4f32 (unless we have the vector 29870b57cec5SDimitry Andric // enhancements facility 1), so extend the vector into two v2f64s 29880b57cec5SDimitry Andric // and compare those. 29890b57cec5SDimitry Andric if (CmpOp0.getValueType() == MVT::v4f32 && 29900b57cec5SDimitry Andric !Subtarget.hasVectorEnhancements1()) { 2991480093f4SDimitry Andric SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2992480093f4SDimitry Andric SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2993480093f4SDimitry Andric SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2994480093f4SDimitry Andric SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2995480093f4SDimitry Andric if (Chain) { 2996480093f4SDimitry Andric SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2997480093f4SDimitry Andric SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2998480093f4SDimitry Andric SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2999480093f4SDimitry Andric SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 3000480093f4SDimitry Andric SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 3001480093f4SDimitry Andric H1.getValue(1), L1.getValue(1), 3002480093f4SDimitry Andric HRes.getValue(1), LRes.getValue(1) }; 3003480093f4SDimitry Andric SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 3004480093f4SDimitry Andric SDValue Ops[2] = { Res, NewChain }; 3005480093f4SDimitry Andric return DAG.getMergeValues(Ops, DL); 3006480093f4SDimitry Andric } 30070b57cec5SDimitry Andric SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 30080b57cec5SDimitry Andric SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 30090b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 30100b57cec5SDimitry Andric } 3011480093f4SDimitry Andric if (Chain) { 3012480093f4SDimitry Andric SDVTList VTs = DAG.getVTList(VT, MVT::Other); 3013480093f4SDimitry Andric return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 3014480093f4SDimitry Andric } 30150b57cec5SDimitry Andric return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 30160b57cec5SDimitry Andric } 30170b57cec5SDimitry Andric 30180b57cec5SDimitry Andric // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 3019480093f4SDimitry Andric // an integer mask of type VT. If Chain is nonnull, we have a strict 3020480093f4SDimitry Andric // floating-point comparison. If in addition IsSignaling is true, we have 3021480093f4SDimitry Andric // a strict signaling floating-point comparison. 30220b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 30230b57cec5SDimitry Andric const SDLoc &DL, EVT VT, 30240b57cec5SDimitry Andric ISD::CondCode CC, 30250b57cec5SDimitry Andric SDValue CmpOp0, 3026480093f4SDimitry Andric SDValue CmpOp1, 3027480093f4SDimitry Andric SDValue Chain, 3028480093f4SDimitry Andric bool IsSignaling) const { 30290b57cec5SDimitry Andric bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 3030480093f4SDimitry Andric assert (!Chain || IsFP); 3031480093f4SDimitry Andric assert (!IsSignaling || Chain); 3032480093f4SDimitry Andric CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 3033480093f4SDimitry Andric Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 30340b57cec5SDimitry Andric bool Invert = false; 30350b57cec5SDimitry Andric SDValue Cmp; 30360b57cec5SDimitry Andric switch (CC) { 30370b57cec5SDimitry Andric // Handle tests for order using (or (ogt y x) (oge x y)). 30380b57cec5SDimitry Andric case ISD::SETUO: 30390b57cec5SDimitry Andric Invert = true; 3040bdd1243dSDimitry Andric [[fallthrough]]; 30410b57cec5SDimitry Andric case ISD::SETO: { 30420b57cec5SDimitry Andric assert(IsFP && "Unexpected integer comparison"); 3043480093f4SDimitry Andric SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3044480093f4SDimitry Andric DL, VT, CmpOp1, CmpOp0, Chain); 3045480093f4SDimitry Andric SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 3046480093f4SDimitry Andric DL, VT, CmpOp0, CmpOp1, Chain); 30470b57cec5SDimitry Andric Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 3048480093f4SDimitry Andric if (Chain) 3049480093f4SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3050480093f4SDimitry Andric LT.getValue(1), GE.getValue(1)); 30510b57cec5SDimitry Andric break; 30520b57cec5SDimitry Andric } 30530b57cec5SDimitry Andric 30540b57cec5SDimitry Andric // Handle <> tests using (or (ogt y x) (ogt x y)). 30550b57cec5SDimitry Andric case ISD::SETUEQ: 30560b57cec5SDimitry Andric Invert = true; 3057bdd1243dSDimitry Andric [[fallthrough]]; 30580b57cec5SDimitry Andric case ISD::SETONE: { 30590b57cec5SDimitry Andric assert(IsFP && "Unexpected integer comparison"); 3060480093f4SDimitry Andric SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3061480093f4SDimitry Andric DL, VT, CmpOp1, CmpOp0, Chain); 3062480093f4SDimitry Andric SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3063480093f4SDimitry Andric DL, VT, CmpOp0, CmpOp1, Chain); 30640b57cec5SDimitry Andric Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3065480093f4SDimitry Andric if (Chain) 3066480093f4SDimitry Andric Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3067480093f4SDimitry Andric LT.getValue(1), GT.getValue(1)); 30680b57cec5SDimitry Andric break; 30690b57cec5SDimitry Andric } 30700b57cec5SDimitry Andric 30710b57cec5SDimitry Andric // Otherwise a single comparison is enough. It doesn't really 30720b57cec5SDimitry Andric // matter whether we try the inversion or the swap first, since 30730b57cec5SDimitry Andric // there are no cases where both work. 30740b57cec5SDimitry Andric default: 3075480093f4SDimitry Andric if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3076480093f4SDimitry Andric Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 30770b57cec5SDimitry Andric else { 30780b57cec5SDimitry Andric CC = ISD::getSetCCSwappedOperands(CC); 3079480093f4SDimitry Andric if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3080480093f4SDimitry Andric Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 30810b57cec5SDimitry Andric else 30820b57cec5SDimitry Andric llvm_unreachable("Unhandled comparison"); 30830b57cec5SDimitry Andric } 3084480093f4SDimitry Andric if (Chain) 3085480093f4SDimitry Andric Chain = Cmp.getValue(1); 30860b57cec5SDimitry Andric break; 30870b57cec5SDimitry Andric } 30880b57cec5SDimitry Andric if (Invert) { 30890b57cec5SDimitry Andric SDValue Mask = 30900b57cec5SDimitry Andric DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 30910b57cec5SDimitry Andric Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 30920b57cec5SDimitry Andric } 3093480093f4SDimitry Andric if (Chain && Chain.getNode() != Cmp.getNode()) { 3094480093f4SDimitry Andric SDValue Ops[2] = { Cmp, Chain }; 3095480093f4SDimitry Andric Cmp = DAG.getMergeValues(Ops, DL); 3096480093f4SDimitry Andric } 30970b57cec5SDimitry Andric return Cmp; 30980b57cec5SDimitry Andric } 30990b57cec5SDimitry Andric 31000b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 31010b57cec5SDimitry Andric SelectionDAG &DAG) const { 31020b57cec5SDimitry Andric SDValue CmpOp0 = Op.getOperand(0); 31030b57cec5SDimitry Andric SDValue CmpOp1 = Op.getOperand(1); 31040b57cec5SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 31050b57cec5SDimitry Andric SDLoc DL(Op); 31060b57cec5SDimitry Andric EVT VT = Op.getValueType(); 31070b57cec5SDimitry Andric if (VT.isVector()) 31080b57cec5SDimitry Andric return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 31090b57cec5SDimitry Andric 31100b57cec5SDimitry Andric Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 31110b57cec5SDimitry Andric SDValue CCReg = emitCmp(DAG, DL, C); 31120b57cec5SDimitry Andric return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 31130b57cec5SDimitry Andric } 31140b57cec5SDimitry Andric 3115480093f4SDimitry Andric SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3116480093f4SDimitry Andric SelectionDAG &DAG, 3117480093f4SDimitry Andric bool IsSignaling) const { 3118480093f4SDimitry Andric SDValue Chain = Op.getOperand(0); 3119480093f4SDimitry Andric SDValue CmpOp0 = Op.getOperand(1); 3120480093f4SDimitry Andric SDValue CmpOp1 = Op.getOperand(2); 3121480093f4SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3122480093f4SDimitry Andric SDLoc DL(Op); 3123480093f4SDimitry Andric EVT VT = Op.getNode()->getValueType(0); 3124480093f4SDimitry Andric if (VT.isVector()) { 3125480093f4SDimitry Andric SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3126480093f4SDimitry Andric Chain, IsSignaling); 3127480093f4SDimitry Andric return Res.getValue(Op.getResNo()); 3128480093f4SDimitry Andric } 3129480093f4SDimitry Andric 3130480093f4SDimitry Andric Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3131480093f4SDimitry Andric SDValue CCReg = emitCmp(DAG, DL, C); 3132480093f4SDimitry Andric CCReg->setFlags(Op->getFlags()); 3133480093f4SDimitry Andric SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3134480093f4SDimitry Andric SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3135480093f4SDimitry Andric return DAG.getMergeValues(Ops, DL); 3136480093f4SDimitry Andric } 3137480093f4SDimitry Andric 31380b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 31390b57cec5SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 31400b57cec5SDimitry Andric SDValue CmpOp0 = Op.getOperand(2); 31410b57cec5SDimitry Andric SDValue CmpOp1 = Op.getOperand(3); 31420b57cec5SDimitry Andric SDValue Dest = Op.getOperand(4); 31430b57cec5SDimitry Andric SDLoc DL(Op); 31440b57cec5SDimitry Andric 31450b57cec5SDimitry Andric Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 31460b57cec5SDimitry Andric SDValue CCReg = emitCmp(DAG, DL, C); 31478bcb0991SDimitry Andric return DAG.getNode( 31488bcb0991SDimitry Andric SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 31498bcb0991SDimitry Andric DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 31508bcb0991SDimitry Andric DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 31510b57cec5SDimitry Andric } 31520b57cec5SDimitry Andric 31530b57cec5SDimitry Andric // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 31540b57cec5SDimitry Andric // allowing Pos and Neg to be wider than CmpOp. 31550b57cec5SDimitry Andric static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 31560b57cec5SDimitry Andric return (Neg.getOpcode() == ISD::SUB && 31570b57cec5SDimitry Andric Neg.getOperand(0).getOpcode() == ISD::Constant && 31580b57cec5SDimitry Andric cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 31590b57cec5SDimitry Andric Neg.getOperand(1) == Pos && 31600b57cec5SDimitry Andric (Pos == CmpOp || 31610b57cec5SDimitry Andric (Pos.getOpcode() == ISD::SIGN_EXTEND && 31620b57cec5SDimitry Andric Pos.getOperand(0) == CmpOp))); 31630b57cec5SDimitry Andric } 31640b57cec5SDimitry Andric 31650b57cec5SDimitry Andric // Return the absolute or negative absolute of Op; IsNegative decides which. 31660b57cec5SDimitry Andric static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 31670b57cec5SDimitry Andric bool IsNegative) { 3168e8d8bef9SDimitry Andric Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 31690b57cec5SDimitry Andric if (IsNegative) 31700b57cec5SDimitry Andric Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 31710b57cec5SDimitry Andric DAG.getConstant(0, DL, Op.getValueType()), Op); 31720b57cec5SDimitry Andric return Op; 31730b57cec5SDimitry Andric } 31740b57cec5SDimitry Andric 31750b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 31760b57cec5SDimitry Andric SelectionDAG &DAG) const { 31770b57cec5SDimitry Andric SDValue CmpOp0 = Op.getOperand(0); 31780b57cec5SDimitry Andric SDValue CmpOp1 = Op.getOperand(1); 31790b57cec5SDimitry Andric SDValue TrueOp = Op.getOperand(2); 31800b57cec5SDimitry Andric SDValue FalseOp = Op.getOperand(3); 31810b57cec5SDimitry Andric ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 31820b57cec5SDimitry Andric SDLoc DL(Op); 31830b57cec5SDimitry Andric 31840b57cec5SDimitry Andric Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 31850b57cec5SDimitry Andric 31860b57cec5SDimitry Andric // Check for absolute and negative-absolute selections, including those 31870b57cec5SDimitry Andric // where the comparison value is sign-extended (for LPGFR and LNGFR). 31880b57cec5SDimitry Andric // This check supplements the one in DAGCombiner. 31890b57cec5SDimitry Andric if (C.Opcode == SystemZISD::ICMP && 31900b57cec5SDimitry Andric C.CCMask != SystemZ::CCMASK_CMP_EQ && 31910b57cec5SDimitry Andric C.CCMask != SystemZ::CCMASK_CMP_NE && 31920b57cec5SDimitry Andric C.Op1.getOpcode() == ISD::Constant && 31930b57cec5SDimitry Andric cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 31940b57cec5SDimitry Andric if (isAbsolute(C.Op0, TrueOp, FalseOp)) 31950b57cec5SDimitry Andric return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 31960b57cec5SDimitry Andric if (isAbsolute(C.Op0, FalseOp, TrueOp)) 31970b57cec5SDimitry Andric return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 31980b57cec5SDimitry Andric } 31990b57cec5SDimitry Andric 32000b57cec5SDimitry Andric SDValue CCReg = emitCmp(DAG, DL, C); 32018bcb0991SDimitry Andric SDValue Ops[] = {TrueOp, FalseOp, 32028bcb0991SDimitry Andric DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 32038bcb0991SDimitry Andric DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 32040b57cec5SDimitry Andric 32050b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 32060b57cec5SDimitry Andric } 32070b57cec5SDimitry Andric 32080b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 32090b57cec5SDimitry Andric SelectionDAG &DAG) const { 32100b57cec5SDimitry Andric SDLoc DL(Node); 32110b57cec5SDimitry Andric const GlobalValue *GV = Node->getGlobal(); 32120b57cec5SDimitry Andric int64_t Offset = Node->getOffset(); 32130b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 32140b57cec5SDimitry Andric CodeModel::Model CM = DAG.getTarget().getCodeModel(); 32150b57cec5SDimitry Andric 32160b57cec5SDimitry Andric SDValue Result; 32170b57cec5SDimitry Andric if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3218480093f4SDimitry Andric if (isInt<32>(Offset)) { 32190b57cec5SDimitry Andric // Assign anchors at 1<<12 byte boundaries. 32200b57cec5SDimitry Andric uint64_t Anchor = Offset & ~uint64_t(0xfff); 32210b57cec5SDimitry Andric Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 32220b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 32230b57cec5SDimitry Andric 3224480093f4SDimitry Andric // The offset can be folded into the address if it is aligned to a 3225480093f4SDimitry Andric // halfword. 32260b57cec5SDimitry Andric Offset -= Anchor; 32270b57cec5SDimitry Andric if (Offset != 0 && (Offset & 1) == 0) { 3228480093f4SDimitry Andric SDValue Full = 3229480093f4SDimitry Andric DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 32300b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 32310b57cec5SDimitry Andric Offset = 0; 32320b57cec5SDimitry Andric } 32330b57cec5SDimitry Andric } else { 3234480093f4SDimitry Andric // Conservatively load a constant offset greater than 32 bits into a 3235480093f4SDimitry Andric // register below. 3236480093f4SDimitry Andric Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3237480093f4SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3238480093f4SDimitry Andric } 3239480093f4SDimitry Andric } else { 32400b57cec5SDimitry Andric Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 32410b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 32420b57cec5SDimitry Andric Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 32430b57cec5SDimitry Andric MachinePointerInfo::getGOT(DAG.getMachineFunction())); 32440b57cec5SDimitry Andric } 32450b57cec5SDimitry Andric 32460b57cec5SDimitry Andric // If there was a non-zero offset that we didn't fold, create an explicit 32470b57cec5SDimitry Andric // addition for it. 32480b57cec5SDimitry Andric if (Offset != 0) 32490b57cec5SDimitry Andric Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 32500b57cec5SDimitry Andric DAG.getConstant(Offset, DL, PtrVT)); 32510b57cec5SDimitry Andric 32520b57cec5SDimitry Andric return Result; 32530b57cec5SDimitry Andric } 32540b57cec5SDimitry Andric 32550b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 32560b57cec5SDimitry Andric SelectionDAG &DAG, 32570b57cec5SDimitry Andric unsigned Opcode, 32580b57cec5SDimitry Andric SDValue GOTOffset) const { 32590b57cec5SDimitry Andric SDLoc DL(Node); 32600b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 32610b57cec5SDimitry Andric SDValue Chain = DAG.getEntryNode(); 32620b57cec5SDimitry Andric SDValue Glue; 32630b57cec5SDimitry Andric 3264480093f4SDimitry Andric if (DAG.getMachineFunction().getFunction().getCallingConv() == 3265480093f4SDimitry Andric CallingConv::GHC) 3266480093f4SDimitry Andric report_fatal_error("In GHC calling convention TLS is not supported"); 3267480093f4SDimitry Andric 32680b57cec5SDimitry Andric // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 32690b57cec5SDimitry Andric SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 32700b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 32710b57cec5SDimitry Andric Glue = Chain.getValue(1); 32720b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 32730b57cec5SDimitry Andric Glue = Chain.getValue(1); 32740b57cec5SDimitry Andric 32750b57cec5SDimitry Andric // The first call operand is the chain and the second is the TLS symbol. 32760b57cec5SDimitry Andric SmallVector<SDValue, 8> Ops; 32770b57cec5SDimitry Andric Ops.push_back(Chain); 32780b57cec5SDimitry Andric Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 32790b57cec5SDimitry Andric Node->getValueType(0), 32800b57cec5SDimitry Andric 0, 0)); 32810b57cec5SDimitry Andric 32820b57cec5SDimitry Andric // Add argument registers to the end of the list so that they are 32830b57cec5SDimitry Andric // known live into the call. 32840b57cec5SDimitry Andric Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 32850b57cec5SDimitry Andric Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 32860b57cec5SDimitry Andric 32870b57cec5SDimitry Andric // Add a register mask operand representing the call-preserved registers. 32880b57cec5SDimitry Andric const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 32890b57cec5SDimitry Andric const uint32_t *Mask = 32900b57cec5SDimitry Andric TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 32910b57cec5SDimitry Andric assert(Mask && "Missing call preserved mask for calling convention"); 32920b57cec5SDimitry Andric Ops.push_back(DAG.getRegisterMask(Mask)); 32930b57cec5SDimitry Andric 32940b57cec5SDimitry Andric // Glue the call to the argument copies. 32950b57cec5SDimitry Andric Ops.push_back(Glue); 32960b57cec5SDimitry Andric 32970b57cec5SDimitry Andric // Emit the call. 32980b57cec5SDimitry Andric SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 32990b57cec5SDimitry Andric Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 33000b57cec5SDimitry Andric Glue = Chain.getValue(1); 33010b57cec5SDimitry Andric 33020b57cec5SDimitry Andric // Copy the return value from %r2. 33030b57cec5SDimitry Andric return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 33040b57cec5SDimitry Andric } 33050b57cec5SDimitry Andric 33060b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 33070b57cec5SDimitry Andric SelectionDAG &DAG) const { 33080b57cec5SDimitry Andric SDValue Chain = DAG.getEntryNode(); 33090b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 33100b57cec5SDimitry Andric 33110b57cec5SDimitry Andric // The high part of the thread pointer is in access register 0. 33120b57cec5SDimitry Andric SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 33130b57cec5SDimitry Andric TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 33140b57cec5SDimitry Andric 33150b57cec5SDimitry Andric // The low part of the thread pointer is in access register 1. 33160b57cec5SDimitry Andric SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 33170b57cec5SDimitry Andric TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 33180b57cec5SDimitry Andric 33190b57cec5SDimitry Andric // Merge them into a single 64-bit address. 33200b57cec5SDimitry Andric SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 33210b57cec5SDimitry Andric DAG.getConstant(32, DL, PtrVT)); 33220b57cec5SDimitry Andric return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 33230b57cec5SDimitry Andric } 33240b57cec5SDimitry Andric 33250b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 33260b57cec5SDimitry Andric SelectionDAG &DAG) const { 33270b57cec5SDimitry Andric if (DAG.getTarget().useEmulatedTLS()) 33280b57cec5SDimitry Andric return LowerToTLSEmulatedModel(Node, DAG); 33290b57cec5SDimitry Andric SDLoc DL(Node); 33300b57cec5SDimitry Andric const GlobalValue *GV = Node->getGlobal(); 33310b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 33320b57cec5SDimitry Andric TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 33330b57cec5SDimitry Andric 3334480093f4SDimitry Andric if (DAG.getMachineFunction().getFunction().getCallingConv() == 3335480093f4SDimitry Andric CallingConv::GHC) 3336480093f4SDimitry Andric report_fatal_error("In GHC calling convention TLS is not supported"); 3337480093f4SDimitry Andric 33380b57cec5SDimitry Andric SDValue TP = lowerThreadPointer(DL, DAG); 33390b57cec5SDimitry Andric 33400b57cec5SDimitry Andric // Get the offset of GA from the thread pointer, based on the TLS model. 33410b57cec5SDimitry Andric SDValue Offset; 33420b57cec5SDimitry Andric switch (model) { 33430b57cec5SDimitry Andric case TLSModel::GeneralDynamic: { 33440b57cec5SDimitry Andric // Load the GOT offset of the tls_index (module ID / per-symbol offset). 33450b57cec5SDimitry Andric SystemZConstantPoolValue *CPV = 33460b57cec5SDimitry Andric SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 33470b57cec5SDimitry Andric 33485ffd83dbSDimitry Andric Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 33490b57cec5SDimitry Andric Offset = DAG.getLoad( 33500b57cec5SDimitry Andric PtrVT, DL, DAG.getEntryNode(), Offset, 33510b57cec5SDimitry Andric MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 33520b57cec5SDimitry Andric 33530b57cec5SDimitry Andric // Call __tls_get_offset to retrieve the offset. 33540b57cec5SDimitry Andric Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 33550b57cec5SDimitry Andric break; 33560b57cec5SDimitry Andric } 33570b57cec5SDimitry Andric 33580b57cec5SDimitry Andric case TLSModel::LocalDynamic: { 33590b57cec5SDimitry Andric // Load the GOT offset of the module ID. 33600b57cec5SDimitry Andric SystemZConstantPoolValue *CPV = 33610b57cec5SDimitry Andric SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 33620b57cec5SDimitry Andric 33635ffd83dbSDimitry Andric Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 33640b57cec5SDimitry Andric Offset = DAG.getLoad( 33650b57cec5SDimitry Andric PtrVT, DL, DAG.getEntryNode(), Offset, 33660b57cec5SDimitry Andric MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 33670b57cec5SDimitry Andric 33680b57cec5SDimitry Andric // Call __tls_get_offset to retrieve the module base offset. 33690b57cec5SDimitry Andric Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 33700b57cec5SDimitry Andric 33710b57cec5SDimitry Andric // Note: The SystemZLDCleanupPass will remove redundant computations 33720b57cec5SDimitry Andric // of the module base offset. Count total number of local-dynamic 33730b57cec5SDimitry Andric // accesses to trigger execution of that pass. 33740b57cec5SDimitry Andric SystemZMachineFunctionInfo* MFI = 33750b57cec5SDimitry Andric DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 33760b57cec5SDimitry Andric MFI->incNumLocalDynamicTLSAccesses(); 33770b57cec5SDimitry Andric 33780b57cec5SDimitry Andric // Add the per-symbol offset. 33790b57cec5SDimitry Andric CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 33800b57cec5SDimitry Andric 33815ffd83dbSDimitry Andric SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 33820b57cec5SDimitry Andric DTPOffset = DAG.getLoad( 33830b57cec5SDimitry Andric PtrVT, DL, DAG.getEntryNode(), DTPOffset, 33840b57cec5SDimitry Andric MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 33850b57cec5SDimitry Andric 33860b57cec5SDimitry Andric Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 33870b57cec5SDimitry Andric break; 33880b57cec5SDimitry Andric } 33890b57cec5SDimitry Andric 33900b57cec5SDimitry Andric case TLSModel::InitialExec: { 33910b57cec5SDimitry Andric // Load the offset from the GOT. 33920b57cec5SDimitry Andric Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 33930b57cec5SDimitry Andric SystemZII::MO_INDNTPOFF); 33940b57cec5SDimitry Andric Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 33950b57cec5SDimitry Andric Offset = 33960b57cec5SDimitry Andric DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 33970b57cec5SDimitry Andric MachinePointerInfo::getGOT(DAG.getMachineFunction())); 33980b57cec5SDimitry Andric break; 33990b57cec5SDimitry Andric } 34000b57cec5SDimitry Andric 34010b57cec5SDimitry Andric case TLSModel::LocalExec: { 34020b57cec5SDimitry Andric // Force the offset into the constant pool and load it from there. 34030b57cec5SDimitry Andric SystemZConstantPoolValue *CPV = 34040b57cec5SDimitry Andric SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 34050b57cec5SDimitry Andric 34065ffd83dbSDimitry Andric Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 34070b57cec5SDimitry Andric Offset = DAG.getLoad( 34080b57cec5SDimitry Andric PtrVT, DL, DAG.getEntryNode(), Offset, 34090b57cec5SDimitry Andric MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 34100b57cec5SDimitry Andric break; 34110b57cec5SDimitry Andric } 34120b57cec5SDimitry Andric } 34130b57cec5SDimitry Andric 34140b57cec5SDimitry Andric // Add the base and offset together. 34150b57cec5SDimitry Andric return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 34160b57cec5SDimitry Andric } 34170b57cec5SDimitry Andric 34180b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 34190b57cec5SDimitry Andric SelectionDAG &DAG) const { 34200b57cec5SDimitry Andric SDLoc DL(Node); 34210b57cec5SDimitry Andric const BlockAddress *BA = Node->getBlockAddress(); 34220b57cec5SDimitry Andric int64_t Offset = Node->getOffset(); 34230b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 34240b57cec5SDimitry Andric 34250b57cec5SDimitry Andric SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 34260b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 34270b57cec5SDimitry Andric return Result; 34280b57cec5SDimitry Andric } 34290b57cec5SDimitry Andric 34300b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 34310b57cec5SDimitry Andric SelectionDAG &DAG) const { 34320b57cec5SDimitry Andric SDLoc DL(JT); 34330b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 34340b57cec5SDimitry Andric SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 34350b57cec5SDimitry Andric 34360b57cec5SDimitry Andric // Use LARL to load the address of the table. 34370b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 34380b57cec5SDimitry Andric } 34390b57cec5SDimitry Andric 34400b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 34410b57cec5SDimitry Andric SelectionDAG &DAG) const { 34420b57cec5SDimitry Andric SDLoc DL(CP); 34430b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 34440b57cec5SDimitry Andric 34450b57cec5SDimitry Andric SDValue Result; 34460b57cec5SDimitry Andric if (CP->isMachineConstantPoolEntry()) 34475ffd83dbSDimitry Andric Result = 34485ffd83dbSDimitry Andric DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 34490b57cec5SDimitry Andric else 34505ffd83dbSDimitry Andric Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 34515ffd83dbSDimitry Andric CP->getOffset()); 34520b57cec5SDimitry Andric 34530b57cec5SDimitry Andric // Use LARL to load the address of the constant pool entry. 34540b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 34550b57cec5SDimitry Andric } 34560b57cec5SDimitry Andric 34570b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 34580b57cec5SDimitry Andric SelectionDAG &DAG) const { 3459349cc55cSDimitry Andric auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 34600b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 34610b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 34620b57cec5SDimitry Andric MFI.setFrameAddressIsTaken(true); 34630b57cec5SDimitry Andric 34640b57cec5SDimitry Andric SDLoc DL(Op); 34650b57cec5SDimitry Andric unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 34660b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 34670b57cec5SDimitry Andric 3468fe6060f1SDimitry Andric // By definition, the frame address is the address of the back chain. (In 3469fe6060f1SDimitry Andric // the case of packed stack without backchain, return the address where the 3470fe6060f1SDimitry Andric // backchain would have been stored. This will either be an unused space or 3471fe6060f1SDimitry Andric // contain a saved register). 3472480093f4SDimitry Andric int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 34730b57cec5SDimitry Andric SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 34740b57cec5SDimitry Andric 34750b57cec5SDimitry Andric // FIXME The frontend should detect this case. 34760b57cec5SDimitry Andric if (Depth > 0) { 34770b57cec5SDimitry Andric report_fatal_error("Unsupported stack frame traversal count"); 34780b57cec5SDimitry Andric } 34790b57cec5SDimitry Andric 34800b57cec5SDimitry Andric return BackChain; 34810b57cec5SDimitry Andric } 34820b57cec5SDimitry Andric 34830b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 34840b57cec5SDimitry Andric SelectionDAG &DAG) const { 34850b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 34860b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 34870b57cec5SDimitry Andric MFI.setReturnAddressIsTaken(true); 34880b57cec5SDimitry Andric 34890b57cec5SDimitry Andric if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 34900b57cec5SDimitry Andric return SDValue(); 34910b57cec5SDimitry Andric 34920b57cec5SDimitry Andric SDLoc DL(Op); 34930b57cec5SDimitry Andric unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 34940b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 34950b57cec5SDimitry Andric 34960b57cec5SDimitry Andric // FIXME The frontend should detect this case. 34970b57cec5SDimitry Andric if (Depth > 0) { 34980b57cec5SDimitry Andric report_fatal_error("Unsupported stack frame traversal count"); 34990b57cec5SDimitry Andric } 35000b57cec5SDimitry Andric 35010b57cec5SDimitry Andric // Return R14D, which has the return address. Mark it an implicit live-in. 350204eeddc0SDimitry Andric Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 35030b57cec5SDimitry Andric return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 35040b57cec5SDimitry Andric } 35050b57cec5SDimitry Andric 35060b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 35070b57cec5SDimitry Andric SelectionDAG &DAG) const { 35080b57cec5SDimitry Andric SDLoc DL(Op); 35090b57cec5SDimitry Andric SDValue In = Op.getOperand(0); 35100b57cec5SDimitry Andric EVT InVT = In.getValueType(); 35110b57cec5SDimitry Andric EVT ResVT = Op.getValueType(); 35120b57cec5SDimitry Andric 35130b57cec5SDimitry Andric // Convert loads directly. This is normally done by DAGCombiner, 35140b57cec5SDimitry Andric // but we need this case for bitcasts that are created during lowering 35150b57cec5SDimitry Andric // and which are then lowered themselves. 35160b57cec5SDimitry Andric if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 35170b57cec5SDimitry Andric if (ISD::isNormalLoad(LoadN)) { 35180b57cec5SDimitry Andric SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 35190b57cec5SDimitry Andric LoadN->getBasePtr(), LoadN->getMemOperand()); 35200b57cec5SDimitry Andric // Update the chain uses. 35210b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 35220b57cec5SDimitry Andric return NewLoad; 35230b57cec5SDimitry Andric } 35240b57cec5SDimitry Andric 35250b57cec5SDimitry Andric if (InVT == MVT::i32 && ResVT == MVT::f32) { 35260b57cec5SDimitry Andric SDValue In64; 35270b57cec5SDimitry Andric if (Subtarget.hasHighWord()) { 35280b57cec5SDimitry Andric SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 35290b57cec5SDimitry Andric MVT::i64); 35300b57cec5SDimitry Andric In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 35310b57cec5SDimitry Andric MVT::i64, SDValue(U64, 0), In); 35320b57cec5SDimitry Andric } else { 35330b57cec5SDimitry Andric In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 35340b57cec5SDimitry Andric In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 35350b57cec5SDimitry Andric DAG.getConstant(32, DL, MVT::i64)); 35360b57cec5SDimitry Andric } 35370b57cec5SDimitry Andric SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 35380b57cec5SDimitry Andric return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 35390b57cec5SDimitry Andric DL, MVT::f32, Out64); 35400b57cec5SDimitry Andric } 35410b57cec5SDimitry Andric if (InVT == MVT::f32 && ResVT == MVT::i32) { 35420b57cec5SDimitry Andric SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 35430b57cec5SDimitry Andric SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 35440b57cec5SDimitry Andric MVT::f64, SDValue(U64, 0), In); 35450b57cec5SDimitry Andric SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 35460b57cec5SDimitry Andric if (Subtarget.hasHighWord()) 35470b57cec5SDimitry Andric return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 35480b57cec5SDimitry Andric MVT::i32, Out64); 35490b57cec5SDimitry Andric SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 35500b57cec5SDimitry Andric DAG.getConstant(32, DL, MVT::i64)); 35510b57cec5SDimitry Andric return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 35520b57cec5SDimitry Andric } 35530b57cec5SDimitry Andric llvm_unreachable("Unexpected bitcast combination"); 35540b57cec5SDimitry Andric } 35550b57cec5SDimitry Andric 35560b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 35570b57cec5SDimitry Andric SelectionDAG &DAG) const { 355881ad6265SDimitry Andric 355981ad6265SDimitry Andric if (Subtarget.isTargetXPLINK64()) 356081ad6265SDimitry Andric return lowerVASTART_XPLINK(Op, DAG); 356181ad6265SDimitry Andric else 356281ad6265SDimitry Andric return lowerVASTART_ELF(Op, DAG); 356381ad6265SDimitry Andric } 356481ad6265SDimitry Andric 356581ad6265SDimitry Andric SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, 356681ad6265SDimitry Andric SelectionDAG &DAG) const { 356781ad6265SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 356881ad6265SDimitry Andric SystemZMachineFunctionInfo *FuncInfo = 356981ad6265SDimitry Andric MF.getInfo<SystemZMachineFunctionInfo>(); 357081ad6265SDimitry Andric 357181ad6265SDimitry Andric SDLoc DL(Op); 357281ad6265SDimitry Andric 357381ad6265SDimitry Andric // vastart just stores the address of the VarArgsFrameIndex slot into the 357481ad6265SDimitry Andric // memory location argument. 357581ad6265SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 357681ad6265SDimitry Andric SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 357781ad6265SDimitry Andric const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 357881ad6265SDimitry Andric return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 357981ad6265SDimitry Andric MachinePointerInfo(SV)); 358081ad6265SDimitry Andric } 358181ad6265SDimitry Andric 358281ad6265SDimitry Andric SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, 358381ad6265SDimitry Andric SelectionDAG &DAG) const { 35840b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 35850b57cec5SDimitry Andric SystemZMachineFunctionInfo *FuncInfo = 35860b57cec5SDimitry Andric MF.getInfo<SystemZMachineFunctionInfo>(); 35870b57cec5SDimitry Andric EVT PtrVT = getPointerTy(DAG.getDataLayout()); 35880b57cec5SDimitry Andric 35890b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 35900b57cec5SDimitry Andric SDValue Addr = Op.getOperand(1); 35910b57cec5SDimitry Andric const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 35920b57cec5SDimitry Andric SDLoc DL(Op); 35930b57cec5SDimitry Andric 35940b57cec5SDimitry Andric // The initial values of each field. 35950b57cec5SDimitry Andric const unsigned NumFields = 4; 35960b57cec5SDimitry Andric SDValue Fields[NumFields] = { 35970b57cec5SDimitry Andric DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 35980b57cec5SDimitry Andric DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 35990b57cec5SDimitry Andric DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 36000b57cec5SDimitry Andric DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 36010b57cec5SDimitry Andric }; 36020b57cec5SDimitry Andric 36030b57cec5SDimitry Andric // Store each field into its respective slot. 36040b57cec5SDimitry Andric SDValue MemOps[NumFields]; 36050b57cec5SDimitry Andric unsigned Offset = 0; 36060b57cec5SDimitry Andric for (unsigned I = 0; I < NumFields; ++I) { 36070b57cec5SDimitry Andric SDValue FieldAddr = Addr; 36080b57cec5SDimitry Andric if (Offset != 0) 36090b57cec5SDimitry Andric FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 36100b57cec5SDimitry Andric DAG.getIntPtrConstant(Offset, DL)); 36110b57cec5SDimitry Andric MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 36120b57cec5SDimitry Andric MachinePointerInfo(SV, Offset)); 36130b57cec5SDimitry Andric Offset += 8; 36140b57cec5SDimitry Andric } 36150b57cec5SDimitry Andric return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 36160b57cec5SDimitry Andric } 36170b57cec5SDimitry Andric 36180b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 36190b57cec5SDimitry Andric SelectionDAG &DAG) const { 36200b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 36210b57cec5SDimitry Andric SDValue DstPtr = Op.getOperand(1); 36220b57cec5SDimitry Andric SDValue SrcPtr = Op.getOperand(2); 36230b57cec5SDimitry Andric const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 36240b57cec5SDimitry Andric const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 36250b57cec5SDimitry Andric SDLoc DL(Op); 36260b57cec5SDimitry Andric 362781ad6265SDimitry Andric uint32_t Sz = 362881ad6265SDimitry Andric Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; 362981ad6265SDimitry Andric return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), 36305ffd83dbSDimitry Andric Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 36315ffd83dbSDimitry Andric /*isTailCall*/ false, MachinePointerInfo(DstSV), 36325ffd83dbSDimitry Andric MachinePointerInfo(SrcSV)); 36330b57cec5SDimitry Andric } 36340b57cec5SDimitry Andric 363581ad6265SDimitry Andric SDValue 363681ad6265SDimitry Andric SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 363781ad6265SDimitry Andric SelectionDAG &DAG) const { 363881ad6265SDimitry Andric if (Subtarget.isTargetXPLINK64()) 363981ad6265SDimitry Andric return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 364081ad6265SDimitry Andric else 364181ad6265SDimitry Andric return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 364281ad6265SDimitry Andric } 364381ad6265SDimitry Andric 364481ad6265SDimitry Andric SDValue 364581ad6265SDimitry Andric SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 364681ad6265SDimitry Andric SelectionDAG &DAG) const { 364781ad6265SDimitry Andric const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 364881ad6265SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 364981ad6265SDimitry Andric bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 365081ad6265SDimitry Andric SDValue Chain = Op.getOperand(0); 365181ad6265SDimitry Andric SDValue Size = Op.getOperand(1); 365281ad6265SDimitry Andric SDValue Align = Op.getOperand(2); 365381ad6265SDimitry Andric SDLoc DL(Op); 365481ad6265SDimitry Andric 365581ad6265SDimitry Andric // If user has set the no alignment function attribute, ignore 365681ad6265SDimitry Andric // alloca alignments. 365781ad6265SDimitry Andric uint64_t AlignVal = 365881ad6265SDimitry Andric (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 365981ad6265SDimitry Andric 366081ad6265SDimitry Andric uint64_t StackAlign = TFI->getStackAlignment(); 366181ad6265SDimitry Andric uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 366281ad6265SDimitry Andric uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 366381ad6265SDimitry Andric 366481ad6265SDimitry Andric SDValue NeededSpace = Size; 366581ad6265SDimitry Andric 366681ad6265SDimitry Andric // Add extra space for alignment if needed. 366781ad6265SDimitry Andric EVT PtrVT = getPointerTy(MF.getDataLayout()); 366881ad6265SDimitry Andric if (ExtraAlignSpace) 366981ad6265SDimitry Andric NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 367081ad6265SDimitry Andric DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 367181ad6265SDimitry Andric 367281ad6265SDimitry Andric bool IsSigned = false; 367381ad6265SDimitry Andric bool DoesNotReturn = false; 367481ad6265SDimitry Andric bool IsReturnValueUsed = false; 367581ad6265SDimitry Andric EVT VT = Op.getValueType(); 367681ad6265SDimitry Andric SDValue AllocaCall = 3677bdd1243dSDimitry Andric makeExternalCall(Chain, DAG, "@@ALCAXP", VT, ArrayRef(NeededSpace), 367881ad6265SDimitry Andric CallingConv::C, IsSigned, DL, DoesNotReturn, 367981ad6265SDimitry Andric IsReturnValueUsed) 368081ad6265SDimitry Andric .first; 368181ad6265SDimitry Andric 368281ad6265SDimitry Andric // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 368381ad6265SDimitry Andric // to end of call in order to ensure it isn't broken up from the call 368481ad6265SDimitry Andric // sequence. 368581ad6265SDimitry Andric auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 368681ad6265SDimitry Andric Register SPReg = Regs.getStackPointerRegister(); 368781ad6265SDimitry Andric Chain = AllocaCall.getValue(1); 368881ad6265SDimitry Andric SDValue Glue = AllocaCall.getValue(2); 368981ad6265SDimitry Andric SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 369081ad6265SDimitry Andric Chain = NewSPRegNode.getValue(1); 369181ad6265SDimitry Andric 369281ad6265SDimitry Andric MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 369381ad6265SDimitry Andric SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 369481ad6265SDimitry Andric SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 369581ad6265SDimitry Andric 369681ad6265SDimitry Andric // Dynamically realign if needed. 369781ad6265SDimitry Andric if (ExtraAlignSpace) { 369881ad6265SDimitry Andric Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 369981ad6265SDimitry Andric DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 370081ad6265SDimitry Andric Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 370181ad6265SDimitry Andric DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 370281ad6265SDimitry Andric } 370381ad6265SDimitry Andric 370481ad6265SDimitry Andric SDValue Ops[2] = {Result, Chain}; 370581ad6265SDimitry Andric return DAG.getMergeValues(Ops, DL); 370681ad6265SDimitry Andric } 370781ad6265SDimitry Andric 370881ad6265SDimitry Andric SDValue 370981ad6265SDimitry Andric SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 371081ad6265SDimitry Andric SelectionDAG &DAG) const { 37110b57cec5SDimitry Andric const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 37120b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 37130b57cec5SDimitry Andric bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 37140b57cec5SDimitry Andric bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 37150b57cec5SDimitry Andric 37160b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 37170b57cec5SDimitry Andric SDValue Size = Op.getOperand(1); 37180b57cec5SDimitry Andric SDValue Align = Op.getOperand(2); 37190b57cec5SDimitry Andric SDLoc DL(Op); 37200b57cec5SDimitry Andric 37210b57cec5SDimitry Andric // If user has set the no alignment function attribute, ignore 37220b57cec5SDimitry Andric // alloca alignments. 3723e8d8bef9SDimitry Andric uint64_t AlignVal = 3724e8d8bef9SDimitry Andric (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 37250b57cec5SDimitry Andric 37260b57cec5SDimitry Andric uint64_t StackAlign = TFI->getStackAlignment(); 37270b57cec5SDimitry Andric uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 37280b57cec5SDimitry Andric uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 37290b57cec5SDimitry Andric 3730e8d8bef9SDimitry Andric Register SPReg = getStackPointerRegisterToSaveRestore(); 37310b57cec5SDimitry Andric SDValue NeededSpace = Size; 37320b57cec5SDimitry Andric 37330b57cec5SDimitry Andric // Get a reference to the stack pointer. 37340b57cec5SDimitry Andric SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 37350b57cec5SDimitry Andric 37360b57cec5SDimitry Andric // If we need a backchain, save it now. 37370b57cec5SDimitry Andric SDValue Backchain; 37380b57cec5SDimitry Andric if (StoreBackchain) 3739e8d8bef9SDimitry Andric Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3740e8d8bef9SDimitry Andric MachinePointerInfo()); 37410b57cec5SDimitry Andric 37420b57cec5SDimitry Andric // Add extra space for alignment if needed. 37430b57cec5SDimitry Andric if (ExtraAlignSpace) 37440b57cec5SDimitry Andric NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 37450b57cec5SDimitry Andric DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 37460b57cec5SDimitry Andric 37470b57cec5SDimitry Andric // Get the new stack pointer value. 37485ffd83dbSDimitry Andric SDValue NewSP; 37495ffd83dbSDimitry Andric if (hasInlineStackProbe(MF)) { 37505ffd83dbSDimitry Andric NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 37515ffd83dbSDimitry Andric DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 37525ffd83dbSDimitry Andric Chain = NewSP.getValue(1); 37535ffd83dbSDimitry Andric } 37545ffd83dbSDimitry Andric else { 37555ffd83dbSDimitry Andric NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 37560b57cec5SDimitry Andric // Copy the new stack pointer back. 37570b57cec5SDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 37585ffd83dbSDimitry Andric } 37590b57cec5SDimitry Andric 37600b57cec5SDimitry Andric // The allocated data lives above the 160 bytes allocated for the standard 37610b57cec5SDimitry Andric // frame, plus any outgoing stack arguments. We don't know how much that 37620b57cec5SDimitry Andric // amounts to yet, so emit a special ADJDYNALLOC placeholder. 37630b57cec5SDimitry Andric SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 37640b57cec5SDimitry Andric SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 37650b57cec5SDimitry Andric 37660b57cec5SDimitry Andric // Dynamically realign if needed. 37670b57cec5SDimitry Andric if (RequiredAlign > StackAlign) { 37680b57cec5SDimitry Andric Result = 37690b57cec5SDimitry Andric DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 37700b57cec5SDimitry Andric DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 37710b57cec5SDimitry Andric Result = 37720b57cec5SDimitry Andric DAG.getNode(ISD::AND, DL, MVT::i64, Result, 37730b57cec5SDimitry Andric DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 37740b57cec5SDimitry Andric } 37750b57cec5SDimitry Andric 37760b57cec5SDimitry Andric if (StoreBackchain) 3777e8d8bef9SDimitry Andric Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3778e8d8bef9SDimitry Andric MachinePointerInfo()); 37790b57cec5SDimitry Andric 37800b57cec5SDimitry Andric SDValue Ops[2] = { Result, Chain }; 37810b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 37820b57cec5SDimitry Andric } 37830b57cec5SDimitry Andric 37840b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 37850b57cec5SDimitry Andric SDValue Op, SelectionDAG &DAG) const { 37860b57cec5SDimitry Andric SDLoc DL(Op); 37870b57cec5SDimitry Andric 37880b57cec5SDimitry Andric return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 37890b57cec5SDimitry Andric } 37900b57cec5SDimitry Andric 37910b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 37920b57cec5SDimitry Andric SelectionDAG &DAG) const { 37930b57cec5SDimitry Andric EVT VT = Op.getValueType(); 37940b57cec5SDimitry Andric SDLoc DL(Op); 37950b57cec5SDimitry Andric SDValue Ops[2]; 37960b57cec5SDimitry Andric if (is32Bit(VT)) 37970b57cec5SDimitry Andric // Just do a normal 64-bit multiplication and extract the results. 37980b57cec5SDimitry Andric // We define this so that it can be used for constant division. 37990b57cec5SDimitry Andric lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 38000b57cec5SDimitry Andric Op.getOperand(1), Ops[1], Ops[0]); 38010b57cec5SDimitry Andric else if (Subtarget.hasMiscellaneousExtensions2()) 38020b57cec5SDimitry Andric // SystemZISD::SMUL_LOHI returns the low result in the odd register and 38030b57cec5SDimitry Andric // the high result in the even register. ISD::SMUL_LOHI is defined to 38040b57cec5SDimitry Andric // return the low half first, so the results are in reverse order. 38050b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 38060b57cec5SDimitry Andric Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 38070b57cec5SDimitry Andric else { 38080b57cec5SDimitry Andric // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 38090b57cec5SDimitry Andric // 38100b57cec5SDimitry Andric // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 38110b57cec5SDimitry Andric // 38120b57cec5SDimitry Andric // but using the fact that the upper halves are either all zeros 38130b57cec5SDimitry Andric // or all ones: 38140b57cec5SDimitry Andric // 38150b57cec5SDimitry Andric // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 38160b57cec5SDimitry Andric // 38170b57cec5SDimitry Andric // and grouping the right terms together since they are quicker than the 38180b57cec5SDimitry Andric // multiplication: 38190b57cec5SDimitry Andric // 38200b57cec5SDimitry Andric // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 38210b57cec5SDimitry Andric SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 38220b57cec5SDimitry Andric SDValue LL = Op.getOperand(0); 38230b57cec5SDimitry Andric SDValue RL = Op.getOperand(1); 38240b57cec5SDimitry Andric SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 38250b57cec5SDimitry Andric SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 38260b57cec5SDimitry Andric // SystemZISD::UMUL_LOHI returns the low result in the odd register and 38270b57cec5SDimitry Andric // the high result in the even register. ISD::SMUL_LOHI is defined to 38280b57cec5SDimitry Andric // return the low half first, so the results are in reverse order. 38290b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 38300b57cec5SDimitry Andric LL, RL, Ops[1], Ops[0]); 38310b57cec5SDimitry Andric SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 38320b57cec5SDimitry Andric SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 38330b57cec5SDimitry Andric SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 38340b57cec5SDimitry Andric Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 38350b57cec5SDimitry Andric } 38360b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 38370b57cec5SDimitry Andric } 38380b57cec5SDimitry Andric 38390b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 38400b57cec5SDimitry Andric SelectionDAG &DAG) const { 38410b57cec5SDimitry Andric EVT VT = Op.getValueType(); 38420b57cec5SDimitry Andric SDLoc DL(Op); 38430b57cec5SDimitry Andric SDValue Ops[2]; 38440b57cec5SDimitry Andric if (is32Bit(VT)) 38450b57cec5SDimitry Andric // Just do a normal 64-bit multiplication and extract the results. 38460b57cec5SDimitry Andric // We define this so that it can be used for constant division. 38470b57cec5SDimitry Andric lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 38480b57cec5SDimitry Andric Op.getOperand(1), Ops[1], Ops[0]); 38490b57cec5SDimitry Andric else 38500b57cec5SDimitry Andric // SystemZISD::UMUL_LOHI returns the low result in the odd register and 38510b57cec5SDimitry Andric // the high result in the even register. ISD::UMUL_LOHI is defined to 38520b57cec5SDimitry Andric // return the low half first, so the results are in reverse order. 38530b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 38540b57cec5SDimitry Andric Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 38550b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 38560b57cec5SDimitry Andric } 38570b57cec5SDimitry Andric 38580b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 38590b57cec5SDimitry Andric SelectionDAG &DAG) const { 38600b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 38610b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 38620b57cec5SDimitry Andric EVT VT = Op.getValueType(); 38630b57cec5SDimitry Andric SDLoc DL(Op); 38640b57cec5SDimitry Andric 38650b57cec5SDimitry Andric // We use DSGF for 32-bit division. This means the first operand must 38660b57cec5SDimitry Andric // always be 64-bit, and the second operand should be 32-bit whenever 38670b57cec5SDimitry Andric // that is possible, to improve performance. 38680b57cec5SDimitry Andric if (is32Bit(VT)) 38690b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 38700b57cec5SDimitry Andric else if (DAG.ComputeNumSignBits(Op1) > 32) 38710b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 38720b57cec5SDimitry Andric 38730b57cec5SDimitry Andric // DSG(F) returns the remainder in the even register and the 38740b57cec5SDimitry Andric // quotient in the odd register. 38750b57cec5SDimitry Andric SDValue Ops[2]; 38760b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 38770b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 38780b57cec5SDimitry Andric } 38790b57cec5SDimitry Andric 38800b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 38810b57cec5SDimitry Andric SelectionDAG &DAG) const { 38820b57cec5SDimitry Andric EVT VT = Op.getValueType(); 38830b57cec5SDimitry Andric SDLoc DL(Op); 38840b57cec5SDimitry Andric 38850b57cec5SDimitry Andric // DL(G) returns the remainder in the even register and the 38860b57cec5SDimitry Andric // quotient in the odd register. 38870b57cec5SDimitry Andric SDValue Ops[2]; 38880b57cec5SDimitry Andric lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 38890b57cec5SDimitry Andric Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 38900b57cec5SDimitry Andric return DAG.getMergeValues(Ops, DL); 38910b57cec5SDimitry Andric } 38920b57cec5SDimitry Andric 38930b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 38940b57cec5SDimitry Andric assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 38950b57cec5SDimitry Andric 38960b57cec5SDimitry Andric // Get the known-zero masks for each operand. 38970b57cec5SDimitry Andric SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 38980b57cec5SDimitry Andric KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 38990b57cec5SDimitry Andric DAG.computeKnownBits(Ops[1])}; 39000b57cec5SDimitry Andric 39010b57cec5SDimitry Andric // See if the upper 32 bits of one operand and the lower 32 bits of the 39020b57cec5SDimitry Andric // other are known zero. They are the low and high operands respectively. 39030b57cec5SDimitry Andric uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 39040b57cec5SDimitry Andric Known[1].Zero.getZExtValue() }; 39050b57cec5SDimitry Andric unsigned High, Low; 39060b57cec5SDimitry Andric if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 39070b57cec5SDimitry Andric High = 1, Low = 0; 39080b57cec5SDimitry Andric else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 39090b57cec5SDimitry Andric High = 0, Low = 1; 39100b57cec5SDimitry Andric else 39110b57cec5SDimitry Andric return Op; 39120b57cec5SDimitry Andric 39130b57cec5SDimitry Andric SDValue LowOp = Ops[Low]; 39140b57cec5SDimitry Andric SDValue HighOp = Ops[High]; 39150b57cec5SDimitry Andric 39160b57cec5SDimitry Andric // If the high part is a constant, we're better off using IILH. 39170b57cec5SDimitry Andric if (HighOp.getOpcode() == ISD::Constant) 39180b57cec5SDimitry Andric return Op; 39190b57cec5SDimitry Andric 39200b57cec5SDimitry Andric // If the low part is a constant that is outside the range of LHI, 39210b57cec5SDimitry Andric // then we're better off using IILF. 39220b57cec5SDimitry Andric if (LowOp.getOpcode() == ISD::Constant) { 39230b57cec5SDimitry Andric int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 39240b57cec5SDimitry Andric if (!isInt<16>(Value)) 39250b57cec5SDimitry Andric return Op; 39260b57cec5SDimitry Andric } 39270b57cec5SDimitry Andric 39280b57cec5SDimitry Andric // Check whether the high part is an AND that doesn't change the 39290b57cec5SDimitry Andric // high 32 bits and just masks out low bits. We can skip it if so. 39300b57cec5SDimitry Andric if (HighOp.getOpcode() == ISD::AND && 39310b57cec5SDimitry Andric HighOp.getOperand(1).getOpcode() == ISD::Constant) { 39320b57cec5SDimitry Andric SDValue HighOp0 = HighOp.getOperand(0); 39330b57cec5SDimitry Andric uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 39340b57cec5SDimitry Andric if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 39350b57cec5SDimitry Andric HighOp = HighOp0; 39360b57cec5SDimitry Andric } 39370b57cec5SDimitry Andric 39380b57cec5SDimitry Andric // Take advantage of the fact that all GR32 operations only change the 39390b57cec5SDimitry Andric // low 32 bits by truncating Low to an i32 and inserting it directly 39400b57cec5SDimitry Andric // using a subreg. The interesting cases are those where the truncation 39410b57cec5SDimitry Andric // can be folded. 39420b57cec5SDimitry Andric SDLoc DL(Op); 39430b57cec5SDimitry Andric SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 39440b57cec5SDimitry Andric return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 39450b57cec5SDimitry Andric MVT::i64, HighOp, Low32); 39460b57cec5SDimitry Andric } 39470b57cec5SDimitry Andric 39480b57cec5SDimitry Andric // Lower SADDO/SSUBO/UADDO/USUBO nodes. 39490b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 39500b57cec5SDimitry Andric SelectionDAG &DAG) const { 39510b57cec5SDimitry Andric SDNode *N = Op.getNode(); 39520b57cec5SDimitry Andric SDValue LHS = N->getOperand(0); 39530b57cec5SDimitry Andric SDValue RHS = N->getOperand(1); 39540b57cec5SDimitry Andric SDLoc DL(N); 39550b57cec5SDimitry Andric unsigned BaseOp = 0; 39560b57cec5SDimitry Andric unsigned CCValid = 0; 39570b57cec5SDimitry Andric unsigned CCMask = 0; 39580b57cec5SDimitry Andric 39590b57cec5SDimitry Andric switch (Op.getOpcode()) { 39600b57cec5SDimitry Andric default: llvm_unreachable("Unknown instruction!"); 39610b57cec5SDimitry Andric case ISD::SADDO: 39620b57cec5SDimitry Andric BaseOp = SystemZISD::SADDO; 39630b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ARITH; 39640b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 39650b57cec5SDimitry Andric break; 39660b57cec5SDimitry Andric case ISD::SSUBO: 39670b57cec5SDimitry Andric BaseOp = SystemZISD::SSUBO; 39680b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_ARITH; 39690b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 39700b57cec5SDimitry Andric break; 39710b57cec5SDimitry Andric case ISD::UADDO: 39720b57cec5SDimitry Andric BaseOp = SystemZISD::UADDO; 39730b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_LOGICAL; 39740b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 39750b57cec5SDimitry Andric break; 39760b57cec5SDimitry Andric case ISD::USUBO: 39770b57cec5SDimitry Andric BaseOp = SystemZISD::USUBO; 39780b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_LOGICAL; 39790b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 39800b57cec5SDimitry Andric break; 39810b57cec5SDimitry Andric } 39820b57cec5SDimitry Andric 39830b57cec5SDimitry Andric SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 39840b57cec5SDimitry Andric SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 39850b57cec5SDimitry Andric 39860b57cec5SDimitry Andric SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 39870b57cec5SDimitry Andric if (N->getValueType(1) == MVT::i1) 39880b57cec5SDimitry Andric SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 39890b57cec5SDimitry Andric 39900b57cec5SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 39910b57cec5SDimitry Andric } 39920b57cec5SDimitry Andric 39930b57cec5SDimitry Andric static bool isAddCarryChain(SDValue Carry) { 39940b57cec5SDimitry Andric while (Carry.getOpcode() == ISD::ADDCARRY) 39950b57cec5SDimitry Andric Carry = Carry.getOperand(2); 39960b57cec5SDimitry Andric return Carry.getOpcode() == ISD::UADDO; 39970b57cec5SDimitry Andric } 39980b57cec5SDimitry Andric 39990b57cec5SDimitry Andric static bool isSubBorrowChain(SDValue Carry) { 40000b57cec5SDimitry Andric while (Carry.getOpcode() == ISD::SUBCARRY) 40010b57cec5SDimitry Andric Carry = Carry.getOperand(2); 40020b57cec5SDimitry Andric return Carry.getOpcode() == ISD::USUBO; 40030b57cec5SDimitry Andric } 40040b57cec5SDimitry Andric 40050b57cec5SDimitry Andric // Lower ADDCARRY/SUBCARRY nodes. 40060b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 40070b57cec5SDimitry Andric SelectionDAG &DAG) const { 40080b57cec5SDimitry Andric 40090b57cec5SDimitry Andric SDNode *N = Op.getNode(); 40100b57cec5SDimitry Andric MVT VT = N->getSimpleValueType(0); 40110b57cec5SDimitry Andric 40120b57cec5SDimitry Andric // Let legalize expand this if it isn't a legal type yet. 40130b57cec5SDimitry Andric if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 40140b57cec5SDimitry Andric return SDValue(); 40150b57cec5SDimitry Andric 40160b57cec5SDimitry Andric SDValue LHS = N->getOperand(0); 40170b57cec5SDimitry Andric SDValue RHS = N->getOperand(1); 40180b57cec5SDimitry Andric SDValue Carry = Op.getOperand(2); 40190b57cec5SDimitry Andric SDLoc DL(N); 40200b57cec5SDimitry Andric unsigned BaseOp = 0; 40210b57cec5SDimitry Andric unsigned CCValid = 0; 40220b57cec5SDimitry Andric unsigned CCMask = 0; 40230b57cec5SDimitry Andric 40240b57cec5SDimitry Andric switch (Op.getOpcode()) { 40250b57cec5SDimitry Andric default: llvm_unreachable("Unknown instruction!"); 40260b57cec5SDimitry Andric case ISD::ADDCARRY: 40270b57cec5SDimitry Andric if (!isAddCarryChain(Carry)) 40280b57cec5SDimitry Andric return SDValue(); 40290b57cec5SDimitry Andric 40300b57cec5SDimitry Andric BaseOp = SystemZISD::ADDCARRY; 40310b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_LOGICAL; 40320b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 40330b57cec5SDimitry Andric break; 40340b57cec5SDimitry Andric case ISD::SUBCARRY: 40350b57cec5SDimitry Andric if (!isSubBorrowChain(Carry)) 40360b57cec5SDimitry Andric return SDValue(); 40370b57cec5SDimitry Andric 40380b57cec5SDimitry Andric BaseOp = SystemZISD::SUBCARRY; 40390b57cec5SDimitry Andric CCValid = SystemZ::CCMASK_LOGICAL; 40400b57cec5SDimitry Andric CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 40410b57cec5SDimitry Andric break; 40420b57cec5SDimitry Andric } 40430b57cec5SDimitry Andric 40440b57cec5SDimitry Andric // Set the condition code from the carry flag. 40450b57cec5SDimitry Andric Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 40460b57cec5SDimitry Andric DAG.getConstant(CCValid, DL, MVT::i32), 40470b57cec5SDimitry Andric DAG.getConstant(CCMask, DL, MVT::i32)); 40480b57cec5SDimitry Andric 40490b57cec5SDimitry Andric SDVTList VTs = DAG.getVTList(VT, MVT::i32); 40500b57cec5SDimitry Andric SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 40510b57cec5SDimitry Andric 40520b57cec5SDimitry Andric SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 40530b57cec5SDimitry Andric if (N->getValueType(1) == MVT::i1) 40540b57cec5SDimitry Andric SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 40550b57cec5SDimitry Andric 40560b57cec5SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 40570b57cec5SDimitry Andric } 40580b57cec5SDimitry Andric 40590b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 40600b57cec5SDimitry Andric SelectionDAG &DAG) const { 40610b57cec5SDimitry Andric EVT VT = Op.getValueType(); 40620b57cec5SDimitry Andric SDLoc DL(Op); 40630b57cec5SDimitry Andric Op = Op.getOperand(0); 40640b57cec5SDimitry Andric 40650b57cec5SDimitry Andric // Handle vector types via VPOPCT. 40660b57cec5SDimitry Andric if (VT.isVector()) { 40670b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 40680b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 40690b57cec5SDimitry Andric switch (VT.getScalarSizeInBits()) { 40700b57cec5SDimitry Andric case 8: 40710b57cec5SDimitry Andric break; 40720b57cec5SDimitry Andric case 16: { 40730b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 40740b57cec5SDimitry Andric SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 40750b57cec5SDimitry Andric SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 40760b57cec5SDimitry Andric Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 40770b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 40780b57cec5SDimitry Andric break; 40790b57cec5SDimitry Andric } 40800b57cec5SDimitry Andric case 32: { 40810b57cec5SDimitry Andric SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 40820b57cec5SDimitry Andric DAG.getConstant(0, DL, MVT::i32)); 40830b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 40840b57cec5SDimitry Andric break; 40850b57cec5SDimitry Andric } 40860b57cec5SDimitry Andric case 64: { 40870b57cec5SDimitry Andric SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 40880b57cec5SDimitry Andric DAG.getConstant(0, DL, MVT::i32)); 40890b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 40900b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 40910b57cec5SDimitry Andric break; 40920b57cec5SDimitry Andric } 40930b57cec5SDimitry Andric default: 40940b57cec5SDimitry Andric llvm_unreachable("Unexpected type"); 40950b57cec5SDimitry Andric } 40960b57cec5SDimitry Andric return Op; 40970b57cec5SDimitry Andric } 40980b57cec5SDimitry Andric 40990b57cec5SDimitry Andric // Get the known-zero mask for the operand. 41000b57cec5SDimitry Andric KnownBits Known = DAG.computeKnownBits(Op); 4101480093f4SDimitry Andric unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 41020b57cec5SDimitry Andric if (NumSignificantBits == 0) 41030b57cec5SDimitry Andric return DAG.getConstant(0, DL, VT); 41040b57cec5SDimitry Andric 41050b57cec5SDimitry Andric // Skip known-zero high parts of the operand. 41060b57cec5SDimitry Andric int64_t OrigBitSize = VT.getSizeInBits(); 4107bdd1243dSDimitry Andric int64_t BitSize = llvm::bit_ceil(NumSignificantBits); 41080b57cec5SDimitry Andric BitSize = std::min(BitSize, OrigBitSize); 41090b57cec5SDimitry Andric 41100b57cec5SDimitry Andric // The POPCNT instruction counts the number of bits in each byte. 41110b57cec5SDimitry Andric Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 41120b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 41130b57cec5SDimitry Andric Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 41140b57cec5SDimitry Andric 41150b57cec5SDimitry Andric // Add up per-byte counts in a binary tree. All bits of Op at 41160b57cec5SDimitry Andric // position larger than BitSize remain zero throughout. 41170b57cec5SDimitry Andric for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 41180b57cec5SDimitry Andric SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 41190b57cec5SDimitry Andric if (BitSize != OrigBitSize) 41200b57cec5SDimitry Andric Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 41210b57cec5SDimitry Andric DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 41220b57cec5SDimitry Andric Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 41230b57cec5SDimitry Andric } 41240b57cec5SDimitry Andric 41250b57cec5SDimitry Andric // Extract overall result from high byte. 41260b57cec5SDimitry Andric if (BitSize > 8) 41270b57cec5SDimitry Andric Op = DAG.getNode(ISD::SRL, DL, VT, Op, 41280b57cec5SDimitry Andric DAG.getConstant(BitSize - 8, DL, VT)); 41290b57cec5SDimitry Andric 41300b57cec5SDimitry Andric return Op; 41310b57cec5SDimitry Andric } 41320b57cec5SDimitry Andric 41330b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 41340b57cec5SDimitry Andric SelectionDAG &DAG) const { 41350b57cec5SDimitry Andric SDLoc DL(Op); 41360b57cec5SDimitry Andric AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 41370b57cec5SDimitry Andric cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 41380b57cec5SDimitry Andric SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 41390b57cec5SDimitry Andric cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 41400b57cec5SDimitry Andric 41410b57cec5SDimitry Andric // The only fence that needs an instruction is a sequentially-consistent 41420b57cec5SDimitry Andric // cross-thread fence. 41430b57cec5SDimitry Andric if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 41440b57cec5SDimitry Andric FenceSSID == SyncScope::System) { 41450b57cec5SDimitry Andric return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 41460b57cec5SDimitry Andric Op.getOperand(0)), 41470b57cec5SDimitry Andric 0); 41480b57cec5SDimitry Andric } 41490b57cec5SDimitry Andric 41500b57cec5SDimitry Andric // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4151bdd1243dSDimitry Andric return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 41520b57cec5SDimitry Andric } 41530b57cec5SDimitry Andric 41540b57cec5SDimitry Andric // Op is an atomic load. Lower it into a normal volatile load. 41550b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 41560b57cec5SDimitry Andric SelectionDAG &DAG) const { 41570b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 41580b57cec5SDimitry Andric return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 41590b57cec5SDimitry Andric Node->getChain(), Node->getBasePtr(), 41600b57cec5SDimitry Andric Node->getMemoryVT(), Node->getMemOperand()); 41610b57cec5SDimitry Andric } 41620b57cec5SDimitry Andric 41630b57cec5SDimitry Andric // Op is an atomic store. Lower it into a normal volatile store. 41640b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 41650b57cec5SDimitry Andric SelectionDAG &DAG) const { 41660b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 41670b57cec5SDimitry Andric SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 41680b57cec5SDimitry Andric Node->getBasePtr(), Node->getMemoryVT(), 41690b57cec5SDimitry Andric Node->getMemOperand()); 41700b57cec5SDimitry Andric // We have to enforce sequential consistency by performing a 41710b57cec5SDimitry Andric // serialization operation after the store. 4172fe6060f1SDimitry Andric if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 41730b57cec5SDimitry Andric Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 41740b57cec5SDimitry Andric MVT::Other, Chain), 0); 41750b57cec5SDimitry Andric return Chain; 41760b57cec5SDimitry Andric } 41770b57cec5SDimitry Andric 41780b57cec5SDimitry Andric // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 41790b57cec5SDimitry Andric // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 41800b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 41810b57cec5SDimitry Andric SelectionDAG &DAG, 41820b57cec5SDimitry Andric unsigned Opcode) const { 41830b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 41840b57cec5SDimitry Andric 41850b57cec5SDimitry Andric // 32-bit operations need no code outside the main loop. 41860b57cec5SDimitry Andric EVT NarrowVT = Node->getMemoryVT(); 41870b57cec5SDimitry Andric EVT WideVT = MVT::i32; 41880b57cec5SDimitry Andric if (NarrowVT == WideVT) 41890b57cec5SDimitry Andric return Op; 41900b57cec5SDimitry Andric 41910b57cec5SDimitry Andric int64_t BitSize = NarrowVT.getSizeInBits(); 41920b57cec5SDimitry Andric SDValue ChainIn = Node->getChain(); 41930b57cec5SDimitry Andric SDValue Addr = Node->getBasePtr(); 41940b57cec5SDimitry Andric SDValue Src2 = Node->getVal(); 41950b57cec5SDimitry Andric MachineMemOperand *MMO = Node->getMemOperand(); 41960b57cec5SDimitry Andric SDLoc DL(Node); 41970b57cec5SDimitry Andric EVT PtrVT = Addr.getValueType(); 41980b57cec5SDimitry Andric 41990b57cec5SDimitry Andric // Convert atomic subtracts of constants into additions. 42000b57cec5SDimitry Andric if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 42010b57cec5SDimitry Andric if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 42020b57cec5SDimitry Andric Opcode = SystemZISD::ATOMIC_LOADW_ADD; 42030b57cec5SDimitry Andric Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 42040b57cec5SDimitry Andric } 42050b57cec5SDimitry Andric 42060b57cec5SDimitry Andric // Get the address of the containing word. 42070b57cec5SDimitry Andric SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 42080b57cec5SDimitry Andric DAG.getConstant(-4, DL, PtrVT)); 42090b57cec5SDimitry Andric 42100b57cec5SDimitry Andric // Get the number of bits that the word must be rotated left in order 42110b57cec5SDimitry Andric // to bring the field to the top bits of a GR32. 42120b57cec5SDimitry Andric SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 42130b57cec5SDimitry Andric DAG.getConstant(3, DL, PtrVT)); 42140b57cec5SDimitry Andric BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 42150b57cec5SDimitry Andric 42160b57cec5SDimitry Andric // Get the complementing shift amount, for rotating a field in the top 42170b57cec5SDimitry Andric // bits back to its proper position. 42180b57cec5SDimitry Andric SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 42190b57cec5SDimitry Andric DAG.getConstant(0, DL, WideVT), BitShift); 42200b57cec5SDimitry Andric 42210b57cec5SDimitry Andric // Extend the source operand to 32 bits and prepare it for the inner loop. 42220b57cec5SDimitry Andric // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 42230b57cec5SDimitry Andric // operations require the source to be shifted in advance. (This shift 42240b57cec5SDimitry Andric // can be folded if the source is constant.) For AND and NAND, the lower 42250b57cec5SDimitry Andric // bits must be set, while for other opcodes they should be left clear. 42260b57cec5SDimitry Andric if (Opcode != SystemZISD::ATOMIC_SWAPW) 42270b57cec5SDimitry Andric Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 42280b57cec5SDimitry Andric DAG.getConstant(32 - BitSize, DL, WideVT)); 42290b57cec5SDimitry Andric if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 42300b57cec5SDimitry Andric Opcode == SystemZISD::ATOMIC_LOADW_NAND) 42310b57cec5SDimitry Andric Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 42320b57cec5SDimitry Andric DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 42330b57cec5SDimitry Andric 42340b57cec5SDimitry Andric // Construct the ATOMIC_LOADW_* node. 42350b57cec5SDimitry Andric SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 42360b57cec5SDimitry Andric SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 42370b57cec5SDimitry Andric DAG.getConstant(BitSize, DL, WideVT) }; 42380b57cec5SDimitry Andric SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 42390b57cec5SDimitry Andric NarrowVT, MMO); 42400b57cec5SDimitry Andric 42410b57cec5SDimitry Andric // Rotate the result of the final CS so that the field is in the lower 42420b57cec5SDimitry Andric // bits of a GR32, then truncate it. 42430b57cec5SDimitry Andric SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 42440b57cec5SDimitry Andric DAG.getConstant(BitSize, DL, WideVT)); 42450b57cec5SDimitry Andric SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 42460b57cec5SDimitry Andric 42470b57cec5SDimitry Andric SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 42480b57cec5SDimitry Andric return DAG.getMergeValues(RetOps, DL); 42490b57cec5SDimitry Andric } 42500b57cec5SDimitry Andric 42510b57cec5SDimitry Andric // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 42520b57cec5SDimitry Andric // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 42530b57cec5SDimitry Andric // operations into additions. 42540b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 42550b57cec5SDimitry Andric SelectionDAG &DAG) const { 42560b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 42570b57cec5SDimitry Andric EVT MemVT = Node->getMemoryVT(); 42580b57cec5SDimitry Andric if (MemVT == MVT::i32 || MemVT == MVT::i64) { 42590b57cec5SDimitry Andric // A full-width operation. 42600b57cec5SDimitry Andric assert(Op.getValueType() == MemVT && "Mismatched VTs"); 42610b57cec5SDimitry Andric SDValue Src2 = Node->getVal(); 42620b57cec5SDimitry Andric SDValue NegSrc2; 42630b57cec5SDimitry Andric SDLoc DL(Src2); 42640b57cec5SDimitry Andric 42650b57cec5SDimitry Andric if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 42660b57cec5SDimitry Andric // Use an addition if the operand is constant and either LAA(G) is 42670b57cec5SDimitry Andric // available or the negative value is in the range of A(G)FHI. 42680b57cec5SDimitry Andric int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 42690b57cec5SDimitry Andric if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 42700b57cec5SDimitry Andric NegSrc2 = DAG.getConstant(Value, DL, MemVT); 42710b57cec5SDimitry Andric } else if (Subtarget.hasInterlockedAccess1()) 42720b57cec5SDimitry Andric // Use LAA(G) if available. 42730b57cec5SDimitry Andric NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 42740b57cec5SDimitry Andric Src2); 42750b57cec5SDimitry Andric 42760b57cec5SDimitry Andric if (NegSrc2.getNode()) 42770b57cec5SDimitry Andric return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 42780b57cec5SDimitry Andric Node->getChain(), Node->getBasePtr(), NegSrc2, 42790b57cec5SDimitry Andric Node->getMemOperand()); 42800b57cec5SDimitry Andric 42810b57cec5SDimitry Andric // Use the node as-is. 42820b57cec5SDimitry Andric return Op; 42830b57cec5SDimitry Andric } 42840b57cec5SDimitry Andric 42850b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 42860b57cec5SDimitry Andric } 42870b57cec5SDimitry Andric 42880b57cec5SDimitry Andric // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 42890b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 42900b57cec5SDimitry Andric SelectionDAG &DAG) const { 42910b57cec5SDimitry Andric auto *Node = cast<AtomicSDNode>(Op.getNode()); 42920b57cec5SDimitry Andric SDValue ChainIn = Node->getOperand(0); 42930b57cec5SDimitry Andric SDValue Addr = Node->getOperand(1); 42940b57cec5SDimitry Andric SDValue CmpVal = Node->getOperand(2); 42950b57cec5SDimitry Andric SDValue SwapVal = Node->getOperand(3); 42960b57cec5SDimitry Andric MachineMemOperand *MMO = Node->getMemOperand(); 42970b57cec5SDimitry Andric SDLoc DL(Node); 42980b57cec5SDimitry Andric 42990b57cec5SDimitry Andric // We have native support for 32-bit and 64-bit compare and swap, but we 43000b57cec5SDimitry Andric // still need to expand extracting the "success" result from the CC. 43010b57cec5SDimitry Andric EVT NarrowVT = Node->getMemoryVT(); 43020b57cec5SDimitry Andric EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 43030b57cec5SDimitry Andric if (NarrowVT == WideVT) { 43040b57cec5SDimitry Andric SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 43050b57cec5SDimitry Andric SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 43060b57cec5SDimitry Andric SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 43070b57cec5SDimitry Andric DL, Tys, Ops, NarrowVT, MMO); 43080b57cec5SDimitry Andric SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 43090b57cec5SDimitry Andric SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 43100b57cec5SDimitry Andric 43110b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 43120b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 43130b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 43140b57cec5SDimitry Andric return SDValue(); 43150b57cec5SDimitry Andric } 43160b57cec5SDimitry Andric 43170b57cec5SDimitry Andric // Convert 8-bit and 16-bit compare and swap to a loop, implemented 43180b57cec5SDimitry Andric // via a fullword ATOMIC_CMP_SWAPW operation. 43190b57cec5SDimitry Andric int64_t BitSize = NarrowVT.getSizeInBits(); 43200b57cec5SDimitry Andric EVT PtrVT = Addr.getValueType(); 43210b57cec5SDimitry Andric 43220b57cec5SDimitry Andric // Get the address of the containing word. 43230b57cec5SDimitry Andric SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 43240b57cec5SDimitry Andric DAG.getConstant(-4, DL, PtrVT)); 43250b57cec5SDimitry Andric 43260b57cec5SDimitry Andric // Get the number of bits that the word must be rotated left in order 43270b57cec5SDimitry Andric // to bring the field to the top bits of a GR32. 43280b57cec5SDimitry Andric SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 43290b57cec5SDimitry Andric DAG.getConstant(3, DL, PtrVT)); 43300b57cec5SDimitry Andric BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 43310b57cec5SDimitry Andric 43320b57cec5SDimitry Andric // Get the complementing shift amount, for rotating a field in the top 43330b57cec5SDimitry Andric // bits back to its proper position. 43340b57cec5SDimitry Andric SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 43350b57cec5SDimitry Andric DAG.getConstant(0, DL, WideVT), BitShift); 43360b57cec5SDimitry Andric 43370b57cec5SDimitry Andric // Construct the ATOMIC_CMP_SWAPW node. 43380b57cec5SDimitry Andric SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 43390b57cec5SDimitry Andric SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 43400b57cec5SDimitry Andric NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 43410b57cec5SDimitry Andric SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 43420b57cec5SDimitry Andric VTList, Ops, NarrowVT, MMO); 43430b57cec5SDimitry Andric SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 43440b57cec5SDimitry Andric SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 43450b57cec5SDimitry Andric 4346fe6060f1SDimitry Andric // emitAtomicCmpSwapW() will zero extend the result (original value). 4347fe6060f1SDimitry Andric SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4348fe6060f1SDimitry Andric DAG.getValueType(NarrowVT)); 4349fe6060f1SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 43500b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 43510b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 43520b57cec5SDimitry Andric return SDValue(); 43530b57cec5SDimitry Andric } 43540b57cec5SDimitry Andric 43550b57cec5SDimitry Andric MachineMemOperand::Flags 43565ffd83dbSDimitry Andric SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 43570b57cec5SDimitry Andric // Because of how we convert atomic_load and atomic_store to normal loads and 43580b57cec5SDimitry Andric // stores in the DAG, we need to ensure that the MMOs are marked volatile 43590b57cec5SDimitry Andric // since DAGCombine hasn't been updated to account for atomic, but non 43600b57cec5SDimitry Andric // volatile loads. (See D57601) 43610b57cec5SDimitry Andric if (auto *SI = dyn_cast<StoreInst>(&I)) 43620b57cec5SDimitry Andric if (SI->isAtomic()) 43630b57cec5SDimitry Andric return MachineMemOperand::MOVolatile; 43640b57cec5SDimitry Andric if (auto *LI = dyn_cast<LoadInst>(&I)) 43650b57cec5SDimitry Andric if (LI->isAtomic()) 43660b57cec5SDimitry Andric return MachineMemOperand::MOVolatile; 43670b57cec5SDimitry Andric if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 43680b57cec5SDimitry Andric if (AI->isAtomic()) 43690b57cec5SDimitry Andric return MachineMemOperand::MOVolatile; 43700b57cec5SDimitry Andric if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 43710b57cec5SDimitry Andric if (AI->isAtomic()) 43720b57cec5SDimitry Andric return MachineMemOperand::MOVolatile; 43730b57cec5SDimitry Andric return MachineMemOperand::MONone; 43740b57cec5SDimitry Andric } 43750b57cec5SDimitry Andric 43760b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 43770b57cec5SDimitry Andric SelectionDAG &DAG) const { 43780b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 4379349cc55cSDimitry Andric const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4380349cc55cSDimitry Andric auto *Regs = Subtarget->getSpecialRegisters(); 4381480093f4SDimitry Andric if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4382480093f4SDimitry Andric report_fatal_error("Variable-sized stack allocations are not supported " 4383480093f4SDimitry Andric "in GHC calling convention"); 43840b57cec5SDimitry Andric return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4385349cc55cSDimitry Andric Regs->getStackPointerRegister(), Op.getValueType()); 43860b57cec5SDimitry Andric } 43870b57cec5SDimitry Andric 43880b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 43890b57cec5SDimitry Andric SelectionDAG &DAG) const { 43900b57cec5SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 4391349cc55cSDimitry Andric const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4392349cc55cSDimitry Andric auto *Regs = Subtarget->getSpecialRegisters(); 43930b57cec5SDimitry Andric bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 43940b57cec5SDimitry Andric 4395480093f4SDimitry Andric if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4396480093f4SDimitry Andric report_fatal_error("Variable-sized stack allocations are not supported " 4397480093f4SDimitry Andric "in GHC calling convention"); 4398480093f4SDimitry Andric 43990b57cec5SDimitry Andric SDValue Chain = Op.getOperand(0); 44000b57cec5SDimitry Andric SDValue NewSP = Op.getOperand(1); 44010b57cec5SDimitry Andric SDValue Backchain; 44020b57cec5SDimitry Andric SDLoc DL(Op); 44030b57cec5SDimitry Andric 44040b57cec5SDimitry Andric if (StoreBackchain) { 4405349cc55cSDimitry Andric SDValue OldSP = DAG.getCopyFromReg( 4406349cc55cSDimitry Andric Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4407e8d8bef9SDimitry Andric Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4408e8d8bef9SDimitry Andric MachinePointerInfo()); 44090b57cec5SDimitry Andric } 44100b57cec5SDimitry Andric 4411349cc55cSDimitry Andric Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 44120b57cec5SDimitry Andric 44130b57cec5SDimitry Andric if (StoreBackchain) 4414e8d8bef9SDimitry Andric Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4415e8d8bef9SDimitry Andric MachinePointerInfo()); 44160b57cec5SDimitry Andric 44170b57cec5SDimitry Andric return Chain; 44180b57cec5SDimitry Andric } 44190b57cec5SDimitry Andric 44200b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 44210b57cec5SDimitry Andric SelectionDAG &DAG) const { 44220b57cec5SDimitry Andric bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 44230b57cec5SDimitry Andric if (!IsData) 44240b57cec5SDimitry Andric // Just preserve the chain. 44250b57cec5SDimitry Andric return Op.getOperand(0); 44260b57cec5SDimitry Andric 44270b57cec5SDimitry Andric SDLoc DL(Op); 44280b57cec5SDimitry Andric bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 44290b57cec5SDimitry Andric unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 44300b57cec5SDimitry Andric auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 44318bcb0991SDimitry Andric SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 44328bcb0991SDimitry Andric Op.getOperand(1)}; 44330b57cec5SDimitry Andric return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 44340b57cec5SDimitry Andric Node->getVTList(), Ops, 44350b57cec5SDimitry Andric Node->getMemoryVT(), Node->getMemOperand()); 44360b57cec5SDimitry Andric } 44370b57cec5SDimitry Andric 44380b57cec5SDimitry Andric // Convert condition code in CCReg to an i32 value. 44390b57cec5SDimitry Andric static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 44400b57cec5SDimitry Andric SDLoc DL(CCReg); 44410b57cec5SDimitry Andric SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 44420b57cec5SDimitry Andric return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 44430b57cec5SDimitry Andric DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 44440b57cec5SDimitry Andric } 44450b57cec5SDimitry Andric 44460b57cec5SDimitry Andric SDValue 44470b57cec5SDimitry Andric SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 44480b57cec5SDimitry Andric SelectionDAG &DAG) const { 44490b57cec5SDimitry Andric unsigned Opcode, CCValid; 44500b57cec5SDimitry Andric if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 44510b57cec5SDimitry Andric assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 44520b57cec5SDimitry Andric SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 44530b57cec5SDimitry Andric SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 44540b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 44550b57cec5SDimitry Andric return SDValue(); 44560b57cec5SDimitry Andric } 44570b57cec5SDimitry Andric 44580b57cec5SDimitry Andric return SDValue(); 44590b57cec5SDimitry Andric } 44600b57cec5SDimitry Andric 44610b57cec5SDimitry Andric SDValue 44620b57cec5SDimitry Andric SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 44630b57cec5SDimitry Andric SelectionDAG &DAG) const { 44640b57cec5SDimitry Andric unsigned Opcode, CCValid; 44650b57cec5SDimitry Andric if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 44660b57cec5SDimitry Andric SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 44670b57cec5SDimitry Andric if (Op->getNumValues() == 1) 44680b57cec5SDimitry Andric return getCCResult(DAG, SDValue(Node, 0)); 44690b57cec5SDimitry Andric assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 44700b57cec5SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 44710b57cec5SDimitry Andric SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 44720b57cec5SDimitry Andric } 44730b57cec5SDimitry Andric 44740b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 44750b57cec5SDimitry Andric switch (Id) { 44760b57cec5SDimitry Andric case Intrinsic::thread_pointer: 44770b57cec5SDimitry Andric return lowerThreadPointer(SDLoc(Op), DAG); 44780b57cec5SDimitry Andric 44790b57cec5SDimitry Andric case Intrinsic::s390_vpdi: 44800b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 44810b57cec5SDimitry Andric Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 44820b57cec5SDimitry Andric 44830b57cec5SDimitry Andric case Intrinsic::s390_vperm: 44840b57cec5SDimitry Andric return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 44850b57cec5SDimitry Andric Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 44860b57cec5SDimitry Andric 44870b57cec5SDimitry Andric case Intrinsic::s390_vuphb: 44880b57cec5SDimitry Andric case Intrinsic::s390_vuphh: 44890b57cec5SDimitry Andric case Intrinsic::s390_vuphf: 44900b57cec5SDimitry Andric return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 44910b57cec5SDimitry Andric Op.getOperand(1)); 44920b57cec5SDimitry Andric 44930b57cec5SDimitry Andric case Intrinsic::s390_vuplhb: 44940b57cec5SDimitry Andric case Intrinsic::s390_vuplhh: 44950b57cec5SDimitry Andric case Intrinsic::s390_vuplhf: 44960b57cec5SDimitry Andric return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 44970b57cec5SDimitry Andric Op.getOperand(1)); 44980b57cec5SDimitry Andric 44990b57cec5SDimitry Andric case Intrinsic::s390_vuplb: 45000b57cec5SDimitry Andric case Intrinsic::s390_vuplhw: 45010b57cec5SDimitry Andric case Intrinsic::s390_vuplf: 45020b57cec5SDimitry Andric return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 45030b57cec5SDimitry Andric Op.getOperand(1)); 45040b57cec5SDimitry Andric 45050b57cec5SDimitry Andric case Intrinsic::s390_vupllb: 45060b57cec5SDimitry Andric case Intrinsic::s390_vupllh: 45070b57cec5SDimitry Andric case Intrinsic::s390_vupllf: 45080b57cec5SDimitry Andric return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 45090b57cec5SDimitry Andric Op.getOperand(1)); 45100b57cec5SDimitry Andric 45110b57cec5SDimitry Andric case Intrinsic::s390_vsumb: 45120b57cec5SDimitry Andric case Intrinsic::s390_vsumh: 45130b57cec5SDimitry Andric case Intrinsic::s390_vsumgh: 45140b57cec5SDimitry Andric case Intrinsic::s390_vsumgf: 45150b57cec5SDimitry Andric case Intrinsic::s390_vsumqf: 45160b57cec5SDimitry Andric case Intrinsic::s390_vsumqg: 45170b57cec5SDimitry Andric return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 45180b57cec5SDimitry Andric Op.getOperand(1), Op.getOperand(2)); 45190b57cec5SDimitry Andric } 45200b57cec5SDimitry Andric 45210b57cec5SDimitry Andric return SDValue(); 45220b57cec5SDimitry Andric } 45230b57cec5SDimitry Andric 45240b57cec5SDimitry Andric namespace { 45250b57cec5SDimitry Andric // Says that SystemZISD operation Opcode can be used to perform the equivalent 45260b57cec5SDimitry Andric // of a VPERM with permute vector Bytes. If Opcode takes three operands, 45270b57cec5SDimitry Andric // Operand is the constant third operand, otherwise it is the number of 45280b57cec5SDimitry Andric // bytes in each element of the result. 45290b57cec5SDimitry Andric struct Permute { 45300b57cec5SDimitry Andric unsigned Opcode; 45310b57cec5SDimitry Andric unsigned Operand; 45320b57cec5SDimitry Andric unsigned char Bytes[SystemZ::VectorBytes]; 45330b57cec5SDimitry Andric }; 45340b57cec5SDimitry Andric } 45350b57cec5SDimitry Andric 45360b57cec5SDimitry Andric static const Permute PermuteForms[] = { 45370b57cec5SDimitry Andric // VMRHG 45380b57cec5SDimitry Andric { SystemZISD::MERGE_HIGH, 8, 45390b57cec5SDimitry Andric { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 45400b57cec5SDimitry Andric // VMRHF 45410b57cec5SDimitry Andric { SystemZISD::MERGE_HIGH, 4, 45420b57cec5SDimitry Andric { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 45430b57cec5SDimitry Andric // VMRHH 45440b57cec5SDimitry Andric { SystemZISD::MERGE_HIGH, 2, 45450b57cec5SDimitry Andric { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 45460b57cec5SDimitry Andric // VMRHB 45470b57cec5SDimitry Andric { SystemZISD::MERGE_HIGH, 1, 45480b57cec5SDimitry Andric { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 45490b57cec5SDimitry Andric // VMRLG 45500b57cec5SDimitry Andric { SystemZISD::MERGE_LOW, 8, 45510b57cec5SDimitry Andric { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 45520b57cec5SDimitry Andric // VMRLF 45530b57cec5SDimitry Andric { SystemZISD::MERGE_LOW, 4, 45540b57cec5SDimitry Andric { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 45550b57cec5SDimitry Andric // VMRLH 45560b57cec5SDimitry Andric { SystemZISD::MERGE_LOW, 2, 45570b57cec5SDimitry Andric { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 45580b57cec5SDimitry Andric // VMRLB 45590b57cec5SDimitry Andric { SystemZISD::MERGE_LOW, 1, 45600b57cec5SDimitry Andric { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 45610b57cec5SDimitry Andric // VPKG 45620b57cec5SDimitry Andric { SystemZISD::PACK, 4, 45630b57cec5SDimitry Andric { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 45640b57cec5SDimitry Andric // VPKF 45650b57cec5SDimitry Andric { SystemZISD::PACK, 2, 45660b57cec5SDimitry Andric { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 45670b57cec5SDimitry Andric // VPKH 45680b57cec5SDimitry Andric { SystemZISD::PACK, 1, 45690b57cec5SDimitry Andric { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 45700b57cec5SDimitry Andric // VPDI V1, V2, 4 (low half of V1, high half of V2) 45710b57cec5SDimitry Andric { SystemZISD::PERMUTE_DWORDS, 4, 45720b57cec5SDimitry Andric { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 45730b57cec5SDimitry Andric // VPDI V1, V2, 1 (high half of V1, low half of V2) 45740b57cec5SDimitry Andric { SystemZISD::PERMUTE_DWORDS, 1, 45750b57cec5SDimitry Andric { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 45760b57cec5SDimitry Andric }; 45770b57cec5SDimitry Andric 45780b57cec5SDimitry Andric // Called after matching a vector shuffle against a particular pattern. 45790b57cec5SDimitry Andric // Both the original shuffle and the pattern have two vector operands. 45800b57cec5SDimitry Andric // OpNos[0] is the operand of the original shuffle that should be used for 45810b57cec5SDimitry Andric // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 45820b57cec5SDimitry Andric // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 45830b57cec5SDimitry Andric // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 45840b57cec5SDimitry Andric // for operands 0 and 1 of the pattern. 45850b57cec5SDimitry Andric static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 45860b57cec5SDimitry Andric if (OpNos[0] < 0) { 45870b57cec5SDimitry Andric if (OpNos[1] < 0) 45880b57cec5SDimitry Andric return false; 45890b57cec5SDimitry Andric OpNo0 = OpNo1 = OpNos[1]; 45900b57cec5SDimitry Andric } else if (OpNos[1] < 0) { 45910b57cec5SDimitry Andric OpNo0 = OpNo1 = OpNos[0]; 45920b57cec5SDimitry Andric } else { 45930b57cec5SDimitry Andric OpNo0 = OpNos[0]; 45940b57cec5SDimitry Andric OpNo1 = OpNos[1]; 45950b57cec5SDimitry Andric } 45960b57cec5SDimitry Andric return true; 45970b57cec5SDimitry Andric } 45980b57cec5SDimitry Andric 45990b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 46000b57cec5SDimitry Andric // undefined bytes. Return true if the VPERM can be implemented using P. 46010b57cec5SDimitry Andric // When returning true set OpNo0 to the VPERM operand that should be 46020b57cec5SDimitry Andric // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 46030b57cec5SDimitry Andric // 46040b57cec5SDimitry Andric // For example, if swapping the VPERM operands allows P to match, OpNo0 46050b57cec5SDimitry Andric // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 46060b57cec5SDimitry Andric // operand, but rewriting it to use two duplicated operands allows it to 46070b57cec5SDimitry Andric // match P, then OpNo0 and OpNo1 will be the same. 46080b57cec5SDimitry Andric static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 46090b57cec5SDimitry Andric unsigned &OpNo0, unsigned &OpNo1) { 46100b57cec5SDimitry Andric int OpNos[] = { -1, -1 }; 46110b57cec5SDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 46120b57cec5SDimitry Andric int Elt = Bytes[I]; 46130b57cec5SDimitry Andric if (Elt >= 0) { 46140b57cec5SDimitry Andric // Make sure that the two permute vectors use the same suboperand 46150b57cec5SDimitry Andric // byte number. Only the operand numbers (the high bits) are 46160b57cec5SDimitry Andric // allowed to differ. 46170b57cec5SDimitry Andric if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 46180b57cec5SDimitry Andric return false; 46190b57cec5SDimitry Andric int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 46200b57cec5SDimitry Andric int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 46210b57cec5SDimitry Andric // Make sure that the operand mappings are consistent with previous 46220b57cec5SDimitry Andric // elements. 46230b57cec5SDimitry Andric if (OpNos[ModelOpNo] == 1 - RealOpNo) 46240b57cec5SDimitry Andric return false; 46250b57cec5SDimitry Andric OpNos[ModelOpNo] = RealOpNo; 46260b57cec5SDimitry Andric } 46270b57cec5SDimitry Andric } 46280b57cec5SDimitry Andric return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 46290b57cec5SDimitry Andric } 46300b57cec5SDimitry Andric 46310b57cec5SDimitry Andric // As above, but search for a matching permute. 46320b57cec5SDimitry Andric static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 46330b57cec5SDimitry Andric unsigned &OpNo0, unsigned &OpNo1) { 46340b57cec5SDimitry Andric for (auto &P : PermuteForms) 46350b57cec5SDimitry Andric if (matchPermute(Bytes, P, OpNo0, OpNo1)) 46360b57cec5SDimitry Andric return &P; 46370b57cec5SDimitry Andric return nullptr; 46380b57cec5SDimitry Andric } 46390b57cec5SDimitry Andric 46400b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 46410b57cec5SDimitry Andric // undefined bytes. This permute is an operand of an outer permute. 46420b57cec5SDimitry Andric // See whether redistributing the -1 bytes gives a shuffle that can be 46430b57cec5SDimitry Andric // implemented using P. If so, set Transform to a VPERM-like permute vector 46440b57cec5SDimitry Andric // that, when applied to the result of P, gives the original permute in Bytes. 46450b57cec5SDimitry Andric static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 46460b57cec5SDimitry Andric const Permute &P, 46470b57cec5SDimitry Andric SmallVectorImpl<int> &Transform) { 46480b57cec5SDimitry Andric unsigned To = 0; 46490b57cec5SDimitry Andric for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 46500b57cec5SDimitry Andric int Elt = Bytes[From]; 46510b57cec5SDimitry Andric if (Elt < 0) 46520b57cec5SDimitry Andric // Byte number From of the result is undefined. 46530b57cec5SDimitry Andric Transform[From] = -1; 46540b57cec5SDimitry Andric else { 46550b57cec5SDimitry Andric while (P.Bytes[To] != Elt) { 46560b57cec5SDimitry Andric To += 1; 46570b57cec5SDimitry Andric if (To == SystemZ::VectorBytes) 46580b57cec5SDimitry Andric return false; 46590b57cec5SDimitry Andric } 46600b57cec5SDimitry Andric Transform[From] = To; 46610b57cec5SDimitry Andric } 46620b57cec5SDimitry Andric } 46630b57cec5SDimitry Andric return true; 46640b57cec5SDimitry Andric } 46650b57cec5SDimitry Andric 46660b57cec5SDimitry Andric // As above, but search for a matching permute. 46670b57cec5SDimitry Andric static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 46680b57cec5SDimitry Andric SmallVectorImpl<int> &Transform) { 46690b57cec5SDimitry Andric for (auto &P : PermuteForms) 46700b57cec5SDimitry Andric if (matchDoublePermute(Bytes, P, Transform)) 46710b57cec5SDimitry Andric return &P; 46720b57cec5SDimitry Andric return nullptr; 46730b57cec5SDimitry Andric } 46740b57cec5SDimitry Andric 46750b57cec5SDimitry Andric // Convert the mask of the given shuffle op into a byte-level mask, 46760b57cec5SDimitry Andric // as if it had type vNi8. 46770b57cec5SDimitry Andric static bool getVPermMask(SDValue ShuffleOp, 46780b57cec5SDimitry Andric SmallVectorImpl<int> &Bytes) { 46790b57cec5SDimitry Andric EVT VT = ShuffleOp.getValueType(); 46800b57cec5SDimitry Andric unsigned NumElements = VT.getVectorNumElements(); 46810b57cec5SDimitry Andric unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 46820b57cec5SDimitry Andric 46830b57cec5SDimitry Andric if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 46840b57cec5SDimitry Andric Bytes.resize(NumElements * BytesPerElement, -1); 46850b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) { 46860b57cec5SDimitry Andric int Index = VSN->getMaskElt(I); 46870b57cec5SDimitry Andric if (Index >= 0) 46880b57cec5SDimitry Andric for (unsigned J = 0; J < BytesPerElement; ++J) 46890b57cec5SDimitry Andric Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 46900b57cec5SDimitry Andric } 46910b57cec5SDimitry Andric return true; 46920b57cec5SDimitry Andric } 46930b57cec5SDimitry Andric if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 46940b57cec5SDimitry Andric isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 46950b57cec5SDimitry Andric unsigned Index = ShuffleOp.getConstantOperandVal(1); 46960b57cec5SDimitry Andric Bytes.resize(NumElements * BytesPerElement, -1); 46970b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 46980b57cec5SDimitry Andric for (unsigned J = 0; J < BytesPerElement; ++J) 46990b57cec5SDimitry Andric Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 47000b57cec5SDimitry Andric return true; 47010b57cec5SDimitry Andric } 47020b57cec5SDimitry Andric return false; 47030b57cec5SDimitry Andric } 47040b57cec5SDimitry Andric 47050b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 47060b57cec5SDimitry Andric // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 47070b57cec5SDimitry Andric // the result come from a contiguous sequence of bytes from one input. 47080b57cec5SDimitry Andric // Set Base to the selector for the first byte if so. 47090b57cec5SDimitry Andric static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 47100b57cec5SDimitry Andric unsigned BytesPerElement, int &Base) { 47110b57cec5SDimitry Andric Base = -1; 47120b57cec5SDimitry Andric for (unsigned I = 0; I < BytesPerElement; ++I) { 47130b57cec5SDimitry Andric if (Bytes[Start + I] >= 0) { 47140b57cec5SDimitry Andric unsigned Elem = Bytes[Start + I]; 47150b57cec5SDimitry Andric if (Base < 0) { 47160b57cec5SDimitry Andric Base = Elem - I; 47170b57cec5SDimitry Andric // Make sure the bytes would come from one input operand. 47180b57cec5SDimitry Andric if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 47190b57cec5SDimitry Andric return false; 47200b57cec5SDimitry Andric } else if (unsigned(Base) != Elem - I) 47210b57cec5SDimitry Andric return false; 47220b57cec5SDimitry Andric } 47230b57cec5SDimitry Andric } 47240b57cec5SDimitry Andric return true; 47250b57cec5SDimitry Andric } 47260b57cec5SDimitry Andric 47270b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 47285ffd83dbSDimitry Andric // undefined bytes. Return true if it can be performed using VSLDB. 47290b57cec5SDimitry Andric // When returning true, set StartIndex to the shift amount and OpNo0 47300b57cec5SDimitry Andric // and OpNo1 to the VPERM operands that should be used as the first 47310b57cec5SDimitry Andric // and second shift operand respectively. 47320b57cec5SDimitry Andric static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 47330b57cec5SDimitry Andric unsigned &StartIndex, unsigned &OpNo0, 47340b57cec5SDimitry Andric unsigned &OpNo1) { 47350b57cec5SDimitry Andric int OpNos[] = { -1, -1 }; 47360b57cec5SDimitry Andric int Shift = -1; 47370b57cec5SDimitry Andric for (unsigned I = 0; I < 16; ++I) { 47380b57cec5SDimitry Andric int Index = Bytes[I]; 47390b57cec5SDimitry Andric if (Index >= 0) { 47400b57cec5SDimitry Andric int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 47410b57cec5SDimitry Andric int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 47420b57cec5SDimitry Andric int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 47430b57cec5SDimitry Andric if (Shift < 0) 47440b57cec5SDimitry Andric Shift = ExpectedShift; 47450b57cec5SDimitry Andric else if (Shift != ExpectedShift) 47460b57cec5SDimitry Andric return false; 47470b57cec5SDimitry Andric // Make sure that the operand mappings are consistent with previous 47480b57cec5SDimitry Andric // elements. 47490b57cec5SDimitry Andric if (OpNos[ModelOpNo] == 1 - RealOpNo) 47500b57cec5SDimitry Andric return false; 47510b57cec5SDimitry Andric OpNos[ModelOpNo] = RealOpNo; 47520b57cec5SDimitry Andric } 47530b57cec5SDimitry Andric } 47540b57cec5SDimitry Andric StartIndex = Shift; 47550b57cec5SDimitry Andric return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 47560b57cec5SDimitry Andric } 47570b57cec5SDimitry Andric 47580b57cec5SDimitry Andric // Create a node that performs P on operands Op0 and Op1, casting the 47590b57cec5SDimitry Andric // operands to the appropriate type. The type of the result is determined by P. 47600b57cec5SDimitry Andric static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 47610b57cec5SDimitry Andric const Permute &P, SDValue Op0, SDValue Op1) { 47620b57cec5SDimitry Andric // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 47630b57cec5SDimitry Andric // elements of a PACK are twice as wide as the outputs. 47640b57cec5SDimitry Andric unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 47650b57cec5SDimitry Andric P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 47660b57cec5SDimitry Andric P.Operand); 47670b57cec5SDimitry Andric // Cast both operands to the appropriate type. 47680b57cec5SDimitry Andric MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 47690b57cec5SDimitry Andric SystemZ::VectorBytes / InBytes); 47700b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 47710b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 47720b57cec5SDimitry Andric SDValue Op; 47730b57cec5SDimitry Andric if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 47748bcb0991SDimitry Andric SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 47750b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 47760b57cec5SDimitry Andric } else if (P.Opcode == SystemZISD::PACK) { 47770b57cec5SDimitry Andric MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 47780b57cec5SDimitry Andric SystemZ::VectorBytes / P.Operand); 47790b57cec5SDimitry Andric Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 47800b57cec5SDimitry Andric } else { 47810b57cec5SDimitry Andric Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 47820b57cec5SDimitry Andric } 47830b57cec5SDimitry Andric return Op; 47840b57cec5SDimitry Andric } 47850b57cec5SDimitry Andric 47865ffd83dbSDimitry Andric static bool isZeroVector(SDValue N) { 47875ffd83dbSDimitry Andric if (N->getOpcode() == ISD::BITCAST) 47885ffd83dbSDimitry Andric N = N->getOperand(0); 47895ffd83dbSDimitry Andric if (N->getOpcode() == ISD::SPLAT_VECTOR) 47905ffd83dbSDimitry Andric if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 47915ffd83dbSDimitry Andric return Op->getZExtValue() == 0; 47925ffd83dbSDimitry Andric return ISD::isBuildVectorAllZeros(N.getNode()); 47935ffd83dbSDimitry Andric } 47945ffd83dbSDimitry Andric 47955ffd83dbSDimitry Andric // Return the index of the zero/undef vector, or UINT32_MAX if not found. 47965ffd83dbSDimitry Andric static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 47975ffd83dbSDimitry Andric for (unsigned I = 0; I < Num ; I++) 47985ffd83dbSDimitry Andric if (isZeroVector(Ops[I])) 47995ffd83dbSDimitry Andric return I; 48005ffd83dbSDimitry Andric return UINT32_MAX; 48015ffd83dbSDimitry Andric } 48025ffd83dbSDimitry Andric 48030b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for 48040b57cec5SDimitry Andric // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 48055ffd83dbSDimitry Andric // VSLDB or VPERM. 48060b57cec5SDimitry Andric static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 48070b57cec5SDimitry Andric SDValue *Ops, 48080b57cec5SDimitry Andric const SmallVectorImpl<int> &Bytes) { 48090b57cec5SDimitry Andric for (unsigned I = 0; I < 2; ++I) 48100b57cec5SDimitry Andric Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 48110b57cec5SDimitry Andric 48125ffd83dbSDimitry Andric // First see whether VSLDB can be used. 48130b57cec5SDimitry Andric unsigned StartIndex, OpNo0, OpNo1; 48140b57cec5SDimitry Andric if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 48150b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 48168bcb0991SDimitry Andric Ops[OpNo1], 48178bcb0991SDimitry Andric DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 48180b57cec5SDimitry Andric 48195ffd83dbSDimitry Andric // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 48205ffd83dbSDimitry Andric // eliminate a zero vector by reusing any zero index in the permute vector. 48215ffd83dbSDimitry Andric unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 48225ffd83dbSDimitry Andric if (ZeroVecIdx != UINT32_MAX) { 48235ffd83dbSDimitry Andric bool MaskFirst = true; 48245ffd83dbSDimitry Andric int ZeroIdx = -1; 48255ffd83dbSDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 48265ffd83dbSDimitry Andric unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 48275ffd83dbSDimitry Andric unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 48285ffd83dbSDimitry Andric if (OpNo == ZeroVecIdx && I == 0) { 48295ffd83dbSDimitry Andric // If the first byte is zero, use mask as first operand. 48305ffd83dbSDimitry Andric ZeroIdx = 0; 48315ffd83dbSDimitry Andric break; 48325ffd83dbSDimitry Andric } 48335ffd83dbSDimitry Andric if (OpNo != ZeroVecIdx && Byte == 0) { 48345ffd83dbSDimitry Andric // If mask contains a zero, use it by placing that vector first. 48355ffd83dbSDimitry Andric ZeroIdx = I + SystemZ::VectorBytes; 48365ffd83dbSDimitry Andric MaskFirst = false; 48375ffd83dbSDimitry Andric break; 48385ffd83dbSDimitry Andric } 48395ffd83dbSDimitry Andric } 48405ffd83dbSDimitry Andric if (ZeroIdx != -1) { 48415ffd83dbSDimitry Andric SDValue IndexNodes[SystemZ::VectorBytes]; 48425ffd83dbSDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 48435ffd83dbSDimitry Andric if (Bytes[I] >= 0) { 48445ffd83dbSDimitry Andric unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 48455ffd83dbSDimitry Andric unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 48465ffd83dbSDimitry Andric if (OpNo == ZeroVecIdx) 48475ffd83dbSDimitry Andric IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 48485ffd83dbSDimitry Andric else { 48495ffd83dbSDimitry Andric unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 48505ffd83dbSDimitry Andric IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 48515ffd83dbSDimitry Andric } 48525ffd83dbSDimitry Andric } else 48535ffd83dbSDimitry Andric IndexNodes[I] = DAG.getUNDEF(MVT::i32); 48545ffd83dbSDimitry Andric } 48555ffd83dbSDimitry Andric SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 48565ffd83dbSDimitry Andric SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 48575ffd83dbSDimitry Andric if (MaskFirst) 48585ffd83dbSDimitry Andric return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 48595ffd83dbSDimitry Andric Mask); 48605ffd83dbSDimitry Andric else 48615ffd83dbSDimitry Andric return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 48625ffd83dbSDimitry Andric Mask); 48635ffd83dbSDimitry Andric } 48645ffd83dbSDimitry Andric } 48655ffd83dbSDimitry Andric 48660b57cec5SDimitry Andric SDValue IndexNodes[SystemZ::VectorBytes]; 48670b57cec5SDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 48680b57cec5SDimitry Andric if (Bytes[I] >= 0) 48690b57cec5SDimitry Andric IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 48700b57cec5SDimitry Andric else 48710b57cec5SDimitry Andric IndexNodes[I] = DAG.getUNDEF(MVT::i32); 48720b57cec5SDimitry Andric SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 48735ffd83dbSDimitry Andric return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 48745ffd83dbSDimitry Andric (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 48750b57cec5SDimitry Andric } 48760b57cec5SDimitry Andric 48770b57cec5SDimitry Andric namespace { 48780b57cec5SDimitry Andric // Describes a general N-operand vector shuffle. 48790b57cec5SDimitry Andric struct GeneralShuffle { 48805ffd83dbSDimitry Andric GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 48810b57cec5SDimitry Andric void addUndef(); 48820b57cec5SDimitry Andric bool add(SDValue, unsigned); 48830b57cec5SDimitry Andric SDValue getNode(SelectionDAG &, const SDLoc &); 48845ffd83dbSDimitry Andric void tryPrepareForUnpack(); 48855ffd83dbSDimitry Andric bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 48865ffd83dbSDimitry Andric SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 48870b57cec5SDimitry Andric 48880b57cec5SDimitry Andric // The operands of the shuffle. 48890b57cec5SDimitry Andric SmallVector<SDValue, SystemZ::VectorBytes> Ops; 48900b57cec5SDimitry Andric 48910b57cec5SDimitry Andric // Index I is -1 if byte I of the result is undefined. Otherwise the 48920b57cec5SDimitry Andric // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 48930b57cec5SDimitry Andric // Bytes[I] / SystemZ::VectorBytes. 48940b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> Bytes; 48950b57cec5SDimitry Andric 48960b57cec5SDimitry Andric // The type of the shuffle result. 48970b57cec5SDimitry Andric EVT VT; 48985ffd83dbSDimitry Andric 48995ffd83dbSDimitry Andric // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 49005ffd83dbSDimitry Andric unsigned UnpackFromEltSize; 49010b57cec5SDimitry Andric }; 49020b57cec5SDimitry Andric } 49030b57cec5SDimitry Andric 49040b57cec5SDimitry Andric // Add an extra undefined element to the shuffle. 49050b57cec5SDimitry Andric void GeneralShuffle::addUndef() { 49060b57cec5SDimitry Andric unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 49070b57cec5SDimitry Andric for (unsigned I = 0; I < BytesPerElement; ++I) 49080b57cec5SDimitry Andric Bytes.push_back(-1); 49090b57cec5SDimitry Andric } 49100b57cec5SDimitry Andric 49110b57cec5SDimitry Andric // Add an extra element to the shuffle, taking it from element Elem of Op. 49120b57cec5SDimitry Andric // A null Op indicates a vector input whose value will be calculated later; 49130b57cec5SDimitry Andric // there is at most one such input per shuffle and it always has the same 49140b57cec5SDimitry Andric // type as the result. Aborts and returns false if the source vector elements 49150b57cec5SDimitry Andric // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 49160b57cec5SDimitry Andric // LLVM they become implicitly extended, but this is rare and not optimized. 49170b57cec5SDimitry Andric bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 49180b57cec5SDimitry Andric unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 49190b57cec5SDimitry Andric 49200b57cec5SDimitry Andric // The source vector can have wider elements than the result, 49210b57cec5SDimitry Andric // either through an explicit TRUNCATE or because of type legalization. 49220b57cec5SDimitry Andric // We want the least significant part. 49230b57cec5SDimitry Andric EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 49240b57cec5SDimitry Andric unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 49250b57cec5SDimitry Andric 49260b57cec5SDimitry Andric // Return false if the source elements are smaller than their destination 49270b57cec5SDimitry Andric // elements. 49280b57cec5SDimitry Andric if (FromBytesPerElement < BytesPerElement) 49290b57cec5SDimitry Andric return false; 49300b57cec5SDimitry Andric 49310b57cec5SDimitry Andric unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 49320b57cec5SDimitry Andric (FromBytesPerElement - BytesPerElement)); 49330b57cec5SDimitry Andric 49340b57cec5SDimitry Andric // Look through things like shuffles and bitcasts. 49350b57cec5SDimitry Andric while (Op.getNode()) { 49360b57cec5SDimitry Andric if (Op.getOpcode() == ISD::BITCAST) 49370b57cec5SDimitry Andric Op = Op.getOperand(0); 49380b57cec5SDimitry Andric else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 49390b57cec5SDimitry Andric // See whether the bytes we need come from a contiguous part of one 49400b57cec5SDimitry Andric // operand. 49410b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> OpBytes; 49420b57cec5SDimitry Andric if (!getVPermMask(Op, OpBytes)) 49430b57cec5SDimitry Andric break; 49440b57cec5SDimitry Andric int NewByte; 49450b57cec5SDimitry Andric if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 49460b57cec5SDimitry Andric break; 49470b57cec5SDimitry Andric if (NewByte < 0) { 49480b57cec5SDimitry Andric addUndef(); 49490b57cec5SDimitry Andric return true; 49500b57cec5SDimitry Andric } 49510b57cec5SDimitry Andric Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 49520b57cec5SDimitry Andric Byte = unsigned(NewByte) % SystemZ::VectorBytes; 49530b57cec5SDimitry Andric } else if (Op.isUndef()) { 49540b57cec5SDimitry Andric addUndef(); 49550b57cec5SDimitry Andric return true; 49560b57cec5SDimitry Andric } else 49570b57cec5SDimitry Andric break; 49580b57cec5SDimitry Andric } 49590b57cec5SDimitry Andric 49600b57cec5SDimitry Andric // Make sure that the source of the extraction is in Ops. 49610b57cec5SDimitry Andric unsigned OpNo = 0; 49620b57cec5SDimitry Andric for (; OpNo < Ops.size(); ++OpNo) 49630b57cec5SDimitry Andric if (Ops[OpNo] == Op) 49640b57cec5SDimitry Andric break; 49650b57cec5SDimitry Andric if (OpNo == Ops.size()) 49660b57cec5SDimitry Andric Ops.push_back(Op); 49670b57cec5SDimitry Andric 49680b57cec5SDimitry Andric // Add the element to Bytes. 49690b57cec5SDimitry Andric unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 49700b57cec5SDimitry Andric for (unsigned I = 0; I < BytesPerElement; ++I) 49710b57cec5SDimitry Andric Bytes.push_back(Base + I); 49720b57cec5SDimitry Andric 49730b57cec5SDimitry Andric return true; 49740b57cec5SDimitry Andric } 49750b57cec5SDimitry Andric 49760b57cec5SDimitry Andric // Return SDNodes for the completed shuffle. 49770b57cec5SDimitry Andric SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 49780b57cec5SDimitry Andric assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 49790b57cec5SDimitry Andric 49800b57cec5SDimitry Andric if (Ops.size() == 0) 49810b57cec5SDimitry Andric return DAG.getUNDEF(VT); 49820b57cec5SDimitry Andric 49835ffd83dbSDimitry Andric // Use a single unpack if possible as the last operation. 49845ffd83dbSDimitry Andric tryPrepareForUnpack(); 49855ffd83dbSDimitry Andric 49860b57cec5SDimitry Andric // Make sure that there are at least two shuffle operands. 49870b57cec5SDimitry Andric if (Ops.size() == 1) 49880b57cec5SDimitry Andric Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 49890b57cec5SDimitry Andric 49900b57cec5SDimitry Andric // Create a tree of shuffles, deferring root node until after the loop. 49910b57cec5SDimitry Andric // Try to redistribute the undefined elements of non-root nodes so that 49920b57cec5SDimitry Andric // the non-root shuffles match something like a pack or merge, then adjust 49930b57cec5SDimitry Andric // the parent node's permute vector to compensate for the new order. 49940b57cec5SDimitry Andric // Among other things, this copes with vectors like <2 x i16> that were 49950b57cec5SDimitry Andric // padded with undefined elements during type legalization. 49960b57cec5SDimitry Andric // 49970b57cec5SDimitry Andric // In the best case this redistribution will lead to the whole tree 49980b57cec5SDimitry Andric // using packs and merges. It should rarely be a loss in other cases. 49990b57cec5SDimitry Andric unsigned Stride = 1; 50000b57cec5SDimitry Andric for (; Stride * 2 < Ops.size(); Stride *= 2) { 50010b57cec5SDimitry Andric for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 50020b57cec5SDimitry Andric SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 50030b57cec5SDimitry Andric 50040b57cec5SDimitry Andric // Create a mask for just these two operands. 50050b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 50060b57cec5SDimitry Andric for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 50070b57cec5SDimitry Andric unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 50080b57cec5SDimitry Andric unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 50090b57cec5SDimitry Andric if (OpNo == I) 50100b57cec5SDimitry Andric NewBytes[J] = Byte; 50110b57cec5SDimitry Andric else if (OpNo == I + Stride) 50120b57cec5SDimitry Andric NewBytes[J] = SystemZ::VectorBytes + Byte; 50130b57cec5SDimitry Andric else 50140b57cec5SDimitry Andric NewBytes[J] = -1; 50150b57cec5SDimitry Andric } 50160b57cec5SDimitry Andric // See if it would be better to reorganize NewMask to avoid using VPERM. 50170b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 50180b57cec5SDimitry Andric if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 50190b57cec5SDimitry Andric Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 50200b57cec5SDimitry Andric // Applying NewBytesMap to Ops[I] gets back to NewBytes. 50210b57cec5SDimitry Andric for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 50220b57cec5SDimitry Andric if (NewBytes[J] >= 0) { 50230b57cec5SDimitry Andric assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 50240b57cec5SDimitry Andric "Invalid double permute"); 50250b57cec5SDimitry Andric Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 50260b57cec5SDimitry Andric } else 50270b57cec5SDimitry Andric assert(NewBytesMap[J] < 0 && "Invalid double permute"); 50280b57cec5SDimitry Andric } 50290b57cec5SDimitry Andric } else { 50300b57cec5SDimitry Andric // Just use NewBytes on the operands. 50310b57cec5SDimitry Andric Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 50320b57cec5SDimitry Andric for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 50330b57cec5SDimitry Andric if (NewBytes[J] >= 0) 50340b57cec5SDimitry Andric Bytes[J] = I * SystemZ::VectorBytes + J; 50350b57cec5SDimitry Andric } 50360b57cec5SDimitry Andric } 50370b57cec5SDimitry Andric } 50380b57cec5SDimitry Andric 50390b57cec5SDimitry Andric // Now we just have 2 inputs. Put the second operand in Ops[1]. 50400b57cec5SDimitry Andric if (Stride > 1) { 50410b57cec5SDimitry Andric Ops[1] = Ops[Stride]; 50420b57cec5SDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 50430b57cec5SDimitry Andric if (Bytes[I] >= int(SystemZ::VectorBytes)) 50440b57cec5SDimitry Andric Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 50450b57cec5SDimitry Andric } 50460b57cec5SDimitry Andric 50470b57cec5SDimitry Andric // Look for an instruction that can do the permute without resorting 50480b57cec5SDimitry Andric // to VPERM. 50490b57cec5SDimitry Andric unsigned OpNo0, OpNo1; 50500b57cec5SDimitry Andric SDValue Op; 50515ffd83dbSDimitry Andric if (unpackWasPrepared() && Ops[1].isUndef()) 50525ffd83dbSDimitry Andric Op = Ops[0]; 50535ffd83dbSDimitry Andric else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 50540b57cec5SDimitry Andric Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 50550b57cec5SDimitry Andric else 50560b57cec5SDimitry Andric Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 50575ffd83dbSDimitry Andric 50585ffd83dbSDimitry Andric Op = insertUnpackIfPrepared(DAG, DL, Op); 50595ffd83dbSDimitry Andric 50600b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, DL, VT, Op); 50610b57cec5SDimitry Andric } 50620b57cec5SDimitry Andric 50635ffd83dbSDimitry Andric #ifndef NDEBUG 50645ffd83dbSDimitry Andric static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 50655ffd83dbSDimitry Andric dbgs() << Msg.c_str() << " { "; 50665ffd83dbSDimitry Andric for (unsigned i = 0; i < Bytes.size(); i++) 50675ffd83dbSDimitry Andric dbgs() << Bytes[i] << " "; 50685ffd83dbSDimitry Andric dbgs() << "}\n"; 50695ffd83dbSDimitry Andric } 50705ffd83dbSDimitry Andric #endif 50715ffd83dbSDimitry Andric 50725ffd83dbSDimitry Andric // If the Bytes vector matches an unpack operation, prepare to do the unpack 50735ffd83dbSDimitry Andric // after all else by removing the zero vector and the effect of the unpack on 50745ffd83dbSDimitry Andric // Bytes. 50755ffd83dbSDimitry Andric void GeneralShuffle::tryPrepareForUnpack() { 50765ffd83dbSDimitry Andric uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 50775ffd83dbSDimitry Andric if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 50785ffd83dbSDimitry Andric return; 50795ffd83dbSDimitry Andric 50805ffd83dbSDimitry Andric // Only do this if removing the zero vector reduces the depth, otherwise 50815ffd83dbSDimitry Andric // the critical path will increase with the final unpack. 50825ffd83dbSDimitry Andric if (Ops.size() > 2 && 50835ffd83dbSDimitry Andric Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 50845ffd83dbSDimitry Andric return; 50855ffd83dbSDimitry Andric 50865ffd83dbSDimitry Andric // Find an unpack that would allow removing the zero vector from Ops. 50875ffd83dbSDimitry Andric UnpackFromEltSize = 1; 50885ffd83dbSDimitry Andric for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 50895ffd83dbSDimitry Andric bool MatchUnpack = true; 50905ffd83dbSDimitry Andric SmallVector<int, SystemZ::VectorBytes> SrcBytes; 50915ffd83dbSDimitry Andric for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 50925ffd83dbSDimitry Andric unsigned ToEltSize = UnpackFromEltSize * 2; 50935ffd83dbSDimitry Andric bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 50945ffd83dbSDimitry Andric if (!IsZextByte) 50955ffd83dbSDimitry Andric SrcBytes.push_back(Bytes[Elt]); 50965ffd83dbSDimitry Andric if (Bytes[Elt] != -1) { 50975ffd83dbSDimitry Andric unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 50985ffd83dbSDimitry Andric if (IsZextByte != (OpNo == ZeroVecOpNo)) { 50995ffd83dbSDimitry Andric MatchUnpack = false; 51005ffd83dbSDimitry Andric break; 51015ffd83dbSDimitry Andric } 51025ffd83dbSDimitry Andric } 51035ffd83dbSDimitry Andric } 51045ffd83dbSDimitry Andric if (MatchUnpack) { 51055ffd83dbSDimitry Andric if (Ops.size() == 2) { 51065ffd83dbSDimitry Andric // Don't use unpack if a single source operand needs rearrangement. 51075ffd83dbSDimitry Andric for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 51085ffd83dbSDimitry Andric if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 51095ffd83dbSDimitry Andric UnpackFromEltSize = UINT_MAX; 51105ffd83dbSDimitry Andric return; 51115ffd83dbSDimitry Andric } 51125ffd83dbSDimitry Andric } 51135ffd83dbSDimitry Andric break; 51145ffd83dbSDimitry Andric } 51155ffd83dbSDimitry Andric } 51165ffd83dbSDimitry Andric if (UnpackFromEltSize > 4) 51175ffd83dbSDimitry Andric return; 51185ffd83dbSDimitry Andric 51195ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 51205ffd83dbSDimitry Andric << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 51215ffd83dbSDimitry Andric << ".\n"; 51225ffd83dbSDimitry Andric dumpBytes(Bytes, "Original Bytes vector:");); 51235ffd83dbSDimitry Andric 51245ffd83dbSDimitry Andric // Apply the unpack in reverse to the Bytes array. 51255ffd83dbSDimitry Andric unsigned B = 0; 51265ffd83dbSDimitry Andric for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 51275ffd83dbSDimitry Andric Elt += UnpackFromEltSize; 51285ffd83dbSDimitry Andric for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 51295ffd83dbSDimitry Andric Bytes[B] = Bytes[Elt]; 51305ffd83dbSDimitry Andric } 51315ffd83dbSDimitry Andric while (B < SystemZ::VectorBytes) 51325ffd83dbSDimitry Andric Bytes[B++] = -1; 51335ffd83dbSDimitry Andric 51345ffd83dbSDimitry Andric // Remove the zero vector from Ops 51355ffd83dbSDimitry Andric Ops.erase(&Ops[ZeroVecOpNo]); 51365ffd83dbSDimitry Andric for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 51375ffd83dbSDimitry Andric if (Bytes[I] >= 0) { 51385ffd83dbSDimitry Andric unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 51395ffd83dbSDimitry Andric if (OpNo > ZeroVecOpNo) 51405ffd83dbSDimitry Andric Bytes[I] -= SystemZ::VectorBytes; 51415ffd83dbSDimitry Andric } 51425ffd83dbSDimitry Andric 51435ffd83dbSDimitry Andric LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 51445ffd83dbSDimitry Andric dbgs() << "\n";); 51455ffd83dbSDimitry Andric } 51465ffd83dbSDimitry Andric 51475ffd83dbSDimitry Andric SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 51485ffd83dbSDimitry Andric const SDLoc &DL, 51495ffd83dbSDimitry Andric SDValue Op) { 51505ffd83dbSDimitry Andric if (!unpackWasPrepared()) 51515ffd83dbSDimitry Andric return Op; 51525ffd83dbSDimitry Andric unsigned InBits = UnpackFromEltSize * 8; 51535ffd83dbSDimitry Andric EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 51545ffd83dbSDimitry Andric SystemZ::VectorBits / InBits); 51555ffd83dbSDimitry Andric SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 51565ffd83dbSDimitry Andric unsigned OutBits = InBits * 2; 51575ffd83dbSDimitry Andric EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 51585ffd83dbSDimitry Andric SystemZ::VectorBits / OutBits); 51595ffd83dbSDimitry Andric return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 51605ffd83dbSDimitry Andric } 51615ffd83dbSDimitry Andric 51620b57cec5SDimitry Andric // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 51630b57cec5SDimitry Andric static bool isScalarToVector(SDValue Op) { 51640b57cec5SDimitry Andric for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 51650b57cec5SDimitry Andric if (!Op.getOperand(I).isUndef()) 51660b57cec5SDimitry Andric return false; 51670b57cec5SDimitry Andric return true; 51680b57cec5SDimitry Andric } 51690b57cec5SDimitry Andric 51700b57cec5SDimitry Andric // Return a vector of type VT that contains Value in the first element. 51710b57cec5SDimitry Andric // The other elements don't matter. 51720b57cec5SDimitry Andric static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 51730b57cec5SDimitry Andric SDValue Value) { 51740b57cec5SDimitry Andric // If we have a constant, replicate it to all elements and let the 51750b57cec5SDimitry Andric // BUILD_VECTOR lowering take care of it. 51760b57cec5SDimitry Andric if (Value.getOpcode() == ISD::Constant || 51770b57cec5SDimitry Andric Value.getOpcode() == ISD::ConstantFP) { 51780b57cec5SDimitry Andric SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 51790b57cec5SDimitry Andric return DAG.getBuildVector(VT, DL, Ops); 51800b57cec5SDimitry Andric } 51810b57cec5SDimitry Andric if (Value.isUndef()) 51820b57cec5SDimitry Andric return DAG.getUNDEF(VT); 51830b57cec5SDimitry Andric return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 51840b57cec5SDimitry Andric } 51850b57cec5SDimitry Andric 51860b57cec5SDimitry Andric // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 51870b57cec5SDimitry Andric // element 1. Used for cases in which replication is cheap. 51880b57cec5SDimitry Andric static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 51890b57cec5SDimitry Andric SDValue Op0, SDValue Op1) { 51900b57cec5SDimitry Andric if (Op0.isUndef()) { 51910b57cec5SDimitry Andric if (Op1.isUndef()) 51920b57cec5SDimitry Andric return DAG.getUNDEF(VT); 51930b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 51940b57cec5SDimitry Andric } 51950b57cec5SDimitry Andric if (Op1.isUndef()) 51960b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 51970b57cec5SDimitry Andric return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 51980b57cec5SDimitry Andric buildScalarToVector(DAG, DL, VT, Op0), 51990b57cec5SDimitry Andric buildScalarToVector(DAG, DL, VT, Op1)); 52000b57cec5SDimitry Andric } 52010b57cec5SDimitry Andric 52020b57cec5SDimitry Andric // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 52030b57cec5SDimitry Andric // vector for them. 52040b57cec5SDimitry Andric static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 52050b57cec5SDimitry Andric SDValue Op1) { 52060b57cec5SDimitry Andric if (Op0.isUndef() && Op1.isUndef()) 52070b57cec5SDimitry Andric return DAG.getUNDEF(MVT::v2i64); 52080b57cec5SDimitry Andric // If one of the two inputs is undefined then replicate the other one, 52090b57cec5SDimitry Andric // in order to avoid using another register unnecessarily. 52100b57cec5SDimitry Andric if (Op0.isUndef()) 52110b57cec5SDimitry Andric Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 52120b57cec5SDimitry Andric else if (Op1.isUndef()) 52130b57cec5SDimitry Andric Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 52140b57cec5SDimitry Andric else { 52150b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 52160b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 52170b57cec5SDimitry Andric } 52180b57cec5SDimitry Andric return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 52190b57cec5SDimitry Andric } 52200b57cec5SDimitry Andric 52210b57cec5SDimitry Andric // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 52220b57cec5SDimitry Andric // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 52230b57cec5SDimitry Andric // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 52240b57cec5SDimitry Andric // would benefit from this representation and return it if so. 52250b57cec5SDimitry Andric static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 52260b57cec5SDimitry Andric BuildVectorSDNode *BVN) { 52270b57cec5SDimitry Andric EVT VT = BVN->getValueType(0); 52280b57cec5SDimitry Andric unsigned NumElements = VT.getVectorNumElements(); 52290b57cec5SDimitry Andric 52300b57cec5SDimitry Andric // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 52310b57cec5SDimitry Andric // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 52320b57cec5SDimitry Andric // need a BUILD_VECTOR, add an additional placeholder operand for that 52330b57cec5SDimitry Andric // BUILD_VECTOR and store its operands in ResidueOps. 52340b57cec5SDimitry Andric GeneralShuffle GS(VT); 52350b57cec5SDimitry Andric SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 52360b57cec5SDimitry Andric bool FoundOne = false; 52370b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) { 52380b57cec5SDimitry Andric SDValue Op = BVN->getOperand(I); 52390b57cec5SDimitry Andric if (Op.getOpcode() == ISD::TRUNCATE) 52400b57cec5SDimitry Andric Op = Op.getOperand(0); 52410b57cec5SDimitry Andric if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 52420b57cec5SDimitry Andric Op.getOperand(1).getOpcode() == ISD::Constant) { 52430b57cec5SDimitry Andric unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 52440b57cec5SDimitry Andric if (!GS.add(Op.getOperand(0), Elem)) 52450b57cec5SDimitry Andric return SDValue(); 52460b57cec5SDimitry Andric FoundOne = true; 52470b57cec5SDimitry Andric } else if (Op.isUndef()) { 52480b57cec5SDimitry Andric GS.addUndef(); 52490b57cec5SDimitry Andric } else { 52500b57cec5SDimitry Andric if (!GS.add(SDValue(), ResidueOps.size())) 52510b57cec5SDimitry Andric return SDValue(); 52520b57cec5SDimitry Andric ResidueOps.push_back(BVN->getOperand(I)); 52530b57cec5SDimitry Andric } 52540b57cec5SDimitry Andric } 52550b57cec5SDimitry Andric 52560b57cec5SDimitry Andric // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 52570b57cec5SDimitry Andric if (!FoundOne) 52580b57cec5SDimitry Andric return SDValue(); 52590b57cec5SDimitry Andric 52600b57cec5SDimitry Andric // Create the BUILD_VECTOR for the remaining elements, if any. 52610b57cec5SDimitry Andric if (!ResidueOps.empty()) { 52620b57cec5SDimitry Andric while (ResidueOps.size() < NumElements) 52630b57cec5SDimitry Andric ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 52640b57cec5SDimitry Andric for (auto &Op : GS.Ops) { 52650b57cec5SDimitry Andric if (!Op.getNode()) { 52660b57cec5SDimitry Andric Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 52670b57cec5SDimitry Andric break; 52680b57cec5SDimitry Andric } 52690b57cec5SDimitry Andric } 52700b57cec5SDimitry Andric } 52710b57cec5SDimitry Andric return GS.getNode(DAG, SDLoc(BVN)); 52720b57cec5SDimitry Andric } 52730b57cec5SDimitry Andric 52740b57cec5SDimitry Andric bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 52750b57cec5SDimitry Andric if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 52760b57cec5SDimitry Andric return true; 52770b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 52780b57cec5SDimitry Andric return true; 52790b57cec5SDimitry Andric return false; 52800b57cec5SDimitry Andric } 52810b57cec5SDimitry Andric 52820b57cec5SDimitry Andric // Combine GPR scalar values Elems into a vector of type VT. 52830b57cec5SDimitry Andric SDValue 52840b57cec5SDimitry Andric SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 52850b57cec5SDimitry Andric SmallVectorImpl<SDValue> &Elems) const { 52860b57cec5SDimitry Andric // See whether there is a single replicated value. 52870b57cec5SDimitry Andric SDValue Single; 52880b57cec5SDimitry Andric unsigned int NumElements = Elems.size(); 52890b57cec5SDimitry Andric unsigned int Count = 0; 52900b57cec5SDimitry Andric for (auto Elem : Elems) { 52910b57cec5SDimitry Andric if (!Elem.isUndef()) { 52920b57cec5SDimitry Andric if (!Single.getNode()) 52930b57cec5SDimitry Andric Single = Elem; 52940b57cec5SDimitry Andric else if (Elem != Single) { 52950b57cec5SDimitry Andric Single = SDValue(); 52960b57cec5SDimitry Andric break; 52970b57cec5SDimitry Andric } 52980b57cec5SDimitry Andric Count += 1; 52990b57cec5SDimitry Andric } 53000b57cec5SDimitry Andric } 53010b57cec5SDimitry Andric // There are three cases here: 53020b57cec5SDimitry Andric // 53030b57cec5SDimitry Andric // - if the only defined element is a loaded one, the best sequence 53040b57cec5SDimitry Andric // is a replicating load. 53050b57cec5SDimitry Andric // 53060b57cec5SDimitry Andric // - otherwise, if the only defined element is an i64 value, we will 53070b57cec5SDimitry Andric // end up with the same VLVGP sequence regardless of whether we short-cut 53080b57cec5SDimitry Andric // for replication or fall through to the later code. 53090b57cec5SDimitry Andric // 53100b57cec5SDimitry Andric // - otherwise, if the only defined element is an i32 or smaller value, 53110b57cec5SDimitry Andric // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 53120b57cec5SDimitry Andric // This is only a win if the single defined element is used more than once. 53130b57cec5SDimitry Andric // In other cases we're better off using a single VLVGx. 53140b57cec5SDimitry Andric if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 53150b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 53160b57cec5SDimitry Andric 53170b57cec5SDimitry Andric // If all elements are loads, use VLREP/VLEs (below). 53180b57cec5SDimitry Andric bool AllLoads = true; 53190b57cec5SDimitry Andric for (auto Elem : Elems) 53200b57cec5SDimitry Andric if (!isVectorElementLoad(Elem)) { 53210b57cec5SDimitry Andric AllLoads = false; 53220b57cec5SDimitry Andric break; 53230b57cec5SDimitry Andric } 53240b57cec5SDimitry Andric 53250b57cec5SDimitry Andric // The best way of building a v2i64 from two i64s is to use VLVGP. 53260b57cec5SDimitry Andric if (VT == MVT::v2i64 && !AllLoads) 53270b57cec5SDimitry Andric return joinDwords(DAG, DL, Elems[0], Elems[1]); 53280b57cec5SDimitry Andric 53290b57cec5SDimitry Andric // Use a 64-bit merge high to combine two doubles. 53300b57cec5SDimitry Andric if (VT == MVT::v2f64 && !AllLoads) 53310b57cec5SDimitry Andric return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 53320b57cec5SDimitry Andric 53330b57cec5SDimitry Andric // Build v4f32 values directly from the FPRs: 53340b57cec5SDimitry Andric // 53350b57cec5SDimitry Andric // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 53360b57cec5SDimitry Andric // V V VMRHF 53370b57cec5SDimitry Andric // <ABxx> <CDxx> 53380b57cec5SDimitry Andric // V VMRHG 53390b57cec5SDimitry Andric // <ABCD> 53400b57cec5SDimitry Andric if (VT == MVT::v4f32 && !AllLoads) { 53410b57cec5SDimitry Andric SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 53420b57cec5SDimitry Andric SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 53430b57cec5SDimitry Andric // Avoid unnecessary undefs by reusing the other operand. 53440b57cec5SDimitry Andric if (Op01.isUndef()) 53450b57cec5SDimitry Andric Op01 = Op23; 53460b57cec5SDimitry Andric else if (Op23.isUndef()) 53470b57cec5SDimitry Andric Op23 = Op01; 53480b57cec5SDimitry Andric // Merging identical replications is a no-op. 53490b57cec5SDimitry Andric if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 53500b57cec5SDimitry Andric return Op01; 53510b57cec5SDimitry Andric Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 53520b57cec5SDimitry Andric Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 53530b57cec5SDimitry Andric SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 53540b57cec5SDimitry Andric DL, MVT::v2i64, Op01, Op23); 53550b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, DL, VT, Op); 53560b57cec5SDimitry Andric } 53570b57cec5SDimitry Andric 53580b57cec5SDimitry Andric // Collect the constant terms. 53590b57cec5SDimitry Andric SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 53600b57cec5SDimitry Andric SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 53610b57cec5SDimitry Andric 53620b57cec5SDimitry Andric unsigned NumConstants = 0; 53630b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) { 53640b57cec5SDimitry Andric SDValue Elem = Elems[I]; 53650b57cec5SDimitry Andric if (Elem.getOpcode() == ISD::Constant || 53660b57cec5SDimitry Andric Elem.getOpcode() == ISD::ConstantFP) { 53670b57cec5SDimitry Andric NumConstants += 1; 53680b57cec5SDimitry Andric Constants[I] = Elem; 53690b57cec5SDimitry Andric Done[I] = true; 53700b57cec5SDimitry Andric } 53710b57cec5SDimitry Andric } 53720b57cec5SDimitry Andric // If there was at least one constant, fill in the other elements of 53730b57cec5SDimitry Andric // Constants with undefs to get a full vector constant and use that 53740b57cec5SDimitry Andric // as the starting point. 53750b57cec5SDimitry Andric SDValue Result; 53760b57cec5SDimitry Andric SDValue ReplicatedVal; 53770b57cec5SDimitry Andric if (NumConstants > 0) { 53780b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 53790b57cec5SDimitry Andric if (!Constants[I].getNode()) 53800b57cec5SDimitry Andric Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 53810b57cec5SDimitry Andric Result = DAG.getBuildVector(VT, DL, Constants); 53820b57cec5SDimitry Andric } else { 53830b57cec5SDimitry Andric // Otherwise try to use VLREP or VLVGP to start the sequence in order to 53840b57cec5SDimitry Andric // avoid a false dependency on any previous contents of the vector 53850b57cec5SDimitry Andric // register. 53860b57cec5SDimitry Andric 53870b57cec5SDimitry Andric // Use a VLREP if at least one element is a load. Make sure to replicate 53880b57cec5SDimitry Andric // the load with the most elements having its value. 53890b57cec5SDimitry Andric std::map<const SDNode*, unsigned> UseCounts; 53900b57cec5SDimitry Andric SDNode *LoadMaxUses = nullptr; 53910b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 53920b57cec5SDimitry Andric if (isVectorElementLoad(Elems[I])) { 53930b57cec5SDimitry Andric SDNode *Ld = Elems[I].getNode(); 53940b57cec5SDimitry Andric UseCounts[Ld]++; 53950b57cec5SDimitry Andric if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 53960b57cec5SDimitry Andric LoadMaxUses = Ld; 53970b57cec5SDimitry Andric } 53980b57cec5SDimitry Andric if (LoadMaxUses != nullptr) { 53990b57cec5SDimitry Andric ReplicatedVal = SDValue(LoadMaxUses, 0); 54000b57cec5SDimitry Andric Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 54010b57cec5SDimitry Andric } else { 54020b57cec5SDimitry Andric // Try to use VLVGP. 54030b57cec5SDimitry Andric unsigned I1 = NumElements / 2 - 1; 54040b57cec5SDimitry Andric unsigned I2 = NumElements - 1; 54050b57cec5SDimitry Andric bool Def1 = !Elems[I1].isUndef(); 54060b57cec5SDimitry Andric bool Def2 = !Elems[I2].isUndef(); 54070b57cec5SDimitry Andric if (Def1 || Def2) { 54080b57cec5SDimitry Andric SDValue Elem1 = Elems[Def1 ? I1 : I2]; 54090b57cec5SDimitry Andric SDValue Elem2 = Elems[Def2 ? I2 : I1]; 54100b57cec5SDimitry Andric Result = DAG.getNode(ISD::BITCAST, DL, VT, 54110b57cec5SDimitry Andric joinDwords(DAG, DL, Elem1, Elem2)); 54120b57cec5SDimitry Andric Done[I1] = true; 54130b57cec5SDimitry Andric Done[I2] = true; 54140b57cec5SDimitry Andric } else 54150b57cec5SDimitry Andric Result = DAG.getUNDEF(VT); 54160b57cec5SDimitry Andric } 54170b57cec5SDimitry Andric } 54180b57cec5SDimitry Andric 54190b57cec5SDimitry Andric // Use VLVGx to insert the other elements. 54200b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 54210b57cec5SDimitry Andric if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 54220b57cec5SDimitry Andric Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 54230b57cec5SDimitry Andric DAG.getConstant(I, DL, MVT::i32)); 54240b57cec5SDimitry Andric return Result; 54250b57cec5SDimitry Andric } 54260b57cec5SDimitry Andric 54270b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 54280b57cec5SDimitry Andric SelectionDAG &DAG) const { 54290b57cec5SDimitry Andric auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 54300b57cec5SDimitry Andric SDLoc DL(Op); 54310b57cec5SDimitry Andric EVT VT = Op.getValueType(); 54320b57cec5SDimitry Andric 54330b57cec5SDimitry Andric if (BVN->isConstant()) { 54340b57cec5SDimitry Andric if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 54350b57cec5SDimitry Andric return Op; 54360b57cec5SDimitry Andric 54370b57cec5SDimitry Andric // Fall back to loading it from memory. 54380b57cec5SDimitry Andric return SDValue(); 54390b57cec5SDimitry Andric } 54400b57cec5SDimitry Andric 54410b57cec5SDimitry Andric // See if we should use shuffles to construct the vector from other vectors. 54420b57cec5SDimitry Andric if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 54430b57cec5SDimitry Andric return Res; 54440b57cec5SDimitry Andric 54450b57cec5SDimitry Andric // Detect SCALAR_TO_VECTOR conversions. 54460b57cec5SDimitry Andric if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 54470b57cec5SDimitry Andric return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 54480b57cec5SDimitry Andric 54490b57cec5SDimitry Andric // Otherwise use buildVector to build the vector up from GPRs. 54500b57cec5SDimitry Andric unsigned NumElements = Op.getNumOperands(); 54510b57cec5SDimitry Andric SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 54520b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) 54530b57cec5SDimitry Andric Ops[I] = Op.getOperand(I); 54540b57cec5SDimitry Andric return buildVector(DAG, DL, VT, Ops); 54550b57cec5SDimitry Andric } 54560b57cec5SDimitry Andric 54570b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 54580b57cec5SDimitry Andric SelectionDAG &DAG) const { 54590b57cec5SDimitry Andric auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 54600b57cec5SDimitry Andric SDLoc DL(Op); 54610b57cec5SDimitry Andric EVT VT = Op.getValueType(); 54620b57cec5SDimitry Andric unsigned NumElements = VT.getVectorNumElements(); 54630b57cec5SDimitry Andric 54640b57cec5SDimitry Andric if (VSN->isSplat()) { 54650b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 54660b57cec5SDimitry Andric unsigned Index = VSN->getSplatIndex(); 54670b57cec5SDimitry Andric assert(Index < VT.getVectorNumElements() && 54680b57cec5SDimitry Andric "Splat index should be defined and in first operand"); 54690b57cec5SDimitry Andric // See whether the value we're splatting is directly available as a scalar. 54700b57cec5SDimitry Andric if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 54710b57cec5SDimitry Andric Op0.getOpcode() == ISD::BUILD_VECTOR) 54720b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 54730b57cec5SDimitry Andric // Otherwise keep it as a vector-to-vector operation. 54740b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 54758bcb0991SDimitry Andric DAG.getTargetConstant(Index, DL, MVT::i32)); 54760b57cec5SDimitry Andric } 54770b57cec5SDimitry Andric 54780b57cec5SDimitry Andric GeneralShuffle GS(VT); 54790b57cec5SDimitry Andric for (unsigned I = 0; I < NumElements; ++I) { 54800b57cec5SDimitry Andric int Elt = VSN->getMaskElt(I); 54810b57cec5SDimitry Andric if (Elt < 0) 54820b57cec5SDimitry Andric GS.addUndef(); 54830b57cec5SDimitry Andric else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 54840b57cec5SDimitry Andric unsigned(Elt) % NumElements)) 54850b57cec5SDimitry Andric return SDValue(); 54860b57cec5SDimitry Andric } 54870b57cec5SDimitry Andric return GS.getNode(DAG, SDLoc(VSN)); 54880b57cec5SDimitry Andric } 54890b57cec5SDimitry Andric 54900b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 54910b57cec5SDimitry Andric SelectionDAG &DAG) const { 54920b57cec5SDimitry Andric SDLoc DL(Op); 54930b57cec5SDimitry Andric // Just insert the scalar into element 0 of an undefined vector. 54940b57cec5SDimitry Andric return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 54950b57cec5SDimitry Andric Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 54960b57cec5SDimitry Andric Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 54970b57cec5SDimitry Andric } 54980b57cec5SDimitry Andric 54990b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 55000b57cec5SDimitry Andric SelectionDAG &DAG) const { 55010b57cec5SDimitry Andric // Handle insertions of floating-point values. 55020b57cec5SDimitry Andric SDLoc DL(Op); 55030b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 55040b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 55050b57cec5SDimitry Andric SDValue Op2 = Op.getOperand(2); 55060b57cec5SDimitry Andric EVT VT = Op.getValueType(); 55070b57cec5SDimitry Andric 55080b57cec5SDimitry Andric // Insertions into constant indices of a v2f64 can be done using VPDI. 55090b57cec5SDimitry Andric // However, if the inserted value is a bitcast or a constant then it's 55100b57cec5SDimitry Andric // better to use GPRs, as below. 55110b57cec5SDimitry Andric if (VT == MVT::v2f64 && 55120b57cec5SDimitry Andric Op1.getOpcode() != ISD::BITCAST && 55130b57cec5SDimitry Andric Op1.getOpcode() != ISD::ConstantFP && 55140b57cec5SDimitry Andric Op2.getOpcode() == ISD::Constant) { 55150b57cec5SDimitry Andric uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 55160b57cec5SDimitry Andric unsigned Mask = VT.getVectorNumElements() - 1; 55170b57cec5SDimitry Andric if (Index <= Mask) 55180b57cec5SDimitry Andric return Op; 55190b57cec5SDimitry Andric } 55200b57cec5SDimitry Andric 55210b57cec5SDimitry Andric // Otherwise bitcast to the equivalent integer form and insert via a GPR. 55220b57cec5SDimitry Andric MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 55230b57cec5SDimitry Andric MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 55240b57cec5SDimitry Andric SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 55250b57cec5SDimitry Andric DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 55260b57cec5SDimitry Andric DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 55270b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, DL, VT, Res); 55280b57cec5SDimitry Andric } 55290b57cec5SDimitry Andric 55300b57cec5SDimitry Andric SDValue 55310b57cec5SDimitry Andric SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 55320b57cec5SDimitry Andric SelectionDAG &DAG) const { 55330b57cec5SDimitry Andric // Handle extractions of floating-point values. 55340b57cec5SDimitry Andric SDLoc DL(Op); 55350b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 55360b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 55370b57cec5SDimitry Andric EVT VT = Op.getValueType(); 55380b57cec5SDimitry Andric EVT VecVT = Op0.getValueType(); 55390b57cec5SDimitry Andric 55400b57cec5SDimitry Andric // Extractions of constant indices can be done directly. 55410b57cec5SDimitry Andric if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 55420b57cec5SDimitry Andric uint64_t Index = CIndexN->getZExtValue(); 55430b57cec5SDimitry Andric unsigned Mask = VecVT.getVectorNumElements() - 1; 55440b57cec5SDimitry Andric if (Index <= Mask) 55450b57cec5SDimitry Andric return Op; 55460b57cec5SDimitry Andric } 55470b57cec5SDimitry Andric 55480b57cec5SDimitry Andric // Otherwise bitcast to the equivalent integer form and extract via a GPR. 55490b57cec5SDimitry Andric MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 55500b57cec5SDimitry Andric MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 55510b57cec5SDimitry Andric SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 55520b57cec5SDimitry Andric DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 55530b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, DL, VT, Res); 55540b57cec5SDimitry Andric } 55550b57cec5SDimitry Andric 55565ffd83dbSDimitry Andric SDValue SystemZTargetLowering:: 55575ffd83dbSDimitry Andric lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 55580b57cec5SDimitry Andric SDValue PackedOp = Op.getOperand(0); 55590b57cec5SDimitry Andric EVT OutVT = Op.getValueType(); 55600b57cec5SDimitry Andric EVT InVT = PackedOp.getValueType(); 55610b57cec5SDimitry Andric unsigned ToBits = OutVT.getScalarSizeInBits(); 55620b57cec5SDimitry Andric unsigned FromBits = InVT.getScalarSizeInBits(); 55630b57cec5SDimitry Andric do { 55640b57cec5SDimitry Andric FromBits *= 2; 55650b57cec5SDimitry Andric EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 55660b57cec5SDimitry Andric SystemZ::VectorBits / FromBits); 55675ffd83dbSDimitry Andric PackedOp = 55685ffd83dbSDimitry Andric DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 55690b57cec5SDimitry Andric } while (FromBits != ToBits); 55700b57cec5SDimitry Andric return PackedOp; 55710b57cec5SDimitry Andric } 55720b57cec5SDimitry Andric 55735ffd83dbSDimitry Andric // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 55745ffd83dbSDimitry Andric SDValue SystemZTargetLowering:: 55755ffd83dbSDimitry Andric lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 55765ffd83dbSDimitry Andric SDValue PackedOp = Op.getOperand(0); 55775ffd83dbSDimitry Andric SDLoc DL(Op); 55785ffd83dbSDimitry Andric EVT OutVT = Op.getValueType(); 55795ffd83dbSDimitry Andric EVT InVT = PackedOp.getValueType(); 55805ffd83dbSDimitry Andric unsigned InNumElts = InVT.getVectorNumElements(); 55815ffd83dbSDimitry Andric unsigned OutNumElts = OutVT.getVectorNumElements(); 55825ffd83dbSDimitry Andric unsigned NumInPerOut = InNumElts / OutNumElts; 55835ffd83dbSDimitry Andric 55845ffd83dbSDimitry Andric SDValue ZeroVec = 55855ffd83dbSDimitry Andric DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 55865ffd83dbSDimitry Andric 55875ffd83dbSDimitry Andric SmallVector<int, 16> Mask(InNumElts); 55885ffd83dbSDimitry Andric unsigned ZeroVecElt = InNumElts; 55895ffd83dbSDimitry Andric for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 55905ffd83dbSDimitry Andric unsigned MaskElt = PackedElt * NumInPerOut; 55915ffd83dbSDimitry Andric unsigned End = MaskElt + NumInPerOut - 1; 55925ffd83dbSDimitry Andric for (; MaskElt < End; MaskElt++) 55935ffd83dbSDimitry Andric Mask[MaskElt] = ZeroVecElt++; 55945ffd83dbSDimitry Andric Mask[MaskElt] = PackedElt; 55955ffd83dbSDimitry Andric } 55965ffd83dbSDimitry Andric SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 55975ffd83dbSDimitry Andric return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 55985ffd83dbSDimitry Andric } 55995ffd83dbSDimitry Andric 56000b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 56010b57cec5SDimitry Andric unsigned ByScalar) const { 56020b57cec5SDimitry Andric // Look for cases where a vector shift can use the *_BY_SCALAR form. 56030b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 56040b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 56050b57cec5SDimitry Andric SDLoc DL(Op); 56060b57cec5SDimitry Andric EVT VT = Op.getValueType(); 56070b57cec5SDimitry Andric unsigned ElemBitSize = VT.getScalarSizeInBits(); 56080b57cec5SDimitry Andric 56090b57cec5SDimitry Andric // See whether the shift vector is a splat represented as BUILD_VECTOR. 56100b57cec5SDimitry Andric if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 56110b57cec5SDimitry Andric APInt SplatBits, SplatUndef; 56120b57cec5SDimitry Andric unsigned SplatBitSize; 56130b57cec5SDimitry Andric bool HasAnyUndefs; 56140b57cec5SDimitry Andric // Check for constant splats. Use ElemBitSize as the minimum element 56150b57cec5SDimitry Andric // width and reject splats that need wider elements. 56160b57cec5SDimitry Andric if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 56170b57cec5SDimitry Andric ElemBitSize, true) && 56180b57cec5SDimitry Andric SplatBitSize == ElemBitSize) { 56190b57cec5SDimitry Andric SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 56200b57cec5SDimitry Andric DL, MVT::i32); 56210b57cec5SDimitry Andric return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 56220b57cec5SDimitry Andric } 56230b57cec5SDimitry Andric // Check for variable splats. 56240b57cec5SDimitry Andric BitVector UndefElements; 56250b57cec5SDimitry Andric SDValue Splat = BVN->getSplatValue(&UndefElements); 56260b57cec5SDimitry Andric if (Splat) { 56270b57cec5SDimitry Andric // Since i32 is the smallest legal type, we either need a no-op 56280b57cec5SDimitry Andric // or a truncation. 56290b57cec5SDimitry Andric SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 56300b57cec5SDimitry Andric return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 56310b57cec5SDimitry Andric } 56320b57cec5SDimitry Andric } 56330b57cec5SDimitry Andric 56340b57cec5SDimitry Andric // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 56350b57cec5SDimitry Andric // and the shift amount is directly available in a GPR. 56360b57cec5SDimitry Andric if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 56370b57cec5SDimitry Andric if (VSN->isSplat()) { 56380b57cec5SDimitry Andric SDValue VSNOp0 = VSN->getOperand(0); 56390b57cec5SDimitry Andric unsigned Index = VSN->getSplatIndex(); 56400b57cec5SDimitry Andric assert(Index < VT.getVectorNumElements() && 56410b57cec5SDimitry Andric "Splat index should be defined and in first operand"); 56420b57cec5SDimitry Andric if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 56430b57cec5SDimitry Andric VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 56440b57cec5SDimitry Andric // Since i32 is the smallest legal type, we either need a no-op 56450b57cec5SDimitry Andric // or a truncation. 56460b57cec5SDimitry Andric SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 56470b57cec5SDimitry Andric VSNOp0.getOperand(Index)); 56480b57cec5SDimitry Andric return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 56490b57cec5SDimitry Andric } 56500b57cec5SDimitry Andric } 56510b57cec5SDimitry Andric } 56520b57cec5SDimitry Andric 56530b57cec5SDimitry Andric // Otherwise just treat the current form as legal. 56540b57cec5SDimitry Andric return Op; 56550b57cec5SDimitry Andric } 56560b57cec5SDimitry Andric 565781ad6265SDimitry Andric SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op, 565881ad6265SDimitry Andric SelectionDAG &DAG) const { 565981ad6265SDimitry Andric SDLoc DL(Op); 566081ad6265SDimitry Andric MVT ResultVT = Op.getSimpleValueType(); 566181ad6265SDimitry Andric SDValue Arg = Op.getOperand(0); 566281ad6265SDimitry Andric auto CNode = cast<ConstantSDNode>(Op.getOperand(1)); 566381ad6265SDimitry Andric unsigned Check = CNode->getZExtValue(); 566481ad6265SDimitry Andric 566581ad6265SDimitry Andric unsigned TDCMask = 0; 566681ad6265SDimitry Andric if (Check & fcSNan) 566781ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS; 566881ad6265SDimitry Andric if (Check & fcQNan) 566981ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS; 567081ad6265SDimitry Andric if (Check & fcPosInf) 567181ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS; 567281ad6265SDimitry Andric if (Check & fcNegInf) 567381ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS; 567481ad6265SDimitry Andric if (Check & fcPosNormal) 567581ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS; 567681ad6265SDimitry Andric if (Check & fcNegNormal) 567781ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS; 567881ad6265SDimitry Andric if (Check & fcPosSubnormal) 567981ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS; 568081ad6265SDimitry Andric if (Check & fcNegSubnormal) 568181ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS; 568281ad6265SDimitry Andric if (Check & fcPosZero) 568381ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_ZERO_PLUS; 568481ad6265SDimitry Andric if (Check & fcNegZero) 568581ad6265SDimitry Andric TDCMask |= SystemZ::TDCMASK_ZERO_MINUS; 568681ad6265SDimitry Andric SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64); 568781ad6265SDimitry Andric 568881ad6265SDimitry Andric SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV); 568981ad6265SDimitry Andric return getCCResult(DAG, Intr); 569081ad6265SDimitry Andric } 569181ad6265SDimitry Andric 56920b57cec5SDimitry Andric SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 56930b57cec5SDimitry Andric SelectionDAG &DAG) const { 56940b57cec5SDimitry Andric switch (Op.getOpcode()) { 56950b57cec5SDimitry Andric case ISD::FRAMEADDR: 56960b57cec5SDimitry Andric return lowerFRAMEADDR(Op, DAG); 56970b57cec5SDimitry Andric case ISD::RETURNADDR: 56980b57cec5SDimitry Andric return lowerRETURNADDR(Op, DAG); 56990b57cec5SDimitry Andric case ISD::BR_CC: 57000b57cec5SDimitry Andric return lowerBR_CC(Op, DAG); 57010b57cec5SDimitry Andric case ISD::SELECT_CC: 57020b57cec5SDimitry Andric return lowerSELECT_CC(Op, DAG); 57030b57cec5SDimitry Andric case ISD::SETCC: 57040b57cec5SDimitry Andric return lowerSETCC(Op, DAG); 5705480093f4SDimitry Andric case ISD::STRICT_FSETCC: 5706480093f4SDimitry Andric return lowerSTRICT_FSETCC(Op, DAG, false); 5707480093f4SDimitry Andric case ISD::STRICT_FSETCCS: 5708480093f4SDimitry Andric return lowerSTRICT_FSETCC(Op, DAG, true); 57090b57cec5SDimitry Andric case ISD::GlobalAddress: 57100b57cec5SDimitry Andric return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 57110b57cec5SDimitry Andric case ISD::GlobalTLSAddress: 57120b57cec5SDimitry Andric return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 57130b57cec5SDimitry Andric case ISD::BlockAddress: 57140b57cec5SDimitry Andric return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 57150b57cec5SDimitry Andric case ISD::JumpTable: 57160b57cec5SDimitry Andric return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 57170b57cec5SDimitry Andric case ISD::ConstantPool: 57180b57cec5SDimitry Andric return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 57190b57cec5SDimitry Andric case ISD::BITCAST: 57200b57cec5SDimitry Andric return lowerBITCAST(Op, DAG); 57210b57cec5SDimitry Andric case ISD::VASTART: 57220b57cec5SDimitry Andric return lowerVASTART(Op, DAG); 57230b57cec5SDimitry Andric case ISD::VACOPY: 57240b57cec5SDimitry Andric return lowerVACOPY(Op, DAG); 57250b57cec5SDimitry Andric case ISD::DYNAMIC_STACKALLOC: 57260b57cec5SDimitry Andric return lowerDYNAMIC_STACKALLOC(Op, DAG); 57270b57cec5SDimitry Andric case ISD::GET_DYNAMIC_AREA_OFFSET: 57280b57cec5SDimitry Andric return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 57290b57cec5SDimitry Andric case ISD::SMUL_LOHI: 57300b57cec5SDimitry Andric return lowerSMUL_LOHI(Op, DAG); 57310b57cec5SDimitry Andric case ISD::UMUL_LOHI: 57320b57cec5SDimitry Andric return lowerUMUL_LOHI(Op, DAG); 57330b57cec5SDimitry Andric case ISD::SDIVREM: 57340b57cec5SDimitry Andric return lowerSDIVREM(Op, DAG); 57350b57cec5SDimitry Andric case ISD::UDIVREM: 57360b57cec5SDimitry Andric return lowerUDIVREM(Op, DAG); 57370b57cec5SDimitry Andric case ISD::SADDO: 57380b57cec5SDimitry Andric case ISD::SSUBO: 57390b57cec5SDimitry Andric case ISD::UADDO: 57400b57cec5SDimitry Andric case ISD::USUBO: 57410b57cec5SDimitry Andric return lowerXALUO(Op, DAG); 57420b57cec5SDimitry Andric case ISD::ADDCARRY: 57430b57cec5SDimitry Andric case ISD::SUBCARRY: 57440b57cec5SDimitry Andric return lowerADDSUBCARRY(Op, DAG); 57450b57cec5SDimitry Andric case ISD::OR: 57460b57cec5SDimitry Andric return lowerOR(Op, DAG); 57470b57cec5SDimitry Andric case ISD::CTPOP: 57480b57cec5SDimitry Andric return lowerCTPOP(Op, DAG); 57490b57cec5SDimitry Andric case ISD::ATOMIC_FENCE: 57500b57cec5SDimitry Andric return lowerATOMIC_FENCE(Op, DAG); 57510b57cec5SDimitry Andric case ISD::ATOMIC_SWAP: 57520b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 57530b57cec5SDimitry Andric case ISD::ATOMIC_STORE: 57540b57cec5SDimitry Andric return lowerATOMIC_STORE(Op, DAG); 57550b57cec5SDimitry Andric case ISD::ATOMIC_LOAD: 57560b57cec5SDimitry Andric return lowerATOMIC_LOAD(Op, DAG); 57570b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_ADD: 57580b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 57590b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_SUB: 57600b57cec5SDimitry Andric return lowerATOMIC_LOAD_SUB(Op, DAG); 57610b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_AND: 57620b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 57630b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_OR: 57640b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 57650b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_XOR: 57660b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 57670b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_NAND: 57680b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 57690b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_MIN: 57700b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 57710b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_MAX: 57720b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 57730b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_UMIN: 57740b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 57750b57cec5SDimitry Andric case ISD::ATOMIC_LOAD_UMAX: 57760b57cec5SDimitry Andric return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 57770b57cec5SDimitry Andric case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 57780b57cec5SDimitry Andric return lowerATOMIC_CMP_SWAP(Op, DAG); 57790b57cec5SDimitry Andric case ISD::STACKSAVE: 57800b57cec5SDimitry Andric return lowerSTACKSAVE(Op, DAG); 57810b57cec5SDimitry Andric case ISD::STACKRESTORE: 57820b57cec5SDimitry Andric return lowerSTACKRESTORE(Op, DAG); 57830b57cec5SDimitry Andric case ISD::PREFETCH: 57840b57cec5SDimitry Andric return lowerPREFETCH(Op, DAG); 57850b57cec5SDimitry Andric case ISD::INTRINSIC_W_CHAIN: 57860b57cec5SDimitry Andric return lowerINTRINSIC_W_CHAIN(Op, DAG); 57870b57cec5SDimitry Andric case ISD::INTRINSIC_WO_CHAIN: 57880b57cec5SDimitry Andric return lowerINTRINSIC_WO_CHAIN(Op, DAG); 57890b57cec5SDimitry Andric case ISD::BUILD_VECTOR: 57900b57cec5SDimitry Andric return lowerBUILD_VECTOR(Op, DAG); 57910b57cec5SDimitry Andric case ISD::VECTOR_SHUFFLE: 57920b57cec5SDimitry Andric return lowerVECTOR_SHUFFLE(Op, DAG); 57930b57cec5SDimitry Andric case ISD::SCALAR_TO_VECTOR: 57940b57cec5SDimitry Andric return lowerSCALAR_TO_VECTOR(Op, DAG); 57950b57cec5SDimitry Andric case ISD::INSERT_VECTOR_ELT: 57960b57cec5SDimitry Andric return lowerINSERT_VECTOR_ELT(Op, DAG); 57970b57cec5SDimitry Andric case ISD::EXTRACT_VECTOR_ELT: 57980b57cec5SDimitry Andric return lowerEXTRACT_VECTOR_ELT(Op, DAG); 57990b57cec5SDimitry Andric case ISD::SIGN_EXTEND_VECTOR_INREG: 58005ffd83dbSDimitry Andric return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 58010b57cec5SDimitry Andric case ISD::ZERO_EXTEND_VECTOR_INREG: 58025ffd83dbSDimitry Andric return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 58030b57cec5SDimitry Andric case ISD::SHL: 58040b57cec5SDimitry Andric return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 58050b57cec5SDimitry Andric case ISD::SRL: 58060b57cec5SDimitry Andric return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 58070b57cec5SDimitry Andric case ISD::SRA: 58080b57cec5SDimitry Andric return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 580981ad6265SDimitry Andric case ISD::IS_FPCLASS: 581081ad6265SDimitry Andric return lowerIS_FPCLASS(Op, DAG); 5811bdd1243dSDimitry Andric case ISD::GET_ROUNDING: 5812bdd1243dSDimitry Andric return lowerGET_ROUNDING(Op, DAG); 58130b57cec5SDimitry Andric default: 58140b57cec5SDimitry Andric llvm_unreachable("Unexpected node to lower"); 58150b57cec5SDimitry Andric } 58160b57cec5SDimitry Andric } 58170b57cec5SDimitry Andric 58180b57cec5SDimitry Andric // Lower operations with invalid operand or result types (currently used 58190b57cec5SDimitry Andric // only for 128-bit integer types). 58200b57cec5SDimitry Andric void 58210b57cec5SDimitry Andric SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 58220b57cec5SDimitry Andric SmallVectorImpl<SDValue> &Results, 58230b57cec5SDimitry Andric SelectionDAG &DAG) const { 58240b57cec5SDimitry Andric switch (N->getOpcode()) { 58250b57cec5SDimitry Andric case ISD::ATOMIC_LOAD: { 58260b57cec5SDimitry Andric SDLoc DL(N); 58270b57cec5SDimitry Andric SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 58280b57cec5SDimitry Andric SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 58290b57cec5SDimitry Andric MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 58300b57cec5SDimitry Andric SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 58310b57cec5SDimitry Andric DL, Tys, Ops, MVT::i128, MMO); 58320b57cec5SDimitry Andric Results.push_back(lowerGR128ToI128(DAG, Res)); 58330b57cec5SDimitry Andric Results.push_back(Res.getValue(1)); 58340b57cec5SDimitry Andric break; 58350b57cec5SDimitry Andric } 58360b57cec5SDimitry Andric case ISD::ATOMIC_STORE: { 58370b57cec5SDimitry Andric SDLoc DL(N); 58380b57cec5SDimitry Andric SDVTList Tys = DAG.getVTList(MVT::Other); 58390b57cec5SDimitry Andric SDValue Ops[] = { N->getOperand(0), 58400b57cec5SDimitry Andric lowerI128ToGR128(DAG, N->getOperand(2)), 58410b57cec5SDimitry Andric N->getOperand(1) }; 58420b57cec5SDimitry Andric MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 58430b57cec5SDimitry Andric SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 58440b57cec5SDimitry Andric DL, Tys, Ops, MVT::i128, MMO); 58450b57cec5SDimitry Andric // We have to enforce sequential consistency by performing a 58460b57cec5SDimitry Andric // serialization operation after the store. 5847fe6060f1SDimitry Andric if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 58480b57cec5SDimitry Andric AtomicOrdering::SequentiallyConsistent) 58490b57cec5SDimitry Andric Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 58500b57cec5SDimitry Andric MVT::Other, Res), 0); 58510b57cec5SDimitry Andric Results.push_back(Res); 58520b57cec5SDimitry Andric break; 58530b57cec5SDimitry Andric } 58540b57cec5SDimitry Andric case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 58550b57cec5SDimitry Andric SDLoc DL(N); 58560b57cec5SDimitry Andric SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 58570b57cec5SDimitry Andric SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 58580b57cec5SDimitry Andric lowerI128ToGR128(DAG, N->getOperand(2)), 58590b57cec5SDimitry Andric lowerI128ToGR128(DAG, N->getOperand(3)) }; 58600b57cec5SDimitry Andric MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 58610b57cec5SDimitry Andric SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 58620b57cec5SDimitry Andric DL, Tys, Ops, MVT::i128, MMO); 58630b57cec5SDimitry Andric SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 58640b57cec5SDimitry Andric SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 58650b57cec5SDimitry Andric Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 58660b57cec5SDimitry Andric Results.push_back(lowerGR128ToI128(DAG, Res)); 58670b57cec5SDimitry Andric Results.push_back(Success); 58680b57cec5SDimitry Andric Results.push_back(Res.getValue(2)); 58690b57cec5SDimitry Andric break; 58700b57cec5SDimitry Andric } 5871349cc55cSDimitry Andric case ISD::BITCAST: { 5872349cc55cSDimitry Andric SDValue Src = N->getOperand(0); 5873349cc55cSDimitry Andric if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 5874349cc55cSDimitry Andric !useSoftFloat()) { 5875349cc55cSDimitry Andric SDLoc DL(N); 5876349cc55cSDimitry Andric SDValue Lo, Hi; 5877349cc55cSDimitry Andric if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 5878349cc55cSDimitry Andric SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 5879349cc55cSDimitry Andric Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5880349cc55cSDimitry Andric DAG.getConstant(1, DL, MVT::i32)); 5881349cc55cSDimitry Andric Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5882349cc55cSDimitry Andric DAG.getConstant(0, DL, MVT::i32)); 5883349cc55cSDimitry Andric } else { 5884349cc55cSDimitry Andric assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 5885349cc55cSDimitry Andric "Unrecognized register class for f128."); 5886349cc55cSDimitry Andric SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5887349cc55cSDimitry Andric DL, MVT::f64, Src); 5888349cc55cSDimitry Andric SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5889349cc55cSDimitry Andric DL, MVT::f64, Src); 5890349cc55cSDimitry Andric Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 5891349cc55cSDimitry Andric Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 5892349cc55cSDimitry Andric } 5893349cc55cSDimitry Andric Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 5894349cc55cSDimitry Andric } 5895349cc55cSDimitry Andric break; 5896349cc55cSDimitry Andric } 58970b57cec5SDimitry Andric default: 58980b57cec5SDimitry Andric llvm_unreachable("Unexpected node to lower"); 58990b57cec5SDimitry Andric } 59000b57cec5SDimitry Andric } 59010b57cec5SDimitry Andric 59020b57cec5SDimitry Andric void 59030b57cec5SDimitry Andric SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 59040b57cec5SDimitry Andric SmallVectorImpl<SDValue> &Results, 59050b57cec5SDimitry Andric SelectionDAG &DAG) const { 59060b57cec5SDimitry Andric return LowerOperationWrapper(N, Results, DAG); 59070b57cec5SDimitry Andric } 59080b57cec5SDimitry Andric 59090b57cec5SDimitry Andric const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 59100b57cec5SDimitry Andric #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 59110b57cec5SDimitry Andric switch ((SystemZISD::NodeType)Opcode) { 59120b57cec5SDimitry Andric case SystemZISD::FIRST_NUMBER: break; 59130b57cec5SDimitry Andric OPCODE(RET_FLAG); 59140b57cec5SDimitry Andric OPCODE(CALL); 59150b57cec5SDimitry Andric OPCODE(SIBCALL); 59160b57cec5SDimitry Andric OPCODE(TLS_GDCALL); 59170b57cec5SDimitry Andric OPCODE(TLS_LDCALL); 59180b57cec5SDimitry Andric OPCODE(PCREL_WRAPPER); 59190b57cec5SDimitry Andric OPCODE(PCREL_OFFSET); 59200b57cec5SDimitry Andric OPCODE(ICMP); 59210b57cec5SDimitry Andric OPCODE(FCMP); 5922480093f4SDimitry Andric OPCODE(STRICT_FCMP); 5923480093f4SDimitry Andric OPCODE(STRICT_FCMPS); 59240b57cec5SDimitry Andric OPCODE(TM); 59250b57cec5SDimitry Andric OPCODE(BR_CCMASK); 59260b57cec5SDimitry Andric OPCODE(SELECT_CCMASK); 59270b57cec5SDimitry Andric OPCODE(ADJDYNALLOC); 59285ffd83dbSDimitry Andric OPCODE(PROBED_ALLOCA); 59290b57cec5SDimitry Andric OPCODE(POPCNT); 59300b57cec5SDimitry Andric OPCODE(SMUL_LOHI); 59310b57cec5SDimitry Andric OPCODE(UMUL_LOHI); 59320b57cec5SDimitry Andric OPCODE(SDIVREM); 59330b57cec5SDimitry Andric OPCODE(UDIVREM); 59340b57cec5SDimitry Andric OPCODE(SADDO); 59350b57cec5SDimitry Andric OPCODE(SSUBO); 59360b57cec5SDimitry Andric OPCODE(UADDO); 59370b57cec5SDimitry Andric OPCODE(USUBO); 59380b57cec5SDimitry Andric OPCODE(ADDCARRY); 59390b57cec5SDimitry Andric OPCODE(SUBCARRY); 59400b57cec5SDimitry Andric OPCODE(GET_CCMASK); 59410b57cec5SDimitry Andric OPCODE(MVC); 59420b57cec5SDimitry Andric OPCODE(NC); 59430b57cec5SDimitry Andric OPCODE(OC); 59440b57cec5SDimitry Andric OPCODE(XC); 59450b57cec5SDimitry Andric OPCODE(CLC); 59460eae32dcSDimitry Andric OPCODE(MEMSET_MVC); 59470b57cec5SDimitry Andric OPCODE(STPCPY); 59480b57cec5SDimitry Andric OPCODE(STRCMP); 59490b57cec5SDimitry Andric OPCODE(SEARCH_STRING); 59500b57cec5SDimitry Andric OPCODE(IPM); 59510b57cec5SDimitry Andric OPCODE(TBEGIN); 59520b57cec5SDimitry Andric OPCODE(TBEGIN_NOFLOAT); 59530b57cec5SDimitry Andric OPCODE(TEND); 59540b57cec5SDimitry Andric OPCODE(BYTE_MASK); 59550b57cec5SDimitry Andric OPCODE(ROTATE_MASK); 59560b57cec5SDimitry Andric OPCODE(REPLICATE); 59570b57cec5SDimitry Andric OPCODE(JOIN_DWORDS); 59580b57cec5SDimitry Andric OPCODE(SPLAT); 59590b57cec5SDimitry Andric OPCODE(MERGE_HIGH); 59600b57cec5SDimitry Andric OPCODE(MERGE_LOW); 59610b57cec5SDimitry Andric OPCODE(SHL_DOUBLE); 59620b57cec5SDimitry Andric OPCODE(PERMUTE_DWORDS); 59630b57cec5SDimitry Andric OPCODE(PERMUTE); 59640b57cec5SDimitry Andric OPCODE(PACK); 59650b57cec5SDimitry Andric OPCODE(PACKS_CC); 59660b57cec5SDimitry Andric OPCODE(PACKLS_CC); 59670b57cec5SDimitry Andric OPCODE(UNPACK_HIGH); 59680b57cec5SDimitry Andric OPCODE(UNPACKL_HIGH); 59690b57cec5SDimitry Andric OPCODE(UNPACK_LOW); 59700b57cec5SDimitry Andric OPCODE(UNPACKL_LOW); 59710b57cec5SDimitry Andric OPCODE(VSHL_BY_SCALAR); 59720b57cec5SDimitry Andric OPCODE(VSRL_BY_SCALAR); 59730b57cec5SDimitry Andric OPCODE(VSRA_BY_SCALAR); 59740b57cec5SDimitry Andric OPCODE(VSUM); 59750b57cec5SDimitry Andric OPCODE(VICMPE); 59760b57cec5SDimitry Andric OPCODE(VICMPH); 59770b57cec5SDimitry Andric OPCODE(VICMPHL); 59780b57cec5SDimitry Andric OPCODE(VICMPES); 59790b57cec5SDimitry Andric OPCODE(VICMPHS); 59800b57cec5SDimitry Andric OPCODE(VICMPHLS); 59810b57cec5SDimitry Andric OPCODE(VFCMPE); 5982480093f4SDimitry Andric OPCODE(STRICT_VFCMPE); 5983480093f4SDimitry Andric OPCODE(STRICT_VFCMPES); 59840b57cec5SDimitry Andric OPCODE(VFCMPH); 5985480093f4SDimitry Andric OPCODE(STRICT_VFCMPH); 5986480093f4SDimitry Andric OPCODE(STRICT_VFCMPHS); 59870b57cec5SDimitry Andric OPCODE(VFCMPHE); 5988480093f4SDimitry Andric OPCODE(STRICT_VFCMPHE); 5989480093f4SDimitry Andric OPCODE(STRICT_VFCMPHES); 59900b57cec5SDimitry Andric OPCODE(VFCMPES); 59910b57cec5SDimitry Andric OPCODE(VFCMPHS); 59920b57cec5SDimitry Andric OPCODE(VFCMPHES); 59930b57cec5SDimitry Andric OPCODE(VFTCI); 59940b57cec5SDimitry Andric OPCODE(VEXTEND); 5995480093f4SDimitry Andric OPCODE(STRICT_VEXTEND); 59960b57cec5SDimitry Andric OPCODE(VROUND); 5997480093f4SDimitry Andric OPCODE(STRICT_VROUND); 59980b57cec5SDimitry Andric OPCODE(VTM); 59990b57cec5SDimitry Andric OPCODE(VFAE_CC); 60000b57cec5SDimitry Andric OPCODE(VFAEZ_CC); 60010b57cec5SDimitry Andric OPCODE(VFEE_CC); 60020b57cec5SDimitry Andric OPCODE(VFEEZ_CC); 60030b57cec5SDimitry Andric OPCODE(VFENE_CC); 60040b57cec5SDimitry Andric OPCODE(VFENEZ_CC); 60050b57cec5SDimitry Andric OPCODE(VISTR_CC); 60060b57cec5SDimitry Andric OPCODE(VSTRC_CC); 60070b57cec5SDimitry Andric OPCODE(VSTRCZ_CC); 60080b57cec5SDimitry Andric OPCODE(VSTRS_CC); 60090b57cec5SDimitry Andric OPCODE(VSTRSZ_CC); 60100b57cec5SDimitry Andric OPCODE(TDC); 60110b57cec5SDimitry Andric OPCODE(ATOMIC_SWAPW); 60120b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_ADD); 60130b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_SUB); 60140b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_AND); 60150b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_OR); 60160b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_XOR); 60170b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_NAND); 60180b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_MIN); 60190b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_MAX); 60200b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_UMIN); 60210b57cec5SDimitry Andric OPCODE(ATOMIC_LOADW_UMAX); 60220b57cec5SDimitry Andric OPCODE(ATOMIC_CMP_SWAPW); 60230b57cec5SDimitry Andric OPCODE(ATOMIC_CMP_SWAP); 60240b57cec5SDimitry Andric OPCODE(ATOMIC_LOAD_128); 60250b57cec5SDimitry Andric OPCODE(ATOMIC_STORE_128); 60260b57cec5SDimitry Andric OPCODE(ATOMIC_CMP_SWAP_128); 60270b57cec5SDimitry Andric OPCODE(LRV); 60280b57cec5SDimitry Andric OPCODE(STRV); 60290b57cec5SDimitry Andric OPCODE(VLER); 60300b57cec5SDimitry Andric OPCODE(VSTER); 60310b57cec5SDimitry Andric OPCODE(PREFETCH); 60320b57cec5SDimitry Andric } 60330b57cec5SDimitry Andric return nullptr; 60340b57cec5SDimitry Andric #undef OPCODE 60350b57cec5SDimitry Andric } 60360b57cec5SDimitry Andric 60370b57cec5SDimitry Andric // Return true if VT is a vector whose elements are a whole number of bytes 60380b57cec5SDimitry Andric // in width. Also check for presence of vector support. 60390b57cec5SDimitry Andric bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 60400b57cec5SDimitry Andric if (!Subtarget.hasVector()) 60410b57cec5SDimitry Andric return false; 60420b57cec5SDimitry Andric 60430b57cec5SDimitry Andric return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 60440b57cec5SDimitry Andric } 60450b57cec5SDimitry Andric 60460b57cec5SDimitry Andric // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 60470b57cec5SDimitry Andric // producing a result of type ResVT. Op is a possibly bitcast version 60480b57cec5SDimitry Andric // of the input vector and Index is the index (based on type VecVT) that 60490b57cec5SDimitry Andric // should be extracted. Return the new extraction if a simplification 60500b57cec5SDimitry Andric // was possible or if Force is true. 60510b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 60520b57cec5SDimitry Andric EVT VecVT, SDValue Op, 60530b57cec5SDimitry Andric unsigned Index, 60540b57cec5SDimitry Andric DAGCombinerInfo &DCI, 60550b57cec5SDimitry Andric bool Force) const { 60560b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 60570b57cec5SDimitry Andric 60580b57cec5SDimitry Andric // The number of bytes being extracted. 60590b57cec5SDimitry Andric unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 60600b57cec5SDimitry Andric 60610b57cec5SDimitry Andric for (;;) { 60620b57cec5SDimitry Andric unsigned Opcode = Op.getOpcode(); 60630b57cec5SDimitry Andric if (Opcode == ISD::BITCAST) 60640b57cec5SDimitry Andric // Look through bitcasts. 60650b57cec5SDimitry Andric Op = Op.getOperand(0); 60660b57cec5SDimitry Andric else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 60670b57cec5SDimitry Andric canTreatAsByteVector(Op.getValueType())) { 60680b57cec5SDimitry Andric // Get a VPERM-like permute mask and see whether the bytes covered 60690b57cec5SDimitry Andric // by the extracted element are a contiguous sequence from one 60700b57cec5SDimitry Andric // source operand. 60710b57cec5SDimitry Andric SmallVector<int, SystemZ::VectorBytes> Bytes; 60720b57cec5SDimitry Andric if (!getVPermMask(Op, Bytes)) 60730b57cec5SDimitry Andric break; 60740b57cec5SDimitry Andric int First; 60750b57cec5SDimitry Andric if (!getShuffleInput(Bytes, Index * BytesPerElement, 60760b57cec5SDimitry Andric BytesPerElement, First)) 60770b57cec5SDimitry Andric break; 60780b57cec5SDimitry Andric if (First < 0) 60790b57cec5SDimitry Andric return DAG.getUNDEF(ResVT); 60800b57cec5SDimitry Andric // Make sure the contiguous sequence starts at a multiple of the 60810b57cec5SDimitry Andric // original element size. 60820b57cec5SDimitry Andric unsigned Byte = unsigned(First) % Bytes.size(); 60830b57cec5SDimitry Andric if (Byte % BytesPerElement != 0) 60840b57cec5SDimitry Andric break; 60850b57cec5SDimitry Andric // We can get the extracted value directly from an input. 60860b57cec5SDimitry Andric Index = Byte / BytesPerElement; 60870b57cec5SDimitry Andric Op = Op.getOperand(unsigned(First) / Bytes.size()); 60880b57cec5SDimitry Andric Force = true; 60890b57cec5SDimitry Andric } else if (Opcode == ISD::BUILD_VECTOR && 60900b57cec5SDimitry Andric canTreatAsByteVector(Op.getValueType())) { 60910b57cec5SDimitry Andric // We can only optimize this case if the BUILD_VECTOR elements are 60920b57cec5SDimitry Andric // at least as wide as the extracted value. 60930b57cec5SDimitry Andric EVT OpVT = Op.getValueType(); 60940b57cec5SDimitry Andric unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 60950b57cec5SDimitry Andric if (OpBytesPerElement < BytesPerElement) 60960b57cec5SDimitry Andric break; 60970b57cec5SDimitry Andric // Make sure that the least-significant bit of the extracted value 60980b57cec5SDimitry Andric // is the least significant bit of an input. 60990b57cec5SDimitry Andric unsigned End = (Index + 1) * BytesPerElement; 61000b57cec5SDimitry Andric if (End % OpBytesPerElement != 0) 61010b57cec5SDimitry Andric break; 61020b57cec5SDimitry Andric // We're extracting the low part of one operand of the BUILD_VECTOR. 61030b57cec5SDimitry Andric Op = Op.getOperand(End / OpBytesPerElement - 1); 61040b57cec5SDimitry Andric if (!Op.getValueType().isInteger()) { 61050b57cec5SDimitry Andric EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 61060b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 61070b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 61080b57cec5SDimitry Andric } 61090b57cec5SDimitry Andric EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 61100b57cec5SDimitry Andric Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 61110b57cec5SDimitry Andric if (VT != ResVT) { 61120b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 61130b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 61140b57cec5SDimitry Andric } 61150b57cec5SDimitry Andric return Op; 61160b57cec5SDimitry Andric } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 61170b57cec5SDimitry Andric Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 61180b57cec5SDimitry Andric Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 61190b57cec5SDimitry Andric canTreatAsByteVector(Op.getValueType()) && 61200b57cec5SDimitry Andric canTreatAsByteVector(Op.getOperand(0).getValueType())) { 61210b57cec5SDimitry Andric // Make sure that only the unextended bits are significant. 61220b57cec5SDimitry Andric EVT ExtVT = Op.getValueType(); 61230b57cec5SDimitry Andric EVT OpVT = Op.getOperand(0).getValueType(); 61240b57cec5SDimitry Andric unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 61250b57cec5SDimitry Andric unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 61260b57cec5SDimitry Andric unsigned Byte = Index * BytesPerElement; 61270b57cec5SDimitry Andric unsigned SubByte = Byte % ExtBytesPerElement; 61280b57cec5SDimitry Andric unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 61290b57cec5SDimitry Andric if (SubByte < MinSubByte || 61300b57cec5SDimitry Andric SubByte + BytesPerElement > ExtBytesPerElement) 61310b57cec5SDimitry Andric break; 61320b57cec5SDimitry Andric // Get the byte offset of the unextended element 61330b57cec5SDimitry Andric Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 61340b57cec5SDimitry Andric // ...then add the byte offset relative to that element. 61350b57cec5SDimitry Andric Byte += SubByte - MinSubByte; 61360b57cec5SDimitry Andric if (Byte % BytesPerElement != 0) 61370b57cec5SDimitry Andric break; 61380b57cec5SDimitry Andric Op = Op.getOperand(0); 61390b57cec5SDimitry Andric Index = Byte / BytesPerElement; 61400b57cec5SDimitry Andric Force = true; 61410b57cec5SDimitry Andric } else 61420b57cec5SDimitry Andric break; 61430b57cec5SDimitry Andric } 61440b57cec5SDimitry Andric if (Force) { 61450b57cec5SDimitry Andric if (Op.getValueType() != VecVT) { 61460b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 61470b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 61480b57cec5SDimitry Andric } 61490b57cec5SDimitry Andric return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 61500b57cec5SDimitry Andric DAG.getConstant(Index, DL, MVT::i32)); 61510b57cec5SDimitry Andric } 61520b57cec5SDimitry Andric return SDValue(); 61530b57cec5SDimitry Andric } 61540b57cec5SDimitry Andric 61550b57cec5SDimitry Andric // Optimize vector operations in scalar value Op on the basis that Op 61560b57cec5SDimitry Andric // is truncated to TruncVT. 61570b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineTruncateExtract( 61580b57cec5SDimitry Andric const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 61590b57cec5SDimitry Andric // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 61600b57cec5SDimitry Andric // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 61610b57cec5SDimitry Andric // of type TruncVT. 61620b57cec5SDimitry Andric if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 61630b57cec5SDimitry Andric TruncVT.getSizeInBits() % 8 == 0) { 61640b57cec5SDimitry Andric SDValue Vec = Op.getOperand(0); 61650b57cec5SDimitry Andric EVT VecVT = Vec.getValueType(); 61660b57cec5SDimitry Andric if (canTreatAsByteVector(VecVT)) { 61670b57cec5SDimitry Andric if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 61680b57cec5SDimitry Andric unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 61690b57cec5SDimitry Andric unsigned TruncBytes = TruncVT.getStoreSize(); 61700b57cec5SDimitry Andric if (BytesPerElement % TruncBytes == 0) { 61710b57cec5SDimitry Andric // Calculate the value of Y' in the above description. We are 61720b57cec5SDimitry Andric // splitting the original elements into Scale equal-sized pieces 61730b57cec5SDimitry Andric // and for truncation purposes want the last (least-significant) 61740b57cec5SDimitry Andric // of these pieces for IndexN. This is easiest to do by calculating 61750b57cec5SDimitry Andric // the start index of the following element and then subtracting 1. 61760b57cec5SDimitry Andric unsigned Scale = BytesPerElement / TruncBytes; 61770b57cec5SDimitry Andric unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 61780b57cec5SDimitry Andric 61790b57cec5SDimitry Andric // Defer the creation of the bitcast from X to combineExtract, 61800b57cec5SDimitry Andric // which might be able to optimize the extraction. 61810b57cec5SDimitry Andric VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 61820b57cec5SDimitry Andric VecVT.getStoreSize() / TruncBytes); 61830b57cec5SDimitry Andric EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 61840b57cec5SDimitry Andric return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 61850b57cec5SDimitry Andric } 61860b57cec5SDimitry Andric } 61870b57cec5SDimitry Andric } 61880b57cec5SDimitry Andric } 61890b57cec5SDimitry Andric return SDValue(); 61900b57cec5SDimitry Andric } 61910b57cec5SDimitry Andric 61920b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineZERO_EXTEND( 61930b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 61940b57cec5SDimitry Andric // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 61950b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 61960b57cec5SDimitry Andric SDValue N0 = N->getOperand(0); 61970b57cec5SDimitry Andric EVT VT = N->getValueType(0); 61980b57cec5SDimitry Andric if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 61990b57cec5SDimitry Andric auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 62000b57cec5SDimitry Andric auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 62010b57cec5SDimitry Andric if (TrueOp && FalseOp) { 62020b57cec5SDimitry Andric SDLoc DL(N0); 62030b57cec5SDimitry Andric SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 62040b57cec5SDimitry Andric DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 62050b57cec5SDimitry Andric N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 62060b57cec5SDimitry Andric SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 62070b57cec5SDimitry Andric // If N0 has multiple uses, change other uses as well. 62080b57cec5SDimitry Andric if (!N0.hasOneUse()) { 62090b57cec5SDimitry Andric SDValue TruncSelect = 62100b57cec5SDimitry Andric DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 62110b57cec5SDimitry Andric DCI.CombineTo(N0.getNode(), TruncSelect); 62120b57cec5SDimitry Andric } 62130b57cec5SDimitry Andric return NewSelect; 62140b57cec5SDimitry Andric } 62150b57cec5SDimitry Andric } 62160b57cec5SDimitry Andric return SDValue(); 62170b57cec5SDimitry Andric } 62180b57cec5SDimitry Andric 62190b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 62200b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 62210b57cec5SDimitry Andric // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 62220b57cec5SDimitry Andric // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 62230b57cec5SDimitry Andric // into (select_cc LHS, RHS, -1, 0, COND) 62240b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 62250b57cec5SDimitry Andric SDValue N0 = N->getOperand(0); 62260b57cec5SDimitry Andric EVT VT = N->getValueType(0); 62270b57cec5SDimitry Andric EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 62280b57cec5SDimitry Andric if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 62290b57cec5SDimitry Andric N0 = N0.getOperand(0); 62300b57cec5SDimitry Andric if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 62310b57cec5SDimitry Andric SDLoc DL(N0); 62320b57cec5SDimitry Andric SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 62330b57cec5SDimitry Andric DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 62340b57cec5SDimitry Andric N0.getOperand(2) }; 62350b57cec5SDimitry Andric return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 62360b57cec5SDimitry Andric } 62370b57cec5SDimitry Andric return SDValue(); 62380b57cec5SDimitry Andric } 62390b57cec5SDimitry Andric 62400b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSIGN_EXTEND( 62410b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 62420b57cec5SDimitry Andric // Convert (sext (ashr (shl X, C1), C2)) to 62430b57cec5SDimitry Andric // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 62440b57cec5SDimitry Andric // cheap as narrower ones. 62450b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 62460b57cec5SDimitry Andric SDValue N0 = N->getOperand(0); 62470b57cec5SDimitry Andric EVT VT = N->getValueType(0); 62480b57cec5SDimitry Andric if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 62490b57cec5SDimitry Andric auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 62500b57cec5SDimitry Andric SDValue Inner = N0.getOperand(0); 62510b57cec5SDimitry Andric if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 62520b57cec5SDimitry Andric if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 62530b57cec5SDimitry Andric unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 62540b57cec5SDimitry Andric unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 62550b57cec5SDimitry Andric unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 62560b57cec5SDimitry Andric EVT ShiftVT = N0.getOperand(1).getValueType(); 62570b57cec5SDimitry Andric SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 62580b57cec5SDimitry Andric Inner.getOperand(0)); 62590b57cec5SDimitry Andric SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 62600b57cec5SDimitry Andric DAG.getConstant(NewShlAmt, SDLoc(Inner), 62610b57cec5SDimitry Andric ShiftVT)); 62620b57cec5SDimitry Andric return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 62630b57cec5SDimitry Andric DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 62640b57cec5SDimitry Andric } 62650b57cec5SDimitry Andric } 62660b57cec5SDimitry Andric } 62670b57cec5SDimitry Andric return SDValue(); 62680b57cec5SDimitry Andric } 62690b57cec5SDimitry Andric 62700b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineMERGE( 62710b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 62720b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 62730b57cec5SDimitry Andric unsigned Opcode = N->getOpcode(); 62740b57cec5SDimitry Andric SDValue Op0 = N->getOperand(0); 62750b57cec5SDimitry Andric SDValue Op1 = N->getOperand(1); 62760b57cec5SDimitry Andric if (Op0.getOpcode() == ISD::BITCAST) 62770b57cec5SDimitry Andric Op0 = Op0.getOperand(0); 62780b57cec5SDimitry Andric if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 62790b57cec5SDimitry Andric // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 62800b57cec5SDimitry Andric // for v4f32. 62810b57cec5SDimitry Andric if (Op1 == N->getOperand(0)) 62820b57cec5SDimitry Andric return Op1; 62830b57cec5SDimitry Andric // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 62840b57cec5SDimitry Andric EVT VT = Op1.getValueType(); 62850b57cec5SDimitry Andric unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 62860b57cec5SDimitry Andric if (ElemBytes <= 4) { 62870b57cec5SDimitry Andric Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 62880b57cec5SDimitry Andric SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 62890b57cec5SDimitry Andric EVT InVT = VT.changeVectorElementTypeToInteger(); 62900b57cec5SDimitry Andric EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 62910b57cec5SDimitry Andric SystemZ::VectorBytes / ElemBytes / 2); 62920b57cec5SDimitry Andric if (VT != InVT) { 62930b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 62940b57cec5SDimitry Andric DCI.AddToWorklist(Op1.getNode()); 62950b57cec5SDimitry Andric } 62960b57cec5SDimitry Andric SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 62970b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 62980b57cec5SDimitry Andric return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 62990b57cec5SDimitry Andric } 63000b57cec5SDimitry Andric } 63010b57cec5SDimitry Andric return SDValue(); 63020b57cec5SDimitry Andric } 63030b57cec5SDimitry Andric 63040b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineLOAD( 63050b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 63060b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 63070b57cec5SDimitry Andric EVT LdVT = N->getValueType(0); 63080b57cec5SDimitry Andric if (LdVT.isVector() || LdVT.isInteger()) 63090b57cec5SDimitry Andric return SDValue(); 63100b57cec5SDimitry Andric // Transform a scalar load that is REPLICATEd as well as having other 63110b57cec5SDimitry Andric // use(s) to the form where the other use(s) use the first element of the 63120b57cec5SDimitry Andric // REPLICATE instead of the load. Otherwise instruction selection will not 63130b57cec5SDimitry Andric // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 63140b57cec5SDimitry Andric // point loads. 63150b57cec5SDimitry Andric 63160b57cec5SDimitry Andric SDValue Replicate; 63170b57cec5SDimitry Andric SmallVector<SDNode*, 8> OtherUses; 63180b57cec5SDimitry Andric for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 63190b57cec5SDimitry Andric UI != UE; ++UI) { 63200b57cec5SDimitry Andric if (UI->getOpcode() == SystemZISD::REPLICATE) { 63210b57cec5SDimitry Andric if (Replicate) 63220b57cec5SDimitry Andric return SDValue(); // Should never happen 63230b57cec5SDimitry Andric Replicate = SDValue(*UI, 0); 63240b57cec5SDimitry Andric } 63250b57cec5SDimitry Andric else if (UI.getUse().getResNo() == 0) 63260b57cec5SDimitry Andric OtherUses.push_back(*UI); 63270b57cec5SDimitry Andric } 63280b57cec5SDimitry Andric if (!Replicate || OtherUses.empty()) 63290b57cec5SDimitry Andric return SDValue(); 63300b57cec5SDimitry Andric 63310b57cec5SDimitry Andric SDLoc DL(N); 63320b57cec5SDimitry Andric SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 63330b57cec5SDimitry Andric Replicate, DAG.getConstant(0, DL, MVT::i32)); 63340b57cec5SDimitry Andric // Update uses of the loaded Value while preserving old chains. 63350b57cec5SDimitry Andric for (SDNode *U : OtherUses) { 63360b57cec5SDimitry Andric SmallVector<SDValue, 8> Ops; 63370b57cec5SDimitry Andric for (SDValue Op : U->ops()) 63380b57cec5SDimitry Andric Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 63390b57cec5SDimitry Andric DAG.UpdateNodeOperands(U, Ops); 63400b57cec5SDimitry Andric } 63410b57cec5SDimitry Andric return SDValue(N, 0); 63420b57cec5SDimitry Andric } 63430b57cec5SDimitry Andric 63440b57cec5SDimitry Andric bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 63450b57cec5SDimitry Andric if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 63460b57cec5SDimitry Andric return true; 63470b57cec5SDimitry Andric if (Subtarget.hasVectorEnhancements2()) 63480b57cec5SDimitry Andric if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 63490b57cec5SDimitry Andric return true; 63500b57cec5SDimitry Andric return false; 63510b57cec5SDimitry Andric } 63520b57cec5SDimitry Andric 63530b57cec5SDimitry Andric static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 63540b57cec5SDimitry Andric if (!VT.isVector() || !VT.isSimple() || 63550b57cec5SDimitry Andric VT.getSizeInBits() != 128 || 63560b57cec5SDimitry Andric VT.getScalarSizeInBits() % 8 != 0) 63570b57cec5SDimitry Andric return false; 63580b57cec5SDimitry Andric 63590b57cec5SDimitry Andric unsigned NumElts = VT.getVectorNumElements(); 63600b57cec5SDimitry Andric for (unsigned i = 0; i < NumElts; ++i) { 63610b57cec5SDimitry Andric if (M[i] < 0) continue; // ignore UNDEF indices 63620b57cec5SDimitry Andric if ((unsigned) M[i] != NumElts - 1 - i) 63630b57cec5SDimitry Andric return false; 63640b57cec5SDimitry Andric } 63650b57cec5SDimitry Andric 63660b57cec5SDimitry Andric return true; 63670b57cec5SDimitry Andric } 63680b57cec5SDimitry Andric 636981ad6265SDimitry Andric static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) { 637081ad6265SDimitry Andric for (auto *U : StoredVal->uses()) { 637181ad6265SDimitry Andric if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) { 637281ad6265SDimitry Andric EVT CurrMemVT = ST->getMemoryVT().getScalarType(); 637381ad6265SDimitry Andric if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16) 637481ad6265SDimitry Andric continue; 637581ad6265SDimitry Andric } else if (isa<BuildVectorSDNode>(U)) { 637681ad6265SDimitry Andric SDValue BuildVector = SDValue(U, 0); 637781ad6265SDimitry Andric if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) && 637881ad6265SDimitry Andric isOnlyUsedByStores(BuildVector, DAG)) 637981ad6265SDimitry Andric continue; 638081ad6265SDimitry Andric } 638181ad6265SDimitry Andric return false; 638281ad6265SDimitry Andric } 638381ad6265SDimitry Andric return true; 638481ad6265SDimitry Andric } 638581ad6265SDimitry Andric 63860b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSTORE( 63870b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 63880b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 63890b57cec5SDimitry Andric auto *SN = cast<StoreSDNode>(N); 63900b57cec5SDimitry Andric auto &Op1 = N->getOperand(1); 63910b57cec5SDimitry Andric EVT MemVT = SN->getMemoryVT(); 63920b57cec5SDimitry Andric // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 63930b57cec5SDimitry Andric // for the extraction to be done on a vMiN value, so that we can use VSTE. 63940b57cec5SDimitry Andric // If X has wider elements then convert it to: 63950b57cec5SDimitry Andric // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 63960b57cec5SDimitry Andric if (MemVT.isInteger() && SN->isTruncatingStore()) { 63970b57cec5SDimitry Andric if (SDValue Value = 63980b57cec5SDimitry Andric combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 63990b57cec5SDimitry Andric DCI.AddToWorklist(Value.getNode()); 64000b57cec5SDimitry Andric 64010b57cec5SDimitry Andric // Rewrite the store with the new form of stored value. 64020b57cec5SDimitry Andric return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 64030b57cec5SDimitry Andric SN->getBasePtr(), SN->getMemoryVT(), 64040b57cec5SDimitry Andric SN->getMemOperand()); 64050b57cec5SDimitry Andric } 64060b57cec5SDimitry Andric } 64070b57cec5SDimitry Andric // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 64080b57cec5SDimitry Andric if (!SN->isTruncatingStore() && 64090b57cec5SDimitry Andric Op1.getOpcode() == ISD::BSWAP && 64100b57cec5SDimitry Andric Op1.getNode()->hasOneUse() && 64110b57cec5SDimitry Andric canLoadStoreByteSwapped(Op1.getValueType())) { 64120b57cec5SDimitry Andric 64130b57cec5SDimitry Andric SDValue BSwapOp = Op1.getOperand(0); 64140b57cec5SDimitry Andric 64150b57cec5SDimitry Andric if (BSwapOp.getValueType() == MVT::i16) 64160b57cec5SDimitry Andric BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 64170b57cec5SDimitry Andric 64180b57cec5SDimitry Andric SDValue Ops[] = { 64190b57cec5SDimitry Andric N->getOperand(0), BSwapOp, N->getOperand(2) 64200b57cec5SDimitry Andric }; 64210b57cec5SDimitry Andric 64220b57cec5SDimitry Andric return 64230b57cec5SDimitry Andric DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 64240b57cec5SDimitry Andric Ops, MemVT, SN->getMemOperand()); 64250b57cec5SDimitry Andric } 64260b57cec5SDimitry Andric // Combine STORE (element-swap) into VSTER 64270b57cec5SDimitry Andric if (!SN->isTruncatingStore() && 64280b57cec5SDimitry Andric Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 64290b57cec5SDimitry Andric Op1.getNode()->hasOneUse() && 64300b57cec5SDimitry Andric Subtarget.hasVectorEnhancements2()) { 64310b57cec5SDimitry Andric ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 64320b57cec5SDimitry Andric ArrayRef<int> ShuffleMask = SVN->getMask(); 64330b57cec5SDimitry Andric if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 64340b57cec5SDimitry Andric SDValue Ops[] = { 64350b57cec5SDimitry Andric N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 64360b57cec5SDimitry Andric }; 64370b57cec5SDimitry Andric 64380b57cec5SDimitry Andric return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 64390b57cec5SDimitry Andric DAG.getVTList(MVT::Other), 64400b57cec5SDimitry Andric Ops, MemVT, SN->getMemOperand()); 64410b57cec5SDimitry Andric } 64420b57cec5SDimitry Andric } 64430b57cec5SDimitry Andric 644481ad6265SDimitry Andric // Replicate a reg or immediate with VREP instead of scalar multiply or 644581ad6265SDimitry Andric // immediate load. It seems best to do this during the first DAGCombine as 644681ad6265SDimitry Andric // it is straight-forward to handle the zero-extend node in the initial 644781ad6265SDimitry Andric // DAG, and also not worry about the keeping the new MemVT legal (e.g. when 644881ad6265SDimitry Andric // extracting an i16 element from a v16i8 vector). 644981ad6265SDimitry Andric if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes && 645081ad6265SDimitry Andric isOnlyUsedByStores(Op1, DAG)) { 645181ad6265SDimitry Andric SDValue Word = SDValue(); 645281ad6265SDimitry Andric EVT WordVT; 645381ad6265SDimitry Andric 645481ad6265SDimitry Andric // Find a replicated immediate and return it if found in Word and its 645581ad6265SDimitry Andric // type in WordVT. 645681ad6265SDimitry Andric auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) { 645781ad6265SDimitry Andric // Some constants are better handled with a scalar store. 645881ad6265SDimitry Andric if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() || 645981ad6265SDimitry Andric isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2) 646081ad6265SDimitry Andric return; 646181ad6265SDimitry Andric SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue())); 646281ad6265SDimitry Andric if (VCI.isVectorConstantLegal(Subtarget) && 646381ad6265SDimitry Andric VCI.Opcode == SystemZISD::REPLICATE) { 646481ad6265SDimitry Andric Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32); 646581ad6265SDimitry Andric WordVT = VCI.VecVT.getScalarType(); 646681ad6265SDimitry Andric } 646781ad6265SDimitry Andric }; 646881ad6265SDimitry Andric 646981ad6265SDimitry Andric // Find a replicated register and return it if found in Word and its type 647081ad6265SDimitry Andric // in WordVT. 647181ad6265SDimitry Andric auto FindReplicatedReg = [&](SDValue MulOp) { 647281ad6265SDimitry Andric EVT MulVT = MulOp.getValueType(); 647381ad6265SDimitry Andric if (MulOp->getOpcode() == ISD::MUL && 647481ad6265SDimitry Andric (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) { 647581ad6265SDimitry Andric // Find a zero extended value and its type. 647681ad6265SDimitry Andric SDValue LHS = MulOp->getOperand(0); 647781ad6265SDimitry Andric if (LHS->getOpcode() == ISD::ZERO_EXTEND) 647881ad6265SDimitry Andric WordVT = LHS->getOperand(0).getValueType(); 647981ad6265SDimitry Andric else if (LHS->getOpcode() == ISD::AssertZext) 648081ad6265SDimitry Andric WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT(); 648181ad6265SDimitry Andric else 648281ad6265SDimitry Andric return; 648381ad6265SDimitry Andric // Find a replicating constant, e.g. 0x00010001. 648481ad6265SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) { 648581ad6265SDimitry Andric SystemZVectorConstantInfo VCI( 648681ad6265SDimitry Andric APInt(MulVT.getSizeInBits(), C->getZExtValue())); 648781ad6265SDimitry Andric if (VCI.isVectorConstantLegal(Subtarget) && 648881ad6265SDimitry Andric VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 && 648981ad6265SDimitry Andric WordVT == VCI.VecVT.getScalarType()) 649081ad6265SDimitry Andric Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT); 649181ad6265SDimitry Andric } 649281ad6265SDimitry Andric } 649381ad6265SDimitry Andric }; 649481ad6265SDimitry Andric 649581ad6265SDimitry Andric if (isa<BuildVectorSDNode>(Op1) && 649681ad6265SDimitry Andric DAG.isSplatValue(Op1, true/*AllowUndefs*/)) { 649781ad6265SDimitry Andric SDValue SplatVal = Op1->getOperand(0); 649881ad6265SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(SplatVal)) 649981ad6265SDimitry Andric FindReplicatedImm(C, SplatVal.getValueType().getStoreSize()); 650081ad6265SDimitry Andric else 650181ad6265SDimitry Andric FindReplicatedReg(SplatVal); 650281ad6265SDimitry Andric } else { 650381ad6265SDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(Op1)) 650481ad6265SDimitry Andric FindReplicatedImm(C, MemVT.getStoreSize()); 650581ad6265SDimitry Andric else 650681ad6265SDimitry Andric FindReplicatedReg(Op1); 650781ad6265SDimitry Andric } 650881ad6265SDimitry Andric 650981ad6265SDimitry Andric if (Word != SDValue()) { 651081ad6265SDimitry Andric assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 && 651181ad6265SDimitry Andric "Bad type handling"); 651281ad6265SDimitry Andric unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits(); 651381ad6265SDimitry Andric EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts); 651481ad6265SDimitry Andric SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word); 651581ad6265SDimitry Andric return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal, 651681ad6265SDimitry Andric SN->getBasePtr(), SN->getMemOperand()); 651781ad6265SDimitry Andric } 651881ad6265SDimitry Andric } 651981ad6265SDimitry Andric 65200b57cec5SDimitry Andric return SDValue(); 65210b57cec5SDimitry Andric } 65220b57cec5SDimitry Andric 65230b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 65240b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 65250b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 65260b57cec5SDimitry Andric // Combine element-swap (LOAD) into VLER 65270b57cec5SDimitry Andric if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 65280b57cec5SDimitry Andric N->getOperand(0).hasOneUse() && 65290b57cec5SDimitry Andric Subtarget.hasVectorEnhancements2()) { 65300b57cec5SDimitry Andric ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 65310b57cec5SDimitry Andric ArrayRef<int> ShuffleMask = SVN->getMask(); 65320b57cec5SDimitry Andric if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 65330b57cec5SDimitry Andric SDValue Load = N->getOperand(0); 65340b57cec5SDimitry Andric LoadSDNode *LD = cast<LoadSDNode>(Load); 65350b57cec5SDimitry Andric 65360b57cec5SDimitry Andric // Create the element-swapping load. 65370b57cec5SDimitry Andric SDValue Ops[] = { 65380b57cec5SDimitry Andric LD->getChain(), // Chain 65390b57cec5SDimitry Andric LD->getBasePtr() // Ptr 65400b57cec5SDimitry Andric }; 65410b57cec5SDimitry Andric SDValue ESLoad = 65420b57cec5SDimitry Andric DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 65430b57cec5SDimitry Andric DAG.getVTList(LD->getValueType(0), MVT::Other), 65440b57cec5SDimitry Andric Ops, LD->getMemoryVT(), LD->getMemOperand()); 65450b57cec5SDimitry Andric 65460b57cec5SDimitry Andric // First, combine the VECTOR_SHUFFLE away. This makes the value produced 65470b57cec5SDimitry Andric // by the load dead. 65480b57cec5SDimitry Andric DCI.CombineTo(N, ESLoad); 65490b57cec5SDimitry Andric 65500b57cec5SDimitry Andric // Next, combine the load away, we give it a bogus result value but a real 65510b57cec5SDimitry Andric // chain result. The result value is dead because the shuffle is dead. 65520b57cec5SDimitry Andric DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 65530b57cec5SDimitry Andric 65540b57cec5SDimitry Andric // Return N so it doesn't get rechecked! 65550b57cec5SDimitry Andric return SDValue(N, 0); 65560b57cec5SDimitry Andric } 65570b57cec5SDimitry Andric } 65580b57cec5SDimitry Andric 65590b57cec5SDimitry Andric return SDValue(); 65600b57cec5SDimitry Andric } 65610b57cec5SDimitry Andric 65620b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 65630b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 65640b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 65650b57cec5SDimitry Andric 65660b57cec5SDimitry Andric if (!Subtarget.hasVector()) 65670b57cec5SDimitry Andric return SDValue(); 65680b57cec5SDimitry Andric 65690b57cec5SDimitry Andric // Look through bitcasts that retain the number of vector elements. 65700b57cec5SDimitry Andric SDValue Op = N->getOperand(0); 65710b57cec5SDimitry Andric if (Op.getOpcode() == ISD::BITCAST && 65720b57cec5SDimitry Andric Op.getValueType().isVector() && 65730b57cec5SDimitry Andric Op.getOperand(0).getValueType().isVector() && 65740b57cec5SDimitry Andric Op.getValueType().getVectorNumElements() == 65750b57cec5SDimitry Andric Op.getOperand(0).getValueType().getVectorNumElements()) 65760b57cec5SDimitry Andric Op = Op.getOperand(0); 65770b57cec5SDimitry Andric 65780b57cec5SDimitry Andric // Pull BSWAP out of a vector extraction. 65790b57cec5SDimitry Andric if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 65800b57cec5SDimitry Andric EVT VecVT = Op.getValueType(); 65810b57cec5SDimitry Andric EVT EltVT = VecVT.getVectorElementType(); 65820b57cec5SDimitry Andric Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 65830b57cec5SDimitry Andric Op.getOperand(0), N->getOperand(1)); 65840b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 65850b57cec5SDimitry Andric Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 65860b57cec5SDimitry Andric if (EltVT != N->getValueType(0)) { 65870b57cec5SDimitry Andric DCI.AddToWorklist(Op.getNode()); 65880b57cec5SDimitry Andric Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 65890b57cec5SDimitry Andric } 65900b57cec5SDimitry Andric return Op; 65910b57cec5SDimitry Andric } 65920b57cec5SDimitry Andric 65930b57cec5SDimitry Andric // Try to simplify a vector extraction. 65940b57cec5SDimitry Andric if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 65950b57cec5SDimitry Andric SDValue Op0 = N->getOperand(0); 65960b57cec5SDimitry Andric EVT VecVT = Op0.getValueType(); 65970b57cec5SDimitry Andric return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 65980b57cec5SDimitry Andric IndexN->getZExtValue(), DCI, false); 65990b57cec5SDimitry Andric } 66000b57cec5SDimitry Andric return SDValue(); 66010b57cec5SDimitry Andric } 66020b57cec5SDimitry Andric 66030b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineJOIN_DWORDS( 66040b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 66050b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 66060b57cec5SDimitry Andric // (join_dwords X, X) == (replicate X) 66070b57cec5SDimitry Andric if (N->getOperand(0) == N->getOperand(1)) 66080b57cec5SDimitry Andric return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 66090b57cec5SDimitry Andric N->getOperand(0)); 66100b57cec5SDimitry Andric return SDValue(); 66110b57cec5SDimitry Andric } 66120b57cec5SDimitry Andric 6613480093f4SDimitry Andric static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6614480093f4SDimitry Andric SDValue Chain1 = N1->getOperand(0); 6615480093f4SDimitry Andric SDValue Chain2 = N2->getOperand(0); 6616480093f4SDimitry Andric 6617480093f4SDimitry Andric // Trivial case: both nodes take the same chain. 6618480093f4SDimitry Andric if (Chain1 == Chain2) 6619480093f4SDimitry Andric return Chain1; 6620480093f4SDimitry Andric 6621480093f4SDimitry Andric // FIXME - we could handle more complex cases via TokenFactor, 6622480093f4SDimitry Andric // assuming we can verify that this would not create a cycle. 6623480093f4SDimitry Andric return SDValue(); 6624480093f4SDimitry Andric } 6625480093f4SDimitry Andric 66260b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineFP_ROUND( 66270b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 66280b57cec5SDimitry Andric 66290b57cec5SDimitry Andric if (!Subtarget.hasVector()) 66300b57cec5SDimitry Andric return SDValue(); 66310b57cec5SDimitry Andric 66320b57cec5SDimitry Andric // (fpround (extract_vector_elt X 0)) 66330b57cec5SDimitry Andric // (fpround (extract_vector_elt X 1)) -> 66340b57cec5SDimitry Andric // (extract_vector_elt (VROUND X) 0) 66350b57cec5SDimitry Andric // (extract_vector_elt (VROUND X) 2) 66360b57cec5SDimitry Andric // 66370b57cec5SDimitry Andric // This is a special case since the target doesn't really support v2f32s. 6638480093f4SDimitry Andric unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 66390b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 6640480093f4SDimitry Andric SDValue Op0 = N->getOperand(OpNo); 66410b57cec5SDimitry Andric if (N->getValueType(0) == MVT::f32 && 66420b57cec5SDimitry Andric Op0.hasOneUse() && 66430b57cec5SDimitry Andric Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 66440b57cec5SDimitry Andric Op0.getOperand(0).getValueType() == MVT::v2f64 && 66450b57cec5SDimitry Andric Op0.getOperand(1).getOpcode() == ISD::Constant && 66460b57cec5SDimitry Andric cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 66470b57cec5SDimitry Andric SDValue Vec = Op0.getOperand(0); 66480b57cec5SDimitry Andric for (auto *U : Vec->uses()) { 66490b57cec5SDimitry Andric if (U != Op0.getNode() && 66500b57cec5SDimitry Andric U->hasOneUse() && 66510b57cec5SDimitry Andric U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 66520b57cec5SDimitry Andric U->getOperand(0) == Vec && 66530b57cec5SDimitry Andric U->getOperand(1).getOpcode() == ISD::Constant && 66540b57cec5SDimitry Andric cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 66550b57cec5SDimitry Andric SDValue OtherRound = SDValue(*U->use_begin(), 0); 6656480093f4SDimitry Andric if (OtherRound.getOpcode() == N->getOpcode() && 6657480093f4SDimitry Andric OtherRound.getOperand(OpNo) == SDValue(U, 0) && 66580b57cec5SDimitry Andric OtherRound.getValueType() == MVT::f32) { 6659480093f4SDimitry Andric SDValue VRound, Chain; 6660480093f4SDimitry Andric if (N->isStrictFPOpcode()) { 6661480093f4SDimitry Andric Chain = MergeInputChains(N, OtherRound.getNode()); 6662480093f4SDimitry Andric if (!Chain) 6663480093f4SDimitry Andric continue; 6664480093f4SDimitry Andric VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6665480093f4SDimitry Andric {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6666480093f4SDimitry Andric Chain = VRound.getValue(1); 6667480093f4SDimitry Andric } else 6668480093f4SDimitry Andric VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 66690b57cec5SDimitry Andric MVT::v4f32, Vec); 66700b57cec5SDimitry Andric DCI.AddToWorklist(VRound.getNode()); 66710b57cec5SDimitry Andric SDValue Extract1 = 66720b57cec5SDimitry Andric DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 66730b57cec5SDimitry Andric VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 66740b57cec5SDimitry Andric DCI.AddToWorklist(Extract1.getNode()); 66750b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6676480093f4SDimitry Andric if (Chain) 6677480093f4SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 66780b57cec5SDimitry Andric SDValue Extract0 = 66790b57cec5SDimitry Andric DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 66800b57cec5SDimitry Andric VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6681480093f4SDimitry Andric if (Chain) 6682480093f4SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6683480093f4SDimitry Andric N->getVTList(), Extract0, Chain); 66840b57cec5SDimitry Andric return Extract0; 66850b57cec5SDimitry Andric } 66860b57cec5SDimitry Andric } 66870b57cec5SDimitry Andric } 66880b57cec5SDimitry Andric } 66890b57cec5SDimitry Andric return SDValue(); 66900b57cec5SDimitry Andric } 66910b57cec5SDimitry Andric 66920b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineFP_EXTEND( 66930b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 66940b57cec5SDimitry Andric 66950b57cec5SDimitry Andric if (!Subtarget.hasVector()) 66960b57cec5SDimitry Andric return SDValue(); 66970b57cec5SDimitry Andric 66980b57cec5SDimitry Andric // (fpextend (extract_vector_elt X 0)) 66990b57cec5SDimitry Andric // (fpextend (extract_vector_elt X 2)) -> 67000b57cec5SDimitry Andric // (extract_vector_elt (VEXTEND X) 0) 67010b57cec5SDimitry Andric // (extract_vector_elt (VEXTEND X) 1) 67020b57cec5SDimitry Andric // 67030b57cec5SDimitry Andric // This is a special case since the target doesn't really support v2f32s. 6704480093f4SDimitry Andric unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 67050b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 6706480093f4SDimitry Andric SDValue Op0 = N->getOperand(OpNo); 67070b57cec5SDimitry Andric if (N->getValueType(0) == MVT::f64 && 67080b57cec5SDimitry Andric Op0.hasOneUse() && 67090b57cec5SDimitry Andric Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 67100b57cec5SDimitry Andric Op0.getOperand(0).getValueType() == MVT::v4f32 && 67110b57cec5SDimitry Andric Op0.getOperand(1).getOpcode() == ISD::Constant && 67120b57cec5SDimitry Andric cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 67130b57cec5SDimitry Andric SDValue Vec = Op0.getOperand(0); 67140b57cec5SDimitry Andric for (auto *U : Vec->uses()) { 67150b57cec5SDimitry Andric if (U != Op0.getNode() && 67160b57cec5SDimitry Andric U->hasOneUse() && 67170b57cec5SDimitry Andric U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 67180b57cec5SDimitry Andric U->getOperand(0) == Vec && 67190b57cec5SDimitry Andric U->getOperand(1).getOpcode() == ISD::Constant && 67200b57cec5SDimitry Andric cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 67210b57cec5SDimitry Andric SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6722480093f4SDimitry Andric if (OtherExtend.getOpcode() == N->getOpcode() && 6723480093f4SDimitry Andric OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 67240b57cec5SDimitry Andric OtherExtend.getValueType() == MVT::f64) { 6725480093f4SDimitry Andric SDValue VExtend, Chain; 6726480093f4SDimitry Andric if (N->isStrictFPOpcode()) { 6727480093f4SDimitry Andric Chain = MergeInputChains(N, OtherExtend.getNode()); 6728480093f4SDimitry Andric if (!Chain) 6729480093f4SDimitry Andric continue; 6730480093f4SDimitry Andric VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6731480093f4SDimitry Andric {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6732480093f4SDimitry Andric Chain = VExtend.getValue(1); 6733480093f4SDimitry Andric } else 6734480093f4SDimitry Andric VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 67350b57cec5SDimitry Andric MVT::v2f64, Vec); 67360b57cec5SDimitry Andric DCI.AddToWorklist(VExtend.getNode()); 67370b57cec5SDimitry Andric SDValue Extract1 = 67380b57cec5SDimitry Andric DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 67390b57cec5SDimitry Andric VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 67400b57cec5SDimitry Andric DCI.AddToWorklist(Extract1.getNode()); 67410b57cec5SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6742480093f4SDimitry Andric if (Chain) 6743480093f4SDimitry Andric DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 67440b57cec5SDimitry Andric SDValue Extract0 = 67450b57cec5SDimitry Andric DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 67460b57cec5SDimitry Andric VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6747480093f4SDimitry Andric if (Chain) 6748480093f4SDimitry Andric return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6749480093f4SDimitry Andric N->getVTList(), Extract0, Chain); 67500b57cec5SDimitry Andric return Extract0; 67510b57cec5SDimitry Andric } 67520b57cec5SDimitry Andric } 67530b57cec5SDimitry Andric } 67540b57cec5SDimitry Andric } 67550b57cec5SDimitry Andric return SDValue(); 67560b57cec5SDimitry Andric } 67570b57cec5SDimitry Andric 67585ffd83dbSDimitry Andric SDValue SystemZTargetLowering::combineINT_TO_FP( 67595ffd83dbSDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 67605ffd83dbSDimitry Andric if (DCI.Level != BeforeLegalizeTypes) 67615ffd83dbSDimitry Andric return SDValue(); 67622a66634dSDimitry Andric SelectionDAG &DAG = DCI.DAG; 67632a66634dSDimitry Andric LLVMContext &Ctx = *DAG.getContext(); 67645ffd83dbSDimitry Andric unsigned Opcode = N->getOpcode(); 67655ffd83dbSDimitry Andric EVT OutVT = N->getValueType(0); 67662a66634dSDimitry Andric Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx); 67675ffd83dbSDimitry Andric SDValue Op = N->getOperand(0); 67682a66634dSDimitry Andric unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits(); 67695ffd83dbSDimitry Andric unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 67705ffd83dbSDimitry Andric 67715ffd83dbSDimitry Andric // Insert an extension before type-legalization to avoid scalarization, e.g.: 67725ffd83dbSDimitry Andric // v2f64 = uint_to_fp v2i16 67735ffd83dbSDimitry Andric // => 67745ffd83dbSDimitry Andric // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 67752a66634dSDimitry Andric if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits && 67762a66634dSDimitry Andric OutScalarBits <= 64) { 67772a66634dSDimitry Andric unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements(); 67782a66634dSDimitry Andric EVT ExtVT = EVT::getVectorVT( 67792a66634dSDimitry Andric Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts); 67805ffd83dbSDimitry Andric unsigned ExtOpcode = 67815ffd83dbSDimitry Andric (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 67825ffd83dbSDimitry Andric SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 67835ffd83dbSDimitry Andric return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 67845ffd83dbSDimitry Andric } 67855ffd83dbSDimitry Andric return SDValue(); 67865ffd83dbSDimitry Andric } 67875ffd83dbSDimitry Andric 67880b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineBSWAP( 67890b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 67900b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 67910b57cec5SDimitry Andric // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 67920b57cec5SDimitry Andric if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 67930b57cec5SDimitry Andric N->getOperand(0).hasOneUse() && 67940b57cec5SDimitry Andric canLoadStoreByteSwapped(N->getValueType(0))) { 67950b57cec5SDimitry Andric SDValue Load = N->getOperand(0); 67960b57cec5SDimitry Andric LoadSDNode *LD = cast<LoadSDNode>(Load); 67970b57cec5SDimitry Andric 67980b57cec5SDimitry Andric // Create the byte-swapping load. 67990b57cec5SDimitry Andric SDValue Ops[] = { 68000b57cec5SDimitry Andric LD->getChain(), // Chain 68010b57cec5SDimitry Andric LD->getBasePtr() // Ptr 68020b57cec5SDimitry Andric }; 68030b57cec5SDimitry Andric EVT LoadVT = N->getValueType(0); 68040b57cec5SDimitry Andric if (LoadVT == MVT::i16) 68050b57cec5SDimitry Andric LoadVT = MVT::i32; 68060b57cec5SDimitry Andric SDValue BSLoad = 68070b57cec5SDimitry Andric DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 68080b57cec5SDimitry Andric DAG.getVTList(LoadVT, MVT::Other), 68090b57cec5SDimitry Andric Ops, LD->getMemoryVT(), LD->getMemOperand()); 68100b57cec5SDimitry Andric 68110b57cec5SDimitry Andric // If this is an i16 load, insert the truncate. 68120b57cec5SDimitry Andric SDValue ResVal = BSLoad; 68130b57cec5SDimitry Andric if (N->getValueType(0) == MVT::i16) 68140b57cec5SDimitry Andric ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 68150b57cec5SDimitry Andric 68160b57cec5SDimitry Andric // First, combine the bswap away. This makes the value produced by the 68170b57cec5SDimitry Andric // load dead. 68180b57cec5SDimitry Andric DCI.CombineTo(N, ResVal); 68190b57cec5SDimitry Andric 68200b57cec5SDimitry Andric // Next, combine the load away, we give it a bogus result value but a real 68210b57cec5SDimitry Andric // chain result. The result value is dead because the bswap is dead. 68220b57cec5SDimitry Andric DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 68230b57cec5SDimitry Andric 68240b57cec5SDimitry Andric // Return N so it doesn't get rechecked! 68250b57cec5SDimitry Andric return SDValue(N, 0); 68260b57cec5SDimitry Andric } 68270b57cec5SDimitry Andric 68280b57cec5SDimitry Andric // Look through bitcasts that retain the number of vector elements. 68290b57cec5SDimitry Andric SDValue Op = N->getOperand(0); 68300b57cec5SDimitry Andric if (Op.getOpcode() == ISD::BITCAST && 68310b57cec5SDimitry Andric Op.getValueType().isVector() && 68320b57cec5SDimitry Andric Op.getOperand(0).getValueType().isVector() && 68330b57cec5SDimitry Andric Op.getValueType().getVectorNumElements() == 68340b57cec5SDimitry Andric Op.getOperand(0).getValueType().getVectorNumElements()) 68350b57cec5SDimitry Andric Op = Op.getOperand(0); 68360b57cec5SDimitry Andric 68370b57cec5SDimitry Andric // Push BSWAP into a vector insertion if at least one side then simplifies. 68380b57cec5SDimitry Andric if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 68390b57cec5SDimitry Andric SDValue Vec = Op.getOperand(0); 68400b57cec5SDimitry Andric SDValue Elt = Op.getOperand(1); 68410b57cec5SDimitry Andric SDValue Idx = Op.getOperand(2); 68420b57cec5SDimitry Andric 68430b57cec5SDimitry Andric if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 68440b57cec5SDimitry Andric Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 68450b57cec5SDimitry Andric DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 68460b57cec5SDimitry Andric Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 68470b57cec5SDimitry Andric (canLoadStoreByteSwapped(N->getValueType(0)) && 68480b57cec5SDimitry Andric ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 68490b57cec5SDimitry Andric EVT VecVT = N->getValueType(0); 68500b57cec5SDimitry Andric EVT EltVT = N->getValueType(0).getVectorElementType(); 68510b57cec5SDimitry Andric if (VecVT != Vec.getValueType()) { 68520b57cec5SDimitry Andric Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 68530b57cec5SDimitry Andric DCI.AddToWorklist(Vec.getNode()); 68540b57cec5SDimitry Andric } 68550b57cec5SDimitry Andric if (EltVT != Elt.getValueType()) { 68560b57cec5SDimitry Andric Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 68570b57cec5SDimitry Andric DCI.AddToWorklist(Elt.getNode()); 68580b57cec5SDimitry Andric } 68590b57cec5SDimitry Andric Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 68600b57cec5SDimitry Andric DCI.AddToWorklist(Vec.getNode()); 68610b57cec5SDimitry Andric Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 68620b57cec5SDimitry Andric DCI.AddToWorklist(Elt.getNode()); 68630b57cec5SDimitry Andric return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 68640b57cec5SDimitry Andric Vec, Elt, Idx); 68650b57cec5SDimitry Andric } 68660b57cec5SDimitry Andric } 68670b57cec5SDimitry Andric 68680b57cec5SDimitry Andric // Push BSWAP into a vector shuffle if at least one side then simplifies. 68690b57cec5SDimitry Andric ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 68700b57cec5SDimitry Andric if (SV && Op.hasOneUse()) { 68710b57cec5SDimitry Andric SDValue Op0 = Op.getOperand(0); 68720b57cec5SDimitry Andric SDValue Op1 = Op.getOperand(1); 68730b57cec5SDimitry Andric 68740b57cec5SDimitry Andric if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 68750b57cec5SDimitry Andric Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 68760b57cec5SDimitry Andric DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 68770b57cec5SDimitry Andric Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 68780b57cec5SDimitry Andric EVT VecVT = N->getValueType(0); 68790b57cec5SDimitry Andric if (VecVT != Op0.getValueType()) { 68800b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 68810b57cec5SDimitry Andric DCI.AddToWorklist(Op0.getNode()); 68820b57cec5SDimitry Andric } 68830b57cec5SDimitry Andric if (VecVT != Op1.getValueType()) { 68840b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 68850b57cec5SDimitry Andric DCI.AddToWorklist(Op1.getNode()); 68860b57cec5SDimitry Andric } 68870b57cec5SDimitry Andric Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 68880b57cec5SDimitry Andric DCI.AddToWorklist(Op0.getNode()); 68890b57cec5SDimitry Andric Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 68900b57cec5SDimitry Andric DCI.AddToWorklist(Op1.getNode()); 68910b57cec5SDimitry Andric return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 68920b57cec5SDimitry Andric } 68930b57cec5SDimitry Andric } 68940b57cec5SDimitry Andric 68950b57cec5SDimitry Andric return SDValue(); 68960b57cec5SDimitry Andric } 68970b57cec5SDimitry Andric 68980b57cec5SDimitry Andric static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 68990b57cec5SDimitry Andric // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 69000b57cec5SDimitry Andric // set by the CCReg instruction using the CCValid / CCMask masks, 69010b57cec5SDimitry Andric // If the CCReg instruction is itself a ICMP testing the condition 69020b57cec5SDimitry Andric // code set by some other instruction, see whether we can directly 69030b57cec5SDimitry Andric // use that condition code. 69040b57cec5SDimitry Andric 69050b57cec5SDimitry Andric // Verify that we have an ICMP against some constant. 69060b57cec5SDimitry Andric if (CCValid != SystemZ::CCMASK_ICMP) 69070b57cec5SDimitry Andric return false; 69080b57cec5SDimitry Andric auto *ICmp = CCReg.getNode(); 69090b57cec5SDimitry Andric if (ICmp->getOpcode() != SystemZISD::ICMP) 69100b57cec5SDimitry Andric return false; 69110b57cec5SDimitry Andric auto *CompareLHS = ICmp->getOperand(0).getNode(); 69120b57cec5SDimitry Andric auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 69130b57cec5SDimitry Andric if (!CompareRHS) 69140b57cec5SDimitry Andric return false; 69150b57cec5SDimitry Andric 69160b57cec5SDimitry Andric // Optimize the case where CompareLHS is a SELECT_CCMASK. 69170b57cec5SDimitry Andric if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 69180b57cec5SDimitry Andric // Verify that we have an appropriate mask for a EQ or NE comparison. 69190b57cec5SDimitry Andric bool Invert = false; 69200b57cec5SDimitry Andric if (CCMask == SystemZ::CCMASK_CMP_NE) 69210b57cec5SDimitry Andric Invert = !Invert; 69220b57cec5SDimitry Andric else if (CCMask != SystemZ::CCMASK_CMP_EQ) 69230b57cec5SDimitry Andric return false; 69240b57cec5SDimitry Andric 69250b57cec5SDimitry Andric // Verify that the ICMP compares against one of select values. 69260b57cec5SDimitry Andric auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 69270b57cec5SDimitry Andric if (!TrueVal) 69280b57cec5SDimitry Andric return false; 69290b57cec5SDimitry Andric auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 69300b57cec5SDimitry Andric if (!FalseVal) 69310b57cec5SDimitry Andric return false; 69320b57cec5SDimitry Andric if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 69330b57cec5SDimitry Andric Invert = !Invert; 69340b57cec5SDimitry Andric else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 69350b57cec5SDimitry Andric return false; 69360b57cec5SDimitry Andric 69370b57cec5SDimitry Andric // Compute the effective CC mask for the new branch or select. 69380b57cec5SDimitry Andric auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 69390b57cec5SDimitry Andric auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 69400b57cec5SDimitry Andric if (!NewCCValid || !NewCCMask) 69410b57cec5SDimitry Andric return false; 69420b57cec5SDimitry Andric CCValid = NewCCValid->getZExtValue(); 69430b57cec5SDimitry Andric CCMask = NewCCMask->getZExtValue(); 69440b57cec5SDimitry Andric if (Invert) 69450b57cec5SDimitry Andric CCMask ^= CCValid; 69460b57cec5SDimitry Andric 69470b57cec5SDimitry Andric // Return the updated CCReg link. 69480b57cec5SDimitry Andric CCReg = CompareLHS->getOperand(4); 69490b57cec5SDimitry Andric return true; 69500b57cec5SDimitry Andric } 69510b57cec5SDimitry Andric 69520b57cec5SDimitry Andric // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 69530b57cec5SDimitry Andric if (CompareLHS->getOpcode() == ISD::SRA) { 69540b57cec5SDimitry Andric auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 69550b57cec5SDimitry Andric if (!SRACount || SRACount->getZExtValue() != 30) 69560b57cec5SDimitry Andric return false; 69570b57cec5SDimitry Andric auto *SHL = CompareLHS->getOperand(0).getNode(); 69580b57cec5SDimitry Andric if (SHL->getOpcode() != ISD::SHL) 69590b57cec5SDimitry Andric return false; 69600b57cec5SDimitry Andric auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 69610b57cec5SDimitry Andric if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 69620b57cec5SDimitry Andric return false; 69630b57cec5SDimitry Andric auto *IPM = SHL->getOperand(0).getNode(); 69640b57cec5SDimitry Andric if (IPM->getOpcode() != SystemZISD::IPM) 69650b57cec5SDimitry Andric return false; 69660b57cec5SDimitry Andric 69670b57cec5SDimitry Andric // Avoid introducing CC spills (because SRA would clobber CC). 69680b57cec5SDimitry Andric if (!CompareLHS->hasOneUse()) 69690b57cec5SDimitry Andric return false; 69700b57cec5SDimitry Andric // Verify that the ICMP compares against zero. 69710b57cec5SDimitry Andric if (CompareRHS->getZExtValue() != 0) 69720b57cec5SDimitry Andric return false; 69730b57cec5SDimitry Andric 69740b57cec5SDimitry Andric // Compute the effective CC mask for the new branch or select. 69755ffd83dbSDimitry Andric CCMask = SystemZ::reverseCCMask(CCMask); 69760b57cec5SDimitry Andric 69770b57cec5SDimitry Andric // Return the updated CCReg link. 69780b57cec5SDimitry Andric CCReg = IPM->getOperand(0); 69790b57cec5SDimitry Andric return true; 69800b57cec5SDimitry Andric } 69810b57cec5SDimitry Andric 69820b57cec5SDimitry Andric return false; 69830b57cec5SDimitry Andric } 69840b57cec5SDimitry Andric 69850b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineBR_CCMASK( 69860b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 69870b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 69880b57cec5SDimitry Andric 69890b57cec5SDimitry Andric // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 69900b57cec5SDimitry Andric auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 69910b57cec5SDimitry Andric auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 69920b57cec5SDimitry Andric if (!CCValid || !CCMask) 69930b57cec5SDimitry Andric return SDValue(); 69940b57cec5SDimitry Andric 69950b57cec5SDimitry Andric int CCValidVal = CCValid->getZExtValue(); 69960b57cec5SDimitry Andric int CCMaskVal = CCMask->getZExtValue(); 69970b57cec5SDimitry Andric SDValue Chain = N->getOperand(0); 69980b57cec5SDimitry Andric SDValue CCReg = N->getOperand(4); 69990b57cec5SDimitry Andric 70000b57cec5SDimitry Andric if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 70010b57cec5SDimitry Andric return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 70020b57cec5SDimitry Andric Chain, 70038bcb0991SDimitry Andric DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 70048bcb0991SDimitry Andric DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 70050b57cec5SDimitry Andric N->getOperand(3), CCReg); 70060b57cec5SDimitry Andric return SDValue(); 70070b57cec5SDimitry Andric } 70080b57cec5SDimitry Andric 70090b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSELECT_CCMASK( 70100b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 70110b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 70120b57cec5SDimitry Andric 70130b57cec5SDimitry Andric // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 70140b57cec5SDimitry Andric auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 70150b57cec5SDimitry Andric auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 70160b57cec5SDimitry Andric if (!CCValid || !CCMask) 70170b57cec5SDimitry Andric return SDValue(); 70180b57cec5SDimitry Andric 70190b57cec5SDimitry Andric int CCValidVal = CCValid->getZExtValue(); 70200b57cec5SDimitry Andric int CCMaskVal = CCMask->getZExtValue(); 70210b57cec5SDimitry Andric SDValue CCReg = N->getOperand(4); 70220b57cec5SDimitry Andric 70230b57cec5SDimitry Andric if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 70240b57cec5SDimitry Andric return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 70258bcb0991SDimitry Andric N->getOperand(0), N->getOperand(1), 70268bcb0991SDimitry Andric DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 70278bcb0991SDimitry Andric DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 70280b57cec5SDimitry Andric CCReg); 70290b57cec5SDimitry Andric return SDValue(); 70300b57cec5SDimitry Andric } 70310b57cec5SDimitry Andric 70320b57cec5SDimitry Andric 70330b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineGET_CCMASK( 70340b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 70350b57cec5SDimitry Andric 70360b57cec5SDimitry Andric // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 70370b57cec5SDimitry Andric auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 70380b57cec5SDimitry Andric auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 70390b57cec5SDimitry Andric if (!CCValid || !CCMask) 70400b57cec5SDimitry Andric return SDValue(); 70410b57cec5SDimitry Andric int CCValidVal = CCValid->getZExtValue(); 70420b57cec5SDimitry Andric int CCMaskVal = CCMask->getZExtValue(); 70430b57cec5SDimitry Andric 70440b57cec5SDimitry Andric SDValue Select = N->getOperand(0); 7045bdd1243dSDimitry Andric if (Select->getOpcode() == ISD::TRUNCATE) 7046bdd1243dSDimitry Andric Select = Select->getOperand(0); 70470b57cec5SDimitry Andric if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 70480b57cec5SDimitry Andric return SDValue(); 70490b57cec5SDimitry Andric 70500b57cec5SDimitry Andric auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 70510b57cec5SDimitry Andric auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 70520b57cec5SDimitry Andric if (!SelectCCValid || !SelectCCMask) 70530b57cec5SDimitry Andric return SDValue(); 70540b57cec5SDimitry Andric int SelectCCValidVal = SelectCCValid->getZExtValue(); 70550b57cec5SDimitry Andric int SelectCCMaskVal = SelectCCMask->getZExtValue(); 70560b57cec5SDimitry Andric 70570b57cec5SDimitry Andric auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 70580b57cec5SDimitry Andric auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 70590b57cec5SDimitry Andric if (!TrueVal || !FalseVal) 70600b57cec5SDimitry Andric return SDValue(); 7061bdd1243dSDimitry Andric if (TrueVal->getZExtValue() == 1 && FalseVal->getZExtValue() == 0) 70620b57cec5SDimitry Andric ; 7063bdd1243dSDimitry Andric else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() == 1) 70640b57cec5SDimitry Andric SelectCCMaskVal ^= SelectCCValidVal; 70650b57cec5SDimitry Andric else 70660b57cec5SDimitry Andric return SDValue(); 70670b57cec5SDimitry Andric 70680b57cec5SDimitry Andric if (SelectCCValidVal & ~CCValidVal) 70690b57cec5SDimitry Andric return SDValue(); 70700b57cec5SDimitry Andric if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 70710b57cec5SDimitry Andric return SDValue(); 70720b57cec5SDimitry Andric 70730b57cec5SDimitry Andric return Select->getOperand(4); 70740b57cec5SDimitry Andric } 70750b57cec5SDimitry Andric 70760b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineIntDIVREM( 70770b57cec5SDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 70780b57cec5SDimitry Andric SelectionDAG &DAG = DCI.DAG; 70790b57cec5SDimitry Andric EVT VT = N->getValueType(0); 70800b57cec5SDimitry Andric // In the case where the divisor is a vector of constants a cheaper 70810b57cec5SDimitry Andric // sequence of instructions can replace the divide. BuildSDIV is called to 70820b57cec5SDimitry Andric // do this during DAG combining, but it only succeeds when it can build a 70830b57cec5SDimitry Andric // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 70840b57cec5SDimitry Andric // since it is not Legal but Custom it can only happen before 70850b57cec5SDimitry Andric // legalization. Therefore we must scalarize this early before Combine 70860b57cec5SDimitry Andric // 1. For widened vectors, this is already the result of type legalization. 70870b57cec5SDimitry Andric if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 70880b57cec5SDimitry Andric DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 70890b57cec5SDimitry Andric return DAG.UnrollVectorOp(N); 70900b57cec5SDimitry Andric return SDValue(); 70910b57cec5SDimitry Andric } 70920b57cec5SDimitry Andric 70935ffd83dbSDimitry Andric SDValue SystemZTargetLowering::combineINTRINSIC( 70945ffd83dbSDimitry Andric SDNode *N, DAGCombinerInfo &DCI) const { 70955ffd83dbSDimitry Andric SelectionDAG &DAG = DCI.DAG; 70965ffd83dbSDimitry Andric 70975ffd83dbSDimitry Andric unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 70985ffd83dbSDimitry Andric switch (Id) { 70995ffd83dbSDimitry Andric // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 71005ffd83dbSDimitry Andric // or larger is simply a vector load. 71015ffd83dbSDimitry Andric case Intrinsic::s390_vll: 71025ffd83dbSDimitry Andric case Intrinsic::s390_vlrl: 71035ffd83dbSDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 71045ffd83dbSDimitry Andric if (C->getZExtValue() >= 15) 71055ffd83dbSDimitry Andric return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 71065ffd83dbSDimitry Andric N->getOperand(3), MachinePointerInfo()); 71075ffd83dbSDimitry Andric break; 71085ffd83dbSDimitry Andric // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 71095ffd83dbSDimitry Andric case Intrinsic::s390_vstl: 71105ffd83dbSDimitry Andric case Intrinsic::s390_vstrl: 71115ffd83dbSDimitry Andric if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 71125ffd83dbSDimitry Andric if (C->getZExtValue() >= 15) 71135ffd83dbSDimitry Andric return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 71145ffd83dbSDimitry Andric N->getOperand(4), MachinePointerInfo()); 71155ffd83dbSDimitry Andric break; 71165ffd83dbSDimitry Andric } 71175ffd83dbSDimitry Andric 71185ffd83dbSDimitry Andric return SDValue(); 71195ffd83dbSDimitry Andric } 71205ffd83dbSDimitry Andric 71210b57cec5SDimitry Andric SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 71220b57cec5SDimitry Andric if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 71230b57cec5SDimitry Andric return N->getOperand(0); 71240b57cec5SDimitry Andric return N; 71250b57cec5SDimitry Andric } 71260b57cec5SDimitry Andric 71270b57cec5SDimitry Andric SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 71280b57cec5SDimitry Andric DAGCombinerInfo &DCI) const { 71290b57cec5SDimitry Andric switch(N->getOpcode()) { 71300b57cec5SDimitry Andric default: break; 71310b57cec5SDimitry Andric case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 71320b57cec5SDimitry Andric case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 71330b57cec5SDimitry Andric case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 71340b57cec5SDimitry Andric case SystemZISD::MERGE_HIGH: 71350b57cec5SDimitry Andric case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 71360b57cec5SDimitry Andric case ISD::LOAD: return combineLOAD(N, DCI); 71370b57cec5SDimitry Andric case ISD::STORE: return combineSTORE(N, DCI); 71380b57cec5SDimitry Andric case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 71390b57cec5SDimitry Andric case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 71400b57cec5SDimitry Andric case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 7141480093f4SDimitry Andric case ISD::STRICT_FP_ROUND: 71420b57cec5SDimitry Andric case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 7143480093f4SDimitry Andric case ISD::STRICT_FP_EXTEND: 71440b57cec5SDimitry Andric case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 71455ffd83dbSDimitry Andric case ISD::SINT_TO_FP: 71465ffd83dbSDimitry Andric case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 71470b57cec5SDimitry Andric case ISD::BSWAP: return combineBSWAP(N, DCI); 71480b57cec5SDimitry Andric case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 71490b57cec5SDimitry Andric case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 71500b57cec5SDimitry Andric case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 71510b57cec5SDimitry Andric case ISD::SDIV: 71520b57cec5SDimitry Andric case ISD::UDIV: 71530b57cec5SDimitry Andric case ISD::SREM: 71540b57cec5SDimitry Andric case ISD::UREM: return combineIntDIVREM(N, DCI); 71555ffd83dbSDimitry Andric case ISD::INTRINSIC_W_CHAIN: 71565ffd83dbSDimitry Andric case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 71570b57cec5SDimitry Andric } 71580b57cec5SDimitry Andric 71590b57cec5SDimitry Andric return SDValue(); 71600b57cec5SDimitry Andric } 71610b57cec5SDimitry Andric 71620b57cec5SDimitry Andric // Return the demanded elements for the OpNo source operand of Op. DemandedElts 71630b57cec5SDimitry Andric // are for Op. 71640b57cec5SDimitry Andric static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 71650b57cec5SDimitry Andric unsigned OpNo) { 71660b57cec5SDimitry Andric EVT VT = Op.getValueType(); 71670b57cec5SDimitry Andric unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 71680b57cec5SDimitry Andric APInt SrcDemE; 71690b57cec5SDimitry Andric unsigned Opcode = Op.getOpcode(); 71700b57cec5SDimitry Andric if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 71710b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 71720b57cec5SDimitry Andric switch (Id) { 71730b57cec5SDimitry Andric case Intrinsic::s390_vpksh: // PACKS 71740b57cec5SDimitry Andric case Intrinsic::s390_vpksf: 71750b57cec5SDimitry Andric case Intrinsic::s390_vpksg: 71760b57cec5SDimitry Andric case Intrinsic::s390_vpkshs: // PACKS_CC 71770b57cec5SDimitry Andric case Intrinsic::s390_vpksfs: 71780b57cec5SDimitry Andric case Intrinsic::s390_vpksgs: 71790b57cec5SDimitry Andric case Intrinsic::s390_vpklsh: // PACKLS 71800b57cec5SDimitry Andric case Intrinsic::s390_vpklsf: 71810b57cec5SDimitry Andric case Intrinsic::s390_vpklsg: 71820b57cec5SDimitry Andric case Intrinsic::s390_vpklshs: // PACKLS_CC 71830b57cec5SDimitry Andric case Intrinsic::s390_vpklsfs: 71840b57cec5SDimitry Andric case Intrinsic::s390_vpklsgs: 71850b57cec5SDimitry Andric // VECTOR PACK truncates the elements of two source vectors into one. 71860b57cec5SDimitry Andric SrcDemE = DemandedElts; 71870b57cec5SDimitry Andric if (OpNo == 2) 71880b57cec5SDimitry Andric SrcDemE.lshrInPlace(NumElts / 2); 71890b57cec5SDimitry Andric SrcDemE = SrcDemE.trunc(NumElts / 2); 71900b57cec5SDimitry Andric break; 71910b57cec5SDimitry Andric // VECTOR UNPACK extends half the elements of the source vector. 71920b57cec5SDimitry Andric case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 71930b57cec5SDimitry Andric case Intrinsic::s390_vuphh: 71940b57cec5SDimitry Andric case Intrinsic::s390_vuphf: 71950b57cec5SDimitry Andric case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 71960b57cec5SDimitry Andric case Intrinsic::s390_vuplhh: 71970b57cec5SDimitry Andric case Intrinsic::s390_vuplhf: 71980b57cec5SDimitry Andric SrcDemE = APInt(NumElts * 2, 0); 71990b57cec5SDimitry Andric SrcDemE.insertBits(DemandedElts, 0); 72000b57cec5SDimitry Andric break; 72010b57cec5SDimitry Andric case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 72020b57cec5SDimitry Andric case Intrinsic::s390_vuplhw: 72030b57cec5SDimitry Andric case Intrinsic::s390_vuplf: 72040b57cec5SDimitry Andric case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 72050b57cec5SDimitry Andric case Intrinsic::s390_vupllh: 72060b57cec5SDimitry Andric case Intrinsic::s390_vupllf: 72070b57cec5SDimitry Andric SrcDemE = APInt(NumElts * 2, 0); 72080b57cec5SDimitry Andric SrcDemE.insertBits(DemandedElts, NumElts); 72090b57cec5SDimitry Andric break; 72100b57cec5SDimitry Andric case Intrinsic::s390_vpdi: { 72110b57cec5SDimitry Andric // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 72120b57cec5SDimitry Andric SrcDemE = APInt(NumElts, 0); 72130b57cec5SDimitry Andric if (!DemandedElts[OpNo - 1]) 72140b57cec5SDimitry Andric break; 72150b57cec5SDimitry Andric unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 72160b57cec5SDimitry Andric unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 72170b57cec5SDimitry Andric // Demand input element 0 or 1, given by the mask bit value. 72180b57cec5SDimitry Andric SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 72190b57cec5SDimitry Andric break; 72200b57cec5SDimitry Andric } 72210b57cec5SDimitry Andric case Intrinsic::s390_vsldb: { 72220b57cec5SDimitry Andric // VECTOR SHIFT LEFT DOUBLE BY BYTE 72230b57cec5SDimitry Andric assert(VT == MVT::v16i8 && "Unexpected type."); 72240b57cec5SDimitry Andric unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 72250b57cec5SDimitry Andric assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 72260b57cec5SDimitry Andric unsigned NumSrc0Els = 16 - FirstIdx; 72270b57cec5SDimitry Andric SrcDemE = APInt(NumElts, 0); 72280b57cec5SDimitry Andric if (OpNo == 1) { 72290b57cec5SDimitry Andric APInt DemEls = DemandedElts.trunc(NumSrc0Els); 72300b57cec5SDimitry Andric SrcDemE.insertBits(DemEls, FirstIdx); 72310b57cec5SDimitry Andric } else { 72320b57cec5SDimitry Andric APInt DemEls = DemandedElts.lshr(NumSrc0Els); 72330b57cec5SDimitry Andric SrcDemE.insertBits(DemEls, 0); 72340b57cec5SDimitry Andric } 72350b57cec5SDimitry Andric break; 72360b57cec5SDimitry Andric } 72370b57cec5SDimitry Andric case Intrinsic::s390_vperm: 72380b57cec5SDimitry Andric SrcDemE = APInt(NumElts, 1); 72390b57cec5SDimitry Andric break; 72400b57cec5SDimitry Andric default: 72410b57cec5SDimitry Andric llvm_unreachable("Unhandled intrinsic."); 72420b57cec5SDimitry Andric break; 72430b57cec5SDimitry Andric } 72440b57cec5SDimitry Andric } else { 72450b57cec5SDimitry Andric switch (Opcode) { 72460b57cec5SDimitry Andric case SystemZISD::JOIN_DWORDS: 72470b57cec5SDimitry Andric // Scalar operand. 72480b57cec5SDimitry Andric SrcDemE = APInt(1, 1); 72490b57cec5SDimitry Andric break; 72500b57cec5SDimitry Andric case SystemZISD::SELECT_CCMASK: 72510b57cec5SDimitry Andric SrcDemE = DemandedElts; 72520b57cec5SDimitry Andric break; 72530b57cec5SDimitry Andric default: 72540b57cec5SDimitry Andric llvm_unreachable("Unhandled opcode."); 72550b57cec5SDimitry Andric break; 72560b57cec5SDimitry Andric } 72570b57cec5SDimitry Andric } 72580b57cec5SDimitry Andric return SrcDemE; 72590b57cec5SDimitry Andric } 72600b57cec5SDimitry Andric 72610b57cec5SDimitry Andric static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 72620b57cec5SDimitry Andric const APInt &DemandedElts, 72630b57cec5SDimitry Andric const SelectionDAG &DAG, unsigned Depth, 72640b57cec5SDimitry Andric unsigned OpNo) { 72650b57cec5SDimitry Andric APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 72660b57cec5SDimitry Andric APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 72670b57cec5SDimitry Andric KnownBits LHSKnown = 72680b57cec5SDimitry Andric DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 72690b57cec5SDimitry Andric KnownBits RHSKnown = 72700b57cec5SDimitry Andric DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7271e8d8bef9SDimitry Andric Known = KnownBits::commonBits(LHSKnown, RHSKnown); 72720b57cec5SDimitry Andric } 72730b57cec5SDimitry Andric 72740b57cec5SDimitry Andric void 72750b57cec5SDimitry Andric SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 72760b57cec5SDimitry Andric KnownBits &Known, 72770b57cec5SDimitry Andric const APInt &DemandedElts, 72780b57cec5SDimitry Andric const SelectionDAG &DAG, 72790b57cec5SDimitry Andric unsigned Depth) const { 72800b57cec5SDimitry Andric Known.resetAll(); 72810b57cec5SDimitry Andric 72820b57cec5SDimitry Andric // Intrinsic CC result is returned in the two low bits. 72830b57cec5SDimitry Andric unsigned tmp0, tmp1; // not used 72840b57cec5SDimitry Andric if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 72850b57cec5SDimitry Andric Known.Zero.setBitsFrom(2); 72860b57cec5SDimitry Andric return; 72870b57cec5SDimitry Andric } 72880b57cec5SDimitry Andric EVT VT = Op.getValueType(); 72890b57cec5SDimitry Andric if (Op.getResNo() != 0 || VT == MVT::Untyped) 72900b57cec5SDimitry Andric return; 72910b57cec5SDimitry Andric assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 72920b57cec5SDimitry Andric "KnownBits does not match VT in bitwidth"); 72930b57cec5SDimitry Andric assert ((!VT.isVector() || 72940b57cec5SDimitry Andric (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 72950b57cec5SDimitry Andric "DemandedElts does not match VT number of elements"); 72960b57cec5SDimitry Andric unsigned BitWidth = Known.getBitWidth(); 72970b57cec5SDimitry Andric unsigned Opcode = Op.getOpcode(); 72980b57cec5SDimitry Andric if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 72990b57cec5SDimitry Andric bool IsLogical = false; 73000b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 73010b57cec5SDimitry Andric switch (Id) { 73020b57cec5SDimitry Andric case Intrinsic::s390_vpksh: // PACKS 73030b57cec5SDimitry Andric case Intrinsic::s390_vpksf: 73040b57cec5SDimitry Andric case Intrinsic::s390_vpksg: 73050b57cec5SDimitry Andric case Intrinsic::s390_vpkshs: // PACKS_CC 73060b57cec5SDimitry Andric case Intrinsic::s390_vpksfs: 73070b57cec5SDimitry Andric case Intrinsic::s390_vpksgs: 73080b57cec5SDimitry Andric case Intrinsic::s390_vpklsh: // PACKLS 73090b57cec5SDimitry Andric case Intrinsic::s390_vpklsf: 73100b57cec5SDimitry Andric case Intrinsic::s390_vpklsg: 73110b57cec5SDimitry Andric case Intrinsic::s390_vpklshs: // PACKLS_CC 73120b57cec5SDimitry Andric case Intrinsic::s390_vpklsfs: 73130b57cec5SDimitry Andric case Intrinsic::s390_vpklsgs: 73140b57cec5SDimitry Andric case Intrinsic::s390_vpdi: 73150b57cec5SDimitry Andric case Intrinsic::s390_vsldb: 73160b57cec5SDimitry Andric case Intrinsic::s390_vperm: 73170b57cec5SDimitry Andric computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 73180b57cec5SDimitry Andric break; 73190b57cec5SDimitry Andric case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 73200b57cec5SDimitry Andric case Intrinsic::s390_vuplhh: 73210b57cec5SDimitry Andric case Intrinsic::s390_vuplhf: 73220b57cec5SDimitry Andric case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 73230b57cec5SDimitry Andric case Intrinsic::s390_vupllh: 73240b57cec5SDimitry Andric case Intrinsic::s390_vupllf: 73250b57cec5SDimitry Andric IsLogical = true; 7326bdd1243dSDimitry Andric [[fallthrough]]; 73270b57cec5SDimitry Andric case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 73280b57cec5SDimitry Andric case Intrinsic::s390_vuphh: 73290b57cec5SDimitry Andric case Intrinsic::s390_vuphf: 73300b57cec5SDimitry Andric case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 73310b57cec5SDimitry Andric case Intrinsic::s390_vuplhw: 73320b57cec5SDimitry Andric case Intrinsic::s390_vuplf: { 73330b57cec5SDimitry Andric SDValue SrcOp = Op.getOperand(1); 73340b57cec5SDimitry Andric APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 73350b57cec5SDimitry Andric Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 73360b57cec5SDimitry Andric if (IsLogical) { 73375ffd83dbSDimitry Andric Known = Known.zext(BitWidth); 73380b57cec5SDimitry Andric } else 73390b57cec5SDimitry Andric Known = Known.sext(BitWidth); 73400b57cec5SDimitry Andric break; 73410b57cec5SDimitry Andric } 73420b57cec5SDimitry Andric default: 73430b57cec5SDimitry Andric break; 73440b57cec5SDimitry Andric } 73450b57cec5SDimitry Andric } else { 73460b57cec5SDimitry Andric switch (Opcode) { 73470b57cec5SDimitry Andric case SystemZISD::JOIN_DWORDS: 73480b57cec5SDimitry Andric case SystemZISD::SELECT_CCMASK: 73490b57cec5SDimitry Andric computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 73500b57cec5SDimitry Andric break; 73510b57cec5SDimitry Andric case SystemZISD::REPLICATE: { 73520b57cec5SDimitry Andric SDValue SrcOp = Op.getOperand(0); 73530b57cec5SDimitry Andric Known = DAG.computeKnownBits(SrcOp, Depth + 1); 73540b57cec5SDimitry Andric if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 73550b57cec5SDimitry Andric Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 73560b57cec5SDimitry Andric break; 73570b57cec5SDimitry Andric } 73580b57cec5SDimitry Andric default: 73590b57cec5SDimitry Andric break; 73600b57cec5SDimitry Andric } 73610b57cec5SDimitry Andric } 73620b57cec5SDimitry Andric 73630b57cec5SDimitry Andric // Known has the width of the source operand(s). Adjust if needed to match 73640b57cec5SDimitry Andric // the passed bitwidth. 73650b57cec5SDimitry Andric if (Known.getBitWidth() != BitWidth) 73665ffd83dbSDimitry Andric Known = Known.anyextOrTrunc(BitWidth); 73670b57cec5SDimitry Andric } 73680b57cec5SDimitry Andric 73690b57cec5SDimitry Andric static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 73700b57cec5SDimitry Andric const SelectionDAG &DAG, unsigned Depth, 73710b57cec5SDimitry Andric unsigned OpNo) { 73720b57cec5SDimitry Andric APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 73730b57cec5SDimitry Andric unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 73740b57cec5SDimitry Andric if (LHS == 1) return 1; // Early out. 73750b57cec5SDimitry Andric APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 73760b57cec5SDimitry Andric unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 73770b57cec5SDimitry Andric if (RHS == 1) return 1; // Early out. 73780b57cec5SDimitry Andric unsigned Common = std::min(LHS, RHS); 73790b57cec5SDimitry Andric unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 73800b57cec5SDimitry Andric EVT VT = Op.getValueType(); 73810b57cec5SDimitry Andric unsigned VTBits = VT.getScalarSizeInBits(); 73820b57cec5SDimitry Andric if (SrcBitWidth > VTBits) { // PACK 73830b57cec5SDimitry Andric unsigned SrcExtraBits = SrcBitWidth - VTBits; 73840b57cec5SDimitry Andric if (Common > SrcExtraBits) 73850b57cec5SDimitry Andric return (Common - SrcExtraBits); 73860b57cec5SDimitry Andric return 1; 73870b57cec5SDimitry Andric } 73880b57cec5SDimitry Andric assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 73890b57cec5SDimitry Andric return Common; 73900b57cec5SDimitry Andric } 73910b57cec5SDimitry Andric 73920b57cec5SDimitry Andric unsigned 73930b57cec5SDimitry Andric SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 73940b57cec5SDimitry Andric SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 73950b57cec5SDimitry Andric unsigned Depth) const { 73960b57cec5SDimitry Andric if (Op.getResNo() != 0) 73970b57cec5SDimitry Andric return 1; 73980b57cec5SDimitry Andric unsigned Opcode = Op.getOpcode(); 73990b57cec5SDimitry Andric if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 74000b57cec5SDimitry Andric unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 74010b57cec5SDimitry Andric switch (Id) { 74020b57cec5SDimitry Andric case Intrinsic::s390_vpksh: // PACKS 74030b57cec5SDimitry Andric case Intrinsic::s390_vpksf: 74040b57cec5SDimitry Andric case Intrinsic::s390_vpksg: 74050b57cec5SDimitry Andric case Intrinsic::s390_vpkshs: // PACKS_CC 74060b57cec5SDimitry Andric case Intrinsic::s390_vpksfs: 74070b57cec5SDimitry Andric case Intrinsic::s390_vpksgs: 74080b57cec5SDimitry Andric case Intrinsic::s390_vpklsh: // PACKLS 74090b57cec5SDimitry Andric case Intrinsic::s390_vpklsf: 74100b57cec5SDimitry Andric case Intrinsic::s390_vpklsg: 74110b57cec5SDimitry Andric case Intrinsic::s390_vpklshs: // PACKLS_CC 74120b57cec5SDimitry Andric case Intrinsic::s390_vpklsfs: 74130b57cec5SDimitry Andric case Intrinsic::s390_vpklsgs: 74140b57cec5SDimitry Andric case Intrinsic::s390_vpdi: 74150b57cec5SDimitry Andric case Intrinsic::s390_vsldb: 74160b57cec5SDimitry Andric case Intrinsic::s390_vperm: 74170b57cec5SDimitry Andric return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 74180b57cec5SDimitry Andric case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 74190b57cec5SDimitry Andric case Intrinsic::s390_vuphh: 74200b57cec5SDimitry Andric case Intrinsic::s390_vuphf: 74210b57cec5SDimitry Andric case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 74220b57cec5SDimitry Andric case Intrinsic::s390_vuplhw: 74230b57cec5SDimitry Andric case Intrinsic::s390_vuplf: { 74240b57cec5SDimitry Andric SDValue PackedOp = Op.getOperand(1); 74250b57cec5SDimitry Andric APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 74260b57cec5SDimitry Andric unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 74270b57cec5SDimitry Andric EVT VT = Op.getValueType(); 74280b57cec5SDimitry Andric unsigned VTBits = VT.getScalarSizeInBits(); 74290b57cec5SDimitry Andric Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 74300b57cec5SDimitry Andric return Tmp; 74310b57cec5SDimitry Andric } 74320b57cec5SDimitry Andric default: 74330b57cec5SDimitry Andric break; 74340b57cec5SDimitry Andric } 74350b57cec5SDimitry Andric } else { 74360b57cec5SDimitry Andric switch (Opcode) { 74370b57cec5SDimitry Andric case SystemZISD::SELECT_CCMASK: 74380b57cec5SDimitry Andric return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 74390b57cec5SDimitry Andric default: 74400b57cec5SDimitry Andric break; 74410b57cec5SDimitry Andric } 74420b57cec5SDimitry Andric } 74430b57cec5SDimitry Andric 74440b57cec5SDimitry Andric return 1; 74450b57cec5SDimitry Andric } 74460b57cec5SDimitry Andric 74475ffd83dbSDimitry Andric unsigned 7448bdd1243dSDimitry Andric SystemZTargetLowering::getStackProbeSize(const MachineFunction &MF) const { 74495ffd83dbSDimitry Andric const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 74505ffd83dbSDimitry Andric unsigned StackAlign = TFI->getStackAlignment(); 74515ffd83dbSDimitry Andric assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 74525ffd83dbSDimitry Andric "Unexpected stack alignment"); 74535ffd83dbSDimitry Andric // The default stack probe size is 4096 if the function has no 74545ffd83dbSDimitry Andric // stack-probe-size attribute. 7455bdd1243dSDimitry Andric unsigned StackProbeSize = 7456bdd1243dSDimitry Andric MF.getFunction().getFnAttributeAsParsedInteger("stack-probe-size", 4096); 74575ffd83dbSDimitry Andric // Round down to the stack alignment. 74585ffd83dbSDimitry Andric StackProbeSize &= ~(StackAlign - 1); 74595ffd83dbSDimitry Andric return StackProbeSize ? StackProbeSize : StackAlign; 74605ffd83dbSDimitry Andric } 74615ffd83dbSDimitry Andric 74620b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 74630b57cec5SDimitry Andric // Custom insertion 74640b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 74650b57cec5SDimitry Andric 74660b57cec5SDimitry Andric // Force base value Base into a register before MI. Return the register. 74670b57cec5SDimitry Andric static Register forceReg(MachineInstr &MI, MachineOperand &Base, 74680b57cec5SDimitry Andric const SystemZInstrInfo *TII) { 74690b57cec5SDimitry Andric MachineBasicBlock *MBB = MI.getParent(); 74700b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 74710b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 74720b57cec5SDimitry Andric 7473349cc55cSDimitry Andric if (Base.isReg()) { 7474349cc55cSDimitry Andric // Copy Base into a new virtual register to help register coalescing in 7475349cc55cSDimitry Andric // cases with multiple uses. 7476349cc55cSDimitry Andric Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7477349cc55cSDimitry Andric BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7478349cc55cSDimitry Andric .add(Base); 7479349cc55cSDimitry Andric return Reg; 7480349cc55cSDimitry Andric } 7481349cc55cSDimitry Andric 74820b57cec5SDimitry Andric Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 74830b57cec5SDimitry Andric BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 74840b57cec5SDimitry Andric .add(Base) 74850b57cec5SDimitry Andric .addImm(0) 74860b57cec5SDimitry Andric .addReg(0); 74870b57cec5SDimitry Andric return Reg; 74880b57cec5SDimitry Andric } 74890b57cec5SDimitry Andric 74900b57cec5SDimitry Andric // The CC operand of MI might be missing a kill marker because there 74910b57cec5SDimitry Andric // were multiple uses of CC, and ISel didn't know which to mark. 74920b57cec5SDimitry Andric // Figure out whether MI should have had a kill marker. 74930b57cec5SDimitry Andric static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 74940b57cec5SDimitry Andric // Scan forward through BB for a use/def of CC. 74950b57cec5SDimitry Andric MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 74960b57cec5SDimitry Andric for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 74970b57cec5SDimitry Andric const MachineInstr& mi = *miI; 74980b57cec5SDimitry Andric if (mi.readsRegister(SystemZ::CC)) 74990b57cec5SDimitry Andric return false; 75000b57cec5SDimitry Andric if (mi.definesRegister(SystemZ::CC)) 75010b57cec5SDimitry Andric break; // Should have kill-flag - update below. 75020b57cec5SDimitry Andric } 75030b57cec5SDimitry Andric 75040b57cec5SDimitry Andric // If we hit the end of the block, check whether CC is live into a 75050b57cec5SDimitry Andric // successor. 75060b57cec5SDimitry Andric if (miI == MBB->end()) { 7507349cc55cSDimitry Andric for (const MachineBasicBlock *Succ : MBB->successors()) 7508349cc55cSDimitry Andric if (Succ->isLiveIn(SystemZ::CC)) 75090b57cec5SDimitry Andric return false; 75100b57cec5SDimitry Andric } 75110b57cec5SDimitry Andric 75120b57cec5SDimitry Andric return true; 75130b57cec5SDimitry Andric } 75140b57cec5SDimitry Andric 75150b57cec5SDimitry Andric // Return true if it is OK for this Select pseudo-opcode to be cascaded 75160b57cec5SDimitry Andric // together with other Select pseudo-opcodes into a single basic-block with 75170b57cec5SDimitry Andric // a conditional jump around it. 75180b57cec5SDimitry Andric static bool isSelectPseudo(MachineInstr &MI) { 75190b57cec5SDimitry Andric switch (MI.getOpcode()) { 75200b57cec5SDimitry Andric case SystemZ::Select32: 75210b57cec5SDimitry Andric case SystemZ::Select64: 75220b57cec5SDimitry Andric case SystemZ::SelectF32: 75230b57cec5SDimitry Andric case SystemZ::SelectF64: 75240b57cec5SDimitry Andric case SystemZ::SelectF128: 75250b57cec5SDimitry Andric case SystemZ::SelectVR32: 75260b57cec5SDimitry Andric case SystemZ::SelectVR64: 75270b57cec5SDimitry Andric case SystemZ::SelectVR128: 75280b57cec5SDimitry Andric return true; 75290b57cec5SDimitry Andric 75300b57cec5SDimitry Andric default: 75310b57cec5SDimitry Andric return false; 75320b57cec5SDimitry Andric } 75330b57cec5SDimitry Andric } 75340b57cec5SDimitry Andric 75350b57cec5SDimitry Andric // Helper function, which inserts PHI functions into SinkMBB: 75360b57cec5SDimitry Andric // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 75378bcb0991SDimitry Andric // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 75388bcb0991SDimitry Andric static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 75390b57cec5SDimitry Andric MachineBasicBlock *TrueMBB, 75400b57cec5SDimitry Andric MachineBasicBlock *FalseMBB, 75410b57cec5SDimitry Andric MachineBasicBlock *SinkMBB) { 75420b57cec5SDimitry Andric MachineFunction *MF = TrueMBB->getParent(); 75430b57cec5SDimitry Andric const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 75440b57cec5SDimitry Andric 75458bcb0991SDimitry Andric MachineInstr *FirstMI = Selects.front(); 75468bcb0991SDimitry Andric unsigned CCValid = FirstMI->getOperand(3).getImm(); 75478bcb0991SDimitry Andric unsigned CCMask = FirstMI->getOperand(4).getImm(); 75480b57cec5SDimitry Andric 75490b57cec5SDimitry Andric MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 75500b57cec5SDimitry Andric 75510b57cec5SDimitry Andric // As we are creating the PHIs, we have to be careful if there is more than 75520b57cec5SDimitry Andric // one. Later Selects may reference the results of earlier Selects, but later 75530b57cec5SDimitry Andric // PHIs have to reference the individual true/false inputs from earlier PHIs. 75540b57cec5SDimitry Andric // That also means that PHI construction must work forward from earlier to 75550b57cec5SDimitry Andric // later, and that the code must maintain a mapping from earlier PHI's 75560b57cec5SDimitry Andric // destination registers, and the registers that went into the PHI. 75570b57cec5SDimitry Andric DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 75580b57cec5SDimitry Andric 7559bdd1243dSDimitry Andric for (auto *MI : Selects) { 75608bcb0991SDimitry Andric Register DestReg = MI->getOperand(0).getReg(); 75618bcb0991SDimitry Andric Register TrueReg = MI->getOperand(1).getReg(); 75628bcb0991SDimitry Andric Register FalseReg = MI->getOperand(2).getReg(); 75630b57cec5SDimitry Andric 75640b57cec5SDimitry Andric // If this Select we are generating is the opposite condition from 75650b57cec5SDimitry Andric // the jump we generated, then we have to swap the operands for the 75660b57cec5SDimitry Andric // PHI that is going to be generated. 75678bcb0991SDimitry Andric if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 75680b57cec5SDimitry Andric std::swap(TrueReg, FalseReg); 75690b57cec5SDimitry Andric 75700b57cec5SDimitry Andric if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 75710b57cec5SDimitry Andric TrueReg = RegRewriteTable[TrueReg].first; 75720b57cec5SDimitry Andric 75730b57cec5SDimitry Andric if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 75740b57cec5SDimitry Andric FalseReg = RegRewriteTable[FalseReg].second; 75750b57cec5SDimitry Andric 75768bcb0991SDimitry Andric DebugLoc DL = MI->getDebugLoc(); 75770b57cec5SDimitry Andric BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 75780b57cec5SDimitry Andric .addReg(TrueReg).addMBB(TrueMBB) 75790b57cec5SDimitry Andric .addReg(FalseReg).addMBB(FalseMBB); 75800b57cec5SDimitry Andric 75810b57cec5SDimitry Andric // Add this PHI to the rewrite table. 75820b57cec5SDimitry Andric RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 75830b57cec5SDimitry Andric } 75840b57cec5SDimitry Andric 75850b57cec5SDimitry Andric MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 75860b57cec5SDimitry Andric } 75870b57cec5SDimitry Andric 75880b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 75890b57cec5SDimitry Andric MachineBasicBlock * 75900b57cec5SDimitry Andric SystemZTargetLowering::emitSelect(MachineInstr &MI, 75910b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 75928bcb0991SDimitry Andric assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 759381ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 75940b57cec5SDimitry Andric 75950b57cec5SDimitry Andric unsigned CCValid = MI.getOperand(3).getImm(); 75960b57cec5SDimitry Andric unsigned CCMask = MI.getOperand(4).getImm(); 75970b57cec5SDimitry Andric 75980b57cec5SDimitry Andric // If we have a sequence of Select* pseudo instructions using the 75990b57cec5SDimitry Andric // same condition code value, we want to expand all of them into 76000b57cec5SDimitry Andric // a single pair of basic blocks using the same condition. 76018bcb0991SDimitry Andric SmallVector<MachineInstr*, 8> Selects; 76028bcb0991SDimitry Andric SmallVector<MachineInstr*, 8> DbgValues; 76038bcb0991SDimitry Andric Selects.push_back(&MI); 76048bcb0991SDimitry Andric unsigned Count = 0; 7605bdd1243dSDimitry Andric for (MachineInstr &NextMI : llvm::make_range( 7606bdd1243dSDimitry Andric std::next(MachineBasicBlock::iterator(MI)), MBB->end())) { 7607bdd1243dSDimitry Andric if (isSelectPseudo(NextMI)) { 7608bdd1243dSDimitry Andric assert(NextMI.getOperand(3).getImm() == CCValid && 76098bcb0991SDimitry Andric "Bad CCValid operands since CC was not redefined."); 7610bdd1243dSDimitry Andric if (NextMI.getOperand(4).getImm() == CCMask || 7611bdd1243dSDimitry Andric NextMI.getOperand(4).getImm() == (CCValid ^ CCMask)) { 7612bdd1243dSDimitry Andric Selects.push_back(&NextMI); 76138bcb0991SDimitry Andric continue; 76148bcb0991SDimitry Andric } 76158bcb0991SDimitry Andric break; 76168bcb0991SDimitry Andric } 7617bdd1243dSDimitry Andric if (NextMI.definesRegister(SystemZ::CC) || NextMI.usesCustomInsertionHook()) 761813138422SDimitry Andric break; 76198bcb0991SDimitry Andric bool User = false; 7620bdd1243dSDimitry Andric for (auto *SelMI : Selects) 7621bdd1243dSDimitry Andric if (NextMI.readsVirtualRegister(SelMI->getOperand(0).getReg())) { 76228bcb0991SDimitry Andric User = true; 76238bcb0991SDimitry Andric break; 76248bcb0991SDimitry Andric } 7625bdd1243dSDimitry Andric if (NextMI.isDebugInstr()) { 76268bcb0991SDimitry Andric if (User) { 7627bdd1243dSDimitry Andric assert(NextMI.isDebugValue() && "Unhandled debug opcode."); 7628bdd1243dSDimitry Andric DbgValues.push_back(&NextMI); 76298bcb0991SDimitry Andric } 7630bdd1243dSDimitry Andric } else if (User || ++Count > 20) 76318bcb0991SDimitry Andric break; 76320b57cec5SDimitry Andric } 76330b57cec5SDimitry Andric 76348bcb0991SDimitry Andric MachineInstr *LastMI = Selects.back(); 76358bcb0991SDimitry Andric bool CCKilled = 76368bcb0991SDimitry Andric (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 76370b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 76385ffd83dbSDimitry Andric MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 76395ffd83dbSDimitry Andric MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 76400b57cec5SDimitry Andric 76410b57cec5SDimitry Andric // Unless CC was killed in the last Select instruction, mark it as 76420b57cec5SDimitry Andric // live-in to both FalseMBB and JoinMBB. 76438bcb0991SDimitry Andric if (!CCKilled) { 76440b57cec5SDimitry Andric FalseMBB->addLiveIn(SystemZ::CC); 76450b57cec5SDimitry Andric JoinMBB->addLiveIn(SystemZ::CC); 76460b57cec5SDimitry Andric } 76470b57cec5SDimitry Andric 76480b57cec5SDimitry Andric // StartMBB: 76490b57cec5SDimitry Andric // BRC CCMask, JoinMBB 76500b57cec5SDimitry Andric // # fallthrough to FalseMBB 76510b57cec5SDimitry Andric MBB = StartMBB; 76528bcb0991SDimitry Andric BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 76530b57cec5SDimitry Andric .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 76540b57cec5SDimitry Andric MBB->addSuccessor(JoinMBB); 76550b57cec5SDimitry Andric MBB->addSuccessor(FalseMBB); 76560b57cec5SDimitry Andric 76570b57cec5SDimitry Andric // FalseMBB: 76580b57cec5SDimitry Andric // # fallthrough to JoinMBB 76590b57cec5SDimitry Andric MBB = FalseMBB; 76600b57cec5SDimitry Andric MBB->addSuccessor(JoinMBB); 76610b57cec5SDimitry Andric 76620b57cec5SDimitry Andric // JoinMBB: 76630b57cec5SDimitry Andric // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 76640b57cec5SDimitry Andric // ... 76650b57cec5SDimitry Andric MBB = JoinMBB; 76668bcb0991SDimitry Andric createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7667bdd1243dSDimitry Andric for (auto *SelMI : Selects) 76688bcb0991SDimitry Andric SelMI->eraseFromParent(); 76690b57cec5SDimitry Andric 76708bcb0991SDimitry Andric MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7671bdd1243dSDimitry Andric for (auto *DbgMI : DbgValues) 76728bcb0991SDimitry Andric MBB->splice(InsertPos, StartMBB, DbgMI); 76738bcb0991SDimitry Andric 76740b57cec5SDimitry Andric return JoinMBB; 76750b57cec5SDimitry Andric } 76760b57cec5SDimitry Andric 76770b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 76780b57cec5SDimitry Andric // StoreOpcode is the store to use and Invert says whether the store should 76790b57cec5SDimitry Andric // happen when the condition is false rather than true. If a STORE ON 76800b57cec5SDimitry Andric // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 76810b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 76820b57cec5SDimitry Andric MachineBasicBlock *MBB, 76830b57cec5SDimitry Andric unsigned StoreOpcode, 76840b57cec5SDimitry Andric unsigned STOCOpcode, 76850b57cec5SDimitry Andric bool Invert) const { 768681ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 76870b57cec5SDimitry Andric 76888bcb0991SDimitry Andric Register SrcReg = MI.getOperand(0).getReg(); 76890b57cec5SDimitry Andric MachineOperand Base = MI.getOperand(1); 76900b57cec5SDimitry Andric int64_t Disp = MI.getOperand(2).getImm(); 76918bcb0991SDimitry Andric Register IndexReg = MI.getOperand(3).getReg(); 76920b57cec5SDimitry Andric unsigned CCValid = MI.getOperand(4).getImm(); 76930b57cec5SDimitry Andric unsigned CCMask = MI.getOperand(5).getImm(); 76940b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 76950b57cec5SDimitry Andric 76960b57cec5SDimitry Andric StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 76970b57cec5SDimitry Andric 76980b57cec5SDimitry Andric // ISel pattern matching also adds a load memory operand of the same 76990b57cec5SDimitry Andric // address, so take special care to find the storing memory operand. 77000b57cec5SDimitry Andric MachineMemOperand *MMO = nullptr; 77010b57cec5SDimitry Andric for (auto *I : MI.memoperands()) 77020b57cec5SDimitry Andric if (I->isStore()) { 77030b57cec5SDimitry Andric MMO = I; 77040b57cec5SDimitry Andric break; 77050b57cec5SDimitry Andric } 77060b57cec5SDimitry Andric 7707e8d8bef9SDimitry Andric // Use STOCOpcode if possible. We could use different store patterns in 7708e8d8bef9SDimitry Andric // order to avoid matching the index register, but the performance trade-offs 7709e8d8bef9SDimitry Andric // might be more complicated in that case. 7710e8d8bef9SDimitry Andric if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7711e8d8bef9SDimitry Andric if (Invert) 7712e8d8bef9SDimitry Andric CCMask ^= CCValid; 7713e8d8bef9SDimitry Andric 77140b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 77150b57cec5SDimitry Andric .addReg(SrcReg) 77160b57cec5SDimitry Andric .add(Base) 77170b57cec5SDimitry Andric .addImm(Disp) 77180b57cec5SDimitry Andric .addImm(CCValid) 77190b57cec5SDimitry Andric .addImm(CCMask) 77200b57cec5SDimitry Andric .addMemOperand(MMO); 77210b57cec5SDimitry Andric 77220b57cec5SDimitry Andric MI.eraseFromParent(); 77230b57cec5SDimitry Andric return MBB; 77240b57cec5SDimitry Andric } 77250b57cec5SDimitry Andric 77260b57cec5SDimitry Andric // Get the condition needed to branch around the store. 77270b57cec5SDimitry Andric if (!Invert) 77280b57cec5SDimitry Andric CCMask ^= CCValid; 77290b57cec5SDimitry Andric 77300b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 77315ffd83dbSDimitry Andric MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 77325ffd83dbSDimitry Andric MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 77330b57cec5SDimitry Andric 77340b57cec5SDimitry Andric // Unless CC was killed in the CondStore instruction, mark it as 77350b57cec5SDimitry Andric // live-in to both FalseMBB and JoinMBB. 77360b57cec5SDimitry Andric if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 77370b57cec5SDimitry Andric FalseMBB->addLiveIn(SystemZ::CC); 77380b57cec5SDimitry Andric JoinMBB->addLiveIn(SystemZ::CC); 77390b57cec5SDimitry Andric } 77400b57cec5SDimitry Andric 77410b57cec5SDimitry Andric // StartMBB: 77420b57cec5SDimitry Andric // BRC CCMask, JoinMBB 77430b57cec5SDimitry Andric // # fallthrough to FalseMBB 77440b57cec5SDimitry Andric MBB = StartMBB; 77450b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 77460b57cec5SDimitry Andric .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 77470b57cec5SDimitry Andric MBB->addSuccessor(JoinMBB); 77480b57cec5SDimitry Andric MBB->addSuccessor(FalseMBB); 77490b57cec5SDimitry Andric 77500b57cec5SDimitry Andric // FalseMBB: 77510b57cec5SDimitry Andric // store %SrcReg, %Disp(%Index,%Base) 77520b57cec5SDimitry Andric // # fallthrough to JoinMBB 77530b57cec5SDimitry Andric MBB = FalseMBB; 77540b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(StoreOpcode)) 77550b57cec5SDimitry Andric .addReg(SrcReg) 77560b57cec5SDimitry Andric .add(Base) 77570b57cec5SDimitry Andric .addImm(Disp) 7758e8d8bef9SDimitry Andric .addReg(IndexReg) 7759e8d8bef9SDimitry Andric .addMemOperand(MMO); 77600b57cec5SDimitry Andric MBB->addSuccessor(JoinMBB); 77610b57cec5SDimitry Andric 77620b57cec5SDimitry Andric MI.eraseFromParent(); 77630b57cec5SDimitry Andric return JoinMBB; 77640b57cec5SDimitry Andric } 77650b57cec5SDimitry Andric 77660b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 77670b57cec5SDimitry Andric // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 77680b57cec5SDimitry Andric // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 77690b57cec5SDimitry Andric // BitSize is the width of the field in bits, or 0 if this is a partword 77700b57cec5SDimitry Andric // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 77710b57cec5SDimitry Andric // is one of the operands. Invert says whether the field should be 77720b57cec5SDimitry Andric // inverted after performing BinOpcode (e.g. for NAND). 77730b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 77740b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 77750b57cec5SDimitry Andric unsigned BitSize, bool Invert) const { 77760b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 777781ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 77780b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 77790b57cec5SDimitry Andric bool IsSubWord = (BitSize < 32); 77800b57cec5SDimitry Andric 77810b57cec5SDimitry Andric // Extract the operands. Base can be a register or a frame index. 77820b57cec5SDimitry Andric // Src2 can be a register or immediate. 77838bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 77840b57cec5SDimitry Andric MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 77850b57cec5SDimitry Andric int64_t Disp = MI.getOperand(2).getImm(); 77860b57cec5SDimitry Andric MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 77870b57cec5SDimitry Andric Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 77880b57cec5SDimitry Andric Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 77890b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 77900b57cec5SDimitry Andric if (IsSubWord) 77910b57cec5SDimitry Andric BitSize = MI.getOperand(6).getImm(); 77920b57cec5SDimitry Andric 77930b57cec5SDimitry Andric // Subword operations use 32-bit registers. 77940b57cec5SDimitry Andric const TargetRegisterClass *RC = (BitSize <= 32 ? 77950b57cec5SDimitry Andric &SystemZ::GR32BitRegClass : 77960b57cec5SDimitry Andric &SystemZ::GR64BitRegClass); 77970b57cec5SDimitry Andric unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 77980b57cec5SDimitry Andric unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 77990b57cec5SDimitry Andric 78000b57cec5SDimitry Andric // Get the right opcodes for the displacement. 78010b57cec5SDimitry Andric LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 78020b57cec5SDimitry Andric CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 78030b57cec5SDimitry Andric assert(LOpcode && CSOpcode && "Displacement out of range"); 78040b57cec5SDimitry Andric 78050b57cec5SDimitry Andric // Create virtual registers for temporary results. 78060b57cec5SDimitry Andric Register OrigVal = MRI.createVirtualRegister(RC); 78070b57cec5SDimitry Andric Register OldVal = MRI.createVirtualRegister(RC); 78080b57cec5SDimitry Andric Register NewVal = (BinOpcode || IsSubWord ? 78090b57cec5SDimitry Andric MRI.createVirtualRegister(RC) : Src2.getReg()); 78100b57cec5SDimitry Andric Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 78110b57cec5SDimitry Andric Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 78120b57cec5SDimitry Andric 78130b57cec5SDimitry Andric // Insert a basic block for the main loop. 78140b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 78155ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 78165ffd83dbSDimitry Andric MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 78170b57cec5SDimitry Andric 78180b57cec5SDimitry Andric // StartMBB: 78190b57cec5SDimitry Andric // ... 78200b57cec5SDimitry Andric // %OrigVal = L Disp(%Base) 7821fe6060f1SDimitry Andric // # fall through to LoopMBB 78220b57cec5SDimitry Andric MBB = StartMBB; 78230b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 78240b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 78250b57cec5SDimitry Andric 78260b57cec5SDimitry Andric // LoopMBB: 78270b57cec5SDimitry Andric // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 78280b57cec5SDimitry Andric // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 78290b57cec5SDimitry Andric // %RotatedNewVal = OP %RotatedOldVal, %Src2 78300b57cec5SDimitry Andric // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 78310b57cec5SDimitry Andric // %Dest = CS %OldVal, %NewVal, Disp(%Base) 78320b57cec5SDimitry Andric // JNE LoopMBB 7833fe6060f1SDimitry Andric // # fall through to DoneMBB 78340b57cec5SDimitry Andric MBB = LoopMBB; 78350b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 78360b57cec5SDimitry Andric .addReg(OrigVal).addMBB(StartMBB) 78370b57cec5SDimitry Andric .addReg(Dest).addMBB(LoopMBB); 78380b57cec5SDimitry Andric if (IsSubWord) 78390b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 78400b57cec5SDimitry Andric .addReg(OldVal).addReg(BitShift).addImm(0); 78410b57cec5SDimitry Andric if (Invert) { 78420b57cec5SDimitry Andric // Perform the operation normally and then invert every bit of the field. 78438bcb0991SDimitry Andric Register Tmp = MRI.createVirtualRegister(RC); 78440b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 78450b57cec5SDimitry Andric if (BitSize <= 32) 78460b57cec5SDimitry Andric // XILF with the upper BitSize bits set. 78470b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 78480b57cec5SDimitry Andric .addReg(Tmp).addImm(-1U << (32 - BitSize)); 78490b57cec5SDimitry Andric else { 78500b57cec5SDimitry Andric // Use LCGR and add -1 to the result, which is more compact than 78510b57cec5SDimitry Andric // an XILF, XILH pair. 78528bcb0991SDimitry Andric Register Tmp2 = MRI.createVirtualRegister(RC); 78530b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 78540b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 78550b57cec5SDimitry Andric .addReg(Tmp2).addImm(-1); 78560b57cec5SDimitry Andric } 78570b57cec5SDimitry Andric } else if (BinOpcode) 78580b57cec5SDimitry Andric // A simply binary operation. 78590b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 78600b57cec5SDimitry Andric .addReg(RotatedOldVal) 78610b57cec5SDimitry Andric .add(Src2); 78620b57cec5SDimitry Andric else if (IsSubWord) 78630b57cec5SDimitry Andric // Use RISBG to rotate Src2 into position and use it to replace the 78640b57cec5SDimitry Andric // field in RotatedOldVal. 78650b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 78660b57cec5SDimitry Andric .addReg(RotatedOldVal).addReg(Src2.getReg()) 78670b57cec5SDimitry Andric .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 78680b57cec5SDimitry Andric if (IsSubWord) 78690b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 78700b57cec5SDimitry Andric .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 78710b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 78720b57cec5SDimitry Andric .addReg(OldVal) 78730b57cec5SDimitry Andric .addReg(NewVal) 78740b57cec5SDimitry Andric .add(Base) 78750b57cec5SDimitry Andric .addImm(Disp); 78760b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 78770b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 78780b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 78790b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 78800b57cec5SDimitry Andric 78810b57cec5SDimitry Andric MI.eraseFromParent(); 78820b57cec5SDimitry Andric return DoneMBB; 78830b57cec5SDimitry Andric } 78840b57cec5SDimitry Andric 78850b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo 78860b57cec5SDimitry Andric // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 78870b57cec5SDimitry Andric // instruction that should be used to compare the current field with the 78880b57cec5SDimitry Andric // minimum or maximum value. KeepOldMask is the BRC condition-code mask 78890b57cec5SDimitry Andric // for when the current field should be kept. BitSize is the width of 78900b57cec5SDimitry Andric // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 78910b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 78920b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 78930b57cec5SDimitry Andric unsigned KeepOldMask, unsigned BitSize) const { 78940b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 789581ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 78960b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 78970b57cec5SDimitry Andric bool IsSubWord = (BitSize < 32); 78980b57cec5SDimitry Andric 78990b57cec5SDimitry Andric // Extract the operands. Base can be a register or a frame index. 79008bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 79010b57cec5SDimitry Andric MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 79020b57cec5SDimitry Andric int64_t Disp = MI.getOperand(2).getImm(); 79030b57cec5SDimitry Andric Register Src2 = MI.getOperand(3).getReg(); 79040b57cec5SDimitry Andric Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 79050b57cec5SDimitry Andric Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 79060b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 79070b57cec5SDimitry Andric if (IsSubWord) 79080b57cec5SDimitry Andric BitSize = MI.getOperand(6).getImm(); 79090b57cec5SDimitry Andric 79100b57cec5SDimitry Andric // Subword operations use 32-bit registers. 79110b57cec5SDimitry Andric const TargetRegisterClass *RC = (BitSize <= 32 ? 79120b57cec5SDimitry Andric &SystemZ::GR32BitRegClass : 79130b57cec5SDimitry Andric &SystemZ::GR64BitRegClass); 79140b57cec5SDimitry Andric unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 79150b57cec5SDimitry Andric unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 79160b57cec5SDimitry Andric 79170b57cec5SDimitry Andric // Get the right opcodes for the displacement. 79180b57cec5SDimitry Andric LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 79190b57cec5SDimitry Andric CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 79200b57cec5SDimitry Andric assert(LOpcode && CSOpcode && "Displacement out of range"); 79210b57cec5SDimitry Andric 79220b57cec5SDimitry Andric // Create virtual registers for temporary results. 79230b57cec5SDimitry Andric Register OrigVal = MRI.createVirtualRegister(RC); 79240b57cec5SDimitry Andric Register OldVal = MRI.createVirtualRegister(RC); 79250b57cec5SDimitry Andric Register NewVal = MRI.createVirtualRegister(RC); 79260b57cec5SDimitry Andric Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 79270b57cec5SDimitry Andric Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 79280b57cec5SDimitry Andric Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 79290b57cec5SDimitry Andric 79300b57cec5SDimitry Andric // Insert 3 basic blocks for the loop. 79310b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 79325ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 79335ffd83dbSDimitry Andric MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 79345ffd83dbSDimitry Andric MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 79355ffd83dbSDimitry Andric MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 79360b57cec5SDimitry Andric 79370b57cec5SDimitry Andric // StartMBB: 79380b57cec5SDimitry Andric // ... 79390b57cec5SDimitry Andric // %OrigVal = L Disp(%Base) 7940fe6060f1SDimitry Andric // # fall through to LoopMBB 79410b57cec5SDimitry Andric MBB = StartMBB; 79420b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 79430b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 79440b57cec5SDimitry Andric 79450b57cec5SDimitry Andric // LoopMBB: 79460b57cec5SDimitry Andric // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 79470b57cec5SDimitry Andric // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 79480b57cec5SDimitry Andric // CompareOpcode %RotatedOldVal, %Src2 79490b57cec5SDimitry Andric // BRC KeepOldMask, UpdateMBB 79500b57cec5SDimitry Andric MBB = LoopMBB; 79510b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 79520b57cec5SDimitry Andric .addReg(OrigVal).addMBB(StartMBB) 79530b57cec5SDimitry Andric .addReg(Dest).addMBB(UpdateMBB); 79540b57cec5SDimitry Andric if (IsSubWord) 79550b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 79560b57cec5SDimitry Andric .addReg(OldVal).addReg(BitShift).addImm(0); 79570b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(CompareOpcode)) 79580b57cec5SDimitry Andric .addReg(RotatedOldVal).addReg(Src2); 79590b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 79600b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 79610b57cec5SDimitry Andric MBB->addSuccessor(UpdateMBB); 79620b57cec5SDimitry Andric MBB->addSuccessor(UseAltMBB); 79630b57cec5SDimitry Andric 79640b57cec5SDimitry Andric // UseAltMBB: 79650b57cec5SDimitry Andric // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7966fe6060f1SDimitry Andric // # fall through to UpdateMBB 79670b57cec5SDimitry Andric MBB = UseAltMBB; 79680b57cec5SDimitry Andric if (IsSubWord) 79690b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 79700b57cec5SDimitry Andric .addReg(RotatedOldVal).addReg(Src2) 79710b57cec5SDimitry Andric .addImm(32).addImm(31 + BitSize).addImm(0); 79720b57cec5SDimitry Andric MBB->addSuccessor(UpdateMBB); 79730b57cec5SDimitry Andric 79740b57cec5SDimitry Andric // UpdateMBB: 79750b57cec5SDimitry Andric // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 79760b57cec5SDimitry Andric // [ %RotatedAltVal, UseAltMBB ] 79770b57cec5SDimitry Andric // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 79780b57cec5SDimitry Andric // %Dest = CS %OldVal, %NewVal, Disp(%Base) 79790b57cec5SDimitry Andric // JNE LoopMBB 7980fe6060f1SDimitry Andric // # fall through to DoneMBB 79810b57cec5SDimitry Andric MBB = UpdateMBB; 79820b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 79830b57cec5SDimitry Andric .addReg(RotatedOldVal).addMBB(LoopMBB) 79840b57cec5SDimitry Andric .addReg(RotatedAltVal).addMBB(UseAltMBB); 79850b57cec5SDimitry Andric if (IsSubWord) 79860b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 79870b57cec5SDimitry Andric .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 79880b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 79890b57cec5SDimitry Andric .addReg(OldVal) 79900b57cec5SDimitry Andric .addReg(NewVal) 79910b57cec5SDimitry Andric .add(Base) 79920b57cec5SDimitry Andric .addImm(Disp); 79930b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 79940b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 79950b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 79960b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 79970b57cec5SDimitry Andric 79980b57cec5SDimitry Andric MI.eraseFromParent(); 79990b57cec5SDimitry Andric return DoneMBB; 80000b57cec5SDimitry Andric } 80010b57cec5SDimitry Andric 80020b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 80030b57cec5SDimitry Andric // instruction MI. 80040b57cec5SDimitry Andric MachineBasicBlock * 80050b57cec5SDimitry Andric SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 80060b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 80070b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 800881ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 80090b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 80100b57cec5SDimitry Andric 80110b57cec5SDimitry Andric // Extract the operands. Base can be a register or a frame index. 80128bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 80130b57cec5SDimitry Andric MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 80140b57cec5SDimitry Andric int64_t Disp = MI.getOperand(2).getImm(); 8015fe6060f1SDimitry Andric Register CmpVal = MI.getOperand(3).getReg(); 80168bcb0991SDimitry Andric Register OrigSwapVal = MI.getOperand(4).getReg(); 80178bcb0991SDimitry Andric Register BitShift = MI.getOperand(5).getReg(); 80188bcb0991SDimitry Andric Register NegBitShift = MI.getOperand(6).getReg(); 80190b57cec5SDimitry Andric int64_t BitSize = MI.getOperand(7).getImm(); 80200b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 80210b57cec5SDimitry Andric 80220b57cec5SDimitry Andric const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 80230b57cec5SDimitry Andric 8024fe6060f1SDimitry Andric // Get the right opcodes for the displacement and zero-extension. 80250b57cec5SDimitry Andric unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 80260b57cec5SDimitry Andric unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 8027fe6060f1SDimitry Andric unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 80280b57cec5SDimitry Andric assert(LOpcode && CSOpcode && "Displacement out of range"); 80290b57cec5SDimitry Andric 80300b57cec5SDimitry Andric // Create virtual registers for temporary results. 80318bcb0991SDimitry Andric Register OrigOldVal = MRI.createVirtualRegister(RC); 80328bcb0991SDimitry Andric Register OldVal = MRI.createVirtualRegister(RC); 80338bcb0991SDimitry Andric Register SwapVal = MRI.createVirtualRegister(RC); 80348bcb0991SDimitry Andric Register StoreVal = MRI.createVirtualRegister(RC); 8035fe6060f1SDimitry Andric Register OldValRot = MRI.createVirtualRegister(RC); 80368bcb0991SDimitry Andric Register RetryOldVal = MRI.createVirtualRegister(RC); 80378bcb0991SDimitry Andric Register RetrySwapVal = MRI.createVirtualRegister(RC); 80380b57cec5SDimitry Andric 80390b57cec5SDimitry Andric // Insert 2 basic blocks for the loop. 80400b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 80415ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 80425ffd83dbSDimitry Andric MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 80435ffd83dbSDimitry Andric MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 80440b57cec5SDimitry Andric 80450b57cec5SDimitry Andric // StartMBB: 80460b57cec5SDimitry Andric // ... 80470b57cec5SDimitry Andric // %OrigOldVal = L Disp(%Base) 8048fe6060f1SDimitry Andric // # fall through to LoopMBB 80490b57cec5SDimitry Andric MBB = StartMBB; 80500b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 80510b57cec5SDimitry Andric .add(Base) 80520b57cec5SDimitry Andric .addImm(Disp) 80530b57cec5SDimitry Andric .addReg(0); 80540b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 80550b57cec5SDimitry Andric 80560b57cec5SDimitry Andric // LoopMBB: 80570b57cec5SDimitry Andric // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 80580b57cec5SDimitry Andric // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 8059fe6060f1SDimitry Andric // %OldValRot = RLL %OldVal, BitSize(%BitShift) 80600b57cec5SDimitry Andric // ^^ The low BitSize bits contain the field 80610b57cec5SDimitry Andric // of interest. 8062fe6060f1SDimitry Andric // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 80630b57cec5SDimitry Andric // ^^ Replace the upper 32-BitSize bits of the 8064fe6060f1SDimitry Andric // swap value with those that we loaded and rotated. 8065fe6060f1SDimitry Andric // %Dest = LL[CH] %OldValRot 8066fe6060f1SDimitry Andric // CR %Dest, %CmpVal 80670b57cec5SDimitry Andric // JNE DoneMBB 80680b57cec5SDimitry Andric // # Fall through to SetMBB 80690b57cec5SDimitry Andric MBB = LoopMBB; 80700b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 80710b57cec5SDimitry Andric .addReg(OrigOldVal).addMBB(StartMBB) 80720b57cec5SDimitry Andric .addReg(RetryOldVal).addMBB(SetMBB); 80730b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 80740b57cec5SDimitry Andric .addReg(OrigSwapVal).addMBB(StartMBB) 80750b57cec5SDimitry Andric .addReg(RetrySwapVal).addMBB(SetMBB); 8076fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 80770b57cec5SDimitry Andric .addReg(OldVal).addReg(BitShift).addImm(BitSize); 8078fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 8079fe6060f1SDimitry Andric .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 8080fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 8081fe6060f1SDimitry Andric .addReg(OldValRot); 80820b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CR)) 8083fe6060f1SDimitry Andric .addReg(Dest).addReg(CmpVal); 80840b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 80850b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP) 80860b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 80870b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 80880b57cec5SDimitry Andric MBB->addSuccessor(SetMBB); 80890b57cec5SDimitry Andric 80900b57cec5SDimitry Andric // SetMBB: 80910b57cec5SDimitry Andric // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 80920b57cec5SDimitry Andric // ^^ Rotate the new field to its proper position. 8093fe6060f1SDimitry Andric // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 80940b57cec5SDimitry Andric // JNE LoopMBB 8095fe6060f1SDimitry Andric // # fall through to ExitMBB 80960b57cec5SDimitry Andric MBB = SetMBB; 80970b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 80980b57cec5SDimitry Andric .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 80990b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 81000b57cec5SDimitry Andric .addReg(OldVal) 81010b57cec5SDimitry Andric .addReg(StoreVal) 81020b57cec5SDimitry Andric .add(Base) 81030b57cec5SDimitry Andric .addImm(Disp); 81040b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 81050b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 81060b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 81070b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 81080b57cec5SDimitry Andric 81090b57cec5SDimitry Andric // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 81100b57cec5SDimitry Andric // to the block after the loop. At this point, CC may have been defined 81110b57cec5SDimitry Andric // either by the CR in LoopMBB or by the CS in SetMBB. 81120b57cec5SDimitry Andric if (!MI.registerDefIsDead(SystemZ::CC)) 81130b57cec5SDimitry Andric DoneMBB->addLiveIn(SystemZ::CC); 81140b57cec5SDimitry Andric 81150b57cec5SDimitry Andric MI.eraseFromParent(); 81160b57cec5SDimitry Andric return DoneMBB; 81170b57cec5SDimitry Andric } 81180b57cec5SDimitry Andric 81190b57cec5SDimitry Andric // Emit a move from two GR64s to a GR128. 81200b57cec5SDimitry Andric MachineBasicBlock * 81210b57cec5SDimitry Andric SystemZTargetLowering::emitPair128(MachineInstr &MI, 81220b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 81230b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 812481ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 81250b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 81260b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 81270b57cec5SDimitry Andric 81288bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 81298bcb0991SDimitry Andric Register Hi = MI.getOperand(1).getReg(); 81308bcb0991SDimitry Andric Register Lo = MI.getOperand(2).getReg(); 81318bcb0991SDimitry Andric Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 81328bcb0991SDimitry Andric Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 81330b57cec5SDimitry Andric 81340b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 81350b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 81360b57cec5SDimitry Andric .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 81370b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 81380b57cec5SDimitry Andric .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 81390b57cec5SDimitry Andric 81400b57cec5SDimitry Andric MI.eraseFromParent(); 81410b57cec5SDimitry Andric return MBB; 81420b57cec5SDimitry Andric } 81430b57cec5SDimitry Andric 81440b57cec5SDimitry Andric // Emit an extension from a GR64 to a GR128. ClearEven is true 81450b57cec5SDimitry Andric // if the high register of the GR128 value must be cleared or false if 81460b57cec5SDimitry Andric // it's "don't care". 81470b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 81480b57cec5SDimitry Andric MachineBasicBlock *MBB, 81490b57cec5SDimitry Andric bool ClearEven) const { 81500b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 815181ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 81520b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 81530b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 81540b57cec5SDimitry Andric 81558bcb0991SDimitry Andric Register Dest = MI.getOperand(0).getReg(); 81568bcb0991SDimitry Andric Register Src = MI.getOperand(1).getReg(); 81578bcb0991SDimitry Andric Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 81580b57cec5SDimitry Andric 81590b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 81600b57cec5SDimitry Andric if (ClearEven) { 81618bcb0991SDimitry Andric Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 81628bcb0991SDimitry Andric Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 81630b57cec5SDimitry Andric 81640b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 81650b57cec5SDimitry Andric .addImm(0); 81660b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 81670b57cec5SDimitry Andric .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 81680b57cec5SDimitry Andric In128 = NewIn128; 81690b57cec5SDimitry Andric } 81700b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 81710b57cec5SDimitry Andric .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 81720b57cec5SDimitry Andric 81730b57cec5SDimitry Andric MI.eraseFromParent(); 81740b57cec5SDimitry Andric return MBB; 81750b57cec5SDimitry Andric } 81760b57cec5SDimitry Andric 81770eae32dcSDimitry Andric MachineBasicBlock * 81780eae32dcSDimitry Andric SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 81790eae32dcSDimitry Andric MachineBasicBlock *MBB, 81800eae32dcSDimitry Andric unsigned Opcode, bool IsMemset) const { 81810b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 818281ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 81830b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 81840b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 81850b57cec5SDimitry Andric 81860b57cec5SDimitry Andric MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 81870b57cec5SDimitry Andric uint64_t DestDisp = MI.getOperand(1).getImm(); 81880eae32dcSDimitry Andric MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 81890eae32dcSDimitry Andric uint64_t SrcDisp; 81900eae32dcSDimitry Andric 81910eae32dcSDimitry Andric // Fold the displacement Disp if it is out of range. 81920eae32dcSDimitry Andric auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 81930eae32dcSDimitry Andric if (!isUInt<12>(Disp)) { 81940eae32dcSDimitry Andric Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 81950eae32dcSDimitry Andric unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 81960eae32dcSDimitry Andric BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 81970eae32dcSDimitry Andric .add(Base).addImm(Disp).addReg(0); 81980eae32dcSDimitry Andric Base = MachineOperand::CreateReg(Reg, false); 81990eae32dcSDimitry Andric Disp = 0; 82000eae32dcSDimitry Andric } 82010eae32dcSDimitry Andric }; 82020eae32dcSDimitry Andric 82030eae32dcSDimitry Andric if (!IsMemset) { 82040eae32dcSDimitry Andric SrcBase = earlyUseOperand(MI.getOperand(2)); 82050eae32dcSDimitry Andric SrcDisp = MI.getOperand(3).getImm(); 82060eae32dcSDimitry Andric } else { 82070eae32dcSDimitry Andric SrcBase = DestBase; 82080eae32dcSDimitry Andric SrcDisp = DestDisp++; 82090eae32dcSDimitry Andric foldDisplIfNeeded(DestBase, DestDisp); 82100eae32dcSDimitry Andric } 82110eae32dcSDimitry Andric 82120eae32dcSDimitry Andric MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8213349cc55cSDimitry Andric bool IsImmForm = LengthMO.isImm(); 8214349cc55cSDimitry Andric bool IsRegForm = !IsImmForm; 8215349cc55cSDimitry Andric 82160eae32dcSDimitry Andric // Build and insert one Opcode of Length, with special treatment for memset. 82170eae32dcSDimitry Andric auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 82180eae32dcSDimitry Andric MachineBasicBlock::iterator InsPos, 82190eae32dcSDimitry Andric MachineOperand DBase, uint64_t DDisp, 82200eae32dcSDimitry Andric MachineOperand SBase, uint64_t SDisp, 82210eae32dcSDimitry Andric unsigned Length) -> void { 82220eae32dcSDimitry Andric assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 82230eae32dcSDimitry Andric if (IsMemset) { 82240eae32dcSDimitry Andric MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 82250eae32dcSDimitry Andric if (ByteMO.isImm()) 82260eae32dcSDimitry Andric BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 82270eae32dcSDimitry Andric .add(SBase).addImm(SDisp).add(ByteMO); 82280eae32dcSDimitry Andric else 82290eae32dcSDimitry Andric BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 82300eae32dcSDimitry Andric .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 82310eae32dcSDimitry Andric if (--Length == 0) 82320eae32dcSDimitry Andric return; 82330eae32dcSDimitry Andric } 82340eae32dcSDimitry Andric BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 82350eae32dcSDimitry Andric .add(DBase).addImm(DDisp).addImm(Length) 82360eae32dcSDimitry Andric .add(SBase).addImm(SDisp) 82370eae32dcSDimitry Andric .setMemRefs(MI.memoperands()); 82380eae32dcSDimitry Andric }; 82390eae32dcSDimitry Andric 8240349cc55cSDimitry Andric bool NeedsLoop = false; 8241349cc55cSDimitry Andric uint64_t ImmLength = 0; 82420eae32dcSDimitry Andric Register LenAdjReg = SystemZ::NoRegister; 8243349cc55cSDimitry Andric if (IsImmForm) { 8244349cc55cSDimitry Andric ImmLength = LengthMO.getImm(); 82450eae32dcSDimitry Andric ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8246349cc55cSDimitry Andric if (ImmLength == 0) { 8247349cc55cSDimitry Andric MI.eraseFromParent(); 8248349cc55cSDimitry Andric return MBB; 8249349cc55cSDimitry Andric } 8250349cc55cSDimitry Andric if (Opcode == SystemZ::CLC) { 8251349cc55cSDimitry Andric if (ImmLength > 3 * 256) 8252349cc55cSDimitry Andric // A two-CLC sequence is a clear win over a loop, not least because 8253349cc55cSDimitry Andric // it needs only one branch. A three-CLC sequence needs the same 8254349cc55cSDimitry Andric // number of branches as a loop (i.e. 2), but is shorter. That 8255349cc55cSDimitry Andric // brings us to lengths greater than 768 bytes. It seems relatively 8256349cc55cSDimitry Andric // likely that a difference will be found within the first 768 bytes, 8257349cc55cSDimitry Andric // so we just optimize for the smallest number of branch 8258349cc55cSDimitry Andric // instructions, in order to avoid polluting the prediction buffer 8259349cc55cSDimitry Andric // too much. 8260349cc55cSDimitry Andric NeedsLoop = true; 8261349cc55cSDimitry Andric } else if (ImmLength > 6 * 256) 8262349cc55cSDimitry Andric // The heuristic we use is to prefer loops for anything that would 8263349cc55cSDimitry Andric // require 7 or more MVCs. With these kinds of sizes there isn't much 8264349cc55cSDimitry Andric // to choose between straight-line code and looping code, since the 8265349cc55cSDimitry Andric // time will be dominated by the MVCs themselves. 8266349cc55cSDimitry Andric NeedsLoop = true; 8267349cc55cSDimitry Andric } else { 8268349cc55cSDimitry Andric NeedsLoop = true; 82690eae32dcSDimitry Andric LenAdjReg = LengthMO.getReg(); 8270349cc55cSDimitry Andric } 82710b57cec5SDimitry Andric 82720b57cec5SDimitry Andric // When generating more than one CLC, all but the last will need to 82730b57cec5SDimitry Andric // branch to the end when a difference is found. 8274349cc55cSDimitry Andric MachineBasicBlock *EndMBB = 8275349cc55cSDimitry Andric (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8276fe6060f1SDimitry Andric ? SystemZ::splitBlockAfter(MI, MBB) 8277fe6060f1SDimitry Andric : nullptr); 82780b57cec5SDimitry Andric 8279349cc55cSDimitry Andric if (NeedsLoop) { 8280349cc55cSDimitry Andric Register StartCountReg = 8281349cc55cSDimitry Andric MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8282349cc55cSDimitry Andric if (IsImmForm) { 8283349cc55cSDimitry Andric TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8284349cc55cSDimitry Andric ImmLength &= 255; 8285349cc55cSDimitry Andric } else { 8286349cc55cSDimitry Andric BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 82870eae32dcSDimitry Andric .addReg(LenAdjReg) 8288349cc55cSDimitry Andric .addReg(0) 8289349cc55cSDimitry Andric .addImm(8); 8290349cc55cSDimitry Andric } 82910b57cec5SDimitry Andric 82920eae32dcSDimitry Andric bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8293fe6060f1SDimitry Andric auto loadZeroAddress = [&]() -> MachineOperand { 8294fe6060f1SDimitry Andric Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8295fe6060f1SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8296fe6060f1SDimitry Andric return MachineOperand::CreateReg(Reg, false); 8297fe6060f1SDimitry Andric }; 8298fe6060f1SDimitry Andric if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8299fe6060f1SDimitry Andric DestBase = loadZeroAddress(); 8300fe6060f1SDimitry Andric if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8301fe6060f1SDimitry Andric SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8302fe6060f1SDimitry Andric 8303fe6060f1SDimitry Andric MachineBasicBlock *StartMBB = nullptr; 8304fe6060f1SDimitry Andric MachineBasicBlock *LoopMBB = nullptr; 8305fe6060f1SDimitry Andric MachineBasicBlock *NextMBB = nullptr; 8306fe6060f1SDimitry Andric MachineBasicBlock *DoneMBB = nullptr; 8307fe6060f1SDimitry Andric MachineBasicBlock *AllDoneMBB = nullptr; 8308fe6060f1SDimitry Andric 83090b57cec5SDimitry Andric Register StartSrcReg = forceReg(MI, SrcBase, TII); 8310fe6060f1SDimitry Andric Register StartDestReg = 8311fe6060f1SDimitry Andric (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 83120b57cec5SDimitry Andric 83130b57cec5SDimitry Andric const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 83140b57cec5SDimitry Andric Register ThisSrcReg = MRI.createVirtualRegister(RC); 8315fe6060f1SDimitry Andric Register ThisDestReg = 8316fe6060f1SDimitry Andric (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 83170b57cec5SDimitry Andric Register NextSrcReg = MRI.createVirtualRegister(RC); 8318fe6060f1SDimitry Andric Register NextDestReg = 8319fe6060f1SDimitry Andric (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 83200b57cec5SDimitry Andric RC = &SystemZ::GR64BitRegClass; 83210b57cec5SDimitry Andric Register ThisCountReg = MRI.createVirtualRegister(RC); 83220b57cec5SDimitry Andric Register NextCountReg = MRI.createVirtualRegister(RC); 83230b57cec5SDimitry Andric 8324349cc55cSDimitry Andric if (IsRegForm) { 8325fe6060f1SDimitry Andric AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8326fe6060f1SDimitry Andric StartMBB = SystemZ::emitBlockAfter(MBB); 8327fe6060f1SDimitry Andric LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8328349cc55cSDimitry Andric NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8329349cc55cSDimitry Andric DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8330fe6060f1SDimitry Andric 8331fe6060f1SDimitry Andric // MBB: 83320eae32dcSDimitry Andric // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8333fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 83340eae32dcSDimitry Andric .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8335fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8336fe6060f1SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8337fe6060f1SDimitry Andric .addMBB(AllDoneMBB); 8338fe6060f1SDimitry Andric MBB->addSuccessor(AllDoneMBB); 83390eae32dcSDimitry Andric if (!IsMemset) 8340fe6060f1SDimitry Andric MBB->addSuccessor(StartMBB); 83410eae32dcSDimitry Andric else { 83420eae32dcSDimitry Andric // MemsetOneCheckMBB: 83430eae32dcSDimitry Andric // # Jump to MemsetOneMBB for a memset of length 1, or 83440eae32dcSDimitry Andric // # fall thru to StartMBB. 83450eae32dcSDimitry Andric MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 83460eae32dcSDimitry Andric MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 83470eae32dcSDimitry Andric MBB->addSuccessor(MemsetOneCheckMBB); 83480eae32dcSDimitry Andric MBB = MemsetOneCheckMBB; 83490eae32dcSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 83500eae32dcSDimitry Andric .addReg(LenAdjReg).addImm(-1); 83510eae32dcSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 83520eae32dcSDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 83530eae32dcSDimitry Andric .addMBB(MemsetOneMBB); 83540eae32dcSDimitry Andric MBB->addSuccessor(MemsetOneMBB, {10, 100}); 83550eae32dcSDimitry Andric MBB->addSuccessor(StartMBB, {90, 100}); 83560eae32dcSDimitry Andric 83570eae32dcSDimitry Andric // MemsetOneMBB: 83580eae32dcSDimitry Andric // # Jump back to AllDoneMBB after a single MVI or STC. 83590eae32dcSDimitry Andric MBB = MemsetOneMBB; 83600eae32dcSDimitry Andric insertMemMemOp(MBB, MBB->end(), 83610eae32dcSDimitry Andric MachineOperand::CreateReg(StartDestReg, false), DestDisp, 83620eae32dcSDimitry Andric MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 83630eae32dcSDimitry Andric 1); 83640eae32dcSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 83650eae32dcSDimitry Andric MBB->addSuccessor(AllDoneMBB); 83660eae32dcSDimitry Andric } 83670b57cec5SDimitry Andric 83680b57cec5SDimitry Andric // StartMBB: 8369fe6060f1SDimitry Andric // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8370fe6060f1SDimitry Andric MBB = StartMBB; 8371fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8372fe6060f1SDimitry Andric .addReg(StartCountReg).addImm(0); 8373fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8374fe6060f1SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8375fe6060f1SDimitry Andric .addMBB(DoneMBB); 8376fe6060f1SDimitry Andric MBB->addSuccessor(DoneMBB); 83770b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 8378fe6060f1SDimitry Andric } 8379fe6060f1SDimitry Andric else { 8380fe6060f1SDimitry Andric StartMBB = MBB; 8381fe6060f1SDimitry Andric DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8382fe6060f1SDimitry Andric LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8383fe6060f1SDimitry Andric NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8384fe6060f1SDimitry Andric 8385fe6060f1SDimitry Andric // StartMBB: 8386fe6060f1SDimitry Andric // # fall through to LoopMBB 8387fe6060f1SDimitry Andric MBB->addSuccessor(LoopMBB); 8388fe6060f1SDimitry Andric 8389fe6060f1SDimitry Andric DestBase = MachineOperand::CreateReg(NextDestReg, false); 8390fe6060f1SDimitry Andric SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8391fe6060f1SDimitry Andric if (EndMBB && !ImmLength) 8392fe6060f1SDimitry Andric // If the loop handled the whole CLC range, DoneMBB will be empty with 8393fe6060f1SDimitry Andric // CC live-through into EndMBB, so add it as live-in. 8394fe6060f1SDimitry Andric DoneMBB->addLiveIn(SystemZ::CC); 8395fe6060f1SDimitry Andric } 83960b57cec5SDimitry Andric 83970b57cec5SDimitry Andric // LoopMBB: 83980b57cec5SDimitry Andric // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 83990b57cec5SDimitry Andric // [ %NextDestReg, NextMBB ] 84000b57cec5SDimitry Andric // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 84010b57cec5SDimitry Andric // [ %NextSrcReg, NextMBB ] 84020b57cec5SDimitry Andric // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 84030b57cec5SDimitry Andric // [ %NextCountReg, NextMBB ] 84040b57cec5SDimitry Andric // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 84050b57cec5SDimitry Andric // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 84060b57cec5SDimitry Andric // ( JLH EndMBB ) 84070b57cec5SDimitry Andric // 84080b57cec5SDimitry Andric // The prefetch is used only for MVC. The JLH is used only for CLC. 84090b57cec5SDimitry Andric MBB = LoopMBB; 84100b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 84110b57cec5SDimitry Andric .addReg(StartDestReg).addMBB(StartMBB) 84120b57cec5SDimitry Andric .addReg(NextDestReg).addMBB(NextMBB); 84130b57cec5SDimitry Andric if (!HaveSingleBase) 84140b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 84150b57cec5SDimitry Andric .addReg(StartSrcReg).addMBB(StartMBB) 84160b57cec5SDimitry Andric .addReg(NextSrcReg).addMBB(NextMBB); 84170b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 84180b57cec5SDimitry Andric .addReg(StartCountReg).addMBB(StartMBB) 84190b57cec5SDimitry Andric .addReg(NextCountReg).addMBB(NextMBB); 84200b57cec5SDimitry Andric if (Opcode == SystemZ::MVC) 84210b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 84220b57cec5SDimitry Andric .addImm(SystemZ::PFD_WRITE) 84230eae32dcSDimitry Andric .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 84240eae32dcSDimitry Andric insertMemMemOp(MBB, MBB->end(), 84250eae32dcSDimitry Andric MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 84260eae32dcSDimitry Andric MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 84270b57cec5SDimitry Andric if (EndMBB) { 84280b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 84290b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 84300b57cec5SDimitry Andric .addMBB(EndMBB); 84310b57cec5SDimitry Andric MBB->addSuccessor(EndMBB); 84320b57cec5SDimitry Andric MBB->addSuccessor(NextMBB); 84330b57cec5SDimitry Andric } 84340b57cec5SDimitry Andric 84350b57cec5SDimitry Andric // NextMBB: 84360b57cec5SDimitry Andric // %NextDestReg = LA 256(%ThisDestReg) 84370b57cec5SDimitry Andric // %NextSrcReg = LA 256(%ThisSrcReg) 84380b57cec5SDimitry Andric // %NextCountReg = AGHI %ThisCountReg, -1 84390b57cec5SDimitry Andric // CGHI %NextCountReg, 0 84400b57cec5SDimitry Andric // JLH LoopMBB 8441fe6060f1SDimitry Andric // # fall through to DoneMBB 84420b57cec5SDimitry Andric // 84430b57cec5SDimitry Andric // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 84440b57cec5SDimitry Andric MBB = NextMBB; 84450b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 84460b57cec5SDimitry Andric .addReg(ThisDestReg).addImm(256).addReg(0); 84470b57cec5SDimitry Andric if (!HaveSingleBase) 84480b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 84490b57cec5SDimitry Andric .addReg(ThisSrcReg).addImm(256).addReg(0); 84500b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 84510b57cec5SDimitry Andric .addReg(ThisCountReg).addImm(-1); 84520b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 84530b57cec5SDimitry Andric .addReg(NextCountReg).addImm(0); 84540b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 84550b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 84560b57cec5SDimitry Andric .addMBB(LoopMBB); 84570b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 84580b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 84590b57cec5SDimitry Andric 84600b57cec5SDimitry Andric MBB = DoneMBB; 8461349cc55cSDimitry Andric if (IsRegForm) { 8462fe6060f1SDimitry Andric // DoneMBB: 8463fe6060f1SDimitry Andric // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 8464fe6060f1SDimitry Andric // # Use EXecute Relative Long for the remainder of the bytes. The target 8465fe6060f1SDimitry Andric // instruction of the EXRL will have a length field of 1 since 0 is an 84660eae32dcSDimitry Andric // illegal value. The number of bytes processed becomes (%LenAdjReg & 8467fe6060f1SDimitry Andric // 0xff) + 1. 8468fe6060f1SDimitry Andric // # Fall through to AllDoneMBB. 8469fe6060f1SDimitry Andric Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8470fe6060f1SDimitry Andric Register RemDestReg = HaveSingleBase ? RemSrcReg 8471fe6060f1SDimitry Andric : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8472fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 8473fe6060f1SDimitry Andric .addReg(StartDestReg).addMBB(StartMBB) 8474349cc55cSDimitry Andric .addReg(NextDestReg).addMBB(NextMBB); 8475fe6060f1SDimitry Andric if (!HaveSingleBase) 8476fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 8477fe6060f1SDimitry Andric .addReg(StartSrcReg).addMBB(StartMBB) 8478349cc55cSDimitry Andric .addReg(NextSrcReg).addMBB(NextMBB); 84790eae32dcSDimitry Andric if (IsMemset) 84800eae32dcSDimitry Andric insertMemMemOp(MBB, MBB->end(), 84810eae32dcSDimitry Andric MachineOperand::CreateReg(RemDestReg, false), DestDisp, 84820eae32dcSDimitry Andric MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 8483349cc55cSDimitry Andric MachineInstrBuilder EXRL_MIB = 8484fe6060f1SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 8485fe6060f1SDimitry Andric .addImm(Opcode) 84860eae32dcSDimitry Andric .addReg(LenAdjReg) 8487fe6060f1SDimitry Andric .addReg(RemDestReg).addImm(DestDisp) 8488fe6060f1SDimitry Andric .addReg(RemSrcReg).addImm(SrcDisp); 8489fe6060f1SDimitry Andric MBB->addSuccessor(AllDoneMBB); 8490fe6060f1SDimitry Andric MBB = AllDoneMBB; 8491*a324c340SDimitry Andric if (Opcode != SystemZ::MVC) { 8492349cc55cSDimitry Andric EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 8493*a324c340SDimitry Andric if (EndMBB) 8494349cc55cSDimitry Andric MBB->addLiveIn(SystemZ::CC); 8495349cc55cSDimitry Andric } 84960b57cec5SDimitry Andric } 8497*a324c340SDimitry Andric MF.getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 8498fe6060f1SDimitry Andric } 8499fe6060f1SDimitry Andric 85000b57cec5SDimitry Andric // Handle any remaining bytes with straight-line code. 8501fe6060f1SDimitry Andric while (ImmLength > 0) { 8502fe6060f1SDimitry Andric uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 85030b57cec5SDimitry Andric // The previous iteration might have created out-of-range displacements. 85040eae32dcSDimitry Andric // Apply them using LA/LAY if so. 85050eae32dcSDimitry Andric foldDisplIfNeeded(DestBase, DestDisp); 85060eae32dcSDimitry Andric foldDisplIfNeeded(SrcBase, SrcDisp); 85070eae32dcSDimitry Andric insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 85080b57cec5SDimitry Andric DestDisp += ThisLength; 85090b57cec5SDimitry Andric SrcDisp += ThisLength; 8510fe6060f1SDimitry Andric ImmLength -= ThisLength; 85110b57cec5SDimitry Andric // If there's another CLC to go, branch to the end if a difference 85120b57cec5SDimitry Andric // was found. 8513fe6060f1SDimitry Andric if (EndMBB && ImmLength > 0) { 85145ffd83dbSDimitry Andric MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 85150b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 85160b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 85170b57cec5SDimitry Andric .addMBB(EndMBB); 85180b57cec5SDimitry Andric MBB->addSuccessor(EndMBB); 85190b57cec5SDimitry Andric MBB->addSuccessor(NextMBB); 85200b57cec5SDimitry Andric MBB = NextMBB; 85210b57cec5SDimitry Andric } 85220b57cec5SDimitry Andric } 85230b57cec5SDimitry Andric if (EndMBB) { 85240b57cec5SDimitry Andric MBB->addSuccessor(EndMBB); 85250b57cec5SDimitry Andric MBB = EndMBB; 85260b57cec5SDimitry Andric MBB->addLiveIn(SystemZ::CC); 85270b57cec5SDimitry Andric } 85280b57cec5SDimitry Andric 85290b57cec5SDimitry Andric MI.eraseFromParent(); 85300b57cec5SDimitry Andric return MBB; 85310b57cec5SDimitry Andric } 85320b57cec5SDimitry Andric 85330b57cec5SDimitry Andric // Decompose string pseudo-instruction MI into a loop that continually performs 85340b57cec5SDimitry Andric // Opcode until CC != 3. 85350b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 85360b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 85370b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 853881ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 85390b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 85400b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 85410b57cec5SDimitry Andric 85420b57cec5SDimitry Andric uint64_t End1Reg = MI.getOperand(0).getReg(); 85430b57cec5SDimitry Andric uint64_t Start1Reg = MI.getOperand(1).getReg(); 85440b57cec5SDimitry Andric uint64_t Start2Reg = MI.getOperand(2).getReg(); 85450b57cec5SDimitry Andric uint64_t CharReg = MI.getOperand(3).getReg(); 85460b57cec5SDimitry Andric 85470b57cec5SDimitry Andric const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 85480b57cec5SDimitry Andric uint64_t This1Reg = MRI.createVirtualRegister(RC); 85490b57cec5SDimitry Andric uint64_t This2Reg = MRI.createVirtualRegister(RC); 85500b57cec5SDimitry Andric uint64_t End2Reg = MRI.createVirtualRegister(RC); 85510b57cec5SDimitry Andric 85520b57cec5SDimitry Andric MachineBasicBlock *StartMBB = MBB; 85535ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 85545ffd83dbSDimitry Andric MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 85550b57cec5SDimitry Andric 85560b57cec5SDimitry Andric // StartMBB: 8557fe6060f1SDimitry Andric // # fall through to LoopMBB 85580b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 85590b57cec5SDimitry Andric 85600b57cec5SDimitry Andric // LoopMBB: 85610b57cec5SDimitry Andric // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 85620b57cec5SDimitry Andric // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 85630b57cec5SDimitry Andric // R0L = %CharReg 85640b57cec5SDimitry Andric // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 85650b57cec5SDimitry Andric // JO LoopMBB 8566fe6060f1SDimitry Andric // # fall through to DoneMBB 85670b57cec5SDimitry Andric // 85680b57cec5SDimitry Andric // The load of R0L can be hoisted by post-RA LICM. 85690b57cec5SDimitry Andric MBB = LoopMBB; 85700b57cec5SDimitry Andric 85710b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 85720b57cec5SDimitry Andric .addReg(Start1Reg).addMBB(StartMBB) 85730b57cec5SDimitry Andric .addReg(End1Reg).addMBB(LoopMBB); 85740b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 85750b57cec5SDimitry Andric .addReg(Start2Reg).addMBB(StartMBB) 85760b57cec5SDimitry Andric .addReg(End2Reg).addMBB(LoopMBB); 85770b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 85780b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(Opcode)) 85790b57cec5SDimitry Andric .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 85800b57cec5SDimitry Andric .addReg(This1Reg).addReg(This2Reg); 85810b57cec5SDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 85820b57cec5SDimitry Andric .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 85830b57cec5SDimitry Andric MBB->addSuccessor(LoopMBB); 85840b57cec5SDimitry Andric MBB->addSuccessor(DoneMBB); 85850b57cec5SDimitry Andric 85860b57cec5SDimitry Andric DoneMBB->addLiveIn(SystemZ::CC); 85870b57cec5SDimitry Andric 85880b57cec5SDimitry Andric MI.eraseFromParent(); 85890b57cec5SDimitry Andric return DoneMBB; 85900b57cec5SDimitry Andric } 85910b57cec5SDimitry Andric 85920b57cec5SDimitry Andric // Update TBEGIN instruction with final opcode and register clobbers. 85930b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 85940b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 85950b57cec5SDimitry Andric bool NoFloat) const { 85960b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 85970b57cec5SDimitry Andric const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 85980b57cec5SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 85990b57cec5SDimitry Andric 86000b57cec5SDimitry Andric // Update opcode. 86010b57cec5SDimitry Andric MI.setDesc(TII->get(Opcode)); 86020b57cec5SDimitry Andric 86030b57cec5SDimitry Andric // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 86040b57cec5SDimitry Andric // Make sure to add the corresponding GRSM bits if they are missing. 86050b57cec5SDimitry Andric uint64_t Control = MI.getOperand(2).getImm(); 86060b57cec5SDimitry Andric static const unsigned GPRControlBit[16] = { 86070b57cec5SDimitry Andric 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 86080b57cec5SDimitry Andric 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 86090b57cec5SDimitry Andric }; 86100b57cec5SDimitry Andric Control |= GPRControlBit[15]; 86110b57cec5SDimitry Andric if (TFI->hasFP(MF)) 86120b57cec5SDimitry Andric Control |= GPRControlBit[11]; 86130b57cec5SDimitry Andric MI.getOperand(2).setImm(Control); 86140b57cec5SDimitry Andric 86150b57cec5SDimitry Andric // Add GPR clobbers. 86160b57cec5SDimitry Andric for (int I = 0; I < 16; I++) { 86170b57cec5SDimitry Andric if ((Control & GPRControlBit[I]) == 0) { 86180b57cec5SDimitry Andric unsigned Reg = SystemZMC::GR64Regs[I]; 86190b57cec5SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 86200b57cec5SDimitry Andric } 86210b57cec5SDimitry Andric } 86220b57cec5SDimitry Andric 86230b57cec5SDimitry Andric // Add FPR/VR clobbers. 86240b57cec5SDimitry Andric if (!NoFloat && (Control & 4) != 0) { 86250b57cec5SDimitry Andric if (Subtarget.hasVector()) { 862604eeddc0SDimitry Andric for (unsigned Reg : SystemZMC::VR128Regs) { 86270b57cec5SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 86280b57cec5SDimitry Andric } 86290b57cec5SDimitry Andric } else { 863004eeddc0SDimitry Andric for (unsigned Reg : SystemZMC::FP64Regs) { 86310b57cec5SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 86320b57cec5SDimitry Andric } 86330b57cec5SDimitry Andric } 86340b57cec5SDimitry Andric } 86350b57cec5SDimitry Andric 86360b57cec5SDimitry Andric return MBB; 86370b57cec5SDimitry Andric } 86380b57cec5SDimitry Andric 86390b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 86400b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 86410b57cec5SDimitry Andric MachineFunction &MF = *MBB->getParent(); 86420b57cec5SDimitry Andric MachineRegisterInfo *MRI = &MF.getRegInfo(); 864381ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 86440b57cec5SDimitry Andric DebugLoc DL = MI.getDebugLoc(); 86450b57cec5SDimitry Andric 86468bcb0991SDimitry Andric Register SrcReg = MI.getOperand(0).getReg(); 86470b57cec5SDimitry Andric 86480b57cec5SDimitry Andric // Create new virtual register of the same class as source. 86490b57cec5SDimitry Andric const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 86508bcb0991SDimitry Andric Register DstReg = MRI->createVirtualRegister(RC); 86510b57cec5SDimitry Andric 86520b57cec5SDimitry Andric // Replace pseudo with a normal load-and-test that models the def as 86530b57cec5SDimitry Andric // well. 86540b57cec5SDimitry Andric BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8655480093f4SDimitry Andric .addReg(SrcReg) 8656480093f4SDimitry Andric .setMIFlags(MI.getFlags()); 86570b57cec5SDimitry Andric MI.eraseFromParent(); 86580b57cec5SDimitry Andric 86590b57cec5SDimitry Andric return MBB; 86600b57cec5SDimitry Andric } 86610b57cec5SDimitry Andric 86625ffd83dbSDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 86635ffd83dbSDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB) const { 86645ffd83dbSDimitry Andric MachineFunction &MF = *MBB->getParent(); 86655ffd83dbSDimitry Andric MachineRegisterInfo *MRI = &MF.getRegInfo(); 866681ad6265SDimitry Andric const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 86675ffd83dbSDimitry Andric DebugLoc DL = MI.getDebugLoc(); 86685ffd83dbSDimitry Andric const unsigned ProbeSize = getStackProbeSize(MF); 86695ffd83dbSDimitry Andric Register DstReg = MI.getOperand(0).getReg(); 86705ffd83dbSDimitry Andric Register SizeReg = MI.getOperand(2).getReg(); 86715ffd83dbSDimitry Andric 86725ffd83dbSDimitry Andric MachineBasicBlock *StartMBB = MBB; 86735ffd83dbSDimitry Andric MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 86745ffd83dbSDimitry Andric MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 86755ffd83dbSDimitry Andric MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 86765ffd83dbSDimitry Andric MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 86775ffd83dbSDimitry Andric MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 86785ffd83dbSDimitry Andric 86795ffd83dbSDimitry Andric MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 86805ffd83dbSDimitry Andric MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 86815ffd83dbSDimitry Andric 86825ffd83dbSDimitry Andric Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 86835ffd83dbSDimitry Andric Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 86845ffd83dbSDimitry Andric 86855ffd83dbSDimitry Andric // LoopTestMBB 86865ffd83dbSDimitry Andric // BRC TailTestMBB 86875ffd83dbSDimitry Andric // # fallthrough to LoopBodyMBB 86885ffd83dbSDimitry Andric StartMBB->addSuccessor(LoopTestMBB); 86895ffd83dbSDimitry Andric MBB = LoopTestMBB; 86905ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 86915ffd83dbSDimitry Andric .addReg(SizeReg) 86925ffd83dbSDimitry Andric .addMBB(StartMBB) 86935ffd83dbSDimitry Andric .addReg(IncReg) 86945ffd83dbSDimitry Andric .addMBB(LoopBodyMBB); 86955ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 86965ffd83dbSDimitry Andric .addReg(PHIReg) 86975ffd83dbSDimitry Andric .addImm(ProbeSize); 86985ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 86995ffd83dbSDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 87005ffd83dbSDimitry Andric .addMBB(TailTestMBB); 87015ffd83dbSDimitry Andric MBB->addSuccessor(LoopBodyMBB); 87025ffd83dbSDimitry Andric MBB->addSuccessor(TailTestMBB); 87035ffd83dbSDimitry Andric 87045ffd83dbSDimitry Andric // LoopBodyMBB: Allocate and probe by means of a volatile compare. 87055ffd83dbSDimitry Andric // J LoopTestMBB 87065ffd83dbSDimitry Andric MBB = LoopBodyMBB; 87075ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 87085ffd83dbSDimitry Andric .addReg(PHIReg) 87095ffd83dbSDimitry Andric .addImm(ProbeSize); 87105ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 87115ffd83dbSDimitry Andric .addReg(SystemZ::R15D) 87125ffd83dbSDimitry Andric .addImm(ProbeSize); 87135ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 87145ffd83dbSDimitry Andric .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 87155ffd83dbSDimitry Andric .setMemRefs(VolLdMMO); 87165ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 87175ffd83dbSDimitry Andric MBB->addSuccessor(LoopTestMBB); 87185ffd83dbSDimitry Andric 87195ffd83dbSDimitry Andric // TailTestMBB 87205ffd83dbSDimitry Andric // BRC DoneMBB 87215ffd83dbSDimitry Andric // # fallthrough to TailMBB 87225ffd83dbSDimitry Andric MBB = TailTestMBB; 87235ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 87245ffd83dbSDimitry Andric .addReg(PHIReg) 87255ffd83dbSDimitry Andric .addImm(0); 87265ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 87275ffd83dbSDimitry Andric .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 87285ffd83dbSDimitry Andric .addMBB(DoneMBB); 87295ffd83dbSDimitry Andric MBB->addSuccessor(TailMBB); 87305ffd83dbSDimitry Andric MBB->addSuccessor(DoneMBB); 87315ffd83dbSDimitry Andric 87325ffd83dbSDimitry Andric // TailMBB 87335ffd83dbSDimitry Andric // # fallthrough to DoneMBB 87345ffd83dbSDimitry Andric MBB = TailMBB; 87355ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 87365ffd83dbSDimitry Andric .addReg(SystemZ::R15D) 87375ffd83dbSDimitry Andric .addReg(PHIReg); 87385ffd83dbSDimitry Andric BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 87395ffd83dbSDimitry Andric .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 87405ffd83dbSDimitry Andric .setMemRefs(VolLdMMO); 87415ffd83dbSDimitry Andric MBB->addSuccessor(DoneMBB); 87425ffd83dbSDimitry Andric 87435ffd83dbSDimitry Andric // DoneMBB 87445ffd83dbSDimitry Andric MBB = DoneMBB; 87455ffd83dbSDimitry Andric BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 87465ffd83dbSDimitry Andric .addReg(SystemZ::R15D); 87475ffd83dbSDimitry Andric 87485ffd83dbSDimitry Andric MI.eraseFromParent(); 87495ffd83dbSDimitry Andric return DoneMBB; 87505ffd83dbSDimitry Andric } 87515ffd83dbSDimitry Andric 8752e8d8bef9SDimitry Andric SDValue SystemZTargetLowering:: 8753e8d8bef9SDimitry Andric getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8754e8d8bef9SDimitry Andric MachineFunction &MF = DAG.getMachineFunction(); 8755349cc55cSDimitry Andric auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 8756e8d8bef9SDimitry Andric SDLoc DL(SP); 8757e8d8bef9SDimitry Andric return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8758e8d8bef9SDimitry Andric DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8759e8d8bef9SDimitry Andric } 8760e8d8bef9SDimitry Andric 87610b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 87620b57cec5SDimitry Andric MachineInstr &MI, MachineBasicBlock *MBB) const { 87630b57cec5SDimitry Andric switch (MI.getOpcode()) { 87640b57cec5SDimitry Andric case SystemZ::Select32: 87650b57cec5SDimitry Andric case SystemZ::Select64: 87660b57cec5SDimitry Andric case SystemZ::SelectF32: 87670b57cec5SDimitry Andric case SystemZ::SelectF64: 87680b57cec5SDimitry Andric case SystemZ::SelectF128: 87690b57cec5SDimitry Andric case SystemZ::SelectVR32: 87700b57cec5SDimitry Andric case SystemZ::SelectVR64: 87710b57cec5SDimitry Andric case SystemZ::SelectVR128: 87720b57cec5SDimitry Andric return emitSelect(MI, MBB); 87730b57cec5SDimitry Andric 87740b57cec5SDimitry Andric case SystemZ::CondStore8Mux: 87750b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 87760b57cec5SDimitry Andric case SystemZ::CondStore8MuxInv: 87770b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 87780b57cec5SDimitry Andric case SystemZ::CondStore16Mux: 87790b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 87800b57cec5SDimitry Andric case SystemZ::CondStore16MuxInv: 87810b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 87820b57cec5SDimitry Andric case SystemZ::CondStore32Mux: 87830b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 87840b57cec5SDimitry Andric case SystemZ::CondStore32MuxInv: 87850b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 87860b57cec5SDimitry Andric case SystemZ::CondStore8: 87870b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 87880b57cec5SDimitry Andric case SystemZ::CondStore8Inv: 87890b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 87900b57cec5SDimitry Andric case SystemZ::CondStore16: 87910b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 87920b57cec5SDimitry Andric case SystemZ::CondStore16Inv: 87930b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 87940b57cec5SDimitry Andric case SystemZ::CondStore32: 87950b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 87960b57cec5SDimitry Andric case SystemZ::CondStore32Inv: 87970b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 87980b57cec5SDimitry Andric case SystemZ::CondStore64: 87990b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 88000b57cec5SDimitry Andric case SystemZ::CondStore64Inv: 88010b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 88020b57cec5SDimitry Andric case SystemZ::CondStoreF32: 88030b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 88040b57cec5SDimitry Andric case SystemZ::CondStoreF32Inv: 88050b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 88060b57cec5SDimitry Andric case SystemZ::CondStoreF64: 88070b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 88080b57cec5SDimitry Andric case SystemZ::CondStoreF64Inv: 88090b57cec5SDimitry Andric return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 88100b57cec5SDimitry Andric 88110b57cec5SDimitry Andric case SystemZ::PAIR128: 88120b57cec5SDimitry Andric return emitPair128(MI, MBB); 88130b57cec5SDimitry Andric case SystemZ::AEXT128: 88140b57cec5SDimitry Andric return emitExt128(MI, MBB, false); 88150b57cec5SDimitry Andric case SystemZ::ZEXT128: 88160b57cec5SDimitry Andric return emitExt128(MI, MBB, true); 88170b57cec5SDimitry Andric 88180b57cec5SDimitry Andric case SystemZ::ATOMIC_SWAPW: 88190b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, 0, 0); 88200b57cec5SDimitry Andric case SystemZ::ATOMIC_SWAP_32: 88210b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, 0, 32); 88220b57cec5SDimitry Andric case SystemZ::ATOMIC_SWAP_64: 88230b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, 0, 64); 88240b57cec5SDimitry Andric 88250b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_AR: 88260b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 88270b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_AFI: 88280b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 88290b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AR: 88300b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 88310b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AHI: 88320b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 88330b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AFI: 88340b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 88350b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AGR: 88360b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 88370b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AGHI: 88380b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 88390b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_AGFI: 88400b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 88410b57cec5SDimitry Andric 88420b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_SR: 88430b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 88440b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_SR: 88450b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 88460b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_SGR: 88470b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 88480b57cec5SDimitry Andric 88490b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_NR: 88500b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 88510b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_NILH: 88520b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 88530b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NR: 88540b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 88550b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILL: 88560b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 88570b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILH: 88580b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 88590b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILF: 88600b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 88610b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NGR: 88620b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 88630b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILL64: 88640b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 88650b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILH64: 88660b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 88670b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHL64: 88680b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 88690b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHH64: 88700b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 88710b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILF64: 88720b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 88730b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHF64: 88740b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 88750b57cec5SDimitry Andric 88760b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_OR: 88770b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 88780b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_OILH: 88790b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 88800b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OR: 88810b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 88820b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILL: 88830b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 88840b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILH: 88850b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 88860b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILF: 88870b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 88880b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OGR: 88890b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 88900b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILL64: 88910b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 88920b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILH64: 88930b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 88940b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OIHL64: 88950b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 88960b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OIHH64: 88970b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 88980b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OILF64: 88990b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 89000b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_OIHF64: 89010b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 89020b57cec5SDimitry Andric 89030b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_XR: 89040b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 89050b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_XILF: 89060b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 89070b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XR: 89080b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 89090b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XILF: 89100b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 89110b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XGR: 89120b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 89130b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XILF64: 89140b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 89150b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_XIHF64: 89160b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 89170b57cec5SDimitry Andric 89180b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_NRi: 89190b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 89200b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_NILHi: 89210b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 89220b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NRi: 89230b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 89240b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILLi: 89250b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 89260b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILHi: 89270b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 89280b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILFi: 89290b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 89300b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NGRi: 89310b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 89320b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILL64i: 89330b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 89340b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILH64i: 89350b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 89360b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHL64i: 89370b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 89380b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHH64i: 89390b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 89400b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NILF64i: 89410b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 89420b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_NIHF64i: 89430b57cec5SDimitry Andric return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 89440b57cec5SDimitry Andric 89450b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_MIN: 89460b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 89470b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 0); 89480b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_MIN_32: 89490b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 89500b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 32); 89510b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_MIN_64: 89520b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 89530b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 64); 89540b57cec5SDimitry Andric 89550b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_MAX: 89560b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 89570b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 0); 89580b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_MAX_32: 89590b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 89600b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 32); 89610b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_MAX_64: 89620b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 89630b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 64); 89640b57cec5SDimitry Andric 89650b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_UMIN: 89660b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 89670b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 0); 89680b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_UMIN_32: 89690b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 89700b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 32); 89710b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_UMIN_64: 89720b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 89730b57cec5SDimitry Andric SystemZ::CCMASK_CMP_LE, 64); 89740b57cec5SDimitry Andric 89750b57cec5SDimitry Andric case SystemZ::ATOMIC_LOADW_UMAX: 89760b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 89770b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 0); 89780b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_UMAX_32: 89790b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 89800b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 32); 89810b57cec5SDimitry Andric case SystemZ::ATOMIC_LOAD_UMAX_64: 89820b57cec5SDimitry Andric return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 89830b57cec5SDimitry Andric SystemZ::CCMASK_CMP_GE, 64); 89840b57cec5SDimitry Andric 89850b57cec5SDimitry Andric case SystemZ::ATOMIC_CMP_SWAPW: 89860b57cec5SDimitry Andric return emitAtomicCmpSwapW(MI, MBB); 8987349cc55cSDimitry Andric case SystemZ::MVCImm: 8988349cc55cSDimitry Andric case SystemZ::MVCReg: 89890b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8990349cc55cSDimitry Andric case SystemZ::NCImm: 89910b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8992349cc55cSDimitry Andric case SystemZ::OCImm: 89930b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8994349cc55cSDimitry Andric case SystemZ::XCImm: 8995349cc55cSDimitry Andric case SystemZ::XCReg: 89960b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8997349cc55cSDimitry Andric case SystemZ::CLCImm: 8998349cc55cSDimitry Andric case SystemZ::CLCReg: 89990b57cec5SDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 90000eae32dcSDimitry Andric case SystemZ::MemsetImmImm: 90010eae32dcSDimitry Andric case SystemZ::MemsetImmReg: 90020eae32dcSDimitry Andric case SystemZ::MemsetRegImm: 90030eae32dcSDimitry Andric case SystemZ::MemsetRegReg: 90040eae32dcSDimitry Andric return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 90050b57cec5SDimitry Andric case SystemZ::CLSTLoop: 90060b57cec5SDimitry Andric return emitStringWrapper(MI, MBB, SystemZ::CLST); 90070b57cec5SDimitry Andric case SystemZ::MVSTLoop: 90080b57cec5SDimitry Andric return emitStringWrapper(MI, MBB, SystemZ::MVST); 90090b57cec5SDimitry Andric case SystemZ::SRSTLoop: 90100b57cec5SDimitry Andric return emitStringWrapper(MI, MBB, SystemZ::SRST); 90110b57cec5SDimitry Andric case SystemZ::TBEGIN: 90120b57cec5SDimitry Andric return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 90130b57cec5SDimitry Andric case SystemZ::TBEGIN_nofloat: 90140b57cec5SDimitry Andric return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 90150b57cec5SDimitry Andric case SystemZ::TBEGINC: 90160b57cec5SDimitry Andric return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 90170b57cec5SDimitry Andric case SystemZ::LTEBRCompare_VecPseudo: 90180b57cec5SDimitry Andric return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 90190b57cec5SDimitry Andric case SystemZ::LTDBRCompare_VecPseudo: 90200b57cec5SDimitry Andric return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 90210b57cec5SDimitry Andric case SystemZ::LTXBRCompare_VecPseudo: 90220b57cec5SDimitry Andric return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 90230b57cec5SDimitry Andric 90245ffd83dbSDimitry Andric case SystemZ::PROBED_ALLOCA: 90255ffd83dbSDimitry Andric return emitProbedAlloca(MI, MBB); 90265ffd83dbSDimitry Andric 90270b57cec5SDimitry Andric case TargetOpcode::STACKMAP: 90280b57cec5SDimitry Andric case TargetOpcode::PATCHPOINT: 90290b57cec5SDimitry Andric return emitPatchPoint(MI, MBB); 90300b57cec5SDimitry Andric 90310b57cec5SDimitry Andric default: 90320b57cec5SDimitry Andric llvm_unreachable("Unexpected instr type to insert"); 90330b57cec5SDimitry Andric } 90340b57cec5SDimitry Andric } 90350b57cec5SDimitry Andric 90360b57cec5SDimitry Andric // This is only used by the isel schedulers, and is needed only to prevent 90370b57cec5SDimitry Andric // compiler from crashing when list-ilp is used. 90380b57cec5SDimitry Andric const TargetRegisterClass * 90390b57cec5SDimitry Andric SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 90400b57cec5SDimitry Andric if (VT == MVT::Untyped) 90410b57cec5SDimitry Andric return &SystemZ::ADDR128BitRegClass; 90420b57cec5SDimitry Andric return TargetLowering::getRepRegClassFor(VT); 90430b57cec5SDimitry Andric } 9044bdd1243dSDimitry Andric 9045bdd1243dSDimitry Andric SDValue SystemZTargetLowering::lowerGET_ROUNDING(SDValue Op, 9046bdd1243dSDimitry Andric SelectionDAG &DAG) const { 9047bdd1243dSDimitry Andric SDLoc dl(Op); 9048bdd1243dSDimitry Andric /* 9049bdd1243dSDimitry Andric The rounding method is in FPC Byte 3 bits 6-7, and has the following 9050bdd1243dSDimitry Andric settings: 9051bdd1243dSDimitry Andric 00 Round to nearest 9052bdd1243dSDimitry Andric 01 Round to 0 9053bdd1243dSDimitry Andric 10 Round to +inf 9054bdd1243dSDimitry Andric 11 Round to -inf 9055bdd1243dSDimitry Andric 9056bdd1243dSDimitry Andric FLT_ROUNDS, on the other hand, expects the following: 9057bdd1243dSDimitry Andric -1 Undefined 9058bdd1243dSDimitry Andric 0 Round to 0 9059bdd1243dSDimitry Andric 1 Round to nearest 9060bdd1243dSDimitry Andric 2 Round to +inf 9061bdd1243dSDimitry Andric 3 Round to -inf 9062bdd1243dSDimitry Andric */ 9063bdd1243dSDimitry Andric 9064bdd1243dSDimitry Andric // Save FPC to register. 9065bdd1243dSDimitry Andric SDValue Chain = Op.getOperand(0); 9066bdd1243dSDimitry Andric SDValue EFPC( 9067bdd1243dSDimitry Andric DAG.getMachineNode(SystemZ::EFPC, dl, {MVT::i32, MVT::Other}, Chain), 0); 9068bdd1243dSDimitry Andric Chain = EFPC.getValue(1); 9069bdd1243dSDimitry Andric 9070bdd1243dSDimitry Andric // Transform as necessary 9071bdd1243dSDimitry Andric SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, EFPC, 9072bdd1243dSDimitry Andric DAG.getConstant(3, dl, MVT::i32)); 9073bdd1243dSDimitry Andric // RetVal = (CWD1 ^ (CWD1 >> 1)) ^ 1 9074bdd1243dSDimitry Andric SDValue CWD2 = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, 9075bdd1243dSDimitry Andric DAG.getNode(ISD::SRL, dl, MVT::i32, CWD1, 9076bdd1243dSDimitry Andric DAG.getConstant(1, dl, MVT::i32))); 9077bdd1243dSDimitry Andric 9078bdd1243dSDimitry Andric SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD2, 9079bdd1243dSDimitry Andric DAG.getConstant(1, dl, MVT::i32)); 9080bdd1243dSDimitry Andric RetVal = DAG.getZExtOrTrunc(RetVal, dl, Op.getValueType()); 9081bdd1243dSDimitry Andric 9082bdd1243dSDimitry Andric return DAG.getMergeValues({RetVal, Chain}, dl); 9083bdd1243dSDimitry Andric } 9084