xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
10b57cec5SDimitry Andric //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements the SystemZTargetLowering class.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "SystemZISelLowering.h"
140b57cec5SDimitry Andric #include "SystemZCallingConv.h"
150b57cec5SDimitry Andric #include "SystemZConstantPoolValue.h"
160b57cec5SDimitry Andric #include "SystemZMachineFunctionInfo.h"
170b57cec5SDimitry Andric #include "SystemZTargetMachine.h"
180b57cec5SDimitry Andric #include "llvm/CodeGen/CallingConvLower.h"
190b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
200b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
210b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
220b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
23480093f4SDimitry Andric #include "llvm/IR/Intrinsics.h"
24480093f4SDimitry Andric #include "llvm/IR/IntrinsicsS390.h"
250b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
260b57cec5SDimitry Andric #include "llvm/Support/KnownBits.h"
270b57cec5SDimitry Andric #include <cctype>
280b57cec5SDimitry Andric 
290b57cec5SDimitry Andric using namespace llvm;
300b57cec5SDimitry Andric 
310b57cec5SDimitry Andric #define DEBUG_TYPE "systemz-lower"
320b57cec5SDimitry Andric 
330b57cec5SDimitry Andric namespace {
340b57cec5SDimitry Andric // Represents information about a comparison.
350b57cec5SDimitry Andric struct Comparison {
36480093f4SDimitry Andric   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37480093f4SDimitry Andric     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38480093f4SDimitry Andric       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
390b57cec5SDimitry Andric 
400b57cec5SDimitry Andric   // The operands to the comparison.
410b57cec5SDimitry Andric   SDValue Op0, Op1;
420b57cec5SDimitry Andric 
43480093f4SDimitry Andric   // Chain if this is a strict floating-point comparison.
44480093f4SDimitry Andric   SDValue Chain;
45480093f4SDimitry Andric 
460b57cec5SDimitry Andric   // The opcode that should be used to compare Op0 and Op1.
470b57cec5SDimitry Andric   unsigned Opcode;
480b57cec5SDimitry Andric 
490b57cec5SDimitry Andric   // A SystemZICMP value.  Only used for integer comparisons.
500b57cec5SDimitry Andric   unsigned ICmpType;
510b57cec5SDimitry Andric 
520b57cec5SDimitry Andric   // The mask of CC values that Opcode can produce.
530b57cec5SDimitry Andric   unsigned CCValid;
540b57cec5SDimitry Andric 
550b57cec5SDimitry Andric   // The mask of CC values for which the original condition is true.
560b57cec5SDimitry Andric   unsigned CCMask;
570b57cec5SDimitry Andric };
580b57cec5SDimitry Andric } // end anonymous namespace
590b57cec5SDimitry Andric 
600b57cec5SDimitry Andric // Classify VT as either 32 or 64 bit.
610b57cec5SDimitry Andric static bool is32Bit(EVT VT) {
620b57cec5SDimitry Andric   switch (VT.getSimpleVT().SimpleTy) {
630b57cec5SDimitry Andric   case MVT::i32:
640b57cec5SDimitry Andric     return true;
650b57cec5SDimitry Andric   case MVT::i64:
660b57cec5SDimitry Andric     return false;
670b57cec5SDimitry Andric   default:
680b57cec5SDimitry Andric     llvm_unreachable("Unsupported type");
690b57cec5SDimitry Andric   }
700b57cec5SDimitry Andric }
710b57cec5SDimitry Andric 
720b57cec5SDimitry Andric // Return a version of MachineOperand that can be safely used before the
730b57cec5SDimitry Andric // final use.
740b57cec5SDimitry Andric static MachineOperand earlyUseOperand(MachineOperand Op) {
750b57cec5SDimitry Andric   if (Op.isReg())
760b57cec5SDimitry Andric     Op.setIsKill(false);
770b57cec5SDimitry Andric   return Op;
780b57cec5SDimitry Andric }
790b57cec5SDimitry Andric 
800b57cec5SDimitry Andric SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
810b57cec5SDimitry Andric                                              const SystemZSubtarget &STI)
820b57cec5SDimitry Andric     : TargetLowering(TM), Subtarget(STI) {
830b57cec5SDimitry Andric   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
840b57cec5SDimitry Andric 
85349cc55cSDimitry Andric   auto *Regs = STI.getSpecialRegisters();
86349cc55cSDimitry Andric 
870b57cec5SDimitry Andric   // Set up the register classes.
880b57cec5SDimitry Andric   if (Subtarget.hasHighWord())
890b57cec5SDimitry Andric     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
900b57cec5SDimitry Andric   else
910b57cec5SDimitry Andric     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
920b57cec5SDimitry Andric   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
935ffd83dbSDimitry Andric   if (!useSoftFloat()) {
940b57cec5SDimitry Andric     if (Subtarget.hasVector()) {
950b57cec5SDimitry Andric       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
960b57cec5SDimitry Andric       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
970b57cec5SDimitry Andric     } else {
980b57cec5SDimitry Andric       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
990b57cec5SDimitry Andric       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
1000b57cec5SDimitry Andric     }
1010b57cec5SDimitry Andric     if (Subtarget.hasVectorEnhancements1())
1020b57cec5SDimitry Andric       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
1030b57cec5SDimitry Andric     else
1040b57cec5SDimitry Andric       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
1050b57cec5SDimitry Andric 
1060b57cec5SDimitry Andric     if (Subtarget.hasVector()) {
1070b57cec5SDimitry Andric       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
1080b57cec5SDimitry Andric       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
1090b57cec5SDimitry Andric       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
1100b57cec5SDimitry Andric       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
1110b57cec5SDimitry Andric       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
1120b57cec5SDimitry Andric       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
1130b57cec5SDimitry Andric     }
1145ffd83dbSDimitry Andric   }
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric   // Compute derived properties from the register classes
1170b57cec5SDimitry Andric   computeRegisterProperties(Subtarget.getRegisterInfo());
1180b57cec5SDimitry Andric 
1190b57cec5SDimitry Andric   // Set up special registers.
120349cc55cSDimitry Andric   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
1210b57cec5SDimitry Andric 
1220b57cec5SDimitry Andric   // TODO: It may be better to default to latency-oriented scheduling, however
1230b57cec5SDimitry Andric   // LLVM's current latency-oriented scheduler can't handle physreg definitions
1240b57cec5SDimitry Andric   // such as SystemZ has with CC, so set this to the register-pressure
1250b57cec5SDimitry Andric   // scheduler, because it can.
1260b57cec5SDimitry Andric   setSchedulingPreference(Sched::RegPressure);
1270b57cec5SDimitry Andric 
1280b57cec5SDimitry Andric   setBooleanContents(ZeroOrOneBooleanContent);
1290b57cec5SDimitry Andric   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1300b57cec5SDimitry Andric 
1310b57cec5SDimitry Andric   // Instructions are strings of 2-byte aligned 2-byte values.
1328bcb0991SDimitry Andric   setMinFunctionAlignment(Align(2));
1330b57cec5SDimitry Andric   // For performance reasons we prefer 16-byte alignment.
1348bcb0991SDimitry Andric   setPrefFunctionAlignment(Align(16));
1350b57cec5SDimitry Andric 
1360b57cec5SDimitry Andric   // Handle operations that are handled in a similar way for all types.
1370b57cec5SDimitry Andric   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
1380b57cec5SDimitry Andric        I <= MVT::LAST_FP_VALUETYPE;
1390b57cec5SDimitry Andric        ++I) {
1400b57cec5SDimitry Andric     MVT VT = MVT::SimpleValueType(I);
1410b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
1420b57cec5SDimitry Andric       // Lower SET_CC into an IPM-based sequence.
1430b57cec5SDimitry Andric       setOperationAction(ISD::SETCC, VT, Custom);
144480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
1460b57cec5SDimitry Andric 
1470b57cec5SDimitry Andric       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
1480b57cec5SDimitry Andric       setOperationAction(ISD::SELECT, VT, Expand);
1490b57cec5SDimitry Andric 
1500b57cec5SDimitry Andric       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
1510b57cec5SDimitry Andric       setOperationAction(ISD::SELECT_CC, VT, Custom);
1520b57cec5SDimitry Andric       setOperationAction(ISD::BR_CC,     VT, Custom);
1530b57cec5SDimitry Andric     }
1540b57cec5SDimitry Andric   }
1550b57cec5SDimitry Andric 
1560b57cec5SDimitry Andric   // Expand jump table branches as address arithmetic followed by an
1570b57cec5SDimitry Andric   // indirect jump.
1580b57cec5SDimitry Andric   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1590b57cec5SDimitry Andric 
1600b57cec5SDimitry Andric   // Expand BRCOND into a BR_CC (see above).
1610b57cec5SDimitry Andric   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1620b57cec5SDimitry Andric 
1630b57cec5SDimitry Andric   // Handle integer types.
1640b57cec5SDimitry Andric   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
1650b57cec5SDimitry Andric        I <= MVT::LAST_INTEGER_VALUETYPE;
1660b57cec5SDimitry Andric        ++I) {
1670b57cec5SDimitry Andric     MVT VT = MVT::SimpleValueType(I);
1680b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
169e8d8bef9SDimitry Andric       setOperationAction(ISD::ABS, VT, Legal);
170e8d8bef9SDimitry Andric 
1710b57cec5SDimitry Andric       // Expand individual DIV and REMs into DIVREMs.
1720b57cec5SDimitry Andric       setOperationAction(ISD::SDIV, VT, Expand);
1730b57cec5SDimitry Andric       setOperationAction(ISD::UDIV, VT, Expand);
1740b57cec5SDimitry Andric       setOperationAction(ISD::SREM, VT, Expand);
1750b57cec5SDimitry Andric       setOperationAction(ISD::UREM, VT, Expand);
1760b57cec5SDimitry Andric       setOperationAction(ISD::SDIVREM, VT, Custom);
1770b57cec5SDimitry Andric       setOperationAction(ISD::UDIVREM, VT, Custom);
1780b57cec5SDimitry Andric 
1790b57cec5SDimitry Andric       // Support addition/subtraction with overflow.
1800b57cec5SDimitry Andric       setOperationAction(ISD::SADDO, VT, Custom);
1810b57cec5SDimitry Andric       setOperationAction(ISD::SSUBO, VT, Custom);
1820b57cec5SDimitry Andric 
1830b57cec5SDimitry Andric       // Support addition/subtraction with carry.
1840b57cec5SDimitry Andric       setOperationAction(ISD::UADDO, VT, Custom);
1850b57cec5SDimitry Andric       setOperationAction(ISD::USUBO, VT, Custom);
1860b57cec5SDimitry Andric 
1870b57cec5SDimitry Andric       // Support carry in as value rather than glue.
1880b57cec5SDimitry Andric       setOperationAction(ISD::ADDCARRY, VT, Custom);
1890b57cec5SDimitry Andric       setOperationAction(ISD::SUBCARRY, VT, Custom);
1900b57cec5SDimitry Andric 
1910b57cec5SDimitry Andric       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
1920b57cec5SDimitry Andric       // stores, putting a serialization instruction after the stores.
1930b57cec5SDimitry Andric       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
1940b57cec5SDimitry Andric       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
1950b57cec5SDimitry Andric 
1960b57cec5SDimitry Andric       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
1970b57cec5SDimitry Andric       // available, or if the operand is constant.
1980b57cec5SDimitry Andric       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
1990b57cec5SDimitry Andric 
2000b57cec5SDimitry Andric       // Use POPCNT on z196 and above.
2010b57cec5SDimitry Andric       if (Subtarget.hasPopulationCount())
2020b57cec5SDimitry Andric         setOperationAction(ISD::CTPOP, VT, Custom);
2030b57cec5SDimitry Andric       else
2040b57cec5SDimitry Andric         setOperationAction(ISD::CTPOP, VT, Expand);
2050b57cec5SDimitry Andric 
2060b57cec5SDimitry Andric       // No special instructions for these.
2070b57cec5SDimitry Andric       setOperationAction(ISD::CTTZ,            VT, Expand);
2080b57cec5SDimitry Andric       setOperationAction(ISD::ROTR,            VT, Expand);
2090b57cec5SDimitry Andric 
2100b57cec5SDimitry Andric       // Use *MUL_LOHI where possible instead of MULH*.
2110b57cec5SDimitry Andric       setOperationAction(ISD::MULHS, VT, Expand);
2120b57cec5SDimitry Andric       setOperationAction(ISD::MULHU, VT, Expand);
2130b57cec5SDimitry Andric       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
2140b57cec5SDimitry Andric       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
2150b57cec5SDimitry Andric 
2160b57cec5SDimitry Andric       // Only z196 and above have native support for conversions to unsigned.
2170b57cec5SDimitry Andric       // On z10, promoting to i64 doesn't generate an inexact condition for
2180b57cec5SDimitry Andric       // values that are outside the i32 range but in the i64 range, so use
2190b57cec5SDimitry Andric       // the default expansion.
2200b57cec5SDimitry Andric       if (!Subtarget.hasFPExtension())
2210b57cec5SDimitry Andric         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
2228bcb0991SDimitry Andric 
2238bcb0991SDimitry Andric       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
2248bcb0991SDimitry Andric       // default to Expand, so need to be modified to Legal where appropriate.
2258bcb0991SDimitry Andric       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
2268bcb0991SDimitry Andric       if (Subtarget.hasFPExtension())
2278bcb0991SDimitry Andric         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228480093f4SDimitry Andric 
229480093f4SDimitry Andric       // And similarly for STRICT_[SU]INT_TO_FP.
230480093f4SDimitry Andric       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231480093f4SDimitry Andric       if (Subtarget.hasFPExtension())
232480093f4SDimitry Andric         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
2330b57cec5SDimitry Andric     }
2340b57cec5SDimitry Andric   }
2350b57cec5SDimitry Andric 
2360b57cec5SDimitry Andric   // Type legalization will convert 8- and 16-bit atomic operations into
2370b57cec5SDimitry Andric   // forms that operate on i32s (but still keeping the original memory VT).
2380b57cec5SDimitry Andric   // Lower them into full i32 operations.
2390b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
2400b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
2410b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
2420b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
2430b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
2440b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
2450b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
2460b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
2470b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
2480b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
2490b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
2500b57cec5SDimitry Andric 
2510b57cec5SDimitry Andric   // Even though i128 is not a legal type, we still need to custom lower
2520b57cec5SDimitry Andric   // the atomic operations in order to exploit SystemZ instructions.
2530b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
2540b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
2550b57cec5SDimitry Andric 
2560b57cec5SDimitry Andric   // We can use the CC result of compare-and-swap to implement
2570b57cec5SDimitry Andric   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
2580b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
2590b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
2600b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
2610b57cec5SDimitry Andric 
2620b57cec5SDimitry Andric   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
2630b57cec5SDimitry Andric 
2640b57cec5SDimitry Andric   // Traps are legal, as we will convert them to "j .+2".
2650b57cec5SDimitry Andric   setOperationAction(ISD::TRAP, MVT::Other, Legal);
2660b57cec5SDimitry Andric 
2670b57cec5SDimitry Andric   // z10 has instructions for signed but not unsigned FP conversion.
2680b57cec5SDimitry Andric   // Handle unsigned 32-bit types as signed 64-bit types.
2690b57cec5SDimitry Andric   if (!Subtarget.hasFPExtension()) {
2700b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
2710b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
2740b57cec5SDimitry Andric   }
2750b57cec5SDimitry Andric 
2760b57cec5SDimitry Andric   // We have native support for a 64-bit CTLZ, via FLOGR.
2770b57cec5SDimitry Andric   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
2780b57cec5SDimitry Andric   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
2790b57cec5SDimitry Andric   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
2800b57cec5SDimitry Andric 
2818bcb0991SDimitry Andric   // On z15 we have native support for a 64-bit CTPOP.
2820b57cec5SDimitry Andric   if (Subtarget.hasMiscellaneousExtensions3()) {
2830b57cec5SDimitry Andric     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
2840b57cec5SDimitry Andric     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
2850b57cec5SDimitry Andric   }
2860b57cec5SDimitry Andric 
2870b57cec5SDimitry Andric   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
2880b57cec5SDimitry Andric   setOperationAction(ISD::OR, MVT::i64, Custom);
2890b57cec5SDimitry Andric 
29023408297SDimitry Andric   // Expand 128 bit shifts without using a libcall.
2910b57cec5SDimitry Andric   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
2920b57cec5SDimitry Andric   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
2930b57cec5SDimitry Andric   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
29423408297SDimitry Andric   setLibcallName(RTLIB::SRL_I128, nullptr);
29523408297SDimitry Andric   setLibcallName(RTLIB::SHL_I128, nullptr);
29623408297SDimitry Andric   setLibcallName(RTLIB::SRA_I128, nullptr);
2970b57cec5SDimitry Andric 
298349cc55cSDimitry Andric   // Handle bitcast from fp128 to i128.
299349cc55cSDimitry Andric   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300349cc55cSDimitry Andric 
3010b57cec5SDimitry Andric   // We have native instructions for i8, i16 and i32 extensions, but not i1.
3020b57cec5SDimitry Andric   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
3030b57cec5SDimitry Andric   for (MVT VT : MVT::integer_valuetypes()) {
3040b57cec5SDimitry Andric     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
3050b57cec5SDimitry Andric     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
3060b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
3070b57cec5SDimitry Andric   }
3080b57cec5SDimitry Andric 
3090b57cec5SDimitry Andric   // Handle the various types of symbolic address.
3100b57cec5SDimitry Andric   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
3110b57cec5SDimitry Andric   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
3120b57cec5SDimitry Andric   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
3130b57cec5SDimitry Andric   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
3140b57cec5SDimitry Andric   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
3150b57cec5SDimitry Andric 
3160b57cec5SDimitry Andric   // We need to handle dynamic allocations specially because of the
3170b57cec5SDimitry Andric   // 160-byte area at the bottom of the stack.
3180b57cec5SDimitry Andric   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
3190b57cec5SDimitry Andric   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
3200b57cec5SDimitry Andric 
3210b57cec5SDimitry Andric   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
3220b57cec5SDimitry Andric   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
3230b57cec5SDimitry Andric 
3240b57cec5SDimitry Andric   // Handle prefetches with PFD or PFDRL.
3250b57cec5SDimitry Andric   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
3260b57cec5SDimitry Andric 
3278bcb0991SDimitry Andric   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
3280b57cec5SDimitry Andric     // Assume by default that all vector operations need to be expanded.
3290b57cec5SDimitry Andric     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
3300b57cec5SDimitry Andric       if (getOperationAction(Opcode, VT) == Legal)
3310b57cec5SDimitry Andric         setOperationAction(Opcode, VT, Expand);
3320b57cec5SDimitry Andric 
3330b57cec5SDimitry Andric     // Likewise all truncating stores and extending loads.
3348bcb0991SDimitry Andric     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
3350b57cec5SDimitry Andric       setTruncStoreAction(VT, InnerVT, Expand);
3360b57cec5SDimitry Andric       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
3370b57cec5SDimitry Andric       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
3380b57cec5SDimitry Andric       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
3390b57cec5SDimitry Andric     }
3400b57cec5SDimitry Andric 
3410b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
3420b57cec5SDimitry Andric       // These operations are legal for anything that can be stored in a
3430b57cec5SDimitry Andric       // vector register, even if there is no native support for the format
3440b57cec5SDimitry Andric       // as such.  In particular, we can do these for v4f32 even though there
3450b57cec5SDimitry Andric       // are no specific instructions for that format.
3460b57cec5SDimitry Andric       setOperationAction(ISD::LOAD, VT, Legal);
3470b57cec5SDimitry Andric       setOperationAction(ISD::STORE, VT, Legal);
3480b57cec5SDimitry Andric       setOperationAction(ISD::VSELECT, VT, Legal);
3490b57cec5SDimitry Andric       setOperationAction(ISD::BITCAST, VT, Legal);
3500b57cec5SDimitry Andric       setOperationAction(ISD::UNDEF, VT, Legal);
3510b57cec5SDimitry Andric 
3520b57cec5SDimitry Andric       // Likewise, except that we need to replace the nodes with something
3530b57cec5SDimitry Andric       // more specific.
3540b57cec5SDimitry Andric       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
3550b57cec5SDimitry Andric       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
3560b57cec5SDimitry Andric     }
3570b57cec5SDimitry Andric   }
3580b57cec5SDimitry Andric 
3590b57cec5SDimitry Andric   // Handle integer vector types.
3608bcb0991SDimitry Andric   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
3610b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
3620b57cec5SDimitry Andric       // These operations have direct equivalents.
3630b57cec5SDimitry Andric       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
3640b57cec5SDimitry Andric       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
3650b57cec5SDimitry Andric       setOperationAction(ISD::ADD, VT, Legal);
3660b57cec5SDimitry Andric       setOperationAction(ISD::SUB, VT, Legal);
3670b57cec5SDimitry Andric       if (VT != MVT::v2i64)
3680b57cec5SDimitry Andric         setOperationAction(ISD::MUL, VT, Legal);
369e8d8bef9SDimitry Andric       setOperationAction(ISD::ABS, VT, Legal);
3700b57cec5SDimitry Andric       setOperationAction(ISD::AND, VT, Legal);
3710b57cec5SDimitry Andric       setOperationAction(ISD::OR, VT, Legal);
3720b57cec5SDimitry Andric       setOperationAction(ISD::XOR, VT, Legal);
3730b57cec5SDimitry Andric       if (Subtarget.hasVectorEnhancements1())
3740b57cec5SDimitry Andric         setOperationAction(ISD::CTPOP, VT, Legal);
3750b57cec5SDimitry Andric       else
3760b57cec5SDimitry Andric         setOperationAction(ISD::CTPOP, VT, Custom);
3770b57cec5SDimitry Andric       setOperationAction(ISD::CTTZ, VT, Legal);
3780b57cec5SDimitry Andric       setOperationAction(ISD::CTLZ, VT, Legal);
3790b57cec5SDimitry Andric 
3800b57cec5SDimitry Andric       // Convert a GPR scalar to a vector by inserting it into element 0.
3810b57cec5SDimitry Andric       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
3820b57cec5SDimitry Andric 
3830b57cec5SDimitry Andric       // Use a series of unpacks for extensions.
3840b57cec5SDimitry Andric       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
3850b57cec5SDimitry Andric       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
3860b57cec5SDimitry Andric 
3870b57cec5SDimitry Andric       // Detect shifts by a scalar amount and convert them into
3880b57cec5SDimitry Andric       // V*_BY_SCALAR.
3890b57cec5SDimitry Andric       setOperationAction(ISD::SHL, VT, Custom);
3900b57cec5SDimitry Andric       setOperationAction(ISD::SRA, VT, Custom);
3910b57cec5SDimitry Andric       setOperationAction(ISD::SRL, VT, Custom);
3920b57cec5SDimitry Andric 
3930b57cec5SDimitry Andric       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
3940b57cec5SDimitry Andric       // converted into ROTL.
3950b57cec5SDimitry Andric       setOperationAction(ISD::ROTL, VT, Expand);
3960b57cec5SDimitry Andric       setOperationAction(ISD::ROTR, VT, Expand);
3970b57cec5SDimitry Andric 
3980b57cec5SDimitry Andric       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
3990b57cec5SDimitry Andric       // and inverting the result as necessary.
4000b57cec5SDimitry Andric       setOperationAction(ISD::SETCC, VT, Custom);
401480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402480093f4SDimitry Andric       if (Subtarget.hasVectorEnhancements1())
403480093f4SDimitry Andric         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
4040b57cec5SDimitry Andric     }
4050b57cec5SDimitry Andric   }
4060b57cec5SDimitry Andric 
4070b57cec5SDimitry Andric   if (Subtarget.hasVector()) {
4080b57cec5SDimitry Andric     // There should be no need to check for float types other than v2f64
4090b57cec5SDimitry Andric     // since <2 x f32> isn't a legal type.
4100b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
4110b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
4120b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
4130b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
4140b57cec5SDimitry Andric     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
4150b57cec5SDimitry Andric     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
4160b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
4170b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
4188bcb0991SDimitry Andric 
4198bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
4208bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
4218bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
4228bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423480093f4SDimitry Andric     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424480093f4SDimitry Andric     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
4270b57cec5SDimitry Andric   }
4280b57cec5SDimitry Andric 
4290b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements2()) {
4300b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
4310b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
4320b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
4330b57cec5SDimitry Andric     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
4340b57cec5SDimitry Andric     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
4350b57cec5SDimitry Andric     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
4360b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
4370b57cec5SDimitry Andric     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
4388bcb0991SDimitry Andric 
4398bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
4408bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
4418bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
4428bcb0991SDimitry Andric     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443480093f4SDimitry Andric     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444480093f4SDimitry Andric     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446480093f4SDimitry Andric     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
4470b57cec5SDimitry Andric   }
4480b57cec5SDimitry Andric 
4490b57cec5SDimitry Andric   // Handle floating-point types.
4500b57cec5SDimitry Andric   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
4510b57cec5SDimitry Andric        I <= MVT::LAST_FP_VALUETYPE;
4520b57cec5SDimitry Andric        ++I) {
4530b57cec5SDimitry Andric     MVT VT = MVT::SimpleValueType(I);
4540b57cec5SDimitry Andric     if (isTypeLegal(VT)) {
4550b57cec5SDimitry Andric       // We can use FI for FRINT.
4560b57cec5SDimitry Andric       setOperationAction(ISD::FRINT, VT, Legal);
4570b57cec5SDimitry Andric 
4580b57cec5SDimitry Andric       // We can use the extended form of FI for other rounding operations.
4590b57cec5SDimitry Andric       if (Subtarget.hasFPExtension()) {
4600b57cec5SDimitry Andric         setOperationAction(ISD::FNEARBYINT, VT, Legal);
4610b57cec5SDimitry Andric         setOperationAction(ISD::FFLOOR, VT, Legal);
4620b57cec5SDimitry Andric         setOperationAction(ISD::FCEIL, VT, Legal);
4630b57cec5SDimitry Andric         setOperationAction(ISD::FTRUNC, VT, Legal);
4640b57cec5SDimitry Andric         setOperationAction(ISD::FROUND, VT, Legal);
4650b57cec5SDimitry Andric       }
4660b57cec5SDimitry Andric 
4670b57cec5SDimitry Andric       // No special instructions for these.
4680b57cec5SDimitry Andric       setOperationAction(ISD::FSIN, VT, Expand);
4690b57cec5SDimitry Andric       setOperationAction(ISD::FCOS, VT, Expand);
4700b57cec5SDimitry Andric       setOperationAction(ISD::FSINCOS, VT, Expand);
4710b57cec5SDimitry Andric       setOperationAction(ISD::FREM, VT, Expand);
4720b57cec5SDimitry Andric       setOperationAction(ISD::FPOW, VT, Expand);
4730b57cec5SDimitry Andric 
4740b57cec5SDimitry Andric       // Handle constrained floating-point operations.
4750b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FADD, VT, Legal);
4760b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
4770b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
4780b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
4790b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FMA, VT, Legal);
4800b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
4810b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
4820b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
4830b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
4840b57cec5SDimitry Andric       if (Subtarget.hasFPExtension()) {
4850b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
4860b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
4870b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
4880b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
4890b57cec5SDimitry Andric         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
4900b57cec5SDimitry Andric       }
4910b57cec5SDimitry Andric     }
4920b57cec5SDimitry Andric   }
4930b57cec5SDimitry Andric 
4940b57cec5SDimitry Andric   // Handle floating-point vector types.
4950b57cec5SDimitry Andric   if (Subtarget.hasVector()) {
4960b57cec5SDimitry Andric     // Scalar-to-vector conversion is just a subreg.
4970b57cec5SDimitry Andric     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
4980b57cec5SDimitry Andric     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
4990b57cec5SDimitry Andric 
5000b57cec5SDimitry Andric     // Some insertions and extractions can be done directly but others
5010b57cec5SDimitry Andric     // need to go via integers.
5020b57cec5SDimitry Andric     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
5030b57cec5SDimitry Andric     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
5040b57cec5SDimitry Andric     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
5050b57cec5SDimitry Andric     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
5060b57cec5SDimitry Andric 
5070b57cec5SDimitry Andric     // These operations have direct equivalents.
5080b57cec5SDimitry Andric     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
5090b57cec5SDimitry Andric     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
5100b57cec5SDimitry Andric     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
5110b57cec5SDimitry Andric     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
5120b57cec5SDimitry Andric     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
5130b57cec5SDimitry Andric     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
5140b57cec5SDimitry Andric     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
5150b57cec5SDimitry Andric     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
5160b57cec5SDimitry Andric     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
5170b57cec5SDimitry Andric     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
5180b57cec5SDimitry Andric     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
5190b57cec5SDimitry Andric     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
5200b57cec5SDimitry Andric     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
5210b57cec5SDimitry Andric     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
5220b57cec5SDimitry Andric 
5230b57cec5SDimitry Andric     // Handle constrained floating-point operations.
5240b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
5250b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
5260b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
5270b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
5280b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
5290b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
5300b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
5310b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
5320b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
5330b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
5340b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
5350b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
5360b57cec5SDimitry Andric   }
5370b57cec5SDimitry Andric 
5380b57cec5SDimitry Andric   // The vector enhancements facility 1 has instructions for these.
5390b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements1()) {
5400b57cec5SDimitry Andric     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
5410b57cec5SDimitry Andric     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
5420b57cec5SDimitry Andric     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
5430b57cec5SDimitry Andric     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
5440b57cec5SDimitry Andric     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
5450b57cec5SDimitry Andric     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
5460b57cec5SDimitry Andric     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
5470b57cec5SDimitry Andric     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
5480b57cec5SDimitry Andric     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
5490b57cec5SDimitry Andric     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
5500b57cec5SDimitry Andric     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
5510b57cec5SDimitry Andric     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
5520b57cec5SDimitry Andric     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
5530b57cec5SDimitry Andric     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
5540b57cec5SDimitry Andric 
5550b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
5560b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
5570b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
5580b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
5590b57cec5SDimitry Andric 
5600b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
5610b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
5620b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
5630b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
5640b57cec5SDimitry Andric 
5650b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
5660b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
5670b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
5680b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
5690b57cec5SDimitry Andric 
5700b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
5710b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
5720b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
5730b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
5740b57cec5SDimitry Andric 
5750b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
5760b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
5770b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
5780b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
5790b57cec5SDimitry Andric 
5800b57cec5SDimitry Andric     // Handle constrained floating-point operations.
5810b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
5820b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
5830b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
5840b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
5850b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
5860b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
5870b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
5880b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
5890b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
5900b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
5910b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
5920b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
5930b57cec5SDimitry Andric     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
5940b57cec5SDimitry Andric                      MVT::v4f32, MVT::v2f64 }) {
5950b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
5960b57cec5SDimitry Andric       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
597480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
598480093f4SDimitry Andric       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
5990b57cec5SDimitry Andric     }
6000b57cec5SDimitry Andric   }
6010b57cec5SDimitry Andric 
602480093f4SDimitry Andric   // We only have fused f128 multiply-addition on vector registers.
603480093f4SDimitry Andric   if (!Subtarget.hasVectorEnhancements1()) {
6040b57cec5SDimitry Andric     setOperationAction(ISD::FMA, MVT::f128, Expand);
605480093f4SDimitry Andric     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
606480093f4SDimitry Andric   }
6070b57cec5SDimitry Andric 
6080b57cec5SDimitry Andric   // We don't have a copysign instruction on vector registers.
6090b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements1())
6100b57cec5SDimitry Andric     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
6110b57cec5SDimitry Andric 
6120b57cec5SDimitry Andric   // Needed so that we don't try to implement f128 constant loads using
6130b57cec5SDimitry Andric   // a load-and-extend of a f80 constant (in cases where the constant
6140b57cec5SDimitry Andric   // would fit in an f80).
6150b57cec5SDimitry Andric   for (MVT VT : MVT::fp_valuetypes())
6160b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
6170b57cec5SDimitry Andric 
6180b57cec5SDimitry Andric   // We don't have extending load instruction on vector registers.
6190b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements1()) {
6200b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
6210b57cec5SDimitry Andric     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
6220b57cec5SDimitry Andric   }
6230b57cec5SDimitry Andric 
6240b57cec5SDimitry Andric   // Floating-point truncation and stores need to be done separately.
6250b57cec5SDimitry Andric   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
6260b57cec5SDimitry Andric   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
6270b57cec5SDimitry Andric   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
6280b57cec5SDimitry Andric 
6290b57cec5SDimitry Andric   // We have 64-bit FPR<->GPR moves, but need special handling for
6300b57cec5SDimitry Andric   // 32-bit forms.
6310b57cec5SDimitry Andric   if (!Subtarget.hasVector()) {
6320b57cec5SDimitry Andric     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
6330b57cec5SDimitry Andric     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
6340b57cec5SDimitry Andric   }
6350b57cec5SDimitry Andric 
6360b57cec5SDimitry Andric   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
6370b57cec5SDimitry Andric   // structure, but VAEND is a no-op.
6380b57cec5SDimitry Andric   setOperationAction(ISD::VASTART, MVT::Other, Custom);
6390b57cec5SDimitry Andric   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
6400b57cec5SDimitry Andric   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
6410b57cec5SDimitry Andric 
6420b57cec5SDimitry Andric   // Codes for which we want to perform some z-specific combinations.
6430b57cec5SDimitry Andric   setTargetDAGCombine(ISD::ZERO_EXTEND);
6440b57cec5SDimitry Andric   setTargetDAGCombine(ISD::SIGN_EXTEND);
6450b57cec5SDimitry Andric   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
6460b57cec5SDimitry Andric   setTargetDAGCombine(ISD::LOAD);
6470b57cec5SDimitry Andric   setTargetDAGCombine(ISD::STORE);
6480b57cec5SDimitry Andric   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
6490b57cec5SDimitry Andric   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
6500b57cec5SDimitry Andric   setTargetDAGCombine(ISD::FP_ROUND);
651480093f4SDimitry Andric   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
6520b57cec5SDimitry Andric   setTargetDAGCombine(ISD::FP_EXTEND);
6535ffd83dbSDimitry Andric   setTargetDAGCombine(ISD::SINT_TO_FP);
6545ffd83dbSDimitry Andric   setTargetDAGCombine(ISD::UINT_TO_FP);
655480093f4SDimitry Andric   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
6560b57cec5SDimitry Andric   setTargetDAGCombine(ISD::BSWAP);
6570b57cec5SDimitry Andric   setTargetDAGCombine(ISD::SDIV);
6580b57cec5SDimitry Andric   setTargetDAGCombine(ISD::UDIV);
6590b57cec5SDimitry Andric   setTargetDAGCombine(ISD::SREM);
6600b57cec5SDimitry Andric   setTargetDAGCombine(ISD::UREM);
6615ffd83dbSDimitry Andric   setTargetDAGCombine(ISD::INTRINSIC_VOID);
6625ffd83dbSDimitry Andric   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
6630b57cec5SDimitry Andric 
6640b57cec5SDimitry Andric   // Handle intrinsics.
6650b57cec5SDimitry Andric   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
6660b57cec5SDimitry Andric   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
6670b57cec5SDimitry Andric 
6680b57cec5SDimitry Andric   // We want to use MVC in preference to even a single load/store pair.
6690b57cec5SDimitry Andric   MaxStoresPerMemcpy = 0;
6700b57cec5SDimitry Andric   MaxStoresPerMemcpyOptSize = 0;
6710b57cec5SDimitry Andric 
6720b57cec5SDimitry Andric   // The main memset sequence is a byte store followed by an MVC.
6730b57cec5SDimitry Andric   // Two STC or MV..I stores win over that, but the kind of fused stores
6740b57cec5SDimitry Andric   // generated by target-independent code don't when the byte value is
6750b57cec5SDimitry Andric   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
6760b57cec5SDimitry Andric   // than "STC;MVC".  Handle the choice in target-specific code instead.
6770b57cec5SDimitry Andric   MaxStoresPerMemset = 0;
6780b57cec5SDimitry Andric   MaxStoresPerMemsetOptSize = 0;
679480093f4SDimitry Andric 
680480093f4SDimitry Andric   // Default to having -disable-strictnode-mutation on
681480093f4SDimitry Andric   IsStrictFPEnabled = true;
6820b57cec5SDimitry Andric }
6830b57cec5SDimitry Andric 
6845ffd83dbSDimitry Andric bool SystemZTargetLowering::useSoftFloat() const {
6855ffd83dbSDimitry Andric   return Subtarget.hasSoftFloat();
6865ffd83dbSDimitry Andric }
6875ffd83dbSDimitry Andric 
6880b57cec5SDimitry Andric EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
6890b57cec5SDimitry Andric                                               LLVMContext &, EVT VT) const {
6900b57cec5SDimitry Andric   if (!VT.isVector())
6910b57cec5SDimitry Andric     return MVT::i32;
6920b57cec5SDimitry Andric   return VT.changeVectorElementTypeToInteger();
6930b57cec5SDimitry Andric }
6940b57cec5SDimitry Andric 
695480093f4SDimitry Andric bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
696480093f4SDimitry Andric     const MachineFunction &MF, EVT VT) const {
6970b57cec5SDimitry Andric   VT = VT.getScalarType();
6980b57cec5SDimitry Andric 
6990b57cec5SDimitry Andric   if (!VT.isSimple())
7000b57cec5SDimitry Andric     return false;
7010b57cec5SDimitry Andric 
7020b57cec5SDimitry Andric   switch (VT.getSimpleVT().SimpleTy) {
7030b57cec5SDimitry Andric   case MVT::f32:
7040b57cec5SDimitry Andric   case MVT::f64:
7050b57cec5SDimitry Andric     return true;
7060b57cec5SDimitry Andric   case MVT::f128:
7070b57cec5SDimitry Andric     return Subtarget.hasVectorEnhancements1();
7080b57cec5SDimitry Andric   default:
7090b57cec5SDimitry Andric     break;
7100b57cec5SDimitry Andric   }
7110b57cec5SDimitry Andric 
7120b57cec5SDimitry Andric   return false;
7130b57cec5SDimitry Andric }
7140b57cec5SDimitry Andric 
7150b57cec5SDimitry Andric // Return true if the constant can be generated with a vector instruction,
7160b57cec5SDimitry Andric // such as VGM, VGMB or VREPI.
7170b57cec5SDimitry Andric bool SystemZVectorConstantInfo::isVectorConstantLegal(
7180b57cec5SDimitry Andric     const SystemZSubtarget &Subtarget) {
7190b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
7200b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7210b57cec5SDimitry Andric   if (!Subtarget.hasVector() ||
7220b57cec5SDimitry Andric       (isFP128 && !Subtarget.hasVectorEnhancements1()))
7230b57cec5SDimitry Andric     return false;
7240b57cec5SDimitry Andric 
7250b57cec5SDimitry Andric   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
7260b57cec5SDimitry Andric   // preferred way of creating all-zero and all-one vectors so give it
7270b57cec5SDimitry Andric   // priority over other methods below.
7280b57cec5SDimitry Andric   unsigned Mask = 0;
7290b57cec5SDimitry Andric   unsigned I = 0;
7300b57cec5SDimitry Andric   for (; I < SystemZ::VectorBytes; ++I) {
7310b57cec5SDimitry Andric     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
7320b57cec5SDimitry Andric     if (Byte == 0xff)
7330b57cec5SDimitry Andric       Mask |= 1ULL << I;
7340b57cec5SDimitry Andric     else if (Byte != 0)
7350b57cec5SDimitry Andric       break;
7360b57cec5SDimitry Andric   }
7370b57cec5SDimitry Andric   if (I == SystemZ::VectorBytes) {
7380b57cec5SDimitry Andric     Opcode = SystemZISD::BYTE_MASK;
7390b57cec5SDimitry Andric     OpVals.push_back(Mask);
7400b57cec5SDimitry Andric     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
7410b57cec5SDimitry Andric     return true;
7420b57cec5SDimitry Andric   }
7430b57cec5SDimitry Andric 
7440b57cec5SDimitry Andric   if (SplatBitSize > 64)
7450b57cec5SDimitry Andric     return false;
7460b57cec5SDimitry Andric 
7470b57cec5SDimitry Andric   auto tryValue = [&](uint64_t Value) -> bool {
7480b57cec5SDimitry Andric     // Try VECTOR REPLICATE IMMEDIATE
7490b57cec5SDimitry Andric     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
7500b57cec5SDimitry Andric     if (isInt<16>(SignedValue)) {
7510b57cec5SDimitry Andric       OpVals.push_back(((unsigned) SignedValue));
7520b57cec5SDimitry Andric       Opcode = SystemZISD::REPLICATE;
7530b57cec5SDimitry Andric       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
7540b57cec5SDimitry Andric                                SystemZ::VectorBits / SplatBitSize);
7550b57cec5SDimitry Andric       return true;
7560b57cec5SDimitry Andric     }
7570b57cec5SDimitry Andric     // Try VECTOR GENERATE MASK
7580b57cec5SDimitry Andric     unsigned Start, End;
7590b57cec5SDimitry Andric     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
7600b57cec5SDimitry Andric       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
7610b57cec5SDimitry Andric       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
7620b57cec5SDimitry Andric       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
7630b57cec5SDimitry Andric       OpVals.push_back(Start - (64 - SplatBitSize));
7640b57cec5SDimitry Andric       OpVals.push_back(End - (64 - SplatBitSize));
7650b57cec5SDimitry Andric       Opcode = SystemZISD::ROTATE_MASK;
7660b57cec5SDimitry Andric       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
7670b57cec5SDimitry Andric                                SystemZ::VectorBits / SplatBitSize);
7680b57cec5SDimitry Andric       return true;
7690b57cec5SDimitry Andric     }
7700b57cec5SDimitry Andric     return false;
7710b57cec5SDimitry Andric   };
7720b57cec5SDimitry Andric 
7730b57cec5SDimitry Andric   // First try assuming that any undefined bits above the highest set bit
7740b57cec5SDimitry Andric   // and below the lowest set bit are 1s.  This increases the likelihood of
7750b57cec5SDimitry Andric   // being able to use a sign-extended element value in VECTOR REPLICATE
7760b57cec5SDimitry Andric   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
7770b57cec5SDimitry Andric   uint64_t SplatBitsZ = SplatBits.getZExtValue();
7780b57cec5SDimitry Andric   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
7790b57cec5SDimitry Andric   uint64_t Lower =
7800b57cec5SDimitry Andric       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
7810b57cec5SDimitry Andric   uint64_t Upper =
7820b57cec5SDimitry Andric       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
7830b57cec5SDimitry Andric   if (tryValue(SplatBitsZ | Upper | Lower))
7840b57cec5SDimitry Andric     return true;
7850b57cec5SDimitry Andric 
7860b57cec5SDimitry Andric   // Now try assuming that any undefined bits between the first and
7870b57cec5SDimitry Andric   // last defined set bits are set.  This increases the chances of
7880b57cec5SDimitry Andric   // using a non-wraparound mask.
7890b57cec5SDimitry Andric   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
7900b57cec5SDimitry Andric   return tryValue(SplatBitsZ | Middle);
7910b57cec5SDimitry Andric }
7920b57cec5SDimitry Andric 
7930b57cec5SDimitry Andric SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
7940b57cec5SDimitry Andric   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
7950b57cec5SDimitry Andric   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
7960b57cec5SDimitry Andric   SplatBits = FPImm.bitcastToAPInt();
7970b57cec5SDimitry Andric   unsigned Width = SplatBits.getBitWidth();
798e8d8bef9SDimitry Andric   IntBits <<= (SystemZ::VectorBits - Width);
799e8d8bef9SDimitry Andric 
800e8d8bef9SDimitry Andric   // Find the smallest splat.
8010b57cec5SDimitry Andric   while (Width > 8) {
8020b57cec5SDimitry Andric     unsigned HalfSize = Width / 2;
8030b57cec5SDimitry Andric     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
8040b57cec5SDimitry Andric     APInt LowValue = SplatBits.trunc(HalfSize);
8050b57cec5SDimitry Andric 
8060b57cec5SDimitry Andric     // If the two halves do not match, stop here.
8070b57cec5SDimitry Andric     if (HighValue != LowValue || 8 > HalfSize)
8080b57cec5SDimitry Andric       break;
8090b57cec5SDimitry Andric 
8100b57cec5SDimitry Andric     SplatBits = HighValue;
8110b57cec5SDimitry Andric     Width = HalfSize;
8120b57cec5SDimitry Andric   }
8130b57cec5SDimitry Andric   SplatUndef = 0;
8140b57cec5SDimitry Andric   SplatBitSize = Width;
8150b57cec5SDimitry Andric }
8160b57cec5SDimitry Andric 
8170b57cec5SDimitry Andric SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
8180b57cec5SDimitry Andric   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
8190b57cec5SDimitry Andric   bool HasAnyUndefs;
8200b57cec5SDimitry Andric 
8210b57cec5SDimitry Andric   // Get IntBits by finding the 128 bit splat.
8220b57cec5SDimitry Andric   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
8230b57cec5SDimitry Andric                        true);
8240b57cec5SDimitry Andric 
8250b57cec5SDimitry Andric   // Get SplatBits by finding the 8 bit or greater splat.
8260b57cec5SDimitry Andric   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
8270b57cec5SDimitry Andric                        true);
8280b57cec5SDimitry Andric }
8290b57cec5SDimitry Andric 
8300b57cec5SDimitry Andric bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
8310b57cec5SDimitry Andric                                          bool ForCodeSize) const {
8320b57cec5SDimitry Andric   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
8330b57cec5SDimitry Andric   if (Imm.isZero() || Imm.isNegZero())
8340b57cec5SDimitry Andric     return true;
8350b57cec5SDimitry Andric 
8360b57cec5SDimitry Andric   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
8370b57cec5SDimitry Andric }
8380b57cec5SDimitry Andric 
8395ffd83dbSDimitry Andric /// Returns true if stack probing through inline assembly is requested.
8405ffd83dbSDimitry Andric bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
8415ffd83dbSDimitry Andric   // If the function specifically requests inline stack probes, emit them.
8425ffd83dbSDimitry Andric   if (MF.getFunction().hasFnAttribute("probe-stack"))
8435ffd83dbSDimitry Andric     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
8445ffd83dbSDimitry Andric            "inline-asm";
8455ffd83dbSDimitry Andric   return false;
8465ffd83dbSDimitry Andric }
8475ffd83dbSDimitry Andric 
8480b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8490b57cec5SDimitry Andric   // We can use CGFI or CLGFI.
8500b57cec5SDimitry Andric   return isInt<32>(Imm) || isUInt<32>(Imm);
8510b57cec5SDimitry Andric }
8520b57cec5SDimitry Andric 
8530b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8540b57cec5SDimitry Andric   // We can use ALGFI or SLGFI.
8550b57cec5SDimitry Andric   return isUInt<32>(Imm) || isUInt<32>(-Imm);
8560b57cec5SDimitry Andric }
8570b57cec5SDimitry Andric 
8580b57cec5SDimitry Andric bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
859fe6060f1SDimitry Andric     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
8600b57cec5SDimitry Andric   // Unaligned accesses should never be slower than the expanded version.
8610b57cec5SDimitry Andric   // We check specifically for aligned accesses in the few cases where
8620b57cec5SDimitry Andric   // they are required.
8630b57cec5SDimitry Andric   if (Fast)
8640b57cec5SDimitry Andric     *Fast = true;
8650b57cec5SDimitry Andric   return true;
8660b57cec5SDimitry Andric }
8670b57cec5SDimitry Andric 
8680b57cec5SDimitry Andric // Information about the addressing mode for a memory access.
8690b57cec5SDimitry Andric struct AddressingMode {
8700b57cec5SDimitry Andric   // True if a long displacement is supported.
8710b57cec5SDimitry Andric   bool LongDisplacement;
8720b57cec5SDimitry Andric 
8730b57cec5SDimitry Andric   // True if use of index register is supported.
8740b57cec5SDimitry Andric   bool IndexReg;
8750b57cec5SDimitry Andric 
8760b57cec5SDimitry Andric   AddressingMode(bool LongDispl, bool IdxReg) :
8770b57cec5SDimitry Andric     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
8780b57cec5SDimitry Andric };
8790b57cec5SDimitry Andric 
8800b57cec5SDimitry Andric // Return the desired addressing mode for a Load which has only one use (in
8810b57cec5SDimitry Andric // the same block) which is a Store.
8820b57cec5SDimitry Andric static AddressingMode getLoadStoreAddrMode(bool HasVector,
8830b57cec5SDimitry Andric                                           Type *Ty) {
8840b57cec5SDimitry Andric   // With vector support a Load->Store combination may be combined to either
8850b57cec5SDimitry Andric   // an MVC or vector operations and it seems to work best to allow the
8860b57cec5SDimitry Andric   // vector addressing mode.
8870b57cec5SDimitry Andric   if (HasVector)
8880b57cec5SDimitry Andric     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
8890b57cec5SDimitry Andric 
8900b57cec5SDimitry Andric   // Otherwise only the MVC case is special.
8910b57cec5SDimitry Andric   bool MVC = Ty->isIntegerTy(8);
8920b57cec5SDimitry Andric   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
8930b57cec5SDimitry Andric }
8940b57cec5SDimitry Andric 
8950b57cec5SDimitry Andric // Return the addressing mode which seems most desirable given an LLVM
8960b57cec5SDimitry Andric // Instruction pointer.
8970b57cec5SDimitry Andric static AddressingMode
8980b57cec5SDimitry Andric supportedAddressingMode(Instruction *I, bool HasVector) {
8990b57cec5SDimitry Andric   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
9000b57cec5SDimitry Andric     switch (II->getIntrinsicID()) {
9010b57cec5SDimitry Andric     default: break;
9020b57cec5SDimitry Andric     case Intrinsic::memset:
9030b57cec5SDimitry Andric     case Intrinsic::memmove:
9040b57cec5SDimitry Andric     case Intrinsic::memcpy:
9050b57cec5SDimitry Andric       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
9060b57cec5SDimitry Andric     }
9070b57cec5SDimitry Andric   }
9080b57cec5SDimitry Andric 
9090b57cec5SDimitry Andric   if (isa<LoadInst>(I) && I->hasOneUse()) {
9108bcb0991SDimitry Andric     auto *SingleUser = cast<Instruction>(*I->user_begin());
9110b57cec5SDimitry Andric     if (SingleUser->getParent() == I->getParent()) {
9120b57cec5SDimitry Andric       if (isa<ICmpInst>(SingleUser)) {
9130b57cec5SDimitry Andric         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
9140b57cec5SDimitry Andric           if (C->getBitWidth() <= 64 &&
9150b57cec5SDimitry Andric               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
9160b57cec5SDimitry Andric             // Comparison of memory with 16 bit signed / unsigned immediate
9170b57cec5SDimitry Andric             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
9180b57cec5SDimitry Andric       } else if (isa<StoreInst>(SingleUser))
9190b57cec5SDimitry Andric         // Load->Store
9200b57cec5SDimitry Andric         return getLoadStoreAddrMode(HasVector, I->getType());
9210b57cec5SDimitry Andric     }
9220b57cec5SDimitry Andric   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
9230b57cec5SDimitry Andric     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
9240b57cec5SDimitry Andric       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
9250b57cec5SDimitry Andric         // Load->Store
9260b57cec5SDimitry Andric         return getLoadStoreAddrMode(HasVector, LoadI->getType());
9270b57cec5SDimitry Andric   }
9280b57cec5SDimitry Andric 
9290b57cec5SDimitry Andric   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
9300b57cec5SDimitry Andric 
9310b57cec5SDimitry Andric     // * Use LDE instead of LE/LEY for z13 to avoid partial register
9320b57cec5SDimitry Andric     //   dependencies (LDE only supports small offsets).
9330b57cec5SDimitry Andric     // * Utilize the vector registers to hold floating point
9340b57cec5SDimitry Andric     //   values (vector load / store instructions only support small
9350b57cec5SDimitry Andric     //   offsets).
9360b57cec5SDimitry Andric 
9370b57cec5SDimitry Andric     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
9380b57cec5SDimitry Andric                          I->getOperand(0)->getType());
9390b57cec5SDimitry Andric     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
9400b57cec5SDimitry Andric     bool IsVectorAccess = MemAccessTy->isVectorTy();
9410b57cec5SDimitry Andric 
9420b57cec5SDimitry Andric     // A store of an extracted vector element will be combined into a VSTE type
9430b57cec5SDimitry Andric     // instruction.
9440b57cec5SDimitry Andric     if (!IsVectorAccess && isa<StoreInst>(I)) {
9450b57cec5SDimitry Andric       Value *DataOp = I->getOperand(0);
9460b57cec5SDimitry Andric       if (isa<ExtractElementInst>(DataOp))
9470b57cec5SDimitry Andric         IsVectorAccess = true;
9480b57cec5SDimitry Andric     }
9490b57cec5SDimitry Andric 
9500b57cec5SDimitry Andric     // A load which gets inserted into a vector element will be combined into a
9510b57cec5SDimitry Andric     // VLE type instruction.
9520b57cec5SDimitry Andric     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
9530b57cec5SDimitry Andric       User *LoadUser = *I->user_begin();
9540b57cec5SDimitry Andric       if (isa<InsertElementInst>(LoadUser))
9550b57cec5SDimitry Andric         IsVectorAccess = true;
9560b57cec5SDimitry Andric     }
9570b57cec5SDimitry Andric 
9580b57cec5SDimitry Andric     if (IsFPAccess || IsVectorAccess)
9590b57cec5SDimitry Andric       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
9600b57cec5SDimitry Andric   }
9610b57cec5SDimitry Andric 
9620b57cec5SDimitry Andric   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
9630b57cec5SDimitry Andric }
9640b57cec5SDimitry Andric 
9650b57cec5SDimitry Andric bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
9660b57cec5SDimitry Andric        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
9670b57cec5SDimitry Andric   // Punt on globals for now, although they can be used in limited
9680b57cec5SDimitry Andric   // RELATIVE LONG cases.
9690b57cec5SDimitry Andric   if (AM.BaseGV)
9700b57cec5SDimitry Andric     return false;
9710b57cec5SDimitry Andric 
9720b57cec5SDimitry Andric   // Require a 20-bit signed offset.
9730b57cec5SDimitry Andric   if (!isInt<20>(AM.BaseOffs))
9740b57cec5SDimitry Andric     return false;
9750b57cec5SDimitry Andric 
9760b57cec5SDimitry Andric   AddressingMode SupportedAM(true, true);
9770b57cec5SDimitry Andric   if (I != nullptr)
9780b57cec5SDimitry Andric     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
9790b57cec5SDimitry Andric 
9800b57cec5SDimitry Andric   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
9810b57cec5SDimitry Andric     return false;
9820b57cec5SDimitry Andric 
9830b57cec5SDimitry Andric   if (!SupportedAM.IndexReg)
9840b57cec5SDimitry Andric     // No indexing allowed.
9850b57cec5SDimitry Andric     return AM.Scale == 0;
9860b57cec5SDimitry Andric   else
9870b57cec5SDimitry Andric     // Indexing is OK but no scale factor can be applied.
9880b57cec5SDimitry Andric     return AM.Scale == 0 || AM.Scale == 1;
9890b57cec5SDimitry Andric }
9900b57cec5SDimitry Andric 
9910b57cec5SDimitry Andric bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
9920b57cec5SDimitry Andric   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
9930b57cec5SDimitry Andric     return false;
994e8d8bef9SDimitry Andric   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
995e8d8bef9SDimitry Andric   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
9960b57cec5SDimitry Andric   return FromBits > ToBits;
9970b57cec5SDimitry Andric }
9980b57cec5SDimitry Andric 
9990b57cec5SDimitry Andric bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
10000b57cec5SDimitry Andric   if (!FromVT.isInteger() || !ToVT.isInteger())
10010b57cec5SDimitry Andric     return false;
1002e8d8bef9SDimitry Andric   unsigned FromBits = FromVT.getFixedSizeInBits();
1003e8d8bef9SDimitry Andric   unsigned ToBits = ToVT.getFixedSizeInBits();
10040b57cec5SDimitry Andric   return FromBits > ToBits;
10050b57cec5SDimitry Andric }
10060b57cec5SDimitry Andric 
10070b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
10080b57cec5SDimitry Andric // Inline asm support
10090b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
10100b57cec5SDimitry Andric 
10110b57cec5SDimitry Andric TargetLowering::ConstraintType
10120b57cec5SDimitry Andric SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
10130b57cec5SDimitry Andric   if (Constraint.size() == 1) {
10140b57cec5SDimitry Andric     switch (Constraint[0]) {
10150b57cec5SDimitry Andric     case 'a': // Address register
10160b57cec5SDimitry Andric     case 'd': // Data register (equivalent to 'r')
10170b57cec5SDimitry Andric     case 'f': // Floating-point register
10180b57cec5SDimitry Andric     case 'h': // High-part register
10190b57cec5SDimitry Andric     case 'r': // General-purpose register
10200b57cec5SDimitry Andric     case 'v': // Vector register
10210b57cec5SDimitry Andric       return C_RegisterClass;
10220b57cec5SDimitry Andric 
10230b57cec5SDimitry Andric     case 'Q': // Memory with base and unsigned 12-bit displacement
10240b57cec5SDimitry Andric     case 'R': // Likewise, plus an index
10250b57cec5SDimitry Andric     case 'S': // Memory with base and signed 20-bit displacement
10260b57cec5SDimitry Andric     case 'T': // Likewise, plus an index
10270b57cec5SDimitry Andric     case 'm': // Equivalent to 'T'.
10280b57cec5SDimitry Andric       return C_Memory;
10290b57cec5SDimitry Andric 
10300b57cec5SDimitry Andric     case 'I': // Unsigned 8-bit constant
10310b57cec5SDimitry Andric     case 'J': // Unsigned 12-bit constant
10320b57cec5SDimitry Andric     case 'K': // Signed 16-bit constant
10330b57cec5SDimitry Andric     case 'L': // Signed 20-bit displacement (on all targets we support)
10340b57cec5SDimitry Andric     case 'M': // 0x7fffffff
10350b57cec5SDimitry Andric       return C_Immediate;
10360b57cec5SDimitry Andric 
10370b57cec5SDimitry Andric     default:
10380b57cec5SDimitry Andric       break;
10390b57cec5SDimitry Andric     }
10400b57cec5SDimitry Andric   }
10410b57cec5SDimitry Andric   return TargetLowering::getConstraintType(Constraint);
10420b57cec5SDimitry Andric }
10430b57cec5SDimitry Andric 
10440b57cec5SDimitry Andric TargetLowering::ConstraintWeight SystemZTargetLowering::
10450b57cec5SDimitry Andric getSingleConstraintMatchWeight(AsmOperandInfo &info,
10460b57cec5SDimitry Andric                                const char *constraint) const {
10470b57cec5SDimitry Andric   ConstraintWeight weight = CW_Invalid;
10480b57cec5SDimitry Andric   Value *CallOperandVal = info.CallOperandVal;
10490b57cec5SDimitry Andric   // If we don't have a value, we can't do a match,
10500b57cec5SDimitry Andric   // but allow it at the lowest weight.
10510b57cec5SDimitry Andric   if (!CallOperandVal)
10520b57cec5SDimitry Andric     return CW_Default;
10530b57cec5SDimitry Andric   Type *type = CallOperandVal->getType();
10540b57cec5SDimitry Andric   // Look at the constraint type.
10550b57cec5SDimitry Andric   switch (*constraint) {
10560b57cec5SDimitry Andric   default:
10570b57cec5SDimitry Andric     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10580b57cec5SDimitry Andric     break;
10590b57cec5SDimitry Andric 
10600b57cec5SDimitry Andric   case 'a': // Address register
10610b57cec5SDimitry Andric   case 'd': // Data register (equivalent to 'r')
10620b57cec5SDimitry Andric   case 'h': // High-part register
10630b57cec5SDimitry Andric   case 'r': // General-purpose register
10640b57cec5SDimitry Andric     if (CallOperandVal->getType()->isIntegerTy())
10650b57cec5SDimitry Andric       weight = CW_Register;
10660b57cec5SDimitry Andric     break;
10670b57cec5SDimitry Andric 
10680b57cec5SDimitry Andric   case 'f': // Floating-point register
10690b57cec5SDimitry Andric     if (type->isFloatingPointTy())
10700b57cec5SDimitry Andric       weight = CW_Register;
10710b57cec5SDimitry Andric     break;
10720b57cec5SDimitry Andric 
10730b57cec5SDimitry Andric   case 'v': // Vector register
10740b57cec5SDimitry Andric     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
10750b57cec5SDimitry Andric         Subtarget.hasVector())
10760b57cec5SDimitry Andric       weight = CW_Register;
10770b57cec5SDimitry Andric     break;
10780b57cec5SDimitry Andric 
10790b57cec5SDimitry Andric   case 'I': // Unsigned 8-bit constant
10800b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
10810b57cec5SDimitry Andric       if (isUInt<8>(C->getZExtValue()))
10820b57cec5SDimitry Andric         weight = CW_Constant;
10830b57cec5SDimitry Andric     break;
10840b57cec5SDimitry Andric 
10850b57cec5SDimitry Andric   case 'J': // Unsigned 12-bit constant
10860b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
10870b57cec5SDimitry Andric       if (isUInt<12>(C->getZExtValue()))
10880b57cec5SDimitry Andric         weight = CW_Constant;
10890b57cec5SDimitry Andric     break;
10900b57cec5SDimitry Andric 
10910b57cec5SDimitry Andric   case 'K': // Signed 16-bit constant
10920b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
10930b57cec5SDimitry Andric       if (isInt<16>(C->getSExtValue()))
10940b57cec5SDimitry Andric         weight = CW_Constant;
10950b57cec5SDimitry Andric     break;
10960b57cec5SDimitry Andric 
10970b57cec5SDimitry Andric   case 'L': // Signed 20-bit displacement (on all targets we support)
10980b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
10990b57cec5SDimitry Andric       if (isInt<20>(C->getSExtValue()))
11000b57cec5SDimitry Andric         weight = CW_Constant;
11010b57cec5SDimitry Andric     break;
11020b57cec5SDimitry Andric 
11030b57cec5SDimitry Andric   case 'M': // 0x7fffffff
11040b57cec5SDimitry Andric     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
11050b57cec5SDimitry Andric       if (C->getZExtValue() == 0x7fffffff)
11060b57cec5SDimitry Andric         weight = CW_Constant;
11070b57cec5SDimitry Andric     break;
11080b57cec5SDimitry Andric   }
11090b57cec5SDimitry Andric   return weight;
11100b57cec5SDimitry Andric }
11110b57cec5SDimitry Andric 
11120b57cec5SDimitry Andric // Parse a "{tNNN}" register constraint for which the register type "t"
11130b57cec5SDimitry Andric // has already been verified.  MC is the class associated with "t" and
11140b57cec5SDimitry Andric // Map maps 0-based register numbers to LLVM register numbers.
11150b57cec5SDimitry Andric static std::pair<unsigned, const TargetRegisterClass *>
11160b57cec5SDimitry Andric parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
11170b57cec5SDimitry Andric                     const unsigned *Map, unsigned Size) {
11180b57cec5SDimitry Andric   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
11190b57cec5SDimitry Andric   if (isdigit(Constraint[2])) {
11200b57cec5SDimitry Andric     unsigned Index;
11210b57cec5SDimitry Andric     bool Failed =
11220b57cec5SDimitry Andric         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
11230b57cec5SDimitry Andric     if (!Failed && Index < Size && Map[Index])
11240b57cec5SDimitry Andric       return std::make_pair(Map[Index], RC);
11250b57cec5SDimitry Andric   }
11260b57cec5SDimitry Andric   return std::make_pair(0U, nullptr);
11270b57cec5SDimitry Andric }
11280b57cec5SDimitry Andric 
11290b57cec5SDimitry Andric std::pair<unsigned, const TargetRegisterClass *>
11300b57cec5SDimitry Andric SystemZTargetLowering::getRegForInlineAsmConstraint(
11310b57cec5SDimitry Andric     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
11320b57cec5SDimitry Andric   if (Constraint.size() == 1) {
11330b57cec5SDimitry Andric     // GCC Constraint Letters
11340b57cec5SDimitry Andric     switch (Constraint[0]) {
11350b57cec5SDimitry Andric     default: break;
11360b57cec5SDimitry Andric     case 'd': // Data register (equivalent to 'r')
11370b57cec5SDimitry Andric     case 'r': // General-purpose register
11380b57cec5SDimitry Andric       if (VT == MVT::i64)
11390b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
11400b57cec5SDimitry Andric       else if (VT == MVT::i128)
11410b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
11420b57cec5SDimitry Andric       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
11430b57cec5SDimitry Andric 
11440b57cec5SDimitry Andric     case 'a': // Address register
11450b57cec5SDimitry Andric       if (VT == MVT::i64)
11460b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
11470b57cec5SDimitry Andric       else if (VT == MVT::i128)
11480b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
11490b57cec5SDimitry Andric       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
11500b57cec5SDimitry Andric 
11510b57cec5SDimitry Andric     case 'h': // High-part register (an LLVM extension)
11520b57cec5SDimitry Andric       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
11530b57cec5SDimitry Andric 
11540b57cec5SDimitry Andric     case 'f': // Floating-point register
11555ffd83dbSDimitry Andric       if (!useSoftFloat()) {
11560b57cec5SDimitry Andric         if (VT == MVT::f64)
11570b57cec5SDimitry Andric           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
11580b57cec5SDimitry Andric         else if (VT == MVT::f128)
11590b57cec5SDimitry Andric           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
11600b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
11615ffd83dbSDimitry Andric       }
11625ffd83dbSDimitry Andric       break;
11630b57cec5SDimitry Andric     case 'v': // Vector register
11640b57cec5SDimitry Andric       if (Subtarget.hasVector()) {
11650b57cec5SDimitry Andric         if (VT == MVT::f32)
11660b57cec5SDimitry Andric           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
11670b57cec5SDimitry Andric         if (VT == MVT::f64)
11680b57cec5SDimitry Andric           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
11690b57cec5SDimitry Andric         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
11700b57cec5SDimitry Andric       }
11710b57cec5SDimitry Andric       break;
11720b57cec5SDimitry Andric     }
11730b57cec5SDimitry Andric   }
11740b57cec5SDimitry Andric   if (Constraint.size() > 0 && Constraint[0] == '{') {
11750b57cec5SDimitry Andric     // We need to override the default register parsing for GPRs and FPRs
11760b57cec5SDimitry Andric     // because the interpretation depends on VT.  The internal names of
11770b57cec5SDimitry Andric     // the registers are also different from the external names
11780b57cec5SDimitry Andric     // (F0D and F0S instead of F0, etc.).
11790b57cec5SDimitry Andric     if (Constraint[1] == 'r') {
11800b57cec5SDimitry Andric       if (VT == MVT::i32)
11810b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
11820b57cec5SDimitry Andric                                    SystemZMC::GR32Regs, 16);
11830b57cec5SDimitry Andric       if (VT == MVT::i128)
11840b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
11850b57cec5SDimitry Andric                                    SystemZMC::GR128Regs, 16);
11860b57cec5SDimitry Andric       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
11870b57cec5SDimitry Andric                                  SystemZMC::GR64Regs, 16);
11880b57cec5SDimitry Andric     }
11890b57cec5SDimitry Andric     if (Constraint[1] == 'f') {
11905ffd83dbSDimitry Andric       if (useSoftFloat())
11915ffd83dbSDimitry Andric         return std::make_pair(
11925ffd83dbSDimitry Andric             0u, static_cast<const TargetRegisterClass *>(nullptr));
11930b57cec5SDimitry Andric       if (VT == MVT::f32)
11940b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
11950b57cec5SDimitry Andric                                    SystemZMC::FP32Regs, 16);
11960b57cec5SDimitry Andric       if (VT == MVT::f128)
11970b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
11980b57cec5SDimitry Andric                                    SystemZMC::FP128Regs, 16);
11990b57cec5SDimitry Andric       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
12000b57cec5SDimitry Andric                                  SystemZMC::FP64Regs, 16);
12010b57cec5SDimitry Andric     }
12020b57cec5SDimitry Andric     if (Constraint[1] == 'v') {
12035ffd83dbSDimitry Andric       if (!Subtarget.hasVector())
12045ffd83dbSDimitry Andric         return std::make_pair(
12055ffd83dbSDimitry Andric             0u, static_cast<const TargetRegisterClass *>(nullptr));
12060b57cec5SDimitry Andric       if (VT == MVT::f32)
12070b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
12080b57cec5SDimitry Andric                                    SystemZMC::VR32Regs, 32);
12090b57cec5SDimitry Andric       if (VT == MVT::f64)
12100b57cec5SDimitry Andric         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
12110b57cec5SDimitry Andric                                    SystemZMC::VR64Regs, 32);
12120b57cec5SDimitry Andric       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
12130b57cec5SDimitry Andric                                  SystemZMC::VR128Regs, 32);
12140b57cec5SDimitry Andric     }
12150b57cec5SDimitry Andric   }
12160b57cec5SDimitry Andric   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
12170b57cec5SDimitry Andric }
12180b57cec5SDimitry Andric 
12195ffd83dbSDimitry Andric // FIXME? Maybe this could be a TableGen attribute on some registers and
12205ffd83dbSDimitry Andric // this table could be generated automatically from RegInfo.
12215ffd83dbSDimitry Andric Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12225ffd83dbSDimitry Andric                                                   const MachineFunction &MF) const {
12235ffd83dbSDimitry Andric 
12245ffd83dbSDimitry Andric   Register Reg = StringSwitch<Register>(RegName)
12255ffd83dbSDimitry Andric                    .Case("r15", SystemZ::R15D)
12265ffd83dbSDimitry Andric                    .Default(0);
12275ffd83dbSDimitry Andric   if (Reg)
12285ffd83dbSDimitry Andric     return Reg;
12295ffd83dbSDimitry Andric   report_fatal_error("Invalid register name global variable");
12305ffd83dbSDimitry Andric }
12315ffd83dbSDimitry Andric 
12320b57cec5SDimitry Andric void SystemZTargetLowering::
12330b57cec5SDimitry Andric LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
12340b57cec5SDimitry Andric                              std::vector<SDValue> &Ops,
12350b57cec5SDimitry Andric                              SelectionDAG &DAG) const {
12360b57cec5SDimitry Andric   // Only support length 1 constraints for now.
12370b57cec5SDimitry Andric   if (Constraint.length() == 1) {
12380b57cec5SDimitry Andric     switch (Constraint[0]) {
12390b57cec5SDimitry Andric     case 'I': // Unsigned 8-bit constant
12400b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12410b57cec5SDimitry Andric         if (isUInt<8>(C->getZExtValue()))
12420b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
12430b57cec5SDimitry Andric                                               Op.getValueType()));
12440b57cec5SDimitry Andric       return;
12450b57cec5SDimitry Andric 
12460b57cec5SDimitry Andric     case 'J': // Unsigned 12-bit constant
12470b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12480b57cec5SDimitry Andric         if (isUInt<12>(C->getZExtValue()))
12490b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
12500b57cec5SDimitry Andric                                               Op.getValueType()));
12510b57cec5SDimitry Andric       return;
12520b57cec5SDimitry Andric 
12530b57cec5SDimitry Andric     case 'K': // Signed 16-bit constant
12540b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12550b57cec5SDimitry Andric         if (isInt<16>(C->getSExtValue()))
12560b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
12570b57cec5SDimitry Andric                                               Op.getValueType()));
12580b57cec5SDimitry Andric       return;
12590b57cec5SDimitry Andric 
12600b57cec5SDimitry Andric     case 'L': // Signed 20-bit displacement (on all targets we support)
12610b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12620b57cec5SDimitry Andric         if (isInt<20>(C->getSExtValue()))
12630b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
12640b57cec5SDimitry Andric                                               Op.getValueType()));
12650b57cec5SDimitry Andric       return;
12660b57cec5SDimitry Andric 
12670b57cec5SDimitry Andric     case 'M': // 0x7fffffff
12680b57cec5SDimitry Andric       if (auto *C = dyn_cast<ConstantSDNode>(Op))
12690b57cec5SDimitry Andric         if (C->getZExtValue() == 0x7fffffff)
12700b57cec5SDimitry Andric           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
12710b57cec5SDimitry Andric                                               Op.getValueType()));
12720b57cec5SDimitry Andric       return;
12730b57cec5SDimitry Andric     }
12740b57cec5SDimitry Andric   }
12750b57cec5SDimitry Andric   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12760b57cec5SDimitry Andric }
12770b57cec5SDimitry Andric 
12780b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
12790b57cec5SDimitry Andric // Calling conventions
12800b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
12810b57cec5SDimitry Andric 
12820b57cec5SDimitry Andric #include "SystemZGenCallingConv.inc"
12830b57cec5SDimitry Andric 
12840b57cec5SDimitry Andric const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
12850b57cec5SDimitry Andric   CallingConv::ID) const {
12860b57cec5SDimitry Andric   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
12870b57cec5SDimitry Andric                                            SystemZ::R14D, 0 };
12880b57cec5SDimitry Andric   return ScratchRegs;
12890b57cec5SDimitry Andric }
12900b57cec5SDimitry Andric 
12910b57cec5SDimitry Andric bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
12920b57cec5SDimitry Andric                                                      Type *ToType) const {
12930b57cec5SDimitry Andric   return isTruncateFree(FromType, ToType);
12940b57cec5SDimitry Andric }
12950b57cec5SDimitry Andric 
12960b57cec5SDimitry Andric bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
12970b57cec5SDimitry Andric   return CI->isTailCall();
12980b57cec5SDimitry Andric }
12990b57cec5SDimitry Andric 
13000b57cec5SDimitry Andric // We do not yet support 128-bit single-element vector types.  If the user
13010b57cec5SDimitry Andric // attempts to use such types as function argument or return type, prefer
13020b57cec5SDimitry Andric // to error out instead of emitting code violating the ABI.
13030b57cec5SDimitry Andric static void VerifyVectorType(MVT VT, EVT ArgVT) {
13040b57cec5SDimitry Andric   if (ArgVT.isVector() && !VT.isVector())
13050b57cec5SDimitry Andric     report_fatal_error("Unsupported vector argument or return type");
13060b57cec5SDimitry Andric }
13070b57cec5SDimitry Andric 
13080b57cec5SDimitry Andric static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
13090b57cec5SDimitry Andric   for (unsigned i = 0; i < Ins.size(); ++i)
13100b57cec5SDimitry Andric     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
13110b57cec5SDimitry Andric }
13120b57cec5SDimitry Andric 
13130b57cec5SDimitry Andric static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
13140b57cec5SDimitry Andric   for (unsigned i = 0; i < Outs.size(); ++i)
13150b57cec5SDimitry Andric     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
13160b57cec5SDimitry Andric }
13170b57cec5SDimitry Andric 
13180b57cec5SDimitry Andric // Value is a value that has been passed to us in the location described by VA
13190b57cec5SDimitry Andric // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
13200b57cec5SDimitry Andric // any loads onto Chain.
13210b57cec5SDimitry Andric static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
13220b57cec5SDimitry Andric                                    CCValAssign &VA, SDValue Chain,
13230b57cec5SDimitry Andric                                    SDValue Value) {
13240b57cec5SDimitry Andric   // If the argument has been promoted from a smaller type, insert an
13250b57cec5SDimitry Andric   // assertion to capture this.
13260b57cec5SDimitry Andric   if (VA.getLocInfo() == CCValAssign::SExt)
13270b57cec5SDimitry Andric     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
13280b57cec5SDimitry Andric                         DAG.getValueType(VA.getValVT()));
13290b57cec5SDimitry Andric   else if (VA.getLocInfo() == CCValAssign::ZExt)
13300b57cec5SDimitry Andric     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
13310b57cec5SDimitry Andric                         DAG.getValueType(VA.getValVT()));
13320b57cec5SDimitry Andric 
13330b57cec5SDimitry Andric   if (VA.isExtInLoc())
13340b57cec5SDimitry Andric     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
13350b57cec5SDimitry Andric   else if (VA.getLocInfo() == CCValAssign::BCvt) {
13360b57cec5SDimitry Andric     // If this is a short vector argument loaded from the stack,
13370b57cec5SDimitry Andric     // extend from i64 to full vector size and then bitcast.
13380b57cec5SDimitry Andric     assert(VA.getLocVT() == MVT::i64);
13390b57cec5SDimitry Andric     assert(VA.getValVT().isVector());
13400b57cec5SDimitry Andric     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
13410b57cec5SDimitry Andric     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
13420b57cec5SDimitry Andric   } else
13430b57cec5SDimitry Andric     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
13440b57cec5SDimitry Andric   return Value;
13450b57cec5SDimitry Andric }
13460b57cec5SDimitry Andric 
13470b57cec5SDimitry Andric // Value is a value of type VA.getValVT() that we need to copy into
13480b57cec5SDimitry Andric // the location described by VA.  Return a copy of Value converted to
13490b57cec5SDimitry Andric // VA.getValVT().  The caller is responsible for handling indirect values.
13500b57cec5SDimitry Andric static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
13510b57cec5SDimitry Andric                                    CCValAssign &VA, SDValue Value) {
13520b57cec5SDimitry Andric   switch (VA.getLocInfo()) {
13530b57cec5SDimitry Andric   case CCValAssign::SExt:
13540b57cec5SDimitry Andric     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
13550b57cec5SDimitry Andric   case CCValAssign::ZExt:
13560b57cec5SDimitry Andric     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
13570b57cec5SDimitry Andric   case CCValAssign::AExt:
13580b57cec5SDimitry Andric     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1359349cc55cSDimitry Andric   case CCValAssign::BCvt: {
1360349cc55cSDimitry Andric     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1361349cc55cSDimitry Andric     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1362349cc55cSDimitry Andric            VA.getValVT() == MVT::f128);
1363349cc55cSDimitry Andric     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1364349cc55cSDimitry Andric                             ? MVT::v2i64
1365349cc55cSDimitry Andric                             : VA.getLocVT();
1366349cc55cSDimitry Andric     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1367349cc55cSDimitry Andric     // For ELF, this is a short vector argument to be stored to the stack,
13680b57cec5SDimitry Andric     // bitcast to v2i64 and then extract first element.
1369349cc55cSDimitry Andric     if (BitCastToType == MVT::v2i64)
13700b57cec5SDimitry Andric       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
13710b57cec5SDimitry Andric                          DAG.getConstant(0, DL, MVT::i32));
1372349cc55cSDimitry Andric     return Value;
1373349cc55cSDimitry Andric   }
13740b57cec5SDimitry Andric   case CCValAssign::Full:
13750b57cec5SDimitry Andric     return Value;
13760b57cec5SDimitry Andric   default:
13770b57cec5SDimitry Andric     llvm_unreachable("Unhandled getLocInfo()");
13780b57cec5SDimitry Andric   }
13790b57cec5SDimitry Andric }
13800b57cec5SDimitry Andric 
1381fe6060f1SDimitry Andric static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1382fe6060f1SDimitry Andric   SDLoc DL(In);
1383fe6060f1SDimitry Andric   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1384fe6060f1SDimitry Andric                            DAG.getIntPtrConstant(0, DL));
1385fe6060f1SDimitry Andric   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1386fe6060f1SDimitry Andric                            DAG.getIntPtrConstant(1, DL));
1387fe6060f1SDimitry Andric   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1388fe6060f1SDimitry Andric                                     MVT::Untyped, Hi, Lo);
1389fe6060f1SDimitry Andric   return SDValue(Pair, 0);
1390fe6060f1SDimitry Andric }
1391fe6060f1SDimitry Andric 
1392fe6060f1SDimitry Andric static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1393fe6060f1SDimitry Andric   SDLoc DL(In);
1394fe6060f1SDimitry Andric   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1395fe6060f1SDimitry Andric                                           DL, MVT::i64, In);
1396fe6060f1SDimitry Andric   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1397fe6060f1SDimitry Andric                                           DL, MVT::i64, In);
1398fe6060f1SDimitry Andric   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1399fe6060f1SDimitry Andric }
1400fe6060f1SDimitry Andric 
1401fe6060f1SDimitry Andric bool SystemZTargetLowering::splitValueIntoRegisterParts(
1402fe6060f1SDimitry Andric     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1403fe6060f1SDimitry Andric     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1404fe6060f1SDimitry Andric   EVT ValueVT = Val.getValueType();
1405fe6060f1SDimitry Andric   assert((ValueVT != MVT::i128 ||
1406fe6060f1SDimitry Andric           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1407fe6060f1SDimitry Andric            (NumParts == 2 && PartVT == MVT::i64))) &&
1408fe6060f1SDimitry Andric          "Unknown handling of i128 value.");
1409fe6060f1SDimitry Andric   if (ValueVT == MVT::i128 && NumParts == 1) {
1410fe6060f1SDimitry Andric     // Inline assembly operand.
1411fe6060f1SDimitry Andric     Parts[0] = lowerI128ToGR128(DAG, Val);
1412fe6060f1SDimitry Andric     return true;
1413fe6060f1SDimitry Andric   }
1414fe6060f1SDimitry Andric   return false;
1415fe6060f1SDimitry Andric }
1416fe6060f1SDimitry Andric 
1417fe6060f1SDimitry Andric SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1418fe6060f1SDimitry Andric     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1419fe6060f1SDimitry Andric     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1420fe6060f1SDimitry Andric   assert((ValueVT != MVT::i128 ||
1421fe6060f1SDimitry Andric           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1422fe6060f1SDimitry Andric            (NumParts == 2 && PartVT == MVT::i64))) &&
1423fe6060f1SDimitry Andric          "Unknown handling of i128 value.");
1424fe6060f1SDimitry Andric   if (ValueVT == MVT::i128 && NumParts == 1)
1425fe6060f1SDimitry Andric     // Inline assembly operand.
1426fe6060f1SDimitry Andric     return lowerGR128ToI128(DAG, Parts[0]);
1427fe6060f1SDimitry Andric   return SDValue();
1428fe6060f1SDimitry Andric }
1429fe6060f1SDimitry Andric 
14300b57cec5SDimitry Andric SDValue SystemZTargetLowering::LowerFormalArguments(
14310b57cec5SDimitry Andric     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
14320b57cec5SDimitry Andric     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
14330b57cec5SDimitry Andric     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
14340b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
14350b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
14360b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
14370b57cec5SDimitry Andric   SystemZMachineFunctionInfo *FuncInfo =
14380b57cec5SDimitry Andric       MF.getInfo<SystemZMachineFunctionInfo>();
1439349cc55cSDimitry Andric   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
14400b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
14410b57cec5SDimitry Andric 
14420b57cec5SDimitry Andric   // Detect unsupported vector argument types.
14430b57cec5SDimitry Andric   if (Subtarget.hasVector())
14440b57cec5SDimitry Andric     VerifyVectorTypes(Ins);
14450b57cec5SDimitry Andric 
14460b57cec5SDimitry Andric   // Assign locations to all of the incoming arguments.
14470b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs;
14480b57cec5SDimitry Andric   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
14490b57cec5SDimitry Andric   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
14500b57cec5SDimitry Andric 
14510b57cec5SDimitry Andric   unsigned NumFixedGPRs = 0;
14520b57cec5SDimitry Andric   unsigned NumFixedFPRs = 0;
14530b57cec5SDimitry Andric   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
14540b57cec5SDimitry Andric     SDValue ArgValue;
14550b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[I];
14560b57cec5SDimitry Andric     EVT LocVT = VA.getLocVT();
14570b57cec5SDimitry Andric     if (VA.isRegLoc()) {
14580b57cec5SDimitry Andric       // Arguments passed in registers
14590b57cec5SDimitry Andric       const TargetRegisterClass *RC;
14600b57cec5SDimitry Andric       switch (LocVT.getSimpleVT().SimpleTy) {
14610b57cec5SDimitry Andric       default:
14620b57cec5SDimitry Andric         // Integers smaller than i64 should be promoted to i64.
14630b57cec5SDimitry Andric         llvm_unreachable("Unexpected argument type");
14640b57cec5SDimitry Andric       case MVT::i32:
14650b57cec5SDimitry Andric         NumFixedGPRs += 1;
14660b57cec5SDimitry Andric         RC = &SystemZ::GR32BitRegClass;
14670b57cec5SDimitry Andric         break;
14680b57cec5SDimitry Andric       case MVT::i64:
14690b57cec5SDimitry Andric         NumFixedGPRs += 1;
14700b57cec5SDimitry Andric         RC = &SystemZ::GR64BitRegClass;
14710b57cec5SDimitry Andric         break;
14720b57cec5SDimitry Andric       case MVT::f32:
14730b57cec5SDimitry Andric         NumFixedFPRs += 1;
14740b57cec5SDimitry Andric         RC = &SystemZ::FP32BitRegClass;
14750b57cec5SDimitry Andric         break;
14760b57cec5SDimitry Andric       case MVT::f64:
14770b57cec5SDimitry Andric         NumFixedFPRs += 1;
14780b57cec5SDimitry Andric         RC = &SystemZ::FP64BitRegClass;
14790b57cec5SDimitry Andric         break;
1480349cc55cSDimitry Andric       case MVT::f128:
1481349cc55cSDimitry Andric         NumFixedFPRs += 2;
1482349cc55cSDimitry Andric         RC = &SystemZ::FP128BitRegClass;
1483349cc55cSDimitry Andric         break;
14840b57cec5SDimitry Andric       case MVT::v16i8:
14850b57cec5SDimitry Andric       case MVT::v8i16:
14860b57cec5SDimitry Andric       case MVT::v4i32:
14870b57cec5SDimitry Andric       case MVT::v2i64:
14880b57cec5SDimitry Andric       case MVT::v4f32:
14890b57cec5SDimitry Andric       case MVT::v2f64:
14900b57cec5SDimitry Andric         RC = &SystemZ::VR128BitRegClass;
14910b57cec5SDimitry Andric         break;
14920b57cec5SDimitry Andric       }
14930b57cec5SDimitry Andric 
14948bcb0991SDimitry Andric       Register VReg = MRI.createVirtualRegister(RC);
14950b57cec5SDimitry Andric       MRI.addLiveIn(VA.getLocReg(), VReg);
14960b57cec5SDimitry Andric       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
14970b57cec5SDimitry Andric     } else {
14980b57cec5SDimitry Andric       assert(VA.isMemLoc() && "Argument not register or memory");
14990b57cec5SDimitry Andric 
15000b57cec5SDimitry Andric       // Create the frame index object for this incoming parameter.
15010eae32dcSDimitry Andric       // FIXME: Pre-include call frame size in the offset, should not
15020eae32dcSDimitry Andric       // need to manually add it here.
15030eae32dcSDimitry Andric       int64_t ArgSPOffset = VA.getLocMemOffset();
15040eae32dcSDimitry Andric       if (Subtarget.isTargetXPLINK64()) {
15050eae32dcSDimitry Andric         auto &XPRegs =
15060eae32dcSDimitry Andric             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
15070eae32dcSDimitry Andric         ArgSPOffset += XPRegs.getCallFrameSize();
15080eae32dcSDimitry Andric       }
15090eae32dcSDimitry Andric       int FI =
15100eae32dcSDimitry Andric           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
15110b57cec5SDimitry Andric 
15120b57cec5SDimitry Andric       // Create the SelectionDAG nodes corresponding to a load
15130b57cec5SDimitry Andric       // from this parameter.  Unpromoted ints and floats are
15140b57cec5SDimitry Andric       // passed as right-justified 8-byte values.
15150b57cec5SDimitry Andric       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
15160b57cec5SDimitry Andric       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
15170b57cec5SDimitry Andric         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
15180b57cec5SDimitry Andric                           DAG.getIntPtrConstant(4, DL));
15190b57cec5SDimitry Andric       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
15200b57cec5SDimitry Andric                              MachinePointerInfo::getFixedStack(MF, FI));
15210b57cec5SDimitry Andric     }
15220b57cec5SDimitry Andric 
15230b57cec5SDimitry Andric     // Convert the value of the argument register into the value that's
15240b57cec5SDimitry Andric     // being passed.
15250b57cec5SDimitry Andric     if (VA.getLocInfo() == CCValAssign::Indirect) {
15260b57cec5SDimitry Andric       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
15270b57cec5SDimitry Andric                                    MachinePointerInfo()));
15280b57cec5SDimitry Andric       // If the original argument was split (e.g. i128), we need
15290b57cec5SDimitry Andric       // to load all parts of it here (using the same address).
15300b57cec5SDimitry Andric       unsigned ArgIndex = Ins[I].OrigArgIndex;
15310b57cec5SDimitry Andric       assert (Ins[I].PartOffset == 0);
15320b57cec5SDimitry Andric       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
15330b57cec5SDimitry Andric         CCValAssign &PartVA = ArgLocs[I + 1];
15340b57cec5SDimitry Andric         unsigned PartOffset = Ins[I + 1].PartOffset;
15350b57cec5SDimitry Andric         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
15360b57cec5SDimitry Andric                                       DAG.getIntPtrConstant(PartOffset, DL));
15370b57cec5SDimitry Andric         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
15380b57cec5SDimitry Andric                                      MachinePointerInfo()));
15390b57cec5SDimitry Andric         ++I;
15400b57cec5SDimitry Andric       }
15410b57cec5SDimitry Andric     } else
15420b57cec5SDimitry Andric       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
15430b57cec5SDimitry Andric   }
15440b57cec5SDimitry Andric 
1545349cc55cSDimitry Andric   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1546349cc55cSDimitry Andric   if (IsVarArg && Subtarget.isTargetELF()) {
15470b57cec5SDimitry Andric     // Save the number of non-varargs registers for later use by va_start, etc.
15480b57cec5SDimitry Andric     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
15490b57cec5SDimitry Andric     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
15500b57cec5SDimitry Andric 
15510b57cec5SDimitry Andric     // Likewise the address (in the form of a frame index) of where the
15520b57cec5SDimitry Andric     // first stack vararg would be.  The 1-byte size here is arbitrary.
15530b57cec5SDimitry Andric     int64_t StackSize = CCInfo.getNextStackOffset();
15540b57cec5SDimitry Andric     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
15550b57cec5SDimitry Andric 
15560b57cec5SDimitry Andric     // ...and a similar frame index for the caller-allocated save area
15570b57cec5SDimitry Andric     // that will be used to store the incoming registers.
15585ffd83dbSDimitry Andric     int64_t RegSaveOffset =
1559fe6060f1SDimitry Andric       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
15600b57cec5SDimitry Andric     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
15610b57cec5SDimitry Andric     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
15620b57cec5SDimitry Andric 
15630b57cec5SDimitry Andric     // Store the FPR varargs in the reserved frame slots.  (We store the
15640b57cec5SDimitry Andric     // GPRs as part of the prologue.)
1565fe6060f1SDimitry Andric     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1566fe6060f1SDimitry Andric       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1567fe6060f1SDimitry Andric       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1568fe6060f1SDimitry Andric         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
15695ffd83dbSDimitry Andric         int FI =
1570fe6060f1SDimitry Andric           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
15710b57cec5SDimitry Andric         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1572*04eeddc0SDimitry Andric         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
15730b57cec5SDimitry Andric                                      &SystemZ::FP64BitRegClass);
15740b57cec5SDimitry Andric         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
15750b57cec5SDimitry Andric         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
15760b57cec5SDimitry Andric                                  MachinePointerInfo::getFixedStack(MF, FI));
15770b57cec5SDimitry Andric       }
15780b57cec5SDimitry Andric       // Join the stores, which are independent of one another.
15790b57cec5SDimitry Andric       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
15800b57cec5SDimitry Andric                           makeArrayRef(&MemOps[NumFixedFPRs],
1581fe6060f1SDimitry Andric                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
15820b57cec5SDimitry Andric     }
15830b57cec5SDimitry Andric   }
15840b57cec5SDimitry Andric 
1585349cc55cSDimitry Andric   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1586349cc55cSDimitry Andric   // register (R5)
15870b57cec5SDimitry Andric   return Chain;
15880b57cec5SDimitry Andric }
15890b57cec5SDimitry Andric 
15900b57cec5SDimitry Andric static bool canUseSiblingCall(const CCState &ArgCCInfo,
15910b57cec5SDimitry Andric                               SmallVectorImpl<CCValAssign> &ArgLocs,
15920b57cec5SDimitry Andric                               SmallVectorImpl<ISD::OutputArg> &Outs) {
15930b57cec5SDimitry Andric   // Punt if there are any indirect or stack arguments, or if the call
15940b57cec5SDimitry Andric   // needs the callee-saved argument register R6, or if the call uses
15950b57cec5SDimitry Andric   // the callee-saved register arguments SwiftSelf and SwiftError.
15960b57cec5SDimitry Andric   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
15970b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[I];
15980b57cec5SDimitry Andric     if (VA.getLocInfo() == CCValAssign::Indirect)
15990b57cec5SDimitry Andric       return false;
16000b57cec5SDimitry Andric     if (!VA.isRegLoc())
16010b57cec5SDimitry Andric       return false;
16028bcb0991SDimitry Andric     Register Reg = VA.getLocReg();
16030b57cec5SDimitry Andric     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
16040b57cec5SDimitry Andric       return false;
16050b57cec5SDimitry Andric     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
16060b57cec5SDimitry Andric       return false;
16070b57cec5SDimitry Andric   }
16080b57cec5SDimitry Andric   return true;
16090b57cec5SDimitry Andric }
16100b57cec5SDimitry Andric 
16110b57cec5SDimitry Andric SDValue
16120b57cec5SDimitry Andric SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
16130b57cec5SDimitry Andric                                  SmallVectorImpl<SDValue> &InVals) const {
16140b57cec5SDimitry Andric   SelectionDAG &DAG = CLI.DAG;
16150b57cec5SDimitry Andric   SDLoc &DL = CLI.DL;
16160b57cec5SDimitry Andric   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
16170b57cec5SDimitry Andric   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
16180b57cec5SDimitry Andric   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
16190b57cec5SDimitry Andric   SDValue Chain = CLI.Chain;
16200b57cec5SDimitry Andric   SDValue Callee = CLI.Callee;
16210b57cec5SDimitry Andric   bool &IsTailCall = CLI.IsTailCall;
16220b57cec5SDimitry Andric   CallingConv::ID CallConv = CLI.CallConv;
16230b57cec5SDimitry Andric   bool IsVarArg = CLI.IsVarArg;
16240b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
16250b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(MF.getDataLayout());
16264652422eSDimitry Andric   LLVMContext &Ctx = *DAG.getContext();
1627349cc55cSDimitry Andric   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1628349cc55cSDimitry Andric 
1629349cc55cSDimitry Andric   // FIXME: z/OS support to be added in later.
1630349cc55cSDimitry Andric   if (Subtarget.isTargetXPLINK64())
1631349cc55cSDimitry Andric     IsTailCall = false;
16320b57cec5SDimitry Andric 
16330b57cec5SDimitry Andric   // Detect unsupported vector argument and return types.
16340b57cec5SDimitry Andric   if (Subtarget.hasVector()) {
16350b57cec5SDimitry Andric     VerifyVectorTypes(Outs);
16360b57cec5SDimitry Andric     VerifyVectorTypes(Ins);
16370b57cec5SDimitry Andric   }
16380b57cec5SDimitry Andric 
16390b57cec5SDimitry Andric   // Analyze the operands of the call, assigning locations to each operand.
16400b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> ArgLocs;
16414652422eSDimitry Andric   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
16420b57cec5SDimitry Andric   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
16430b57cec5SDimitry Andric 
16440b57cec5SDimitry Andric   // We don't support GuaranteedTailCallOpt, only automatically-detected
16450b57cec5SDimitry Andric   // sibling calls.
16460b57cec5SDimitry Andric   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
16470b57cec5SDimitry Andric     IsTailCall = false;
16480b57cec5SDimitry Andric 
16490b57cec5SDimitry Andric   // Get a count of how many bytes are to be pushed on the stack.
16500b57cec5SDimitry Andric   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
16510b57cec5SDimitry Andric 
1652349cc55cSDimitry Andric   if (Subtarget.isTargetXPLINK64())
1653349cc55cSDimitry Andric     // Although the XPLINK specifications for AMODE64 state that minimum size
1654349cc55cSDimitry Andric     // of the param area is minimum 32 bytes and no rounding is otherwise
1655349cc55cSDimitry Andric     // specified, we round this area in 64 bytes increments to be compatible
1656349cc55cSDimitry Andric     // with existing compilers.
1657349cc55cSDimitry Andric     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1658349cc55cSDimitry Andric 
16590b57cec5SDimitry Andric   // Mark the start of the call.
16600b57cec5SDimitry Andric   if (!IsTailCall)
16610b57cec5SDimitry Andric     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
16620b57cec5SDimitry Andric 
16630b57cec5SDimitry Andric   // Copy argument values to their designated locations.
16640b57cec5SDimitry Andric   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
16650b57cec5SDimitry Andric   SmallVector<SDValue, 8> MemOpChains;
16660b57cec5SDimitry Andric   SDValue StackPtr;
16670b57cec5SDimitry Andric   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
16680b57cec5SDimitry Andric     CCValAssign &VA = ArgLocs[I];
16690b57cec5SDimitry Andric     SDValue ArgValue = OutVals[I];
16700b57cec5SDimitry Andric 
16710b57cec5SDimitry Andric     if (VA.getLocInfo() == CCValAssign::Indirect) {
16720b57cec5SDimitry Andric       // Store the argument in a stack slot and pass its address.
16734652422eSDimitry Andric       unsigned ArgIndex = Outs[I].OrigArgIndex;
16744652422eSDimitry Andric       EVT SlotVT;
16754652422eSDimitry Andric       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
16764652422eSDimitry Andric         // Allocate the full stack space for a promoted (and split) argument.
16774652422eSDimitry Andric         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
16784652422eSDimitry Andric         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
16794652422eSDimitry Andric         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
16804652422eSDimitry Andric         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
16814652422eSDimitry Andric         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
16824652422eSDimitry Andric       } else {
16834652422eSDimitry Andric         SlotVT = Outs[I].ArgVT;
16844652422eSDimitry Andric       }
16854652422eSDimitry Andric       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
16860b57cec5SDimitry Andric       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
16870b57cec5SDimitry Andric       MemOpChains.push_back(
16880b57cec5SDimitry Andric           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
16890b57cec5SDimitry Andric                        MachinePointerInfo::getFixedStack(MF, FI)));
16900b57cec5SDimitry Andric       // If the original argument was split (e.g. i128), we need
16910b57cec5SDimitry Andric       // to store all parts of it here (and pass just one address).
16920b57cec5SDimitry Andric       assert (Outs[I].PartOffset == 0);
16930b57cec5SDimitry Andric       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
16940b57cec5SDimitry Andric         SDValue PartValue = OutVals[I + 1];
16950b57cec5SDimitry Andric         unsigned PartOffset = Outs[I + 1].PartOffset;
16960b57cec5SDimitry Andric         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
16970b57cec5SDimitry Andric                                       DAG.getIntPtrConstant(PartOffset, DL));
16980b57cec5SDimitry Andric         MemOpChains.push_back(
16990b57cec5SDimitry Andric             DAG.getStore(Chain, DL, PartValue, Address,
17000b57cec5SDimitry Andric                          MachinePointerInfo::getFixedStack(MF, FI)));
17014652422eSDimitry Andric         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
17024652422eSDimitry Andric                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
17030b57cec5SDimitry Andric         ++I;
17040b57cec5SDimitry Andric       }
17050b57cec5SDimitry Andric       ArgValue = SpillSlot;
17060b57cec5SDimitry Andric     } else
17070b57cec5SDimitry Andric       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
17080b57cec5SDimitry Andric 
1709349cc55cSDimitry Andric     if (VA.isRegLoc()) {
1710349cc55cSDimitry Andric       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1711349cc55cSDimitry Andric       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1712349cc55cSDimitry Andric       // and low values.
1713349cc55cSDimitry Andric       if (VA.getLocVT() == MVT::i128)
1714349cc55cSDimitry Andric         ArgValue = lowerI128ToGR128(DAG, ArgValue);
17150b57cec5SDimitry Andric       // Queue up the argument copies and emit them at the end.
17160b57cec5SDimitry Andric       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1717349cc55cSDimitry Andric     } else {
17180b57cec5SDimitry Andric       assert(VA.isMemLoc() && "Argument not register or memory");
17190b57cec5SDimitry Andric 
17200b57cec5SDimitry Andric       // Work out the address of the stack slot.  Unpromoted ints and
17210b57cec5SDimitry Andric       // floats are passed as right-justified 8-byte values.
17220b57cec5SDimitry Andric       if (!StackPtr.getNode())
1723349cc55cSDimitry Andric         StackPtr = DAG.getCopyFromReg(Chain, DL,
1724349cc55cSDimitry Andric                                       Regs->getStackPointerRegister(), PtrVT);
1725349cc55cSDimitry Andric       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1726349cc55cSDimitry Andric                         VA.getLocMemOffset();
17270b57cec5SDimitry Andric       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
17280b57cec5SDimitry Andric         Offset += 4;
17290b57cec5SDimitry Andric       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
17300b57cec5SDimitry Andric                                     DAG.getIntPtrConstant(Offset, DL));
17310b57cec5SDimitry Andric 
17320b57cec5SDimitry Andric       // Emit the store.
17330b57cec5SDimitry Andric       MemOpChains.push_back(
17340b57cec5SDimitry Andric           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1735349cc55cSDimitry Andric 
1736349cc55cSDimitry Andric       // Although long doubles or vectors are passed through the stack when
1737349cc55cSDimitry Andric       // they are vararg (non-fixed arguments), if a long double or vector
1738349cc55cSDimitry Andric       // occupies the third and fourth slot of the argument list GPR3 should
1739349cc55cSDimitry Andric       // still shadow the third slot of the argument list.
1740349cc55cSDimitry Andric       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1741349cc55cSDimitry Andric         SDValue ShadowArgValue =
1742349cc55cSDimitry Andric             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1743349cc55cSDimitry Andric                         DAG.getIntPtrConstant(1, DL));
1744349cc55cSDimitry Andric         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1745349cc55cSDimitry Andric       }
17460b57cec5SDimitry Andric     }
17470b57cec5SDimitry Andric   }
17480b57cec5SDimitry Andric 
17490b57cec5SDimitry Andric   // Join the stores, which are independent of one another.
17500b57cec5SDimitry Andric   if (!MemOpChains.empty())
17510b57cec5SDimitry Andric     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
17520b57cec5SDimitry Andric 
17530b57cec5SDimitry Andric   // Accept direct calls by converting symbolic call addresses to the
17540b57cec5SDimitry Andric   // associated Target* opcodes.  Force %r1 to be used for indirect
17550b57cec5SDimitry Andric   // tail calls.
17560b57cec5SDimitry Andric   SDValue Glue;
1757349cc55cSDimitry Andric   // FIXME: Add support for XPLINK using the ADA register.
17580b57cec5SDimitry Andric   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
17590b57cec5SDimitry Andric     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
17600b57cec5SDimitry Andric     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
17610b57cec5SDimitry Andric   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
17620b57cec5SDimitry Andric     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
17630b57cec5SDimitry Andric     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
17640b57cec5SDimitry Andric   } else if (IsTailCall) {
17650b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
17660b57cec5SDimitry Andric     Glue = Chain.getValue(1);
17670b57cec5SDimitry Andric     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
17680b57cec5SDimitry Andric   }
17690b57cec5SDimitry Andric 
17700b57cec5SDimitry Andric   // Build a sequence of copy-to-reg nodes, chained and glued together.
17710b57cec5SDimitry Andric   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
17720b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
17730b57cec5SDimitry Andric                              RegsToPass[I].second, Glue);
17740b57cec5SDimitry Andric     Glue = Chain.getValue(1);
17750b57cec5SDimitry Andric   }
17760b57cec5SDimitry Andric 
17770b57cec5SDimitry Andric   // The first call operand is the chain and the second is the target address.
17780b57cec5SDimitry Andric   SmallVector<SDValue, 8> Ops;
17790b57cec5SDimitry Andric   Ops.push_back(Chain);
17800b57cec5SDimitry Andric   Ops.push_back(Callee);
17810b57cec5SDimitry Andric 
17820b57cec5SDimitry Andric   // Add argument registers to the end of the list so that they are
17830b57cec5SDimitry Andric   // known live into the call.
17840b57cec5SDimitry Andric   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
17850b57cec5SDimitry Andric     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
17860b57cec5SDimitry Andric                                   RegsToPass[I].second.getValueType()));
17870b57cec5SDimitry Andric 
17880b57cec5SDimitry Andric   // Add a register mask operand representing the call-preserved registers.
17890b57cec5SDimitry Andric   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
17900b57cec5SDimitry Andric   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
17910b57cec5SDimitry Andric   assert(Mask && "Missing call preserved mask for calling convention");
17920b57cec5SDimitry Andric   Ops.push_back(DAG.getRegisterMask(Mask));
17930b57cec5SDimitry Andric 
17940b57cec5SDimitry Andric   // Glue the call to the argument copies, if any.
17950b57cec5SDimitry Andric   if (Glue.getNode())
17960b57cec5SDimitry Andric     Ops.push_back(Glue);
17970b57cec5SDimitry Andric 
17980b57cec5SDimitry Andric   // Emit the call.
17990b57cec5SDimitry Andric   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
18000b57cec5SDimitry Andric   if (IsTailCall)
18010b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
18020b57cec5SDimitry Andric   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
18035ffd83dbSDimitry Andric   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
18040b57cec5SDimitry Andric   Glue = Chain.getValue(1);
18050b57cec5SDimitry Andric 
18060b57cec5SDimitry Andric   // Mark the end of the call, which is glued to the call itself.
18070b57cec5SDimitry Andric   Chain = DAG.getCALLSEQ_END(Chain,
18080b57cec5SDimitry Andric                              DAG.getConstant(NumBytes, DL, PtrVT, true),
18090b57cec5SDimitry Andric                              DAG.getConstant(0, DL, PtrVT, true),
18100b57cec5SDimitry Andric                              Glue, DL);
18110b57cec5SDimitry Andric   Glue = Chain.getValue(1);
18120b57cec5SDimitry Andric 
18130b57cec5SDimitry Andric   // Assign locations to each value returned by this call.
18140b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RetLocs;
18154652422eSDimitry Andric   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
18160b57cec5SDimitry Andric   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
18170b57cec5SDimitry Andric 
18180b57cec5SDimitry Andric   // Copy all of the result registers out of their specified physreg.
18190b57cec5SDimitry Andric   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
18200b57cec5SDimitry Andric     CCValAssign &VA = RetLocs[I];
18210b57cec5SDimitry Andric 
18220b57cec5SDimitry Andric     // Copy the value out, gluing the copy to the end of the call sequence.
18230b57cec5SDimitry Andric     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
18240b57cec5SDimitry Andric                                           VA.getLocVT(), Glue);
18250b57cec5SDimitry Andric     Chain = RetValue.getValue(1);
18260b57cec5SDimitry Andric     Glue = RetValue.getValue(2);
18270b57cec5SDimitry Andric 
18280b57cec5SDimitry Andric     // Convert the value of the return register into the value that's
18290b57cec5SDimitry Andric     // being returned.
18300b57cec5SDimitry Andric     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
18310b57cec5SDimitry Andric   }
18320b57cec5SDimitry Andric 
18330b57cec5SDimitry Andric   return Chain;
18340b57cec5SDimitry Andric }
18350b57cec5SDimitry Andric 
18360b57cec5SDimitry Andric bool SystemZTargetLowering::
18370b57cec5SDimitry Andric CanLowerReturn(CallingConv::ID CallConv,
18380b57cec5SDimitry Andric                MachineFunction &MF, bool isVarArg,
18390b57cec5SDimitry Andric                const SmallVectorImpl<ISD::OutputArg> &Outs,
18400b57cec5SDimitry Andric                LLVMContext &Context) const {
18410b57cec5SDimitry Andric   // Detect unsupported vector return types.
18420b57cec5SDimitry Andric   if (Subtarget.hasVector())
18430b57cec5SDimitry Andric     VerifyVectorTypes(Outs);
18440b57cec5SDimitry Andric 
18450b57cec5SDimitry Andric   // Special case that we cannot easily detect in RetCC_SystemZ since
18460b57cec5SDimitry Andric   // i128 is not a legal type.
18470b57cec5SDimitry Andric   for (auto &Out : Outs)
18480b57cec5SDimitry Andric     if (Out.ArgVT == MVT::i128)
18490b57cec5SDimitry Andric       return false;
18500b57cec5SDimitry Andric 
18510b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RetLocs;
18520b57cec5SDimitry Andric   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
18530b57cec5SDimitry Andric   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
18540b57cec5SDimitry Andric }
18550b57cec5SDimitry Andric 
18560b57cec5SDimitry Andric SDValue
18570b57cec5SDimitry Andric SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
18580b57cec5SDimitry Andric                                    bool IsVarArg,
18590b57cec5SDimitry Andric                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
18600b57cec5SDimitry Andric                                    const SmallVectorImpl<SDValue> &OutVals,
18610b57cec5SDimitry Andric                                    const SDLoc &DL, SelectionDAG &DAG) const {
18620b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
18630b57cec5SDimitry Andric 
18640b57cec5SDimitry Andric   // Detect unsupported vector return types.
18650b57cec5SDimitry Andric   if (Subtarget.hasVector())
18660b57cec5SDimitry Andric     VerifyVectorTypes(Outs);
18670b57cec5SDimitry Andric 
18680b57cec5SDimitry Andric   // Assign locations to each returned value.
18690b57cec5SDimitry Andric   SmallVector<CCValAssign, 16> RetLocs;
18700b57cec5SDimitry Andric   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
18710b57cec5SDimitry Andric   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
18720b57cec5SDimitry Andric 
18730b57cec5SDimitry Andric   // Quick exit for void returns
18740b57cec5SDimitry Andric   if (RetLocs.empty())
18750b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
18760b57cec5SDimitry Andric 
1877480093f4SDimitry Andric   if (CallConv == CallingConv::GHC)
1878480093f4SDimitry Andric     report_fatal_error("GHC functions return void only");
1879480093f4SDimitry Andric 
18800b57cec5SDimitry Andric   // Copy the result values into the output registers.
18810b57cec5SDimitry Andric   SDValue Glue;
18820b57cec5SDimitry Andric   SmallVector<SDValue, 4> RetOps;
18830b57cec5SDimitry Andric   RetOps.push_back(Chain);
18840b57cec5SDimitry Andric   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
18850b57cec5SDimitry Andric     CCValAssign &VA = RetLocs[I];
18860b57cec5SDimitry Andric     SDValue RetValue = OutVals[I];
18870b57cec5SDimitry Andric 
18880b57cec5SDimitry Andric     // Make the return register live on exit.
18890b57cec5SDimitry Andric     assert(VA.isRegLoc() && "Can only return in registers!");
18900b57cec5SDimitry Andric 
18910b57cec5SDimitry Andric     // Promote the value as required.
18920b57cec5SDimitry Andric     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
18930b57cec5SDimitry Andric 
18940b57cec5SDimitry Andric     // Chain and glue the copies together.
18958bcb0991SDimitry Andric     Register Reg = VA.getLocReg();
18960b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
18970b57cec5SDimitry Andric     Glue = Chain.getValue(1);
18980b57cec5SDimitry Andric     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
18990b57cec5SDimitry Andric   }
19000b57cec5SDimitry Andric 
19010b57cec5SDimitry Andric   // Update chain and glue.
19020b57cec5SDimitry Andric   RetOps[0] = Chain;
19030b57cec5SDimitry Andric   if (Glue.getNode())
19040b57cec5SDimitry Andric     RetOps.push_back(Glue);
19050b57cec5SDimitry Andric 
19060b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
19070b57cec5SDimitry Andric }
19080b57cec5SDimitry Andric 
19090b57cec5SDimitry Andric // Return true if Op is an intrinsic node with chain that returns the CC value
19100b57cec5SDimitry Andric // as its only (other) argument.  Provide the associated SystemZISD opcode and
19110b57cec5SDimitry Andric // the mask of valid CC values if so.
19120b57cec5SDimitry Andric static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
19130b57cec5SDimitry Andric                                       unsigned &CCValid) {
19140b57cec5SDimitry Andric   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
19150b57cec5SDimitry Andric   switch (Id) {
19160b57cec5SDimitry Andric   case Intrinsic::s390_tbegin:
19170b57cec5SDimitry Andric     Opcode = SystemZISD::TBEGIN;
19180b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_TBEGIN;
19190b57cec5SDimitry Andric     return true;
19200b57cec5SDimitry Andric 
19210b57cec5SDimitry Andric   case Intrinsic::s390_tbegin_nofloat:
19220b57cec5SDimitry Andric     Opcode = SystemZISD::TBEGIN_NOFLOAT;
19230b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_TBEGIN;
19240b57cec5SDimitry Andric     return true;
19250b57cec5SDimitry Andric 
19260b57cec5SDimitry Andric   case Intrinsic::s390_tend:
19270b57cec5SDimitry Andric     Opcode = SystemZISD::TEND;
19280b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_TEND;
19290b57cec5SDimitry Andric     return true;
19300b57cec5SDimitry Andric 
19310b57cec5SDimitry Andric   default:
19320b57cec5SDimitry Andric     return false;
19330b57cec5SDimitry Andric   }
19340b57cec5SDimitry Andric }
19350b57cec5SDimitry Andric 
19360b57cec5SDimitry Andric // Return true if Op is an intrinsic node without chain that returns the
19370b57cec5SDimitry Andric // CC value as its final argument.  Provide the associated SystemZISD
19380b57cec5SDimitry Andric // opcode and the mask of valid CC values if so.
19390b57cec5SDimitry Andric static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
19400b57cec5SDimitry Andric   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
19410b57cec5SDimitry Andric   switch (Id) {
19420b57cec5SDimitry Andric   case Intrinsic::s390_vpkshs:
19430b57cec5SDimitry Andric   case Intrinsic::s390_vpksfs:
19440b57cec5SDimitry Andric   case Intrinsic::s390_vpksgs:
19450b57cec5SDimitry Andric     Opcode = SystemZISD::PACKS_CC;
19460b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19470b57cec5SDimitry Andric     return true;
19480b57cec5SDimitry Andric 
19490b57cec5SDimitry Andric   case Intrinsic::s390_vpklshs:
19500b57cec5SDimitry Andric   case Intrinsic::s390_vpklsfs:
19510b57cec5SDimitry Andric   case Intrinsic::s390_vpklsgs:
19520b57cec5SDimitry Andric     Opcode = SystemZISD::PACKLS_CC;
19530b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19540b57cec5SDimitry Andric     return true;
19550b57cec5SDimitry Andric 
19560b57cec5SDimitry Andric   case Intrinsic::s390_vceqbs:
19570b57cec5SDimitry Andric   case Intrinsic::s390_vceqhs:
19580b57cec5SDimitry Andric   case Intrinsic::s390_vceqfs:
19590b57cec5SDimitry Andric   case Intrinsic::s390_vceqgs:
19600b57cec5SDimitry Andric     Opcode = SystemZISD::VICMPES;
19610b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19620b57cec5SDimitry Andric     return true;
19630b57cec5SDimitry Andric 
19640b57cec5SDimitry Andric   case Intrinsic::s390_vchbs:
19650b57cec5SDimitry Andric   case Intrinsic::s390_vchhs:
19660b57cec5SDimitry Andric   case Intrinsic::s390_vchfs:
19670b57cec5SDimitry Andric   case Intrinsic::s390_vchgs:
19680b57cec5SDimitry Andric     Opcode = SystemZISD::VICMPHS;
19690b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19700b57cec5SDimitry Andric     return true;
19710b57cec5SDimitry Andric 
19720b57cec5SDimitry Andric   case Intrinsic::s390_vchlbs:
19730b57cec5SDimitry Andric   case Intrinsic::s390_vchlhs:
19740b57cec5SDimitry Andric   case Intrinsic::s390_vchlfs:
19750b57cec5SDimitry Andric   case Intrinsic::s390_vchlgs:
19760b57cec5SDimitry Andric     Opcode = SystemZISD::VICMPHLS;
19770b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19780b57cec5SDimitry Andric     return true;
19790b57cec5SDimitry Andric 
19800b57cec5SDimitry Andric   case Intrinsic::s390_vtm:
19810b57cec5SDimitry Andric     Opcode = SystemZISD::VTM;
19820b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
19830b57cec5SDimitry Andric     return true;
19840b57cec5SDimitry Andric 
19850b57cec5SDimitry Andric   case Intrinsic::s390_vfaebs:
19860b57cec5SDimitry Andric   case Intrinsic::s390_vfaehs:
19870b57cec5SDimitry Andric   case Intrinsic::s390_vfaefs:
19880b57cec5SDimitry Andric     Opcode = SystemZISD::VFAE_CC;
19890b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19900b57cec5SDimitry Andric     return true;
19910b57cec5SDimitry Andric 
19920b57cec5SDimitry Andric   case Intrinsic::s390_vfaezbs:
19930b57cec5SDimitry Andric   case Intrinsic::s390_vfaezhs:
19940b57cec5SDimitry Andric   case Intrinsic::s390_vfaezfs:
19950b57cec5SDimitry Andric     Opcode = SystemZISD::VFAEZ_CC;
19960b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
19970b57cec5SDimitry Andric     return true;
19980b57cec5SDimitry Andric 
19990b57cec5SDimitry Andric   case Intrinsic::s390_vfeebs:
20000b57cec5SDimitry Andric   case Intrinsic::s390_vfeehs:
20010b57cec5SDimitry Andric   case Intrinsic::s390_vfeefs:
20020b57cec5SDimitry Andric     Opcode = SystemZISD::VFEE_CC;
20030b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20040b57cec5SDimitry Andric     return true;
20050b57cec5SDimitry Andric 
20060b57cec5SDimitry Andric   case Intrinsic::s390_vfeezbs:
20070b57cec5SDimitry Andric   case Intrinsic::s390_vfeezhs:
20080b57cec5SDimitry Andric   case Intrinsic::s390_vfeezfs:
20090b57cec5SDimitry Andric     Opcode = SystemZISD::VFEEZ_CC;
20100b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20110b57cec5SDimitry Andric     return true;
20120b57cec5SDimitry Andric 
20130b57cec5SDimitry Andric   case Intrinsic::s390_vfenebs:
20140b57cec5SDimitry Andric   case Intrinsic::s390_vfenehs:
20150b57cec5SDimitry Andric   case Intrinsic::s390_vfenefs:
20160b57cec5SDimitry Andric     Opcode = SystemZISD::VFENE_CC;
20170b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20180b57cec5SDimitry Andric     return true;
20190b57cec5SDimitry Andric 
20200b57cec5SDimitry Andric   case Intrinsic::s390_vfenezbs:
20210b57cec5SDimitry Andric   case Intrinsic::s390_vfenezhs:
20220b57cec5SDimitry Andric   case Intrinsic::s390_vfenezfs:
20230b57cec5SDimitry Andric     Opcode = SystemZISD::VFENEZ_CC;
20240b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20250b57cec5SDimitry Andric     return true;
20260b57cec5SDimitry Andric 
20270b57cec5SDimitry Andric   case Intrinsic::s390_vistrbs:
20280b57cec5SDimitry Andric   case Intrinsic::s390_vistrhs:
20290b57cec5SDimitry Andric   case Intrinsic::s390_vistrfs:
20300b57cec5SDimitry Andric     Opcode = SystemZISD::VISTR_CC;
20310b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
20320b57cec5SDimitry Andric     return true;
20330b57cec5SDimitry Andric 
20340b57cec5SDimitry Andric   case Intrinsic::s390_vstrcbs:
20350b57cec5SDimitry Andric   case Intrinsic::s390_vstrchs:
20360b57cec5SDimitry Andric   case Intrinsic::s390_vstrcfs:
20370b57cec5SDimitry Andric     Opcode = SystemZISD::VSTRC_CC;
20380b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20390b57cec5SDimitry Andric     return true;
20400b57cec5SDimitry Andric 
20410b57cec5SDimitry Andric   case Intrinsic::s390_vstrczbs:
20420b57cec5SDimitry Andric   case Intrinsic::s390_vstrczhs:
20430b57cec5SDimitry Andric   case Intrinsic::s390_vstrczfs:
20440b57cec5SDimitry Andric     Opcode = SystemZISD::VSTRCZ_CC;
20450b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20460b57cec5SDimitry Andric     return true;
20470b57cec5SDimitry Andric 
20480b57cec5SDimitry Andric   case Intrinsic::s390_vstrsb:
20490b57cec5SDimitry Andric   case Intrinsic::s390_vstrsh:
20500b57cec5SDimitry Andric   case Intrinsic::s390_vstrsf:
20510b57cec5SDimitry Andric     Opcode = SystemZISD::VSTRS_CC;
20520b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20530b57cec5SDimitry Andric     return true;
20540b57cec5SDimitry Andric 
20550b57cec5SDimitry Andric   case Intrinsic::s390_vstrszb:
20560b57cec5SDimitry Andric   case Intrinsic::s390_vstrszh:
20570b57cec5SDimitry Andric   case Intrinsic::s390_vstrszf:
20580b57cec5SDimitry Andric     Opcode = SystemZISD::VSTRSZ_CC;
20590b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ANY;
20600b57cec5SDimitry Andric     return true;
20610b57cec5SDimitry Andric 
20620b57cec5SDimitry Andric   case Intrinsic::s390_vfcedbs:
20630b57cec5SDimitry Andric   case Intrinsic::s390_vfcesbs:
20640b57cec5SDimitry Andric     Opcode = SystemZISD::VFCMPES;
20650b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
20660b57cec5SDimitry Andric     return true;
20670b57cec5SDimitry Andric 
20680b57cec5SDimitry Andric   case Intrinsic::s390_vfchdbs:
20690b57cec5SDimitry Andric   case Intrinsic::s390_vfchsbs:
20700b57cec5SDimitry Andric     Opcode = SystemZISD::VFCMPHS;
20710b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
20720b57cec5SDimitry Andric     return true;
20730b57cec5SDimitry Andric 
20740b57cec5SDimitry Andric   case Intrinsic::s390_vfchedbs:
20750b57cec5SDimitry Andric   case Intrinsic::s390_vfchesbs:
20760b57cec5SDimitry Andric     Opcode = SystemZISD::VFCMPHES;
20770b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
20780b57cec5SDimitry Andric     return true;
20790b57cec5SDimitry Andric 
20800b57cec5SDimitry Andric   case Intrinsic::s390_vftcidb:
20810b57cec5SDimitry Andric   case Intrinsic::s390_vftcisb:
20820b57cec5SDimitry Andric     Opcode = SystemZISD::VFTCI;
20830b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_VCMP;
20840b57cec5SDimitry Andric     return true;
20850b57cec5SDimitry Andric 
20860b57cec5SDimitry Andric   case Intrinsic::s390_tdc:
20870b57cec5SDimitry Andric     Opcode = SystemZISD::TDC;
20880b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_TDC;
20890b57cec5SDimitry Andric     return true;
20900b57cec5SDimitry Andric 
20910b57cec5SDimitry Andric   default:
20920b57cec5SDimitry Andric     return false;
20930b57cec5SDimitry Andric   }
20940b57cec5SDimitry Andric }
20950b57cec5SDimitry Andric 
20960b57cec5SDimitry Andric // Emit an intrinsic with chain and an explicit CC register result.
20970b57cec5SDimitry Andric static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
20980b57cec5SDimitry Andric                                            unsigned Opcode) {
20990b57cec5SDimitry Andric   // Copy all operands except the intrinsic ID.
21000b57cec5SDimitry Andric   unsigned NumOps = Op.getNumOperands();
21010b57cec5SDimitry Andric   SmallVector<SDValue, 6> Ops;
21020b57cec5SDimitry Andric   Ops.reserve(NumOps - 1);
21030b57cec5SDimitry Andric   Ops.push_back(Op.getOperand(0));
21040b57cec5SDimitry Andric   for (unsigned I = 2; I < NumOps; ++I)
21050b57cec5SDimitry Andric     Ops.push_back(Op.getOperand(I));
21060b57cec5SDimitry Andric 
21070b57cec5SDimitry Andric   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
21080b57cec5SDimitry Andric   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
21090b57cec5SDimitry Andric   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
21100b57cec5SDimitry Andric   SDValue OldChain = SDValue(Op.getNode(), 1);
21110b57cec5SDimitry Andric   SDValue NewChain = SDValue(Intr.getNode(), 1);
21120b57cec5SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
21130b57cec5SDimitry Andric   return Intr.getNode();
21140b57cec5SDimitry Andric }
21150b57cec5SDimitry Andric 
21160b57cec5SDimitry Andric // Emit an intrinsic with an explicit CC register result.
21170b57cec5SDimitry Andric static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
21180b57cec5SDimitry Andric                                    unsigned Opcode) {
21190b57cec5SDimitry Andric   // Copy all operands except the intrinsic ID.
21200b57cec5SDimitry Andric   unsigned NumOps = Op.getNumOperands();
21210b57cec5SDimitry Andric   SmallVector<SDValue, 6> Ops;
21220b57cec5SDimitry Andric   Ops.reserve(NumOps - 1);
21230b57cec5SDimitry Andric   for (unsigned I = 1; I < NumOps; ++I)
21240b57cec5SDimitry Andric     Ops.push_back(Op.getOperand(I));
21250b57cec5SDimitry Andric 
21260b57cec5SDimitry Andric   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
21270b57cec5SDimitry Andric   return Intr.getNode();
21280b57cec5SDimitry Andric }
21290b57cec5SDimitry Andric 
21300b57cec5SDimitry Andric // CC is a comparison that will be implemented using an integer or
21310b57cec5SDimitry Andric // floating-point comparison.  Return the condition code mask for
21320b57cec5SDimitry Andric // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
21330b57cec5SDimitry Andric // unsigned comparisons and clear for signed ones.  In the floating-point
21340b57cec5SDimitry Andric // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
21350b57cec5SDimitry Andric static unsigned CCMaskForCondCode(ISD::CondCode CC) {
21360b57cec5SDimitry Andric #define CONV(X) \
21370b57cec5SDimitry Andric   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
21380b57cec5SDimitry Andric   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
21390b57cec5SDimitry Andric   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
21400b57cec5SDimitry Andric 
21410b57cec5SDimitry Andric   switch (CC) {
21420b57cec5SDimitry Andric   default:
21430b57cec5SDimitry Andric     llvm_unreachable("Invalid integer condition!");
21440b57cec5SDimitry Andric 
21450b57cec5SDimitry Andric   CONV(EQ);
21460b57cec5SDimitry Andric   CONV(NE);
21470b57cec5SDimitry Andric   CONV(GT);
21480b57cec5SDimitry Andric   CONV(GE);
21490b57cec5SDimitry Andric   CONV(LT);
21500b57cec5SDimitry Andric   CONV(LE);
21510b57cec5SDimitry Andric 
21520b57cec5SDimitry Andric   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
21530b57cec5SDimitry Andric   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
21540b57cec5SDimitry Andric   }
21550b57cec5SDimitry Andric #undef CONV
21560b57cec5SDimitry Andric }
21570b57cec5SDimitry Andric 
21580b57cec5SDimitry Andric // If C can be converted to a comparison against zero, adjust the operands
21590b57cec5SDimitry Andric // as necessary.
21600b57cec5SDimitry Andric static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
21610b57cec5SDimitry Andric   if (C.ICmpType == SystemZICMP::UnsignedOnly)
21620b57cec5SDimitry Andric     return;
21630b57cec5SDimitry Andric 
21640b57cec5SDimitry Andric   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
21650b57cec5SDimitry Andric   if (!ConstOp1)
21660b57cec5SDimitry Andric     return;
21670b57cec5SDimitry Andric 
21680b57cec5SDimitry Andric   int64_t Value = ConstOp1->getSExtValue();
21690b57cec5SDimitry Andric   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
21700b57cec5SDimitry Andric       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
21710b57cec5SDimitry Andric       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
21720b57cec5SDimitry Andric       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
21730b57cec5SDimitry Andric     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
21740b57cec5SDimitry Andric     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
21750b57cec5SDimitry Andric   }
21760b57cec5SDimitry Andric }
21770b57cec5SDimitry Andric 
21780b57cec5SDimitry Andric // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
21790b57cec5SDimitry Andric // adjust the operands as necessary.
21800b57cec5SDimitry Andric static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
21810b57cec5SDimitry Andric                              Comparison &C) {
21820b57cec5SDimitry Andric   // For us to make any changes, it must a comparison between a single-use
21830b57cec5SDimitry Andric   // load and a constant.
21840b57cec5SDimitry Andric   if (!C.Op0.hasOneUse() ||
21850b57cec5SDimitry Andric       C.Op0.getOpcode() != ISD::LOAD ||
21860b57cec5SDimitry Andric       C.Op1.getOpcode() != ISD::Constant)
21870b57cec5SDimitry Andric     return;
21880b57cec5SDimitry Andric 
21890b57cec5SDimitry Andric   // We must have an 8- or 16-bit load.
21900b57cec5SDimitry Andric   auto *Load = cast<LoadSDNode>(C.Op0);
21915ffd83dbSDimitry Andric   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
21925ffd83dbSDimitry Andric   if ((NumBits != 8 && NumBits != 16) ||
21935ffd83dbSDimitry Andric       NumBits != Load->getMemoryVT().getStoreSizeInBits())
21940b57cec5SDimitry Andric     return;
21950b57cec5SDimitry Andric 
21960b57cec5SDimitry Andric   // The load must be an extending one and the constant must be within the
21970b57cec5SDimitry Andric   // range of the unextended value.
21980b57cec5SDimitry Andric   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
21990b57cec5SDimitry Andric   uint64_t Value = ConstOp1->getZExtValue();
22000b57cec5SDimitry Andric   uint64_t Mask = (1 << NumBits) - 1;
22010b57cec5SDimitry Andric   if (Load->getExtensionType() == ISD::SEXTLOAD) {
22020b57cec5SDimitry Andric     // Make sure that ConstOp1 is in range of C.Op0.
22030b57cec5SDimitry Andric     int64_t SignedValue = ConstOp1->getSExtValue();
22040b57cec5SDimitry Andric     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
22050b57cec5SDimitry Andric       return;
22060b57cec5SDimitry Andric     if (C.ICmpType != SystemZICMP::SignedOnly) {
22070b57cec5SDimitry Andric       // Unsigned comparison between two sign-extended values is equivalent
22080b57cec5SDimitry Andric       // to unsigned comparison between two zero-extended values.
22090b57cec5SDimitry Andric       Value &= Mask;
22100b57cec5SDimitry Andric     } else if (NumBits == 8) {
22110b57cec5SDimitry Andric       // Try to treat the comparison as unsigned, so that we can use CLI.
22120b57cec5SDimitry Andric       // Adjust CCMask and Value as necessary.
22130b57cec5SDimitry Andric       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
22140b57cec5SDimitry Andric         // Test whether the high bit of the byte is set.
22150b57cec5SDimitry Andric         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
22160b57cec5SDimitry Andric       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
22170b57cec5SDimitry Andric         // Test whether the high bit of the byte is clear.
22180b57cec5SDimitry Andric         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
22190b57cec5SDimitry Andric       else
22200b57cec5SDimitry Andric         // No instruction exists for this combination.
22210b57cec5SDimitry Andric         return;
22220b57cec5SDimitry Andric       C.ICmpType = SystemZICMP::UnsignedOnly;
22230b57cec5SDimitry Andric     }
22240b57cec5SDimitry Andric   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
22250b57cec5SDimitry Andric     if (Value > Mask)
22260b57cec5SDimitry Andric       return;
22270b57cec5SDimitry Andric     // If the constant is in range, we can use any comparison.
22280b57cec5SDimitry Andric     C.ICmpType = SystemZICMP::Any;
22290b57cec5SDimitry Andric   } else
22300b57cec5SDimitry Andric     return;
22310b57cec5SDimitry Andric 
22320b57cec5SDimitry Andric   // Make sure that the first operand is an i32 of the right extension type.
22330b57cec5SDimitry Andric   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
22340b57cec5SDimitry Andric                               ISD::SEXTLOAD :
22350b57cec5SDimitry Andric                               ISD::ZEXTLOAD);
22360b57cec5SDimitry Andric   if (C.Op0.getValueType() != MVT::i32 ||
22370b57cec5SDimitry Andric       Load->getExtensionType() != ExtType) {
22380b57cec5SDimitry Andric     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
22390b57cec5SDimitry Andric                            Load->getBasePtr(), Load->getPointerInfo(),
22400b57cec5SDimitry Andric                            Load->getMemoryVT(), Load->getAlignment(),
22410b57cec5SDimitry Andric                            Load->getMemOperand()->getFlags());
22420b57cec5SDimitry Andric     // Update the chain uses.
22430b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
22440b57cec5SDimitry Andric   }
22450b57cec5SDimitry Andric 
22460b57cec5SDimitry Andric   // Make sure that the second operand is an i32 with the right value.
22470b57cec5SDimitry Andric   if (C.Op1.getValueType() != MVT::i32 ||
22480b57cec5SDimitry Andric       Value != ConstOp1->getZExtValue())
22490b57cec5SDimitry Andric     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
22500b57cec5SDimitry Andric }
22510b57cec5SDimitry Andric 
22520b57cec5SDimitry Andric // Return true if Op is either an unextended load, or a load suitable
22530b57cec5SDimitry Andric // for integer register-memory comparisons of type ICmpType.
22540b57cec5SDimitry Andric static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
22550b57cec5SDimitry Andric   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
22560b57cec5SDimitry Andric   if (Load) {
22570b57cec5SDimitry Andric     // There are no instructions to compare a register with a memory byte.
22580b57cec5SDimitry Andric     if (Load->getMemoryVT() == MVT::i8)
22590b57cec5SDimitry Andric       return false;
22600b57cec5SDimitry Andric     // Otherwise decide on extension type.
22610b57cec5SDimitry Andric     switch (Load->getExtensionType()) {
22620b57cec5SDimitry Andric     case ISD::NON_EXTLOAD:
22630b57cec5SDimitry Andric       return true;
22640b57cec5SDimitry Andric     case ISD::SEXTLOAD:
22650b57cec5SDimitry Andric       return ICmpType != SystemZICMP::UnsignedOnly;
22660b57cec5SDimitry Andric     case ISD::ZEXTLOAD:
22670b57cec5SDimitry Andric       return ICmpType != SystemZICMP::SignedOnly;
22680b57cec5SDimitry Andric     default:
22690b57cec5SDimitry Andric       break;
22700b57cec5SDimitry Andric     }
22710b57cec5SDimitry Andric   }
22720b57cec5SDimitry Andric   return false;
22730b57cec5SDimitry Andric }
22740b57cec5SDimitry Andric 
22750b57cec5SDimitry Andric // Return true if it is better to swap the operands of C.
22760b57cec5SDimitry Andric static bool shouldSwapCmpOperands(const Comparison &C) {
22770b57cec5SDimitry Andric   // Leave f128 comparisons alone, since they have no memory forms.
22780b57cec5SDimitry Andric   if (C.Op0.getValueType() == MVT::f128)
22790b57cec5SDimitry Andric     return false;
22800b57cec5SDimitry Andric 
22810b57cec5SDimitry Andric   // Always keep a floating-point constant second, since comparisons with
22820b57cec5SDimitry Andric   // zero can use LOAD TEST and comparisons with other constants make a
22830b57cec5SDimitry Andric   // natural memory operand.
22840b57cec5SDimitry Andric   if (isa<ConstantFPSDNode>(C.Op1))
22850b57cec5SDimitry Andric     return false;
22860b57cec5SDimitry Andric 
22870b57cec5SDimitry Andric   // Never swap comparisons with zero since there are many ways to optimize
22880b57cec5SDimitry Andric   // those later.
22890b57cec5SDimitry Andric   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
22900b57cec5SDimitry Andric   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
22910b57cec5SDimitry Andric     return false;
22920b57cec5SDimitry Andric 
22930b57cec5SDimitry Andric   // Also keep natural memory operands second if the loaded value is
22940b57cec5SDimitry Andric   // only used here.  Several comparisons have memory forms.
22950b57cec5SDimitry Andric   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
22960b57cec5SDimitry Andric     return false;
22970b57cec5SDimitry Andric 
22980b57cec5SDimitry Andric   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
22990b57cec5SDimitry Andric   // In that case we generally prefer the memory to be second.
23000b57cec5SDimitry Andric   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
23010b57cec5SDimitry Andric     // The only exceptions are when the second operand is a constant and
23020b57cec5SDimitry Andric     // we can use things like CHHSI.
23030b57cec5SDimitry Andric     if (!ConstOp1)
23040b57cec5SDimitry Andric       return true;
23050b57cec5SDimitry Andric     // The unsigned memory-immediate instructions can handle 16-bit
23060b57cec5SDimitry Andric     // unsigned integers.
23070b57cec5SDimitry Andric     if (C.ICmpType != SystemZICMP::SignedOnly &&
23080b57cec5SDimitry Andric         isUInt<16>(ConstOp1->getZExtValue()))
23090b57cec5SDimitry Andric       return false;
23100b57cec5SDimitry Andric     // The signed memory-immediate instructions can handle 16-bit
23110b57cec5SDimitry Andric     // signed integers.
23120b57cec5SDimitry Andric     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
23130b57cec5SDimitry Andric         isInt<16>(ConstOp1->getSExtValue()))
23140b57cec5SDimitry Andric       return false;
23150b57cec5SDimitry Andric     return true;
23160b57cec5SDimitry Andric   }
23170b57cec5SDimitry Andric 
23180b57cec5SDimitry Andric   // Try to promote the use of CGFR and CLGFR.
23190b57cec5SDimitry Andric   unsigned Opcode0 = C.Op0.getOpcode();
23200b57cec5SDimitry Andric   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
23210b57cec5SDimitry Andric     return true;
23220b57cec5SDimitry Andric   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
23230b57cec5SDimitry Andric     return true;
23240b57cec5SDimitry Andric   if (C.ICmpType != SystemZICMP::SignedOnly &&
23250b57cec5SDimitry Andric       Opcode0 == ISD::AND &&
23260b57cec5SDimitry Andric       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
23270b57cec5SDimitry Andric       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
23280b57cec5SDimitry Andric     return true;
23290b57cec5SDimitry Andric 
23300b57cec5SDimitry Andric   return false;
23310b57cec5SDimitry Andric }
23320b57cec5SDimitry Andric 
23330b57cec5SDimitry Andric // Check whether C tests for equality between X and Y and whether X - Y
23340b57cec5SDimitry Andric // or Y - X is also computed.  In that case it's better to compare the
23350b57cec5SDimitry Andric // result of the subtraction against zero.
23360b57cec5SDimitry Andric static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
23370b57cec5SDimitry Andric                                  Comparison &C) {
23380b57cec5SDimitry Andric   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
23390b57cec5SDimitry Andric       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2340349cc55cSDimitry Andric     for (SDNode *N : C.Op0->uses()) {
23410b57cec5SDimitry Andric       if (N->getOpcode() == ISD::SUB &&
23420b57cec5SDimitry Andric           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
23430b57cec5SDimitry Andric            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
23440b57cec5SDimitry Andric         C.Op0 = SDValue(N, 0);
23450b57cec5SDimitry Andric         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
23460b57cec5SDimitry Andric         return;
23470b57cec5SDimitry Andric       }
23480b57cec5SDimitry Andric     }
23490b57cec5SDimitry Andric   }
23500b57cec5SDimitry Andric }
23510b57cec5SDimitry Andric 
23520b57cec5SDimitry Andric // Check whether C compares a floating-point value with zero and if that
23530b57cec5SDimitry Andric // floating-point value is also negated.  In this case we can use the
23540b57cec5SDimitry Andric // negation to set CC, so avoiding separate LOAD AND TEST and
23550b57cec5SDimitry Andric // LOAD (NEGATIVE/COMPLEMENT) instructions.
23560b57cec5SDimitry Andric static void adjustForFNeg(Comparison &C) {
2357480093f4SDimitry Andric   // This optimization is invalid for strict comparisons, since FNEG
2358480093f4SDimitry Andric   // does not raise any exceptions.
2359480093f4SDimitry Andric   if (C.Chain)
2360480093f4SDimitry Andric     return;
23610b57cec5SDimitry Andric   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
23620b57cec5SDimitry Andric   if (C1 && C1->isZero()) {
2363349cc55cSDimitry Andric     for (SDNode *N : C.Op0->uses()) {
23640b57cec5SDimitry Andric       if (N->getOpcode() == ISD::FNEG) {
23650b57cec5SDimitry Andric         C.Op0 = SDValue(N, 0);
23665ffd83dbSDimitry Andric         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
23670b57cec5SDimitry Andric         return;
23680b57cec5SDimitry Andric       }
23690b57cec5SDimitry Andric     }
23700b57cec5SDimitry Andric   }
23710b57cec5SDimitry Andric }
23720b57cec5SDimitry Andric 
23730b57cec5SDimitry Andric // Check whether C compares (shl X, 32) with 0 and whether X is
23740b57cec5SDimitry Andric // also sign-extended.  In that case it is better to test the result
23750b57cec5SDimitry Andric // of the sign extension using LTGFR.
23760b57cec5SDimitry Andric //
23770b57cec5SDimitry Andric // This case is important because InstCombine transforms a comparison
23780b57cec5SDimitry Andric // with (sext (trunc X)) into a comparison with (shl X, 32).
23790b57cec5SDimitry Andric static void adjustForLTGFR(Comparison &C) {
23800b57cec5SDimitry Andric   // Check for a comparison between (shl X, 32) and 0.
23810b57cec5SDimitry Andric   if (C.Op0.getOpcode() == ISD::SHL &&
23820b57cec5SDimitry Andric       C.Op0.getValueType() == MVT::i64 &&
23830b57cec5SDimitry Andric       C.Op1.getOpcode() == ISD::Constant &&
23840b57cec5SDimitry Andric       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
23850b57cec5SDimitry Andric     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
23860b57cec5SDimitry Andric     if (C1 && C1->getZExtValue() == 32) {
23870b57cec5SDimitry Andric       SDValue ShlOp0 = C.Op0.getOperand(0);
23880b57cec5SDimitry Andric       // See whether X has any SIGN_EXTEND_INREG uses.
2389349cc55cSDimitry Andric       for (SDNode *N : ShlOp0->uses()) {
23900b57cec5SDimitry Andric         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
23910b57cec5SDimitry Andric             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
23920b57cec5SDimitry Andric           C.Op0 = SDValue(N, 0);
23930b57cec5SDimitry Andric           return;
23940b57cec5SDimitry Andric         }
23950b57cec5SDimitry Andric       }
23960b57cec5SDimitry Andric     }
23970b57cec5SDimitry Andric   }
23980b57cec5SDimitry Andric }
23990b57cec5SDimitry Andric 
24000b57cec5SDimitry Andric // If C compares the truncation of an extending load, try to compare
24010b57cec5SDimitry Andric // the untruncated value instead.  This exposes more opportunities to
24020b57cec5SDimitry Andric // reuse CC.
24030b57cec5SDimitry Andric static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
24040b57cec5SDimitry Andric                                Comparison &C) {
24050b57cec5SDimitry Andric   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
24060b57cec5SDimitry Andric       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
24070b57cec5SDimitry Andric       C.Op1.getOpcode() == ISD::Constant &&
24080b57cec5SDimitry Andric       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
24090b57cec5SDimitry Andric     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2410e8d8bef9SDimitry Andric     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2411e8d8bef9SDimitry Andric         C.Op0.getValueSizeInBits().getFixedSize()) {
24120b57cec5SDimitry Andric       unsigned Type = L->getExtensionType();
24130b57cec5SDimitry Andric       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
24140b57cec5SDimitry Andric           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
24150b57cec5SDimitry Andric         C.Op0 = C.Op0.getOperand(0);
24160b57cec5SDimitry Andric         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
24170b57cec5SDimitry Andric       }
24180b57cec5SDimitry Andric     }
24190b57cec5SDimitry Andric   }
24200b57cec5SDimitry Andric }
24210b57cec5SDimitry Andric 
24220b57cec5SDimitry Andric // Return true if shift operation N has an in-range constant shift value.
24230b57cec5SDimitry Andric // Store it in ShiftVal if so.
24240b57cec5SDimitry Andric static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
24250b57cec5SDimitry Andric   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
24260b57cec5SDimitry Andric   if (!Shift)
24270b57cec5SDimitry Andric     return false;
24280b57cec5SDimitry Andric 
24290b57cec5SDimitry Andric   uint64_t Amount = Shift->getZExtValue();
24300b57cec5SDimitry Andric   if (Amount >= N.getValueSizeInBits())
24310b57cec5SDimitry Andric     return false;
24320b57cec5SDimitry Andric 
24330b57cec5SDimitry Andric   ShiftVal = Amount;
24340b57cec5SDimitry Andric   return true;
24350b57cec5SDimitry Andric }
24360b57cec5SDimitry Andric 
24370b57cec5SDimitry Andric // Check whether an AND with Mask is suitable for a TEST UNDER MASK
24380b57cec5SDimitry Andric // instruction and whether the CC value is descriptive enough to handle
24390b57cec5SDimitry Andric // a comparison of type Opcode between the AND result and CmpVal.
24400b57cec5SDimitry Andric // CCMask says which comparison result is being tested and BitSize is
24410b57cec5SDimitry Andric // the number of bits in the operands.  If TEST UNDER MASK can be used,
24420b57cec5SDimitry Andric // return the corresponding CC mask, otherwise return 0.
24430b57cec5SDimitry Andric static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
24440b57cec5SDimitry Andric                                      uint64_t Mask, uint64_t CmpVal,
24450b57cec5SDimitry Andric                                      unsigned ICmpType) {
24460b57cec5SDimitry Andric   assert(Mask != 0 && "ANDs with zero should have been removed by now");
24470b57cec5SDimitry Andric 
24480b57cec5SDimitry Andric   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
24490b57cec5SDimitry Andric   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
24500b57cec5SDimitry Andric       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
24510b57cec5SDimitry Andric     return 0;
24520b57cec5SDimitry Andric 
24530b57cec5SDimitry Andric   // Work out the masks for the lowest and highest bits.
24540b57cec5SDimitry Andric   unsigned HighShift = 63 - countLeadingZeros(Mask);
24550b57cec5SDimitry Andric   uint64_t High = uint64_t(1) << HighShift;
24560b57cec5SDimitry Andric   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
24570b57cec5SDimitry Andric 
24580b57cec5SDimitry Andric   // Signed ordered comparisons are effectively unsigned if the sign
24590b57cec5SDimitry Andric   // bit is dropped.
24600b57cec5SDimitry Andric   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
24610b57cec5SDimitry Andric 
24620b57cec5SDimitry Andric   // Check for equality comparisons with 0, or the equivalent.
24630b57cec5SDimitry Andric   if (CmpVal == 0) {
24640b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_EQ)
24650b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_0;
24660b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE)
24670b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_1;
24680b57cec5SDimitry Andric   }
24690b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
24700b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LT)
24710b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_0;
24720b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GE)
24730b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_1;
24740b57cec5SDimitry Andric   }
24750b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal < Low) {
24760b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LE)
24770b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_0;
24780b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GT)
24790b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_1;
24800b57cec5SDimitry Andric   }
24810b57cec5SDimitry Andric 
24820b57cec5SDimitry Andric   // Check for equality comparisons with the mask, or the equivalent.
24830b57cec5SDimitry Andric   if (CmpVal == Mask) {
24840b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_EQ)
24850b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_1;
24860b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE)
24870b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_0;
24880b57cec5SDimitry Andric   }
24890b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
24900b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GT)
24910b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_1;
24920b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LE)
24930b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_0;
24940b57cec5SDimitry Andric   }
24950b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
24960b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GE)
24970b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_ALL_1;
24980b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LT)
24990b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_SOME_0;
25000b57cec5SDimitry Andric   }
25010b57cec5SDimitry Andric 
25020b57cec5SDimitry Andric   // Check for ordered comparisons with the top bit.
25030b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
25040b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LE)
25050b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MSB_0;
25060b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GT)
25070b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MSB_1;
25080b57cec5SDimitry Andric   }
25090b57cec5SDimitry Andric   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
25100b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_LT)
25110b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MSB_0;
25120b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_GE)
25130b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MSB_1;
25140b57cec5SDimitry Andric   }
25150b57cec5SDimitry Andric 
25160b57cec5SDimitry Andric   // If there are just two bits, we can do equality checks for Low and High
25170b57cec5SDimitry Andric   // as well.
25180b57cec5SDimitry Andric   if (Mask == Low + High) {
25190b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
25200b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MIXED_MSB_0;
25210b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
25220b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
25230b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
25240b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MIXED_MSB_1;
25250b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
25260b57cec5SDimitry Andric       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
25270b57cec5SDimitry Andric   }
25280b57cec5SDimitry Andric 
25290b57cec5SDimitry Andric   // Looks like we've exhausted our options.
25300b57cec5SDimitry Andric   return 0;
25310b57cec5SDimitry Andric }
25320b57cec5SDimitry Andric 
25330b57cec5SDimitry Andric // See whether C can be implemented as a TEST UNDER MASK instruction.
25340b57cec5SDimitry Andric // Update the arguments with the TM version if so.
25350b57cec5SDimitry Andric static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
25360b57cec5SDimitry Andric                                    Comparison &C) {
25370b57cec5SDimitry Andric   // Check that we have a comparison with a constant.
25380b57cec5SDimitry Andric   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
25390b57cec5SDimitry Andric   if (!ConstOp1)
25400b57cec5SDimitry Andric     return;
25410b57cec5SDimitry Andric   uint64_t CmpVal = ConstOp1->getZExtValue();
25420b57cec5SDimitry Andric 
25430b57cec5SDimitry Andric   // Check whether the nonconstant input is an AND with a constant mask.
25440b57cec5SDimitry Andric   Comparison NewC(C);
25450b57cec5SDimitry Andric   uint64_t MaskVal;
25460b57cec5SDimitry Andric   ConstantSDNode *Mask = nullptr;
25470b57cec5SDimitry Andric   if (C.Op0.getOpcode() == ISD::AND) {
25480b57cec5SDimitry Andric     NewC.Op0 = C.Op0.getOperand(0);
25490b57cec5SDimitry Andric     NewC.Op1 = C.Op0.getOperand(1);
25500b57cec5SDimitry Andric     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
25510b57cec5SDimitry Andric     if (!Mask)
25520b57cec5SDimitry Andric       return;
25530b57cec5SDimitry Andric     MaskVal = Mask->getZExtValue();
25540b57cec5SDimitry Andric   } else {
25550b57cec5SDimitry Andric     // There is no instruction to compare with a 64-bit immediate
25560b57cec5SDimitry Andric     // so use TMHH instead if possible.  We need an unsigned ordered
25570b57cec5SDimitry Andric     // comparison with an i64 immediate.
25580b57cec5SDimitry Andric     if (NewC.Op0.getValueType() != MVT::i64 ||
25590b57cec5SDimitry Andric         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
25600b57cec5SDimitry Andric         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
25610b57cec5SDimitry Andric         NewC.ICmpType == SystemZICMP::SignedOnly)
25620b57cec5SDimitry Andric       return;
25630b57cec5SDimitry Andric     // Convert LE and GT comparisons into LT and GE.
25640b57cec5SDimitry Andric     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
25650b57cec5SDimitry Andric         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
25660b57cec5SDimitry Andric       if (CmpVal == uint64_t(-1))
25670b57cec5SDimitry Andric         return;
25680b57cec5SDimitry Andric       CmpVal += 1;
25690b57cec5SDimitry Andric       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
25700b57cec5SDimitry Andric     }
25710b57cec5SDimitry Andric     // If the low N bits of Op1 are zero than the low N bits of Op0 can
25720b57cec5SDimitry Andric     // be masked off without changing the result.
25730b57cec5SDimitry Andric     MaskVal = -(CmpVal & -CmpVal);
25740b57cec5SDimitry Andric     NewC.ICmpType = SystemZICMP::UnsignedOnly;
25750b57cec5SDimitry Andric   }
25760b57cec5SDimitry Andric   if (!MaskVal)
25770b57cec5SDimitry Andric     return;
25780b57cec5SDimitry Andric 
25790b57cec5SDimitry Andric   // Check whether the combination of mask, comparison value and comparison
25800b57cec5SDimitry Andric   // type are suitable.
25810b57cec5SDimitry Andric   unsigned BitSize = NewC.Op0.getValueSizeInBits();
25820b57cec5SDimitry Andric   unsigned NewCCMask, ShiftVal;
25830b57cec5SDimitry Andric   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
25840b57cec5SDimitry Andric       NewC.Op0.getOpcode() == ISD::SHL &&
25850b57cec5SDimitry Andric       isSimpleShift(NewC.Op0, ShiftVal) &&
25860b57cec5SDimitry Andric       (MaskVal >> ShiftVal != 0) &&
25870b57cec5SDimitry Andric       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
25880b57cec5SDimitry Andric       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
25890b57cec5SDimitry Andric                                         MaskVal >> ShiftVal,
25900b57cec5SDimitry Andric                                         CmpVal >> ShiftVal,
25910b57cec5SDimitry Andric                                         SystemZICMP::Any))) {
25920b57cec5SDimitry Andric     NewC.Op0 = NewC.Op0.getOperand(0);
25930b57cec5SDimitry Andric     MaskVal >>= ShiftVal;
25940b57cec5SDimitry Andric   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
25950b57cec5SDimitry Andric              NewC.Op0.getOpcode() == ISD::SRL &&
25960b57cec5SDimitry Andric              isSimpleShift(NewC.Op0, ShiftVal) &&
25970b57cec5SDimitry Andric              (MaskVal << ShiftVal != 0) &&
25980b57cec5SDimitry Andric              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
25990b57cec5SDimitry Andric              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
26000b57cec5SDimitry Andric                                                MaskVal << ShiftVal,
26010b57cec5SDimitry Andric                                                CmpVal << ShiftVal,
26020b57cec5SDimitry Andric                                                SystemZICMP::UnsignedOnly))) {
26030b57cec5SDimitry Andric     NewC.Op0 = NewC.Op0.getOperand(0);
26040b57cec5SDimitry Andric     MaskVal <<= ShiftVal;
26050b57cec5SDimitry Andric   } else {
26060b57cec5SDimitry Andric     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
26070b57cec5SDimitry Andric                                      NewC.ICmpType);
26080b57cec5SDimitry Andric     if (!NewCCMask)
26090b57cec5SDimitry Andric       return;
26100b57cec5SDimitry Andric   }
26110b57cec5SDimitry Andric 
26120b57cec5SDimitry Andric   // Go ahead and make the change.
26130b57cec5SDimitry Andric   C.Opcode = SystemZISD::TM;
26140b57cec5SDimitry Andric   C.Op0 = NewC.Op0;
26150b57cec5SDimitry Andric   if (Mask && Mask->getZExtValue() == MaskVal)
26160b57cec5SDimitry Andric     C.Op1 = SDValue(Mask, 0);
26170b57cec5SDimitry Andric   else
26180b57cec5SDimitry Andric     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
26190b57cec5SDimitry Andric   C.CCValid = SystemZ::CCMASK_TM;
26200b57cec5SDimitry Andric   C.CCMask = NewCCMask;
26210b57cec5SDimitry Andric }
26220b57cec5SDimitry Andric 
26230b57cec5SDimitry Andric // See whether the comparison argument contains a redundant AND
26240b57cec5SDimitry Andric // and remove it if so.  This sometimes happens due to the generic
26250b57cec5SDimitry Andric // BRCOND expansion.
26260b57cec5SDimitry Andric static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
26270b57cec5SDimitry Andric                                   Comparison &C) {
26280b57cec5SDimitry Andric   if (C.Op0.getOpcode() != ISD::AND)
26290b57cec5SDimitry Andric     return;
26300b57cec5SDimitry Andric   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
26310b57cec5SDimitry Andric   if (!Mask)
26320b57cec5SDimitry Andric     return;
26330b57cec5SDimitry Andric   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
26340b57cec5SDimitry Andric   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
26350b57cec5SDimitry Andric     return;
26360b57cec5SDimitry Andric 
26370b57cec5SDimitry Andric   C.Op0 = C.Op0.getOperand(0);
26380b57cec5SDimitry Andric }
26390b57cec5SDimitry Andric 
26400b57cec5SDimitry Andric // Return a Comparison that tests the condition-code result of intrinsic
26410b57cec5SDimitry Andric // node Call against constant integer CC using comparison code Cond.
26420b57cec5SDimitry Andric // Opcode is the opcode of the SystemZISD operation for the intrinsic
26430b57cec5SDimitry Andric // and CCValid is the set of possible condition-code results.
26440b57cec5SDimitry Andric static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
26450b57cec5SDimitry Andric                                   SDValue Call, unsigned CCValid, uint64_t CC,
26460b57cec5SDimitry Andric                                   ISD::CondCode Cond) {
2647480093f4SDimitry Andric   Comparison C(Call, SDValue(), SDValue());
26480b57cec5SDimitry Andric   C.Opcode = Opcode;
26490b57cec5SDimitry Andric   C.CCValid = CCValid;
26500b57cec5SDimitry Andric   if (Cond == ISD::SETEQ)
26510b57cec5SDimitry Andric     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
26520b57cec5SDimitry Andric     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
26530b57cec5SDimitry Andric   else if (Cond == ISD::SETNE)
26540b57cec5SDimitry Andric     // ...and the inverse of that.
26550b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
26560b57cec5SDimitry Andric   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
26570b57cec5SDimitry Andric     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
26580b57cec5SDimitry Andric     // always true for CC>3.
26590b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
26600b57cec5SDimitry Andric   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
26610b57cec5SDimitry Andric     // ...and the inverse of that.
26620b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
26630b57cec5SDimitry Andric   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
26640b57cec5SDimitry Andric     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
26650b57cec5SDimitry Andric     // always true for CC>3.
26660b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
26670b57cec5SDimitry Andric   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
26680b57cec5SDimitry Andric     // ...and the inverse of that.
26690b57cec5SDimitry Andric     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
26700b57cec5SDimitry Andric   else
26710b57cec5SDimitry Andric     llvm_unreachable("Unexpected integer comparison type");
26720b57cec5SDimitry Andric   C.CCMask &= CCValid;
26730b57cec5SDimitry Andric   return C;
26740b57cec5SDimitry Andric }
26750b57cec5SDimitry Andric 
26760b57cec5SDimitry Andric // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
26770b57cec5SDimitry Andric static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2678480093f4SDimitry Andric                          ISD::CondCode Cond, const SDLoc &DL,
2679480093f4SDimitry Andric                          SDValue Chain = SDValue(),
2680480093f4SDimitry Andric                          bool IsSignaling = false) {
26810b57cec5SDimitry Andric   if (CmpOp1.getOpcode() == ISD::Constant) {
2682480093f4SDimitry Andric     assert(!Chain);
26830b57cec5SDimitry Andric     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
26840b57cec5SDimitry Andric     unsigned Opcode, CCValid;
26850b57cec5SDimitry Andric     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
26860b57cec5SDimitry Andric         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
26870b57cec5SDimitry Andric         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
26880b57cec5SDimitry Andric       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
26890b57cec5SDimitry Andric     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
26900b57cec5SDimitry Andric         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
26910b57cec5SDimitry Andric         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
26920b57cec5SDimitry Andric       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
26930b57cec5SDimitry Andric   }
2694480093f4SDimitry Andric   Comparison C(CmpOp0, CmpOp1, Chain);
26950b57cec5SDimitry Andric   C.CCMask = CCMaskForCondCode(Cond);
26960b57cec5SDimitry Andric   if (C.Op0.getValueType().isFloatingPoint()) {
26970b57cec5SDimitry Andric     C.CCValid = SystemZ::CCMASK_FCMP;
2698480093f4SDimitry Andric     if (!C.Chain)
26990b57cec5SDimitry Andric       C.Opcode = SystemZISD::FCMP;
2700480093f4SDimitry Andric     else if (!IsSignaling)
2701480093f4SDimitry Andric       C.Opcode = SystemZISD::STRICT_FCMP;
2702480093f4SDimitry Andric     else
2703480093f4SDimitry Andric       C.Opcode = SystemZISD::STRICT_FCMPS;
27040b57cec5SDimitry Andric     adjustForFNeg(C);
27050b57cec5SDimitry Andric   } else {
2706480093f4SDimitry Andric     assert(!C.Chain);
27070b57cec5SDimitry Andric     C.CCValid = SystemZ::CCMASK_ICMP;
27080b57cec5SDimitry Andric     C.Opcode = SystemZISD::ICMP;
27090b57cec5SDimitry Andric     // Choose the type of comparison.  Equality and inequality tests can
27100b57cec5SDimitry Andric     // use either signed or unsigned comparisons.  The choice also doesn't
27110b57cec5SDimitry Andric     // matter if both sign bits are known to be clear.  In those cases we
27120b57cec5SDimitry Andric     // want to give the main isel code the freedom to choose whichever
27130b57cec5SDimitry Andric     // form fits best.
27140b57cec5SDimitry Andric     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
27150b57cec5SDimitry Andric         C.CCMask == SystemZ::CCMASK_CMP_NE ||
27160b57cec5SDimitry Andric         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
27170b57cec5SDimitry Andric       C.ICmpType = SystemZICMP::Any;
27180b57cec5SDimitry Andric     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
27190b57cec5SDimitry Andric       C.ICmpType = SystemZICMP::UnsignedOnly;
27200b57cec5SDimitry Andric     else
27210b57cec5SDimitry Andric       C.ICmpType = SystemZICMP::SignedOnly;
27220b57cec5SDimitry Andric     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
27230b57cec5SDimitry Andric     adjustForRedundantAnd(DAG, DL, C);
27240b57cec5SDimitry Andric     adjustZeroCmp(DAG, DL, C);
27250b57cec5SDimitry Andric     adjustSubwordCmp(DAG, DL, C);
27260b57cec5SDimitry Andric     adjustForSubtraction(DAG, DL, C);
27270b57cec5SDimitry Andric     adjustForLTGFR(C);
27280b57cec5SDimitry Andric     adjustICmpTruncate(DAG, DL, C);
27290b57cec5SDimitry Andric   }
27300b57cec5SDimitry Andric 
27310b57cec5SDimitry Andric   if (shouldSwapCmpOperands(C)) {
27320b57cec5SDimitry Andric     std::swap(C.Op0, C.Op1);
27335ffd83dbSDimitry Andric     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
27340b57cec5SDimitry Andric   }
27350b57cec5SDimitry Andric 
27360b57cec5SDimitry Andric   adjustForTestUnderMask(DAG, DL, C);
27370b57cec5SDimitry Andric   return C;
27380b57cec5SDimitry Andric }
27390b57cec5SDimitry Andric 
27400b57cec5SDimitry Andric // Emit the comparison instruction described by C.
27410b57cec5SDimitry Andric static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
27420b57cec5SDimitry Andric   if (!C.Op1.getNode()) {
27430b57cec5SDimitry Andric     SDNode *Node;
27440b57cec5SDimitry Andric     switch (C.Op0.getOpcode()) {
27450b57cec5SDimitry Andric     case ISD::INTRINSIC_W_CHAIN:
27460b57cec5SDimitry Andric       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
27470b57cec5SDimitry Andric       return SDValue(Node, 0);
27480b57cec5SDimitry Andric     case ISD::INTRINSIC_WO_CHAIN:
27490b57cec5SDimitry Andric       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
27500b57cec5SDimitry Andric       return SDValue(Node, Node->getNumValues() - 1);
27510b57cec5SDimitry Andric     default:
27520b57cec5SDimitry Andric       llvm_unreachable("Invalid comparison operands");
27530b57cec5SDimitry Andric     }
27540b57cec5SDimitry Andric   }
27550b57cec5SDimitry Andric   if (C.Opcode == SystemZISD::ICMP)
27560b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
27578bcb0991SDimitry Andric                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
27580b57cec5SDimitry Andric   if (C.Opcode == SystemZISD::TM) {
27590b57cec5SDimitry Andric     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
27600b57cec5SDimitry Andric                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
27610b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
27628bcb0991SDimitry Andric                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
27630b57cec5SDimitry Andric   }
2764480093f4SDimitry Andric   if (C.Chain) {
2765480093f4SDimitry Andric     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2766480093f4SDimitry Andric     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2767480093f4SDimitry Andric   }
27680b57cec5SDimitry Andric   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
27690b57cec5SDimitry Andric }
27700b57cec5SDimitry Andric 
27710b57cec5SDimitry Andric // Implement a 32-bit *MUL_LOHI operation by extending both operands to
27720b57cec5SDimitry Andric // 64 bits.  Extend is the extension type to use.  Store the high part
27730b57cec5SDimitry Andric // in Hi and the low part in Lo.
27740b57cec5SDimitry Andric static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
27750b57cec5SDimitry Andric                             SDValue Op0, SDValue Op1, SDValue &Hi,
27760b57cec5SDimitry Andric                             SDValue &Lo) {
27770b57cec5SDimitry Andric   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
27780b57cec5SDimitry Andric   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
27790b57cec5SDimitry Andric   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
27800b57cec5SDimitry Andric   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
27810b57cec5SDimitry Andric                    DAG.getConstant(32, DL, MVT::i64));
27820b57cec5SDimitry Andric   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
27830b57cec5SDimitry Andric   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
27840b57cec5SDimitry Andric }
27850b57cec5SDimitry Andric 
27860b57cec5SDimitry Andric // Lower a binary operation that produces two VT results, one in each
27870b57cec5SDimitry Andric // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
27880b57cec5SDimitry Andric // and Opcode performs the GR128 operation.  Store the even register result
27890b57cec5SDimitry Andric // in Even and the odd register result in Odd.
27900b57cec5SDimitry Andric static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
27910b57cec5SDimitry Andric                              unsigned Opcode, SDValue Op0, SDValue Op1,
27920b57cec5SDimitry Andric                              SDValue &Even, SDValue &Odd) {
27930b57cec5SDimitry Andric   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
27940b57cec5SDimitry Andric   bool Is32Bit = is32Bit(VT);
27950b57cec5SDimitry Andric   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
27960b57cec5SDimitry Andric   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
27970b57cec5SDimitry Andric }
27980b57cec5SDimitry Andric 
27990b57cec5SDimitry Andric // Return an i32 value that is 1 if the CC value produced by CCReg is
28000b57cec5SDimitry Andric // in the mask CCMask and 0 otherwise.  CC is known to have a value
28010b57cec5SDimitry Andric // in CCValid, so other values can be ignored.
28020b57cec5SDimitry Andric static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
28030b57cec5SDimitry Andric                          unsigned CCValid, unsigned CCMask) {
28040b57cec5SDimitry Andric   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
28050b57cec5SDimitry Andric                    DAG.getConstant(0, DL, MVT::i32),
28068bcb0991SDimitry Andric                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
28078bcb0991SDimitry Andric                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
28080b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
28090b57cec5SDimitry Andric }
28100b57cec5SDimitry Andric 
28110b57cec5SDimitry Andric // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2812480093f4SDimitry Andric // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2813480093f4SDimitry Andric // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2814480093f4SDimitry Andric // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2815480093f4SDimitry Andric // floating-point comparisons.
2816480093f4SDimitry Andric enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2817480093f4SDimitry Andric static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
28180b57cec5SDimitry Andric   switch (CC) {
28190b57cec5SDimitry Andric   case ISD::SETOEQ:
28200b57cec5SDimitry Andric   case ISD::SETEQ:
2821480093f4SDimitry Andric     switch (Mode) {
2822480093f4SDimitry Andric     case CmpMode::Int:         return SystemZISD::VICMPE;
2823480093f4SDimitry Andric     case CmpMode::FP:          return SystemZISD::VFCMPE;
2824480093f4SDimitry Andric     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2825480093f4SDimitry Andric     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2826480093f4SDimitry Andric     }
2827480093f4SDimitry Andric     llvm_unreachable("Bad mode");
28280b57cec5SDimitry Andric 
28290b57cec5SDimitry Andric   case ISD::SETOGE:
28300b57cec5SDimitry Andric   case ISD::SETGE:
2831480093f4SDimitry Andric     switch (Mode) {
2832480093f4SDimitry Andric     case CmpMode::Int:         return 0;
2833480093f4SDimitry Andric     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2834480093f4SDimitry Andric     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2835480093f4SDimitry Andric     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2836480093f4SDimitry Andric     }
2837480093f4SDimitry Andric     llvm_unreachable("Bad mode");
28380b57cec5SDimitry Andric 
28390b57cec5SDimitry Andric   case ISD::SETOGT:
28400b57cec5SDimitry Andric   case ISD::SETGT:
2841480093f4SDimitry Andric     switch (Mode) {
2842480093f4SDimitry Andric     case CmpMode::Int:         return SystemZISD::VICMPH;
2843480093f4SDimitry Andric     case CmpMode::FP:          return SystemZISD::VFCMPH;
2844480093f4SDimitry Andric     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2845480093f4SDimitry Andric     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2846480093f4SDimitry Andric     }
2847480093f4SDimitry Andric     llvm_unreachable("Bad mode");
28480b57cec5SDimitry Andric 
28490b57cec5SDimitry Andric   case ISD::SETUGT:
2850480093f4SDimitry Andric     switch (Mode) {
2851480093f4SDimitry Andric     case CmpMode::Int:         return SystemZISD::VICMPHL;
2852480093f4SDimitry Andric     case CmpMode::FP:          return 0;
2853480093f4SDimitry Andric     case CmpMode::StrictFP:    return 0;
2854480093f4SDimitry Andric     case CmpMode::SignalingFP: return 0;
2855480093f4SDimitry Andric     }
2856480093f4SDimitry Andric     llvm_unreachable("Bad mode");
28570b57cec5SDimitry Andric 
28580b57cec5SDimitry Andric   default:
28590b57cec5SDimitry Andric     return 0;
28600b57cec5SDimitry Andric   }
28610b57cec5SDimitry Andric }
28620b57cec5SDimitry Andric 
28630b57cec5SDimitry Andric // Return the SystemZISD vector comparison operation for CC or its inverse,
28640b57cec5SDimitry Andric // or 0 if neither can be done directly.  Indicate in Invert whether the
2865480093f4SDimitry Andric // result is for the inverse of CC.  Mode is as above.
2866480093f4SDimitry Andric static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
28670b57cec5SDimitry Andric                                             bool &Invert) {
2868480093f4SDimitry Andric   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
28690b57cec5SDimitry Andric     Invert = false;
28700b57cec5SDimitry Andric     return Opcode;
28710b57cec5SDimitry Andric   }
28720b57cec5SDimitry Andric 
2873480093f4SDimitry Andric   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2874480093f4SDimitry Andric   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
28750b57cec5SDimitry Andric     Invert = true;
28760b57cec5SDimitry Andric     return Opcode;
28770b57cec5SDimitry Andric   }
28780b57cec5SDimitry Andric 
28790b57cec5SDimitry Andric   return 0;
28800b57cec5SDimitry Andric }
28810b57cec5SDimitry Andric 
28820b57cec5SDimitry Andric // Return a v2f64 that contains the extended form of elements Start and Start+1
2883480093f4SDimitry Andric // of v4f32 value Op.  If Chain is nonnull, return the strict form.
28840b57cec5SDimitry Andric static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2885480093f4SDimitry Andric                                   SDValue Op, SDValue Chain) {
28860b57cec5SDimitry Andric   int Mask[] = { Start, -1, Start + 1, -1 };
28870b57cec5SDimitry Andric   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2888480093f4SDimitry Andric   if (Chain) {
2889480093f4SDimitry Andric     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2890480093f4SDimitry Andric     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2891480093f4SDimitry Andric   }
28920b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
28930b57cec5SDimitry Andric }
28940b57cec5SDimitry Andric 
28950b57cec5SDimitry Andric // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2896480093f4SDimitry Andric // producing a result of type VT.  If Chain is nonnull, return the strict form.
28970b57cec5SDimitry Andric SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
28980b57cec5SDimitry Andric                                             const SDLoc &DL, EVT VT,
28990b57cec5SDimitry Andric                                             SDValue CmpOp0,
2900480093f4SDimitry Andric                                             SDValue CmpOp1,
2901480093f4SDimitry Andric                                             SDValue Chain) const {
29020b57cec5SDimitry Andric   // There is no hardware support for v4f32 (unless we have the vector
29030b57cec5SDimitry Andric   // enhancements facility 1), so extend the vector into two v2f64s
29040b57cec5SDimitry Andric   // and compare those.
29050b57cec5SDimitry Andric   if (CmpOp0.getValueType() == MVT::v4f32 &&
29060b57cec5SDimitry Andric       !Subtarget.hasVectorEnhancements1()) {
2907480093f4SDimitry Andric     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2908480093f4SDimitry Andric     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2909480093f4SDimitry Andric     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2910480093f4SDimitry Andric     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2911480093f4SDimitry Andric     if (Chain) {
2912480093f4SDimitry Andric       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2913480093f4SDimitry Andric       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2914480093f4SDimitry Andric       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2915480093f4SDimitry Andric       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2916480093f4SDimitry Andric       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2917480093f4SDimitry Andric                             H1.getValue(1), L1.getValue(1),
2918480093f4SDimitry Andric                             HRes.getValue(1), LRes.getValue(1) };
2919480093f4SDimitry Andric       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2920480093f4SDimitry Andric       SDValue Ops[2] = { Res, NewChain };
2921480093f4SDimitry Andric       return DAG.getMergeValues(Ops, DL);
2922480093f4SDimitry Andric     }
29230b57cec5SDimitry Andric     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
29240b57cec5SDimitry Andric     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
29250b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
29260b57cec5SDimitry Andric   }
2927480093f4SDimitry Andric   if (Chain) {
2928480093f4SDimitry Andric     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2929480093f4SDimitry Andric     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2930480093f4SDimitry Andric   }
29310b57cec5SDimitry Andric   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
29320b57cec5SDimitry Andric }
29330b57cec5SDimitry Andric 
29340b57cec5SDimitry Andric // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2935480093f4SDimitry Andric // an integer mask of type VT.  If Chain is nonnull, we have a strict
2936480093f4SDimitry Andric // floating-point comparison.  If in addition IsSignaling is true, we have
2937480093f4SDimitry Andric // a strict signaling floating-point comparison.
29380b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
29390b57cec5SDimitry Andric                                                 const SDLoc &DL, EVT VT,
29400b57cec5SDimitry Andric                                                 ISD::CondCode CC,
29410b57cec5SDimitry Andric                                                 SDValue CmpOp0,
2942480093f4SDimitry Andric                                                 SDValue CmpOp1,
2943480093f4SDimitry Andric                                                 SDValue Chain,
2944480093f4SDimitry Andric                                                 bool IsSignaling) const {
29450b57cec5SDimitry Andric   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2946480093f4SDimitry Andric   assert (!Chain || IsFP);
2947480093f4SDimitry Andric   assert (!IsSignaling || Chain);
2948480093f4SDimitry Andric   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2949480093f4SDimitry Andric                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
29500b57cec5SDimitry Andric   bool Invert = false;
29510b57cec5SDimitry Andric   SDValue Cmp;
29520b57cec5SDimitry Andric   switch (CC) {
29530b57cec5SDimitry Andric     // Handle tests for order using (or (ogt y x) (oge x y)).
29540b57cec5SDimitry Andric   case ISD::SETUO:
29550b57cec5SDimitry Andric     Invert = true;
29560b57cec5SDimitry Andric     LLVM_FALLTHROUGH;
29570b57cec5SDimitry Andric   case ISD::SETO: {
29580b57cec5SDimitry Andric     assert(IsFP && "Unexpected integer comparison");
2959480093f4SDimitry Andric     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2960480093f4SDimitry Andric                               DL, VT, CmpOp1, CmpOp0, Chain);
2961480093f4SDimitry Andric     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2962480093f4SDimitry Andric                               DL, VT, CmpOp0, CmpOp1, Chain);
29630b57cec5SDimitry Andric     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2964480093f4SDimitry Andric     if (Chain)
2965480093f4SDimitry Andric       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2966480093f4SDimitry Andric                           LT.getValue(1), GE.getValue(1));
29670b57cec5SDimitry Andric     break;
29680b57cec5SDimitry Andric   }
29690b57cec5SDimitry Andric 
29700b57cec5SDimitry Andric     // Handle <> tests using (or (ogt y x) (ogt x y)).
29710b57cec5SDimitry Andric   case ISD::SETUEQ:
29720b57cec5SDimitry Andric     Invert = true;
29730b57cec5SDimitry Andric     LLVM_FALLTHROUGH;
29740b57cec5SDimitry Andric   case ISD::SETONE: {
29750b57cec5SDimitry Andric     assert(IsFP && "Unexpected integer comparison");
2976480093f4SDimitry Andric     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2977480093f4SDimitry Andric                               DL, VT, CmpOp1, CmpOp0, Chain);
2978480093f4SDimitry Andric     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2979480093f4SDimitry Andric                               DL, VT, CmpOp0, CmpOp1, Chain);
29800b57cec5SDimitry Andric     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2981480093f4SDimitry Andric     if (Chain)
2982480093f4SDimitry Andric       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2983480093f4SDimitry Andric                           LT.getValue(1), GT.getValue(1));
29840b57cec5SDimitry Andric     break;
29850b57cec5SDimitry Andric   }
29860b57cec5SDimitry Andric 
29870b57cec5SDimitry Andric     // Otherwise a single comparison is enough.  It doesn't really
29880b57cec5SDimitry Andric     // matter whether we try the inversion or the swap first, since
29890b57cec5SDimitry Andric     // there are no cases where both work.
29900b57cec5SDimitry Andric   default:
2991480093f4SDimitry Andric     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2992480093f4SDimitry Andric       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
29930b57cec5SDimitry Andric     else {
29940b57cec5SDimitry Andric       CC = ISD::getSetCCSwappedOperands(CC);
2995480093f4SDimitry Andric       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2996480093f4SDimitry Andric         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
29970b57cec5SDimitry Andric       else
29980b57cec5SDimitry Andric         llvm_unreachable("Unhandled comparison");
29990b57cec5SDimitry Andric     }
3000480093f4SDimitry Andric     if (Chain)
3001480093f4SDimitry Andric       Chain = Cmp.getValue(1);
30020b57cec5SDimitry Andric     break;
30030b57cec5SDimitry Andric   }
30040b57cec5SDimitry Andric   if (Invert) {
30050b57cec5SDimitry Andric     SDValue Mask =
30060b57cec5SDimitry Andric       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
30070b57cec5SDimitry Andric     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
30080b57cec5SDimitry Andric   }
3009480093f4SDimitry Andric   if (Chain && Chain.getNode() != Cmp.getNode()) {
3010480093f4SDimitry Andric     SDValue Ops[2] = { Cmp, Chain };
3011480093f4SDimitry Andric     Cmp = DAG.getMergeValues(Ops, DL);
3012480093f4SDimitry Andric   }
30130b57cec5SDimitry Andric   return Cmp;
30140b57cec5SDimitry Andric }
30150b57cec5SDimitry Andric 
30160b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
30170b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
30180b57cec5SDimitry Andric   SDValue CmpOp0   = Op.getOperand(0);
30190b57cec5SDimitry Andric   SDValue CmpOp1   = Op.getOperand(1);
30200b57cec5SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
30210b57cec5SDimitry Andric   SDLoc DL(Op);
30220b57cec5SDimitry Andric   EVT VT = Op.getValueType();
30230b57cec5SDimitry Andric   if (VT.isVector())
30240b57cec5SDimitry Andric     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
30250b57cec5SDimitry Andric 
30260b57cec5SDimitry Andric   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
30270b57cec5SDimitry Andric   SDValue CCReg = emitCmp(DAG, DL, C);
30280b57cec5SDimitry Andric   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
30290b57cec5SDimitry Andric }
30300b57cec5SDimitry Andric 
3031480093f4SDimitry Andric SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3032480093f4SDimitry Andric                                                   SelectionDAG &DAG,
3033480093f4SDimitry Andric                                                   bool IsSignaling) const {
3034480093f4SDimitry Andric   SDValue Chain    = Op.getOperand(0);
3035480093f4SDimitry Andric   SDValue CmpOp0   = Op.getOperand(1);
3036480093f4SDimitry Andric   SDValue CmpOp1   = Op.getOperand(2);
3037480093f4SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3038480093f4SDimitry Andric   SDLoc DL(Op);
3039480093f4SDimitry Andric   EVT VT = Op.getNode()->getValueType(0);
3040480093f4SDimitry Andric   if (VT.isVector()) {
3041480093f4SDimitry Andric     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3042480093f4SDimitry Andric                                    Chain, IsSignaling);
3043480093f4SDimitry Andric     return Res.getValue(Op.getResNo());
3044480093f4SDimitry Andric   }
3045480093f4SDimitry Andric 
3046480093f4SDimitry Andric   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3047480093f4SDimitry Andric   SDValue CCReg = emitCmp(DAG, DL, C);
3048480093f4SDimitry Andric   CCReg->setFlags(Op->getFlags());
3049480093f4SDimitry Andric   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3050480093f4SDimitry Andric   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3051480093f4SDimitry Andric   return DAG.getMergeValues(Ops, DL);
3052480093f4SDimitry Andric }
3053480093f4SDimitry Andric 
30540b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
30550b57cec5SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
30560b57cec5SDimitry Andric   SDValue CmpOp0   = Op.getOperand(2);
30570b57cec5SDimitry Andric   SDValue CmpOp1   = Op.getOperand(3);
30580b57cec5SDimitry Andric   SDValue Dest     = Op.getOperand(4);
30590b57cec5SDimitry Andric   SDLoc DL(Op);
30600b57cec5SDimitry Andric 
30610b57cec5SDimitry Andric   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
30620b57cec5SDimitry Andric   SDValue CCReg = emitCmp(DAG, DL, C);
30638bcb0991SDimitry Andric   return DAG.getNode(
30648bcb0991SDimitry Andric       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
30658bcb0991SDimitry Andric       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
30668bcb0991SDimitry Andric       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
30670b57cec5SDimitry Andric }
30680b57cec5SDimitry Andric 
30690b57cec5SDimitry Andric // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
30700b57cec5SDimitry Andric // allowing Pos and Neg to be wider than CmpOp.
30710b57cec5SDimitry Andric static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
30720b57cec5SDimitry Andric   return (Neg.getOpcode() == ISD::SUB &&
30730b57cec5SDimitry Andric           Neg.getOperand(0).getOpcode() == ISD::Constant &&
30740b57cec5SDimitry Andric           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
30750b57cec5SDimitry Andric           Neg.getOperand(1) == Pos &&
30760b57cec5SDimitry Andric           (Pos == CmpOp ||
30770b57cec5SDimitry Andric            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
30780b57cec5SDimitry Andric             Pos.getOperand(0) == CmpOp)));
30790b57cec5SDimitry Andric }
30800b57cec5SDimitry Andric 
30810b57cec5SDimitry Andric // Return the absolute or negative absolute of Op; IsNegative decides which.
30820b57cec5SDimitry Andric static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
30830b57cec5SDimitry Andric                            bool IsNegative) {
3084e8d8bef9SDimitry Andric   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
30850b57cec5SDimitry Andric   if (IsNegative)
30860b57cec5SDimitry Andric     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
30870b57cec5SDimitry Andric                      DAG.getConstant(0, DL, Op.getValueType()), Op);
30880b57cec5SDimitry Andric   return Op;
30890b57cec5SDimitry Andric }
30900b57cec5SDimitry Andric 
30910b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
30920b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
30930b57cec5SDimitry Andric   SDValue CmpOp0   = Op.getOperand(0);
30940b57cec5SDimitry Andric   SDValue CmpOp1   = Op.getOperand(1);
30950b57cec5SDimitry Andric   SDValue TrueOp   = Op.getOperand(2);
30960b57cec5SDimitry Andric   SDValue FalseOp  = Op.getOperand(3);
30970b57cec5SDimitry Andric   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
30980b57cec5SDimitry Andric   SDLoc DL(Op);
30990b57cec5SDimitry Andric 
31000b57cec5SDimitry Andric   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
31010b57cec5SDimitry Andric 
31020b57cec5SDimitry Andric   // Check for absolute and negative-absolute selections, including those
31030b57cec5SDimitry Andric   // where the comparison value is sign-extended (for LPGFR and LNGFR).
31040b57cec5SDimitry Andric   // This check supplements the one in DAGCombiner.
31050b57cec5SDimitry Andric   if (C.Opcode == SystemZISD::ICMP &&
31060b57cec5SDimitry Andric       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
31070b57cec5SDimitry Andric       C.CCMask != SystemZ::CCMASK_CMP_NE &&
31080b57cec5SDimitry Andric       C.Op1.getOpcode() == ISD::Constant &&
31090b57cec5SDimitry Andric       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
31100b57cec5SDimitry Andric     if (isAbsolute(C.Op0, TrueOp, FalseOp))
31110b57cec5SDimitry Andric       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
31120b57cec5SDimitry Andric     if (isAbsolute(C.Op0, FalseOp, TrueOp))
31130b57cec5SDimitry Andric       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
31140b57cec5SDimitry Andric   }
31150b57cec5SDimitry Andric 
31160b57cec5SDimitry Andric   SDValue CCReg = emitCmp(DAG, DL, C);
31178bcb0991SDimitry Andric   SDValue Ops[] = {TrueOp, FalseOp,
31188bcb0991SDimitry Andric                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
31198bcb0991SDimitry Andric                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
31200b57cec5SDimitry Andric 
31210b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
31220b57cec5SDimitry Andric }
31230b57cec5SDimitry Andric 
31240b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
31250b57cec5SDimitry Andric                                                   SelectionDAG &DAG) const {
31260b57cec5SDimitry Andric   SDLoc DL(Node);
31270b57cec5SDimitry Andric   const GlobalValue *GV = Node->getGlobal();
31280b57cec5SDimitry Andric   int64_t Offset = Node->getOffset();
31290b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
31300b57cec5SDimitry Andric   CodeModel::Model CM = DAG.getTarget().getCodeModel();
31310b57cec5SDimitry Andric 
31320b57cec5SDimitry Andric   SDValue Result;
31330b57cec5SDimitry Andric   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3134480093f4SDimitry Andric     if (isInt<32>(Offset)) {
31350b57cec5SDimitry Andric       // Assign anchors at 1<<12 byte boundaries.
31360b57cec5SDimitry Andric       uint64_t Anchor = Offset & ~uint64_t(0xfff);
31370b57cec5SDimitry Andric       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
31380b57cec5SDimitry Andric       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
31390b57cec5SDimitry Andric 
3140480093f4SDimitry Andric       // The offset can be folded into the address if it is aligned to a
3141480093f4SDimitry Andric       // halfword.
31420b57cec5SDimitry Andric       Offset -= Anchor;
31430b57cec5SDimitry Andric       if (Offset != 0 && (Offset & 1) == 0) {
3144480093f4SDimitry Andric         SDValue Full =
3145480093f4SDimitry Andric           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
31460b57cec5SDimitry Andric         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
31470b57cec5SDimitry Andric         Offset = 0;
31480b57cec5SDimitry Andric       }
31490b57cec5SDimitry Andric     } else {
3150480093f4SDimitry Andric       // Conservatively load a constant offset greater than 32 bits into a
3151480093f4SDimitry Andric       // register below.
3152480093f4SDimitry Andric       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3153480093f4SDimitry Andric       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3154480093f4SDimitry Andric     }
3155480093f4SDimitry Andric   } else {
31560b57cec5SDimitry Andric     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
31570b57cec5SDimitry Andric     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
31580b57cec5SDimitry Andric     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
31590b57cec5SDimitry Andric                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
31600b57cec5SDimitry Andric   }
31610b57cec5SDimitry Andric 
31620b57cec5SDimitry Andric   // If there was a non-zero offset that we didn't fold, create an explicit
31630b57cec5SDimitry Andric   // addition for it.
31640b57cec5SDimitry Andric   if (Offset != 0)
31650b57cec5SDimitry Andric     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
31660b57cec5SDimitry Andric                          DAG.getConstant(Offset, DL, PtrVT));
31670b57cec5SDimitry Andric 
31680b57cec5SDimitry Andric   return Result;
31690b57cec5SDimitry Andric }
31700b57cec5SDimitry Andric 
31710b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
31720b57cec5SDimitry Andric                                                  SelectionDAG &DAG,
31730b57cec5SDimitry Andric                                                  unsigned Opcode,
31740b57cec5SDimitry Andric                                                  SDValue GOTOffset) const {
31750b57cec5SDimitry Andric   SDLoc DL(Node);
31760b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
31770b57cec5SDimitry Andric   SDValue Chain = DAG.getEntryNode();
31780b57cec5SDimitry Andric   SDValue Glue;
31790b57cec5SDimitry Andric 
3180480093f4SDimitry Andric   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3181480093f4SDimitry Andric       CallingConv::GHC)
3182480093f4SDimitry Andric     report_fatal_error("In GHC calling convention TLS is not supported");
3183480093f4SDimitry Andric 
31840b57cec5SDimitry Andric   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
31850b57cec5SDimitry Andric   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
31860b57cec5SDimitry Andric   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
31870b57cec5SDimitry Andric   Glue = Chain.getValue(1);
31880b57cec5SDimitry Andric   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
31890b57cec5SDimitry Andric   Glue = Chain.getValue(1);
31900b57cec5SDimitry Andric 
31910b57cec5SDimitry Andric   // The first call operand is the chain and the second is the TLS symbol.
31920b57cec5SDimitry Andric   SmallVector<SDValue, 8> Ops;
31930b57cec5SDimitry Andric   Ops.push_back(Chain);
31940b57cec5SDimitry Andric   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
31950b57cec5SDimitry Andric                                            Node->getValueType(0),
31960b57cec5SDimitry Andric                                            0, 0));
31970b57cec5SDimitry Andric 
31980b57cec5SDimitry Andric   // Add argument registers to the end of the list so that they are
31990b57cec5SDimitry Andric   // known live into the call.
32000b57cec5SDimitry Andric   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
32010b57cec5SDimitry Andric   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
32020b57cec5SDimitry Andric 
32030b57cec5SDimitry Andric   // Add a register mask operand representing the call-preserved registers.
32040b57cec5SDimitry Andric   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
32050b57cec5SDimitry Andric   const uint32_t *Mask =
32060b57cec5SDimitry Andric       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
32070b57cec5SDimitry Andric   assert(Mask && "Missing call preserved mask for calling convention");
32080b57cec5SDimitry Andric   Ops.push_back(DAG.getRegisterMask(Mask));
32090b57cec5SDimitry Andric 
32100b57cec5SDimitry Andric   // Glue the call to the argument copies.
32110b57cec5SDimitry Andric   Ops.push_back(Glue);
32120b57cec5SDimitry Andric 
32130b57cec5SDimitry Andric   // Emit the call.
32140b57cec5SDimitry Andric   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
32150b57cec5SDimitry Andric   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
32160b57cec5SDimitry Andric   Glue = Chain.getValue(1);
32170b57cec5SDimitry Andric 
32180b57cec5SDimitry Andric   // Copy the return value from %r2.
32190b57cec5SDimitry Andric   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
32200b57cec5SDimitry Andric }
32210b57cec5SDimitry Andric 
32220b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
32230b57cec5SDimitry Andric                                                   SelectionDAG &DAG) const {
32240b57cec5SDimitry Andric   SDValue Chain = DAG.getEntryNode();
32250b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
32260b57cec5SDimitry Andric 
32270b57cec5SDimitry Andric   // The high part of the thread pointer is in access register 0.
32280b57cec5SDimitry Andric   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
32290b57cec5SDimitry Andric   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
32300b57cec5SDimitry Andric 
32310b57cec5SDimitry Andric   // The low part of the thread pointer is in access register 1.
32320b57cec5SDimitry Andric   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
32330b57cec5SDimitry Andric   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
32340b57cec5SDimitry Andric 
32350b57cec5SDimitry Andric   // Merge them into a single 64-bit address.
32360b57cec5SDimitry Andric   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
32370b57cec5SDimitry Andric                                     DAG.getConstant(32, DL, PtrVT));
32380b57cec5SDimitry Andric   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
32390b57cec5SDimitry Andric }
32400b57cec5SDimitry Andric 
32410b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
32420b57cec5SDimitry Andric                                                      SelectionDAG &DAG) const {
32430b57cec5SDimitry Andric   if (DAG.getTarget().useEmulatedTLS())
32440b57cec5SDimitry Andric     return LowerToTLSEmulatedModel(Node, DAG);
32450b57cec5SDimitry Andric   SDLoc DL(Node);
32460b57cec5SDimitry Andric   const GlobalValue *GV = Node->getGlobal();
32470b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
32480b57cec5SDimitry Andric   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
32490b57cec5SDimitry Andric 
3250480093f4SDimitry Andric   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3251480093f4SDimitry Andric       CallingConv::GHC)
3252480093f4SDimitry Andric     report_fatal_error("In GHC calling convention TLS is not supported");
3253480093f4SDimitry Andric 
32540b57cec5SDimitry Andric   SDValue TP = lowerThreadPointer(DL, DAG);
32550b57cec5SDimitry Andric 
32560b57cec5SDimitry Andric   // Get the offset of GA from the thread pointer, based on the TLS model.
32570b57cec5SDimitry Andric   SDValue Offset;
32580b57cec5SDimitry Andric   switch (model) {
32590b57cec5SDimitry Andric     case TLSModel::GeneralDynamic: {
32600b57cec5SDimitry Andric       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
32610b57cec5SDimitry Andric       SystemZConstantPoolValue *CPV =
32620b57cec5SDimitry Andric         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
32630b57cec5SDimitry Andric 
32645ffd83dbSDimitry Andric       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
32650b57cec5SDimitry Andric       Offset = DAG.getLoad(
32660b57cec5SDimitry Andric           PtrVT, DL, DAG.getEntryNode(), Offset,
32670b57cec5SDimitry Andric           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
32680b57cec5SDimitry Andric 
32690b57cec5SDimitry Andric       // Call __tls_get_offset to retrieve the offset.
32700b57cec5SDimitry Andric       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
32710b57cec5SDimitry Andric       break;
32720b57cec5SDimitry Andric     }
32730b57cec5SDimitry Andric 
32740b57cec5SDimitry Andric     case TLSModel::LocalDynamic: {
32750b57cec5SDimitry Andric       // Load the GOT offset of the module ID.
32760b57cec5SDimitry Andric       SystemZConstantPoolValue *CPV =
32770b57cec5SDimitry Andric         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
32780b57cec5SDimitry Andric 
32795ffd83dbSDimitry Andric       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
32800b57cec5SDimitry Andric       Offset = DAG.getLoad(
32810b57cec5SDimitry Andric           PtrVT, DL, DAG.getEntryNode(), Offset,
32820b57cec5SDimitry Andric           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
32830b57cec5SDimitry Andric 
32840b57cec5SDimitry Andric       // Call __tls_get_offset to retrieve the module base offset.
32850b57cec5SDimitry Andric       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
32860b57cec5SDimitry Andric 
32870b57cec5SDimitry Andric       // Note: The SystemZLDCleanupPass will remove redundant computations
32880b57cec5SDimitry Andric       // of the module base offset.  Count total number of local-dynamic
32890b57cec5SDimitry Andric       // accesses to trigger execution of that pass.
32900b57cec5SDimitry Andric       SystemZMachineFunctionInfo* MFI =
32910b57cec5SDimitry Andric         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
32920b57cec5SDimitry Andric       MFI->incNumLocalDynamicTLSAccesses();
32930b57cec5SDimitry Andric 
32940b57cec5SDimitry Andric       // Add the per-symbol offset.
32950b57cec5SDimitry Andric       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
32960b57cec5SDimitry Andric 
32975ffd83dbSDimitry Andric       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
32980b57cec5SDimitry Andric       DTPOffset = DAG.getLoad(
32990b57cec5SDimitry Andric           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
33000b57cec5SDimitry Andric           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
33010b57cec5SDimitry Andric 
33020b57cec5SDimitry Andric       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
33030b57cec5SDimitry Andric       break;
33040b57cec5SDimitry Andric     }
33050b57cec5SDimitry Andric 
33060b57cec5SDimitry Andric     case TLSModel::InitialExec: {
33070b57cec5SDimitry Andric       // Load the offset from the GOT.
33080b57cec5SDimitry Andric       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
33090b57cec5SDimitry Andric                                           SystemZII::MO_INDNTPOFF);
33100b57cec5SDimitry Andric       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
33110b57cec5SDimitry Andric       Offset =
33120b57cec5SDimitry Andric           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
33130b57cec5SDimitry Andric                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
33140b57cec5SDimitry Andric       break;
33150b57cec5SDimitry Andric     }
33160b57cec5SDimitry Andric 
33170b57cec5SDimitry Andric     case TLSModel::LocalExec: {
33180b57cec5SDimitry Andric       // Force the offset into the constant pool and load it from there.
33190b57cec5SDimitry Andric       SystemZConstantPoolValue *CPV =
33200b57cec5SDimitry Andric         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
33210b57cec5SDimitry Andric 
33225ffd83dbSDimitry Andric       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
33230b57cec5SDimitry Andric       Offset = DAG.getLoad(
33240b57cec5SDimitry Andric           PtrVT, DL, DAG.getEntryNode(), Offset,
33250b57cec5SDimitry Andric           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
33260b57cec5SDimitry Andric       break;
33270b57cec5SDimitry Andric     }
33280b57cec5SDimitry Andric   }
33290b57cec5SDimitry Andric 
33300b57cec5SDimitry Andric   // Add the base and offset together.
33310b57cec5SDimitry Andric   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
33320b57cec5SDimitry Andric }
33330b57cec5SDimitry Andric 
33340b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
33350b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
33360b57cec5SDimitry Andric   SDLoc DL(Node);
33370b57cec5SDimitry Andric   const BlockAddress *BA = Node->getBlockAddress();
33380b57cec5SDimitry Andric   int64_t Offset = Node->getOffset();
33390b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
33400b57cec5SDimitry Andric 
33410b57cec5SDimitry Andric   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
33420b57cec5SDimitry Andric   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
33430b57cec5SDimitry Andric   return Result;
33440b57cec5SDimitry Andric }
33450b57cec5SDimitry Andric 
33460b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
33470b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
33480b57cec5SDimitry Andric   SDLoc DL(JT);
33490b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
33500b57cec5SDimitry Andric   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
33510b57cec5SDimitry Andric 
33520b57cec5SDimitry Andric   // Use LARL to load the address of the table.
33530b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
33540b57cec5SDimitry Andric }
33550b57cec5SDimitry Andric 
33560b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
33570b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
33580b57cec5SDimitry Andric   SDLoc DL(CP);
33590b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
33600b57cec5SDimitry Andric 
33610b57cec5SDimitry Andric   SDValue Result;
33620b57cec5SDimitry Andric   if (CP->isMachineConstantPoolEntry())
33635ffd83dbSDimitry Andric     Result =
33645ffd83dbSDimitry Andric         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
33650b57cec5SDimitry Andric   else
33665ffd83dbSDimitry Andric     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
33675ffd83dbSDimitry Andric                                        CP->getOffset());
33680b57cec5SDimitry Andric 
33690b57cec5SDimitry Andric   // Use LARL to load the address of the constant pool entry.
33700b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
33710b57cec5SDimitry Andric }
33720b57cec5SDimitry Andric 
33730b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
33740b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
3375349cc55cSDimitry Andric   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
33760b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
33770b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
33780b57cec5SDimitry Andric   MFI.setFrameAddressIsTaken(true);
33790b57cec5SDimitry Andric 
33800b57cec5SDimitry Andric   SDLoc DL(Op);
33810b57cec5SDimitry Andric   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
33820b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
33830b57cec5SDimitry Andric 
3384fe6060f1SDimitry Andric   // By definition, the frame address is the address of the back chain.  (In
3385fe6060f1SDimitry Andric   // the case of packed stack without backchain, return the address where the
3386fe6060f1SDimitry Andric   // backchain would have been stored. This will either be an unused space or
3387fe6060f1SDimitry Andric   // contain a saved register).
3388480093f4SDimitry Andric   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
33890b57cec5SDimitry Andric   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
33900b57cec5SDimitry Andric 
33910b57cec5SDimitry Andric   // FIXME The frontend should detect this case.
33920b57cec5SDimitry Andric   if (Depth > 0) {
33930b57cec5SDimitry Andric     report_fatal_error("Unsupported stack frame traversal count");
33940b57cec5SDimitry Andric   }
33950b57cec5SDimitry Andric 
33960b57cec5SDimitry Andric   return BackChain;
33970b57cec5SDimitry Andric }
33980b57cec5SDimitry Andric 
33990b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
34000b57cec5SDimitry Andric                                                SelectionDAG &DAG) const {
34010b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
34020b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
34030b57cec5SDimitry Andric   MFI.setReturnAddressIsTaken(true);
34040b57cec5SDimitry Andric 
34050b57cec5SDimitry Andric   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
34060b57cec5SDimitry Andric     return SDValue();
34070b57cec5SDimitry Andric 
34080b57cec5SDimitry Andric   SDLoc DL(Op);
34090b57cec5SDimitry Andric   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
34100b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
34110b57cec5SDimitry Andric 
34120b57cec5SDimitry Andric   // FIXME The frontend should detect this case.
34130b57cec5SDimitry Andric   if (Depth > 0) {
34140b57cec5SDimitry Andric     report_fatal_error("Unsupported stack frame traversal count");
34150b57cec5SDimitry Andric   }
34160b57cec5SDimitry Andric 
34170b57cec5SDimitry Andric   // Return R14D, which has the return address. Mark it an implicit live-in.
3418*04eeddc0SDimitry Andric   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
34190b57cec5SDimitry Andric   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
34200b57cec5SDimitry Andric }
34210b57cec5SDimitry Andric 
34220b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
34230b57cec5SDimitry Andric                                             SelectionDAG &DAG) const {
34240b57cec5SDimitry Andric   SDLoc DL(Op);
34250b57cec5SDimitry Andric   SDValue In = Op.getOperand(0);
34260b57cec5SDimitry Andric   EVT InVT = In.getValueType();
34270b57cec5SDimitry Andric   EVT ResVT = Op.getValueType();
34280b57cec5SDimitry Andric 
34290b57cec5SDimitry Andric   // Convert loads directly.  This is normally done by DAGCombiner,
34300b57cec5SDimitry Andric   // but we need this case for bitcasts that are created during lowering
34310b57cec5SDimitry Andric   // and which are then lowered themselves.
34320b57cec5SDimitry Andric   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
34330b57cec5SDimitry Andric     if (ISD::isNormalLoad(LoadN)) {
34340b57cec5SDimitry Andric       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
34350b57cec5SDimitry Andric                                     LoadN->getBasePtr(), LoadN->getMemOperand());
34360b57cec5SDimitry Andric       // Update the chain uses.
34370b57cec5SDimitry Andric       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
34380b57cec5SDimitry Andric       return NewLoad;
34390b57cec5SDimitry Andric     }
34400b57cec5SDimitry Andric 
34410b57cec5SDimitry Andric   if (InVT == MVT::i32 && ResVT == MVT::f32) {
34420b57cec5SDimitry Andric     SDValue In64;
34430b57cec5SDimitry Andric     if (Subtarget.hasHighWord()) {
34440b57cec5SDimitry Andric       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
34450b57cec5SDimitry Andric                                        MVT::i64);
34460b57cec5SDimitry Andric       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
34470b57cec5SDimitry Andric                                        MVT::i64, SDValue(U64, 0), In);
34480b57cec5SDimitry Andric     } else {
34490b57cec5SDimitry Andric       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
34500b57cec5SDimitry Andric       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
34510b57cec5SDimitry Andric                          DAG.getConstant(32, DL, MVT::i64));
34520b57cec5SDimitry Andric     }
34530b57cec5SDimitry Andric     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
34540b57cec5SDimitry Andric     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
34550b57cec5SDimitry Andric                                       DL, MVT::f32, Out64);
34560b57cec5SDimitry Andric   }
34570b57cec5SDimitry Andric   if (InVT == MVT::f32 && ResVT == MVT::i32) {
34580b57cec5SDimitry Andric     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
34590b57cec5SDimitry Andric     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
34600b57cec5SDimitry Andric                                              MVT::f64, SDValue(U64, 0), In);
34610b57cec5SDimitry Andric     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
34620b57cec5SDimitry Andric     if (Subtarget.hasHighWord())
34630b57cec5SDimitry Andric       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
34640b57cec5SDimitry Andric                                         MVT::i32, Out64);
34650b57cec5SDimitry Andric     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
34660b57cec5SDimitry Andric                                 DAG.getConstant(32, DL, MVT::i64));
34670b57cec5SDimitry Andric     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
34680b57cec5SDimitry Andric   }
34690b57cec5SDimitry Andric   llvm_unreachable("Unexpected bitcast combination");
34700b57cec5SDimitry Andric }
34710b57cec5SDimitry Andric 
34720b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
34730b57cec5SDimitry Andric                                             SelectionDAG &DAG) const {
34740b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
34750b57cec5SDimitry Andric   SystemZMachineFunctionInfo *FuncInfo =
34760b57cec5SDimitry Andric     MF.getInfo<SystemZMachineFunctionInfo>();
34770b57cec5SDimitry Andric   EVT PtrVT = getPointerTy(DAG.getDataLayout());
34780b57cec5SDimitry Andric 
34790b57cec5SDimitry Andric   SDValue Chain   = Op.getOperand(0);
34800b57cec5SDimitry Andric   SDValue Addr    = Op.getOperand(1);
34810b57cec5SDimitry Andric   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
34820b57cec5SDimitry Andric   SDLoc DL(Op);
34830b57cec5SDimitry Andric 
34840b57cec5SDimitry Andric   // The initial values of each field.
34850b57cec5SDimitry Andric   const unsigned NumFields = 4;
34860b57cec5SDimitry Andric   SDValue Fields[NumFields] = {
34870b57cec5SDimitry Andric     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
34880b57cec5SDimitry Andric     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
34890b57cec5SDimitry Andric     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
34900b57cec5SDimitry Andric     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
34910b57cec5SDimitry Andric   };
34920b57cec5SDimitry Andric 
34930b57cec5SDimitry Andric   // Store each field into its respective slot.
34940b57cec5SDimitry Andric   SDValue MemOps[NumFields];
34950b57cec5SDimitry Andric   unsigned Offset = 0;
34960b57cec5SDimitry Andric   for (unsigned I = 0; I < NumFields; ++I) {
34970b57cec5SDimitry Andric     SDValue FieldAddr = Addr;
34980b57cec5SDimitry Andric     if (Offset != 0)
34990b57cec5SDimitry Andric       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
35000b57cec5SDimitry Andric                               DAG.getIntPtrConstant(Offset, DL));
35010b57cec5SDimitry Andric     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
35020b57cec5SDimitry Andric                              MachinePointerInfo(SV, Offset));
35030b57cec5SDimitry Andric     Offset += 8;
35040b57cec5SDimitry Andric   }
35050b57cec5SDimitry Andric   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
35060b57cec5SDimitry Andric }
35070b57cec5SDimitry Andric 
35080b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
35090b57cec5SDimitry Andric                                            SelectionDAG &DAG) const {
35100b57cec5SDimitry Andric   SDValue Chain      = Op.getOperand(0);
35110b57cec5SDimitry Andric   SDValue DstPtr     = Op.getOperand(1);
35120b57cec5SDimitry Andric   SDValue SrcPtr     = Op.getOperand(2);
35130b57cec5SDimitry Andric   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
35140b57cec5SDimitry Andric   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
35150b57cec5SDimitry Andric   SDLoc DL(Op);
35160b57cec5SDimitry Andric 
35170b57cec5SDimitry Andric   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
35185ffd83dbSDimitry Andric                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
35195ffd83dbSDimitry Andric                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
35205ffd83dbSDimitry Andric                        MachinePointerInfo(SrcSV));
35210b57cec5SDimitry Andric }
35220b57cec5SDimitry Andric 
35230b57cec5SDimitry Andric SDValue SystemZTargetLowering::
35240b57cec5SDimitry Andric lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
35250b57cec5SDimitry Andric   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
35260b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
35270b57cec5SDimitry Andric   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
35280b57cec5SDimitry Andric   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
35290b57cec5SDimitry Andric 
35300b57cec5SDimitry Andric   SDValue Chain = Op.getOperand(0);
35310b57cec5SDimitry Andric   SDValue Size  = Op.getOperand(1);
35320b57cec5SDimitry Andric   SDValue Align = Op.getOperand(2);
35330b57cec5SDimitry Andric   SDLoc DL(Op);
35340b57cec5SDimitry Andric 
35350b57cec5SDimitry Andric   // If user has set the no alignment function attribute, ignore
35360b57cec5SDimitry Andric   // alloca alignments.
3537e8d8bef9SDimitry Andric   uint64_t AlignVal =
3538e8d8bef9SDimitry Andric       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
35390b57cec5SDimitry Andric 
35400b57cec5SDimitry Andric   uint64_t StackAlign = TFI->getStackAlignment();
35410b57cec5SDimitry Andric   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
35420b57cec5SDimitry Andric   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
35430b57cec5SDimitry Andric 
3544e8d8bef9SDimitry Andric   Register SPReg = getStackPointerRegisterToSaveRestore();
35450b57cec5SDimitry Andric   SDValue NeededSpace = Size;
35460b57cec5SDimitry Andric 
35470b57cec5SDimitry Andric   // Get a reference to the stack pointer.
35480b57cec5SDimitry Andric   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
35490b57cec5SDimitry Andric 
35500b57cec5SDimitry Andric   // If we need a backchain, save it now.
35510b57cec5SDimitry Andric   SDValue Backchain;
35520b57cec5SDimitry Andric   if (StoreBackchain)
3553e8d8bef9SDimitry Andric     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3554e8d8bef9SDimitry Andric                             MachinePointerInfo());
35550b57cec5SDimitry Andric 
35560b57cec5SDimitry Andric   // Add extra space for alignment if needed.
35570b57cec5SDimitry Andric   if (ExtraAlignSpace)
35580b57cec5SDimitry Andric     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
35590b57cec5SDimitry Andric                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
35600b57cec5SDimitry Andric 
35610b57cec5SDimitry Andric   // Get the new stack pointer value.
35625ffd83dbSDimitry Andric   SDValue NewSP;
35635ffd83dbSDimitry Andric   if (hasInlineStackProbe(MF)) {
35645ffd83dbSDimitry Andric     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
35655ffd83dbSDimitry Andric                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
35665ffd83dbSDimitry Andric     Chain = NewSP.getValue(1);
35675ffd83dbSDimitry Andric   }
35685ffd83dbSDimitry Andric   else {
35695ffd83dbSDimitry Andric     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
35700b57cec5SDimitry Andric     // Copy the new stack pointer back.
35710b57cec5SDimitry Andric     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
35725ffd83dbSDimitry Andric   }
35730b57cec5SDimitry Andric 
35740b57cec5SDimitry Andric   // The allocated data lives above the 160 bytes allocated for the standard
35750b57cec5SDimitry Andric   // frame, plus any outgoing stack arguments.  We don't know how much that
35760b57cec5SDimitry Andric   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
35770b57cec5SDimitry Andric   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
35780b57cec5SDimitry Andric   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
35790b57cec5SDimitry Andric 
35800b57cec5SDimitry Andric   // Dynamically realign if needed.
35810b57cec5SDimitry Andric   if (RequiredAlign > StackAlign) {
35820b57cec5SDimitry Andric     Result =
35830b57cec5SDimitry Andric       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
35840b57cec5SDimitry Andric                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
35850b57cec5SDimitry Andric     Result =
35860b57cec5SDimitry Andric       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
35870b57cec5SDimitry Andric                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
35880b57cec5SDimitry Andric   }
35890b57cec5SDimitry Andric 
35900b57cec5SDimitry Andric   if (StoreBackchain)
3591e8d8bef9SDimitry Andric     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3592e8d8bef9SDimitry Andric                          MachinePointerInfo());
35930b57cec5SDimitry Andric 
35940b57cec5SDimitry Andric   SDValue Ops[2] = { Result, Chain };
35950b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
35960b57cec5SDimitry Andric }
35970b57cec5SDimitry Andric 
35980b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
35990b57cec5SDimitry Andric     SDValue Op, SelectionDAG &DAG) const {
36000b57cec5SDimitry Andric   SDLoc DL(Op);
36010b57cec5SDimitry Andric 
36020b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
36030b57cec5SDimitry Andric }
36040b57cec5SDimitry Andric 
36050b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
36060b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
36070b57cec5SDimitry Andric   EVT VT = Op.getValueType();
36080b57cec5SDimitry Andric   SDLoc DL(Op);
36090b57cec5SDimitry Andric   SDValue Ops[2];
36100b57cec5SDimitry Andric   if (is32Bit(VT))
36110b57cec5SDimitry Andric     // Just do a normal 64-bit multiplication and extract the results.
36120b57cec5SDimitry Andric     // We define this so that it can be used for constant division.
36130b57cec5SDimitry Andric     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
36140b57cec5SDimitry Andric                     Op.getOperand(1), Ops[1], Ops[0]);
36150b57cec5SDimitry Andric   else if (Subtarget.hasMiscellaneousExtensions2())
36160b57cec5SDimitry Andric     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
36170b57cec5SDimitry Andric     // the high result in the even register.  ISD::SMUL_LOHI is defined to
36180b57cec5SDimitry Andric     // return the low half first, so the results are in reverse order.
36190b57cec5SDimitry Andric     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
36200b57cec5SDimitry Andric                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
36210b57cec5SDimitry Andric   else {
36220b57cec5SDimitry Andric     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
36230b57cec5SDimitry Andric     //
36240b57cec5SDimitry Andric     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
36250b57cec5SDimitry Andric     //
36260b57cec5SDimitry Andric     // but using the fact that the upper halves are either all zeros
36270b57cec5SDimitry Andric     // or all ones:
36280b57cec5SDimitry Andric     //
36290b57cec5SDimitry Andric     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
36300b57cec5SDimitry Andric     //
36310b57cec5SDimitry Andric     // and grouping the right terms together since they are quicker than the
36320b57cec5SDimitry Andric     // multiplication:
36330b57cec5SDimitry Andric     //
36340b57cec5SDimitry Andric     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
36350b57cec5SDimitry Andric     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
36360b57cec5SDimitry Andric     SDValue LL = Op.getOperand(0);
36370b57cec5SDimitry Andric     SDValue RL = Op.getOperand(1);
36380b57cec5SDimitry Andric     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
36390b57cec5SDimitry Andric     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
36400b57cec5SDimitry Andric     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
36410b57cec5SDimitry Andric     // the high result in the even register.  ISD::SMUL_LOHI is defined to
36420b57cec5SDimitry Andric     // return the low half first, so the results are in reverse order.
36430b57cec5SDimitry Andric     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
36440b57cec5SDimitry Andric                      LL, RL, Ops[1], Ops[0]);
36450b57cec5SDimitry Andric     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
36460b57cec5SDimitry Andric     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
36470b57cec5SDimitry Andric     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
36480b57cec5SDimitry Andric     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
36490b57cec5SDimitry Andric   }
36500b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
36510b57cec5SDimitry Andric }
36520b57cec5SDimitry Andric 
36530b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
36540b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
36550b57cec5SDimitry Andric   EVT VT = Op.getValueType();
36560b57cec5SDimitry Andric   SDLoc DL(Op);
36570b57cec5SDimitry Andric   SDValue Ops[2];
36580b57cec5SDimitry Andric   if (is32Bit(VT))
36590b57cec5SDimitry Andric     // Just do a normal 64-bit multiplication and extract the results.
36600b57cec5SDimitry Andric     // We define this so that it can be used for constant division.
36610b57cec5SDimitry Andric     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
36620b57cec5SDimitry Andric                     Op.getOperand(1), Ops[1], Ops[0]);
36630b57cec5SDimitry Andric   else
36640b57cec5SDimitry Andric     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
36650b57cec5SDimitry Andric     // the high result in the even register.  ISD::UMUL_LOHI is defined to
36660b57cec5SDimitry Andric     // return the low half first, so the results are in reverse order.
36670b57cec5SDimitry Andric     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
36680b57cec5SDimitry Andric                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
36690b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
36700b57cec5SDimitry Andric }
36710b57cec5SDimitry Andric 
36720b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
36730b57cec5SDimitry Andric                                             SelectionDAG &DAG) const {
36740b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
36750b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
36760b57cec5SDimitry Andric   EVT VT = Op.getValueType();
36770b57cec5SDimitry Andric   SDLoc DL(Op);
36780b57cec5SDimitry Andric 
36790b57cec5SDimitry Andric   // We use DSGF for 32-bit division.  This means the first operand must
36800b57cec5SDimitry Andric   // always be 64-bit, and the second operand should be 32-bit whenever
36810b57cec5SDimitry Andric   // that is possible, to improve performance.
36820b57cec5SDimitry Andric   if (is32Bit(VT))
36830b57cec5SDimitry Andric     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
36840b57cec5SDimitry Andric   else if (DAG.ComputeNumSignBits(Op1) > 32)
36850b57cec5SDimitry Andric     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
36860b57cec5SDimitry Andric 
36870b57cec5SDimitry Andric   // DSG(F) returns the remainder in the even register and the
36880b57cec5SDimitry Andric   // quotient in the odd register.
36890b57cec5SDimitry Andric   SDValue Ops[2];
36900b57cec5SDimitry Andric   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
36910b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
36920b57cec5SDimitry Andric }
36930b57cec5SDimitry Andric 
36940b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
36950b57cec5SDimitry Andric                                             SelectionDAG &DAG) const {
36960b57cec5SDimitry Andric   EVT VT = Op.getValueType();
36970b57cec5SDimitry Andric   SDLoc DL(Op);
36980b57cec5SDimitry Andric 
36990b57cec5SDimitry Andric   // DL(G) returns the remainder in the even register and the
37000b57cec5SDimitry Andric   // quotient in the odd register.
37010b57cec5SDimitry Andric   SDValue Ops[2];
37020b57cec5SDimitry Andric   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
37030b57cec5SDimitry Andric                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
37040b57cec5SDimitry Andric   return DAG.getMergeValues(Ops, DL);
37050b57cec5SDimitry Andric }
37060b57cec5SDimitry Andric 
37070b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
37080b57cec5SDimitry Andric   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
37090b57cec5SDimitry Andric 
37100b57cec5SDimitry Andric   // Get the known-zero masks for each operand.
37110b57cec5SDimitry Andric   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
37120b57cec5SDimitry Andric   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
37130b57cec5SDimitry Andric                         DAG.computeKnownBits(Ops[1])};
37140b57cec5SDimitry Andric 
37150b57cec5SDimitry Andric   // See if the upper 32 bits of one operand and the lower 32 bits of the
37160b57cec5SDimitry Andric   // other are known zero.  They are the low and high operands respectively.
37170b57cec5SDimitry Andric   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
37180b57cec5SDimitry Andric                        Known[1].Zero.getZExtValue() };
37190b57cec5SDimitry Andric   unsigned High, Low;
37200b57cec5SDimitry Andric   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
37210b57cec5SDimitry Andric     High = 1, Low = 0;
37220b57cec5SDimitry Andric   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
37230b57cec5SDimitry Andric     High = 0, Low = 1;
37240b57cec5SDimitry Andric   else
37250b57cec5SDimitry Andric     return Op;
37260b57cec5SDimitry Andric 
37270b57cec5SDimitry Andric   SDValue LowOp = Ops[Low];
37280b57cec5SDimitry Andric   SDValue HighOp = Ops[High];
37290b57cec5SDimitry Andric 
37300b57cec5SDimitry Andric   // If the high part is a constant, we're better off using IILH.
37310b57cec5SDimitry Andric   if (HighOp.getOpcode() == ISD::Constant)
37320b57cec5SDimitry Andric     return Op;
37330b57cec5SDimitry Andric 
37340b57cec5SDimitry Andric   // If the low part is a constant that is outside the range of LHI,
37350b57cec5SDimitry Andric   // then we're better off using IILF.
37360b57cec5SDimitry Andric   if (LowOp.getOpcode() == ISD::Constant) {
37370b57cec5SDimitry Andric     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
37380b57cec5SDimitry Andric     if (!isInt<16>(Value))
37390b57cec5SDimitry Andric       return Op;
37400b57cec5SDimitry Andric   }
37410b57cec5SDimitry Andric 
37420b57cec5SDimitry Andric   // Check whether the high part is an AND that doesn't change the
37430b57cec5SDimitry Andric   // high 32 bits and just masks out low bits.  We can skip it if so.
37440b57cec5SDimitry Andric   if (HighOp.getOpcode() == ISD::AND &&
37450b57cec5SDimitry Andric       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
37460b57cec5SDimitry Andric     SDValue HighOp0 = HighOp.getOperand(0);
37470b57cec5SDimitry Andric     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
37480b57cec5SDimitry Andric     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
37490b57cec5SDimitry Andric       HighOp = HighOp0;
37500b57cec5SDimitry Andric   }
37510b57cec5SDimitry Andric 
37520b57cec5SDimitry Andric   // Take advantage of the fact that all GR32 operations only change the
37530b57cec5SDimitry Andric   // low 32 bits by truncating Low to an i32 and inserting it directly
37540b57cec5SDimitry Andric   // using a subreg.  The interesting cases are those where the truncation
37550b57cec5SDimitry Andric   // can be folded.
37560b57cec5SDimitry Andric   SDLoc DL(Op);
37570b57cec5SDimitry Andric   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
37580b57cec5SDimitry Andric   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
37590b57cec5SDimitry Andric                                    MVT::i64, HighOp, Low32);
37600b57cec5SDimitry Andric }
37610b57cec5SDimitry Andric 
37620b57cec5SDimitry Andric // Lower SADDO/SSUBO/UADDO/USUBO nodes.
37630b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
37640b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
37650b57cec5SDimitry Andric   SDNode *N = Op.getNode();
37660b57cec5SDimitry Andric   SDValue LHS = N->getOperand(0);
37670b57cec5SDimitry Andric   SDValue RHS = N->getOperand(1);
37680b57cec5SDimitry Andric   SDLoc DL(N);
37690b57cec5SDimitry Andric   unsigned BaseOp = 0;
37700b57cec5SDimitry Andric   unsigned CCValid = 0;
37710b57cec5SDimitry Andric   unsigned CCMask = 0;
37720b57cec5SDimitry Andric 
37730b57cec5SDimitry Andric   switch (Op.getOpcode()) {
37740b57cec5SDimitry Andric   default: llvm_unreachable("Unknown instruction!");
37750b57cec5SDimitry Andric   case ISD::SADDO:
37760b57cec5SDimitry Andric     BaseOp = SystemZISD::SADDO;
37770b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ARITH;
37780b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
37790b57cec5SDimitry Andric     break;
37800b57cec5SDimitry Andric   case ISD::SSUBO:
37810b57cec5SDimitry Andric     BaseOp = SystemZISD::SSUBO;
37820b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_ARITH;
37830b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
37840b57cec5SDimitry Andric     break;
37850b57cec5SDimitry Andric   case ISD::UADDO:
37860b57cec5SDimitry Andric     BaseOp = SystemZISD::UADDO;
37870b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_LOGICAL;
37880b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
37890b57cec5SDimitry Andric     break;
37900b57cec5SDimitry Andric   case ISD::USUBO:
37910b57cec5SDimitry Andric     BaseOp = SystemZISD::USUBO;
37920b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_LOGICAL;
37930b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
37940b57cec5SDimitry Andric     break;
37950b57cec5SDimitry Andric   }
37960b57cec5SDimitry Andric 
37970b57cec5SDimitry Andric   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
37980b57cec5SDimitry Andric   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
37990b57cec5SDimitry Andric 
38000b57cec5SDimitry Andric   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
38010b57cec5SDimitry Andric   if (N->getValueType(1) == MVT::i1)
38020b57cec5SDimitry Andric     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
38030b57cec5SDimitry Andric 
38040b57cec5SDimitry Andric   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
38050b57cec5SDimitry Andric }
38060b57cec5SDimitry Andric 
38070b57cec5SDimitry Andric static bool isAddCarryChain(SDValue Carry) {
38080b57cec5SDimitry Andric   while (Carry.getOpcode() == ISD::ADDCARRY)
38090b57cec5SDimitry Andric     Carry = Carry.getOperand(2);
38100b57cec5SDimitry Andric   return Carry.getOpcode() == ISD::UADDO;
38110b57cec5SDimitry Andric }
38120b57cec5SDimitry Andric 
38130b57cec5SDimitry Andric static bool isSubBorrowChain(SDValue Carry) {
38140b57cec5SDimitry Andric   while (Carry.getOpcode() == ISD::SUBCARRY)
38150b57cec5SDimitry Andric     Carry = Carry.getOperand(2);
38160b57cec5SDimitry Andric   return Carry.getOpcode() == ISD::USUBO;
38170b57cec5SDimitry Andric }
38180b57cec5SDimitry Andric 
38190b57cec5SDimitry Andric // Lower ADDCARRY/SUBCARRY nodes.
38200b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
38210b57cec5SDimitry Andric                                                 SelectionDAG &DAG) const {
38220b57cec5SDimitry Andric 
38230b57cec5SDimitry Andric   SDNode *N = Op.getNode();
38240b57cec5SDimitry Andric   MVT VT = N->getSimpleValueType(0);
38250b57cec5SDimitry Andric 
38260b57cec5SDimitry Andric   // Let legalize expand this if it isn't a legal type yet.
38270b57cec5SDimitry Andric   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
38280b57cec5SDimitry Andric     return SDValue();
38290b57cec5SDimitry Andric 
38300b57cec5SDimitry Andric   SDValue LHS = N->getOperand(0);
38310b57cec5SDimitry Andric   SDValue RHS = N->getOperand(1);
38320b57cec5SDimitry Andric   SDValue Carry = Op.getOperand(2);
38330b57cec5SDimitry Andric   SDLoc DL(N);
38340b57cec5SDimitry Andric   unsigned BaseOp = 0;
38350b57cec5SDimitry Andric   unsigned CCValid = 0;
38360b57cec5SDimitry Andric   unsigned CCMask = 0;
38370b57cec5SDimitry Andric 
38380b57cec5SDimitry Andric   switch (Op.getOpcode()) {
38390b57cec5SDimitry Andric   default: llvm_unreachable("Unknown instruction!");
38400b57cec5SDimitry Andric   case ISD::ADDCARRY:
38410b57cec5SDimitry Andric     if (!isAddCarryChain(Carry))
38420b57cec5SDimitry Andric       return SDValue();
38430b57cec5SDimitry Andric 
38440b57cec5SDimitry Andric     BaseOp = SystemZISD::ADDCARRY;
38450b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_LOGICAL;
38460b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
38470b57cec5SDimitry Andric     break;
38480b57cec5SDimitry Andric   case ISD::SUBCARRY:
38490b57cec5SDimitry Andric     if (!isSubBorrowChain(Carry))
38500b57cec5SDimitry Andric       return SDValue();
38510b57cec5SDimitry Andric 
38520b57cec5SDimitry Andric     BaseOp = SystemZISD::SUBCARRY;
38530b57cec5SDimitry Andric     CCValid = SystemZ::CCMASK_LOGICAL;
38540b57cec5SDimitry Andric     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
38550b57cec5SDimitry Andric     break;
38560b57cec5SDimitry Andric   }
38570b57cec5SDimitry Andric 
38580b57cec5SDimitry Andric   // Set the condition code from the carry flag.
38590b57cec5SDimitry Andric   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
38600b57cec5SDimitry Andric                       DAG.getConstant(CCValid, DL, MVT::i32),
38610b57cec5SDimitry Andric                       DAG.getConstant(CCMask, DL, MVT::i32));
38620b57cec5SDimitry Andric 
38630b57cec5SDimitry Andric   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
38640b57cec5SDimitry Andric   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
38650b57cec5SDimitry Andric 
38660b57cec5SDimitry Andric   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
38670b57cec5SDimitry Andric   if (N->getValueType(1) == MVT::i1)
38680b57cec5SDimitry Andric     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
38690b57cec5SDimitry Andric 
38700b57cec5SDimitry Andric   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
38710b57cec5SDimitry Andric }
38720b57cec5SDimitry Andric 
38730b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
38740b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
38750b57cec5SDimitry Andric   EVT VT = Op.getValueType();
38760b57cec5SDimitry Andric   SDLoc DL(Op);
38770b57cec5SDimitry Andric   Op = Op.getOperand(0);
38780b57cec5SDimitry Andric 
38790b57cec5SDimitry Andric   // Handle vector types via VPOPCT.
38800b57cec5SDimitry Andric   if (VT.isVector()) {
38810b57cec5SDimitry Andric     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
38820b57cec5SDimitry Andric     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
38830b57cec5SDimitry Andric     switch (VT.getScalarSizeInBits()) {
38840b57cec5SDimitry Andric     case 8:
38850b57cec5SDimitry Andric       break;
38860b57cec5SDimitry Andric     case 16: {
38870b57cec5SDimitry Andric       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
38880b57cec5SDimitry Andric       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
38890b57cec5SDimitry Andric       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
38900b57cec5SDimitry Andric       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
38910b57cec5SDimitry Andric       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
38920b57cec5SDimitry Andric       break;
38930b57cec5SDimitry Andric     }
38940b57cec5SDimitry Andric     case 32: {
38950b57cec5SDimitry Andric       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
38960b57cec5SDimitry Andric                                             DAG.getConstant(0, DL, MVT::i32));
38970b57cec5SDimitry Andric       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
38980b57cec5SDimitry Andric       break;
38990b57cec5SDimitry Andric     }
39000b57cec5SDimitry Andric     case 64: {
39010b57cec5SDimitry Andric       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
39020b57cec5SDimitry Andric                                             DAG.getConstant(0, DL, MVT::i32));
39030b57cec5SDimitry Andric       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
39040b57cec5SDimitry Andric       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
39050b57cec5SDimitry Andric       break;
39060b57cec5SDimitry Andric     }
39070b57cec5SDimitry Andric     default:
39080b57cec5SDimitry Andric       llvm_unreachable("Unexpected type");
39090b57cec5SDimitry Andric     }
39100b57cec5SDimitry Andric     return Op;
39110b57cec5SDimitry Andric   }
39120b57cec5SDimitry Andric 
39130b57cec5SDimitry Andric   // Get the known-zero mask for the operand.
39140b57cec5SDimitry Andric   KnownBits Known = DAG.computeKnownBits(Op);
3915480093f4SDimitry Andric   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
39160b57cec5SDimitry Andric   if (NumSignificantBits == 0)
39170b57cec5SDimitry Andric     return DAG.getConstant(0, DL, VT);
39180b57cec5SDimitry Andric 
39190b57cec5SDimitry Andric   // Skip known-zero high parts of the operand.
39200b57cec5SDimitry Andric   int64_t OrigBitSize = VT.getSizeInBits();
39210b57cec5SDimitry Andric   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
39220b57cec5SDimitry Andric   BitSize = std::min(BitSize, OrigBitSize);
39230b57cec5SDimitry Andric 
39240b57cec5SDimitry Andric   // The POPCNT instruction counts the number of bits in each byte.
39250b57cec5SDimitry Andric   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
39260b57cec5SDimitry Andric   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
39270b57cec5SDimitry Andric   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
39280b57cec5SDimitry Andric 
39290b57cec5SDimitry Andric   // Add up per-byte counts in a binary tree.  All bits of Op at
39300b57cec5SDimitry Andric   // position larger than BitSize remain zero throughout.
39310b57cec5SDimitry Andric   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
39320b57cec5SDimitry Andric     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
39330b57cec5SDimitry Andric     if (BitSize != OrigBitSize)
39340b57cec5SDimitry Andric       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
39350b57cec5SDimitry Andric                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
39360b57cec5SDimitry Andric     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
39370b57cec5SDimitry Andric   }
39380b57cec5SDimitry Andric 
39390b57cec5SDimitry Andric   // Extract overall result from high byte.
39400b57cec5SDimitry Andric   if (BitSize > 8)
39410b57cec5SDimitry Andric     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
39420b57cec5SDimitry Andric                      DAG.getConstant(BitSize - 8, DL, VT));
39430b57cec5SDimitry Andric 
39440b57cec5SDimitry Andric   return Op;
39450b57cec5SDimitry Andric }
39460b57cec5SDimitry Andric 
39470b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
39480b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
39490b57cec5SDimitry Andric   SDLoc DL(Op);
39500b57cec5SDimitry Andric   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
39510b57cec5SDimitry Andric     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
39520b57cec5SDimitry Andric   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
39530b57cec5SDimitry Andric     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
39540b57cec5SDimitry Andric 
39550b57cec5SDimitry Andric   // The only fence that needs an instruction is a sequentially-consistent
39560b57cec5SDimitry Andric   // cross-thread fence.
39570b57cec5SDimitry Andric   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
39580b57cec5SDimitry Andric       FenceSSID == SyncScope::System) {
39590b57cec5SDimitry Andric     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
39600b57cec5SDimitry Andric                                       Op.getOperand(0)),
39610b57cec5SDimitry Andric                    0);
39620b57cec5SDimitry Andric   }
39630b57cec5SDimitry Andric 
39640b57cec5SDimitry Andric   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
39650b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
39660b57cec5SDimitry Andric }
39670b57cec5SDimitry Andric 
39680b57cec5SDimitry Andric // Op is an atomic load.  Lower it into a normal volatile load.
39690b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
39700b57cec5SDimitry Andric                                                 SelectionDAG &DAG) const {
39710b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
39720b57cec5SDimitry Andric   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
39730b57cec5SDimitry Andric                         Node->getChain(), Node->getBasePtr(),
39740b57cec5SDimitry Andric                         Node->getMemoryVT(), Node->getMemOperand());
39750b57cec5SDimitry Andric }
39760b57cec5SDimitry Andric 
39770b57cec5SDimitry Andric // Op is an atomic store.  Lower it into a normal volatile store.
39780b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
39790b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
39800b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
39810b57cec5SDimitry Andric   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
39820b57cec5SDimitry Andric                                     Node->getBasePtr(), Node->getMemoryVT(),
39830b57cec5SDimitry Andric                                     Node->getMemOperand());
39840b57cec5SDimitry Andric   // We have to enforce sequential consistency by performing a
39850b57cec5SDimitry Andric   // serialization operation after the store.
3986fe6060f1SDimitry Andric   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
39870b57cec5SDimitry Andric     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
39880b57cec5SDimitry Andric                                        MVT::Other, Chain), 0);
39890b57cec5SDimitry Andric   return Chain;
39900b57cec5SDimitry Andric }
39910b57cec5SDimitry Andric 
39920b57cec5SDimitry Andric // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
39930b57cec5SDimitry Andric // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
39940b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
39950b57cec5SDimitry Andric                                                    SelectionDAG &DAG,
39960b57cec5SDimitry Andric                                                    unsigned Opcode) const {
39970b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
39980b57cec5SDimitry Andric 
39990b57cec5SDimitry Andric   // 32-bit operations need no code outside the main loop.
40000b57cec5SDimitry Andric   EVT NarrowVT = Node->getMemoryVT();
40010b57cec5SDimitry Andric   EVT WideVT = MVT::i32;
40020b57cec5SDimitry Andric   if (NarrowVT == WideVT)
40030b57cec5SDimitry Andric     return Op;
40040b57cec5SDimitry Andric 
40050b57cec5SDimitry Andric   int64_t BitSize = NarrowVT.getSizeInBits();
40060b57cec5SDimitry Andric   SDValue ChainIn = Node->getChain();
40070b57cec5SDimitry Andric   SDValue Addr = Node->getBasePtr();
40080b57cec5SDimitry Andric   SDValue Src2 = Node->getVal();
40090b57cec5SDimitry Andric   MachineMemOperand *MMO = Node->getMemOperand();
40100b57cec5SDimitry Andric   SDLoc DL(Node);
40110b57cec5SDimitry Andric   EVT PtrVT = Addr.getValueType();
40120b57cec5SDimitry Andric 
40130b57cec5SDimitry Andric   // Convert atomic subtracts of constants into additions.
40140b57cec5SDimitry Andric   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
40150b57cec5SDimitry Andric     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
40160b57cec5SDimitry Andric       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
40170b57cec5SDimitry Andric       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
40180b57cec5SDimitry Andric     }
40190b57cec5SDimitry Andric 
40200b57cec5SDimitry Andric   // Get the address of the containing word.
40210b57cec5SDimitry Andric   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
40220b57cec5SDimitry Andric                                     DAG.getConstant(-4, DL, PtrVT));
40230b57cec5SDimitry Andric 
40240b57cec5SDimitry Andric   // Get the number of bits that the word must be rotated left in order
40250b57cec5SDimitry Andric   // to bring the field to the top bits of a GR32.
40260b57cec5SDimitry Andric   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
40270b57cec5SDimitry Andric                                  DAG.getConstant(3, DL, PtrVT));
40280b57cec5SDimitry Andric   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
40290b57cec5SDimitry Andric 
40300b57cec5SDimitry Andric   // Get the complementing shift amount, for rotating a field in the top
40310b57cec5SDimitry Andric   // bits back to its proper position.
40320b57cec5SDimitry Andric   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
40330b57cec5SDimitry Andric                                     DAG.getConstant(0, DL, WideVT), BitShift);
40340b57cec5SDimitry Andric 
40350b57cec5SDimitry Andric   // Extend the source operand to 32 bits and prepare it for the inner loop.
40360b57cec5SDimitry Andric   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
40370b57cec5SDimitry Andric   // operations require the source to be shifted in advance.  (This shift
40380b57cec5SDimitry Andric   // can be folded if the source is constant.)  For AND and NAND, the lower
40390b57cec5SDimitry Andric   // bits must be set, while for other opcodes they should be left clear.
40400b57cec5SDimitry Andric   if (Opcode != SystemZISD::ATOMIC_SWAPW)
40410b57cec5SDimitry Andric     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
40420b57cec5SDimitry Andric                        DAG.getConstant(32 - BitSize, DL, WideVT));
40430b57cec5SDimitry Andric   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
40440b57cec5SDimitry Andric       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
40450b57cec5SDimitry Andric     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
40460b57cec5SDimitry Andric                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
40470b57cec5SDimitry Andric 
40480b57cec5SDimitry Andric   // Construct the ATOMIC_LOADW_* node.
40490b57cec5SDimitry Andric   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
40500b57cec5SDimitry Andric   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
40510b57cec5SDimitry Andric                     DAG.getConstant(BitSize, DL, WideVT) };
40520b57cec5SDimitry Andric   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
40530b57cec5SDimitry Andric                                              NarrowVT, MMO);
40540b57cec5SDimitry Andric 
40550b57cec5SDimitry Andric   // Rotate the result of the final CS so that the field is in the lower
40560b57cec5SDimitry Andric   // bits of a GR32, then truncate it.
40570b57cec5SDimitry Andric   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
40580b57cec5SDimitry Andric                                     DAG.getConstant(BitSize, DL, WideVT));
40590b57cec5SDimitry Andric   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
40600b57cec5SDimitry Andric 
40610b57cec5SDimitry Andric   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
40620b57cec5SDimitry Andric   return DAG.getMergeValues(RetOps, DL);
40630b57cec5SDimitry Andric }
40640b57cec5SDimitry Andric 
40650b57cec5SDimitry Andric // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
40660b57cec5SDimitry Andric // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
40670b57cec5SDimitry Andric // operations into additions.
40680b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
40690b57cec5SDimitry Andric                                                     SelectionDAG &DAG) const {
40700b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
40710b57cec5SDimitry Andric   EVT MemVT = Node->getMemoryVT();
40720b57cec5SDimitry Andric   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
40730b57cec5SDimitry Andric     // A full-width operation.
40740b57cec5SDimitry Andric     assert(Op.getValueType() == MemVT && "Mismatched VTs");
40750b57cec5SDimitry Andric     SDValue Src2 = Node->getVal();
40760b57cec5SDimitry Andric     SDValue NegSrc2;
40770b57cec5SDimitry Andric     SDLoc DL(Src2);
40780b57cec5SDimitry Andric 
40790b57cec5SDimitry Andric     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
40800b57cec5SDimitry Andric       // Use an addition if the operand is constant and either LAA(G) is
40810b57cec5SDimitry Andric       // available or the negative value is in the range of A(G)FHI.
40820b57cec5SDimitry Andric       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
40830b57cec5SDimitry Andric       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
40840b57cec5SDimitry Andric         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
40850b57cec5SDimitry Andric     } else if (Subtarget.hasInterlockedAccess1())
40860b57cec5SDimitry Andric       // Use LAA(G) if available.
40870b57cec5SDimitry Andric       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
40880b57cec5SDimitry Andric                             Src2);
40890b57cec5SDimitry Andric 
40900b57cec5SDimitry Andric     if (NegSrc2.getNode())
40910b57cec5SDimitry Andric       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
40920b57cec5SDimitry Andric                            Node->getChain(), Node->getBasePtr(), NegSrc2,
40930b57cec5SDimitry Andric                            Node->getMemOperand());
40940b57cec5SDimitry Andric 
40950b57cec5SDimitry Andric     // Use the node as-is.
40960b57cec5SDimitry Andric     return Op;
40970b57cec5SDimitry Andric   }
40980b57cec5SDimitry Andric 
40990b57cec5SDimitry Andric   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
41000b57cec5SDimitry Andric }
41010b57cec5SDimitry Andric 
41020b57cec5SDimitry Andric // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
41030b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
41040b57cec5SDimitry Andric                                                     SelectionDAG &DAG) const {
41050b57cec5SDimitry Andric   auto *Node = cast<AtomicSDNode>(Op.getNode());
41060b57cec5SDimitry Andric   SDValue ChainIn = Node->getOperand(0);
41070b57cec5SDimitry Andric   SDValue Addr = Node->getOperand(1);
41080b57cec5SDimitry Andric   SDValue CmpVal = Node->getOperand(2);
41090b57cec5SDimitry Andric   SDValue SwapVal = Node->getOperand(3);
41100b57cec5SDimitry Andric   MachineMemOperand *MMO = Node->getMemOperand();
41110b57cec5SDimitry Andric   SDLoc DL(Node);
41120b57cec5SDimitry Andric 
41130b57cec5SDimitry Andric   // We have native support for 32-bit and 64-bit compare and swap, but we
41140b57cec5SDimitry Andric   // still need to expand extracting the "success" result from the CC.
41150b57cec5SDimitry Andric   EVT NarrowVT = Node->getMemoryVT();
41160b57cec5SDimitry Andric   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
41170b57cec5SDimitry Andric   if (NarrowVT == WideVT) {
41180b57cec5SDimitry Andric     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
41190b57cec5SDimitry Andric     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
41200b57cec5SDimitry Andric     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
41210b57cec5SDimitry Andric                                                DL, Tys, Ops, NarrowVT, MMO);
41220b57cec5SDimitry Andric     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
41230b57cec5SDimitry Andric                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
41240b57cec5SDimitry Andric 
41250b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
41260b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
41270b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
41280b57cec5SDimitry Andric     return SDValue();
41290b57cec5SDimitry Andric   }
41300b57cec5SDimitry Andric 
41310b57cec5SDimitry Andric   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
41320b57cec5SDimitry Andric   // via a fullword ATOMIC_CMP_SWAPW operation.
41330b57cec5SDimitry Andric   int64_t BitSize = NarrowVT.getSizeInBits();
41340b57cec5SDimitry Andric   EVT PtrVT = Addr.getValueType();
41350b57cec5SDimitry Andric 
41360b57cec5SDimitry Andric   // Get the address of the containing word.
41370b57cec5SDimitry Andric   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
41380b57cec5SDimitry Andric                                     DAG.getConstant(-4, DL, PtrVT));
41390b57cec5SDimitry Andric 
41400b57cec5SDimitry Andric   // Get the number of bits that the word must be rotated left in order
41410b57cec5SDimitry Andric   // to bring the field to the top bits of a GR32.
41420b57cec5SDimitry Andric   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
41430b57cec5SDimitry Andric                                  DAG.getConstant(3, DL, PtrVT));
41440b57cec5SDimitry Andric   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
41450b57cec5SDimitry Andric 
41460b57cec5SDimitry Andric   // Get the complementing shift amount, for rotating a field in the top
41470b57cec5SDimitry Andric   // bits back to its proper position.
41480b57cec5SDimitry Andric   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
41490b57cec5SDimitry Andric                                     DAG.getConstant(0, DL, WideVT), BitShift);
41500b57cec5SDimitry Andric 
41510b57cec5SDimitry Andric   // Construct the ATOMIC_CMP_SWAPW node.
41520b57cec5SDimitry Andric   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
41530b57cec5SDimitry Andric   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
41540b57cec5SDimitry Andric                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
41550b57cec5SDimitry Andric   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
41560b57cec5SDimitry Andric                                              VTList, Ops, NarrowVT, MMO);
41570b57cec5SDimitry Andric   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
41580b57cec5SDimitry Andric                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
41590b57cec5SDimitry Andric 
4160fe6060f1SDimitry Andric   // emitAtomicCmpSwapW() will zero extend the result (original value).
4161fe6060f1SDimitry Andric   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4162fe6060f1SDimitry Andric                                 DAG.getValueType(NarrowVT));
4163fe6060f1SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
41640b57cec5SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
41650b57cec5SDimitry Andric   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
41660b57cec5SDimitry Andric   return SDValue();
41670b57cec5SDimitry Andric }
41680b57cec5SDimitry Andric 
41690b57cec5SDimitry Andric MachineMemOperand::Flags
41705ffd83dbSDimitry Andric SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
41710b57cec5SDimitry Andric   // Because of how we convert atomic_load and atomic_store to normal loads and
41720b57cec5SDimitry Andric   // stores in the DAG, we need to ensure that the MMOs are marked volatile
41730b57cec5SDimitry Andric   // since DAGCombine hasn't been updated to account for atomic, but non
41740b57cec5SDimitry Andric   // volatile loads.  (See D57601)
41750b57cec5SDimitry Andric   if (auto *SI = dyn_cast<StoreInst>(&I))
41760b57cec5SDimitry Andric     if (SI->isAtomic())
41770b57cec5SDimitry Andric       return MachineMemOperand::MOVolatile;
41780b57cec5SDimitry Andric   if (auto *LI = dyn_cast<LoadInst>(&I))
41790b57cec5SDimitry Andric     if (LI->isAtomic())
41800b57cec5SDimitry Andric       return MachineMemOperand::MOVolatile;
41810b57cec5SDimitry Andric   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
41820b57cec5SDimitry Andric     if (AI->isAtomic())
41830b57cec5SDimitry Andric       return MachineMemOperand::MOVolatile;
41840b57cec5SDimitry Andric   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
41850b57cec5SDimitry Andric     if (AI->isAtomic())
41860b57cec5SDimitry Andric       return MachineMemOperand::MOVolatile;
41870b57cec5SDimitry Andric   return MachineMemOperand::MONone;
41880b57cec5SDimitry Andric }
41890b57cec5SDimitry Andric 
41900b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
41910b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
41920b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
4193349cc55cSDimitry Andric   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4194349cc55cSDimitry Andric   auto *Regs = Subtarget->getSpecialRegisters();
4195480093f4SDimitry Andric   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4196480093f4SDimitry Andric     report_fatal_error("Variable-sized stack allocations are not supported "
4197480093f4SDimitry Andric                        "in GHC calling convention");
41980b57cec5SDimitry Andric   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4199349cc55cSDimitry Andric                             Regs->getStackPointerRegister(), Op.getValueType());
42000b57cec5SDimitry Andric }
42010b57cec5SDimitry Andric 
42020b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
42030b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
42040b57cec5SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
4205349cc55cSDimitry Andric   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4206349cc55cSDimitry Andric   auto *Regs = Subtarget->getSpecialRegisters();
42070b57cec5SDimitry Andric   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
42080b57cec5SDimitry Andric 
4209480093f4SDimitry Andric   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4210480093f4SDimitry Andric     report_fatal_error("Variable-sized stack allocations are not supported "
4211480093f4SDimitry Andric                        "in GHC calling convention");
4212480093f4SDimitry Andric 
42130b57cec5SDimitry Andric   SDValue Chain = Op.getOperand(0);
42140b57cec5SDimitry Andric   SDValue NewSP = Op.getOperand(1);
42150b57cec5SDimitry Andric   SDValue Backchain;
42160b57cec5SDimitry Andric   SDLoc DL(Op);
42170b57cec5SDimitry Andric 
42180b57cec5SDimitry Andric   if (StoreBackchain) {
4219349cc55cSDimitry Andric     SDValue OldSP = DAG.getCopyFromReg(
4220349cc55cSDimitry Andric         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4221e8d8bef9SDimitry Andric     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4222e8d8bef9SDimitry Andric                             MachinePointerInfo());
42230b57cec5SDimitry Andric   }
42240b57cec5SDimitry Andric 
4225349cc55cSDimitry Andric   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
42260b57cec5SDimitry Andric 
42270b57cec5SDimitry Andric   if (StoreBackchain)
4228e8d8bef9SDimitry Andric     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4229e8d8bef9SDimitry Andric                          MachinePointerInfo());
42300b57cec5SDimitry Andric 
42310b57cec5SDimitry Andric   return Chain;
42320b57cec5SDimitry Andric }
42330b57cec5SDimitry Andric 
42340b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
42350b57cec5SDimitry Andric                                              SelectionDAG &DAG) const {
42360b57cec5SDimitry Andric   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
42370b57cec5SDimitry Andric   if (!IsData)
42380b57cec5SDimitry Andric     // Just preserve the chain.
42390b57cec5SDimitry Andric     return Op.getOperand(0);
42400b57cec5SDimitry Andric 
42410b57cec5SDimitry Andric   SDLoc DL(Op);
42420b57cec5SDimitry Andric   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
42430b57cec5SDimitry Andric   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
42440b57cec5SDimitry Andric   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
42458bcb0991SDimitry Andric   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
42468bcb0991SDimitry Andric                    Op.getOperand(1)};
42470b57cec5SDimitry Andric   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
42480b57cec5SDimitry Andric                                  Node->getVTList(), Ops,
42490b57cec5SDimitry Andric                                  Node->getMemoryVT(), Node->getMemOperand());
42500b57cec5SDimitry Andric }
42510b57cec5SDimitry Andric 
42520b57cec5SDimitry Andric // Convert condition code in CCReg to an i32 value.
42530b57cec5SDimitry Andric static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
42540b57cec5SDimitry Andric   SDLoc DL(CCReg);
42550b57cec5SDimitry Andric   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
42560b57cec5SDimitry Andric   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
42570b57cec5SDimitry Andric                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
42580b57cec5SDimitry Andric }
42590b57cec5SDimitry Andric 
42600b57cec5SDimitry Andric SDValue
42610b57cec5SDimitry Andric SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
42620b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
42630b57cec5SDimitry Andric   unsigned Opcode, CCValid;
42640b57cec5SDimitry Andric   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
42650b57cec5SDimitry Andric     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
42660b57cec5SDimitry Andric     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
42670b57cec5SDimitry Andric     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
42680b57cec5SDimitry Andric     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
42690b57cec5SDimitry Andric     return SDValue();
42700b57cec5SDimitry Andric   }
42710b57cec5SDimitry Andric 
42720b57cec5SDimitry Andric   return SDValue();
42730b57cec5SDimitry Andric }
42740b57cec5SDimitry Andric 
42750b57cec5SDimitry Andric SDValue
42760b57cec5SDimitry Andric SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
42770b57cec5SDimitry Andric                                                SelectionDAG &DAG) const {
42780b57cec5SDimitry Andric   unsigned Opcode, CCValid;
42790b57cec5SDimitry Andric   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
42800b57cec5SDimitry Andric     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
42810b57cec5SDimitry Andric     if (Op->getNumValues() == 1)
42820b57cec5SDimitry Andric       return getCCResult(DAG, SDValue(Node, 0));
42830b57cec5SDimitry Andric     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
42840b57cec5SDimitry Andric     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
42850b57cec5SDimitry Andric                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
42860b57cec5SDimitry Andric   }
42870b57cec5SDimitry Andric 
42880b57cec5SDimitry Andric   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
42890b57cec5SDimitry Andric   switch (Id) {
42900b57cec5SDimitry Andric   case Intrinsic::thread_pointer:
42910b57cec5SDimitry Andric     return lowerThreadPointer(SDLoc(Op), DAG);
42920b57cec5SDimitry Andric 
42930b57cec5SDimitry Andric   case Intrinsic::s390_vpdi:
42940b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
42950b57cec5SDimitry Andric                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
42960b57cec5SDimitry Andric 
42970b57cec5SDimitry Andric   case Intrinsic::s390_vperm:
42980b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
42990b57cec5SDimitry Andric                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
43000b57cec5SDimitry Andric 
43010b57cec5SDimitry Andric   case Intrinsic::s390_vuphb:
43020b57cec5SDimitry Andric   case Intrinsic::s390_vuphh:
43030b57cec5SDimitry Andric   case Intrinsic::s390_vuphf:
43040b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
43050b57cec5SDimitry Andric                        Op.getOperand(1));
43060b57cec5SDimitry Andric 
43070b57cec5SDimitry Andric   case Intrinsic::s390_vuplhb:
43080b57cec5SDimitry Andric   case Intrinsic::s390_vuplhh:
43090b57cec5SDimitry Andric   case Intrinsic::s390_vuplhf:
43100b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
43110b57cec5SDimitry Andric                        Op.getOperand(1));
43120b57cec5SDimitry Andric 
43130b57cec5SDimitry Andric   case Intrinsic::s390_vuplb:
43140b57cec5SDimitry Andric   case Intrinsic::s390_vuplhw:
43150b57cec5SDimitry Andric   case Intrinsic::s390_vuplf:
43160b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
43170b57cec5SDimitry Andric                        Op.getOperand(1));
43180b57cec5SDimitry Andric 
43190b57cec5SDimitry Andric   case Intrinsic::s390_vupllb:
43200b57cec5SDimitry Andric   case Intrinsic::s390_vupllh:
43210b57cec5SDimitry Andric   case Intrinsic::s390_vupllf:
43220b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
43230b57cec5SDimitry Andric                        Op.getOperand(1));
43240b57cec5SDimitry Andric 
43250b57cec5SDimitry Andric   case Intrinsic::s390_vsumb:
43260b57cec5SDimitry Andric   case Intrinsic::s390_vsumh:
43270b57cec5SDimitry Andric   case Intrinsic::s390_vsumgh:
43280b57cec5SDimitry Andric   case Intrinsic::s390_vsumgf:
43290b57cec5SDimitry Andric   case Intrinsic::s390_vsumqf:
43300b57cec5SDimitry Andric   case Intrinsic::s390_vsumqg:
43310b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
43320b57cec5SDimitry Andric                        Op.getOperand(1), Op.getOperand(2));
43330b57cec5SDimitry Andric   }
43340b57cec5SDimitry Andric 
43350b57cec5SDimitry Andric   return SDValue();
43360b57cec5SDimitry Andric }
43370b57cec5SDimitry Andric 
43380b57cec5SDimitry Andric namespace {
43390b57cec5SDimitry Andric // Says that SystemZISD operation Opcode can be used to perform the equivalent
43400b57cec5SDimitry Andric // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
43410b57cec5SDimitry Andric // Operand is the constant third operand, otherwise it is the number of
43420b57cec5SDimitry Andric // bytes in each element of the result.
43430b57cec5SDimitry Andric struct Permute {
43440b57cec5SDimitry Andric   unsigned Opcode;
43450b57cec5SDimitry Andric   unsigned Operand;
43460b57cec5SDimitry Andric   unsigned char Bytes[SystemZ::VectorBytes];
43470b57cec5SDimitry Andric };
43480b57cec5SDimitry Andric }
43490b57cec5SDimitry Andric 
43500b57cec5SDimitry Andric static const Permute PermuteForms[] = {
43510b57cec5SDimitry Andric   // VMRHG
43520b57cec5SDimitry Andric   { SystemZISD::MERGE_HIGH, 8,
43530b57cec5SDimitry Andric     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
43540b57cec5SDimitry Andric   // VMRHF
43550b57cec5SDimitry Andric   { SystemZISD::MERGE_HIGH, 4,
43560b57cec5SDimitry Andric     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
43570b57cec5SDimitry Andric   // VMRHH
43580b57cec5SDimitry Andric   { SystemZISD::MERGE_HIGH, 2,
43590b57cec5SDimitry Andric     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
43600b57cec5SDimitry Andric   // VMRHB
43610b57cec5SDimitry Andric   { SystemZISD::MERGE_HIGH, 1,
43620b57cec5SDimitry Andric     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
43630b57cec5SDimitry Andric   // VMRLG
43640b57cec5SDimitry Andric   { SystemZISD::MERGE_LOW, 8,
43650b57cec5SDimitry Andric     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
43660b57cec5SDimitry Andric   // VMRLF
43670b57cec5SDimitry Andric   { SystemZISD::MERGE_LOW, 4,
43680b57cec5SDimitry Andric     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
43690b57cec5SDimitry Andric   // VMRLH
43700b57cec5SDimitry Andric   { SystemZISD::MERGE_LOW, 2,
43710b57cec5SDimitry Andric     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
43720b57cec5SDimitry Andric   // VMRLB
43730b57cec5SDimitry Andric   { SystemZISD::MERGE_LOW, 1,
43740b57cec5SDimitry Andric     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
43750b57cec5SDimitry Andric   // VPKG
43760b57cec5SDimitry Andric   { SystemZISD::PACK, 4,
43770b57cec5SDimitry Andric     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
43780b57cec5SDimitry Andric   // VPKF
43790b57cec5SDimitry Andric   { SystemZISD::PACK, 2,
43800b57cec5SDimitry Andric     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
43810b57cec5SDimitry Andric   // VPKH
43820b57cec5SDimitry Andric   { SystemZISD::PACK, 1,
43830b57cec5SDimitry Andric     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
43840b57cec5SDimitry Andric   // VPDI V1, V2, 4  (low half of V1, high half of V2)
43850b57cec5SDimitry Andric   { SystemZISD::PERMUTE_DWORDS, 4,
43860b57cec5SDimitry Andric     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
43870b57cec5SDimitry Andric   // VPDI V1, V2, 1  (high half of V1, low half of V2)
43880b57cec5SDimitry Andric   { SystemZISD::PERMUTE_DWORDS, 1,
43890b57cec5SDimitry Andric     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
43900b57cec5SDimitry Andric };
43910b57cec5SDimitry Andric 
43920b57cec5SDimitry Andric // Called after matching a vector shuffle against a particular pattern.
43930b57cec5SDimitry Andric // Both the original shuffle and the pattern have two vector operands.
43940b57cec5SDimitry Andric // OpNos[0] is the operand of the original shuffle that should be used for
43950b57cec5SDimitry Andric // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
43960b57cec5SDimitry Andric // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
43970b57cec5SDimitry Andric // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
43980b57cec5SDimitry Andric // for operands 0 and 1 of the pattern.
43990b57cec5SDimitry Andric static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
44000b57cec5SDimitry Andric   if (OpNos[0] < 0) {
44010b57cec5SDimitry Andric     if (OpNos[1] < 0)
44020b57cec5SDimitry Andric       return false;
44030b57cec5SDimitry Andric     OpNo0 = OpNo1 = OpNos[1];
44040b57cec5SDimitry Andric   } else if (OpNos[1] < 0) {
44050b57cec5SDimitry Andric     OpNo0 = OpNo1 = OpNos[0];
44060b57cec5SDimitry Andric   } else {
44070b57cec5SDimitry Andric     OpNo0 = OpNos[0];
44080b57cec5SDimitry Andric     OpNo1 = OpNos[1];
44090b57cec5SDimitry Andric   }
44100b57cec5SDimitry Andric   return true;
44110b57cec5SDimitry Andric }
44120b57cec5SDimitry Andric 
44130b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
44140b57cec5SDimitry Andric // undefined bytes.  Return true if the VPERM can be implemented using P.
44150b57cec5SDimitry Andric // When returning true set OpNo0 to the VPERM operand that should be
44160b57cec5SDimitry Andric // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
44170b57cec5SDimitry Andric //
44180b57cec5SDimitry Andric // For example, if swapping the VPERM operands allows P to match, OpNo0
44190b57cec5SDimitry Andric // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
44200b57cec5SDimitry Andric // operand, but rewriting it to use two duplicated operands allows it to
44210b57cec5SDimitry Andric // match P, then OpNo0 and OpNo1 will be the same.
44220b57cec5SDimitry Andric static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
44230b57cec5SDimitry Andric                          unsigned &OpNo0, unsigned &OpNo1) {
44240b57cec5SDimitry Andric   int OpNos[] = { -1, -1 };
44250b57cec5SDimitry Andric   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
44260b57cec5SDimitry Andric     int Elt = Bytes[I];
44270b57cec5SDimitry Andric     if (Elt >= 0) {
44280b57cec5SDimitry Andric       // Make sure that the two permute vectors use the same suboperand
44290b57cec5SDimitry Andric       // byte number.  Only the operand numbers (the high bits) are
44300b57cec5SDimitry Andric       // allowed to differ.
44310b57cec5SDimitry Andric       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
44320b57cec5SDimitry Andric         return false;
44330b57cec5SDimitry Andric       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
44340b57cec5SDimitry Andric       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
44350b57cec5SDimitry Andric       // Make sure that the operand mappings are consistent with previous
44360b57cec5SDimitry Andric       // elements.
44370b57cec5SDimitry Andric       if (OpNos[ModelOpNo] == 1 - RealOpNo)
44380b57cec5SDimitry Andric         return false;
44390b57cec5SDimitry Andric       OpNos[ModelOpNo] = RealOpNo;
44400b57cec5SDimitry Andric     }
44410b57cec5SDimitry Andric   }
44420b57cec5SDimitry Andric   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
44430b57cec5SDimitry Andric }
44440b57cec5SDimitry Andric 
44450b57cec5SDimitry Andric // As above, but search for a matching permute.
44460b57cec5SDimitry Andric static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
44470b57cec5SDimitry Andric                                    unsigned &OpNo0, unsigned &OpNo1) {
44480b57cec5SDimitry Andric   for (auto &P : PermuteForms)
44490b57cec5SDimitry Andric     if (matchPermute(Bytes, P, OpNo0, OpNo1))
44500b57cec5SDimitry Andric       return &P;
44510b57cec5SDimitry Andric   return nullptr;
44520b57cec5SDimitry Andric }
44530b57cec5SDimitry Andric 
44540b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
44550b57cec5SDimitry Andric // undefined bytes.  This permute is an operand of an outer permute.
44560b57cec5SDimitry Andric // See whether redistributing the -1 bytes gives a shuffle that can be
44570b57cec5SDimitry Andric // implemented using P.  If so, set Transform to a VPERM-like permute vector
44580b57cec5SDimitry Andric // that, when applied to the result of P, gives the original permute in Bytes.
44590b57cec5SDimitry Andric static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
44600b57cec5SDimitry Andric                                const Permute &P,
44610b57cec5SDimitry Andric                                SmallVectorImpl<int> &Transform) {
44620b57cec5SDimitry Andric   unsigned To = 0;
44630b57cec5SDimitry Andric   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
44640b57cec5SDimitry Andric     int Elt = Bytes[From];
44650b57cec5SDimitry Andric     if (Elt < 0)
44660b57cec5SDimitry Andric       // Byte number From of the result is undefined.
44670b57cec5SDimitry Andric       Transform[From] = -1;
44680b57cec5SDimitry Andric     else {
44690b57cec5SDimitry Andric       while (P.Bytes[To] != Elt) {
44700b57cec5SDimitry Andric         To += 1;
44710b57cec5SDimitry Andric         if (To == SystemZ::VectorBytes)
44720b57cec5SDimitry Andric           return false;
44730b57cec5SDimitry Andric       }
44740b57cec5SDimitry Andric       Transform[From] = To;
44750b57cec5SDimitry Andric     }
44760b57cec5SDimitry Andric   }
44770b57cec5SDimitry Andric   return true;
44780b57cec5SDimitry Andric }
44790b57cec5SDimitry Andric 
44800b57cec5SDimitry Andric // As above, but search for a matching permute.
44810b57cec5SDimitry Andric static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
44820b57cec5SDimitry Andric                                          SmallVectorImpl<int> &Transform) {
44830b57cec5SDimitry Andric   for (auto &P : PermuteForms)
44840b57cec5SDimitry Andric     if (matchDoublePermute(Bytes, P, Transform))
44850b57cec5SDimitry Andric       return &P;
44860b57cec5SDimitry Andric   return nullptr;
44870b57cec5SDimitry Andric }
44880b57cec5SDimitry Andric 
44890b57cec5SDimitry Andric // Convert the mask of the given shuffle op into a byte-level mask,
44900b57cec5SDimitry Andric // as if it had type vNi8.
44910b57cec5SDimitry Andric static bool getVPermMask(SDValue ShuffleOp,
44920b57cec5SDimitry Andric                          SmallVectorImpl<int> &Bytes) {
44930b57cec5SDimitry Andric   EVT VT = ShuffleOp.getValueType();
44940b57cec5SDimitry Andric   unsigned NumElements = VT.getVectorNumElements();
44950b57cec5SDimitry Andric   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
44960b57cec5SDimitry Andric 
44970b57cec5SDimitry Andric   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
44980b57cec5SDimitry Andric     Bytes.resize(NumElements * BytesPerElement, -1);
44990b57cec5SDimitry Andric     for (unsigned I = 0; I < NumElements; ++I) {
45000b57cec5SDimitry Andric       int Index = VSN->getMaskElt(I);
45010b57cec5SDimitry Andric       if (Index >= 0)
45020b57cec5SDimitry Andric         for (unsigned J = 0; J < BytesPerElement; ++J)
45030b57cec5SDimitry Andric           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
45040b57cec5SDimitry Andric     }
45050b57cec5SDimitry Andric     return true;
45060b57cec5SDimitry Andric   }
45070b57cec5SDimitry Andric   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
45080b57cec5SDimitry Andric       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
45090b57cec5SDimitry Andric     unsigned Index = ShuffleOp.getConstantOperandVal(1);
45100b57cec5SDimitry Andric     Bytes.resize(NumElements * BytesPerElement, -1);
45110b57cec5SDimitry Andric     for (unsigned I = 0; I < NumElements; ++I)
45120b57cec5SDimitry Andric       for (unsigned J = 0; J < BytesPerElement; ++J)
45130b57cec5SDimitry Andric         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
45140b57cec5SDimitry Andric     return true;
45150b57cec5SDimitry Andric   }
45160b57cec5SDimitry Andric   return false;
45170b57cec5SDimitry Andric }
45180b57cec5SDimitry Andric 
45190b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
45200b57cec5SDimitry Andric // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
45210b57cec5SDimitry Andric // the result come from a contiguous sequence of bytes from one input.
45220b57cec5SDimitry Andric // Set Base to the selector for the first byte if so.
45230b57cec5SDimitry Andric static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
45240b57cec5SDimitry Andric                             unsigned BytesPerElement, int &Base) {
45250b57cec5SDimitry Andric   Base = -1;
45260b57cec5SDimitry Andric   for (unsigned I = 0; I < BytesPerElement; ++I) {
45270b57cec5SDimitry Andric     if (Bytes[Start + I] >= 0) {
45280b57cec5SDimitry Andric       unsigned Elem = Bytes[Start + I];
45290b57cec5SDimitry Andric       if (Base < 0) {
45300b57cec5SDimitry Andric         Base = Elem - I;
45310b57cec5SDimitry Andric         // Make sure the bytes would come from one input operand.
45320b57cec5SDimitry Andric         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
45330b57cec5SDimitry Andric           return false;
45340b57cec5SDimitry Andric       } else if (unsigned(Base) != Elem - I)
45350b57cec5SDimitry Andric         return false;
45360b57cec5SDimitry Andric     }
45370b57cec5SDimitry Andric   }
45380b57cec5SDimitry Andric   return true;
45390b57cec5SDimitry Andric }
45400b57cec5SDimitry Andric 
45410b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
45425ffd83dbSDimitry Andric // undefined bytes.  Return true if it can be performed using VSLDB.
45430b57cec5SDimitry Andric // When returning true, set StartIndex to the shift amount and OpNo0
45440b57cec5SDimitry Andric // and OpNo1 to the VPERM operands that should be used as the first
45450b57cec5SDimitry Andric // and second shift operand respectively.
45460b57cec5SDimitry Andric static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
45470b57cec5SDimitry Andric                                unsigned &StartIndex, unsigned &OpNo0,
45480b57cec5SDimitry Andric                                unsigned &OpNo1) {
45490b57cec5SDimitry Andric   int OpNos[] = { -1, -1 };
45500b57cec5SDimitry Andric   int Shift = -1;
45510b57cec5SDimitry Andric   for (unsigned I = 0; I < 16; ++I) {
45520b57cec5SDimitry Andric     int Index = Bytes[I];
45530b57cec5SDimitry Andric     if (Index >= 0) {
45540b57cec5SDimitry Andric       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
45550b57cec5SDimitry Andric       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
45560b57cec5SDimitry Andric       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
45570b57cec5SDimitry Andric       if (Shift < 0)
45580b57cec5SDimitry Andric         Shift = ExpectedShift;
45590b57cec5SDimitry Andric       else if (Shift != ExpectedShift)
45600b57cec5SDimitry Andric         return false;
45610b57cec5SDimitry Andric       // Make sure that the operand mappings are consistent with previous
45620b57cec5SDimitry Andric       // elements.
45630b57cec5SDimitry Andric       if (OpNos[ModelOpNo] == 1 - RealOpNo)
45640b57cec5SDimitry Andric         return false;
45650b57cec5SDimitry Andric       OpNos[ModelOpNo] = RealOpNo;
45660b57cec5SDimitry Andric     }
45670b57cec5SDimitry Andric   }
45680b57cec5SDimitry Andric   StartIndex = Shift;
45690b57cec5SDimitry Andric   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
45700b57cec5SDimitry Andric }
45710b57cec5SDimitry Andric 
45720b57cec5SDimitry Andric // Create a node that performs P on operands Op0 and Op1, casting the
45730b57cec5SDimitry Andric // operands to the appropriate type.  The type of the result is determined by P.
45740b57cec5SDimitry Andric static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
45750b57cec5SDimitry Andric                               const Permute &P, SDValue Op0, SDValue Op1) {
45760b57cec5SDimitry Andric   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
45770b57cec5SDimitry Andric   // elements of a PACK are twice as wide as the outputs.
45780b57cec5SDimitry Andric   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
45790b57cec5SDimitry Andric                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
45800b57cec5SDimitry Andric                       P.Operand);
45810b57cec5SDimitry Andric   // Cast both operands to the appropriate type.
45820b57cec5SDimitry Andric   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
45830b57cec5SDimitry Andric                               SystemZ::VectorBytes / InBytes);
45840b57cec5SDimitry Andric   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
45850b57cec5SDimitry Andric   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
45860b57cec5SDimitry Andric   SDValue Op;
45870b57cec5SDimitry Andric   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
45888bcb0991SDimitry Andric     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
45890b57cec5SDimitry Andric     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
45900b57cec5SDimitry Andric   } else if (P.Opcode == SystemZISD::PACK) {
45910b57cec5SDimitry Andric     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
45920b57cec5SDimitry Andric                                  SystemZ::VectorBytes / P.Operand);
45930b57cec5SDimitry Andric     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
45940b57cec5SDimitry Andric   } else {
45950b57cec5SDimitry Andric     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
45960b57cec5SDimitry Andric   }
45970b57cec5SDimitry Andric   return Op;
45980b57cec5SDimitry Andric }
45990b57cec5SDimitry Andric 
46005ffd83dbSDimitry Andric static bool isZeroVector(SDValue N) {
46015ffd83dbSDimitry Andric   if (N->getOpcode() == ISD::BITCAST)
46025ffd83dbSDimitry Andric     N = N->getOperand(0);
46035ffd83dbSDimitry Andric   if (N->getOpcode() == ISD::SPLAT_VECTOR)
46045ffd83dbSDimitry Andric     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
46055ffd83dbSDimitry Andric       return Op->getZExtValue() == 0;
46065ffd83dbSDimitry Andric   return ISD::isBuildVectorAllZeros(N.getNode());
46075ffd83dbSDimitry Andric }
46085ffd83dbSDimitry Andric 
46095ffd83dbSDimitry Andric // Return the index of the zero/undef vector, or UINT32_MAX if not found.
46105ffd83dbSDimitry Andric static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
46115ffd83dbSDimitry Andric   for (unsigned I = 0; I < Num ; I++)
46125ffd83dbSDimitry Andric     if (isZeroVector(Ops[I]))
46135ffd83dbSDimitry Andric       return I;
46145ffd83dbSDimitry Andric   return UINT32_MAX;
46155ffd83dbSDimitry Andric }
46165ffd83dbSDimitry Andric 
46170b57cec5SDimitry Andric // Bytes is a VPERM-like permute vector, except that -1 is used for
46180b57cec5SDimitry Andric // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
46195ffd83dbSDimitry Andric // VSLDB or VPERM.
46200b57cec5SDimitry Andric static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
46210b57cec5SDimitry Andric                                      SDValue *Ops,
46220b57cec5SDimitry Andric                                      const SmallVectorImpl<int> &Bytes) {
46230b57cec5SDimitry Andric   for (unsigned I = 0; I < 2; ++I)
46240b57cec5SDimitry Andric     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
46250b57cec5SDimitry Andric 
46265ffd83dbSDimitry Andric   // First see whether VSLDB can be used.
46270b57cec5SDimitry Andric   unsigned StartIndex, OpNo0, OpNo1;
46280b57cec5SDimitry Andric   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
46290b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
46308bcb0991SDimitry Andric                        Ops[OpNo1],
46318bcb0991SDimitry Andric                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
46320b57cec5SDimitry Andric 
46335ffd83dbSDimitry Andric   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
46345ffd83dbSDimitry Andric   // eliminate a zero vector by reusing any zero index in the permute vector.
46355ffd83dbSDimitry Andric   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
46365ffd83dbSDimitry Andric   if (ZeroVecIdx != UINT32_MAX) {
46375ffd83dbSDimitry Andric     bool MaskFirst = true;
46385ffd83dbSDimitry Andric     int ZeroIdx = -1;
46395ffd83dbSDimitry Andric     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
46405ffd83dbSDimitry Andric       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
46415ffd83dbSDimitry Andric       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
46425ffd83dbSDimitry Andric       if (OpNo == ZeroVecIdx && I == 0) {
46435ffd83dbSDimitry Andric         // If the first byte is zero, use mask as first operand.
46445ffd83dbSDimitry Andric         ZeroIdx = 0;
46455ffd83dbSDimitry Andric         break;
46465ffd83dbSDimitry Andric       }
46475ffd83dbSDimitry Andric       if (OpNo != ZeroVecIdx && Byte == 0) {
46485ffd83dbSDimitry Andric         // If mask contains a zero, use it by placing that vector first.
46495ffd83dbSDimitry Andric         ZeroIdx = I + SystemZ::VectorBytes;
46505ffd83dbSDimitry Andric         MaskFirst = false;
46515ffd83dbSDimitry Andric         break;
46525ffd83dbSDimitry Andric       }
46535ffd83dbSDimitry Andric     }
46545ffd83dbSDimitry Andric     if (ZeroIdx != -1) {
46555ffd83dbSDimitry Andric       SDValue IndexNodes[SystemZ::VectorBytes];
46565ffd83dbSDimitry Andric       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
46575ffd83dbSDimitry Andric         if (Bytes[I] >= 0) {
46585ffd83dbSDimitry Andric           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
46595ffd83dbSDimitry Andric           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
46605ffd83dbSDimitry Andric           if (OpNo == ZeroVecIdx)
46615ffd83dbSDimitry Andric             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
46625ffd83dbSDimitry Andric           else {
46635ffd83dbSDimitry Andric             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
46645ffd83dbSDimitry Andric             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
46655ffd83dbSDimitry Andric           }
46665ffd83dbSDimitry Andric         } else
46675ffd83dbSDimitry Andric           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
46685ffd83dbSDimitry Andric       }
46695ffd83dbSDimitry Andric       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
46705ffd83dbSDimitry Andric       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
46715ffd83dbSDimitry Andric       if (MaskFirst)
46725ffd83dbSDimitry Andric         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
46735ffd83dbSDimitry Andric                            Mask);
46745ffd83dbSDimitry Andric       else
46755ffd83dbSDimitry Andric         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
46765ffd83dbSDimitry Andric                            Mask);
46775ffd83dbSDimitry Andric     }
46785ffd83dbSDimitry Andric   }
46795ffd83dbSDimitry Andric 
46800b57cec5SDimitry Andric   SDValue IndexNodes[SystemZ::VectorBytes];
46810b57cec5SDimitry Andric   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
46820b57cec5SDimitry Andric     if (Bytes[I] >= 0)
46830b57cec5SDimitry Andric       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
46840b57cec5SDimitry Andric     else
46850b57cec5SDimitry Andric       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
46860b57cec5SDimitry Andric   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
46875ffd83dbSDimitry Andric   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
46885ffd83dbSDimitry Andric                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
46890b57cec5SDimitry Andric }
46900b57cec5SDimitry Andric 
46910b57cec5SDimitry Andric namespace {
46920b57cec5SDimitry Andric // Describes a general N-operand vector shuffle.
46930b57cec5SDimitry Andric struct GeneralShuffle {
46945ffd83dbSDimitry Andric   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
46950b57cec5SDimitry Andric   void addUndef();
46960b57cec5SDimitry Andric   bool add(SDValue, unsigned);
46970b57cec5SDimitry Andric   SDValue getNode(SelectionDAG &, const SDLoc &);
46985ffd83dbSDimitry Andric   void tryPrepareForUnpack();
46995ffd83dbSDimitry Andric   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
47005ffd83dbSDimitry Andric   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
47010b57cec5SDimitry Andric 
47020b57cec5SDimitry Andric   // The operands of the shuffle.
47030b57cec5SDimitry Andric   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
47040b57cec5SDimitry Andric 
47050b57cec5SDimitry Andric   // Index I is -1 if byte I of the result is undefined.  Otherwise the
47060b57cec5SDimitry Andric   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
47070b57cec5SDimitry Andric   // Bytes[I] / SystemZ::VectorBytes.
47080b57cec5SDimitry Andric   SmallVector<int, SystemZ::VectorBytes> Bytes;
47090b57cec5SDimitry Andric 
47100b57cec5SDimitry Andric   // The type of the shuffle result.
47110b57cec5SDimitry Andric   EVT VT;
47125ffd83dbSDimitry Andric 
47135ffd83dbSDimitry Andric   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
47145ffd83dbSDimitry Andric   unsigned UnpackFromEltSize;
47150b57cec5SDimitry Andric };
47160b57cec5SDimitry Andric }
47170b57cec5SDimitry Andric 
47180b57cec5SDimitry Andric // Add an extra undefined element to the shuffle.
47190b57cec5SDimitry Andric void GeneralShuffle::addUndef() {
47200b57cec5SDimitry Andric   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
47210b57cec5SDimitry Andric   for (unsigned I = 0; I < BytesPerElement; ++I)
47220b57cec5SDimitry Andric     Bytes.push_back(-1);
47230b57cec5SDimitry Andric }
47240b57cec5SDimitry Andric 
47250b57cec5SDimitry Andric // Add an extra element to the shuffle, taking it from element Elem of Op.
47260b57cec5SDimitry Andric // A null Op indicates a vector input whose value will be calculated later;
47270b57cec5SDimitry Andric // there is at most one such input per shuffle and it always has the same
47280b57cec5SDimitry Andric // type as the result. Aborts and returns false if the source vector elements
47290b57cec5SDimitry Andric // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
47300b57cec5SDimitry Andric // LLVM they become implicitly extended, but this is rare and not optimized.
47310b57cec5SDimitry Andric bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
47320b57cec5SDimitry Andric   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
47330b57cec5SDimitry Andric 
47340b57cec5SDimitry Andric   // The source vector can have wider elements than the result,
47350b57cec5SDimitry Andric   // either through an explicit TRUNCATE or because of type legalization.
47360b57cec5SDimitry Andric   // We want the least significant part.
47370b57cec5SDimitry Andric   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
47380b57cec5SDimitry Andric   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
47390b57cec5SDimitry Andric 
47400b57cec5SDimitry Andric   // Return false if the source elements are smaller than their destination
47410b57cec5SDimitry Andric   // elements.
47420b57cec5SDimitry Andric   if (FromBytesPerElement < BytesPerElement)
47430b57cec5SDimitry Andric     return false;
47440b57cec5SDimitry Andric 
47450b57cec5SDimitry Andric   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
47460b57cec5SDimitry Andric                    (FromBytesPerElement - BytesPerElement));
47470b57cec5SDimitry Andric 
47480b57cec5SDimitry Andric   // Look through things like shuffles and bitcasts.
47490b57cec5SDimitry Andric   while (Op.getNode()) {
47500b57cec5SDimitry Andric     if (Op.getOpcode() == ISD::BITCAST)
47510b57cec5SDimitry Andric       Op = Op.getOperand(0);
47520b57cec5SDimitry Andric     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
47530b57cec5SDimitry Andric       // See whether the bytes we need come from a contiguous part of one
47540b57cec5SDimitry Andric       // operand.
47550b57cec5SDimitry Andric       SmallVector<int, SystemZ::VectorBytes> OpBytes;
47560b57cec5SDimitry Andric       if (!getVPermMask(Op, OpBytes))
47570b57cec5SDimitry Andric         break;
47580b57cec5SDimitry Andric       int NewByte;
47590b57cec5SDimitry Andric       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
47600b57cec5SDimitry Andric         break;
47610b57cec5SDimitry Andric       if (NewByte < 0) {
47620b57cec5SDimitry Andric         addUndef();
47630b57cec5SDimitry Andric         return true;
47640b57cec5SDimitry Andric       }
47650b57cec5SDimitry Andric       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
47660b57cec5SDimitry Andric       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
47670b57cec5SDimitry Andric     } else if (Op.isUndef()) {
47680b57cec5SDimitry Andric       addUndef();
47690b57cec5SDimitry Andric       return true;
47700b57cec5SDimitry Andric     } else
47710b57cec5SDimitry Andric       break;
47720b57cec5SDimitry Andric   }
47730b57cec5SDimitry Andric 
47740b57cec5SDimitry Andric   // Make sure that the source of the extraction is in Ops.
47750b57cec5SDimitry Andric   unsigned OpNo = 0;
47760b57cec5SDimitry Andric   for (; OpNo < Ops.size(); ++OpNo)
47770b57cec5SDimitry Andric     if (Ops[OpNo] == Op)
47780b57cec5SDimitry Andric       break;
47790b57cec5SDimitry Andric   if (OpNo == Ops.size())
47800b57cec5SDimitry Andric     Ops.push_back(Op);
47810b57cec5SDimitry Andric 
47820b57cec5SDimitry Andric   // Add the element to Bytes.
47830b57cec5SDimitry Andric   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
47840b57cec5SDimitry Andric   for (unsigned I = 0; I < BytesPerElement; ++I)
47850b57cec5SDimitry Andric     Bytes.push_back(Base + I);
47860b57cec5SDimitry Andric 
47870b57cec5SDimitry Andric   return true;
47880b57cec5SDimitry Andric }
47890b57cec5SDimitry Andric 
47900b57cec5SDimitry Andric // Return SDNodes for the completed shuffle.
47910b57cec5SDimitry Andric SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
47920b57cec5SDimitry Andric   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
47930b57cec5SDimitry Andric 
47940b57cec5SDimitry Andric   if (Ops.size() == 0)
47950b57cec5SDimitry Andric     return DAG.getUNDEF(VT);
47960b57cec5SDimitry Andric 
47975ffd83dbSDimitry Andric   // Use a single unpack if possible as the last operation.
47985ffd83dbSDimitry Andric   tryPrepareForUnpack();
47995ffd83dbSDimitry Andric 
48000b57cec5SDimitry Andric   // Make sure that there are at least two shuffle operands.
48010b57cec5SDimitry Andric   if (Ops.size() == 1)
48020b57cec5SDimitry Andric     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
48030b57cec5SDimitry Andric 
48040b57cec5SDimitry Andric   // Create a tree of shuffles, deferring root node until after the loop.
48050b57cec5SDimitry Andric   // Try to redistribute the undefined elements of non-root nodes so that
48060b57cec5SDimitry Andric   // the non-root shuffles match something like a pack or merge, then adjust
48070b57cec5SDimitry Andric   // the parent node's permute vector to compensate for the new order.
48080b57cec5SDimitry Andric   // Among other things, this copes with vectors like <2 x i16> that were
48090b57cec5SDimitry Andric   // padded with undefined elements during type legalization.
48100b57cec5SDimitry Andric   //
48110b57cec5SDimitry Andric   // In the best case this redistribution will lead to the whole tree
48120b57cec5SDimitry Andric   // using packs and merges.  It should rarely be a loss in other cases.
48130b57cec5SDimitry Andric   unsigned Stride = 1;
48140b57cec5SDimitry Andric   for (; Stride * 2 < Ops.size(); Stride *= 2) {
48150b57cec5SDimitry Andric     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
48160b57cec5SDimitry Andric       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
48170b57cec5SDimitry Andric 
48180b57cec5SDimitry Andric       // Create a mask for just these two operands.
48190b57cec5SDimitry Andric       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
48200b57cec5SDimitry Andric       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
48210b57cec5SDimitry Andric         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
48220b57cec5SDimitry Andric         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
48230b57cec5SDimitry Andric         if (OpNo == I)
48240b57cec5SDimitry Andric           NewBytes[J] = Byte;
48250b57cec5SDimitry Andric         else if (OpNo == I + Stride)
48260b57cec5SDimitry Andric           NewBytes[J] = SystemZ::VectorBytes + Byte;
48270b57cec5SDimitry Andric         else
48280b57cec5SDimitry Andric           NewBytes[J] = -1;
48290b57cec5SDimitry Andric       }
48300b57cec5SDimitry Andric       // See if it would be better to reorganize NewMask to avoid using VPERM.
48310b57cec5SDimitry Andric       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
48320b57cec5SDimitry Andric       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
48330b57cec5SDimitry Andric         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
48340b57cec5SDimitry Andric         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
48350b57cec5SDimitry Andric         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
48360b57cec5SDimitry Andric           if (NewBytes[J] >= 0) {
48370b57cec5SDimitry Andric             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
48380b57cec5SDimitry Andric                    "Invalid double permute");
48390b57cec5SDimitry Andric             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
48400b57cec5SDimitry Andric           } else
48410b57cec5SDimitry Andric             assert(NewBytesMap[J] < 0 && "Invalid double permute");
48420b57cec5SDimitry Andric         }
48430b57cec5SDimitry Andric       } else {
48440b57cec5SDimitry Andric         // Just use NewBytes on the operands.
48450b57cec5SDimitry Andric         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
48460b57cec5SDimitry Andric         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
48470b57cec5SDimitry Andric           if (NewBytes[J] >= 0)
48480b57cec5SDimitry Andric             Bytes[J] = I * SystemZ::VectorBytes + J;
48490b57cec5SDimitry Andric       }
48500b57cec5SDimitry Andric     }
48510b57cec5SDimitry Andric   }
48520b57cec5SDimitry Andric 
48530b57cec5SDimitry Andric   // Now we just have 2 inputs.  Put the second operand in Ops[1].
48540b57cec5SDimitry Andric   if (Stride > 1) {
48550b57cec5SDimitry Andric     Ops[1] = Ops[Stride];
48560b57cec5SDimitry Andric     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
48570b57cec5SDimitry Andric       if (Bytes[I] >= int(SystemZ::VectorBytes))
48580b57cec5SDimitry Andric         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
48590b57cec5SDimitry Andric   }
48600b57cec5SDimitry Andric 
48610b57cec5SDimitry Andric   // Look for an instruction that can do the permute without resorting
48620b57cec5SDimitry Andric   // to VPERM.
48630b57cec5SDimitry Andric   unsigned OpNo0, OpNo1;
48640b57cec5SDimitry Andric   SDValue Op;
48655ffd83dbSDimitry Andric   if (unpackWasPrepared() && Ops[1].isUndef())
48665ffd83dbSDimitry Andric     Op = Ops[0];
48675ffd83dbSDimitry Andric   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
48680b57cec5SDimitry Andric     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
48690b57cec5SDimitry Andric   else
48700b57cec5SDimitry Andric     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
48715ffd83dbSDimitry Andric 
48725ffd83dbSDimitry Andric   Op = insertUnpackIfPrepared(DAG, DL, Op);
48735ffd83dbSDimitry Andric 
48740b57cec5SDimitry Andric   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
48750b57cec5SDimitry Andric }
48760b57cec5SDimitry Andric 
48775ffd83dbSDimitry Andric #ifndef NDEBUG
48785ffd83dbSDimitry Andric static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
48795ffd83dbSDimitry Andric   dbgs() << Msg.c_str() << " { ";
48805ffd83dbSDimitry Andric   for (unsigned i = 0; i < Bytes.size(); i++)
48815ffd83dbSDimitry Andric     dbgs() << Bytes[i] << " ";
48825ffd83dbSDimitry Andric   dbgs() << "}\n";
48835ffd83dbSDimitry Andric }
48845ffd83dbSDimitry Andric #endif
48855ffd83dbSDimitry Andric 
48865ffd83dbSDimitry Andric // If the Bytes vector matches an unpack operation, prepare to do the unpack
48875ffd83dbSDimitry Andric // after all else by removing the zero vector and the effect of the unpack on
48885ffd83dbSDimitry Andric // Bytes.
48895ffd83dbSDimitry Andric void GeneralShuffle::tryPrepareForUnpack() {
48905ffd83dbSDimitry Andric   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
48915ffd83dbSDimitry Andric   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
48925ffd83dbSDimitry Andric     return;
48935ffd83dbSDimitry Andric 
48945ffd83dbSDimitry Andric   // Only do this if removing the zero vector reduces the depth, otherwise
48955ffd83dbSDimitry Andric   // the critical path will increase with the final unpack.
48965ffd83dbSDimitry Andric   if (Ops.size() > 2 &&
48975ffd83dbSDimitry Andric       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
48985ffd83dbSDimitry Andric     return;
48995ffd83dbSDimitry Andric 
49005ffd83dbSDimitry Andric   // Find an unpack that would allow removing the zero vector from Ops.
49015ffd83dbSDimitry Andric   UnpackFromEltSize = 1;
49025ffd83dbSDimitry Andric   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
49035ffd83dbSDimitry Andric     bool MatchUnpack = true;
49045ffd83dbSDimitry Andric     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
49055ffd83dbSDimitry Andric     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
49065ffd83dbSDimitry Andric       unsigned ToEltSize = UnpackFromEltSize * 2;
49075ffd83dbSDimitry Andric       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
49085ffd83dbSDimitry Andric       if (!IsZextByte)
49095ffd83dbSDimitry Andric         SrcBytes.push_back(Bytes[Elt]);
49105ffd83dbSDimitry Andric       if (Bytes[Elt] != -1) {
49115ffd83dbSDimitry Andric         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
49125ffd83dbSDimitry Andric         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
49135ffd83dbSDimitry Andric           MatchUnpack = false;
49145ffd83dbSDimitry Andric           break;
49155ffd83dbSDimitry Andric         }
49165ffd83dbSDimitry Andric       }
49175ffd83dbSDimitry Andric     }
49185ffd83dbSDimitry Andric     if (MatchUnpack) {
49195ffd83dbSDimitry Andric       if (Ops.size() == 2) {
49205ffd83dbSDimitry Andric         // Don't use unpack if a single source operand needs rearrangement.
49215ffd83dbSDimitry Andric         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
49225ffd83dbSDimitry Andric           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
49235ffd83dbSDimitry Andric             UnpackFromEltSize = UINT_MAX;
49245ffd83dbSDimitry Andric             return;
49255ffd83dbSDimitry Andric           }
49265ffd83dbSDimitry Andric       }
49275ffd83dbSDimitry Andric       break;
49285ffd83dbSDimitry Andric     }
49295ffd83dbSDimitry Andric   }
49305ffd83dbSDimitry Andric   if (UnpackFromEltSize > 4)
49315ffd83dbSDimitry Andric     return;
49325ffd83dbSDimitry Andric 
49335ffd83dbSDimitry Andric   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
49345ffd83dbSDimitry Andric              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
49355ffd83dbSDimitry Andric              << ".\n";
49365ffd83dbSDimitry Andric              dumpBytes(Bytes, "Original Bytes vector:"););
49375ffd83dbSDimitry Andric 
49385ffd83dbSDimitry Andric   // Apply the unpack in reverse to the Bytes array.
49395ffd83dbSDimitry Andric   unsigned B = 0;
49405ffd83dbSDimitry Andric   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
49415ffd83dbSDimitry Andric     Elt += UnpackFromEltSize;
49425ffd83dbSDimitry Andric     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
49435ffd83dbSDimitry Andric       Bytes[B] = Bytes[Elt];
49445ffd83dbSDimitry Andric   }
49455ffd83dbSDimitry Andric   while (B < SystemZ::VectorBytes)
49465ffd83dbSDimitry Andric     Bytes[B++] = -1;
49475ffd83dbSDimitry Andric 
49485ffd83dbSDimitry Andric   // Remove the zero vector from Ops
49495ffd83dbSDimitry Andric   Ops.erase(&Ops[ZeroVecOpNo]);
49505ffd83dbSDimitry Andric   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
49515ffd83dbSDimitry Andric     if (Bytes[I] >= 0) {
49525ffd83dbSDimitry Andric       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
49535ffd83dbSDimitry Andric       if (OpNo > ZeroVecOpNo)
49545ffd83dbSDimitry Andric         Bytes[I] -= SystemZ::VectorBytes;
49555ffd83dbSDimitry Andric     }
49565ffd83dbSDimitry Andric 
49575ffd83dbSDimitry Andric   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
49585ffd83dbSDimitry Andric              dbgs() << "\n";);
49595ffd83dbSDimitry Andric }
49605ffd83dbSDimitry Andric 
49615ffd83dbSDimitry Andric SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
49625ffd83dbSDimitry Andric                                                const SDLoc &DL,
49635ffd83dbSDimitry Andric                                                SDValue Op) {
49645ffd83dbSDimitry Andric   if (!unpackWasPrepared())
49655ffd83dbSDimitry Andric     return Op;
49665ffd83dbSDimitry Andric   unsigned InBits = UnpackFromEltSize * 8;
49675ffd83dbSDimitry Andric   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
49685ffd83dbSDimitry Andric                                 SystemZ::VectorBits / InBits);
49695ffd83dbSDimitry Andric   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
49705ffd83dbSDimitry Andric   unsigned OutBits = InBits * 2;
49715ffd83dbSDimitry Andric   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
49725ffd83dbSDimitry Andric                                SystemZ::VectorBits / OutBits);
49735ffd83dbSDimitry Andric   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
49745ffd83dbSDimitry Andric }
49755ffd83dbSDimitry Andric 
49760b57cec5SDimitry Andric // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
49770b57cec5SDimitry Andric static bool isScalarToVector(SDValue Op) {
49780b57cec5SDimitry Andric   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
49790b57cec5SDimitry Andric     if (!Op.getOperand(I).isUndef())
49800b57cec5SDimitry Andric       return false;
49810b57cec5SDimitry Andric   return true;
49820b57cec5SDimitry Andric }
49830b57cec5SDimitry Andric 
49840b57cec5SDimitry Andric // Return a vector of type VT that contains Value in the first element.
49850b57cec5SDimitry Andric // The other elements don't matter.
49860b57cec5SDimitry Andric static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
49870b57cec5SDimitry Andric                                    SDValue Value) {
49880b57cec5SDimitry Andric   // If we have a constant, replicate it to all elements and let the
49890b57cec5SDimitry Andric   // BUILD_VECTOR lowering take care of it.
49900b57cec5SDimitry Andric   if (Value.getOpcode() == ISD::Constant ||
49910b57cec5SDimitry Andric       Value.getOpcode() == ISD::ConstantFP) {
49920b57cec5SDimitry Andric     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
49930b57cec5SDimitry Andric     return DAG.getBuildVector(VT, DL, Ops);
49940b57cec5SDimitry Andric   }
49950b57cec5SDimitry Andric   if (Value.isUndef())
49960b57cec5SDimitry Andric     return DAG.getUNDEF(VT);
49970b57cec5SDimitry Andric   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
49980b57cec5SDimitry Andric }
49990b57cec5SDimitry Andric 
50000b57cec5SDimitry Andric // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
50010b57cec5SDimitry Andric // element 1.  Used for cases in which replication is cheap.
50020b57cec5SDimitry Andric static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
50030b57cec5SDimitry Andric                                  SDValue Op0, SDValue Op1) {
50040b57cec5SDimitry Andric   if (Op0.isUndef()) {
50050b57cec5SDimitry Andric     if (Op1.isUndef())
50060b57cec5SDimitry Andric       return DAG.getUNDEF(VT);
50070b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
50080b57cec5SDimitry Andric   }
50090b57cec5SDimitry Andric   if (Op1.isUndef())
50100b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
50110b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
50120b57cec5SDimitry Andric                      buildScalarToVector(DAG, DL, VT, Op0),
50130b57cec5SDimitry Andric                      buildScalarToVector(DAG, DL, VT, Op1));
50140b57cec5SDimitry Andric }
50150b57cec5SDimitry Andric 
50160b57cec5SDimitry Andric // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
50170b57cec5SDimitry Andric // vector for them.
50180b57cec5SDimitry Andric static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
50190b57cec5SDimitry Andric                           SDValue Op1) {
50200b57cec5SDimitry Andric   if (Op0.isUndef() && Op1.isUndef())
50210b57cec5SDimitry Andric     return DAG.getUNDEF(MVT::v2i64);
50220b57cec5SDimitry Andric   // If one of the two inputs is undefined then replicate the other one,
50230b57cec5SDimitry Andric   // in order to avoid using another register unnecessarily.
50240b57cec5SDimitry Andric   if (Op0.isUndef())
50250b57cec5SDimitry Andric     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
50260b57cec5SDimitry Andric   else if (Op1.isUndef())
50270b57cec5SDimitry Andric     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
50280b57cec5SDimitry Andric   else {
50290b57cec5SDimitry Andric     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
50300b57cec5SDimitry Andric     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
50310b57cec5SDimitry Andric   }
50320b57cec5SDimitry Andric   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
50330b57cec5SDimitry Andric }
50340b57cec5SDimitry Andric 
50350b57cec5SDimitry Andric // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
50360b57cec5SDimitry Andric // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
50370b57cec5SDimitry Andric // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
50380b57cec5SDimitry Andric // would benefit from this representation and return it if so.
50390b57cec5SDimitry Andric static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
50400b57cec5SDimitry Andric                                      BuildVectorSDNode *BVN) {
50410b57cec5SDimitry Andric   EVT VT = BVN->getValueType(0);
50420b57cec5SDimitry Andric   unsigned NumElements = VT.getVectorNumElements();
50430b57cec5SDimitry Andric 
50440b57cec5SDimitry Andric   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
50450b57cec5SDimitry Andric   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
50460b57cec5SDimitry Andric   // need a BUILD_VECTOR, add an additional placeholder operand for that
50470b57cec5SDimitry Andric   // BUILD_VECTOR and store its operands in ResidueOps.
50480b57cec5SDimitry Andric   GeneralShuffle GS(VT);
50490b57cec5SDimitry Andric   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
50500b57cec5SDimitry Andric   bool FoundOne = false;
50510b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I) {
50520b57cec5SDimitry Andric     SDValue Op = BVN->getOperand(I);
50530b57cec5SDimitry Andric     if (Op.getOpcode() == ISD::TRUNCATE)
50540b57cec5SDimitry Andric       Op = Op.getOperand(0);
50550b57cec5SDimitry Andric     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
50560b57cec5SDimitry Andric         Op.getOperand(1).getOpcode() == ISD::Constant) {
50570b57cec5SDimitry Andric       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
50580b57cec5SDimitry Andric       if (!GS.add(Op.getOperand(0), Elem))
50590b57cec5SDimitry Andric         return SDValue();
50600b57cec5SDimitry Andric       FoundOne = true;
50610b57cec5SDimitry Andric     } else if (Op.isUndef()) {
50620b57cec5SDimitry Andric       GS.addUndef();
50630b57cec5SDimitry Andric     } else {
50640b57cec5SDimitry Andric       if (!GS.add(SDValue(), ResidueOps.size()))
50650b57cec5SDimitry Andric         return SDValue();
50660b57cec5SDimitry Andric       ResidueOps.push_back(BVN->getOperand(I));
50670b57cec5SDimitry Andric     }
50680b57cec5SDimitry Andric   }
50690b57cec5SDimitry Andric 
50700b57cec5SDimitry Andric   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
50710b57cec5SDimitry Andric   if (!FoundOne)
50720b57cec5SDimitry Andric     return SDValue();
50730b57cec5SDimitry Andric 
50740b57cec5SDimitry Andric   // Create the BUILD_VECTOR for the remaining elements, if any.
50750b57cec5SDimitry Andric   if (!ResidueOps.empty()) {
50760b57cec5SDimitry Andric     while (ResidueOps.size() < NumElements)
50770b57cec5SDimitry Andric       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
50780b57cec5SDimitry Andric     for (auto &Op : GS.Ops) {
50790b57cec5SDimitry Andric       if (!Op.getNode()) {
50800b57cec5SDimitry Andric         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
50810b57cec5SDimitry Andric         break;
50820b57cec5SDimitry Andric       }
50830b57cec5SDimitry Andric     }
50840b57cec5SDimitry Andric   }
50850b57cec5SDimitry Andric   return GS.getNode(DAG, SDLoc(BVN));
50860b57cec5SDimitry Andric }
50870b57cec5SDimitry Andric 
50880b57cec5SDimitry Andric bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
50890b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
50900b57cec5SDimitry Andric     return true;
50910b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
50920b57cec5SDimitry Andric     return true;
50930b57cec5SDimitry Andric   return false;
50940b57cec5SDimitry Andric }
50950b57cec5SDimitry Andric 
50960b57cec5SDimitry Andric // Combine GPR scalar values Elems into a vector of type VT.
50970b57cec5SDimitry Andric SDValue
50980b57cec5SDimitry Andric SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
50990b57cec5SDimitry Andric                                    SmallVectorImpl<SDValue> &Elems) const {
51000b57cec5SDimitry Andric   // See whether there is a single replicated value.
51010b57cec5SDimitry Andric   SDValue Single;
51020b57cec5SDimitry Andric   unsigned int NumElements = Elems.size();
51030b57cec5SDimitry Andric   unsigned int Count = 0;
51040b57cec5SDimitry Andric   for (auto Elem : Elems) {
51050b57cec5SDimitry Andric     if (!Elem.isUndef()) {
51060b57cec5SDimitry Andric       if (!Single.getNode())
51070b57cec5SDimitry Andric         Single = Elem;
51080b57cec5SDimitry Andric       else if (Elem != Single) {
51090b57cec5SDimitry Andric         Single = SDValue();
51100b57cec5SDimitry Andric         break;
51110b57cec5SDimitry Andric       }
51120b57cec5SDimitry Andric       Count += 1;
51130b57cec5SDimitry Andric     }
51140b57cec5SDimitry Andric   }
51150b57cec5SDimitry Andric   // There are three cases here:
51160b57cec5SDimitry Andric   //
51170b57cec5SDimitry Andric   // - if the only defined element is a loaded one, the best sequence
51180b57cec5SDimitry Andric   //   is a replicating load.
51190b57cec5SDimitry Andric   //
51200b57cec5SDimitry Andric   // - otherwise, if the only defined element is an i64 value, we will
51210b57cec5SDimitry Andric   //   end up with the same VLVGP sequence regardless of whether we short-cut
51220b57cec5SDimitry Andric   //   for replication or fall through to the later code.
51230b57cec5SDimitry Andric   //
51240b57cec5SDimitry Andric   // - otherwise, if the only defined element is an i32 or smaller value,
51250b57cec5SDimitry Andric   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
51260b57cec5SDimitry Andric   //   This is only a win if the single defined element is used more than once.
51270b57cec5SDimitry Andric   //   In other cases we're better off using a single VLVGx.
51280b57cec5SDimitry Andric   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
51290b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
51300b57cec5SDimitry Andric 
51310b57cec5SDimitry Andric   // If all elements are loads, use VLREP/VLEs (below).
51320b57cec5SDimitry Andric   bool AllLoads = true;
51330b57cec5SDimitry Andric   for (auto Elem : Elems)
51340b57cec5SDimitry Andric     if (!isVectorElementLoad(Elem)) {
51350b57cec5SDimitry Andric       AllLoads = false;
51360b57cec5SDimitry Andric       break;
51370b57cec5SDimitry Andric     }
51380b57cec5SDimitry Andric 
51390b57cec5SDimitry Andric   // The best way of building a v2i64 from two i64s is to use VLVGP.
51400b57cec5SDimitry Andric   if (VT == MVT::v2i64 && !AllLoads)
51410b57cec5SDimitry Andric     return joinDwords(DAG, DL, Elems[0], Elems[1]);
51420b57cec5SDimitry Andric 
51430b57cec5SDimitry Andric   // Use a 64-bit merge high to combine two doubles.
51440b57cec5SDimitry Andric   if (VT == MVT::v2f64 && !AllLoads)
51450b57cec5SDimitry Andric     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
51460b57cec5SDimitry Andric 
51470b57cec5SDimitry Andric   // Build v4f32 values directly from the FPRs:
51480b57cec5SDimitry Andric   //
51490b57cec5SDimitry Andric   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
51500b57cec5SDimitry Andric   //         V              V         VMRHF
51510b57cec5SDimitry Andric   //      <ABxx>         <CDxx>
51520b57cec5SDimitry Andric   //                V                 VMRHG
51530b57cec5SDimitry Andric   //              <ABCD>
51540b57cec5SDimitry Andric   if (VT == MVT::v4f32 && !AllLoads) {
51550b57cec5SDimitry Andric     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
51560b57cec5SDimitry Andric     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
51570b57cec5SDimitry Andric     // Avoid unnecessary undefs by reusing the other operand.
51580b57cec5SDimitry Andric     if (Op01.isUndef())
51590b57cec5SDimitry Andric       Op01 = Op23;
51600b57cec5SDimitry Andric     else if (Op23.isUndef())
51610b57cec5SDimitry Andric       Op23 = Op01;
51620b57cec5SDimitry Andric     // Merging identical replications is a no-op.
51630b57cec5SDimitry Andric     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
51640b57cec5SDimitry Andric       return Op01;
51650b57cec5SDimitry Andric     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
51660b57cec5SDimitry Andric     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
51670b57cec5SDimitry Andric     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
51680b57cec5SDimitry Andric                              DL, MVT::v2i64, Op01, Op23);
51690b57cec5SDimitry Andric     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
51700b57cec5SDimitry Andric   }
51710b57cec5SDimitry Andric 
51720b57cec5SDimitry Andric   // Collect the constant terms.
51730b57cec5SDimitry Andric   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
51740b57cec5SDimitry Andric   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
51750b57cec5SDimitry Andric 
51760b57cec5SDimitry Andric   unsigned NumConstants = 0;
51770b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I) {
51780b57cec5SDimitry Andric     SDValue Elem = Elems[I];
51790b57cec5SDimitry Andric     if (Elem.getOpcode() == ISD::Constant ||
51800b57cec5SDimitry Andric         Elem.getOpcode() == ISD::ConstantFP) {
51810b57cec5SDimitry Andric       NumConstants += 1;
51820b57cec5SDimitry Andric       Constants[I] = Elem;
51830b57cec5SDimitry Andric       Done[I] = true;
51840b57cec5SDimitry Andric     }
51850b57cec5SDimitry Andric   }
51860b57cec5SDimitry Andric   // If there was at least one constant, fill in the other elements of
51870b57cec5SDimitry Andric   // Constants with undefs to get a full vector constant and use that
51880b57cec5SDimitry Andric   // as the starting point.
51890b57cec5SDimitry Andric   SDValue Result;
51900b57cec5SDimitry Andric   SDValue ReplicatedVal;
51910b57cec5SDimitry Andric   if (NumConstants > 0) {
51920b57cec5SDimitry Andric     for (unsigned I = 0; I < NumElements; ++I)
51930b57cec5SDimitry Andric       if (!Constants[I].getNode())
51940b57cec5SDimitry Andric         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
51950b57cec5SDimitry Andric     Result = DAG.getBuildVector(VT, DL, Constants);
51960b57cec5SDimitry Andric   } else {
51970b57cec5SDimitry Andric     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
51980b57cec5SDimitry Andric     // avoid a false dependency on any previous contents of the vector
51990b57cec5SDimitry Andric     // register.
52000b57cec5SDimitry Andric 
52010b57cec5SDimitry Andric     // Use a VLREP if at least one element is a load. Make sure to replicate
52020b57cec5SDimitry Andric     // the load with the most elements having its value.
52030b57cec5SDimitry Andric     std::map<const SDNode*, unsigned> UseCounts;
52040b57cec5SDimitry Andric     SDNode *LoadMaxUses = nullptr;
52050b57cec5SDimitry Andric     for (unsigned I = 0; I < NumElements; ++I)
52060b57cec5SDimitry Andric       if (isVectorElementLoad(Elems[I])) {
52070b57cec5SDimitry Andric         SDNode *Ld = Elems[I].getNode();
52080b57cec5SDimitry Andric         UseCounts[Ld]++;
52090b57cec5SDimitry Andric         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
52100b57cec5SDimitry Andric           LoadMaxUses = Ld;
52110b57cec5SDimitry Andric       }
52120b57cec5SDimitry Andric     if (LoadMaxUses != nullptr) {
52130b57cec5SDimitry Andric       ReplicatedVal = SDValue(LoadMaxUses, 0);
52140b57cec5SDimitry Andric       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
52150b57cec5SDimitry Andric     } else {
52160b57cec5SDimitry Andric       // Try to use VLVGP.
52170b57cec5SDimitry Andric       unsigned I1 = NumElements / 2 - 1;
52180b57cec5SDimitry Andric       unsigned I2 = NumElements - 1;
52190b57cec5SDimitry Andric       bool Def1 = !Elems[I1].isUndef();
52200b57cec5SDimitry Andric       bool Def2 = !Elems[I2].isUndef();
52210b57cec5SDimitry Andric       if (Def1 || Def2) {
52220b57cec5SDimitry Andric         SDValue Elem1 = Elems[Def1 ? I1 : I2];
52230b57cec5SDimitry Andric         SDValue Elem2 = Elems[Def2 ? I2 : I1];
52240b57cec5SDimitry Andric         Result = DAG.getNode(ISD::BITCAST, DL, VT,
52250b57cec5SDimitry Andric                              joinDwords(DAG, DL, Elem1, Elem2));
52260b57cec5SDimitry Andric         Done[I1] = true;
52270b57cec5SDimitry Andric         Done[I2] = true;
52280b57cec5SDimitry Andric       } else
52290b57cec5SDimitry Andric         Result = DAG.getUNDEF(VT);
52300b57cec5SDimitry Andric     }
52310b57cec5SDimitry Andric   }
52320b57cec5SDimitry Andric 
52330b57cec5SDimitry Andric   // Use VLVGx to insert the other elements.
52340b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I)
52350b57cec5SDimitry Andric     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
52360b57cec5SDimitry Andric       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
52370b57cec5SDimitry Andric                            DAG.getConstant(I, DL, MVT::i32));
52380b57cec5SDimitry Andric   return Result;
52390b57cec5SDimitry Andric }
52400b57cec5SDimitry Andric 
52410b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
52420b57cec5SDimitry Andric                                                  SelectionDAG &DAG) const {
52430b57cec5SDimitry Andric   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
52440b57cec5SDimitry Andric   SDLoc DL(Op);
52450b57cec5SDimitry Andric   EVT VT = Op.getValueType();
52460b57cec5SDimitry Andric 
52470b57cec5SDimitry Andric   if (BVN->isConstant()) {
52480b57cec5SDimitry Andric     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
52490b57cec5SDimitry Andric       return Op;
52500b57cec5SDimitry Andric 
52510b57cec5SDimitry Andric     // Fall back to loading it from memory.
52520b57cec5SDimitry Andric     return SDValue();
52530b57cec5SDimitry Andric   }
52540b57cec5SDimitry Andric 
52550b57cec5SDimitry Andric   // See if we should use shuffles to construct the vector from other vectors.
52560b57cec5SDimitry Andric   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
52570b57cec5SDimitry Andric     return Res;
52580b57cec5SDimitry Andric 
52590b57cec5SDimitry Andric   // Detect SCALAR_TO_VECTOR conversions.
52600b57cec5SDimitry Andric   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
52610b57cec5SDimitry Andric     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
52620b57cec5SDimitry Andric 
52630b57cec5SDimitry Andric   // Otherwise use buildVector to build the vector up from GPRs.
52640b57cec5SDimitry Andric   unsigned NumElements = Op.getNumOperands();
52650b57cec5SDimitry Andric   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
52660b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I)
52670b57cec5SDimitry Andric     Ops[I] = Op.getOperand(I);
52680b57cec5SDimitry Andric   return buildVector(DAG, DL, VT, Ops);
52690b57cec5SDimitry Andric }
52700b57cec5SDimitry Andric 
52710b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
52720b57cec5SDimitry Andric                                                    SelectionDAG &DAG) const {
52730b57cec5SDimitry Andric   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
52740b57cec5SDimitry Andric   SDLoc DL(Op);
52750b57cec5SDimitry Andric   EVT VT = Op.getValueType();
52760b57cec5SDimitry Andric   unsigned NumElements = VT.getVectorNumElements();
52770b57cec5SDimitry Andric 
52780b57cec5SDimitry Andric   if (VSN->isSplat()) {
52790b57cec5SDimitry Andric     SDValue Op0 = Op.getOperand(0);
52800b57cec5SDimitry Andric     unsigned Index = VSN->getSplatIndex();
52810b57cec5SDimitry Andric     assert(Index < VT.getVectorNumElements() &&
52820b57cec5SDimitry Andric            "Splat index should be defined and in first operand");
52830b57cec5SDimitry Andric     // See whether the value we're splatting is directly available as a scalar.
52840b57cec5SDimitry Andric     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
52850b57cec5SDimitry Andric         Op0.getOpcode() == ISD::BUILD_VECTOR)
52860b57cec5SDimitry Andric       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
52870b57cec5SDimitry Andric     // Otherwise keep it as a vector-to-vector operation.
52880b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
52898bcb0991SDimitry Andric                        DAG.getTargetConstant(Index, DL, MVT::i32));
52900b57cec5SDimitry Andric   }
52910b57cec5SDimitry Andric 
52920b57cec5SDimitry Andric   GeneralShuffle GS(VT);
52930b57cec5SDimitry Andric   for (unsigned I = 0; I < NumElements; ++I) {
52940b57cec5SDimitry Andric     int Elt = VSN->getMaskElt(I);
52950b57cec5SDimitry Andric     if (Elt < 0)
52960b57cec5SDimitry Andric       GS.addUndef();
52970b57cec5SDimitry Andric     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
52980b57cec5SDimitry Andric                      unsigned(Elt) % NumElements))
52990b57cec5SDimitry Andric       return SDValue();
53000b57cec5SDimitry Andric   }
53010b57cec5SDimitry Andric   return GS.getNode(DAG, SDLoc(VSN));
53020b57cec5SDimitry Andric }
53030b57cec5SDimitry Andric 
53040b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
53050b57cec5SDimitry Andric                                                      SelectionDAG &DAG) const {
53060b57cec5SDimitry Andric   SDLoc DL(Op);
53070b57cec5SDimitry Andric   // Just insert the scalar into element 0 of an undefined vector.
53080b57cec5SDimitry Andric   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
53090b57cec5SDimitry Andric                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
53100b57cec5SDimitry Andric                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
53110b57cec5SDimitry Andric }
53120b57cec5SDimitry Andric 
53130b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
53140b57cec5SDimitry Andric                                                       SelectionDAG &DAG) const {
53150b57cec5SDimitry Andric   // Handle insertions of floating-point values.
53160b57cec5SDimitry Andric   SDLoc DL(Op);
53170b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
53180b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
53190b57cec5SDimitry Andric   SDValue Op2 = Op.getOperand(2);
53200b57cec5SDimitry Andric   EVT VT = Op.getValueType();
53210b57cec5SDimitry Andric 
53220b57cec5SDimitry Andric   // Insertions into constant indices of a v2f64 can be done using VPDI.
53230b57cec5SDimitry Andric   // However, if the inserted value is a bitcast or a constant then it's
53240b57cec5SDimitry Andric   // better to use GPRs, as below.
53250b57cec5SDimitry Andric   if (VT == MVT::v2f64 &&
53260b57cec5SDimitry Andric       Op1.getOpcode() != ISD::BITCAST &&
53270b57cec5SDimitry Andric       Op1.getOpcode() != ISD::ConstantFP &&
53280b57cec5SDimitry Andric       Op2.getOpcode() == ISD::Constant) {
53290b57cec5SDimitry Andric     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
53300b57cec5SDimitry Andric     unsigned Mask = VT.getVectorNumElements() - 1;
53310b57cec5SDimitry Andric     if (Index <= Mask)
53320b57cec5SDimitry Andric       return Op;
53330b57cec5SDimitry Andric   }
53340b57cec5SDimitry Andric 
53350b57cec5SDimitry Andric   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
53360b57cec5SDimitry Andric   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
53370b57cec5SDimitry Andric   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
53380b57cec5SDimitry Andric   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
53390b57cec5SDimitry Andric                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
53400b57cec5SDimitry Andric                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
53410b57cec5SDimitry Andric   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
53420b57cec5SDimitry Andric }
53430b57cec5SDimitry Andric 
53440b57cec5SDimitry Andric SDValue
53450b57cec5SDimitry Andric SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
53460b57cec5SDimitry Andric                                                SelectionDAG &DAG) const {
53470b57cec5SDimitry Andric   // Handle extractions of floating-point values.
53480b57cec5SDimitry Andric   SDLoc DL(Op);
53490b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
53500b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
53510b57cec5SDimitry Andric   EVT VT = Op.getValueType();
53520b57cec5SDimitry Andric   EVT VecVT = Op0.getValueType();
53530b57cec5SDimitry Andric 
53540b57cec5SDimitry Andric   // Extractions of constant indices can be done directly.
53550b57cec5SDimitry Andric   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
53560b57cec5SDimitry Andric     uint64_t Index = CIndexN->getZExtValue();
53570b57cec5SDimitry Andric     unsigned Mask = VecVT.getVectorNumElements() - 1;
53580b57cec5SDimitry Andric     if (Index <= Mask)
53590b57cec5SDimitry Andric       return Op;
53600b57cec5SDimitry Andric   }
53610b57cec5SDimitry Andric 
53620b57cec5SDimitry Andric   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
53630b57cec5SDimitry Andric   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
53640b57cec5SDimitry Andric   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
53650b57cec5SDimitry Andric   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
53660b57cec5SDimitry Andric                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
53670b57cec5SDimitry Andric   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
53680b57cec5SDimitry Andric }
53690b57cec5SDimitry Andric 
53705ffd83dbSDimitry Andric SDValue SystemZTargetLowering::
53715ffd83dbSDimitry Andric lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
53720b57cec5SDimitry Andric   SDValue PackedOp = Op.getOperand(0);
53730b57cec5SDimitry Andric   EVT OutVT = Op.getValueType();
53740b57cec5SDimitry Andric   EVT InVT = PackedOp.getValueType();
53750b57cec5SDimitry Andric   unsigned ToBits = OutVT.getScalarSizeInBits();
53760b57cec5SDimitry Andric   unsigned FromBits = InVT.getScalarSizeInBits();
53770b57cec5SDimitry Andric   do {
53780b57cec5SDimitry Andric     FromBits *= 2;
53790b57cec5SDimitry Andric     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
53800b57cec5SDimitry Andric                                  SystemZ::VectorBits / FromBits);
53815ffd83dbSDimitry Andric     PackedOp =
53825ffd83dbSDimitry Andric       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
53830b57cec5SDimitry Andric   } while (FromBits != ToBits);
53840b57cec5SDimitry Andric   return PackedOp;
53850b57cec5SDimitry Andric }
53860b57cec5SDimitry Andric 
53875ffd83dbSDimitry Andric // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
53885ffd83dbSDimitry Andric SDValue SystemZTargetLowering::
53895ffd83dbSDimitry Andric lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
53905ffd83dbSDimitry Andric   SDValue PackedOp = Op.getOperand(0);
53915ffd83dbSDimitry Andric   SDLoc DL(Op);
53925ffd83dbSDimitry Andric   EVT OutVT = Op.getValueType();
53935ffd83dbSDimitry Andric   EVT InVT = PackedOp.getValueType();
53945ffd83dbSDimitry Andric   unsigned InNumElts = InVT.getVectorNumElements();
53955ffd83dbSDimitry Andric   unsigned OutNumElts = OutVT.getVectorNumElements();
53965ffd83dbSDimitry Andric   unsigned NumInPerOut = InNumElts / OutNumElts;
53975ffd83dbSDimitry Andric 
53985ffd83dbSDimitry Andric   SDValue ZeroVec =
53995ffd83dbSDimitry Andric     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
54005ffd83dbSDimitry Andric 
54015ffd83dbSDimitry Andric   SmallVector<int, 16> Mask(InNumElts);
54025ffd83dbSDimitry Andric   unsigned ZeroVecElt = InNumElts;
54035ffd83dbSDimitry Andric   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
54045ffd83dbSDimitry Andric     unsigned MaskElt = PackedElt * NumInPerOut;
54055ffd83dbSDimitry Andric     unsigned End = MaskElt + NumInPerOut - 1;
54065ffd83dbSDimitry Andric     for (; MaskElt < End; MaskElt++)
54075ffd83dbSDimitry Andric       Mask[MaskElt] = ZeroVecElt++;
54085ffd83dbSDimitry Andric     Mask[MaskElt] = PackedElt;
54095ffd83dbSDimitry Andric   }
54105ffd83dbSDimitry Andric   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
54115ffd83dbSDimitry Andric   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
54125ffd83dbSDimitry Andric }
54135ffd83dbSDimitry Andric 
54140b57cec5SDimitry Andric SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
54150b57cec5SDimitry Andric                                           unsigned ByScalar) const {
54160b57cec5SDimitry Andric   // Look for cases where a vector shift can use the *_BY_SCALAR form.
54170b57cec5SDimitry Andric   SDValue Op0 = Op.getOperand(0);
54180b57cec5SDimitry Andric   SDValue Op1 = Op.getOperand(1);
54190b57cec5SDimitry Andric   SDLoc DL(Op);
54200b57cec5SDimitry Andric   EVT VT = Op.getValueType();
54210b57cec5SDimitry Andric   unsigned ElemBitSize = VT.getScalarSizeInBits();
54220b57cec5SDimitry Andric 
54230b57cec5SDimitry Andric   // See whether the shift vector is a splat represented as BUILD_VECTOR.
54240b57cec5SDimitry Andric   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
54250b57cec5SDimitry Andric     APInt SplatBits, SplatUndef;
54260b57cec5SDimitry Andric     unsigned SplatBitSize;
54270b57cec5SDimitry Andric     bool HasAnyUndefs;
54280b57cec5SDimitry Andric     // Check for constant splats.  Use ElemBitSize as the minimum element
54290b57cec5SDimitry Andric     // width and reject splats that need wider elements.
54300b57cec5SDimitry Andric     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
54310b57cec5SDimitry Andric                              ElemBitSize, true) &&
54320b57cec5SDimitry Andric         SplatBitSize == ElemBitSize) {
54330b57cec5SDimitry Andric       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
54340b57cec5SDimitry Andric                                       DL, MVT::i32);
54350b57cec5SDimitry Andric       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
54360b57cec5SDimitry Andric     }
54370b57cec5SDimitry Andric     // Check for variable splats.
54380b57cec5SDimitry Andric     BitVector UndefElements;
54390b57cec5SDimitry Andric     SDValue Splat = BVN->getSplatValue(&UndefElements);
54400b57cec5SDimitry Andric     if (Splat) {
54410b57cec5SDimitry Andric       // Since i32 is the smallest legal type, we either need a no-op
54420b57cec5SDimitry Andric       // or a truncation.
54430b57cec5SDimitry Andric       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
54440b57cec5SDimitry Andric       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
54450b57cec5SDimitry Andric     }
54460b57cec5SDimitry Andric   }
54470b57cec5SDimitry Andric 
54480b57cec5SDimitry Andric   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
54490b57cec5SDimitry Andric   // and the shift amount is directly available in a GPR.
54500b57cec5SDimitry Andric   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
54510b57cec5SDimitry Andric     if (VSN->isSplat()) {
54520b57cec5SDimitry Andric       SDValue VSNOp0 = VSN->getOperand(0);
54530b57cec5SDimitry Andric       unsigned Index = VSN->getSplatIndex();
54540b57cec5SDimitry Andric       assert(Index < VT.getVectorNumElements() &&
54550b57cec5SDimitry Andric              "Splat index should be defined and in first operand");
54560b57cec5SDimitry Andric       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
54570b57cec5SDimitry Andric           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
54580b57cec5SDimitry Andric         // Since i32 is the smallest legal type, we either need a no-op
54590b57cec5SDimitry Andric         // or a truncation.
54600b57cec5SDimitry Andric         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
54610b57cec5SDimitry Andric                                     VSNOp0.getOperand(Index));
54620b57cec5SDimitry Andric         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
54630b57cec5SDimitry Andric       }
54640b57cec5SDimitry Andric     }
54650b57cec5SDimitry Andric   }
54660b57cec5SDimitry Andric 
54670b57cec5SDimitry Andric   // Otherwise just treat the current form as legal.
54680b57cec5SDimitry Andric   return Op;
54690b57cec5SDimitry Andric }
54700b57cec5SDimitry Andric 
54710b57cec5SDimitry Andric SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
54720b57cec5SDimitry Andric                                               SelectionDAG &DAG) const {
54730b57cec5SDimitry Andric   switch (Op.getOpcode()) {
54740b57cec5SDimitry Andric   case ISD::FRAMEADDR:
54750b57cec5SDimitry Andric     return lowerFRAMEADDR(Op, DAG);
54760b57cec5SDimitry Andric   case ISD::RETURNADDR:
54770b57cec5SDimitry Andric     return lowerRETURNADDR(Op, DAG);
54780b57cec5SDimitry Andric   case ISD::BR_CC:
54790b57cec5SDimitry Andric     return lowerBR_CC(Op, DAG);
54800b57cec5SDimitry Andric   case ISD::SELECT_CC:
54810b57cec5SDimitry Andric     return lowerSELECT_CC(Op, DAG);
54820b57cec5SDimitry Andric   case ISD::SETCC:
54830b57cec5SDimitry Andric     return lowerSETCC(Op, DAG);
5484480093f4SDimitry Andric   case ISD::STRICT_FSETCC:
5485480093f4SDimitry Andric     return lowerSTRICT_FSETCC(Op, DAG, false);
5486480093f4SDimitry Andric   case ISD::STRICT_FSETCCS:
5487480093f4SDimitry Andric     return lowerSTRICT_FSETCC(Op, DAG, true);
54880b57cec5SDimitry Andric   case ISD::GlobalAddress:
54890b57cec5SDimitry Andric     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
54900b57cec5SDimitry Andric   case ISD::GlobalTLSAddress:
54910b57cec5SDimitry Andric     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
54920b57cec5SDimitry Andric   case ISD::BlockAddress:
54930b57cec5SDimitry Andric     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
54940b57cec5SDimitry Andric   case ISD::JumpTable:
54950b57cec5SDimitry Andric     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
54960b57cec5SDimitry Andric   case ISD::ConstantPool:
54970b57cec5SDimitry Andric     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
54980b57cec5SDimitry Andric   case ISD::BITCAST:
54990b57cec5SDimitry Andric     return lowerBITCAST(Op, DAG);
55000b57cec5SDimitry Andric   case ISD::VASTART:
55010b57cec5SDimitry Andric     return lowerVASTART(Op, DAG);
55020b57cec5SDimitry Andric   case ISD::VACOPY:
55030b57cec5SDimitry Andric     return lowerVACOPY(Op, DAG);
55040b57cec5SDimitry Andric   case ISD::DYNAMIC_STACKALLOC:
55050b57cec5SDimitry Andric     return lowerDYNAMIC_STACKALLOC(Op, DAG);
55060b57cec5SDimitry Andric   case ISD::GET_DYNAMIC_AREA_OFFSET:
55070b57cec5SDimitry Andric     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
55080b57cec5SDimitry Andric   case ISD::SMUL_LOHI:
55090b57cec5SDimitry Andric     return lowerSMUL_LOHI(Op, DAG);
55100b57cec5SDimitry Andric   case ISD::UMUL_LOHI:
55110b57cec5SDimitry Andric     return lowerUMUL_LOHI(Op, DAG);
55120b57cec5SDimitry Andric   case ISD::SDIVREM:
55130b57cec5SDimitry Andric     return lowerSDIVREM(Op, DAG);
55140b57cec5SDimitry Andric   case ISD::UDIVREM:
55150b57cec5SDimitry Andric     return lowerUDIVREM(Op, DAG);
55160b57cec5SDimitry Andric   case ISD::SADDO:
55170b57cec5SDimitry Andric   case ISD::SSUBO:
55180b57cec5SDimitry Andric   case ISD::UADDO:
55190b57cec5SDimitry Andric   case ISD::USUBO:
55200b57cec5SDimitry Andric     return lowerXALUO(Op, DAG);
55210b57cec5SDimitry Andric   case ISD::ADDCARRY:
55220b57cec5SDimitry Andric   case ISD::SUBCARRY:
55230b57cec5SDimitry Andric     return lowerADDSUBCARRY(Op, DAG);
55240b57cec5SDimitry Andric   case ISD::OR:
55250b57cec5SDimitry Andric     return lowerOR(Op, DAG);
55260b57cec5SDimitry Andric   case ISD::CTPOP:
55270b57cec5SDimitry Andric     return lowerCTPOP(Op, DAG);
55280b57cec5SDimitry Andric   case ISD::ATOMIC_FENCE:
55290b57cec5SDimitry Andric     return lowerATOMIC_FENCE(Op, DAG);
55300b57cec5SDimitry Andric   case ISD::ATOMIC_SWAP:
55310b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
55320b57cec5SDimitry Andric   case ISD::ATOMIC_STORE:
55330b57cec5SDimitry Andric     return lowerATOMIC_STORE(Op, DAG);
55340b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD:
55350b57cec5SDimitry Andric     return lowerATOMIC_LOAD(Op, DAG);
55360b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_ADD:
55370b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
55380b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_SUB:
55390b57cec5SDimitry Andric     return lowerATOMIC_LOAD_SUB(Op, DAG);
55400b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_AND:
55410b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
55420b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_OR:
55430b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
55440b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_XOR:
55450b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
55460b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_NAND:
55470b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
55480b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_MIN:
55490b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
55500b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_MAX:
55510b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
55520b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_UMIN:
55530b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
55540b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD_UMAX:
55550b57cec5SDimitry Andric     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
55560b57cec5SDimitry Andric   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
55570b57cec5SDimitry Andric     return lowerATOMIC_CMP_SWAP(Op, DAG);
55580b57cec5SDimitry Andric   case ISD::STACKSAVE:
55590b57cec5SDimitry Andric     return lowerSTACKSAVE(Op, DAG);
55600b57cec5SDimitry Andric   case ISD::STACKRESTORE:
55610b57cec5SDimitry Andric     return lowerSTACKRESTORE(Op, DAG);
55620b57cec5SDimitry Andric   case ISD::PREFETCH:
55630b57cec5SDimitry Andric     return lowerPREFETCH(Op, DAG);
55640b57cec5SDimitry Andric   case ISD::INTRINSIC_W_CHAIN:
55650b57cec5SDimitry Andric     return lowerINTRINSIC_W_CHAIN(Op, DAG);
55660b57cec5SDimitry Andric   case ISD::INTRINSIC_WO_CHAIN:
55670b57cec5SDimitry Andric     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
55680b57cec5SDimitry Andric   case ISD::BUILD_VECTOR:
55690b57cec5SDimitry Andric     return lowerBUILD_VECTOR(Op, DAG);
55700b57cec5SDimitry Andric   case ISD::VECTOR_SHUFFLE:
55710b57cec5SDimitry Andric     return lowerVECTOR_SHUFFLE(Op, DAG);
55720b57cec5SDimitry Andric   case ISD::SCALAR_TO_VECTOR:
55730b57cec5SDimitry Andric     return lowerSCALAR_TO_VECTOR(Op, DAG);
55740b57cec5SDimitry Andric   case ISD::INSERT_VECTOR_ELT:
55750b57cec5SDimitry Andric     return lowerINSERT_VECTOR_ELT(Op, DAG);
55760b57cec5SDimitry Andric   case ISD::EXTRACT_VECTOR_ELT:
55770b57cec5SDimitry Andric     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
55780b57cec5SDimitry Andric   case ISD::SIGN_EXTEND_VECTOR_INREG:
55795ffd83dbSDimitry Andric     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
55800b57cec5SDimitry Andric   case ISD::ZERO_EXTEND_VECTOR_INREG:
55815ffd83dbSDimitry Andric     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
55820b57cec5SDimitry Andric   case ISD::SHL:
55830b57cec5SDimitry Andric     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
55840b57cec5SDimitry Andric   case ISD::SRL:
55850b57cec5SDimitry Andric     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
55860b57cec5SDimitry Andric   case ISD::SRA:
55870b57cec5SDimitry Andric     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
55880b57cec5SDimitry Andric   default:
55890b57cec5SDimitry Andric     llvm_unreachable("Unexpected node to lower");
55900b57cec5SDimitry Andric   }
55910b57cec5SDimitry Andric }
55920b57cec5SDimitry Andric 
55930b57cec5SDimitry Andric // Lower operations with invalid operand or result types (currently used
55940b57cec5SDimitry Andric // only for 128-bit integer types).
55950b57cec5SDimitry Andric void
55960b57cec5SDimitry Andric SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
55970b57cec5SDimitry Andric                                              SmallVectorImpl<SDValue> &Results,
55980b57cec5SDimitry Andric                                              SelectionDAG &DAG) const {
55990b57cec5SDimitry Andric   switch (N->getOpcode()) {
56000b57cec5SDimitry Andric   case ISD::ATOMIC_LOAD: {
56010b57cec5SDimitry Andric     SDLoc DL(N);
56020b57cec5SDimitry Andric     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
56030b57cec5SDimitry Andric     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
56040b57cec5SDimitry Andric     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
56050b57cec5SDimitry Andric     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
56060b57cec5SDimitry Andric                                           DL, Tys, Ops, MVT::i128, MMO);
56070b57cec5SDimitry Andric     Results.push_back(lowerGR128ToI128(DAG, Res));
56080b57cec5SDimitry Andric     Results.push_back(Res.getValue(1));
56090b57cec5SDimitry Andric     break;
56100b57cec5SDimitry Andric   }
56110b57cec5SDimitry Andric   case ISD::ATOMIC_STORE: {
56120b57cec5SDimitry Andric     SDLoc DL(N);
56130b57cec5SDimitry Andric     SDVTList Tys = DAG.getVTList(MVT::Other);
56140b57cec5SDimitry Andric     SDValue Ops[] = { N->getOperand(0),
56150b57cec5SDimitry Andric                       lowerI128ToGR128(DAG, N->getOperand(2)),
56160b57cec5SDimitry Andric                       N->getOperand(1) };
56170b57cec5SDimitry Andric     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
56180b57cec5SDimitry Andric     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
56190b57cec5SDimitry Andric                                           DL, Tys, Ops, MVT::i128, MMO);
56200b57cec5SDimitry Andric     // We have to enforce sequential consistency by performing a
56210b57cec5SDimitry Andric     // serialization operation after the store.
5622fe6060f1SDimitry Andric     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
56230b57cec5SDimitry Andric         AtomicOrdering::SequentiallyConsistent)
56240b57cec5SDimitry Andric       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
56250b57cec5SDimitry Andric                                        MVT::Other, Res), 0);
56260b57cec5SDimitry Andric     Results.push_back(Res);
56270b57cec5SDimitry Andric     break;
56280b57cec5SDimitry Andric   }
56290b57cec5SDimitry Andric   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
56300b57cec5SDimitry Andric     SDLoc DL(N);
56310b57cec5SDimitry Andric     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
56320b57cec5SDimitry Andric     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
56330b57cec5SDimitry Andric                       lowerI128ToGR128(DAG, N->getOperand(2)),
56340b57cec5SDimitry Andric                       lowerI128ToGR128(DAG, N->getOperand(3)) };
56350b57cec5SDimitry Andric     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
56360b57cec5SDimitry Andric     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
56370b57cec5SDimitry Andric                                           DL, Tys, Ops, MVT::i128, MMO);
56380b57cec5SDimitry Andric     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
56390b57cec5SDimitry Andric                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
56400b57cec5SDimitry Andric     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
56410b57cec5SDimitry Andric     Results.push_back(lowerGR128ToI128(DAG, Res));
56420b57cec5SDimitry Andric     Results.push_back(Success);
56430b57cec5SDimitry Andric     Results.push_back(Res.getValue(2));
56440b57cec5SDimitry Andric     break;
56450b57cec5SDimitry Andric   }
5646349cc55cSDimitry Andric   case ISD::BITCAST: {
5647349cc55cSDimitry Andric     SDValue Src = N->getOperand(0);
5648349cc55cSDimitry Andric     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5649349cc55cSDimitry Andric         !useSoftFloat()) {
5650349cc55cSDimitry Andric       SDLoc DL(N);
5651349cc55cSDimitry Andric       SDValue Lo, Hi;
5652349cc55cSDimitry Andric       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5653349cc55cSDimitry Andric         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5654349cc55cSDimitry Andric         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5655349cc55cSDimitry Andric                          DAG.getConstant(1, DL, MVT::i32));
5656349cc55cSDimitry Andric         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5657349cc55cSDimitry Andric                          DAG.getConstant(0, DL, MVT::i32));
5658349cc55cSDimitry Andric       } else {
5659349cc55cSDimitry Andric         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5660349cc55cSDimitry Andric                "Unrecognized register class for f128.");
5661349cc55cSDimitry Andric         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5662349cc55cSDimitry Andric                                                   DL, MVT::f64, Src);
5663349cc55cSDimitry Andric         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5664349cc55cSDimitry Andric                                                   DL, MVT::f64, Src);
5665349cc55cSDimitry Andric         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5666349cc55cSDimitry Andric         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5667349cc55cSDimitry Andric       }
5668349cc55cSDimitry Andric       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5669349cc55cSDimitry Andric     }
5670349cc55cSDimitry Andric     break;
5671349cc55cSDimitry Andric   }
56720b57cec5SDimitry Andric   default:
56730b57cec5SDimitry Andric     llvm_unreachable("Unexpected node to lower");
56740b57cec5SDimitry Andric   }
56750b57cec5SDimitry Andric }
56760b57cec5SDimitry Andric 
56770b57cec5SDimitry Andric void
56780b57cec5SDimitry Andric SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
56790b57cec5SDimitry Andric                                           SmallVectorImpl<SDValue> &Results,
56800b57cec5SDimitry Andric                                           SelectionDAG &DAG) const {
56810b57cec5SDimitry Andric   return LowerOperationWrapper(N, Results, DAG);
56820b57cec5SDimitry Andric }
56830b57cec5SDimitry Andric 
56840b57cec5SDimitry Andric const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
56850b57cec5SDimitry Andric #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
56860b57cec5SDimitry Andric   switch ((SystemZISD::NodeType)Opcode) {
56870b57cec5SDimitry Andric     case SystemZISD::FIRST_NUMBER: break;
56880b57cec5SDimitry Andric     OPCODE(RET_FLAG);
56890b57cec5SDimitry Andric     OPCODE(CALL);
56900b57cec5SDimitry Andric     OPCODE(SIBCALL);
56910b57cec5SDimitry Andric     OPCODE(TLS_GDCALL);
56920b57cec5SDimitry Andric     OPCODE(TLS_LDCALL);
56930b57cec5SDimitry Andric     OPCODE(PCREL_WRAPPER);
56940b57cec5SDimitry Andric     OPCODE(PCREL_OFFSET);
56950b57cec5SDimitry Andric     OPCODE(ICMP);
56960b57cec5SDimitry Andric     OPCODE(FCMP);
5697480093f4SDimitry Andric     OPCODE(STRICT_FCMP);
5698480093f4SDimitry Andric     OPCODE(STRICT_FCMPS);
56990b57cec5SDimitry Andric     OPCODE(TM);
57000b57cec5SDimitry Andric     OPCODE(BR_CCMASK);
57010b57cec5SDimitry Andric     OPCODE(SELECT_CCMASK);
57020b57cec5SDimitry Andric     OPCODE(ADJDYNALLOC);
57035ffd83dbSDimitry Andric     OPCODE(PROBED_ALLOCA);
57040b57cec5SDimitry Andric     OPCODE(POPCNT);
57050b57cec5SDimitry Andric     OPCODE(SMUL_LOHI);
57060b57cec5SDimitry Andric     OPCODE(UMUL_LOHI);
57070b57cec5SDimitry Andric     OPCODE(SDIVREM);
57080b57cec5SDimitry Andric     OPCODE(UDIVREM);
57090b57cec5SDimitry Andric     OPCODE(SADDO);
57100b57cec5SDimitry Andric     OPCODE(SSUBO);
57110b57cec5SDimitry Andric     OPCODE(UADDO);
57120b57cec5SDimitry Andric     OPCODE(USUBO);
57130b57cec5SDimitry Andric     OPCODE(ADDCARRY);
57140b57cec5SDimitry Andric     OPCODE(SUBCARRY);
57150b57cec5SDimitry Andric     OPCODE(GET_CCMASK);
57160b57cec5SDimitry Andric     OPCODE(MVC);
57170b57cec5SDimitry Andric     OPCODE(NC);
57180b57cec5SDimitry Andric     OPCODE(OC);
57190b57cec5SDimitry Andric     OPCODE(XC);
57200b57cec5SDimitry Andric     OPCODE(CLC);
57210eae32dcSDimitry Andric     OPCODE(MEMSET_MVC);
57220b57cec5SDimitry Andric     OPCODE(STPCPY);
57230b57cec5SDimitry Andric     OPCODE(STRCMP);
57240b57cec5SDimitry Andric     OPCODE(SEARCH_STRING);
57250b57cec5SDimitry Andric     OPCODE(IPM);
57260b57cec5SDimitry Andric     OPCODE(MEMBARRIER);
57270b57cec5SDimitry Andric     OPCODE(TBEGIN);
57280b57cec5SDimitry Andric     OPCODE(TBEGIN_NOFLOAT);
57290b57cec5SDimitry Andric     OPCODE(TEND);
57300b57cec5SDimitry Andric     OPCODE(BYTE_MASK);
57310b57cec5SDimitry Andric     OPCODE(ROTATE_MASK);
57320b57cec5SDimitry Andric     OPCODE(REPLICATE);
57330b57cec5SDimitry Andric     OPCODE(JOIN_DWORDS);
57340b57cec5SDimitry Andric     OPCODE(SPLAT);
57350b57cec5SDimitry Andric     OPCODE(MERGE_HIGH);
57360b57cec5SDimitry Andric     OPCODE(MERGE_LOW);
57370b57cec5SDimitry Andric     OPCODE(SHL_DOUBLE);
57380b57cec5SDimitry Andric     OPCODE(PERMUTE_DWORDS);
57390b57cec5SDimitry Andric     OPCODE(PERMUTE);
57400b57cec5SDimitry Andric     OPCODE(PACK);
57410b57cec5SDimitry Andric     OPCODE(PACKS_CC);
57420b57cec5SDimitry Andric     OPCODE(PACKLS_CC);
57430b57cec5SDimitry Andric     OPCODE(UNPACK_HIGH);
57440b57cec5SDimitry Andric     OPCODE(UNPACKL_HIGH);
57450b57cec5SDimitry Andric     OPCODE(UNPACK_LOW);
57460b57cec5SDimitry Andric     OPCODE(UNPACKL_LOW);
57470b57cec5SDimitry Andric     OPCODE(VSHL_BY_SCALAR);
57480b57cec5SDimitry Andric     OPCODE(VSRL_BY_SCALAR);
57490b57cec5SDimitry Andric     OPCODE(VSRA_BY_SCALAR);
57500b57cec5SDimitry Andric     OPCODE(VSUM);
57510b57cec5SDimitry Andric     OPCODE(VICMPE);
57520b57cec5SDimitry Andric     OPCODE(VICMPH);
57530b57cec5SDimitry Andric     OPCODE(VICMPHL);
57540b57cec5SDimitry Andric     OPCODE(VICMPES);
57550b57cec5SDimitry Andric     OPCODE(VICMPHS);
57560b57cec5SDimitry Andric     OPCODE(VICMPHLS);
57570b57cec5SDimitry Andric     OPCODE(VFCMPE);
5758480093f4SDimitry Andric     OPCODE(STRICT_VFCMPE);
5759480093f4SDimitry Andric     OPCODE(STRICT_VFCMPES);
57600b57cec5SDimitry Andric     OPCODE(VFCMPH);
5761480093f4SDimitry Andric     OPCODE(STRICT_VFCMPH);
5762480093f4SDimitry Andric     OPCODE(STRICT_VFCMPHS);
57630b57cec5SDimitry Andric     OPCODE(VFCMPHE);
5764480093f4SDimitry Andric     OPCODE(STRICT_VFCMPHE);
5765480093f4SDimitry Andric     OPCODE(STRICT_VFCMPHES);
57660b57cec5SDimitry Andric     OPCODE(VFCMPES);
57670b57cec5SDimitry Andric     OPCODE(VFCMPHS);
57680b57cec5SDimitry Andric     OPCODE(VFCMPHES);
57690b57cec5SDimitry Andric     OPCODE(VFTCI);
57700b57cec5SDimitry Andric     OPCODE(VEXTEND);
5771480093f4SDimitry Andric     OPCODE(STRICT_VEXTEND);
57720b57cec5SDimitry Andric     OPCODE(VROUND);
5773480093f4SDimitry Andric     OPCODE(STRICT_VROUND);
57740b57cec5SDimitry Andric     OPCODE(VTM);
57750b57cec5SDimitry Andric     OPCODE(VFAE_CC);
57760b57cec5SDimitry Andric     OPCODE(VFAEZ_CC);
57770b57cec5SDimitry Andric     OPCODE(VFEE_CC);
57780b57cec5SDimitry Andric     OPCODE(VFEEZ_CC);
57790b57cec5SDimitry Andric     OPCODE(VFENE_CC);
57800b57cec5SDimitry Andric     OPCODE(VFENEZ_CC);
57810b57cec5SDimitry Andric     OPCODE(VISTR_CC);
57820b57cec5SDimitry Andric     OPCODE(VSTRC_CC);
57830b57cec5SDimitry Andric     OPCODE(VSTRCZ_CC);
57840b57cec5SDimitry Andric     OPCODE(VSTRS_CC);
57850b57cec5SDimitry Andric     OPCODE(VSTRSZ_CC);
57860b57cec5SDimitry Andric     OPCODE(TDC);
57870b57cec5SDimitry Andric     OPCODE(ATOMIC_SWAPW);
57880b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_ADD);
57890b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_SUB);
57900b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_AND);
57910b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_OR);
57920b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_XOR);
57930b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_NAND);
57940b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_MIN);
57950b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_MAX);
57960b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_UMIN);
57970b57cec5SDimitry Andric     OPCODE(ATOMIC_LOADW_UMAX);
57980b57cec5SDimitry Andric     OPCODE(ATOMIC_CMP_SWAPW);
57990b57cec5SDimitry Andric     OPCODE(ATOMIC_CMP_SWAP);
58000b57cec5SDimitry Andric     OPCODE(ATOMIC_LOAD_128);
58010b57cec5SDimitry Andric     OPCODE(ATOMIC_STORE_128);
58020b57cec5SDimitry Andric     OPCODE(ATOMIC_CMP_SWAP_128);
58030b57cec5SDimitry Andric     OPCODE(LRV);
58040b57cec5SDimitry Andric     OPCODE(STRV);
58050b57cec5SDimitry Andric     OPCODE(VLER);
58060b57cec5SDimitry Andric     OPCODE(VSTER);
58070b57cec5SDimitry Andric     OPCODE(PREFETCH);
58080b57cec5SDimitry Andric   }
58090b57cec5SDimitry Andric   return nullptr;
58100b57cec5SDimitry Andric #undef OPCODE
58110b57cec5SDimitry Andric }
58120b57cec5SDimitry Andric 
58130b57cec5SDimitry Andric // Return true if VT is a vector whose elements are a whole number of bytes
58140b57cec5SDimitry Andric // in width. Also check for presence of vector support.
58150b57cec5SDimitry Andric bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
58160b57cec5SDimitry Andric   if (!Subtarget.hasVector())
58170b57cec5SDimitry Andric     return false;
58180b57cec5SDimitry Andric 
58190b57cec5SDimitry Andric   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
58200b57cec5SDimitry Andric }
58210b57cec5SDimitry Andric 
58220b57cec5SDimitry Andric // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
58230b57cec5SDimitry Andric // producing a result of type ResVT.  Op is a possibly bitcast version
58240b57cec5SDimitry Andric // of the input vector and Index is the index (based on type VecVT) that
58250b57cec5SDimitry Andric // should be extracted.  Return the new extraction if a simplification
58260b57cec5SDimitry Andric // was possible or if Force is true.
58270b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
58280b57cec5SDimitry Andric                                               EVT VecVT, SDValue Op,
58290b57cec5SDimitry Andric                                               unsigned Index,
58300b57cec5SDimitry Andric                                               DAGCombinerInfo &DCI,
58310b57cec5SDimitry Andric                                               bool Force) const {
58320b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
58330b57cec5SDimitry Andric 
58340b57cec5SDimitry Andric   // The number of bytes being extracted.
58350b57cec5SDimitry Andric   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
58360b57cec5SDimitry Andric 
58370b57cec5SDimitry Andric   for (;;) {
58380b57cec5SDimitry Andric     unsigned Opcode = Op.getOpcode();
58390b57cec5SDimitry Andric     if (Opcode == ISD::BITCAST)
58400b57cec5SDimitry Andric       // Look through bitcasts.
58410b57cec5SDimitry Andric       Op = Op.getOperand(0);
58420b57cec5SDimitry Andric     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
58430b57cec5SDimitry Andric              canTreatAsByteVector(Op.getValueType())) {
58440b57cec5SDimitry Andric       // Get a VPERM-like permute mask and see whether the bytes covered
58450b57cec5SDimitry Andric       // by the extracted element are a contiguous sequence from one
58460b57cec5SDimitry Andric       // source operand.
58470b57cec5SDimitry Andric       SmallVector<int, SystemZ::VectorBytes> Bytes;
58480b57cec5SDimitry Andric       if (!getVPermMask(Op, Bytes))
58490b57cec5SDimitry Andric         break;
58500b57cec5SDimitry Andric       int First;
58510b57cec5SDimitry Andric       if (!getShuffleInput(Bytes, Index * BytesPerElement,
58520b57cec5SDimitry Andric                            BytesPerElement, First))
58530b57cec5SDimitry Andric         break;
58540b57cec5SDimitry Andric       if (First < 0)
58550b57cec5SDimitry Andric         return DAG.getUNDEF(ResVT);
58560b57cec5SDimitry Andric       // Make sure the contiguous sequence starts at a multiple of the
58570b57cec5SDimitry Andric       // original element size.
58580b57cec5SDimitry Andric       unsigned Byte = unsigned(First) % Bytes.size();
58590b57cec5SDimitry Andric       if (Byte % BytesPerElement != 0)
58600b57cec5SDimitry Andric         break;
58610b57cec5SDimitry Andric       // We can get the extracted value directly from an input.
58620b57cec5SDimitry Andric       Index = Byte / BytesPerElement;
58630b57cec5SDimitry Andric       Op = Op.getOperand(unsigned(First) / Bytes.size());
58640b57cec5SDimitry Andric       Force = true;
58650b57cec5SDimitry Andric     } else if (Opcode == ISD::BUILD_VECTOR &&
58660b57cec5SDimitry Andric                canTreatAsByteVector(Op.getValueType())) {
58670b57cec5SDimitry Andric       // We can only optimize this case if the BUILD_VECTOR elements are
58680b57cec5SDimitry Andric       // at least as wide as the extracted value.
58690b57cec5SDimitry Andric       EVT OpVT = Op.getValueType();
58700b57cec5SDimitry Andric       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
58710b57cec5SDimitry Andric       if (OpBytesPerElement < BytesPerElement)
58720b57cec5SDimitry Andric         break;
58730b57cec5SDimitry Andric       // Make sure that the least-significant bit of the extracted value
58740b57cec5SDimitry Andric       // is the least significant bit of an input.
58750b57cec5SDimitry Andric       unsigned End = (Index + 1) * BytesPerElement;
58760b57cec5SDimitry Andric       if (End % OpBytesPerElement != 0)
58770b57cec5SDimitry Andric         break;
58780b57cec5SDimitry Andric       // We're extracting the low part of one operand of the BUILD_VECTOR.
58790b57cec5SDimitry Andric       Op = Op.getOperand(End / OpBytesPerElement - 1);
58800b57cec5SDimitry Andric       if (!Op.getValueType().isInteger()) {
58810b57cec5SDimitry Andric         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
58820b57cec5SDimitry Andric         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
58830b57cec5SDimitry Andric         DCI.AddToWorklist(Op.getNode());
58840b57cec5SDimitry Andric       }
58850b57cec5SDimitry Andric       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
58860b57cec5SDimitry Andric       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
58870b57cec5SDimitry Andric       if (VT != ResVT) {
58880b57cec5SDimitry Andric         DCI.AddToWorklist(Op.getNode());
58890b57cec5SDimitry Andric         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
58900b57cec5SDimitry Andric       }
58910b57cec5SDimitry Andric       return Op;
58920b57cec5SDimitry Andric     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
58930b57cec5SDimitry Andric                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
58940b57cec5SDimitry Andric                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
58950b57cec5SDimitry Andric                canTreatAsByteVector(Op.getValueType()) &&
58960b57cec5SDimitry Andric                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
58970b57cec5SDimitry Andric       // Make sure that only the unextended bits are significant.
58980b57cec5SDimitry Andric       EVT ExtVT = Op.getValueType();
58990b57cec5SDimitry Andric       EVT OpVT = Op.getOperand(0).getValueType();
59000b57cec5SDimitry Andric       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
59010b57cec5SDimitry Andric       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
59020b57cec5SDimitry Andric       unsigned Byte = Index * BytesPerElement;
59030b57cec5SDimitry Andric       unsigned SubByte = Byte % ExtBytesPerElement;
59040b57cec5SDimitry Andric       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
59050b57cec5SDimitry Andric       if (SubByte < MinSubByte ||
59060b57cec5SDimitry Andric           SubByte + BytesPerElement > ExtBytesPerElement)
59070b57cec5SDimitry Andric         break;
59080b57cec5SDimitry Andric       // Get the byte offset of the unextended element
59090b57cec5SDimitry Andric       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
59100b57cec5SDimitry Andric       // ...then add the byte offset relative to that element.
59110b57cec5SDimitry Andric       Byte += SubByte - MinSubByte;
59120b57cec5SDimitry Andric       if (Byte % BytesPerElement != 0)
59130b57cec5SDimitry Andric         break;
59140b57cec5SDimitry Andric       Op = Op.getOperand(0);
59150b57cec5SDimitry Andric       Index = Byte / BytesPerElement;
59160b57cec5SDimitry Andric       Force = true;
59170b57cec5SDimitry Andric     } else
59180b57cec5SDimitry Andric       break;
59190b57cec5SDimitry Andric   }
59200b57cec5SDimitry Andric   if (Force) {
59210b57cec5SDimitry Andric     if (Op.getValueType() != VecVT) {
59220b57cec5SDimitry Andric       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
59230b57cec5SDimitry Andric       DCI.AddToWorklist(Op.getNode());
59240b57cec5SDimitry Andric     }
59250b57cec5SDimitry Andric     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
59260b57cec5SDimitry Andric                        DAG.getConstant(Index, DL, MVT::i32));
59270b57cec5SDimitry Andric   }
59280b57cec5SDimitry Andric   return SDValue();
59290b57cec5SDimitry Andric }
59300b57cec5SDimitry Andric 
59310b57cec5SDimitry Andric // Optimize vector operations in scalar value Op on the basis that Op
59320b57cec5SDimitry Andric // is truncated to TruncVT.
59330b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineTruncateExtract(
59340b57cec5SDimitry Andric     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
59350b57cec5SDimitry Andric   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
59360b57cec5SDimitry Andric   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
59370b57cec5SDimitry Andric   // of type TruncVT.
59380b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
59390b57cec5SDimitry Andric       TruncVT.getSizeInBits() % 8 == 0) {
59400b57cec5SDimitry Andric     SDValue Vec = Op.getOperand(0);
59410b57cec5SDimitry Andric     EVT VecVT = Vec.getValueType();
59420b57cec5SDimitry Andric     if (canTreatAsByteVector(VecVT)) {
59430b57cec5SDimitry Andric       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
59440b57cec5SDimitry Andric         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
59450b57cec5SDimitry Andric         unsigned TruncBytes = TruncVT.getStoreSize();
59460b57cec5SDimitry Andric         if (BytesPerElement % TruncBytes == 0) {
59470b57cec5SDimitry Andric           // Calculate the value of Y' in the above description.  We are
59480b57cec5SDimitry Andric           // splitting the original elements into Scale equal-sized pieces
59490b57cec5SDimitry Andric           // and for truncation purposes want the last (least-significant)
59500b57cec5SDimitry Andric           // of these pieces for IndexN.  This is easiest to do by calculating
59510b57cec5SDimitry Andric           // the start index of the following element and then subtracting 1.
59520b57cec5SDimitry Andric           unsigned Scale = BytesPerElement / TruncBytes;
59530b57cec5SDimitry Andric           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
59540b57cec5SDimitry Andric 
59550b57cec5SDimitry Andric           // Defer the creation of the bitcast from X to combineExtract,
59560b57cec5SDimitry Andric           // which might be able to optimize the extraction.
59570b57cec5SDimitry Andric           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
59580b57cec5SDimitry Andric                                    VecVT.getStoreSize() / TruncBytes);
59590b57cec5SDimitry Andric           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
59600b57cec5SDimitry Andric           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
59610b57cec5SDimitry Andric         }
59620b57cec5SDimitry Andric       }
59630b57cec5SDimitry Andric     }
59640b57cec5SDimitry Andric   }
59650b57cec5SDimitry Andric   return SDValue();
59660b57cec5SDimitry Andric }
59670b57cec5SDimitry Andric 
59680b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineZERO_EXTEND(
59690b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
59700b57cec5SDimitry Andric   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
59710b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
59720b57cec5SDimitry Andric   SDValue N0 = N->getOperand(0);
59730b57cec5SDimitry Andric   EVT VT = N->getValueType(0);
59740b57cec5SDimitry Andric   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
59750b57cec5SDimitry Andric     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
59760b57cec5SDimitry Andric     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
59770b57cec5SDimitry Andric     if (TrueOp && FalseOp) {
59780b57cec5SDimitry Andric       SDLoc DL(N0);
59790b57cec5SDimitry Andric       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
59800b57cec5SDimitry Andric                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
59810b57cec5SDimitry Andric                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
59820b57cec5SDimitry Andric       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
59830b57cec5SDimitry Andric       // If N0 has multiple uses, change other uses as well.
59840b57cec5SDimitry Andric       if (!N0.hasOneUse()) {
59850b57cec5SDimitry Andric         SDValue TruncSelect =
59860b57cec5SDimitry Andric           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
59870b57cec5SDimitry Andric         DCI.CombineTo(N0.getNode(), TruncSelect);
59880b57cec5SDimitry Andric       }
59890b57cec5SDimitry Andric       return NewSelect;
59900b57cec5SDimitry Andric     }
59910b57cec5SDimitry Andric   }
59920b57cec5SDimitry Andric   return SDValue();
59930b57cec5SDimitry Andric }
59940b57cec5SDimitry Andric 
59950b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
59960b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
59970b57cec5SDimitry Andric   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
59980b57cec5SDimitry Andric   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
59990b57cec5SDimitry Andric   // into (select_cc LHS, RHS, -1, 0, COND)
60000b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
60010b57cec5SDimitry Andric   SDValue N0 = N->getOperand(0);
60020b57cec5SDimitry Andric   EVT VT = N->getValueType(0);
60030b57cec5SDimitry Andric   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
60040b57cec5SDimitry Andric   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
60050b57cec5SDimitry Andric     N0 = N0.getOperand(0);
60060b57cec5SDimitry Andric   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
60070b57cec5SDimitry Andric     SDLoc DL(N0);
60080b57cec5SDimitry Andric     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
60090b57cec5SDimitry Andric                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
60100b57cec5SDimitry Andric                       N0.getOperand(2) };
60110b57cec5SDimitry Andric     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
60120b57cec5SDimitry Andric   }
60130b57cec5SDimitry Andric   return SDValue();
60140b57cec5SDimitry Andric }
60150b57cec5SDimitry Andric 
60160b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSIGN_EXTEND(
60170b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
60180b57cec5SDimitry Andric   // Convert (sext (ashr (shl X, C1), C2)) to
60190b57cec5SDimitry Andric   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
60200b57cec5SDimitry Andric   // cheap as narrower ones.
60210b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
60220b57cec5SDimitry Andric   SDValue N0 = N->getOperand(0);
60230b57cec5SDimitry Andric   EVT VT = N->getValueType(0);
60240b57cec5SDimitry Andric   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
60250b57cec5SDimitry Andric     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
60260b57cec5SDimitry Andric     SDValue Inner = N0.getOperand(0);
60270b57cec5SDimitry Andric     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
60280b57cec5SDimitry Andric       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
60290b57cec5SDimitry Andric         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
60300b57cec5SDimitry Andric         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
60310b57cec5SDimitry Andric         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
60320b57cec5SDimitry Andric         EVT ShiftVT = N0.getOperand(1).getValueType();
60330b57cec5SDimitry Andric         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
60340b57cec5SDimitry Andric                                   Inner.getOperand(0));
60350b57cec5SDimitry Andric         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
60360b57cec5SDimitry Andric                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
60370b57cec5SDimitry Andric                                                   ShiftVT));
60380b57cec5SDimitry Andric         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
60390b57cec5SDimitry Andric                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
60400b57cec5SDimitry Andric       }
60410b57cec5SDimitry Andric     }
60420b57cec5SDimitry Andric   }
60430b57cec5SDimitry Andric   return SDValue();
60440b57cec5SDimitry Andric }
60450b57cec5SDimitry Andric 
60460b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineMERGE(
60470b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
60480b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
60490b57cec5SDimitry Andric   unsigned Opcode = N->getOpcode();
60500b57cec5SDimitry Andric   SDValue Op0 = N->getOperand(0);
60510b57cec5SDimitry Andric   SDValue Op1 = N->getOperand(1);
60520b57cec5SDimitry Andric   if (Op0.getOpcode() == ISD::BITCAST)
60530b57cec5SDimitry Andric     Op0 = Op0.getOperand(0);
60540b57cec5SDimitry Andric   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
60550b57cec5SDimitry Andric     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
60560b57cec5SDimitry Andric     // for v4f32.
60570b57cec5SDimitry Andric     if (Op1 == N->getOperand(0))
60580b57cec5SDimitry Andric       return Op1;
60590b57cec5SDimitry Andric     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
60600b57cec5SDimitry Andric     EVT VT = Op1.getValueType();
60610b57cec5SDimitry Andric     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
60620b57cec5SDimitry Andric     if (ElemBytes <= 4) {
60630b57cec5SDimitry Andric       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
60640b57cec5SDimitry Andric                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
60650b57cec5SDimitry Andric       EVT InVT = VT.changeVectorElementTypeToInteger();
60660b57cec5SDimitry Andric       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
60670b57cec5SDimitry Andric                                    SystemZ::VectorBytes / ElemBytes / 2);
60680b57cec5SDimitry Andric       if (VT != InVT) {
60690b57cec5SDimitry Andric         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
60700b57cec5SDimitry Andric         DCI.AddToWorklist(Op1.getNode());
60710b57cec5SDimitry Andric       }
60720b57cec5SDimitry Andric       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
60730b57cec5SDimitry Andric       DCI.AddToWorklist(Op.getNode());
60740b57cec5SDimitry Andric       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
60750b57cec5SDimitry Andric     }
60760b57cec5SDimitry Andric   }
60770b57cec5SDimitry Andric   return SDValue();
60780b57cec5SDimitry Andric }
60790b57cec5SDimitry Andric 
60800b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineLOAD(
60810b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
60820b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
60830b57cec5SDimitry Andric   EVT LdVT = N->getValueType(0);
60840b57cec5SDimitry Andric   if (LdVT.isVector() || LdVT.isInteger())
60850b57cec5SDimitry Andric     return SDValue();
60860b57cec5SDimitry Andric   // Transform a scalar load that is REPLICATEd as well as having other
60870b57cec5SDimitry Andric   // use(s) to the form where the other use(s) use the first element of the
60880b57cec5SDimitry Andric   // REPLICATE instead of the load. Otherwise instruction selection will not
60890b57cec5SDimitry Andric   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
60900b57cec5SDimitry Andric   // point loads.
60910b57cec5SDimitry Andric 
60920b57cec5SDimitry Andric   SDValue Replicate;
60930b57cec5SDimitry Andric   SmallVector<SDNode*, 8> OtherUses;
60940b57cec5SDimitry Andric   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
60950b57cec5SDimitry Andric        UI != UE; ++UI) {
60960b57cec5SDimitry Andric     if (UI->getOpcode() == SystemZISD::REPLICATE) {
60970b57cec5SDimitry Andric       if (Replicate)
60980b57cec5SDimitry Andric         return SDValue(); // Should never happen
60990b57cec5SDimitry Andric       Replicate = SDValue(*UI, 0);
61000b57cec5SDimitry Andric     }
61010b57cec5SDimitry Andric     else if (UI.getUse().getResNo() == 0)
61020b57cec5SDimitry Andric       OtherUses.push_back(*UI);
61030b57cec5SDimitry Andric   }
61040b57cec5SDimitry Andric   if (!Replicate || OtherUses.empty())
61050b57cec5SDimitry Andric     return SDValue();
61060b57cec5SDimitry Andric 
61070b57cec5SDimitry Andric   SDLoc DL(N);
61080b57cec5SDimitry Andric   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
61090b57cec5SDimitry Andric                               Replicate, DAG.getConstant(0, DL, MVT::i32));
61100b57cec5SDimitry Andric   // Update uses of the loaded Value while preserving old chains.
61110b57cec5SDimitry Andric   for (SDNode *U : OtherUses) {
61120b57cec5SDimitry Andric     SmallVector<SDValue, 8> Ops;
61130b57cec5SDimitry Andric     for (SDValue Op : U->ops())
61140b57cec5SDimitry Andric       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
61150b57cec5SDimitry Andric     DAG.UpdateNodeOperands(U, Ops);
61160b57cec5SDimitry Andric   }
61170b57cec5SDimitry Andric   return SDValue(N, 0);
61180b57cec5SDimitry Andric }
61190b57cec5SDimitry Andric 
61200b57cec5SDimitry Andric bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
61210b57cec5SDimitry Andric   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
61220b57cec5SDimitry Andric     return true;
61230b57cec5SDimitry Andric   if (Subtarget.hasVectorEnhancements2())
61240b57cec5SDimitry Andric     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
61250b57cec5SDimitry Andric       return true;
61260b57cec5SDimitry Andric   return false;
61270b57cec5SDimitry Andric }
61280b57cec5SDimitry Andric 
61290b57cec5SDimitry Andric static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
61300b57cec5SDimitry Andric   if (!VT.isVector() || !VT.isSimple() ||
61310b57cec5SDimitry Andric       VT.getSizeInBits() != 128 ||
61320b57cec5SDimitry Andric       VT.getScalarSizeInBits() % 8 != 0)
61330b57cec5SDimitry Andric     return false;
61340b57cec5SDimitry Andric 
61350b57cec5SDimitry Andric   unsigned NumElts = VT.getVectorNumElements();
61360b57cec5SDimitry Andric   for (unsigned i = 0; i < NumElts; ++i) {
61370b57cec5SDimitry Andric     if (M[i] < 0) continue; // ignore UNDEF indices
61380b57cec5SDimitry Andric     if ((unsigned) M[i] != NumElts - 1 - i)
61390b57cec5SDimitry Andric       return false;
61400b57cec5SDimitry Andric   }
61410b57cec5SDimitry Andric 
61420b57cec5SDimitry Andric   return true;
61430b57cec5SDimitry Andric }
61440b57cec5SDimitry Andric 
61450b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSTORE(
61460b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
61470b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
61480b57cec5SDimitry Andric   auto *SN = cast<StoreSDNode>(N);
61490b57cec5SDimitry Andric   auto &Op1 = N->getOperand(1);
61500b57cec5SDimitry Andric   EVT MemVT = SN->getMemoryVT();
61510b57cec5SDimitry Andric   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
61520b57cec5SDimitry Andric   // for the extraction to be done on a vMiN value, so that we can use VSTE.
61530b57cec5SDimitry Andric   // If X has wider elements then convert it to:
61540b57cec5SDimitry Andric   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
61550b57cec5SDimitry Andric   if (MemVT.isInteger() && SN->isTruncatingStore()) {
61560b57cec5SDimitry Andric     if (SDValue Value =
61570b57cec5SDimitry Andric             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
61580b57cec5SDimitry Andric       DCI.AddToWorklist(Value.getNode());
61590b57cec5SDimitry Andric 
61600b57cec5SDimitry Andric       // Rewrite the store with the new form of stored value.
61610b57cec5SDimitry Andric       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
61620b57cec5SDimitry Andric                                SN->getBasePtr(), SN->getMemoryVT(),
61630b57cec5SDimitry Andric                                SN->getMemOperand());
61640b57cec5SDimitry Andric     }
61650b57cec5SDimitry Andric   }
61660b57cec5SDimitry Andric   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
61670b57cec5SDimitry Andric   if (!SN->isTruncatingStore() &&
61680b57cec5SDimitry Andric       Op1.getOpcode() == ISD::BSWAP &&
61690b57cec5SDimitry Andric       Op1.getNode()->hasOneUse() &&
61700b57cec5SDimitry Andric       canLoadStoreByteSwapped(Op1.getValueType())) {
61710b57cec5SDimitry Andric 
61720b57cec5SDimitry Andric       SDValue BSwapOp = Op1.getOperand(0);
61730b57cec5SDimitry Andric 
61740b57cec5SDimitry Andric       if (BSwapOp.getValueType() == MVT::i16)
61750b57cec5SDimitry Andric         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
61760b57cec5SDimitry Andric 
61770b57cec5SDimitry Andric       SDValue Ops[] = {
61780b57cec5SDimitry Andric         N->getOperand(0), BSwapOp, N->getOperand(2)
61790b57cec5SDimitry Andric       };
61800b57cec5SDimitry Andric 
61810b57cec5SDimitry Andric       return
61820b57cec5SDimitry Andric         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
61830b57cec5SDimitry Andric                                 Ops, MemVT, SN->getMemOperand());
61840b57cec5SDimitry Andric     }
61850b57cec5SDimitry Andric   // Combine STORE (element-swap) into VSTER
61860b57cec5SDimitry Andric   if (!SN->isTruncatingStore() &&
61870b57cec5SDimitry Andric       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
61880b57cec5SDimitry Andric       Op1.getNode()->hasOneUse() &&
61890b57cec5SDimitry Andric       Subtarget.hasVectorEnhancements2()) {
61900b57cec5SDimitry Andric     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
61910b57cec5SDimitry Andric     ArrayRef<int> ShuffleMask = SVN->getMask();
61920b57cec5SDimitry Andric     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
61930b57cec5SDimitry Andric       SDValue Ops[] = {
61940b57cec5SDimitry Andric         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
61950b57cec5SDimitry Andric       };
61960b57cec5SDimitry Andric 
61970b57cec5SDimitry Andric       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
61980b57cec5SDimitry Andric                                      DAG.getVTList(MVT::Other),
61990b57cec5SDimitry Andric                                      Ops, MemVT, SN->getMemOperand());
62000b57cec5SDimitry Andric     }
62010b57cec5SDimitry Andric   }
62020b57cec5SDimitry Andric 
62030b57cec5SDimitry Andric   return SDValue();
62040b57cec5SDimitry Andric }
62050b57cec5SDimitry Andric 
62060b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
62070b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
62080b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
62090b57cec5SDimitry Andric   // Combine element-swap (LOAD) into VLER
62100b57cec5SDimitry Andric   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
62110b57cec5SDimitry Andric       N->getOperand(0).hasOneUse() &&
62120b57cec5SDimitry Andric       Subtarget.hasVectorEnhancements2()) {
62130b57cec5SDimitry Andric     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
62140b57cec5SDimitry Andric     ArrayRef<int> ShuffleMask = SVN->getMask();
62150b57cec5SDimitry Andric     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
62160b57cec5SDimitry Andric       SDValue Load = N->getOperand(0);
62170b57cec5SDimitry Andric       LoadSDNode *LD = cast<LoadSDNode>(Load);
62180b57cec5SDimitry Andric 
62190b57cec5SDimitry Andric       // Create the element-swapping load.
62200b57cec5SDimitry Andric       SDValue Ops[] = {
62210b57cec5SDimitry Andric         LD->getChain(),    // Chain
62220b57cec5SDimitry Andric         LD->getBasePtr()   // Ptr
62230b57cec5SDimitry Andric       };
62240b57cec5SDimitry Andric       SDValue ESLoad =
62250b57cec5SDimitry Andric         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
62260b57cec5SDimitry Andric                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
62270b57cec5SDimitry Andric                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
62280b57cec5SDimitry Andric 
62290b57cec5SDimitry Andric       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
62300b57cec5SDimitry Andric       // by the load dead.
62310b57cec5SDimitry Andric       DCI.CombineTo(N, ESLoad);
62320b57cec5SDimitry Andric 
62330b57cec5SDimitry Andric       // Next, combine the load away, we give it a bogus result value but a real
62340b57cec5SDimitry Andric       // chain result.  The result value is dead because the shuffle is dead.
62350b57cec5SDimitry Andric       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
62360b57cec5SDimitry Andric 
62370b57cec5SDimitry Andric       // Return N so it doesn't get rechecked!
62380b57cec5SDimitry Andric       return SDValue(N, 0);
62390b57cec5SDimitry Andric     }
62400b57cec5SDimitry Andric   }
62410b57cec5SDimitry Andric 
62420b57cec5SDimitry Andric   return SDValue();
62430b57cec5SDimitry Andric }
62440b57cec5SDimitry Andric 
62450b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
62460b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
62470b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
62480b57cec5SDimitry Andric 
62490b57cec5SDimitry Andric   if (!Subtarget.hasVector())
62500b57cec5SDimitry Andric     return SDValue();
62510b57cec5SDimitry Andric 
62520b57cec5SDimitry Andric   // Look through bitcasts that retain the number of vector elements.
62530b57cec5SDimitry Andric   SDValue Op = N->getOperand(0);
62540b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::BITCAST &&
62550b57cec5SDimitry Andric       Op.getValueType().isVector() &&
62560b57cec5SDimitry Andric       Op.getOperand(0).getValueType().isVector() &&
62570b57cec5SDimitry Andric       Op.getValueType().getVectorNumElements() ==
62580b57cec5SDimitry Andric       Op.getOperand(0).getValueType().getVectorNumElements())
62590b57cec5SDimitry Andric     Op = Op.getOperand(0);
62600b57cec5SDimitry Andric 
62610b57cec5SDimitry Andric   // Pull BSWAP out of a vector extraction.
62620b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
62630b57cec5SDimitry Andric     EVT VecVT = Op.getValueType();
62640b57cec5SDimitry Andric     EVT EltVT = VecVT.getVectorElementType();
62650b57cec5SDimitry Andric     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
62660b57cec5SDimitry Andric                      Op.getOperand(0), N->getOperand(1));
62670b57cec5SDimitry Andric     DCI.AddToWorklist(Op.getNode());
62680b57cec5SDimitry Andric     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
62690b57cec5SDimitry Andric     if (EltVT != N->getValueType(0)) {
62700b57cec5SDimitry Andric       DCI.AddToWorklist(Op.getNode());
62710b57cec5SDimitry Andric       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
62720b57cec5SDimitry Andric     }
62730b57cec5SDimitry Andric     return Op;
62740b57cec5SDimitry Andric   }
62750b57cec5SDimitry Andric 
62760b57cec5SDimitry Andric   // Try to simplify a vector extraction.
62770b57cec5SDimitry Andric   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
62780b57cec5SDimitry Andric     SDValue Op0 = N->getOperand(0);
62790b57cec5SDimitry Andric     EVT VecVT = Op0.getValueType();
62800b57cec5SDimitry Andric     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
62810b57cec5SDimitry Andric                           IndexN->getZExtValue(), DCI, false);
62820b57cec5SDimitry Andric   }
62830b57cec5SDimitry Andric   return SDValue();
62840b57cec5SDimitry Andric }
62850b57cec5SDimitry Andric 
62860b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineJOIN_DWORDS(
62870b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
62880b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
62890b57cec5SDimitry Andric   // (join_dwords X, X) == (replicate X)
62900b57cec5SDimitry Andric   if (N->getOperand(0) == N->getOperand(1))
62910b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
62920b57cec5SDimitry Andric                        N->getOperand(0));
62930b57cec5SDimitry Andric   return SDValue();
62940b57cec5SDimitry Andric }
62950b57cec5SDimitry Andric 
6296480093f4SDimitry Andric static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6297480093f4SDimitry Andric   SDValue Chain1 = N1->getOperand(0);
6298480093f4SDimitry Andric   SDValue Chain2 = N2->getOperand(0);
6299480093f4SDimitry Andric 
6300480093f4SDimitry Andric   // Trivial case: both nodes take the same chain.
6301480093f4SDimitry Andric   if (Chain1 == Chain2)
6302480093f4SDimitry Andric     return Chain1;
6303480093f4SDimitry Andric 
6304480093f4SDimitry Andric   // FIXME - we could handle more complex cases via TokenFactor,
6305480093f4SDimitry Andric   // assuming we can verify that this would not create a cycle.
6306480093f4SDimitry Andric   return SDValue();
6307480093f4SDimitry Andric }
6308480093f4SDimitry Andric 
63090b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineFP_ROUND(
63100b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
63110b57cec5SDimitry Andric 
63120b57cec5SDimitry Andric   if (!Subtarget.hasVector())
63130b57cec5SDimitry Andric     return SDValue();
63140b57cec5SDimitry Andric 
63150b57cec5SDimitry Andric   // (fpround (extract_vector_elt X 0))
63160b57cec5SDimitry Andric   // (fpround (extract_vector_elt X 1)) ->
63170b57cec5SDimitry Andric   // (extract_vector_elt (VROUND X) 0)
63180b57cec5SDimitry Andric   // (extract_vector_elt (VROUND X) 2)
63190b57cec5SDimitry Andric   //
63200b57cec5SDimitry Andric   // This is a special case since the target doesn't really support v2f32s.
6321480093f4SDimitry Andric   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
63220b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
6323480093f4SDimitry Andric   SDValue Op0 = N->getOperand(OpNo);
63240b57cec5SDimitry Andric   if (N->getValueType(0) == MVT::f32 &&
63250b57cec5SDimitry Andric       Op0.hasOneUse() &&
63260b57cec5SDimitry Andric       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
63270b57cec5SDimitry Andric       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
63280b57cec5SDimitry Andric       Op0.getOperand(1).getOpcode() == ISD::Constant &&
63290b57cec5SDimitry Andric       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
63300b57cec5SDimitry Andric     SDValue Vec = Op0.getOperand(0);
63310b57cec5SDimitry Andric     for (auto *U : Vec->uses()) {
63320b57cec5SDimitry Andric       if (U != Op0.getNode() &&
63330b57cec5SDimitry Andric           U->hasOneUse() &&
63340b57cec5SDimitry Andric           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
63350b57cec5SDimitry Andric           U->getOperand(0) == Vec &&
63360b57cec5SDimitry Andric           U->getOperand(1).getOpcode() == ISD::Constant &&
63370b57cec5SDimitry Andric           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
63380b57cec5SDimitry Andric         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6339480093f4SDimitry Andric         if (OtherRound.getOpcode() == N->getOpcode() &&
6340480093f4SDimitry Andric             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
63410b57cec5SDimitry Andric             OtherRound.getValueType() == MVT::f32) {
6342480093f4SDimitry Andric           SDValue VRound, Chain;
6343480093f4SDimitry Andric           if (N->isStrictFPOpcode()) {
6344480093f4SDimitry Andric             Chain = MergeInputChains(N, OtherRound.getNode());
6345480093f4SDimitry Andric             if (!Chain)
6346480093f4SDimitry Andric               continue;
6347480093f4SDimitry Andric             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6348480093f4SDimitry Andric                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6349480093f4SDimitry Andric             Chain = VRound.getValue(1);
6350480093f4SDimitry Andric           } else
6351480093f4SDimitry Andric             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
63520b57cec5SDimitry Andric                                  MVT::v4f32, Vec);
63530b57cec5SDimitry Andric           DCI.AddToWorklist(VRound.getNode());
63540b57cec5SDimitry Andric           SDValue Extract1 =
63550b57cec5SDimitry Andric             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
63560b57cec5SDimitry Andric                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
63570b57cec5SDimitry Andric           DCI.AddToWorklist(Extract1.getNode());
63580b57cec5SDimitry Andric           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6359480093f4SDimitry Andric           if (Chain)
6360480093f4SDimitry Andric             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
63610b57cec5SDimitry Andric           SDValue Extract0 =
63620b57cec5SDimitry Andric             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
63630b57cec5SDimitry Andric                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6364480093f4SDimitry Andric           if (Chain)
6365480093f4SDimitry Andric             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6366480093f4SDimitry Andric                                N->getVTList(), Extract0, Chain);
63670b57cec5SDimitry Andric           return Extract0;
63680b57cec5SDimitry Andric         }
63690b57cec5SDimitry Andric       }
63700b57cec5SDimitry Andric     }
63710b57cec5SDimitry Andric   }
63720b57cec5SDimitry Andric   return SDValue();
63730b57cec5SDimitry Andric }
63740b57cec5SDimitry Andric 
63750b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineFP_EXTEND(
63760b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
63770b57cec5SDimitry Andric 
63780b57cec5SDimitry Andric   if (!Subtarget.hasVector())
63790b57cec5SDimitry Andric     return SDValue();
63800b57cec5SDimitry Andric 
63810b57cec5SDimitry Andric   // (fpextend (extract_vector_elt X 0))
63820b57cec5SDimitry Andric   // (fpextend (extract_vector_elt X 2)) ->
63830b57cec5SDimitry Andric   // (extract_vector_elt (VEXTEND X) 0)
63840b57cec5SDimitry Andric   // (extract_vector_elt (VEXTEND X) 1)
63850b57cec5SDimitry Andric   //
63860b57cec5SDimitry Andric   // This is a special case since the target doesn't really support v2f32s.
6387480093f4SDimitry Andric   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
63880b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
6389480093f4SDimitry Andric   SDValue Op0 = N->getOperand(OpNo);
63900b57cec5SDimitry Andric   if (N->getValueType(0) == MVT::f64 &&
63910b57cec5SDimitry Andric       Op0.hasOneUse() &&
63920b57cec5SDimitry Andric       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
63930b57cec5SDimitry Andric       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
63940b57cec5SDimitry Andric       Op0.getOperand(1).getOpcode() == ISD::Constant &&
63950b57cec5SDimitry Andric       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
63960b57cec5SDimitry Andric     SDValue Vec = Op0.getOperand(0);
63970b57cec5SDimitry Andric     for (auto *U : Vec->uses()) {
63980b57cec5SDimitry Andric       if (U != Op0.getNode() &&
63990b57cec5SDimitry Andric           U->hasOneUse() &&
64000b57cec5SDimitry Andric           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
64010b57cec5SDimitry Andric           U->getOperand(0) == Vec &&
64020b57cec5SDimitry Andric           U->getOperand(1).getOpcode() == ISD::Constant &&
64030b57cec5SDimitry Andric           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
64040b57cec5SDimitry Andric         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6405480093f4SDimitry Andric         if (OtherExtend.getOpcode() == N->getOpcode() &&
6406480093f4SDimitry Andric             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
64070b57cec5SDimitry Andric             OtherExtend.getValueType() == MVT::f64) {
6408480093f4SDimitry Andric           SDValue VExtend, Chain;
6409480093f4SDimitry Andric           if (N->isStrictFPOpcode()) {
6410480093f4SDimitry Andric             Chain = MergeInputChains(N, OtherExtend.getNode());
6411480093f4SDimitry Andric             if (!Chain)
6412480093f4SDimitry Andric               continue;
6413480093f4SDimitry Andric             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6414480093f4SDimitry Andric                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6415480093f4SDimitry Andric             Chain = VExtend.getValue(1);
6416480093f4SDimitry Andric           } else
6417480093f4SDimitry Andric             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
64180b57cec5SDimitry Andric                                   MVT::v2f64, Vec);
64190b57cec5SDimitry Andric           DCI.AddToWorklist(VExtend.getNode());
64200b57cec5SDimitry Andric           SDValue Extract1 =
64210b57cec5SDimitry Andric             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
64220b57cec5SDimitry Andric                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
64230b57cec5SDimitry Andric           DCI.AddToWorklist(Extract1.getNode());
64240b57cec5SDimitry Andric           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6425480093f4SDimitry Andric           if (Chain)
6426480093f4SDimitry Andric             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
64270b57cec5SDimitry Andric           SDValue Extract0 =
64280b57cec5SDimitry Andric             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
64290b57cec5SDimitry Andric                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6430480093f4SDimitry Andric           if (Chain)
6431480093f4SDimitry Andric             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6432480093f4SDimitry Andric                                N->getVTList(), Extract0, Chain);
64330b57cec5SDimitry Andric           return Extract0;
64340b57cec5SDimitry Andric         }
64350b57cec5SDimitry Andric       }
64360b57cec5SDimitry Andric     }
64370b57cec5SDimitry Andric   }
64380b57cec5SDimitry Andric   return SDValue();
64390b57cec5SDimitry Andric }
64400b57cec5SDimitry Andric 
64415ffd83dbSDimitry Andric SDValue SystemZTargetLowering::combineINT_TO_FP(
64425ffd83dbSDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
64435ffd83dbSDimitry Andric   if (DCI.Level != BeforeLegalizeTypes)
64445ffd83dbSDimitry Andric     return SDValue();
64455ffd83dbSDimitry Andric   unsigned Opcode = N->getOpcode();
64465ffd83dbSDimitry Andric   EVT OutVT = N->getValueType(0);
64475ffd83dbSDimitry Andric   SelectionDAG &DAG = DCI.DAG;
64485ffd83dbSDimitry Andric   SDValue Op = N->getOperand(0);
64495ffd83dbSDimitry Andric   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
64505ffd83dbSDimitry Andric   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
64515ffd83dbSDimitry Andric 
64525ffd83dbSDimitry Andric   // Insert an extension before type-legalization to avoid scalarization, e.g.:
64535ffd83dbSDimitry Andric   // v2f64 = uint_to_fp v2i16
64545ffd83dbSDimitry Andric   // =>
64555ffd83dbSDimitry Andric   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
64565ffd83dbSDimitry Andric   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
64575ffd83dbSDimitry Andric     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
64585ffd83dbSDimitry Andric                                  OutVT.getVectorNumElements());
64595ffd83dbSDimitry Andric     unsigned ExtOpcode =
64605ffd83dbSDimitry Andric       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
64615ffd83dbSDimitry Andric     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
64625ffd83dbSDimitry Andric     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
64635ffd83dbSDimitry Andric   }
64645ffd83dbSDimitry Andric   return SDValue();
64655ffd83dbSDimitry Andric }
64665ffd83dbSDimitry Andric 
64670b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineBSWAP(
64680b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
64690b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
64700b57cec5SDimitry Andric   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
64710b57cec5SDimitry Andric   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
64720b57cec5SDimitry Andric       N->getOperand(0).hasOneUse() &&
64730b57cec5SDimitry Andric       canLoadStoreByteSwapped(N->getValueType(0))) {
64740b57cec5SDimitry Andric       SDValue Load = N->getOperand(0);
64750b57cec5SDimitry Andric       LoadSDNode *LD = cast<LoadSDNode>(Load);
64760b57cec5SDimitry Andric 
64770b57cec5SDimitry Andric       // Create the byte-swapping load.
64780b57cec5SDimitry Andric       SDValue Ops[] = {
64790b57cec5SDimitry Andric         LD->getChain(),    // Chain
64800b57cec5SDimitry Andric         LD->getBasePtr()   // Ptr
64810b57cec5SDimitry Andric       };
64820b57cec5SDimitry Andric       EVT LoadVT = N->getValueType(0);
64830b57cec5SDimitry Andric       if (LoadVT == MVT::i16)
64840b57cec5SDimitry Andric         LoadVT = MVT::i32;
64850b57cec5SDimitry Andric       SDValue BSLoad =
64860b57cec5SDimitry Andric         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
64870b57cec5SDimitry Andric                                 DAG.getVTList(LoadVT, MVT::Other),
64880b57cec5SDimitry Andric                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
64890b57cec5SDimitry Andric 
64900b57cec5SDimitry Andric       // If this is an i16 load, insert the truncate.
64910b57cec5SDimitry Andric       SDValue ResVal = BSLoad;
64920b57cec5SDimitry Andric       if (N->getValueType(0) == MVT::i16)
64930b57cec5SDimitry Andric         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
64940b57cec5SDimitry Andric 
64950b57cec5SDimitry Andric       // First, combine the bswap away.  This makes the value produced by the
64960b57cec5SDimitry Andric       // load dead.
64970b57cec5SDimitry Andric       DCI.CombineTo(N, ResVal);
64980b57cec5SDimitry Andric 
64990b57cec5SDimitry Andric       // Next, combine the load away, we give it a bogus result value but a real
65000b57cec5SDimitry Andric       // chain result.  The result value is dead because the bswap is dead.
65010b57cec5SDimitry Andric       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
65020b57cec5SDimitry Andric 
65030b57cec5SDimitry Andric       // Return N so it doesn't get rechecked!
65040b57cec5SDimitry Andric       return SDValue(N, 0);
65050b57cec5SDimitry Andric     }
65060b57cec5SDimitry Andric 
65070b57cec5SDimitry Andric   // Look through bitcasts that retain the number of vector elements.
65080b57cec5SDimitry Andric   SDValue Op = N->getOperand(0);
65090b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::BITCAST &&
65100b57cec5SDimitry Andric       Op.getValueType().isVector() &&
65110b57cec5SDimitry Andric       Op.getOperand(0).getValueType().isVector() &&
65120b57cec5SDimitry Andric       Op.getValueType().getVectorNumElements() ==
65130b57cec5SDimitry Andric       Op.getOperand(0).getValueType().getVectorNumElements())
65140b57cec5SDimitry Andric     Op = Op.getOperand(0);
65150b57cec5SDimitry Andric 
65160b57cec5SDimitry Andric   // Push BSWAP into a vector insertion if at least one side then simplifies.
65170b57cec5SDimitry Andric   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
65180b57cec5SDimitry Andric     SDValue Vec = Op.getOperand(0);
65190b57cec5SDimitry Andric     SDValue Elt = Op.getOperand(1);
65200b57cec5SDimitry Andric     SDValue Idx = Op.getOperand(2);
65210b57cec5SDimitry Andric 
65220b57cec5SDimitry Andric     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
65230b57cec5SDimitry Andric         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
65240b57cec5SDimitry Andric         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
65250b57cec5SDimitry Andric         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
65260b57cec5SDimitry Andric         (canLoadStoreByteSwapped(N->getValueType(0)) &&
65270b57cec5SDimitry Andric          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
65280b57cec5SDimitry Andric       EVT VecVT = N->getValueType(0);
65290b57cec5SDimitry Andric       EVT EltVT = N->getValueType(0).getVectorElementType();
65300b57cec5SDimitry Andric       if (VecVT != Vec.getValueType()) {
65310b57cec5SDimitry Andric         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
65320b57cec5SDimitry Andric         DCI.AddToWorklist(Vec.getNode());
65330b57cec5SDimitry Andric       }
65340b57cec5SDimitry Andric       if (EltVT != Elt.getValueType()) {
65350b57cec5SDimitry Andric         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
65360b57cec5SDimitry Andric         DCI.AddToWorklist(Elt.getNode());
65370b57cec5SDimitry Andric       }
65380b57cec5SDimitry Andric       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
65390b57cec5SDimitry Andric       DCI.AddToWorklist(Vec.getNode());
65400b57cec5SDimitry Andric       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
65410b57cec5SDimitry Andric       DCI.AddToWorklist(Elt.getNode());
65420b57cec5SDimitry Andric       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
65430b57cec5SDimitry Andric                          Vec, Elt, Idx);
65440b57cec5SDimitry Andric     }
65450b57cec5SDimitry Andric   }
65460b57cec5SDimitry Andric 
65470b57cec5SDimitry Andric   // Push BSWAP into a vector shuffle if at least one side then simplifies.
65480b57cec5SDimitry Andric   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
65490b57cec5SDimitry Andric   if (SV && Op.hasOneUse()) {
65500b57cec5SDimitry Andric     SDValue Op0 = Op.getOperand(0);
65510b57cec5SDimitry Andric     SDValue Op1 = Op.getOperand(1);
65520b57cec5SDimitry Andric 
65530b57cec5SDimitry Andric     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
65540b57cec5SDimitry Andric         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
65550b57cec5SDimitry Andric         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
65560b57cec5SDimitry Andric         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
65570b57cec5SDimitry Andric       EVT VecVT = N->getValueType(0);
65580b57cec5SDimitry Andric       if (VecVT != Op0.getValueType()) {
65590b57cec5SDimitry Andric         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
65600b57cec5SDimitry Andric         DCI.AddToWorklist(Op0.getNode());
65610b57cec5SDimitry Andric       }
65620b57cec5SDimitry Andric       if (VecVT != Op1.getValueType()) {
65630b57cec5SDimitry Andric         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
65640b57cec5SDimitry Andric         DCI.AddToWorklist(Op1.getNode());
65650b57cec5SDimitry Andric       }
65660b57cec5SDimitry Andric       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
65670b57cec5SDimitry Andric       DCI.AddToWorklist(Op0.getNode());
65680b57cec5SDimitry Andric       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
65690b57cec5SDimitry Andric       DCI.AddToWorklist(Op1.getNode());
65700b57cec5SDimitry Andric       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
65710b57cec5SDimitry Andric     }
65720b57cec5SDimitry Andric   }
65730b57cec5SDimitry Andric 
65740b57cec5SDimitry Andric   return SDValue();
65750b57cec5SDimitry Andric }
65760b57cec5SDimitry Andric 
65770b57cec5SDimitry Andric static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
65780b57cec5SDimitry Andric   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
65790b57cec5SDimitry Andric   // set by the CCReg instruction using the CCValid / CCMask masks,
65800b57cec5SDimitry Andric   // If the CCReg instruction is itself a ICMP testing the condition
65810b57cec5SDimitry Andric   // code set by some other instruction, see whether we can directly
65820b57cec5SDimitry Andric   // use that condition code.
65830b57cec5SDimitry Andric 
65840b57cec5SDimitry Andric   // Verify that we have an ICMP against some constant.
65850b57cec5SDimitry Andric   if (CCValid != SystemZ::CCMASK_ICMP)
65860b57cec5SDimitry Andric     return false;
65870b57cec5SDimitry Andric   auto *ICmp = CCReg.getNode();
65880b57cec5SDimitry Andric   if (ICmp->getOpcode() != SystemZISD::ICMP)
65890b57cec5SDimitry Andric     return false;
65900b57cec5SDimitry Andric   auto *CompareLHS = ICmp->getOperand(0).getNode();
65910b57cec5SDimitry Andric   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
65920b57cec5SDimitry Andric   if (!CompareRHS)
65930b57cec5SDimitry Andric     return false;
65940b57cec5SDimitry Andric 
65950b57cec5SDimitry Andric   // Optimize the case where CompareLHS is a SELECT_CCMASK.
65960b57cec5SDimitry Andric   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
65970b57cec5SDimitry Andric     // Verify that we have an appropriate mask for a EQ or NE comparison.
65980b57cec5SDimitry Andric     bool Invert = false;
65990b57cec5SDimitry Andric     if (CCMask == SystemZ::CCMASK_CMP_NE)
66000b57cec5SDimitry Andric       Invert = !Invert;
66010b57cec5SDimitry Andric     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
66020b57cec5SDimitry Andric       return false;
66030b57cec5SDimitry Andric 
66040b57cec5SDimitry Andric     // Verify that the ICMP compares against one of select values.
66050b57cec5SDimitry Andric     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
66060b57cec5SDimitry Andric     if (!TrueVal)
66070b57cec5SDimitry Andric       return false;
66080b57cec5SDimitry Andric     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
66090b57cec5SDimitry Andric     if (!FalseVal)
66100b57cec5SDimitry Andric       return false;
66110b57cec5SDimitry Andric     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
66120b57cec5SDimitry Andric       Invert = !Invert;
66130b57cec5SDimitry Andric     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
66140b57cec5SDimitry Andric       return false;
66150b57cec5SDimitry Andric 
66160b57cec5SDimitry Andric     // Compute the effective CC mask for the new branch or select.
66170b57cec5SDimitry Andric     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
66180b57cec5SDimitry Andric     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
66190b57cec5SDimitry Andric     if (!NewCCValid || !NewCCMask)
66200b57cec5SDimitry Andric       return false;
66210b57cec5SDimitry Andric     CCValid = NewCCValid->getZExtValue();
66220b57cec5SDimitry Andric     CCMask = NewCCMask->getZExtValue();
66230b57cec5SDimitry Andric     if (Invert)
66240b57cec5SDimitry Andric       CCMask ^= CCValid;
66250b57cec5SDimitry Andric 
66260b57cec5SDimitry Andric     // Return the updated CCReg link.
66270b57cec5SDimitry Andric     CCReg = CompareLHS->getOperand(4);
66280b57cec5SDimitry Andric     return true;
66290b57cec5SDimitry Andric   }
66300b57cec5SDimitry Andric 
66310b57cec5SDimitry Andric   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
66320b57cec5SDimitry Andric   if (CompareLHS->getOpcode() == ISD::SRA) {
66330b57cec5SDimitry Andric     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
66340b57cec5SDimitry Andric     if (!SRACount || SRACount->getZExtValue() != 30)
66350b57cec5SDimitry Andric       return false;
66360b57cec5SDimitry Andric     auto *SHL = CompareLHS->getOperand(0).getNode();
66370b57cec5SDimitry Andric     if (SHL->getOpcode() != ISD::SHL)
66380b57cec5SDimitry Andric       return false;
66390b57cec5SDimitry Andric     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
66400b57cec5SDimitry Andric     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
66410b57cec5SDimitry Andric       return false;
66420b57cec5SDimitry Andric     auto *IPM = SHL->getOperand(0).getNode();
66430b57cec5SDimitry Andric     if (IPM->getOpcode() != SystemZISD::IPM)
66440b57cec5SDimitry Andric       return false;
66450b57cec5SDimitry Andric 
66460b57cec5SDimitry Andric     // Avoid introducing CC spills (because SRA would clobber CC).
66470b57cec5SDimitry Andric     if (!CompareLHS->hasOneUse())
66480b57cec5SDimitry Andric       return false;
66490b57cec5SDimitry Andric     // Verify that the ICMP compares against zero.
66500b57cec5SDimitry Andric     if (CompareRHS->getZExtValue() != 0)
66510b57cec5SDimitry Andric       return false;
66520b57cec5SDimitry Andric 
66530b57cec5SDimitry Andric     // Compute the effective CC mask for the new branch or select.
66545ffd83dbSDimitry Andric     CCMask = SystemZ::reverseCCMask(CCMask);
66550b57cec5SDimitry Andric 
66560b57cec5SDimitry Andric     // Return the updated CCReg link.
66570b57cec5SDimitry Andric     CCReg = IPM->getOperand(0);
66580b57cec5SDimitry Andric     return true;
66590b57cec5SDimitry Andric   }
66600b57cec5SDimitry Andric 
66610b57cec5SDimitry Andric   return false;
66620b57cec5SDimitry Andric }
66630b57cec5SDimitry Andric 
66640b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineBR_CCMASK(
66650b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
66660b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
66670b57cec5SDimitry Andric 
66680b57cec5SDimitry Andric   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
66690b57cec5SDimitry Andric   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
66700b57cec5SDimitry Andric   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
66710b57cec5SDimitry Andric   if (!CCValid || !CCMask)
66720b57cec5SDimitry Andric     return SDValue();
66730b57cec5SDimitry Andric 
66740b57cec5SDimitry Andric   int CCValidVal = CCValid->getZExtValue();
66750b57cec5SDimitry Andric   int CCMaskVal = CCMask->getZExtValue();
66760b57cec5SDimitry Andric   SDValue Chain = N->getOperand(0);
66770b57cec5SDimitry Andric   SDValue CCReg = N->getOperand(4);
66780b57cec5SDimitry Andric 
66790b57cec5SDimitry Andric   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
66800b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
66810b57cec5SDimitry Andric                        Chain,
66828bcb0991SDimitry Andric                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
66838bcb0991SDimitry Andric                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
66840b57cec5SDimitry Andric                        N->getOperand(3), CCReg);
66850b57cec5SDimitry Andric   return SDValue();
66860b57cec5SDimitry Andric }
66870b57cec5SDimitry Andric 
66880b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineSELECT_CCMASK(
66890b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
66900b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
66910b57cec5SDimitry Andric 
66920b57cec5SDimitry Andric   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
66930b57cec5SDimitry Andric   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
66940b57cec5SDimitry Andric   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
66950b57cec5SDimitry Andric   if (!CCValid || !CCMask)
66960b57cec5SDimitry Andric     return SDValue();
66970b57cec5SDimitry Andric 
66980b57cec5SDimitry Andric   int CCValidVal = CCValid->getZExtValue();
66990b57cec5SDimitry Andric   int CCMaskVal = CCMask->getZExtValue();
67000b57cec5SDimitry Andric   SDValue CCReg = N->getOperand(4);
67010b57cec5SDimitry Andric 
67020b57cec5SDimitry Andric   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
67030b57cec5SDimitry Andric     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
67048bcb0991SDimitry Andric                        N->getOperand(0), N->getOperand(1),
67058bcb0991SDimitry Andric                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
67068bcb0991SDimitry Andric                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
67070b57cec5SDimitry Andric                        CCReg);
67080b57cec5SDimitry Andric   return SDValue();
67090b57cec5SDimitry Andric }
67100b57cec5SDimitry Andric 
67110b57cec5SDimitry Andric 
67120b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineGET_CCMASK(
67130b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
67140b57cec5SDimitry Andric 
67150b57cec5SDimitry Andric   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
67160b57cec5SDimitry Andric   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
67170b57cec5SDimitry Andric   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
67180b57cec5SDimitry Andric   if (!CCValid || !CCMask)
67190b57cec5SDimitry Andric     return SDValue();
67200b57cec5SDimitry Andric   int CCValidVal = CCValid->getZExtValue();
67210b57cec5SDimitry Andric   int CCMaskVal = CCMask->getZExtValue();
67220b57cec5SDimitry Andric 
67230b57cec5SDimitry Andric   SDValue Select = N->getOperand(0);
67240b57cec5SDimitry Andric   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
67250b57cec5SDimitry Andric     return SDValue();
67260b57cec5SDimitry Andric 
67270b57cec5SDimitry Andric   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
67280b57cec5SDimitry Andric   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
67290b57cec5SDimitry Andric   if (!SelectCCValid || !SelectCCMask)
67300b57cec5SDimitry Andric     return SDValue();
67310b57cec5SDimitry Andric   int SelectCCValidVal = SelectCCValid->getZExtValue();
67320b57cec5SDimitry Andric   int SelectCCMaskVal = SelectCCMask->getZExtValue();
67330b57cec5SDimitry Andric 
67340b57cec5SDimitry Andric   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
67350b57cec5SDimitry Andric   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
67360b57cec5SDimitry Andric   if (!TrueVal || !FalseVal)
67370b57cec5SDimitry Andric     return SDValue();
67380b57cec5SDimitry Andric   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
67390b57cec5SDimitry Andric     ;
67400b57cec5SDimitry Andric   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
67410b57cec5SDimitry Andric     SelectCCMaskVal ^= SelectCCValidVal;
67420b57cec5SDimitry Andric   else
67430b57cec5SDimitry Andric     return SDValue();
67440b57cec5SDimitry Andric 
67450b57cec5SDimitry Andric   if (SelectCCValidVal & ~CCValidVal)
67460b57cec5SDimitry Andric     return SDValue();
67470b57cec5SDimitry Andric   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
67480b57cec5SDimitry Andric     return SDValue();
67490b57cec5SDimitry Andric 
67500b57cec5SDimitry Andric   return Select->getOperand(4);
67510b57cec5SDimitry Andric }
67520b57cec5SDimitry Andric 
67530b57cec5SDimitry Andric SDValue SystemZTargetLowering::combineIntDIVREM(
67540b57cec5SDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
67550b57cec5SDimitry Andric   SelectionDAG &DAG = DCI.DAG;
67560b57cec5SDimitry Andric   EVT VT = N->getValueType(0);
67570b57cec5SDimitry Andric   // In the case where the divisor is a vector of constants a cheaper
67580b57cec5SDimitry Andric   // sequence of instructions can replace the divide. BuildSDIV is called to
67590b57cec5SDimitry Andric   // do this during DAG combining, but it only succeeds when it can build a
67600b57cec5SDimitry Andric   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
67610b57cec5SDimitry Andric   // since it is not Legal but Custom it can only happen before
67620b57cec5SDimitry Andric   // legalization. Therefore we must scalarize this early before Combine
67630b57cec5SDimitry Andric   // 1. For widened vectors, this is already the result of type legalization.
67640b57cec5SDimitry Andric   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
67650b57cec5SDimitry Andric       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
67660b57cec5SDimitry Andric     return DAG.UnrollVectorOp(N);
67670b57cec5SDimitry Andric   return SDValue();
67680b57cec5SDimitry Andric }
67690b57cec5SDimitry Andric 
67705ffd83dbSDimitry Andric SDValue SystemZTargetLowering::combineINTRINSIC(
67715ffd83dbSDimitry Andric     SDNode *N, DAGCombinerInfo &DCI) const {
67725ffd83dbSDimitry Andric   SelectionDAG &DAG = DCI.DAG;
67735ffd83dbSDimitry Andric 
67745ffd83dbSDimitry Andric   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
67755ffd83dbSDimitry Andric   switch (Id) {
67765ffd83dbSDimitry Andric   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
67775ffd83dbSDimitry Andric   // or larger is simply a vector load.
67785ffd83dbSDimitry Andric   case Intrinsic::s390_vll:
67795ffd83dbSDimitry Andric   case Intrinsic::s390_vlrl:
67805ffd83dbSDimitry Andric     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
67815ffd83dbSDimitry Andric       if (C->getZExtValue() >= 15)
67825ffd83dbSDimitry Andric         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
67835ffd83dbSDimitry Andric                            N->getOperand(3), MachinePointerInfo());
67845ffd83dbSDimitry Andric     break;
67855ffd83dbSDimitry Andric   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
67865ffd83dbSDimitry Andric   case Intrinsic::s390_vstl:
67875ffd83dbSDimitry Andric   case Intrinsic::s390_vstrl:
67885ffd83dbSDimitry Andric     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
67895ffd83dbSDimitry Andric       if (C->getZExtValue() >= 15)
67905ffd83dbSDimitry Andric         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
67915ffd83dbSDimitry Andric                             N->getOperand(4), MachinePointerInfo());
67925ffd83dbSDimitry Andric     break;
67935ffd83dbSDimitry Andric   }
67945ffd83dbSDimitry Andric 
67955ffd83dbSDimitry Andric   return SDValue();
67965ffd83dbSDimitry Andric }
67975ffd83dbSDimitry Andric 
67980b57cec5SDimitry Andric SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
67990b57cec5SDimitry Andric   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
68000b57cec5SDimitry Andric     return N->getOperand(0);
68010b57cec5SDimitry Andric   return N;
68020b57cec5SDimitry Andric }
68030b57cec5SDimitry Andric 
68040b57cec5SDimitry Andric SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
68050b57cec5SDimitry Andric                                                  DAGCombinerInfo &DCI) const {
68060b57cec5SDimitry Andric   switch(N->getOpcode()) {
68070b57cec5SDimitry Andric   default: break;
68080b57cec5SDimitry Andric   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
68090b57cec5SDimitry Andric   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
68100b57cec5SDimitry Andric   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
68110b57cec5SDimitry Andric   case SystemZISD::MERGE_HIGH:
68120b57cec5SDimitry Andric   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
68130b57cec5SDimitry Andric   case ISD::LOAD:               return combineLOAD(N, DCI);
68140b57cec5SDimitry Andric   case ISD::STORE:              return combineSTORE(N, DCI);
68150b57cec5SDimitry Andric   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
68160b57cec5SDimitry Andric   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
68170b57cec5SDimitry Andric   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6818480093f4SDimitry Andric   case ISD::STRICT_FP_ROUND:
68190b57cec5SDimitry Andric   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6820480093f4SDimitry Andric   case ISD::STRICT_FP_EXTEND:
68210b57cec5SDimitry Andric   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
68225ffd83dbSDimitry Andric   case ISD::SINT_TO_FP:
68235ffd83dbSDimitry Andric   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
68240b57cec5SDimitry Andric   case ISD::BSWAP:              return combineBSWAP(N, DCI);
68250b57cec5SDimitry Andric   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
68260b57cec5SDimitry Andric   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
68270b57cec5SDimitry Andric   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
68280b57cec5SDimitry Andric   case ISD::SDIV:
68290b57cec5SDimitry Andric   case ISD::UDIV:
68300b57cec5SDimitry Andric   case ISD::SREM:
68310b57cec5SDimitry Andric   case ISD::UREM:               return combineIntDIVREM(N, DCI);
68325ffd83dbSDimitry Andric   case ISD::INTRINSIC_W_CHAIN:
68335ffd83dbSDimitry Andric   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
68340b57cec5SDimitry Andric   }
68350b57cec5SDimitry Andric 
68360b57cec5SDimitry Andric   return SDValue();
68370b57cec5SDimitry Andric }
68380b57cec5SDimitry Andric 
68390b57cec5SDimitry Andric // Return the demanded elements for the OpNo source operand of Op. DemandedElts
68400b57cec5SDimitry Andric // are for Op.
68410b57cec5SDimitry Andric static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
68420b57cec5SDimitry Andric                                     unsigned OpNo) {
68430b57cec5SDimitry Andric   EVT VT = Op.getValueType();
68440b57cec5SDimitry Andric   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
68450b57cec5SDimitry Andric   APInt SrcDemE;
68460b57cec5SDimitry Andric   unsigned Opcode = Op.getOpcode();
68470b57cec5SDimitry Andric   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
68480b57cec5SDimitry Andric     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
68490b57cec5SDimitry Andric     switch (Id) {
68500b57cec5SDimitry Andric     case Intrinsic::s390_vpksh:   // PACKS
68510b57cec5SDimitry Andric     case Intrinsic::s390_vpksf:
68520b57cec5SDimitry Andric     case Intrinsic::s390_vpksg:
68530b57cec5SDimitry Andric     case Intrinsic::s390_vpkshs:  // PACKS_CC
68540b57cec5SDimitry Andric     case Intrinsic::s390_vpksfs:
68550b57cec5SDimitry Andric     case Intrinsic::s390_vpksgs:
68560b57cec5SDimitry Andric     case Intrinsic::s390_vpklsh:  // PACKLS
68570b57cec5SDimitry Andric     case Intrinsic::s390_vpklsf:
68580b57cec5SDimitry Andric     case Intrinsic::s390_vpklsg:
68590b57cec5SDimitry Andric     case Intrinsic::s390_vpklshs: // PACKLS_CC
68600b57cec5SDimitry Andric     case Intrinsic::s390_vpklsfs:
68610b57cec5SDimitry Andric     case Intrinsic::s390_vpklsgs:
68620b57cec5SDimitry Andric       // VECTOR PACK truncates the elements of two source vectors into one.
68630b57cec5SDimitry Andric       SrcDemE = DemandedElts;
68640b57cec5SDimitry Andric       if (OpNo == 2)
68650b57cec5SDimitry Andric         SrcDemE.lshrInPlace(NumElts / 2);
68660b57cec5SDimitry Andric       SrcDemE = SrcDemE.trunc(NumElts / 2);
68670b57cec5SDimitry Andric       break;
68680b57cec5SDimitry Andric       // VECTOR UNPACK extends half the elements of the source vector.
68690b57cec5SDimitry Andric     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
68700b57cec5SDimitry Andric     case Intrinsic::s390_vuphh:
68710b57cec5SDimitry Andric     case Intrinsic::s390_vuphf:
68720b57cec5SDimitry Andric     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
68730b57cec5SDimitry Andric     case Intrinsic::s390_vuplhh:
68740b57cec5SDimitry Andric     case Intrinsic::s390_vuplhf:
68750b57cec5SDimitry Andric       SrcDemE = APInt(NumElts * 2, 0);
68760b57cec5SDimitry Andric       SrcDemE.insertBits(DemandedElts, 0);
68770b57cec5SDimitry Andric       break;
68780b57cec5SDimitry Andric     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
68790b57cec5SDimitry Andric     case Intrinsic::s390_vuplhw:
68800b57cec5SDimitry Andric     case Intrinsic::s390_vuplf:
68810b57cec5SDimitry Andric     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
68820b57cec5SDimitry Andric     case Intrinsic::s390_vupllh:
68830b57cec5SDimitry Andric     case Intrinsic::s390_vupllf:
68840b57cec5SDimitry Andric       SrcDemE = APInt(NumElts * 2, 0);
68850b57cec5SDimitry Andric       SrcDemE.insertBits(DemandedElts, NumElts);
68860b57cec5SDimitry Andric       break;
68870b57cec5SDimitry Andric     case Intrinsic::s390_vpdi: {
68880b57cec5SDimitry Andric       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
68890b57cec5SDimitry Andric       SrcDemE = APInt(NumElts, 0);
68900b57cec5SDimitry Andric       if (!DemandedElts[OpNo - 1])
68910b57cec5SDimitry Andric         break;
68920b57cec5SDimitry Andric       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
68930b57cec5SDimitry Andric       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
68940b57cec5SDimitry Andric       // Demand input element 0 or 1, given by the mask bit value.
68950b57cec5SDimitry Andric       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
68960b57cec5SDimitry Andric       break;
68970b57cec5SDimitry Andric     }
68980b57cec5SDimitry Andric     case Intrinsic::s390_vsldb: {
68990b57cec5SDimitry Andric       // VECTOR SHIFT LEFT DOUBLE BY BYTE
69000b57cec5SDimitry Andric       assert(VT == MVT::v16i8 && "Unexpected type.");
69010b57cec5SDimitry Andric       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
69020b57cec5SDimitry Andric       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
69030b57cec5SDimitry Andric       unsigned NumSrc0Els = 16 - FirstIdx;
69040b57cec5SDimitry Andric       SrcDemE = APInt(NumElts, 0);
69050b57cec5SDimitry Andric       if (OpNo == 1) {
69060b57cec5SDimitry Andric         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
69070b57cec5SDimitry Andric         SrcDemE.insertBits(DemEls, FirstIdx);
69080b57cec5SDimitry Andric       } else {
69090b57cec5SDimitry Andric         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
69100b57cec5SDimitry Andric         SrcDemE.insertBits(DemEls, 0);
69110b57cec5SDimitry Andric       }
69120b57cec5SDimitry Andric       break;
69130b57cec5SDimitry Andric     }
69140b57cec5SDimitry Andric     case Intrinsic::s390_vperm:
69150b57cec5SDimitry Andric       SrcDemE = APInt(NumElts, 1);
69160b57cec5SDimitry Andric       break;
69170b57cec5SDimitry Andric     default:
69180b57cec5SDimitry Andric       llvm_unreachable("Unhandled intrinsic.");
69190b57cec5SDimitry Andric       break;
69200b57cec5SDimitry Andric     }
69210b57cec5SDimitry Andric   } else {
69220b57cec5SDimitry Andric     switch (Opcode) {
69230b57cec5SDimitry Andric     case SystemZISD::JOIN_DWORDS:
69240b57cec5SDimitry Andric       // Scalar operand.
69250b57cec5SDimitry Andric       SrcDemE = APInt(1, 1);
69260b57cec5SDimitry Andric       break;
69270b57cec5SDimitry Andric     case SystemZISD::SELECT_CCMASK:
69280b57cec5SDimitry Andric       SrcDemE = DemandedElts;
69290b57cec5SDimitry Andric       break;
69300b57cec5SDimitry Andric     default:
69310b57cec5SDimitry Andric       llvm_unreachable("Unhandled opcode.");
69320b57cec5SDimitry Andric       break;
69330b57cec5SDimitry Andric     }
69340b57cec5SDimitry Andric   }
69350b57cec5SDimitry Andric   return SrcDemE;
69360b57cec5SDimitry Andric }
69370b57cec5SDimitry Andric 
69380b57cec5SDimitry Andric static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
69390b57cec5SDimitry Andric                                   const APInt &DemandedElts,
69400b57cec5SDimitry Andric                                   const SelectionDAG &DAG, unsigned Depth,
69410b57cec5SDimitry Andric                                   unsigned OpNo) {
69420b57cec5SDimitry Andric   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
69430b57cec5SDimitry Andric   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
69440b57cec5SDimitry Andric   KnownBits LHSKnown =
69450b57cec5SDimitry Andric       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
69460b57cec5SDimitry Andric   KnownBits RHSKnown =
69470b57cec5SDimitry Andric       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6948e8d8bef9SDimitry Andric   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
69490b57cec5SDimitry Andric }
69500b57cec5SDimitry Andric 
69510b57cec5SDimitry Andric void
69520b57cec5SDimitry Andric SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
69530b57cec5SDimitry Andric                                                      KnownBits &Known,
69540b57cec5SDimitry Andric                                                      const APInt &DemandedElts,
69550b57cec5SDimitry Andric                                                      const SelectionDAG &DAG,
69560b57cec5SDimitry Andric                                                      unsigned Depth) const {
69570b57cec5SDimitry Andric   Known.resetAll();
69580b57cec5SDimitry Andric 
69590b57cec5SDimitry Andric   // Intrinsic CC result is returned in the two low bits.
69600b57cec5SDimitry Andric   unsigned tmp0, tmp1; // not used
69610b57cec5SDimitry Andric   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
69620b57cec5SDimitry Andric     Known.Zero.setBitsFrom(2);
69630b57cec5SDimitry Andric     return;
69640b57cec5SDimitry Andric   }
69650b57cec5SDimitry Andric   EVT VT = Op.getValueType();
69660b57cec5SDimitry Andric   if (Op.getResNo() != 0 || VT == MVT::Untyped)
69670b57cec5SDimitry Andric     return;
69680b57cec5SDimitry Andric   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
69690b57cec5SDimitry Andric           "KnownBits does not match VT in bitwidth");
69700b57cec5SDimitry Andric   assert ((!VT.isVector() ||
69710b57cec5SDimitry Andric            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
69720b57cec5SDimitry Andric           "DemandedElts does not match VT number of elements");
69730b57cec5SDimitry Andric   unsigned BitWidth = Known.getBitWidth();
69740b57cec5SDimitry Andric   unsigned Opcode = Op.getOpcode();
69750b57cec5SDimitry Andric   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
69760b57cec5SDimitry Andric     bool IsLogical = false;
69770b57cec5SDimitry Andric     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
69780b57cec5SDimitry Andric     switch (Id) {
69790b57cec5SDimitry Andric     case Intrinsic::s390_vpksh:   // PACKS
69800b57cec5SDimitry Andric     case Intrinsic::s390_vpksf:
69810b57cec5SDimitry Andric     case Intrinsic::s390_vpksg:
69820b57cec5SDimitry Andric     case Intrinsic::s390_vpkshs:  // PACKS_CC
69830b57cec5SDimitry Andric     case Intrinsic::s390_vpksfs:
69840b57cec5SDimitry Andric     case Intrinsic::s390_vpksgs:
69850b57cec5SDimitry Andric     case Intrinsic::s390_vpklsh:  // PACKLS
69860b57cec5SDimitry Andric     case Intrinsic::s390_vpklsf:
69870b57cec5SDimitry Andric     case Intrinsic::s390_vpklsg:
69880b57cec5SDimitry Andric     case Intrinsic::s390_vpklshs: // PACKLS_CC
69890b57cec5SDimitry Andric     case Intrinsic::s390_vpklsfs:
69900b57cec5SDimitry Andric     case Intrinsic::s390_vpklsgs:
69910b57cec5SDimitry Andric     case Intrinsic::s390_vpdi:
69920b57cec5SDimitry Andric     case Intrinsic::s390_vsldb:
69930b57cec5SDimitry Andric     case Intrinsic::s390_vperm:
69940b57cec5SDimitry Andric       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
69950b57cec5SDimitry Andric       break;
69960b57cec5SDimitry Andric     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
69970b57cec5SDimitry Andric     case Intrinsic::s390_vuplhh:
69980b57cec5SDimitry Andric     case Intrinsic::s390_vuplhf:
69990b57cec5SDimitry Andric     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
70000b57cec5SDimitry Andric     case Intrinsic::s390_vupllh:
70010b57cec5SDimitry Andric     case Intrinsic::s390_vupllf:
70020b57cec5SDimitry Andric       IsLogical = true;
70030b57cec5SDimitry Andric       LLVM_FALLTHROUGH;
70040b57cec5SDimitry Andric     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
70050b57cec5SDimitry Andric     case Intrinsic::s390_vuphh:
70060b57cec5SDimitry Andric     case Intrinsic::s390_vuphf:
70070b57cec5SDimitry Andric     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
70080b57cec5SDimitry Andric     case Intrinsic::s390_vuplhw:
70090b57cec5SDimitry Andric     case Intrinsic::s390_vuplf: {
70100b57cec5SDimitry Andric       SDValue SrcOp = Op.getOperand(1);
70110b57cec5SDimitry Andric       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
70120b57cec5SDimitry Andric       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
70130b57cec5SDimitry Andric       if (IsLogical) {
70145ffd83dbSDimitry Andric         Known = Known.zext(BitWidth);
70150b57cec5SDimitry Andric       } else
70160b57cec5SDimitry Andric         Known = Known.sext(BitWidth);
70170b57cec5SDimitry Andric       break;
70180b57cec5SDimitry Andric     }
70190b57cec5SDimitry Andric     default:
70200b57cec5SDimitry Andric       break;
70210b57cec5SDimitry Andric     }
70220b57cec5SDimitry Andric   } else {
70230b57cec5SDimitry Andric     switch (Opcode) {
70240b57cec5SDimitry Andric     case SystemZISD::JOIN_DWORDS:
70250b57cec5SDimitry Andric     case SystemZISD::SELECT_CCMASK:
70260b57cec5SDimitry Andric       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
70270b57cec5SDimitry Andric       break;
70280b57cec5SDimitry Andric     case SystemZISD::REPLICATE: {
70290b57cec5SDimitry Andric       SDValue SrcOp = Op.getOperand(0);
70300b57cec5SDimitry Andric       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
70310b57cec5SDimitry Andric       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
70320b57cec5SDimitry Andric         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
70330b57cec5SDimitry Andric       break;
70340b57cec5SDimitry Andric     }
70350b57cec5SDimitry Andric     default:
70360b57cec5SDimitry Andric       break;
70370b57cec5SDimitry Andric     }
70380b57cec5SDimitry Andric   }
70390b57cec5SDimitry Andric 
70400b57cec5SDimitry Andric   // Known has the width of the source operand(s). Adjust if needed to match
70410b57cec5SDimitry Andric   // the passed bitwidth.
70420b57cec5SDimitry Andric   if (Known.getBitWidth() != BitWidth)
70435ffd83dbSDimitry Andric     Known = Known.anyextOrTrunc(BitWidth);
70440b57cec5SDimitry Andric }
70450b57cec5SDimitry Andric 
70460b57cec5SDimitry Andric static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
70470b57cec5SDimitry Andric                                         const SelectionDAG &DAG, unsigned Depth,
70480b57cec5SDimitry Andric                                         unsigned OpNo) {
70490b57cec5SDimitry Andric   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
70500b57cec5SDimitry Andric   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
70510b57cec5SDimitry Andric   if (LHS == 1) return 1; // Early out.
70520b57cec5SDimitry Andric   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
70530b57cec5SDimitry Andric   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
70540b57cec5SDimitry Andric   if (RHS == 1) return 1; // Early out.
70550b57cec5SDimitry Andric   unsigned Common = std::min(LHS, RHS);
70560b57cec5SDimitry Andric   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
70570b57cec5SDimitry Andric   EVT VT = Op.getValueType();
70580b57cec5SDimitry Andric   unsigned VTBits = VT.getScalarSizeInBits();
70590b57cec5SDimitry Andric   if (SrcBitWidth > VTBits) { // PACK
70600b57cec5SDimitry Andric     unsigned SrcExtraBits = SrcBitWidth - VTBits;
70610b57cec5SDimitry Andric     if (Common > SrcExtraBits)
70620b57cec5SDimitry Andric       return (Common - SrcExtraBits);
70630b57cec5SDimitry Andric     return 1;
70640b57cec5SDimitry Andric   }
70650b57cec5SDimitry Andric   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
70660b57cec5SDimitry Andric   return Common;
70670b57cec5SDimitry Andric }
70680b57cec5SDimitry Andric 
70690b57cec5SDimitry Andric unsigned
70700b57cec5SDimitry Andric SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
70710b57cec5SDimitry Andric     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
70720b57cec5SDimitry Andric     unsigned Depth) const {
70730b57cec5SDimitry Andric   if (Op.getResNo() != 0)
70740b57cec5SDimitry Andric     return 1;
70750b57cec5SDimitry Andric   unsigned Opcode = Op.getOpcode();
70760b57cec5SDimitry Andric   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
70770b57cec5SDimitry Andric     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
70780b57cec5SDimitry Andric     switch (Id) {
70790b57cec5SDimitry Andric     case Intrinsic::s390_vpksh:   // PACKS
70800b57cec5SDimitry Andric     case Intrinsic::s390_vpksf:
70810b57cec5SDimitry Andric     case Intrinsic::s390_vpksg:
70820b57cec5SDimitry Andric     case Intrinsic::s390_vpkshs:  // PACKS_CC
70830b57cec5SDimitry Andric     case Intrinsic::s390_vpksfs:
70840b57cec5SDimitry Andric     case Intrinsic::s390_vpksgs:
70850b57cec5SDimitry Andric     case Intrinsic::s390_vpklsh:  // PACKLS
70860b57cec5SDimitry Andric     case Intrinsic::s390_vpklsf:
70870b57cec5SDimitry Andric     case Intrinsic::s390_vpklsg:
70880b57cec5SDimitry Andric     case Intrinsic::s390_vpklshs: // PACKLS_CC
70890b57cec5SDimitry Andric     case Intrinsic::s390_vpklsfs:
70900b57cec5SDimitry Andric     case Intrinsic::s390_vpklsgs:
70910b57cec5SDimitry Andric     case Intrinsic::s390_vpdi:
70920b57cec5SDimitry Andric     case Intrinsic::s390_vsldb:
70930b57cec5SDimitry Andric     case Intrinsic::s390_vperm:
70940b57cec5SDimitry Andric       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
70950b57cec5SDimitry Andric     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
70960b57cec5SDimitry Andric     case Intrinsic::s390_vuphh:
70970b57cec5SDimitry Andric     case Intrinsic::s390_vuphf:
70980b57cec5SDimitry Andric     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
70990b57cec5SDimitry Andric     case Intrinsic::s390_vuplhw:
71000b57cec5SDimitry Andric     case Intrinsic::s390_vuplf: {
71010b57cec5SDimitry Andric       SDValue PackedOp = Op.getOperand(1);
71020b57cec5SDimitry Andric       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
71030b57cec5SDimitry Andric       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
71040b57cec5SDimitry Andric       EVT VT = Op.getValueType();
71050b57cec5SDimitry Andric       unsigned VTBits = VT.getScalarSizeInBits();
71060b57cec5SDimitry Andric       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
71070b57cec5SDimitry Andric       return Tmp;
71080b57cec5SDimitry Andric     }
71090b57cec5SDimitry Andric     default:
71100b57cec5SDimitry Andric       break;
71110b57cec5SDimitry Andric     }
71120b57cec5SDimitry Andric   } else {
71130b57cec5SDimitry Andric     switch (Opcode) {
71140b57cec5SDimitry Andric     case SystemZISD::SELECT_CCMASK:
71150b57cec5SDimitry Andric       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
71160b57cec5SDimitry Andric     default:
71170b57cec5SDimitry Andric       break;
71180b57cec5SDimitry Andric     }
71190b57cec5SDimitry Andric   }
71200b57cec5SDimitry Andric 
71210b57cec5SDimitry Andric   return 1;
71220b57cec5SDimitry Andric }
71230b57cec5SDimitry Andric 
71245ffd83dbSDimitry Andric unsigned
71255ffd83dbSDimitry Andric SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
71265ffd83dbSDimitry Andric   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
71275ffd83dbSDimitry Andric   unsigned StackAlign = TFI->getStackAlignment();
71285ffd83dbSDimitry Andric   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
71295ffd83dbSDimitry Andric          "Unexpected stack alignment");
71305ffd83dbSDimitry Andric   // The default stack probe size is 4096 if the function has no
71315ffd83dbSDimitry Andric   // stack-probe-size attribute.
71325ffd83dbSDimitry Andric   unsigned StackProbeSize = 4096;
71335ffd83dbSDimitry Andric   const Function &Fn = MF.getFunction();
71345ffd83dbSDimitry Andric   if (Fn.hasFnAttribute("stack-probe-size"))
71355ffd83dbSDimitry Andric     Fn.getFnAttribute("stack-probe-size")
71365ffd83dbSDimitry Andric         .getValueAsString()
71375ffd83dbSDimitry Andric         .getAsInteger(0, StackProbeSize);
71385ffd83dbSDimitry Andric   // Round down to the stack alignment.
71395ffd83dbSDimitry Andric   StackProbeSize &= ~(StackAlign - 1);
71405ffd83dbSDimitry Andric   return StackProbeSize ? StackProbeSize : StackAlign;
71415ffd83dbSDimitry Andric }
71425ffd83dbSDimitry Andric 
71430b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
71440b57cec5SDimitry Andric // Custom insertion
71450b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
71460b57cec5SDimitry Andric 
71470b57cec5SDimitry Andric // Force base value Base into a register before MI.  Return the register.
71480b57cec5SDimitry Andric static Register forceReg(MachineInstr &MI, MachineOperand &Base,
71490b57cec5SDimitry Andric                          const SystemZInstrInfo *TII) {
71500b57cec5SDimitry Andric   MachineBasicBlock *MBB = MI.getParent();
71510b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
71520b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
71530b57cec5SDimitry Andric 
7154349cc55cSDimitry Andric   if (Base.isReg()) {
7155349cc55cSDimitry Andric     // Copy Base into a new virtual register to help register coalescing in
7156349cc55cSDimitry Andric     // cases with multiple uses.
7157349cc55cSDimitry Andric     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7158349cc55cSDimitry Andric     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7159349cc55cSDimitry Andric       .add(Base);
7160349cc55cSDimitry Andric     return Reg;
7161349cc55cSDimitry Andric   }
7162349cc55cSDimitry Andric 
71630b57cec5SDimitry Andric   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
71640b57cec5SDimitry Andric   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
71650b57cec5SDimitry Andric       .add(Base)
71660b57cec5SDimitry Andric       .addImm(0)
71670b57cec5SDimitry Andric       .addReg(0);
71680b57cec5SDimitry Andric   return Reg;
71690b57cec5SDimitry Andric }
71700b57cec5SDimitry Andric 
71710b57cec5SDimitry Andric // The CC operand of MI might be missing a kill marker because there
71720b57cec5SDimitry Andric // were multiple uses of CC, and ISel didn't know which to mark.
71730b57cec5SDimitry Andric // Figure out whether MI should have had a kill marker.
71740b57cec5SDimitry Andric static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
71750b57cec5SDimitry Andric   // Scan forward through BB for a use/def of CC.
71760b57cec5SDimitry Andric   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
71770b57cec5SDimitry Andric   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
71780b57cec5SDimitry Andric     const MachineInstr& mi = *miI;
71790b57cec5SDimitry Andric     if (mi.readsRegister(SystemZ::CC))
71800b57cec5SDimitry Andric       return false;
71810b57cec5SDimitry Andric     if (mi.definesRegister(SystemZ::CC))
71820b57cec5SDimitry Andric       break; // Should have kill-flag - update below.
71830b57cec5SDimitry Andric   }
71840b57cec5SDimitry Andric 
71850b57cec5SDimitry Andric   // If we hit the end of the block, check whether CC is live into a
71860b57cec5SDimitry Andric   // successor.
71870b57cec5SDimitry Andric   if (miI == MBB->end()) {
7188349cc55cSDimitry Andric     for (const MachineBasicBlock *Succ : MBB->successors())
7189349cc55cSDimitry Andric       if (Succ->isLiveIn(SystemZ::CC))
71900b57cec5SDimitry Andric         return false;
71910b57cec5SDimitry Andric   }
71920b57cec5SDimitry Andric 
71930b57cec5SDimitry Andric   return true;
71940b57cec5SDimitry Andric }
71950b57cec5SDimitry Andric 
71960b57cec5SDimitry Andric // Return true if it is OK for this Select pseudo-opcode to be cascaded
71970b57cec5SDimitry Andric // together with other Select pseudo-opcodes into a single basic-block with
71980b57cec5SDimitry Andric // a conditional jump around it.
71990b57cec5SDimitry Andric static bool isSelectPseudo(MachineInstr &MI) {
72000b57cec5SDimitry Andric   switch (MI.getOpcode()) {
72010b57cec5SDimitry Andric   case SystemZ::Select32:
72020b57cec5SDimitry Andric   case SystemZ::Select64:
72030b57cec5SDimitry Andric   case SystemZ::SelectF32:
72040b57cec5SDimitry Andric   case SystemZ::SelectF64:
72050b57cec5SDimitry Andric   case SystemZ::SelectF128:
72060b57cec5SDimitry Andric   case SystemZ::SelectVR32:
72070b57cec5SDimitry Andric   case SystemZ::SelectVR64:
72080b57cec5SDimitry Andric   case SystemZ::SelectVR128:
72090b57cec5SDimitry Andric     return true;
72100b57cec5SDimitry Andric 
72110b57cec5SDimitry Andric   default:
72120b57cec5SDimitry Andric     return false;
72130b57cec5SDimitry Andric   }
72140b57cec5SDimitry Andric }
72150b57cec5SDimitry Andric 
72160b57cec5SDimitry Andric // Helper function, which inserts PHI functions into SinkMBB:
72170b57cec5SDimitry Andric //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
72188bcb0991SDimitry Andric // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
72198bcb0991SDimitry Andric static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
72200b57cec5SDimitry Andric                                  MachineBasicBlock *TrueMBB,
72210b57cec5SDimitry Andric                                  MachineBasicBlock *FalseMBB,
72220b57cec5SDimitry Andric                                  MachineBasicBlock *SinkMBB) {
72230b57cec5SDimitry Andric   MachineFunction *MF = TrueMBB->getParent();
72240b57cec5SDimitry Andric   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
72250b57cec5SDimitry Andric 
72268bcb0991SDimitry Andric   MachineInstr *FirstMI = Selects.front();
72278bcb0991SDimitry Andric   unsigned CCValid = FirstMI->getOperand(3).getImm();
72288bcb0991SDimitry Andric   unsigned CCMask = FirstMI->getOperand(4).getImm();
72290b57cec5SDimitry Andric 
72300b57cec5SDimitry Andric   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
72310b57cec5SDimitry Andric 
72320b57cec5SDimitry Andric   // As we are creating the PHIs, we have to be careful if there is more than
72330b57cec5SDimitry Andric   // one.  Later Selects may reference the results of earlier Selects, but later
72340b57cec5SDimitry Andric   // PHIs have to reference the individual true/false inputs from earlier PHIs.
72350b57cec5SDimitry Andric   // That also means that PHI construction must work forward from earlier to
72360b57cec5SDimitry Andric   // later, and that the code must maintain a mapping from earlier PHI's
72370b57cec5SDimitry Andric   // destination registers, and the registers that went into the PHI.
72380b57cec5SDimitry Andric   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
72390b57cec5SDimitry Andric 
72408bcb0991SDimitry Andric   for (auto MI : Selects) {
72418bcb0991SDimitry Andric     Register DestReg = MI->getOperand(0).getReg();
72428bcb0991SDimitry Andric     Register TrueReg = MI->getOperand(1).getReg();
72438bcb0991SDimitry Andric     Register FalseReg = MI->getOperand(2).getReg();
72440b57cec5SDimitry Andric 
72450b57cec5SDimitry Andric     // If this Select we are generating is the opposite condition from
72460b57cec5SDimitry Andric     // the jump we generated, then we have to swap the operands for the
72470b57cec5SDimitry Andric     // PHI that is going to be generated.
72488bcb0991SDimitry Andric     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
72490b57cec5SDimitry Andric       std::swap(TrueReg, FalseReg);
72500b57cec5SDimitry Andric 
72510b57cec5SDimitry Andric     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
72520b57cec5SDimitry Andric       TrueReg = RegRewriteTable[TrueReg].first;
72530b57cec5SDimitry Andric 
72540b57cec5SDimitry Andric     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
72550b57cec5SDimitry Andric       FalseReg = RegRewriteTable[FalseReg].second;
72560b57cec5SDimitry Andric 
72578bcb0991SDimitry Andric     DebugLoc DL = MI->getDebugLoc();
72580b57cec5SDimitry Andric     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
72590b57cec5SDimitry Andric       .addReg(TrueReg).addMBB(TrueMBB)
72600b57cec5SDimitry Andric       .addReg(FalseReg).addMBB(FalseMBB);
72610b57cec5SDimitry Andric 
72620b57cec5SDimitry Andric     // Add this PHI to the rewrite table.
72630b57cec5SDimitry Andric     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
72640b57cec5SDimitry Andric   }
72650b57cec5SDimitry Andric 
72660b57cec5SDimitry Andric   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
72670b57cec5SDimitry Andric }
72680b57cec5SDimitry Andric 
72690b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
72700b57cec5SDimitry Andric MachineBasicBlock *
72710b57cec5SDimitry Andric SystemZTargetLowering::emitSelect(MachineInstr &MI,
72720b57cec5SDimitry Andric                                   MachineBasicBlock *MBB) const {
72738bcb0991SDimitry Andric   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
72740b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
72750b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
72760b57cec5SDimitry Andric 
72770b57cec5SDimitry Andric   unsigned CCValid = MI.getOperand(3).getImm();
72780b57cec5SDimitry Andric   unsigned CCMask = MI.getOperand(4).getImm();
72790b57cec5SDimitry Andric 
72800b57cec5SDimitry Andric   // If we have a sequence of Select* pseudo instructions using the
72810b57cec5SDimitry Andric   // same condition code value, we want to expand all of them into
72820b57cec5SDimitry Andric   // a single pair of basic blocks using the same condition.
72838bcb0991SDimitry Andric   SmallVector<MachineInstr*, 8> Selects;
72848bcb0991SDimitry Andric   SmallVector<MachineInstr*, 8> DbgValues;
72858bcb0991SDimitry Andric   Selects.push_back(&MI);
72868bcb0991SDimitry Andric   unsigned Count = 0;
72878bcb0991SDimitry Andric   for (MachineBasicBlock::iterator NextMIIt =
72888bcb0991SDimitry Andric          std::next(MachineBasicBlock::iterator(MI));
72898bcb0991SDimitry Andric        NextMIIt != MBB->end(); ++NextMIIt) {
72908bcb0991SDimitry Andric     if (isSelectPseudo(*NextMIIt)) {
72918bcb0991SDimitry Andric       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
72928bcb0991SDimitry Andric              "Bad CCValid operands since CC was not redefined.");
72938bcb0991SDimitry Andric       if (NextMIIt->getOperand(4).getImm() == CCMask ||
72948bcb0991SDimitry Andric           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
72958bcb0991SDimitry Andric         Selects.push_back(&*NextMIIt);
72968bcb0991SDimitry Andric         continue;
72978bcb0991SDimitry Andric       }
72988bcb0991SDimitry Andric       break;
72998bcb0991SDimitry Andric     }
730013138422SDimitry Andric     if (NextMIIt->definesRegister(SystemZ::CC) ||
730113138422SDimitry Andric         NextMIIt->usesCustomInsertionHook())
730213138422SDimitry Andric       break;
73038bcb0991SDimitry Andric     bool User = false;
73048bcb0991SDimitry Andric     for (auto SelMI : Selects)
73058bcb0991SDimitry Andric       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
73068bcb0991SDimitry Andric         User = true;
73078bcb0991SDimitry Andric         break;
73088bcb0991SDimitry Andric       }
73098bcb0991SDimitry Andric     if (NextMIIt->isDebugInstr()) {
73108bcb0991SDimitry Andric       if (User) {
73118bcb0991SDimitry Andric         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
73128bcb0991SDimitry Andric         DbgValues.push_back(&*NextMIIt);
73138bcb0991SDimitry Andric       }
73148bcb0991SDimitry Andric     }
73158bcb0991SDimitry Andric     else if (User || ++Count > 20)
73168bcb0991SDimitry Andric       break;
73170b57cec5SDimitry Andric   }
73180b57cec5SDimitry Andric 
73198bcb0991SDimitry Andric   MachineInstr *LastMI = Selects.back();
73208bcb0991SDimitry Andric   bool CCKilled =
73218bcb0991SDimitry Andric       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
73220b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
73235ffd83dbSDimitry Andric   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
73245ffd83dbSDimitry Andric   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
73250b57cec5SDimitry Andric 
73260b57cec5SDimitry Andric   // Unless CC was killed in the last Select instruction, mark it as
73270b57cec5SDimitry Andric   // live-in to both FalseMBB and JoinMBB.
73288bcb0991SDimitry Andric   if (!CCKilled) {
73290b57cec5SDimitry Andric     FalseMBB->addLiveIn(SystemZ::CC);
73300b57cec5SDimitry Andric     JoinMBB->addLiveIn(SystemZ::CC);
73310b57cec5SDimitry Andric   }
73320b57cec5SDimitry Andric 
73330b57cec5SDimitry Andric   //  StartMBB:
73340b57cec5SDimitry Andric   //   BRC CCMask, JoinMBB
73350b57cec5SDimitry Andric   //   # fallthrough to FalseMBB
73360b57cec5SDimitry Andric   MBB = StartMBB;
73378bcb0991SDimitry Andric   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
73380b57cec5SDimitry Andric     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
73390b57cec5SDimitry Andric   MBB->addSuccessor(JoinMBB);
73400b57cec5SDimitry Andric   MBB->addSuccessor(FalseMBB);
73410b57cec5SDimitry Andric 
73420b57cec5SDimitry Andric   //  FalseMBB:
73430b57cec5SDimitry Andric   //   # fallthrough to JoinMBB
73440b57cec5SDimitry Andric   MBB = FalseMBB;
73450b57cec5SDimitry Andric   MBB->addSuccessor(JoinMBB);
73460b57cec5SDimitry Andric 
73470b57cec5SDimitry Andric   //  JoinMBB:
73480b57cec5SDimitry Andric   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
73490b57cec5SDimitry Andric   //  ...
73500b57cec5SDimitry Andric   MBB = JoinMBB;
73518bcb0991SDimitry Andric   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
73528bcb0991SDimitry Andric   for (auto SelMI : Selects)
73538bcb0991SDimitry Andric     SelMI->eraseFromParent();
73540b57cec5SDimitry Andric 
73558bcb0991SDimitry Andric   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
73568bcb0991SDimitry Andric   for (auto DbgMI : DbgValues)
73578bcb0991SDimitry Andric     MBB->splice(InsertPos, StartMBB, DbgMI);
73588bcb0991SDimitry Andric 
73590b57cec5SDimitry Andric   return JoinMBB;
73600b57cec5SDimitry Andric }
73610b57cec5SDimitry Andric 
73620b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
73630b57cec5SDimitry Andric // StoreOpcode is the store to use and Invert says whether the store should
73640b57cec5SDimitry Andric // happen when the condition is false rather than true.  If a STORE ON
73650b57cec5SDimitry Andric // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
73660b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
73670b57cec5SDimitry Andric                                                         MachineBasicBlock *MBB,
73680b57cec5SDimitry Andric                                                         unsigned StoreOpcode,
73690b57cec5SDimitry Andric                                                         unsigned STOCOpcode,
73700b57cec5SDimitry Andric                                                         bool Invert) const {
73710b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
73720b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
73730b57cec5SDimitry Andric 
73748bcb0991SDimitry Andric   Register SrcReg = MI.getOperand(0).getReg();
73750b57cec5SDimitry Andric   MachineOperand Base = MI.getOperand(1);
73760b57cec5SDimitry Andric   int64_t Disp = MI.getOperand(2).getImm();
73778bcb0991SDimitry Andric   Register IndexReg = MI.getOperand(3).getReg();
73780b57cec5SDimitry Andric   unsigned CCValid = MI.getOperand(4).getImm();
73790b57cec5SDimitry Andric   unsigned CCMask = MI.getOperand(5).getImm();
73800b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
73810b57cec5SDimitry Andric 
73820b57cec5SDimitry Andric   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
73830b57cec5SDimitry Andric 
73840b57cec5SDimitry Andric   // ISel pattern matching also adds a load memory operand of the same
73850b57cec5SDimitry Andric   // address, so take special care to find the storing memory operand.
73860b57cec5SDimitry Andric   MachineMemOperand *MMO = nullptr;
73870b57cec5SDimitry Andric   for (auto *I : MI.memoperands())
73880b57cec5SDimitry Andric     if (I->isStore()) {
73890b57cec5SDimitry Andric       MMO = I;
73900b57cec5SDimitry Andric       break;
73910b57cec5SDimitry Andric     }
73920b57cec5SDimitry Andric 
7393e8d8bef9SDimitry Andric   // Use STOCOpcode if possible.  We could use different store patterns in
7394e8d8bef9SDimitry Andric   // order to avoid matching the index register, but the performance trade-offs
7395e8d8bef9SDimitry Andric   // might be more complicated in that case.
7396e8d8bef9SDimitry Andric   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7397e8d8bef9SDimitry Andric     if (Invert)
7398e8d8bef9SDimitry Andric       CCMask ^= CCValid;
7399e8d8bef9SDimitry Andric 
74000b57cec5SDimitry Andric     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
74010b57cec5SDimitry Andric       .addReg(SrcReg)
74020b57cec5SDimitry Andric       .add(Base)
74030b57cec5SDimitry Andric       .addImm(Disp)
74040b57cec5SDimitry Andric       .addImm(CCValid)
74050b57cec5SDimitry Andric       .addImm(CCMask)
74060b57cec5SDimitry Andric       .addMemOperand(MMO);
74070b57cec5SDimitry Andric 
74080b57cec5SDimitry Andric     MI.eraseFromParent();
74090b57cec5SDimitry Andric     return MBB;
74100b57cec5SDimitry Andric   }
74110b57cec5SDimitry Andric 
74120b57cec5SDimitry Andric   // Get the condition needed to branch around the store.
74130b57cec5SDimitry Andric   if (!Invert)
74140b57cec5SDimitry Andric     CCMask ^= CCValid;
74150b57cec5SDimitry Andric 
74160b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
74175ffd83dbSDimitry Andric   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
74185ffd83dbSDimitry Andric   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
74190b57cec5SDimitry Andric 
74200b57cec5SDimitry Andric   // Unless CC was killed in the CondStore instruction, mark it as
74210b57cec5SDimitry Andric   // live-in to both FalseMBB and JoinMBB.
74220b57cec5SDimitry Andric   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
74230b57cec5SDimitry Andric     FalseMBB->addLiveIn(SystemZ::CC);
74240b57cec5SDimitry Andric     JoinMBB->addLiveIn(SystemZ::CC);
74250b57cec5SDimitry Andric   }
74260b57cec5SDimitry Andric 
74270b57cec5SDimitry Andric   //  StartMBB:
74280b57cec5SDimitry Andric   //   BRC CCMask, JoinMBB
74290b57cec5SDimitry Andric   //   # fallthrough to FalseMBB
74300b57cec5SDimitry Andric   MBB = StartMBB;
74310b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
74320b57cec5SDimitry Andric     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
74330b57cec5SDimitry Andric   MBB->addSuccessor(JoinMBB);
74340b57cec5SDimitry Andric   MBB->addSuccessor(FalseMBB);
74350b57cec5SDimitry Andric 
74360b57cec5SDimitry Andric   //  FalseMBB:
74370b57cec5SDimitry Andric   //   store %SrcReg, %Disp(%Index,%Base)
74380b57cec5SDimitry Andric   //   # fallthrough to JoinMBB
74390b57cec5SDimitry Andric   MBB = FalseMBB;
74400b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(StoreOpcode))
74410b57cec5SDimitry Andric       .addReg(SrcReg)
74420b57cec5SDimitry Andric       .add(Base)
74430b57cec5SDimitry Andric       .addImm(Disp)
7444e8d8bef9SDimitry Andric       .addReg(IndexReg)
7445e8d8bef9SDimitry Andric       .addMemOperand(MMO);
74460b57cec5SDimitry Andric   MBB->addSuccessor(JoinMBB);
74470b57cec5SDimitry Andric 
74480b57cec5SDimitry Andric   MI.eraseFromParent();
74490b57cec5SDimitry Andric   return JoinMBB;
74500b57cec5SDimitry Andric }
74510b57cec5SDimitry Andric 
74520b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
74530b57cec5SDimitry Andric // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
74540b57cec5SDimitry Andric // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
74550b57cec5SDimitry Andric // BitSize is the width of the field in bits, or 0 if this is a partword
74560b57cec5SDimitry Andric // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
74570b57cec5SDimitry Andric // is one of the operands.  Invert says whether the field should be
74580b57cec5SDimitry Andric // inverted after performing BinOpcode (e.g. for NAND).
74590b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
74600b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
74610b57cec5SDimitry Andric     unsigned BitSize, bool Invert) const {
74620b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
74630b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
74640b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
74650b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
74660b57cec5SDimitry Andric   bool IsSubWord = (BitSize < 32);
74670b57cec5SDimitry Andric 
74680b57cec5SDimitry Andric   // Extract the operands.  Base can be a register or a frame index.
74690b57cec5SDimitry Andric   // Src2 can be a register or immediate.
74708bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
74710b57cec5SDimitry Andric   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
74720b57cec5SDimitry Andric   int64_t Disp = MI.getOperand(2).getImm();
74730b57cec5SDimitry Andric   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
74740b57cec5SDimitry Andric   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
74750b57cec5SDimitry Andric   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
74760b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
74770b57cec5SDimitry Andric   if (IsSubWord)
74780b57cec5SDimitry Andric     BitSize = MI.getOperand(6).getImm();
74790b57cec5SDimitry Andric 
74800b57cec5SDimitry Andric   // Subword operations use 32-bit registers.
74810b57cec5SDimitry Andric   const TargetRegisterClass *RC = (BitSize <= 32 ?
74820b57cec5SDimitry Andric                                    &SystemZ::GR32BitRegClass :
74830b57cec5SDimitry Andric                                    &SystemZ::GR64BitRegClass);
74840b57cec5SDimitry Andric   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
74850b57cec5SDimitry Andric   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
74860b57cec5SDimitry Andric 
74870b57cec5SDimitry Andric   // Get the right opcodes for the displacement.
74880b57cec5SDimitry Andric   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
74890b57cec5SDimitry Andric   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
74900b57cec5SDimitry Andric   assert(LOpcode && CSOpcode && "Displacement out of range");
74910b57cec5SDimitry Andric 
74920b57cec5SDimitry Andric   // Create virtual registers for temporary results.
74930b57cec5SDimitry Andric   Register OrigVal       = MRI.createVirtualRegister(RC);
74940b57cec5SDimitry Andric   Register OldVal        = MRI.createVirtualRegister(RC);
74950b57cec5SDimitry Andric   Register NewVal        = (BinOpcode || IsSubWord ?
74960b57cec5SDimitry Andric                             MRI.createVirtualRegister(RC) : Src2.getReg());
74970b57cec5SDimitry Andric   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
74980b57cec5SDimitry Andric   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
74990b57cec5SDimitry Andric 
75000b57cec5SDimitry Andric   // Insert a basic block for the main loop.
75010b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
75025ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
75035ffd83dbSDimitry Andric   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
75040b57cec5SDimitry Andric 
75050b57cec5SDimitry Andric   //  StartMBB:
75060b57cec5SDimitry Andric   //   ...
75070b57cec5SDimitry Andric   //   %OrigVal = L Disp(%Base)
7508fe6060f1SDimitry Andric   //   # fall through to LoopMBB
75090b57cec5SDimitry Andric   MBB = StartMBB;
75100b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
75110b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
75120b57cec5SDimitry Andric 
75130b57cec5SDimitry Andric   //  LoopMBB:
75140b57cec5SDimitry Andric   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
75150b57cec5SDimitry Andric   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
75160b57cec5SDimitry Andric   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
75170b57cec5SDimitry Andric   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
75180b57cec5SDimitry Andric   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
75190b57cec5SDimitry Andric   //   JNE LoopMBB
7520fe6060f1SDimitry Andric   //   # fall through to DoneMBB
75210b57cec5SDimitry Andric   MBB = LoopMBB;
75220b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
75230b57cec5SDimitry Andric     .addReg(OrigVal).addMBB(StartMBB)
75240b57cec5SDimitry Andric     .addReg(Dest).addMBB(LoopMBB);
75250b57cec5SDimitry Andric   if (IsSubWord)
75260b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
75270b57cec5SDimitry Andric       .addReg(OldVal).addReg(BitShift).addImm(0);
75280b57cec5SDimitry Andric   if (Invert) {
75290b57cec5SDimitry Andric     // Perform the operation normally and then invert every bit of the field.
75308bcb0991SDimitry Andric     Register Tmp = MRI.createVirtualRegister(RC);
75310b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
75320b57cec5SDimitry Andric     if (BitSize <= 32)
75330b57cec5SDimitry Andric       // XILF with the upper BitSize bits set.
75340b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
75350b57cec5SDimitry Andric         .addReg(Tmp).addImm(-1U << (32 - BitSize));
75360b57cec5SDimitry Andric     else {
75370b57cec5SDimitry Andric       // Use LCGR and add -1 to the result, which is more compact than
75380b57cec5SDimitry Andric       // an XILF, XILH pair.
75398bcb0991SDimitry Andric       Register Tmp2 = MRI.createVirtualRegister(RC);
75400b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
75410b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
75420b57cec5SDimitry Andric         .addReg(Tmp2).addImm(-1);
75430b57cec5SDimitry Andric     }
75440b57cec5SDimitry Andric   } else if (BinOpcode)
75450b57cec5SDimitry Andric     // A simply binary operation.
75460b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
75470b57cec5SDimitry Andric         .addReg(RotatedOldVal)
75480b57cec5SDimitry Andric         .add(Src2);
75490b57cec5SDimitry Andric   else if (IsSubWord)
75500b57cec5SDimitry Andric     // Use RISBG to rotate Src2 into position and use it to replace the
75510b57cec5SDimitry Andric     // field in RotatedOldVal.
75520b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
75530b57cec5SDimitry Andric       .addReg(RotatedOldVal).addReg(Src2.getReg())
75540b57cec5SDimitry Andric       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
75550b57cec5SDimitry Andric   if (IsSubWord)
75560b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
75570b57cec5SDimitry Andric       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
75580b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
75590b57cec5SDimitry Andric       .addReg(OldVal)
75600b57cec5SDimitry Andric       .addReg(NewVal)
75610b57cec5SDimitry Andric       .add(Base)
75620b57cec5SDimitry Andric       .addImm(Disp);
75630b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
75640b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
75650b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
75660b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
75670b57cec5SDimitry Andric 
75680b57cec5SDimitry Andric   MI.eraseFromParent();
75690b57cec5SDimitry Andric   return DoneMBB;
75700b57cec5SDimitry Andric }
75710b57cec5SDimitry Andric 
75720b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo
75730b57cec5SDimitry Andric // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
75740b57cec5SDimitry Andric // instruction that should be used to compare the current field with the
75750b57cec5SDimitry Andric // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
75760b57cec5SDimitry Andric // for when the current field should be kept.  BitSize is the width of
75770b57cec5SDimitry Andric // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
75780b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
75790b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
75800b57cec5SDimitry Andric     unsigned KeepOldMask, unsigned BitSize) const {
75810b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
75820b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
75830b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
75840b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
75850b57cec5SDimitry Andric   bool IsSubWord = (BitSize < 32);
75860b57cec5SDimitry Andric 
75870b57cec5SDimitry Andric   // Extract the operands.  Base can be a register or a frame index.
75888bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
75890b57cec5SDimitry Andric   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
75900b57cec5SDimitry Andric   int64_t Disp = MI.getOperand(2).getImm();
75910b57cec5SDimitry Andric   Register Src2 = MI.getOperand(3).getReg();
75920b57cec5SDimitry Andric   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
75930b57cec5SDimitry Andric   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
75940b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
75950b57cec5SDimitry Andric   if (IsSubWord)
75960b57cec5SDimitry Andric     BitSize = MI.getOperand(6).getImm();
75970b57cec5SDimitry Andric 
75980b57cec5SDimitry Andric   // Subword operations use 32-bit registers.
75990b57cec5SDimitry Andric   const TargetRegisterClass *RC = (BitSize <= 32 ?
76000b57cec5SDimitry Andric                                    &SystemZ::GR32BitRegClass :
76010b57cec5SDimitry Andric                                    &SystemZ::GR64BitRegClass);
76020b57cec5SDimitry Andric   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
76030b57cec5SDimitry Andric   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
76040b57cec5SDimitry Andric 
76050b57cec5SDimitry Andric   // Get the right opcodes for the displacement.
76060b57cec5SDimitry Andric   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
76070b57cec5SDimitry Andric   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
76080b57cec5SDimitry Andric   assert(LOpcode && CSOpcode && "Displacement out of range");
76090b57cec5SDimitry Andric 
76100b57cec5SDimitry Andric   // Create virtual registers for temporary results.
76110b57cec5SDimitry Andric   Register OrigVal       = MRI.createVirtualRegister(RC);
76120b57cec5SDimitry Andric   Register OldVal        = MRI.createVirtualRegister(RC);
76130b57cec5SDimitry Andric   Register NewVal        = MRI.createVirtualRegister(RC);
76140b57cec5SDimitry Andric   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
76150b57cec5SDimitry Andric   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
76160b57cec5SDimitry Andric   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
76170b57cec5SDimitry Andric 
76180b57cec5SDimitry Andric   // Insert 3 basic blocks for the loop.
76190b57cec5SDimitry Andric   MachineBasicBlock *StartMBB  = MBB;
76205ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
76215ffd83dbSDimitry Andric   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
76225ffd83dbSDimitry Andric   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
76235ffd83dbSDimitry Andric   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
76240b57cec5SDimitry Andric 
76250b57cec5SDimitry Andric   //  StartMBB:
76260b57cec5SDimitry Andric   //   ...
76270b57cec5SDimitry Andric   //   %OrigVal     = L Disp(%Base)
7628fe6060f1SDimitry Andric   //   # fall through to LoopMBB
76290b57cec5SDimitry Andric   MBB = StartMBB;
76300b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
76310b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
76320b57cec5SDimitry Andric 
76330b57cec5SDimitry Andric   //  LoopMBB:
76340b57cec5SDimitry Andric   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
76350b57cec5SDimitry Andric   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
76360b57cec5SDimitry Andric   //   CompareOpcode %RotatedOldVal, %Src2
76370b57cec5SDimitry Andric   //   BRC KeepOldMask, UpdateMBB
76380b57cec5SDimitry Andric   MBB = LoopMBB;
76390b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
76400b57cec5SDimitry Andric     .addReg(OrigVal).addMBB(StartMBB)
76410b57cec5SDimitry Andric     .addReg(Dest).addMBB(UpdateMBB);
76420b57cec5SDimitry Andric   if (IsSubWord)
76430b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
76440b57cec5SDimitry Andric       .addReg(OldVal).addReg(BitShift).addImm(0);
76450b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(CompareOpcode))
76460b57cec5SDimitry Andric     .addReg(RotatedOldVal).addReg(Src2);
76470b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
76480b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
76490b57cec5SDimitry Andric   MBB->addSuccessor(UpdateMBB);
76500b57cec5SDimitry Andric   MBB->addSuccessor(UseAltMBB);
76510b57cec5SDimitry Andric 
76520b57cec5SDimitry Andric   //  UseAltMBB:
76530b57cec5SDimitry Andric   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7654fe6060f1SDimitry Andric   //   # fall through to UpdateMBB
76550b57cec5SDimitry Andric   MBB = UseAltMBB;
76560b57cec5SDimitry Andric   if (IsSubWord)
76570b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
76580b57cec5SDimitry Andric       .addReg(RotatedOldVal).addReg(Src2)
76590b57cec5SDimitry Andric       .addImm(32).addImm(31 + BitSize).addImm(0);
76600b57cec5SDimitry Andric   MBB->addSuccessor(UpdateMBB);
76610b57cec5SDimitry Andric 
76620b57cec5SDimitry Andric   //  UpdateMBB:
76630b57cec5SDimitry Andric   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
76640b57cec5SDimitry Andric   //                        [ %RotatedAltVal, UseAltMBB ]
76650b57cec5SDimitry Andric   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
76660b57cec5SDimitry Andric   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
76670b57cec5SDimitry Andric   //   JNE LoopMBB
7668fe6060f1SDimitry Andric   //   # fall through to DoneMBB
76690b57cec5SDimitry Andric   MBB = UpdateMBB;
76700b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
76710b57cec5SDimitry Andric     .addReg(RotatedOldVal).addMBB(LoopMBB)
76720b57cec5SDimitry Andric     .addReg(RotatedAltVal).addMBB(UseAltMBB);
76730b57cec5SDimitry Andric   if (IsSubWord)
76740b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
76750b57cec5SDimitry Andric       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
76760b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
76770b57cec5SDimitry Andric       .addReg(OldVal)
76780b57cec5SDimitry Andric       .addReg(NewVal)
76790b57cec5SDimitry Andric       .add(Base)
76800b57cec5SDimitry Andric       .addImm(Disp);
76810b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
76820b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
76830b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
76840b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
76850b57cec5SDimitry Andric 
76860b57cec5SDimitry Andric   MI.eraseFromParent();
76870b57cec5SDimitry Andric   return DoneMBB;
76880b57cec5SDimitry Andric }
76890b57cec5SDimitry Andric 
76900b57cec5SDimitry Andric // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
76910b57cec5SDimitry Andric // instruction MI.
76920b57cec5SDimitry Andric MachineBasicBlock *
76930b57cec5SDimitry Andric SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
76940b57cec5SDimitry Andric                                           MachineBasicBlock *MBB) const {
76950b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
76960b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
76970b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
76980b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
76990b57cec5SDimitry Andric 
77000b57cec5SDimitry Andric   // Extract the operands.  Base can be a register or a frame index.
77018bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
77020b57cec5SDimitry Andric   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
77030b57cec5SDimitry Andric   int64_t Disp = MI.getOperand(2).getImm();
7704fe6060f1SDimitry Andric   Register CmpVal = MI.getOperand(3).getReg();
77058bcb0991SDimitry Andric   Register OrigSwapVal = MI.getOperand(4).getReg();
77068bcb0991SDimitry Andric   Register BitShift = MI.getOperand(5).getReg();
77078bcb0991SDimitry Andric   Register NegBitShift = MI.getOperand(6).getReg();
77080b57cec5SDimitry Andric   int64_t BitSize = MI.getOperand(7).getImm();
77090b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
77100b57cec5SDimitry Andric 
77110b57cec5SDimitry Andric   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
77120b57cec5SDimitry Andric 
7713fe6060f1SDimitry Andric   // Get the right opcodes for the displacement and zero-extension.
77140b57cec5SDimitry Andric   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
77150b57cec5SDimitry Andric   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7716fe6060f1SDimitry Andric   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
77170b57cec5SDimitry Andric   assert(LOpcode && CSOpcode && "Displacement out of range");
77180b57cec5SDimitry Andric 
77190b57cec5SDimitry Andric   // Create virtual registers for temporary results.
77208bcb0991SDimitry Andric   Register OrigOldVal = MRI.createVirtualRegister(RC);
77218bcb0991SDimitry Andric   Register OldVal = MRI.createVirtualRegister(RC);
77228bcb0991SDimitry Andric   Register SwapVal = MRI.createVirtualRegister(RC);
77238bcb0991SDimitry Andric   Register StoreVal = MRI.createVirtualRegister(RC);
7724fe6060f1SDimitry Andric   Register OldValRot = MRI.createVirtualRegister(RC);
77258bcb0991SDimitry Andric   Register RetryOldVal = MRI.createVirtualRegister(RC);
77268bcb0991SDimitry Andric   Register RetrySwapVal = MRI.createVirtualRegister(RC);
77270b57cec5SDimitry Andric 
77280b57cec5SDimitry Andric   // Insert 2 basic blocks for the loop.
77290b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
77305ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
77315ffd83dbSDimitry Andric   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
77325ffd83dbSDimitry Andric   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
77330b57cec5SDimitry Andric 
77340b57cec5SDimitry Andric   //  StartMBB:
77350b57cec5SDimitry Andric   //   ...
77360b57cec5SDimitry Andric   //   %OrigOldVal     = L Disp(%Base)
7737fe6060f1SDimitry Andric   //   # fall through to LoopMBB
77380b57cec5SDimitry Andric   MBB = StartMBB;
77390b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
77400b57cec5SDimitry Andric       .add(Base)
77410b57cec5SDimitry Andric       .addImm(Disp)
77420b57cec5SDimitry Andric       .addReg(0);
77430b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
77440b57cec5SDimitry Andric 
77450b57cec5SDimitry Andric   //  LoopMBB:
77460b57cec5SDimitry Andric   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
77470b57cec5SDimitry Andric   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7748fe6060f1SDimitry Andric   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
77490b57cec5SDimitry Andric   //                      ^^ The low BitSize bits contain the field
77500b57cec5SDimitry Andric   //                         of interest.
7751fe6060f1SDimitry Andric   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
77520b57cec5SDimitry Andric   //                      ^^ Replace the upper 32-BitSize bits of the
7753fe6060f1SDimitry Andric   //                         swap value with those that we loaded and rotated.
7754fe6060f1SDimitry Andric   //   %Dest = LL[CH] %OldValRot
7755fe6060f1SDimitry Andric   //   CR %Dest, %CmpVal
77560b57cec5SDimitry Andric   //   JNE DoneMBB
77570b57cec5SDimitry Andric   //   # Fall through to SetMBB
77580b57cec5SDimitry Andric   MBB = LoopMBB;
77590b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
77600b57cec5SDimitry Andric     .addReg(OrigOldVal).addMBB(StartMBB)
77610b57cec5SDimitry Andric     .addReg(RetryOldVal).addMBB(SetMBB);
77620b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
77630b57cec5SDimitry Andric     .addReg(OrigSwapVal).addMBB(StartMBB)
77640b57cec5SDimitry Andric     .addReg(RetrySwapVal).addMBB(SetMBB);
7765fe6060f1SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
77660b57cec5SDimitry Andric     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7767fe6060f1SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7768fe6060f1SDimitry Andric     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7769fe6060f1SDimitry Andric   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7770fe6060f1SDimitry Andric     .addReg(OldValRot);
77710b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7772fe6060f1SDimitry Andric     .addReg(Dest).addReg(CmpVal);
77730b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
77740b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_ICMP)
77750b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
77760b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
77770b57cec5SDimitry Andric   MBB->addSuccessor(SetMBB);
77780b57cec5SDimitry Andric 
77790b57cec5SDimitry Andric   //  SetMBB:
77800b57cec5SDimitry Andric   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
77810b57cec5SDimitry Andric   //                      ^^ Rotate the new field to its proper position.
7782fe6060f1SDimitry Andric   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
77830b57cec5SDimitry Andric   //   JNE LoopMBB
7784fe6060f1SDimitry Andric   //   # fall through to ExitMBB
77850b57cec5SDimitry Andric   MBB = SetMBB;
77860b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
77870b57cec5SDimitry Andric     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
77880b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
77890b57cec5SDimitry Andric       .addReg(OldVal)
77900b57cec5SDimitry Andric       .addReg(StoreVal)
77910b57cec5SDimitry Andric       .add(Base)
77920b57cec5SDimitry Andric       .addImm(Disp);
77930b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
77940b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
77950b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
77960b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
77970b57cec5SDimitry Andric 
77980b57cec5SDimitry Andric   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
77990b57cec5SDimitry Andric   // to the block after the loop.  At this point, CC may have been defined
78000b57cec5SDimitry Andric   // either by the CR in LoopMBB or by the CS in SetMBB.
78010b57cec5SDimitry Andric   if (!MI.registerDefIsDead(SystemZ::CC))
78020b57cec5SDimitry Andric     DoneMBB->addLiveIn(SystemZ::CC);
78030b57cec5SDimitry Andric 
78040b57cec5SDimitry Andric   MI.eraseFromParent();
78050b57cec5SDimitry Andric   return DoneMBB;
78060b57cec5SDimitry Andric }
78070b57cec5SDimitry Andric 
78080b57cec5SDimitry Andric // Emit a move from two GR64s to a GR128.
78090b57cec5SDimitry Andric MachineBasicBlock *
78100b57cec5SDimitry Andric SystemZTargetLowering::emitPair128(MachineInstr &MI,
78110b57cec5SDimitry Andric                                    MachineBasicBlock *MBB) const {
78120b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
78130b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
78140b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
78150b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
78160b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
78170b57cec5SDimitry Andric 
78188bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
78198bcb0991SDimitry Andric   Register Hi = MI.getOperand(1).getReg();
78208bcb0991SDimitry Andric   Register Lo = MI.getOperand(2).getReg();
78218bcb0991SDimitry Andric   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
78228bcb0991SDimitry Andric   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
78230b57cec5SDimitry Andric 
78240b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
78250b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
78260b57cec5SDimitry Andric     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
78270b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
78280b57cec5SDimitry Andric     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
78290b57cec5SDimitry Andric 
78300b57cec5SDimitry Andric   MI.eraseFromParent();
78310b57cec5SDimitry Andric   return MBB;
78320b57cec5SDimitry Andric }
78330b57cec5SDimitry Andric 
78340b57cec5SDimitry Andric // Emit an extension from a GR64 to a GR128.  ClearEven is true
78350b57cec5SDimitry Andric // if the high register of the GR128 value must be cleared or false if
78360b57cec5SDimitry Andric // it's "don't care".
78370b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
78380b57cec5SDimitry Andric                                                      MachineBasicBlock *MBB,
78390b57cec5SDimitry Andric                                                      bool ClearEven) const {
78400b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
78410b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
78420b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
78430b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
78440b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
78450b57cec5SDimitry Andric 
78468bcb0991SDimitry Andric   Register Dest = MI.getOperand(0).getReg();
78478bcb0991SDimitry Andric   Register Src = MI.getOperand(1).getReg();
78488bcb0991SDimitry Andric   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
78490b57cec5SDimitry Andric 
78500b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
78510b57cec5SDimitry Andric   if (ClearEven) {
78528bcb0991SDimitry Andric     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
78538bcb0991SDimitry Andric     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
78540b57cec5SDimitry Andric 
78550b57cec5SDimitry Andric     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
78560b57cec5SDimitry Andric       .addImm(0);
78570b57cec5SDimitry Andric     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
78580b57cec5SDimitry Andric       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
78590b57cec5SDimitry Andric     In128 = NewIn128;
78600b57cec5SDimitry Andric   }
78610b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
78620b57cec5SDimitry Andric     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
78630b57cec5SDimitry Andric 
78640b57cec5SDimitry Andric   MI.eraseFromParent();
78650b57cec5SDimitry Andric   return MBB;
78660b57cec5SDimitry Andric }
78670b57cec5SDimitry Andric 
78680eae32dcSDimitry Andric MachineBasicBlock *
78690eae32dcSDimitry Andric SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
78700eae32dcSDimitry Andric                                          MachineBasicBlock *MBB,
78710eae32dcSDimitry Andric                                          unsigned Opcode, bool IsMemset) const {
78720b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
78730b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
78740b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
78750b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
78760b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
78770b57cec5SDimitry Andric 
78780b57cec5SDimitry Andric   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
78790b57cec5SDimitry Andric   uint64_t DestDisp = MI.getOperand(1).getImm();
78800eae32dcSDimitry Andric   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
78810eae32dcSDimitry Andric   uint64_t SrcDisp;
78820eae32dcSDimitry Andric 
78830eae32dcSDimitry Andric   // Fold the displacement Disp if it is out of range.
78840eae32dcSDimitry Andric   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
78850eae32dcSDimitry Andric     if (!isUInt<12>(Disp)) {
78860eae32dcSDimitry Andric       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
78870eae32dcSDimitry Andric       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
78880eae32dcSDimitry Andric       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
78890eae32dcSDimitry Andric         .add(Base).addImm(Disp).addReg(0);
78900eae32dcSDimitry Andric       Base = MachineOperand::CreateReg(Reg, false);
78910eae32dcSDimitry Andric       Disp = 0;
78920eae32dcSDimitry Andric     }
78930eae32dcSDimitry Andric   };
78940eae32dcSDimitry Andric 
78950eae32dcSDimitry Andric   if (!IsMemset) {
78960eae32dcSDimitry Andric     SrcBase = earlyUseOperand(MI.getOperand(2));
78970eae32dcSDimitry Andric     SrcDisp = MI.getOperand(3).getImm();
78980eae32dcSDimitry Andric   } else {
78990eae32dcSDimitry Andric     SrcBase = DestBase;
79000eae32dcSDimitry Andric     SrcDisp = DestDisp++;
79010eae32dcSDimitry Andric     foldDisplIfNeeded(DestBase, DestDisp);
79020eae32dcSDimitry Andric   }
79030eae32dcSDimitry Andric 
79040eae32dcSDimitry Andric   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
7905349cc55cSDimitry Andric   bool IsImmForm = LengthMO.isImm();
7906349cc55cSDimitry Andric   bool IsRegForm = !IsImmForm;
7907349cc55cSDimitry Andric 
79080eae32dcSDimitry Andric   // Build and insert one Opcode of Length, with special treatment for memset.
79090eae32dcSDimitry Andric   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
79100eae32dcSDimitry Andric                             MachineBasicBlock::iterator InsPos,
79110eae32dcSDimitry Andric                             MachineOperand DBase, uint64_t DDisp,
79120eae32dcSDimitry Andric                             MachineOperand SBase, uint64_t SDisp,
79130eae32dcSDimitry Andric                             unsigned Length) -> void {
79140eae32dcSDimitry Andric     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
79150eae32dcSDimitry Andric     if (IsMemset) {
79160eae32dcSDimitry Andric       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
79170eae32dcSDimitry Andric       if (ByteMO.isImm())
79180eae32dcSDimitry Andric         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
79190eae32dcSDimitry Andric           .add(SBase).addImm(SDisp).add(ByteMO);
79200eae32dcSDimitry Andric       else
79210eae32dcSDimitry Andric         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
79220eae32dcSDimitry Andric           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
79230eae32dcSDimitry Andric       if (--Length == 0)
79240eae32dcSDimitry Andric         return;
79250eae32dcSDimitry Andric     }
79260eae32dcSDimitry Andric     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
79270eae32dcSDimitry Andric       .add(DBase).addImm(DDisp).addImm(Length)
79280eae32dcSDimitry Andric       .add(SBase).addImm(SDisp)
79290eae32dcSDimitry Andric       .setMemRefs(MI.memoperands());
79300eae32dcSDimitry Andric   };
79310eae32dcSDimitry Andric 
7932349cc55cSDimitry Andric   bool NeedsLoop = false;
7933349cc55cSDimitry Andric   uint64_t ImmLength = 0;
79340eae32dcSDimitry Andric   Register LenAdjReg = SystemZ::NoRegister;
7935349cc55cSDimitry Andric   if (IsImmForm) {
7936349cc55cSDimitry Andric     ImmLength = LengthMO.getImm();
79370eae32dcSDimitry Andric     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
7938349cc55cSDimitry Andric     if (ImmLength == 0) {
7939349cc55cSDimitry Andric       MI.eraseFromParent();
7940349cc55cSDimitry Andric       return MBB;
7941349cc55cSDimitry Andric     }
7942349cc55cSDimitry Andric     if (Opcode == SystemZ::CLC) {
7943349cc55cSDimitry Andric       if (ImmLength > 3 * 256)
7944349cc55cSDimitry Andric         // A two-CLC sequence is a clear win over a loop, not least because
7945349cc55cSDimitry Andric         // it needs only one branch.  A three-CLC sequence needs the same
7946349cc55cSDimitry Andric         // number of branches as a loop (i.e. 2), but is shorter.  That
7947349cc55cSDimitry Andric         // brings us to lengths greater than 768 bytes.  It seems relatively
7948349cc55cSDimitry Andric         // likely that a difference will be found within the first 768 bytes,
7949349cc55cSDimitry Andric         // so we just optimize for the smallest number of branch
7950349cc55cSDimitry Andric         // instructions, in order to avoid polluting the prediction buffer
7951349cc55cSDimitry Andric         // too much.
7952349cc55cSDimitry Andric         NeedsLoop = true;
7953349cc55cSDimitry Andric     } else if (ImmLength > 6 * 256)
7954349cc55cSDimitry Andric       // The heuristic we use is to prefer loops for anything that would
7955349cc55cSDimitry Andric       // require 7 or more MVCs.  With these kinds of sizes there isn't much
7956349cc55cSDimitry Andric       // to choose between straight-line code and looping code, since the
7957349cc55cSDimitry Andric       // time will be dominated by the MVCs themselves.
7958349cc55cSDimitry Andric       NeedsLoop = true;
7959349cc55cSDimitry Andric   } else {
7960349cc55cSDimitry Andric     NeedsLoop = true;
79610eae32dcSDimitry Andric     LenAdjReg = LengthMO.getReg();
7962349cc55cSDimitry Andric   }
79630b57cec5SDimitry Andric 
79640b57cec5SDimitry Andric   // When generating more than one CLC, all but the last will need to
79650b57cec5SDimitry Andric   // branch to the end when a difference is found.
7966349cc55cSDimitry Andric   MachineBasicBlock *EndMBB =
7967349cc55cSDimitry Andric       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
7968fe6060f1SDimitry Andric            ? SystemZ::splitBlockAfter(MI, MBB)
7969fe6060f1SDimitry Andric            : nullptr);
79700b57cec5SDimitry Andric 
7971349cc55cSDimitry Andric   if (NeedsLoop) {
7972349cc55cSDimitry Andric     Register StartCountReg =
7973349cc55cSDimitry Andric       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7974349cc55cSDimitry Andric     if (IsImmForm) {
7975349cc55cSDimitry Andric       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
7976349cc55cSDimitry Andric       ImmLength &= 255;
7977349cc55cSDimitry Andric     } else {
7978349cc55cSDimitry Andric       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
79790eae32dcSDimitry Andric         .addReg(LenAdjReg)
7980349cc55cSDimitry Andric         .addReg(0)
7981349cc55cSDimitry Andric         .addImm(8);
7982349cc55cSDimitry Andric     }
79830b57cec5SDimitry Andric 
79840eae32dcSDimitry Andric     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7985fe6060f1SDimitry Andric     auto loadZeroAddress = [&]() -> MachineOperand {
7986fe6060f1SDimitry Andric       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7987fe6060f1SDimitry Andric       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
7988fe6060f1SDimitry Andric       return MachineOperand::CreateReg(Reg, false);
7989fe6060f1SDimitry Andric     };
7990fe6060f1SDimitry Andric     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
7991fe6060f1SDimitry Andric       DestBase = loadZeroAddress();
7992fe6060f1SDimitry Andric     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
7993fe6060f1SDimitry Andric       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
7994fe6060f1SDimitry Andric 
7995fe6060f1SDimitry Andric     MachineBasicBlock *StartMBB = nullptr;
7996fe6060f1SDimitry Andric     MachineBasicBlock *LoopMBB = nullptr;
7997fe6060f1SDimitry Andric     MachineBasicBlock *NextMBB = nullptr;
7998fe6060f1SDimitry Andric     MachineBasicBlock *DoneMBB = nullptr;
7999fe6060f1SDimitry Andric     MachineBasicBlock *AllDoneMBB = nullptr;
8000fe6060f1SDimitry Andric 
80010b57cec5SDimitry Andric     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8002fe6060f1SDimitry Andric     Register StartDestReg =
8003fe6060f1SDimitry Andric         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
80040b57cec5SDimitry Andric 
80050b57cec5SDimitry Andric     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
80060b57cec5SDimitry Andric     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8007fe6060f1SDimitry Andric     Register ThisDestReg =
8008fe6060f1SDimitry Andric         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
80090b57cec5SDimitry Andric     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8010fe6060f1SDimitry Andric     Register NextDestReg =
8011fe6060f1SDimitry Andric         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
80120b57cec5SDimitry Andric     RC = &SystemZ::GR64BitRegClass;
80130b57cec5SDimitry Andric     Register ThisCountReg = MRI.createVirtualRegister(RC);
80140b57cec5SDimitry Andric     Register NextCountReg = MRI.createVirtualRegister(RC);
80150b57cec5SDimitry Andric 
8016349cc55cSDimitry Andric     if (IsRegForm) {
8017fe6060f1SDimitry Andric       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8018fe6060f1SDimitry Andric       StartMBB = SystemZ::emitBlockAfter(MBB);
8019fe6060f1SDimitry Andric       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8020349cc55cSDimitry Andric       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8021349cc55cSDimitry Andric       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8022fe6060f1SDimitry Andric 
8023fe6060f1SDimitry Andric       //  MBB:
80240eae32dcSDimitry Andric       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8025fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
80260eae32dcSDimitry Andric         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8027fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8028fe6060f1SDimitry Andric         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8029fe6060f1SDimitry Andric         .addMBB(AllDoneMBB);
8030fe6060f1SDimitry Andric       MBB->addSuccessor(AllDoneMBB);
80310eae32dcSDimitry Andric       if (!IsMemset)
8032fe6060f1SDimitry Andric         MBB->addSuccessor(StartMBB);
80330eae32dcSDimitry Andric       else {
80340eae32dcSDimitry Andric         // MemsetOneCheckMBB:
80350eae32dcSDimitry Andric         // # Jump to MemsetOneMBB for a memset of length 1, or
80360eae32dcSDimitry Andric         // # fall thru to StartMBB.
80370eae32dcSDimitry Andric         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
80380eae32dcSDimitry Andric         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
80390eae32dcSDimitry Andric         MBB->addSuccessor(MemsetOneCheckMBB);
80400eae32dcSDimitry Andric         MBB = MemsetOneCheckMBB;
80410eae32dcSDimitry Andric         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
80420eae32dcSDimitry Andric           .addReg(LenAdjReg).addImm(-1);
80430eae32dcSDimitry Andric         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
80440eae32dcSDimitry Andric           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
80450eae32dcSDimitry Andric           .addMBB(MemsetOneMBB);
80460eae32dcSDimitry Andric         MBB->addSuccessor(MemsetOneMBB, {10, 100});
80470eae32dcSDimitry Andric         MBB->addSuccessor(StartMBB, {90, 100});
80480eae32dcSDimitry Andric 
80490eae32dcSDimitry Andric         // MemsetOneMBB:
80500eae32dcSDimitry Andric         // # Jump back to AllDoneMBB after a single MVI or STC.
80510eae32dcSDimitry Andric         MBB = MemsetOneMBB;
80520eae32dcSDimitry Andric         insertMemMemOp(MBB, MBB->end(),
80530eae32dcSDimitry Andric                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
80540eae32dcSDimitry Andric                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
80550eae32dcSDimitry Andric                        1);
80560eae32dcSDimitry Andric         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
80570eae32dcSDimitry Andric         MBB->addSuccessor(AllDoneMBB);
80580eae32dcSDimitry Andric       }
80590b57cec5SDimitry Andric 
80600b57cec5SDimitry Andric       // StartMBB:
8061fe6060f1SDimitry Andric       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8062fe6060f1SDimitry Andric       MBB = StartMBB;
8063fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8064fe6060f1SDimitry Andric         .addReg(StartCountReg).addImm(0);
8065fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8066fe6060f1SDimitry Andric         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8067fe6060f1SDimitry Andric         .addMBB(DoneMBB);
8068fe6060f1SDimitry Andric       MBB->addSuccessor(DoneMBB);
80690b57cec5SDimitry Andric       MBB->addSuccessor(LoopMBB);
8070fe6060f1SDimitry Andric     }
8071fe6060f1SDimitry Andric     else {
8072fe6060f1SDimitry Andric       StartMBB = MBB;
8073fe6060f1SDimitry Andric       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8074fe6060f1SDimitry Andric       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8075fe6060f1SDimitry Andric       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8076fe6060f1SDimitry Andric 
8077fe6060f1SDimitry Andric       //  StartMBB:
8078fe6060f1SDimitry Andric       //   # fall through to LoopMBB
8079fe6060f1SDimitry Andric       MBB->addSuccessor(LoopMBB);
8080fe6060f1SDimitry Andric 
8081fe6060f1SDimitry Andric       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8082fe6060f1SDimitry Andric       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8083fe6060f1SDimitry Andric       if (EndMBB && !ImmLength)
8084fe6060f1SDimitry Andric         // If the loop handled the whole CLC range, DoneMBB will be empty with
8085fe6060f1SDimitry Andric         // CC live-through into EndMBB, so add it as live-in.
8086fe6060f1SDimitry Andric         DoneMBB->addLiveIn(SystemZ::CC);
8087fe6060f1SDimitry Andric     }
80880b57cec5SDimitry Andric 
80890b57cec5SDimitry Andric     //  LoopMBB:
80900b57cec5SDimitry Andric     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
80910b57cec5SDimitry Andric     //                      [ %NextDestReg, NextMBB ]
80920b57cec5SDimitry Andric     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
80930b57cec5SDimitry Andric     //                     [ %NextSrcReg, NextMBB ]
80940b57cec5SDimitry Andric     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
80950b57cec5SDimitry Andric     //                       [ %NextCountReg, NextMBB ]
80960b57cec5SDimitry Andric     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
80970b57cec5SDimitry Andric     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
80980b57cec5SDimitry Andric     //   ( JLH EndMBB )
80990b57cec5SDimitry Andric     //
81000b57cec5SDimitry Andric     // The prefetch is used only for MVC.  The JLH is used only for CLC.
81010b57cec5SDimitry Andric     MBB = LoopMBB;
81020b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
81030b57cec5SDimitry Andric       .addReg(StartDestReg).addMBB(StartMBB)
81040b57cec5SDimitry Andric       .addReg(NextDestReg).addMBB(NextMBB);
81050b57cec5SDimitry Andric     if (!HaveSingleBase)
81060b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
81070b57cec5SDimitry Andric         .addReg(StartSrcReg).addMBB(StartMBB)
81080b57cec5SDimitry Andric         .addReg(NextSrcReg).addMBB(NextMBB);
81090b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
81100b57cec5SDimitry Andric       .addReg(StartCountReg).addMBB(StartMBB)
81110b57cec5SDimitry Andric       .addReg(NextCountReg).addMBB(NextMBB);
81120b57cec5SDimitry Andric     if (Opcode == SystemZ::MVC)
81130b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
81140b57cec5SDimitry Andric         .addImm(SystemZ::PFD_WRITE)
81150eae32dcSDimitry Andric         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
81160eae32dcSDimitry Andric     insertMemMemOp(MBB, MBB->end(),
81170eae32dcSDimitry Andric                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
81180eae32dcSDimitry Andric                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
81190b57cec5SDimitry Andric     if (EndMBB) {
81200b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
81210b57cec5SDimitry Andric         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
81220b57cec5SDimitry Andric         .addMBB(EndMBB);
81230b57cec5SDimitry Andric       MBB->addSuccessor(EndMBB);
81240b57cec5SDimitry Andric       MBB->addSuccessor(NextMBB);
81250b57cec5SDimitry Andric     }
81260b57cec5SDimitry Andric 
81270b57cec5SDimitry Andric     // NextMBB:
81280b57cec5SDimitry Andric     //   %NextDestReg = LA 256(%ThisDestReg)
81290b57cec5SDimitry Andric     //   %NextSrcReg = LA 256(%ThisSrcReg)
81300b57cec5SDimitry Andric     //   %NextCountReg = AGHI %ThisCountReg, -1
81310b57cec5SDimitry Andric     //   CGHI %NextCountReg, 0
81320b57cec5SDimitry Andric     //   JLH LoopMBB
8133fe6060f1SDimitry Andric     //   # fall through to DoneMBB
81340b57cec5SDimitry Andric     //
81350b57cec5SDimitry Andric     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
81360b57cec5SDimitry Andric     MBB = NextMBB;
81370b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
81380b57cec5SDimitry Andric       .addReg(ThisDestReg).addImm(256).addReg(0);
81390b57cec5SDimitry Andric     if (!HaveSingleBase)
81400b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
81410b57cec5SDimitry Andric         .addReg(ThisSrcReg).addImm(256).addReg(0);
81420b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
81430b57cec5SDimitry Andric       .addReg(ThisCountReg).addImm(-1);
81440b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
81450b57cec5SDimitry Andric       .addReg(NextCountReg).addImm(0);
81460b57cec5SDimitry Andric     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
81470b57cec5SDimitry Andric       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
81480b57cec5SDimitry Andric       .addMBB(LoopMBB);
81490b57cec5SDimitry Andric     MBB->addSuccessor(LoopMBB);
81500b57cec5SDimitry Andric     MBB->addSuccessor(DoneMBB);
81510b57cec5SDimitry Andric 
81520b57cec5SDimitry Andric     MBB = DoneMBB;
8153349cc55cSDimitry Andric     if (IsRegForm) {
8154fe6060f1SDimitry Andric       // DoneMBB:
8155fe6060f1SDimitry Andric       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8156fe6060f1SDimitry Andric       // # Use EXecute Relative Long for the remainder of the bytes. The target
8157fe6060f1SDimitry Andric       //   instruction of the EXRL will have a length field of 1 since 0 is an
81580eae32dcSDimitry Andric       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8159fe6060f1SDimitry Andric       //   0xff) + 1.
8160fe6060f1SDimitry Andric       // # Fall through to AllDoneMBB.
8161fe6060f1SDimitry Andric       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8162fe6060f1SDimitry Andric       Register RemDestReg = HaveSingleBase ? RemSrcReg
8163fe6060f1SDimitry Andric         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8164fe6060f1SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8165fe6060f1SDimitry Andric         .addReg(StartDestReg).addMBB(StartMBB)
8166349cc55cSDimitry Andric         .addReg(NextDestReg).addMBB(NextMBB);
8167fe6060f1SDimitry Andric       if (!HaveSingleBase)
8168fe6060f1SDimitry Andric         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8169fe6060f1SDimitry Andric           .addReg(StartSrcReg).addMBB(StartMBB)
8170349cc55cSDimitry Andric           .addReg(NextSrcReg).addMBB(NextMBB);
81710eae32dcSDimitry Andric       if (IsMemset)
81720eae32dcSDimitry Andric         insertMemMemOp(MBB, MBB->end(),
81730eae32dcSDimitry Andric                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
81740eae32dcSDimitry Andric                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8175349cc55cSDimitry Andric       MachineInstrBuilder EXRL_MIB =
8176fe6060f1SDimitry Andric         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8177fe6060f1SDimitry Andric           .addImm(Opcode)
81780eae32dcSDimitry Andric           .addReg(LenAdjReg)
8179fe6060f1SDimitry Andric           .addReg(RemDestReg).addImm(DestDisp)
8180fe6060f1SDimitry Andric           .addReg(RemSrcReg).addImm(SrcDisp);
8181fe6060f1SDimitry Andric       MBB->addSuccessor(AllDoneMBB);
8182fe6060f1SDimitry Andric       MBB = AllDoneMBB;
8183349cc55cSDimitry Andric       if (EndMBB) {
8184349cc55cSDimitry Andric         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8185349cc55cSDimitry Andric         MBB->addLiveIn(SystemZ::CC);
8186349cc55cSDimitry Andric       }
81870b57cec5SDimitry Andric     }
8188fe6060f1SDimitry Andric   }
8189fe6060f1SDimitry Andric 
81900b57cec5SDimitry Andric   // Handle any remaining bytes with straight-line code.
8191fe6060f1SDimitry Andric   while (ImmLength > 0) {
8192fe6060f1SDimitry Andric     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
81930b57cec5SDimitry Andric     // The previous iteration might have created out-of-range displacements.
81940eae32dcSDimitry Andric     // Apply them using LA/LAY if so.
81950eae32dcSDimitry Andric     foldDisplIfNeeded(DestBase, DestDisp);
81960eae32dcSDimitry Andric     foldDisplIfNeeded(SrcBase, SrcDisp);
81970eae32dcSDimitry Andric     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
81980b57cec5SDimitry Andric     DestDisp += ThisLength;
81990b57cec5SDimitry Andric     SrcDisp += ThisLength;
8200fe6060f1SDimitry Andric     ImmLength -= ThisLength;
82010b57cec5SDimitry Andric     // If there's another CLC to go, branch to the end if a difference
82020b57cec5SDimitry Andric     // was found.
8203fe6060f1SDimitry Andric     if (EndMBB && ImmLength > 0) {
82045ffd83dbSDimitry Andric       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
82050b57cec5SDimitry Andric       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
82060b57cec5SDimitry Andric         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
82070b57cec5SDimitry Andric         .addMBB(EndMBB);
82080b57cec5SDimitry Andric       MBB->addSuccessor(EndMBB);
82090b57cec5SDimitry Andric       MBB->addSuccessor(NextMBB);
82100b57cec5SDimitry Andric       MBB = NextMBB;
82110b57cec5SDimitry Andric     }
82120b57cec5SDimitry Andric   }
82130b57cec5SDimitry Andric   if (EndMBB) {
82140b57cec5SDimitry Andric     MBB->addSuccessor(EndMBB);
82150b57cec5SDimitry Andric     MBB = EndMBB;
82160b57cec5SDimitry Andric     MBB->addLiveIn(SystemZ::CC);
82170b57cec5SDimitry Andric   }
82180b57cec5SDimitry Andric 
82190b57cec5SDimitry Andric   MI.eraseFromParent();
82200b57cec5SDimitry Andric   return MBB;
82210b57cec5SDimitry Andric }
82220b57cec5SDimitry Andric 
82230b57cec5SDimitry Andric // Decompose string pseudo-instruction MI into a loop that continually performs
82240b57cec5SDimitry Andric // Opcode until CC != 3.
82250b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
82260b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
82270b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
82280b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
82290b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
82300b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
82310b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
82320b57cec5SDimitry Andric 
82330b57cec5SDimitry Andric   uint64_t End1Reg = MI.getOperand(0).getReg();
82340b57cec5SDimitry Andric   uint64_t Start1Reg = MI.getOperand(1).getReg();
82350b57cec5SDimitry Andric   uint64_t Start2Reg = MI.getOperand(2).getReg();
82360b57cec5SDimitry Andric   uint64_t CharReg = MI.getOperand(3).getReg();
82370b57cec5SDimitry Andric 
82380b57cec5SDimitry Andric   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
82390b57cec5SDimitry Andric   uint64_t This1Reg = MRI.createVirtualRegister(RC);
82400b57cec5SDimitry Andric   uint64_t This2Reg = MRI.createVirtualRegister(RC);
82410b57cec5SDimitry Andric   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
82420b57cec5SDimitry Andric 
82430b57cec5SDimitry Andric   MachineBasicBlock *StartMBB = MBB;
82445ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
82455ffd83dbSDimitry Andric   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
82460b57cec5SDimitry Andric 
82470b57cec5SDimitry Andric   //  StartMBB:
8248fe6060f1SDimitry Andric   //   # fall through to LoopMBB
82490b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
82500b57cec5SDimitry Andric 
82510b57cec5SDimitry Andric   //  LoopMBB:
82520b57cec5SDimitry Andric   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
82530b57cec5SDimitry Andric   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
82540b57cec5SDimitry Andric   //   R0L = %CharReg
82550b57cec5SDimitry Andric   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
82560b57cec5SDimitry Andric   //   JO LoopMBB
8257fe6060f1SDimitry Andric   //   # fall through to DoneMBB
82580b57cec5SDimitry Andric   //
82590b57cec5SDimitry Andric   // The load of R0L can be hoisted by post-RA LICM.
82600b57cec5SDimitry Andric   MBB = LoopMBB;
82610b57cec5SDimitry Andric 
82620b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
82630b57cec5SDimitry Andric     .addReg(Start1Reg).addMBB(StartMBB)
82640b57cec5SDimitry Andric     .addReg(End1Reg).addMBB(LoopMBB);
82650b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
82660b57cec5SDimitry Andric     .addReg(Start2Reg).addMBB(StartMBB)
82670b57cec5SDimitry Andric     .addReg(End2Reg).addMBB(LoopMBB);
82680b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
82690b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(Opcode))
82700b57cec5SDimitry Andric     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
82710b57cec5SDimitry Andric     .addReg(This1Reg).addReg(This2Reg);
82720b57cec5SDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
82730b57cec5SDimitry Andric     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
82740b57cec5SDimitry Andric   MBB->addSuccessor(LoopMBB);
82750b57cec5SDimitry Andric   MBB->addSuccessor(DoneMBB);
82760b57cec5SDimitry Andric 
82770b57cec5SDimitry Andric   DoneMBB->addLiveIn(SystemZ::CC);
82780b57cec5SDimitry Andric 
82790b57cec5SDimitry Andric   MI.eraseFromParent();
82800b57cec5SDimitry Andric   return DoneMBB;
82810b57cec5SDimitry Andric }
82820b57cec5SDimitry Andric 
82830b57cec5SDimitry Andric // Update TBEGIN instruction with final opcode and register clobbers.
82840b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
82850b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
82860b57cec5SDimitry Andric     bool NoFloat) const {
82870b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
82880b57cec5SDimitry Andric   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
82890b57cec5SDimitry Andric   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
82900b57cec5SDimitry Andric 
82910b57cec5SDimitry Andric   // Update opcode.
82920b57cec5SDimitry Andric   MI.setDesc(TII->get(Opcode));
82930b57cec5SDimitry Andric 
82940b57cec5SDimitry Andric   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
82950b57cec5SDimitry Andric   // Make sure to add the corresponding GRSM bits if they are missing.
82960b57cec5SDimitry Andric   uint64_t Control = MI.getOperand(2).getImm();
82970b57cec5SDimitry Andric   static const unsigned GPRControlBit[16] = {
82980b57cec5SDimitry Andric     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
82990b57cec5SDimitry Andric     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
83000b57cec5SDimitry Andric   };
83010b57cec5SDimitry Andric   Control |= GPRControlBit[15];
83020b57cec5SDimitry Andric   if (TFI->hasFP(MF))
83030b57cec5SDimitry Andric     Control |= GPRControlBit[11];
83040b57cec5SDimitry Andric   MI.getOperand(2).setImm(Control);
83050b57cec5SDimitry Andric 
83060b57cec5SDimitry Andric   // Add GPR clobbers.
83070b57cec5SDimitry Andric   for (int I = 0; I < 16; I++) {
83080b57cec5SDimitry Andric     if ((Control & GPRControlBit[I]) == 0) {
83090b57cec5SDimitry Andric       unsigned Reg = SystemZMC::GR64Regs[I];
83100b57cec5SDimitry Andric       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
83110b57cec5SDimitry Andric     }
83120b57cec5SDimitry Andric   }
83130b57cec5SDimitry Andric 
83140b57cec5SDimitry Andric   // Add FPR/VR clobbers.
83150b57cec5SDimitry Andric   if (!NoFloat && (Control & 4) != 0) {
83160b57cec5SDimitry Andric     if (Subtarget.hasVector()) {
8317*04eeddc0SDimitry Andric       for (unsigned Reg : SystemZMC::VR128Regs) {
83180b57cec5SDimitry Andric         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
83190b57cec5SDimitry Andric       }
83200b57cec5SDimitry Andric     } else {
8321*04eeddc0SDimitry Andric       for (unsigned Reg : SystemZMC::FP64Regs) {
83220b57cec5SDimitry Andric         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
83230b57cec5SDimitry Andric       }
83240b57cec5SDimitry Andric     }
83250b57cec5SDimitry Andric   }
83260b57cec5SDimitry Andric 
83270b57cec5SDimitry Andric   return MBB;
83280b57cec5SDimitry Andric }
83290b57cec5SDimitry Andric 
83300b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
83310b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
83320b57cec5SDimitry Andric   MachineFunction &MF = *MBB->getParent();
83330b57cec5SDimitry Andric   MachineRegisterInfo *MRI = &MF.getRegInfo();
83340b57cec5SDimitry Andric   const SystemZInstrInfo *TII =
83350b57cec5SDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
83360b57cec5SDimitry Andric   DebugLoc DL = MI.getDebugLoc();
83370b57cec5SDimitry Andric 
83388bcb0991SDimitry Andric   Register SrcReg = MI.getOperand(0).getReg();
83390b57cec5SDimitry Andric 
83400b57cec5SDimitry Andric   // Create new virtual register of the same class as source.
83410b57cec5SDimitry Andric   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
83428bcb0991SDimitry Andric   Register DstReg = MRI->createVirtualRegister(RC);
83430b57cec5SDimitry Andric 
83440b57cec5SDimitry Andric   // Replace pseudo with a normal load-and-test that models the def as
83450b57cec5SDimitry Andric   // well.
83460b57cec5SDimitry Andric   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8347480093f4SDimitry Andric     .addReg(SrcReg)
8348480093f4SDimitry Andric     .setMIFlags(MI.getFlags());
83490b57cec5SDimitry Andric   MI.eraseFromParent();
83500b57cec5SDimitry Andric 
83510b57cec5SDimitry Andric   return MBB;
83520b57cec5SDimitry Andric }
83530b57cec5SDimitry Andric 
83545ffd83dbSDimitry Andric MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
83555ffd83dbSDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB) const {
83565ffd83dbSDimitry Andric   MachineFunction &MF = *MBB->getParent();
83575ffd83dbSDimitry Andric   MachineRegisterInfo *MRI = &MF.getRegInfo();
83585ffd83dbSDimitry Andric   const SystemZInstrInfo *TII =
83595ffd83dbSDimitry Andric       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
83605ffd83dbSDimitry Andric   DebugLoc DL = MI.getDebugLoc();
83615ffd83dbSDimitry Andric   const unsigned ProbeSize = getStackProbeSize(MF);
83625ffd83dbSDimitry Andric   Register DstReg = MI.getOperand(0).getReg();
83635ffd83dbSDimitry Andric   Register SizeReg = MI.getOperand(2).getReg();
83645ffd83dbSDimitry Andric 
83655ffd83dbSDimitry Andric   MachineBasicBlock *StartMBB = MBB;
83665ffd83dbSDimitry Andric   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
83675ffd83dbSDimitry Andric   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
83685ffd83dbSDimitry Andric   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
83695ffd83dbSDimitry Andric   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
83705ffd83dbSDimitry Andric   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
83715ffd83dbSDimitry Andric 
83725ffd83dbSDimitry Andric   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
83735ffd83dbSDimitry Andric     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
83745ffd83dbSDimitry Andric 
83755ffd83dbSDimitry Andric   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
83765ffd83dbSDimitry Andric   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
83775ffd83dbSDimitry Andric 
83785ffd83dbSDimitry Andric   //  LoopTestMBB
83795ffd83dbSDimitry Andric   //  BRC TailTestMBB
83805ffd83dbSDimitry Andric   //  # fallthrough to LoopBodyMBB
83815ffd83dbSDimitry Andric   StartMBB->addSuccessor(LoopTestMBB);
83825ffd83dbSDimitry Andric   MBB = LoopTestMBB;
83835ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
83845ffd83dbSDimitry Andric     .addReg(SizeReg)
83855ffd83dbSDimitry Andric     .addMBB(StartMBB)
83865ffd83dbSDimitry Andric     .addReg(IncReg)
83875ffd83dbSDimitry Andric     .addMBB(LoopBodyMBB);
83885ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
83895ffd83dbSDimitry Andric     .addReg(PHIReg)
83905ffd83dbSDimitry Andric     .addImm(ProbeSize);
83915ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
83925ffd83dbSDimitry Andric     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
83935ffd83dbSDimitry Andric     .addMBB(TailTestMBB);
83945ffd83dbSDimitry Andric   MBB->addSuccessor(LoopBodyMBB);
83955ffd83dbSDimitry Andric   MBB->addSuccessor(TailTestMBB);
83965ffd83dbSDimitry Andric 
83975ffd83dbSDimitry Andric   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
83985ffd83dbSDimitry Andric   //  J LoopTestMBB
83995ffd83dbSDimitry Andric   MBB = LoopBodyMBB;
84005ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
84015ffd83dbSDimitry Andric     .addReg(PHIReg)
84025ffd83dbSDimitry Andric     .addImm(ProbeSize);
84035ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
84045ffd83dbSDimitry Andric     .addReg(SystemZ::R15D)
84055ffd83dbSDimitry Andric     .addImm(ProbeSize);
84065ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
84075ffd83dbSDimitry Andric     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
84085ffd83dbSDimitry Andric     .setMemRefs(VolLdMMO);
84095ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
84105ffd83dbSDimitry Andric   MBB->addSuccessor(LoopTestMBB);
84115ffd83dbSDimitry Andric 
84125ffd83dbSDimitry Andric   //  TailTestMBB
84135ffd83dbSDimitry Andric   //  BRC DoneMBB
84145ffd83dbSDimitry Andric   //  # fallthrough to TailMBB
84155ffd83dbSDimitry Andric   MBB = TailTestMBB;
84165ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
84175ffd83dbSDimitry Andric     .addReg(PHIReg)
84185ffd83dbSDimitry Andric     .addImm(0);
84195ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
84205ffd83dbSDimitry Andric     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
84215ffd83dbSDimitry Andric     .addMBB(DoneMBB);
84225ffd83dbSDimitry Andric   MBB->addSuccessor(TailMBB);
84235ffd83dbSDimitry Andric   MBB->addSuccessor(DoneMBB);
84245ffd83dbSDimitry Andric 
84255ffd83dbSDimitry Andric   //  TailMBB
84265ffd83dbSDimitry Andric   //  # fallthrough to DoneMBB
84275ffd83dbSDimitry Andric   MBB = TailMBB;
84285ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
84295ffd83dbSDimitry Andric     .addReg(SystemZ::R15D)
84305ffd83dbSDimitry Andric     .addReg(PHIReg);
84315ffd83dbSDimitry Andric   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
84325ffd83dbSDimitry Andric     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
84335ffd83dbSDimitry Andric     .setMemRefs(VolLdMMO);
84345ffd83dbSDimitry Andric   MBB->addSuccessor(DoneMBB);
84355ffd83dbSDimitry Andric 
84365ffd83dbSDimitry Andric   //  DoneMBB
84375ffd83dbSDimitry Andric   MBB = DoneMBB;
84385ffd83dbSDimitry Andric   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
84395ffd83dbSDimitry Andric     .addReg(SystemZ::R15D);
84405ffd83dbSDimitry Andric 
84415ffd83dbSDimitry Andric   MI.eraseFromParent();
84425ffd83dbSDimitry Andric   return DoneMBB;
84435ffd83dbSDimitry Andric }
84445ffd83dbSDimitry Andric 
8445e8d8bef9SDimitry Andric SDValue SystemZTargetLowering::
8446e8d8bef9SDimitry Andric getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8447e8d8bef9SDimitry Andric   MachineFunction &MF = DAG.getMachineFunction();
8448349cc55cSDimitry Andric   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8449e8d8bef9SDimitry Andric   SDLoc DL(SP);
8450e8d8bef9SDimitry Andric   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8451e8d8bef9SDimitry Andric                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8452e8d8bef9SDimitry Andric }
8453e8d8bef9SDimitry Andric 
84540b57cec5SDimitry Andric MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
84550b57cec5SDimitry Andric     MachineInstr &MI, MachineBasicBlock *MBB) const {
84560b57cec5SDimitry Andric   switch (MI.getOpcode()) {
84570b57cec5SDimitry Andric   case SystemZ::Select32:
84580b57cec5SDimitry Andric   case SystemZ::Select64:
84590b57cec5SDimitry Andric   case SystemZ::SelectF32:
84600b57cec5SDimitry Andric   case SystemZ::SelectF64:
84610b57cec5SDimitry Andric   case SystemZ::SelectF128:
84620b57cec5SDimitry Andric   case SystemZ::SelectVR32:
84630b57cec5SDimitry Andric   case SystemZ::SelectVR64:
84640b57cec5SDimitry Andric   case SystemZ::SelectVR128:
84650b57cec5SDimitry Andric     return emitSelect(MI, MBB);
84660b57cec5SDimitry Andric 
84670b57cec5SDimitry Andric   case SystemZ::CondStore8Mux:
84680b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
84690b57cec5SDimitry Andric   case SystemZ::CondStore8MuxInv:
84700b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
84710b57cec5SDimitry Andric   case SystemZ::CondStore16Mux:
84720b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
84730b57cec5SDimitry Andric   case SystemZ::CondStore16MuxInv:
84740b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
84750b57cec5SDimitry Andric   case SystemZ::CondStore32Mux:
84760b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
84770b57cec5SDimitry Andric   case SystemZ::CondStore32MuxInv:
84780b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
84790b57cec5SDimitry Andric   case SystemZ::CondStore8:
84800b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
84810b57cec5SDimitry Andric   case SystemZ::CondStore8Inv:
84820b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
84830b57cec5SDimitry Andric   case SystemZ::CondStore16:
84840b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
84850b57cec5SDimitry Andric   case SystemZ::CondStore16Inv:
84860b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
84870b57cec5SDimitry Andric   case SystemZ::CondStore32:
84880b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
84890b57cec5SDimitry Andric   case SystemZ::CondStore32Inv:
84900b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
84910b57cec5SDimitry Andric   case SystemZ::CondStore64:
84920b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
84930b57cec5SDimitry Andric   case SystemZ::CondStore64Inv:
84940b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
84950b57cec5SDimitry Andric   case SystemZ::CondStoreF32:
84960b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
84970b57cec5SDimitry Andric   case SystemZ::CondStoreF32Inv:
84980b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
84990b57cec5SDimitry Andric   case SystemZ::CondStoreF64:
85000b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
85010b57cec5SDimitry Andric   case SystemZ::CondStoreF64Inv:
85020b57cec5SDimitry Andric     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
85030b57cec5SDimitry Andric 
85040b57cec5SDimitry Andric   case SystemZ::PAIR128:
85050b57cec5SDimitry Andric     return emitPair128(MI, MBB);
85060b57cec5SDimitry Andric   case SystemZ::AEXT128:
85070b57cec5SDimitry Andric     return emitExt128(MI, MBB, false);
85080b57cec5SDimitry Andric   case SystemZ::ZEXT128:
85090b57cec5SDimitry Andric     return emitExt128(MI, MBB, true);
85100b57cec5SDimitry Andric 
85110b57cec5SDimitry Andric   case SystemZ::ATOMIC_SWAPW:
85120b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, 0, 0);
85130b57cec5SDimitry Andric   case SystemZ::ATOMIC_SWAP_32:
85140b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, 0, 32);
85150b57cec5SDimitry Andric   case SystemZ::ATOMIC_SWAP_64:
85160b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, 0, 64);
85170b57cec5SDimitry Andric 
85180b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_AR:
85190b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
85200b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_AFI:
85210b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
85220b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AR:
85230b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
85240b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AHI:
85250b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
85260b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AFI:
85270b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
85280b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AGR:
85290b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
85300b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AGHI:
85310b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
85320b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_AGFI:
85330b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
85340b57cec5SDimitry Andric 
85350b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_SR:
85360b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
85370b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_SR:
85380b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
85390b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_SGR:
85400b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
85410b57cec5SDimitry Andric 
85420b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_NR:
85430b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
85440b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_NILH:
85450b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
85460b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NR:
85470b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
85480b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILL:
85490b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
85500b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILH:
85510b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
85520b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILF:
85530b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
85540b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NGR:
85550b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
85560b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILL64:
85570b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
85580b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILH64:
85590b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
85600b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHL64:
85610b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
85620b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHH64:
85630b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
85640b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILF64:
85650b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
85660b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHF64:
85670b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
85680b57cec5SDimitry Andric 
85690b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_OR:
85700b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
85710b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_OILH:
85720b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
85730b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OR:
85740b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
85750b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILL:
85760b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
85770b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILH:
85780b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
85790b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILF:
85800b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
85810b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OGR:
85820b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
85830b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILL64:
85840b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
85850b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILH64:
85860b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
85870b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OIHL64:
85880b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
85890b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OIHH64:
85900b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
85910b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OILF64:
85920b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
85930b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_OIHF64:
85940b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
85950b57cec5SDimitry Andric 
85960b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_XR:
85970b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
85980b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_XILF:
85990b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
86000b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XR:
86010b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
86020b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XILF:
86030b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
86040b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XGR:
86050b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
86060b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XILF64:
86070b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
86080b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_XIHF64:
86090b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
86100b57cec5SDimitry Andric 
86110b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_NRi:
86120b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
86130b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_NILHi:
86140b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
86150b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NRi:
86160b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
86170b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILLi:
86180b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
86190b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILHi:
86200b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
86210b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILFi:
86220b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
86230b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NGRi:
86240b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
86250b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILL64i:
86260b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
86270b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILH64i:
86280b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
86290b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHL64i:
86300b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
86310b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHH64i:
86320b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
86330b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NILF64i:
86340b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
86350b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_NIHF64i:
86360b57cec5SDimitry Andric     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
86370b57cec5SDimitry Andric 
86380b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_MIN:
86390b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
86400b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 0);
86410b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_MIN_32:
86420b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
86430b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 32);
86440b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_MIN_64:
86450b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
86460b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 64);
86470b57cec5SDimitry Andric 
86480b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_MAX:
86490b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
86500b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 0);
86510b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_MAX_32:
86520b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
86530b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 32);
86540b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_MAX_64:
86550b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
86560b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 64);
86570b57cec5SDimitry Andric 
86580b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_UMIN:
86590b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
86600b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 0);
86610b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_UMIN_32:
86620b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
86630b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 32);
86640b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_UMIN_64:
86650b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
86660b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_LE, 64);
86670b57cec5SDimitry Andric 
86680b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOADW_UMAX:
86690b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
86700b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 0);
86710b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_UMAX_32:
86720b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
86730b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 32);
86740b57cec5SDimitry Andric   case SystemZ::ATOMIC_LOAD_UMAX_64:
86750b57cec5SDimitry Andric     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
86760b57cec5SDimitry Andric                                 SystemZ::CCMASK_CMP_GE, 64);
86770b57cec5SDimitry Andric 
86780b57cec5SDimitry Andric   case SystemZ::ATOMIC_CMP_SWAPW:
86790b57cec5SDimitry Andric     return emitAtomicCmpSwapW(MI, MBB);
8680349cc55cSDimitry Andric   case SystemZ::MVCImm:
8681349cc55cSDimitry Andric   case SystemZ::MVCReg:
86820b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8683349cc55cSDimitry Andric   case SystemZ::NCImm:
86840b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8685349cc55cSDimitry Andric   case SystemZ::OCImm:
86860b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8687349cc55cSDimitry Andric   case SystemZ::XCImm:
8688349cc55cSDimitry Andric   case SystemZ::XCReg:
86890b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8690349cc55cSDimitry Andric   case SystemZ::CLCImm:
8691349cc55cSDimitry Andric   case SystemZ::CLCReg:
86920b57cec5SDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
86930eae32dcSDimitry Andric   case SystemZ::MemsetImmImm:
86940eae32dcSDimitry Andric   case SystemZ::MemsetImmReg:
86950eae32dcSDimitry Andric   case SystemZ::MemsetRegImm:
86960eae32dcSDimitry Andric   case SystemZ::MemsetRegReg:
86970eae32dcSDimitry Andric     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
86980b57cec5SDimitry Andric   case SystemZ::CLSTLoop:
86990b57cec5SDimitry Andric     return emitStringWrapper(MI, MBB, SystemZ::CLST);
87000b57cec5SDimitry Andric   case SystemZ::MVSTLoop:
87010b57cec5SDimitry Andric     return emitStringWrapper(MI, MBB, SystemZ::MVST);
87020b57cec5SDimitry Andric   case SystemZ::SRSTLoop:
87030b57cec5SDimitry Andric     return emitStringWrapper(MI, MBB, SystemZ::SRST);
87040b57cec5SDimitry Andric   case SystemZ::TBEGIN:
87050b57cec5SDimitry Andric     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
87060b57cec5SDimitry Andric   case SystemZ::TBEGIN_nofloat:
87070b57cec5SDimitry Andric     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
87080b57cec5SDimitry Andric   case SystemZ::TBEGINC:
87090b57cec5SDimitry Andric     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
87100b57cec5SDimitry Andric   case SystemZ::LTEBRCompare_VecPseudo:
87110b57cec5SDimitry Andric     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
87120b57cec5SDimitry Andric   case SystemZ::LTDBRCompare_VecPseudo:
87130b57cec5SDimitry Andric     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
87140b57cec5SDimitry Andric   case SystemZ::LTXBRCompare_VecPseudo:
87150b57cec5SDimitry Andric     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
87160b57cec5SDimitry Andric 
87175ffd83dbSDimitry Andric   case SystemZ::PROBED_ALLOCA:
87185ffd83dbSDimitry Andric     return emitProbedAlloca(MI, MBB);
87195ffd83dbSDimitry Andric 
87200b57cec5SDimitry Andric   case TargetOpcode::STACKMAP:
87210b57cec5SDimitry Andric   case TargetOpcode::PATCHPOINT:
87220b57cec5SDimitry Andric     return emitPatchPoint(MI, MBB);
87230b57cec5SDimitry Andric 
87240b57cec5SDimitry Andric   default:
87250b57cec5SDimitry Andric     llvm_unreachable("Unexpected instr type to insert");
87260b57cec5SDimitry Andric   }
87270b57cec5SDimitry Andric }
87280b57cec5SDimitry Andric 
87290b57cec5SDimitry Andric // This is only used by the isel schedulers, and is needed only to prevent
87300b57cec5SDimitry Andric // compiler from crashing when list-ilp is used.
87310b57cec5SDimitry Andric const TargetRegisterClass *
87320b57cec5SDimitry Andric SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
87330b57cec5SDimitry Andric   if (VT == MVT::Untyped)
87340b57cec5SDimitry Andric     return &SystemZ::ADDR128BitRegClass;
87350b57cec5SDimitry Andric   return TargetLowering::getRepRegClassFor(VT);
87360b57cec5SDimitry Andric }
8737