xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the SystemZ target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "systemz-isel"
24 
25 namespace {
26 // Used to build addressing modes.
27 struct SystemZAddressingMode {
28   // The shape of the address.
29   enum AddrForm {
30     // base+displacement
31     FormBD,
32 
33     // base+displacement+index for load and store operands
34     FormBDXNormal,
35 
36     // base+displacement+index for load address operands
37     FormBDXLA,
38 
39     // base+displacement+index+ADJDYNALLOC
40     FormBDXDynAlloc
41   };
42   AddrForm Form;
43 
44   // The type of displacement.  The enum names here correspond directly
45   // to the definitions in SystemZOperand.td.  We could split them into
46   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
47   enum DispRange {
48     Disp12Only,
49     Disp12Pair,
50     Disp20Only,
51     Disp20Only128,
52     Disp20Pair
53   };
54   DispRange DR;
55 
56   // The parts of the address.  The address is equivalent to:
57   //
58   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
59   SDValue Base;
60   int64_t Disp;
61   SDValue Index;
62   bool IncludesDynAlloc;
63 
64   SystemZAddressingMode(AddrForm form, DispRange dr)
65     : Form(form), DR(dr), Base(), Disp(0), Index(),
66       IncludesDynAlloc(false) {}
67 
68   // True if the address can have an index register.
69   bool hasIndexField() { return Form != FormBD; }
70 
71   // True if the address can (and must) include ADJDYNALLOC.
72   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73 
74   void dump(const llvm::SelectionDAG *DAG) {
75     errs() << "SystemZAddressingMode " << this << '\n';
76 
77     errs() << " Base ";
78     if (Base.getNode())
79       Base.getNode()->dump(DAG);
80     else
81       errs() << "null\n";
82 
83     if (hasIndexField()) {
84       errs() << " Index ";
85       if (Index.getNode())
86         Index.getNode()->dump(DAG);
87       else
88         errs() << "null\n";
89     }
90 
91     errs() << " Disp " << Disp;
92     if (IncludesDynAlloc)
93       errs() << " + ADJDYNALLOC";
94     errs() << '\n';
95   }
96 };
97 
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count) {
100   assert(Count <= 64);
101   if (Count > 63)
102     return UINT64_MAX;
103   return (uint64_t(1) << Count) - 1;
104 }
105 
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5).  The combined operand value is effectively:
109 //
110 //   (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 //   (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise.  The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
120   RxSBGOperands(unsigned Op, SDValue N)
121     : Opcode(Op), BitSize(N.getValueSizeInBits()),
122       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123       Rotate(0) {}
124 
125   unsigned Opcode;
126   unsigned BitSize;
127   uint64_t Mask;
128   SDValue Input;
129   unsigned Start;
130   unsigned End;
131   unsigned Rotate;
132 };
133 
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135   const SystemZSubtarget *Subtarget;
136 
137   // Used by SystemZOperands.td to create integer constants.
138   inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139     return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140   }
141 
142   const SystemZTargetMachine &getTargetMachine() const {
143     return static_cast<const SystemZTargetMachine &>(TM);
144   }
145 
146   const SystemZInstrInfo *getInstrInfo() const {
147     return Subtarget->getInstrInfo();
148   }
149 
150   // Try to fold more of the base or index of AM into AM, where IsBase
151   // selects between the base and index.
152   bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153 
154   // Try to describe N in AM, returning true on success.
155   bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156 
157   // Extract individual target operands from matched address AM.
158   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159                           SDValue &Base, SDValue &Disp) const;
160   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161                           SDValue &Base, SDValue &Disp, SDValue &Index) const;
162 
163   // Try to match Addr as a FormBD address with displacement type DR.
164   // Return true on success, storing the base and displacement in
165   // Base and Disp respectively.
166   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167                     SDValue &Base, SDValue &Disp) const;
168 
169   // Try to match Addr as a FormBDX address with displacement type DR.
170   // Return true on success and if the result had no index.  Store the
171   // base and displacement in Base and Disp respectively.
172   bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173                      SDValue &Base, SDValue &Disp) const;
174 
175   // Try to match Addr as a FormBDX* address of form Form with
176   // displacement type DR.  Return true on success, storing the base,
177   // displacement and index in Base, Disp and Index respectively.
178   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179                      SystemZAddressingMode::DispRange DR, SDValue Addr,
180                      SDValue &Base, SDValue &Disp, SDValue &Index) const;
181 
182   // PC-relative address matching routines used by SystemZOperands.td.
183   bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184     if (SystemZISD::isPCREL(Addr.getOpcode())) {
185       Target = Addr.getOperand(0);
186       return true;
187     }
188     return false;
189   }
190 
191   // BD matching routines used by SystemZOperands.td.
192   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194   }
195   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197   }
198   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200   }
201   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203   }
204 
205   // MVI matching routines used by SystemZOperands.td.
206   bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207     return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208   }
209   bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210     return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211   }
212 
213   // BDX matching routines used by SystemZOperands.td.
214   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215                            SDValue &Index) const {
216     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217                          SystemZAddressingMode::Disp12Only,
218                          Addr, Base, Disp, Index);
219   }
220   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221                            SDValue &Index) const {
222     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223                          SystemZAddressingMode::Disp12Pair,
224                          Addr, Base, Disp, Index);
225   }
226   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227                             SDValue &Index) const {
228     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229                          SystemZAddressingMode::Disp12Only,
230                          Addr, Base, Disp, Index);
231   }
232   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233                            SDValue &Index) const {
234     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235                          SystemZAddressingMode::Disp20Only,
236                          Addr, Base, Disp, Index);
237   }
238   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239                               SDValue &Index) const {
240     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241                          SystemZAddressingMode::Disp20Only128,
242                          Addr, Base, Disp, Index);
243   }
244   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245                            SDValue &Index) const {
246     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247                          SystemZAddressingMode::Disp20Pair,
248                          Addr, Base, Disp, Index);
249   }
250   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251                           SDValue &Index) const {
252     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253                          SystemZAddressingMode::Disp12Pair,
254                          Addr, Base, Disp, Index);
255   }
256   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257                           SDValue &Index) const {
258     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259                          SystemZAddressingMode::Disp20Pair,
260                          Addr, Base, Disp, Index);
261   }
262 
263   // Try to match Addr as an address with a base, 12-bit displacement
264   // and index, where the index is element Elem of a vector.
265   // Return true on success, storing the base, displacement and vector
266   // in Base, Disp and Index respectively.
267   bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268                            SDValue &Disp, SDValue &Index) const;
269 
270   // Check whether (or Op (and X InsertMask)) is effectively an insertion
271   // of X into bits InsertMask of some Y != Op.  Return true if so and
272   // set Op to that Y.
273   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274 
275   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276   // Return true on success.
277   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278 
279   // Try to fold some of RxSBG.Input into other fields of RxSBG.
280   // Return true on success.
281   bool expandRxSBG(RxSBGOperands &RxSBG) const;
282 
283   // Return an undefined value of type VT.
284   SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285 
286   // Convert N to VT, if it isn't already.
287   SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288 
289   // Try to implement AND or shift node N using RISBG with the zero flag set.
290   // Return the selected node on success, otherwise return null.
291   bool tryRISBGZero(SDNode *N);
292 
293   // Try to use RISBG or Opcode to implement OR or XOR node N.
294   // Return the selected node on success, otherwise return null.
295   bool tryRxSBG(SDNode *N, unsigned Opcode);
296 
297   // If Op0 is null, then Node is a constant that can be loaded using:
298   //
299   //   (Opcode UpperVal LowerVal)
300   //
301   // If Op0 is nonnull, then Node can be implemented using:
302   //
303   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
304   void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305                            uint64_t UpperVal, uint64_t LowerVal);
306 
307   void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308                           SDNode *Node);
309 
310   // Try to use gather instruction Opcode to implement vector insertion N.
311   bool tryGather(SDNode *N, unsigned Opcode);
312 
313   // Try to use scatter instruction Opcode to implement store Store.
314   bool tryScatter(StoreSDNode *Store, unsigned Opcode);
315 
316   // Change a chain of {load; op; store} of the same value into a simple op
317   // through memory of that value, if the uses of the modified value and its
318   // address are suitable.
319   bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
320 
321   // Return true if Load and Store are loads and stores of the same size
322   // and are guaranteed not to overlap.  Such operations can be implemented
323   // using block (SS-format) instructions.
324   //
325   // Partial overlap would lead to incorrect code, since the block operations
326   // are logically bytewise, even though they have a fast path for the
327   // non-overlapping case.  We also need to avoid full overlap (i.e. two
328   // addresses that might be equal at run time) because although that case
329   // would be handled correctly, it might be implemented by millicode.
330   bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
331 
332   // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
333   // from Y to X.
334   bool storeLoadCanUseMVC(SDNode *N) const;
335 
336   // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
337   // if A[1 - I] == X and if N can use a block operation like NC from A[I]
338   // to X.
339   bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
340 
341   // Return true if N (a load or a store) fullfills the alignment
342   // requirements for a PC-relative access.
343   bool storeLoadIsAligned(SDNode *N) const;
344 
345   // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
346   SDValue expandSelectBoolean(SDNode *Node);
347 
348 public:
349   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
350       : SelectionDAGISel(TM, OptLevel) {}
351 
352   bool runOnMachineFunction(MachineFunction &MF) override {
353     const Function &F = MF.getFunction();
354     if (F.getFnAttribute("fentry-call").getValueAsString() != "true") {
355       if (F.hasFnAttribute("mnop-mcount"))
356         report_fatal_error("mnop-mcount only supported with fentry-call");
357       if (F.hasFnAttribute("mrecord-mcount"))
358         report_fatal_error("mrecord-mcount only supported with fentry-call");
359     }
360 
361     Subtarget = &MF.getSubtarget<SystemZSubtarget>();
362     return SelectionDAGISel::runOnMachineFunction(MF);
363   }
364 
365   // Override MachineFunctionPass.
366   StringRef getPassName() const override {
367     return "SystemZ DAG->DAG Pattern Instruction Selection";
368   }
369 
370   // Override SelectionDAGISel.
371   void Select(SDNode *Node) override;
372   bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
373                                     std::vector<SDValue> &OutOps) override;
374   bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
375   void PreprocessISelDAG() override;
376 
377   // Include the pieces autogenerated from the target description.
378   #include "SystemZGenDAGISel.inc"
379 };
380 } // end anonymous namespace
381 
382 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
383                                          CodeGenOpt::Level OptLevel) {
384   return new SystemZDAGToDAGISel(TM, OptLevel);
385 }
386 
387 // Return true if Val should be selected as a displacement for an address
388 // with range DR.  Here we're interested in the range of both the instruction
389 // described by DR and of any pairing instruction.
390 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
391   switch (DR) {
392   case SystemZAddressingMode::Disp12Only:
393     return isUInt<12>(Val);
394 
395   case SystemZAddressingMode::Disp12Pair:
396   case SystemZAddressingMode::Disp20Only:
397   case SystemZAddressingMode::Disp20Pair:
398     return isInt<20>(Val);
399 
400   case SystemZAddressingMode::Disp20Only128:
401     return isInt<20>(Val) && isInt<20>(Val + 8);
402   }
403   llvm_unreachable("Unhandled displacement range");
404 }
405 
406 // Change the base or index in AM to Value, where IsBase selects
407 // between the base and index.
408 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
409                             SDValue Value) {
410   if (IsBase)
411     AM.Base = Value;
412   else
413     AM.Index = Value;
414 }
415 
416 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
417 // where IsBase selects between the base and index.  Try to fold the
418 // ADJDYNALLOC into AM.
419 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
420                               SDValue Value) {
421   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
422     changeComponent(AM, IsBase, Value);
423     AM.IncludesDynAlloc = true;
424     return true;
425   }
426   return false;
427 }
428 
429 // The base of AM is equivalent to Base + Index.  Try to use Index as
430 // the index register.
431 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
432                         SDValue Index) {
433   if (AM.hasIndexField() && !AM.Index.getNode()) {
434     AM.Base = Base;
435     AM.Index = Index;
436     return true;
437   }
438   return false;
439 }
440 
441 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
442 // between the base and index.  Try to fold Op1 into AM's displacement.
443 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
444                        SDValue Op0, uint64_t Op1) {
445   // First try adjusting the displacement.
446   int64_t TestDisp = AM.Disp + Op1;
447   if (selectDisp(AM.DR, TestDisp)) {
448     changeComponent(AM, IsBase, Op0);
449     AM.Disp = TestDisp;
450     return true;
451   }
452 
453   // We could consider forcing the displacement into a register and
454   // using it as an index, but it would need to be carefully tuned.
455   return false;
456 }
457 
458 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
459                                         bool IsBase) const {
460   SDValue N = IsBase ? AM.Base : AM.Index;
461   unsigned Opcode = N.getOpcode();
462   if (Opcode == ISD::TRUNCATE) {
463     N = N.getOperand(0);
464     Opcode = N.getOpcode();
465   }
466   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
467     SDValue Op0 = N.getOperand(0);
468     SDValue Op1 = N.getOperand(1);
469 
470     unsigned Op0Code = Op0->getOpcode();
471     unsigned Op1Code = Op1->getOpcode();
472 
473     if (Op0Code == SystemZISD::ADJDYNALLOC)
474       return expandAdjDynAlloc(AM, IsBase, Op1);
475     if (Op1Code == SystemZISD::ADJDYNALLOC)
476       return expandAdjDynAlloc(AM, IsBase, Op0);
477 
478     if (Op0Code == ISD::Constant)
479       return expandDisp(AM, IsBase, Op1,
480                         cast<ConstantSDNode>(Op0)->getSExtValue());
481     if (Op1Code == ISD::Constant)
482       return expandDisp(AM, IsBase, Op0,
483                         cast<ConstantSDNode>(Op1)->getSExtValue());
484 
485     if (IsBase && expandIndex(AM, Op0, Op1))
486       return true;
487   }
488   if (Opcode == SystemZISD::PCREL_OFFSET) {
489     SDValue Full = N.getOperand(0);
490     SDValue Base = N.getOperand(1);
491     SDValue Anchor = Base.getOperand(0);
492     uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
493                        cast<GlobalAddressSDNode>(Anchor)->getOffset());
494     return expandDisp(AM, IsBase, Base, Offset);
495   }
496   return false;
497 }
498 
499 // Return true if an instruction with displacement range DR should be
500 // used for displacement value Val.  selectDisp(DR, Val) must already hold.
501 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
502   assert(selectDisp(DR, Val) && "Invalid displacement");
503   switch (DR) {
504   case SystemZAddressingMode::Disp12Only:
505   case SystemZAddressingMode::Disp20Only:
506   case SystemZAddressingMode::Disp20Only128:
507     return true;
508 
509   case SystemZAddressingMode::Disp12Pair:
510     // Use the other instruction if the displacement is too large.
511     return isUInt<12>(Val);
512 
513   case SystemZAddressingMode::Disp20Pair:
514     // Use the other instruction if the displacement is small enough.
515     return !isUInt<12>(Val);
516   }
517   llvm_unreachable("Unhandled displacement range");
518 }
519 
520 // Return true if Base + Disp + Index should be performed by LA(Y).
521 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
522   // Don't use LA(Y) for constants.
523   if (!Base)
524     return false;
525 
526   // Always use LA(Y) for frame addresses, since we know that the destination
527   // register is almost always (perhaps always) going to be different from
528   // the frame register.
529   if (Base->getOpcode() == ISD::FrameIndex)
530     return true;
531 
532   if (Disp) {
533     // Always use LA(Y) if there is a base, displacement and index.
534     if (Index)
535       return true;
536 
537     // Always use LA if the displacement is small enough.  It should always
538     // be no worse than AGHI (and better if it avoids a move).
539     if (isUInt<12>(Disp))
540       return true;
541 
542     // For similar reasons, always use LAY if the constant is too big for AGHI.
543     // LAY should be no worse than AGFI.
544     if (!isInt<16>(Disp))
545       return true;
546   } else {
547     // Don't use LA for plain registers.
548     if (!Index)
549       return false;
550 
551     // Don't use LA for plain addition if the index operand is only used
552     // once.  It should be a natural two-operand addition in that case.
553     if (Index->hasOneUse())
554       return false;
555 
556     // Prefer addition if the second operation is sign-extended, in the
557     // hope of using AGF.
558     unsigned IndexOpcode = Index->getOpcode();
559     if (IndexOpcode == ISD::SIGN_EXTEND ||
560         IndexOpcode == ISD::SIGN_EXTEND_INREG)
561       return false;
562   }
563 
564   // Don't use LA for two-operand addition if either operand is only
565   // used once.  The addition instructions are better in that case.
566   if (Base->hasOneUse())
567     return false;
568 
569   return true;
570 }
571 
572 // Return true if Addr is suitable for AM, updating AM if so.
573 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
574                                         SystemZAddressingMode &AM) const {
575   // Start out assuming that the address will need to be loaded separately,
576   // then try to extend it as much as we can.
577   AM.Base = Addr;
578 
579   // First try treating the address as a constant.
580   if (Addr.getOpcode() == ISD::Constant &&
581       expandDisp(AM, true, SDValue(),
582                  cast<ConstantSDNode>(Addr)->getSExtValue()))
583     ;
584   // Also see if it's a bare ADJDYNALLOC.
585   else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
586            expandAdjDynAlloc(AM, true, SDValue()))
587     ;
588   else
589     // Otherwise try expanding each component.
590     while (expandAddress(AM, true) ||
591            (AM.Index.getNode() && expandAddress(AM, false)))
592       continue;
593 
594   // Reject cases where it isn't profitable to use LA(Y).
595   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
596       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
597     return false;
598 
599   // Reject cases where the other instruction in a pair should be used.
600   if (!isValidDisp(AM.DR, AM.Disp))
601     return false;
602 
603   // Make sure that ADJDYNALLOC is included where necessary.
604   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
605     return false;
606 
607   LLVM_DEBUG(AM.dump(CurDAG));
608   return true;
609 }
610 
611 // Insert a node into the DAG at least before Pos.  This will reposition
612 // the node as needed, and will assign it a node ID that is <= Pos's ID.
613 // Note that this does *not* preserve the uniqueness of node IDs!
614 // The selection DAG must no longer depend on their uniqueness when this
615 // function is used.
616 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
617   if (N->getNodeId() == -1 ||
618       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
619        SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
620     DAG->RepositionNode(Pos->getIterator(), N.getNode());
621     // Mark Node as invalid for pruning as after this it may be a successor to a
622     // selected node but otherwise be in the same position of Pos.
623     // Conservatively mark it with the same -abs(Id) to assure node id
624     // invariant is preserved.
625     N->setNodeId(Pos->getNodeId());
626     SelectionDAGISel::InvalidateNodeId(N.getNode());
627   }
628 }
629 
630 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
631                                              EVT VT, SDValue &Base,
632                                              SDValue &Disp) const {
633   Base = AM.Base;
634   if (!Base.getNode())
635     // Register 0 means "no base".  This is mostly useful for shifts.
636     Base = CurDAG->getRegister(0, VT);
637   else if (Base.getOpcode() == ISD::FrameIndex) {
638     // Lower a FrameIndex to a TargetFrameIndex.
639     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
640     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
641   } else if (Base.getValueType() != VT) {
642     // Truncate values from i64 to i32, for shifts.
643     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
644            "Unexpected truncation");
645     SDLoc DL(Base);
646     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
647     insertDAGNode(CurDAG, Base.getNode(), Trunc);
648     Base = Trunc;
649   }
650 
651   // Lower the displacement to a TargetConstant.
652   Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
653 }
654 
655 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
656                                              EVT VT, SDValue &Base,
657                                              SDValue &Disp,
658                                              SDValue &Index) const {
659   getAddressOperands(AM, VT, Base, Disp);
660 
661   Index = AM.Index;
662   if (!Index.getNode())
663     // Register 0 means "no index".
664     Index = CurDAG->getRegister(0, VT);
665 }
666 
667 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
668                                        SDValue Addr, SDValue &Base,
669                                        SDValue &Disp) const {
670   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
671   if (!selectAddress(Addr, AM))
672     return false;
673 
674   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
675   return true;
676 }
677 
678 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
679                                         SDValue Addr, SDValue &Base,
680                                         SDValue &Disp) const {
681   SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
682   if (!selectAddress(Addr, AM) || AM.Index.getNode())
683     return false;
684 
685   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
686   return true;
687 }
688 
689 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
690                                         SystemZAddressingMode::DispRange DR,
691                                         SDValue Addr, SDValue &Base,
692                                         SDValue &Disp, SDValue &Index) const {
693   SystemZAddressingMode AM(Form, DR);
694   if (!selectAddress(Addr, AM))
695     return false;
696 
697   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
698   return true;
699 }
700 
701 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
702                                               SDValue &Base,
703                                               SDValue &Disp,
704                                               SDValue &Index) const {
705   SDValue Regs[2];
706   if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
707       Regs[0].getNode() && Regs[1].getNode()) {
708     for (unsigned int I = 0; I < 2; ++I) {
709       Base = Regs[I];
710       Index = Regs[1 - I];
711       // We can't tell here whether the index vector has the right type
712       // for the access; the caller needs to do that instead.
713       if (Index.getOpcode() == ISD::ZERO_EXTEND)
714         Index = Index.getOperand(0);
715       if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
716           Index.getOperand(1) == Elem) {
717         Index = Index.getOperand(0);
718         return true;
719       }
720     }
721   }
722   return false;
723 }
724 
725 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
726                                                uint64_t InsertMask) const {
727   // We're only interested in cases where the insertion is into some operand
728   // of Op, rather than into Op itself.  The only useful case is an AND.
729   if (Op.getOpcode() != ISD::AND)
730     return false;
731 
732   // We need a constant mask.
733   auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
734   if (!MaskNode)
735     return false;
736 
737   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
738   uint64_t AndMask = MaskNode->getZExtValue();
739   if (InsertMask & AndMask)
740     return false;
741 
742   // It's only an insertion if all bits are covered or are known to be zero.
743   // The inner check covers all cases but is more expensive.
744   uint64_t Used = allOnes(Op.getValueSizeInBits());
745   if (Used != (AndMask | InsertMask)) {
746     KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
747     if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
748       return false;
749   }
750 
751   Op = Op.getOperand(0);
752   return true;
753 }
754 
755 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
756                                           uint64_t Mask) const {
757   const SystemZInstrInfo *TII = getInstrInfo();
758   if (RxSBG.Rotate != 0)
759     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
760   Mask &= RxSBG.Mask;
761   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
762     RxSBG.Mask = Mask;
763     return true;
764   }
765   return false;
766 }
767 
768 // Return true if any bits of (RxSBG.Input & Mask) are significant.
769 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
770   // Rotate the mask in the same way as RxSBG.Input is rotated.
771   if (RxSBG.Rotate != 0)
772     Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
773   return (Mask & RxSBG.Mask) != 0;
774 }
775 
776 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
777   SDValue N = RxSBG.Input;
778   unsigned Opcode = N.getOpcode();
779   switch (Opcode) {
780   case ISD::TRUNCATE: {
781     if (RxSBG.Opcode == SystemZ::RNSBG)
782       return false;
783     uint64_t BitSize = N.getValueSizeInBits();
784     uint64_t Mask = allOnes(BitSize);
785     if (!refineRxSBGMask(RxSBG, Mask))
786       return false;
787     RxSBG.Input = N.getOperand(0);
788     return true;
789   }
790   case ISD::AND: {
791     if (RxSBG.Opcode == SystemZ::RNSBG)
792       return false;
793 
794     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
795     if (!MaskNode)
796       return false;
797 
798     SDValue Input = N.getOperand(0);
799     uint64_t Mask = MaskNode->getZExtValue();
800     if (!refineRxSBGMask(RxSBG, Mask)) {
801       // If some bits of Input are already known zeros, those bits will have
802       // been removed from the mask.  See if adding them back in makes the
803       // mask suitable.
804       KnownBits Known = CurDAG->computeKnownBits(Input);
805       Mask |= Known.Zero.getZExtValue();
806       if (!refineRxSBGMask(RxSBG, Mask))
807         return false;
808     }
809     RxSBG.Input = Input;
810     return true;
811   }
812 
813   case ISD::OR: {
814     if (RxSBG.Opcode != SystemZ::RNSBG)
815       return false;
816 
817     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
818     if (!MaskNode)
819       return false;
820 
821     SDValue Input = N.getOperand(0);
822     uint64_t Mask = ~MaskNode->getZExtValue();
823     if (!refineRxSBGMask(RxSBG, Mask)) {
824       // If some bits of Input are already known ones, those bits will have
825       // been removed from the mask.  See if adding them back in makes the
826       // mask suitable.
827       KnownBits Known = CurDAG->computeKnownBits(Input);
828       Mask &= ~Known.One.getZExtValue();
829       if (!refineRxSBGMask(RxSBG, Mask))
830         return false;
831     }
832     RxSBG.Input = Input;
833     return true;
834   }
835 
836   case ISD::ROTL: {
837     // Any 64-bit rotate left can be merged into the RxSBG.
838     if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
839       return false;
840     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
841     if (!CountNode)
842       return false;
843 
844     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
845     RxSBG.Input = N.getOperand(0);
846     return true;
847   }
848 
849   case ISD::ANY_EXTEND:
850     // Bits above the extended operand are don't-care.
851     RxSBG.Input = N.getOperand(0);
852     return true;
853 
854   case ISD::ZERO_EXTEND:
855     if (RxSBG.Opcode != SystemZ::RNSBG) {
856       // Restrict the mask to the extended operand.
857       unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
858       if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
859         return false;
860 
861       RxSBG.Input = N.getOperand(0);
862       return true;
863     }
864     LLVM_FALLTHROUGH;
865 
866   case ISD::SIGN_EXTEND: {
867     // Check that the extension bits are don't-care (i.e. are masked out
868     // by the final mask).
869     unsigned BitSize = N.getValueSizeInBits();
870     unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
871     if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
872       // In the case where only the sign bit is active, increase Rotate with
873       // the extension width.
874       if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
875         RxSBG.Rotate += (BitSize - InnerBitSize);
876       else
877         return false;
878     }
879 
880     RxSBG.Input = N.getOperand(0);
881     return true;
882   }
883 
884   case ISD::SHL: {
885     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
886     if (!CountNode)
887       return false;
888 
889     uint64_t Count = CountNode->getZExtValue();
890     unsigned BitSize = N.getValueSizeInBits();
891     if (Count < 1 || Count >= BitSize)
892       return false;
893 
894     if (RxSBG.Opcode == SystemZ::RNSBG) {
895       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
896       // count bits from RxSBG.Input are ignored.
897       if (maskMatters(RxSBG, allOnes(Count)))
898         return false;
899     } else {
900       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
901       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
902         return false;
903     }
904 
905     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
906     RxSBG.Input = N.getOperand(0);
907     return true;
908   }
909 
910   case ISD::SRL:
911   case ISD::SRA: {
912     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
913     if (!CountNode)
914       return false;
915 
916     uint64_t Count = CountNode->getZExtValue();
917     unsigned BitSize = N.getValueSizeInBits();
918     if (Count < 1 || Count >= BitSize)
919       return false;
920 
921     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
922       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
923       // count bits from RxSBG.Input are ignored.
924       if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
925         return false;
926     } else {
927       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
928       // which is similar to SLL above.
929       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
930         return false;
931     }
932 
933     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
934     RxSBG.Input = N.getOperand(0);
935     return true;
936   }
937   default:
938     return false;
939   }
940 }
941 
942 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
943   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
944   return SDValue(N, 0);
945 }
946 
947 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
948                                        SDValue N) const {
949   if (N.getValueType() == MVT::i32 && VT == MVT::i64)
950     return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
951                                          DL, VT, getUNDEF(DL, MVT::i64), N);
952   if (N.getValueType() == MVT::i64 && VT == MVT::i32)
953     return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
954   assert(N.getValueType() == VT && "Unexpected value types");
955   return N;
956 }
957 
958 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
959   SDLoc DL(N);
960   EVT VT = N->getValueType(0);
961   if (!VT.isInteger() || VT.getSizeInBits() > 64)
962     return false;
963   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
964   unsigned Count = 0;
965   while (expandRxSBG(RISBG))
966     // The widening or narrowing is expected to be free.
967     // Counting widening or narrowing as a saved operation will result in
968     // preferring an R*SBG over a simple shift/logical instruction.
969     if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
970         RISBG.Input.getOpcode() != ISD::TRUNCATE)
971       Count += 1;
972   if (Count == 0)
973     return false;
974 
975   // Prefer to use normal shift instructions over RISBG, since they can handle
976   // all cases and are sometimes shorter.
977   if (Count == 1 && N->getOpcode() != ISD::AND)
978     return false;
979 
980   // Prefer register extensions like LLC over RISBG.  Also prefer to start
981   // out with normal ANDs if one instruction would be enough.  We can convert
982   // these ANDs into an RISBG later if a three-address instruction is useful.
983   if (RISBG.Rotate == 0) {
984     bool PreferAnd = false;
985     // Prefer AND for any 32-bit and-immediate operation.
986     if (VT == MVT::i32)
987       PreferAnd = true;
988     // As well as for any 64-bit operation that can be implemented via LLC(R),
989     // LLH(R), LLGT(R), or one of the and-immediate instructions.
990     else if (RISBG.Mask == 0xff ||
991              RISBG.Mask == 0xffff ||
992              RISBG.Mask == 0x7fffffff ||
993              SystemZ::isImmLF(~RISBG.Mask) ||
994              SystemZ::isImmHF(~RISBG.Mask))
995      PreferAnd = true;
996     // And likewise for the LLZRGF instruction, which doesn't have a register
997     // to register version.
998     else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
999       if (Load->getMemoryVT() == MVT::i32 &&
1000           (Load->getExtensionType() == ISD::EXTLOAD ||
1001            Load->getExtensionType() == ISD::ZEXTLOAD) &&
1002           RISBG.Mask == 0xffffff00 &&
1003           Subtarget->hasLoadAndZeroRightmostByte())
1004       PreferAnd = true;
1005     }
1006     if (PreferAnd) {
1007       // Replace the current node with an AND.  Note that the current node
1008       // might already be that same AND, in which case it is already CSE'd
1009       // with it, and we must not call ReplaceNode.
1010       SDValue In = convertTo(DL, VT, RISBG.Input);
1011       SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1012       SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1013       if (N != New.getNode()) {
1014         insertDAGNode(CurDAG, N, Mask);
1015         insertDAGNode(CurDAG, N, New);
1016         ReplaceNode(N, New.getNode());
1017         N = New.getNode();
1018       }
1019       // Now, select the machine opcode to implement this operation.
1020       if (!N->isMachineOpcode())
1021         SelectCode(N);
1022       return true;
1023     }
1024   }
1025 
1026   unsigned Opcode = SystemZ::RISBG;
1027   // Prefer RISBGN if available, since it does not clobber CC.
1028   if (Subtarget->hasMiscellaneousExtensions())
1029     Opcode = SystemZ::RISBGN;
1030   EVT OpcodeVT = MVT::i64;
1031   if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1032       // We can only use the 32-bit instructions if all source bits are
1033       // in the low 32 bits without wrapping, both after rotation (because
1034       // of the smaller range for Start and End) and before rotation
1035       // (because the input value is truncated).
1036       RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1037       ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1038       ((RISBG.End + RISBG.Rotate) & 63) >=
1039       ((RISBG.Start + RISBG.Rotate) & 63)) {
1040     Opcode = SystemZ::RISBMux;
1041     OpcodeVT = MVT::i32;
1042     RISBG.Start &= 31;
1043     RISBG.End &= 31;
1044   }
1045   SDValue Ops[5] = {
1046     getUNDEF(DL, OpcodeVT),
1047     convertTo(DL, OpcodeVT, RISBG.Input),
1048     CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1049     CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1050     CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1051   };
1052   SDValue New = convertTo(
1053       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1054   ReplaceNode(N, New.getNode());
1055   return true;
1056 }
1057 
1058 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1059   SDLoc DL(N);
1060   EVT VT = N->getValueType(0);
1061   if (!VT.isInteger() || VT.getSizeInBits() > 64)
1062     return false;
1063   // Try treating each operand of N as the second operand of the RxSBG
1064   // and see which goes deepest.
1065   RxSBGOperands RxSBG[] = {
1066     RxSBGOperands(Opcode, N->getOperand(0)),
1067     RxSBGOperands(Opcode, N->getOperand(1))
1068   };
1069   unsigned Count[] = { 0, 0 };
1070   for (unsigned I = 0; I < 2; ++I)
1071     while (expandRxSBG(RxSBG[I]))
1072       // The widening or narrowing is expected to be free.
1073       // Counting widening or narrowing as a saved operation will result in
1074       // preferring an R*SBG over a simple shift/logical instruction.
1075       if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1076           RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1077         Count[I] += 1;
1078 
1079   // Do nothing if neither operand is suitable.
1080   if (Count[0] == 0 && Count[1] == 0)
1081     return false;
1082 
1083   // Pick the deepest second operand.
1084   unsigned I = Count[0] > Count[1] ? 0 : 1;
1085   SDValue Op0 = N->getOperand(I ^ 1);
1086 
1087   // Prefer IC for character insertions from memory.
1088   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1089     if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1090       if (Load->getMemoryVT() == MVT::i8)
1091         return false;
1092 
1093   // See whether we can avoid an AND in the first operand by converting
1094   // ROSBG to RISBG.
1095   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1096     Opcode = SystemZ::RISBG;
1097     // Prefer RISBGN if available, since it does not clobber CC.
1098     if (Subtarget->hasMiscellaneousExtensions())
1099       Opcode = SystemZ::RISBGN;
1100   }
1101 
1102   SDValue Ops[5] = {
1103     convertTo(DL, MVT::i64, Op0),
1104     convertTo(DL, MVT::i64, RxSBG[I].Input),
1105     CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1106     CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1107     CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1108   };
1109   SDValue New = convertTo(
1110       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1111   ReplaceNode(N, New.getNode());
1112   return true;
1113 }
1114 
1115 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1116                                               SDValue Op0, uint64_t UpperVal,
1117                                               uint64_t LowerVal) {
1118   EVT VT = Node->getValueType(0);
1119   SDLoc DL(Node);
1120   SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1121   if (Op0.getNode())
1122     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1123 
1124   {
1125     // When we haven't passed in Op0, Upper will be a constant. In order to
1126     // prevent folding back to the large immediate in `Or = getNode(...)` we run
1127     // SelectCode first and end up with an opaque machine node. This means that
1128     // we need to use a handle to keep track of Upper in case it gets CSE'd by
1129     // SelectCode.
1130     //
1131     // Note that in the case where Op0 is passed in we could just call
1132     // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1133     // the handle at all, but it's fine to do it here.
1134     //
1135     // TODO: This is a pretty hacky way to do this. Can we do something that
1136     // doesn't require a two paragraph explanation?
1137     HandleSDNode Handle(Upper);
1138     SelectCode(Upper.getNode());
1139     Upper = Handle.getValue();
1140   }
1141 
1142   SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1143   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1144 
1145   ReplaceNode(Node, Or.getNode());
1146 
1147   SelectCode(Or.getNode());
1148 }
1149 
1150 void SystemZDAGToDAGISel::loadVectorConstant(
1151     const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1152   assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1153           VCI.Opcode == SystemZISD::REPLICATE ||
1154           VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1155          "Bad opcode!");
1156   assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1157   EVT VT = Node->getValueType(0);
1158   SDLoc DL(Node);
1159   SmallVector<SDValue, 2> Ops;
1160   for (unsigned OpVal : VCI.OpVals)
1161     Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1162   SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1163 
1164   if (VCI.VecVT == VT.getSimpleVT())
1165     ReplaceNode(Node, Op.getNode());
1166   else if (VT.getSizeInBits() == 128) {
1167     SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1168     ReplaceNode(Node, BitCast.getNode());
1169     SelectCode(BitCast.getNode());
1170   } else { // float or double
1171     unsigned SubRegIdx =
1172         (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1173     ReplaceNode(
1174         Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1175   }
1176   SelectCode(Op.getNode());
1177 }
1178 
1179 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1180   SDValue ElemV = N->getOperand(2);
1181   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1182   if (!ElemN)
1183     return false;
1184 
1185   unsigned Elem = ElemN->getZExtValue();
1186   EVT VT = N->getValueType(0);
1187   if (Elem >= VT.getVectorNumElements())
1188     return false;
1189 
1190   auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1191   if (!Load || !Load->hasNUsesOfValue(1, 0))
1192     return false;
1193   if (Load->getMemoryVT().getSizeInBits() !=
1194       Load->getValueType(0).getSizeInBits())
1195     return false;
1196 
1197   SDValue Base, Disp, Index;
1198   if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1199       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1200     return false;
1201 
1202   SDLoc DL(Load);
1203   SDValue Ops[] = {
1204     N->getOperand(0), Base, Disp, Index,
1205     CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1206   };
1207   SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1208   ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1209   ReplaceNode(N, Res);
1210   return true;
1211 }
1212 
1213 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1214   SDValue Value = Store->getValue();
1215   if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1216     return false;
1217   if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1218     return false;
1219 
1220   SDValue ElemV = Value.getOperand(1);
1221   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1222   if (!ElemN)
1223     return false;
1224 
1225   SDValue Vec = Value.getOperand(0);
1226   EVT VT = Vec.getValueType();
1227   unsigned Elem = ElemN->getZExtValue();
1228   if (Elem >= VT.getVectorNumElements())
1229     return false;
1230 
1231   SDValue Base, Disp, Index;
1232   if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1233       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1234     return false;
1235 
1236   SDLoc DL(Store);
1237   SDValue Ops[] = {
1238     Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1239     Store->getChain()
1240   };
1241   ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1242   return true;
1243 }
1244 
1245 // Check whether or not the chain ending in StoreNode is suitable for doing
1246 // the {load; op; store} to modify transformation.
1247 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1248                                         SDValue StoredVal, SelectionDAG *CurDAG,
1249                                         LoadSDNode *&LoadNode,
1250                                         SDValue &InputChain) {
1251   // Is the stored value result 0 of the operation?
1252   if (StoredVal.getResNo() != 0)
1253     return false;
1254 
1255   // Are there other uses of the loaded value than the operation?
1256   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1257     return false;
1258 
1259   // Is the store non-extending and non-indexed?
1260   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1261     return false;
1262 
1263   SDValue Load = StoredVal->getOperand(0);
1264   // Is the stored value a non-extending and non-indexed load?
1265   if (!ISD::isNormalLoad(Load.getNode()))
1266     return false;
1267 
1268   // Return LoadNode by reference.
1269   LoadNode = cast<LoadSDNode>(Load);
1270 
1271   // Is store the only read of the loaded value?
1272   if (!Load.hasOneUse())
1273     return false;
1274 
1275   // Is the address of the store the same as the load?
1276   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1277       LoadNode->getOffset() != StoreNode->getOffset())
1278     return false;
1279 
1280   // Check if the chain is produced by the load or is a TokenFactor with
1281   // the load output chain as an operand. Return InputChain by reference.
1282   SDValue Chain = StoreNode->getChain();
1283 
1284   bool ChainCheck = false;
1285   if (Chain == Load.getValue(1)) {
1286     ChainCheck = true;
1287     InputChain = LoadNode->getChain();
1288   } else if (Chain.getOpcode() == ISD::TokenFactor) {
1289     SmallVector<SDValue, 4> ChainOps;
1290     SmallVector<const SDNode *, 4> LoopWorklist;
1291     SmallPtrSet<const SDNode *, 16> Visited;
1292     const unsigned int Max = 1024;
1293     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1294       SDValue Op = Chain.getOperand(i);
1295       if (Op == Load.getValue(1)) {
1296         ChainCheck = true;
1297         // Drop Load, but keep its chain. No cycle check necessary.
1298         ChainOps.push_back(Load.getOperand(0));
1299         continue;
1300       }
1301       LoopWorklist.push_back(Op.getNode());
1302       ChainOps.push_back(Op);
1303     }
1304 
1305     if (ChainCheck) {
1306       // Add the other operand of StoredVal to worklist.
1307       for (SDValue Op : StoredVal->ops())
1308         if (Op.getNode() != LoadNode)
1309           LoopWorklist.push_back(Op.getNode());
1310 
1311       // Check if Load is reachable from any of the nodes in the worklist.
1312       if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1313                                        true))
1314         return false;
1315 
1316       // Make a new TokenFactor with all the other input chains except
1317       // for the load.
1318       InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1319                                    MVT::Other, ChainOps);
1320     }
1321   }
1322   if (!ChainCheck)
1323     return false;
1324 
1325   return true;
1326 }
1327 
1328 // Change a chain of {load; op; store} of the same value into a simple op
1329 // through memory of that value, if the uses of the modified value and its
1330 // address are suitable.
1331 //
1332 // The tablegen pattern memory operand pattern is currently not able to match
1333 // the case where the CC on the original operation are used.
1334 //
1335 // See the equivalent routine in X86ISelDAGToDAG for further comments.
1336 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1337   StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1338   SDValue StoredVal = StoreNode->getOperand(1);
1339   unsigned Opc = StoredVal->getOpcode();
1340   SDLoc DL(StoreNode);
1341 
1342   // Before we try to select anything, make sure this is memory operand size
1343   // and opcode we can handle. Note that this must match the code below that
1344   // actually lowers the opcodes.
1345   EVT MemVT = StoreNode->getMemoryVT();
1346   unsigned NewOpc = 0;
1347   bool NegateOperand = false;
1348   switch (Opc) {
1349   default:
1350     return false;
1351   case SystemZISD::SSUBO:
1352     NegateOperand = true;
1353     LLVM_FALLTHROUGH;
1354   case SystemZISD::SADDO:
1355     if (MemVT == MVT::i32)
1356       NewOpc = SystemZ::ASI;
1357     else if (MemVT == MVT::i64)
1358       NewOpc = SystemZ::AGSI;
1359     else
1360       return false;
1361     break;
1362   case SystemZISD::USUBO:
1363     NegateOperand = true;
1364     LLVM_FALLTHROUGH;
1365   case SystemZISD::UADDO:
1366     if (MemVT == MVT::i32)
1367       NewOpc = SystemZ::ALSI;
1368     else if (MemVT == MVT::i64)
1369       NewOpc = SystemZ::ALGSI;
1370     else
1371       return false;
1372     break;
1373   }
1374 
1375   LoadSDNode *LoadNode = nullptr;
1376   SDValue InputChain;
1377   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1378                                    InputChain))
1379     return false;
1380 
1381   SDValue Operand = StoredVal.getOperand(1);
1382   auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1383   if (!OperandC)
1384     return false;
1385   auto OperandV = OperandC->getAPIntValue();
1386   if (NegateOperand)
1387     OperandV = -OperandV;
1388   if (OperandV.getMinSignedBits() > 8)
1389     return false;
1390   Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1391 
1392   SDValue Base, Disp;
1393   if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1394     return false;
1395 
1396   SDValue Ops[] = { Base, Disp, Operand, InputChain };
1397   MachineSDNode *Result =
1398     CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1399   CurDAG->setNodeMemRefs(
1400       Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1401 
1402   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1403   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1404   CurDAG->RemoveDeadNode(Node);
1405   return true;
1406 }
1407 
1408 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1409                                                LoadSDNode *Load) const {
1410   // Check that the two memory operands have the same size.
1411   if (Load->getMemoryVT() != Store->getMemoryVT())
1412     return false;
1413 
1414   // Volatility stops an access from being decomposed.
1415   if (Load->isVolatile() || Store->isVolatile())
1416     return false;
1417 
1418   // There's no chance of overlap if the load is invariant.
1419   if (Load->isInvariant() && Load->isDereferenceable())
1420     return true;
1421 
1422   // Otherwise we need to check whether there's an alias.
1423   const Value *V1 = Load->getMemOperand()->getValue();
1424   const Value *V2 = Store->getMemOperand()->getValue();
1425   if (!V1 || !V2)
1426     return false;
1427 
1428   // Reject equality.
1429   uint64_t Size = Load->getMemoryVT().getStoreSize();
1430   int64_t End1 = Load->getSrcValueOffset() + Size;
1431   int64_t End2 = Store->getSrcValueOffset() + Size;
1432   if (V1 == V2 && End1 == End2)
1433     return false;
1434 
1435   return AA->isNoAlias(MemoryLocation(V1, End1, Load->getAAInfo()),
1436                        MemoryLocation(V2, End2, Store->getAAInfo()));
1437 }
1438 
1439 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1440   auto *Store = cast<StoreSDNode>(N);
1441   auto *Load = cast<LoadSDNode>(Store->getValue());
1442 
1443   // Prefer not to use MVC if either address can use ... RELATIVE LONG
1444   // instructions.
1445   uint64_t Size = Load->getMemoryVT().getStoreSize();
1446   if (Size > 1 && Size <= 8) {
1447     // Prefer LHRL, LRL and LGRL.
1448     if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1449       return false;
1450     // Prefer STHRL, STRL and STGRL.
1451     if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1452       return false;
1453   }
1454 
1455   return canUseBlockOperation(Store, Load);
1456 }
1457 
1458 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1459                                                      unsigned I) const {
1460   auto *StoreA = cast<StoreSDNode>(N);
1461   auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1462   auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1463   return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() &&
1464          canUseBlockOperation(StoreA, LoadB);
1465 }
1466 
1467 bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const {
1468 
1469   auto *MemAccess = cast<LSBaseSDNode>(N);
1470   TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize();
1471   SDValue BasePtr = MemAccess->getBasePtr();
1472   MachineMemOperand *MMO = MemAccess->getMemOperand();
1473   assert(MMO && "Expected a memory operand.");
1474 
1475   // The memory access must have a proper alignment and no index register.
1476   if (MemAccess->getAlignment() < StoreSize ||
1477       !MemAccess->getOffset().isUndef())
1478     return false;
1479 
1480   // The MMO must not have an unaligned offset.
1481   if (MMO->getOffset() % StoreSize != 0)
1482     return false;
1483 
1484   // An access to GOT or the Constant Pool is aligned.
1485   if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1486     if ((PSV->isGOT() || PSV->isConstantPool()))
1487       return true;
1488 
1489   // Check the alignment of a Global Address.
1490   if (BasePtr.getNumOperands())
1491     if (GlobalAddressSDNode *GA =
1492         dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) {
1493       // The immediate offset must be aligned.
1494       if (GA->getOffset() % StoreSize != 0)
1495         return false;
1496 
1497       // The alignment of the symbol itself must be at least the store size.
1498       const GlobalValue *GV = GA->getGlobal();
1499       const DataLayout &DL = GV->getParent()->getDataLayout();
1500       if (GV->getPointerAlignment(DL).value() < StoreSize)
1501         return false;
1502     }
1503 
1504   return true;
1505 }
1506 
1507 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1508   // If we have a custom node, we already have selected!
1509   if (Node->isMachineOpcode()) {
1510     LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1511     Node->setNodeId(-1);
1512     return;
1513   }
1514 
1515   unsigned Opcode = Node->getOpcode();
1516   switch (Opcode) {
1517   case ISD::OR:
1518     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1519       if (tryRxSBG(Node, SystemZ::ROSBG))
1520         return;
1521     goto or_xor;
1522 
1523   case ISD::XOR:
1524     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1525       if (tryRxSBG(Node, SystemZ::RXSBG))
1526         return;
1527     // Fall through.
1528   or_xor:
1529     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1530     // split the operation into two.  If both operands here happen to be
1531     // constant, leave this to common code to optimize.
1532     if (Node->getValueType(0) == MVT::i64 &&
1533         Node->getOperand(0).getOpcode() != ISD::Constant)
1534       if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1535         uint64_t Val = Op1->getZExtValue();
1536         // Don't split the operation if we can match one of the combined
1537         // logical operations provided by miscellaneous-extensions-3.
1538         if (Subtarget->hasMiscellaneousExtensions3()) {
1539           unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1540           // Check whether this expression matches NAND/NOR/NXOR.
1541           if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1542             if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1543                 ChildOpcode == ISD::XOR)
1544               break;
1545           // Check whether this expression matches OR-with-complement
1546           // (or matches an alternate pattern for NXOR).
1547           if (ChildOpcode == ISD::XOR) {
1548             auto Op0 = Node->getOperand(0);
1549             if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1550               if (Op0Op1->getZExtValue() == (uint64_t)-1)
1551                 break;
1552           }
1553         }
1554         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1555           splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1556                               Val - uint32_t(Val), uint32_t(Val));
1557           return;
1558         }
1559       }
1560     break;
1561 
1562   case ISD::AND:
1563     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1564       if (tryRxSBG(Node, SystemZ::RNSBG))
1565         return;
1566     LLVM_FALLTHROUGH;
1567   case ISD::ROTL:
1568   case ISD::SHL:
1569   case ISD::SRL:
1570   case ISD::ZERO_EXTEND:
1571     if (tryRISBGZero(Node))
1572       return;
1573     break;
1574 
1575   case ISD::Constant:
1576     // If this is a 64-bit constant that is out of the range of LLILF,
1577     // LLIHF and LGFI, split it into two 32-bit pieces.
1578     if (Node->getValueType(0) == MVT::i64) {
1579       uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1580       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1581         splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1582                             uint32_t(Val));
1583         return;
1584       }
1585     }
1586     break;
1587 
1588   case SystemZISD::SELECT_CCMASK: {
1589     SDValue Op0 = Node->getOperand(0);
1590     SDValue Op1 = Node->getOperand(1);
1591     // Prefer to put any load first, so that it can be matched as a
1592     // conditional load.  Likewise for constants in range for LOCHI.
1593     if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1594         (Subtarget->hasLoadStoreOnCond2() &&
1595          Node->getValueType(0).isInteger() &&
1596          Op1.getOpcode() == ISD::Constant &&
1597          isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1598          !(Op0.getOpcode() == ISD::Constant &&
1599            isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1600       SDValue CCValid = Node->getOperand(2);
1601       SDValue CCMask = Node->getOperand(3);
1602       uint64_t ConstCCValid =
1603         cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1604       uint64_t ConstCCMask =
1605         cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1606       // Invert the condition.
1607       CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1608                                          SDLoc(Node), CCMask.getValueType());
1609       SDValue Op4 = Node->getOperand(4);
1610       SDNode *UpdatedNode =
1611         CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1612       if (UpdatedNode != Node) {
1613         // In case this node already exists then replace Node with it.
1614         ReplaceNode(Node, UpdatedNode);
1615         Node = UpdatedNode;
1616       }
1617     }
1618     break;
1619   }
1620 
1621   case ISD::INSERT_VECTOR_ELT: {
1622     EVT VT = Node->getValueType(0);
1623     unsigned ElemBitSize = VT.getScalarSizeInBits();
1624     if (ElemBitSize == 32) {
1625       if (tryGather(Node, SystemZ::VGEF))
1626         return;
1627     } else if (ElemBitSize == 64) {
1628       if (tryGather(Node, SystemZ::VGEG))
1629         return;
1630     }
1631     break;
1632   }
1633 
1634   case ISD::BUILD_VECTOR: {
1635     auto *BVN = cast<BuildVectorSDNode>(Node);
1636     SystemZVectorConstantInfo VCI(BVN);
1637     if (VCI.isVectorConstantLegal(*Subtarget)) {
1638       loadVectorConstant(VCI, Node);
1639       return;
1640     }
1641     break;
1642   }
1643 
1644   case ISD::ConstantFP: {
1645     APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1646     if (Imm.isZero() || Imm.isNegZero())
1647       break;
1648     SystemZVectorConstantInfo VCI(Imm);
1649     bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1650     assert(Success && "Expected legal FP immediate");
1651     loadVectorConstant(VCI, Node);
1652     return;
1653   }
1654 
1655   case ISD::STORE: {
1656     if (tryFoldLoadStoreIntoMemOperand(Node))
1657       return;
1658     auto *Store = cast<StoreSDNode>(Node);
1659     unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1660     if (ElemBitSize == 32) {
1661       if (tryScatter(Store, SystemZ::VSCEF))
1662         return;
1663     } else if (ElemBitSize == 64) {
1664       if (tryScatter(Store, SystemZ::VSCEG))
1665         return;
1666     }
1667     break;
1668   }
1669   }
1670 
1671   SelectCode(Node);
1672 }
1673 
1674 bool SystemZDAGToDAGISel::
1675 SelectInlineAsmMemoryOperand(const SDValue &Op,
1676                              unsigned ConstraintID,
1677                              std::vector<SDValue> &OutOps) {
1678   SystemZAddressingMode::AddrForm Form;
1679   SystemZAddressingMode::DispRange DispRange;
1680   SDValue Base, Disp, Index;
1681 
1682   switch(ConstraintID) {
1683   default:
1684     llvm_unreachable("Unexpected asm memory constraint");
1685   case InlineAsm::Constraint_i:
1686   case InlineAsm::Constraint_Q:
1687     // Accept an address with a short displacement, but no index.
1688     Form = SystemZAddressingMode::FormBD;
1689     DispRange = SystemZAddressingMode::Disp12Only;
1690     break;
1691   case InlineAsm::Constraint_R:
1692     // Accept an address with a short displacement and an index.
1693     Form = SystemZAddressingMode::FormBDXNormal;
1694     DispRange = SystemZAddressingMode::Disp12Only;
1695     break;
1696   case InlineAsm::Constraint_S:
1697     // Accept an address with a long displacement, but no index.
1698     Form = SystemZAddressingMode::FormBD;
1699     DispRange = SystemZAddressingMode::Disp20Only;
1700     break;
1701   case InlineAsm::Constraint_T:
1702   case InlineAsm::Constraint_m:
1703   case InlineAsm::Constraint_o:
1704     // Accept an address with a long displacement and an index.
1705     // m works the same as T, as this is the most general case.
1706     // We don't really have any special handling of "offsettable"
1707     // memory addresses, so just treat o the same as m.
1708     Form = SystemZAddressingMode::FormBDXNormal;
1709     DispRange = SystemZAddressingMode::Disp20Only;
1710     break;
1711   }
1712 
1713   if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1714     const TargetRegisterClass *TRC =
1715       Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1716     SDLoc DL(Base);
1717     SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1718 
1719     // Make sure that the base address doesn't go into %r0.
1720     // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1721     if (Base.getOpcode() != ISD::TargetFrameIndex &&
1722         Base.getOpcode() != ISD::Register) {
1723       Base =
1724         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1725                                        DL, Base.getValueType(),
1726                                        Base, RC), 0);
1727     }
1728 
1729     // Make sure that the index register isn't assigned to %r0 either.
1730     if (Index.getOpcode() != ISD::Register) {
1731       Index =
1732         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1733                                        DL, Index.getValueType(),
1734                                        Index, RC), 0);
1735     }
1736 
1737     OutOps.push_back(Base);
1738     OutOps.push_back(Disp);
1739     OutOps.push_back(Index);
1740     return false;
1741   }
1742 
1743   return true;
1744 }
1745 
1746 // IsProfitableToFold - Returns true if is profitable to fold the specific
1747 // operand node N of U during instruction selection that starts at Root.
1748 bool
1749 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1750                                         SDNode *Root) const {
1751   // We want to avoid folding a LOAD into an ICMP node if as a result
1752   // we would be forced to spill the condition code into a GPR.
1753   if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1754     if (!N.hasOneUse() || !U->hasOneUse())
1755       return false;
1756 
1757     // The user of the CC value will usually be a CopyToReg into the
1758     // physical CC register, which in turn is glued and chained to the
1759     // actual instruction that uses the CC value.  Bail out if we have
1760     // anything else than that.
1761     SDNode *CCUser = *U->use_begin();
1762     SDNode *CCRegUser = nullptr;
1763     if (CCUser->getOpcode() == ISD::CopyToReg ||
1764         cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1765       for (auto *U : CCUser->uses()) {
1766         if (CCRegUser == nullptr)
1767           CCRegUser = U;
1768         else if (CCRegUser != U)
1769           return false;
1770       }
1771     }
1772     if (CCRegUser == nullptr)
1773       return false;
1774 
1775     // If the actual instruction is a branch, the only thing that remains to be
1776     // checked is whether the CCUser chain is a predecessor of the load.
1777     if (CCRegUser->isMachineOpcode() &&
1778         CCRegUser->getMachineOpcode() == SystemZ::BRC)
1779       return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1780 
1781     // Otherwise, the instruction may have multiple operands, and we need to
1782     // verify that none of them are a predecessor of the load.  This is exactly
1783     // the same check that would be done by common code if the CC setter were
1784     // glued to the CC user, so simply invoke that check here.
1785     if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1786       return false;
1787   }
1788 
1789   return true;
1790 }
1791 
1792 namespace {
1793 // Represents a sequence for extracting a 0/1 value from an IPM result:
1794 // (((X ^ XORValue) + AddValue) >> Bit)
1795 struct IPMConversion {
1796   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1797     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1798 
1799   int64_t XORValue;
1800   int64_t AddValue;
1801   unsigned Bit;
1802 };
1803 } // end anonymous namespace
1804 
1805 // Return a sequence for getting a 1 from an IPM result when CC has a
1806 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1807 // The handling of CC values outside CCValid doesn't matter.
1808 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1809   // Deal with cases where the result can be taken directly from a bit
1810   // of the IPM result.
1811   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1812     return IPMConversion(0, 0, SystemZ::IPM_CC);
1813   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1814     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1815 
1816   // Deal with cases where we can add a value to force the sign bit
1817   // to contain the right value.  Putting the bit in 31 means we can
1818   // use SRL rather than RISBG(L), and also makes it easier to get a
1819   // 0/-1 value, so it has priority over the other tests below.
1820   //
1821   // These sequences rely on the fact that the upper two bits of the
1822   // IPM result are zero.
1823   uint64_t TopBit = uint64_t(1) << 31;
1824   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1825     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1826   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1827     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1828   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1829                             | SystemZ::CCMASK_1
1830                             | SystemZ::CCMASK_2)))
1831     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1832   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1833     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1834   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1835                             | SystemZ::CCMASK_2
1836                             | SystemZ::CCMASK_3)))
1837     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1838 
1839   // Next try inverting the value and testing a bit.  0/1 could be
1840   // handled this way too, but we dealt with that case above.
1841   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1842     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1843 
1844   // Handle cases where adding a value forces a non-sign bit to contain
1845   // the right value.
1846   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1847     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1848   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1849     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1850 
1851   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1852   // can be done by inverting the low CC bit and applying one of the
1853   // sign-based extractions above.
1854   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1855     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1856   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1857     return IPMConversion(1 << SystemZ::IPM_CC,
1858                          TopBit - (3 << SystemZ::IPM_CC), 31);
1859   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1860                             | SystemZ::CCMASK_1
1861                             | SystemZ::CCMASK_3)))
1862     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1863   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1864                             | SystemZ::CCMASK_2
1865                             | SystemZ::CCMASK_3)))
1866     return IPMConversion(1 << SystemZ::IPM_CC,
1867                          TopBit - (1 << SystemZ::IPM_CC), 31);
1868 
1869   llvm_unreachable("Unexpected CC combination");
1870 }
1871 
1872 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1873   auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1874   auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1875   if (!TrueOp || !FalseOp)
1876     return SDValue();
1877   if (FalseOp->getZExtValue() != 0)
1878     return SDValue();
1879   if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1880     return SDValue();
1881 
1882   auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1883   auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1884   if (!CCValidOp || !CCMaskOp)
1885     return SDValue();
1886   int CCValid = CCValidOp->getZExtValue();
1887   int CCMask = CCMaskOp->getZExtValue();
1888 
1889   SDLoc DL(Node);
1890   SDValue CCReg = Node->getOperand(4);
1891   IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1892   SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
1893 
1894   if (IPM.XORValue)
1895     Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1896                              CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1897 
1898   if (IPM.AddValue)
1899     Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1900                              CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1901 
1902   EVT VT = Node->getValueType(0);
1903   if (VT == MVT::i32 && IPM.Bit == 31) {
1904     unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1905     Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1906                              CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1907   } else {
1908     if (VT != MVT::i32)
1909       Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1910 
1911     if (TrueOp->getSExtValue() == 1) {
1912       // The SHR/AND sequence should get optimized to an RISBG.
1913       Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1914                                CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1915       Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1916                                CurDAG->getConstant(1, DL, VT));
1917     } else {
1918       // Sign-extend from IPM.Bit using a pair of shifts.
1919       int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1920       int SraAmt = VT.getSizeInBits() - 1;
1921       Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1922                                CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1923       Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1924                                CurDAG->getConstant(SraAmt, DL, MVT::i32));
1925     }
1926   }
1927 
1928   return Result;
1929 }
1930 
1931 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1932   // If we have conditional immediate loads, we always prefer
1933   // using those over an IPM sequence.
1934   if (Subtarget->hasLoadStoreOnCond2())
1935     return;
1936 
1937   bool MadeChange = false;
1938 
1939   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1940                                        E = CurDAG->allnodes_end();
1941        I != E;) {
1942     SDNode *N = &*I++;
1943     if (N->use_empty())
1944       continue;
1945 
1946     SDValue Res;
1947     switch (N->getOpcode()) {
1948     default: break;
1949     case SystemZISD::SELECT_CCMASK:
1950       Res = expandSelectBoolean(N);
1951       break;
1952     }
1953 
1954     if (Res) {
1955       LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld:    ");
1956       LLVM_DEBUG(N->dump(CurDAG));
1957       LLVM_DEBUG(dbgs() << "\nNew: ");
1958       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
1959       LLVM_DEBUG(dbgs() << "\n");
1960 
1961       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1962       MadeChange = true;
1963     }
1964   }
1965 
1966   if (MadeChange)
1967     CurDAG->RemoveDeadNodes();
1968 }
1969