xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp (revision c8e7f78a3d28ff6e6223ed136ada8e1e2f34965e)
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the SystemZ target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "systemz-isel"
24 #define PASS_NAME "SystemZ DAG->DAG Pattern Instruction Selection"
25 
26 namespace {
27 // Used to build addressing modes.
28 struct SystemZAddressingMode {
29   // The shape of the address.
30   enum AddrForm {
31     // base+displacement
32     FormBD,
33 
34     // base+displacement+index for load and store operands
35     FormBDXNormal,
36 
37     // base+displacement+index for load address operands
38     FormBDXLA,
39 
40     // base+displacement+index+ADJDYNALLOC
41     FormBDXDynAlloc
42   };
43   AddrForm Form;
44 
45   // The type of displacement.  The enum names here correspond directly
46   // to the definitions in SystemZOperand.td.  We could split them into
47   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
48   enum DispRange {
49     Disp12Only,
50     Disp12Pair,
51     Disp20Only,
52     Disp20Only128,
53     Disp20Pair
54   };
55   DispRange DR;
56 
57   // The parts of the address.  The address is equivalent to:
58   //
59   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
60   SDValue Base;
61   int64_t Disp;
62   SDValue Index;
63   bool IncludesDynAlloc;
64 
65   SystemZAddressingMode(AddrForm form, DispRange dr)
66       : Form(form), DR(dr), Disp(0), IncludesDynAlloc(false) {}
67 
68   // True if the address can have an index register.
69   bool hasIndexField() { return Form != FormBD; }
70 
71   // True if the address can (and must) include ADJDYNALLOC.
72   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73 
74   void dump(const llvm::SelectionDAG *DAG) {
75     errs() << "SystemZAddressingMode " << this << '\n';
76 
77     errs() << " Base ";
78     if (Base.getNode())
79       Base.getNode()->dump(DAG);
80     else
81       errs() << "null\n";
82 
83     if (hasIndexField()) {
84       errs() << " Index ";
85       if (Index.getNode())
86         Index.getNode()->dump(DAG);
87       else
88         errs() << "null\n";
89     }
90 
91     errs() << " Disp " << Disp;
92     if (IncludesDynAlloc)
93       errs() << " + ADJDYNALLOC";
94     errs() << '\n';
95   }
96 };
97 
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count) {
100   assert(Count <= 64);
101   if (Count > 63)
102     return UINT64_MAX;
103   return (uint64_t(1) << Count) - 1;
104 }
105 
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5).  The combined operand value is effectively:
109 //
110 //   (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 //   (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise.  The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
120   RxSBGOperands(unsigned Op, SDValue N)
121     : Opcode(Op), BitSize(N.getValueSizeInBits()),
122       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123       Rotate(0) {}
124 
125   unsigned Opcode;
126   unsigned BitSize;
127   uint64_t Mask;
128   SDValue Input;
129   unsigned Start;
130   unsigned End;
131   unsigned Rotate;
132 };
133 
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135   const SystemZSubtarget *Subtarget;
136 
137   // Used by SystemZOperands.td to create integer constants.
138   inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139     return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140   }
141 
142   const SystemZTargetMachine &getTargetMachine() const {
143     return static_cast<const SystemZTargetMachine &>(TM);
144   }
145 
146   const SystemZInstrInfo *getInstrInfo() const {
147     return Subtarget->getInstrInfo();
148   }
149 
150   // Try to fold more of the base or index of AM into AM, where IsBase
151   // selects between the base and index.
152   bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153 
154   // Try to describe N in AM, returning true on success.
155   bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156 
157   // Extract individual target operands from matched address AM.
158   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159                           SDValue &Base, SDValue &Disp) const;
160   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161                           SDValue &Base, SDValue &Disp, SDValue &Index) const;
162 
163   // Try to match Addr as a FormBD address with displacement type DR.
164   // Return true on success, storing the base and displacement in
165   // Base and Disp respectively.
166   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167                     SDValue &Base, SDValue &Disp) const;
168 
169   // Try to match Addr as a FormBDX address with displacement type DR.
170   // Return true on success and if the result had no index.  Store the
171   // base and displacement in Base and Disp respectively.
172   bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173                      SDValue &Base, SDValue &Disp) const;
174 
175   // Try to match Addr as a FormBDX* address of form Form with
176   // displacement type DR.  Return true on success, storing the base,
177   // displacement and index in Base, Disp and Index respectively.
178   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179                      SystemZAddressingMode::DispRange DR, SDValue Addr,
180                      SDValue &Base, SDValue &Disp, SDValue &Index) const;
181 
182   // PC-relative address matching routines used by SystemZOperands.td.
183   bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184     if (SystemZISD::isPCREL(Addr.getOpcode())) {
185       Target = Addr.getOperand(0);
186       return true;
187     }
188     return false;
189   }
190 
191   // BD matching routines used by SystemZOperands.td.
192   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194   }
195   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197   }
198   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200   }
201   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203   }
204 
205   // MVI matching routines used by SystemZOperands.td.
206   bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207     return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208   }
209   bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210     return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211   }
212 
213   // BDX matching routines used by SystemZOperands.td.
214   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215                            SDValue &Index) const {
216     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217                          SystemZAddressingMode::Disp12Only,
218                          Addr, Base, Disp, Index);
219   }
220   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221                            SDValue &Index) const {
222     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223                          SystemZAddressingMode::Disp12Pair,
224                          Addr, Base, Disp, Index);
225   }
226   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227                             SDValue &Index) const {
228     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229                          SystemZAddressingMode::Disp12Only,
230                          Addr, Base, Disp, Index);
231   }
232   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233                            SDValue &Index) const {
234     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235                          SystemZAddressingMode::Disp20Only,
236                          Addr, Base, Disp, Index);
237   }
238   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239                               SDValue &Index) const {
240     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241                          SystemZAddressingMode::Disp20Only128,
242                          Addr, Base, Disp, Index);
243   }
244   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245                            SDValue &Index) const {
246     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247                          SystemZAddressingMode::Disp20Pair,
248                          Addr, Base, Disp, Index);
249   }
250   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251                           SDValue &Index) const {
252     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253                          SystemZAddressingMode::Disp12Pair,
254                          Addr, Base, Disp, Index);
255   }
256   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257                           SDValue &Index) const {
258     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259                          SystemZAddressingMode::Disp20Pair,
260                          Addr, Base, Disp, Index);
261   }
262 
263   // Try to match Addr as an address with a base, 12-bit displacement
264   // and index, where the index is element Elem of a vector.
265   // Return true on success, storing the base, displacement and vector
266   // in Base, Disp and Index respectively.
267   bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268                            SDValue &Disp, SDValue &Index) const;
269 
270   // Check whether (or Op (and X InsertMask)) is effectively an insertion
271   // of X into bits InsertMask of some Y != Op.  Return true if so and
272   // set Op to that Y.
273   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274 
275   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276   // Return true on success.
277   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278 
279   // Try to fold some of RxSBG.Input into other fields of RxSBG.
280   // Return true on success.
281   bool expandRxSBG(RxSBGOperands &RxSBG) const;
282 
283   // Return an undefined value of type VT.
284   SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285 
286   // Convert N to VT, if it isn't already.
287   SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288 
289   // Try to implement AND or shift node N using RISBG with the zero flag set.
290   // Return the selected node on success, otherwise return null.
291   bool tryRISBGZero(SDNode *N);
292 
293   // Try to use RISBG or Opcode to implement OR or XOR node N.
294   // Return the selected node on success, otherwise return null.
295   bool tryRxSBG(SDNode *N, unsigned Opcode);
296 
297   // If Op0 is null, then Node is a constant that can be loaded using:
298   //
299   //   (Opcode UpperVal LowerVal)
300   //
301   // If Op0 is nonnull, then Node can be implemented using:
302   //
303   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
304   void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305                            uint64_t UpperVal, uint64_t LowerVal);
306 
307   void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308                           SDNode *Node);
309 
310   // Try to use gather instruction Opcode to implement vector insertion N.
311   bool tryGather(SDNode *N, unsigned Opcode);
312 
313   // Try to use scatter instruction Opcode to implement store Store.
314   bool tryScatter(StoreSDNode *Store, unsigned Opcode);
315 
316   // Change a chain of {load; op; store} of the same value into a simple op
317   // through memory of that value, if the uses of the modified value and its
318   // address are suitable.
319   bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
320 
321   // Return true if Load and Store are loads and stores of the same size
322   // and are guaranteed not to overlap.  Such operations can be implemented
323   // using block (SS-format) instructions.
324   //
325   // Partial overlap would lead to incorrect code, since the block operations
326   // are logically bytewise, even though they have a fast path for the
327   // non-overlapping case.  We also need to avoid full overlap (i.e. two
328   // addresses that might be equal at run time) because although that case
329   // would be handled correctly, it might be implemented by millicode.
330   bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
331 
332   // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
333   // from Y to X.
334   bool storeLoadCanUseMVC(SDNode *N) const;
335 
336   // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
337   // if A[1 - I] == X and if N can use a block operation like NC from A[I]
338   // to X.
339   bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
340 
341   // Return true if N (a load or a store) fullfills the alignment
342   // requirements for a PC-relative access.
343   bool storeLoadIsAligned(SDNode *N) const;
344 
345   // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
346   SDValue expandSelectBoolean(SDNode *Node);
347 
348 public:
349   static char ID;
350 
351   SystemZDAGToDAGISel() = delete;
352 
353   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
354       : SelectionDAGISel(ID, TM, OptLevel) {}
355 
356   bool runOnMachineFunction(MachineFunction &MF) override {
357     const Function &F = MF.getFunction();
358     if (F.getFnAttribute("fentry-call").getValueAsString() != "true") {
359       if (F.hasFnAttribute("mnop-mcount"))
360         report_fatal_error("mnop-mcount only supported with fentry-call");
361       if (F.hasFnAttribute("mrecord-mcount"))
362         report_fatal_error("mrecord-mcount only supported with fentry-call");
363     }
364 
365     Subtarget = &MF.getSubtarget<SystemZSubtarget>();
366     return SelectionDAGISel::runOnMachineFunction(MF);
367   }
368 
369   // Override SelectionDAGISel.
370   void Select(SDNode *Node) override;
371   bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
372                                     std::vector<SDValue> &OutOps) override;
373   bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
374   void PreprocessISelDAG() override;
375 
376   // Include the pieces autogenerated from the target description.
377   #include "SystemZGenDAGISel.inc"
378 };
379 } // end anonymous namespace
380 
381 char SystemZDAGToDAGISel::ID = 0;
382 
383 INITIALIZE_PASS(SystemZDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
384 
385 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
386                                          CodeGenOpt::Level OptLevel) {
387   return new SystemZDAGToDAGISel(TM, OptLevel);
388 }
389 
390 // Return true if Val should be selected as a displacement for an address
391 // with range DR.  Here we're interested in the range of both the instruction
392 // described by DR and of any pairing instruction.
393 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
394   switch (DR) {
395   case SystemZAddressingMode::Disp12Only:
396     return isUInt<12>(Val);
397 
398   case SystemZAddressingMode::Disp12Pair:
399   case SystemZAddressingMode::Disp20Only:
400   case SystemZAddressingMode::Disp20Pair:
401     return isInt<20>(Val);
402 
403   case SystemZAddressingMode::Disp20Only128:
404     return isInt<20>(Val) && isInt<20>(Val + 8);
405   }
406   llvm_unreachable("Unhandled displacement range");
407 }
408 
409 // Change the base or index in AM to Value, where IsBase selects
410 // between the base and index.
411 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
412                             SDValue Value) {
413   if (IsBase)
414     AM.Base = Value;
415   else
416     AM.Index = Value;
417 }
418 
419 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
420 // where IsBase selects between the base and index.  Try to fold the
421 // ADJDYNALLOC into AM.
422 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
423                               SDValue Value) {
424   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
425     changeComponent(AM, IsBase, Value);
426     AM.IncludesDynAlloc = true;
427     return true;
428   }
429   return false;
430 }
431 
432 // The base of AM is equivalent to Base + Index.  Try to use Index as
433 // the index register.
434 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
435                         SDValue Index) {
436   if (AM.hasIndexField() && !AM.Index.getNode()) {
437     AM.Base = Base;
438     AM.Index = Index;
439     return true;
440   }
441   return false;
442 }
443 
444 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
445 // between the base and index.  Try to fold Op1 into AM's displacement.
446 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
447                        SDValue Op0, uint64_t Op1) {
448   // First try adjusting the displacement.
449   int64_t TestDisp = AM.Disp + Op1;
450   if (selectDisp(AM.DR, TestDisp)) {
451     changeComponent(AM, IsBase, Op0);
452     AM.Disp = TestDisp;
453     return true;
454   }
455 
456   // We could consider forcing the displacement into a register and
457   // using it as an index, but it would need to be carefully tuned.
458   return false;
459 }
460 
461 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
462                                         bool IsBase) const {
463   SDValue N = IsBase ? AM.Base : AM.Index;
464   unsigned Opcode = N.getOpcode();
465   if (Opcode == ISD::TRUNCATE) {
466     N = N.getOperand(0);
467     Opcode = N.getOpcode();
468   }
469   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
470     SDValue Op0 = N.getOperand(0);
471     SDValue Op1 = N.getOperand(1);
472 
473     unsigned Op0Code = Op0->getOpcode();
474     unsigned Op1Code = Op1->getOpcode();
475 
476     if (Op0Code == SystemZISD::ADJDYNALLOC)
477       return expandAdjDynAlloc(AM, IsBase, Op1);
478     if (Op1Code == SystemZISD::ADJDYNALLOC)
479       return expandAdjDynAlloc(AM, IsBase, Op0);
480 
481     if (Op0Code == ISD::Constant)
482       return expandDisp(AM, IsBase, Op1,
483                         cast<ConstantSDNode>(Op0)->getSExtValue());
484     if (Op1Code == ISD::Constant)
485       return expandDisp(AM, IsBase, Op0,
486                         cast<ConstantSDNode>(Op1)->getSExtValue());
487 
488     if (IsBase && expandIndex(AM, Op0, Op1))
489       return true;
490   }
491   if (Opcode == SystemZISD::PCREL_OFFSET) {
492     SDValue Full = N.getOperand(0);
493     SDValue Base = N.getOperand(1);
494     SDValue Anchor = Base.getOperand(0);
495     uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
496                        cast<GlobalAddressSDNode>(Anchor)->getOffset());
497     return expandDisp(AM, IsBase, Base, Offset);
498   }
499   return false;
500 }
501 
502 // Return true if an instruction with displacement range DR should be
503 // used for displacement value Val.  selectDisp(DR, Val) must already hold.
504 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
505   assert(selectDisp(DR, Val) && "Invalid displacement");
506   switch (DR) {
507   case SystemZAddressingMode::Disp12Only:
508   case SystemZAddressingMode::Disp20Only:
509   case SystemZAddressingMode::Disp20Only128:
510     return true;
511 
512   case SystemZAddressingMode::Disp12Pair:
513     // Use the other instruction if the displacement is too large.
514     return isUInt<12>(Val);
515 
516   case SystemZAddressingMode::Disp20Pair:
517     // Use the other instruction if the displacement is small enough.
518     return !isUInt<12>(Val);
519   }
520   llvm_unreachable("Unhandled displacement range");
521 }
522 
523 // Return true if Base + Disp + Index should be performed by LA(Y).
524 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
525   // Don't use LA(Y) for constants.
526   if (!Base)
527     return false;
528 
529   // Always use LA(Y) for frame addresses, since we know that the destination
530   // register is almost always (perhaps always) going to be different from
531   // the frame register.
532   if (Base->getOpcode() == ISD::FrameIndex)
533     return true;
534 
535   if (Disp) {
536     // Always use LA(Y) if there is a base, displacement and index.
537     if (Index)
538       return true;
539 
540     // Always use LA if the displacement is small enough.  It should always
541     // be no worse than AGHI (and better if it avoids a move).
542     if (isUInt<12>(Disp))
543       return true;
544 
545     // For similar reasons, always use LAY if the constant is too big for AGHI.
546     // LAY should be no worse than AGFI.
547     if (!isInt<16>(Disp))
548       return true;
549   } else {
550     // Don't use LA for plain registers.
551     if (!Index)
552       return false;
553 
554     // Don't use LA for plain addition if the index operand is only used
555     // once.  It should be a natural two-operand addition in that case.
556     if (Index->hasOneUse())
557       return false;
558 
559     // Prefer addition if the second operation is sign-extended, in the
560     // hope of using AGF.
561     unsigned IndexOpcode = Index->getOpcode();
562     if (IndexOpcode == ISD::SIGN_EXTEND ||
563         IndexOpcode == ISD::SIGN_EXTEND_INREG)
564       return false;
565   }
566 
567   // Don't use LA for two-operand addition if either operand is only
568   // used once.  The addition instructions are better in that case.
569   if (Base->hasOneUse())
570     return false;
571 
572   return true;
573 }
574 
575 // Return true if Addr is suitable for AM, updating AM if so.
576 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
577                                         SystemZAddressingMode &AM) const {
578   // Start out assuming that the address will need to be loaded separately,
579   // then try to extend it as much as we can.
580   AM.Base = Addr;
581 
582   // First try treating the address as a constant.
583   if (Addr.getOpcode() == ISD::Constant &&
584       expandDisp(AM, true, SDValue(),
585                  cast<ConstantSDNode>(Addr)->getSExtValue()))
586     ;
587   // Also see if it's a bare ADJDYNALLOC.
588   else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
589            expandAdjDynAlloc(AM, true, SDValue()))
590     ;
591   else
592     // Otherwise try expanding each component.
593     while (expandAddress(AM, true) ||
594            (AM.Index.getNode() && expandAddress(AM, false)))
595       continue;
596 
597   // Reject cases where it isn't profitable to use LA(Y).
598   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
599       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
600     return false;
601 
602   // Reject cases where the other instruction in a pair should be used.
603   if (!isValidDisp(AM.DR, AM.Disp))
604     return false;
605 
606   // Make sure that ADJDYNALLOC is included where necessary.
607   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
608     return false;
609 
610   LLVM_DEBUG(AM.dump(CurDAG));
611   return true;
612 }
613 
614 // Insert a node into the DAG at least before Pos.  This will reposition
615 // the node as needed, and will assign it a node ID that is <= Pos's ID.
616 // Note that this does *not* preserve the uniqueness of node IDs!
617 // The selection DAG must no longer depend on their uniqueness when this
618 // function is used.
619 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
620   if (N->getNodeId() == -1 ||
621       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
622        SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
623     DAG->RepositionNode(Pos->getIterator(), N.getNode());
624     // Mark Node as invalid for pruning as after this it may be a successor to a
625     // selected node but otherwise be in the same position of Pos.
626     // Conservatively mark it with the same -abs(Id) to assure node id
627     // invariant is preserved.
628     N->setNodeId(Pos->getNodeId());
629     SelectionDAGISel::InvalidateNodeId(N.getNode());
630   }
631 }
632 
633 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
634                                              EVT VT, SDValue &Base,
635                                              SDValue &Disp) const {
636   Base = AM.Base;
637   if (!Base.getNode())
638     // Register 0 means "no base".  This is mostly useful for shifts.
639     Base = CurDAG->getRegister(0, VT);
640   else if (Base.getOpcode() == ISD::FrameIndex) {
641     // Lower a FrameIndex to a TargetFrameIndex.
642     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
643     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
644   } else if (Base.getValueType() != VT) {
645     // Truncate values from i64 to i32, for shifts.
646     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
647            "Unexpected truncation");
648     SDLoc DL(Base);
649     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
650     insertDAGNode(CurDAG, Base.getNode(), Trunc);
651     Base = Trunc;
652   }
653 
654   // Lower the displacement to a TargetConstant.
655   Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
656 }
657 
658 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
659                                              EVT VT, SDValue &Base,
660                                              SDValue &Disp,
661                                              SDValue &Index) const {
662   getAddressOperands(AM, VT, Base, Disp);
663 
664   Index = AM.Index;
665   if (!Index.getNode())
666     // Register 0 means "no index".
667     Index = CurDAG->getRegister(0, VT);
668 }
669 
670 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
671                                        SDValue Addr, SDValue &Base,
672                                        SDValue &Disp) const {
673   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
674   if (!selectAddress(Addr, AM))
675     return false;
676 
677   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
678   return true;
679 }
680 
681 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
682                                         SDValue Addr, SDValue &Base,
683                                         SDValue &Disp) const {
684   SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
685   if (!selectAddress(Addr, AM) || AM.Index.getNode())
686     return false;
687 
688   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
689   return true;
690 }
691 
692 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
693                                         SystemZAddressingMode::DispRange DR,
694                                         SDValue Addr, SDValue &Base,
695                                         SDValue &Disp, SDValue &Index) const {
696   SystemZAddressingMode AM(Form, DR);
697   if (!selectAddress(Addr, AM))
698     return false;
699 
700   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
701   return true;
702 }
703 
704 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
705                                               SDValue &Base,
706                                               SDValue &Disp,
707                                               SDValue &Index) const {
708   SDValue Regs[2];
709   if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
710       Regs[0].getNode() && Regs[1].getNode()) {
711     for (unsigned int I = 0; I < 2; ++I) {
712       Base = Regs[I];
713       Index = Regs[1 - I];
714       // We can't tell here whether the index vector has the right type
715       // for the access; the caller needs to do that instead.
716       if (Index.getOpcode() == ISD::ZERO_EXTEND)
717         Index = Index.getOperand(0);
718       if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
719           Index.getOperand(1) == Elem) {
720         Index = Index.getOperand(0);
721         return true;
722       }
723     }
724   }
725   return false;
726 }
727 
728 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
729                                                uint64_t InsertMask) const {
730   // We're only interested in cases where the insertion is into some operand
731   // of Op, rather than into Op itself.  The only useful case is an AND.
732   if (Op.getOpcode() != ISD::AND)
733     return false;
734 
735   // We need a constant mask.
736   auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
737   if (!MaskNode)
738     return false;
739 
740   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
741   uint64_t AndMask = MaskNode->getZExtValue();
742   if (InsertMask & AndMask)
743     return false;
744 
745   // It's only an insertion if all bits are covered or are known to be zero.
746   // The inner check covers all cases but is more expensive.
747   uint64_t Used = allOnes(Op.getValueSizeInBits());
748   if (Used != (AndMask | InsertMask)) {
749     KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
750     if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
751       return false;
752   }
753 
754   Op = Op.getOperand(0);
755   return true;
756 }
757 
758 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
759                                           uint64_t Mask) const {
760   const SystemZInstrInfo *TII = getInstrInfo();
761   if (RxSBG.Rotate != 0)
762     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
763   Mask &= RxSBG.Mask;
764   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
765     RxSBG.Mask = Mask;
766     return true;
767   }
768   return false;
769 }
770 
771 // Return true if any bits of (RxSBG.Input & Mask) are significant.
772 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
773   // Rotate the mask in the same way as RxSBG.Input is rotated.
774   if (RxSBG.Rotate != 0)
775     Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
776   return (Mask & RxSBG.Mask) != 0;
777 }
778 
779 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
780   SDValue N = RxSBG.Input;
781   unsigned Opcode = N.getOpcode();
782   switch (Opcode) {
783   case ISD::TRUNCATE: {
784     if (RxSBG.Opcode == SystemZ::RNSBG)
785       return false;
786     uint64_t BitSize = N.getValueSizeInBits();
787     uint64_t Mask = allOnes(BitSize);
788     if (!refineRxSBGMask(RxSBG, Mask))
789       return false;
790     RxSBG.Input = N.getOperand(0);
791     return true;
792   }
793   case ISD::AND: {
794     if (RxSBG.Opcode == SystemZ::RNSBG)
795       return false;
796 
797     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
798     if (!MaskNode)
799       return false;
800 
801     SDValue Input = N.getOperand(0);
802     uint64_t Mask = MaskNode->getZExtValue();
803     if (!refineRxSBGMask(RxSBG, Mask)) {
804       // If some bits of Input are already known zeros, those bits will have
805       // been removed from the mask.  See if adding them back in makes the
806       // mask suitable.
807       KnownBits Known = CurDAG->computeKnownBits(Input);
808       Mask |= Known.Zero.getZExtValue();
809       if (!refineRxSBGMask(RxSBG, Mask))
810         return false;
811     }
812     RxSBG.Input = Input;
813     return true;
814   }
815 
816   case ISD::OR: {
817     if (RxSBG.Opcode != SystemZ::RNSBG)
818       return false;
819 
820     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
821     if (!MaskNode)
822       return false;
823 
824     SDValue Input = N.getOperand(0);
825     uint64_t Mask = ~MaskNode->getZExtValue();
826     if (!refineRxSBGMask(RxSBG, Mask)) {
827       // If some bits of Input are already known ones, those bits will have
828       // been removed from the mask.  See if adding them back in makes the
829       // mask suitable.
830       KnownBits Known = CurDAG->computeKnownBits(Input);
831       Mask &= ~Known.One.getZExtValue();
832       if (!refineRxSBGMask(RxSBG, Mask))
833         return false;
834     }
835     RxSBG.Input = Input;
836     return true;
837   }
838 
839   case ISD::ROTL: {
840     // Any 64-bit rotate left can be merged into the RxSBG.
841     if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
842       return false;
843     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
844     if (!CountNode)
845       return false;
846 
847     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
848     RxSBG.Input = N.getOperand(0);
849     return true;
850   }
851 
852   case ISD::ANY_EXTEND:
853     // Bits above the extended operand are don't-care.
854     RxSBG.Input = N.getOperand(0);
855     return true;
856 
857   case ISD::ZERO_EXTEND:
858     if (RxSBG.Opcode != SystemZ::RNSBG) {
859       // Restrict the mask to the extended operand.
860       unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
861       if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
862         return false;
863 
864       RxSBG.Input = N.getOperand(0);
865       return true;
866     }
867     [[fallthrough]];
868 
869   case ISD::SIGN_EXTEND: {
870     // Check that the extension bits are don't-care (i.e. are masked out
871     // by the final mask).
872     unsigned BitSize = N.getValueSizeInBits();
873     unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
874     if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
875       // In the case where only the sign bit is active, increase Rotate with
876       // the extension width.
877       if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
878         RxSBG.Rotate += (BitSize - InnerBitSize);
879       else
880         return false;
881     }
882 
883     RxSBG.Input = N.getOperand(0);
884     return true;
885   }
886 
887   case ISD::SHL: {
888     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
889     if (!CountNode)
890       return false;
891 
892     uint64_t Count = CountNode->getZExtValue();
893     unsigned BitSize = N.getValueSizeInBits();
894     if (Count < 1 || Count >= BitSize)
895       return false;
896 
897     if (RxSBG.Opcode == SystemZ::RNSBG) {
898       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
899       // count bits from RxSBG.Input are ignored.
900       if (maskMatters(RxSBG, allOnes(Count)))
901         return false;
902     } else {
903       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
904       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
905         return false;
906     }
907 
908     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
909     RxSBG.Input = N.getOperand(0);
910     return true;
911   }
912 
913   case ISD::SRL:
914   case ISD::SRA: {
915     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
916     if (!CountNode)
917       return false;
918 
919     uint64_t Count = CountNode->getZExtValue();
920     unsigned BitSize = N.getValueSizeInBits();
921     if (Count < 1 || Count >= BitSize)
922       return false;
923 
924     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
925       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
926       // count bits from RxSBG.Input are ignored.
927       if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
928         return false;
929     } else {
930       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
931       // which is similar to SLL above.
932       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
933         return false;
934     }
935 
936     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
937     RxSBG.Input = N.getOperand(0);
938     return true;
939   }
940   default:
941     return false;
942   }
943 }
944 
945 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
946   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
947   return SDValue(N, 0);
948 }
949 
950 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
951                                        SDValue N) const {
952   if (N.getValueType() == MVT::i32 && VT == MVT::i64)
953     return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
954                                          DL, VT, getUNDEF(DL, MVT::i64), N);
955   if (N.getValueType() == MVT::i64 && VT == MVT::i32)
956     return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
957   assert(N.getValueType() == VT && "Unexpected value types");
958   return N;
959 }
960 
961 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
962   SDLoc DL(N);
963   EVT VT = N->getValueType(0);
964   if (!VT.isInteger() || VT.getSizeInBits() > 64)
965     return false;
966   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
967   unsigned Count = 0;
968   while (expandRxSBG(RISBG))
969     // The widening or narrowing is expected to be free.
970     // Counting widening or narrowing as a saved operation will result in
971     // preferring an R*SBG over a simple shift/logical instruction.
972     if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
973         RISBG.Input.getOpcode() != ISD::TRUNCATE)
974       Count += 1;
975   if (Count == 0 || isa<ConstantSDNode>(RISBG.Input))
976     return false;
977 
978   // Prefer to use normal shift instructions over RISBG, since they can handle
979   // all cases and are sometimes shorter.
980   if (Count == 1 && N->getOpcode() != ISD::AND)
981     return false;
982 
983   // Prefer register extensions like LLC over RISBG.  Also prefer to start
984   // out with normal ANDs if one instruction would be enough.  We can convert
985   // these ANDs into an RISBG later if a three-address instruction is useful.
986   if (RISBG.Rotate == 0) {
987     bool PreferAnd = false;
988     // Prefer AND for any 32-bit and-immediate operation.
989     if (VT == MVT::i32)
990       PreferAnd = true;
991     // As well as for any 64-bit operation that can be implemented via LLC(R),
992     // LLH(R), LLGT(R), or one of the and-immediate instructions.
993     else if (RISBG.Mask == 0xff ||
994              RISBG.Mask == 0xffff ||
995              RISBG.Mask == 0x7fffffff ||
996              SystemZ::isImmLF(~RISBG.Mask) ||
997              SystemZ::isImmHF(~RISBG.Mask))
998      PreferAnd = true;
999     // And likewise for the LLZRGF instruction, which doesn't have a register
1000     // to register version.
1001     else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
1002       if (Load->getMemoryVT() == MVT::i32 &&
1003           (Load->getExtensionType() == ISD::EXTLOAD ||
1004            Load->getExtensionType() == ISD::ZEXTLOAD) &&
1005           RISBG.Mask == 0xffffff00 &&
1006           Subtarget->hasLoadAndZeroRightmostByte())
1007       PreferAnd = true;
1008     }
1009     if (PreferAnd) {
1010       // Replace the current node with an AND.  Note that the current node
1011       // might already be that same AND, in which case it is already CSE'd
1012       // with it, and we must not call ReplaceNode.
1013       SDValue In = convertTo(DL, VT, RISBG.Input);
1014       SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1015       SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1016       if (N != New.getNode()) {
1017         insertDAGNode(CurDAG, N, Mask);
1018         insertDAGNode(CurDAG, N, New);
1019         ReplaceNode(N, New.getNode());
1020         N = New.getNode();
1021       }
1022       // Now, select the machine opcode to implement this operation.
1023       if (!N->isMachineOpcode())
1024         SelectCode(N);
1025       return true;
1026     }
1027   }
1028 
1029   unsigned Opcode = SystemZ::RISBG;
1030   // Prefer RISBGN if available, since it does not clobber CC.
1031   if (Subtarget->hasMiscellaneousExtensions())
1032     Opcode = SystemZ::RISBGN;
1033   EVT OpcodeVT = MVT::i64;
1034   if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1035       // We can only use the 32-bit instructions if all source bits are
1036       // in the low 32 bits without wrapping, both after rotation (because
1037       // of the smaller range for Start and End) and before rotation
1038       // (because the input value is truncated).
1039       RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1040       ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1041       ((RISBG.End + RISBG.Rotate) & 63) >=
1042       ((RISBG.Start + RISBG.Rotate) & 63)) {
1043     Opcode = SystemZ::RISBMux;
1044     OpcodeVT = MVT::i32;
1045     RISBG.Start &= 31;
1046     RISBG.End &= 31;
1047   }
1048   SDValue Ops[5] = {
1049     getUNDEF(DL, OpcodeVT),
1050     convertTo(DL, OpcodeVT, RISBG.Input),
1051     CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1052     CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1053     CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1054   };
1055   SDValue New = convertTo(
1056       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1057   ReplaceNode(N, New.getNode());
1058   return true;
1059 }
1060 
1061 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1062   SDLoc DL(N);
1063   EVT VT = N->getValueType(0);
1064   if (!VT.isInteger() || VT.getSizeInBits() > 64)
1065     return false;
1066   // Try treating each operand of N as the second operand of the RxSBG
1067   // and see which goes deepest.
1068   RxSBGOperands RxSBG[] = {
1069     RxSBGOperands(Opcode, N->getOperand(0)),
1070     RxSBGOperands(Opcode, N->getOperand(1))
1071   };
1072   unsigned Count[] = { 0, 0 };
1073   for (unsigned I = 0; I < 2; ++I)
1074     while (RxSBG[I].Input->hasOneUse() && expandRxSBG(RxSBG[I]))
1075       // In cases of multiple users it seems better to keep the simple
1076       // instruction as they are one cycle faster, and it also helps in cases
1077       // where both inputs share a common node.
1078       // The widening or narrowing is expected to be free.  Counting widening
1079       // or narrowing as a saved operation will result in preferring an R*SBG
1080       // over a simple shift/logical instruction.
1081       if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1082           RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1083         Count[I] += 1;
1084 
1085   // Do nothing if neither operand is suitable.
1086   if (Count[0] == 0 && Count[1] == 0)
1087     return false;
1088 
1089   // Pick the deepest second operand.
1090   unsigned I = Count[0] > Count[1] ? 0 : 1;
1091   SDValue Op0 = N->getOperand(I ^ 1);
1092 
1093   // Prefer IC for character insertions from memory.
1094   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1095     if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1096       if (Load->getMemoryVT() == MVT::i8)
1097         return false;
1098 
1099   // See whether we can avoid an AND in the first operand by converting
1100   // ROSBG to RISBG.
1101   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1102     Opcode = SystemZ::RISBG;
1103     // Prefer RISBGN if available, since it does not clobber CC.
1104     if (Subtarget->hasMiscellaneousExtensions())
1105       Opcode = SystemZ::RISBGN;
1106   }
1107 
1108   SDValue Ops[5] = {
1109     convertTo(DL, MVT::i64, Op0),
1110     convertTo(DL, MVT::i64, RxSBG[I].Input),
1111     CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1112     CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1113     CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1114   };
1115   SDValue New = convertTo(
1116       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1117   ReplaceNode(N, New.getNode());
1118   return true;
1119 }
1120 
1121 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1122                                               SDValue Op0, uint64_t UpperVal,
1123                                               uint64_t LowerVal) {
1124   EVT VT = Node->getValueType(0);
1125   SDLoc DL(Node);
1126   SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1127   if (Op0.getNode())
1128     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1129 
1130   {
1131     // When we haven't passed in Op0, Upper will be a constant. In order to
1132     // prevent folding back to the large immediate in `Or = getNode(...)` we run
1133     // SelectCode first and end up with an opaque machine node. This means that
1134     // we need to use a handle to keep track of Upper in case it gets CSE'd by
1135     // SelectCode.
1136     //
1137     // Note that in the case where Op0 is passed in we could just call
1138     // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1139     // the handle at all, but it's fine to do it here.
1140     //
1141     // TODO: This is a pretty hacky way to do this. Can we do something that
1142     // doesn't require a two paragraph explanation?
1143     HandleSDNode Handle(Upper);
1144     SelectCode(Upper.getNode());
1145     Upper = Handle.getValue();
1146   }
1147 
1148   SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1149   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1150 
1151   ReplaceNode(Node, Or.getNode());
1152 
1153   SelectCode(Or.getNode());
1154 }
1155 
1156 void SystemZDAGToDAGISel::loadVectorConstant(
1157     const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1158   assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1159           VCI.Opcode == SystemZISD::REPLICATE ||
1160           VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1161          "Bad opcode!");
1162   assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1163   EVT VT = Node->getValueType(0);
1164   SDLoc DL(Node);
1165   SmallVector<SDValue, 2> Ops;
1166   for (unsigned OpVal : VCI.OpVals)
1167     Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1168   SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1169 
1170   if (VCI.VecVT == VT.getSimpleVT())
1171     ReplaceNode(Node, Op.getNode());
1172   else if (VT.getSizeInBits() == 128) {
1173     SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1174     ReplaceNode(Node, BitCast.getNode());
1175     SelectCode(BitCast.getNode());
1176   } else { // float or double
1177     unsigned SubRegIdx =
1178         (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1179     ReplaceNode(
1180         Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1181   }
1182   SelectCode(Op.getNode());
1183 }
1184 
1185 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1186   SDValue ElemV = N->getOperand(2);
1187   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1188   if (!ElemN)
1189     return false;
1190 
1191   unsigned Elem = ElemN->getZExtValue();
1192   EVT VT = N->getValueType(0);
1193   if (Elem >= VT.getVectorNumElements())
1194     return false;
1195 
1196   auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1197   if (!Load || !Load->hasNUsesOfValue(1, 0))
1198     return false;
1199   if (Load->getMemoryVT().getSizeInBits() !=
1200       Load->getValueType(0).getSizeInBits())
1201     return false;
1202 
1203   SDValue Base, Disp, Index;
1204   if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1205       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1206     return false;
1207 
1208   SDLoc DL(Load);
1209   SDValue Ops[] = {
1210     N->getOperand(0), Base, Disp, Index,
1211     CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1212   };
1213   SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1214   ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1215   ReplaceNode(N, Res);
1216   return true;
1217 }
1218 
1219 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1220   SDValue Value = Store->getValue();
1221   if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1222     return false;
1223   if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1224     return false;
1225 
1226   SDValue ElemV = Value.getOperand(1);
1227   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1228   if (!ElemN)
1229     return false;
1230 
1231   SDValue Vec = Value.getOperand(0);
1232   EVT VT = Vec.getValueType();
1233   unsigned Elem = ElemN->getZExtValue();
1234   if (Elem >= VT.getVectorNumElements())
1235     return false;
1236 
1237   SDValue Base, Disp, Index;
1238   if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1239       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1240     return false;
1241 
1242   SDLoc DL(Store);
1243   SDValue Ops[] = {
1244     Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1245     Store->getChain()
1246   };
1247   ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1248   return true;
1249 }
1250 
1251 // Check whether or not the chain ending in StoreNode is suitable for doing
1252 // the {load; op; store} to modify transformation.
1253 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1254                                         SDValue StoredVal, SelectionDAG *CurDAG,
1255                                         LoadSDNode *&LoadNode,
1256                                         SDValue &InputChain) {
1257   // Is the stored value result 0 of the operation?
1258   if (StoredVal.getResNo() != 0)
1259     return false;
1260 
1261   // Are there other uses of the loaded value than the operation?
1262   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1263     return false;
1264 
1265   // Is the store non-extending and non-indexed?
1266   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1267     return false;
1268 
1269   SDValue Load = StoredVal->getOperand(0);
1270   // Is the stored value a non-extending and non-indexed load?
1271   if (!ISD::isNormalLoad(Load.getNode()))
1272     return false;
1273 
1274   // Return LoadNode by reference.
1275   LoadNode = cast<LoadSDNode>(Load);
1276 
1277   // Is store the only read of the loaded value?
1278   if (!Load.hasOneUse())
1279     return false;
1280 
1281   // Is the address of the store the same as the load?
1282   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1283       LoadNode->getOffset() != StoreNode->getOffset())
1284     return false;
1285 
1286   // Check if the chain is produced by the load or is a TokenFactor with
1287   // the load output chain as an operand. Return InputChain by reference.
1288   SDValue Chain = StoreNode->getChain();
1289 
1290   bool ChainCheck = false;
1291   if (Chain == Load.getValue(1)) {
1292     ChainCheck = true;
1293     InputChain = LoadNode->getChain();
1294   } else if (Chain.getOpcode() == ISD::TokenFactor) {
1295     SmallVector<SDValue, 4> ChainOps;
1296     SmallVector<const SDNode *, 4> LoopWorklist;
1297     SmallPtrSet<const SDNode *, 16> Visited;
1298     const unsigned int Max = 1024;
1299     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1300       SDValue Op = Chain.getOperand(i);
1301       if (Op == Load.getValue(1)) {
1302         ChainCheck = true;
1303         // Drop Load, but keep its chain. No cycle check necessary.
1304         ChainOps.push_back(Load.getOperand(0));
1305         continue;
1306       }
1307       LoopWorklist.push_back(Op.getNode());
1308       ChainOps.push_back(Op);
1309     }
1310 
1311     if (ChainCheck) {
1312       // Add the other operand of StoredVal to worklist.
1313       for (SDValue Op : StoredVal->ops())
1314         if (Op.getNode() != LoadNode)
1315           LoopWorklist.push_back(Op.getNode());
1316 
1317       // Check if Load is reachable from any of the nodes in the worklist.
1318       if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1319                                        true))
1320         return false;
1321 
1322       // Make a new TokenFactor with all the other input chains except
1323       // for the load.
1324       InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1325                                    MVT::Other, ChainOps);
1326     }
1327   }
1328   if (!ChainCheck)
1329     return false;
1330 
1331   return true;
1332 }
1333 
1334 // Change a chain of {load; op; store} of the same value into a simple op
1335 // through memory of that value, if the uses of the modified value and its
1336 // address are suitable.
1337 //
1338 // The tablegen pattern memory operand pattern is currently not able to match
1339 // the case where the CC on the original operation are used.
1340 //
1341 // See the equivalent routine in X86ISelDAGToDAG for further comments.
1342 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1343   StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1344   SDValue StoredVal = StoreNode->getOperand(1);
1345   unsigned Opc = StoredVal->getOpcode();
1346   SDLoc DL(StoreNode);
1347 
1348   // Before we try to select anything, make sure this is memory operand size
1349   // and opcode we can handle. Note that this must match the code below that
1350   // actually lowers the opcodes.
1351   EVT MemVT = StoreNode->getMemoryVT();
1352   unsigned NewOpc = 0;
1353   bool NegateOperand = false;
1354   switch (Opc) {
1355   default:
1356     return false;
1357   case SystemZISD::SSUBO:
1358     NegateOperand = true;
1359     [[fallthrough]];
1360   case SystemZISD::SADDO:
1361     if (MemVT == MVT::i32)
1362       NewOpc = SystemZ::ASI;
1363     else if (MemVT == MVT::i64)
1364       NewOpc = SystemZ::AGSI;
1365     else
1366       return false;
1367     break;
1368   case SystemZISD::USUBO:
1369     NegateOperand = true;
1370     [[fallthrough]];
1371   case SystemZISD::UADDO:
1372     if (MemVT == MVT::i32)
1373       NewOpc = SystemZ::ALSI;
1374     else if (MemVT == MVT::i64)
1375       NewOpc = SystemZ::ALGSI;
1376     else
1377       return false;
1378     break;
1379   }
1380 
1381   LoadSDNode *LoadNode = nullptr;
1382   SDValue InputChain;
1383   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1384                                    InputChain))
1385     return false;
1386 
1387   SDValue Operand = StoredVal.getOperand(1);
1388   auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1389   if (!OperandC)
1390     return false;
1391   auto OperandV = OperandC->getAPIntValue();
1392   if (NegateOperand)
1393     OperandV = -OperandV;
1394   if (OperandV.getSignificantBits() > 8)
1395     return false;
1396   Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1397 
1398   SDValue Base, Disp;
1399   if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1400     return false;
1401 
1402   SDValue Ops[] = { Base, Disp, Operand, InputChain };
1403   MachineSDNode *Result =
1404     CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1405   CurDAG->setNodeMemRefs(
1406       Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1407 
1408   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1409   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1410   CurDAG->RemoveDeadNode(Node);
1411   return true;
1412 }
1413 
1414 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1415                                                LoadSDNode *Load) const {
1416   // Check that the two memory operands have the same size.
1417   if (Load->getMemoryVT() != Store->getMemoryVT())
1418     return false;
1419 
1420   // Volatility stops an access from being decomposed.
1421   if (Load->isVolatile() || Store->isVolatile())
1422     return false;
1423 
1424   // There's no chance of overlap if the load is invariant.
1425   if (Load->isInvariant() && Load->isDereferenceable())
1426     return true;
1427 
1428   // Otherwise we need to check whether there's an alias.
1429   const Value *V1 = Load->getMemOperand()->getValue();
1430   const Value *V2 = Store->getMemOperand()->getValue();
1431   if (!V1 || !V2)
1432     return false;
1433 
1434   // Reject equality.
1435   uint64_t Size = Load->getMemoryVT().getStoreSize();
1436   int64_t End1 = Load->getSrcValueOffset() + Size;
1437   int64_t End2 = Store->getSrcValueOffset() + Size;
1438   if (V1 == V2 && End1 == End2)
1439     return false;
1440 
1441   return AA->isNoAlias(MemoryLocation(V1, End1, Load->getAAInfo()),
1442                        MemoryLocation(V2, End2, Store->getAAInfo()));
1443 }
1444 
1445 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1446   auto *Store = cast<StoreSDNode>(N);
1447   auto *Load = cast<LoadSDNode>(Store->getValue());
1448 
1449   // Prefer not to use MVC if either address can use ... RELATIVE LONG
1450   // instructions.
1451   uint64_t Size = Load->getMemoryVT().getStoreSize();
1452   if (Size > 1 && Size <= 8) {
1453     // Prefer LHRL, LRL and LGRL.
1454     if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1455       return false;
1456     // Prefer STHRL, STRL and STGRL.
1457     if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1458       return false;
1459   }
1460 
1461   return canUseBlockOperation(Store, Load);
1462 }
1463 
1464 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1465                                                      unsigned I) const {
1466   auto *StoreA = cast<StoreSDNode>(N);
1467   auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1468   auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1469   return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() &&
1470          canUseBlockOperation(StoreA, LoadB);
1471 }
1472 
1473 bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const {
1474 
1475   auto *MemAccess = cast<LSBaseSDNode>(N);
1476   TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize();
1477   SDValue BasePtr = MemAccess->getBasePtr();
1478   MachineMemOperand *MMO = MemAccess->getMemOperand();
1479   assert(MMO && "Expected a memory operand.");
1480 
1481   // The memory access must have a proper alignment and no index register.
1482   if (MemAccess->getAlign().value() < StoreSize ||
1483       !MemAccess->getOffset().isUndef())
1484     return false;
1485 
1486   // The MMO must not have an unaligned offset.
1487   if (MMO->getOffset() % StoreSize != 0)
1488     return false;
1489 
1490   // An access to GOT or the Constant Pool is aligned.
1491   if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1492     if ((PSV->isGOT() || PSV->isConstantPool()))
1493       return true;
1494 
1495   // Check the alignment of a Global Address.
1496   if (BasePtr.getNumOperands())
1497     if (GlobalAddressSDNode *GA =
1498         dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) {
1499       // The immediate offset must be aligned.
1500       if (GA->getOffset() % StoreSize != 0)
1501         return false;
1502 
1503       // The alignment of the symbol itself must be at least the store size.
1504       const GlobalValue *GV = GA->getGlobal();
1505       const DataLayout &DL = GV->getParent()->getDataLayout();
1506       if (GV->getPointerAlignment(DL).value() < StoreSize)
1507         return false;
1508     }
1509 
1510   return true;
1511 }
1512 
1513 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1514   // If we have a custom node, we already have selected!
1515   if (Node->isMachineOpcode()) {
1516     LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1517     Node->setNodeId(-1);
1518     return;
1519   }
1520 
1521   unsigned Opcode = Node->getOpcode();
1522   switch (Opcode) {
1523   case ISD::OR:
1524     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1525       if (tryRxSBG(Node, SystemZ::ROSBG))
1526         return;
1527     goto or_xor;
1528 
1529   case ISD::XOR:
1530     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1531       if (tryRxSBG(Node, SystemZ::RXSBG))
1532         return;
1533     // Fall through.
1534   or_xor:
1535     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1536     // split the operation into two.  If both operands here happen to be
1537     // constant, leave this to common code to optimize.
1538     if (Node->getValueType(0) == MVT::i64 &&
1539         Node->getOperand(0).getOpcode() != ISD::Constant)
1540       if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1541         uint64_t Val = Op1->getZExtValue();
1542         // Don't split the operation if we can match one of the combined
1543         // logical operations provided by miscellaneous-extensions-3.
1544         if (Subtarget->hasMiscellaneousExtensions3()) {
1545           unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1546           // Check whether this expression matches NAND/NOR/NXOR.
1547           if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1548             if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1549                 ChildOpcode == ISD::XOR)
1550               break;
1551           // Check whether this expression matches OR-with-complement
1552           // (or matches an alternate pattern for NXOR).
1553           if (ChildOpcode == ISD::XOR) {
1554             auto Op0 = Node->getOperand(0);
1555             if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1556               if (Op0Op1->getZExtValue() == (uint64_t)-1)
1557                 break;
1558           }
1559         }
1560         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1561           splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1562                               Val - uint32_t(Val), uint32_t(Val));
1563           return;
1564         }
1565       }
1566     break;
1567 
1568   case ISD::AND:
1569     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1570       if (tryRxSBG(Node, SystemZ::RNSBG))
1571         return;
1572     [[fallthrough]];
1573   case ISD::ROTL:
1574   case ISD::SHL:
1575   case ISD::SRL:
1576   case ISD::ZERO_EXTEND:
1577     if (tryRISBGZero(Node))
1578       return;
1579     break;
1580 
1581   case ISD::Constant:
1582     // If this is a 64-bit constant that is out of the range of LLILF,
1583     // LLIHF and LGFI, split it into two 32-bit pieces.
1584     if (Node->getValueType(0) == MVT::i64) {
1585       uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1586       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1587         splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1588                             uint32_t(Val));
1589         return;
1590       }
1591     }
1592     break;
1593 
1594   case SystemZISD::SELECT_CCMASK: {
1595     SDValue Op0 = Node->getOperand(0);
1596     SDValue Op1 = Node->getOperand(1);
1597     // Prefer to put any load first, so that it can be matched as a
1598     // conditional load.  Likewise for constants in range for LOCHI.
1599     if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1600         (Subtarget->hasLoadStoreOnCond2() &&
1601          Node->getValueType(0).isInteger() &&
1602          Op1.getOpcode() == ISD::Constant &&
1603          isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1604          !(Op0.getOpcode() == ISD::Constant &&
1605            isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1606       SDValue CCValid = Node->getOperand(2);
1607       SDValue CCMask = Node->getOperand(3);
1608       uint64_t ConstCCValid =
1609         cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1610       uint64_t ConstCCMask =
1611         cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1612       // Invert the condition.
1613       CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1614                                          SDLoc(Node), CCMask.getValueType());
1615       SDValue Op4 = Node->getOperand(4);
1616       SDNode *UpdatedNode =
1617         CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1618       if (UpdatedNode != Node) {
1619         // In case this node already exists then replace Node with it.
1620         ReplaceNode(Node, UpdatedNode);
1621         Node = UpdatedNode;
1622       }
1623     }
1624     break;
1625   }
1626 
1627   case ISD::INSERT_VECTOR_ELT: {
1628     EVT VT = Node->getValueType(0);
1629     unsigned ElemBitSize = VT.getScalarSizeInBits();
1630     if (ElemBitSize == 32) {
1631       if (tryGather(Node, SystemZ::VGEF))
1632         return;
1633     } else if (ElemBitSize == 64) {
1634       if (tryGather(Node, SystemZ::VGEG))
1635         return;
1636     }
1637     break;
1638   }
1639 
1640   case ISD::BUILD_VECTOR: {
1641     auto *BVN = cast<BuildVectorSDNode>(Node);
1642     SystemZVectorConstantInfo VCI(BVN);
1643     if (VCI.isVectorConstantLegal(*Subtarget)) {
1644       loadVectorConstant(VCI, Node);
1645       return;
1646     }
1647     break;
1648   }
1649 
1650   case ISD::ConstantFP: {
1651     APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1652     if (Imm.isZero() || Imm.isNegZero())
1653       break;
1654     SystemZVectorConstantInfo VCI(Imm);
1655     bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1656     assert(Success && "Expected legal FP immediate");
1657     loadVectorConstant(VCI, Node);
1658     return;
1659   }
1660 
1661   case ISD::STORE: {
1662     if (tryFoldLoadStoreIntoMemOperand(Node))
1663       return;
1664     auto *Store = cast<StoreSDNode>(Node);
1665     unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1666     if (ElemBitSize == 32) {
1667       if (tryScatter(Store, SystemZ::VSCEF))
1668         return;
1669     } else if (ElemBitSize == 64) {
1670       if (tryScatter(Store, SystemZ::VSCEG))
1671         return;
1672     }
1673     break;
1674   }
1675   }
1676 
1677   SelectCode(Node);
1678 }
1679 
1680 bool SystemZDAGToDAGISel::
1681 SelectInlineAsmMemoryOperand(const SDValue &Op,
1682                              unsigned ConstraintID,
1683                              std::vector<SDValue> &OutOps) {
1684   SystemZAddressingMode::AddrForm Form;
1685   SystemZAddressingMode::DispRange DispRange;
1686   SDValue Base, Disp, Index;
1687 
1688   switch(ConstraintID) {
1689   default:
1690     llvm_unreachable("Unexpected asm memory constraint");
1691   case InlineAsm::Constraint_i:
1692   case InlineAsm::Constraint_Q:
1693   case InlineAsm::Constraint_ZQ:
1694     // Accept an address with a short displacement, but no index.
1695     Form = SystemZAddressingMode::FormBD;
1696     DispRange = SystemZAddressingMode::Disp12Only;
1697     break;
1698   case InlineAsm::Constraint_R:
1699   case InlineAsm::Constraint_ZR:
1700     // Accept an address with a short displacement and an index.
1701     Form = SystemZAddressingMode::FormBDXNormal;
1702     DispRange = SystemZAddressingMode::Disp12Only;
1703     break;
1704   case InlineAsm::Constraint_S:
1705   case InlineAsm::Constraint_ZS:
1706     // Accept an address with a long displacement, but no index.
1707     Form = SystemZAddressingMode::FormBD;
1708     DispRange = SystemZAddressingMode::Disp20Only;
1709     break;
1710   case InlineAsm::Constraint_T:
1711   case InlineAsm::Constraint_m:
1712   case InlineAsm::Constraint_o:
1713   case InlineAsm::Constraint_p:
1714   case InlineAsm::Constraint_ZT:
1715     // Accept an address with a long displacement and an index.
1716     // m works the same as T, as this is the most general case.
1717     // We don't really have any special handling of "offsettable"
1718     // memory addresses, so just treat o the same as m.
1719     Form = SystemZAddressingMode::FormBDXNormal;
1720     DispRange = SystemZAddressingMode::Disp20Only;
1721     break;
1722   }
1723 
1724   if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1725     const TargetRegisterClass *TRC =
1726       Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1727     SDLoc DL(Base);
1728     SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1729 
1730     // Make sure that the base address doesn't go into %r0.
1731     // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1732     if (Base.getOpcode() != ISD::TargetFrameIndex &&
1733         Base.getOpcode() != ISD::Register) {
1734       Base =
1735         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1736                                        DL, Base.getValueType(),
1737                                        Base, RC), 0);
1738     }
1739 
1740     // Make sure that the index register isn't assigned to %r0 either.
1741     if (Index.getOpcode() != ISD::Register) {
1742       Index =
1743         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1744                                        DL, Index.getValueType(),
1745                                        Index, RC), 0);
1746     }
1747 
1748     OutOps.push_back(Base);
1749     OutOps.push_back(Disp);
1750     OutOps.push_back(Index);
1751     return false;
1752   }
1753 
1754   return true;
1755 }
1756 
1757 // IsProfitableToFold - Returns true if is profitable to fold the specific
1758 // operand node N of U during instruction selection that starts at Root.
1759 bool
1760 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1761                                         SDNode *Root) const {
1762   // We want to avoid folding a LOAD into an ICMP node if as a result
1763   // we would be forced to spill the condition code into a GPR.
1764   if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1765     if (!N.hasOneUse() || !U->hasOneUse())
1766       return false;
1767 
1768     // The user of the CC value will usually be a CopyToReg into the
1769     // physical CC register, which in turn is glued and chained to the
1770     // actual instruction that uses the CC value.  Bail out if we have
1771     // anything else than that.
1772     SDNode *CCUser = *U->use_begin();
1773     SDNode *CCRegUser = nullptr;
1774     if (CCUser->getOpcode() == ISD::CopyToReg ||
1775         cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1776       for (auto *U : CCUser->uses()) {
1777         if (CCRegUser == nullptr)
1778           CCRegUser = U;
1779         else if (CCRegUser != U)
1780           return false;
1781       }
1782     }
1783     if (CCRegUser == nullptr)
1784       return false;
1785 
1786     // If the actual instruction is a branch, the only thing that remains to be
1787     // checked is whether the CCUser chain is a predecessor of the load.
1788     if (CCRegUser->isMachineOpcode() &&
1789         CCRegUser->getMachineOpcode() == SystemZ::BRC)
1790       return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1791 
1792     // Otherwise, the instruction may have multiple operands, and we need to
1793     // verify that none of them are a predecessor of the load.  This is exactly
1794     // the same check that would be done by common code if the CC setter were
1795     // glued to the CC user, so simply invoke that check here.
1796     if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1797       return false;
1798   }
1799 
1800   return true;
1801 }
1802 
1803 namespace {
1804 // Represents a sequence for extracting a 0/1 value from an IPM result:
1805 // (((X ^ XORValue) + AddValue) >> Bit)
1806 struct IPMConversion {
1807   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1808     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1809 
1810   int64_t XORValue;
1811   int64_t AddValue;
1812   unsigned Bit;
1813 };
1814 } // end anonymous namespace
1815 
1816 // Return a sequence for getting a 1 from an IPM result when CC has a
1817 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1818 // The handling of CC values outside CCValid doesn't matter.
1819 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1820   // Deal with cases where the result can be taken directly from a bit
1821   // of the IPM result.
1822   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1823     return IPMConversion(0, 0, SystemZ::IPM_CC);
1824   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1825     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1826 
1827   // Deal with cases where we can add a value to force the sign bit
1828   // to contain the right value.  Putting the bit in 31 means we can
1829   // use SRL rather than RISBG(L), and also makes it easier to get a
1830   // 0/-1 value, so it has priority over the other tests below.
1831   //
1832   // These sequences rely on the fact that the upper two bits of the
1833   // IPM result are zero.
1834   uint64_t TopBit = uint64_t(1) << 31;
1835   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1836     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1837   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1838     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1839   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1840                             | SystemZ::CCMASK_1
1841                             | SystemZ::CCMASK_2)))
1842     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1843   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1844     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1845   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1846                             | SystemZ::CCMASK_2
1847                             | SystemZ::CCMASK_3)))
1848     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1849 
1850   // Next try inverting the value and testing a bit.  0/1 could be
1851   // handled this way too, but we dealt with that case above.
1852   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1853     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1854 
1855   // Handle cases where adding a value forces a non-sign bit to contain
1856   // the right value.
1857   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1858     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1859   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1860     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1861 
1862   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1863   // can be done by inverting the low CC bit and applying one of the
1864   // sign-based extractions above.
1865   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1866     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1867   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1868     return IPMConversion(1 << SystemZ::IPM_CC,
1869                          TopBit - (3 << SystemZ::IPM_CC), 31);
1870   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1871                             | SystemZ::CCMASK_1
1872                             | SystemZ::CCMASK_3)))
1873     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1874   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1875                             | SystemZ::CCMASK_2
1876                             | SystemZ::CCMASK_3)))
1877     return IPMConversion(1 << SystemZ::IPM_CC,
1878                          TopBit - (1 << SystemZ::IPM_CC), 31);
1879 
1880   llvm_unreachable("Unexpected CC combination");
1881 }
1882 
1883 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1884   auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1885   auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1886   if (!TrueOp || !FalseOp)
1887     return SDValue();
1888   if (FalseOp->getZExtValue() != 0)
1889     return SDValue();
1890   if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1891     return SDValue();
1892 
1893   auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1894   auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1895   if (!CCValidOp || !CCMaskOp)
1896     return SDValue();
1897   int CCValid = CCValidOp->getZExtValue();
1898   int CCMask = CCMaskOp->getZExtValue();
1899 
1900   SDLoc DL(Node);
1901   SDValue CCReg = Node->getOperand(4);
1902   IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1903   SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
1904 
1905   if (IPM.XORValue)
1906     Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1907                              CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1908 
1909   if (IPM.AddValue)
1910     Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1911                              CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1912 
1913   EVT VT = Node->getValueType(0);
1914   if (VT == MVT::i32 && IPM.Bit == 31) {
1915     unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1916     Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1917                              CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1918   } else {
1919     if (VT != MVT::i32)
1920       Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1921 
1922     if (TrueOp->getSExtValue() == 1) {
1923       // The SHR/AND sequence should get optimized to an RISBG.
1924       Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1925                                CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1926       Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1927                                CurDAG->getConstant(1, DL, VT));
1928     } else {
1929       // Sign-extend from IPM.Bit using a pair of shifts.
1930       int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1931       int SraAmt = VT.getSizeInBits() - 1;
1932       Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1933                                CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1934       Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1935                                CurDAG->getConstant(SraAmt, DL, MVT::i32));
1936     }
1937   }
1938 
1939   return Result;
1940 }
1941 
1942 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1943   // If we have conditional immediate loads, we always prefer
1944   // using those over an IPM sequence.
1945   if (Subtarget->hasLoadStoreOnCond2())
1946     return;
1947 
1948   bool MadeChange = false;
1949 
1950   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1951                                        E = CurDAG->allnodes_end();
1952        I != E;) {
1953     SDNode *N = &*I++;
1954     if (N->use_empty())
1955       continue;
1956 
1957     SDValue Res;
1958     switch (N->getOpcode()) {
1959     default: break;
1960     case SystemZISD::SELECT_CCMASK:
1961       Res = expandSelectBoolean(N);
1962       break;
1963     }
1964 
1965     if (Res) {
1966       LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld:    ");
1967       LLVM_DEBUG(N->dump(CurDAG));
1968       LLVM_DEBUG(dbgs() << "\nNew: ");
1969       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
1970       LLVM_DEBUG(dbgs() << "\n");
1971 
1972       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1973       MadeChange = true;
1974     }
1975   }
1976 
1977   if (MadeChange)
1978     CurDAG->RemoveDeadNodes();
1979 }
1980