1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines an instruction selector for the SystemZ target. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZTargetMachine.h" 14 #include "SystemZISelLowering.h" 15 #include "llvm/Analysis/AliasAnalysis.h" 16 #include "llvm/CodeGen/SelectionDAGISel.h" 17 #include "llvm/Support/Debug.h" 18 #include "llvm/Support/KnownBits.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 using namespace llvm; 22 23 #define DEBUG_TYPE "systemz-isel" 24 #define PASS_NAME "SystemZ DAG->DAG Pattern Instruction Selection" 25 26 namespace { 27 // Used to build addressing modes. 28 struct SystemZAddressingMode { 29 // The shape of the address. 30 enum AddrForm { 31 // base+displacement 32 FormBD, 33 34 // base+displacement+index for load and store operands 35 FormBDXNormal, 36 37 // base+displacement+index for load address operands 38 FormBDXLA, 39 40 // base+displacement+index+ADJDYNALLOC 41 FormBDXDynAlloc 42 }; 43 AddrForm Form; 44 45 // The type of displacement. The enum names here correspond directly 46 // to the definitions in SystemZOperand.td. We could split them into 47 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it. 48 enum DispRange { 49 Disp12Only, 50 Disp12Pair, 51 Disp20Only, 52 Disp20Only128, 53 Disp20Pair 54 }; 55 DispRange DR; 56 57 // The parts of the address. The address is equivalent to: 58 // 59 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0) 60 SDValue Base; 61 int64_t Disp; 62 SDValue Index; 63 bool IncludesDynAlloc; 64 65 SystemZAddressingMode(AddrForm form, DispRange dr) 66 : Form(form), DR(dr), Disp(0), IncludesDynAlloc(false) {} 67 68 // True if the address can have an index register. 69 bool hasIndexField() { return Form != FormBD; } 70 71 // True if the address can (and must) include ADJDYNALLOC. 72 bool isDynAlloc() { return Form == FormBDXDynAlloc; } 73 74 void dump(const llvm::SelectionDAG *DAG) { 75 errs() << "SystemZAddressingMode " << this << '\n'; 76 77 errs() << " Base "; 78 if (Base.getNode()) 79 Base.getNode()->dump(DAG); 80 else 81 errs() << "null\n"; 82 83 if (hasIndexField()) { 84 errs() << " Index "; 85 if (Index.getNode()) 86 Index.getNode()->dump(DAG); 87 else 88 errs() << "null\n"; 89 } 90 91 errs() << " Disp " << Disp; 92 if (IncludesDynAlloc) 93 errs() << " + ADJDYNALLOC"; 94 errs() << '\n'; 95 } 96 }; 97 98 // Return a mask with Count low bits set. 99 static uint64_t allOnes(unsigned int Count) { 100 assert(Count <= 64); 101 if (Count > 63) 102 return UINT64_MAX; 103 return (uint64_t(1) << Count) - 1; 104 } 105 106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation 107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and 108 // Rotate (I5). The combined operand value is effectively: 109 // 110 // (or (rotl Input, Rotate), ~Mask) 111 // 112 // for RNSBG and: 113 // 114 // (and (rotl Input, Rotate), Mask) 115 // 116 // otherwise. The output value has BitSize bits, although Input may be 117 // narrower (in which case the upper bits are don't care), or wider (in which 118 // case the result will be truncated as part of the operation). 119 struct RxSBGOperands { 120 RxSBGOperands(unsigned Op, SDValue N) 121 : Opcode(Op), BitSize(N.getValueSizeInBits()), 122 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63), 123 Rotate(0) {} 124 125 unsigned Opcode; 126 unsigned BitSize; 127 uint64_t Mask; 128 SDValue Input; 129 unsigned Start; 130 unsigned End; 131 unsigned Rotate; 132 }; 133 134 class SystemZDAGToDAGISel : public SelectionDAGISel { 135 const SystemZSubtarget *Subtarget; 136 137 // Used by SystemZOperands.td to create integer constants. 138 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const { 139 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0)); 140 } 141 142 const SystemZTargetMachine &getTargetMachine() const { 143 return static_cast<const SystemZTargetMachine &>(TM); 144 } 145 146 const SystemZInstrInfo *getInstrInfo() const { 147 return Subtarget->getInstrInfo(); 148 } 149 150 // Try to fold more of the base or index of AM into AM, where IsBase 151 // selects between the base and index. 152 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const; 153 154 // Try to describe N in AM, returning true on success. 155 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const; 156 157 // Extract individual target operands from matched address AM. 158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, 159 SDValue &Base, SDValue &Disp) const; 160 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, 161 SDValue &Base, SDValue &Disp, SDValue &Index) const; 162 163 // Try to match Addr as a FormBD address with displacement type DR. 164 // Return true on success, storing the base and displacement in 165 // Base and Disp respectively. 166 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, 167 SDValue &Base, SDValue &Disp) const; 168 169 // Try to match Addr as a FormBDX address with displacement type DR. 170 // Return true on success and if the result had no index. Store the 171 // base and displacement in Base and Disp respectively. 172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, 173 SDValue &Base, SDValue &Disp) const; 174 175 // Try to match Addr as a FormBDX* address of form Form with 176 // displacement type DR. Return true on success, storing the base, 177 // displacement and index in Base, Disp and Index respectively. 178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form, 179 SystemZAddressingMode::DispRange DR, SDValue Addr, 180 SDValue &Base, SDValue &Disp, SDValue &Index) const; 181 182 // PC-relative address matching routines used by SystemZOperands.td. 183 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const { 184 if (SystemZISD::isPCREL(Addr.getOpcode())) { 185 Target = Addr.getOperand(0); 186 return true; 187 } 188 return false; 189 } 190 191 // BD matching routines used by SystemZOperands.td. 192 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { 193 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp); 194 } 195 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { 196 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); 197 } 198 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { 199 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp); 200 } 201 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { 202 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); 203 } 204 205 // MVI matching routines used by SystemZOperands.td. 206 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { 207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); 208 } 209 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { 210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); 211 } 212 213 // BDX matching routines used by SystemZOperands.td. 214 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp, 215 SDValue &Index) const { 216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 217 SystemZAddressingMode::Disp12Only, 218 Addr, Base, Disp, Index); 219 } 220 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, 221 SDValue &Index) const { 222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 223 SystemZAddressingMode::Disp12Pair, 224 Addr, Base, Disp, Index); 225 } 226 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp, 227 SDValue &Index) const { 228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc, 229 SystemZAddressingMode::Disp12Only, 230 Addr, Base, Disp, Index); 231 } 232 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp, 233 SDValue &Index) const { 234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 235 SystemZAddressingMode::Disp20Only, 236 Addr, Base, Disp, Index); 237 } 238 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp, 239 SDValue &Index) const { 240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 241 SystemZAddressingMode::Disp20Only128, 242 Addr, Base, Disp, Index); 243 } 244 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, 245 SDValue &Index) const { 246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, 247 SystemZAddressingMode::Disp20Pair, 248 Addr, Base, Disp, Index); 249 } 250 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, 251 SDValue &Index) const { 252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA, 253 SystemZAddressingMode::Disp12Pair, 254 Addr, Base, Disp, Index); 255 } 256 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, 257 SDValue &Index) const { 258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA, 259 SystemZAddressingMode::Disp20Pair, 260 Addr, Base, Disp, Index); 261 } 262 263 // Try to match Addr as an address with a base, 12-bit displacement 264 // and index, where the index is element Elem of a vector. 265 // Return true on success, storing the base, displacement and vector 266 // in Base, Disp and Index respectively. 267 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base, 268 SDValue &Disp, SDValue &Index) const; 269 270 // Check whether (or Op (and X InsertMask)) is effectively an insertion 271 // of X into bits InsertMask of some Y != Op. Return true if so and 272 // set Op to that Y. 273 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const; 274 275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used. 276 // Return true on success. 277 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const; 278 279 // Try to fold some of RxSBG.Input into other fields of RxSBG. 280 // Return true on success. 281 bool expandRxSBG(RxSBGOperands &RxSBG) const; 282 283 // Return an undefined value of type VT. 284 SDValue getUNDEF(const SDLoc &DL, EVT VT) const; 285 286 // Convert N to VT, if it isn't already. 287 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const; 288 289 // Try to implement AND or shift node N using RISBG with the zero flag set. 290 // Return the selected node on success, otherwise return null. 291 bool tryRISBGZero(SDNode *N); 292 293 // Try to use RISBG or Opcode to implement OR or XOR node N. 294 // Return the selected node on success, otherwise return null. 295 bool tryRxSBG(SDNode *N, unsigned Opcode); 296 297 // If Op0 is null, then Node is a constant that can be loaded using: 298 // 299 // (Opcode UpperVal LowerVal) 300 // 301 // If Op0 is nonnull, then Node can be implemented using: 302 // 303 // (Opcode (Opcode Op0 UpperVal) LowerVal) 304 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, 305 uint64_t UpperVal, uint64_t LowerVal); 306 307 void loadVectorConstant(const SystemZVectorConstantInfo &VCI, 308 SDNode *Node); 309 310 SDNode *loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL); 311 312 // Try to use gather instruction Opcode to implement vector insertion N. 313 bool tryGather(SDNode *N, unsigned Opcode); 314 315 // Try to use scatter instruction Opcode to implement store Store. 316 bool tryScatter(StoreSDNode *Store, unsigned Opcode); 317 318 // Change a chain of {load; op; store} of the same value into a simple op 319 // through memory of that value, if the uses of the modified value and its 320 // address are suitable. 321 bool tryFoldLoadStoreIntoMemOperand(SDNode *Node); 322 323 // Return true if Load and Store are loads and stores of the same size 324 // and are guaranteed not to overlap. Such operations can be implemented 325 // using block (SS-format) instructions. 326 // 327 // Partial overlap would lead to incorrect code, since the block operations 328 // are logically bytewise, even though they have a fast path for the 329 // non-overlapping case. We also need to avoid full overlap (i.e. two 330 // addresses that might be equal at run time) because although that case 331 // would be handled correctly, it might be implemented by millicode. 332 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const; 333 334 // N is a (store (load Y), X) pattern. Return true if it can use an MVC 335 // from Y to X. 336 bool storeLoadCanUseMVC(SDNode *N) const; 337 338 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true 339 // if A[1 - I] == X and if N can use a block operation like NC from A[I] 340 // to X. 341 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const; 342 343 // Return true if N (a load or a store) fullfills the alignment 344 // requirements for a PC-relative access. 345 bool storeLoadIsAligned(SDNode *N) const; 346 347 // Return the load extension type of a load or atomic load. 348 ISD::LoadExtType getLoadExtType(SDNode *N) const; 349 350 // Try to expand a boolean SELECT_CCMASK using an IPM sequence. 351 SDValue expandSelectBoolean(SDNode *Node); 352 353 // Return true if the flags of N and the subtarget allows for 354 // reassociation, in which case a reg/reg opcode is needed as input to the 355 // MachineCombiner. 356 bool shouldSelectForReassoc(SDNode *N) const; 357 358 public: 359 SystemZDAGToDAGISel() = delete; 360 361 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOptLevel OptLevel) 362 : SelectionDAGISel(TM, OptLevel) {} 363 364 bool runOnMachineFunction(MachineFunction &MF) override { 365 const Function &F = MF.getFunction(); 366 if (F.getFnAttribute("fentry-call").getValueAsString() != "true") { 367 if (F.hasFnAttribute("mnop-mcount")) 368 report_fatal_error("mnop-mcount only supported with fentry-call"); 369 if (F.hasFnAttribute("mrecord-mcount")) 370 report_fatal_error("mrecord-mcount only supported with fentry-call"); 371 } 372 373 Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 374 return SelectionDAGISel::runOnMachineFunction(MF); 375 } 376 377 // Override SelectionDAGISel. 378 void Select(SDNode *Node) override; 379 bool SelectInlineAsmMemoryOperand(const SDValue &Op, 380 InlineAsm::ConstraintCode ConstraintID, 381 std::vector<SDValue> &OutOps) override; 382 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; 383 void PreprocessISelDAG() override; 384 385 // Include the pieces autogenerated from the target description. 386 #include "SystemZGenDAGISel.inc" 387 }; 388 389 class SystemZDAGToDAGISelLegacy : public SelectionDAGISelLegacy { 390 public: 391 static char ID; 392 explicit SystemZDAGToDAGISelLegacy(SystemZTargetMachine &TM, 393 CodeGenOptLevel OptLevel) 394 : SelectionDAGISelLegacy( 395 ID, std::make_unique<SystemZDAGToDAGISel>(TM, OptLevel)) {} 396 }; 397 } // end anonymous namespace 398 399 char SystemZDAGToDAGISelLegacy::ID = 0; 400 401 INITIALIZE_PASS(SystemZDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) 402 403 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, 404 CodeGenOptLevel OptLevel) { 405 return new SystemZDAGToDAGISelLegacy(TM, OptLevel); 406 } 407 408 // Return true if Val should be selected as a displacement for an address 409 // with range DR. Here we're interested in the range of both the instruction 410 // described by DR and of any pairing instruction. 411 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { 412 switch (DR) { 413 case SystemZAddressingMode::Disp12Only: 414 return isUInt<12>(Val); 415 416 case SystemZAddressingMode::Disp12Pair: 417 case SystemZAddressingMode::Disp20Only: 418 case SystemZAddressingMode::Disp20Pair: 419 return isInt<20>(Val); 420 421 case SystemZAddressingMode::Disp20Only128: 422 return isInt<20>(Val) && isInt<20>(Val + 8); 423 } 424 llvm_unreachable("Unhandled displacement range"); 425 } 426 427 // Change the base or index in AM to Value, where IsBase selects 428 // between the base and index. 429 static void changeComponent(SystemZAddressingMode &AM, bool IsBase, 430 SDValue Value) { 431 if (IsBase) 432 AM.Base = Value; 433 else 434 AM.Index = Value; 435 } 436 437 // The base or index of AM is equivalent to Value + ADJDYNALLOC, 438 // where IsBase selects between the base and index. Try to fold the 439 // ADJDYNALLOC into AM. 440 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, 441 SDValue Value) { 442 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) { 443 changeComponent(AM, IsBase, Value); 444 AM.IncludesDynAlloc = true; 445 return true; 446 } 447 return false; 448 } 449 450 // The base of AM is equivalent to Base + Index. Try to use Index as 451 // the index register. 452 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, 453 SDValue Index) { 454 if (AM.hasIndexField() && !AM.Index.getNode()) { 455 AM.Base = Base; 456 AM.Index = Index; 457 return true; 458 } 459 return false; 460 } 461 462 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects 463 // between the base and index. Try to fold Op1 into AM's displacement. 464 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, 465 SDValue Op0, uint64_t Op1) { 466 // First try adjusting the displacement. 467 int64_t TestDisp = AM.Disp + Op1; 468 if (selectDisp(AM.DR, TestDisp)) { 469 changeComponent(AM, IsBase, Op0); 470 AM.Disp = TestDisp; 471 return true; 472 } 473 474 // We could consider forcing the displacement into a register and 475 // using it as an index, but it would need to be carefully tuned. 476 return false; 477 } 478 479 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM, 480 bool IsBase) const { 481 SDValue N = IsBase ? AM.Base : AM.Index; 482 unsigned Opcode = N.getOpcode(); 483 // Look through no-op truncations. 484 if (Opcode == ISD::TRUNCATE && N.getOperand(0).getValueSizeInBits() <= 64) { 485 N = N.getOperand(0); 486 Opcode = N.getOpcode(); 487 } 488 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) { 489 SDValue Op0 = N.getOperand(0); 490 SDValue Op1 = N.getOperand(1); 491 492 unsigned Op0Code = Op0->getOpcode(); 493 unsigned Op1Code = Op1->getOpcode(); 494 495 if (Op0Code == SystemZISD::ADJDYNALLOC) 496 return expandAdjDynAlloc(AM, IsBase, Op1); 497 if (Op1Code == SystemZISD::ADJDYNALLOC) 498 return expandAdjDynAlloc(AM, IsBase, Op0); 499 500 if (Op0Code == ISD::Constant) 501 return expandDisp(AM, IsBase, Op1, 502 cast<ConstantSDNode>(Op0)->getSExtValue()); 503 if (Op1Code == ISD::Constant) 504 return expandDisp(AM, IsBase, Op0, 505 cast<ConstantSDNode>(Op1)->getSExtValue()); 506 507 if (IsBase && expandIndex(AM, Op0, Op1)) 508 return true; 509 } 510 if (Opcode == SystemZISD::PCREL_OFFSET) { 511 SDValue Full = N.getOperand(0); 512 SDValue Base = N.getOperand(1); 513 SDValue Anchor = Base.getOperand(0); 514 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() - 515 cast<GlobalAddressSDNode>(Anchor)->getOffset()); 516 return expandDisp(AM, IsBase, Base, Offset); 517 } 518 return false; 519 } 520 521 // Return true if an instruction with displacement range DR should be 522 // used for displacement value Val. selectDisp(DR, Val) must already hold. 523 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { 524 assert(selectDisp(DR, Val) && "Invalid displacement"); 525 switch (DR) { 526 case SystemZAddressingMode::Disp12Only: 527 case SystemZAddressingMode::Disp20Only: 528 case SystemZAddressingMode::Disp20Only128: 529 return true; 530 531 case SystemZAddressingMode::Disp12Pair: 532 // Use the other instruction if the displacement is too large. 533 return isUInt<12>(Val); 534 535 case SystemZAddressingMode::Disp20Pair: 536 // Use the other instruction if the displacement is small enough. 537 return !isUInt<12>(Val); 538 } 539 llvm_unreachable("Unhandled displacement range"); 540 } 541 542 // Return true if Base + Disp + Index should be performed by LA(Y). 543 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) { 544 // Don't use LA(Y) for constants. 545 if (!Base) 546 return false; 547 548 // Always use LA(Y) for frame addresses, since we know that the destination 549 // register is almost always (perhaps always) going to be different from 550 // the frame register. 551 if (Base->getOpcode() == ISD::FrameIndex) 552 return true; 553 554 if (Disp) { 555 // Always use LA(Y) if there is a base, displacement and index. 556 if (Index) 557 return true; 558 559 // Always use LA if the displacement is small enough. It should always 560 // be no worse than AGHI (and better if it avoids a move). 561 if (isUInt<12>(Disp)) 562 return true; 563 564 // For similar reasons, always use LAY if the constant is too big for AGHI. 565 // LAY should be no worse than AGFI. 566 if (!isInt<16>(Disp)) 567 return true; 568 } else { 569 // Don't use LA for plain registers. 570 if (!Index) 571 return false; 572 573 // Don't use LA for plain addition if the index operand is only used 574 // once. It should be a natural two-operand addition in that case. 575 if (Index->hasOneUse()) 576 return false; 577 578 // Prefer addition if the second operation is sign-extended, in the 579 // hope of using AGF. 580 unsigned IndexOpcode = Index->getOpcode(); 581 if (IndexOpcode == ISD::SIGN_EXTEND || 582 IndexOpcode == ISD::SIGN_EXTEND_INREG) 583 return false; 584 } 585 586 // Don't use LA for two-operand addition if either operand is only 587 // used once. The addition instructions are better in that case. 588 if (Base->hasOneUse()) 589 return false; 590 591 return true; 592 } 593 594 // Return true if Addr is suitable for AM, updating AM if so. 595 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr, 596 SystemZAddressingMode &AM) const { 597 // Start out assuming that the address will need to be loaded separately, 598 // then try to extend it as much as we can. 599 AM.Base = Addr; 600 601 // First try treating the address as a constant. 602 if (Addr.getOpcode() == ISD::Constant && 603 expandDisp(AM, true, SDValue(), 604 cast<ConstantSDNode>(Addr)->getSExtValue())) 605 ; 606 // Also see if it's a bare ADJDYNALLOC. 607 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC && 608 expandAdjDynAlloc(AM, true, SDValue())) 609 ; 610 else 611 // Otherwise try expanding each component. 612 while (expandAddress(AM, true) || 613 (AM.Index.getNode() && expandAddress(AM, false))) 614 continue; 615 616 // Reject cases where it isn't profitable to use LA(Y). 617 if (AM.Form == SystemZAddressingMode::FormBDXLA && 618 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode())) 619 return false; 620 621 // Reject cases where the other instruction in a pair should be used. 622 if (!isValidDisp(AM.DR, AM.Disp)) 623 return false; 624 625 // Make sure that ADJDYNALLOC is included where necessary. 626 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) 627 return false; 628 629 LLVM_DEBUG(AM.dump(CurDAG)); 630 return true; 631 } 632 633 // Insert a node into the DAG at least before Pos. This will reposition 634 // the node as needed, and will assign it a node ID that is <= Pos's ID. 635 // Note that this does *not* preserve the uniqueness of node IDs! 636 // The selection DAG must no longer depend on their uniqueness when this 637 // function is used. 638 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) { 639 if (N->getNodeId() == -1 || 640 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) > 641 SelectionDAGISel::getUninvalidatedNodeId(Pos))) { 642 DAG->RepositionNode(Pos->getIterator(), N.getNode()); 643 // Mark Node as invalid for pruning as after this it may be a successor to a 644 // selected node but otherwise be in the same position of Pos. 645 // Conservatively mark it with the same -abs(Id) to assure node id 646 // invariant is preserved. 647 N->setNodeId(Pos->getNodeId()); 648 SelectionDAGISel::InvalidateNodeId(N.getNode()); 649 } 650 } 651 652 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, 653 EVT VT, SDValue &Base, 654 SDValue &Disp) const { 655 Base = AM.Base; 656 if (!Base.getNode()) 657 // Register 0 means "no base". This is mostly useful for shifts. 658 Base = CurDAG->getRegister(0, VT); 659 else if (Base.getOpcode() == ISD::FrameIndex) { 660 // Lower a FrameIndex to a TargetFrameIndex. 661 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex(); 662 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT); 663 } else if (Base.getValueType() != VT) { 664 // Truncate values from i64 to i32, for shifts. 665 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 && 666 "Unexpected truncation"); 667 SDLoc DL(Base); 668 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base); 669 insertDAGNode(CurDAG, Base.getNode(), Trunc); 670 Base = Trunc; 671 } 672 673 // Lower the displacement to a TargetConstant. 674 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT); 675 } 676 677 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, 678 EVT VT, SDValue &Base, 679 SDValue &Disp, 680 SDValue &Index) const { 681 getAddressOperands(AM, VT, Base, Disp); 682 683 Index = AM.Index; 684 if (!Index.getNode()) 685 // Register 0 means "no index". 686 Index = CurDAG->getRegister(0, VT); 687 } 688 689 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR, 690 SDValue Addr, SDValue &Base, 691 SDValue &Disp) const { 692 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR); 693 if (!selectAddress(Addr, AM)) 694 return false; 695 696 getAddressOperands(AM, Addr.getValueType(), Base, Disp); 697 return true; 698 } 699 700 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR, 701 SDValue Addr, SDValue &Base, 702 SDValue &Disp) const { 703 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR); 704 if (!selectAddress(Addr, AM) || AM.Index.getNode()) 705 return false; 706 707 getAddressOperands(AM, Addr.getValueType(), Base, Disp); 708 return true; 709 } 710 711 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form, 712 SystemZAddressingMode::DispRange DR, 713 SDValue Addr, SDValue &Base, 714 SDValue &Disp, SDValue &Index) const { 715 SystemZAddressingMode AM(Form, DR); 716 if (!selectAddress(Addr, AM)) 717 return false; 718 719 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index); 720 return true; 721 } 722 723 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem, 724 SDValue &Base, 725 SDValue &Disp, 726 SDValue &Index) const { 727 SDValue Regs[2]; 728 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) && 729 Regs[0].getNode() && Regs[1].getNode()) { 730 for (unsigned int I = 0; I < 2; ++I) { 731 Base = Regs[I]; 732 Index = Regs[1 - I]; 733 // We can't tell here whether the index vector has the right type 734 // for the access; the caller needs to do that instead. 735 if (Index.getOpcode() == ISD::ZERO_EXTEND) 736 Index = Index.getOperand(0); 737 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 738 Index.getOperand(1) == Elem) { 739 Index = Index.getOperand(0); 740 return true; 741 } 742 } 743 } 744 return false; 745 } 746 747 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op, 748 uint64_t InsertMask) const { 749 // We're only interested in cases where the insertion is into some operand 750 // of Op, rather than into Op itself. The only useful case is an AND. 751 if (Op.getOpcode() != ISD::AND) 752 return false; 753 754 // We need a constant mask. 755 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode()); 756 if (!MaskNode) 757 return false; 758 759 // It's not an insertion of Op.getOperand(0) if the two masks overlap. 760 uint64_t AndMask = MaskNode->getZExtValue(); 761 if (InsertMask & AndMask) 762 return false; 763 764 // It's only an insertion if all bits are covered or are known to be zero. 765 // The inner check covers all cases but is more expensive. 766 uint64_t Used = allOnes(Op.getValueSizeInBits()); 767 if (Used != (AndMask | InsertMask)) { 768 KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0)); 769 if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue())) 770 return false; 771 } 772 773 Op = Op.getOperand(0); 774 return true; 775 } 776 777 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, 778 uint64_t Mask) const { 779 const SystemZInstrInfo *TII = getInstrInfo(); 780 if (RxSBG.Rotate != 0) 781 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)); 782 Mask &= RxSBG.Mask; 783 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) { 784 RxSBG.Mask = Mask; 785 return true; 786 } 787 return false; 788 } 789 790 // Return true if any bits of (RxSBG.Input & Mask) are significant. 791 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) { 792 // Rotate the mask in the same way as RxSBG.Input is rotated. 793 if (RxSBG.Rotate != 0) 794 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate))); 795 return (Mask & RxSBG.Mask) != 0; 796 } 797 798 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const { 799 SDValue N = RxSBG.Input; 800 unsigned Opcode = N.getOpcode(); 801 switch (Opcode) { 802 case ISD::TRUNCATE: { 803 if (RxSBG.Opcode == SystemZ::RNSBG) 804 return false; 805 if (N.getOperand(0).getValueSizeInBits() > 64) 806 return false; 807 uint64_t BitSize = N.getValueSizeInBits(); 808 uint64_t Mask = allOnes(BitSize); 809 if (!refineRxSBGMask(RxSBG, Mask)) 810 return false; 811 RxSBG.Input = N.getOperand(0); 812 return true; 813 } 814 case ISD::AND: { 815 if (RxSBG.Opcode == SystemZ::RNSBG) 816 return false; 817 818 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 819 if (!MaskNode) 820 return false; 821 822 SDValue Input = N.getOperand(0); 823 uint64_t Mask = MaskNode->getZExtValue(); 824 if (!refineRxSBGMask(RxSBG, Mask)) { 825 // If some bits of Input are already known zeros, those bits will have 826 // been removed from the mask. See if adding them back in makes the 827 // mask suitable. 828 KnownBits Known = CurDAG->computeKnownBits(Input); 829 Mask |= Known.Zero.getZExtValue(); 830 if (!refineRxSBGMask(RxSBG, Mask)) 831 return false; 832 } 833 RxSBG.Input = Input; 834 return true; 835 } 836 837 case ISD::OR: { 838 if (RxSBG.Opcode != SystemZ::RNSBG) 839 return false; 840 841 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 842 if (!MaskNode) 843 return false; 844 845 SDValue Input = N.getOperand(0); 846 uint64_t Mask = ~MaskNode->getZExtValue(); 847 if (!refineRxSBGMask(RxSBG, Mask)) { 848 // If some bits of Input are already known ones, those bits will have 849 // been removed from the mask. See if adding them back in makes the 850 // mask suitable. 851 KnownBits Known = CurDAG->computeKnownBits(Input); 852 Mask &= ~Known.One.getZExtValue(); 853 if (!refineRxSBGMask(RxSBG, Mask)) 854 return false; 855 } 856 RxSBG.Input = Input; 857 return true; 858 } 859 860 case ISD::ROTL: { 861 // Any 64-bit rotate left can be merged into the RxSBG. 862 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64) 863 return false; 864 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 865 if (!CountNode) 866 return false; 867 868 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63; 869 RxSBG.Input = N.getOperand(0); 870 return true; 871 } 872 873 case ISD::ANY_EXTEND: 874 // Bits above the extended operand are don't-care. 875 RxSBG.Input = N.getOperand(0); 876 return true; 877 878 case ISD::ZERO_EXTEND: 879 if (RxSBG.Opcode != SystemZ::RNSBG) { 880 // Restrict the mask to the extended operand. 881 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); 882 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize))) 883 return false; 884 885 RxSBG.Input = N.getOperand(0); 886 return true; 887 } 888 [[fallthrough]]; 889 890 case ISD::SIGN_EXTEND: { 891 // Check that the extension bits are don't-care (i.e. are masked out 892 // by the final mask). 893 unsigned BitSize = N.getValueSizeInBits(); 894 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); 895 if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) { 896 // In the case where only the sign bit is active, increase Rotate with 897 // the extension width. 898 if (RxSBG.Mask == 1 && RxSBG.Rotate == 1) 899 RxSBG.Rotate += (BitSize - InnerBitSize); 900 else 901 return false; 902 } 903 904 RxSBG.Input = N.getOperand(0); 905 return true; 906 } 907 908 case ISD::SHL: { 909 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 910 if (!CountNode) 911 return false; 912 913 uint64_t Count = CountNode->getZExtValue(); 914 unsigned BitSize = N.getValueSizeInBits(); 915 if (Count < 1 || Count >= BitSize) 916 return false; 917 918 if (RxSBG.Opcode == SystemZ::RNSBG) { 919 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom 920 // count bits from RxSBG.Input are ignored. 921 if (maskMatters(RxSBG, allOnes(Count))) 922 return false; 923 } else { 924 // Treat (shl X, count) as (and (rotl X, count), ~0<<count). 925 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count)) 926 return false; 927 } 928 929 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63; 930 RxSBG.Input = N.getOperand(0); 931 return true; 932 } 933 934 case ISD::SRL: 935 case ISD::SRA: { 936 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); 937 if (!CountNode) 938 return false; 939 940 uint64_t Count = CountNode->getZExtValue(); 941 unsigned BitSize = N.getValueSizeInBits(); 942 if (Count < 1 || Count >= BitSize) 943 return false; 944 945 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) { 946 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top 947 // count bits from RxSBG.Input are ignored. 948 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count))) 949 return false; 950 } else { 951 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count), 952 // which is similar to SLL above. 953 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count))) 954 return false; 955 } 956 957 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63; 958 RxSBG.Input = N.getOperand(0); 959 return true; 960 } 961 default: 962 return false; 963 } 964 } 965 966 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const { 967 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT); 968 return SDValue(N, 0); 969 } 970 971 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT, 972 SDValue N) const { 973 if (N.getValueType() == MVT::i32 && VT == MVT::i64) 974 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32, 975 DL, VT, getUNDEF(DL, MVT::i64), N); 976 if (N.getValueType() == MVT::i64 && VT == MVT::i32) 977 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N); 978 assert(N.getValueType() == VT && "Unexpected value types"); 979 return N; 980 } 981 982 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) { 983 SDLoc DL(N); 984 EVT VT = N->getValueType(0); 985 if (!VT.isInteger() || VT.getSizeInBits() > 64) 986 return false; 987 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0)); 988 unsigned Count = 0; 989 while (expandRxSBG(RISBG)) 990 // The widening or narrowing is expected to be free. 991 // Counting widening or narrowing as a saved operation will result in 992 // preferring an R*SBG over a simple shift/logical instruction. 993 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND && 994 RISBG.Input.getOpcode() != ISD::TRUNCATE) 995 Count += 1; 996 if (Count == 0 || isa<ConstantSDNode>(RISBG.Input)) 997 return false; 998 999 // Prefer to use normal shift instructions over RISBG, since they can handle 1000 // all cases and are sometimes shorter. 1001 if (Count == 1 && N->getOpcode() != ISD::AND) 1002 return false; 1003 1004 // Prefer register extensions like LLC over RISBG. Also prefer to start 1005 // out with normal ANDs if one instruction would be enough. We can convert 1006 // these ANDs into an RISBG later if a three-address instruction is useful. 1007 if (RISBG.Rotate == 0) { 1008 bool PreferAnd = false; 1009 // Prefer AND for any 32-bit and-immediate operation. 1010 if (VT == MVT::i32) 1011 PreferAnd = true; 1012 // As well as for any 64-bit operation that can be implemented via LLC(R), 1013 // LLH(R), LLGT(R), or one of the and-immediate instructions. 1014 else if (RISBG.Mask == 0xff || 1015 RISBG.Mask == 0xffff || 1016 RISBG.Mask == 0x7fffffff || 1017 SystemZ::isImmLF(~RISBG.Mask) || 1018 SystemZ::isImmHF(~RISBG.Mask)) 1019 PreferAnd = true; 1020 // And likewise for the LLZRGF instruction, which doesn't have a register 1021 // to register version. 1022 else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) { 1023 if (Load->getMemoryVT() == MVT::i32 && 1024 (Load->getExtensionType() == ISD::EXTLOAD || 1025 Load->getExtensionType() == ISD::ZEXTLOAD) && 1026 RISBG.Mask == 0xffffff00 && 1027 Subtarget->hasLoadAndZeroRightmostByte()) 1028 PreferAnd = true; 1029 } 1030 if (PreferAnd) { 1031 // Replace the current node with an AND. Note that the current node 1032 // might already be that same AND, in which case it is already CSE'd 1033 // with it, and we must not call ReplaceNode. 1034 SDValue In = convertTo(DL, VT, RISBG.Input); 1035 SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT); 1036 SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask); 1037 if (N != New.getNode()) { 1038 insertDAGNode(CurDAG, N, Mask); 1039 insertDAGNode(CurDAG, N, New); 1040 ReplaceNode(N, New.getNode()); 1041 N = New.getNode(); 1042 } 1043 // Now, select the machine opcode to implement this operation. 1044 if (!N->isMachineOpcode()) 1045 SelectCode(N); 1046 return true; 1047 } 1048 } 1049 1050 unsigned Opcode = SystemZ::RISBG; 1051 // Prefer RISBGN if available, since it does not clobber CC. 1052 if (Subtarget->hasMiscellaneousExtensions()) 1053 Opcode = SystemZ::RISBGN; 1054 EVT OpcodeVT = MVT::i64; 1055 if (VT == MVT::i32 && Subtarget->hasHighWord() && 1056 // We can only use the 32-bit instructions if all source bits are 1057 // in the low 32 bits without wrapping, both after rotation (because 1058 // of the smaller range for Start and End) and before rotation 1059 // (because the input value is truncated). 1060 RISBG.Start >= 32 && RISBG.End >= RISBG.Start && 1061 ((RISBG.Start + RISBG.Rotate) & 63) >= 32 && 1062 ((RISBG.End + RISBG.Rotate) & 63) >= 1063 ((RISBG.Start + RISBG.Rotate) & 63)) { 1064 Opcode = SystemZ::RISBMux; 1065 OpcodeVT = MVT::i32; 1066 RISBG.Start &= 31; 1067 RISBG.End &= 31; 1068 } 1069 SDValue Ops[5] = { 1070 getUNDEF(DL, OpcodeVT), 1071 convertTo(DL, OpcodeVT, RISBG.Input), 1072 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32), 1073 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32), 1074 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32) 1075 }; 1076 SDValue New = convertTo( 1077 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0)); 1078 ReplaceNode(N, New.getNode()); 1079 return true; 1080 } 1081 1082 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) { 1083 SDLoc DL(N); 1084 EVT VT = N->getValueType(0); 1085 if (!VT.isInteger() || VT.getSizeInBits() > 64) 1086 return false; 1087 // Try treating each operand of N as the second operand of the RxSBG 1088 // and see which goes deepest. 1089 RxSBGOperands RxSBG[] = { 1090 RxSBGOperands(Opcode, N->getOperand(0)), 1091 RxSBGOperands(Opcode, N->getOperand(1)) 1092 }; 1093 unsigned Count[] = { 0, 0 }; 1094 for (unsigned I = 0; I < 2; ++I) 1095 while (RxSBG[I].Input->hasOneUse() && expandRxSBG(RxSBG[I])) 1096 // In cases of multiple users it seems better to keep the simple 1097 // instruction as they are one cycle faster, and it also helps in cases 1098 // where both inputs share a common node. 1099 // The widening or narrowing is expected to be free. Counting widening 1100 // or narrowing as a saved operation will result in preferring an R*SBG 1101 // over a simple shift/logical instruction. 1102 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND && 1103 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE) 1104 Count[I] += 1; 1105 1106 // Do nothing if neither operand is suitable. 1107 if (Count[0] == 0 && Count[1] == 0) 1108 return false; 1109 1110 // Pick the deepest second operand. 1111 unsigned I = Count[0] > Count[1] ? 0 : 1; 1112 SDValue Op0 = N->getOperand(I ^ 1); 1113 1114 // Prefer IC for character insertions from memory. 1115 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0) 1116 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode())) 1117 if (Load->getMemoryVT() == MVT::i8) 1118 return false; 1119 1120 // See whether we can avoid an AND in the first operand by converting 1121 // ROSBG to RISBG. 1122 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) { 1123 Opcode = SystemZ::RISBG; 1124 // Prefer RISBGN if available, since it does not clobber CC. 1125 if (Subtarget->hasMiscellaneousExtensions()) 1126 Opcode = SystemZ::RISBGN; 1127 } 1128 1129 SDValue Ops[5] = { 1130 convertTo(DL, MVT::i64, Op0), 1131 convertTo(DL, MVT::i64, RxSBG[I].Input), 1132 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32), 1133 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32), 1134 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32) 1135 }; 1136 SDValue New = convertTo( 1137 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0)); 1138 ReplaceNode(N, New.getNode()); 1139 return true; 1140 } 1141 1142 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node, 1143 SDValue Op0, uint64_t UpperVal, 1144 uint64_t LowerVal) { 1145 EVT VT = Node->getValueType(0); 1146 SDLoc DL(Node); 1147 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT); 1148 if (Op0.getNode()) 1149 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper); 1150 1151 { 1152 // When we haven't passed in Op0, Upper will be a constant. In order to 1153 // prevent folding back to the large immediate in `Or = getNode(...)` we run 1154 // SelectCode first and end up with an opaque machine node. This means that 1155 // we need to use a handle to keep track of Upper in case it gets CSE'd by 1156 // SelectCode. 1157 // 1158 // Note that in the case where Op0 is passed in we could just call 1159 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing 1160 // the handle at all, but it's fine to do it here. 1161 // 1162 // TODO: This is a pretty hacky way to do this. Can we do something that 1163 // doesn't require a two paragraph explanation? 1164 HandleSDNode Handle(Upper); 1165 SelectCode(Upper.getNode()); 1166 Upper = Handle.getValue(); 1167 } 1168 1169 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT); 1170 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower); 1171 1172 ReplaceNode(Node, Or.getNode()); 1173 1174 SelectCode(Or.getNode()); 1175 } 1176 1177 void SystemZDAGToDAGISel::loadVectorConstant( 1178 const SystemZVectorConstantInfo &VCI, SDNode *Node) { 1179 assert((VCI.Opcode == SystemZISD::BYTE_MASK || 1180 VCI.Opcode == SystemZISD::REPLICATE || 1181 VCI.Opcode == SystemZISD::ROTATE_MASK) && 1182 "Bad opcode!"); 1183 assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type"); 1184 EVT VT = Node->getValueType(0); 1185 SDLoc DL(Node); 1186 SmallVector<SDValue, 2> Ops; 1187 for (unsigned OpVal : VCI.OpVals) 1188 Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32)); 1189 SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops); 1190 1191 if (VCI.VecVT == VT.getSimpleVT()) 1192 ReplaceNode(Node, Op.getNode()); 1193 else if (VT.getSizeInBits() == 128) { 1194 SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op); 1195 ReplaceNode(Node, BitCast.getNode()); 1196 SelectCode(BitCast.getNode()); 1197 } else { // float or double 1198 unsigned SubRegIdx = 1199 (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64); 1200 ReplaceNode( 1201 Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode()); 1202 } 1203 SelectCode(Op.getNode()); 1204 } 1205 1206 SDNode *SystemZDAGToDAGISel::loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL) { 1207 SDNode *ResNode; 1208 assert (VT.getSizeInBits() == 128); 1209 1210 SDValue CP = CurDAG->getTargetConstantPool( 1211 ConstantInt::get(Type::getInt128Ty(*CurDAG->getContext()), Val), 1212 TLI->getPointerTy(CurDAG->getDataLayout())); 1213 1214 EVT PtrVT = CP.getValueType(); 1215 SDValue Ops[] = { 1216 SDValue(CurDAG->getMachineNode(SystemZ::LARL, DL, PtrVT, CP), 0), 1217 CurDAG->getTargetConstant(0, DL, PtrVT), 1218 CurDAG->getRegister(0, PtrVT), 1219 CurDAG->getEntryNode() 1220 }; 1221 ResNode = CurDAG->getMachineNode(SystemZ::VL, DL, VT, MVT::Other, Ops); 1222 1223 // Annotate ResNode with memory operand information so that MachineInstr 1224 // queries work properly. This e.g. gives the register allocation the 1225 // required information for rematerialization. 1226 MachineFunction& MF = CurDAG->getMachineFunction(); 1227 MachineMemOperand *MemOp = 1228 MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF), 1229 MachineMemOperand::MOLoad, 16, Align(8)); 1230 1231 CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp}); 1232 return ResNode; 1233 } 1234 1235 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) { 1236 SDValue ElemV = N->getOperand(2); 1237 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); 1238 if (!ElemN) 1239 return false; 1240 1241 unsigned Elem = ElemN->getZExtValue(); 1242 EVT VT = N->getValueType(0); 1243 if (Elem >= VT.getVectorNumElements()) 1244 return false; 1245 1246 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1)); 1247 if (!Load || !Load->hasNUsesOfValue(1, 0)) 1248 return false; 1249 if (Load->getMemoryVT().getSizeInBits() != 1250 Load->getValueType(0).getSizeInBits()) 1251 return false; 1252 1253 SDValue Base, Disp, Index; 1254 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) || 1255 Index.getValueType() != VT.changeVectorElementTypeToInteger()) 1256 return false; 1257 1258 SDLoc DL(Load); 1259 SDValue Ops[] = { 1260 N->getOperand(0), Base, Disp, Index, 1261 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain() 1262 }; 1263 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops); 1264 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1)); 1265 ReplaceNode(N, Res); 1266 return true; 1267 } 1268 1269 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) { 1270 SDValue Value = Store->getValue(); 1271 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1272 return false; 1273 if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits()) 1274 return false; 1275 1276 SDValue ElemV = Value.getOperand(1); 1277 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); 1278 if (!ElemN) 1279 return false; 1280 1281 SDValue Vec = Value.getOperand(0); 1282 EVT VT = Vec.getValueType(); 1283 unsigned Elem = ElemN->getZExtValue(); 1284 if (Elem >= VT.getVectorNumElements()) 1285 return false; 1286 1287 SDValue Base, Disp, Index; 1288 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) || 1289 Index.getValueType() != VT.changeVectorElementTypeToInteger()) 1290 return false; 1291 1292 SDLoc DL(Store); 1293 SDValue Ops[] = { 1294 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32), 1295 Store->getChain() 1296 }; 1297 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops)); 1298 return true; 1299 } 1300 1301 // Check whether or not the chain ending in StoreNode is suitable for doing 1302 // the {load; op; store} to modify transformation. 1303 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, 1304 SDValue StoredVal, SelectionDAG *CurDAG, 1305 LoadSDNode *&LoadNode, 1306 SDValue &InputChain) { 1307 // Is the stored value result 0 of the operation? 1308 if (StoredVal.getResNo() != 0) 1309 return false; 1310 1311 // Are there other uses of the loaded value than the operation? 1312 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) 1313 return false; 1314 1315 // Is the store non-extending and non-indexed? 1316 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) 1317 return false; 1318 1319 SDValue Load = StoredVal->getOperand(0); 1320 // Is the stored value a non-extending and non-indexed load? 1321 if (!ISD::isNormalLoad(Load.getNode())) 1322 return false; 1323 1324 // Return LoadNode by reference. 1325 LoadNode = cast<LoadSDNode>(Load); 1326 1327 // Is store the only read of the loaded value? 1328 if (!Load.hasOneUse()) 1329 return false; 1330 1331 // Is the address of the store the same as the load? 1332 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || 1333 LoadNode->getOffset() != StoreNode->getOffset()) 1334 return false; 1335 1336 // Check if the chain is produced by the load or is a TokenFactor with 1337 // the load output chain as an operand. Return InputChain by reference. 1338 SDValue Chain = StoreNode->getChain(); 1339 1340 bool ChainCheck = false; 1341 if (Chain == Load.getValue(1)) { 1342 ChainCheck = true; 1343 InputChain = LoadNode->getChain(); 1344 } else if (Chain.getOpcode() == ISD::TokenFactor) { 1345 SmallVector<SDValue, 4> ChainOps; 1346 SmallVector<const SDNode *, 4> LoopWorklist; 1347 SmallPtrSet<const SDNode *, 16> Visited; 1348 const unsigned int Max = 1024; 1349 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { 1350 SDValue Op = Chain.getOperand(i); 1351 if (Op == Load.getValue(1)) { 1352 ChainCheck = true; 1353 // Drop Load, but keep its chain. No cycle check necessary. 1354 ChainOps.push_back(Load.getOperand(0)); 1355 continue; 1356 } 1357 LoopWorklist.push_back(Op.getNode()); 1358 ChainOps.push_back(Op); 1359 } 1360 1361 if (ChainCheck) { 1362 // Add the other operand of StoredVal to worklist. 1363 for (SDValue Op : StoredVal->ops()) 1364 if (Op.getNode() != LoadNode) 1365 LoopWorklist.push_back(Op.getNode()); 1366 1367 // Check if Load is reachable from any of the nodes in the worklist. 1368 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max, 1369 true)) 1370 return false; 1371 1372 // Make a new TokenFactor with all the other input chains except 1373 // for the load. 1374 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), 1375 MVT::Other, ChainOps); 1376 } 1377 } 1378 if (!ChainCheck) 1379 return false; 1380 1381 return true; 1382 } 1383 1384 // Change a chain of {load; op; store} of the same value into a simple op 1385 // through memory of that value, if the uses of the modified value and its 1386 // address are suitable. 1387 // 1388 // The tablegen pattern memory operand pattern is currently not able to match 1389 // the case where the CC on the original operation are used. 1390 // 1391 // See the equivalent routine in X86ISelDAGToDAG for further comments. 1392 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) { 1393 StoreSDNode *StoreNode = cast<StoreSDNode>(Node); 1394 SDValue StoredVal = StoreNode->getOperand(1); 1395 unsigned Opc = StoredVal->getOpcode(); 1396 SDLoc DL(StoreNode); 1397 1398 // Before we try to select anything, make sure this is memory operand size 1399 // and opcode we can handle. Note that this must match the code below that 1400 // actually lowers the opcodes. 1401 EVT MemVT = StoreNode->getMemoryVT(); 1402 unsigned NewOpc = 0; 1403 bool NegateOperand = false; 1404 switch (Opc) { 1405 default: 1406 return false; 1407 case SystemZISD::SSUBO: 1408 NegateOperand = true; 1409 [[fallthrough]]; 1410 case SystemZISD::SADDO: 1411 if (MemVT == MVT::i32) 1412 NewOpc = SystemZ::ASI; 1413 else if (MemVT == MVT::i64) 1414 NewOpc = SystemZ::AGSI; 1415 else 1416 return false; 1417 break; 1418 case SystemZISD::USUBO: 1419 NegateOperand = true; 1420 [[fallthrough]]; 1421 case SystemZISD::UADDO: 1422 if (MemVT == MVT::i32) 1423 NewOpc = SystemZ::ALSI; 1424 else if (MemVT == MVT::i64) 1425 NewOpc = SystemZ::ALGSI; 1426 else 1427 return false; 1428 break; 1429 } 1430 1431 LoadSDNode *LoadNode = nullptr; 1432 SDValue InputChain; 1433 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode, 1434 InputChain)) 1435 return false; 1436 1437 SDValue Operand = StoredVal.getOperand(1); 1438 auto *OperandC = dyn_cast<ConstantSDNode>(Operand); 1439 if (!OperandC) 1440 return false; 1441 auto OperandV = OperandC->getAPIntValue(); 1442 if (NegateOperand) 1443 OperandV = -OperandV; 1444 if (OperandV.getSignificantBits() > 8) 1445 return false; 1446 Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT); 1447 1448 SDValue Base, Disp; 1449 if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp)) 1450 return false; 1451 1452 SDValue Ops[] = { Base, Disp, Operand, InputChain }; 1453 MachineSDNode *Result = 1454 CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops); 1455 CurDAG->setNodeMemRefs( 1456 Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()}); 1457 1458 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); 1459 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); 1460 CurDAG->RemoveDeadNode(Node); 1461 return true; 1462 } 1463 1464 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store, 1465 LoadSDNode *Load) const { 1466 // Check that the two memory operands have the same size. 1467 if (Load->getMemoryVT() != Store->getMemoryVT()) 1468 return false; 1469 1470 // Volatility stops an access from being decomposed. 1471 if (Load->isVolatile() || Store->isVolatile()) 1472 return false; 1473 1474 // There's no chance of overlap if the load is invariant. 1475 if (Load->isInvariant() && Load->isDereferenceable()) 1476 return true; 1477 1478 // Otherwise we need to check whether there's an alias. 1479 const Value *V1 = Load->getMemOperand()->getValue(); 1480 const Value *V2 = Store->getMemOperand()->getValue(); 1481 if (!V1 || !V2) 1482 return false; 1483 1484 // Reject equality. 1485 uint64_t Size = Load->getMemoryVT().getStoreSize(); 1486 int64_t End1 = Load->getSrcValueOffset() + Size; 1487 int64_t End2 = Store->getSrcValueOffset() + Size; 1488 if (V1 == V2 && End1 == End2) 1489 return false; 1490 1491 return AA->isNoAlias(MemoryLocation(V1, End1, Load->getAAInfo()), 1492 MemoryLocation(V2, End2, Store->getAAInfo())); 1493 } 1494 1495 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const { 1496 auto *Store = cast<StoreSDNode>(N); 1497 auto *Load = cast<LoadSDNode>(Store->getValue()); 1498 1499 // Prefer not to use MVC if either address can use ... RELATIVE LONG 1500 // instructions. 1501 uint64_t Size = Load->getMemoryVT().getStoreSize(); 1502 if (Size > 1 && Size <= 8) { 1503 // Prefer LHRL, LRL and LGRL. 1504 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode())) 1505 return false; 1506 // Prefer STHRL, STRL and STGRL. 1507 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode())) 1508 return false; 1509 } 1510 1511 return canUseBlockOperation(Store, Load); 1512 } 1513 1514 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N, 1515 unsigned I) const { 1516 auto *StoreA = cast<StoreSDNode>(N); 1517 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I)); 1518 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I)); 1519 return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() && 1520 canUseBlockOperation(StoreA, LoadB); 1521 } 1522 1523 bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const { 1524 1525 auto *MemAccess = cast<MemSDNode>(N); 1526 auto *LdSt = dyn_cast<LSBaseSDNode>(MemAccess); 1527 TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize(); 1528 SDValue BasePtr = MemAccess->getBasePtr(); 1529 MachineMemOperand *MMO = MemAccess->getMemOperand(); 1530 assert(MMO && "Expected a memory operand."); 1531 1532 // The memory access must have a proper alignment and no index register. 1533 // Only load and store nodes have the offset operand (atomic loads do not). 1534 if (MemAccess->getAlign().value() < StoreSize || 1535 (LdSt && !LdSt->getOffset().isUndef())) 1536 return false; 1537 1538 // The MMO must not have an unaligned offset. 1539 if (MMO->getOffset() % StoreSize != 0) 1540 return false; 1541 1542 // An access to GOT or the Constant Pool is aligned. 1543 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1544 if ((PSV->isGOT() || PSV->isConstantPool())) 1545 return true; 1546 1547 // Check the alignment of a Global Address. 1548 if (BasePtr.getNumOperands()) 1549 if (GlobalAddressSDNode *GA = 1550 dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) { 1551 // The immediate offset must be aligned. 1552 if (GA->getOffset() % StoreSize != 0) 1553 return false; 1554 1555 // The alignment of the symbol itself must be at least the store size. 1556 const GlobalValue *GV = GA->getGlobal(); 1557 const DataLayout &DL = GV->getDataLayout(); 1558 if (GV->getPointerAlignment(DL).value() < StoreSize) 1559 return false; 1560 } 1561 1562 return true; 1563 } 1564 1565 ISD::LoadExtType SystemZDAGToDAGISel::getLoadExtType(SDNode *N) const { 1566 ISD::LoadExtType ETy; 1567 if (auto *L = dyn_cast<LoadSDNode>(N)) 1568 ETy = L->getExtensionType(); 1569 else if (auto *AL = dyn_cast<AtomicSDNode>(N)) 1570 ETy = AL->getExtensionType(); 1571 else 1572 llvm_unreachable("Unkown load node type."); 1573 return ETy; 1574 } 1575 1576 void SystemZDAGToDAGISel::Select(SDNode *Node) { 1577 // If we have a custom node, we already have selected! 1578 if (Node->isMachineOpcode()) { 1579 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); 1580 Node->setNodeId(-1); 1581 return; 1582 } 1583 1584 unsigned Opcode = Node->getOpcode(); 1585 switch (Opcode) { 1586 case ISD::OR: 1587 if (Node->getOperand(1).getOpcode() != ISD::Constant) 1588 if (tryRxSBG(Node, SystemZ::ROSBG)) 1589 return; 1590 goto or_xor; 1591 1592 case ISD::XOR: 1593 if (Node->getOperand(1).getOpcode() != ISD::Constant) 1594 if (tryRxSBG(Node, SystemZ::RXSBG)) 1595 return; 1596 // Fall through. 1597 or_xor: 1598 // If this is a 64-bit operation in which both 32-bit halves are nonzero, 1599 // split the operation into two. If both operands here happen to be 1600 // constant, leave this to common code to optimize. 1601 if (Node->getValueType(0) == MVT::i64 && 1602 Node->getOperand(0).getOpcode() != ISD::Constant) 1603 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) { 1604 uint64_t Val = Op1->getZExtValue(); 1605 // Don't split the operation if we can match one of the combined 1606 // logical operations provided by miscellaneous-extensions-3. 1607 if (Subtarget->hasMiscellaneousExtensions3()) { 1608 unsigned ChildOpcode = Node->getOperand(0).getOpcode(); 1609 // Check whether this expression matches NAND/NOR/NXOR. 1610 if (Val == (uint64_t)-1 && Opcode == ISD::XOR) 1611 if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR || 1612 ChildOpcode == ISD::XOR) 1613 break; 1614 // Check whether this expression matches OR-with-complement 1615 // (or matches an alternate pattern for NXOR). 1616 if (ChildOpcode == ISD::XOR) { 1617 auto Op0 = Node->getOperand(0); 1618 if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1))) 1619 if (Op0Op1->getZExtValue() == (uint64_t)-1) 1620 break; 1621 } 1622 } 1623 // Don't split an XOR with -1 as LCGR/AGHI is more compact. 1624 if (Opcode == ISD::XOR && Op1->isAllOnes()) 1625 break; 1626 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) { 1627 splitLargeImmediate(Opcode, Node, Node->getOperand(0), 1628 Val - uint32_t(Val), uint32_t(Val)); 1629 return; 1630 } 1631 } 1632 break; 1633 1634 case ISD::AND: 1635 if (Node->getOperand(1).getOpcode() != ISD::Constant) 1636 if (tryRxSBG(Node, SystemZ::RNSBG)) 1637 return; 1638 [[fallthrough]]; 1639 case ISD::ROTL: 1640 case ISD::SHL: 1641 case ISD::SRL: 1642 case ISD::ZERO_EXTEND: 1643 if (tryRISBGZero(Node)) 1644 return; 1645 break; 1646 1647 case ISD::BSWAP: 1648 if (Node->getValueType(0) == MVT::i128) { 1649 SDLoc DL(Node); 1650 SDValue Src = Node->getOperand(0); 1651 Src = CurDAG->getNode(ISD::BITCAST, DL, MVT::v16i8, Src); 1652 1653 uint64_t Bytes[2] = { 0x0706050403020100ULL, 0x0f0e0d0c0b0a0908ULL }; 1654 SDNode *Mask = loadPoolVectorConstant(APInt(128, Bytes), MVT::v16i8, DL); 1655 SDValue Ops[] = { Src, Src, SDValue(Mask, 0) }; 1656 SDValue Res = SDValue(CurDAG->getMachineNode(SystemZ::VPERM, DL, 1657 MVT::v16i8, Ops), 0); 1658 1659 Res = CurDAG->getNode(ISD::BITCAST, DL, MVT::i128, Res); 1660 SDNode *ResNode = Res.getNode(); 1661 ReplaceNode(Node, ResNode); 1662 SelectCode(Src.getNode()); 1663 SelectCode(ResNode); 1664 return; 1665 } 1666 break; 1667 1668 case ISD::Constant: 1669 // If this is a 64-bit constant that is out of the range of LLILF, 1670 // LLIHF and LGFI, split it into two 32-bit pieces. 1671 if (Node->getValueType(0) == MVT::i64) { 1672 uint64_t Val = Node->getAsZExtVal(); 1673 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) { 1674 splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val), 1675 uint32_t(Val)); 1676 return; 1677 } 1678 } 1679 if (Node->getValueType(0) == MVT::i128) { 1680 const APInt &Val = Node->getAsAPIntVal(); 1681 SystemZVectorConstantInfo VCI(Val); 1682 if (VCI.isVectorConstantLegal(*Subtarget)) { 1683 loadVectorConstant(VCI, Node); 1684 return; 1685 } 1686 // If we can't materialize the constant we need to use a literal pool. 1687 SDNode *ResNode = loadPoolVectorConstant(Val, MVT::i128, SDLoc(Node)); 1688 ReplaceNode(Node, ResNode); 1689 return; 1690 } 1691 break; 1692 1693 case SystemZISD::SELECT_CCMASK: { 1694 SDValue Op0 = Node->getOperand(0); 1695 SDValue Op1 = Node->getOperand(1); 1696 // Prefer to put any load first, so that it can be matched as a 1697 // conditional load. Likewise for constants in range for LOCHI. 1698 if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) || 1699 (Subtarget->hasLoadStoreOnCond2() && 1700 Node->getValueType(0).isInteger() && 1701 Node->getValueType(0).getSizeInBits() <= 64 && 1702 Op1.getOpcode() == ISD::Constant && 1703 isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) && 1704 !(Op0.getOpcode() == ISD::Constant && 1705 isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) { 1706 SDValue CCValid = Node->getOperand(2); 1707 SDValue CCMask = Node->getOperand(3); 1708 uint64_t ConstCCValid = CCValid.getNode()->getAsZExtVal(); 1709 uint64_t ConstCCMask = CCMask.getNode()->getAsZExtVal(); 1710 // Invert the condition. 1711 CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask, 1712 SDLoc(Node), CCMask.getValueType()); 1713 SDValue Op4 = Node->getOperand(4); 1714 SDNode *UpdatedNode = 1715 CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4); 1716 if (UpdatedNode != Node) { 1717 // In case this node already exists then replace Node with it. 1718 ReplaceNode(Node, UpdatedNode); 1719 Node = UpdatedNode; 1720 } 1721 } 1722 break; 1723 } 1724 1725 case ISD::INSERT_VECTOR_ELT: { 1726 EVT VT = Node->getValueType(0); 1727 unsigned ElemBitSize = VT.getScalarSizeInBits(); 1728 if (ElemBitSize == 32) { 1729 if (tryGather(Node, SystemZ::VGEF)) 1730 return; 1731 } else if (ElemBitSize == 64) { 1732 if (tryGather(Node, SystemZ::VGEG)) 1733 return; 1734 } 1735 break; 1736 } 1737 1738 case ISD::BUILD_VECTOR: { 1739 auto *BVN = cast<BuildVectorSDNode>(Node); 1740 SystemZVectorConstantInfo VCI(BVN); 1741 if (VCI.isVectorConstantLegal(*Subtarget)) { 1742 loadVectorConstant(VCI, Node); 1743 return; 1744 } 1745 break; 1746 } 1747 1748 case ISD::ConstantFP: { 1749 APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF(); 1750 if (Imm.isZero() || Imm.isNegZero()) 1751 break; 1752 SystemZVectorConstantInfo VCI(Imm); 1753 bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success; 1754 assert(Success && "Expected legal FP immediate"); 1755 loadVectorConstant(VCI, Node); 1756 return; 1757 } 1758 1759 case ISD::STORE: { 1760 if (tryFoldLoadStoreIntoMemOperand(Node)) 1761 return; 1762 auto *Store = cast<StoreSDNode>(Node); 1763 unsigned ElemBitSize = Store->getValue().getValueSizeInBits(); 1764 if (ElemBitSize == 32) { 1765 if (tryScatter(Store, SystemZ::VSCEF)) 1766 return; 1767 } else if (ElemBitSize == 64) { 1768 if (tryScatter(Store, SystemZ::VSCEG)) 1769 return; 1770 } 1771 break; 1772 } 1773 1774 case ISD::ATOMIC_STORE: { 1775 auto *AtomOp = cast<AtomicSDNode>(Node); 1776 // Replace the atomic_store with a regular store and select it. This is 1777 // ok since we know all store instructions <= 8 bytes are atomic, and the 1778 // 16 byte case is already handled during lowering. 1779 StoreSDNode *St = cast<StoreSDNode>(CurDAG->getTruncStore( 1780 AtomOp->getChain(), SDLoc(AtomOp), AtomOp->getVal(), 1781 AtomOp->getBasePtr(), AtomOp->getMemoryVT(), AtomOp->getMemOperand())); 1782 assert(St->getMemOperand()->isAtomic() && "Broken MMO."); 1783 SDNode *Chain = St; 1784 // We have to enforce sequential consistency by performing a 1785 // serialization operation after the store. 1786 if (AtomOp->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 1787 Chain = CurDAG->getMachineNode(SystemZ::Serialize, SDLoc(AtomOp), 1788 MVT::Other, SDValue(Chain, 0)); 1789 ReplaceNode(Node, Chain); 1790 SelectCode(St); 1791 return; 1792 } 1793 } 1794 1795 SelectCode(Node); 1796 } 1797 1798 bool SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand( 1799 const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, 1800 std::vector<SDValue> &OutOps) { 1801 SystemZAddressingMode::AddrForm Form; 1802 SystemZAddressingMode::DispRange DispRange; 1803 SDValue Base, Disp, Index; 1804 1805 switch(ConstraintID) { 1806 default: 1807 llvm_unreachable("Unexpected asm memory constraint"); 1808 case InlineAsm::ConstraintCode::i: 1809 case InlineAsm::ConstraintCode::Q: 1810 case InlineAsm::ConstraintCode::ZQ: 1811 // Accept an address with a short displacement, but no index. 1812 Form = SystemZAddressingMode::FormBD; 1813 DispRange = SystemZAddressingMode::Disp12Only; 1814 break; 1815 case InlineAsm::ConstraintCode::R: 1816 case InlineAsm::ConstraintCode::ZR: 1817 // Accept an address with a short displacement and an index. 1818 Form = SystemZAddressingMode::FormBDXNormal; 1819 DispRange = SystemZAddressingMode::Disp12Only; 1820 break; 1821 case InlineAsm::ConstraintCode::S: 1822 case InlineAsm::ConstraintCode::ZS: 1823 // Accept an address with a long displacement, but no index. 1824 Form = SystemZAddressingMode::FormBD; 1825 DispRange = SystemZAddressingMode::Disp20Only; 1826 break; 1827 case InlineAsm::ConstraintCode::T: 1828 case InlineAsm::ConstraintCode::m: 1829 case InlineAsm::ConstraintCode::o: 1830 case InlineAsm::ConstraintCode::p: 1831 case InlineAsm::ConstraintCode::ZT: 1832 // Accept an address with a long displacement and an index. 1833 // m works the same as T, as this is the most general case. 1834 // We don't really have any special handling of "offsettable" 1835 // memory addresses, so just treat o the same as m. 1836 Form = SystemZAddressingMode::FormBDXNormal; 1837 DispRange = SystemZAddressingMode::Disp20Only; 1838 break; 1839 } 1840 1841 if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) { 1842 const TargetRegisterClass *TRC = 1843 Subtarget->getRegisterInfo()->getPointerRegClass(*MF); 1844 SDLoc DL(Base); 1845 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32); 1846 1847 // Make sure that the base address doesn't go into %r0. 1848 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything. 1849 if (Base.getOpcode() != ISD::TargetFrameIndex && 1850 Base.getOpcode() != ISD::Register) { 1851 Base = 1852 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 1853 DL, Base.getValueType(), 1854 Base, RC), 0); 1855 } 1856 1857 // Make sure that the index register isn't assigned to %r0 either. 1858 if (Index.getOpcode() != ISD::Register) { 1859 Index = 1860 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, 1861 DL, Index.getValueType(), 1862 Index, RC), 0); 1863 } 1864 1865 OutOps.push_back(Base); 1866 OutOps.push_back(Disp); 1867 OutOps.push_back(Index); 1868 return false; 1869 } 1870 1871 return true; 1872 } 1873 1874 // IsProfitableToFold - Returns true if is profitable to fold the specific 1875 // operand node N of U during instruction selection that starts at Root. 1876 bool 1877 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 1878 SDNode *Root) const { 1879 // We want to avoid folding a LOAD into an ICMP node if as a result 1880 // we would be forced to spill the condition code into a GPR. 1881 if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) { 1882 if (!N.hasOneUse() || !U->hasOneUse()) 1883 return false; 1884 1885 // The user of the CC value will usually be a CopyToReg into the 1886 // physical CC register, which in turn is glued and chained to the 1887 // actual instruction that uses the CC value. Bail out if we have 1888 // anything else than that. 1889 SDNode *CCUser = *U->use_begin(); 1890 SDNode *CCRegUser = nullptr; 1891 if (CCUser->getOpcode() == ISD::CopyToReg || 1892 cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) { 1893 for (auto *U : CCUser->uses()) { 1894 if (CCRegUser == nullptr) 1895 CCRegUser = U; 1896 else if (CCRegUser != U) 1897 return false; 1898 } 1899 } 1900 if (CCRegUser == nullptr) 1901 return false; 1902 1903 // If the actual instruction is a branch, the only thing that remains to be 1904 // checked is whether the CCUser chain is a predecessor of the load. 1905 if (CCRegUser->isMachineOpcode() && 1906 CCRegUser->getMachineOpcode() == SystemZ::BRC) 1907 return !N->isPredecessorOf(CCUser->getOperand(0).getNode()); 1908 1909 // Otherwise, the instruction may have multiple operands, and we need to 1910 // verify that none of them are a predecessor of the load. This is exactly 1911 // the same check that would be done by common code if the CC setter were 1912 // glued to the CC user, so simply invoke that check here. 1913 if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false)) 1914 return false; 1915 } 1916 1917 return true; 1918 } 1919 1920 namespace { 1921 // Represents a sequence for extracting a 0/1 value from an IPM result: 1922 // (((X ^ XORValue) + AddValue) >> Bit) 1923 struct IPMConversion { 1924 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 1925 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 1926 1927 int64_t XORValue; 1928 int64_t AddValue; 1929 unsigned Bit; 1930 }; 1931 } // end anonymous namespace 1932 1933 // Return a sequence for getting a 1 from an IPM result when CC has a 1934 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1935 // The handling of CC values outside CCValid doesn't matter. 1936 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1937 // Deal with cases where the result can be taken directly from a bit 1938 // of the IPM result. 1939 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1940 return IPMConversion(0, 0, SystemZ::IPM_CC); 1941 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1942 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1943 1944 // Deal with cases where we can add a value to force the sign bit 1945 // to contain the right value. Putting the bit in 31 means we can 1946 // use SRL rather than RISBG(L), and also makes it easier to get a 1947 // 0/-1 value, so it has priority over the other tests below. 1948 // 1949 // These sequences rely on the fact that the upper two bits of the 1950 // IPM result are zero. 1951 uint64_t TopBit = uint64_t(1) << 31; 1952 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1953 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1954 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1955 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1956 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1957 | SystemZ::CCMASK_1 1958 | SystemZ::CCMASK_2))) 1959 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1960 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1961 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1962 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1963 | SystemZ::CCMASK_2 1964 | SystemZ::CCMASK_3))) 1965 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1966 1967 // Next try inverting the value and testing a bit. 0/1 could be 1968 // handled this way too, but we dealt with that case above. 1969 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1970 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1971 1972 // Handle cases where adding a value forces a non-sign bit to contain 1973 // the right value. 1974 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1975 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1976 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1977 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1978 1979 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1980 // can be done by inverting the low CC bit and applying one of the 1981 // sign-based extractions above. 1982 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1983 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1984 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1985 return IPMConversion(1 << SystemZ::IPM_CC, 1986 TopBit - (3 << SystemZ::IPM_CC), 31); 1987 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1988 | SystemZ::CCMASK_1 1989 | SystemZ::CCMASK_3))) 1990 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1991 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1992 | SystemZ::CCMASK_2 1993 | SystemZ::CCMASK_3))) 1994 return IPMConversion(1 << SystemZ::IPM_CC, 1995 TopBit - (1 << SystemZ::IPM_CC), 31); 1996 1997 llvm_unreachable("Unexpected CC combination"); 1998 } 1999 2000 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) { 2001 auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0)); 2002 auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1)); 2003 if (!TrueOp || !FalseOp) 2004 return SDValue(); 2005 if (FalseOp->getZExtValue() != 0) 2006 return SDValue(); 2007 if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1) 2008 return SDValue(); 2009 2010 auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2)); 2011 auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3)); 2012 if (!CCValidOp || !CCMaskOp) 2013 return SDValue(); 2014 int CCValid = CCValidOp->getZExtValue(); 2015 int CCMask = CCMaskOp->getZExtValue(); 2016 2017 SDLoc DL(Node); 2018 SDValue CCReg = Node->getOperand(4); 2019 IPMConversion IPM = getIPMConversion(CCValid, CCMask); 2020 SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 2021 2022 if (IPM.XORValue) 2023 Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result, 2024 CurDAG->getConstant(IPM.XORValue, DL, MVT::i32)); 2025 2026 if (IPM.AddValue) 2027 Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result, 2028 CurDAG->getConstant(IPM.AddValue, DL, MVT::i32)); 2029 2030 EVT VT = Node->getValueType(0); 2031 if (VT == MVT::i32 && IPM.Bit == 31) { 2032 unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA; 2033 Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result, 2034 CurDAG->getConstant(IPM.Bit, DL, MVT::i32)); 2035 } else { 2036 if (VT != MVT::i32) 2037 Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result); 2038 2039 if (TrueOp->getSExtValue() == 1) { 2040 // The SHR/AND sequence should get optimized to an RISBG. 2041 Result = CurDAG->getNode(ISD::SRL, DL, VT, Result, 2042 CurDAG->getConstant(IPM.Bit, DL, MVT::i32)); 2043 Result = CurDAG->getNode(ISD::AND, DL, VT, Result, 2044 CurDAG->getConstant(1, DL, VT)); 2045 } else { 2046 // Sign-extend from IPM.Bit using a pair of shifts. 2047 int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit; 2048 int SraAmt = VT.getSizeInBits() - 1; 2049 Result = CurDAG->getNode(ISD::SHL, DL, VT, Result, 2050 CurDAG->getConstant(ShlAmt, DL, MVT::i32)); 2051 Result = CurDAG->getNode(ISD::SRA, DL, VT, Result, 2052 CurDAG->getConstant(SraAmt, DL, MVT::i32)); 2053 } 2054 } 2055 2056 return Result; 2057 } 2058 2059 bool SystemZDAGToDAGISel::shouldSelectForReassoc(SDNode *N) const { 2060 EVT VT = N->getValueType(0); 2061 assert(VT.isFloatingPoint() && "Expected FP SDNode"); 2062 return N->getFlags().hasAllowReassociation() && 2063 N->getFlags().hasNoSignedZeros() && Subtarget->hasVector() && 2064 (VT != MVT::f32 || Subtarget->hasVectorEnhancements1()) && 2065 !N->isStrictFPOpcode(); 2066 } 2067 2068 void SystemZDAGToDAGISel::PreprocessISelDAG() { 2069 // If we have conditional immediate loads, we always prefer 2070 // using those over an IPM sequence. 2071 if (Subtarget->hasLoadStoreOnCond2()) 2072 return; 2073 2074 bool MadeChange = false; 2075 2076 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), 2077 E = CurDAG->allnodes_end(); 2078 I != E;) { 2079 SDNode *N = &*I++; 2080 if (N->use_empty()) 2081 continue; 2082 2083 SDValue Res; 2084 switch (N->getOpcode()) { 2085 default: break; 2086 case SystemZISD::SELECT_CCMASK: 2087 Res = expandSelectBoolean(N); 2088 break; 2089 } 2090 2091 if (Res) { 2092 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: "); 2093 LLVM_DEBUG(N->dump(CurDAG)); 2094 LLVM_DEBUG(dbgs() << "\nNew: "); 2095 LLVM_DEBUG(Res.getNode()->dump(CurDAG)); 2096 LLVM_DEBUG(dbgs() << "\n"); 2097 2098 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); 2099 MadeChange = true; 2100 } 2101 } 2102 2103 if (MadeChange) 2104 CurDAG->RemoveDeadNodes(); 2105 } 2106