xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the SystemZ target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "systemz-isel"
24 #define PASS_NAME "SystemZ DAG->DAG Pattern Instruction Selection"
25 
26 namespace {
27 // Used to build addressing modes.
28 struct SystemZAddressingMode {
29   // The shape of the address.
30   enum AddrForm {
31     // base+displacement
32     FormBD,
33 
34     // base+displacement+index for load and store operands
35     FormBDXNormal,
36 
37     // base+displacement+index for load address operands
38     FormBDXLA,
39 
40     // base+displacement+index+ADJDYNALLOC
41     FormBDXDynAlloc
42   };
43   AddrForm Form;
44 
45   // The type of displacement.  The enum names here correspond directly
46   // to the definitions in SystemZOperand.td.  We could split them into
47   // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
48   enum DispRange {
49     Disp12Only,
50     Disp12Pair,
51     Disp20Only,
52     Disp20Only128,
53     Disp20Pair
54   };
55   DispRange DR;
56 
57   // The parts of the address.  The address is equivalent to:
58   //
59   //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
60   SDValue Base;
61   int64_t Disp;
62   SDValue Index;
63   bool IncludesDynAlloc;
64 
65   SystemZAddressingMode(AddrForm form, DispRange dr)
66       : Form(form), DR(dr), Disp(0), IncludesDynAlloc(false) {}
67 
68   // True if the address can have an index register.
69   bool hasIndexField() { return Form != FormBD; }
70 
71   // True if the address can (and must) include ADJDYNALLOC.
72   bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73 
74   void dump(const llvm::SelectionDAG *DAG) {
75     errs() << "SystemZAddressingMode " << this << '\n';
76 
77     errs() << " Base ";
78     if (Base.getNode())
79       Base.getNode()->dump(DAG);
80     else
81       errs() << "null\n";
82 
83     if (hasIndexField()) {
84       errs() << " Index ";
85       if (Index.getNode())
86         Index.getNode()->dump(DAG);
87       else
88         errs() << "null\n";
89     }
90 
91     errs() << " Disp " << Disp;
92     if (IncludesDynAlloc)
93       errs() << " + ADJDYNALLOC";
94     errs() << '\n';
95   }
96 };
97 
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count) {
100   assert(Count <= 64);
101   if (Count > 63)
102     return UINT64_MAX;
103   return (uint64_t(1) << Count) - 1;
104 }
105 
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5).  The combined operand value is effectively:
109 //
110 //   (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 //   (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise.  The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
120   RxSBGOperands(unsigned Op, SDValue N)
121     : Opcode(Op), BitSize(N.getValueSizeInBits()),
122       Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123       Rotate(0) {}
124 
125   unsigned Opcode;
126   unsigned BitSize;
127   uint64_t Mask;
128   SDValue Input;
129   unsigned Start;
130   unsigned End;
131   unsigned Rotate;
132 };
133 
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135   const SystemZSubtarget *Subtarget;
136 
137   // Used by SystemZOperands.td to create integer constants.
138   inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139     return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140   }
141 
142   const SystemZTargetMachine &getTargetMachine() const {
143     return static_cast<const SystemZTargetMachine &>(TM);
144   }
145 
146   const SystemZInstrInfo *getInstrInfo() const {
147     return Subtarget->getInstrInfo();
148   }
149 
150   // Try to fold more of the base or index of AM into AM, where IsBase
151   // selects between the base and index.
152   bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153 
154   // Try to describe N in AM, returning true on success.
155   bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156 
157   // Extract individual target operands from matched address AM.
158   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159                           SDValue &Base, SDValue &Disp) const;
160   void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161                           SDValue &Base, SDValue &Disp, SDValue &Index) const;
162 
163   // Try to match Addr as a FormBD address with displacement type DR.
164   // Return true on success, storing the base and displacement in
165   // Base and Disp respectively.
166   bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167                     SDValue &Base, SDValue &Disp) const;
168 
169   // Try to match Addr as a FormBDX address with displacement type DR.
170   // Return true on success and if the result had no index.  Store the
171   // base and displacement in Base and Disp respectively.
172   bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173                      SDValue &Base, SDValue &Disp) const;
174 
175   // Try to match Addr as a FormBDX* address of form Form with
176   // displacement type DR.  Return true on success, storing the base,
177   // displacement and index in Base, Disp and Index respectively.
178   bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179                      SystemZAddressingMode::DispRange DR, SDValue Addr,
180                      SDValue &Base, SDValue &Disp, SDValue &Index) const;
181 
182   // PC-relative address matching routines used by SystemZOperands.td.
183   bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184     if (SystemZISD::isPCREL(Addr.getOpcode())) {
185       Target = Addr.getOperand(0);
186       return true;
187     }
188     return false;
189   }
190 
191   // BD matching routines used by SystemZOperands.td.
192   bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193     return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194   }
195   bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196     return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197   }
198   bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199     return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200   }
201   bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202     return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203   }
204 
205   // MVI matching routines used by SystemZOperands.td.
206   bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207     return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208   }
209   bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210     return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211   }
212 
213   // BDX matching routines used by SystemZOperands.td.
214   bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215                            SDValue &Index) const {
216     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217                          SystemZAddressingMode::Disp12Only,
218                          Addr, Base, Disp, Index);
219   }
220   bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221                            SDValue &Index) const {
222     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223                          SystemZAddressingMode::Disp12Pair,
224                          Addr, Base, Disp, Index);
225   }
226   bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227                             SDValue &Index) const {
228     return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229                          SystemZAddressingMode::Disp12Only,
230                          Addr, Base, Disp, Index);
231   }
232   bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233                            SDValue &Index) const {
234     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235                          SystemZAddressingMode::Disp20Only,
236                          Addr, Base, Disp, Index);
237   }
238   bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239                               SDValue &Index) const {
240     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241                          SystemZAddressingMode::Disp20Only128,
242                          Addr, Base, Disp, Index);
243   }
244   bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245                            SDValue &Index) const {
246     return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247                          SystemZAddressingMode::Disp20Pair,
248                          Addr, Base, Disp, Index);
249   }
250   bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251                           SDValue &Index) const {
252     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253                          SystemZAddressingMode::Disp12Pair,
254                          Addr, Base, Disp, Index);
255   }
256   bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257                           SDValue &Index) const {
258     return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259                          SystemZAddressingMode::Disp20Pair,
260                          Addr, Base, Disp, Index);
261   }
262 
263   // Try to match Addr as an address with a base, 12-bit displacement
264   // and index, where the index is element Elem of a vector.
265   // Return true on success, storing the base, displacement and vector
266   // in Base, Disp and Index respectively.
267   bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268                            SDValue &Disp, SDValue &Index) const;
269 
270   // Check whether (or Op (and X InsertMask)) is effectively an insertion
271   // of X into bits InsertMask of some Y != Op.  Return true if so and
272   // set Op to that Y.
273   bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274 
275   // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276   // Return true on success.
277   bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278 
279   // Try to fold some of RxSBG.Input into other fields of RxSBG.
280   // Return true on success.
281   bool expandRxSBG(RxSBGOperands &RxSBG) const;
282 
283   // Return an undefined value of type VT.
284   SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285 
286   // Convert N to VT, if it isn't already.
287   SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288 
289   // Try to implement AND or shift node N using RISBG with the zero flag set.
290   // Return the selected node on success, otherwise return null.
291   bool tryRISBGZero(SDNode *N);
292 
293   // Try to use RISBG or Opcode to implement OR or XOR node N.
294   // Return the selected node on success, otherwise return null.
295   bool tryRxSBG(SDNode *N, unsigned Opcode);
296 
297   // If Op0 is null, then Node is a constant that can be loaded using:
298   //
299   //   (Opcode UpperVal LowerVal)
300   //
301   // If Op0 is nonnull, then Node can be implemented using:
302   //
303   //   (Opcode (Opcode Op0 UpperVal) LowerVal)
304   void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305                            uint64_t UpperVal, uint64_t LowerVal);
306 
307   void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308                           SDNode *Node);
309 
310   SDNode *loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL);
311 
312   // Try to use gather instruction Opcode to implement vector insertion N.
313   bool tryGather(SDNode *N, unsigned Opcode);
314 
315   // Try to use scatter instruction Opcode to implement store Store.
316   bool tryScatter(StoreSDNode *Store, unsigned Opcode);
317 
318   // Change a chain of {load; op; store} of the same value into a simple op
319   // through memory of that value, if the uses of the modified value and its
320   // address are suitable.
321   bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
322 
323   // Return true if Load and Store are loads and stores of the same size
324   // and are guaranteed not to overlap.  Such operations can be implemented
325   // using block (SS-format) instructions.
326   //
327   // Partial overlap would lead to incorrect code, since the block operations
328   // are logically bytewise, even though they have a fast path for the
329   // non-overlapping case.  We also need to avoid full overlap (i.e. two
330   // addresses that might be equal at run time) because although that case
331   // would be handled correctly, it might be implemented by millicode.
332   bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
333 
334   // N is a (store (load Y), X) pattern.  Return true if it can use an MVC
335   // from Y to X.
336   bool storeLoadCanUseMVC(SDNode *N) const;
337 
338   // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true
339   // if A[1 - I] == X and if N can use a block operation like NC from A[I]
340   // to X.
341   bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
342 
343   // Return true if N (a load or a store) fullfills the alignment
344   // requirements for a PC-relative access.
345   bool storeLoadIsAligned(SDNode *N) const;
346 
347   // Return the load extension type of a load or atomic load.
348   ISD::LoadExtType getLoadExtType(SDNode *N) const;
349 
350   // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
351   SDValue expandSelectBoolean(SDNode *Node);
352 
353   // Return true if the flags of N and the subtarget allows for
354   // reassociation, in which case a reg/reg opcode is needed as input to the
355   // MachineCombiner.
356   bool shouldSelectForReassoc(SDNode *N) const;
357 
358 public:
359   SystemZDAGToDAGISel() = delete;
360 
361   SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOptLevel OptLevel)
362       : SelectionDAGISel(TM, OptLevel) {}
363 
364   bool runOnMachineFunction(MachineFunction &MF) override {
365     const Function &F = MF.getFunction();
366     if (F.getFnAttribute("fentry-call").getValueAsString() != "true") {
367       if (F.hasFnAttribute("mnop-mcount"))
368         report_fatal_error("mnop-mcount only supported with fentry-call");
369       if (F.hasFnAttribute("mrecord-mcount"))
370         report_fatal_error("mrecord-mcount only supported with fentry-call");
371     }
372 
373     Subtarget = &MF.getSubtarget<SystemZSubtarget>();
374     return SelectionDAGISel::runOnMachineFunction(MF);
375   }
376 
377   // Override SelectionDAGISel.
378   void Select(SDNode *Node) override;
379   bool SelectInlineAsmMemoryOperand(const SDValue &Op,
380                                     InlineAsm::ConstraintCode ConstraintID,
381                                     std::vector<SDValue> &OutOps) override;
382   bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
383   void PreprocessISelDAG() override;
384 
385   // Include the pieces autogenerated from the target description.
386   #include "SystemZGenDAGISel.inc"
387 };
388 
389 class SystemZDAGToDAGISelLegacy : public SelectionDAGISelLegacy {
390 public:
391   static char ID;
392   explicit SystemZDAGToDAGISelLegacy(SystemZTargetMachine &TM,
393                                      CodeGenOptLevel OptLevel)
394       : SelectionDAGISelLegacy(
395             ID, std::make_unique<SystemZDAGToDAGISel>(TM, OptLevel)) {}
396 };
397 } // end anonymous namespace
398 
399 char SystemZDAGToDAGISelLegacy::ID = 0;
400 
401 INITIALIZE_PASS(SystemZDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false)
402 
403 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
404                                          CodeGenOptLevel OptLevel) {
405   return new SystemZDAGToDAGISelLegacy(TM, OptLevel);
406 }
407 
408 // Return true if Val should be selected as a displacement for an address
409 // with range DR.  Here we're interested in the range of both the instruction
410 // described by DR and of any pairing instruction.
411 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
412   switch (DR) {
413   case SystemZAddressingMode::Disp12Only:
414     return isUInt<12>(Val);
415 
416   case SystemZAddressingMode::Disp12Pair:
417   case SystemZAddressingMode::Disp20Only:
418   case SystemZAddressingMode::Disp20Pair:
419     return isInt<20>(Val);
420 
421   case SystemZAddressingMode::Disp20Only128:
422     return isInt<20>(Val) && isInt<20>(Val + 8);
423   }
424   llvm_unreachable("Unhandled displacement range");
425 }
426 
427 // Change the base or index in AM to Value, where IsBase selects
428 // between the base and index.
429 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
430                             SDValue Value) {
431   if (IsBase)
432     AM.Base = Value;
433   else
434     AM.Index = Value;
435 }
436 
437 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
438 // where IsBase selects between the base and index.  Try to fold the
439 // ADJDYNALLOC into AM.
440 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
441                               SDValue Value) {
442   if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
443     changeComponent(AM, IsBase, Value);
444     AM.IncludesDynAlloc = true;
445     return true;
446   }
447   return false;
448 }
449 
450 // The base of AM is equivalent to Base + Index.  Try to use Index as
451 // the index register.
452 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
453                         SDValue Index) {
454   if (AM.hasIndexField() && !AM.Index.getNode()) {
455     AM.Base = Base;
456     AM.Index = Index;
457     return true;
458   }
459   return false;
460 }
461 
462 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
463 // between the base and index.  Try to fold Op1 into AM's displacement.
464 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
465                        SDValue Op0, uint64_t Op1) {
466   // First try adjusting the displacement.
467   int64_t TestDisp = AM.Disp + Op1;
468   if (selectDisp(AM.DR, TestDisp)) {
469     changeComponent(AM, IsBase, Op0);
470     AM.Disp = TestDisp;
471     return true;
472   }
473 
474   // We could consider forcing the displacement into a register and
475   // using it as an index, but it would need to be carefully tuned.
476   return false;
477 }
478 
479 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
480                                         bool IsBase) const {
481   SDValue N = IsBase ? AM.Base : AM.Index;
482   unsigned Opcode = N.getOpcode();
483   // Look through no-op truncations.
484   if (Opcode == ISD::TRUNCATE && N.getOperand(0).getValueSizeInBits() <= 64) {
485     N = N.getOperand(0);
486     Opcode = N.getOpcode();
487   }
488   if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
489     SDValue Op0 = N.getOperand(0);
490     SDValue Op1 = N.getOperand(1);
491 
492     unsigned Op0Code = Op0->getOpcode();
493     unsigned Op1Code = Op1->getOpcode();
494 
495     if (Op0Code == SystemZISD::ADJDYNALLOC)
496       return expandAdjDynAlloc(AM, IsBase, Op1);
497     if (Op1Code == SystemZISD::ADJDYNALLOC)
498       return expandAdjDynAlloc(AM, IsBase, Op0);
499 
500     if (Op0Code == ISD::Constant)
501       return expandDisp(AM, IsBase, Op1,
502                         cast<ConstantSDNode>(Op0)->getSExtValue());
503     if (Op1Code == ISD::Constant)
504       return expandDisp(AM, IsBase, Op0,
505                         cast<ConstantSDNode>(Op1)->getSExtValue());
506 
507     if (IsBase && expandIndex(AM, Op0, Op1))
508       return true;
509   }
510   if (Opcode == SystemZISD::PCREL_OFFSET) {
511     SDValue Full = N.getOperand(0);
512     SDValue Base = N.getOperand(1);
513     SDValue Anchor = Base.getOperand(0);
514     uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
515                        cast<GlobalAddressSDNode>(Anchor)->getOffset());
516     return expandDisp(AM, IsBase, Base, Offset);
517   }
518   return false;
519 }
520 
521 // Return true if an instruction with displacement range DR should be
522 // used for displacement value Val.  selectDisp(DR, Val) must already hold.
523 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
524   assert(selectDisp(DR, Val) && "Invalid displacement");
525   switch (DR) {
526   case SystemZAddressingMode::Disp12Only:
527   case SystemZAddressingMode::Disp20Only:
528   case SystemZAddressingMode::Disp20Only128:
529     return true;
530 
531   case SystemZAddressingMode::Disp12Pair:
532     // Use the other instruction if the displacement is too large.
533     return isUInt<12>(Val);
534 
535   case SystemZAddressingMode::Disp20Pair:
536     // Use the other instruction if the displacement is small enough.
537     return !isUInt<12>(Val);
538   }
539   llvm_unreachable("Unhandled displacement range");
540 }
541 
542 // Return true if Base + Disp + Index should be performed by LA(Y).
543 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
544   // Don't use LA(Y) for constants.
545   if (!Base)
546     return false;
547 
548   // Always use LA(Y) for frame addresses, since we know that the destination
549   // register is almost always (perhaps always) going to be different from
550   // the frame register.
551   if (Base->getOpcode() == ISD::FrameIndex)
552     return true;
553 
554   if (Disp) {
555     // Always use LA(Y) if there is a base, displacement and index.
556     if (Index)
557       return true;
558 
559     // Always use LA if the displacement is small enough.  It should always
560     // be no worse than AGHI (and better if it avoids a move).
561     if (isUInt<12>(Disp))
562       return true;
563 
564     // For similar reasons, always use LAY if the constant is too big for AGHI.
565     // LAY should be no worse than AGFI.
566     if (!isInt<16>(Disp))
567       return true;
568   } else {
569     // Don't use LA for plain registers.
570     if (!Index)
571       return false;
572 
573     // Don't use LA for plain addition if the index operand is only used
574     // once.  It should be a natural two-operand addition in that case.
575     if (Index->hasOneUse())
576       return false;
577 
578     // Prefer addition if the second operation is sign-extended, in the
579     // hope of using AGF.
580     unsigned IndexOpcode = Index->getOpcode();
581     if (IndexOpcode == ISD::SIGN_EXTEND ||
582         IndexOpcode == ISD::SIGN_EXTEND_INREG)
583       return false;
584   }
585 
586   // Don't use LA for two-operand addition if either operand is only
587   // used once.  The addition instructions are better in that case.
588   if (Base->hasOneUse())
589     return false;
590 
591   return true;
592 }
593 
594 // Return true if Addr is suitable for AM, updating AM if so.
595 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
596                                         SystemZAddressingMode &AM) const {
597   // Start out assuming that the address will need to be loaded separately,
598   // then try to extend it as much as we can.
599   AM.Base = Addr;
600 
601   // First try treating the address as a constant.
602   if (Addr.getOpcode() == ISD::Constant &&
603       expandDisp(AM, true, SDValue(),
604                  cast<ConstantSDNode>(Addr)->getSExtValue()))
605     ;
606   // Also see if it's a bare ADJDYNALLOC.
607   else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
608            expandAdjDynAlloc(AM, true, SDValue()))
609     ;
610   else
611     // Otherwise try expanding each component.
612     while (expandAddress(AM, true) ||
613            (AM.Index.getNode() && expandAddress(AM, false)))
614       continue;
615 
616   // Reject cases where it isn't profitable to use LA(Y).
617   if (AM.Form == SystemZAddressingMode::FormBDXLA &&
618       !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
619     return false;
620 
621   // Reject cases where the other instruction in a pair should be used.
622   if (!isValidDisp(AM.DR, AM.Disp))
623     return false;
624 
625   // Make sure that ADJDYNALLOC is included where necessary.
626   if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
627     return false;
628 
629   LLVM_DEBUG(AM.dump(CurDAG));
630   return true;
631 }
632 
633 // Insert a node into the DAG at least before Pos.  This will reposition
634 // the node as needed, and will assign it a node ID that is <= Pos's ID.
635 // Note that this does *not* preserve the uniqueness of node IDs!
636 // The selection DAG must no longer depend on their uniqueness when this
637 // function is used.
638 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
639   if (N->getNodeId() == -1 ||
640       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
641        SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
642     DAG->RepositionNode(Pos->getIterator(), N.getNode());
643     // Mark Node as invalid for pruning as after this it may be a successor to a
644     // selected node but otherwise be in the same position of Pos.
645     // Conservatively mark it with the same -abs(Id) to assure node id
646     // invariant is preserved.
647     N->setNodeId(Pos->getNodeId());
648     SelectionDAGISel::InvalidateNodeId(N.getNode());
649   }
650 }
651 
652 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
653                                              EVT VT, SDValue &Base,
654                                              SDValue &Disp) const {
655   Base = AM.Base;
656   if (!Base.getNode())
657     // Register 0 means "no base".  This is mostly useful for shifts.
658     Base = CurDAG->getRegister(0, VT);
659   else if (Base.getOpcode() == ISD::FrameIndex) {
660     // Lower a FrameIndex to a TargetFrameIndex.
661     int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
662     Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
663   } else if (Base.getValueType() != VT) {
664     // Truncate values from i64 to i32, for shifts.
665     assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
666            "Unexpected truncation");
667     SDLoc DL(Base);
668     SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
669     insertDAGNode(CurDAG, Base.getNode(), Trunc);
670     Base = Trunc;
671   }
672 
673   // Lower the displacement to a TargetConstant.
674   Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
675 }
676 
677 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
678                                              EVT VT, SDValue &Base,
679                                              SDValue &Disp,
680                                              SDValue &Index) const {
681   getAddressOperands(AM, VT, Base, Disp);
682 
683   Index = AM.Index;
684   if (!Index.getNode())
685     // Register 0 means "no index".
686     Index = CurDAG->getRegister(0, VT);
687 }
688 
689 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
690                                        SDValue Addr, SDValue &Base,
691                                        SDValue &Disp) const {
692   SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
693   if (!selectAddress(Addr, AM))
694     return false;
695 
696   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
697   return true;
698 }
699 
700 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
701                                         SDValue Addr, SDValue &Base,
702                                         SDValue &Disp) const {
703   SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
704   if (!selectAddress(Addr, AM) || AM.Index.getNode())
705     return false;
706 
707   getAddressOperands(AM, Addr.getValueType(), Base, Disp);
708   return true;
709 }
710 
711 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
712                                         SystemZAddressingMode::DispRange DR,
713                                         SDValue Addr, SDValue &Base,
714                                         SDValue &Disp, SDValue &Index) const {
715   SystemZAddressingMode AM(Form, DR);
716   if (!selectAddress(Addr, AM))
717     return false;
718 
719   getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
720   return true;
721 }
722 
723 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
724                                               SDValue &Base,
725                                               SDValue &Disp,
726                                               SDValue &Index) const {
727   SDValue Regs[2];
728   if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
729       Regs[0].getNode() && Regs[1].getNode()) {
730     for (unsigned int I = 0; I < 2; ++I) {
731       Base = Regs[I];
732       Index = Regs[1 - I];
733       // We can't tell here whether the index vector has the right type
734       // for the access; the caller needs to do that instead.
735       if (Index.getOpcode() == ISD::ZERO_EXTEND)
736         Index = Index.getOperand(0);
737       if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
738           Index.getOperand(1) == Elem) {
739         Index = Index.getOperand(0);
740         return true;
741       }
742     }
743   }
744   return false;
745 }
746 
747 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
748                                                uint64_t InsertMask) const {
749   // We're only interested in cases where the insertion is into some operand
750   // of Op, rather than into Op itself.  The only useful case is an AND.
751   if (Op.getOpcode() != ISD::AND)
752     return false;
753 
754   // We need a constant mask.
755   auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
756   if (!MaskNode)
757     return false;
758 
759   // It's not an insertion of Op.getOperand(0) if the two masks overlap.
760   uint64_t AndMask = MaskNode->getZExtValue();
761   if (InsertMask & AndMask)
762     return false;
763 
764   // It's only an insertion if all bits are covered or are known to be zero.
765   // The inner check covers all cases but is more expensive.
766   uint64_t Used = allOnes(Op.getValueSizeInBits());
767   if (Used != (AndMask | InsertMask)) {
768     KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
769     if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
770       return false;
771   }
772 
773   Op = Op.getOperand(0);
774   return true;
775 }
776 
777 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
778                                           uint64_t Mask) const {
779   const SystemZInstrInfo *TII = getInstrInfo();
780   if (RxSBG.Rotate != 0)
781     Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
782   Mask &= RxSBG.Mask;
783   if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
784     RxSBG.Mask = Mask;
785     return true;
786   }
787   return false;
788 }
789 
790 // Return true if any bits of (RxSBG.Input & Mask) are significant.
791 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
792   // Rotate the mask in the same way as RxSBG.Input is rotated.
793   if (RxSBG.Rotate != 0)
794     Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
795   return (Mask & RxSBG.Mask) != 0;
796 }
797 
798 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
799   SDValue N = RxSBG.Input;
800   unsigned Opcode = N.getOpcode();
801   switch (Opcode) {
802   case ISD::TRUNCATE: {
803     if (RxSBG.Opcode == SystemZ::RNSBG)
804       return false;
805     if (N.getOperand(0).getValueSizeInBits() > 64)
806       return false;
807     uint64_t BitSize = N.getValueSizeInBits();
808     uint64_t Mask = allOnes(BitSize);
809     if (!refineRxSBGMask(RxSBG, Mask))
810       return false;
811     RxSBG.Input = N.getOperand(0);
812     return true;
813   }
814   case ISD::AND: {
815     if (RxSBG.Opcode == SystemZ::RNSBG)
816       return false;
817 
818     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
819     if (!MaskNode)
820       return false;
821 
822     SDValue Input = N.getOperand(0);
823     uint64_t Mask = MaskNode->getZExtValue();
824     if (!refineRxSBGMask(RxSBG, Mask)) {
825       // If some bits of Input are already known zeros, those bits will have
826       // been removed from the mask.  See if adding them back in makes the
827       // mask suitable.
828       KnownBits Known = CurDAG->computeKnownBits(Input);
829       Mask |= Known.Zero.getZExtValue();
830       if (!refineRxSBGMask(RxSBG, Mask))
831         return false;
832     }
833     RxSBG.Input = Input;
834     return true;
835   }
836 
837   case ISD::OR: {
838     if (RxSBG.Opcode != SystemZ::RNSBG)
839       return false;
840 
841     auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
842     if (!MaskNode)
843       return false;
844 
845     SDValue Input = N.getOperand(0);
846     uint64_t Mask = ~MaskNode->getZExtValue();
847     if (!refineRxSBGMask(RxSBG, Mask)) {
848       // If some bits of Input are already known ones, those bits will have
849       // been removed from the mask.  See if adding them back in makes the
850       // mask suitable.
851       KnownBits Known = CurDAG->computeKnownBits(Input);
852       Mask &= ~Known.One.getZExtValue();
853       if (!refineRxSBGMask(RxSBG, Mask))
854         return false;
855     }
856     RxSBG.Input = Input;
857     return true;
858   }
859 
860   case ISD::ROTL: {
861     // Any 64-bit rotate left can be merged into the RxSBG.
862     if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
863       return false;
864     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
865     if (!CountNode)
866       return false;
867 
868     RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
869     RxSBG.Input = N.getOperand(0);
870     return true;
871   }
872 
873   case ISD::ANY_EXTEND:
874     // Bits above the extended operand are don't-care.
875     RxSBG.Input = N.getOperand(0);
876     return true;
877 
878   case ISD::ZERO_EXTEND:
879     if (RxSBG.Opcode != SystemZ::RNSBG) {
880       // Restrict the mask to the extended operand.
881       unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
882       if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
883         return false;
884 
885       RxSBG.Input = N.getOperand(0);
886       return true;
887     }
888     [[fallthrough]];
889 
890   case ISD::SIGN_EXTEND: {
891     // Check that the extension bits are don't-care (i.e. are masked out
892     // by the final mask).
893     unsigned BitSize = N.getValueSizeInBits();
894     unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
895     if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
896       // In the case where only the sign bit is active, increase Rotate with
897       // the extension width.
898       if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
899         RxSBG.Rotate += (BitSize - InnerBitSize);
900       else
901         return false;
902     }
903 
904     RxSBG.Input = N.getOperand(0);
905     return true;
906   }
907 
908   case ISD::SHL: {
909     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
910     if (!CountNode)
911       return false;
912 
913     uint64_t Count = CountNode->getZExtValue();
914     unsigned BitSize = N.getValueSizeInBits();
915     if (Count < 1 || Count >= BitSize)
916       return false;
917 
918     if (RxSBG.Opcode == SystemZ::RNSBG) {
919       // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
920       // count bits from RxSBG.Input are ignored.
921       if (maskMatters(RxSBG, allOnes(Count)))
922         return false;
923     } else {
924       // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
925       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
926         return false;
927     }
928 
929     RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
930     RxSBG.Input = N.getOperand(0);
931     return true;
932   }
933 
934   case ISD::SRL:
935   case ISD::SRA: {
936     auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
937     if (!CountNode)
938       return false;
939 
940     uint64_t Count = CountNode->getZExtValue();
941     unsigned BitSize = N.getValueSizeInBits();
942     if (Count < 1 || Count >= BitSize)
943       return false;
944 
945     if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
946       // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
947       // count bits from RxSBG.Input are ignored.
948       if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
949         return false;
950     } else {
951       // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
952       // which is similar to SLL above.
953       if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
954         return false;
955     }
956 
957     RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
958     RxSBG.Input = N.getOperand(0);
959     return true;
960   }
961   default:
962     return false;
963   }
964 }
965 
966 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
967   SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
968   return SDValue(N, 0);
969 }
970 
971 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
972                                        SDValue N) const {
973   if (N.getValueType() == MVT::i32 && VT == MVT::i64)
974     return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
975                                          DL, VT, getUNDEF(DL, MVT::i64), N);
976   if (N.getValueType() == MVT::i64 && VT == MVT::i32)
977     return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
978   assert(N.getValueType() == VT && "Unexpected value types");
979   return N;
980 }
981 
982 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
983   SDLoc DL(N);
984   EVT VT = N->getValueType(0);
985   if (!VT.isInteger() || VT.getSizeInBits() > 64)
986     return false;
987   RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
988   unsigned Count = 0;
989   while (expandRxSBG(RISBG))
990     // The widening or narrowing is expected to be free.
991     // Counting widening or narrowing as a saved operation will result in
992     // preferring an R*SBG over a simple shift/logical instruction.
993     if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
994         RISBG.Input.getOpcode() != ISD::TRUNCATE)
995       Count += 1;
996   if (Count == 0 || isa<ConstantSDNode>(RISBG.Input))
997     return false;
998 
999   // Prefer to use normal shift instructions over RISBG, since they can handle
1000   // all cases and are sometimes shorter.
1001   if (Count == 1 && N->getOpcode() != ISD::AND)
1002     return false;
1003 
1004   // Prefer register extensions like LLC over RISBG.  Also prefer to start
1005   // out with normal ANDs if one instruction would be enough.  We can convert
1006   // these ANDs into an RISBG later if a three-address instruction is useful.
1007   if (RISBG.Rotate == 0) {
1008     bool PreferAnd = false;
1009     // Prefer AND for any 32-bit and-immediate operation.
1010     if (VT == MVT::i32)
1011       PreferAnd = true;
1012     // As well as for any 64-bit operation that can be implemented via LLC(R),
1013     // LLH(R), LLGT(R), or one of the and-immediate instructions.
1014     else if (RISBG.Mask == 0xff ||
1015              RISBG.Mask == 0xffff ||
1016              RISBG.Mask == 0x7fffffff ||
1017              SystemZ::isImmLF(~RISBG.Mask) ||
1018              SystemZ::isImmHF(~RISBG.Mask))
1019      PreferAnd = true;
1020     // And likewise for the LLZRGF instruction, which doesn't have a register
1021     // to register version.
1022     else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
1023       if (Load->getMemoryVT() == MVT::i32 &&
1024           (Load->getExtensionType() == ISD::EXTLOAD ||
1025            Load->getExtensionType() == ISD::ZEXTLOAD) &&
1026           RISBG.Mask == 0xffffff00 &&
1027           Subtarget->hasLoadAndZeroRightmostByte())
1028       PreferAnd = true;
1029     }
1030     if (PreferAnd) {
1031       // Replace the current node with an AND.  Note that the current node
1032       // might already be that same AND, in which case it is already CSE'd
1033       // with it, and we must not call ReplaceNode.
1034       SDValue In = convertTo(DL, VT, RISBG.Input);
1035       SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1036       SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1037       if (N != New.getNode()) {
1038         insertDAGNode(CurDAG, N, Mask);
1039         insertDAGNode(CurDAG, N, New);
1040         ReplaceNode(N, New.getNode());
1041         N = New.getNode();
1042       }
1043       // Now, select the machine opcode to implement this operation.
1044       if (!N->isMachineOpcode())
1045         SelectCode(N);
1046       return true;
1047     }
1048   }
1049 
1050   unsigned Opcode = SystemZ::RISBG;
1051   // Prefer RISBGN if available, since it does not clobber CC.
1052   if (Subtarget->hasMiscellaneousExtensions())
1053     Opcode = SystemZ::RISBGN;
1054   EVT OpcodeVT = MVT::i64;
1055   if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1056       // We can only use the 32-bit instructions if all source bits are
1057       // in the low 32 bits without wrapping, both after rotation (because
1058       // of the smaller range for Start and End) and before rotation
1059       // (because the input value is truncated).
1060       RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1061       ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1062       ((RISBG.End + RISBG.Rotate) & 63) >=
1063       ((RISBG.Start + RISBG.Rotate) & 63)) {
1064     Opcode = SystemZ::RISBMux;
1065     OpcodeVT = MVT::i32;
1066     RISBG.Start &= 31;
1067     RISBG.End &= 31;
1068   }
1069   SDValue Ops[5] = {
1070     getUNDEF(DL, OpcodeVT),
1071     convertTo(DL, OpcodeVT, RISBG.Input),
1072     CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1073     CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1074     CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1075   };
1076   SDValue New = convertTo(
1077       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1078   ReplaceNode(N, New.getNode());
1079   return true;
1080 }
1081 
1082 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1083   SDLoc DL(N);
1084   EVT VT = N->getValueType(0);
1085   if (!VT.isInteger() || VT.getSizeInBits() > 64)
1086     return false;
1087   // Try treating each operand of N as the second operand of the RxSBG
1088   // and see which goes deepest.
1089   RxSBGOperands RxSBG[] = {
1090     RxSBGOperands(Opcode, N->getOperand(0)),
1091     RxSBGOperands(Opcode, N->getOperand(1))
1092   };
1093   unsigned Count[] = { 0, 0 };
1094   for (unsigned I = 0; I < 2; ++I)
1095     while (RxSBG[I].Input->hasOneUse() && expandRxSBG(RxSBG[I]))
1096       // In cases of multiple users it seems better to keep the simple
1097       // instruction as they are one cycle faster, and it also helps in cases
1098       // where both inputs share a common node.
1099       // The widening or narrowing is expected to be free.  Counting widening
1100       // or narrowing as a saved operation will result in preferring an R*SBG
1101       // over a simple shift/logical instruction.
1102       if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1103           RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1104         Count[I] += 1;
1105 
1106   // Do nothing if neither operand is suitable.
1107   if (Count[0] == 0 && Count[1] == 0)
1108     return false;
1109 
1110   // Pick the deepest second operand.
1111   unsigned I = Count[0] > Count[1] ? 0 : 1;
1112   SDValue Op0 = N->getOperand(I ^ 1);
1113 
1114   // Prefer IC for character insertions from memory.
1115   if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1116     if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1117       if (Load->getMemoryVT() == MVT::i8)
1118         return false;
1119 
1120   // See whether we can avoid an AND in the first operand by converting
1121   // ROSBG to RISBG.
1122   if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1123     Opcode = SystemZ::RISBG;
1124     // Prefer RISBGN if available, since it does not clobber CC.
1125     if (Subtarget->hasMiscellaneousExtensions())
1126       Opcode = SystemZ::RISBGN;
1127   }
1128 
1129   SDValue Ops[5] = {
1130     convertTo(DL, MVT::i64, Op0),
1131     convertTo(DL, MVT::i64, RxSBG[I].Input),
1132     CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1133     CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1134     CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1135   };
1136   SDValue New = convertTo(
1137       DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1138   ReplaceNode(N, New.getNode());
1139   return true;
1140 }
1141 
1142 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1143                                               SDValue Op0, uint64_t UpperVal,
1144                                               uint64_t LowerVal) {
1145   EVT VT = Node->getValueType(0);
1146   SDLoc DL(Node);
1147   SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1148   if (Op0.getNode())
1149     Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1150 
1151   {
1152     // When we haven't passed in Op0, Upper will be a constant. In order to
1153     // prevent folding back to the large immediate in `Or = getNode(...)` we run
1154     // SelectCode first and end up with an opaque machine node. This means that
1155     // we need to use a handle to keep track of Upper in case it gets CSE'd by
1156     // SelectCode.
1157     //
1158     // Note that in the case where Op0 is passed in we could just call
1159     // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1160     // the handle at all, but it's fine to do it here.
1161     //
1162     // TODO: This is a pretty hacky way to do this. Can we do something that
1163     // doesn't require a two paragraph explanation?
1164     HandleSDNode Handle(Upper);
1165     SelectCode(Upper.getNode());
1166     Upper = Handle.getValue();
1167   }
1168 
1169   SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1170   SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1171 
1172   ReplaceNode(Node, Or.getNode());
1173 
1174   SelectCode(Or.getNode());
1175 }
1176 
1177 void SystemZDAGToDAGISel::loadVectorConstant(
1178     const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1179   assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1180           VCI.Opcode == SystemZISD::REPLICATE ||
1181           VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1182          "Bad opcode!");
1183   assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1184   EVT VT = Node->getValueType(0);
1185   SDLoc DL(Node);
1186   SmallVector<SDValue, 2> Ops;
1187   for (unsigned OpVal : VCI.OpVals)
1188     Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1189   SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1190 
1191   if (VCI.VecVT == VT.getSimpleVT())
1192     ReplaceNode(Node, Op.getNode());
1193   else if (VT.getSizeInBits() == 128) {
1194     SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1195     ReplaceNode(Node, BitCast.getNode());
1196     SelectCode(BitCast.getNode());
1197   } else { // float or double
1198     unsigned SubRegIdx =
1199         (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1200     ReplaceNode(
1201         Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1202   }
1203   SelectCode(Op.getNode());
1204 }
1205 
1206 SDNode *SystemZDAGToDAGISel::loadPoolVectorConstant(APInt Val, EVT VT, SDLoc DL) {
1207   SDNode *ResNode;
1208   assert (VT.getSizeInBits() == 128);
1209 
1210   SDValue CP = CurDAG->getTargetConstantPool(
1211       ConstantInt::get(Type::getInt128Ty(*CurDAG->getContext()), Val),
1212       TLI->getPointerTy(CurDAG->getDataLayout()));
1213 
1214   EVT PtrVT = CP.getValueType();
1215   SDValue Ops[] = {
1216     SDValue(CurDAG->getMachineNode(SystemZ::LARL, DL, PtrVT, CP), 0),
1217     CurDAG->getTargetConstant(0, DL, PtrVT),
1218     CurDAG->getRegister(0, PtrVT),
1219     CurDAG->getEntryNode()
1220   };
1221   ResNode = CurDAG->getMachineNode(SystemZ::VL, DL, VT, MVT::Other, Ops);
1222 
1223   // Annotate ResNode with memory operand information so that MachineInstr
1224   // queries work properly. This e.g. gives the register allocation the
1225   // required information for rematerialization.
1226   MachineFunction& MF = CurDAG->getMachineFunction();
1227   MachineMemOperand *MemOp =
1228       MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
1229                               MachineMemOperand::MOLoad, 16, Align(8));
1230 
1231   CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
1232   return ResNode;
1233 }
1234 
1235 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1236   SDValue ElemV = N->getOperand(2);
1237   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1238   if (!ElemN)
1239     return false;
1240 
1241   unsigned Elem = ElemN->getZExtValue();
1242   EVT VT = N->getValueType(0);
1243   if (Elem >= VT.getVectorNumElements())
1244     return false;
1245 
1246   auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1247   if (!Load || !Load->hasNUsesOfValue(1, 0))
1248     return false;
1249   if (Load->getMemoryVT().getSizeInBits() !=
1250       Load->getValueType(0).getSizeInBits())
1251     return false;
1252 
1253   SDValue Base, Disp, Index;
1254   if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1255       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1256     return false;
1257 
1258   SDLoc DL(Load);
1259   SDValue Ops[] = {
1260     N->getOperand(0), Base, Disp, Index,
1261     CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1262   };
1263   SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1264   ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1265   ReplaceNode(N, Res);
1266   return true;
1267 }
1268 
1269 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1270   SDValue Value = Store->getValue();
1271   if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1272     return false;
1273   if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1274     return false;
1275 
1276   SDValue ElemV = Value.getOperand(1);
1277   auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1278   if (!ElemN)
1279     return false;
1280 
1281   SDValue Vec = Value.getOperand(0);
1282   EVT VT = Vec.getValueType();
1283   unsigned Elem = ElemN->getZExtValue();
1284   if (Elem >= VT.getVectorNumElements())
1285     return false;
1286 
1287   SDValue Base, Disp, Index;
1288   if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1289       Index.getValueType() != VT.changeVectorElementTypeToInteger())
1290     return false;
1291 
1292   SDLoc DL(Store);
1293   SDValue Ops[] = {
1294     Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1295     Store->getChain()
1296   };
1297   ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1298   return true;
1299 }
1300 
1301 // Check whether or not the chain ending in StoreNode is suitable for doing
1302 // the {load; op; store} to modify transformation.
1303 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1304                                         SDValue StoredVal, SelectionDAG *CurDAG,
1305                                         LoadSDNode *&LoadNode,
1306                                         SDValue &InputChain) {
1307   // Is the stored value result 0 of the operation?
1308   if (StoredVal.getResNo() != 0)
1309     return false;
1310 
1311   // Are there other uses of the loaded value than the operation?
1312   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1313     return false;
1314 
1315   // Is the store non-extending and non-indexed?
1316   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1317     return false;
1318 
1319   SDValue Load = StoredVal->getOperand(0);
1320   // Is the stored value a non-extending and non-indexed load?
1321   if (!ISD::isNormalLoad(Load.getNode()))
1322     return false;
1323 
1324   // Return LoadNode by reference.
1325   LoadNode = cast<LoadSDNode>(Load);
1326 
1327   // Is store the only read of the loaded value?
1328   if (!Load.hasOneUse())
1329     return false;
1330 
1331   // Is the address of the store the same as the load?
1332   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1333       LoadNode->getOffset() != StoreNode->getOffset())
1334     return false;
1335 
1336   // Check if the chain is produced by the load or is a TokenFactor with
1337   // the load output chain as an operand. Return InputChain by reference.
1338   SDValue Chain = StoreNode->getChain();
1339 
1340   bool ChainCheck = false;
1341   if (Chain == Load.getValue(1)) {
1342     ChainCheck = true;
1343     InputChain = LoadNode->getChain();
1344   } else if (Chain.getOpcode() == ISD::TokenFactor) {
1345     SmallVector<SDValue, 4> ChainOps;
1346     SmallVector<const SDNode *, 4> LoopWorklist;
1347     SmallPtrSet<const SDNode *, 16> Visited;
1348     const unsigned int Max = 1024;
1349     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1350       SDValue Op = Chain.getOperand(i);
1351       if (Op == Load.getValue(1)) {
1352         ChainCheck = true;
1353         // Drop Load, but keep its chain. No cycle check necessary.
1354         ChainOps.push_back(Load.getOperand(0));
1355         continue;
1356       }
1357       LoopWorklist.push_back(Op.getNode());
1358       ChainOps.push_back(Op);
1359     }
1360 
1361     if (ChainCheck) {
1362       // Add the other operand of StoredVal to worklist.
1363       for (SDValue Op : StoredVal->ops())
1364         if (Op.getNode() != LoadNode)
1365           LoopWorklist.push_back(Op.getNode());
1366 
1367       // Check if Load is reachable from any of the nodes in the worklist.
1368       if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1369                                        true))
1370         return false;
1371 
1372       // Make a new TokenFactor with all the other input chains except
1373       // for the load.
1374       InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1375                                    MVT::Other, ChainOps);
1376     }
1377   }
1378   if (!ChainCheck)
1379     return false;
1380 
1381   return true;
1382 }
1383 
1384 // Change a chain of {load; op; store} of the same value into a simple op
1385 // through memory of that value, if the uses of the modified value and its
1386 // address are suitable.
1387 //
1388 // The tablegen pattern memory operand pattern is currently not able to match
1389 // the case where the CC on the original operation are used.
1390 //
1391 // See the equivalent routine in X86ISelDAGToDAG for further comments.
1392 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1393   StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1394   SDValue StoredVal = StoreNode->getOperand(1);
1395   unsigned Opc = StoredVal->getOpcode();
1396   SDLoc DL(StoreNode);
1397 
1398   // Before we try to select anything, make sure this is memory operand size
1399   // and opcode we can handle. Note that this must match the code below that
1400   // actually lowers the opcodes.
1401   EVT MemVT = StoreNode->getMemoryVT();
1402   unsigned NewOpc = 0;
1403   bool NegateOperand = false;
1404   switch (Opc) {
1405   default:
1406     return false;
1407   case SystemZISD::SSUBO:
1408     NegateOperand = true;
1409     [[fallthrough]];
1410   case SystemZISD::SADDO:
1411     if (MemVT == MVT::i32)
1412       NewOpc = SystemZ::ASI;
1413     else if (MemVT == MVT::i64)
1414       NewOpc = SystemZ::AGSI;
1415     else
1416       return false;
1417     break;
1418   case SystemZISD::USUBO:
1419     NegateOperand = true;
1420     [[fallthrough]];
1421   case SystemZISD::UADDO:
1422     if (MemVT == MVT::i32)
1423       NewOpc = SystemZ::ALSI;
1424     else if (MemVT == MVT::i64)
1425       NewOpc = SystemZ::ALGSI;
1426     else
1427       return false;
1428     break;
1429   }
1430 
1431   LoadSDNode *LoadNode = nullptr;
1432   SDValue InputChain;
1433   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1434                                    InputChain))
1435     return false;
1436 
1437   SDValue Operand = StoredVal.getOperand(1);
1438   auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1439   if (!OperandC)
1440     return false;
1441   auto OperandV = OperandC->getAPIntValue();
1442   if (NegateOperand)
1443     OperandV = -OperandV;
1444   if (OperandV.getSignificantBits() > 8)
1445     return false;
1446   Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1447 
1448   SDValue Base, Disp;
1449   if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1450     return false;
1451 
1452   SDValue Ops[] = { Base, Disp, Operand, InputChain };
1453   MachineSDNode *Result =
1454     CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1455   CurDAG->setNodeMemRefs(
1456       Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1457 
1458   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1459   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1460   CurDAG->RemoveDeadNode(Node);
1461   return true;
1462 }
1463 
1464 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1465                                                LoadSDNode *Load) const {
1466   // Check that the two memory operands have the same size.
1467   if (Load->getMemoryVT() != Store->getMemoryVT())
1468     return false;
1469 
1470   // Volatility stops an access from being decomposed.
1471   if (Load->isVolatile() || Store->isVolatile())
1472     return false;
1473 
1474   // There's no chance of overlap if the load is invariant.
1475   if (Load->isInvariant() && Load->isDereferenceable())
1476     return true;
1477 
1478   // Otherwise we need to check whether there's an alias.
1479   const Value *V1 = Load->getMemOperand()->getValue();
1480   const Value *V2 = Store->getMemOperand()->getValue();
1481   if (!V1 || !V2)
1482     return false;
1483 
1484   // Reject equality.
1485   uint64_t Size = Load->getMemoryVT().getStoreSize();
1486   int64_t End1 = Load->getSrcValueOffset() + Size;
1487   int64_t End2 = Store->getSrcValueOffset() + Size;
1488   if (V1 == V2 && End1 == End2)
1489     return false;
1490 
1491   return AA->isNoAlias(MemoryLocation(V1, End1, Load->getAAInfo()),
1492                        MemoryLocation(V2, End2, Store->getAAInfo()));
1493 }
1494 
1495 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1496   auto *Store = cast<StoreSDNode>(N);
1497   auto *Load = cast<LoadSDNode>(Store->getValue());
1498 
1499   // Prefer not to use MVC if either address can use ... RELATIVE LONG
1500   // instructions.
1501   uint64_t Size = Load->getMemoryVT().getStoreSize();
1502   if (Size > 1 && Size <= 8) {
1503     // Prefer LHRL, LRL and LGRL.
1504     if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1505       return false;
1506     // Prefer STHRL, STRL and STGRL.
1507     if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1508       return false;
1509   }
1510 
1511   return canUseBlockOperation(Store, Load);
1512 }
1513 
1514 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1515                                                      unsigned I) const {
1516   auto *StoreA = cast<StoreSDNode>(N);
1517   auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1518   auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1519   return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() &&
1520          canUseBlockOperation(StoreA, LoadB);
1521 }
1522 
1523 bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const {
1524 
1525   auto *MemAccess = cast<MemSDNode>(N);
1526   auto *LdSt = dyn_cast<LSBaseSDNode>(MemAccess);
1527   TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize();
1528   SDValue BasePtr = MemAccess->getBasePtr();
1529   MachineMemOperand *MMO = MemAccess->getMemOperand();
1530   assert(MMO && "Expected a memory operand.");
1531 
1532   // The memory access must have a proper alignment and no index register.
1533   // Only load and store nodes have the offset operand (atomic loads do not).
1534   if (MemAccess->getAlign().value() < StoreSize ||
1535       (LdSt && !LdSt->getOffset().isUndef()))
1536     return false;
1537 
1538   // The MMO must not have an unaligned offset.
1539   if (MMO->getOffset() % StoreSize != 0)
1540     return false;
1541 
1542   // An access to GOT or the Constant Pool is aligned.
1543   if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1544     if ((PSV->isGOT() || PSV->isConstantPool()))
1545       return true;
1546 
1547   // Check the alignment of a Global Address.
1548   if (BasePtr.getNumOperands())
1549     if (GlobalAddressSDNode *GA =
1550         dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) {
1551       // The immediate offset must be aligned.
1552       if (GA->getOffset() % StoreSize != 0)
1553         return false;
1554 
1555       // The alignment of the symbol itself must be at least the store size.
1556       const GlobalValue *GV = GA->getGlobal();
1557       const DataLayout &DL = GV->getDataLayout();
1558       if (GV->getPointerAlignment(DL).value() < StoreSize)
1559         return false;
1560     }
1561 
1562   return true;
1563 }
1564 
1565 ISD::LoadExtType SystemZDAGToDAGISel::getLoadExtType(SDNode *N) const {
1566   ISD::LoadExtType ETy;
1567   if (auto *L = dyn_cast<LoadSDNode>(N))
1568     ETy = L->getExtensionType();
1569   else if (auto *AL = dyn_cast<AtomicSDNode>(N))
1570     ETy = AL->getExtensionType();
1571   else
1572     llvm_unreachable("Unkown load node type.");
1573   return ETy;
1574 }
1575 
1576 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1577   // If we have a custom node, we already have selected!
1578   if (Node->isMachineOpcode()) {
1579     LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1580     Node->setNodeId(-1);
1581     return;
1582   }
1583 
1584   unsigned Opcode = Node->getOpcode();
1585   switch (Opcode) {
1586   case ISD::OR:
1587     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1588       if (tryRxSBG(Node, SystemZ::ROSBG))
1589         return;
1590     goto or_xor;
1591 
1592   case ISD::XOR:
1593     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1594       if (tryRxSBG(Node, SystemZ::RXSBG))
1595         return;
1596     // Fall through.
1597   or_xor:
1598     // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1599     // split the operation into two.  If both operands here happen to be
1600     // constant, leave this to common code to optimize.
1601     if (Node->getValueType(0) == MVT::i64 &&
1602         Node->getOperand(0).getOpcode() != ISD::Constant)
1603       if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1604         uint64_t Val = Op1->getZExtValue();
1605         // Don't split the operation if we can match one of the combined
1606         // logical operations provided by miscellaneous-extensions-3.
1607         if (Subtarget->hasMiscellaneousExtensions3()) {
1608           unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1609           // Check whether this expression matches NAND/NOR/NXOR.
1610           if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1611             if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1612                 ChildOpcode == ISD::XOR)
1613               break;
1614           // Check whether this expression matches OR-with-complement
1615           // (or matches an alternate pattern for NXOR).
1616           if (ChildOpcode == ISD::XOR) {
1617             auto Op0 = Node->getOperand(0);
1618             if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1619               if (Op0Op1->getZExtValue() == (uint64_t)-1)
1620                 break;
1621           }
1622         }
1623         // Don't split an XOR with -1 as LCGR/AGHI is more compact.
1624         if (Opcode == ISD::XOR && Op1->isAllOnes())
1625           break;
1626         if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1627           splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1628                               Val - uint32_t(Val), uint32_t(Val));
1629           return;
1630         }
1631       }
1632     break;
1633 
1634   case ISD::AND:
1635     if (Node->getOperand(1).getOpcode() != ISD::Constant)
1636       if (tryRxSBG(Node, SystemZ::RNSBG))
1637         return;
1638     [[fallthrough]];
1639   case ISD::ROTL:
1640   case ISD::SHL:
1641   case ISD::SRL:
1642   case ISD::ZERO_EXTEND:
1643     if (tryRISBGZero(Node))
1644       return;
1645     break;
1646 
1647   case ISD::BSWAP:
1648     if (Node->getValueType(0) == MVT::i128) {
1649       SDLoc DL(Node);
1650       SDValue Src = Node->getOperand(0);
1651       Src = CurDAG->getNode(ISD::BITCAST, DL, MVT::v16i8, Src);
1652 
1653       uint64_t Bytes[2] = { 0x0706050403020100ULL, 0x0f0e0d0c0b0a0908ULL };
1654       SDNode *Mask = loadPoolVectorConstant(APInt(128, Bytes), MVT::v16i8, DL);
1655       SDValue Ops[] = { Src, Src, SDValue(Mask, 0) };
1656       SDValue Res = SDValue(CurDAG->getMachineNode(SystemZ::VPERM, DL,
1657                                                    MVT::v16i8, Ops), 0);
1658 
1659       Res = CurDAG->getNode(ISD::BITCAST, DL, MVT::i128, Res);
1660       SDNode *ResNode = Res.getNode();
1661       ReplaceNode(Node, ResNode);
1662       SelectCode(Src.getNode());
1663       SelectCode(ResNode);
1664       return;
1665     }
1666     break;
1667 
1668   case ISD::Constant:
1669     // If this is a 64-bit constant that is out of the range of LLILF,
1670     // LLIHF and LGFI, split it into two 32-bit pieces.
1671     if (Node->getValueType(0) == MVT::i64) {
1672       uint64_t Val = Node->getAsZExtVal();
1673       if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1674         splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1675                             uint32_t(Val));
1676         return;
1677       }
1678     }
1679     if (Node->getValueType(0) == MVT::i128) {
1680       const APInt &Val = Node->getAsAPIntVal();
1681       SystemZVectorConstantInfo VCI(Val);
1682       if (VCI.isVectorConstantLegal(*Subtarget)) {
1683         loadVectorConstant(VCI, Node);
1684         return;
1685       }
1686       // If we can't materialize the constant we need to use a literal pool.
1687       SDNode *ResNode = loadPoolVectorConstant(Val, MVT::i128, SDLoc(Node));
1688       ReplaceNode(Node, ResNode);
1689       return;
1690     }
1691     break;
1692 
1693   case SystemZISD::SELECT_CCMASK: {
1694     SDValue Op0 = Node->getOperand(0);
1695     SDValue Op1 = Node->getOperand(1);
1696     // Prefer to put any load first, so that it can be matched as a
1697     // conditional load.  Likewise for constants in range for LOCHI.
1698     if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1699         (Subtarget->hasLoadStoreOnCond2() &&
1700          Node->getValueType(0).isInteger() &&
1701          Node->getValueType(0).getSizeInBits() <= 64 &&
1702          Op1.getOpcode() == ISD::Constant &&
1703          isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1704          !(Op0.getOpcode() == ISD::Constant &&
1705            isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1706       SDValue CCValid = Node->getOperand(2);
1707       SDValue CCMask = Node->getOperand(3);
1708       uint64_t ConstCCValid = CCValid.getNode()->getAsZExtVal();
1709       uint64_t ConstCCMask = CCMask.getNode()->getAsZExtVal();
1710       // Invert the condition.
1711       CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1712                                          SDLoc(Node), CCMask.getValueType());
1713       SDValue Op4 = Node->getOperand(4);
1714       SDNode *UpdatedNode =
1715         CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1716       if (UpdatedNode != Node) {
1717         // In case this node already exists then replace Node with it.
1718         ReplaceNode(Node, UpdatedNode);
1719         Node = UpdatedNode;
1720       }
1721     }
1722     break;
1723   }
1724 
1725   case ISD::INSERT_VECTOR_ELT: {
1726     EVT VT = Node->getValueType(0);
1727     unsigned ElemBitSize = VT.getScalarSizeInBits();
1728     if (ElemBitSize == 32) {
1729       if (tryGather(Node, SystemZ::VGEF))
1730         return;
1731     } else if (ElemBitSize == 64) {
1732       if (tryGather(Node, SystemZ::VGEG))
1733         return;
1734     }
1735     break;
1736   }
1737 
1738   case ISD::BUILD_VECTOR: {
1739     auto *BVN = cast<BuildVectorSDNode>(Node);
1740     SystemZVectorConstantInfo VCI(BVN);
1741     if (VCI.isVectorConstantLegal(*Subtarget)) {
1742       loadVectorConstant(VCI, Node);
1743       return;
1744     }
1745     break;
1746   }
1747 
1748   case ISD::ConstantFP: {
1749     APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1750     if (Imm.isZero() || Imm.isNegZero())
1751       break;
1752     SystemZVectorConstantInfo VCI(Imm);
1753     bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1754     assert(Success && "Expected legal FP immediate");
1755     loadVectorConstant(VCI, Node);
1756     return;
1757   }
1758 
1759   case ISD::STORE: {
1760     if (tryFoldLoadStoreIntoMemOperand(Node))
1761       return;
1762     auto *Store = cast<StoreSDNode>(Node);
1763     unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1764     if (ElemBitSize == 32) {
1765       if (tryScatter(Store, SystemZ::VSCEF))
1766         return;
1767     } else if (ElemBitSize == 64) {
1768       if (tryScatter(Store, SystemZ::VSCEG))
1769         return;
1770     }
1771     break;
1772   }
1773 
1774   case ISD::ATOMIC_STORE: {
1775     auto *AtomOp = cast<AtomicSDNode>(Node);
1776     // Replace the atomic_store with a regular store and select it. This is
1777     // ok since we know all store instructions <= 8 bytes are atomic, and the
1778     // 16 byte case is already handled during lowering.
1779     StoreSDNode *St = cast<StoreSDNode>(CurDAG->getTruncStore(
1780          AtomOp->getChain(), SDLoc(AtomOp), AtomOp->getVal(),
1781          AtomOp->getBasePtr(), AtomOp->getMemoryVT(), AtomOp->getMemOperand()));
1782     assert(St->getMemOperand()->isAtomic() && "Broken MMO.");
1783     SDNode *Chain = St;
1784     // We have to enforce sequential consistency by performing a
1785     // serialization operation after the store.
1786     if (AtomOp->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
1787       Chain = CurDAG->getMachineNode(SystemZ::Serialize, SDLoc(AtomOp),
1788                                      MVT::Other, SDValue(Chain, 0));
1789     ReplaceNode(Node, Chain);
1790     SelectCode(St);
1791     return;
1792   }
1793   }
1794 
1795   SelectCode(Node);
1796 }
1797 
1798 bool SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand(
1799     const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
1800     std::vector<SDValue> &OutOps) {
1801   SystemZAddressingMode::AddrForm Form;
1802   SystemZAddressingMode::DispRange DispRange;
1803   SDValue Base, Disp, Index;
1804 
1805   switch(ConstraintID) {
1806   default:
1807     llvm_unreachable("Unexpected asm memory constraint");
1808   case InlineAsm::ConstraintCode::i:
1809   case InlineAsm::ConstraintCode::Q:
1810   case InlineAsm::ConstraintCode::ZQ:
1811     // Accept an address with a short displacement, but no index.
1812     Form = SystemZAddressingMode::FormBD;
1813     DispRange = SystemZAddressingMode::Disp12Only;
1814     break;
1815   case InlineAsm::ConstraintCode::R:
1816   case InlineAsm::ConstraintCode::ZR:
1817     // Accept an address with a short displacement and an index.
1818     Form = SystemZAddressingMode::FormBDXNormal;
1819     DispRange = SystemZAddressingMode::Disp12Only;
1820     break;
1821   case InlineAsm::ConstraintCode::S:
1822   case InlineAsm::ConstraintCode::ZS:
1823     // Accept an address with a long displacement, but no index.
1824     Form = SystemZAddressingMode::FormBD;
1825     DispRange = SystemZAddressingMode::Disp20Only;
1826     break;
1827   case InlineAsm::ConstraintCode::T:
1828   case InlineAsm::ConstraintCode::m:
1829   case InlineAsm::ConstraintCode::o:
1830   case InlineAsm::ConstraintCode::p:
1831   case InlineAsm::ConstraintCode::ZT:
1832     // Accept an address with a long displacement and an index.
1833     // m works the same as T, as this is the most general case.
1834     // We don't really have any special handling of "offsettable"
1835     // memory addresses, so just treat o the same as m.
1836     Form = SystemZAddressingMode::FormBDXNormal;
1837     DispRange = SystemZAddressingMode::Disp20Only;
1838     break;
1839   }
1840 
1841   if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1842     const TargetRegisterClass *TRC =
1843       Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1844     SDLoc DL(Base);
1845     SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1846 
1847     // Make sure that the base address doesn't go into %r0.
1848     // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1849     if (Base.getOpcode() != ISD::TargetFrameIndex &&
1850         Base.getOpcode() != ISD::Register) {
1851       Base =
1852         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1853                                        DL, Base.getValueType(),
1854                                        Base, RC), 0);
1855     }
1856 
1857     // Make sure that the index register isn't assigned to %r0 either.
1858     if (Index.getOpcode() != ISD::Register) {
1859       Index =
1860         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1861                                        DL, Index.getValueType(),
1862                                        Index, RC), 0);
1863     }
1864 
1865     OutOps.push_back(Base);
1866     OutOps.push_back(Disp);
1867     OutOps.push_back(Index);
1868     return false;
1869   }
1870 
1871   return true;
1872 }
1873 
1874 // IsProfitableToFold - Returns true if is profitable to fold the specific
1875 // operand node N of U during instruction selection that starts at Root.
1876 bool
1877 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1878                                         SDNode *Root) const {
1879   // We want to avoid folding a LOAD into an ICMP node if as a result
1880   // we would be forced to spill the condition code into a GPR.
1881   if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1882     if (!N.hasOneUse() || !U->hasOneUse())
1883       return false;
1884 
1885     // The user of the CC value will usually be a CopyToReg into the
1886     // physical CC register, which in turn is glued and chained to the
1887     // actual instruction that uses the CC value.  Bail out if we have
1888     // anything else than that.
1889     SDNode *CCUser = *U->use_begin();
1890     SDNode *CCRegUser = nullptr;
1891     if (CCUser->getOpcode() == ISD::CopyToReg ||
1892         cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1893       for (auto *U : CCUser->uses()) {
1894         if (CCRegUser == nullptr)
1895           CCRegUser = U;
1896         else if (CCRegUser != U)
1897           return false;
1898       }
1899     }
1900     if (CCRegUser == nullptr)
1901       return false;
1902 
1903     // If the actual instruction is a branch, the only thing that remains to be
1904     // checked is whether the CCUser chain is a predecessor of the load.
1905     if (CCRegUser->isMachineOpcode() &&
1906         CCRegUser->getMachineOpcode() == SystemZ::BRC)
1907       return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1908 
1909     // Otherwise, the instruction may have multiple operands, and we need to
1910     // verify that none of them are a predecessor of the load.  This is exactly
1911     // the same check that would be done by common code if the CC setter were
1912     // glued to the CC user, so simply invoke that check here.
1913     if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1914       return false;
1915   }
1916 
1917   return true;
1918 }
1919 
1920 namespace {
1921 // Represents a sequence for extracting a 0/1 value from an IPM result:
1922 // (((X ^ XORValue) + AddValue) >> Bit)
1923 struct IPMConversion {
1924   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1925     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1926 
1927   int64_t XORValue;
1928   int64_t AddValue;
1929   unsigned Bit;
1930 };
1931 } // end anonymous namespace
1932 
1933 // Return a sequence for getting a 1 from an IPM result when CC has a
1934 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1935 // The handling of CC values outside CCValid doesn't matter.
1936 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1937   // Deal with cases where the result can be taken directly from a bit
1938   // of the IPM result.
1939   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1940     return IPMConversion(0, 0, SystemZ::IPM_CC);
1941   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1942     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1943 
1944   // Deal with cases where we can add a value to force the sign bit
1945   // to contain the right value.  Putting the bit in 31 means we can
1946   // use SRL rather than RISBG(L), and also makes it easier to get a
1947   // 0/-1 value, so it has priority over the other tests below.
1948   //
1949   // These sequences rely on the fact that the upper two bits of the
1950   // IPM result are zero.
1951   uint64_t TopBit = uint64_t(1) << 31;
1952   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1953     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1954   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1955     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1956   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1957                             | SystemZ::CCMASK_1
1958                             | SystemZ::CCMASK_2)))
1959     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1960   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1961     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1962   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1963                             | SystemZ::CCMASK_2
1964                             | SystemZ::CCMASK_3)))
1965     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1966 
1967   // Next try inverting the value and testing a bit.  0/1 could be
1968   // handled this way too, but we dealt with that case above.
1969   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1970     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1971 
1972   // Handle cases where adding a value forces a non-sign bit to contain
1973   // the right value.
1974   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1975     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1976   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1977     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1978 
1979   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1980   // can be done by inverting the low CC bit and applying one of the
1981   // sign-based extractions above.
1982   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1983     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1984   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1985     return IPMConversion(1 << SystemZ::IPM_CC,
1986                          TopBit - (3 << SystemZ::IPM_CC), 31);
1987   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1988                             | SystemZ::CCMASK_1
1989                             | SystemZ::CCMASK_3)))
1990     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1991   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1992                             | SystemZ::CCMASK_2
1993                             | SystemZ::CCMASK_3)))
1994     return IPMConversion(1 << SystemZ::IPM_CC,
1995                          TopBit - (1 << SystemZ::IPM_CC), 31);
1996 
1997   llvm_unreachable("Unexpected CC combination");
1998 }
1999 
2000 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
2001   auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
2002   auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
2003   if (!TrueOp || !FalseOp)
2004     return SDValue();
2005   if (FalseOp->getZExtValue() != 0)
2006     return SDValue();
2007   if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
2008     return SDValue();
2009 
2010   auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
2011   auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
2012   if (!CCValidOp || !CCMaskOp)
2013     return SDValue();
2014   int CCValid = CCValidOp->getZExtValue();
2015   int CCMask = CCMaskOp->getZExtValue();
2016 
2017   SDLoc DL(Node);
2018   SDValue CCReg = Node->getOperand(4);
2019   IPMConversion IPM = getIPMConversion(CCValid, CCMask);
2020   SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
2021 
2022   if (IPM.XORValue)
2023     Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
2024                              CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
2025 
2026   if (IPM.AddValue)
2027     Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
2028                              CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
2029 
2030   EVT VT = Node->getValueType(0);
2031   if (VT == MVT::i32 && IPM.Bit == 31) {
2032     unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
2033     Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
2034                              CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
2035   } else {
2036     if (VT != MVT::i32)
2037       Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
2038 
2039     if (TrueOp->getSExtValue() == 1) {
2040       // The SHR/AND sequence should get optimized to an RISBG.
2041       Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
2042                                CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
2043       Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
2044                                CurDAG->getConstant(1, DL, VT));
2045     } else {
2046       // Sign-extend from IPM.Bit using a pair of shifts.
2047       int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
2048       int SraAmt = VT.getSizeInBits() - 1;
2049       Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
2050                                CurDAG->getConstant(ShlAmt, DL, MVT::i32));
2051       Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
2052                                CurDAG->getConstant(SraAmt, DL, MVT::i32));
2053     }
2054   }
2055 
2056   return Result;
2057 }
2058 
2059 bool SystemZDAGToDAGISel::shouldSelectForReassoc(SDNode *N) const {
2060   EVT VT = N->getValueType(0);
2061   assert(VT.isFloatingPoint() && "Expected FP SDNode");
2062   return N->getFlags().hasAllowReassociation() &&
2063          N->getFlags().hasNoSignedZeros() && Subtarget->hasVector() &&
2064          (VT != MVT::f32 || Subtarget->hasVectorEnhancements1()) &&
2065          !N->isStrictFPOpcode();
2066 }
2067 
2068 void SystemZDAGToDAGISel::PreprocessISelDAG() {
2069   // If we have conditional immediate loads, we always prefer
2070   // using those over an IPM sequence.
2071   if (Subtarget->hasLoadStoreOnCond2())
2072     return;
2073 
2074   bool MadeChange = false;
2075 
2076   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
2077                                        E = CurDAG->allnodes_end();
2078        I != E;) {
2079     SDNode *N = &*I++;
2080     if (N->use_empty())
2081       continue;
2082 
2083     SDValue Res;
2084     switch (N->getOpcode()) {
2085     default: break;
2086     case SystemZISD::SELECT_CCMASK:
2087       Res = expandSelectBoolean(N);
2088       break;
2089     }
2090 
2091     if (Res) {
2092       LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld:    ");
2093       LLVM_DEBUG(N->dump(CurDAG));
2094       LLVM_DEBUG(dbgs() << "\nNew: ");
2095       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
2096       LLVM_DEBUG(dbgs() << "\n");
2097 
2098       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
2099       MadeChange = true;
2100     }
2101   }
2102 
2103   if (MadeChange)
2104     CurDAG->RemoveDeadNodes();
2105 }
2106