xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZCallingConv.h (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
10 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
11 
12 #include "SystemZSubtarget.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/MC/MCRegisterInfo.h"
16 
17 namespace llvm {
18 namespace SystemZ {
19   const unsigned ELFNumArgGPRs = 5;
20   extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs];
21 
22   const unsigned ELFNumArgFPRs = 4;
23   extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs];
24 
25   const unsigned XPLINK64NumArgGPRs = 3;
26   extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs];
27 
28   const unsigned XPLINK64NumArgFPRs = 4;
29   extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs];
30 
31   const unsigned XPLINK64NumArgVRs = 8;
32   extern const MCPhysReg XPLINK64ArgVRs[XPLINK64NumArgVRs];
33 } // end namespace SystemZ
34 
35 class SystemZCCState : public CCState {
36 private:
37   /// Records whether the value was a fixed argument.
38   /// See ISD::OutputArg::IsFixed.
39   SmallVector<bool, 4> ArgIsFixed;
40 
41   /// Records whether the value was widened from a short vector type.
42   SmallVector<bool, 4> ArgIsShortVector;
43 
44   // Check whether ArgVT is a short vector type.
45   bool IsShortVectorType(EVT ArgVT) {
46     return ArgVT.isVector() && ArgVT.getStoreSize() <= 8;
47   }
48 
49 public:
50   SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
51                  SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
52       : CCState(CC, isVarArg, MF, locs, C) {}
53 
54   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
55                               CCAssignFn Fn) {
56     // Formal arguments are always fixed.
57     ArgIsFixed.clear();
58     for (unsigned i = 0; i < Ins.size(); ++i)
59       ArgIsFixed.push_back(true);
60     // Record whether the call operand was a short vector.
61     ArgIsShortVector.clear();
62     for (unsigned i = 0; i < Ins.size(); ++i)
63       ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT));
64 
65     CCState::AnalyzeFormalArguments(Ins, Fn);
66   }
67 
68   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
69                            CCAssignFn Fn) {
70     // Record whether the call operand was a fixed argument.
71     ArgIsFixed.clear();
72     for (unsigned i = 0; i < Outs.size(); ++i)
73       ArgIsFixed.push_back(Outs[i].IsFixed);
74     // Record whether the call operand was a short vector.
75     ArgIsShortVector.clear();
76     for (unsigned i = 0; i < Outs.size(); ++i)
77       ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT));
78 
79     CCState::AnalyzeCallOperands(Outs, Fn);
80   }
81 
82   // This version of AnalyzeCallOperands in the base class is not usable
83   // since we must provide a means of accessing ISD::OutputArg::IsFixed.
84   void AnalyzeCallOperands(const SmallVectorImpl<MVT> &Outs,
85                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
86                            CCAssignFn Fn) = delete;
87 
88   bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; }
89   bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; }
90 };
91 
92 // Handle i128 argument types.  These need to be passed by implicit
93 // reference.  This could be as simple as the following .td line:
94 //    CCIfType<[i128], CCPassIndirect<i64>>,
95 // except that i128 is not a legal type, and therefore gets split by
96 // common code into a pair of i64 arguments.
97 inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT,
98                                     MVT &LocVT,
99                                     CCValAssign::LocInfo &LocInfo,
100                                     ISD::ArgFlagsTy &ArgFlags,
101                                     CCState &State) {
102   SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
103 
104   // ArgFlags.isSplit() is true on the first part of a i128 argument;
105   // PendingMembers.empty() is false on all subsequent parts.
106   if (!ArgFlags.isSplit() && PendingMembers.empty())
107     return false;
108 
109   // Push a pending Indirect value location for each part.
110   LocVT = MVT::i64;
111   LocInfo = CCValAssign::Indirect;
112   PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT,
113                                                    LocVT, LocInfo));
114   if (!ArgFlags.isSplitEnd())
115     return true;
116 
117   // OK, we've collected all parts in the pending list.  Allocate
118   // the location (register or stack slot) for the indirect pointer.
119   // (This duplicates the usual i64 calling convention rules.)
120   unsigned Reg;
121   const SystemZSubtarget &Subtarget =
122       State.getMachineFunction().getSubtarget<SystemZSubtarget>();
123   if (Subtarget.isTargetELF())
124     Reg = State.AllocateReg(SystemZ::ELFArgGPRs);
125   else if (Subtarget.isTargetXPLINK64())
126     Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
127   else
128     llvm_unreachable("Unknown Calling Convention!");
129 
130   unsigned Offset = Reg && !Subtarget.isTargetXPLINK64()
131                         ? 0
132                         : State.AllocateStack(8, Align(8));
133 
134   // Use that same location for all the pending parts.
135   for (auto &It : PendingMembers) {
136     if (Reg)
137       It.convertToReg(Reg);
138     else
139       It.convertToMem(Offset);
140     State.addLoc(It);
141   }
142 
143   PendingMembers.clear();
144 
145   return true;
146 }
147 
148 inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
149                                    CCValAssign::LocInfo &LocInfo,
150                                    ISD::ArgFlagsTy &ArgFlags, CCState &State) {
151   if (LocVT == MVT::f32 || LocVT == MVT::f64) {
152     State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
153   }
154   if (LocVT == MVT::f128 || LocVT.is128BitVector()) {
155     // Shadow next two GPRs, if available.
156     State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
157     State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
158 
159     // Quad precision floating point needs to
160     // go inside pre-defined FPR pair.
161     if (LocVT == MVT::f128) {
162       for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2)
163         if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I]))
164           State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]);
165     }
166   }
167   return false;
168 }
169 
170 inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT,
171                                              MVT &LocVT,
172                                              CCValAssign::LocInfo &LocInfo,
173                                              ISD::ArgFlagsTy &ArgFlags,
174                                              CCState &State) {
175   // For any C or C++ program, this should always be
176   // false, since it is illegal to have a function
177   // where the first argument is variadic. Therefore
178   // the first fixed argument should already have
179   // allocated GPR1 either through shadowing it or
180   // using it for parameter passing.
181   State.AllocateReg(SystemZ::R1D);
182 
183   bool AllocGPR2 = State.AllocateReg(SystemZ::R2D);
184   bool AllocGPR3 = State.AllocateReg(SystemZ::R3D);
185 
186   // If GPR2 and GPR3 are available, then we may pass vararg in R2Q.
187   // If only GPR3 is available, we need to set custom handling to copy
188   // hi bits into GPR3.
189   // Either way, we allocate on the stack.
190   if (AllocGPR3) {
191     // For f128 and vector var arg case, set the bitcast flag to bitcast to
192     // i128.
193     LocVT = MVT::i128;
194     LocInfo = CCValAssign::BCvt;
195     auto Offset = State.AllocateStack(16, Align(8));
196     if (AllocGPR2)
197       State.addLoc(
198           CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo));
199     else
200       State.addLoc(
201           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
202     return true;
203   }
204 
205   return false;
206 }
207 
208 inline bool CC_XPLINK64_Shadow_Stack(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
209                                      CCValAssign::LocInfo &LocInfo,
210                                      ISD::ArgFlagsTy &ArgFlags,
211                                      CCState &State) {
212   ArrayRef<MCPhysReg> RegList;
213 
214   switch (LocVT.SimpleTy) {
215   case MVT::i64:
216     RegList = SystemZ::XPLINK64ArgGPRs;
217     break;
218   case MVT::v16i8:
219   case MVT::v8i16:
220   case MVT::v4i32:
221   case MVT::v2i64:
222   case MVT::v4f32:
223   case MVT::v2f64:
224     RegList = SystemZ::XPLINK64ArgVRs;
225     break;
226   case MVT::f32:
227   case MVT::f64:
228   case MVT::f128:
229     RegList = SystemZ::XPLINK64ArgFPRs;
230     break;
231   default:
232     return false;
233   }
234 
235   unsigned UnallocatedRegisterIndex = State.getFirstUnallocated(RegList);
236   // Every time we can allocate a register, allocate on the stack.
237   if (UnallocatedRegisterIndex < RegList.size())
238     State.AllocateStack(LocVT.getSizeInBits() / 8, Align(8));
239 
240   return false;
241 }
242 
243 inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &,
244                                 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
245                                 CCState &) {
246   llvm_unreachable("Return value calling convention currently unsupported.");
247 }
248 
249 inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &,
250                              ISD::ArgFlagsTy &, CCState &) {
251   llvm_unreachable("Argument calling convention currently unsupported.");
252 }
253 
254 inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &,
255                                  CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
256                                  CCState &) {
257   report_fatal_error("No registers left in GHC calling convention");
258   return false;
259 }
260 
261 } // end namespace llvm
262 
263 #endif
264