xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZCallingConv.h (revision 3f5d875a27318a909f23a2b7463c4b2d963085df)
1 //===-- SystemZCallingConv.h - Calling conventions for SystemZ --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
10 #define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZCALLINGCONV_H
11 
12 #include "SystemZSubtarget.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/MC/MCRegisterInfo.h"
16 
17 namespace llvm {
18 namespace SystemZ {
19   const unsigned ELFNumArgGPRs = 5;
20   extern const MCPhysReg ELFArgGPRs[ELFNumArgGPRs];
21 
22   const unsigned ELFNumArgFPRs = 4;
23   extern const MCPhysReg ELFArgFPRs[ELFNumArgFPRs];
24 
25   const unsigned XPLINK64NumArgGPRs = 3;
26   extern const MCPhysReg XPLINK64ArgGPRs[XPLINK64NumArgGPRs];
27 
28   const unsigned XPLINK64NumArgFPRs = 4;
29   extern const MCPhysReg XPLINK64ArgFPRs[XPLINK64NumArgFPRs];
30 } // end namespace SystemZ
31 
32 class SystemZCCState : public CCState {
33 private:
34   /// Records whether the value was a fixed argument.
35   /// See ISD::OutputArg::IsFixed.
36   SmallVector<bool, 4> ArgIsFixed;
37 
38   /// Records whether the value was widened from a short vector type.
39   SmallVector<bool, 4> ArgIsShortVector;
40 
41   // Check whether ArgVT is a short vector type.
42   bool IsShortVectorType(EVT ArgVT) {
43     return ArgVT.isVector() && ArgVT.getStoreSize() <= 8;
44   }
45 
46 public:
47   SystemZCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
48                  SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
49       : CCState(CC, isVarArg, MF, locs, C) {}
50 
51   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
52                               CCAssignFn Fn) {
53     // Formal arguments are always fixed.
54     ArgIsFixed.clear();
55     for (unsigned i = 0; i < Ins.size(); ++i)
56       ArgIsFixed.push_back(true);
57     // Record whether the call operand was a short vector.
58     ArgIsShortVector.clear();
59     for (unsigned i = 0; i < Ins.size(); ++i)
60       ArgIsShortVector.push_back(IsShortVectorType(Ins[i].ArgVT));
61 
62     CCState::AnalyzeFormalArguments(Ins, Fn);
63   }
64 
65   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
66                            CCAssignFn Fn) {
67     // Record whether the call operand was a fixed argument.
68     ArgIsFixed.clear();
69     for (unsigned i = 0; i < Outs.size(); ++i)
70       ArgIsFixed.push_back(Outs[i].IsFixed);
71     // Record whether the call operand was a short vector.
72     ArgIsShortVector.clear();
73     for (unsigned i = 0; i < Outs.size(); ++i)
74       ArgIsShortVector.push_back(IsShortVectorType(Outs[i].ArgVT));
75 
76     CCState::AnalyzeCallOperands(Outs, Fn);
77   }
78 
79   // This version of AnalyzeCallOperands in the base class is not usable
80   // since we must provide a means of accessing ISD::OutputArg::IsFixed.
81   void AnalyzeCallOperands(const SmallVectorImpl<MVT> &Outs,
82                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
83                            CCAssignFn Fn) = delete;
84 
85   bool IsFixed(unsigned ValNo) { return ArgIsFixed[ValNo]; }
86   bool IsShortVector(unsigned ValNo) { return ArgIsShortVector[ValNo]; }
87 };
88 
89 // Handle i128 argument types.  These need to be passed by implicit
90 // reference.  This could be as simple as the following .td line:
91 //    CCIfType<[i128], CCPassIndirect<i64>>,
92 // except that i128 is not a legal type, and therefore gets split by
93 // common code into a pair of i64 arguments.
94 inline bool CC_SystemZ_I128Indirect(unsigned &ValNo, MVT &ValVT,
95                                     MVT &LocVT,
96                                     CCValAssign::LocInfo &LocInfo,
97                                     ISD::ArgFlagsTy &ArgFlags,
98                                     CCState &State) {
99   SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
100 
101   // ArgFlags.isSplit() is true on the first part of a i128 argument;
102   // PendingMembers.empty() is false on all subsequent parts.
103   if (!ArgFlags.isSplit() && PendingMembers.empty())
104     return false;
105 
106   // Push a pending Indirect value location for each part.
107   LocVT = MVT::i64;
108   LocInfo = CCValAssign::Indirect;
109   PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT,
110                                                    LocVT, LocInfo));
111   if (!ArgFlags.isSplitEnd())
112     return true;
113 
114   // OK, we've collected all parts in the pending list.  Allocate
115   // the location (register or stack slot) for the indirect pointer.
116   // (This duplicates the usual i64 calling convention rules.)
117   unsigned Reg;
118   const SystemZSubtarget &Subtarget =
119       State.getMachineFunction().getSubtarget<SystemZSubtarget>();
120   if (Subtarget.isTargetELF())
121     Reg = State.AllocateReg(SystemZ::ELFArgGPRs);
122   else if (Subtarget.isTargetXPLINK64())
123     Reg = State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
124   else
125     llvm_unreachable("Unknown Calling Convention!");
126 
127   unsigned Offset = Reg && !Subtarget.isTargetXPLINK64()
128                         ? 0
129                         : State.AllocateStack(8, Align(8));
130 
131   // Use that same location for all the pending parts.
132   for (auto &It : PendingMembers) {
133     if (Reg)
134       It.convertToReg(Reg);
135     else
136       It.convertToMem(Offset);
137     State.addLoc(It);
138   }
139 
140   PendingMembers.clear();
141 
142   return true;
143 }
144 
145 inline bool CC_XPLINK64_Shadow_Reg(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
146                                    CCValAssign::LocInfo &LocInfo,
147                                    ISD::ArgFlagsTy &ArgFlags, CCState &State) {
148   if (LocVT == MVT::f32 || LocVT == MVT::f64) {
149     State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
150   }
151   if (LocVT == MVT::f128 || LocVT.is128BitVector()) {
152     // Shadow next two GPRs, if available.
153     State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
154     State.AllocateReg(SystemZ::XPLINK64ArgGPRs);
155 
156     // Quad precision floating point needs to
157     // go inside pre-defined FPR pair.
158     if (LocVT == MVT::f128) {
159       for (unsigned I = 0; I < SystemZ::XPLINK64NumArgFPRs; I += 2)
160         if (State.isAllocated(SystemZ::XPLINK64ArgFPRs[I]))
161           State.AllocateReg(SystemZ::XPLINK64ArgFPRs[I + 1]);
162     }
163   }
164   return false;
165 }
166 
167 inline bool CC_XPLINK64_Allocate128BitVararg(unsigned &ValNo, MVT &ValVT,
168                                              MVT &LocVT,
169                                              CCValAssign::LocInfo &LocInfo,
170                                              ISD::ArgFlagsTy &ArgFlags,
171                                              CCState &State) {
172   // For any C or C++ program, this should always be
173   // false, since it is illegal to have a function
174   // where the first argument is variadic. Therefore
175   // the first fixed argument should already have
176   // allocated GPR1 either through shadowing it or
177   // using it for parameter passing.
178   State.AllocateReg(SystemZ::R1D);
179 
180   bool AllocGPR2 = State.AllocateReg(SystemZ::R2D);
181   bool AllocGPR3 = State.AllocateReg(SystemZ::R3D);
182 
183   // If GPR2 and GPR3 are available, then we may pass vararg in R2Q.
184   // If only GPR3 is available, we need to set custom handling to copy
185   // hi bits into GPR3.
186   // Either way, we allocate on the stack.
187   if (AllocGPR3) {
188     // For f128 and vector var arg case, set the bitcast flag to bitcast to
189     // i128.
190     LocVT = MVT::i128;
191     LocInfo = CCValAssign::BCvt;
192     auto Offset = State.AllocateStack(16, Align(8));
193     if (AllocGPR2)
194       State.addLoc(
195           CCValAssign::getReg(ValNo, ValVT, SystemZ::R2Q, LocVT, LocInfo));
196     else
197       State.addLoc(
198           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
199     return true;
200   }
201 
202   return false;
203 }
204 
205 inline bool RetCC_SystemZ_Error(unsigned &, MVT &, MVT &,
206                                 CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
207                                 CCState &) {
208   llvm_unreachable("Return value calling convention currently unsupported.");
209 }
210 
211 inline bool CC_SystemZ_Error(unsigned &, MVT &, MVT &, CCValAssign::LocInfo &,
212                              ISD::ArgFlagsTy &, CCState &) {
213   llvm_unreachable("Argument calling convention currently unsupported.");
214 }
215 
216 inline bool CC_SystemZ_GHC_Error(unsigned &, MVT &, MVT &,
217                                  CCValAssign::LocInfo &, ISD::ArgFlagsTy &,
218                                  CCState &) {
219   report_fatal_error("No registers left in GHC calling convention");
220   return false;
221 }
222 
223 } // end namespace llvm
224 
225 #endif
226