1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCTargetDesc.h" 11 #include "TargetInfo/SystemZTargetInfo.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/MC/MCContext.h" 16 #include "llvm/MC/MCExpr.h" 17 #include "llvm/MC/MCInst.h" 18 #include "llvm/MC/MCInstBuilder.h" 19 #include "llvm/MC/MCParser/MCAsmLexer.h" 20 #include "llvm/MC/MCParser/MCAsmParser.h" 21 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 23 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 24 #include "llvm/MC/MCStreamer.h" 25 #include "llvm/MC/MCSubtargetInfo.h" 26 #include "llvm/Support/Casting.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/SMLoc.h" 29 #include "llvm/Support/TargetRegistry.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <cstdint> 34 #include <iterator> 35 #include <memory> 36 #include <string> 37 38 using namespace llvm; 39 40 // Return true if Expr is in the range [MinValue, MaxValue]. 41 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 42 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 43 int64_t Value = CE->getValue(); 44 return Value >= MinValue && Value <= MaxValue; 45 } 46 return false; 47 } 48 49 namespace { 50 51 enum RegisterKind { 52 GR32Reg, 53 GRH32Reg, 54 GR64Reg, 55 GR128Reg, 56 FP32Reg, 57 FP64Reg, 58 FP128Reg, 59 VR32Reg, 60 VR64Reg, 61 VR128Reg, 62 AR32Reg, 63 CR64Reg, 64 }; 65 66 enum MemoryKind { 67 BDMem, 68 BDXMem, 69 BDLMem, 70 BDRMem, 71 BDVMem 72 }; 73 74 class SystemZOperand : public MCParsedAsmOperand { 75 private: 76 enum OperandKind { 77 KindInvalid, 78 KindToken, 79 KindReg, 80 KindImm, 81 KindImmTLS, 82 KindMem 83 }; 84 85 OperandKind Kind; 86 SMLoc StartLoc, EndLoc; 87 88 // A string of length Length, starting at Data. 89 struct TokenOp { 90 const char *Data; 91 unsigned Length; 92 }; 93 94 // LLVM register Num, which has kind Kind. In some ways it might be 95 // easier for this class to have a register bank (general, floating-point 96 // or access) and a raw register number (0-15). This would postpone the 97 // interpretation of the operand to the add*() methods and avoid the need 98 // for context-dependent parsing. However, we do things the current way 99 // because of the virtual getReg() method, which needs to distinguish 100 // between (say) %r0 used as a single register and %r0 used as a pair. 101 // Context-dependent parsing can also give us slightly better error 102 // messages when invalid pairs like %r1 are used. 103 struct RegOp { 104 RegisterKind Kind; 105 unsigned Num; 106 }; 107 108 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 109 // MemKind says what type of memory this is and RegKind says what type 110 // the base register has (GR32Reg or GR64Reg). Length is the operand 111 // length for D(L,B)-style operands, otherwise it is null. 112 struct MemOp { 113 unsigned Base : 12; 114 unsigned Index : 12; 115 unsigned MemKind : 4; 116 unsigned RegKind : 4; 117 const MCExpr *Disp; 118 union { 119 const MCExpr *Imm; 120 unsigned Reg; 121 } Length; 122 }; 123 124 // Imm is an immediate operand, and Sym is an optional TLS symbol 125 // for use with a __tls_get_offset marker relocation. 126 struct ImmTLSOp { 127 const MCExpr *Imm; 128 const MCExpr *Sym; 129 }; 130 131 union { 132 TokenOp Token; 133 RegOp Reg; 134 const MCExpr *Imm; 135 ImmTLSOp ImmTLS; 136 MemOp Mem; 137 }; 138 139 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 140 // Add as immediates when possible. Null MCExpr = 0. 141 if (!Expr) 142 Inst.addOperand(MCOperand::createImm(0)); 143 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 144 Inst.addOperand(MCOperand::createImm(CE->getValue())); 145 else 146 Inst.addOperand(MCOperand::createExpr(Expr)); 147 } 148 149 public: 150 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 151 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 152 153 // Create particular kinds of operand. 154 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 155 SMLoc EndLoc) { 156 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 157 } 158 159 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 160 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 161 Op->Token.Data = Str.data(); 162 Op->Token.Length = Str.size(); 163 return Op; 164 } 165 166 static std::unique_ptr<SystemZOperand> 167 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 168 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 169 Op->Reg.Kind = Kind; 170 Op->Reg.Num = Num; 171 return Op; 172 } 173 174 static std::unique_ptr<SystemZOperand> 175 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 176 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 177 Op->Imm = Expr; 178 return Op; 179 } 180 181 static std::unique_ptr<SystemZOperand> 182 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 183 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 184 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 185 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 186 Op->Mem.MemKind = MemKind; 187 Op->Mem.RegKind = RegKind; 188 Op->Mem.Base = Base; 189 Op->Mem.Index = Index; 190 Op->Mem.Disp = Disp; 191 if (MemKind == BDLMem) 192 Op->Mem.Length.Imm = LengthImm; 193 if (MemKind == BDRMem) 194 Op->Mem.Length.Reg = LengthReg; 195 return Op; 196 } 197 198 static std::unique_ptr<SystemZOperand> 199 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 200 SMLoc StartLoc, SMLoc EndLoc) { 201 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 202 Op->ImmTLS.Imm = Imm; 203 Op->ImmTLS.Sym = Sym; 204 return Op; 205 } 206 207 // Token operands 208 bool isToken() const override { 209 return Kind == KindToken; 210 } 211 StringRef getToken() const { 212 assert(Kind == KindToken && "Not a token"); 213 return StringRef(Token.Data, Token.Length); 214 } 215 216 // Register operands. 217 bool isReg() const override { 218 return Kind == KindReg; 219 } 220 bool isReg(RegisterKind RegKind) const { 221 return Kind == KindReg && Reg.Kind == RegKind; 222 } 223 unsigned getReg() const override { 224 assert(Kind == KindReg && "Not a register"); 225 return Reg.Num; 226 } 227 228 // Immediate operands. 229 bool isImm() const override { 230 return Kind == KindImm; 231 } 232 bool isImm(int64_t MinValue, int64_t MaxValue) const { 233 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 234 } 235 const MCExpr *getImm() const { 236 assert(Kind == KindImm && "Not an immediate"); 237 return Imm; 238 } 239 240 // Immediate operands with optional TLS symbol. 241 bool isImmTLS() const { 242 return Kind == KindImmTLS; 243 } 244 245 const ImmTLSOp getImmTLS() const { 246 assert(Kind == KindImmTLS && "Not a TLS immediate"); 247 return ImmTLS; 248 } 249 250 // Memory operands. 251 bool isMem() const override { 252 return Kind == KindMem; 253 } 254 bool isMem(MemoryKind MemKind) const { 255 return (Kind == KindMem && 256 (Mem.MemKind == MemKind || 257 // A BDMem can be treated as a BDXMem in which the index 258 // register field is 0. 259 (Mem.MemKind == BDMem && MemKind == BDXMem))); 260 } 261 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 262 return isMem(MemKind) && Mem.RegKind == RegKind; 263 } 264 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 265 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 266 } 267 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 268 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 269 } 270 bool isMemDisp12Len4(RegisterKind RegKind) const { 271 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 272 } 273 bool isMemDisp12Len8(RegisterKind RegKind) const { 274 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 275 } 276 277 const MemOp& getMem() const { 278 assert(Kind == KindMem && "Not a Mem operand"); 279 return Mem; 280 } 281 282 // Override MCParsedAsmOperand. 283 SMLoc getStartLoc() const override { return StartLoc; } 284 SMLoc getEndLoc() const override { return EndLoc; } 285 void print(raw_ostream &OS) const override; 286 287 /// getLocRange - Get the range between the first and last token of this 288 /// operand. 289 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 290 291 // Used by the TableGen code to add particular types of operand 292 // to an instruction. 293 void addRegOperands(MCInst &Inst, unsigned N) const { 294 assert(N == 1 && "Invalid number of operands"); 295 Inst.addOperand(MCOperand::createReg(getReg())); 296 } 297 void addImmOperands(MCInst &Inst, unsigned N) const { 298 assert(N == 1 && "Invalid number of operands"); 299 addExpr(Inst, getImm()); 300 } 301 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 302 assert(N == 2 && "Invalid number of operands"); 303 assert(isMem(BDMem) && "Invalid operand type"); 304 Inst.addOperand(MCOperand::createReg(Mem.Base)); 305 addExpr(Inst, Mem.Disp); 306 } 307 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 308 assert(N == 3 && "Invalid number of operands"); 309 assert(isMem(BDXMem) && "Invalid operand type"); 310 Inst.addOperand(MCOperand::createReg(Mem.Base)); 311 addExpr(Inst, Mem.Disp); 312 Inst.addOperand(MCOperand::createReg(Mem.Index)); 313 } 314 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 315 assert(N == 3 && "Invalid number of operands"); 316 assert(isMem(BDLMem) && "Invalid operand type"); 317 Inst.addOperand(MCOperand::createReg(Mem.Base)); 318 addExpr(Inst, Mem.Disp); 319 addExpr(Inst, Mem.Length.Imm); 320 } 321 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 322 assert(N == 3 && "Invalid number of operands"); 323 assert(isMem(BDRMem) && "Invalid operand type"); 324 Inst.addOperand(MCOperand::createReg(Mem.Base)); 325 addExpr(Inst, Mem.Disp); 326 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 327 } 328 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 329 assert(N == 3 && "Invalid number of operands"); 330 assert(isMem(BDVMem) && "Invalid operand type"); 331 Inst.addOperand(MCOperand::createReg(Mem.Base)); 332 addExpr(Inst, Mem.Disp); 333 Inst.addOperand(MCOperand::createReg(Mem.Index)); 334 } 335 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 336 assert(N == 2 && "Invalid number of operands"); 337 assert(Kind == KindImmTLS && "Invalid operand type"); 338 addExpr(Inst, ImmTLS.Imm); 339 if (ImmTLS.Sym) 340 addExpr(Inst, ImmTLS.Sym); 341 } 342 343 // Used by the TableGen code to check for particular operand types. 344 bool isGR32() const { return isReg(GR32Reg); } 345 bool isGRH32() const { return isReg(GRH32Reg); } 346 bool isGRX32() const { return false; } 347 bool isGR64() const { return isReg(GR64Reg); } 348 bool isGR128() const { return isReg(GR128Reg); } 349 bool isADDR32() const { return isReg(GR32Reg); } 350 bool isADDR64() const { return isReg(GR64Reg); } 351 bool isADDR128() const { return false; } 352 bool isFP32() const { return isReg(FP32Reg); } 353 bool isFP64() const { return isReg(FP64Reg); } 354 bool isFP128() const { return isReg(FP128Reg); } 355 bool isVR32() const { return isReg(VR32Reg); } 356 bool isVR64() const { return isReg(VR64Reg); } 357 bool isVF128() const { return false; } 358 bool isVR128() const { return isReg(VR128Reg); } 359 bool isAR32() const { return isReg(AR32Reg); } 360 bool isCR64() const { return isReg(CR64Reg); } 361 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 362 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 363 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 364 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 365 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 366 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 367 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 368 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 369 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 370 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 371 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 372 bool isU1Imm() const { return isImm(0, 1); } 373 bool isU2Imm() const { return isImm(0, 3); } 374 bool isU3Imm() const { return isImm(0, 7); } 375 bool isU4Imm() const { return isImm(0, 15); } 376 bool isU6Imm() const { return isImm(0, 63); } 377 bool isU8Imm() const { return isImm(0, 255); } 378 bool isS8Imm() const { return isImm(-128, 127); } 379 bool isU12Imm() const { return isImm(0, 4095); } 380 bool isU16Imm() const { return isImm(0, 65535); } 381 bool isS16Imm() const { return isImm(-32768, 32767); } 382 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 383 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 384 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 385 }; 386 387 class SystemZAsmParser : public MCTargetAsmParser { 388 #define GET_ASSEMBLER_HEADER 389 #include "SystemZGenAsmMatcher.inc" 390 391 private: 392 MCAsmParser &Parser; 393 enum RegisterGroup { 394 RegGR, 395 RegFP, 396 RegV, 397 RegAR, 398 RegCR 399 }; 400 struct Register { 401 RegisterGroup Group; 402 unsigned Num; 403 SMLoc StartLoc, EndLoc; 404 }; 405 406 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 407 408 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 409 410 OperandMatchResultTy parseRegister(OperandVector &Operands, 411 RegisterKind Kind); 412 413 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 414 415 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 416 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 417 bool HasLength = false, bool HasVectorIndex = false); 418 bool parseAddressRegister(Register &Reg); 419 420 bool ParseDirectiveInsn(SMLoc L); 421 422 OperandMatchResultTy parseAddress(OperandVector &Operands, 423 MemoryKind MemKind, 424 RegisterKind RegKind); 425 426 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 427 int64_t MaxVal, bool AllowTLS); 428 429 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 430 431 public: 432 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 433 const MCInstrInfo &MII, 434 const MCTargetOptions &Options) 435 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 436 MCAsmParserExtension::Initialize(Parser); 437 438 // Alias the .word directive to .short. 439 parser.addAliasForDirective(".word", ".short"); 440 441 // Initialize the set of available features. 442 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 443 } 444 445 // Override MCTargetAsmParser. 446 bool ParseDirective(AsmToken DirectiveID) override; 447 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 448 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 449 bool RestoreOnFailure); 450 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 451 SMLoc &EndLoc) override; 452 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 453 SMLoc NameLoc, OperandVector &Operands) override; 454 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 455 OperandVector &Operands, MCStreamer &Out, 456 uint64_t &ErrorInfo, 457 bool MatchingInlineAsm) override; 458 459 // Used by the TableGen code to parse particular operand types. 460 OperandMatchResultTy parseGR32(OperandVector &Operands) { 461 return parseRegister(Operands, GR32Reg); 462 } 463 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 464 return parseRegister(Operands, GRH32Reg); 465 } 466 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 467 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 468 } 469 OperandMatchResultTy parseGR64(OperandVector &Operands) { 470 return parseRegister(Operands, GR64Reg); 471 } 472 OperandMatchResultTy parseGR128(OperandVector &Operands) { 473 return parseRegister(Operands, GR128Reg); 474 } 475 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 476 // For the AsmParser, we will accept %r0 for ADDR32 as well. 477 return parseRegister(Operands, GR32Reg); 478 } 479 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 480 // For the AsmParser, we will accept %r0 for ADDR64 as well. 481 return parseRegister(Operands, GR64Reg); 482 } 483 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 484 llvm_unreachable("Shouldn't be used as an operand"); 485 } 486 OperandMatchResultTy parseFP32(OperandVector &Operands) { 487 return parseRegister(Operands, FP32Reg); 488 } 489 OperandMatchResultTy parseFP64(OperandVector &Operands) { 490 return parseRegister(Operands, FP64Reg); 491 } 492 OperandMatchResultTy parseFP128(OperandVector &Operands) { 493 return parseRegister(Operands, FP128Reg); 494 } 495 OperandMatchResultTy parseVR32(OperandVector &Operands) { 496 return parseRegister(Operands, VR32Reg); 497 } 498 OperandMatchResultTy parseVR64(OperandVector &Operands) { 499 return parseRegister(Operands, VR64Reg); 500 } 501 OperandMatchResultTy parseVF128(OperandVector &Operands) { 502 llvm_unreachable("Shouldn't be used as an operand"); 503 } 504 OperandMatchResultTy parseVR128(OperandVector &Operands) { 505 return parseRegister(Operands, VR128Reg); 506 } 507 OperandMatchResultTy parseAR32(OperandVector &Operands) { 508 return parseRegister(Operands, AR32Reg); 509 } 510 OperandMatchResultTy parseCR64(OperandVector &Operands) { 511 return parseRegister(Operands, CR64Reg); 512 } 513 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 514 return parseAnyRegister(Operands); 515 } 516 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 517 return parseAddress(Operands, BDMem, GR32Reg); 518 } 519 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 520 return parseAddress(Operands, BDMem, GR64Reg); 521 } 522 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 523 return parseAddress(Operands, BDXMem, GR64Reg); 524 } 525 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 526 return parseAddress(Operands, BDLMem, GR64Reg); 527 } 528 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 529 return parseAddress(Operands, BDRMem, GR64Reg); 530 } 531 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 532 return parseAddress(Operands, BDVMem, GR64Reg); 533 } 534 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 535 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 536 } 537 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 538 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 539 } 540 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 541 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 542 } 543 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 544 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 545 } 546 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 547 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 548 } 549 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 550 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 551 } 552 }; 553 554 } // end anonymous namespace 555 556 #define GET_REGISTER_MATCHER 557 #define GET_SUBTARGET_FEATURE_NAME 558 #define GET_MATCHER_IMPLEMENTATION 559 #define GET_MNEMONIC_SPELL_CHECKER 560 #include "SystemZGenAsmMatcher.inc" 561 562 // Used for the .insn directives; contains information needed to parse the 563 // operands in the directive. 564 struct InsnMatchEntry { 565 StringRef Format; 566 uint64_t Opcode; 567 int32_t NumOperands; 568 MatchClassKind OperandKinds[5]; 569 }; 570 571 // For equal_range comparison. 572 struct CompareInsn { 573 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 574 return LHS.Format < RHS; 575 } 576 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 577 return LHS < RHS.Format; 578 } 579 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 580 return LHS.Format < RHS.Format; 581 } 582 }; 583 584 // Table initializing information for parsing the .insn directive. 585 static struct InsnMatchEntry InsnMatchTable[] = { 586 /* Format, Opcode, NumOperands, OperandKinds */ 587 { "e", SystemZ::InsnE, 1, 588 { MCK_U16Imm } }, 589 { "ri", SystemZ::InsnRI, 3, 590 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 591 { "rie", SystemZ::InsnRIE, 4, 592 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 593 { "ril", SystemZ::InsnRIL, 3, 594 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 595 { "rilu", SystemZ::InsnRILU, 3, 596 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 597 { "ris", SystemZ::InsnRIS, 5, 598 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 599 { "rr", SystemZ::InsnRR, 3, 600 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 601 { "rre", SystemZ::InsnRRE, 3, 602 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 603 { "rrf", SystemZ::InsnRRF, 5, 604 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 605 { "rrs", SystemZ::InsnRRS, 5, 606 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 607 { "rs", SystemZ::InsnRS, 4, 608 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 609 { "rse", SystemZ::InsnRSE, 4, 610 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 611 { "rsi", SystemZ::InsnRSI, 4, 612 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 613 { "rsy", SystemZ::InsnRSY, 4, 614 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 615 { "rx", SystemZ::InsnRX, 3, 616 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 617 { "rxe", SystemZ::InsnRXE, 3, 618 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 619 { "rxf", SystemZ::InsnRXF, 4, 620 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 621 { "rxy", SystemZ::InsnRXY, 3, 622 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 623 { "s", SystemZ::InsnS, 2, 624 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 625 { "si", SystemZ::InsnSI, 3, 626 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 627 { "sil", SystemZ::InsnSIL, 3, 628 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 629 { "siy", SystemZ::InsnSIY, 3, 630 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 631 { "ss", SystemZ::InsnSS, 4, 632 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 633 { "sse", SystemZ::InsnSSE, 3, 634 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 635 { "ssf", SystemZ::InsnSSF, 4, 636 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } } 637 }; 638 639 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 640 if (!E) 641 return; 642 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 643 OS << *CE; 644 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 645 OS << *UE; 646 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 647 OS << *BE; 648 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 649 OS << *SRE; 650 else 651 OS << *E; 652 } 653 654 void SystemZOperand::print(raw_ostream &OS) const { 655 switch (Kind) { 656 case KindToken: 657 OS << "Token:" << getToken(); 658 break; 659 case KindReg: 660 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 661 break; 662 case KindImm: 663 OS << "Imm:"; 664 printMCExpr(getImm(), OS); 665 break; 666 case KindImmTLS: 667 OS << "ImmTLS:"; 668 printMCExpr(getImmTLS().Imm, OS); 669 if (getImmTLS().Sym) { 670 OS << ", "; 671 printMCExpr(getImmTLS().Sym, OS); 672 } 673 break; 674 case KindMem: { 675 const MemOp &Op = getMem(); 676 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 677 if (Op.Base) { 678 OS << "("; 679 if (Op.MemKind == BDLMem) 680 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 681 else if (Op.MemKind == BDRMem) 682 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 683 if (Op.Index) 684 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 685 OS << SystemZInstPrinter::getRegisterName(Op.Base); 686 OS << ")"; 687 } 688 break; 689 } 690 case KindInvalid: 691 break; 692 } 693 } 694 695 // Parse one register of the form %<prefix><number>. 696 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 697 Reg.StartLoc = Parser.getTok().getLoc(); 698 699 // Eat the % prefix. 700 if (Parser.getTok().isNot(AsmToken::Percent)) 701 return Error(Parser.getTok().getLoc(), "register expected"); 702 const AsmToken &PercentTok = Parser.getTok(); 703 Parser.Lex(); 704 705 // Expect a register name. 706 if (Parser.getTok().isNot(AsmToken::Identifier)) { 707 if (RestoreOnFailure) 708 getLexer().UnLex(PercentTok); 709 return Error(Reg.StartLoc, "invalid register"); 710 } 711 712 // Check that there's a prefix. 713 StringRef Name = Parser.getTok().getString(); 714 if (Name.size() < 2) { 715 if (RestoreOnFailure) 716 getLexer().UnLex(PercentTok); 717 return Error(Reg.StartLoc, "invalid register"); 718 } 719 char Prefix = Name[0]; 720 721 // Treat the rest of the register name as a register number. 722 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 723 if (RestoreOnFailure) 724 getLexer().UnLex(PercentTok); 725 return Error(Reg.StartLoc, "invalid register"); 726 } 727 728 // Look for valid combinations of prefix and number. 729 if (Prefix == 'r' && Reg.Num < 16) 730 Reg.Group = RegGR; 731 else if (Prefix == 'f' && Reg.Num < 16) 732 Reg.Group = RegFP; 733 else if (Prefix == 'v' && Reg.Num < 32) 734 Reg.Group = RegV; 735 else if (Prefix == 'a' && Reg.Num < 16) 736 Reg.Group = RegAR; 737 else if (Prefix == 'c' && Reg.Num < 16) 738 Reg.Group = RegCR; 739 else { 740 if (RestoreOnFailure) 741 getLexer().UnLex(PercentTok); 742 return Error(Reg.StartLoc, "invalid register"); 743 } 744 745 Reg.EndLoc = Parser.getTok().getLoc(); 746 Parser.Lex(); 747 return false; 748 } 749 750 // Parse a register of kind Kind and add it to Operands. 751 OperandMatchResultTy 752 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { 753 Register Reg; 754 RegisterGroup Group; 755 switch (Kind) { 756 case GR32Reg: 757 case GRH32Reg: 758 case GR64Reg: 759 case GR128Reg: 760 Group = RegGR; 761 break; 762 case FP32Reg: 763 case FP64Reg: 764 case FP128Reg: 765 Group = RegFP; 766 break; 767 case VR32Reg: 768 case VR64Reg: 769 case VR128Reg: 770 Group = RegV; 771 break; 772 case AR32Reg: 773 Group = RegAR; 774 break; 775 case CR64Reg: 776 Group = RegCR; 777 break; 778 } 779 780 // Handle register names of the form %<prefix><number> 781 if (Parser.getTok().is(AsmToken::Percent)) { 782 if (parseRegister(Reg)) 783 return MatchOperand_ParseFail; 784 785 // Check the parsed register group "Reg.Group" with the expected "Group" 786 // Have to error out if user specified wrong prefix. 787 switch (Group) { 788 case RegGR: 789 case RegFP: 790 case RegAR: 791 case RegCR: 792 if (Group != Reg.Group) { 793 Error(Reg.StartLoc, "invalid operand for instruction"); 794 return MatchOperand_ParseFail; 795 } 796 break; 797 case RegV: 798 if (Reg.Group != RegV && Reg.Group != RegFP) { 799 Error(Reg.StartLoc, "invalid operand for instruction"); 800 return MatchOperand_ParseFail; 801 } 802 break; 803 } 804 } else if (Parser.getTok().is(AsmToken::Integer)) { 805 if (parseIntegerRegister(Reg, Group)) 806 return MatchOperand_ParseFail; 807 } 808 // Otherwise we didn't match a register operand. 809 else 810 return MatchOperand_NoMatch; 811 812 // Determine the LLVM register number according to Kind. 813 const unsigned *Regs; 814 switch (Kind) { 815 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 816 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 817 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 818 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 819 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 820 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 821 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 822 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 823 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 824 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 825 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 826 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 827 } 828 if (Regs[Reg.Num] == 0) { 829 Error(Reg.StartLoc, "invalid register pair"); 830 return MatchOperand_ParseFail; 831 } 832 833 Operands.push_back( 834 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 835 return MatchOperand_Success; 836 } 837 838 // Parse any type of register (including integers) and add it to Operands. 839 OperandMatchResultTy 840 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 841 // Handle integer values. 842 if (Parser.getTok().is(AsmToken::Integer)) { 843 const MCExpr *Register; 844 SMLoc StartLoc = Parser.getTok().getLoc(); 845 if (Parser.parseExpression(Register)) 846 return MatchOperand_ParseFail; 847 848 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 849 int64_t Value = CE->getValue(); 850 if (Value < 0 || Value > 15) { 851 Error(StartLoc, "invalid register"); 852 return MatchOperand_ParseFail; 853 } 854 } 855 856 SMLoc EndLoc = 857 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 858 859 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 860 } 861 else { 862 Register Reg; 863 if (parseRegister(Reg)) 864 return MatchOperand_ParseFail; 865 866 // Map to the correct register kind. 867 RegisterKind Kind; 868 unsigned RegNo; 869 if (Reg.Group == RegGR) { 870 Kind = GR64Reg; 871 RegNo = SystemZMC::GR64Regs[Reg.Num]; 872 } 873 else if (Reg.Group == RegFP) { 874 Kind = FP64Reg; 875 RegNo = SystemZMC::FP64Regs[Reg.Num]; 876 } 877 else if (Reg.Group == RegV) { 878 Kind = VR128Reg; 879 RegNo = SystemZMC::VR128Regs[Reg.Num]; 880 } 881 else if (Reg.Group == RegAR) { 882 Kind = AR32Reg; 883 RegNo = SystemZMC::AR32Regs[Reg.Num]; 884 } 885 else if (Reg.Group == RegCR) { 886 Kind = CR64Reg; 887 RegNo = SystemZMC::CR64Regs[Reg.Num]; 888 } 889 else { 890 return MatchOperand_ParseFail; 891 } 892 893 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 894 Reg.StartLoc, Reg.EndLoc)); 895 } 896 return MatchOperand_Success; 897 } 898 899 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 900 RegisterGroup Group) { 901 Reg.StartLoc = Parser.getTok().getLoc(); 902 // We have an integer token 903 const MCExpr *Register; 904 if (Parser.parseExpression(Register)) 905 return true; 906 907 const auto *CE = dyn_cast<MCConstantExpr>(Register); 908 if (!CE) 909 return true; 910 911 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 912 int64_t Value = CE->getValue(); 913 if (Value < 0 || Value > MaxRegNum) { 914 Error(Parser.getTok().getLoc(), "invalid register"); 915 return true; 916 } 917 918 // Assign the Register Number 919 Reg.Num = (unsigned)Value; 920 Reg.Group = Group; 921 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 922 923 // At this point, successfully parsed an integer register. 924 return false; 925 } 926 927 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 928 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 929 bool &HaveReg2, Register &Reg2, 930 const MCExpr *&Disp, const MCExpr *&Length, 931 bool HasLength, bool HasVectorIndex) { 932 // Parse the displacement, which must always be present. 933 if (getParser().parseExpression(Disp)) 934 return true; 935 936 // Parse the optional base and index. 937 HaveReg1 = false; 938 HaveReg2 = false; 939 Length = nullptr; 940 941 // If we have a scenario as below: 942 // vgef %v0, 0(0), 0 943 // This is an example of a "BDVMem" instruction type. 944 // 945 // So when we parse this as an integer register, the register group 946 // needs to be tied to "RegV". Usually when the prefix is passed in 947 // as %<prefix><reg-number> its easy to check which group it should belong to 948 // However, if we're passing in just the integer there's no real way to 949 // "check" what register group it should belong to. 950 // 951 // When the user passes in the register as an integer, the user assumes that 952 // the compiler is responsible for substituting it as the right kind of 953 // register. Whereas, when the user specifies a "prefix", the onus is on 954 // the user to make sure they pass in the right kind of register. 955 // 956 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 957 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 958 // (i.e. insn is of type BDVMem) is true. 959 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 960 961 if (getLexer().is(AsmToken::LParen)) { 962 Parser.Lex(); 963 964 if (getLexer().is(AsmToken::Percent)) { 965 // Parse the first register. 966 HaveReg1 = true; 967 if (parseRegister(Reg1)) 968 return true; 969 } 970 // So if we have an integer as the first token in ([tok1], ..), it could: 971 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 972 // instructions) 973 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 974 else if (getLexer().is(AsmToken::Integer)) { 975 if (HasLength) { 976 // Instruction has a "Length" field, safe to parse the first token as 977 // the "Length" field 978 if (getParser().parseExpression(Length)) 979 return true; 980 } else { 981 // Otherwise, if the instruction has no "Length" field, parse the 982 // token as a "Register". We don't have to worry about whether the 983 // instruction is invalid here, because the caller will take care of 984 // error reporting. 985 HaveReg1 = true; 986 if (parseIntegerRegister(Reg1, RegGroup)) 987 return true; 988 } 989 } else { 990 // If its not an integer or a percent token, then if the instruction 991 // is reported to have a "Length" then, parse it as "Length". 992 if (HasLength) { 993 if (getParser().parseExpression(Length)) 994 return true; 995 } 996 } 997 998 // Check whether there's a second register. 999 if (getLexer().is(AsmToken::Comma)) { 1000 Parser.Lex(); 1001 HaveReg2 = true; 1002 1003 if (getLexer().is(AsmToken::Integer)) { 1004 if (parseIntegerRegister(Reg2, RegGR)) 1005 return true; 1006 } else { 1007 if (parseRegister(Reg2)) 1008 return true; 1009 } 1010 } 1011 1012 // Consume the closing bracket. 1013 if (getLexer().isNot(AsmToken::RParen)) 1014 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1015 Parser.Lex(); 1016 } 1017 return false; 1018 } 1019 1020 // Verify that Reg is a valid address register (base or index). 1021 bool 1022 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1023 if (Reg.Group == RegV) { 1024 Error(Reg.StartLoc, "invalid use of vector addressing"); 1025 return true; 1026 } else if (Reg.Group != RegGR) { 1027 Error(Reg.StartLoc, "invalid address register"); 1028 return true; 1029 } 1030 return false; 1031 } 1032 1033 // Parse a memory operand and add it to Operands. The other arguments 1034 // are as above. 1035 OperandMatchResultTy 1036 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 1037 RegisterKind RegKind) { 1038 SMLoc StartLoc = Parser.getTok().getLoc(); 1039 unsigned Base = 0, Index = 0, LengthReg = 0; 1040 Register Reg1, Reg2; 1041 bool HaveReg1, HaveReg2; 1042 const MCExpr *Disp; 1043 const MCExpr *Length; 1044 1045 bool HasLength = (MemKind == BDLMem) ? true : false; 1046 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1047 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1048 HasVectorIndex)) 1049 return MatchOperand_ParseFail; 1050 1051 const unsigned *Regs; 1052 switch (RegKind) { 1053 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1054 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1055 default: llvm_unreachable("invalid RegKind"); 1056 } 1057 1058 switch (MemKind) { 1059 case BDMem: 1060 // If we have Reg1, it must be an address register. 1061 if (HaveReg1) { 1062 if (parseAddressRegister(Reg1)) 1063 return MatchOperand_ParseFail; 1064 Base = Regs[Reg1.Num]; 1065 } 1066 // There must be no Reg2. 1067 if (HaveReg2) { 1068 Error(StartLoc, "invalid use of indexed addressing"); 1069 return MatchOperand_ParseFail; 1070 } 1071 break; 1072 case BDXMem: 1073 // If we have Reg1, it must be an address register. 1074 if (HaveReg1) { 1075 if (parseAddressRegister(Reg1)) 1076 return MatchOperand_ParseFail; 1077 // If the are two registers, the first one is the index and the 1078 // second is the base. 1079 if (HaveReg2) 1080 Index = Regs[Reg1.Num]; 1081 else 1082 Base = Regs[Reg1.Num]; 1083 } 1084 // If we have Reg2, it must be an address register. 1085 if (HaveReg2) { 1086 if (parseAddressRegister(Reg2)) 1087 return MatchOperand_ParseFail; 1088 Base = Regs[Reg2.Num]; 1089 } 1090 break; 1091 case BDLMem: 1092 // If we have Reg2, it must be an address register. 1093 if (HaveReg2) { 1094 if (parseAddressRegister(Reg2)) 1095 return MatchOperand_ParseFail; 1096 Base = Regs[Reg2.Num]; 1097 } 1098 // We cannot support base+index addressing. 1099 if (HaveReg1 && HaveReg2) { 1100 Error(StartLoc, "invalid use of indexed addressing"); 1101 return MatchOperand_ParseFail; 1102 } 1103 // We must have a length. 1104 if (!Length) { 1105 Error(StartLoc, "missing length in address"); 1106 return MatchOperand_ParseFail; 1107 } 1108 break; 1109 case BDRMem: 1110 // We must have Reg1, and it must be a GPR. 1111 if (!HaveReg1 || Reg1.Group != RegGR) { 1112 Error(StartLoc, "invalid operand for instruction"); 1113 return MatchOperand_ParseFail; 1114 } 1115 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1116 // If we have Reg2, it must be an address register. 1117 if (HaveReg2) { 1118 if (parseAddressRegister(Reg2)) 1119 return MatchOperand_ParseFail; 1120 Base = Regs[Reg2.Num]; 1121 } 1122 break; 1123 case BDVMem: 1124 // We must have Reg1, and it must be a vector register. 1125 if (!HaveReg1 || Reg1.Group != RegV) { 1126 Error(StartLoc, "vector index required in address"); 1127 return MatchOperand_ParseFail; 1128 } 1129 Index = SystemZMC::VR128Regs[Reg1.Num]; 1130 // If we have Reg2, it must be an address register. 1131 if (HaveReg2) { 1132 if (parseAddressRegister(Reg2)) 1133 return MatchOperand_ParseFail; 1134 Base = Regs[Reg2.Num]; 1135 } 1136 break; 1137 } 1138 1139 SMLoc EndLoc = 1140 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1141 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1142 Index, Length, LengthReg, 1143 StartLoc, EndLoc)); 1144 return MatchOperand_Success; 1145 } 1146 1147 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1148 StringRef IDVal = DirectiveID.getIdentifier(); 1149 1150 if (IDVal == ".insn") 1151 return ParseDirectiveInsn(DirectiveID.getLoc()); 1152 1153 return true; 1154 } 1155 1156 /// ParseDirectiveInsn 1157 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1158 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1159 MCAsmParser &Parser = getParser(); 1160 1161 // Expect instruction format as identifier. 1162 StringRef Format; 1163 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1164 if (Parser.parseIdentifier(Format)) 1165 return Error(ErrorLoc, "expected instruction format"); 1166 1167 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1168 1169 // Find entry for this format in InsnMatchTable. 1170 auto EntryRange = 1171 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1172 Format, CompareInsn()); 1173 1174 // If first == second, couldn't find a match in the table. 1175 if (EntryRange.first == EntryRange.second) 1176 return Error(ErrorLoc, "unrecognized format"); 1177 1178 struct InsnMatchEntry *Entry = EntryRange.first; 1179 1180 // Format should match from equal_range. 1181 assert(Entry->Format == Format); 1182 1183 // Parse the following operands using the table's information. 1184 for (int i = 0; i < Entry->NumOperands; i++) { 1185 MatchClassKind Kind = Entry->OperandKinds[i]; 1186 1187 SMLoc StartLoc = Parser.getTok().getLoc(); 1188 1189 // Always expect commas as separators for operands. 1190 if (getLexer().isNot(AsmToken::Comma)) 1191 return Error(StartLoc, "unexpected token in directive"); 1192 Lex(); 1193 1194 // Parse operands. 1195 OperandMatchResultTy ResTy; 1196 if (Kind == MCK_AnyReg) 1197 ResTy = parseAnyReg(Operands); 1198 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1199 ResTy = parseBDXAddr64(Operands); 1200 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1201 ResTy = parseBDAddr64(Operands); 1202 else if (Kind == MCK_PCRel32) 1203 ResTy = parsePCRel32(Operands); 1204 else if (Kind == MCK_PCRel16) 1205 ResTy = parsePCRel16(Operands); 1206 else { 1207 // Only remaining operand kind is an immediate. 1208 const MCExpr *Expr; 1209 SMLoc StartLoc = Parser.getTok().getLoc(); 1210 1211 // Expect immediate expression. 1212 if (Parser.parseExpression(Expr)) 1213 return Error(StartLoc, "unexpected token in directive"); 1214 1215 SMLoc EndLoc = 1216 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1217 1218 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1219 ResTy = MatchOperand_Success; 1220 } 1221 1222 if (ResTy != MatchOperand_Success) 1223 return true; 1224 } 1225 1226 // Build the instruction with the parsed operands. 1227 MCInst Inst = MCInstBuilder(Entry->Opcode); 1228 1229 for (size_t i = 0; i < Operands.size(); i++) { 1230 MCParsedAsmOperand &Operand = *Operands[i]; 1231 MatchClassKind Kind = Entry->OperandKinds[i]; 1232 1233 // Verify operand. 1234 unsigned Res = validateOperandClass(Operand, Kind); 1235 if (Res != Match_Success) 1236 return Error(Operand.getStartLoc(), "unexpected operand type"); 1237 1238 // Add operands to instruction. 1239 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1240 if (ZOperand.isReg()) 1241 ZOperand.addRegOperands(Inst, 1); 1242 else if (ZOperand.isMem(BDMem)) 1243 ZOperand.addBDAddrOperands(Inst, 2); 1244 else if (ZOperand.isMem(BDXMem)) 1245 ZOperand.addBDXAddrOperands(Inst, 3); 1246 else if (ZOperand.isImm()) 1247 ZOperand.addImmOperands(Inst, 1); 1248 else 1249 llvm_unreachable("unexpected operand type"); 1250 } 1251 1252 // Emit as a regular instruction. 1253 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1254 1255 return false; 1256 } 1257 1258 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1259 SMLoc &EndLoc, bool RestoreOnFailure) { 1260 Register Reg; 1261 if (parseRegister(Reg, RestoreOnFailure)) 1262 return true; 1263 if (Reg.Group == RegGR) 1264 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1265 else if (Reg.Group == RegFP) 1266 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1267 else if (Reg.Group == RegV) 1268 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1269 else if (Reg.Group == RegAR) 1270 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1271 else if (Reg.Group == RegCR) 1272 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1273 StartLoc = Reg.StartLoc; 1274 EndLoc = Reg.EndLoc; 1275 return false; 1276 } 1277 1278 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1279 SMLoc &EndLoc) { 1280 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1281 } 1282 1283 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo, 1284 SMLoc &StartLoc, 1285 SMLoc &EndLoc) { 1286 bool Result = 1287 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1288 bool PendingErrors = getParser().hasPendingError(); 1289 getParser().clearPendingErrors(); 1290 if (PendingErrors) 1291 return MatchOperand_ParseFail; 1292 if (Result) 1293 return MatchOperand_NoMatch; 1294 return MatchOperand_Success; 1295 } 1296 1297 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1298 StringRef Name, SMLoc NameLoc, 1299 OperandVector &Operands) { 1300 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1301 1302 // Read the remaining operands. 1303 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1304 // Read the first operand. 1305 if (parseOperand(Operands, Name)) { 1306 return true; 1307 } 1308 1309 // Read any subsequent operands. 1310 while (getLexer().is(AsmToken::Comma)) { 1311 Parser.Lex(); 1312 if (parseOperand(Operands, Name)) { 1313 return true; 1314 } 1315 } 1316 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1317 SMLoc Loc = getLexer().getLoc(); 1318 return Error(Loc, "unexpected token in argument list"); 1319 } 1320 } 1321 1322 // Consume the EndOfStatement. 1323 Parser.Lex(); 1324 return false; 1325 } 1326 1327 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1328 StringRef Mnemonic) { 1329 // Check if the current operand has a custom associated parser, if so, try to 1330 // custom parse the operand, or fallback to the general approach. Force all 1331 // features to be available during the operand check, or else we will fail to 1332 // find the custom parser, and then we will later get an InvalidOperand error 1333 // instead of a MissingFeature errror. 1334 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1335 FeatureBitset All; 1336 All.set(); 1337 setAvailableFeatures(All); 1338 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1339 setAvailableFeatures(AvailableFeatures); 1340 if (ResTy == MatchOperand_Success) 1341 return false; 1342 1343 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1344 // there was a match, but an error occurred, in which case, just return that 1345 // the operand parsing failed. 1346 if (ResTy == MatchOperand_ParseFail) 1347 return true; 1348 1349 // Check for a register. All real register operands should have used 1350 // a context-dependent parse routine, which gives the required register 1351 // class. The code is here to mop up other cases, like those where 1352 // the instruction isn't recognized. 1353 if (Parser.getTok().is(AsmToken::Percent)) { 1354 Register Reg; 1355 if (parseRegister(Reg)) 1356 return true; 1357 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1358 return false; 1359 } 1360 1361 // The only other type of operand is an immediate or address. As above, 1362 // real address operands should have used a context-dependent parse routine, 1363 // so we treat any plain expression as an immediate. 1364 SMLoc StartLoc = Parser.getTok().getLoc(); 1365 Register Reg1, Reg2; 1366 bool HaveReg1, HaveReg2; 1367 const MCExpr *Expr; 1368 const MCExpr *Length; 1369 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1370 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1371 return true; 1372 // If the register combination is not valid for any instruction, reject it. 1373 // Otherwise, fall back to reporting an unrecognized instruction. 1374 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1375 && parseAddressRegister(Reg1)) 1376 return true; 1377 if (HaveReg2 && parseAddressRegister(Reg2)) 1378 return true; 1379 1380 SMLoc EndLoc = 1381 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1382 if (HaveReg1 || HaveReg2 || Length) 1383 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1384 else 1385 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1386 return false; 1387 } 1388 1389 static std::string SystemZMnemonicSpellCheck(StringRef S, 1390 const FeatureBitset &FBS, 1391 unsigned VariantID = 0); 1392 1393 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1394 OperandVector &Operands, 1395 MCStreamer &Out, 1396 uint64_t &ErrorInfo, 1397 bool MatchingInlineAsm) { 1398 MCInst Inst; 1399 unsigned MatchResult; 1400 1401 FeatureBitset MissingFeatures; 1402 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 1403 MissingFeatures, MatchingInlineAsm); 1404 switch (MatchResult) { 1405 case Match_Success: 1406 Inst.setLoc(IDLoc); 1407 Out.emitInstruction(Inst, getSTI()); 1408 return false; 1409 1410 case Match_MissingFeature: { 1411 assert(MissingFeatures.any() && "Unknown missing feature!"); 1412 // Special case the error message for the very common case where only 1413 // a single subtarget feature is missing 1414 std::string Msg = "instruction requires:"; 1415 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1416 if (MissingFeatures[I]) { 1417 Msg += " "; 1418 Msg += getSubtargetFeatureName(I); 1419 } 1420 } 1421 return Error(IDLoc, Msg); 1422 } 1423 1424 case Match_InvalidOperand: { 1425 SMLoc ErrorLoc = IDLoc; 1426 if (ErrorInfo != ~0ULL) { 1427 if (ErrorInfo >= Operands.size()) 1428 return Error(IDLoc, "too few operands for instruction"); 1429 1430 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1431 if (ErrorLoc == SMLoc()) 1432 ErrorLoc = IDLoc; 1433 } 1434 return Error(ErrorLoc, "invalid operand for instruction"); 1435 } 1436 1437 case Match_MnemonicFail: { 1438 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1439 std::string Suggestion = SystemZMnemonicSpellCheck( 1440 ((SystemZOperand &)*Operands[0]).getToken(), FBS); 1441 return Error(IDLoc, "invalid instruction" + Suggestion, 1442 ((SystemZOperand &)*Operands[0]).getLocRange()); 1443 } 1444 } 1445 1446 llvm_unreachable("Unexpected match type"); 1447 } 1448 1449 OperandMatchResultTy 1450 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1451 int64_t MaxVal, bool AllowTLS) { 1452 MCContext &Ctx = getContext(); 1453 MCStreamer &Out = getStreamer(); 1454 const MCExpr *Expr; 1455 SMLoc StartLoc = Parser.getTok().getLoc(); 1456 if (getParser().parseExpression(Expr)) 1457 return MatchOperand_NoMatch; 1458 1459 auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool { 1460 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1461 int64_t Value = CE->getValue(); 1462 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1463 return true; 1464 } 1465 return false; 1466 }; 1467 1468 // For consistency with the GNU assembler, treat immediates as offsets 1469 // from ".". 1470 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1471 if (isOutOfRangeConstant(CE)) { 1472 Error(StartLoc, "offset out of range"); 1473 return MatchOperand_ParseFail; 1474 } 1475 int64_t Value = CE->getValue(); 1476 MCSymbol *Sym = Ctx.createTempSymbol(); 1477 Out.emitLabel(Sym); 1478 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1479 Ctx); 1480 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1481 } 1482 1483 // For consistency with the GNU assembler, conservatively assume that a 1484 // constant offset must by itself be within the given size range. 1485 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1486 if (isOutOfRangeConstant(BE->getLHS()) || 1487 isOutOfRangeConstant(BE->getRHS())) { 1488 Error(StartLoc, "offset out of range"); 1489 return MatchOperand_ParseFail; 1490 } 1491 1492 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1493 const MCExpr *Sym = nullptr; 1494 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1495 Parser.Lex(); 1496 1497 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1498 Error(Parser.getTok().getLoc(), "unexpected token"); 1499 return MatchOperand_ParseFail; 1500 } 1501 1502 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1503 StringRef Name = Parser.getTok().getString(); 1504 if (Name == "tls_gdcall") 1505 Kind = MCSymbolRefExpr::VK_TLSGD; 1506 else if (Name == "tls_ldcall") 1507 Kind = MCSymbolRefExpr::VK_TLSLDM; 1508 else { 1509 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1510 return MatchOperand_ParseFail; 1511 } 1512 Parser.Lex(); 1513 1514 if (Parser.getTok().isNot(AsmToken::Colon)) { 1515 Error(Parser.getTok().getLoc(), "unexpected token"); 1516 return MatchOperand_ParseFail; 1517 } 1518 Parser.Lex(); 1519 1520 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1521 Error(Parser.getTok().getLoc(), "unexpected token"); 1522 return MatchOperand_ParseFail; 1523 } 1524 1525 StringRef Identifier = Parser.getTok().getString(); 1526 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1527 Kind, Ctx); 1528 Parser.Lex(); 1529 } 1530 1531 SMLoc EndLoc = 1532 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1533 1534 if (AllowTLS) 1535 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1536 StartLoc, EndLoc)); 1537 else 1538 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1539 1540 return MatchOperand_Success; 1541 } 1542 1543 // Force static initialization. 1544 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1545 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1546 } 1547