xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "TargetInfo/SystemZTargetInfo.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/MC/MCInstBuilder.h"
19 #include "llvm/MC/MCParser/MCAsmLexer.h"
20 #include "llvm/MC/MCParser/MCAsmParser.h"
21 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
22 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
23 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
24 #include "llvm/MC/MCStreamer.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/SMLoc.h"
29 #include "llvm/Support/TargetRegistry.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <iterator>
35 #include <memory>
36 #include <string>
37 
38 using namespace llvm;
39 
40 // Return true if Expr is in the range [MinValue, MaxValue].
41 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
42   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
43     int64_t Value = CE->getValue();
44     return Value >= MinValue && Value <= MaxValue;
45   }
46   return false;
47 }
48 
49 namespace {
50 
51 enum RegisterKind {
52   GR32Reg,
53   GRH32Reg,
54   GR64Reg,
55   GR128Reg,
56   FP32Reg,
57   FP64Reg,
58   FP128Reg,
59   VR32Reg,
60   VR64Reg,
61   VR128Reg,
62   AR32Reg,
63   CR64Reg,
64 };
65 
66 enum MemoryKind {
67   BDMem,
68   BDXMem,
69   BDLMem,
70   BDRMem,
71   BDVMem
72 };
73 
74 class SystemZOperand : public MCParsedAsmOperand {
75 private:
76   enum OperandKind {
77     KindInvalid,
78     KindToken,
79     KindReg,
80     KindImm,
81     KindImmTLS,
82     KindMem
83   };
84 
85   OperandKind Kind;
86   SMLoc StartLoc, EndLoc;
87 
88   // A string of length Length, starting at Data.
89   struct TokenOp {
90     const char *Data;
91     unsigned Length;
92   };
93 
94   // LLVM register Num, which has kind Kind.  In some ways it might be
95   // easier for this class to have a register bank (general, floating-point
96   // or access) and a raw register number (0-15).  This would postpone the
97   // interpretation of the operand to the add*() methods and avoid the need
98   // for context-dependent parsing.  However, we do things the current way
99   // because of the virtual getReg() method, which needs to distinguish
100   // between (say) %r0 used as a single register and %r0 used as a pair.
101   // Context-dependent parsing can also give us slightly better error
102   // messages when invalid pairs like %r1 are used.
103   struct RegOp {
104     RegisterKind Kind;
105     unsigned Num;
106   };
107 
108   // Base + Disp + Index, where Base and Index are LLVM registers or 0.
109   // MemKind says what type of memory this is and RegKind says what type
110   // the base register has (GR32Reg or GR64Reg).  Length is the operand
111   // length for D(L,B)-style operands, otherwise it is null.
112   struct MemOp {
113     unsigned Base : 12;
114     unsigned Index : 12;
115     unsigned MemKind : 4;
116     unsigned RegKind : 4;
117     const MCExpr *Disp;
118     union {
119       const MCExpr *Imm;
120       unsigned Reg;
121     } Length;
122   };
123 
124   // Imm is an immediate operand, and Sym is an optional TLS symbol
125   // for use with a __tls_get_offset marker relocation.
126   struct ImmTLSOp {
127     const MCExpr *Imm;
128     const MCExpr *Sym;
129   };
130 
131   union {
132     TokenOp Token;
133     RegOp Reg;
134     const MCExpr *Imm;
135     ImmTLSOp ImmTLS;
136     MemOp Mem;
137   };
138 
139   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
140     // Add as immediates when possible.  Null MCExpr = 0.
141     if (!Expr)
142       Inst.addOperand(MCOperand::createImm(0));
143     else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
144       Inst.addOperand(MCOperand::createImm(CE->getValue()));
145     else
146       Inst.addOperand(MCOperand::createExpr(Expr));
147   }
148 
149 public:
150   SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
151       : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
152 
153   // Create particular kinds of operand.
154   static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
155                                                        SMLoc EndLoc) {
156     return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
157   }
158 
159   static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
160     auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
161     Op->Token.Data = Str.data();
162     Op->Token.Length = Str.size();
163     return Op;
164   }
165 
166   static std::unique_ptr<SystemZOperand>
167   createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
168     auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
169     Op->Reg.Kind = Kind;
170     Op->Reg.Num = Num;
171     return Op;
172   }
173 
174   static std::unique_ptr<SystemZOperand>
175   createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
176     auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
177     Op->Imm = Expr;
178     return Op;
179   }
180 
181   static std::unique_ptr<SystemZOperand>
182   createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
183             const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
184             unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
185     auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
186     Op->Mem.MemKind = MemKind;
187     Op->Mem.RegKind = RegKind;
188     Op->Mem.Base = Base;
189     Op->Mem.Index = Index;
190     Op->Mem.Disp = Disp;
191     if (MemKind == BDLMem)
192       Op->Mem.Length.Imm = LengthImm;
193     if (MemKind == BDRMem)
194       Op->Mem.Length.Reg = LengthReg;
195     return Op;
196   }
197 
198   static std::unique_ptr<SystemZOperand>
199   createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
200                SMLoc StartLoc, SMLoc EndLoc) {
201     auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
202     Op->ImmTLS.Imm = Imm;
203     Op->ImmTLS.Sym = Sym;
204     return Op;
205   }
206 
207   // Token operands
208   bool isToken() const override {
209     return Kind == KindToken;
210   }
211   StringRef getToken() const {
212     assert(Kind == KindToken && "Not a token");
213     return StringRef(Token.Data, Token.Length);
214   }
215 
216   // Register operands.
217   bool isReg() const override {
218     return Kind == KindReg;
219   }
220   bool isReg(RegisterKind RegKind) const {
221     return Kind == KindReg && Reg.Kind == RegKind;
222   }
223   unsigned getReg() const override {
224     assert(Kind == KindReg && "Not a register");
225     return Reg.Num;
226   }
227 
228   // Immediate operands.
229   bool isImm() const override {
230     return Kind == KindImm;
231   }
232   bool isImm(int64_t MinValue, int64_t MaxValue) const {
233     return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
234   }
235   const MCExpr *getImm() const {
236     assert(Kind == KindImm && "Not an immediate");
237     return Imm;
238   }
239 
240   // Immediate operands with optional TLS symbol.
241   bool isImmTLS() const {
242     return Kind == KindImmTLS;
243   }
244 
245   const ImmTLSOp getImmTLS() const {
246     assert(Kind == KindImmTLS && "Not a TLS immediate");
247     return ImmTLS;
248   }
249 
250   // Memory operands.
251   bool isMem() const override {
252     return Kind == KindMem;
253   }
254   bool isMem(MemoryKind MemKind) const {
255     return (Kind == KindMem &&
256             (Mem.MemKind == MemKind ||
257              // A BDMem can be treated as a BDXMem in which the index
258              // register field is 0.
259              (Mem.MemKind == BDMem && MemKind == BDXMem)));
260   }
261   bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
262     return isMem(MemKind) && Mem.RegKind == RegKind;
263   }
264   bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
265     return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
266   }
267   bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
268     return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
269   }
270   bool isMemDisp12Len4(RegisterKind RegKind) const {
271     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
272   }
273   bool isMemDisp12Len8(RegisterKind RegKind) const {
274     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
275   }
276 
277   const MemOp& getMem() const {
278     assert(Kind == KindMem && "Not a Mem operand");
279     return Mem;
280   }
281 
282   // Override MCParsedAsmOperand.
283   SMLoc getStartLoc() const override { return StartLoc; }
284   SMLoc getEndLoc() const override { return EndLoc; }
285   void print(raw_ostream &OS) const override;
286 
287   /// getLocRange - Get the range between the first and last token of this
288   /// operand.
289   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
290 
291   // Used by the TableGen code to add particular types of operand
292   // to an instruction.
293   void addRegOperands(MCInst &Inst, unsigned N) const {
294     assert(N == 1 && "Invalid number of operands");
295     Inst.addOperand(MCOperand::createReg(getReg()));
296   }
297   void addImmOperands(MCInst &Inst, unsigned N) const {
298     assert(N == 1 && "Invalid number of operands");
299     addExpr(Inst, getImm());
300   }
301   void addBDAddrOperands(MCInst &Inst, unsigned N) const {
302     assert(N == 2 && "Invalid number of operands");
303     assert(isMem(BDMem) && "Invalid operand type");
304     Inst.addOperand(MCOperand::createReg(Mem.Base));
305     addExpr(Inst, Mem.Disp);
306   }
307   void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
308     assert(N == 3 && "Invalid number of operands");
309     assert(isMem(BDXMem) && "Invalid operand type");
310     Inst.addOperand(MCOperand::createReg(Mem.Base));
311     addExpr(Inst, Mem.Disp);
312     Inst.addOperand(MCOperand::createReg(Mem.Index));
313   }
314   void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
315     assert(N == 3 && "Invalid number of operands");
316     assert(isMem(BDLMem) && "Invalid operand type");
317     Inst.addOperand(MCOperand::createReg(Mem.Base));
318     addExpr(Inst, Mem.Disp);
319     addExpr(Inst, Mem.Length.Imm);
320   }
321   void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
322     assert(N == 3 && "Invalid number of operands");
323     assert(isMem(BDRMem) && "Invalid operand type");
324     Inst.addOperand(MCOperand::createReg(Mem.Base));
325     addExpr(Inst, Mem.Disp);
326     Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
327   }
328   void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
329     assert(N == 3 && "Invalid number of operands");
330     assert(isMem(BDVMem) && "Invalid operand type");
331     Inst.addOperand(MCOperand::createReg(Mem.Base));
332     addExpr(Inst, Mem.Disp);
333     Inst.addOperand(MCOperand::createReg(Mem.Index));
334   }
335   void addImmTLSOperands(MCInst &Inst, unsigned N) const {
336     assert(N == 2 && "Invalid number of operands");
337     assert(Kind == KindImmTLS && "Invalid operand type");
338     addExpr(Inst, ImmTLS.Imm);
339     if (ImmTLS.Sym)
340       addExpr(Inst, ImmTLS.Sym);
341   }
342 
343   // Used by the TableGen code to check for particular operand types.
344   bool isGR32() const { return isReg(GR32Reg); }
345   bool isGRH32() const { return isReg(GRH32Reg); }
346   bool isGRX32() const { return false; }
347   bool isGR64() const { return isReg(GR64Reg); }
348   bool isGR128() const { return isReg(GR128Reg); }
349   bool isADDR32() const { return isReg(GR32Reg); }
350   bool isADDR64() const { return isReg(GR64Reg); }
351   bool isADDR128() const { return false; }
352   bool isFP32() const { return isReg(FP32Reg); }
353   bool isFP64() const { return isReg(FP64Reg); }
354   bool isFP128() const { return isReg(FP128Reg); }
355   bool isVR32() const { return isReg(VR32Reg); }
356   bool isVR64() const { return isReg(VR64Reg); }
357   bool isVF128() const { return false; }
358   bool isVR128() const { return isReg(VR128Reg); }
359   bool isAR32() const { return isReg(AR32Reg); }
360   bool isCR64() const { return isReg(CR64Reg); }
361   bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
362   bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
363   bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
364   bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
365   bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
366   bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
367   bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
368   bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
369   bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
370   bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
371   bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
372   bool isU1Imm() const { return isImm(0, 1); }
373   bool isU2Imm() const { return isImm(0, 3); }
374   bool isU3Imm() const { return isImm(0, 7); }
375   bool isU4Imm() const { return isImm(0, 15); }
376   bool isU6Imm() const { return isImm(0, 63); }
377   bool isU8Imm() const { return isImm(0, 255); }
378   bool isS8Imm() const { return isImm(-128, 127); }
379   bool isU12Imm() const { return isImm(0, 4095); }
380   bool isU16Imm() const { return isImm(0, 65535); }
381   bool isS16Imm() const { return isImm(-32768, 32767); }
382   bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
383   bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
384   bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
385 };
386 
387 class SystemZAsmParser : public MCTargetAsmParser {
388 #define GET_ASSEMBLER_HEADER
389 #include "SystemZGenAsmMatcher.inc"
390 
391 private:
392   MCAsmParser &Parser;
393   enum RegisterGroup {
394     RegGR,
395     RegFP,
396     RegV,
397     RegAR,
398     RegCR
399   };
400   struct Register {
401     RegisterGroup Group;
402     unsigned Num;
403     SMLoc StartLoc, EndLoc;
404   };
405 
406   bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
407 
408   bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
409 
410   OperandMatchResultTy parseRegister(OperandVector &Operands,
411                                      RegisterKind Kind);
412 
413   OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
414 
415   bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
416                     Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
417                     bool HasLength = false, bool HasVectorIndex = false);
418   bool parseAddressRegister(Register &Reg);
419 
420   bool ParseDirectiveInsn(SMLoc L);
421 
422   OperandMatchResultTy parseAddress(OperandVector &Operands,
423                                     MemoryKind MemKind,
424                                     RegisterKind RegKind);
425 
426   OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
427                                   int64_t MaxVal, bool AllowTLS);
428 
429   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
430 
431 public:
432   SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
433                    const MCInstrInfo &MII,
434                    const MCTargetOptions &Options)
435     : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
436     MCAsmParserExtension::Initialize(Parser);
437 
438     // Alias the .word directive to .short.
439     parser.addAliasForDirective(".word", ".short");
440 
441     // Initialize the set of available features.
442     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
443   }
444 
445   // Override MCTargetAsmParser.
446   bool ParseDirective(AsmToken DirectiveID) override;
447   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
448   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
449                      bool RestoreOnFailure);
450   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
451                                         SMLoc &EndLoc) override;
452   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
453                         SMLoc NameLoc, OperandVector &Operands) override;
454   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
455                                OperandVector &Operands, MCStreamer &Out,
456                                uint64_t &ErrorInfo,
457                                bool MatchingInlineAsm) override;
458 
459   // Used by the TableGen code to parse particular operand types.
460   OperandMatchResultTy parseGR32(OperandVector &Operands) {
461     return parseRegister(Operands, GR32Reg);
462   }
463   OperandMatchResultTy parseGRH32(OperandVector &Operands) {
464     return parseRegister(Operands, GRH32Reg);
465   }
466   OperandMatchResultTy parseGRX32(OperandVector &Operands) {
467     llvm_unreachable("GRX32 should only be used for pseudo instructions");
468   }
469   OperandMatchResultTy parseGR64(OperandVector &Operands) {
470     return parseRegister(Operands, GR64Reg);
471   }
472   OperandMatchResultTy parseGR128(OperandVector &Operands) {
473     return parseRegister(Operands, GR128Reg);
474   }
475   OperandMatchResultTy parseADDR32(OperandVector &Operands) {
476     // For the AsmParser, we will accept %r0 for ADDR32 as well.
477     return parseRegister(Operands, GR32Reg);
478   }
479   OperandMatchResultTy parseADDR64(OperandVector &Operands) {
480     // For the AsmParser, we will accept %r0 for ADDR64 as well.
481     return parseRegister(Operands, GR64Reg);
482   }
483   OperandMatchResultTy parseADDR128(OperandVector &Operands) {
484     llvm_unreachable("Shouldn't be used as an operand");
485   }
486   OperandMatchResultTy parseFP32(OperandVector &Operands) {
487     return parseRegister(Operands, FP32Reg);
488   }
489   OperandMatchResultTy parseFP64(OperandVector &Operands) {
490     return parseRegister(Operands, FP64Reg);
491   }
492   OperandMatchResultTy parseFP128(OperandVector &Operands) {
493     return parseRegister(Operands, FP128Reg);
494   }
495   OperandMatchResultTy parseVR32(OperandVector &Operands) {
496     return parseRegister(Operands, VR32Reg);
497   }
498   OperandMatchResultTy parseVR64(OperandVector &Operands) {
499     return parseRegister(Operands, VR64Reg);
500   }
501   OperandMatchResultTy parseVF128(OperandVector &Operands) {
502     llvm_unreachable("Shouldn't be used as an operand");
503   }
504   OperandMatchResultTy parseVR128(OperandVector &Operands) {
505     return parseRegister(Operands, VR128Reg);
506   }
507   OperandMatchResultTy parseAR32(OperandVector &Operands) {
508     return parseRegister(Operands, AR32Reg);
509   }
510   OperandMatchResultTy parseCR64(OperandVector &Operands) {
511     return parseRegister(Operands, CR64Reg);
512   }
513   OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
514     return parseAnyRegister(Operands);
515   }
516   OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
517     return parseAddress(Operands, BDMem, GR32Reg);
518   }
519   OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
520     return parseAddress(Operands, BDMem, GR64Reg);
521   }
522   OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
523     return parseAddress(Operands, BDXMem, GR64Reg);
524   }
525   OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
526     return parseAddress(Operands, BDLMem, GR64Reg);
527   }
528   OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
529     return parseAddress(Operands, BDRMem, GR64Reg);
530   }
531   OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
532     return parseAddress(Operands, BDVMem, GR64Reg);
533   }
534   OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
535     return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
536   }
537   OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
538     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
539   }
540   OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
541     return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
542   }
543   OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
544     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
545   }
546   OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
547     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
548   }
549   OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
550     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
551   }
552 };
553 
554 } // end anonymous namespace
555 
556 #define GET_REGISTER_MATCHER
557 #define GET_SUBTARGET_FEATURE_NAME
558 #define GET_MATCHER_IMPLEMENTATION
559 #define GET_MNEMONIC_SPELL_CHECKER
560 #include "SystemZGenAsmMatcher.inc"
561 
562 // Used for the .insn directives; contains information needed to parse the
563 // operands in the directive.
564 struct InsnMatchEntry {
565   StringRef Format;
566   uint64_t Opcode;
567   int32_t NumOperands;
568   MatchClassKind OperandKinds[5];
569 };
570 
571 // For equal_range comparison.
572 struct CompareInsn {
573   bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
574     return LHS.Format < RHS;
575   }
576   bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
577     return LHS < RHS.Format;
578   }
579   bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
580     return LHS.Format < RHS.Format;
581   }
582 };
583 
584 // Table initializing information for parsing the .insn directive.
585 static struct InsnMatchEntry InsnMatchTable[] = {
586   /* Format, Opcode, NumOperands, OperandKinds */
587   { "e", SystemZ::InsnE, 1,
588     { MCK_U16Imm } },
589   { "ri", SystemZ::InsnRI, 3,
590     { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
591   { "rie", SystemZ::InsnRIE, 4,
592     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
593   { "ril", SystemZ::InsnRIL, 3,
594     { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
595   { "rilu", SystemZ::InsnRILU, 3,
596     { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
597   { "ris", SystemZ::InsnRIS, 5,
598     { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
599   { "rr", SystemZ::InsnRR, 3,
600     { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
601   { "rre", SystemZ::InsnRRE, 3,
602     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
603   { "rrf", SystemZ::InsnRRF, 5,
604     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
605   { "rrs", SystemZ::InsnRRS, 5,
606     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
607   { "rs", SystemZ::InsnRS, 4,
608     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
609   { "rse", SystemZ::InsnRSE, 4,
610     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
611   { "rsi", SystemZ::InsnRSI, 4,
612     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
613   { "rsy", SystemZ::InsnRSY, 4,
614     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
615   { "rx", SystemZ::InsnRX, 3,
616     { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
617   { "rxe", SystemZ::InsnRXE, 3,
618     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
619   { "rxf", SystemZ::InsnRXF, 4,
620     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
621   { "rxy", SystemZ::InsnRXY, 3,
622     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
623   { "s", SystemZ::InsnS, 2,
624     { MCK_U32Imm, MCK_BDAddr64Disp12 } },
625   { "si", SystemZ::InsnSI, 3,
626     { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
627   { "sil", SystemZ::InsnSIL, 3,
628     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
629   { "siy", SystemZ::InsnSIY, 3,
630     { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
631   { "ss", SystemZ::InsnSS, 4,
632     { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
633   { "sse", SystemZ::InsnSSE, 3,
634     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
635   { "ssf", SystemZ::InsnSSF, 4,
636     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
637 };
638 
639 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
640   if (!E)
641     return;
642   if (auto *CE = dyn_cast<MCConstantExpr>(E))
643     OS << *CE;
644   else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
645     OS << *UE;
646   else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
647     OS << *BE;
648   else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
649     OS << *SRE;
650   else
651     OS << *E;
652 }
653 
654 void SystemZOperand::print(raw_ostream &OS) const {
655   switch (Kind) {
656   case KindToken:
657     OS << "Token:" << getToken();
658     break;
659   case KindReg:
660     OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
661     break;
662   case KindImm:
663     OS << "Imm:";
664     printMCExpr(getImm(), OS);
665     break;
666   case KindImmTLS:
667     OS << "ImmTLS:";
668     printMCExpr(getImmTLS().Imm, OS);
669     if (getImmTLS().Sym) {
670       OS << ", ";
671       printMCExpr(getImmTLS().Sym, OS);
672     }
673     break;
674   case KindMem: {
675     const MemOp &Op = getMem();
676     OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
677     if (Op.Base) {
678       OS << "(";
679       if (Op.MemKind == BDLMem)
680         OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
681       else if (Op.MemKind == BDRMem)
682         OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
683       if (Op.Index)
684         OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
685       OS << SystemZInstPrinter::getRegisterName(Op.Base);
686       OS << ")";
687     }
688     break;
689   }
690   case KindInvalid:
691     break;
692   }
693 }
694 
695 // Parse one register of the form %<prefix><number>.
696 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
697   Reg.StartLoc = Parser.getTok().getLoc();
698 
699   // Eat the % prefix.
700   if (Parser.getTok().isNot(AsmToken::Percent))
701     return Error(Parser.getTok().getLoc(), "register expected");
702   const AsmToken &PercentTok = Parser.getTok();
703   Parser.Lex();
704 
705   // Expect a register name.
706   if (Parser.getTok().isNot(AsmToken::Identifier)) {
707     if (RestoreOnFailure)
708       getLexer().UnLex(PercentTok);
709     return Error(Reg.StartLoc, "invalid register");
710   }
711 
712   // Check that there's a prefix.
713   StringRef Name = Parser.getTok().getString();
714   if (Name.size() < 2) {
715     if (RestoreOnFailure)
716       getLexer().UnLex(PercentTok);
717     return Error(Reg.StartLoc, "invalid register");
718   }
719   char Prefix = Name[0];
720 
721   // Treat the rest of the register name as a register number.
722   if (Name.substr(1).getAsInteger(10, Reg.Num)) {
723     if (RestoreOnFailure)
724       getLexer().UnLex(PercentTok);
725     return Error(Reg.StartLoc, "invalid register");
726   }
727 
728   // Look for valid combinations of prefix and number.
729   if (Prefix == 'r' && Reg.Num < 16)
730     Reg.Group = RegGR;
731   else if (Prefix == 'f' && Reg.Num < 16)
732     Reg.Group = RegFP;
733   else if (Prefix == 'v' && Reg.Num < 32)
734     Reg.Group = RegV;
735   else if (Prefix == 'a' && Reg.Num < 16)
736     Reg.Group = RegAR;
737   else if (Prefix == 'c' && Reg.Num < 16)
738     Reg.Group = RegCR;
739   else {
740     if (RestoreOnFailure)
741       getLexer().UnLex(PercentTok);
742     return Error(Reg.StartLoc, "invalid register");
743   }
744 
745   Reg.EndLoc = Parser.getTok().getLoc();
746   Parser.Lex();
747   return false;
748 }
749 
750 // Parse a register of kind Kind and add it to Operands.
751 OperandMatchResultTy
752 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
753   Register Reg;
754   RegisterGroup Group;
755   switch (Kind) {
756   case GR32Reg:
757   case GRH32Reg:
758   case GR64Reg:
759   case GR128Reg:
760     Group = RegGR;
761     break;
762   case FP32Reg:
763   case FP64Reg:
764   case FP128Reg:
765     Group = RegFP;
766     break;
767   case VR32Reg:
768   case VR64Reg:
769   case VR128Reg:
770     Group = RegV;
771     break;
772   case AR32Reg:
773     Group = RegAR;
774     break;
775   case CR64Reg:
776     Group = RegCR;
777     break;
778   }
779 
780   // Handle register names of the form %<prefix><number>
781   if (Parser.getTok().is(AsmToken::Percent)) {
782     if (parseRegister(Reg))
783       return MatchOperand_ParseFail;
784 
785     // Check the parsed register group "Reg.Group" with the expected "Group"
786     // Have to error out if user specified wrong prefix.
787     switch (Group) {
788     case RegGR:
789     case RegFP:
790     case RegAR:
791     case RegCR:
792       if (Group != Reg.Group) {
793         Error(Reg.StartLoc, "invalid operand for instruction");
794         return MatchOperand_ParseFail;
795       }
796       break;
797     case RegV:
798       if (Reg.Group != RegV && Reg.Group != RegFP) {
799         Error(Reg.StartLoc, "invalid operand for instruction");
800         return MatchOperand_ParseFail;
801       }
802       break;
803     }
804   } else if (Parser.getTok().is(AsmToken::Integer)) {
805     if (parseIntegerRegister(Reg, Group))
806       return MatchOperand_ParseFail;
807   }
808   // Otherwise we didn't match a register operand.
809   else
810     return MatchOperand_NoMatch;
811 
812   // Determine the LLVM register number according to Kind.
813   const unsigned *Regs;
814   switch (Kind) {
815   case GR32Reg:  Regs = SystemZMC::GR32Regs;  break;
816   case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
817   case GR64Reg:  Regs = SystemZMC::GR64Regs;  break;
818   case GR128Reg: Regs = SystemZMC::GR128Regs; break;
819   case FP32Reg:  Regs = SystemZMC::FP32Regs;  break;
820   case FP64Reg:  Regs = SystemZMC::FP64Regs;  break;
821   case FP128Reg: Regs = SystemZMC::FP128Regs; break;
822   case VR32Reg:  Regs = SystemZMC::VR32Regs;  break;
823   case VR64Reg:  Regs = SystemZMC::VR64Regs;  break;
824   case VR128Reg: Regs = SystemZMC::VR128Regs; break;
825   case AR32Reg:  Regs = SystemZMC::AR32Regs;  break;
826   case CR64Reg:  Regs = SystemZMC::CR64Regs;  break;
827   }
828   if (Regs[Reg.Num] == 0) {
829     Error(Reg.StartLoc, "invalid register pair");
830     return MatchOperand_ParseFail;
831   }
832 
833   Operands.push_back(
834       SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
835   return MatchOperand_Success;
836 }
837 
838 // Parse any type of register (including integers) and add it to Operands.
839 OperandMatchResultTy
840 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
841   // Handle integer values.
842   if (Parser.getTok().is(AsmToken::Integer)) {
843     const MCExpr *Register;
844     SMLoc StartLoc = Parser.getTok().getLoc();
845     if (Parser.parseExpression(Register))
846       return MatchOperand_ParseFail;
847 
848     if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
849       int64_t Value = CE->getValue();
850       if (Value < 0 || Value > 15) {
851         Error(StartLoc, "invalid register");
852         return MatchOperand_ParseFail;
853       }
854     }
855 
856     SMLoc EndLoc =
857       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
858 
859     Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
860   }
861   else {
862     Register Reg;
863     if (parseRegister(Reg))
864       return MatchOperand_ParseFail;
865 
866     // Map to the correct register kind.
867     RegisterKind Kind;
868     unsigned RegNo;
869     if (Reg.Group == RegGR) {
870       Kind = GR64Reg;
871       RegNo = SystemZMC::GR64Regs[Reg.Num];
872     }
873     else if (Reg.Group == RegFP) {
874       Kind = FP64Reg;
875       RegNo = SystemZMC::FP64Regs[Reg.Num];
876     }
877     else if (Reg.Group == RegV) {
878       Kind = VR128Reg;
879       RegNo = SystemZMC::VR128Regs[Reg.Num];
880     }
881     else if (Reg.Group == RegAR) {
882       Kind = AR32Reg;
883       RegNo = SystemZMC::AR32Regs[Reg.Num];
884     }
885     else if (Reg.Group == RegCR) {
886       Kind = CR64Reg;
887       RegNo = SystemZMC::CR64Regs[Reg.Num];
888     }
889     else {
890       return MatchOperand_ParseFail;
891     }
892 
893     Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
894                                                  Reg.StartLoc, Reg.EndLoc));
895   }
896   return MatchOperand_Success;
897 }
898 
899 bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
900                                             RegisterGroup Group) {
901   Reg.StartLoc = Parser.getTok().getLoc();
902   // We have an integer token
903   const MCExpr *Register;
904   if (Parser.parseExpression(Register))
905     return true;
906 
907   const auto *CE = dyn_cast<MCConstantExpr>(Register);
908   if (!CE)
909     return true;
910 
911   int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
912   int64_t Value = CE->getValue();
913   if (Value < 0 || Value > MaxRegNum) {
914     Error(Parser.getTok().getLoc(), "invalid register");
915     return true;
916   }
917 
918   // Assign the Register Number
919   Reg.Num = (unsigned)Value;
920   Reg.Group = Group;
921   Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
922 
923   // At this point, successfully parsed an integer register.
924   return false;
925 }
926 
927 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
928 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
929                                     bool &HaveReg2, Register &Reg2,
930                                     const MCExpr *&Disp, const MCExpr *&Length,
931                                     bool HasLength, bool HasVectorIndex) {
932   // Parse the displacement, which must always be present.
933   if (getParser().parseExpression(Disp))
934     return true;
935 
936   // Parse the optional base and index.
937   HaveReg1 = false;
938   HaveReg2 = false;
939   Length = nullptr;
940 
941   // If we have a scenario as below:
942   //   vgef %v0, 0(0), 0
943   // This is an example of a "BDVMem" instruction type.
944   //
945   // So when we parse this as an integer register, the register group
946   // needs to be tied to "RegV". Usually when the prefix is passed in
947   // as %<prefix><reg-number> its easy to check which group it should belong to
948   // However, if we're passing in just the integer there's no real way to
949   // "check" what register group it should belong to.
950   //
951   // When the user passes in the register as an integer, the user assumes that
952   // the compiler is responsible for substituting it as the right kind of
953   // register. Whereas, when the user specifies a "prefix", the onus is on
954   // the user to make sure they pass in the right kind of register.
955   //
956   // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
957   // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
958   // (i.e. insn is of type BDVMem) is true.
959   RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
960 
961   if (getLexer().is(AsmToken::LParen)) {
962     Parser.Lex();
963 
964     if (getLexer().is(AsmToken::Percent)) {
965       // Parse the first register.
966       HaveReg1 = true;
967       if (parseRegister(Reg1))
968         return true;
969     }
970     // So if we have an integer as the first token in ([tok1], ..), it could:
971     // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
972     // instructions)
973     // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
974     else if (getLexer().is(AsmToken::Integer)) {
975       if (HasLength) {
976         // Instruction has a "Length" field, safe to parse the first token as
977         // the "Length" field
978         if (getParser().parseExpression(Length))
979           return true;
980       } else {
981         // Otherwise, if the instruction has no "Length" field, parse the
982         // token as a "Register". We don't have to worry about whether the
983         // instruction is invalid here, because the caller will take care of
984         // error reporting.
985         HaveReg1 = true;
986         if (parseIntegerRegister(Reg1, RegGroup))
987           return true;
988       }
989     } else {
990       // If its not an integer or a percent token, then if the instruction
991       // is reported to have a "Length" then, parse it as "Length".
992       if (HasLength) {
993         if (getParser().parseExpression(Length))
994           return true;
995       }
996     }
997 
998     // Check whether there's a second register.
999     if (getLexer().is(AsmToken::Comma)) {
1000       Parser.Lex();
1001       HaveReg2 = true;
1002 
1003       if (getLexer().is(AsmToken::Integer)) {
1004         if (parseIntegerRegister(Reg2, RegGR))
1005           return true;
1006       } else {
1007         if (parseRegister(Reg2))
1008           return true;
1009       }
1010     }
1011 
1012     // Consume the closing bracket.
1013     if (getLexer().isNot(AsmToken::RParen))
1014       return Error(Parser.getTok().getLoc(), "unexpected token in address");
1015     Parser.Lex();
1016   }
1017   return false;
1018 }
1019 
1020 // Verify that Reg is a valid address register (base or index).
1021 bool
1022 SystemZAsmParser::parseAddressRegister(Register &Reg) {
1023   if (Reg.Group == RegV) {
1024     Error(Reg.StartLoc, "invalid use of vector addressing");
1025     return true;
1026   } else if (Reg.Group != RegGR) {
1027     Error(Reg.StartLoc, "invalid address register");
1028     return true;
1029   }
1030   return false;
1031 }
1032 
1033 // Parse a memory operand and add it to Operands.  The other arguments
1034 // are as above.
1035 OperandMatchResultTy
1036 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
1037                                RegisterKind RegKind) {
1038   SMLoc StartLoc = Parser.getTok().getLoc();
1039   unsigned Base = 0, Index = 0, LengthReg = 0;
1040   Register Reg1, Reg2;
1041   bool HaveReg1, HaveReg2;
1042   const MCExpr *Disp;
1043   const MCExpr *Length;
1044 
1045   bool HasLength = (MemKind == BDLMem) ? true : false;
1046   bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
1047   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
1048                    HasVectorIndex))
1049     return MatchOperand_ParseFail;
1050 
1051   const unsigned *Regs;
1052   switch (RegKind) {
1053   case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1054   case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1055   default: llvm_unreachable("invalid RegKind");
1056   }
1057 
1058   switch (MemKind) {
1059   case BDMem:
1060     // If we have Reg1, it must be an address register.
1061     if (HaveReg1) {
1062       if (parseAddressRegister(Reg1))
1063         return MatchOperand_ParseFail;
1064       Base = Regs[Reg1.Num];
1065     }
1066     // There must be no Reg2.
1067     if (HaveReg2) {
1068       Error(StartLoc, "invalid use of indexed addressing");
1069       return MatchOperand_ParseFail;
1070     }
1071     break;
1072   case BDXMem:
1073     // If we have Reg1, it must be an address register.
1074     if (HaveReg1) {
1075       if (parseAddressRegister(Reg1))
1076         return MatchOperand_ParseFail;
1077       // If the are two registers, the first one is the index and the
1078       // second is the base.
1079       if (HaveReg2)
1080         Index = Regs[Reg1.Num];
1081       else
1082         Base = Regs[Reg1.Num];
1083     }
1084     // If we have Reg2, it must be an address register.
1085     if (HaveReg2) {
1086       if (parseAddressRegister(Reg2))
1087         return MatchOperand_ParseFail;
1088       Base = Regs[Reg2.Num];
1089     }
1090     break;
1091   case BDLMem:
1092     // If we have Reg2, it must be an address register.
1093     if (HaveReg2) {
1094       if (parseAddressRegister(Reg2))
1095         return MatchOperand_ParseFail;
1096       Base = Regs[Reg2.Num];
1097     }
1098     // We cannot support base+index addressing.
1099     if (HaveReg1 && HaveReg2) {
1100       Error(StartLoc, "invalid use of indexed addressing");
1101       return MatchOperand_ParseFail;
1102     }
1103     // We must have a length.
1104     if (!Length) {
1105       Error(StartLoc, "missing length in address");
1106       return MatchOperand_ParseFail;
1107     }
1108     break;
1109   case BDRMem:
1110     // We must have Reg1, and it must be a GPR.
1111     if (!HaveReg1 || Reg1.Group != RegGR) {
1112       Error(StartLoc, "invalid operand for instruction");
1113       return MatchOperand_ParseFail;
1114     }
1115     LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1116     // If we have Reg2, it must be an address register.
1117     if (HaveReg2) {
1118       if (parseAddressRegister(Reg2))
1119         return MatchOperand_ParseFail;
1120       Base = Regs[Reg2.Num];
1121     }
1122     break;
1123   case BDVMem:
1124     // We must have Reg1, and it must be a vector register.
1125     if (!HaveReg1 || Reg1.Group != RegV) {
1126       Error(StartLoc, "vector index required in address");
1127       return MatchOperand_ParseFail;
1128     }
1129     Index = SystemZMC::VR128Regs[Reg1.Num];
1130     // If we have Reg2, it must be an address register.
1131     if (HaveReg2) {
1132       if (parseAddressRegister(Reg2))
1133         return MatchOperand_ParseFail;
1134       Base = Regs[Reg2.Num];
1135     }
1136     break;
1137   }
1138 
1139   SMLoc EndLoc =
1140       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1141   Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1142                                                Index, Length, LengthReg,
1143                                                StartLoc, EndLoc));
1144   return MatchOperand_Success;
1145 }
1146 
1147 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1148   StringRef IDVal = DirectiveID.getIdentifier();
1149 
1150   if (IDVal == ".insn")
1151     return ParseDirectiveInsn(DirectiveID.getLoc());
1152 
1153   return true;
1154 }
1155 
1156 /// ParseDirectiveInsn
1157 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
1158 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1159   MCAsmParser &Parser = getParser();
1160 
1161   // Expect instruction format as identifier.
1162   StringRef Format;
1163   SMLoc ErrorLoc = Parser.getTok().getLoc();
1164   if (Parser.parseIdentifier(Format))
1165     return Error(ErrorLoc, "expected instruction format");
1166 
1167   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1168 
1169   // Find entry for this format in InsnMatchTable.
1170   auto EntryRange =
1171     std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1172                      Format, CompareInsn());
1173 
1174   // If first == second, couldn't find a match in the table.
1175   if (EntryRange.first == EntryRange.second)
1176     return Error(ErrorLoc, "unrecognized format");
1177 
1178   struct InsnMatchEntry *Entry = EntryRange.first;
1179 
1180   // Format should match from equal_range.
1181   assert(Entry->Format == Format);
1182 
1183   // Parse the following operands using the table's information.
1184   for (int i = 0; i < Entry->NumOperands; i++) {
1185     MatchClassKind Kind = Entry->OperandKinds[i];
1186 
1187     SMLoc StartLoc = Parser.getTok().getLoc();
1188 
1189     // Always expect commas as separators for operands.
1190     if (getLexer().isNot(AsmToken::Comma))
1191       return Error(StartLoc, "unexpected token in directive");
1192     Lex();
1193 
1194     // Parse operands.
1195     OperandMatchResultTy ResTy;
1196     if (Kind == MCK_AnyReg)
1197       ResTy = parseAnyReg(Operands);
1198     else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1199       ResTy = parseBDXAddr64(Operands);
1200     else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1201       ResTy = parseBDAddr64(Operands);
1202     else if (Kind == MCK_PCRel32)
1203       ResTy = parsePCRel32(Operands);
1204     else if (Kind == MCK_PCRel16)
1205       ResTy = parsePCRel16(Operands);
1206     else {
1207       // Only remaining operand kind is an immediate.
1208       const MCExpr *Expr;
1209       SMLoc StartLoc = Parser.getTok().getLoc();
1210 
1211       // Expect immediate expression.
1212       if (Parser.parseExpression(Expr))
1213         return Error(StartLoc, "unexpected token in directive");
1214 
1215       SMLoc EndLoc =
1216         SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1217 
1218       Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1219       ResTy = MatchOperand_Success;
1220     }
1221 
1222     if (ResTy != MatchOperand_Success)
1223       return true;
1224   }
1225 
1226   // Build the instruction with the parsed operands.
1227   MCInst Inst = MCInstBuilder(Entry->Opcode);
1228 
1229   for (size_t i = 0; i < Operands.size(); i++) {
1230     MCParsedAsmOperand &Operand = *Operands[i];
1231     MatchClassKind Kind = Entry->OperandKinds[i];
1232 
1233     // Verify operand.
1234     unsigned Res = validateOperandClass(Operand, Kind);
1235     if (Res != Match_Success)
1236       return Error(Operand.getStartLoc(), "unexpected operand type");
1237 
1238     // Add operands to instruction.
1239     SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1240     if (ZOperand.isReg())
1241       ZOperand.addRegOperands(Inst, 1);
1242     else if (ZOperand.isMem(BDMem))
1243       ZOperand.addBDAddrOperands(Inst, 2);
1244     else if (ZOperand.isMem(BDXMem))
1245       ZOperand.addBDXAddrOperands(Inst, 3);
1246     else if (ZOperand.isImm())
1247       ZOperand.addImmOperands(Inst, 1);
1248     else
1249       llvm_unreachable("unexpected operand type");
1250   }
1251 
1252   // Emit as a regular instruction.
1253   Parser.getStreamer().emitInstruction(Inst, getSTI());
1254 
1255   return false;
1256 }
1257 
1258 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1259                                      SMLoc &EndLoc, bool RestoreOnFailure) {
1260   Register Reg;
1261   if (parseRegister(Reg, RestoreOnFailure))
1262     return true;
1263   if (Reg.Group == RegGR)
1264     RegNo = SystemZMC::GR64Regs[Reg.Num];
1265   else if (Reg.Group == RegFP)
1266     RegNo = SystemZMC::FP64Regs[Reg.Num];
1267   else if (Reg.Group == RegV)
1268     RegNo = SystemZMC::VR128Regs[Reg.Num];
1269   else if (Reg.Group == RegAR)
1270     RegNo = SystemZMC::AR32Regs[Reg.Num];
1271   else if (Reg.Group == RegCR)
1272     RegNo = SystemZMC::CR64Regs[Reg.Num];
1273   StartLoc = Reg.StartLoc;
1274   EndLoc = Reg.EndLoc;
1275   return false;
1276 }
1277 
1278 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1279                                      SMLoc &EndLoc) {
1280   return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1281 }
1282 
1283 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo,
1284                                                         SMLoc &StartLoc,
1285                                                         SMLoc &EndLoc) {
1286   bool Result =
1287       ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1288   bool PendingErrors = getParser().hasPendingError();
1289   getParser().clearPendingErrors();
1290   if (PendingErrors)
1291     return MatchOperand_ParseFail;
1292   if (Result)
1293     return MatchOperand_NoMatch;
1294   return MatchOperand_Success;
1295 }
1296 
1297 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1298                                         StringRef Name, SMLoc NameLoc,
1299                                         OperandVector &Operands) {
1300   Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1301 
1302   // Read the remaining operands.
1303   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1304     // Read the first operand.
1305     if (parseOperand(Operands, Name)) {
1306       return true;
1307     }
1308 
1309     // Read any subsequent operands.
1310     while (getLexer().is(AsmToken::Comma)) {
1311       Parser.Lex();
1312       if (parseOperand(Operands, Name)) {
1313         return true;
1314       }
1315     }
1316     if (getLexer().isNot(AsmToken::EndOfStatement)) {
1317       SMLoc Loc = getLexer().getLoc();
1318       return Error(Loc, "unexpected token in argument list");
1319     }
1320   }
1321 
1322   // Consume the EndOfStatement.
1323   Parser.Lex();
1324   return false;
1325 }
1326 
1327 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1328                                     StringRef Mnemonic) {
1329   // Check if the current operand has a custom associated parser, if so, try to
1330   // custom parse the operand, or fallback to the general approach.  Force all
1331   // features to be available during the operand check, or else we will fail to
1332   // find the custom parser, and then we will later get an InvalidOperand error
1333   // instead of a MissingFeature errror.
1334   FeatureBitset AvailableFeatures = getAvailableFeatures();
1335   FeatureBitset All;
1336   All.set();
1337   setAvailableFeatures(All);
1338   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1339   setAvailableFeatures(AvailableFeatures);
1340   if (ResTy == MatchOperand_Success)
1341     return false;
1342 
1343   // If there wasn't a custom match, try the generic matcher below. Otherwise,
1344   // there was a match, but an error occurred, in which case, just return that
1345   // the operand parsing failed.
1346   if (ResTy == MatchOperand_ParseFail)
1347     return true;
1348 
1349   // Check for a register.  All real register operands should have used
1350   // a context-dependent parse routine, which gives the required register
1351   // class.  The code is here to mop up other cases, like those where
1352   // the instruction isn't recognized.
1353   if (Parser.getTok().is(AsmToken::Percent)) {
1354     Register Reg;
1355     if (parseRegister(Reg))
1356       return true;
1357     Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1358     return false;
1359   }
1360 
1361   // The only other type of operand is an immediate or address.  As above,
1362   // real address operands should have used a context-dependent parse routine,
1363   // so we treat any plain expression as an immediate.
1364   SMLoc StartLoc = Parser.getTok().getLoc();
1365   Register Reg1, Reg2;
1366   bool HaveReg1, HaveReg2;
1367   const MCExpr *Expr;
1368   const MCExpr *Length;
1369   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1370                    /*HasLength*/ true, /*HasVectorIndex*/ true))
1371     return true;
1372   // If the register combination is not valid for any instruction, reject it.
1373   // Otherwise, fall back to reporting an unrecognized instruction.
1374   if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1375       && parseAddressRegister(Reg1))
1376     return true;
1377   if (HaveReg2 && parseAddressRegister(Reg2))
1378     return true;
1379 
1380   SMLoc EndLoc =
1381     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1382   if (HaveReg1 || HaveReg2 || Length)
1383     Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1384   else
1385     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1386   return false;
1387 }
1388 
1389 static std::string SystemZMnemonicSpellCheck(StringRef S,
1390                                              const FeatureBitset &FBS,
1391                                              unsigned VariantID = 0);
1392 
1393 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1394                                                OperandVector &Operands,
1395                                                MCStreamer &Out,
1396                                                uint64_t &ErrorInfo,
1397                                                bool MatchingInlineAsm) {
1398   MCInst Inst;
1399   unsigned MatchResult;
1400 
1401   FeatureBitset MissingFeatures;
1402   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
1403                                      MissingFeatures, MatchingInlineAsm);
1404   switch (MatchResult) {
1405   case Match_Success:
1406     Inst.setLoc(IDLoc);
1407     Out.emitInstruction(Inst, getSTI());
1408     return false;
1409 
1410   case Match_MissingFeature: {
1411     assert(MissingFeatures.any() && "Unknown missing feature!");
1412     // Special case the error message for the very common case where only
1413     // a single subtarget feature is missing
1414     std::string Msg = "instruction requires:";
1415     for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1416       if (MissingFeatures[I]) {
1417         Msg += " ";
1418         Msg += getSubtargetFeatureName(I);
1419       }
1420     }
1421     return Error(IDLoc, Msg);
1422   }
1423 
1424   case Match_InvalidOperand: {
1425     SMLoc ErrorLoc = IDLoc;
1426     if (ErrorInfo != ~0ULL) {
1427       if (ErrorInfo >= Operands.size())
1428         return Error(IDLoc, "too few operands for instruction");
1429 
1430       ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1431       if (ErrorLoc == SMLoc())
1432         ErrorLoc = IDLoc;
1433     }
1434     return Error(ErrorLoc, "invalid operand for instruction");
1435   }
1436 
1437   case Match_MnemonicFail: {
1438     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1439     std::string Suggestion = SystemZMnemonicSpellCheck(
1440       ((SystemZOperand &)*Operands[0]).getToken(), FBS);
1441     return Error(IDLoc, "invalid instruction" + Suggestion,
1442                  ((SystemZOperand &)*Operands[0]).getLocRange());
1443   }
1444   }
1445 
1446   llvm_unreachable("Unexpected match type");
1447 }
1448 
1449 OperandMatchResultTy
1450 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1451                              int64_t MaxVal, bool AllowTLS) {
1452   MCContext &Ctx = getContext();
1453   MCStreamer &Out = getStreamer();
1454   const MCExpr *Expr;
1455   SMLoc StartLoc = Parser.getTok().getLoc();
1456   if (getParser().parseExpression(Expr))
1457     return MatchOperand_NoMatch;
1458 
1459   auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool {
1460     if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1461       int64_t Value = CE->getValue();
1462       if ((Value & 1) || Value < MinVal || Value > MaxVal)
1463         return true;
1464     }
1465     return false;
1466   };
1467 
1468   // For consistency with the GNU assembler, treat immediates as offsets
1469   // from ".".
1470   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1471     if (isOutOfRangeConstant(CE)) {
1472       Error(StartLoc, "offset out of range");
1473       return MatchOperand_ParseFail;
1474     }
1475     int64_t Value = CE->getValue();
1476     MCSymbol *Sym = Ctx.createTempSymbol();
1477     Out.emitLabel(Sym);
1478     const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1479                                                  Ctx);
1480     Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1481   }
1482 
1483   // For consistency with the GNU assembler, conservatively assume that a
1484   // constant offset must by itself be within the given size range.
1485   if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1486     if (isOutOfRangeConstant(BE->getLHS()) ||
1487         isOutOfRangeConstant(BE->getRHS())) {
1488       Error(StartLoc, "offset out of range");
1489       return MatchOperand_ParseFail;
1490     }
1491 
1492   // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1493   const MCExpr *Sym = nullptr;
1494   if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1495     Parser.Lex();
1496 
1497     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1498       Error(Parser.getTok().getLoc(), "unexpected token");
1499       return MatchOperand_ParseFail;
1500     }
1501 
1502     MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1503     StringRef Name = Parser.getTok().getString();
1504     if (Name == "tls_gdcall")
1505       Kind = MCSymbolRefExpr::VK_TLSGD;
1506     else if (Name == "tls_ldcall")
1507       Kind = MCSymbolRefExpr::VK_TLSLDM;
1508     else {
1509       Error(Parser.getTok().getLoc(), "unknown TLS tag");
1510       return MatchOperand_ParseFail;
1511     }
1512     Parser.Lex();
1513 
1514     if (Parser.getTok().isNot(AsmToken::Colon)) {
1515       Error(Parser.getTok().getLoc(), "unexpected token");
1516       return MatchOperand_ParseFail;
1517     }
1518     Parser.Lex();
1519 
1520     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1521       Error(Parser.getTok().getLoc(), "unexpected token");
1522       return MatchOperand_ParseFail;
1523     }
1524 
1525     StringRef Identifier = Parser.getTok().getString();
1526     Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1527                                   Kind, Ctx);
1528     Parser.Lex();
1529   }
1530 
1531   SMLoc EndLoc =
1532     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1533 
1534   if (AllowTLS)
1535     Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1536                                                     StartLoc, EndLoc));
1537   else
1538     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1539 
1540   return MatchOperand_Success;
1541 }
1542 
1543 // Force static initialization.
1544 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1545   RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1546 }
1547