1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "TargetInfo/SystemZTargetInfo.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/MC/MCAsmInfo.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/MC/MCExpr.h" 19 #include "llvm/MC/MCInst.h" 20 #include "llvm/MC/MCInstBuilder.h" 21 #include "llvm/MC/MCParser/MCAsmLexer.h" 22 #include "llvm/MC/MCParser/MCAsmParser.h" 23 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 24 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 25 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 26 #include "llvm/MC/MCStreamer.h" 27 #include "llvm/MC/MCSubtargetInfo.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/SMLoc.h" 31 #include "llvm/Support/TargetRegistry.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <iterator> 37 #include <memory> 38 #include <string> 39 40 using namespace llvm; 41 42 // Return true if Expr is in the range [MinValue, MaxValue]. 43 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { 44 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 45 int64_t Value = CE->getValue(); 46 return Value >= MinValue && Value <= MaxValue; 47 } 48 return false; 49 } 50 51 namespace { 52 53 enum RegisterKind { 54 GR32Reg, 55 GRH32Reg, 56 GR64Reg, 57 GR128Reg, 58 FP32Reg, 59 FP64Reg, 60 FP128Reg, 61 VR32Reg, 62 VR64Reg, 63 VR128Reg, 64 AR32Reg, 65 CR64Reg, 66 }; 67 68 enum MemoryKind { 69 BDMem, 70 BDXMem, 71 BDLMem, 72 BDRMem, 73 BDVMem 74 }; 75 76 class SystemZOperand : public MCParsedAsmOperand { 77 private: 78 enum OperandKind { 79 KindInvalid, 80 KindToken, 81 KindReg, 82 KindImm, 83 KindImmTLS, 84 KindMem 85 }; 86 87 OperandKind Kind; 88 SMLoc StartLoc, EndLoc; 89 90 // A string of length Length, starting at Data. 91 struct TokenOp { 92 const char *Data; 93 unsigned Length; 94 }; 95 96 // LLVM register Num, which has kind Kind. In some ways it might be 97 // easier for this class to have a register bank (general, floating-point 98 // or access) and a raw register number (0-15). This would postpone the 99 // interpretation of the operand to the add*() methods and avoid the need 100 // for context-dependent parsing. However, we do things the current way 101 // because of the virtual getReg() method, which needs to distinguish 102 // between (say) %r0 used as a single register and %r0 used as a pair. 103 // Context-dependent parsing can also give us slightly better error 104 // messages when invalid pairs like %r1 are used. 105 struct RegOp { 106 RegisterKind Kind; 107 unsigned Num; 108 }; 109 110 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 111 // MemKind says what type of memory this is and RegKind says what type 112 // the base register has (GR32Reg or GR64Reg). Length is the operand 113 // length for D(L,B)-style operands, otherwise it is null. 114 struct MemOp { 115 unsigned Base : 12; 116 unsigned Index : 12; 117 unsigned MemKind : 4; 118 unsigned RegKind : 4; 119 const MCExpr *Disp; 120 union { 121 const MCExpr *Imm; 122 unsigned Reg; 123 } Length; 124 }; 125 126 // Imm is an immediate operand, and Sym is an optional TLS symbol 127 // for use with a __tls_get_offset marker relocation. 128 struct ImmTLSOp { 129 const MCExpr *Imm; 130 const MCExpr *Sym; 131 }; 132 133 union { 134 TokenOp Token; 135 RegOp Reg; 136 const MCExpr *Imm; 137 ImmTLSOp ImmTLS; 138 MemOp Mem; 139 }; 140 141 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 142 // Add as immediates when possible. Null MCExpr = 0. 143 if (!Expr) 144 Inst.addOperand(MCOperand::createImm(0)); 145 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 146 Inst.addOperand(MCOperand::createImm(CE->getValue())); 147 else 148 Inst.addOperand(MCOperand::createExpr(Expr)); 149 } 150 151 public: 152 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 153 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 154 155 // Create particular kinds of operand. 156 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 157 SMLoc EndLoc) { 158 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 159 } 160 161 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 162 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 163 Op->Token.Data = Str.data(); 164 Op->Token.Length = Str.size(); 165 return Op; 166 } 167 168 static std::unique_ptr<SystemZOperand> 169 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 170 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 171 Op->Reg.Kind = Kind; 172 Op->Reg.Num = Num; 173 return Op; 174 } 175 176 static std::unique_ptr<SystemZOperand> 177 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 178 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 179 Op->Imm = Expr; 180 return Op; 181 } 182 183 static std::unique_ptr<SystemZOperand> 184 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 185 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 186 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 187 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 188 Op->Mem.MemKind = MemKind; 189 Op->Mem.RegKind = RegKind; 190 Op->Mem.Base = Base; 191 Op->Mem.Index = Index; 192 Op->Mem.Disp = Disp; 193 if (MemKind == BDLMem) 194 Op->Mem.Length.Imm = LengthImm; 195 if (MemKind == BDRMem) 196 Op->Mem.Length.Reg = LengthReg; 197 return Op; 198 } 199 200 static std::unique_ptr<SystemZOperand> 201 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 202 SMLoc StartLoc, SMLoc EndLoc) { 203 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 204 Op->ImmTLS.Imm = Imm; 205 Op->ImmTLS.Sym = Sym; 206 return Op; 207 } 208 209 // Token operands 210 bool isToken() const override { 211 return Kind == KindToken; 212 } 213 StringRef getToken() const { 214 assert(Kind == KindToken && "Not a token"); 215 return StringRef(Token.Data, Token.Length); 216 } 217 218 // Register operands. 219 bool isReg() const override { 220 return Kind == KindReg; 221 } 222 bool isReg(RegisterKind RegKind) const { 223 return Kind == KindReg && Reg.Kind == RegKind; 224 } 225 unsigned getReg() const override { 226 assert(Kind == KindReg && "Not a register"); 227 return Reg.Num; 228 } 229 230 // Immediate operands. 231 bool isImm() const override { 232 return Kind == KindImm; 233 } 234 bool isImm(int64_t MinValue, int64_t MaxValue) const { 235 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 236 } 237 const MCExpr *getImm() const { 238 assert(Kind == KindImm && "Not an immediate"); 239 return Imm; 240 } 241 242 // Immediate operands with optional TLS symbol. 243 bool isImmTLS() const { 244 return Kind == KindImmTLS; 245 } 246 247 const ImmTLSOp getImmTLS() const { 248 assert(Kind == KindImmTLS && "Not a TLS immediate"); 249 return ImmTLS; 250 } 251 252 // Memory operands. 253 bool isMem() const override { 254 return Kind == KindMem; 255 } 256 bool isMem(MemoryKind MemKind) const { 257 return (Kind == KindMem && 258 (Mem.MemKind == MemKind || 259 // A BDMem can be treated as a BDXMem in which the index 260 // register field is 0. 261 (Mem.MemKind == BDMem && MemKind == BDXMem))); 262 } 263 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 264 return isMem(MemKind) && Mem.RegKind == RegKind; 265 } 266 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 267 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff); 268 } 269 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 270 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287); 271 } 272 bool isMemDisp12Len4(RegisterKind RegKind) const { 273 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 274 } 275 bool isMemDisp12Len8(RegisterKind RegKind) const { 276 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 277 } 278 279 const MemOp& getMem() const { 280 assert(Kind == KindMem && "Not a Mem operand"); 281 return Mem; 282 } 283 284 // Override MCParsedAsmOperand. 285 SMLoc getStartLoc() const override { return StartLoc; } 286 SMLoc getEndLoc() const override { return EndLoc; } 287 void print(raw_ostream &OS) const override; 288 289 /// getLocRange - Get the range between the first and last token of this 290 /// operand. 291 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 292 293 // Used by the TableGen code to add particular types of operand 294 // to an instruction. 295 void addRegOperands(MCInst &Inst, unsigned N) const { 296 assert(N == 1 && "Invalid number of operands"); 297 Inst.addOperand(MCOperand::createReg(getReg())); 298 } 299 void addImmOperands(MCInst &Inst, unsigned N) const { 300 assert(N == 1 && "Invalid number of operands"); 301 addExpr(Inst, getImm()); 302 } 303 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 304 assert(N == 2 && "Invalid number of operands"); 305 assert(isMem(BDMem) && "Invalid operand type"); 306 Inst.addOperand(MCOperand::createReg(Mem.Base)); 307 addExpr(Inst, Mem.Disp); 308 } 309 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 310 assert(N == 3 && "Invalid number of operands"); 311 assert(isMem(BDXMem) && "Invalid operand type"); 312 Inst.addOperand(MCOperand::createReg(Mem.Base)); 313 addExpr(Inst, Mem.Disp); 314 Inst.addOperand(MCOperand::createReg(Mem.Index)); 315 } 316 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 317 assert(N == 3 && "Invalid number of operands"); 318 assert(isMem(BDLMem) && "Invalid operand type"); 319 Inst.addOperand(MCOperand::createReg(Mem.Base)); 320 addExpr(Inst, Mem.Disp); 321 addExpr(Inst, Mem.Length.Imm); 322 } 323 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 324 assert(N == 3 && "Invalid number of operands"); 325 assert(isMem(BDRMem) && "Invalid operand type"); 326 Inst.addOperand(MCOperand::createReg(Mem.Base)); 327 addExpr(Inst, Mem.Disp); 328 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 329 } 330 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 331 assert(N == 3 && "Invalid number of operands"); 332 assert(isMem(BDVMem) && "Invalid operand type"); 333 Inst.addOperand(MCOperand::createReg(Mem.Base)); 334 addExpr(Inst, Mem.Disp); 335 Inst.addOperand(MCOperand::createReg(Mem.Index)); 336 } 337 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 338 assert(N == 2 && "Invalid number of operands"); 339 assert(Kind == KindImmTLS && "Invalid operand type"); 340 addExpr(Inst, ImmTLS.Imm); 341 if (ImmTLS.Sym) 342 addExpr(Inst, ImmTLS.Sym); 343 } 344 345 // Used by the TableGen code to check for particular operand types. 346 bool isGR32() const { return isReg(GR32Reg); } 347 bool isGRH32() const { return isReg(GRH32Reg); } 348 bool isGRX32() const { return false; } 349 bool isGR64() const { return isReg(GR64Reg); } 350 bool isGR128() const { return isReg(GR128Reg); } 351 bool isADDR32() const { return isReg(GR32Reg); } 352 bool isADDR64() const { return isReg(GR64Reg); } 353 bool isADDR128() const { return false; } 354 bool isFP32() const { return isReg(FP32Reg); } 355 bool isFP64() const { return isReg(FP64Reg); } 356 bool isFP128() const { return isReg(FP128Reg); } 357 bool isVR32() const { return isReg(VR32Reg); } 358 bool isVR64() const { return isReg(VR64Reg); } 359 bool isVF128() const { return false; } 360 bool isVR128() const { return isReg(VR128Reg); } 361 bool isAR32() const { return isReg(AR32Reg); } 362 bool isCR64() const { return isReg(CR64Reg); } 363 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 364 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 365 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 366 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 367 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 368 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 369 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 370 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 371 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 372 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 373 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 374 bool isU1Imm() const { return isImm(0, 1); } 375 bool isU2Imm() const { return isImm(0, 3); } 376 bool isU3Imm() const { return isImm(0, 7); } 377 bool isU4Imm() const { return isImm(0, 15); } 378 bool isU6Imm() const { return isImm(0, 63); } 379 bool isU8Imm() const { return isImm(0, 255); } 380 bool isS8Imm() const { return isImm(-128, 127); } 381 bool isU12Imm() const { return isImm(0, 4095); } 382 bool isU16Imm() const { return isImm(0, 65535); } 383 bool isS16Imm() const { return isImm(-32768, 32767); } 384 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 385 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 386 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 387 }; 388 389 class SystemZAsmParser : public MCTargetAsmParser { 390 #define GET_ASSEMBLER_HEADER 391 #include "SystemZGenAsmMatcher.inc" 392 393 private: 394 MCAsmParser &Parser; 395 enum RegisterGroup { 396 RegGR, 397 RegFP, 398 RegV, 399 RegAR, 400 RegCR 401 }; 402 struct Register { 403 RegisterGroup Group; 404 unsigned Num; 405 SMLoc StartLoc, EndLoc; 406 }; 407 408 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 409 410 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 411 412 OperandMatchResultTy parseRegister(OperandVector &Operands, 413 RegisterKind Kind); 414 415 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 416 417 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 418 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 419 bool HasLength = false, bool HasVectorIndex = false); 420 bool parseAddressRegister(Register &Reg); 421 422 bool ParseDirectiveInsn(SMLoc L); 423 424 OperandMatchResultTy parseAddress(OperandVector &Operands, 425 MemoryKind MemKind, 426 RegisterKind RegKind); 427 428 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 429 int64_t MaxVal, bool AllowTLS); 430 431 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 432 433 // Both the hlasm and att variants still rely on the basic gnu asm 434 // format with respect to inputs, clobbers, outputs etc. 435 // 436 // However, calling the overriden getAssemblerDialect() method in 437 // AsmParser is problematic. It either returns the AssemblerDialect field 438 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 439 // unset, otherwise it returns the private AssemblerDialect field in 440 // AsmParser. 441 // 442 // The problematic part is because, we forcibly set the inline asm dialect 443 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 444 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 445 // not return the assembler dialect set in the respective MCAsmInfo instance. 446 // 447 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 448 // here, to get the "correct" assembler dialect, and use it in various 449 // functions. 450 unsigned getMAIAssemblerDialect() { 451 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 452 } 453 454 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 455 // or from 'a' through 'z', or '$', '_','#', or '@'. 456 inline bool isHLASMAlpha(char C) { 457 return isAlpha(C) || llvm::is_contained("_@#$", C); 458 } 459 460 // A digit in HLASM is a number from 0 to 9. 461 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 462 463 // Are we parsing using the AD_HLASM dialect? 464 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } 465 466 // Are we parsing using the AD_ATT dialect? 467 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } 468 469 public: 470 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 471 const MCInstrInfo &MII, 472 const MCTargetOptions &Options) 473 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 474 MCAsmParserExtension::Initialize(Parser); 475 476 // Alias the .word directive to .short. 477 parser.addAliasForDirective(".word", ".short"); 478 479 // Initialize the set of available features. 480 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 481 } 482 483 // Override MCTargetAsmParser. 484 bool ParseDirective(AsmToken DirectiveID) override; 485 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 486 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 487 bool RestoreOnFailure); 488 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 489 SMLoc &EndLoc) override; 490 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 491 SMLoc NameLoc, OperandVector &Operands) override; 492 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 493 OperandVector &Operands, MCStreamer &Out, 494 uint64_t &ErrorInfo, 495 bool MatchingInlineAsm) override; 496 bool isLabel(AsmToken &Token) override; 497 498 // Used by the TableGen code to parse particular operand types. 499 OperandMatchResultTy parseGR32(OperandVector &Operands) { 500 return parseRegister(Operands, GR32Reg); 501 } 502 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 503 return parseRegister(Operands, GRH32Reg); 504 } 505 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 506 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 507 } 508 OperandMatchResultTy parseGR64(OperandVector &Operands) { 509 return parseRegister(Operands, GR64Reg); 510 } 511 OperandMatchResultTy parseGR128(OperandVector &Operands) { 512 return parseRegister(Operands, GR128Reg); 513 } 514 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 515 // For the AsmParser, we will accept %r0 for ADDR32 as well. 516 return parseRegister(Operands, GR32Reg); 517 } 518 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 519 // For the AsmParser, we will accept %r0 for ADDR64 as well. 520 return parseRegister(Operands, GR64Reg); 521 } 522 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 523 llvm_unreachable("Shouldn't be used as an operand"); 524 } 525 OperandMatchResultTy parseFP32(OperandVector &Operands) { 526 return parseRegister(Operands, FP32Reg); 527 } 528 OperandMatchResultTy parseFP64(OperandVector &Operands) { 529 return parseRegister(Operands, FP64Reg); 530 } 531 OperandMatchResultTy parseFP128(OperandVector &Operands) { 532 return parseRegister(Operands, FP128Reg); 533 } 534 OperandMatchResultTy parseVR32(OperandVector &Operands) { 535 return parseRegister(Operands, VR32Reg); 536 } 537 OperandMatchResultTy parseVR64(OperandVector &Operands) { 538 return parseRegister(Operands, VR64Reg); 539 } 540 OperandMatchResultTy parseVF128(OperandVector &Operands) { 541 llvm_unreachable("Shouldn't be used as an operand"); 542 } 543 OperandMatchResultTy parseVR128(OperandVector &Operands) { 544 return parseRegister(Operands, VR128Reg); 545 } 546 OperandMatchResultTy parseAR32(OperandVector &Operands) { 547 return parseRegister(Operands, AR32Reg); 548 } 549 OperandMatchResultTy parseCR64(OperandVector &Operands) { 550 return parseRegister(Operands, CR64Reg); 551 } 552 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 553 return parseAnyRegister(Operands); 554 } 555 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 556 return parseAddress(Operands, BDMem, GR32Reg); 557 } 558 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 559 return parseAddress(Operands, BDMem, GR64Reg); 560 } 561 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 562 return parseAddress(Operands, BDXMem, GR64Reg); 563 } 564 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 565 return parseAddress(Operands, BDLMem, GR64Reg); 566 } 567 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 568 return parseAddress(Operands, BDRMem, GR64Reg); 569 } 570 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 571 return parseAddress(Operands, BDVMem, GR64Reg); 572 } 573 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 574 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 575 } 576 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 577 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 578 } 579 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 580 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 581 } 582 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 583 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 584 } 585 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 586 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 587 } 588 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 589 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 590 } 591 }; 592 593 } // end anonymous namespace 594 595 #define GET_REGISTER_MATCHER 596 #define GET_SUBTARGET_FEATURE_NAME 597 #define GET_MATCHER_IMPLEMENTATION 598 #define GET_MNEMONIC_SPELL_CHECKER 599 #include "SystemZGenAsmMatcher.inc" 600 601 // Used for the .insn directives; contains information needed to parse the 602 // operands in the directive. 603 struct InsnMatchEntry { 604 StringRef Format; 605 uint64_t Opcode; 606 int32_t NumOperands; 607 MatchClassKind OperandKinds[7]; 608 }; 609 610 // For equal_range comparison. 611 struct CompareInsn { 612 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 613 return LHS.Format < RHS; 614 } 615 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 616 return LHS < RHS.Format; 617 } 618 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 619 return LHS.Format < RHS.Format; 620 } 621 }; 622 623 // Table initializing information for parsing the .insn directive. 624 static struct InsnMatchEntry InsnMatchTable[] = { 625 /* Format, Opcode, NumOperands, OperandKinds */ 626 { "e", SystemZ::InsnE, 1, 627 { MCK_U16Imm } }, 628 { "ri", SystemZ::InsnRI, 3, 629 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 630 { "rie", SystemZ::InsnRIE, 4, 631 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 632 { "ril", SystemZ::InsnRIL, 3, 633 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 634 { "rilu", SystemZ::InsnRILU, 3, 635 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 636 { "ris", SystemZ::InsnRIS, 5, 637 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 638 { "rr", SystemZ::InsnRR, 3, 639 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 640 { "rre", SystemZ::InsnRRE, 3, 641 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 642 { "rrf", SystemZ::InsnRRF, 5, 643 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 644 { "rrs", SystemZ::InsnRRS, 5, 645 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 646 { "rs", SystemZ::InsnRS, 4, 647 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 648 { "rse", SystemZ::InsnRSE, 4, 649 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 650 { "rsi", SystemZ::InsnRSI, 4, 651 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 652 { "rsy", SystemZ::InsnRSY, 4, 653 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 654 { "rx", SystemZ::InsnRX, 3, 655 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 656 { "rxe", SystemZ::InsnRXE, 3, 657 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 658 { "rxf", SystemZ::InsnRXF, 4, 659 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 660 { "rxy", SystemZ::InsnRXY, 3, 661 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 662 { "s", SystemZ::InsnS, 2, 663 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 664 { "si", SystemZ::InsnSI, 3, 665 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 666 { "sil", SystemZ::InsnSIL, 3, 667 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 668 { "siy", SystemZ::InsnSIY, 3, 669 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 670 { "ss", SystemZ::InsnSS, 4, 671 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 672 { "sse", SystemZ::InsnSSE, 3, 673 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 674 { "ssf", SystemZ::InsnSSF, 4, 675 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 676 { "vri", SystemZ::InsnVRI, 6, 677 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 678 { "vrr", SystemZ::InsnVRR, 7, 679 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 680 MCK_U4Imm } }, 681 { "vrs", SystemZ::InsnVRS, 5, 682 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 683 { "vrv", SystemZ::InsnVRV, 4, 684 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 685 { "vrx", SystemZ::InsnVRX, 4, 686 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 687 { "vsi", SystemZ::InsnVSI, 4, 688 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 689 }; 690 691 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 692 if (!E) 693 return; 694 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 695 OS << *CE; 696 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 697 OS << *UE; 698 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 699 OS << *BE; 700 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 701 OS << *SRE; 702 else 703 OS << *E; 704 } 705 706 void SystemZOperand::print(raw_ostream &OS) const { 707 switch (Kind) { 708 case KindToken: 709 OS << "Token:" << getToken(); 710 break; 711 case KindReg: 712 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 713 break; 714 case KindImm: 715 OS << "Imm:"; 716 printMCExpr(getImm(), OS); 717 break; 718 case KindImmTLS: 719 OS << "ImmTLS:"; 720 printMCExpr(getImmTLS().Imm, OS); 721 if (getImmTLS().Sym) { 722 OS << ", "; 723 printMCExpr(getImmTLS().Sym, OS); 724 } 725 break; 726 case KindMem: { 727 const MemOp &Op = getMem(); 728 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 729 if (Op.Base) { 730 OS << "("; 731 if (Op.MemKind == BDLMem) 732 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 733 else if (Op.MemKind == BDRMem) 734 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 735 if (Op.Index) 736 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 737 OS << SystemZInstPrinter::getRegisterName(Op.Base); 738 OS << ")"; 739 } 740 break; 741 } 742 case KindInvalid: 743 break; 744 } 745 } 746 747 // Parse one register of the form %<prefix><number>. 748 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 749 Reg.StartLoc = Parser.getTok().getLoc(); 750 751 // Eat the % prefix. 752 if (Parser.getTok().isNot(AsmToken::Percent)) 753 return Error(Parser.getTok().getLoc(), "register expected"); 754 const AsmToken &PercentTok = Parser.getTok(); 755 Parser.Lex(); 756 757 // Expect a register name. 758 if (Parser.getTok().isNot(AsmToken::Identifier)) { 759 if (RestoreOnFailure) 760 getLexer().UnLex(PercentTok); 761 return Error(Reg.StartLoc, "invalid register"); 762 } 763 764 // Check that there's a prefix. 765 StringRef Name = Parser.getTok().getString(); 766 if (Name.size() < 2) { 767 if (RestoreOnFailure) 768 getLexer().UnLex(PercentTok); 769 return Error(Reg.StartLoc, "invalid register"); 770 } 771 char Prefix = Name[0]; 772 773 // Treat the rest of the register name as a register number. 774 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 775 if (RestoreOnFailure) 776 getLexer().UnLex(PercentTok); 777 return Error(Reg.StartLoc, "invalid register"); 778 } 779 780 // Look for valid combinations of prefix and number. 781 if (Prefix == 'r' && Reg.Num < 16) 782 Reg.Group = RegGR; 783 else if (Prefix == 'f' && Reg.Num < 16) 784 Reg.Group = RegFP; 785 else if (Prefix == 'v' && Reg.Num < 32) 786 Reg.Group = RegV; 787 else if (Prefix == 'a' && Reg.Num < 16) 788 Reg.Group = RegAR; 789 else if (Prefix == 'c' && Reg.Num < 16) 790 Reg.Group = RegCR; 791 else { 792 if (RestoreOnFailure) 793 getLexer().UnLex(PercentTok); 794 return Error(Reg.StartLoc, "invalid register"); 795 } 796 797 Reg.EndLoc = Parser.getTok().getLoc(); 798 Parser.Lex(); 799 return false; 800 } 801 802 // Parse a register of kind Kind and add it to Operands. 803 OperandMatchResultTy 804 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { 805 Register Reg; 806 RegisterGroup Group; 807 switch (Kind) { 808 case GR32Reg: 809 case GRH32Reg: 810 case GR64Reg: 811 case GR128Reg: 812 Group = RegGR; 813 break; 814 case FP32Reg: 815 case FP64Reg: 816 case FP128Reg: 817 Group = RegFP; 818 break; 819 case VR32Reg: 820 case VR64Reg: 821 case VR128Reg: 822 Group = RegV; 823 break; 824 case AR32Reg: 825 Group = RegAR; 826 break; 827 case CR64Reg: 828 Group = RegCR; 829 break; 830 } 831 832 // Handle register names of the form %<prefix><number> 833 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 834 if (parseRegister(Reg)) 835 return MatchOperand_ParseFail; 836 837 // Check the parsed register group "Reg.Group" with the expected "Group" 838 // Have to error out if user specified wrong prefix. 839 switch (Group) { 840 case RegGR: 841 case RegFP: 842 case RegAR: 843 case RegCR: 844 if (Group != Reg.Group) { 845 Error(Reg.StartLoc, "invalid operand for instruction"); 846 return MatchOperand_ParseFail; 847 } 848 break; 849 case RegV: 850 if (Reg.Group != RegV && Reg.Group != RegFP) { 851 Error(Reg.StartLoc, "invalid operand for instruction"); 852 return MatchOperand_ParseFail; 853 } 854 break; 855 } 856 } else if (Parser.getTok().is(AsmToken::Integer)) { 857 if (parseIntegerRegister(Reg, Group)) 858 return MatchOperand_ParseFail; 859 } 860 // Otherwise we didn't match a register operand. 861 else 862 return MatchOperand_NoMatch; 863 864 // Determine the LLVM register number according to Kind. 865 const unsigned *Regs; 866 switch (Kind) { 867 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 868 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 869 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 870 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 871 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 872 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 873 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 874 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 875 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 876 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 877 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 878 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 879 } 880 if (Regs[Reg.Num] == 0) { 881 Error(Reg.StartLoc, "invalid register pair"); 882 return MatchOperand_ParseFail; 883 } 884 885 Operands.push_back( 886 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 887 return MatchOperand_Success; 888 } 889 890 // Parse any type of register (including integers) and add it to Operands. 891 OperandMatchResultTy 892 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 893 SMLoc StartLoc = Parser.getTok().getLoc(); 894 895 // Handle integer values. 896 if (Parser.getTok().is(AsmToken::Integer)) { 897 const MCExpr *Register; 898 if (Parser.parseExpression(Register)) 899 return MatchOperand_ParseFail; 900 901 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 902 int64_t Value = CE->getValue(); 903 if (Value < 0 || Value > 15) { 904 Error(StartLoc, "invalid register"); 905 return MatchOperand_ParseFail; 906 } 907 } 908 909 SMLoc EndLoc = 910 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 911 912 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 913 } 914 else { 915 if (isParsingHLASM()) 916 return MatchOperand_NoMatch; 917 918 Register Reg; 919 if (parseRegister(Reg)) 920 return MatchOperand_ParseFail; 921 922 if (Reg.Num > 15) { 923 Error(StartLoc, "invalid register"); 924 return MatchOperand_ParseFail; 925 } 926 927 // Map to the correct register kind. 928 RegisterKind Kind; 929 unsigned RegNo; 930 if (Reg.Group == RegGR) { 931 Kind = GR64Reg; 932 RegNo = SystemZMC::GR64Regs[Reg.Num]; 933 } 934 else if (Reg.Group == RegFP) { 935 Kind = FP64Reg; 936 RegNo = SystemZMC::FP64Regs[Reg.Num]; 937 } 938 else if (Reg.Group == RegV) { 939 Kind = VR128Reg; 940 RegNo = SystemZMC::VR128Regs[Reg.Num]; 941 } 942 else if (Reg.Group == RegAR) { 943 Kind = AR32Reg; 944 RegNo = SystemZMC::AR32Regs[Reg.Num]; 945 } 946 else if (Reg.Group == RegCR) { 947 Kind = CR64Reg; 948 RegNo = SystemZMC::CR64Regs[Reg.Num]; 949 } 950 else { 951 return MatchOperand_ParseFail; 952 } 953 954 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 955 Reg.StartLoc, Reg.EndLoc)); 956 } 957 return MatchOperand_Success; 958 } 959 960 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 961 RegisterGroup Group) { 962 Reg.StartLoc = Parser.getTok().getLoc(); 963 // We have an integer token 964 const MCExpr *Register; 965 if (Parser.parseExpression(Register)) 966 return true; 967 968 const auto *CE = dyn_cast<MCConstantExpr>(Register); 969 if (!CE) 970 return true; 971 972 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 973 int64_t Value = CE->getValue(); 974 if (Value < 0 || Value > MaxRegNum) { 975 Error(Parser.getTok().getLoc(), "invalid register"); 976 return true; 977 } 978 979 // Assign the Register Number 980 Reg.Num = (unsigned)Value; 981 Reg.Group = Group; 982 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 983 984 // At this point, successfully parsed an integer register. 985 return false; 986 } 987 988 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 989 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 990 bool &HaveReg2, Register &Reg2, 991 const MCExpr *&Disp, const MCExpr *&Length, 992 bool HasLength, bool HasVectorIndex) { 993 // Parse the displacement, which must always be present. 994 if (getParser().parseExpression(Disp)) 995 return true; 996 997 // Parse the optional base and index. 998 HaveReg1 = false; 999 HaveReg2 = false; 1000 Length = nullptr; 1001 1002 // If we have a scenario as below: 1003 // vgef %v0, 0(0), 0 1004 // This is an example of a "BDVMem" instruction type. 1005 // 1006 // So when we parse this as an integer register, the register group 1007 // needs to be tied to "RegV". Usually when the prefix is passed in 1008 // as %<prefix><reg-number> its easy to check which group it should belong to 1009 // However, if we're passing in just the integer there's no real way to 1010 // "check" what register group it should belong to. 1011 // 1012 // When the user passes in the register as an integer, the user assumes that 1013 // the compiler is responsible for substituting it as the right kind of 1014 // register. Whereas, when the user specifies a "prefix", the onus is on 1015 // the user to make sure they pass in the right kind of register. 1016 // 1017 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1018 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1019 // (i.e. insn is of type BDVMem) is true. 1020 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1021 1022 if (getLexer().is(AsmToken::LParen)) { 1023 Parser.Lex(); 1024 1025 if (isParsingATT() && getLexer().is(AsmToken::Percent)) { 1026 // Parse the first register. 1027 HaveReg1 = true; 1028 if (parseRegister(Reg1)) 1029 return true; 1030 } 1031 // So if we have an integer as the first token in ([tok1], ..), it could: 1032 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1033 // instructions) 1034 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1035 else if (getLexer().is(AsmToken::Integer)) { 1036 if (HasLength) { 1037 // Instruction has a "Length" field, safe to parse the first token as 1038 // the "Length" field 1039 if (getParser().parseExpression(Length)) 1040 return true; 1041 } else { 1042 // Otherwise, if the instruction has no "Length" field, parse the 1043 // token as a "Register". We don't have to worry about whether the 1044 // instruction is invalid here, because the caller will take care of 1045 // error reporting. 1046 HaveReg1 = true; 1047 if (parseIntegerRegister(Reg1, RegGroup)) 1048 return true; 1049 } 1050 } else { 1051 // If its not an integer or a percent token, then if the instruction 1052 // is reported to have a "Length" then, parse it as "Length". 1053 if (HasLength) { 1054 if (getParser().parseExpression(Length)) 1055 return true; 1056 } 1057 } 1058 1059 // Check whether there's a second register. 1060 if (getLexer().is(AsmToken::Comma)) { 1061 Parser.Lex(); 1062 HaveReg2 = true; 1063 1064 if (getLexer().is(AsmToken::Integer)) { 1065 if (parseIntegerRegister(Reg2, RegGR)) 1066 return true; 1067 } else { 1068 if (isParsingATT() && parseRegister(Reg2)) 1069 return true; 1070 } 1071 } 1072 1073 // Consume the closing bracket. 1074 if (getLexer().isNot(AsmToken::RParen)) 1075 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1076 Parser.Lex(); 1077 } 1078 return false; 1079 } 1080 1081 // Verify that Reg is a valid address register (base or index). 1082 bool 1083 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1084 if (Reg.Group == RegV) { 1085 Error(Reg.StartLoc, "invalid use of vector addressing"); 1086 return true; 1087 } else if (Reg.Group != RegGR) { 1088 Error(Reg.StartLoc, "invalid address register"); 1089 return true; 1090 } 1091 return false; 1092 } 1093 1094 // Parse a memory operand and add it to Operands. The other arguments 1095 // are as above. 1096 OperandMatchResultTy 1097 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 1098 RegisterKind RegKind) { 1099 SMLoc StartLoc = Parser.getTok().getLoc(); 1100 unsigned Base = 0, Index = 0, LengthReg = 0; 1101 Register Reg1, Reg2; 1102 bool HaveReg1, HaveReg2; 1103 const MCExpr *Disp; 1104 const MCExpr *Length; 1105 1106 bool HasLength = (MemKind == BDLMem) ? true : false; 1107 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1108 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1109 HasVectorIndex)) 1110 return MatchOperand_ParseFail; 1111 1112 const unsigned *Regs; 1113 switch (RegKind) { 1114 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1115 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1116 default: llvm_unreachable("invalid RegKind"); 1117 } 1118 1119 switch (MemKind) { 1120 case BDMem: 1121 // If we have Reg1, it must be an address register. 1122 if (HaveReg1) { 1123 if (parseAddressRegister(Reg1)) 1124 return MatchOperand_ParseFail; 1125 Base = Regs[Reg1.Num]; 1126 } 1127 // There must be no Reg2. 1128 if (HaveReg2) { 1129 Error(StartLoc, "invalid use of indexed addressing"); 1130 return MatchOperand_ParseFail; 1131 } 1132 break; 1133 case BDXMem: 1134 // If we have Reg1, it must be an address register. 1135 if (HaveReg1) { 1136 if (parseAddressRegister(Reg1)) 1137 return MatchOperand_ParseFail; 1138 // If the are two registers, the first one is the index and the 1139 // second is the base. 1140 if (HaveReg2) 1141 Index = Regs[Reg1.Num]; 1142 else 1143 Base = Regs[Reg1.Num]; 1144 } 1145 // If we have Reg2, it must be an address register. 1146 if (HaveReg2) { 1147 if (parseAddressRegister(Reg2)) 1148 return MatchOperand_ParseFail; 1149 Base = Regs[Reg2.Num]; 1150 } 1151 break; 1152 case BDLMem: 1153 // If we have Reg2, it must be an address register. 1154 if (HaveReg2) { 1155 if (parseAddressRegister(Reg2)) 1156 return MatchOperand_ParseFail; 1157 Base = Regs[Reg2.Num]; 1158 } 1159 // We cannot support base+index addressing. 1160 if (HaveReg1 && HaveReg2) { 1161 Error(StartLoc, "invalid use of indexed addressing"); 1162 return MatchOperand_ParseFail; 1163 } 1164 // We must have a length. 1165 if (!Length) { 1166 Error(StartLoc, "missing length in address"); 1167 return MatchOperand_ParseFail; 1168 } 1169 break; 1170 case BDRMem: 1171 // We must have Reg1, and it must be a GPR. 1172 if (!HaveReg1 || Reg1.Group != RegGR) { 1173 Error(StartLoc, "invalid operand for instruction"); 1174 return MatchOperand_ParseFail; 1175 } 1176 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1177 // If we have Reg2, it must be an address register. 1178 if (HaveReg2) { 1179 if (parseAddressRegister(Reg2)) 1180 return MatchOperand_ParseFail; 1181 Base = Regs[Reg2.Num]; 1182 } 1183 break; 1184 case BDVMem: 1185 // We must have Reg1, and it must be a vector register. 1186 if (!HaveReg1 || Reg1.Group != RegV) { 1187 Error(StartLoc, "vector index required in address"); 1188 return MatchOperand_ParseFail; 1189 } 1190 Index = SystemZMC::VR128Regs[Reg1.Num]; 1191 // If we have Reg2, it must be an address register. 1192 if (HaveReg2) { 1193 if (parseAddressRegister(Reg2)) 1194 return MatchOperand_ParseFail; 1195 Base = Regs[Reg2.Num]; 1196 } 1197 break; 1198 } 1199 1200 SMLoc EndLoc = 1201 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1202 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1203 Index, Length, LengthReg, 1204 StartLoc, EndLoc)); 1205 return MatchOperand_Success; 1206 } 1207 1208 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1209 StringRef IDVal = DirectiveID.getIdentifier(); 1210 1211 if (IDVal == ".insn") 1212 return ParseDirectiveInsn(DirectiveID.getLoc()); 1213 1214 return true; 1215 } 1216 1217 /// ParseDirectiveInsn 1218 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1219 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1220 MCAsmParser &Parser = getParser(); 1221 1222 // Expect instruction format as identifier. 1223 StringRef Format; 1224 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1225 if (Parser.parseIdentifier(Format)) 1226 return Error(ErrorLoc, "expected instruction format"); 1227 1228 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1229 1230 // Find entry for this format in InsnMatchTable. 1231 auto EntryRange = 1232 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1233 Format, CompareInsn()); 1234 1235 // If first == second, couldn't find a match in the table. 1236 if (EntryRange.first == EntryRange.second) 1237 return Error(ErrorLoc, "unrecognized format"); 1238 1239 struct InsnMatchEntry *Entry = EntryRange.first; 1240 1241 // Format should match from equal_range. 1242 assert(Entry->Format == Format); 1243 1244 // Parse the following operands using the table's information. 1245 for (int i = 0; i < Entry->NumOperands; i++) { 1246 MatchClassKind Kind = Entry->OperandKinds[i]; 1247 1248 SMLoc StartLoc = Parser.getTok().getLoc(); 1249 1250 // Always expect commas as separators for operands. 1251 if (getLexer().isNot(AsmToken::Comma)) 1252 return Error(StartLoc, "unexpected token in directive"); 1253 Lex(); 1254 1255 // Parse operands. 1256 OperandMatchResultTy ResTy; 1257 if (Kind == MCK_AnyReg) 1258 ResTy = parseAnyReg(Operands); 1259 else if (Kind == MCK_VR128) 1260 ResTy = parseVR128(Operands); 1261 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1262 ResTy = parseBDXAddr64(Operands); 1263 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1264 ResTy = parseBDAddr64(Operands); 1265 else if (Kind == MCK_BDVAddr64Disp12) 1266 ResTy = parseBDVAddr64(Operands); 1267 else if (Kind == MCK_PCRel32) 1268 ResTy = parsePCRel32(Operands); 1269 else if (Kind == MCK_PCRel16) 1270 ResTy = parsePCRel16(Operands); 1271 else { 1272 // Only remaining operand kind is an immediate. 1273 const MCExpr *Expr; 1274 SMLoc StartLoc = Parser.getTok().getLoc(); 1275 1276 // Expect immediate expression. 1277 if (Parser.parseExpression(Expr)) 1278 return Error(StartLoc, "unexpected token in directive"); 1279 1280 SMLoc EndLoc = 1281 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1282 1283 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1284 ResTy = MatchOperand_Success; 1285 } 1286 1287 if (ResTy != MatchOperand_Success) 1288 return true; 1289 } 1290 1291 // Build the instruction with the parsed operands. 1292 MCInst Inst = MCInstBuilder(Entry->Opcode); 1293 1294 for (size_t i = 0; i < Operands.size(); i++) { 1295 MCParsedAsmOperand &Operand = *Operands[i]; 1296 MatchClassKind Kind = Entry->OperandKinds[i]; 1297 1298 // Verify operand. 1299 unsigned Res = validateOperandClass(Operand, Kind); 1300 if (Res != Match_Success) 1301 return Error(Operand.getStartLoc(), "unexpected operand type"); 1302 1303 // Add operands to instruction. 1304 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1305 if (ZOperand.isReg()) 1306 ZOperand.addRegOperands(Inst, 1); 1307 else if (ZOperand.isMem(BDMem)) 1308 ZOperand.addBDAddrOperands(Inst, 2); 1309 else if (ZOperand.isMem(BDXMem)) 1310 ZOperand.addBDXAddrOperands(Inst, 3); 1311 else if (ZOperand.isMem(BDVMem)) 1312 ZOperand.addBDVAddrOperands(Inst, 3); 1313 else if (ZOperand.isImm()) 1314 ZOperand.addImmOperands(Inst, 1); 1315 else 1316 llvm_unreachable("unexpected operand type"); 1317 } 1318 1319 // Emit as a regular instruction. 1320 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1321 1322 return false; 1323 } 1324 1325 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1326 SMLoc &EndLoc, bool RestoreOnFailure) { 1327 Register Reg; 1328 if (parseRegister(Reg, RestoreOnFailure)) 1329 return true; 1330 if (Reg.Group == RegGR) 1331 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1332 else if (Reg.Group == RegFP) 1333 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1334 else if (Reg.Group == RegV) 1335 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1336 else if (Reg.Group == RegAR) 1337 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1338 else if (Reg.Group == RegCR) 1339 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1340 StartLoc = Reg.StartLoc; 1341 EndLoc = Reg.EndLoc; 1342 return false; 1343 } 1344 1345 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1346 SMLoc &EndLoc) { 1347 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1348 } 1349 1350 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo, 1351 SMLoc &StartLoc, 1352 SMLoc &EndLoc) { 1353 bool Result = 1354 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1355 bool PendingErrors = getParser().hasPendingError(); 1356 getParser().clearPendingErrors(); 1357 if (PendingErrors) 1358 return MatchOperand_ParseFail; 1359 if (Result) 1360 return MatchOperand_NoMatch; 1361 return MatchOperand_Success; 1362 } 1363 1364 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1365 StringRef Name, SMLoc NameLoc, 1366 OperandVector &Operands) { 1367 1368 // Apply mnemonic aliases first, before doing anything else, in 1369 // case the target uses it. 1370 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1371 1372 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1373 1374 // Read the remaining operands. 1375 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1376 // Read the first operand. 1377 if (parseOperand(Operands, Name)) { 1378 return true; 1379 } 1380 1381 // Read any subsequent operands. 1382 while (getLexer().is(AsmToken::Comma)) { 1383 Parser.Lex(); 1384 1385 if (isParsingHLASM() && getLexer().is(AsmToken::Space)) 1386 return Error( 1387 Parser.getTok().getLoc(), 1388 "No space allowed between comma that separates operand entries"); 1389 1390 if (parseOperand(Operands, Name)) { 1391 return true; 1392 } 1393 } 1394 1395 // Under the HLASM variant, we could have the remark field 1396 // The remark field occurs after the operation entries 1397 // There is a space that separates the operation entries and the 1398 // remark field. 1399 if (isParsingHLASM() && getTok().is(AsmToken::Space)) { 1400 // We've confirmed that there is a Remark field. 1401 StringRef Remark(getLexer().LexUntilEndOfStatement()); 1402 Parser.Lex(); 1403 1404 // If there is nothing after the space, then there is nothing to emit 1405 // We could have a situation as this: 1406 // " \n" 1407 // After lexing above, we will have 1408 // "\n" 1409 // This isn't an explicit remark field, so we don't have to output 1410 // this as a comment. 1411 if (Remark.size()) 1412 // Output the entire Remarks Field as a comment 1413 getStreamer().AddComment(Remark); 1414 } 1415 1416 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1417 SMLoc Loc = getLexer().getLoc(); 1418 return Error(Loc, "unexpected token in argument list"); 1419 } 1420 } 1421 1422 // Consume the EndOfStatement. 1423 Parser.Lex(); 1424 return false; 1425 } 1426 1427 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1428 StringRef Mnemonic) { 1429 // Check if the current operand has a custom associated parser, if so, try to 1430 // custom parse the operand, or fallback to the general approach. Force all 1431 // features to be available during the operand check, or else we will fail to 1432 // find the custom parser, and then we will later get an InvalidOperand error 1433 // instead of a MissingFeature errror. 1434 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1435 FeatureBitset All; 1436 All.set(); 1437 setAvailableFeatures(All); 1438 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1439 setAvailableFeatures(AvailableFeatures); 1440 if (ResTy == MatchOperand_Success) 1441 return false; 1442 1443 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1444 // there was a match, but an error occurred, in which case, just return that 1445 // the operand parsing failed. 1446 if (ResTy == MatchOperand_ParseFail) 1447 return true; 1448 1449 // Check for a register. All real register operands should have used 1450 // a context-dependent parse routine, which gives the required register 1451 // class. The code is here to mop up other cases, like those where 1452 // the instruction isn't recognized. 1453 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 1454 Register Reg; 1455 if (parseRegister(Reg)) 1456 return true; 1457 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1458 return false; 1459 } 1460 1461 // The only other type of operand is an immediate or address. As above, 1462 // real address operands should have used a context-dependent parse routine, 1463 // so we treat any plain expression as an immediate. 1464 SMLoc StartLoc = Parser.getTok().getLoc(); 1465 Register Reg1, Reg2; 1466 bool HaveReg1, HaveReg2; 1467 const MCExpr *Expr; 1468 const MCExpr *Length; 1469 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1470 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1471 return true; 1472 // If the register combination is not valid for any instruction, reject it. 1473 // Otherwise, fall back to reporting an unrecognized instruction. 1474 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1475 && parseAddressRegister(Reg1)) 1476 return true; 1477 if (HaveReg2 && parseAddressRegister(Reg2)) 1478 return true; 1479 1480 SMLoc EndLoc = 1481 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1482 if (HaveReg1 || HaveReg2 || Length) 1483 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1484 else 1485 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1486 return false; 1487 } 1488 1489 static std::string SystemZMnemonicSpellCheck(StringRef S, 1490 const FeatureBitset &FBS, 1491 unsigned VariantID = 0); 1492 1493 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1494 OperandVector &Operands, 1495 MCStreamer &Out, 1496 uint64_t &ErrorInfo, 1497 bool MatchingInlineAsm) { 1498 MCInst Inst; 1499 unsigned MatchResult; 1500 1501 unsigned Dialect = getMAIAssemblerDialect(); 1502 1503 FeatureBitset MissingFeatures; 1504 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1505 MatchingInlineAsm, Dialect); 1506 switch (MatchResult) { 1507 case Match_Success: 1508 Inst.setLoc(IDLoc); 1509 Out.emitInstruction(Inst, getSTI()); 1510 return false; 1511 1512 case Match_MissingFeature: { 1513 assert(MissingFeatures.any() && "Unknown missing feature!"); 1514 // Special case the error message for the very common case where only 1515 // a single subtarget feature is missing 1516 std::string Msg = "instruction requires:"; 1517 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1518 if (MissingFeatures[I]) { 1519 Msg += " "; 1520 Msg += getSubtargetFeatureName(I); 1521 } 1522 } 1523 return Error(IDLoc, Msg); 1524 } 1525 1526 case Match_InvalidOperand: { 1527 SMLoc ErrorLoc = IDLoc; 1528 if (ErrorInfo != ~0ULL) { 1529 if (ErrorInfo >= Operands.size()) 1530 return Error(IDLoc, "too few operands for instruction"); 1531 1532 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1533 if (ErrorLoc == SMLoc()) 1534 ErrorLoc = IDLoc; 1535 } 1536 return Error(ErrorLoc, "invalid operand for instruction"); 1537 } 1538 1539 case Match_MnemonicFail: { 1540 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1541 std::string Suggestion = SystemZMnemonicSpellCheck( 1542 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1543 return Error(IDLoc, "invalid instruction" + Suggestion, 1544 ((SystemZOperand &)*Operands[0]).getLocRange()); 1545 } 1546 } 1547 1548 llvm_unreachable("Unexpected match type"); 1549 } 1550 1551 OperandMatchResultTy 1552 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1553 int64_t MaxVal, bool AllowTLS) { 1554 MCContext &Ctx = getContext(); 1555 MCStreamer &Out = getStreamer(); 1556 const MCExpr *Expr; 1557 SMLoc StartLoc = Parser.getTok().getLoc(); 1558 if (getParser().parseExpression(Expr)) 1559 return MatchOperand_NoMatch; 1560 1561 auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool { 1562 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1563 int64_t Value = CE->getValue(); 1564 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1565 return true; 1566 } 1567 return false; 1568 }; 1569 1570 // For consistency with the GNU assembler, treat immediates as offsets 1571 // from ".". 1572 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1573 if (isParsingHLASM()) { 1574 Error(StartLoc, "Expected PC-relative expression"); 1575 return MatchOperand_ParseFail; 1576 } 1577 if (isOutOfRangeConstant(CE)) { 1578 Error(StartLoc, "offset out of range"); 1579 return MatchOperand_ParseFail; 1580 } 1581 int64_t Value = CE->getValue(); 1582 MCSymbol *Sym = Ctx.createTempSymbol(); 1583 Out.emitLabel(Sym); 1584 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1585 Ctx); 1586 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1587 } 1588 1589 // For consistency with the GNU assembler, conservatively assume that a 1590 // constant offset must by itself be within the given size range. 1591 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1592 if (isOutOfRangeConstant(BE->getLHS()) || 1593 isOutOfRangeConstant(BE->getRHS())) { 1594 Error(StartLoc, "offset out of range"); 1595 return MatchOperand_ParseFail; 1596 } 1597 1598 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1599 const MCExpr *Sym = nullptr; 1600 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1601 Parser.Lex(); 1602 1603 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1604 Error(Parser.getTok().getLoc(), "unexpected token"); 1605 return MatchOperand_ParseFail; 1606 } 1607 1608 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1609 StringRef Name = Parser.getTok().getString(); 1610 if (Name == "tls_gdcall") 1611 Kind = MCSymbolRefExpr::VK_TLSGD; 1612 else if (Name == "tls_ldcall") 1613 Kind = MCSymbolRefExpr::VK_TLSLDM; 1614 else { 1615 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1616 return MatchOperand_ParseFail; 1617 } 1618 Parser.Lex(); 1619 1620 if (Parser.getTok().isNot(AsmToken::Colon)) { 1621 Error(Parser.getTok().getLoc(), "unexpected token"); 1622 return MatchOperand_ParseFail; 1623 } 1624 Parser.Lex(); 1625 1626 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1627 Error(Parser.getTok().getLoc(), "unexpected token"); 1628 return MatchOperand_ParseFail; 1629 } 1630 1631 StringRef Identifier = Parser.getTok().getString(); 1632 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1633 Kind, Ctx); 1634 Parser.Lex(); 1635 } 1636 1637 SMLoc EndLoc = 1638 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1639 1640 if (AllowTLS) 1641 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1642 StartLoc, EndLoc)); 1643 else 1644 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1645 1646 return MatchOperand_Success; 1647 } 1648 1649 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1650 if (isParsingATT()) 1651 return true; 1652 1653 // HLASM labels are ordinary symbols. 1654 // An HLASM label always starts at column 1. 1655 // An ordinary symbol syntax is laid out as follows: 1656 // Rules: 1657 // 1. Has to start with an "alphabetic character". Can be followed by up to 1658 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1659 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1660 // or '$', '_', '#', or '@' 1661 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1662 // are all treated as the same symbol. However, the processing for the case 1663 // folding will not be done in this function. 1664 StringRef RawLabel = Token.getString(); 1665 SMLoc Loc = Token.getLoc(); 1666 1667 // An HLASM label cannot be empty. 1668 if (!RawLabel.size()) 1669 return !Error(Loc, "HLASM Label cannot be empty"); 1670 1671 // An HLASM label cannot exceed greater than 63 characters. 1672 if (RawLabel.size() > 63) 1673 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1674 1675 // A label must start with an "alphabetic character". 1676 if (!isHLASMAlpha(RawLabel[0])) 1677 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1678 "character or the underscore character"); 1679 1680 // Now, we've established that the length is valid 1681 // and the first character is alphabetic. 1682 // Check whether remaining string is alphanumeric. 1683 for (unsigned I = 1; I < RawLabel.size(); ++I) 1684 if (!isHLASMAlnum(RawLabel[I])) 1685 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1686 1687 return true; 1688 } 1689 1690 // Force static initialization. 1691 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1692 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1693 } 1694