xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCAsmInfo.h"
11 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "SystemZTargetStreamer.h"
13 #include "TargetInfo/SystemZTargetInfo.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstBuilder.h"
22 #include "llvm/MC/MCParser/MCAsmLexer.h"
23 #include "llvm/MC/MCParser/MCAsmParser.h"
24 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
25 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
26 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
27 #include "llvm/MC/MCStreamer.h"
28 #include "llvm/MC/MCSubtargetInfo.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/SMLoc.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <memory>
39 #include <string>
40 
41 using namespace llvm;
42 
43 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol
44 // is true any MCExpr is accepted (address displacement).
45 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue,
46                     bool AllowSymbol = false) {
47   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
48     int64_t Value = CE->getValue();
49     return Value >= MinValue && Value <= MaxValue;
50   }
51   return AllowSymbol;
52 }
53 
54 namespace {
55 
56 enum RegisterKind {
57   GR32Reg,
58   GRH32Reg,
59   GR64Reg,
60   GR128Reg,
61   FP32Reg,
62   FP64Reg,
63   FP128Reg,
64   VR32Reg,
65   VR64Reg,
66   VR128Reg,
67   AR32Reg,
68   CR64Reg,
69 };
70 
71 enum MemoryKind {
72   BDMem,
73   BDXMem,
74   BDLMem,
75   BDRMem,
76   BDVMem
77 };
78 
79 class SystemZOperand : public MCParsedAsmOperand {
80 private:
81   enum OperandKind {
82     KindInvalid,
83     KindToken,
84     KindReg,
85     KindImm,
86     KindImmTLS,
87     KindMem
88   };
89 
90   OperandKind Kind;
91   SMLoc StartLoc, EndLoc;
92 
93   // A string of length Length, starting at Data.
94   struct TokenOp {
95     const char *Data;
96     unsigned Length;
97   };
98 
99   // LLVM register Num, which has kind Kind.  In some ways it might be
100   // easier for this class to have a register bank (general, floating-point
101   // or access) and a raw register number (0-15).  This would postpone the
102   // interpretation of the operand to the add*() methods and avoid the need
103   // for context-dependent parsing.  However, we do things the current way
104   // because of the virtual getReg() method, which needs to distinguish
105   // between (say) %r0 used as a single register and %r0 used as a pair.
106   // Context-dependent parsing can also give us slightly better error
107   // messages when invalid pairs like %r1 are used.
108   struct RegOp {
109     RegisterKind Kind;
110     unsigned Num;
111   };
112 
113   // Base + Disp + Index, where Base and Index are LLVM registers or 0.
114   // MemKind says what type of memory this is and RegKind says what type
115   // the base register has (GR32Reg or GR64Reg).  Length is the operand
116   // length for D(L,B)-style operands, otherwise it is null.
117   struct MemOp {
118     unsigned Base : 12;
119     unsigned Index : 12;
120     unsigned MemKind : 4;
121     unsigned RegKind : 4;
122     const MCExpr *Disp;
123     union {
124       const MCExpr *Imm;
125       unsigned Reg;
126     } Length;
127   };
128 
129   // Imm is an immediate operand, and Sym is an optional TLS symbol
130   // for use with a __tls_get_offset marker relocation.
131   struct ImmTLSOp {
132     const MCExpr *Imm;
133     const MCExpr *Sym;
134   };
135 
136   union {
137     TokenOp Token;
138     RegOp Reg;
139     const MCExpr *Imm;
140     ImmTLSOp ImmTLS;
141     MemOp Mem;
142   };
143 
144   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
145     // Add as immediates when possible.  Null MCExpr = 0.
146     if (!Expr)
147       Inst.addOperand(MCOperand::createImm(0));
148     else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
149       Inst.addOperand(MCOperand::createImm(CE->getValue()));
150     else
151       Inst.addOperand(MCOperand::createExpr(Expr));
152   }
153 
154 public:
155   SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
156       : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
157 
158   // Create particular kinds of operand.
159   static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
160                                                        SMLoc EndLoc) {
161     return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
162   }
163 
164   static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
165     auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
166     Op->Token.Data = Str.data();
167     Op->Token.Length = Str.size();
168     return Op;
169   }
170 
171   static std::unique_ptr<SystemZOperand>
172   createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
173     auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
174     Op->Reg.Kind = Kind;
175     Op->Reg.Num = Num;
176     return Op;
177   }
178 
179   static std::unique_ptr<SystemZOperand>
180   createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
181     auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
182     Op->Imm = Expr;
183     return Op;
184   }
185 
186   static std::unique_ptr<SystemZOperand>
187   createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
188             const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
189             unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
190     auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
191     Op->Mem.MemKind = MemKind;
192     Op->Mem.RegKind = RegKind;
193     Op->Mem.Base = Base;
194     Op->Mem.Index = Index;
195     Op->Mem.Disp = Disp;
196     if (MemKind == BDLMem)
197       Op->Mem.Length.Imm = LengthImm;
198     if (MemKind == BDRMem)
199       Op->Mem.Length.Reg = LengthReg;
200     return Op;
201   }
202 
203   static std::unique_ptr<SystemZOperand>
204   createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
205                SMLoc StartLoc, SMLoc EndLoc) {
206     auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
207     Op->ImmTLS.Imm = Imm;
208     Op->ImmTLS.Sym = Sym;
209     return Op;
210   }
211 
212   // Token operands
213   bool isToken() const override {
214     return Kind == KindToken;
215   }
216   StringRef getToken() const {
217     assert(Kind == KindToken && "Not a token");
218     return StringRef(Token.Data, Token.Length);
219   }
220 
221   // Register operands.
222   bool isReg() const override {
223     return Kind == KindReg;
224   }
225   bool isReg(RegisterKind RegKind) const {
226     return Kind == KindReg && Reg.Kind == RegKind;
227   }
228   unsigned getReg() const override {
229     assert(Kind == KindReg && "Not a register");
230     return Reg.Num;
231   }
232 
233   // Immediate operands.
234   bool isImm() const override {
235     return Kind == KindImm;
236   }
237   bool isImm(int64_t MinValue, int64_t MaxValue) const {
238     return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
239   }
240   const MCExpr *getImm() const {
241     assert(Kind == KindImm && "Not an immediate");
242     return Imm;
243   }
244 
245   // Immediate operands with optional TLS symbol.
246   bool isImmTLS() const {
247     return Kind == KindImmTLS;
248   }
249 
250   const ImmTLSOp getImmTLS() const {
251     assert(Kind == KindImmTLS && "Not a TLS immediate");
252     return ImmTLS;
253   }
254 
255   // Memory operands.
256   bool isMem() const override {
257     return Kind == KindMem;
258   }
259   bool isMem(MemoryKind MemKind) const {
260     return (Kind == KindMem &&
261             (Mem.MemKind == MemKind ||
262              // A BDMem can be treated as a BDXMem in which the index
263              // register field is 0.
264              (Mem.MemKind == BDMem && MemKind == BDXMem)));
265   }
266   bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
267     return isMem(MemKind) && Mem.RegKind == RegKind;
268   }
269   bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
270     return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true);
271   }
272   bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
273     return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true);
274   }
275   bool isMemDisp12Len4(RegisterKind RegKind) const {
276     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
277   }
278   bool isMemDisp12Len8(RegisterKind RegKind) const {
279     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
280   }
281 
282   const MemOp& getMem() const {
283     assert(Kind == KindMem && "Not a Mem operand");
284     return Mem;
285   }
286 
287   // Override MCParsedAsmOperand.
288   SMLoc getStartLoc() const override { return StartLoc; }
289   SMLoc getEndLoc() const override { return EndLoc; }
290   void print(raw_ostream &OS) const override;
291 
292   /// getLocRange - Get the range between the first and last token of this
293   /// operand.
294   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
295 
296   // Used by the TableGen code to add particular types of operand
297   // to an instruction.
298   void addRegOperands(MCInst &Inst, unsigned N) const {
299     assert(N == 1 && "Invalid number of operands");
300     Inst.addOperand(MCOperand::createReg(getReg()));
301   }
302   void addImmOperands(MCInst &Inst, unsigned N) const {
303     assert(N == 1 && "Invalid number of operands");
304     addExpr(Inst, getImm());
305   }
306   void addBDAddrOperands(MCInst &Inst, unsigned N) const {
307     assert(N == 2 && "Invalid number of operands");
308     assert(isMem(BDMem) && "Invalid operand type");
309     Inst.addOperand(MCOperand::createReg(Mem.Base));
310     addExpr(Inst, Mem.Disp);
311   }
312   void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
313     assert(N == 3 && "Invalid number of operands");
314     assert(isMem(BDXMem) && "Invalid operand type");
315     Inst.addOperand(MCOperand::createReg(Mem.Base));
316     addExpr(Inst, Mem.Disp);
317     Inst.addOperand(MCOperand::createReg(Mem.Index));
318   }
319   void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
320     assert(N == 3 && "Invalid number of operands");
321     assert(isMem(BDLMem) && "Invalid operand type");
322     Inst.addOperand(MCOperand::createReg(Mem.Base));
323     addExpr(Inst, Mem.Disp);
324     addExpr(Inst, Mem.Length.Imm);
325   }
326   void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
327     assert(N == 3 && "Invalid number of operands");
328     assert(isMem(BDRMem) && "Invalid operand type");
329     Inst.addOperand(MCOperand::createReg(Mem.Base));
330     addExpr(Inst, Mem.Disp);
331     Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
332   }
333   void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
334     assert(N == 3 && "Invalid number of operands");
335     assert(isMem(BDVMem) && "Invalid operand type");
336     Inst.addOperand(MCOperand::createReg(Mem.Base));
337     addExpr(Inst, Mem.Disp);
338     Inst.addOperand(MCOperand::createReg(Mem.Index));
339   }
340   void addImmTLSOperands(MCInst &Inst, unsigned N) const {
341     assert(N == 2 && "Invalid number of operands");
342     assert(Kind == KindImmTLS && "Invalid operand type");
343     addExpr(Inst, ImmTLS.Imm);
344     if (ImmTLS.Sym)
345       addExpr(Inst, ImmTLS.Sym);
346   }
347 
348   // Used by the TableGen code to check for particular operand types.
349   bool isGR32() const { return isReg(GR32Reg); }
350   bool isGRH32() const { return isReg(GRH32Reg); }
351   bool isGRX32() const { return false; }
352   bool isGR64() const { return isReg(GR64Reg); }
353   bool isGR128() const { return isReg(GR128Reg); }
354   bool isADDR32() const { return isReg(GR32Reg); }
355   bool isADDR64() const { return isReg(GR64Reg); }
356   bool isADDR128() const { return false; }
357   bool isFP32() const { return isReg(FP32Reg); }
358   bool isFP64() const { return isReg(FP64Reg); }
359   bool isFP128() const { return isReg(FP128Reg); }
360   bool isVR32() const { return isReg(VR32Reg); }
361   bool isVR64() const { return isReg(VR64Reg); }
362   bool isVF128() const { return false; }
363   bool isVR128() const { return isReg(VR128Reg); }
364   bool isAR32() const { return isReg(AR32Reg); }
365   bool isCR64() const { return isReg(CR64Reg); }
366   bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
367   bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
368   bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
369   bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
370   bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
371   bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
372   bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
373   bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
374   bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
375   bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
376   bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
377   bool isU1Imm() const { return isImm(0, 1); }
378   bool isU2Imm() const { return isImm(0, 3); }
379   bool isU3Imm() const { return isImm(0, 7); }
380   bool isU4Imm() const { return isImm(0, 15); }
381   bool isU6Imm() const { return isImm(0, 63); }
382   bool isU8Imm() const { return isImm(0, 255); }
383   bool isS8Imm() const { return isImm(-128, 127); }
384   bool isU12Imm() const { return isImm(0, 4095); }
385   bool isU16Imm() const { return isImm(0, 65535); }
386   bool isS16Imm() const { return isImm(-32768, 32767); }
387   bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
388   bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
389   bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
390 };
391 
392 class SystemZAsmParser : public MCTargetAsmParser {
393 #define GET_ASSEMBLER_HEADER
394 #include "SystemZGenAsmMatcher.inc"
395 
396 private:
397   MCAsmParser &Parser;
398   enum RegisterGroup {
399     RegGR,
400     RegFP,
401     RegV,
402     RegAR,
403     RegCR
404   };
405   struct Register {
406     RegisterGroup Group;
407     unsigned Num;
408     SMLoc StartLoc, EndLoc;
409   };
410 
411   SystemZTargetStreamer &getTargetStreamer() {
412     assert(getParser().getStreamer().getTargetStreamer() &&
413            "do not have a target streamer");
414     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
415     return static_cast<SystemZTargetStreamer &>(TS);
416   }
417 
418   bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
419 
420   bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
421 
422   OperandMatchResultTy parseRegister(OperandVector &Operands,
423                                      RegisterKind Kind);
424 
425   OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
426 
427   bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
428                     Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
429                     bool HasLength = false, bool HasVectorIndex = false);
430   bool parseAddressRegister(Register &Reg);
431 
432   bool ParseDirectiveInsn(SMLoc L);
433   bool ParseDirectiveMachine(SMLoc L);
434 
435   OperandMatchResultTy parseAddress(OperandVector &Operands,
436                                     MemoryKind MemKind,
437                                     RegisterKind RegKind);
438 
439   OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
440                                   int64_t MaxVal, bool AllowTLS);
441 
442   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
443 
444   // Both the hlasm and att variants still rely on the basic gnu asm
445   // format with respect to inputs, clobbers, outputs etc.
446   //
447   // However, calling the overriden getAssemblerDialect() method in
448   // AsmParser is problematic. It either returns the AssemblerDialect field
449   // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
450   // unset, otherwise it returns the private AssemblerDialect field in
451   // AsmParser.
452   //
453   // The problematic part is because, we forcibly set the inline asm dialect
454   // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
455   // to the overriden getAssemblerDialect function in AsmParser.cpp, will
456   // not return the assembler dialect set in the respective MCAsmInfo instance.
457   //
458   // For this purpose, we explicitly query the SystemZMCAsmInfo instance
459   // here, to get the "correct" assembler dialect, and use it in various
460   // functions.
461   unsigned getMAIAssemblerDialect() {
462     return Parser.getContext().getAsmInfo()->getAssemblerDialect();
463   }
464 
465   // An alphabetic character in HLASM is a letter from 'A' through 'Z',
466   // or from 'a' through 'z', or '$', '_','#', or '@'.
467   inline bool isHLASMAlpha(char C) {
468     return isAlpha(C) || llvm::is_contained("_@#$", C);
469   }
470 
471   // A digit in HLASM is a number from 0 to 9.
472   inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
473 
474   // Are we parsing using the AD_HLASM dialect?
475   inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
476 
477   // Are we parsing using the AD_ATT dialect?
478   inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; }
479 
480 public:
481   SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
482                    const MCInstrInfo &MII,
483                    const MCTargetOptions &Options)
484     : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
485     MCAsmParserExtension::Initialize(Parser);
486 
487     // Alias the .word directive to .short.
488     parser.addAliasForDirective(".word", ".short");
489 
490     // Initialize the set of available features.
491     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
492   }
493 
494   // Override MCTargetAsmParser.
495   bool ParseDirective(AsmToken DirectiveID) override;
496   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
497   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
498                      bool RestoreOnFailure);
499   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
500                                         SMLoc &EndLoc) override;
501   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
502                         SMLoc NameLoc, OperandVector &Operands) override;
503   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
504                                OperandVector &Operands, MCStreamer &Out,
505                                uint64_t &ErrorInfo,
506                                bool MatchingInlineAsm) override;
507   bool isLabel(AsmToken &Token) override;
508 
509   // Used by the TableGen code to parse particular operand types.
510   OperandMatchResultTy parseGR32(OperandVector &Operands) {
511     return parseRegister(Operands, GR32Reg);
512   }
513   OperandMatchResultTy parseGRH32(OperandVector &Operands) {
514     return parseRegister(Operands, GRH32Reg);
515   }
516   OperandMatchResultTy parseGRX32(OperandVector &Operands) {
517     llvm_unreachable("GRX32 should only be used for pseudo instructions");
518   }
519   OperandMatchResultTy parseGR64(OperandVector &Operands) {
520     return parseRegister(Operands, GR64Reg);
521   }
522   OperandMatchResultTy parseGR128(OperandVector &Operands) {
523     return parseRegister(Operands, GR128Reg);
524   }
525   OperandMatchResultTy parseADDR32(OperandVector &Operands) {
526     // For the AsmParser, we will accept %r0 for ADDR32 as well.
527     return parseRegister(Operands, GR32Reg);
528   }
529   OperandMatchResultTy parseADDR64(OperandVector &Operands) {
530     // For the AsmParser, we will accept %r0 for ADDR64 as well.
531     return parseRegister(Operands, GR64Reg);
532   }
533   OperandMatchResultTy parseADDR128(OperandVector &Operands) {
534     llvm_unreachable("Shouldn't be used as an operand");
535   }
536   OperandMatchResultTy parseFP32(OperandVector &Operands) {
537     return parseRegister(Operands, FP32Reg);
538   }
539   OperandMatchResultTy parseFP64(OperandVector &Operands) {
540     return parseRegister(Operands, FP64Reg);
541   }
542   OperandMatchResultTy parseFP128(OperandVector &Operands) {
543     return parseRegister(Operands, FP128Reg);
544   }
545   OperandMatchResultTy parseVR32(OperandVector &Operands) {
546     return parseRegister(Operands, VR32Reg);
547   }
548   OperandMatchResultTy parseVR64(OperandVector &Operands) {
549     return parseRegister(Operands, VR64Reg);
550   }
551   OperandMatchResultTy parseVF128(OperandVector &Operands) {
552     llvm_unreachable("Shouldn't be used as an operand");
553   }
554   OperandMatchResultTy parseVR128(OperandVector &Operands) {
555     return parseRegister(Operands, VR128Reg);
556   }
557   OperandMatchResultTy parseAR32(OperandVector &Operands) {
558     return parseRegister(Operands, AR32Reg);
559   }
560   OperandMatchResultTy parseCR64(OperandVector &Operands) {
561     return parseRegister(Operands, CR64Reg);
562   }
563   OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
564     return parseAnyRegister(Operands);
565   }
566   OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
567     return parseAddress(Operands, BDMem, GR32Reg);
568   }
569   OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
570     return parseAddress(Operands, BDMem, GR64Reg);
571   }
572   OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
573     return parseAddress(Operands, BDXMem, GR64Reg);
574   }
575   OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
576     return parseAddress(Operands, BDLMem, GR64Reg);
577   }
578   OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
579     return parseAddress(Operands, BDRMem, GR64Reg);
580   }
581   OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
582     return parseAddress(Operands, BDVMem, GR64Reg);
583   }
584   OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
585     return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
586   }
587   OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
588     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
589   }
590   OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
591     return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
592   }
593   OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
594     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
595   }
596   OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
597     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
598   }
599   OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
600     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
601   }
602 };
603 
604 } // end anonymous namespace
605 
606 #define GET_REGISTER_MATCHER
607 #define GET_SUBTARGET_FEATURE_NAME
608 #define GET_MATCHER_IMPLEMENTATION
609 #define GET_MNEMONIC_SPELL_CHECKER
610 #include "SystemZGenAsmMatcher.inc"
611 
612 // Used for the .insn directives; contains information needed to parse the
613 // operands in the directive.
614 struct InsnMatchEntry {
615   StringRef Format;
616   uint64_t Opcode;
617   int32_t NumOperands;
618   MatchClassKind OperandKinds[7];
619 };
620 
621 // For equal_range comparison.
622 struct CompareInsn {
623   bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
624     return LHS.Format < RHS;
625   }
626   bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
627     return LHS < RHS.Format;
628   }
629   bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
630     return LHS.Format < RHS.Format;
631   }
632 };
633 
634 // Table initializing information for parsing the .insn directive.
635 static struct InsnMatchEntry InsnMatchTable[] = {
636   /* Format, Opcode, NumOperands, OperandKinds */
637   { "e", SystemZ::InsnE, 1,
638     { MCK_U16Imm } },
639   { "ri", SystemZ::InsnRI, 3,
640     { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
641   { "rie", SystemZ::InsnRIE, 4,
642     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
643   { "ril", SystemZ::InsnRIL, 3,
644     { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
645   { "rilu", SystemZ::InsnRILU, 3,
646     { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
647   { "ris", SystemZ::InsnRIS, 5,
648     { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
649   { "rr", SystemZ::InsnRR, 3,
650     { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
651   { "rre", SystemZ::InsnRRE, 3,
652     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
653   { "rrf", SystemZ::InsnRRF, 5,
654     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
655   { "rrs", SystemZ::InsnRRS, 5,
656     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
657   { "rs", SystemZ::InsnRS, 4,
658     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
659   { "rse", SystemZ::InsnRSE, 4,
660     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
661   { "rsi", SystemZ::InsnRSI, 4,
662     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
663   { "rsy", SystemZ::InsnRSY, 4,
664     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
665   { "rx", SystemZ::InsnRX, 3,
666     { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
667   { "rxe", SystemZ::InsnRXE, 3,
668     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
669   { "rxf", SystemZ::InsnRXF, 4,
670     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
671   { "rxy", SystemZ::InsnRXY, 3,
672     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
673   { "s", SystemZ::InsnS, 2,
674     { MCK_U32Imm, MCK_BDAddr64Disp12 } },
675   { "si", SystemZ::InsnSI, 3,
676     { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
677   { "sil", SystemZ::InsnSIL, 3,
678     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
679   { "siy", SystemZ::InsnSIY, 3,
680     { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
681   { "ss", SystemZ::InsnSS, 4,
682     { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
683   { "sse", SystemZ::InsnSSE, 3,
684     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
685   { "ssf", SystemZ::InsnSSF, 4,
686     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
687   { "vri", SystemZ::InsnVRI, 6,
688     { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
689   { "vrr", SystemZ::InsnVRR, 7,
690     { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
691       MCK_U4Imm } },
692   { "vrs", SystemZ::InsnVRS, 5,
693     { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
694   { "vrv", SystemZ::InsnVRV, 4,
695     { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
696   { "vrx", SystemZ::InsnVRX, 4,
697     { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
698   { "vsi", SystemZ::InsnVSI, 4,
699     { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
700 };
701 
702 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
703   if (!E)
704     return;
705   if (auto *CE = dyn_cast<MCConstantExpr>(E))
706     OS << *CE;
707   else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
708     OS << *UE;
709   else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
710     OS << *BE;
711   else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
712     OS << *SRE;
713   else
714     OS << *E;
715 }
716 
717 void SystemZOperand::print(raw_ostream &OS) const {
718   switch (Kind) {
719   case KindToken:
720     OS << "Token:" << getToken();
721     break;
722   case KindReg:
723     OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
724     break;
725   case KindImm:
726     OS << "Imm:";
727     printMCExpr(getImm(), OS);
728     break;
729   case KindImmTLS:
730     OS << "ImmTLS:";
731     printMCExpr(getImmTLS().Imm, OS);
732     if (getImmTLS().Sym) {
733       OS << ", ";
734       printMCExpr(getImmTLS().Sym, OS);
735     }
736     break;
737   case KindMem: {
738     const MemOp &Op = getMem();
739     OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
740     if (Op.Base) {
741       OS << "(";
742       if (Op.MemKind == BDLMem)
743         OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
744       else if (Op.MemKind == BDRMem)
745         OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
746       if (Op.Index)
747         OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
748       OS << SystemZInstPrinter::getRegisterName(Op.Base);
749       OS << ")";
750     }
751     break;
752   }
753   case KindInvalid:
754     break;
755   }
756 }
757 
758 // Parse one register of the form %<prefix><number>.
759 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
760   Reg.StartLoc = Parser.getTok().getLoc();
761 
762   // Eat the % prefix.
763   if (Parser.getTok().isNot(AsmToken::Percent))
764     return Error(Parser.getTok().getLoc(), "register expected");
765   const AsmToken &PercentTok = Parser.getTok();
766   Parser.Lex();
767 
768   // Expect a register name.
769   if (Parser.getTok().isNot(AsmToken::Identifier)) {
770     if (RestoreOnFailure)
771       getLexer().UnLex(PercentTok);
772     return Error(Reg.StartLoc, "invalid register");
773   }
774 
775   // Check that there's a prefix.
776   StringRef Name = Parser.getTok().getString();
777   if (Name.size() < 2) {
778     if (RestoreOnFailure)
779       getLexer().UnLex(PercentTok);
780     return Error(Reg.StartLoc, "invalid register");
781   }
782   char Prefix = Name[0];
783 
784   // Treat the rest of the register name as a register number.
785   if (Name.substr(1).getAsInteger(10, Reg.Num)) {
786     if (RestoreOnFailure)
787       getLexer().UnLex(PercentTok);
788     return Error(Reg.StartLoc, "invalid register");
789   }
790 
791   // Look for valid combinations of prefix and number.
792   if (Prefix == 'r' && Reg.Num < 16)
793     Reg.Group = RegGR;
794   else if (Prefix == 'f' && Reg.Num < 16)
795     Reg.Group = RegFP;
796   else if (Prefix == 'v' && Reg.Num < 32)
797     Reg.Group = RegV;
798   else if (Prefix == 'a' && Reg.Num < 16)
799     Reg.Group = RegAR;
800   else if (Prefix == 'c' && Reg.Num < 16)
801     Reg.Group = RegCR;
802   else {
803     if (RestoreOnFailure)
804       getLexer().UnLex(PercentTok);
805     return Error(Reg.StartLoc, "invalid register");
806   }
807 
808   Reg.EndLoc = Parser.getTok().getLoc();
809   Parser.Lex();
810   return false;
811 }
812 
813 // Parse a register of kind Kind and add it to Operands.
814 OperandMatchResultTy
815 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
816   Register Reg;
817   RegisterGroup Group;
818   switch (Kind) {
819   case GR32Reg:
820   case GRH32Reg:
821   case GR64Reg:
822   case GR128Reg:
823     Group = RegGR;
824     break;
825   case FP32Reg:
826   case FP64Reg:
827   case FP128Reg:
828     Group = RegFP;
829     break;
830   case VR32Reg:
831   case VR64Reg:
832   case VR128Reg:
833     Group = RegV;
834     break;
835   case AR32Reg:
836     Group = RegAR;
837     break;
838   case CR64Reg:
839     Group = RegCR;
840     break;
841   }
842 
843   // Handle register names of the form %<prefix><number>
844   if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
845     if (parseRegister(Reg))
846       return MatchOperand_ParseFail;
847 
848     // Check the parsed register group "Reg.Group" with the expected "Group"
849     // Have to error out if user specified wrong prefix.
850     switch (Group) {
851     case RegGR:
852     case RegFP:
853     case RegAR:
854     case RegCR:
855       if (Group != Reg.Group) {
856         Error(Reg.StartLoc, "invalid operand for instruction");
857         return MatchOperand_ParseFail;
858       }
859       break;
860     case RegV:
861       if (Reg.Group != RegV && Reg.Group != RegFP) {
862         Error(Reg.StartLoc, "invalid operand for instruction");
863         return MatchOperand_ParseFail;
864       }
865       break;
866     }
867   } else if (Parser.getTok().is(AsmToken::Integer)) {
868     if (parseIntegerRegister(Reg, Group))
869       return MatchOperand_ParseFail;
870   }
871   // Otherwise we didn't match a register operand.
872   else
873     return MatchOperand_NoMatch;
874 
875   // Determine the LLVM register number according to Kind.
876   const unsigned *Regs;
877   switch (Kind) {
878   case GR32Reg:  Regs = SystemZMC::GR32Regs;  break;
879   case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
880   case GR64Reg:  Regs = SystemZMC::GR64Regs;  break;
881   case GR128Reg: Regs = SystemZMC::GR128Regs; break;
882   case FP32Reg:  Regs = SystemZMC::FP32Regs;  break;
883   case FP64Reg:  Regs = SystemZMC::FP64Regs;  break;
884   case FP128Reg: Regs = SystemZMC::FP128Regs; break;
885   case VR32Reg:  Regs = SystemZMC::VR32Regs;  break;
886   case VR64Reg:  Regs = SystemZMC::VR64Regs;  break;
887   case VR128Reg: Regs = SystemZMC::VR128Regs; break;
888   case AR32Reg:  Regs = SystemZMC::AR32Regs;  break;
889   case CR64Reg:  Regs = SystemZMC::CR64Regs;  break;
890   }
891   if (Regs[Reg.Num] == 0) {
892     Error(Reg.StartLoc, "invalid register pair");
893     return MatchOperand_ParseFail;
894   }
895 
896   Operands.push_back(
897       SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
898   return MatchOperand_Success;
899 }
900 
901 // Parse any type of register (including integers) and add it to Operands.
902 OperandMatchResultTy
903 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
904   SMLoc StartLoc = Parser.getTok().getLoc();
905 
906   // Handle integer values.
907   if (Parser.getTok().is(AsmToken::Integer)) {
908     const MCExpr *Register;
909     if (Parser.parseExpression(Register))
910       return MatchOperand_ParseFail;
911 
912     if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
913       int64_t Value = CE->getValue();
914       if (Value < 0 || Value > 15) {
915         Error(StartLoc, "invalid register");
916         return MatchOperand_ParseFail;
917       }
918     }
919 
920     SMLoc EndLoc =
921       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
922 
923     Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
924   }
925   else {
926     if (isParsingHLASM())
927       return MatchOperand_NoMatch;
928 
929     Register Reg;
930     if (parseRegister(Reg))
931       return MatchOperand_ParseFail;
932 
933     if (Reg.Num > 15) {
934       Error(StartLoc, "invalid register");
935       return MatchOperand_ParseFail;
936     }
937 
938     // Map to the correct register kind.
939     RegisterKind Kind;
940     unsigned RegNo;
941     if (Reg.Group == RegGR) {
942       Kind = GR64Reg;
943       RegNo = SystemZMC::GR64Regs[Reg.Num];
944     }
945     else if (Reg.Group == RegFP) {
946       Kind = FP64Reg;
947       RegNo = SystemZMC::FP64Regs[Reg.Num];
948     }
949     else if (Reg.Group == RegV) {
950       Kind = VR128Reg;
951       RegNo = SystemZMC::VR128Regs[Reg.Num];
952     }
953     else if (Reg.Group == RegAR) {
954       Kind = AR32Reg;
955       RegNo = SystemZMC::AR32Regs[Reg.Num];
956     }
957     else if (Reg.Group == RegCR) {
958       Kind = CR64Reg;
959       RegNo = SystemZMC::CR64Regs[Reg.Num];
960     }
961     else {
962       return MatchOperand_ParseFail;
963     }
964 
965     Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
966                                                  Reg.StartLoc, Reg.EndLoc));
967   }
968   return MatchOperand_Success;
969 }
970 
971 bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
972                                             RegisterGroup Group) {
973   Reg.StartLoc = Parser.getTok().getLoc();
974   // We have an integer token
975   const MCExpr *Register;
976   if (Parser.parseExpression(Register))
977     return true;
978 
979   const auto *CE = dyn_cast<MCConstantExpr>(Register);
980   if (!CE)
981     return true;
982 
983   int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
984   int64_t Value = CE->getValue();
985   if (Value < 0 || Value > MaxRegNum) {
986     Error(Parser.getTok().getLoc(), "invalid register");
987     return true;
988   }
989 
990   // Assign the Register Number
991   Reg.Num = (unsigned)Value;
992   Reg.Group = Group;
993   Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
994 
995   // At this point, successfully parsed an integer register.
996   return false;
997 }
998 
999 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
1000 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
1001                                     bool &HaveReg2, Register &Reg2,
1002                                     const MCExpr *&Disp, const MCExpr *&Length,
1003                                     bool HasLength, bool HasVectorIndex) {
1004   // Parse the displacement, which must always be present.
1005   if (getParser().parseExpression(Disp))
1006     return true;
1007 
1008   // Parse the optional base and index.
1009   HaveReg1 = false;
1010   HaveReg2 = false;
1011   Length = nullptr;
1012 
1013   // If we have a scenario as below:
1014   //   vgef %v0, 0(0), 0
1015   // This is an example of a "BDVMem" instruction type.
1016   //
1017   // So when we parse this as an integer register, the register group
1018   // needs to be tied to "RegV". Usually when the prefix is passed in
1019   // as %<prefix><reg-number> its easy to check which group it should belong to
1020   // However, if we're passing in just the integer there's no real way to
1021   // "check" what register group it should belong to.
1022   //
1023   // When the user passes in the register as an integer, the user assumes that
1024   // the compiler is responsible for substituting it as the right kind of
1025   // register. Whereas, when the user specifies a "prefix", the onus is on
1026   // the user to make sure they pass in the right kind of register.
1027   //
1028   // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
1029   // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
1030   // (i.e. insn is of type BDVMem) is true.
1031   RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
1032 
1033   if (getLexer().is(AsmToken::LParen)) {
1034     Parser.Lex();
1035 
1036     if (isParsingATT() && getLexer().is(AsmToken::Percent)) {
1037       // Parse the first register.
1038       HaveReg1 = true;
1039       if (parseRegister(Reg1))
1040         return true;
1041     }
1042     // So if we have an integer as the first token in ([tok1], ..), it could:
1043     // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
1044     // instructions)
1045     // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
1046     else if (getLexer().is(AsmToken::Integer)) {
1047       if (HasLength) {
1048         // Instruction has a "Length" field, safe to parse the first token as
1049         // the "Length" field
1050         if (getParser().parseExpression(Length))
1051           return true;
1052       } else {
1053         // Otherwise, if the instruction has no "Length" field, parse the
1054         // token as a "Register". We don't have to worry about whether the
1055         // instruction is invalid here, because the caller will take care of
1056         // error reporting.
1057         HaveReg1 = true;
1058         if (parseIntegerRegister(Reg1, RegGroup))
1059           return true;
1060       }
1061     } else {
1062       // If its not an integer or a percent token, then if the instruction
1063       // is reported to have a "Length" then, parse it as "Length".
1064       if (HasLength) {
1065         if (getParser().parseExpression(Length))
1066           return true;
1067       }
1068     }
1069 
1070     // Check whether there's a second register.
1071     if (getLexer().is(AsmToken::Comma)) {
1072       Parser.Lex();
1073       HaveReg2 = true;
1074 
1075       if (getLexer().is(AsmToken::Integer)) {
1076         if (parseIntegerRegister(Reg2, RegGR))
1077           return true;
1078       } else {
1079         if (isParsingATT() && parseRegister(Reg2))
1080           return true;
1081       }
1082     }
1083 
1084     // Consume the closing bracket.
1085     if (getLexer().isNot(AsmToken::RParen))
1086       return Error(Parser.getTok().getLoc(), "unexpected token in address");
1087     Parser.Lex();
1088   }
1089   return false;
1090 }
1091 
1092 // Verify that Reg is a valid address register (base or index).
1093 bool
1094 SystemZAsmParser::parseAddressRegister(Register &Reg) {
1095   if (Reg.Group == RegV) {
1096     Error(Reg.StartLoc, "invalid use of vector addressing");
1097     return true;
1098   } else if (Reg.Group != RegGR) {
1099     Error(Reg.StartLoc, "invalid address register");
1100     return true;
1101   }
1102   return false;
1103 }
1104 
1105 // Parse a memory operand and add it to Operands.  The other arguments
1106 // are as above.
1107 OperandMatchResultTy
1108 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
1109                                RegisterKind RegKind) {
1110   SMLoc StartLoc = Parser.getTok().getLoc();
1111   unsigned Base = 0, Index = 0, LengthReg = 0;
1112   Register Reg1, Reg2;
1113   bool HaveReg1, HaveReg2;
1114   const MCExpr *Disp;
1115   const MCExpr *Length;
1116 
1117   bool HasLength = (MemKind == BDLMem) ? true : false;
1118   bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
1119   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
1120                    HasVectorIndex))
1121     return MatchOperand_ParseFail;
1122 
1123   const unsigned *Regs;
1124   switch (RegKind) {
1125   case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1126   case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1127   default: llvm_unreachable("invalid RegKind");
1128   }
1129 
1130   switch (MemKind) {
1131   case BDMem:
1132     // If we have Reg1, it must be an address register.
1133     if (HaveReg1) {
1134       if (parseAddressRegister(Reg1))
1135         return MatchOperand_ParseFail;
1136       Base = Regs[Reg1.Num];
1137     }
1138     // There must be no Reg2.
1139     if (HaveReg2) {
1140       Error(StartLoc, "invalid use of indexed addressing");
1141       return MatchOperand_ParseFail;
1142     }
1143     break;
1144   case BDXMem:
1145     // If we have Reg1, it must be an address register.
1146     if (HaveReg1) {
1147       if (parseAddressRegister(Reg1))
1148         return MatchOperand_ParseFail;
1149       // If the are two registers, the first one is the index and the
1150       // second is the base.
1151       if (HaveReg2)
1152         Index = Regs[Reg1.Num];
1153       else
1154         Base = Regs[Reg1.Num];
1155     }
1156     // If we have Reg2, it must be an address register.
1157     if (HaveReg2) {
1158       if (parseAddressRegister(Reg2))
1159         return MatchOperand_ParseFail;
1160       Base = Regs[Reg2.Num];
1161     }
1162     break;
1163   case BDLMem:
1164     // If we have Reg2, it must be an address register.
1165     if (HaveReg2) {
1166       if (parseAddressRegister(Reg2))
1167         return MatchOperand_ParseFail;
1168       Base = Regs[Reg2.Num];
1169     }
1170     // We cannot support base+index addressing.
1171     if (HaveReg1 && HaveReg2) {
1172       Error(StartLoc, "invalid use of indexed addressing");
1173       return MatchOperand_ParseFail;
1174     }
1175     // We must have a length.
1176     if (!Length) {
1177       Error(StartLoc, "missing length in address");
1178       return MatchOperand_ParseFail;
1179     }
1180     break;
1181   case BDRMem:
1182     // We must have Reg1, and it must be a GPR.
1183     if (!HaveReg1 || Reg1.Group != RegGR) {
1184       Error(StartLoc, "invalid operand for instruction");
1185       return MatchOperand_ParseFail;
1186     }
1187     LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1188     // If we have Reg2, it must be an address register.
1189     if (HaveReg2) {
1190       if (parseAddressRegister(Reg2))
1191         return MatchOperand_ParseFail;
1192       Base = Regs[Reg2.Num];
1193     }
1194     break;
1195   case BDVMem:
1196     // We must have Reg1, and it must be a vector register.
1197     if (!HaveReg1 || Reg1.Group != RegV) {
1198       Error(StartLoc, "vector index required in address");
1199       return MatchOperand_ParseFail;
1200     }
1201     Index = SystemZMC::VR128Regs[Reg1.Num];
1202     // If we have Reg2, it must be an address register.
1203     if (HaveReg2) {
1204       if (parseAddressRegister(Reg2))
1205         return MatchOperand_ParseFail;
1206       Base = Regs[Reg2.Num];
1207     }
1208     break;
1209   }
1210 
1211   SMLoc EndLoc =
1212       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1213   Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1214                                                Index, Length, LengthReg,
1215                                                StartLoc, EndLoc));
1216   return MatchOperand_Success;
1217 }
1218 
1219 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1220   StringRef IDVal = DirectiveID.getIdentifier();
1221 
1222   if (IDVal == ".insn")
1223     return ParseDirectiveInsn(DirectiveID.getLoc());
1224   if (IDVal == ".machine")
1225     return ParseDirectiveMachine(DirectiveID.getLoc());
1226 
1227   return true;
1228 }
1229 
1230 /// ParseDirectiveInsn
1231 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
1232 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1233   MCAsmParser &Parser = getParser();
1234 
1235   // Expect instruction format as identifier.
1236   StringRef Format;
1237   SMLoc ErrorLoc = Parser.getTok().getLoc();
1238   if (Parser.parseIdentifier(Format))
1239     return Error(ErrorLoc, "expected instruction format");
1240 
1241   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1242 
1243   // Find entry for this format in InsnMatchTable.
1244   auto EntryRange =
1245     std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1246                      Format, CompareInsn());
1247 
1248   // If first == second, couldn't find a match in the table.
1249   if (EntryRange.first == EntryRange.second)
1250     return Error(ErrorLoc, "unrecognized format");
1251 
1252   struct InsnMatchEntry *Entry = EntryRange.first;
1253 
1254   // Format should match from equal_range.
1255   assert(Entry->Format == Format);
1256 
1257   // Parse the following operands using the table's information.
1258   for (int i = 0; i < Entry->NumOperands; i++) {
1259     MatchClassKind Kind = Entry->OperandKinds[i];
1260 
1261     SMLoc StartLoc = Parser.getTok().getLoc();
1262 
1263     // Always expect commas as separators for operands.
1264     if (getLexer().isNot(AsmToken::Comma))
1265       return Error(StartLoc, "unexpected token in directive");
1266     Lex();
1267 
1268     // Parse operands.
1269     OperandMatchResultTy ResTy;
1270     if (Kind == MCK_AnyReg)
1271       ResTy = parseAnyReg(Operands);
1272     else if (Kind == MCK_VR128)
1273       ResTy = parseVR128(Operands);
1274     else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1275       ResTy = parseBDXAddr64(Operands);
1276     else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1277       ResTy = parseBDAddr64(Operands);
1278     else if (Kind == MCK_BDVAddr64Disp12)
1279       ResTy = parseBDVAddr64(Operands);
1280     else if (Kind == MCK_PCRel32)
1281       ResTy = parsePCRel32(Operands);
1282     else if (Kind == MCK_PCRel16)
1283       ResTy = parsePCRel16(Operands);
1284     else {
1285       // Only remaining operand kind is an immediate.
1286       const MCExpr *Expr;
1287       SMLoc StartLoc = Parser.getTok().getLoc();
1288 
1289       // Expect immediate expression.
1290       if (Parser.parseExpression(Expr))
1291         return Error(StartLoc, "unexpected token in directive");
1292 
1293       SMLoc EndLoc =
1294         SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1295 
1296       Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1297       ResTy = MatchOperand_Success;
1298     }
1299 
1300     if (ResTy != MatchOperand_Success)
1301       return true;
1302   }
1303 
1304   // Build the instruction with the parsed operands.
1305   MCInst Inst = MCInstBuilder(Entry->Opcode);
1306 
1307   for (size_t i = 0; i < Operands.size(); i++) {
1308     MCParsedAsmOperand &Operand = *Operands[i];
1309     MatchClassKind Kind = Entry->OperandKinds[i];
1310 
1311     // Verify operand.
1312     unsigned Res = validateOperandClass(Operand, Kind);
1313     if (Res != Match_Success)
1314       return Error(Operand.getStartLoc(), "unexpected operand type");
1315 
1316     // Add operands to instruction.
1317     SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1318     if (ZOperand.isReg())
1319       ZOperand.addRegOperands(Inst, 1);
1320     else if (ZOperand.isMem(BDMem))
1321       ZOperand.addBDAddrOperands(Inst, 2);
1322     else if (ZOperand.isMem(BDXMem))
1323       ZOperand.addBDXAddrOperands(Inst, 3);
1324     else if (ZOperand.isMem(BDVMem))
1325       ZOperand.addBDVAddrOperands(Inst, 3);
1326     else if (ZOperand.isImm())
1327       ZOperand.addImmOperands(Inst, 1);
1328     else
1329       llvm_unreachable("unexpected operand type");
1330   }
1331 
1332   // Emit as a regular instruction.
1333   Parser.getStreamer().emitInstruction(Inst, getSTI());
1334 
1335   return false;
1336 }
1337 
1338 /// ParseDirectiveMachine
1339 /// ::= .machine [ mcpu ]
1340 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) {
1341   MCAsmParser &Parser = getParser();
1342   if (Parser.getTok().isNot(AsmToken::Identifier) &&
1343       Parser.getTok().isNot(AsmToken::String))
1344     return Error(L, "unexpected token in '.machine' directive");
1345 
1346   StringRef CPU = Parser.getTok().getIdentifier();
1347   Parser.Lex();
1348   if (parseToken(AsmToken::EndOfStatement))
1349     return addErrorSuffix(" in '.machine' directive");
1350 
1351   MCSubtargetInfo &STI = copySTI();
1352   STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
1353   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
1354 
1355   getTargetStreamer().emitMachine(CPU);
1356 
1357   return false;
1358 }
1359 
1360 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1361                                      SMLoc &EndLoc, bool RestoreOnFailure) {
1362   Register Reg;
1363   if (parseRegister(Reg, RestoreOnFailure))
1364     return true;
1365   if (Reg.Group == RegGR)
1366     RegNo = SystemZMC::GR64Regs[Reg.Num];
1367   else if (Reg.Group == RegFP)
1368     RegNo = SystemZMC::FP64Regs[Reg.Num];
1369   else if (Reg.Group == RegV)
1370     RegNo = SystemZMC::VR128Regs[Reg.Num];
1371   else if (Reg.Group == RegAR)
1372     RegNo = SystemZMC::AR32Regs[Reg.Num];
1373   else if (Reg.Group == RegCR)
1374     RegNo = SystemZMC::CR64Regs[Reg.Num];
1375   StartLoc = Reg.StartLoc;
1376   EndLoc = Reg.EndLoc;
1377   return false;
1378 }
1379 
1380 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
1381                                      SMLoc &EndLoc) {
1382   return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1383 }
1384 
1385 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo,
1386                                                         SMLoc &StartLoc,
1387                                                         SMLoc &EndLoc) {
1388   bool Result =
1389       ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1390   bool PendingErrors = getParser().hasPendingError();
1391   getParser().clearPendingErrors();
1392   if (PendingErrors)
1393     return MatchOperand_ParseFail;
1394   if (Result)
1395     return MatchOperand_NoMatch;
1396   return MatchOperand_Success;
1397 }
1398 
1399 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1400                                         StringRef Name, SMLoc NameLoc,
1401                                         OperandVector &Operands) {
1402 
1403   // Apply mnemonic aliases first, before doing anything else, in
1404   // case the target uses it.
1405   applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
1406 
1407   Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1408 
1409   // Read the remaining operands.
1410   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1411     // Read the first operand.
1412     if (parseOperand(Operands, Name)) {
1413       return true;
1414     }
1415 
1416     // Read any subsequent operands.
1417     while (getLexer().is(AsmToken::Comma)) {
1418       Parser.Lex();
1419 
1420       if (isParsingHLASM() && getLexer().is(AsmToken::Space))
1421         return Error(
1422             Parser.getTok().getLoc(),
1423             "No space allowed between comma that separates operand entries");
1424 
1425       if (parseOperand(Operands, Name)) {
1426         return true;
1427       }
1428     }
1429 
1430     // Under the HLASM variant, we could have the remark field
1431     // The remark field occurs after the operation entries
1432     // There is a space that separates the operation entries and the
1433     // remark field.
1434     if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
1435       // We've confirmed that there is a Remark field.
1436       StringRef Remark(getLexer().LexUntilEndOfStatement());
1437       Parser.Lex();
1438 
1439       // If there is nothing after the space, then there is nothing to emit
1440       // We could have a situation as this:
1441       // "  \n"
1442       // After lexing above, we will have
1443       // "\n"
1444       // This isn't an explicit remark field, so we don't have to output
1445       // this as a comment.
1446       if (Remark.size())
1447         // Output the entire Remarks Field as a comment
1448         getStreamer().AddComment(Remark);
1449     }
1450 
1451     if (getLexer().isNot(AsmToken::EndOfStatement)) {
1452       SMLoc Loc = getLexer().getLoc();
1453       return Error(Loc, "unexpected token in argument list");
1454     }
1455   }
1456 
1457   // Consume the EndOfStatement.
1458   Parser.Lex();
1459   return false;
1460 }
1461 
1462 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1463                                     StringRef Mnemonic) {
1464   // Check if the current operand has a custom associated parser, if so, try to
1465   // custom parse the operand, or fallback to the general approach.  Force all
1466   // features to be available during the operand check, or else we will fail to
1467   // find the custom parser, and then we will later get an InvalidOperand error
1468   // instead of a MissingFeature errror.
1469   FeatureBitset AvailableFeatures = getAvailableFeatures();
1470   FeatureBitset All;
1471   All.set();
1472   setAvailableFeatures(All);
1473   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1474   setAvailableFeatures(AvailableFeatures);
1475   if (ResTy == MatchOperand_Success)
1476     return false;
1477 
1478   // If there wasn't a custom match, try the generic matcher below. Otherwise,
1479   // there was a match, but an error occurred, in which case, just return that
1480   // the operand parsing failed.
1481   if (ResTy == MatchOperand_ParseFail)
1482     return true;
1483 
1484   // Check for a register.  All real register operands should have used
1485   // a context-dependent parse routine, which gives the required register
1486   // class.  The code is here to mop up other cases, like those where
1487   // the instruction isn't recognized.
1488   if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
1489     Register Reg;
1490     if (parseRegister(Reg))
1491       return true;
1492     Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1493     return false;
1494   }
1495 
1496   // The only other type of operand is an immediate or address.  As above,
1497   // real address operands should have used a context-dependent parse routine,
1498   // so we treat any plain expression as an immediate.
1499   SMLoc StartLoc = Parser.getTok().getLoc();
1500   Register Reg1, Reg2;
1501   bool HaveReg1, HaveReg2;
1502   const MCExpr *Expr;
1503   const MCExpr *Length;
1504   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1505                    /*HasLength*/ true, /*HasVectorIndex*/ true))
1506     return true;
1507   // If the register combination is not valid for any instruction, reject it.
1508   // Otherwise, fall back to reporting an unrecognized instruction.
1509   if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1510       && parseAddressRegister(Reg1))
1511     return true;
1512   if (HaveReg2 && parseAddressRegister(Reg2))
1513     return true;
1514 
1515   SMLoc EndLoc =
1516     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1517   if (HaveReg1 || HaveReg2 || Length)
1518     Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1519   else
1520     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1521   return false;
1522 }
1523 
1524 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1525                                                OperandVector &Operands,
1526                                                MCStreamer &Out,
1527                                                uint64_t &ErrorInfo,
1528                                                bool MatchingInlineAsm) {
1529   MCInst Inst;
1530   unsigned MatchResult;
1531 
1532   unsigned Dialect = getMAIAssemblerDialect();
1533 
1534   FeatureBitset MissingFeatures;
1535   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1536                                      MatchingInlineAsm, Dialect);
1537   switch (MatchResult) {
1538   case Match_Success:
1539     Inst.setLoc(IDLoc);
1540     Out.emitInstruction(Inst, getSTI());
1541     return false;
1542 
1543   case Match_MissingFeature: {
1544     assert(MissingFeatures.any() && "Unknown missing feature!");
1545     // Special case the error message for the very common case where only
1546     // a single subtarget feature is missing
1547     std::string Msg = "instruction requires:";
1548     for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1549       if (MissingFeatures[I]) {
1550         Msg += " ";
1551         Msg += getSubtargetFeatureName(I);
1552       }
1553     }
1554     return Error(IDLoc, Msg);
1555   }
1556 
1557   case Match_InvalidOperand: {
1558     SMLoc ErrorLoc = IDLoc;
1559     if (ErrorInfo != ~0ULL) {
1560       if (ErrorInfo >= Operands.size())
1561         return Error(IDLoc, "too few operands for instruction");
1562 
1563       ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1564       if (ErrorLoc == SMLoc())
1565         ErrorLoc = IDLoc;
1566     }
1567     return Error(ErrorLoc, "invalid operand for instruction");
1568   }
1569 
1570   case Match_MnemonicFail: {
1571     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1572     std::string Suggestion = SystemZMnemonicSpellCheck(
1573         ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
1574     return Error(IDLoc, "invalid instruction" + Suggestion,
1575                  ((SystemZOperand &)*Operands[0]).getLocRange());
1576   }
1577   }
1578 
1579   llvm_unreachable("Unexpected match type");
1580 }
1581 
1582 OperandMatchResultTy
1583 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1584                              int64_t MaxVal, bool AllowTLS) {
1585   MCContext &Ctx = getContext();
1586   MCStreamer &Out = getStreamer();
1587   const MCExpr *Expr;
1588   SMLoc StartLoc = Parser.getTok().getLoc();
1589   if (getParser().parseExpression(Expr))
1590     return MatchOperand_NoMatch;
1591 
1592   auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool {
1593     if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1594       int64_t Value = CE->getValue();
1595       if ((Value & 1) || Value < MinVal || Value > MaxVal)
1596         return true;
1597     }
1598     return false;
1599   };
1600 
1601   // For consistency with the GNU assembler, treat immediates as offsets
1602   // from ".".
1603   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1604     if (isParsingHLASM()) {
1605       Error(StartLoc, "Expected PC-relative expression");
1606       return MatchOperand_ParseFail;
1607     }
1608     if (isOutOfRangeConstant(CE)) {
1609       Error(StartLoc, "offset out of range");
1610       return MatchOperand_ParseFail;
1611     }
1612     int64_t Value = CE->getValue();
1613     MCSymbol *Sym = Ctx.createTempSymbol();
1614     Out.emitLabel(Sym);
1615     const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1616                                                  Ctx);
1617     Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1618   }
1619 
1620   // For consistency with the GNU assembler, conservatively assume that a
1621   // constant offset must by itself be within the given size range.
1622   if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1623     if (isOutOfRangeConstant(BE->getLHS()) ||
1624         isOutOfRangeConstant(BE->getRHS())) {
1625       Error(StartLoc, "offset out of range");
1626       return MatchOperand_ParseFail;
1627     }
1628 
1629   // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1630   const MCExpr *Sym = nullptr;
1631   if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1632     Parser.Lex();
1633 
1634     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1635       Error(Parser.getTok().getLoc(), "unexpected token");
1636       return MatchOperand_ParseFail;
1637     }
1638 
1639     MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1640     StringRef Name = Parser.getTok().getString();
1641     if (Name == "tls_gdcall")
1642       Kind = MCSymbolRefExpr::VK_TLSGD;
1643     else if (Name == "tls_ldcall")
1644       Kind = MCSymbolRefExpr::VK_TLSLDM;
1645     else {
1646       Error(Parser.getTok().getLoc(), "unknown TLS tag");
1647       return MatchOperand_ParseFail;
1648     }
1649     Parser.Lex();
1650 
1651     if (Parser.getTok().isNot(AsmToken::Colon)) {
1652       Error(Parser.getTok().getLoc(), "unexpected token");
1653       return MatchOperand_ParseFail;
1654     }
1655     Parser.Lex();
1656 
1657     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1658       Error(Parser.getTok().getLoc(), "unexpected token");
1659       return MatchOperand_ParseFail;
1660     }
1661 
1662     StringRef Identifier = Parser.getTok().getString();
1663     Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1664                                   Kind, Ctx);
1665     Parser.Lex();
1666   }
1667 
1668   SMLoc EndLoc =
1669     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1670 
1671   if (AllowTLS)
1672     Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1673                                                     StartLoc, EndLoc));
1674   else
1675     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1676 
1677   return MatchOperand_Success;
1678 }
1679 
1680 bool SystemZAsmParser::isLabel(AsmToken &Token) {
1681   if (isParsingATT())
1682     return true;
1683 
1684   // HLASM labels are ordinary symbols.
1685   // An HLASM label always starts at column 1.
1686   // An ordinary symbol syntax is laid out as follows:
1687   // Rules:
1688   // 1. Has to start with an "alphabetic character". Can be followed by up to
1689   //    62 alphanumeric characters. An "alphabetic character", in this scenario,
1690   //    is a letter from 'A' through 'Z', or from 'a' through 'z',
1691   //    or '$', '_', '#', or '@'
1692   // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
1693   //    are all treated as the same symbol. However, the processing for the case
1694   //    folding will not be done in this function.
1695   StringRef RawLabel = Token.getString();
1696   SMLoc Loc = Token.getLoc();
1697 
1698   // An HLASM label cannot be empty.
1699   if (!RawLabel.size())
1700     return !Error(Loc, "HLASM Label cannot be empty");
1701 
1702   // An HLASM label cannot exceed greater than 63 characters.
1703   if (RawLabel.size() > 63)
1704     return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
1705 
1706   // A label must start with an "alphabetic character".
1707   if (!isHLASMAlpha(RawLabel[0]))
1708     return !Error(Loc, "HLASM Label has to start with an alphabetic "
1709                        "character or the underscore character");
1710 
1711   // Now, we've established that the length is valid
1712   // and the first character is alphabetic.
1713   // Check whether remaining string is alphanumeric.
1714   for (unsigned I = 1; I < RawLabel.size(); ++I)
1715     if (!isHLASMAlnum(RawLabel[I]))
1716       return !Error(Loc, "HLASM Label has to be alphanumeric");
1717 
1718   return true;
1719 }
1720 
1721 // Force static initialization.
1722 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1723   RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1724 }
1725