1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "SystemZTargetStreamer.h" 13 #include "TargetInfo/SystemZTargetInfo.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCInst.h" 21 #include "llvm/MC/MCInstBuilder.h" 22 #include "llvm/MC/MCInstrInfo.h" 23 #include "llvm/MC/MCParser/MCAsmLexer.h" 24 #include "llvm/MC/MCParser/MCAsmParser.h" 25 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 26 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 27 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 28 #include "llvm/MC/MCStreamer.h" 29 #include "llvm/MC/MCSubtargetInfo.h" 30 #include "llvm/MC/TargetRegistry.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/SMLoc.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <memory> 40 #include <string> 41 42 using namespace llvm; 43 44 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol 45 // is true any MCExpr is accepted (address displacement). 46 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, 47 bool AllowSymbol = false) { 48 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 49 int64_t Value = CE->getValue(); 50 return Value >= MinValue && Value <= MaxValue; 51 } 52 return AllowSymbol; 53 } 54 55 namespace { 56 57 enum RegisterKind { 58 GR32Reg, 59 GRH32Reg, 60 GR64Reg, 61 GR128Reg, 62 FP32Reg, 63 FP64Reg, 64 FP128Reg, 65 VR32Reg, 66 VR64Reg, 67 VR128Reg, 68 AR32Reg, 69 CR64Reg, 70 }; 71 72 enum MemoryKind { 73 BDMem, 74 BDXMem, 75 BDLMem, 76 BDRMem, 77 BDVMem 78 }; 79 80 class SystemZOperand : public MCParsedAsmOperand { 81 private: 82 enum OperandKind { 83 KindInvalid, 84 KindToken, 85 KindReg, 86 KindImm, 87 KindImmTLS, 88 KindMem 89 }; 90 91 OperandKind Kind; 92 SMLoc StartLoc, EndLoc; 93 94 // A string of length Length, starting at Data. 95 struct TokenOp { 96 const char *Data; 97 unsigned Length; 98 }; 99 100 // LLVM register Num, which has kind Kind. In some ways it might be 101 // easier for this class to have a register bank (general, floating-point 102 // or access) and a raw register number (0-15). This would postpone the 103 // interpretation of the operand to the add*() methods and avoid the need 104 // for context-dependent parsing. However, we do things the current way 105 // because of the virtual getReg() method, which needs to distinguish 106 // between (say) %r0 used as a single register and %r0 used as a pair. 107 // Context-dependent parsing can also give us slightly better error 108 // messages when invalid pairs like %r1 are used. 109 struct RegOp { 110 RegisterKind Kind; 111 unsigned Num; 112 }; 113 114 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 115 // MemKind says what type of memory this is and RegKind says what type 116 // the base register has (GR32Reg or GR64Reg). Length is the operand 117 // length for D(L,B)-style operands, otherwise it is null. 118 struct MemOp { 119 unsigned Base : 12; 120 unsigned Index : 12; 121 unsigned MemKind : 4; 122 unsigned RegKind : 4; 123 const MCExpr *Disp; 124 union { 125 const MCExpr *Imm; 126 unsigned Reg; 127 } Length; 128 }; 129 130 // Imm is an immediate operand, and Sym is an optional TLS symbol 131 // for use with a __tls_get_offset marker relocation. 132 struct ImmTLSOp { 133 const MCExpr *Imm; 134 const MCExpr *Sym; 135 }; 136 137 union { 138 TokenOp Token; 139 RegOp Reg; 140 const MCExpr *Imm; 141 ImmTLSOp ImmTLS; 142 MemOp Mem; 143 }; 144 145 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 146 // Add as immediates when possible. Null MCExpr = 0. 147 if (!Expr) 148 Inst.addOperand(MCOperand::createImm(0)); 149 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 150 Inst.addOperand(MCOperand::createImm(CE->getValue())); 151 else 152 Inst.addOperand(MCOperand::createExpr(Expr)); 153 } 154 155 public: 156 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 157 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 158 159 // Create particular kinds of operand. 160 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 161 SMLoc EndLoc) { 162 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 163 } 164 165 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 166 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 167 Op->Token.Data = Str.data(); 168 Op->Token.Length = Str.size(); 169 return Op; 170 } 171 172 static std::unique_ptr<SystemZOperand> 173 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 174 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 175 Op->Reg.Kind = Kind; 176 Op->Reg.Num = Num; 177 return Op; 178 } 179 180 static std::unique_ptr<SystemZOperand> 181 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 182 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 183 Op->Imm = Expr; 184 return Op; 185 } 186 187 static std::unique_ptr<SystemZOperand> 188 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 189 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 190 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 191 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 192 Op->Mem.MemKind = MemKind; 193 Op->Mem.RegKind = RegKind; 194 Op->Mem.Base = Base; 195 Op->Mem.Index = Index; 196 Op->Mem.Disp = Disp; 197 if (MemKind == BDLMem) 198 Op->Mem.Length.Imm = LengthImm; 199 if (MemKind == BDRMem) 200 Op->Mem.Length.Reg = LengthReg; 201 return Op; 202 } 203 204 static std::unique_ptr<SystemZOperand> 205 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 206 SMLoc StartLoc, SMLoc EndLoc) { 207 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 208 Op->ImmTLS.Imm = Imm; 209 Op->ImmTLS.Sym = Sym; 210 return Op; 211 } 212 213 // Token operands 214 bool isToken() const override { 215 return Kind == KindToken; 216 } 217 StringRef getToken() const { 218 assert(Kind == KindToken && "Not a token"); 219 return StringRef(Token.Data, Token.Length); 220 } 221 222 // Register operands. 223 bool isReg() const override { 224 return Kind == KindReg; 225 } 226 bool isReg(RegisterKind RegKind) const { 227 return Kind == KindReg && Reg.Kind == RegKind; 228 } 229 unsigned getReg() const override { 230 assert(Kind == KindReg && "Not a register"); 231 return Reg.Num; 232 } 233 234 // Immediate operands. 235 bool isImm() const override { 236 return Kind == KindImm; 237 } 238 bool isImm(int64_t MinValue, int64_t MaxValue) const { 239 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 240 } 241 const MCExpr *getImm() const { 242 assert(Kind == KindImm && "Not an immediate"); 243 return Imm; 244 } 245 246 // Immediate operands with optional TLS symbol. 247 bool isImmTLS() const { 248 return Kind == KindImmTLS; 249 } 250 251 const ImmTLSOp getImmTLS() const { 252 assert(Kind == KindImmTLS && "Not a TLS immediate"); 253 return ImmTLS; 254 } 255 256 // Memory operands. 257 bool isMem() const override { 258 return Kind == KindMem; 259 } 260 bool isMem(MemoryKind MemKind) const { 261 return (Kind == KindMem && 262 (Mem.MemKind == MemKind || 263 // A BDMem can be treated as a BDXMem in which the index 264 // register field is 0. 265 (Mem.MemKind == BDMem && MemKind == BDXMem))); 266 } 267 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 268 return isMem(MemKind) && Mem.RegKind == RegKind; 269 } 270 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 271 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true); 272 } 273 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 274 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true); 275 } 276 bool isMemDisp12Len4(RegisterKind RegKind) const { 277 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 278 } 279 bool isMemDisp12Len8(RegisterKind RegKind) const { 280 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 281 } 282 283 const MemOp& getMem() const { 284 assert(Kind == KindMem && "Not a Mem operand"); 285 return Mem; 286 } 287 288 // Override MCParsedAsmOperand. 289 SMLoc getStartLoc() const override { return StartLoc; } 290 SMLoc getEndLoc() const override { return EndLoc; } 291 void print(raw_ostream &OS) const override; 292 293 /// getLocRange - Get the range between the first and last token of this 294 /// operand. 295 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 296 297 // Used by the TableGen code to add particular types of operand 298 // to an instruction. 299 void addRegOperands(MCInst &Inst, unsigned N) const { 300 assert(N == 1 && "Invalid number of operands"); 301 Inst.addOperand(MCOperand::createReg(getReg())); 302 } 303 void addImmOperands(MCInst &Inst, unsigned N) const { 304 assert(N == 1 && "Invalid number of operands"); 305 addExpr(Inst, getImm()); 306 } 307 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 308 assert(N == 2 && "Invalid number of operands"); 309 assert(isMem(BDMem) && "Invalid operand type"); 310 Inst.addOperand(MCOperand::createReg(Mem.Base)); 311 addExpr(Inst, Mem.Disp); 312 } 313 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 314 assert(N == 3 && "Invalid number of operands"); 315 assert(isMem(BDXMem) && "Invalid operand type"); 316 Inst.addOperand(MCOperand::createReg(Mem.Base)); 317 addExpr(Inst, Mem.Disp); 318 Inst.addOperand(MCOperand::createReg(Mem.Index)); 319 } 320 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 321 assert(N == 3 && "Invalid number of operands"); 322 assert(isMem(BDLMem) && "Invalid operand type"); 323 Inst.addOperand(MCOperand::createReg(Mem.Base)); 324 addExpr(Inst, Mem.Disp); 325 addExpr(Inst, Mem.Length.Imm); 326 } 327 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 328 assert(N == 3 && "Invalid number of operands"); 329 assert(isMem(BDRMem) && "Invalid operand type"); 330 Inst.addOperand(MCOperand::createReg(Mem.Base)); 331 addExpr(Inst, Mem.Disp); 332 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 333 } 334 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 335 assert(N == 3 && "Invalid number of operands"); 336 assert(isMem(BDVMem) && "Invalid operand type"); 337 Inst.addOperand(MCOperand::createReg(Mem.Base)); 338 addExpr(Inst, Mem.Disp); 339 Inst.addOperand(MCOperand::createReg(Mem.Index)); 340 } 341 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 342 assert(N == 2 && "Invalid number of operands"); 343 assert(Kind == KindImmTLS && "Invalid operand type"); 344 addExpr(Inst, ImmTLS.Imm); 345 if (ImmTLS.Sym) 346 addExpr(Inst, ImmTLS.Sym); 347 } 348 349 // Used by the TableGen code to check for particular operand types. 350 bool isGR32() const { return isReg(GR32Reg); } 351 bool isGRH32() const { return isReg(GRH32Reg); } 352 bool isGRX32() const { return false; } 353 bool isGR64() const { return isReg(GR64Reg); } 354 bool isGR128() const { return isReg(GR128Reg); } 355 bool isADDR32() const { return isReg(GR32Reg); } 356 bool isADDR64() const { return isReg(GR64Reg); } 357 bool isADDR128() const { return false; } 358 bool isFP32() const { return isReg(FP32Reg); } 359 bool isFP64() const { return isReg(FP64Reg); } 360 bool isFP128() const { return isReg(FP128Reg); } 361 bool isVR32() const { return isReg(VR32Reg); } 362 bool isVR64() const { return isReg(VR64Reg); } 363 bool isVF128() const { return false; } 364 bool isVR128() const { return isReg(VR128Reg); } 365 bool isAR32() const { return isReg(AR32Reg); } 366 bool isCR64() const { return isReg(CR64Reg); } 367 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 368 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 369 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 370 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 371 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 372 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 373 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 374 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 375 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 376 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 377 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 378 bool isU1Imm() const { return isImm(0, 1); } 379 bool isU2Imm() const { return isImm(0, 3); } 380 bool isU3Imm() const { return isImm(0, 7); } 381 bool isU4Imm() const { return isImm(0, 15); } 382 bool isU6Imm() const { return isImm(0, 63); } 383 bool isU8Imm() const { return isImm(0, 255); } 384 bool isS8Imm() const { return isImm(-128, 127); } 385 bool isU12Imm() const { return isImm(0, 4095); } 386 bool isU16Imm() const { return isImm(0, 65535); } 387 bool isS16Imm() const { return isImm(-32768, 32767); } 388 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 389 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 390 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 391 }; 392 393 class SystemZAsmParser : public MCTargetAsmParser { 394 #define GET_ASSEMBLER_HEADER 395 #include "SystemZGenAsmMatcher.inc" 396 397 private: 398 MCAsmParser &Parser; 399 enum RegisterGroup { 400 RegGR, 401 RegFP, 402 RegV, 403 RegAR, 404 RegCR 405 }; 406 struct Register { 407 RegisterGroup Group; 408 unsigned Num; 409 SMLoc StartLoc, EndLoc; 410 }; 411 412 SystemZTargetStreamer &getTargetStreamer() { 413 assert(getParser().getStreamer().getTargetStreamer() && 414 "do not have a target streamer"); 415 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 416 return static_cast<SystemZTargetStreamer &>(TS); 417 } 418 419 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 420 421 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 422 423 OperandMatchResultTy parseRegister(OperandVector &Operands, 424 RegisterKind Kind); 425 426 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 427 428 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 429 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 430 bool HasLength = false, bool HasVectorIndex = false); 431 bool parseAddressRegister(Register &Reg); 432 433 bool ParseDirectiveInsn(SMLoc L); 434 bool ParseDirectiveMachine(SMLoc L); 435 bool ParseGNUAttribute(SMLoc L); 436 437 OperandMatchResultTy parseAddress(OperandVector &Operands, 438 MemoryKind MemKind, 439 RegisterKind RegKind); 440 441 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 442 int64_t MaxVal, bool AllowTLS); 443 444 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 445 446 // Both the hlasm and att variants still rely on the basic gnu asm 447 // format with respect to inputs, clobbers, outputs etc. 448 // 449 // However, calling the overriden getAssemblerDialect() method in 450 // AsmParser is problematic. It either returns the AssemblerDialect field 451 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 452 // unset, otherwise it returns the private AssemblerDialect field in 453 // AsmParser. 454 // 455 // The problematic part is because, we forcibly set the inline asm dialect 456 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 457 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 458 // not return the assembler dialect set in the respective MCAsmInfo instance. 459 // 460 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 461 // here, to get the "correct" assembler dialect, and use it in various 462 // functions. 463 unsigned getMAIAssemblerDialect() { 464 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 465 } 466 467 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 468 // or from 'a' through 'z', or '$', '_','#', or '@'. 469 inline bool isHLASMAlpha(char C) { 470 return isAlpha(C) || llvm::is_contained("_@#$", C); 471 } 472 473 // A digit in HLASM is a number from 0 to 9. 474 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 475 476 // Are we parsing using the AD_HLASM dialect? 477 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } 478 479 // Are we parsing using the AD_ATT dialect? 480 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } 481 482 public: 483 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 484 const MCInstrInfo &MII, 485 const MCTargetOptions &Options) 486 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 487 MCAsmParserExtension::Initialize(Parser); 488 489 // Alias the .word directive to .short. 490 parser.addAliasForDirective(".word", ".short"); 491 492 // Initialize the set of available features. 493 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 494 } 495 496 // Override MCTargetAsmParser. 497 bool ParseDirective(AsmToken DirectiveID) override; 498 bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc, 499 SMLoc &EndLoc) override; 500 bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 501 bool RestoreOnFailure); 502 OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc, 503 SMLoc &EndLoc) override; 504 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 505 SMLoc NameLoc, OperandVector &Operands) override; 506 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 507 OperandVector &Operands, MCStreamer &Out, 508 uint64_t &ErrorInfo, 509 bool MatchingInlineAsm) override; 510 bool isLabel(AsmToken &Token) override; 511 512 // Used by the TableGen code to parse particular operand types. 513 OperandMatchResultTy parseGR32(OperandVector &Operands) { 514 return parseRegister(Operands, GR32Reg); 515 } 516 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 517 return parseRegister(Operands, GRH32Reg); 518 } 519 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 520 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 521 } 522 OperandMatchResultTy parseGR64(OperandVector &Operands) { 523 return parseRegister(Operands, GR64Reg); 524 } 525 OperandMatchResultTy parseGR128(OperandVector &Operands) { 526 return parseRegister(Operands, GR128Reg); 527 } 528 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 529 // For the AsmParser, we will accept %r0 for ADDR32 as well. 530 return parseRegister(Operands, GR32Reg); 531 } 532 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 533 // For the AsmParser, we will accept %r0 for ADDR64 as well. 534 return parseRegister(Operands, GR64Reg); 535 } 536 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 537 llvm_unreachable("Shouldn't be used as an operand"); 538 } 539 OperandMatchResultTy parseFP32(OperandVector &Operands) { 540 return parseRegister(Operands, FP32Reg); 541 } 542 OperandMatchResultTy parseFP64(OperandVector &Operands) { 543 return parseRegister(Operands, FP64Reg); 544 } 545 OperandMatchResultTy parseFP128(OperandVector &Operands) { 546 return parseRegister(Operands, FP128Reg); 547 } 548 OperandMatchResultTy parseVR32(OperandVector &Operands) { 549 return parseRegister(Operands, VR32Reg); 550 } 551 OperandMatchResultTy parseVR64(OperandVector &Operands) { 552 return parseRegister(Operands, VR64Reg); 553 } 554 OperandMatchResultTy parseVF128(OperandVector &Operands) { 555 llvm_unreachable("Shouldn't be used as an operand"); 556 } 557 OperandMatchResultTy parseVR128(OperandVector &Operands) { 558 return parseRegister(Operands, VR128Reg); 559 } 560 OperandMatchResultTy parseAR32(OperandVector &Operands) { 561 return parseRegister(Operands, AR32Reg); 562 } 563 OperandMatchResultTy parseCR64(OperandVector &Operands) { 564 return parseRegister(Operands, CR64Reg); 565 } 566 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 567 return parseAnyRegister(Operands); 568 } 569 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 570 return parseAddress(Operands, BDMem, GR32Reg); 571 } 572 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 573 return parseAddress(Operands, BDMem, GR64Reg); 574 } 575 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 576 return parseAddress(Operands, BDXMem, GR64Reg); 577 } 578 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 579 return parseAddress(Operands, BDLMem, GR64Reg); 580 } 581 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 582 return parseAddress(Operands, BDRMem, GR64Reg); 583 } 584 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 585 return parseAddress(Operands, BDVMem, GR64Reg); 586 } 587 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 588 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 589 } 590 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 591 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 592 } 593 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 594 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 595 } 596 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 597 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 598 } 599 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 600 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 601 } 602 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 603 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 604 } 605 }; 606 607 } // end anonymous namespace 608 609 #define GET_REGISTER_MATCHER 610 #define GET_SUBTARGET_FEATURE_NAME 611 #define GET_MATCHER_IMPLEMENTATION 612 #define GET_MNEMONIC_SPELL_CHECKER 613 #include "SystemZGenAsmMatcher.inc" 614 615 // Used for the .insn directives; contains information needed to parse the 616 // operands in the directive. 617 struct InsnMatchEntry { 618 StringRef Format; 619 uint64_t Opcode; 620 int32_t NumOperands; 621 MatchClassKind OperandKinds[7]; 622 }; 623 624 // For equal_range comparison. 625 struct CompareInsn { 626 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 627 return LHS.Format < RHS; 628 } 629 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 630 return LHS < RHS.Format; 631 } 632 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 633 return LHS.Format < RHS.Format; 634 } 635 }; 636 637 // Table initializing information for parsing the .insn directive. 638 static struct InsnMatchEntry InsnMatchTable[] = { 639 /* Format, Opcode, NumOperands, OperandKinds */ 640 { "e", SystemZ::InsnE, 1, 641 { MCK_U16Imm } }, 642 { "ri", SystemZ::InsnRI, 3, 643 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 644 { "rie", SystemZ::InsnRIE, 4, 645 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 646 { "ril", SystemZ::InsnRIL, 3, 647 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 648 { "rilu", SystemZ::InsnRILU, 3, 649 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 650 { "ris", SystemZ::InsnRIS, 5, 651 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 652 { "rr", SystemZ::InsnRR, 3, 653 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 654 { "rre", SystemZ::InsnRRE, 3, 655 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 656 { "rrf", SystemZ::InsnRRF, 5, 657 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 658 { "rrs", SystemZ::InsnRRS, 5, 659 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 660 { "rs", SystemZ::InsnRS, 4, 661 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 662 { "rse", SystemZ::InsnRSE, 4, 663 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 664 { "rsi", SystemZ::InsnRSI, 4, 665 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 666 { "rsy", SystemZ::InsnRSY, 4, 667 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 668 { "rx", SystemZ::InsnRX, 3, 669 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 670 { "rxe", SystemZ::InsnRXE, 3, 671 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 672 { "rxf", SystemZ::InsnRXF, 4, 673 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 674 { "rxy", SystemZ::InsnRXY, 3, 675 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 676 { "s", SystemZ::InsnS, 2, 677 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 678 { "si", SystemZ::InsnSI, 3, 679 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 680 { "sil", SystemZ::InsnSIL, 3, 681 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 682 { "siy", SystemZ::InsnSIY, 3, 683 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 684 { "ss", SystemZ::InsnSS, 4, 685 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 686 { "sse", SystemZ::InsnSSE, 3, 687 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 688 { "ssf", SystemZ::InsnSSF, 4, 689 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 690 { "vri", SystemZ::InsnVRI, 6, 691 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 692 { "vrr", SystemZ::InsnVRR, 7, 693 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 694 MCK_U4Imm } }, 695 { "vrs", SystemZ::InsnVRS, 5, 696 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 697 { "vrv", SystemZ::InsnVRV, 4, 698 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 699 { "vrx", SystemZ::InsnVRX, 4, 700 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 701 { "vsi", SystemZ::InsnVSI, 4, 702 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 703 }; 704 705 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 706 if (!E) 707 return; 708 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 709 OS << *CE; 710 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 711 OS << *UE; 712 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 713 OS << *BE; 714 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 715 OS << *SRE; 716 else 717 OS << *E; 718 } 719 720 void SystemZOperand::print(raw_ostream &OS) const { 721 switch (Kind) { 722 case KindToken: 723 OS << "Token:" << getToken(); 724 break; 725 case KindReg: 726 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 727 break; 728 case KindImm: 729 OS << "Imm:"; 730 printMCExpr(getImm(), OS); 731 break; 732 case KindImmTLS: 733 OS << "ImmTLS:"; 734 printMCExpr(getImmTLS().Imm, OS); 735 if (getImmTLS().Sym) { 736 OS << ", "; 737 printMCExpr(getImmTLS().Sym, OS); 738 } 739 break; 740 case KindMem: { 741 const MemOp &Op = getMem(); 742 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 743 if (Op.Base) { 744 OS << "("; 745 if (Op.MemKind == BDLMem) 746 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 747 else if (Op.MemKind == BDRMem) 748 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 749 if (Op.Index) 750 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 751 OS << SystemZInstPrinter::getRegisterName(Op.Base); 752 OS << ")"; 753 } 754 break; 755 } 756 case KindInvalid: 757 break; 758 } 759 } 760 761 // Parse one register of the form %<prefix><number>. 762 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 763 Reg.StartLoc = Parser.getTok().getLoc(); 764 765 // Eat the % prefix. 766 if (Parser.getTok().isNot(AsmToken::Percent)) 767 return Error(Parser.getTok().getLoc(), "register expected"); 768 const AsmToken &PercentTok = Parser.getTok(); 769 Parser.Lex(); 770 771 // Expect a register name. 772 if (Parser.getTok().isNot(AsmToken::Identifier)) { 773 if (RestoreOnFailure) 774 getLexer().UnLex(PercentTok); 775 return Error(Reg.StartLoc, "invalid register"); 776 } 777 778 // Check that there's a prefix. 779 StringRef Name = Parser.getTok().getString(); 780 if (Name.size() < 2) { 781 if (RestoreOnFailure) 782 getLexer().UnLex(PercentTok); 783 return Error(Reg.StartLoc, "invalid register"); 784 } 785 char Prefix = Name[0]; 786 787 // Treat the rest of the register name as a register number. 788 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 789 if (RestoreOnFailure) 790 getLexer().UnLex(PercentTok); 791 return Error(Reg.StartLoc, "invalid register"); 792 } 793 794 // Look for valid combinations of prefix and number. 795 if (Prefix == 'r' && Reg.Num < 16) 796 Reg.Group = RegGR; 797 else if (Prefix == 'f' && Reg.Num < 16) 798 Reg.Group = RegFP; 799 else if (Prefix == 'v' && Reg.Num < 32) 800 Reg.Group = RegV; 801 else if (Prefix == 'a' && Reg.Num < 16) 802 Reg.Group = RegAR; 803 else if (Prefix == 'c' && Reg.Num < 16) 804 Reg.Group = RegCR; 805 else { 806 if (RestoreOnFailure) 807 getLexer().UnLex(PercentTok); 808 return Error(Reg.StartLoc, "invalid register"); 809 } 810 811 Reg.EndLoc = Parser.getTok().getLoc(); 812 Parser.Lex(); 813 return false; 814 } 815 816 // Parse a register of kind Kind and add it to Operands. 817 OperandMatchResultTy 818 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { 819 Register Reg; 820 RegisterGroup Group; 821 switch (Kind) { 822 case GR32Reg: 823 case GRH32Reg: 824 case GR64Reg: 825 case GR128Reg: 826 Group = RegGR; 827 break; 828 case FP32Reg: 829 case FP64Reg: 830 case FP128Reg: 831 Group = RegFP; 832 break; 833 case VR32Reg: 834 case VR64Reg: 835 case VR128Reg: 836 Group = RegV; 837 break; 838 case AR32Reg: 839 Group = RegAR; 840 break; 841 case CR64Reg: 842 Group = RegCR; 843 break; 844 } 845 846 // Handle register names of the form %<prefix><number> 847 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 848 if (parseRegister(Reg)) 849 return MatchOperand_ParseFail; 850 851 // Check the parsed register group "Reg.Group" with the expected "Group" 852 // Have to error out if user specified wrong prefix. 853 switch (Group) { 854 case RegGR: 855 case RegFP: 856 case RegAR: 857 case RegCR: 858 if (Group != Reg.Group) { 859 Error(Reg.StartLoc, "invalid operand for instruction"); 860 return MatchOperand_ParseFail; 861 } 862 break; 863 case RegV: 864 if (Reg.Group != RegV && Reg.Group != RegFP) { 865 Error(Reg.StartLoc, "invalid operand for instruction"); 866 return MatchOperand_ParseFail; 867 } 868 break; 869 } 870 } else if (Parser.getTok().is(AsmToken::Integer)) { 871 if (parseIntegerRegister(Reg, Group)) 872 return MatchOperand_ParseFail; 873 } 874 // Otherwise we didn't match a register operand. 875 else 876 return MatchOperand_NoMatch; 877 878 // Determine the LLVM register number according to Kind. 879 const unsigned *Regs; 880 switch (Kind) { 881 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 882 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 883 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 884 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 885 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 886 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 887 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 888 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 889 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 890 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 891 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 892 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 893 } 894 if (Regs[Reg.Num] == 0) { 895 Error(Reg.StartLoc, "invalid register pair"); 896 return MatchOperand_ParseFail; 897 } 898 899 Operands.push_back( 900 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 901 return MatchOperand_Success; 902 } 903 904 // Parse any type of register (including integers) and add it to Operands. 905 OperandMatchResultTy 906 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 907 SMLoc StartLoc = Parser.getTok().getLoc(); 908 909 // Handle integer values. 910 if (Parser.getTok().is(AsmToken::Integer)) { 911 const MCExpr *Register; 912 if (Parser.parseExpression(Register)) 913 return MatchOperand_ParseFail; 914 915 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 916 int64_t Value = CE->getValue(); 917 if (Value < 0 || Value > 15) { 918 Error(StartLoc, "invalid register"); 919 return MatchOperand_ParseFail; 920 } 921 } 922 923 SMLoc EndLoc = 924 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 925 926 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 927 } 928 else { 929 if (isParsingHLASM()) 930 return MatchOperand_NoMatch; 931 932 Register Reg; 933 if (parseRegister(Reg)) 934 return MatchOperand_ParseFail; 935 936 if (Reg.Num > 15) { 937 Error(StartLoc, "invalid register"); 938 return MatchOperand_ParseFail; 939 } 940 941 // Map to the correct register kind. 942 RegisterKind Kind; 943 unsigned RegNo; 944 if (Reg.Group == RegGR) { 945 Kind = GR64Reg; 946 RegNo = SystemZMC::GR64Regs[Reg.Num]; 947 } 948 else if (Reg.Group == RegFP) { 949 Kind = FP64Reg; 950 RegNo = SystemZMC::FP64Regs[Reg.Num]; 951 } 952 else if (Reg.Group == RegV) { 953 Kind = VR128Reg; 954 RegNo = SystemZMC::VR128Regs[Reg.Num]; 955 } 956 else if (Reg.Group == RegAR) { 957 Kind = AR32Reg; 958 RegNo = SystemZMC::AR32Regs[Reg.Num]; 959 } 960 else if (Reg.Group == RegCR) { 961 Kind = CR64Reg; 962 RegNo = SystemZMC::CR64Regs[Reg.Num]; 963 } 964 else { 965 return MatchOperand_ParseFail; 966 } 967 968 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 969 Reg.StartLoc, Reg.EndLoc)); 970 } 971 return MatchOperand_Success; 972 } 973 974 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 975 RegisterGroup Group) { 976 Reg.StartLoc = Parser.getTok().getLoc(); 977 // We have an integer token 978 const MCExpr *Register; 979 if (Parser.parseExpression(Register)) 980 return true; 981 982 const auto *CE = dyn_cast<MCConstantExpr>(Register); 983 if (!CE) 984 return true; 985 986 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 987 int64_t Value = CE->getValue(); 988 if (Value < 0 || Value > MaxRegNum) { 989 Error(Parser.getTok().getLoc(), "invalid register"); 990 return true; 991 } 992 993 // Assign the Register Number 994 Reg.Num = (unsigned)Value; 995 Reg.Group = Group; 996 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 997 998 // At this point, successfully parsed an integer register. 999 return false; 1000 } 1001 1002 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 1003 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 1004 bool &HaveReg2, Register &Reg2, 1005 const MCExpr *&Disp, const MCExpr *&Length, 1006 bool HasLength, bool HasVectorIndex) { 1007 // Parse the displacement, which must always be present. 1008 if (getParser().parseExpression(Disp)) 1009 return true; 1010 1011 // Parse the optional base and index. 1012 HaveReg1 = false; 1013 HaveReg2 = false; 1014 Length = nullptr; 1015 1016 // If we have a scenario as below: 1017 // vgef %v0, 0(0), 0 1018 // This is an example of a "BDVMem" instruction type. 1019 // 1020 // So when we parse this as an integer register, the register group 1021 // needs to be tied to "RegV". Usually when the prefix is passed in 1022 // as %<prefix><reg-number> its easy to check which group it should belong to 1023 // However, if we're passing in just the integer there's no real way to 1024 // "check" what register group it should belong to. 1025 // 1026 // When the user passes in the register as an integer, the user assumes that 1027 // the compiler is responsible for substituting it as the right kind of 1028 // register. Whereas, when the user specifies a "prefix", the onus is on 1029 // the user to make sure they pass in the right kind of register. 1030 // 1031 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1032 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1033 // (i.e. insn is of type BDVMem) is true. 1034 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1035 1036 if (getLexer().is(AsmToken::LParen)) { 1037 Parser.Lex(); 1038 1039 if (isParsingATT() && getLexer().is(AsmToken::Percent)) { 1040 // Parse the first register. 1041 HaveReg1 = true; 1042 if (parseRegister(Reg1)) 1043 return true; 1044 } 1045 // So if we have an integer as the first token in ([tok1], ..), it could: 1046 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1047 // instructions) 1048 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1049 else if (getLexer().is(AsmToken::Integer)) { 1050 if (HasLength) { 1051 // Instruction has a "Length" field, safe to parse the first token as 1052 // the "Length" field 1053 if (getParser().parseExpression(Length)) 1054 return true; 1055 } else { 1056 // Otherwise, if the instruction has no "Length" field, parse the 1057 // token as a "Register". We don't have to worry about whether the 1058 // instruction is invalid here, because the caller will take care of 1059 // error reporting. 1060 HaveReg1 = true; 1061 if (parseIntegerRegister(Reg1, RegGroup)) 1062 return true; 1063 } 1064 } else { 1065 // If its not an integer or a percent token, then if the instruction 1066 // is reported to have a "Length" then, parse it as "Length". 1067 if (HasLength) { 1068 if (getParser().parseExpression(Length)) 1069 return true; 1070 } 1071 } 1072 1073 // Check whether there's a second register. 1074 if (getLexer().is(AsmToken::Comma)) { 1075 Parser.Lex(); 1076 HaveReg2 = true; 1077 1078 if (getLexer().is(AsmToken::Integer)) { 1079 if (parseIntegerRegister(Reg2, RegGR)) 1080 return true; 1081 } else { 1082 if (isParsingATT() && parseRegister(Reg2)) 1083 return true; 1084 } 1085 } 1086 1087 // Consume the closing bracket. 1088 if (getLexer().isNot(AsmToken::RParen)) 1089 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1090 Parser.Lex(); 1091 } 1092 return false; 1093 } 1094 1095 // Verify that Reg is a valid address register (base or index). 1096 bool 1097 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1098 if (Reg.Group == RegV) { 1099 Error(Reg.StartLoc, "invalid use of vector addressing"); 1100 return true; 1101 } else if (Reg.Group != RegGR) { 1102 Error(Reg.StartLoc, "invalid address register"); 1103 return true; 1104 } 1105 return false; 1106 } 1107 1108 // Parse a memory operand and add it to Operands. The other arguments 1109 // are as above. 1110 OperandMatchResultTy 1111 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 1112 RegisterKind RegKind) { 1113 SMLoc StartLoc = Parser.getTok().getLoc(); 1114 unsigned Base = 0, Index = 0, LengthReg = 0; 1115 Register Reg1, Reg2; 1116 bool HaveReg1, HaveReg2; 1117 const MCExpr *Disp; 1118 const MCExpr *Length; 1119 1120 bool HasLength = (MemKind == BDLMem) ? true : false; 1121 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1122 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1123 HasVectorIndex)) 1124 return MatchOperand_ParseFail; 1125 1126 const unsigned *Regs; 1127 switch (RegKind) { 1128 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1129 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1130 default: llvm_unreachable("invalid RegKind"); 1131 } 1132 1133 switch (MemKind) { 1134 case BDMem: 1135 // If we have Reg1, it must be an address register. 1136 if (HaveReg1) { 1137 if (parseAddressRegister(Reg1)) 1138 return MatchOperand_ParseFail; 1139 Base = Regs[Reg1.Num]; 1140 } 1141 // There must be no Reg2. 1142 if (HaveReg2) { 1143 Error(StartLoc, "invalid use of indexed addressing"); 1144 return MatchOperand_ParseFail; 1145 } 1146 break; 1147 case BDXMem: 1148 // If we have Reg1, it must be an address register. 1149 if (HaveReg1) { 1150 if (parseAddressRegister(Reg1)) 1151 return MatchOperand_ParseFail; 1152 // If the are two registers, the first one is the index and the 1153 // second is the base. 1154 if (HaveReg2) 1155 Index = Regs[Reg1.Num]; 1156 else 1157 Base = Regs[Reg1.Num]; 1158 } 1159 // If we have Reg2, it must be an address register. 1160 if (HaveReg2) { 1161 if (parseAddressRegister(Reg2)) 1162 return MatchOperand_ParseFail; 1163 Base = Regs[Reg2.Num]; 1164 } 1165 break; 1166 case BDLMem: 1167 // If we have Reg2, it must be an address register. 1168 if (HaveReg2) { 1169 if (parseAddressRegister(Reg2)) 1170 return MatchOperand_ParseFail; 1171 Base = Regs[Reg2.Num]; 1172 } 1173 // We cannot support base+index addressing. 1174 if (HaveReg1 && HaveReg2) { 1175 Error(StartLoc, "invalid use of indexed addressing"); 1176 return MatchOperand_ParseFail; 1177 } 1178 // We must have a length. 1179 if (!Length) { 1180 Error(StartLoc, "missing length in address"); 1181 return MatchOperand_ParseFail; 1182 } 1183 break; 1184 case BDRMem: 1185 // We must have Reg1, and it must be a GPR. 1186 if (!HaveReg1 || Reg1.Group != RegGR) { 1187 Error(StartLoc, "invalid operand for instruction"); 1188 return MatchOperand_ParseFail; 1189 } 1190 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1191 // If we have Reg2, it must be an address register. 1192 if (HaveReg2) { 1193 if (parseAddressRegister(Reg2)) 1194 return MatchOperand_ParseFail; 1195 Base = Regs[Reg2.Num]; 1196 } 1197 break; 1198 case BDVMem: 1199 // We must have Reg1, and it must be a vector register. 1200 if (!HaveReg1 || Reg1.Group != RegV) { 1201 Error(StartLoc, "vector index required in address"); 1202 return MatchOperand_ParseFail; 1203 } 1204 Index = SystemZMC::VR128Regs[Reg1.Num]; 1205 // If we have Reg2, it must be an address register. 1206 if (HaveReg2) { 1207 if (parseAddressRegister(Reg2)) 1208 return MatchOperand_ParseFail; 1209 Base = Regs[Reg2.Num]; 1210 } 1211 break; 1212 } 1213 1214 SMLoc EndLoc = 1215 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1216 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1217 Index, Length, LengthReg, 1218 StartLoc, EndLoc)); 1219 return MatchOperand_Success; 1220 } 1221 1222 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1223 StringRef IDVal = DirectiveID.getIdentifier(); 1224 1225 if (IDVal == ".insn") 1226 return ParseDirectiveInsn(DirectiveID.getLoc()); 1227 if (IDVal == ".machine") 1228 return ParseDirectiveMachine(DirectiveID.getLoc()); 1229 if (IDVal.startswith(".gnu_attribute")) 1230 return ParseGNUAttribute(DirectiveID.getLoc()); 1231 1232 return true; 1233 } 1234 1235 /// ParseDirectiveInsn 1236 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1237 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1238 MCAsmParser &Parser = getParser(); 1239 1240 // Expect instruction format as identifier. 1241 StringRef Format; 1242 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1243 if (Parser.parseIdentifier(Format)) 1244 return Error(ErrorLoc, "expected instruction format"); 1245 1246 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1247 1248 // Find entry for this format in InsnMatchTable. 1249 auto EntryRange = 1250 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1251 Format, CompareInsn()); 1252 1253 // If first == second, couldn't find a match in the table. 1254 if (EntryRange.first == EntryRange.second) 1255 return Error(ErrorLoc, "unrecognized format"); 1256 1257 struct InsnMatchEntry *Entry = EntryRange.first; 1258 1259 // Format should match from equal_range. 1260 assert(Entry->Format == Format); 1261 1262 // Parse the following operands using the table's information. 1263 for (int i = 0; i < Entry->NumOperands; i++) { 1264 MatchClassKind Kind = Entry->OperandKinds[i]; 1265 1266 SMLoc StartLoc = Parser.getTok().getLoc(); 1267 1268 // Always expect commas as separators for operands. 1269 if (getLexer().isNot(AsmToken::Comma)) 1270 return Error(StartLoc, "unexpected token in directive"); 1271 Lex(); 1272 1273 // Parse operands. 1274 OperandMatchResultTy ResTy; 1275 if (Kind == MCK_AnyReg) 1276 ResTy = parseAnyReg(Operands); 1277 else if (Kind == MCK_VR128) 1278 ResTy = parseVR128(Operands); 1279 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1280 ResTy = parseBDXAddr64(Operands); 1281 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1282 ResTy = parseBDAddr64(Operands); 1283 else if (Kind == MCK_BDVAddr64Disp12) 1284 ResTy = parseBDVAddr64(Operands); 1285 else if (Kind == MCK_PCRel32) 1286 ResTy = parsePCRel32(Operands); 1287 else if (Kind == MCK_PCRel16) 1288 ResTy = parsePCRel16(Operands); 1289 else { 1290 // Only remaining operand kind is an immediate. 1291 const MCExpr *Expr; 1292 SMLoc StartLoc = Parser.getTok().getLoc(); 1293 1294 // Expect immediate expression. 1295 if (Parser.parseExpression(Expr)) 1296 return Error(StartLoc, "unexpected token in directive"); 1297 1298 SMLoc EndLoc = 1299 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1300 1301 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1302 ResTy = MatchOperand_Success; 1303 } 1304 1305 if (ResTy != MatchOperand_Success) 1306 return true; 1307 } 1308 1309 // Build the instruction with the parsed operands. 1310 MCInst Inst = MCInstBuilder(Entry->Opcode); 1311 1312 for (size_t i = 0; i < Operands.size(); i++) { 1313 MCParsedAsmOperand &Operand = *Operands[i]; 1314 MatchClassKind Kind = Entry->OperandKinds[i]; 1315 1316 // Verify operand. 1317 unsigned Res = validateOperandClass(Operand, Kind); 1318 if (Res != Match_Success) 1319 return Error(Operand.getStartLoc(), "unexpected operand type"); 1320 1321 // Add operands to instruction. 1322 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1323 if (ZOperand.isReg()) 1324 ZOperand.addRegOperands(Inst, 1); 1325 else if (ZOperand.isMem(BDMem)) 1326 ZOperand.addBDAddrOperands(Inst, 2); 1327 else if (ZOperand.isMem(BDXMem)) 1328 ZOperand.addBDXAddrOperands(Inst, 3); 1329 else if (ZOperand.isMem(BDVMem)) 1330 ZOperand.addBDVAddrOperands(Inst, 3); 1331 else if (ZOperand.isImm()) 1332 ZOperand.addImmOperands(Inst, 1); 1333 else 1334 llvm_unreachable("unexpected operand type"); 1335 } 1336 1337 // Emit as a regular instruction. 1338 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1339 1340 return false; 1341 } 1342 1343 /// ParseDirectiveMachine 1344 /// ::= .machine [ mcpu ] 1345 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { 1346 MCAsmParser &Parser = getParser(); 1347 if (Parser.getTok().isNot(AsmToken::Identifier) && 1348 Parser.getTok().isNot(AsmToken::String)) 1349 return Error(L, "unexpected token in '.machine' directive"); 1350 1351 StringRef CPU = Parser.getTok().getIdentifier(); 1352 Parser.Lex(); 1353 if (parseToken(AsmToken::EndOfStatement)) 1354 return addErrorSuffix(" in '.machine' directive"); 1355 1356 MCSubtargetInfo &STI = copySTI(); 1357 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 1358 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 1359 1360 getTargetStreamer().emitMachine(CPU); 1361 1362 return false; 1363 } 1364 1365 bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) { 1366 int64_t Tag; 1367 int64_t IntegerValue; 1368 if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) 1369 return false; 1370 1371 // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. 1372 if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) { 1373 Error(Parser.getTok().getLoc(), 1374 "Unrecognized .gnu_attribute tag/value pair."); 1375 return false; 1376 } 1377 1378 Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue); 1379 1380 return true; 1381 } 1382 1383 bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, 1384 SMLoc &EndLoc, bool RestoreOnFailure) { 1385 Register Reg; 1386 if (parseRegister(Reg, RestoreOnFailure)) 1387 return true; 1388 if (Reg.Group == RegGR) 1389 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1390 else if (Reg.Group == RegFP) 1391 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1392 else if (Reg.Group == RegV) 1393 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1394 else if (Reg.Group == RegAR) 1395 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1396 else if (Reg.Group == RegCR) 1397 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1398 StartLoc = Reg.StartLoc; 1399 EndLoc = Reg.EndLoc; 1400 return false; 1401 } 1402 1403 bool SystemZAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc, 1404 SMLoc &EndLoc) { 1405 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1406 } 1407 1408 OperandMatchResultTy SystemZAsmParser::tryParseRegister(MCRegister &RegNo, 1409 SMLoc &StartLoc, 1410 SMLoc &EndLoc) { 1411 bool Result = 1412 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1413 bool PendingErrors = getParser().hasPendingError(); 1414 getParser().clearPendingErrors(); 1415 if (PendingErrors) 1416 return MatchOperand_ParseFail; 1417 if (Result) 1418 return MatchOperand_NoMatch; 1419 return MatchOperand_Success; 1420 } 1421 1422 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1423 StringRef Name, SMLoc NameLoc, 1424 OperandVector &Operands) { 1425 1426 // Apply mnemonic aliases first, before doing anything else, in 1427 // case the target uses it. 1428 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1429 1430 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1431 1432 // Read the remaining operands. 1433 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1434 // Read the first operand. 1435 if (parseOperand(Operands, Name)) { 1436 return true; 1437 } 1438 1439 // Read any subsequent operands. 1440 while (getLexer().is(AsmToken::Comma)) { 1441 Parser.Lex(); 1442 1443 if (isParsingHLASM() && getLexer().is(AsmToken::Space)) 1444 return Error( 1445 Parser.getTok().getLoc(), 1446 "No space allowed between comma that separates operand entries"); 1447 1448 if (parseOperand(Operands, Name)) { 1449 return true; 1450 } 1451 } 1452 1453 // Under the HLASM variant, we could have the remark field 1454 // The remark field occurs after the operation entries 1455 // There is a space that separates the operation entries and the 1456 // remark field. 1457 if (isParsingHLASM() && getTok().is(AsmToken::Space)) { 1458 // We've confirmed that there is a Remark field. 1459 StringRef Remark(getLexer().LexUntilEndOfStatement()); 1460 Parser.Lex(); 1461 1462 // If there is nothing after the space, then there is nothing to emit 1463 // We could have a situation as this: 1464 // " \n" 1465 // After lexing above, we will have 1466 // "\n" 1467 // This isn't an explicit remark field, so we don't have to output 1468 // this as a comment. 1469 if (Remark.size()) 1470 // Output the entire Remarks Field as a comment 1471 getStreamer().AddComment(Remark); 1472 } 1473 1474 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1475 SMLoc Loc = getLexer().getLoc(); 1476 return Error(Loc, "unexpected token in argument list"); 1477 } 1478 } 1479 1480 // Consume the EndOfStatement. 1481 Parser.Lex(); 1482 return false; 1483 } 1484 1485 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1486 StringRef Mnemonic) { 1487 // Check if the current operand has a custom associated parser, if so, try to 1488 // custom parse the operand, or fallback to the general approach. Force all 1489 // features to be available during the operand check, or else we will fail to 1490 // find the custom parser, and then we will later get an InvalidOperand error 1491 // instead of a MissingFeature errror. 1492 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1493 FeatureBitset All; 1494 All.set(); 1495 setAvailableFeatures(All); 1496 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1497 setAvailableFeatures(AvailableFeatures); 1498 if (ResTy == MatchOperand_Success) 1499 return false; 1500 1501 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1502 // there was a match, but an error occurred, in which case, just return that 1503 // the operand parsing failed. 1504 if (ResTy == MatchOperand_ParseFail) 1505 return true; 1506 1507 // Check for a register. All real register operands should have used 1508 // a context-dependent parse routine, which gives the required register 1509 // class. The code is here to mop up other cases, like those where 1510 // the instruction isn't recognized. 1511 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 1512 Register Reg; 1513 if (parseRegister(Reg)) 1514 return true; 1515 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1516 return false; 1517 } 1518 1519 // The only other type of operand is an immediate or address. As above, 1520 // real address operands should have used a context-dependent parse routine, 1521 // so we treat any plain expression as an immediate. 1522 SMLoc StartLoc = Parser.getTok().getLoc(); 1523 Register Reg1, Reg2; 1524 bool HaveReg1, HaveReg2; 1525 const MCExpr *Expr; 1526 const MCExpr *Length; 1527 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1528 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1529 return true; 1530 // If the register combination is not valid for any instruction, reject it. 1531 // Otherwise, fall back to reporting an unrecognized instruction. 1532 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1533 && parseAddressRegister(Reg1)) 1534 return true; 1535 if (HaveReg2 && parseAddressRegister(Reg2)) 1536 return true; 1537 1538 SMLoc EndLoc = 1539 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1540 if (HaveReg1 || HaveReg2 || Length) 1541 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1542 else 1543 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1544 return false; 1545 } 1546 1547 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1548 OperandVector &Operands, 1549 MCStreamer &Out, 1550 uint64_t &ErrorInfo, 1551 bool MatchingInlineAsm) { 1552 MCInst Inst; 1553 unsigned MatchResult; 1554 1555 unsigned Dialect = getMAIAssemblerDialect(); 1556 1557 FeatureBitset MissingFeatures; 1558 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1559 MatchingInlineAsm, Dialect); 1560 switch (MatchResult) { 1561 case Match_Success: 1562 Inst.setLoc(IDLoc); 1563 Out.emitInstruction(Inst, getSTI()); 1564 return false; 1565 1566 case Match_MissingFeature: { 1567 assert(MissingFeatures.any() && "Unknown missing feature!"); 1568 // Special case the error message for the very common case where only 1569 // a single subtarget feature is missing 1570 std::string Msg = "instruction requires:"; 1571 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1572 if (MissingFeatures[I]) { 1573 Msg += " "; 1574 Msg += getSubtargetFeatureName(I); 1575 } 1576 } 1577 return Error(IDLoc, Msg); 1578 } 1579 1580 case Match_InvalidOperand: { 1581 SMLoc ErrorLoc = IDLoc; 1582 if (ErrorInfo != ~0ULL) { 1583 if (ErrorInfo >= Operands.size()) 1584 return Error(IDLoc, "too few operands for instruction"); 1585 1586 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1587 if (ErrorLoc == SMLoc()) 1588 ErrorLoc = IDLoc; 1589 } 1590 return Error(ErrorLoc, "invalid operand for instruction"); 1591 } 1592 1593 case Match_MnemonicFail: { 1594 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1595 std::string Suggestion = SystemZMnemonicSpellCheck( 1596 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1597 return Error(IDLoc, "invalid instruction" + Suggestion, 1598 ((SystemZOperand &)*Operands[0]).getLocRange()); 1599 } 1600 } 1601 1602 llvm_unreachable("Unexpected match type"); 1603 } 1604 1605 OperandMatchResultTy 1606 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1607 int64_t MaxVal, bool AllowTLS) { 1608 MCContext &Ctx = getContext(); 1609 MCStreamer &Out = getStreamer(); 1610 const MCExpr *Expr; 1611 SMLoc StartLoc = Parser.getTok().getLoc(); 1612 if (getParser().parseExpression(Expr)) 1613 return MatchOperand_NoMatch; 1614 1615 auto isOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { 1616 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1617 int64_t Value = CE->getValue(); 1618 if (Negate) 1619 Value = -Value; 1620 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1621 return true; 1622 } 1623 return false; 1624 }; 1625 1626 // For consistency with the GNU assembler, treat immediates as offsets 1627 // from ".". 1628 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1629 if (isParsingHLASM()) { 1630 Error(StartLoc, "Expected PC-relative expression"); 1631 return MatchOperand_ParseFail; 1632 } 1633 if (isOutOfRangeConstant(CE, false)) { 1634 Error(StartLoc, "offset out of range"); 1635 return MatchOperand_ParseFail; 1636 } 1637 int64_t Value = CE->getValue(); 1638 MCSymbol *Sym = Ctx.createTempSymbol(); 1639 Out.emitLabel(Sym); 1640 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1641 Ctx); 1642 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1643 } 1644 1645 // For consistency with the GNU assembler, conservatively assume that a 1646 // constant offset must by itself be within the given size range. 1647 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1648 if (isOutOfRangeConstant(BE->getLHS(), false) || 1649 isOutOfRangeConstant(BE->getRHS(), 1650 BE->getOpcode() == MCBinaryExpr::Sub)) { 1651 Error(StartLoc, "offset out of range"); 1652 return MatchOperand_ParseFail; 1653 } 1654 1655 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1656 const MCExpr *Sym = nullptr; 1657 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1658 Parser.Lex(); 1659 1660 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1661 Error(Parser.getTok().getLoc(), "unexpected token"); 1662 return MatchOperand_ParseFail; 1663 } 1664 1665 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1666 StringRef Name = Parser.getTok().getString(); 1667 if (Name == "tls_gdcall") 1668 Kind = MCSymbolRefExpr::VK_TLSGD; 1669 else if (Name == "tls_ldcall") 1670 Kind = MCSymbolRefExpr::VK_TLSLDM; 1671 else { 1672 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1673 return MatchOperand_ParseFail; 1674 } 1675 Parser.Lex(); 1676 1677 if (Parser.getTok().isNot(AsmToken::Colon)) { 1678 Error(Parser.getTok().getLoc(), "unexpected token"); 1679 return MatchOperand_ParseFail; 1680 } 1681 Parser.Lex(); 1682 1683 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1684 Error(Parser.getTok().getLoc(), "unexpected token"); 1685 return MatchOperand_ParseFail; 1686 } 1687 1688 StringRef Identifier = Parser.getTok().getString(); 1689 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1690 Kind, Ctx); 1691 Parser.Lex(); 1692 } 1693 1694 SMLoc EndLoc = 1695 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1696 1697 if (AllowTLS) 1698 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1699 StartLoc, EndLoc)); 1700 else 1701 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1702 1703 return MatchOperand_Success; 1704 } 1705 1706 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1707 if (isParsingATT()) 1708 return true; 1709 1710 // HLASM labels are ordinary symbols. 1711 // An HLASM label always starts at column 1. 1712 // An ordinary symbol syntax is laid out as follows: 1713 // Rules: 1714 // 1. Has to start with an "alphabetic character". Can be followed by up to 1715 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1716 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1717 // or '$', '_', '#', or '@' 1718 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1719 // are all treated as the same symbol. However, the processing for the case 1720 // folding will not be done in this function. 1721 StringRef RawLabel = Token.getString(); 1722 SMLoc Loc = Token.getLoc(); 1723 1724 // An HLASM label cannot be empty. 1725 if (!RawLabel.size()) 1726 return !Error(Loc, "HLASM Label cannot be empty"); 1727 1728 // An HLASM label cannot exceed greater than 63 characters. 1729 if (RawLabel.size() > 63) 1730 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1731 1732 // A label must start with an "alphabetic character". 1733 if (!isHLASMAlpha(RawLabel[0])) 1734 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1735 "character or the underscore character"); 1736 1737 // Now, we've established that the length is valid 1738 // and the first character is alphabetic. 1739 // Check whether remaining string is alphanumeric. 1740 for (unsigned I = 1; I < RawLabel.size(); ++I) 1741 if (!isHLASMAlnum(RawLabel[I])) 1742 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1743 1744 return true; 1745 } 1746 1747 // Force static initialization. 1748 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1749 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1750 } 1751