xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/SystemZInstPrinter.h"
10 #include "MCTargetDesc/SystemZMCAsmInfo.h"
11 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "SystemZTargetStreamer.h"
13 #include "TargetInfo/SystemZTargetInfo.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstBuilder.h"
22 #include "llvm/MC/MCInstrInfo.h"
23 #include "llvm/MC/MCParser/MCAsmLexer.h"
24 #include "llvm/MC/MCParser/MCAsmParser.h"
25 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
26 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
27 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
28 #include "llvm/MC/MCStreamer.h"
29 #include "llvm/MC/MCSubtargetInfo.h"
30 #include "llvm/MC/TargetRegistry.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/SMLoc.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <memory>
40 #include <string>
41 
42 using namespace llvm;
43 
44 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol
45 // is true any MCExpr is accepted (address displacement).
46 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue,
47                     bool AllowSymbol = false) {
48   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
49     int64_t Value = CE->getValue();
50     return Value >= MinValue && Value <= MaxValue;
51   }
52   return AllowSymbol;
53 }
54 
55 namespace {
56 
57 enum RegisterKind {
58   GR32Reg,
59   GRH32Reg,
60   GR64Reg,
61   GR128Reg,
62   FP32Reg,
63   FP64Reg,
64   FP128Reg,
65   VR32Reg,
66   VR64Reg,
67   VR128Reg,
68   AR32Reg,
69   CR64Reg,
70 };
71 
72 enum MemoryKind {
73   BDMem,
74   BDXMem,
75   BDLMem,
76   BDRMem,
77   BDVMem
78 };
79 
80 class SystemZOperand : public MCParsedAsmOperand {
81 private:
82   enum OperandKind {
83     KindInvalid,
84     KindToken,
85     KindReg,
86     KindImm,
87     KindImmTLS,
88     KindMem
89   };
90 
91   OperandKind Kind;
92   SMLoc StartLoc, EndLoc;
93 
94   // A string of length Length, starting at Data.
95   struct TokenOp {
96     const char *Data;
97     unsigned Length;
98   };
99 
100   // LLVM register Num, which has kind Kind.  In some ways it might be
101   // easier for this class to have a register bank (general, floating-point
102   // or access) and a raw register number (0-15).  This would postpone the
103   // interpretation of the operand to the add*() methods and avoid the need
104   // for context-dependent parsing.  However, we do things the current way
105   // because of the virtual getReg() method, which needs to distinguish
106   // between (say) %r0 used as a single register and %r0 used as a pair.
107   // Context-dependent parsing can also give us slightly better error
108   // messages when invalid pairs like %r1 are used.
109   struct RegOp {
110     RegisterKind Kind;
111     unsigned Num;
112   };
113 
114   // Base + Disp + Index, where Base and Index are LLVM registers or 0.
115   // MemKind says what type of memory this is and RegKind says what type
116   // the base register has (GR32Reg or GR64Reg).  Length is the operand
117   // length for D(L,B)-style operands, otherwise it is null.
118   struct MemOp {
119     unsigned Base : 12;
120     unsigned Index : 12;
121     unsigned MemKind : 4;
122     unsigned RegKind : 4;
123     const MCExpr *Disp;
124     union {
125       const MCExpr *Imm;
126       unsigned Reg;
127     } Length;
128   };
129 
130   // Imm is an immediate operand, and Sym is an optional TLS symbol
131   // for use with a __tls_get_offset marker relocation.
132   struct ImmTLSOp {
133     const MCExpr *Imm;
134     const MCExpr *Sym;
135   };
136 
137   union {
138     TokenOp Token;
139     RegOp Reg;
140     const MCExpr *Imm;
141     ImmTLSOp ImmTLS;
142     MemOp Mem;
143   };
144 
145   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
146     // Add as immediates when possible.  Null MCExpr = 0.
147     if (!Expr)
148       Inst.addOperand(MCOperand::createImm(0));
149     else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
150       Inst.addOperand(MCOperand::createImm(CE->getValue()));
151     else
152       Inst.addOperand(MCOperand::createExpr(Expr));
153   }
154 
155 public:
156   SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
157       : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
158 
159   // Create particular kinds of operand.
160   static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
161                                                        SMLoc EndLoc) {
162     return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
163   }
164 
165   static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
166     auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
167     Op->Token.Data = Str.data();
168     Op->Token.Length = Str.size();
169     return Op;
170   }
171 
172   static std::unique_ptr<SystemZOperand>
173   createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
174     auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
175     Op->Reg.Kind = Kind;
176     Op->Reg.Num = Num;
177     return Op;
178   }
179 
180   static std::unique_ptr<SystemZOperand>
181   createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
182     auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
183     Op->Imm = Expr;
184     return Op;
185   }
186 
187   static std::unique_ptr<SystemZOperand>
188   createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
189             const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
190             unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
191     auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
192     Op->Mem.MemKind = MemKind;
193     Op->Mem.RegKind = RegKind;
194     Op->Mem.Base = Base;
195     Op->Mem.Index = Index;
196     Op->Mem.Disp = Disp;
197     if (MemKind == BDLMem)
198       Op->Mem.Length.Imm = LengthImm;
199     if (MemKind == BDRMem)
200       Op->Mem.Length.Reg = LengthReg;
201     return Op;
202   }
203 
204   static std::unique_ptr<SystemZOperand>
205   createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
206                SMLoc StartLoc, SMLoc EndLoc) {
207     auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
208     Op->ImmTLS.Imm = Imm;
209     Op->ImmTLS.Sym = Sym;
210     return Op;
211   }
212 
213   // Token operands
214   bool isToken() const override {
215     return Kind == KindToken;
216   }
217   StringRef getToken() const {
218     assert(Kind == KindToken && "Not a token");
219     return StringRef(Token.Data, Token.Length);
220   }
221 
222   // Register operands.
223   bool isReg() const override {
224     return Kind == KindReg;
225   }
226   bool isReg(RegisterKind RegKind) const {
227     return Kind == KindReg && Reg.Kind == RegKind;
228   }
229   unsigned getReg() const override {
230     assert(Kind == KindReg && "Not a register");
231     return Reg.Num;
232   }
233 
234   // Immediate operands.
235   bool isImm() const override {
236     return Kind == KindImm;
237   }
238   bool isImm(int64_t MinValue, int64_t MaxValue) const {
239     return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
240   }
241   const MCExpr *getImm() const {
242     assert(Kind == KindImm && "Not an immediate");
243     return Imm;
244   }
245 
246   // Immediate operands with optional TLS symbol.
247   bool isImmTLS() const {
248     return Kind == KindImmTLS;
249   }
250 
251   const ImmTLSOp getImmTLS() const {
252     assert(Kind == KindImmTLS && "Not a TLS immediate");
253     return ImmTLS;
254   }
255 
256   // Memory operands.
257   bool isMem() const override {
258     return Kind == KindMem;
259   }
260   bool isMem(MemoryKind MemKind) const {
261     return (Kind == KindMem &&
262             (Mem.MemKind == MemKind ||
263              // A BDMem can be treated as a BDXMem in which the index
264              // register field is 0.
265              (Mem.MemKind == BDMem && MemKind == BDXMem)));
266   }
267   bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
268     return isMem(MemKind) && Mem.RegKind == RegKind;
269   }
270   bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
271     return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true);
272   }
273   bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
274     return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true);
275   }
276   bool isMemDisp12Len4(RegisterKind RegKind) const {
277     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
278   }
279   bool isMemDisp12Len8(RegisterKind RegKind) const {
280     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
281   }
282 
283   const MemOp& getMem() const {
284     assert(Kind == KindMem && "Not a Mem operand");
285     return Mem;
286   }
287 
288   // Override MCParsedAsmOperand.
289   SMLoc getStartLoc() const override { return StartLoc; }
290   SMLoc getEndLoc() const override { return EndLoc; }
291   void print(raw_ostream &OS) const override;
292 
293   /// getLocRange - Get the range between the first and last token of this
294   /// operand.
295   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
296 
297   // Used by the TableGen code to add particular types of operand
298   // to an instruction.
299   void addRegOperands(MCInst &Inst, unsigned N) const {
300     assert(N == 1 && "Invalid number of operands");
301     Inst.addOperand(MCOperand::createReg(getReg()));
302   }
303   void addImmOperands(MCInst &Inst, unsigned N) const {
304     assert(N == 1 && "Invalid number of operands");
305     addExpr(Inst, getImm());
306   }
307   void addBDAddrOperands(MCInst &Inst, unsigned N) const {
308     assert(N == 2 && "Invalid number of operands");
309     assert(isMem(BDMem) && "Invalid operand type");
310     Inst.addOperand(MCOperand::createReg(Mem.Base));
311     addExpr(Inst, Mem.Disp);
312   }
313   void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
314     assert(N == 3 && "Invalid number of operands");
315     assert(isMem(BDXMem) && "Invalid operand type");
316     Inst.addOperand(MCOperand::createReg(Mem.Base));
317     addExpr(Inst, Mem.Disp);
318     Inst.addOperand(MCOperand::createReg(Mem.Index));
319   }
320   void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
321     assert(N == 3 && "Invalid number of operands");
322     assert(isMem(BDLMem) && "Invalid operand type");
323     Inst.addOperand(MCOperand::createReg(Mem.Base));
324     addExpr(Inst, Mem.Disp);
325     addExpr(Inst, Mem.Length.Imm);
326   }
327   void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
328     assert(N == 3 && "Invalid number of operands");
329     assert(isMem(BDRMem) && "Invalid operand type");
330     Inst.addOperand(MCOperand::createReg(Mem.Base));
331     addExpr(Inst, Mem.Disp);
332     Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
333   }
334   void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
335     assert(N == 3 && "Invalid number of operands");
336     assert(isMem(BDVMem) && "Invalid operand type");
337     Inst.addOperand(MCOperand::createReg(Mem.Base));
338     addExpr(Inst, Mem.Disp);
339     Inst.addOperand(MCOperand::createReg(Mem.Index));
340   }
341   void addImmTLSOperands(MCInst &Inst, unsigned N) const {
342     assert(N == 2 && "Invalid number of operands");
343     assert(Kind == KindImmTLS && "Invalid operand type");
344     addExpr(Inst, ImmTLS.Imm);
345     if (ImmTLS.Sym)
346       addExpr(Inst, ImmTLS.Sym);
347   }
348 
349   // Used by the TableGen code to check for particular operand types.
350   bool isGR32() const { return isReg(GR32Reg); }
351   bool isGRH32() const { return isReg(GRH32Reg); }
352   bool isGRX32() const { return false; }
353   bool isGR64() const { return isReg(GR64Reg); }
354   bool isGR128() const { return isReg(GR128Reg); }
355   bool isADDR32() const { return isReg(GR32Reg); }
356   bool isADDR64() const { return isReg(GR64Reg); }
357   bool isADDR128() const { return false; }
358   bool isFP32() const { return isReg(FP32Reg); }
359   bool isFP64() const { return isReg(FP64Reg); }
360   bool isFP128() const { return isReg(FP128Reg); }
361   bool isVR32() const { return isReg(VR32Reg); }
362   bool isVR64() const { return isReg(VR64Reg); }
363   bool isVF128() const { return false; }
364   bool isVR128() const { return isReg(VR128Reg); }
365   bool isAR32() const { return isReg(AR32Reg); }
366   bool isCR64() const { return isReg(CR64Reg); }
367   bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
368   bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
369   bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
370   bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
371   bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
372   bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
373   bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
374   bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
375   bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
376   bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
377   bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
378   bool isU1Imm() const { return isImm(0, 1); }
379   bool isU2Imm() const { return isImm(0, 3); }
380   bool isU3Imm() const { return isImm(0, 7); }
381   bool isU4Imm() const { return isImm(0, 15); }
382   bool isU6Imm() const { return isImm(0, 63); }
383   bool isU8Imm() const { return isImm(0, 255); }
384   bool isS8Imm() const { return isImm(-128, 127); }
385   bool isU12Imm() const { return isImm(0, 4095); }
386   bool isU16Imm() const { return isImm(0, 65535); }
387   bool isS16Imm() const { return isImm(-32768, 32767); }
388   bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
389   bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
390   bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
391 };
392 
393 class SystemZAsmParser : public MCTargetAsmParser {
394 #define GET_ASSEMBLER_HEADER
395 #include "SystemZGenAsmMatcher.inc"
396 
397 private:
398   MCAsmParser &Parser;
399   enum RegisterGroup {
400     RegGR,
401     RegFP,
402     RegV,
403     RegAR,
404     RegCR
405   };
406   struct Register {
407     RegisterGroup Group;
408     unsigned Num;
409     SMLoc StartLoc, EndLoc;
410   };
411 
412   SystemZTargetStreamer &getTargetStreamer() {
413     assert(getParser().getStreamer().getTargetStreamer() &&
414            "do not have a target streamer");
415     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
416     return static_cast<SystemZTargetStreamer &>(TS);
417   }
418 
419   bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
420 
421   bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
422 
423   OperandMatchResultTy parseRegister(OperandVector &Operands,
424                                      RegisterKind Kind);
425 
426   OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
427 
428   bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
429                     Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
430                     bool HasLength = false, bool HasVectorIndex = false);
431   bool parseAddressRegister(Register &Reg);
432 
433   bool ParseDirectiveInsn(SMLoc L);
434   bool ParseDirectiveMachine(SMLoc L);
435   bool ParseGNUAttribute(SMLoc L);
436 
437   OperandMatchResultTy parseAddress(OperandVector &Operands,
438                                     MemoryKind MemKind,
439                                     RegisterKind RegKind);
440 
441   OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
442                                   int64_t MaxVal, bool AllowTLS);
443 
444   bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
445 
446   // Both the hlasm and att variants still rely on the basic gnu asm
447   // format with respect to inputs, clobbers, outputs etc.
448   //
449   // However, calling the overriden getAssemblerDialect() method in
450   // AsmParser is problematic. It either returns the AssemblerDialect field
451   // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is
452   // unset, otherwise it returns the private AssemblerDialect field in
453   // AsmParser.
454   //
455   // The problematic part is because, we forcibly set the inline asm dialect
456   // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query
457   // to the overriden getAssemblerDialect function in AsmParser.cpp, will
458   // not return the assembler dialect set in the respective MCAsmInfo instance.
459   //
460   // For this purpose, we explicitly query the SystemZMCAsmInfo instance
461   // here, to get the "correct" assembler dialect, and use it in various
462   // functions.
463   unsigned getMAIAssemblerDialect() {
464     return Parser.getContext().getAsmInfo()->getAssemblerDialect();
465   }
466 
467   // An alphabetic character in HLASM is a letter from 'A' through 'Z',
468   // or from 'a' through 'z', or '$', '_','#', or '@'.
469   inline bool isHLASMAlpha(char C) {
470     return isAlpha(C) || llvm::is_contained("_@#$", C);
471   }
472 
473   // A digit in HLASM is a number from 0 to 9.
474   inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); }
475 
476   // Are we parsing using the AD_HLASM dialect?
477   inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; }
478 
479   // Are we parsing using the AD_ATT dialect?
480   inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; }
481 
482 public:
483   SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
484                    const MCInstrInfo &MII,
485                    const MCTargetOptions &Options)
486     : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
487     MCAsmParserExtension::Initialize(Parser);
488 
489     // Alias the .word directive to .short.
490     parser.addAliasForDirective(".word", ".short");
491 
492     // Initialize the set of available features.
493     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
494   }
495 
496   // Override MCTargetAsmParser.
497   bool ParseDirective(AsmToken DirectiveID) override;
498   bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
499                      SMLoc &EndLoc) override;
500   bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
501                      bool RestoreOnFailure);
502   OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
503                                         SMLoc &EndLoc) override;
504   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
505                         SMLoc NameLoc, OperandVector &Operands) override;
506   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
507                                OperandVector &Operands, MCStreamer &Out,
508                                uint64_t &ErrorInfo,
509                                bool MatchingInlineAsm) override;
510   bool isLabel(AsmToken &Token) override;
511 
512   // Used by the TableGen code to parse particular operand types.
513   OperandMatchResultTy parseGR32(OperandVector &Operands) {
514     return parseRegister(Operands, GR32Reg);
515   }
516   OperandMatchResultTy parseGRH32(OperandVector &Operands) {
517     return parseRegister(Operands, GRH32Reg);
518   }
519   OperandMatchResultTy parseGRX32(OperandVector &Operands) {
520     llvm_unreachable("GRX32 should only be used for pseudo instructions");
521   }
522   OperandMatchResultTy parseGR64(OperandVector &Operands) {
523     return parseRegister(Operands, GR64Reg);
524   }
525   OperandMatchResultTy parseGR128(OperandVector &Operands) {
526     return parseRegister(Operands, GR128Reg);
527   }
528   OperandMatchResultTy parseADDR32(OperandVector &Operands) {
529     // For the AsmParser, we will accept %r0 for ADDR32 as well.
530     return parseRegister(Operands, GR32Reg);
531   }
532   OperandMatchResultTy parseADDR64(OperandVector &Operands) {
533     // For the AsmParser, we will accept %r0 for ADDR64 as well.
534     return parseRegister(Operands, GR64Reg);
535   }
536   OperandMatchResultTy parseADDR128(OperandVector &Operands) {
537     llvm_unreachable("Shouldn't be used as an operand");
538   }
539   OperandMatchResultTy parseFP32(OperandVector &Operands) {
540     return parseRegister(Operands, FP32Reg);
541   }
542   OperandMatchResultTy parseFP64(OperandVector &Operands) {
543     return parseRegister(Operands, FP64Reg);
544   }
545   OperandMatchResultTy parseFP128(OperandVector &Operands) {
546     return parseRegister(Operands, FP128Reg);
547   }
548   OperandMatchResultTy parseVR32(OperandVector &Operands) {
549     return parseRegister(Operands, VR32Reg);
550   }
551   OperandMatchResultTy parseVR64(OperandVector &Operands) {
552     return parseRegister(Operands, VR64Reg);
553   }
554   OperandMatchResultTy parseVF128(OperandVector &Operands) {
555     llvm_unreachable("Shouldn't be used as an operand");
556   }
557   OperandMatchResultTy parseVR128(OperandVector &Operands) {
558     return parseRegister(Operands, VR128Reg);
559   }
560   OperandMatchResultTy parseAR32(OperandVector &Operands) {
561     return parseRegister(Operands, AR32Reg);
562   }
563   OperandMatchResultTy parseCR64(OperandVector &Operands) {
564     return parseRegister(Operands, CR64Reg);
565   }
566   OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
567     return parseAnyRegister(Operands);
568   }
569   OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
570     return parseAddress(Operands, BDMem, GR32Reg);
571   }
572   OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
573     return parseAddress(Operands, BDMem, GR64Reg);
574   }
575   OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
576     return parseAddress(Operands, BDXMem, GR64Reg);
577   }
578   OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
579     return parseAddress(Operands, BDLMem, GR64Reg);
580   }
581   OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
582     return parseAddress(Operands, BDRMem, GR64Reg);
583   }
584   OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
585     return parseAddress(Operands, BDVMem, GR64Reg);
586   }
587   OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
588     return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
589   }
590   OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
591     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
592   }
593   OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
594     return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
595   }
596   OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
597     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
598   }
599   OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
600     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
601   }
602   OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
603     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
604   }
605 };
606 
607 } // end anonymous namespace
608 
609 #define GET_REGISTER_MATCHER
610 #define GET_SUBTARGET_FEATURE_NAME
611 #define GET_MATCHER_IMPLEMENTATION
612 #define GET_MNEMONIC_SPELL_CHECKER
613 #include "SystemZGenAsmMatcher.inc"
614 
615 // Used for the .insn directives; contains information needed to parse the
616 // operands in the directive.
617 struct InsnMatchEntry {
618   StringRef Format;
619   uint64_t Opcode;
620   int32_t NumOperands;
621   MatchClassKind OperandKinds[7];
622 };
623 
624 // For equal_range comparison.
625 struct CompareInsn {
626   bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
627     return LHS.Format < RHS;
628   }
629   bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
630     return LHS < RHS.Format;
631   }
632   bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
633     return LHS.Format < RHS.Format;
634   }
635 };
636 
637 // Table initializing information for parsing the .insn directive.
638 static struct InsnMatchEntry InsnMatchTable[] = {
639   /* Format, Opcode, NumOperands, OperandKinds */
640   { "e", SystemZ::InsnE, 1,
641     { MCK_U16Imm } },
642   { "ri", SystemZ::InsnRI, 3,
643     { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
644   { "rie", SystemZ::InsnRIE, 4,
645     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
646   { "ril", SystemZ::InsnRIL, 3,
647     { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
648   { "rilu", SystemZ::InsnRILU, 3,
649     { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
650   { "ris", SystemZ::InsnRIS, 5,
651     { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
652   { "rr", SystemZ::InsnRR, 3,
653     { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
654   { "rre", SystemZ::InsnRRE, 3,
655     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
656   { "rrf", SystemZ::InsnRRF, 5,
657     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
658   { "rrs", SystemZ::InsnRRS, 5,
659     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
660   { "rs", SystemZ::InsnRS, 4,
661     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
662   { "rse", SystemZ::InsnRSE, 4,
663     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
664   { "rsi", SystemZ::InsnRSI, 4,
665     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
666   { "rsy", SystemZ::InsnRSY, 4,
667     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
668   { "rx", SystemZ::InsnRX, 3,
669     { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
670   { "rxe", SystemZ::InsnRXE, 3,
671     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
672   { "rxf", SystemZ::InsnRXF, 4,
673     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
674   { "rxy", SystemZ::InsnRXY, 3,
675     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
676   { "s", SystemZ::InsnS, 2,
677     { MCK_U32Imm, MCK_BDAddr64Disp12 } },
678   { "si", SystemZ::InsnSI, 3,
679     { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
680   { "sil", SystemZ::InsnSIL, 3,
681     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
682   { "siy", SystemZ::InsnSIY, 3,
683     { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
684   { "ss", SystemZ::InsnSS, 4,
685     { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
686   { "sse", SystemZ::InsnSSE, 3,
687     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
688   { "ssf", SystemZ::InsnSSF, 4,
689     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
690   { "vri", SystemZ::InsnVRI, 6,
691     { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
692   { "vrr", SystemZ::InsnVRR, 7,
693     { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
694       MCK_U4Imm } },
695   { "vrs", SystemZ::InsnVRS, 5,
696     { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
697   { "vrv", SystemZ::InsnVRV, 4,
698     { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
699   { "vrx", SystemZ::InsnVRX, 4,
700     { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
701   { "vsi", SystemZ::InsnVSI, 4,
702     { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
703 };
704 
705 static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
706   if (!E)
707     return;
708   if (auto *CE = dyn_cast<MCConstantExpr>(E))
709     OS << *CE;
710   else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
711     OS << *UE;
712   else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
713     OS << *BE;
714   else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
715     OS << *SRE;
716   else
717     OS << *E;
718 }
719 
720 void SystemZOperand::print(raw_ostream &OS) const {
721   switch (Kind) {
722   case KindToken:
723     OS << "Token:" << getToken();
724     break;
725   case KindReg:
726     OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
727     break;
728   case KindImm:
729     OS << "Imm:";
730     printMCExpr(getImm(), OS);
731     break;
732   case KindImmTLS:
733     OS << "ImmTLS:";
734     printMCExpr(getImmTLS().Imm, OS);
735     if (getImmTLS().Sym) {
736       OS << ", ";
737       printMCExpr(getImmTLS().Sym, OS);
738     }
739     break;
740   case KindMem: {
741     const MemOp &Op = getMem();
742     OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
743     if (Op.Base) {
744       OS << "(";
745       if (Op.MemKind == BDLMem)
746         OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
747       else if (Op.MemKind == BDRMem)
748         OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
749       if (Op.Index)
750         OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
751       OS << SystemZInstPrinter::getRegisterName(Op.Base);
752       OS << ")";
753     }
754     break;
755   }
756   case KindInvalid:
757     break;
758   }
759 }
760 
761 // Parse one register of the form %<prefix><number>.
762 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
763   Reg.StartLoc = Parser.getTok().getLoc();
764 
765   // Eat the % prefix.
766   if (Parser.getTok().isNot(AsmToken::Percent))
767     return Error(Parser.getTok().getLoc(), "register expected");
768   const AsmToken &PercentTok = Parser.getTok();
769   Parser.Lex();
770 
771   // Expect a register name.
772   if (Parser.getTok().isNot(AsmToken::Identifier)) {
773     if (RestoreOnFailure)
774       getLexer().UnLex(PercentTok);
775     return Error(Reg.StartLoc, "invalid register");
776   }
777 
778   // Check that there's a prefix.
779   StringRef Name = Parser.getTok().getString();
780   if (Name.size() < 2) {
781     if (RestoreOnFailure)
782       getLexer().UnLex(PercentTok);
783     return Error(Reg.StartLoc, "invalid register");
784   }
785   char Prefix = Name[0];
786 
787   // Treat the rest of the register name as a register number.
788   if (Name.substr(1).getAsInteger(10, Reg.Num)) {
789     if (RestoreOnFailure)
790       getLexer().UnLex(PercentTok);
791     return Error(Reg.StartLoc, "invalid register");
792   }
793 
794   // Look for valid combinations of prefix and number.
795   if (Prefix == 'r' && Reg.Num < 16)
796     Reg.Group = RegGR;
797   else if (Prefix == 'f' && Reg.Num < 16)
798     Reg.Group = RegFP;
799   else if (Prefix == 'v' && Reg.Num < 32)
800     Reg.Group = RegV;
801   else if (Prefix == 'a' && Reg.Num < 16)
802     Reg.Group = RegAR;
803   else if (Prefix == 'c' && Reg.Num < 16)
804     Reg.Group = RegCR;
805   else {
806     if (RestoreOnFailure)
807       getLexer().UnLex(PercentTok);
808     return Error(Reg.StartLoc, "invalid register");
809   }
810 
811   Reg.EndLoc = Parser.getTok().getLoc();
812   Parser.Lex();
813   return false;
814 }
815 
816 // Parse a register of kind Kind and add it to Operands.
817 OperandMatchResultTy
818 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
819   Register Reg;
820   RegisterGroup Group;
821   switch (Kind) {
822   case GR32Reg:
823   case GRH32Reg:
824   case GR64Reg:
825   case GR128Reg:
826     Group = RegGR;
827     break;
828   case FP32Reg:
829   case FP64Reg:
830   case FP128Reg:
831     Group = RegFP;
832     break;
833   case VR32Reg:
834   case VR64Reg:
835   case VR128Reg:
836     Group = RegV;
837     break;
838   case AR32Reg:
839     Group = RegAR;
840     break;
841   case CR64Reg:
842     Group = RegCR;
843     break;
844   }
845 
846   // Handle register names of the form %<prefix><number>
847   if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
848     if (parseRegister(Reg))
849       return MatchOperand_ParseFail;
850 
851     // Check the parsed register group "Reg.Group" with the expected "Group"
852     // Have to error out if user specified wrong prefix.
853     switch (Group) {
854     case RegGR:
855     case RegFP:
856     case RegAR:
857     case RegCR:
858       if (Group != Reg.Group) {
859         Error(Reg.StartLoc, "invalid operand for instruction");
860         return MatchOperand_ParseFail;
861       }
862       break;
863     case RegV:
864       if (Reg.Group != RegV && Reg.Group != RegFP) {
865         Error(Reg.StartLoc, "invalid operand for instruction");
866         return MatchOperand_ParseFail;
867       }
868       break;
869     }
870   } else if (Parser.getTok().is(AsmToken::Integer)) {
871     if (parseIntegerRegister(Reg, Group))
872       return MatchOperand_ParseFail;
873   }
874   // Otherwise we didn't match a register operand.
875   else
876     return MatchOperand_NoMatch;
877 
878   // Determine the LLVM register number according to Kind.
879   const unsigned *Regs;
880   switch (Kind) {
881   case GR32Reg:  Regs = SystemZMC::GR32Regs;  break;
882   case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
883   case GR64Reg:  Regs = SystemZMC::GR64Regs;  break;
884   case GR128Reg: Regs = SystemZMC::GR128Regs; break;
885   case FP32Reg:  Regs = SystemZMC::FP32Regs;  break;
886   case FP64Reg:  Regs = SystemZMC::FP64Regs;  break;
887   case FP128Reg: Regs = SystemZMC::FP128Regs; break;
888   case VR32Reg:  Regs = SystemZMC::VR32Regs;  break;
889   case VR64Reg:  Regs = SystemZMC::VR64Regs;  break;
890   case VR128Reg: Regs = SystemZMC::VR128Regs; break;
891   case AR32Reg:  Regs = SystemZMC::AR32Regs;  break;
892   case CR64Reg:  Regs = SystemZMC::CR64Regs;  break;
893   }
894   if (Regs[Reg.Num] == 0) {
895     Error(Reg.StartLoc, "invalid register pair");
896     return MatchOperand_ParseFail;
897   }
898 
899   Operands.push_back(
900       SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
901   return MatchOperand_Success;
902 }
903 
904 // Parse any type of register (including integers) and add it to Operands.
905 OperandMatchResultTy
906 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
907   SMLoc StartLoc = Parser.getTok().getLoc();
908 
909   // Handle integer values.
910   if (Parser.getTok().is(AsmToken::Integer)) {
911     const MCExpr *Register;
912     if (Parser.parseExpression(Register))
913       return MatchOperand_ParseFail;
914 
915     if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
916       int64_t Value = CE->getValue();
917       if (Value < 0 || Value > 15) {
918         Error(StartLoc, "invalid register");
919         return MatchOperand_ParseFail;
920       }
921     }
922 
923     SMLoc EndLoc =
924       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
925 
926     Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
927   }
928   else {
929     if (isParsingHLASM())
930       return MatchOperand_NoMatch;
931 
932     Register Reg;
933     if (parseRegister(Reg))
934       return MatchOperand_ParseFail;
935 
936     if (Reg.Num > 15) {
937       Error(StartLoc, "invalid register");
938       return MatchOperand_ParseFail;
939     }
940 
941     // Map to the correct register kind.
942     RegisterKind Kind;
943     unsigned RegNo;
944     if (Reg.Group == RegGR) {
945       Kind = GR64Reg;
946       RegNo = SystemZMC::GR64Regs[Reg.Num];
947     }
948     else if (Reg.Group == RegFP) {
949       Kind = FP64Reg;
950       RegNo = SystemZMC::FP64Regs[Reg.Num];
951     }
952     else if (Reg.Group == RegV) {
953       Kind = VR128Reg;
954       RegNo = SystemZMC::VR128Regs[Reg.Num];
955     }
956     else if (Reg.Group == RegAR) {
957       Kind = AR32Reg;
958       RegNo = SystemZMC::AR32Regs[Reg.Num];
959     }
960     else if (Reg.Group == RegCR) {
961       Kind = CR64Reg;
962       RegNo = SystemZMC::CR64Regs[Reg.Num];
963     }
964     else {
965       return MatchOperand_ParseFail;
966     }
967 
968     Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
969                                                  Reg.StartLoc, Reg.EndLoc));
970   }
971   return MatchOperand_Success;
972 }
973 
974 bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
975                                             RegisterGroup Group) {
976   Reg.StartLoc = Parser.getTok().getLoc();
977   // We have an integer token
978   const MCExpr *Register;
979   if (Parser.parseExpression(Register))
980     return true;
981 
982   const auto *CE = dyn_cast<MCConstantExpr>(Register);
983   if (!CE)
984     return true;
985 
986   int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
987   int64_t Value = CE->getValue();
988   if (Value < 0 || Value > MaxRegNum) {
989     Error(Parser.getTok().getLoc(), "invalid register");
990     return true;
991   }
992 
993   // Assign the Register Number
994   Reg.Num = (unsigned)Value;
995   Reg.Group = Group;
996   Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
997 
998   // At this point, successfully parsed an integer register.
999   return false;
1000 }
1001 
1002 // Parse a memory operand into Reg1, Reg2, Disp, and Length.
1003 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
1004                                     bool &HaveReg2, Register &Reg2,
1005                                     const MCExpr *&Disp, const MCExpr *&Length,
1006                                     bool HasLength, bool HasVectorIndex) {
1007   // Parse the displacement, which must always be present.
1008   if (getParser().parseExpression(Disp))
1009     return true;
1010 
1011   // Parse the optional base and index.
1012   HaveReg1 = false;
1013   HaveReg2 = false;
1014   Length = nullptr;
1015 
1016   // If we have a scenario as below:
1017   //   vgef %v0, 0(0), 0
1018   // This is an example of a "BDVMem" instruction type.
1019   //
1020   // So when we parse this as an integer register, the register group
1021   // needs to be tied to "RegV". Usually when the prefix is passed in
1022   // as %<prefix><reg-number> its easy to check which group it should belong to
1023   // However, if we're passing in just the integer there's no real way to
1024   // "check" what register group it should belong to.
1025   //
1026   // When the user passes in the register as an integer, the user assumes that
1027   // the compiler is responsible for substituting it as the right kind of
1028   // register. Whereas, when the user specifies a "prefix", the onus is on
1029   // the user to make sure they pass in the right kind of register.
1030   //
1031   // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
1032   // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
1033   // (i.e. insn is of type BDVMem) is true.
1034   RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
1035 
1036   if (getLexer().is(AsmToken::LParen)) {
1037     Parser.Lex();
1038 
1039     if (isParsingATT() && getLexer().is(AsmToken::Percent)) {
1040       // Parse the first register.
1041       HaveReg1 = true;
1042       if (parseRegister(Reg1))
1043         return true;
1044     }
1045     // So if we have an integer as the first token in ([tok1], ..), it could:
1046     // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
1047     // instructions)
1048     // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
1049     else if (getLexer().is(AsmToken::Integer)) {
1050       if (HasLength) {
1051         // Instruction has a "Length" field, safe to parse the first token as
1052         // the "Length" field
1053         if (getParser().parseExpression(Length))
1054           return true;
1055       } else {
1056         // Otherwise, if the instruction has no "Length" field, parse the
1057         // token as a "Register". We don't have to worry about whether the
1058         // instruction is invalid here, because the caller will take care of
1059         // error reporting.
1060         HaveReg1 = true;
1061         if (parseIntegerRegister(Reg1, RegGroup))
1062           return true;
1063       }
1064     } else {
1065       // If its not an integer or a percent token, then if the instruction
1066       // is reported to have a "Length" then, parse it as "Length".
1067       if (HasLength) {
1068         if (getParser().parseExpression(Length))
1069           return true;
1070       }
1071     }
1072 
1073     // Check whether there's a second register.
1074     if (getLexer().is(AsmToken::Comma)) {
1075       Parser.Lex();
1076       HaveReg2 = true;
1077 
1078       if (getLexer().is(AsmToken::Integer)) {
1079         if (parseIntegerRegister(Reg2, RegGR))
1080           return true;
1081       } else {
1082         if (isParsingATT() && parseRegister(Reg2))
1083           return true;
1084       }
1085     }
1086 
1087     // Consume the closing bracket.
1088     if (getLexer().isNot(AsmToken::RParen))
1089       return Error(Parser.getTok().getLoc(), "unexpected token in address");
1090     Parser.Lex();
1091   }
1092   return false;
1093 }
1094 
1095 // Verify that Reg is a valid address register (base or index).
1096 bool
1097 SystemZAsmParser::parseAddressRegister(Register &Reg) {
1098   if (Reg.Group == RegV) {
1099     Error(Reg.StartLoc, "invalid use of vector addressing");
1100     return true;
1101   } else if (Reg.Group != RegGR) {
1102     Error(Reg.StartLoc, "invalid address register");
1103     return true;
1104   }
1105   return false;
1106 }
1107 
1108 // Parse a memory operand and add it to Operands.  The other arguments
1109 // are as above.
1110 OperandMatchResultTy
1111 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
1112                                RegisterKind RegKind) {
1113   SMLoc StartLoc = Parser.getTok().getLoc();
1114   unsigned Base = 0, Index = 0, LengthReg = 0;
1115   Register Reg1, Reg2;
1116   bool HaveReg1, HaveReg2;
1117   const MCExpr *Disp;
1118   const MCExpr *Length;
1119 
1120   bool HasLength = (MemKind == BDLMem) ? true : false;
1121   bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
1122   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
1123                    HasVectorIndex))
1124     return MatchOperand_ParseFail;
1125 
1126   const unsigned *Regs;
1127   switch (RegKind) {
1128   case GR32Reg: Regs = SystemZMC::GR32Regs; break;
1129   case GR64Reg: Regs = SystemZMC::GR64Regs; break;
1130   default: llvm_unreachable("invalid RegKind");
1131   }
1132 
1133   switch (MemKind) {
1134   case BDMem:
1135     // If we have Reg1, it must be an address register.
1136     if (HaveReg1) {
1137       if (parseAddressRegister(Reg1))
1138         return MatchOperand_ParseFail;
1139       Base = Regs[Reg1.Num];
1140     }
1141     // There must be no Reg2.
1142     if (HaveReg2) {
1143       Error(StartLoc, "invalid use of indexed addressing");
1144       return MatchOperand_ParseFail;
1145     }
1146     break;
1147   case BDXMem:
1148     // If we have Reg1, it must be an address register.
1149     if (HaveReg1) {
1150       if (parseAddressRegister(Reg1))
1151         return MatchOperand_ParseFail;
1152       // If the are two registers, the first one is the index and the
1153       // second is the base.
1154       if (HaveReg2)
1155         Index = Regs[Reg1.Num];
1156       else
1157         Base = Regs[Reg1.Num];
1158     }
1159     // If we have Reg2, it must be an address register.
1160     if (HaveReg2) {
1161       if (parseAddressRegister(Reg2))
1162         return MatchOperand_ParseFail;
1163       Base = Regs[Reg2.Num];
1164     }
1165     break;
1166   case BDLMem:
1167     // If we have Reg2, it must be an address register.
1168     if (HaveReg2) {
1169       if (parseAddressRegister(Reg2))
1170         return MatchOperand_ParseFail;
1171       Base = Regs[Reg2.Num];
1172     }
1173     // We cannot support base+index addressing.
1174     if (HaveReg1 && HaveReg2) {
1175       Error(StartLoc, "invalid use of indexed addressing");
1176       return MatchOperand_ParseFail;
1177     }
1178     // We must have a length.
1179     if (!Length) {
1180       Error(StartLoc, "missing length in address");
1181       return MatchOperand_ParseFail;
1182     }
1183     break;
1184   case BDRMem:
1185     // We must have Reg1, and it must be a GPR.
1186     if (!HaveReg1 || Reg1.Group != RegGR) {
1187       Error(StartLoc, "invalid operand for instruction");
1188       return MatchOperand_ParseFail;
1189     }
1190     LengthReg = SystemZMC::GR64Regs[Reg1.Num];
1191     // If we have Reg2, it must be an address register.
1192     if (HaveReg2) {
1193       if (parseAddressRegister(Reg2))
1194         return MatchOperand_ParseFail;
1195       Base = Regs[Reg2.Num];
1196     }
1197     break;
1198   case BDVMem:
1199     // We must have Reg1, and it must be a vector register.
1200     if (!HaveReg1 || Reg1.Group != RegV) {
1201       Error(StartLoc, "vector index required in address");
1202       return MatchOperand_ParseFail;
1203     }
1204     Index = SystemZMC::VR128Regs[Reg1.Num];
1205     // If we have Reg2, it must be an address register.
1206     if (HaveReg2) {
1207       if (parseAddressRegister(Reg2))
1208         return MatchOperand_ParseFail;
1209       Base = Regs[Reg2.Num];
1210     }
1211     break;
1212   }
1213 
1214   SMLoc EndLoc =
1215       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1216   Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
1217                                                Index, Length, LengthReg,
1218                                                StartLoc, EndLoc));
1219   return MatchOperand_Success;
1220 }
1221 
1222 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
1223   StringRef IDVal = DirectiveID.getIdentifier();
1224 
1225   if (IDVal == ".insn")
1226     return ParseDirectiveInsn(DirectiveID.getLoc());
1227   if (IDVal == ".machine")
1228     return ParseDirectiveMachine(DirectiveID.getLoc());
1229   if (IDVal.startswith(".gnu_attribute"))
1230     return ParseGNUAttribute(DirectiveID.getLoc());
1231 
1232   return true;
1233 }
1234 
1235 /// ParseDirectiveInsn
1236 /// ::= .insn [ format, encoding, (operands (, operands)*) ]
1237 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
1238   MCAsmParser &Parser = getParser();
1239 
1240   // Expect instruction format as identifier.
1241   StringRef Format;
1242   SMLoc ErrorLoc = Parser.getTok().getLoc();
1243   if (Parser.parseIdentifier(Format))
1244     return Error(ErrorLoc, "expected instruction format");
1245 
1246   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
1247 
1248   // Find entry for this format in InsnMatchTable.
1249   auto EntryRange =
1250     std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
1251                      Format, CompareInsn());
1252 
1253   // If first == second, couldn't find a match in the table.
1254   if (EntryRange.first == EntryRange.second)
1255     return Error(ErrorLoc, "unrecognized format");
1256 
1257   struct InsnMatchEntry *Entry = EntryRange.first;
1258 
1259   // Format should match from equal_range.
1260   assert(Entry->Format == Format);
1261 
1262   // Parse the following operands using the table's information.
1263   for (int i = 0; i < Entry->NumOperands; i++) {
1264     MatchClassKind Kind = Entry->OperandKinds[i];
1265 
1266     SMLoc StartLoc = Parser.getTok().getLoc();
1267 
1268     // Always expect commas as separators for operands.
1269     if (getLexer().isNot(AsmToken::Comma))
1270       return Error(StartLoc, "unexpected token in directive");
1271     Lex();
1272 
1273     // Parse operands.
1274     OperandMatchResultTy ResTy;
1275     if (Kind == MCK_AnyReg)
1276       ResTy = parseAnyReg(Operands);
1277     else if (Kind == MCK_VR128)
1278       ResTy = parseVR128(Operands);
1279     else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
1280       ResTy = parseBDXAddr64(Operands);
1281     else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
1282       ResTy = parseBDAddr64(Operands);
1283     else if (Kind == MCK_BDVAddr64Disp12)
1284       ResTy = parseBDVAddr64(Operands);
1285     else if (Kind == MCK_PCRel32)
1286       ResTy = parsePCRel32(Operands);
1287     else if (Kind == MCK_PCRel16)
1288       ResTy = parsePCRel16(Operands);
1289     else {
1290       // Only remaining operand kind is an immediate.
1291       const MCExpr *Expr;
1292       SMLoc StartLoc = Parser.getTok().getLoc();
1293 
1294       // Expect immediate expression.
1295       if (Parser.parseExpression(Expr))
1296         return Error(StartLoc, "unexpected token in directive");
1297 
1298       SMLoc EndLoc =
1299         SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1300 
1301       Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1302       ResTy = MatchOperand_Success;
1303     }
1304 
1305     if (ResTy != MatchOperand_Success)
1306       return true;
1307   }
1308 
1309   // Build the instruction with the parsed operands.
1310   MCInst Inst = MCInstBuilder(Entry->Opcode);
1311 
1312   for (size_t i = 0; i < Operands.size(); i++) {
1313     MCParsedAsmOperand &Operand = *Operands[i];
1314     MatchClassKind Kind = Entry->OperandKinds[i];
1315 
1316     // Verify operand.
1317     unsigned Res = validateOperandClass(Operand, Kind);
1318     if (Res != Match_Success)
1319       return Error(Operand.getStartLoc(), "unexpected operand type");
1320 
1321     // Add operands to instruction.
1322     SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
1323     if (ZOperand.isReg())
1324       ZOperand.addRegOperands(Inst, 1);
1325     else if (ZOperand.isMem(BDMem))
1326       ZOperand.addBDAddrOperands(Inst, 2);
1327     else if (ZOperand.isMem(BDXMem))
1328       ZOperand.addBDXAddrOperands(Inst, 3);
1329     else if (ZOperand.isMem(BDVMem))
1330       ZOperand.addBDVAddrOperands(Inst, 3);
1331     else if (ZOperand.isImm())
1332       ZOperand.addImmOperands(Inst, 1);
1333     else
1334       llvm_unreachable("unexpected operand type");
1335   }
1336 
1337   // Emit as a regular instruction.
1338   Parser.getStreamer().emitInstruction(Inst, getSTI());
1339 
1340   return false;
1341 }
1342 
1343 /// ParseDirectiveMachine
1344 /// ::= .machine [ mcpu ]
1345 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) {
1346   MCAsmParser &Parser = getParser();
1347   if (Parser.getTok().isNot(AsmToken::Identifier) &&
1348       Parser.getTok().isNot(AsmToken::String))
1349     return Error(L, "unexpected token in '.machine' directive");
1350 
1351   StringRef CPU = Parser.getTok().getIdentifier();
1352   Parser.Lex();
1353   if (parseToken(AsmToken::EndOfStatement))
1354     return addErrorSuffix(" in '.machine' directive");
1355 
1356   MCSubtargetInfo &STI = copySTI();
1357   STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
1358   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
1359 
1360   getTargetStreamer().emitMachine(CPU);
1361 
1362   return false;
1363 }
1364 
1365 bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) {
1366   int64_t Tag;
1367   int64_t IntegerValue;
1368   if (!Parser.parseGNUAttribute(L, Tag, IntegerValue))
1369     return false;
1370 
1371   // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2.
1372   if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) {
1373     Error(Parser.getTok().getLoc(),
1374           "Unrecognized .gnu_attribute tag/value pair.");
1375     return false;
1376   }
1377 
1378   Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue);
1379 
1380   return true;
1381 }
1382 
1383 bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1384                                      SMLoc &EndLoc, bool RestoreOnFailure) {
1385   Register Reg;
1386   if (parseRegister(Reg, RestoreOnFailure))
1387     return true;
1388   if (Reg.Group == RegGR)
1389     RegNo = SystemZMC::GR64Regs[Reg.Num];
1390   else if (Reg.Group == RegFP)
1391     RegNo = SystemZMC::FP64Regs[Reg.Num];
1392   else if (Reg.Group == RegV)
1393     RegNo = SystemZMC::VR128Regs[Reg.Num];
1394   else if (Reg.Group == RegAR)
1395     RegNo = SystemZMC::AR32Regs[Reg.Num];
1396   else if (Reg.Group == RegCR)
1397     RegNo = SystemZMC::CR64Regs[Reg.Num];
1398   StartLoc = Reg.StartLoc;
1399   EndLoc = Reg.EndLoc;
1400   return false;
1401 }
1402 
1403 bool SystemZAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
1404                                      SMLoc &EndLoc) {
1405   return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
1406 }
1407 
1408 OperandMatchResultTy SystemZAsmParser::tryParseRegister(MCRegister &RegNo,
1409                                                         SMLoc &StartLoc,
1410                                                         SMLoc &EndLoc) {
1411   bool Result =
1412       ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
1413   bool PendingErrors = getParser().hasPendingError();
1414   getParser().clearPendingErrors();
1415   if (PendingErrors)
1416     return MatchOperand_ParseFail;
1417   if (Result)
1418     return MatchOperand_NoMatch;
1419   return MatchOperand_Success;
1420 }
1421 
1422 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1423                                         StringRef Name, SMLoc NameLoc,
1424                                         OperandVector &Operands) {
1425 
1426   // Apply mnemonic aliases first, before doing anything else, in
1427   // case the target uses it.
1428   applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect());
1429 
1430   Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
1431 
1432   // Read the remaining operands.
1433   if (getLexer().isNot(AsmToken::EndOfStatement)) {
1434     // Read the first operand.
1435     if (parseOperand(Operands, Name)) {
1436       return true;
1437     }
1438 
1439     // Read any subsequent operands.
1440     while (getLexer().is(AsmToken::Comma)) {
1441       Parser.Lex();
1442 
1443       if (isParsingHLASM() && getLexer().is(AsmToken::Space))
1444         return Error(
1445             Parser.getTok().getLoc(),
1446             "No space allowed between comma that separates operand entries");
1447 
1448       if (parseOperand(Operands, Name)) {
1449         return true;
1450       }
1451     }
1452 
1453     // Under the HLASM variant, we could have the remark field
1454     // The remark field occurs after the operation entries
1455     // There is a space that separates the operation entries and the
1456     // remark field.
1457     if (isParsingHLASM() && getTok().is(AsmToken::Space)) {
1458       // We've confirmed that there is a Remark field.
1459       StringRef Remark(getLexer().LexUntilEndOfStatement());
1460       Parser.Lex();
1461 
1462       // If there is nothing after the space, then there is nothing to emit
1463       // We could have a situation as this:
1464       // "  \n"
1465       // After lexing above, we will have
1466       // "\n"
1467       // This isn't an explicit remark field, so we don't have to output
1468       // this as a comment.
1469       if (Remark.size())
1470         // Output the entire Remarks Field as a comment
1471         getStreamer().AddComment(Remark);
1472     }
1473 
1474     if (getLexer().isNot(AsmToken::EndOfStatement)) {
1475       SMLoc Loc = getLexer().getLoc();
1476       return Error(Loc, "unexpected token in argument list");
1477     }
1478   }
1479 
1480   // Consume the EndOfStatement.
1481   Parser.Lex();
1482   return false;
1483 }
1484 
1485 bool SystemZAsmParser::parseOperand(OperandVector &Operands,
1486                                     StringRef Mnemonic) {
1487   // Check if the current operand has a custom associated parser, if so, try to
1488   // custom parse the operand, or fallback to the general approach.  Force all
1489   // features to be available during the operand check, or else we will fail to
1490   // find the custom parser, and then we will later get an InvalidOperand error
1491   // instead of a MissingFeature errror.
1492   FeatureBitset AvailableFeatures = getAvailableFeatures();
1493   FeatureBitset All;
1494   All.set();
1495   setAvailableFeatures(All);
1496   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
1497   setAvailableFeatures(AvailableFeatures);
1498   if (ResTy == MatchOperand_Success)
1499     return false;
1500 
1501   // If there wasn't a custom match, try the generic matcher below. Otherwise,
1502   // there was a match, but an error occurred, in which case, just return that
1503   // the operand parsing failed.
1504   if (ResTy == MatchOperand_ParseFail)
1505     return true;
1506 
1507   // Check for a register.  All real register operands should have used
1508   // a context-dependent parse routine, which gives the required register
1509   // class.  The code is here to mop up other cases, like those where
1510   // the instruction isn't recognized.
1511   if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) {
1512     Register Reg;
1513     if (parseRegister(Reg))
1514       return true;
1515     Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
1516     return false;
1517   }
1518 
1519   // The only other type of operand is an immediate or address.  As above,
1520   // real address operands should have used a context-dependent parse routine,
1521   // so we treat any plain expression as an immediate.
1522   SMLoc StartLoc = Parser.getTok().getLoc();
1523   Register Reg1, Reg2;
1524   bool HaveReg1, HaveReg2;
1525   const MCExpr *Expr;
1526   const MCExpr *Length;
1527   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
1528                    /*HasLength*/ true, /*HasVectorIndex*/ true))
1529     return true;
1530   // If the register combination is not valid for any instruction, reject it.
1531   // Otherwise, fall back to reporting an unrecognized instruction.
1532   if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
1533       && parseAddressRegister(Reg1))
1534     return true;
1535   if (HaveReg2 && parseAddressRegister(Reg2))
1536     return true;
1537 
1538   SMLoc EndLoc =
1539     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1540   if (HaveReg1 || HaveReg2 || Length)
1541     Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
1542   else
1543     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1544   return false;
1545 }
1546 
1547 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
1548                                                OperandVector &Operands,
1549                                                MCStreamer &Out,
1550                                                uint64_t &ErrorInfo,
1551                                                bool MatchingInlineAsm) {
1552   MCInst Inst;
1553   unsigned MatchResult;
1554 
1555   unsigned Dialect = getMAIAssemblerDialect();
1556 
1557   FeatureBitset MissingFeatures;
1558   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
1559                                      MatchingInlineAsm, Dialect);
1560   switch (MatchResult) {
1561   case Match_Success:
1562     Inst.setLoc(IDLoc);
1563     Out.emitInstruction(Inst, getSTI());
1564     return false;
1565 
1566   case Match_MissingFeature: {
1567     assert(MissingFeatures.any() && "Unknown missing feature!");
1568     // Special case the error message for the very common case where only
1569     // a single subtarget feature is missing
1570     std::string Msg = "instruction requires:";
1571     for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
1572       if (MissingFeatures[I]) {
1573         Msg += " ";
1574         Msg += getSubtargetFeatureName(I);
1575       }
1576     }
1577     return Error(IDLoc, Msg);
1578   }
1579 
1580   case Match_InvalidOperand: {
1581     SMLoc ErrorLoc = IDLoc;
1582     if (ErrorInfo != ~0ULL) {
1583       if (ErrorInfo >= Operands.size())
1584         return Error(IDLoc, "too few operands for instruction");
1585 
1586       ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
1587       if (ErrorLoc == SMLoc())
1588         ErrorLoc = IDLoc;
1589     }
1590     return Error(ErrorLoc, "invalid operand for instruction");
1591   }
1592 
1593   case Match_MnemonicFail: {
1594     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
1595     std::string Suggestion = SystemZMnemonicSpellCheck(
1596         ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect);
1597     return Error(IDLoc, "invalid instruction" + Suggestion,
1598                  ((SystemZOperand &)*Operands[0]).getLocRange());
1599   }
1600   }
1601 
1602   llvm_unreachable("Unexpected match type");
1603 }
1604 
1605 OperandMatchResultTy
1606 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
1607                              int64_t MaxVal, bool AllowTLS) {
1608   MCContext &Ctx = getContext();
1609   MCStreamer &Out = getStreamer();
1610   const MCExpr *Expr;
1611   SMLoc StartLoc = Parser.getTok().getLoc();
1612   if (getParser().parseExpression(Expr))
1613     return MatchOperand_NoMatch;
1614 
1615   auto isOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool {
1616     if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
1617       int64_t Value = CE->getValue();
1618       if (Negate)
1619         Value = -Value;
1620       if ((Value & 1) || Value < MinVal || Value > MaxVal)
1621         return true;
1622     }
1623     return false;
1624   };
1625 
1626   // For consistency with the GNU assembler, treat immediates as offsets
1627   // from ".".
1628   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
1629     if (isParsingHLASM()) {
1630       Error(StartLoc, "Expected PC-relative expression");
1631       return MatchOperand_ParseFail;
1632     }
1633     if (isOutOfRangeConstant(CE, false)) {
1634       Error(StartLoc, "offset out of range");
1635       return MatchOperand_ParseFail;
1636     }
1637     int64_t Value = CE->getValue();
1638     MCSymbol *Sym = Ctx.createTempSymbol();
1639     Out.emitLabel(Sym);
1640     const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
1641                                                  Ctx);
1642     Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
1643   }
1644 
1645   // For consistency with the GNU assembler, conservatively assume that a
1646   // constant offset must by itself be within the given size range.
1647   if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
1648     if (isOutOfRangeConstant(BE->getLHS(), false) ||
1649         isOutOfRangeConstant(BE->getRHS(),
1650                              BE->getOpcode() == MCBinaryExpr::Sub)) {
1651       Error(StartLoc, "offset out of range");
1652       return MatchOperand_ParseFail;
1653     }
1654 
1655   // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
1656   const MCExpr *Sym = nullptr;
1657   if (AllowTLS && getLexer().is(AsmToken::Colon)) {
1658     Parser.Lex();
1659 
1660     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1661       Error(Parser.getTok().getLoc(), "unexpected token");
1662       return MatchOperand_ParseFail;
1663     }
1664 
1665     MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
1666     StringRef Name = Parser.getTok().getString();
1667     if (Name == "tls_gdcall")
1668       Kind = MCSymbolRefExpr::VK_TLSGD;
1669     else if (Name == "tls_ldcall")
1670       Kind = MCSymbolRefExpr::VK_TLSLDM;
1671     else {
1672       Error(Parser.getTok().getLoc(), "unknown TLS tag");
1673       return MatchOperand_ParseFail;
1674     }
1675     Parser.Lex();
1676 
1677     if (Parser.getTok().isNot(AsmToken::Colon)) {
1678       Error(Parser.getTok().getLoc(), "unexpected token");
1679       return MatchOperand_ParseFail;
1680     }
1681     Parser.Lex();
1682 
1683     if (Parser.getTok().isNot(AsmToken::Identifier)) {
1684       Error(Parser.getTok().getLoc(), "unexpected token");
1685       return MatchOperand_ParseFail;
1686     }
1687 
1688     StringRef Identifier = Parser.getTok().getString();
1689     Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
1690                                   Kind, Ctx);
1691     Parser.Lex();
1692   }
1693 
1694   SMLoc EndLoc =
1695     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
1696 
1697   if (AllowTLS)
1698     Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
1699                                                     StartLoc, EndLoc));
1700   else
1701     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
1702 
1703   return MatchOperand_Success;
1704 }
1705 
1706 bool SystemZAsmParser::isLabel(AsmToken &Token) {
1707   if (isParsingATT())
1708     return true;
1709 
1710   // HLASM labels are ordinary symbols.
1711   // An HLASM label always starts at column 1.
1712   // An ordinary symbol syntax is laid out as follows:
1713   // Rules:
1714   // 1. Has to start with an "alphabetic character". Can be followed by up to
1715   //    62 alphanumeric characters. An "alphabetic character", in this scenario,
1716   //    is a letter from 'A' through 'Z', or from 'a' through 'z',
1717   //    or '$', '_', '#', or '@'
1718   // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc.
1719   //    are all treated as the same symbol. However, the processing for the case
1720   //    folding will not be done in this function.
1721   StringRef RawLabel = Token.getString();
1722   SMLoc Loc = Token.getLoc();
1723 
1724   // An HLASM label cannot be empty.
1725   if (!RawLabel.size())
1726     return !Error(Loc, "HLASM Label cannot be empty");
1727 
1728   // An HLASM label cannot exceed greater than 63 characters.
1729   if (RawLabel.size() > 63)
1730     return !Error(Loc, "Maximum length for HLASM Label is 63 characters");
1731 
1732   // A label must start with an "alphabetic character".
1733   if (!isHLASMAlpha(RawLabel[0]))
1734     return !Error(Loc, "HLASM Label has to start with an alphabetic "
1735                        "character or the underscore character");
1736 
1737   // Now, we've established that the length is valid
1738   // and the first character is alphabetic.
1739   // Check whether remaining string is alphanumeric.
1740   for (unsigned I = 1; I < RawLabel.size(); ++I)
1741     if (!isHLASMAlnum(RawLabel[I]))
1742       return !Error(Loc, "HLASM Label has to be alphanumeric");
1743 
1744   return true;
1745 }
1746 
1747 // Force static initialization.
1748 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
1749   RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
1750 }
1751