1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "SystemZTargetStreamer.h" 13 #include "TargetInfo/SystemZTargetInfo.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringRef.h" 17 #include "llvm/MC/MCAsmInfo.h" 18 #include "llvm/MC/MCContext.h" 19 #include "llvm/MC/MCExpr.h" 20 #include "llvm/MC/MCInst.h" 21 #include "llvm/MC/MCInstBuilder.h" 22 #include "llvm/MC/MCInstrInfo.h" 23 #include "llvm/MC/MCParser/MCAsmLexer.h" 24 #include "llvm/MC/MCParser/MCAsmParser.h" 25 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 26 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 27 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 28 #include "llvm/MC/MCStreamer.h" 29 #include "llvm/MC/MCSubtargetInfo.h" 30 #include "llvm/MC/TargetRegistry.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/SMLoc.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <iterator> 39 #include <memory> 40 #include <string> 41 42 using namespace llvm; 43 44 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol 45 // is true any MCExpr is accepted (address displacement). 46 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, 47 bool AllowSymbol = false) { 48 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 49 int64_t Value = CE->getValue(); 50 return Value >= MinValue && Value <= MaxValue; 51 } 52 return AllowSymbol; 53 } 54 55 namespace { 56 57 enum RegisterKind { 58 GR32Reg, 59 GRH32Reg, 60 GR64Reg, 61 GR128Reg, 62 FP32Reg, 63 FP64Reg, 64 FP128Reg, 65 VR32Reg, 66 VR64Reg, 67 VR128Reg, 68 AR32Reg, 69 CR64Reg, 70 }; 71 72 enum MemoryKind { 73 BDMem, 74 BDXMem, 75 BDLMem, 76 BDRMem, 77 BDVMem 78 }; 79 80 class SystemZOperand : public MCParsedAsmOperand { 81 private: 82 enum OperandKind { 83 KindInvalid, 84 KindToken, 85 KindReg, 86 KindImm, 87 KindImmTLS, 88 KindMem 89 }; 90 91 OperandKind Kind; 92 SMLoc StartLoc, EndLoc; 93 94 // A string of length Length, starting at Data. 95 struct TokenOp { 96 const char *Data; 97 unsigned Length; 98 }; 99 100 // LLVM register Num, which has kind Kind. In some ways it might be 101 // easier for this class to have a register bank (general, floating-point 102 // or access) and a raw register number (0-15). This would postpone the 103 // interpretation of the operand to the add*() methods and avoid the need 104 // for context-dependent parsing. However, we do things the current way 105 // because of the virtual getReg() method, which needs to distinguish 106 // between (say) %r0 used as a single register and %r0 used as a pair. 107 // Context-dependent parsing can also give us slightly better error 108 // messages when invalid pairs like %r1 are used. 109 struct RegOp { 110 RegisterKind Kind; 111 unsigned Num; 112 }; 113 114 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 115 // MemKind says what type of memory this is and RegKind says what type 116 // the base register has (GR32Reg or GR64Reg). Length is the operand 117 // length for D(L,B)-style operands, otherwise it is null. 118 struct MemOp { 119 unsigned Base : 12; 120 unsigned Index : 12; 121 unsigned MemKind : 4; 122 unsigned RegKind : 4; 123 const MCExpr *Disp; 124 union { 125 const MCExpr *Imm; 126 unsigned Reg; 127 } Length; 128 }; 129 130 // Imm is an immediate operand, and Sym is an optional TLS symbol 131 // for use with a __tls_get_offset marker relocation. 132 struct ImmTLSOp { 133 const MCExpr *Imm; 134 const MCExpr *Sym; 135 }; 136 137 union { 138 TokenOp Token; 139 RegOp Reg; 140 const MCExpr *Imm; 141 ImmTLSOp ImmTLS; 142 MemOp Mem; 143 }; 144 145 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 146 // Add as immediates when possible. Null MCExpr = 0. 147 if (!Expr) 148 Inst.addOperand(MCOperand::createImm(0)); 149 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 150 Inst.addOperand(MCOperand::createImm(CE->getValue())); 151 else 152 Inst.addOperand(MCOperand::createExpr(Expr)); 153 } 154 155 public: 156 SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) 157 : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} 158 159 // Create particular kinds of operand. 160 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 161 SMLoc EndLoc) { 162 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 163 } 164 165 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 166 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 167 Op->Token.Data = Str.data(); 168 Op->Token.Length = Str.size(); 169 return Op; 170 } 171 172 static std::unique_ptr<SystemZOperand> 173 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 174 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 175 Op->Reg.Kind = Kind; 176 Op->Reg.Num = Num; 177 return Op; 178 } 179 180 static std::unique_ptr<SystemZOperand> 181 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 182 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 183 Op->Imm = Expr; 184 return Op; 185 } 186 187 static std::unique_ptr<SystemZOperand> 188 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 189 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 190 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 191 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 192 Op->Mem.MemKind = MemKind; 193 Op->Mem.RegKind = RegKind; 194 Op->Mem.Base = Base; 195 Op->Mem.Index = Index; 196 Op->Mem.Disp = Disp; 197 if (MemKind == BDLMem) 198 Op->Mem.Length.Imm = LengthImm; 199 if (MemKind == BDRMem) 200 Op->Mem.Length.Reg = LengthReg; 201 return Op; 202 } 203 204 static std::unique_ptr<SystemZOperand> 205 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 206 SMLoc StartLoc, SMLoc EndLoc) { 207 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 208 Op->ImmTLS.Imm = Imm; 209 Op->ImmTLS.Sym = Sym; 210 return Op; 211 } 212 213 // Token operands 214 bool isToken() const override { 215 return Kind == KindToken; 216 } 217 StringRef getToken() const { 218 assert(Kind == KindToken && "Not a token"); 219 return StringRef(Token.Data, Token.Length); 220 } 221 222 // Register operands. 223 bool isReg() const override { 224 return Kind == KindReg; 225 } 226 bool isReg(RegisterKind RegKind) const { 227 return Kind == KindReg && Reg.Kind == RegKind; 228 } 229 unsigned getReg() const override { 230 assert(Kind == KindReg && "Not a register"); 231 return Reg.Num; 232 } 233 234 // Immediate operands. 235 bool isImm() const override { 236 return Kind == KindImm; 237 } 238 bool isImm(int64_t MinValue, int64_t MaxValue) const { 239 return Kind == KindImm && inRange(Imm, MinValue, MaxValue); 240 } 241 const MCExpr *getImm() const { 242 assert(Kind == KindImm && "Not an immediate"); 243 return Imm; 244 } 245 246 // Immediate operands with optional TLS symbol. 247 bool isImmTLS() const { 248 return Kind == KindImmTLS; 249 } 250 251 const ImmTLSOp getImmTLS() const { 252 assert(Kind == KindImmTLS && "Not a TLS immediate"); 253 return ImmTLS; 254 } 255 256 // Memory operands. 257 bool isMem() const override { 258 return Kind == KindMem; 259 } 260 bool isMem(MemoryKind MemKind) const { 261 return (Kind == KindMem && 262 (Mem.MemKind == MemKind || 263 // A BDMem can be treated as a BDXMem in which the index 264 // register field is 0. 265 (Mem.MemKind == BDMem && MemKind == BDXMem))); 266 } 267 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 268 return isMem(MemKind) && Mem.RegKind == RegKind; 269 } 270 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 271 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true); 272 } 273 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 274 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true); 275 } 276 bool isMemDisp12Len4(RegisterKind RegKind) const { 277 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 278 } 279 bool isMemDisp12Len8(RegisterKind RegKind) const { 280 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 281 } 282 283 const MemOp& getMem() const { 284 assert(Kind == KindMem && "Not a Mem operand"); 285 return Mem; 286 } 287 288 // Override MCParsedAsmOperand. 289 SMLoc getStartLoc() const override { return StartLoc; } 290 SMLoc getEndLoc() const override { return EndLoc; } 291 void print(raw_ostream &OS) const override; 292 293 /// getLocRange - Get the range between the first and last token of this 294 /// operand. 295 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 296 297 // Used by the TableGen code to add particular types of operand 298 // to an instruction. 299 void addRegOperands(MCInst &Inst, unsigned N) const { 300 assert(N == 1 && "Invalid number of operands"); 301 Inst.addOperand(MCOperand::createReg(getReg())); 302 } 303 void addImmOperands(MCInst &Inst, unsigned N) const { 304 assert(N == 1 && "Invalid number of operands"); 305 addExpr(Inst, getImm()); 306 } 307 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 308 assert(N == 2 && "Invalid number of operands"); 309 assert(isMem(BDMem) && "Invalid operand type"); 310 Inst.addOperand(MCOperand::createReg(Mem.Base)); 311 addExpr(Inst, Mem.Disp); 312 } 313 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 314 assert(N == 3 && "Invalid number of operands"); 315 assert(isMem(BDXMem) && "Invalid operand type"); 316 Inst.addOperand(MCOperand::createReg(Mem.Base)); 317 addExpr(Inst, Mem.Disp); 318 Inst.addOperand(MCOperand::createReg(Mem.Index)); 319 } 320 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 321 assert(N == 3 && "Invalid number of operands"); 322 assert(isMem(BDLMem) && "Invalid operand type"); 323 Inst.addOperand(MCOperand::createReg(Mem.Base)); 324 addExpr(Inst, Mem.Disp); 325 addExpr(Inst, Mem.Length.Imm); 326 } 327 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 328 assert(N == 3 && "Invalid number of operands"); 329 assert(isMem(BDRMem) && "Invalid operand type"); 330 Inst.addOperand(MCOperand::createReg(Mem.Base)); 331 addExpr(Inst, Mem.Disp); 332 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 333 } 334 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 335 assert(N == 3 && "Invalid number of operands"); 336 assert(isMem(BDVMem) && "Invalid operand type"); 337 Inst.addOperand(MCOperand::createReg(Mem.Base)); 338 addExpr(Inst, Mem.Disp); 339 Inst.addOperand(MCOperand::createReg(Mem.Index)); 340 } 341 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 342 assert(N == 2 && "Invalid number of operands"); 343 assert(Kind == KindImmTLS && "Invalid operand type"); 344 addExpr(Inst, ImmTLS.Imm); 345 if (ImmTLS.Sym) 346 addExpr(Inst, ImmTLS.Sym); 347 } 348 349 // Used by the TableGen code to check for particular operand types. 350 bool isGR32() const { return isReg(GR32Reg); } 351 bool isGRH32() const { return isReg(GRH32Reg); } 352 bool isGRX32() const { return false; } 353 bool isGR64() const { return isReg(GR64Reg); } 354 bool isGR128() const { return isReg(GR128Reg); } 355 bool isADDR32() const { return isReg(GR32Reg); } 356 bool isADDR64() const { return isReg(GR64Reg); } 357 bool isADDR128() const { return false; } 358 bool isFP32() const { return isReg(FP32Reg); } 359 bool isFP64() const { return isReg(FP64Reg); } 360 bool isFP128() const { return isReg(FP128Reg); } 361 bool isVR32() const { return isReg(VR32Reg); } 362 bool isVR64() const { return isReg(VR64Reg); } 363 bool isVF128() const { return false; } 364 bool isVR128() const { return isReg(VR128Reg); } 365 bool isAR32() const { return isReg(AR32Reg); } 366 bool isCR64() const { return isReg(CR64Reg); } 367 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 368 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 369 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 370 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 371 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 372 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 373 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 374 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 375 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 376 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 377 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 378 bool isU1Imm() const { return isImm(0, 1); } 379 bool isU2Imm() const { return isImm(0, 3); } 380 bool isU3Imm() const { return isImm(0, 7); } 381 bool isU4Imm() const { return isImm(0, 15); } 382 bool isU6Imm() const { return isImm(0, 63); } 383 bool isU8Imm() const { return isImm(0, 255); } 384 bool isS8Imm() const { return isImm(-128, 127); } 385 bool isU12Imm() const { return isImm(0, 4095); } 386 bool isU16Imm() const { return isImm(0, 65535); } 387 bool isS16Imm() const { return isImm(-32768, 32767); } 388 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 389 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 390 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 391 }; 392 393 class SystemZAsmParser : public MCTargetAsmParser { 394 #define GET_ASSEMBLER_HEADER 395 #include "SystemZGenAsmMatcher.inc" 396 397 private: 398 MCAsmParser &Parser; 399 enum RegisterGroup { 400 RegGR, 401 RegFP, 402 RegV, 403 RegAR, 404 RegCR 405 }; 406 struct Register { 407 RegisterGroup Group; 408 unsigned Num; 409 SMLoc StartLoc, EndLoc; 410 }; 411 412 SystemZTargetStreamer &getTargetStreamer() { 413 assert(getParser().getStreamer().getTargetStreamer() && 414 "do not have a target streamer"); 415 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 416 return static_cast<SystemZTargetStreamer &>(TS); 417 } 418 419 bool parseRegister(Register &Reg, bool RestoreOnFailure = false); 420 421 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 422 423 OperandMatchResultTy parseRegister(OperandVector &Operands, 424 RegisterKind Kind); 425 426 OperandMatchResultTy parseAnyRegister(OperandVector &Operands); 427 428 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 429 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 430 bool HasLength = false, bool HasVectorIndex = false); 431 bool parseAddressRegister(Register &Reg); 432 433 bool ParseDirectiveInsn(SMLoc L); 434 bool ParseDirectiveMachine(SMLoc L); 435 436 OperandMatchResultTy parseAddress(OperandVector &Operands, 437 MemoryKind MemKind, 438 RegisterKind RegKind); 439 440 OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, 441 int64_t MaxVal, bool AllowTLS); 442 443 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 444 445 // Both the hlasm and att variants still rely on the basic gnu asm 446 // format with respect to inputs, clobbers, outputs etc. 447 // 448 // However, calling the overriden getAssemblerDialect() method in 449 // AsmParser is problematic. It either returns the AssemblerDialect field 450 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 451 // unset, otherwise it returns the private AssemblerDialect field in 452 // AsmParser. 453 // 454 // The problematic part is because, we forcibly set the inline asm dialect 455 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 456 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 457 // not return the assembler dialect set in the respective MCAsmInfo instance. 458 // 459 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 460 // here, to get the "correct" assembler dialect, and use it in various 461 // functions. 462 unsigned getMAIAssemblerDialect() { 463 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 464 } 465 466 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 467 // or from 'a' through 'z', or '$', '_','#', or '@'. 468 inline bool isHLASMAlpha(char C) { 469 return isAlpha(C) || llvm::is_contained("_@#$", C); 470 } 471 472 // A digit in HLASM is a number from 0 to 9. 473 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 474 475 // Are we parsing using the AD_HLASM dialect? 476 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } 477 478 // Are we parsing using the AD_ATT dialect? 479 inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } 480 481 public: 482 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 483 const MCInstrInfo &MII, 484 const MCTargetOptions &Options) 485 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 486 MCAsmParserExtension::Initialize(Parser); 487 488 // Alias the .word directive to .short. 489 parser.addAliasForDirective(".word", ".short"); 490 491 // Initialize the set of available features. 492 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 493 } 494 495 // Override MCTargetAsmParser. 496 bool ParseDirective(AsmToken DirectiveID) override; 497 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 498 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 499 bool RestoreOnFailure); 500 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 501 SMLoc &EndLoc) override; 502 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 503 SMLoc NameLoc, OperandVector &Operands) override; 504 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 505 OperandVector &Operands, MCStreamer &Out, 506 uint64_t &ErrorInfo, 507 bool MatchingInlineAsm) override; 508 bool isLabel(AsmToken &Token) override; 509 510 // Used by the TableGen code to parse particular operand types. 511 OperandMatchResultTy parseGR32(OperandVector &Operands) { 512 return parseRegister(Operands, GR32Reg); 513 } 514 OperandMatchResultTy parseGRH32(OperandVector &Operands) { 515 return parseRegister(Operands, GRH32Reg); 516 } 517 OperandMatchResultTy parseGRX32(OperandVector &Operands) { 518 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 519 } 520 OperandMatchResultTy parseGR64(OperandVector &Operands) { 521 return parseRegister(Operands, GR64Reg); 522 } 523 OperandMatchResultTy parseGR128(OperandVector &Operands) { 524 return parseRegister(Operands, GR128Reg); 525 } 526 OperandMatchResultTy parseADDR32(OperandVector &Operands) { 527 // For the AsmParser, we will accept %r0 for ADDR32 as well. 528 return parseRegister(Operands, GR32Reg); 529 } 530 OperandMatchResultTy parseADDR64(OperandVector &Operands) { 531 // For the AsmParser, we will accept %r0 for ADDR64 as well. 532 return parseRegister(Operands, GR64Reg); 533 } 534 OperandMatchResultTy parseADDR128(OperandVector &Operands) { 535 llvm_unreachable("Shouldn't be used as an operand"); 536 } 537 OperandMatchResultTy parseFP32(OperandVector &Operands) { 538 return parseRegister(Operands, FP32Reg); 539 } 540 OperandMatchResultTy parseFP64(OperandVector &Operands) { 541 return parseRegister(Operands, FP64Reg); 542 } 543 OperandMatchResultTy parseFP128(OperandVector &Operands) { 544 return parseRegister(Operands, FP128Reg); 545 } 546 OperandMatchResultTy parseVR32(OperandVector &Operands) { 547 return parseRegister(Operands, VR32Reg); 548 } 549 OperandMatchResultTy parseVR64(OperandVector &Operands) { 550 return parseRegister(Operands, VR64Reg); 551 } 552 OperandMatchResultTy parseVF128(OperandVector &Operands) { 553 llvm_unreachable("Shouldn't be used as an operand"); 554 } 555 OperandMatchResultTy parseVR128(OperandVector &Operands) { 556 return parseRegister(Operands, VR128Reg); 557 } 558 OperandMatchResultTy parseAR32(OperandVector &Operands) { 559 return parseRegister(Operands, AR32Reg); 560 } 561 OperandMatchResultTy parseCR64(OperandVector &Operands) { 562 return parseRegister(Operands, CR64Reg); 563 } 564 OperandMatchResultTy parseAnyReg(OperandVector &Operands) { 565 return parseAnyRegister(Operands); 566 } 567 OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { 568 return parseAddress(Operands, BDMem, GR32Reg); 569 } 570 OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { 571 return parseAddress(Operands, BDMem, GR64Reg); 572 } 573 OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { 574 return parseAddress(Operands, BDXMem, GR64Reg); 575 } 576 OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { 577 return parseAddress(Operands, BDLMem, GR64Reg); 578 } 579 OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { 580 return parseAddress(Operands, BDRMem, GR64Reg); 581 } 582 OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { 583 return parseAddress(Operands, BDVMem, GR64Reg); 584 } 585 OperandMatchResultTy parsePCRel12(OperandVector &Operands) { 586 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 587 } 588 OperandMatchResultTy parsePCRel16(OperandVector &Operands) { 589 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 590 } 591 OperandMatchResultTy parsePCRel24(OperandVector &Operands) { 592 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 593 } 594 OperandMatchResultTy parsePCRel32(OperandVector &Operands) { 595 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 596 } 597 OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { 598 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 599 } 600 OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { 601 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 602 } 603 }; 604 605 } // end anonymous namespace 606 607 #define GET_REGISTER_MATCHER 608 #define GET_SUBTARGET_FEATURE_NAME 609 #define GET_MATCHER_IMPLEMENTATION 610 #define GET_MNEMONIC_SPELL_CHECKER 611 #include "SystemZGenAsmMatcher.inc" 612 613 // Used for the .insn directives; contains information needed to parse the 614 // operands in the directive. 615 struct InsnMatchEntry { 616 StringRef Format; 617 uint64_t Opcode; 618 int32_t NumOperands; 619 MatchClassKind OperandKinds[7]; 620 }; 621 622 // For equal_range comparison. 623 struct CompareInsn { 624 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 625 return LHS.Format < RHS; 626 } 627 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 628 return LHS < RHS.Format; 629 } 630 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 631 return LHS.Format < RHS.Format; 632 } 633 }; 634 635 // Table initializing information for parsing the .insn directive. 636 static struct InsnMatchEntry InsnMatchTable[] = { 637 /* Format, Opcode, NumOperands, OperandKinds */ 638 { "e", SystemZ::InsnE, 1, 639 { MCK_U16Imm } }, 640 { "ri", SystemZ::InsnRI, 3, 641 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 642 { "rie", SystemZ::InsnRIE, 4, 643 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 644 { "ril", SystemZ::InsnRIL, 3, 645 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 646 { "rilu", SystemZ::InsnRILU, 3, 647 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 648 { "ris", SystemZ::InsnRIS, 5, 649 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 650 { "rr", SystemZ::InsnRR, 3, 651 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 652 { "rre", SystemZ::InsnRRE, 3, 653 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 654 { "rrf", SystemZ::InsnRRF, 5, 655 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 656 { "rrs", SystemZ::InsnRRS, 5, 657 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 658 { "rs", SystemZ::InsnRS, 4, 659 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 660 { "rse", SystemZ::InsnRSE, 4, 661 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 662 { "rsi", SystemZ::InsnRSI, 4, 663 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 664 { "rsy", SystemZ::InsnRSY, 4, 665 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 666 { "rx", SystemZ::InsnRX, 3, 667 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 668 { "rxe", SystemZ::InsnRXE, 3, 669 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 670 { "rxf", SystemZ::InsnRXF, 4, 671 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 672 { "rxy", SystemZ::InsnRXY, 3, 673 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 674 { "s", SystemZ::InsnS, 2, 675 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 676 { "si", SystemZ::InsnSI, 3, 677 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 678 { "sil", SystemZ::InsnSIL, 3, 679 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 680 { "siy", SystemZ::InsnSIY, 3, 681 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 682 { "ss", SystemZ::InsnSS, 4, 683 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 684 { "sse", SystemZ::InsnSSE, 3, 685 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 686 { "ssf", SystemZ::InsnSSF, 4, 687 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 688 { "vri", SystemZ::InsnVRI, 6, 689 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 690 { "vrr", SystemZ::InsnVRR, 7, 691 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 692 MCK_U4Imm } }, 693 { "vrs", SystemZ::InsnVRS, 5, 694 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 695 { "vrv", SystemZ::InsnVRV, 4, 696 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 697 { "vrx", SystemZ::InsnVRX, 4, 698 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 699 { "vsi", SystemZ::InsnVSI, 4, 700 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 701 }; 702 703 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 704 if (!E) 705 return; 706 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 707 OS << *CE; 708 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 709 OS << *UE; 710 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 711 OS << *BE; 712 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 713 OS << *SRE; 714 else 715 OS << *E; 716 } 717 718 void SystemZOperand::print(raw_ostream &OS) const { 719 switch (Kind) { 720 case KindToken: 721 OS << "Token:" << getToken(); 722 break; 723 case KindReg: 724 OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); 725 break; 726 case KindImm: 727 OS << "Imm:"; 728 printMCExpr(getImm(), OS); 729 break; 730 case KindImmTLS: 731 OS << "ImmTLS:"; 732 printMCExpr(getImmTLS().Imm, OS); 733 if (getImmTLS().Sym) { 734 OS << ", "; 735 printMCExpr(getImmTLS().Sym, OS); 736 } 737 break; 738 case KindMem: { 739 const MemOp &Op = getMem(); 740 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 741 if (Op.Base) { 742 OS << "("; 743 if (Op.MemKind == BDLMem) 744 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 745 else if (Op.MemKind == BDRMem) 746 OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; 747 if (Op.Index) 748 OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; 749 OS << SystemZInstPrinter::getRegisterName(Op.Base); 750 OS << ")"; 751 } 752 break; 753 } 754 case KindInvalid: 755 break; 756 } 757 } 758 759 // Parse one register of the form %<prefix><number>. 760 bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { 761 Reg.StartLoc = Parser.getTok().getLoc(); 762 763 // Eat the % prefix. 764 if (Parser.getTok().isNot(AsmToken::Percent)) 765 return Error(Parser.getTok().getLoc(), "register expected"); 766 const AsmToken &PercentTok = Parser.getTok(); 767 Parser.Lex(); 768 769 // Expect a register name. 770 if (Parser.getTok().isNot(AsmToken::Identifier)) { 771 if (RestoreOnFailure) 772 getLexer().UnLex(PercentTok); 773 return Error(Reg.StartLoc, "invalid register"); 774 } 775 776 // Check that there's a prefix. 777 StringRef Name = Parser.getTok().getString(); 778 if (Name.size() < 2) { 779 if (RestoreOnFailure) 780 getLexer().UnLex(PercentTok); 781 return Error(Reg.StartLoc, "invalid register"); 782 } 783 char Prefix = Name[0]; 784 785 // Treat the rest of the register name as a register number. 786 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 787 if (RestoreOnFailure) 788 getLexer().UnLex(PercentTok); 789 return Error(Reg.StartLoc, "invalid register"); 790 } 791 792 // Look for valid combinations of prefix and number. 793 if (Prefix == 'r' && Reg.Num < 16) 794 Reg.Group = RegGR; 795 else if (Prefix == 'f' && Reg.Num < 16) 796 Reg.Group = RegFP; 797 else if (Prefix == 'v' && Reg.Num < 32) 798 Reg.Group = RegV; 799 else if (Prefix == 'a' && Reg.Num < 16) 800 Reg.Group = RegAR; 801 else if (Prefix == 'c' && Reg.Num < 16) 802 Reg.Group = RegCR; 803 else { 804 if (RestoreOnFailure) 805 getLexer().UnLex(PercentTok); 806 return Error(Reg.StartLoc, "invalid register"); 807 } 808 809 Reg.EndLoc = Parser.getTok().getLoc(); 810 Parser.Lex(); 811 return false; 812 } 813 814 // Parse a register of kind Kind and add it to Operands. 815 OperandMatchResultTy 816 SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { 817 Register Reg; 818 RegisterGroup Group; 819 switch (Kind) { 820 case GR32Reg: 821 case GRH32Reg: 822 case GR64Reg: 823 case GR128Reg: 824 Group = RegGR; 825 break; 826 case FP32Reg: 827 case FP64Reg: 828 case FP128Reg: 829 Group = RegFP; 830 break; 831 case VR32Reg: 832 case VR64Reg: 833 case VR128Reg: 834 Group = RegV; 835 break; 836 case AR32Reg: 837 Group = RegAR; 838 break; 839 case CR64Reg: 840 Group = RegCR; 841 break; 842 } 843 844 // Handle register names of the form %<prefix><number> 845 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 846 if (parseRegister(Reg)) 847 return MatchOperand_ParseFail; 848 849 // Check the parsed register group "Reg.Group" with the expected "Group" 850 // Have to error out if user specified wrong prefix. 851 switch (Group) { 852 case RegGR: 853 case RegFP: 854 case RegAR: 855 case RegCR: 856 if (Group != Reg.Group) { 857 Error(Reg.StartLoc, "invalid operand for instruction"); 858 return MatchOperand_ParseFail; 859 } 860 break; 861 case RegV: 862 if (Reg.Group != RegV && Reg.Group != RegFP) { 863 Error(Reg.StartLoc, "invalid operand for instruction"); 864 return MatchOperand_ParseFail; 865 } 866 break; 867 } 868 } else if (Parser.getTok().is(AsmToken::Integer)) { 869 if (parseIntegerRegister(Reg, Group)) 870 return MatchOperand_ParseFail; 871 } 872 // Otherwise we didn't match a register operand. 873 else 874 return MatchOperand_NoMatch; 875 876 // Determine the LLVM register number according to Kind. 877 const unsigned *Regs; 878 switch (Kind) { 879 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 880 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 881 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 882 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 883 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 884 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 885 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 886 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 887 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 888 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 889 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 890 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 891 } 892 if (Regs[Reg.Num] == 0) { 893 Error(Reg.StartLoc, "invalid register pair"); 894 return MatchOperand_ParseFail; 895 } 896 897 Operands.push_back( 898 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 899 return MatchOperand_Success; 900 } 901 902 // Parse any type of register (including integers) and add it to Operands. 903 OperandMatchResultTy 904 SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 905 SMLoc StartLoc = Parser.getTok().getLoc(); 906 907 // Handle integer values. 908 if (Parser.getTok().is(AsmToken::Integer)) { 909 const MCExpr *Register; 910 if (Parser.parseExpression(Register)) 911 return MatchOperand_ParseFail; 912 913 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 914 int64_t Value = CE->getValue(); 915 if (Value < 0 || Value > 15) { 916 Error(StartLoc, "invalid register"); 917 return MatchOperand_ParseFail; 918 } 919 } 920 921 SMLoc EndLoc = 922 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 923 924 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 925 } 926 else { 927 if (isParsingHLASM()) 928 return MatchOperand_NoMatch; 929 930 Register Reg; 931 if (parseRegister(Reg)) 932 return MatchOperand_ParseFail; 933 934 if (Reg.Num > 15) { 935 Error(StartLoc, "invalid register"); 936 return MatchOperand_ParseFail; 937 } 938 939 // Map to the correct register kind. 940 RegisterKind Kind; 941 unsigned RegNo; 942 if (Reg.Group == RegGR) { 943 Kind = GR64Reg; 944 RegNo = SystemZMC::GR64Regs[Reg.Num]; 945 } 946 else if (Reg.Group == RegFP) { 947 Kind = FP64Reg; 948 RegNo = SystemZMC::FP64Regs[Reg.Num]; 949 } 950 else if (Reg.Group == RegV) { 951 Kind = VR128Reg; 952 RegNo = SystemZMC::VR128Regs[Reg.Num]; 953 } 954 else if (Reg.Group == RegAR) { 955 Kind = AR32Reg; 956 RegNo = SystemZMC::AR32Regs[Reg.Num]; 957 } 958 else if (Reg.Group == RegCR) { 959 Kind = CR64Reg; 960 RegNo = SystemZMC::CR64Regs[Reg.Num]; 961 } 962 else { 963 return MatchOperand_ParseFail; 964 } 965 966 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 967 Reg.StartLoc, Reg.EndLoc)); 968 } 969 return MatchOperand_Success; 970 } 971 972 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 973 RegisterGroup Group) { 974 Reg.StartLoc = Parser.getTok().getLoc(); 975 // We have an integer token 976 const MCExpr *Register; 977 if (Parser.parseExpression(Register)) 978 return true; 979 980 const auto *CE = dyn_cast<MCConstantExpr>(Register); 981 if (!CE) 982 return true; 983 984 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 985 int64_t Value = CE->getValue(); 986 if (Value < 0 || Value > MaxRegNum) { 987 Error(Parser.getTok().getLoc(), "invalid register"); 988 return true; 989 } 990 991 // Assign the Register Number 992 Reg.Num = (unsigned)Value; 993 Reg.Group = Group; 994 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 995 996 // At this point, successfully parsed an integer register. 997 return false; 998 } 999 1000 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 1001 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 1002 bool &HaveReg2, Register &Reg2, 1003 const MCExpr *&Disp, const MCExpr *&Length, 1004 bool HasLength, bool HasVectorIndex) { 1005 // Parse the displacement, which must always be present. 1006 if (getParser().parseExpression(Disp)) 1007 return true; 1008 1009 // Parse the optional base and index. 1010 HaveReg1 = false; 1011 HaveReg2 = false; 1012 Length = nullptr; 1013 1014 // If we have a scenario as below: 1015 // vgef %v0, 0(0), 0 1016 // This is an example of a "BDVMem" instruction type. 1017 // 1018 // So when we parse this as an integer register, the register group 1019 // needs to be tied to "RegV". Usually when the prefix is passed in 1020 // as %<prefix><reg-number> its easy to check which group it should belong to 1021 // However, if we're passing in just the integer there's no real way to 1022 // "check" what register group it should belong to. 1023 // 1024 // When the user passes in the register as an integer, the user assumes that 1025 // the compiler is responsible for substituting it as the right kind of 1026 // register. Whereas, when the user specifies a "prefix", the onus is on 1027 // the user to make sure they pass in the right kind of register. 1028 // 1029 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1030 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1031 // (i.e. insn is of type BDVMem) is true. 1032 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1033 1034 if (getLexer().is(AsmToken::LParen)) { 1035 Parser.Lex(); 1036 1037 if (isParsingATT() && getLexer().is(AsmToken::Percent)) { 1038 // Parse the first register. 1039 HaveReg1 = true; 1040 if (parseRegister(Reg1)) 1041 return true; 1042 } 1043 // So if we have an integer as the first token in ([tok1], ..), it could: 1044 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1045 // instructions) 1046 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1047 else if (getLexer().is(AsmToken::Integer)) { 1048 if (HasLength) { 1049 // Instruction has a "Length" field, safe to parse the first token as 1050 // the "Length" field 1051 if (getParser().parseExpression(Length)) 1052 return true; 1053 } else { 1054 // Otherwise, if the instruction has no "Length" field, parse the 1055 // token as a "Register". We don't have to worry about whether the 1056 // instruction is invalid here, because the caller will take care of 1057 // error reporting. 1058 HaveReg1 = true; 1059 if (parseIntegerRegister(Reg1, RegGroup)) 1060 return true; 1061 } 1062 } else { 1063 // If its not an integer or a percent token, then if the instruction 1064 // is reported to have a "Length" then, parse it as "Length". 1065 if (HasLength) { 1066 if (getParser().parseExpression(Length)) 1067 return true; 1068 } 1069 } 1070 1071 // Check whether there's a second register. 1072 if (getLexer().is(AsmToken::Comma)) { 1073 Parser.Lex(); 1074 HaveReg2 = true; 1075 1076 if (getLexer().is(AsmToken::Integer)) { 1077 if (parseIntegerRegister(Reg2, RegGR)) 1078 return true; 1079 } else { 1080 if (isParsingATT() && parseRegister(Reg2)) 1081 return true; 1082 } 1083 } 1084 1085 // Consume the closing bracket. 1086 if (getLexer().isNot(AsmToken::RParen)) 1087 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1088 Parser.Lex(); 1089 } 1090 return false; 1091 } 1092 1093 // Verify that Reg is a valid address register (base or index). 1094 bool 1095 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1096 if (Reg.Group == RegV) { 1097 Error(Reg.StartLoc, "invalid use of vector addressing"); 1098 return true; 1099 } else if (Reg.Group != RegGR) { 1100 Error(Reg.StartLoc, "invalid address register"); 1101 return true; 1102 } 1103 return false; 1104 } 1105 1106 // Parse a memory operand and add it to Operands. The other arguments 1107 // are as above. 1108 OperandMatchResultTy 1109 SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, 1110 RegisterKind RegKind) { 1111 SMLoc StartLoc = Parser.getTok().getLoc(); 1112 unsigned Base = 0, Index = 0, LengthReg = 0; 1113 Register Reg1, Reg2; 1114 bool HaveReg1, HaveReg2; 1115 const MCExpr *Disp; 1116 const MCExpr *Length; 1117 1118 bool HasLength = (MemKind == BDLMem) ? true : false; 1119 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1120 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1121 HasVectorIndex)) 1122 return MatchOperand_ParseFail; 1123 1124 const unsigned *Regs; 1125 switch (RegKind) { 1126 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1127 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1128 default: llvm_unreachable("invalid RegKind"); 1129 } 1130 1131 switch (MemKind) { 1132 case BDMem: 1133 // If we have Reg1, it must be an address register. 1134 if (HaveReg1) { 1135 if (parseAddressRegister(Reg1)) 1136 return MatchOperand_ParseFail; 1137 Base = Regs[Reg1.Num]; 1138 } 1139 // There must be no Reg2. 1140 if (HaveReg2) { 1141 Error(StartLoc, "invalid use of indexed addressing"); 1142 return MatchOperand_ParseFail; 1143 } 1144 break; 1145 case BDXMem: 1146 // If we have Reg1, it must be an address register. 1147 if (HaveReg1) { 1148 if (parseAddressRegister(Reg1)) 1149 return MatchOperand_ParseFail; 1150 // If the are two registers, the first one is the index and the 1151 // second is the base. 1152 if (HaveReg2) 1153 Index = Regs[Reg1.Num]; 1154 else 1155 Base = Regs[Reg1.Num]; 1156 } 1157 // If we have Reg2, it must be an address register. 1158 if (HaveReg2) { 1159 if (parseAddressRegister(Reg2)) 1160 return MatchOperand_ParseFail; 1161 Base = Regs[Reg2.Num]; 1162 } 1163 break; 1164 case BDLMem: 1165 // If we have Reg2, it must be an address register. 1166 if (HaveReg2) { 1167 if (parseAddressRegister(Reg2)) 1168 return MatchOperand_ParseFail; 1169 Base = Regs[Reg2.Num]; 1170 } 1171 // We cannot support base+index addressing. 1172 if (HaveReg1 && HaveReg2) { 1173 Error(StartLoc, "invalid use of indexed addressing"); 1174 return MatchOperand_ParseFail; 1175 } 1176 // We must have a length. 1177 if (!Length) { 1178 Error(StartLoc, "missing length in address"); 1179 return MatchOperand_ParseFail; 1180 } 1181 break; 1182 case BDRMem: 1183 // We must have Reg1, and it must be a GPR. 1184 if (!HaveReg1 || Reg1.Group != RegGR) { 1185 Error(StartLoc, "invalid operand for instruction"); 1186 return MatchOperand_ParseFail; 1187 } 1188 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1189 // If we have Reg2, it must be an address register. 1190 if (HaveReg2) { 1191 if (parseAddressRegister(Reg2)) 1192 return MatchOperand_ParseFail; 1193 Base = Regs[Reg2.Num]; 1194 } 1195 break; 1196 case BDVMem: 1197 // We must have Reg1, and it must be a vector register. 1198 if (!HaveReg1 || Reg1.Group != RegV) { 1199 Error(StartLoc, "vector index required in address"); 1200 return MatchOperand_ParseFail; 1201 } 1202 Index = SystemZMC::VR128Regs[Reg1.Num]; 1203 // If we have Reg2, it must be an address register. 1204 if (HaveReg2) { 1205 if (parseAddressRegister(Reg2)) 1206 return MatchOperand_ParseFail; 1207 Base = Regs[Reg2.Num]; 1208 } 1209 break; 1210 } 1211 1212 SMLoc EndLoc = 1213 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1214 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1215 Index, Length, LengthReg, 1216 StartLoc, EndLoc)); 1217 return MatchOperand_Success; 1218 } 1219 1220 bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { 1221 StringRef IDVal = DirectiveID.getIdentifier(); 1222 1223 if (IDVal == ".insn") 1224 return ParseDirectiveInsn(DirectiveID.getLoc()); 1225 if (IDVal == ".machine") 1226 return ParseDirectiveMachine(DirectiveID.getLoc()); 1227 1228 return true; 1229 } 1230 1231 /// ParseDirectiveInsn 1232 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1233 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1234 MCAsmParser &Parser = getParser(); 1235 1236 // Expect instruction format as identifier. 1237 StringRef Format; 1238 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1239 if (Parser.parseIdentifier(Format)) 1240 return Error(ErrorLoc, "expected instruction format"); 1241 1242 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1243 1244 // Find entry for this format in InsnMatchTable. 1245 auto EntryRange = 1246 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1247 Format, CompareInsn()); 1248 1249 // If first == second, couldn't find a match in the table. 1250 if (EntryRange.first == EntryRange.second) 1251 return Error(ErrorLoc, "unrecognized format"); 1252 1253 struct InsnMatchEntry *Entry = EntryRange.first; 1254 1255 // Format should match from equal_range. 1256 assert(Entry->Format == Format); 1257 1258 // Parse the following operands using the table's information. 1259 for (int i = 0; i < Entry->NumOperands; i++) { 1260 MatchClassKind Kind = Entry->OperandKinds[i]; 1261 1262 SMLoc StartLoc = Parser.getTok().getLoc(); 1263 1264 // Always expect commas as separators for operands. 1265 if (getLexer().isNot(AsmToken::Comma)) 1266 return Error(StartLoc, "unexpected token in directive"); 1267 Lex(); 1268 1269 // Parse operands. 1270 OperandMatchResultTy ResTy; 1271 if (Kind == MCK_AnyReg) 1272 ResTy = parseAnyReg(Operands); 1273 else if (Kind == MCK_VR128) 1274 ResTy = parseVR128(Operands); 1275 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1276 ResTy = parseBDXAddr64(Operands); 1277 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1278 ResTy = parseBDAddr64(Operands); 1279 else if (Kind == MCK_BDVAddr64Disp12) 1280 ResTy = parseBDVAddr64(Operands); 1281 else if (Kind == MCK_PCRel32) 1282 ResTy = parsePCRel32(Operands); 1283 else if (Kind == MCK_PCRel16) 1284 ResTy = parsePCRel16(Operands); 1285 else { 1286 // Only remaining operand kind is an immediate. 1287 const MCExpr *Expr; 1288 SMLoc StartLoc = Parser.getTok().getLoc(); 1289 1290 // Expect immediate expression. 1291 if (Parser.parseExpression(Expr)) 1292 return Error(StartLoc, "unexpected token in directive"); 1293 1294 SMLoc EndLoc = 1295 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1296 1297 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1298 ResTy = MatchOperand_Success; 1299 } 1300 1301 if (ResTy != MatchOperand_Success) 1302 return true; 1303 } 1304 1305 // Build the instruction with the parsed operands. 1306 MCInst Inst = MCInstBuilder(Entry->Opcode); 1307 1308 for (size_t i = 0; i < Operands.size(); i++) { 1309 MCParsedAsmOperand &Operand = *Operands[i]; 1310 MatchClassKind Kind = Entry->OperandKinds[i]; 1311 1312 // Verify operand. 1313 unsigned Res = validateOperandClass(Operand, Kind); 1314 if (Res != Match_Success) 1315 return Error(Operand.getStartLoc(), "unexpected operand type"); 1316 1317 // Add operands to instruction. 1318 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1319 if (ZOperand.isReg()) 1320 ZOperand.addRegOperands(Inst, 1); 1321 else if (ZOperand.isMem(BDMem)) 1322 ZOperand.addBDAddrOperands(Inst, 2); 1323 else if (ZOperand.isMem(BDXMem)) 1324 ZOperand.addBDXAddrOperands(Inst, 3); 1325 else if (ZOperand.isMem(BDVMem)) 1326 ZOperand.addBDVAddrOperands(Inst, 3); 1327 else if (ZOperand.isImm()) 1328 ZOperand.addImmOperands(Inst, 1); 1329 else 1330 llvm_unreachable("unexpected operand type"); 1331 } 1332 1333 // Emit as a regular instruction. 1334 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1335 1336 return false; 1337 } 1338 1339 /// ParseDirectiveMachine 1340 /// ::= .machine [ mcpu ] 1341 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { 1342 MCAsmParser &Parser = getParser(); 1343 if (Parser.getTok().isNot(AsmToken::Identifier) && 1344 Parser.getTok().isNot(AsmToken::String)) 1345 return Error(L, "unexpected token in '.machine' directive"); 1346 1347 StringRef CPU = Parser.getTok().getIdentifier(); 1348 Parser.Lex(); 1349 if (parseToken(AsmToken::EndOfStatement)) 1350 return addErrorSuffix(" in '.machine' directive"); 1351 1352 MCSubtargetInfo &STI = copySTI(); 1353 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 1354 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 1355 1356 getTargetStreamer().emitMachine(CPU); 1357 1358 return false; 1359 } 1360 1361 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1362 SMLoc &EndLoc, bool RestoreOnFailure) { 1363 Register Reg; 1364 if (parseRegister(Reg, RestoreOnFailure)) 1365 return true; 1366 if (Reg.Group == RegGR) 1367 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1368 else if (Reg.Group == RegFP) 1369 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1370 else if (Reg.Group == RegV) 1371 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1372 else if (Reg.Group == RegAR) 1373 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1374 else if (Reg.Group == RegCR) 1375 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1376 StartLoc = Reg.StartLoc; 1377 EndLoc = Reg.EndLoc; 1378 return false; 1379 } 1380 1381 bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, 1382 SMLoc &EndLoc) { 1383 return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); 1384 } 1385 1386 OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo, 1387 SMLoc &StartLoc, 1388 SMLoc &EndLoc) { 1389 bool Result = 1390 ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); 1391 bool PendingErrors = getParser().hasPendingError(); 1392 getParser().clearPendingErrors(); 1393 if (PendingErrors) 1394 return MatchOperand_ParseFail; 1395 if (Result) 1396 return MatchOperand_NoMatch; 1397 return MatchOperand_Success; 1398 } 1399 1400 bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, 1401 StringRef Name, SMLoc NameLoc, 1402 OperandVector &Operands) { 1403 1404 // Apply mnemonic aliases first, before doing anything else, in 1405 // case the target uses it. 1406 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1407 1408 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1409 1410 // Read the remaining operands. 1411 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1412 // Read the first operand. 1413 if (parseOperand(Operands, Name)) { 1414 return true; 1415 } 1416 1417 // Read any subsequent operands. 1418 while (getLexer().is(AsmToken::Comma)) { 1419 Parser.Lex(); 1420 1421 if (isParsingHLASM() && getLexer().is(AsmToken::Space)) 1422 return Error( 1423 Parser.getTok().getLoc(), 1424 "No space allowed between comma that separates operand entries"); 1425 1426 if (parseOperand(Operands, Name)) { 1427 return true; 1428 } 1429 } 1430 1431 // Under the HLASM variant, we could have the remark field 1432 // The remark field occurs after the operation entries 1433 // There is a space that separates the operation entries and the 1434 // remark field. 1435 if (isParsingHLASM() && getTok().is(AsmToken::Space)) { 1436 // We've confirmed that there is a Remark field. 1437 StringRef Remark(getLexer().LexUntilEndOfStatement()); 1438 Parser.Lex(); 1439 1440 // If there is nothing after the space, then there is nothing to emit 1441 // We could have a situation as this: 1442 // " \n" 1443 // After lexing above, we will have 1444 // "\n" 1445 // This isn't an explicit remark field, so we don't have to output 1446 // this as a comment. 1447 if (Remark.size()) 1448 // Output the entire Remarks Field as a comment 1449 getStreamer().AddComment(Remark); 1450 } 1451 1452 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1453 SMLoc Loc = getLexer().getLoc(); 1454 return Error(Loc, "unexpected token in argument list"); 1455 } 1456 } 1457 1458 // Consume the EndOfStatement. 1459 Parser.Lex(); 1460 return false; 1461 } 1462 1463 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1464 StringRef Mnemonic) { 1465 // Check if the current operand has a custom associated parser, if so, try to 1466 // custom parse the operand, or fallback to the general approach. Force all 1467 // features to be available during the operand check, or else we will fail to 1468 // find the custom parser, and then we will later get an InvalidOperand error 1469 // instead of a MissingFeature errror. 1470 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1471 FeatureBitset All; 1472 All.set(); 1473 setAvailableFeatures(All); 1474 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 1475 setAvailableFeatures(AvailableFeatures); 1476 if (ResTy == MatchOperand_Success) 1477 return false; 1478 1479 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1480 // there was a match, but an error occurred, in which case, just return that 1481 // the operand parsing failed. 1482 if (ResTy == MatchOperand_ParseFail) 1483 return true; 1484 1485 // Check for a register. All real register operands should have used 1486 // a context-dependent parse routine, which gives the required register 1487 // class. The code is here to mop up other cases, like those where 1488 // the instruction isn't recognized. 1489 if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { 1490 Register Reg; 1491 if (parseRegister(Reg)) 1492 return true; 1493 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1494 return false; 1495 } 1496 1497 // The only other type of operand is an immediate or address. As above, 1498 // real address operands should have used a context-dependent parse routine, 1499 // so we treat any plain expression as an immediate. 1500 SMLoc StartLoc = Parser.getTok().getLoc(); 1501 Register Reg1, Reg2; 1502 bool HaveReg1, HaveReg2; 1503 const MCExpr *Expr; 1504 const MCExpr *Length; 1505 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1506 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1507 return true; 1508 // If the register combination is not valid for any instruction, reject it. 1509 // Otherwise, fall back to reporting an unrecognized instruction. 1510 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1511 && parseAddressRegister(Reg1)) 1512 return true; 1513 if (HaveReg2 && parseAddressRegister(Reg2)) 1514 return true; 1515 1516 SMLoc EndLoc = 1517 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1518 if (HaveReg1 || HaveReg2 || Length) 1519 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1520 else 1521 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1522 return false; 1523 } 1524 1525 bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1526 OperandVector &Operands, 1527 MCStreamer &Out, 1528 uint64_t &ErrorInfo, 1529 bool MatchingInlineAsm) { 1530 MCInst Inst; 1531 unsigned MatchResult; 1532 1533 unsigned Dialect = getMAIAssemblerDialect(); 1534 1535 FeatureBitset MissingFeatures; 1536 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1537 MatchingInlineAsm, Dialect); 1538 switch (MatchResult) { 1539 case Match_Success: 1540 Inst.setLoc(IDLoc); 1541 Out.emitInstruction(Inst, getSTI()); 1542 return false; 1543 1544 case Match_MissingFeature: { 1545 assert(MissingFeatures.any() && "Unknown missing feature!"); 1546 // Special case the error message for the very common case where only 1547 // a single subtarget feature is missing 1548 std::string Msg = "instruction requires:"; 1549 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1550 if (MissingFeatures[I]) { 1551 Msg += " "; 1552 Msg += getSubtargetFeatureName(I); 1553 } 1554 } 1555 return Error(IDLoc, Msg); 1556 } 1557 1558 case Match_InvalidOperand: { 1559 SMLoc ErrorLoc = IDLoc; 1560 if (ErrorInfo != ~0ULL) { 1561 if (ErrorInfo >= Operands.size()) 1562 return Error(IDLoc, "too few operands for instruction"); 1563 1564 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1565 if (ErrorLoc == SMLoc()) 1566 ErrorLoc = IDLoc; 1567 } 1568 return Error(ErrorLoc, "invalid operand for instruction"); 1569 } 1570 1571 case Match_MnemonicFail: { 1572 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1573 std::string Suggestion = SystemZMnemonicSpellCheck( 1574 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1575 return Error(IDLoc, "invalid instruction" + Suggestion, 1576 ((SystemZOperand &)*Operands[0]).getLocRange()); 1577 } 1578 } 1579 1580 llvm_unreachable("Unexpected match type"); 1581 } 1582 1583 OperandMatchResultTy 1584 SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, 1585 int64_t MaxVal, bool AllowTLS) { 1586 MCContext &Ctx = getContext(); 1587 MCStreamer &Out = getStreamer(); 1588 const MCExpr *Expr; 1589 SMLoc StartLoc = Parser.getTok().getLoc(); 1590 if (getParser().parseExpression(Expr)) 1591 return MatchOperand_NoMatch; 1592 1593 auto isOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { 1594 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1595 int64_t Value = CE->getValue(); 1596 if (Negate) 1597 Value = -Value; 1598 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1599 return true; 1600 } 1601 return false; 1602 }; 1603 1604 // For consistency with the GNU assembler, treat immediates as offsets 1605 // from ".". 1606 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1607 if (isParsingHLASM()) { 1608 Error(StartLoc, "Expected PC-relative expression"); 1609 return MatchOperand_ParseFail; 1610 } 1611 if (isOutOfRangeConstant(CE, false)) { 1612 Error(StartLoc, "offset out of range"); 1613 return MatchOperand_ParseFail; 1614 } 1615 int64_t Value = CE->getValue(); 1616 MCSymbol *Sym = Ctx.createTempSymbol(); 1617 Out.emitLabel(Sym); 1618 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1619 Ctx); 1620 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1621 } 1622 1623 // For consistency with the GNU assembler, conservatively assume that a 1624 // constant offset must by itself be within the given size range. 1625 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1626 if (isOutOfRangeConstant(BE->getLHS(), false) || 1627 isOutOfRangeConstant(BE->getRHS(), 1628 BE->getOpcode() == MCBinaryExpr::Sub)) { 1629 Error(StartLoc, "offset out of range"); 1630 return MatchOperand_ParseFail; 1631 } 1632 1633 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1634 const MCExpr *Sym = nullptr; 1635 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1636 Parser.Lex(); 1637 1638 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1639 Error(Parser.getTok().getLoc(), "unexpected token"); 1640 return MatchOperand_ParseFail; 1641 } 1642 1643 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1644 StringRef Name = Parser.getTok().getString(); 1645 if (Name == "tls_gdcall") 1646 Kind = MCSymbolRefExpr::VK_TLSGD; 1647 else if (Name == "tls_ldcall") 1648 Kind = MCSymbolRefExpr::VK_TLSLDM; 1649 else { 1650 Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1651 return MatchOperand_ParseFail; 1652 } 1653 Parser.Lex(); 1654 1655 if (Parser.getTok().isNot(AsmToken::Colon)) { 1656 Error(Parser.getTok().getLoc(), "unexpected token"); 1657 return MatchOperand_ParseFail; 1658 } 1659 Parser.Lex(); 1660 1661 if (Parser.getTok().isNot(AsmToken::Identifier)) { 1662 Error(Parser.getTok().getLoc(), "unexpected token"); 1663 return MatchOperand_ParseFail; 1664 } 1665 1666 StringRef Identifier = Parser.getTok().getString(); 1667 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1668 Kind, Ctx); 1669 Parser.Lex(); 1670 } 1671 1672 SMLoc EndLoc = 1673 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1674 1675 if (AllowTLS) 1676 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1677 StartLoc, EndLoc)); 1678 else 1679 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1680 1681 return MatchOperand_Success; 1682 } 1683 1684 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1685 if (isParsingATT()) 1686 return true; 1687 1688 // HLASM labels are ordinary symbols. 1689 // An HLASM label always starts at column 1. 1690 // An ordinary symbol syntax is laid out as follows: 1691 // Rules: 1692 // 1. Has to start with an "alphabetic character". Can be followed by up to 1693 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1694 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1695 // or '$', '_', '#', or '@' 1696 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1697 // are all treated as the same symbol. However, the processing for the case 1698 // folding will not be done in this function. 1699 StringRef RawLabel = Token.getString(); 1700 SMLoc Loc = Token.getLoc(); 1701 1702 // An HLASM label cannot be empty. 1703 if (!RawLabel.size()) 1704 return !Error(Loc, "HLASM Label cannot be empty"); 1705 1706 // An HLASM label cannot exceed greater than 63 characters. 1707 if (RawLabel.size() > 63) 1708 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1709 1710 // A label must start with an "alphabetic character". 1711 if (!isHLASMAlpha(RawLabel[0])) 1712 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1713 "character or the underscore character"); 1714 1715 // Now, we've established that the length is valid 1716 // and the first character is alphabetic. 1717 // Check whether remaining string is alphanumeric. 1718 for (unsigned I = 1; I < RawLabel.size(); ++I) 1719 if (!isHLASMAlnum(RawLabel[I])) 1720 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1721 1722 return true; 1723 } 1724 1725 // Force static initialization. 1726 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1727 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1728 } 1729