1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the Sparc instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// Instruction format superclass 15//===----------------------------------------------------------------------===// 16 17include "SparcInstrFormats.td" 18 19//===----------------------------------------------------------------------===// 20// Feature predicates. 21//===----------------------------------------------------------------------===// 22 23// True when generating 32-bit code. 24def Is32Bit : Predicate<"!Subtarget->is64Bit()">; 25 26// True when generating 64-bit code. This also implies HasV9. 27def Is64Bit : Predicate<"Subtarget->is64Bit()">; 28 29def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">, 30 AssemblerPredicate<(all_of FeatureSoftMulDiv)>; 31 32// HasV9 - This predicate is true when the target processor supports V9 33// instructions. Note that the machine may be running in 32-bit mode. 34def HasV9 : Predicate<"Subtarget->isV9()">, 35 AssemblerPredicate<(all_of FeatureV9)>; 36 37// HasNoV9 - This predicate is true when the target doesn't have V9 38// instructions. Use of this is just a hack for the isel not having proper 39// costs for V8 instructions that are more expensive than their V9 ones. 40def HasNoV9 : Predicate<"!Subtarget->isV9()">; 41 42// HasVIS - This is true when the target processor has VIS extensions. 43def HasVIS : Predicate<"Subtarget->isVIS()">, 44 AssemblerPredicate<(all_of FeatureVIS)>; 45def HasVIS2 : Predicate<"Subtarget->isVIS2()">, 46 AssemblerPredicate<(all_of FeatureVIS2)>; 47def HasVIS3 : Predicate<"Subtarget->isVIS3()">, 48 AssemblerPredicate<(all_of FeatureVIS3)>; 49 50// HasHardQuad - This is true when the target processor supports quad floating 51// point instructions. 52def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">; 53 54// HasLeonCASA - This is true when the target processor supports the Leon CASA 55// instruction. 56def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">; 57 58// HasCASA - This is true when the target processor supports CASA instruction. 59def HasCASA : Predicate<"Subtarget->hasLeonCasa() || Subtarget->isV9()">, 60 AssemblerPredicate<(any_of LeonCASA, FeatureV9)>; 61 62// HasPWRPSR - This is true when the target processor supports partial 63// writes to the PSR register that only affects the ET field. 64def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">, 65 AssemblerPredicate<(all_of FeaturePWRPSR)>; 66 67// HasUMAC_SMAC - This is true when the target processor supports the 68// UMAC and SMAC instructions 69def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">; 70 71def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">; 72def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">; 73def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">; 74 75// UseDeprecatedInsts - This predicate is true when the target processor is a 76// V8, or when it is V9 but the V8 deprecated instructions are efficient enough 77// to use when appropriate. In either of these cases, the instruction selector 78// will pick deprecated instructions. 79def UseDeprecatedInsts : Predicate<"Subtarget->useV8DeprecatedInsts()">; 80 81//===----------------------------------------------------------------------===// 82// Instruction Pattern Stuff 83//===----------------------------------------------------------------------===// 84 85def simm10 : PatLeaf<(imm), [{ return isInt<10>(N->getSExtValue()); }]>; 86 87def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; 88 89def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; 90 91def LO10 : SDNodeXForm<imm, [{ 92 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N), 93 MVT::i32); 94}]>; 95 96def HI22 : SDNodeXForm<imm, [{ 97 // Transformation function: shift the immediate value down into the low bits. 98 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N), 99 MVT::i32); 100}]>; 101 102// Return the complement of a HI22 immediate value. 103def HI22_not : SDNodeXForm<imm, [{ 104 return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N), 105 MVT::i32); 106}]>; 107 108def SETHIimm : PatLeaf<(imm), [{ 109 return isShiftedUInt<22, 10>(N->getZExtValue()); 110}], HI22>; 111 112// The N->hasOneUse() prevents the immediate from being instantiated in both 113// normal and complement form. 114def SETHIimm_not : PatLeaf<(i32 imm), [{ 115 return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue()); 116}], HI22_not>; 117 118// Addressing modes. 119def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; 120def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [], []>; 121 122// Constrained operands for the shift operations. 123class ShiftAmtImmAsmOperand<int Bits> : AsmOperandClass { 124 let Name = "ShiftAmtImm" # Bits; 125 let ParserMethod = "parseShiftAmtImm<" # Bits # ">"; 126} 127def shift_imm5 : Operand<i32> { 128 let ParserMatchClass = ShiftAmtImmAsmOperand<5>; 129} 130def shift_imm6 : Operand<i32> { 131 let ParserMatchClass = ShiftAmtImmAsmOperand<6>; 132} 133 134// Address operands 135def SparcMEMrrAsmOperand : AsmOperandClass { 136 let Name = "MEMrr"; 137 let ParserMethod = "parseMEMOperand"; 138} 139 140def SparcMEMriAsmOperand : AsmOperandClass { 141 let Name = "MEMri"; 142 let ParserMethod = "parseMEMOperand"; 143} 144 145def MEMrr : Operand<iPTR> { 146 let PrintMethod = "printMemOperand"; 147 let MIOperandInfo = (ops ptr_rc, ptr_rc); 148 let ParserMatchClass = SparcMEMrrAsmOperand; 149} 150def MEMri : Operand<iPTR> { 151 let PrintMethod = "printMemOperand"; 152 let MIOperandInfo = (ops ptr_rc, i32imm); 153 let ParserMatchClass = SparcMEMriAsmOperand; 154} 155 156// Represents a tail relocation operand for instructions such as add, ld, call. 157class SparcTailRelocSymAsmOperand<string Kind> : AsmOperandClass { 158 let Name = "TailRelocSym" # Kind; 159 let RenderMethod = "addTailRelocSymOperands"; 160 let PredicateMethod = "isTailRelocSym"; 161 let ParserMethod = "parseTailRelocSym<TailRelocKind::" # Kind # ">"; 162} 163 164def TailRelocSymGOTLoad : Operand<iPTR> { 165 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_GOT">; 166} 167 168def TailRelocSymTLSAdd : Operand<iPTR> { 169 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Add_TLS">; 170} 171 172def TailRelocSymTLSLoad : Operand<iPTR> { 173 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_TLS">; 174} 175 176def TailRelocSymTLSCall : Operand<iPTR> { 177 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Call_TLS">; 178} 179 180def SparcMembarTagAsmOperand : AsmOperandClass { 181 let Name = "MembarTag"; 182 let ParserMethod = "parseMembarTag"; 183} 184 185def MembarTag : Operand<i32> { 186 let PrintMethod = "printMembarTag"; 187 let ParserMatchClass = SparcMembarTagAsmOperand; 188} 189 190def SparcASITagAsmOperand : AsmOperandClass { 191 let Name = "ASITag"; 192 let ParserMethod = "parseASITag"; 193} 194 195def ASITag : Operand<i32> { 196 let PrintMethod = "printASITag"; 197 let ParserMatchClass = SparcASITagAsmOperand; 198} 199 200// Branch targets have OtherVT type. 201def brtarget : Operand<OtherVT> { 202 let EncoderMethod = "getBranchTargetOpValue"; 203} 204 205def bprtarget : Operand<OtherVT> { 206 let EncoderMethod = "getBranchPredTargetOpValue"; 207} 208 209def bprtarget16 : Operand<OtherVT> { 210 let EncoderMethod = "getBranchOnRegTargetOpValue"; 211} 212 213def SparcCallTargetAsmOperand : AsmOperandClass { 214 let Name = "CallTarget"; 215 let ParserMethod = "parseCallTarget"; 216} 217 218def calltarget : Operand<i32> { 219 let EncoderMethod = "getCallTargetOpValue"; 220 let DecoderMethod = "DecodeCall"; 221 let ParserMatchClass = SparcCallTargetAsmOperand; 222} 223 224def simm13Op : Operand<iPTR> { 225 let OperandType = "OPERAND_IMMEDIATE"; 226 let DecoderMethod = "DecodeSIMM13"; 227 let EncoderMethod = "getSImm13OpValue"; 228} 229 230// Operand for printing out a condition code. 231let PrintMethod = "printCCOperand" in { 232 def CCOp : Operand<i32>; 233 def RegCCOp : Operand<i32>; 234} 235 236def SDTSPcmpicc : 237SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; 238def SDTSPcmpfcc : 239SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; 240def SDTSPbrcc : 241SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; 242def SDTSPbrreg : 243SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>, SDTCisVT<2, i64>]>; 244def SDTSPselectcc : 245SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; 246def SDTSPselectreg : 247SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>, SDTCisVT<4, i64>]>; 248def SDTSPFTOI : 249SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; 250def SDTSPITOF : 251SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; 252def SDTSPFTOX : 253SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>; 254def SDTSPXTOF : 255SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>; 256 257def SDTSPtlsadd : 258SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 259def SDTSPtlsld : 260SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 261 262def SDTSPloadgdop : 263SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 264 265def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; 266def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; 267def SPcmpfccv9 : SDNode<"SPISD::CMPFCC_V9", SDTSPcmpfcc, [SDNPOutGlue]>; 268def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 269def SPbpicc : SDNode<"SPISD::BPICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 270def SPbpxcc : SDNode<"SPISD::BPXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 271def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 272def SPbrfccv9 : SDNode<"SPISD::BRFCC_V9", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 273def SPbrreg : SDNode<"SPISD::BR_REG", SDTSPbrreg, [SDNPHasChain, SDNPInGlue]>; 274 275def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; 276def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; 277 278def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; 279def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; 280def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>; 281def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>; 282 283def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; 284def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; 285def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; 286def SPselectreg : SDNode<"SPISD::SELECT_REG", SDTSPselectreg, [SDNPInGlue]>; 287 288// These are target-independent nodes, but have target-specific formats. 289def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>, 290 SDTCisVT<1, i32> ]>; 291def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, 292 SDTCisVT<1, i32> ]>; 293 294def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, 295 [SDNPHasChain, SDNPOutGlue]>; 296def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, 297 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 298 299def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; 300def call : SDNode<"SPISD::CALL", SDT_SPCall, 301 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 302 SDNPVariadic]>; 303 304def tailcall : SDNode<"SPISD::TAIL_CALL", SDT_SPCall, 305 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 306 SDNPVariadic]>; 307 308def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 309def retglue : SDNode<"SPISD::RET_GLUE", SDT_SPRet, 310 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 311 312def flushw : SDNode<"SPISD::FLUSHW", SDTNone, 313 [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; 314 315def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>; 316def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>; 317def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall, 318 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 319 SDNPVariadic]>; 320 321def load_gdop : SDNode<"SPISD::LOAD_GDOP", SDTSPloadgdop>; 322 323def getPCX : Operand<iPTR> { 324 let PrintMethod = "printGetPCX"; 325} 326 327//===----------------------------------------------------------------------===// 328// SPARC Flag Conditions 329//===----------------------------------------------------------------------===// 330 331// Note that these values must be kept in sync with the CCOp::CondCode enum 332// values. 333class ICC_VAL<int N> : PatLeaf<(i32 N)>; 334def ICC_NE : ICC_VAL< 9>; // Not Equal 335def ICC_E : ICC_VAL< 1>; // Equal 336def ICC_G : ICC_VAL<10>; // Greater 337def ICC_LE : ICC_VAL< 2>; // Less or Equal 338def ICC_GE : ICC_VAL<11>; // Greater or Equal 339def ICC_L : ICC_VAL< 3>; // Less 340def ICC_GU : ICC_VAL<12>; // Greater Unsigned 341def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned 342def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned 343def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned 344def ICC_POS : ICC_VAL<14>; // Positive 345def ICC_NEG : ICC_VAL< 6>; // Negative 346def ICC_VC : ICC_VAL<15>; // Overflow Clear 347def ICC_VS : ICC_VAL< 7>; // Overflow Set 348 349class FCC_VAL<int N> : PatLeaf<(i32 N)>; 350def FCC_U : FCC_VAL<23>; // Unordered 351def FCC_G : FCC_VAL<22>; // Greater 352def FCC_UG : FCC_VAL<21>; // Unordered or Greater 353def FCC_L : FCC_VAL<20>; // Less 354def FCC_UL : FCC_VAL<19>; // Unordered or Less 355def FCC_LG : FCC_VAL<18>; // Less or Greater 356def FCC_NE : FCC_VAL<17>; // Not Equal 357def FCC_E : FCC_VAL<25>; // Equal 358def FCC_UE : FCC_VAL<26>; // Unordered or Equal 359def FCC_GE : FCC_VAL<27>; // Greater or Equal 360def FCC_UGE : FCC_VAL<28>; // Unordered or Greater or Equal 361def FCC_LE : FCC_VAL<29>; // Less or Equal 362def FCC_ULE : FCC_VAL<30>; // Unordered or Less or Equal 363def FCC_O : FCC_VAL<31>; // Ordered 364 365class CPCC_VAL<int N> : PatLeaf<(i32 N)>; 366def CPCC_3 : CPCC_VAL<39>; // 3 367def CPCC_2 : CPCC_VAL<38>; // 2 368def CPCC_23 : CPCC_VAL<37>; // 2 or 3 369def CPCC_1 : CPCC_VAL<36>; // 1 370def CPCC_13 : CPCC_VAL<35>; // 1 or 3 371def CPCC_12 : CPCC_VAL<34>; // 1 or 2 372def CPCC_123 : CPCC_VAL<33>; // 1 or 2 or 3 373def CPCC_0 : CPCC_VAL<41>; // 0 374def CPCC_03 : CPCC_VAL<42>; // 0 or 3 375def CPCC_02 : CPCC_VAL<43>; // 0 or 2 376def CPCC_023 : CPCC_VAL<44>; // 0 or 2 or 3 377def CPCC_01 : CPCC_VAL<45>; // 0 or 1 378def CPCC_013 : CPCC_VAL<46>; // 0 or 1 or 3 379def CPCC_012 : CPCC_VAL<47>; // 0 or 1 or 2 380 381class RegCC_VAL<int N> : PatLeaf<(i32 N)>; 382def RegCC_Z : RegCC_VAL<49>; // Zero 383def RegCC_LEZ : RegCC_VAL<50>; // Lees or equal than zero 384def RegCC_LZ : RegCC_VAL<51>; // Less than zero 385def RegCC_NZ : RegCC_VAL<53>; // Not zero 386def RegCC_GZ : RegCC_VAL<54>; // Greater than zero 387def RegCC_GEZ : RegCC_VAL<55>; // Greater or equal to zero 388 389//===----------------------------------------------------------------------===// 390// Instruction Class Templates 391//===----------------------------------------------------------------------===// 392 393/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. 394multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode, 395 RegisterClass RC, ValueType Ty, Operand immOp, 396 InstrItinClass itin = IIC_iu_instr> { 397 def rr : F3_1<2, Op3Val, 398 (outs RC:$rd), (ins RC:$rs1, RC:$rs2), 399 !strconcat(OpcStr, " $rs1, $rs2, $rd"), 400 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))], 401 itin>; 402 def ri : F3_2<2, Op3Val, 403 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13), 404 !strconcat(OpcStr, " $rs1, $simm13, $rd"), 405 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))], 406 itin>; 407} 408 409/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no 410/// pattern. 411multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> { 412 def rr : F3_1<2, Op3Val, 413 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 414 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [], 415 itin>; 416 def ri : F3_2<2, Op3Val, 417 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 418 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [], 419 itin>; 420} 421 422// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. 423multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, 424 RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> { 425 def rr : F3_1<3, Op3Val, 426 (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr), 427 !strconcat(OpcStr, " [$addr], $rd"), 428 [(set Ty:$rd, (OpNode ADDRrr:$addr))], 429 itin>; 430 def ri : F3_2<3, Op3Val, 431 (outs RC:$rd), (ins (MEMri $rs1, $simm13):$addr), 432 !strconcat(OpcStr, " [$addr], $rd"), 433 [(set Ty:$rd, (OpNode ADDRri:$addr))], 434 itin>; 435} 436 437// TODO: Instructions of the LoadASI class are currently asm only; hooking up 438// CodeGen's address spaces to use these is a future task. 439multiclass LoadASI<string OpcStr, bits<6> Op3Val, RegisterClass RC> { 440 def rr : F3_1_asi<3, Op3Val, (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi), 441 !strconcat(OpcStr, "a [$addr] $asi, $rd"), 442 []>; 443 444 let Predicates = [HasV9], Uses = [ASR3] in 445 def ri : F3_2<3, Op3Val, (outs RC:$rd), (ins (MEMri $rs1, $simm13):$addr), 446 !strconcat(OpcStr, "a [$addr] %asi, $rd"), 447 []>; 448} 449 450// LoadA multiclass - As above, but also define alternate address space variant 451multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val, 452 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, 453 InstrItinClass itin = NoItinerary> : 454 Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> { 455 defm A : LoadASI<OpcStr, LoadAOp3Val, RC>; 456} 457 458 459// The LDSTUB instruction is supported for asm only. 460// It is unlikely that general-purpose code could make use of it. 461// CAS is preferred for sparc v9. 462def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr), 463 "ldstub [$addr], $rd", []>; 464def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 465 "ldstub [$addr], $rd", []>; 466def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$rd), 467 (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi), 468 "ldstuba [$addr] $asi, $rd", []>; 469let Predicates = [HasV9], Uses = [ASR3] in 470def LDSTUBAri : F3_2<3, 0b011101, (outs IntRegs:$rd), 471 (ins (MEMri $rs1, $simm13):$addr), 472 "ldstuba [$addr] %asi, $rd", []>; 473 474// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. 475multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, 476 RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> { 477 def rr : F3_1<3, Op3Val, 478 (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd), 479 !strconcat(OpcStr, " $rd, [$addr]"), 480 [(OpNode Ty:$rd, ADDRrr:$addr)], 481 itin>; 482 def ri : F3_2<3, Op3Val, 483 (outs), (ins (MEMri $rs1, $simm13):$addr, RC:$rd), 484 !strconcat(OpcStr, " $rd, [$addr]"), 485 [(OpNode Ty:$rd, ADDRri:$addr)], 486 itin>; 487} 488 489// TODO: Instructions of the StoreASI class are currently asm only; hooking up 490// CodeGen's address spaces to use these is a future task. 491multiclass StoreASI<string OpcStr, bits<6> Op3Val, RegisterClass RC, 492 InstrItinClass itin = IIC_st> { 493 def rr : F3_1_asi<3, Op3Val, (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd, ASITag:$asi), 494 !strconcat(OpcStr, "a $rd, [$addr] $asi"), 495 [], 496 itin>; 497 498 let Predicates = [HasV9], Uses = [ASR3] in 499 def ri : F3_2<3, Op3Val, (outs), (ins (MEMri $rs1, $simm13):$addr, RC:$rd), 500 !strconcat(OpcStr, "a $rd, [$addr] %asi"), 501 [], 502 itin>; 503} 504 505multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val, 506 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> : 507 Store<OpcStr, Op3Val, OpNode, RC, Ty> { 508 defm A : StoreASI<OpcStr, StoreAOp3Val, RC>; 509} 510 511//===----------------------------------------------------------------------===// 512// Instructions 513//===----------------------------------------------------------------------===// 514 515// Pseudo instructions. 516class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> 517 : InstSP<outs, ins, asmstr, pattern> { 518 let isCodeGenOnly = 1; 519 let isPseudo = 1; 520} 521 522// GETPCX for PIC 523let Defs = [O7] in { 524 def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; 525} 526 527let Defs = [O6], Uses = [O6] in { 528def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 529 "!ADJCALLSTACKDOWN $amt1, $amt2", 530 [(callseq_start timm:$amt1, timm:$amt2)]>; 531def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 532 "!ADJCALLSTACKUP $amt1", 533 [(callseq_end timm:$amt1, timm:$amt2)]>; 534} 535 536let hasSideEffects = 1, mayStore = 1 in { 537 let rd = 0, rs1 = 0, rs2 = 0 in 538 def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), 539 "flushw", 540 [(flushw)]>, Requires<[HasV9]>; 541 let rd = 8, rs1 = 0, simm13 = 3 in 542 def TA3 : F3_2<0b10, 0b111010, (outs), (ins), 543 "ta 3", 544 [(flushw)]>; 545} 546 547// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after 548// instruction selection into a branch sequence. This has to handle all 549// permutations of selection between i32/f32/f64 on ICC and FCC. 550// Expanded after instruction selection. 551let Uses = [ICC], usesCustomInserter = 1 in { 552 def SELECT_CC_Int_ICC 553 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 554 "; SELECT_CC_Int_ICC PSEUDO!", 555 [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; 556 def SELECT_CC_FP_ICC 557 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 558 "; SELECT_CC_FP_ICC PSEUDO!", 559 [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; 560 561 def SELECT_CC_DFP_ICC 562 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 563 "; SELECT_CC_DFP_ICC PSEUDO!", 564 [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; 565 566 def SELECT_CC_QFP_ICC 567 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 568 "; SELECT_CC_QFP_ICC PSEUDO!", 569 [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>; 570} 571 572let Uses = [ICC], usesCustomInserter = 1 in { 573 def SELECT_CC_Int_XCC 574 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 575 "; SELECT_CC_Int_XCC PSEUDO!", 576 [(set i32:$dst, (SPselectxcc i32:$T, i32:$F, imm:$Cond))]>; 577 def SELECT_CC_FP_XCC 578 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 579 "; SELECT_CC_FP_XCC PSEUDO!", 580 [(set f32:$dst, (SPselectxcc f32:$T, f32:$F, imm:$Cond))]>; 581 582 def SELECT_CC_DFP_XCC 583 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 584 "; SELECT_CC_DFP_XCC PSEUDO!", 585 [(set f64:$dst, (SPselectxcc f64:$T, f64:$F, imm:$Cond))]>; 586 587 def SELECT_CC_QFP_XCC 588 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 589 "; SELECT_CC_QFP_XCC PSEUDO!", 590 [(set f128:$dst, (SPselectxcc f128:$T, f128:$F, imm:$Cond))]>; 591} 592 593let usesCustomInserter = 1, Uses = [FCC0] in { 594 595 def SELECT_CC_Int_FCC 596 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 597 "; SELECT_CC_Int_FCC PSEUDO!", 598 [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; 599 600 def SELECT_CC_FP_FCC 601 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 602 "; SELECT_CC_FP_FCC PSEUDO!", 603 [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; 604 def SELECT_CC_DFP_FCC 605 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 606 "; SELECT_CC_DFP_FCC PSEUDO!", 607 [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; 608 def SELECT_CC_QFP_FCC 609 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 610 "; SELECT_CC_QFP_FCC PSEUDO!", 611 [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; 612} 613 614// Section B.1 - Load Integer Instructions, p. 90 615defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>; 616defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>; 617defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8, IntRegs, i32>; 618defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>; 619defm LD : LoadA<"ld", 0b000000, 0b010000, load, IntRegs, i32>; 620defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>; 621 622// Section B.2 - Load Floating-point Instructions, p. 92 623defm LDF : Load<"ld", 0b100000, load, FPRegs, f32, IIC_iu_or_fpu_instr>; 624defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64, IIC_ldd>; 625 626let DecoderNamespace = "SparcV9", Predicates = [HasV9] in { 627 defm LDFA : LoadASI<"ld", 0b110000, FPRegs>; 628 defm LDDFA : LoadASI<"ldd", 0b110011, DFPRegs>; 629 defm LDQF : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>, 630 Requires<[HasHardQuad]>; 631} 632 633// Coprocessor instructions were removed in v9. 634let DecoderNamespace = "SparcV8", Predicates = [HasNoV9] in { 635 defm LDC : Load<"ld", 0b110000, load, CoprocRegs, i32>; 636 defm LDDC : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>; 637} 638 639let Defs = [CPSR] in { 640 let rd = 0 in { 641 def LDCSRrr : F3_1<3, 0b110001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 642 "ld [$addr], %csr", []>; 643 def LDCSRri : F3_2<3, 0b110001, (outs), (ins (MEMri $rs1, $simm13):$addr), 644 "ld [$addr], %csr", []>; 645 } 646} 647 648let Defs = [FSR] in { 649 let rd = 0 in { 650 def LDFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 651 "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; 652 def LDFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr), 653 "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; 654 } 655 let rd = 1 in { 656 def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 657 "ldx [$addr], %fsr", []>, Requires<[HasV9]>; 658 def LDXFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr), 659 "ldx [$addr], %fsr", []>, Requires<[HasV9]>; 660 } 661} 662 663let mayLoad = 1, isAsmParserOnly = 1 in { 664 def GDOP_LDrr : F3_1<3, 0b000000, 665 (outs IntRegs:$rd), 666 (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymGOTLoad:$sym), 667 "ld [$addr], $rd, $sym", 668 [(set i32:$rd, 669 (load_gdop ADDRrr:$addr, tglobaladdr:$sym))]>; 670} 671 672// Section B.4 - Store Integer Instructions, p. 95 673defm STB : StoreA<"stb", 0b000101, 0b010101, truncstorei8, IntRegs, i32>; 674defm STH : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>; 675defm ST : StoreA<"st", 0b000100, 0b010100, store, IntRegs, i32>; 676defm STD : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>; 677 678// Section B.5 - Store Floating-point Instructions, p. 97 679defm STF : Store<"st", 0b100100, store, FPRegs, f32>; 680defm STDF : Store<"std", 0b100111, store, DFPRegs, f64, IIC_std>; 681 682let DecoderNamespace = "SparcV9", Predicates = [HasV9] in { 683 defm STFA : StoreASI<"st", 0b110100, FPRegs>; 684 defm STDFA : StoreASI<"std", 0b110111, DFPRegs>; 685 defm STQF : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>, 686 Requires<[HasHardQuad]>; 687} 688 689// Coprocessor instructions were removed in v9. 690let DecoderNamespace = "SparcV8", Predicates = [HasNoV9] in { 691 defm STC : Store<"st", 0b110100, store, CoprocRegs, i32>; 692 defm STDC : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>; 693} 694 695let rd = 0 in { 696 let Defs = [CPSR] in { 697 def STCSRrr : F3_1<3, 0b110101, (outs (MEMrr $rs1, $rs2):$addr), (ins), 698 "st %csr, [$addr]", [], IIC_st>; 699 def STCSRri : F3_2<3, 0b110101, (outs (MEMri $rs1, $simm13):$addr), (ins), 700 "st %csr, [$addr]", [], IIC_st>; 701 } 702 let Defs = [CPQ] in { 703 def STDCQrr : F3_1<3, 0b110110, (outs (MEMrr $rs1, $rs2):$addr), (ins), 704 "std %cq, [$addr]", [], IIC_std>; 705 def STDCQri : F3_2<3, 0b110110, (outs (MEMri $rs1, $simm13):$addr), (ins), 706 "std %cq, [$addr]", [], IIC_std>; 707 } 708} 709 710let rd = 0 in { 711 let Defs = [FSR] in { 712 def STFSRrr : F3_1<3, 0b100101, (outs (MEMrr $rs1, $rs2):$addr), (ins), 713 "st %fsr, [$addr]", [], IIC_st>; 714 def STFSRri : F3_2<3, 0b100101, (outs (MEMri $rs1, $simm13):$addr), (ins), 715 "st %fsr, [$addr]", [], IIC_st>; 716 } 717 let Defs = [FQ] in { 718 def STDFQrr : F3_1<3, 0b100110, (outs (MEMrr $rs1, $rs2):$addr), (ins), 719 "std %fq, [$addr]", [], IIC_std>; 720 def STDFQri : F3_2<3, 0b100110, (outs (MEMri $rs1, $simm13):$addr), (ins), 721 "std %fq, [$addr]", [], IIC_std>; 722 } 723} 724let rd = 1, Defs = [FSR] in { 725 def STXFSRrr : F3_1<3, 0b100101, (outs (MEMrr $rs1, $rs2):$addr), (ins), 726 "stx %fsr, [$addr]", []>, Requires<[HasV9]>; 727 def STXFSRri : F3_2<3, 0b100101, (outs (MEMri $rs1, $simm13):$addr), (ins), 728 "stx %fsr, [$addr]", []>, Requires<[HasV9]>; 729} 730 731// Section B.8 - SWAP Register with Memory Instruction 732// (Atomic swap) 733let Constraints = "$val = $rd" in { 734 def SWAPrr : F3_1<3, 0b001111, 735 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, IntRegs:$val), 736 "swap [$addr], $rd", 737 [(set i32:$rd, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>; 738 def SWAPri : F3_2<3, 0b001111, 739 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr, IntRegs:$val), 740 "swap [$addr], $rd", 741 [(set i32:$rd, (atomic_swap_32 ADDRri:$addr, i32:$val))]>; 742 def SWAPArr : F3_1_asi<3, 0b011111, 743 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi, IntRegs:$val), 744 "swapa [$addr] $asi, $rd", 745 [/*FIXME: pattern?*/]>; 746let Predicates = [HasV9], Uses = [ASR3] in 747 def SWAPAri : F3_2<3, 0b011111, 748 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr, IntRegs:$val), 749 "swapa [$addr] %asi, $rd", 750 [/*FIXME: pattern?*/]>; 751} 752 753 754// Section B.9 - SETHI Instruction, p. 104 755def SETHIi: F2_1<0b100, 756 (outs IntRegs:$rd), (ins i32imm:$imm22), 757 "sethi $imm22, $rd", 758 [(set i32:$rd, SETHIimm:$imm22)], 759 IIC_iu_instr>; 760 761// Section B.10 - NOP Instruction, p. 105 762// (It's a special case of SETHI) 763let rd = 0, imm22 = 0 in 764 def NOP : F2_1<0b100, (outs), (ins), "nop", []>; 765 766// Section B.11 - Logical Instructions, p. 106 767defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>; 768 769def ANDNrr : F3_1<2, 0b000101, 770 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 771 "andn $rs1, $rs2, $rd", 772 [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>; 773def ANDNri : F3_2<2, 0b000101, 774 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 775 "andn $rs1, $simm13, $rd", []>; 776 777defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>; 778 779def ORNrr : F3_1<2, 0b000110, 780 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 781 "orn $rs1, $rs2, $rd", 782 [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>; 783def ORNri : F3_2<2, 0b000110, 784 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 785 "orn $rs1, $simm13, $rd", []>; 786defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>; 787 788def XNORrr : F3_1<2, 0b000111, 789 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 790 "xnor $rs1, $rs2, $rd", 791 [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>; 792def XNORri : F3_2<2, 0b000111, 793 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 794 "xnor $rs1, $simm13, $rd", []>; 795 796def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2), 797 (ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; 798 799def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2), 800 (ORNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; 801 802let Defs = [ICC] in { 803 defm ANDCC : F3_12np<"andcc", 0b010001>; 804 defm ANDNCC : F3_12np<"andncc", 0b010101>; 805 defm ORCC : F3_12np<"orcc", 0b010010>; 806 defm ORNCC : F3_12np<"orncc", 0b010110>; 807 defm XORCC : F3_12np<"xorcc", 0b010011>; 808 defm XNORCC : F3_12np<"xnorcc", 0b010111>; 809} 810 811// Section B.12 - Shift Instructions, p. 107 812defm SLL : F3_S<"sll", 0b100101, 0, shl, i32, shift_imm5, IntRegs>; 813defm SRL : F3_S<"srl", 0b100110, 0, srl, i32, shift_imm5, IntRegs>; 814defm SRA : F3_S<"sra", 0b100111, 0, sra, i32, shift_imm5, IntRegs>; 815 816// Section B.13 - Add Instructions, p. 108 817defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>; 818 819let Defs = [ICC] in 820 defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>; 821 822let Uses = [ICC] in 823 defm ADDC : F3_12np<"addx", 0b001000>; 824 825let Uses = [ICC], Defs = [ICC] in 826 defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>; 827 828// Section B.15 - Subtract Instructions, p. 110 829defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>; 830let Uses = [ICC], Defs = [ICC] in 831 defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>; 832 833let Defs = [ICC], hasPostISelHook = true in 834 defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>; 835 836let Uses = [ICC] in 837 defm SUBC : F3_12np <"subx", 0b001100>; 838 839def : Pat<(SPcmpicc i32:$lhs, i32:$rhs), (SUBCCrr $lhs, $rhs)>; 840def : Pat<(SPcmpicc i32:$lhs, (i32 simm13:$rhs)), (SUBCCri $lhs, imm:$rhs)>; 841 842// Section B.18 - Multiply Instructions, p. 113 843let Defs = [Y] in { 844 defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>; 845 defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>; 846} 847 848let Defs = [Y, ICC] in { 849 defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>; 850 defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>; 851} 852 853let Defs = [Y, ICC], Uses = [Y, ICC] in { 854 defm MULSCC : F3_12np<"mulscc", 0b100100>; 855} 856 857// Section B.19 - Divide Instructions, p. 115 858let Uses = [Y], Defs = [Y] in { 859 defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>; 860 defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>; 861} 862 863let Uses = [Y], Defs = [Y, ICC] in { 864 defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>; 865 defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>; 866} 867 868// Section B.20 - SAVE and RESTORE, p. 117 869defm SAVE : F3_12np<"save" , 0b111100>; 870defm RESTORE : F3_12np<"restore", 0b111101>; 871 872// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 873// Section A.7 - Branch on Integer Condition Codes with Prediction (SPARC v9) 874 875let isBranch = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { 876// unconditional branch class. 877class BranchAlways<dag ins, string asmstr, list<dag> pattern> 878 : F2_2<0b010, 0, (outs), ins, asmstr, pattern>; 879 880// Same as BranchAlways but uses the new v9 encoding 881class BranchPredictAlways<dag ins, string asmstr, list<dag> pattern> 882 : F2_3<0b001, 0, 1, (outs), ins, asmstr, pattern>; 883} 884 885let cond = 8 in 886 def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>; 887 888let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 889 890// conditional branch class: 891class BranchSP<dag ins, string asmstr, list<dag> pattern> 892 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>; 893 894// conditional branch with annul class: 895class BranchSPA<dag ins, string asmstr, list<dag> pattern> 896 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>; 897 898// Conditional branch class on %icc|%xcc with predication: 899multiclass IPredBranch<string regstr, list<dag> CCPattern> { 900 def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), 901 !strconcat("b$cond ", !strconcat(regstr, ", $imm19")), 902 CCPattern, 903 IIC_iu_instr>; 904 def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), 905 !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")), 906 [], 907 IIC_iu_instr>; 908 def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), 909 !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")), 910 [], 911 IIC_iu_instr>; 912 def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), 913 !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")), 914 [], 915 IIC_iu_instr>; 916} 917 918} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 919 920 921// Indirect branch instructions. 922let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1, 923 isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in { 924 def BINDrr : F3_1<2, 0b111000, 925 (outs), (ins (MEMrr $rs1, $rs2):$addr), 926 "jmp $addr", 927 [(brind ADDRrr:$addr)]>; 928 def BINDri : F3_2<2, 0b111000, 929 (outs), (ins (MEMri $rs1, $simm13):$addr), 930 "jmp $addr", 931 [(brind ADDRri:$addr)]>; 932} 933 934let Uses = [ICC] in { 935 def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond), 936 "b$cond $imm22", 937 [(SPbricc bb:$imm22, imm:$cond)]>; 938 def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond), 939 "b$cond,a $imm22", []>; 940 941 let Predicates = [HasV9], cc = 0b00 in 942 defm BPI : IPredBranch<"%icc", [(SPbpicc bb:$imm19, imm:$cond)]>; 943} 944 945// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 946 947let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 948 949// floating-point conditional branch class: 950class FPBranchSP<dag ins, string asmstr, list<dag> pattern> 951 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; 952 953// floating-point conditional branch with annul class: 954class FPBranchSPA<dag ins, string asmstr, list<dag> pattern> 955 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; 956 957// Conditional branch class on %fcc0-%fcc3 with predication: 958multiclass FPredBranch { 959 def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, 960 FCCRegs:$cc), 961 "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>; 962 def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, 963 FCCRegs:$cc), 964 "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>; 965 def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, 966 FCCRegs:$cc), 967 "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>; 968 def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, 969 FCCRegs:$cc), 970 "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>; 971} 972} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 973 974let Uses = [FCC0] in { 975 def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond), 976 "fb$cond $imm22", 977 [(SPbrfcc bb:$imm22, imm:$cond)]>; 978 def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), 979 "fb$cond,a $imm22", []>; 980} 981 982// Variants of FBCOND that uses V9 opcode 983let Predicates = [HasV9], Uses = [FCC0], cc = 0, 984 isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 985 def FBCOND_V9 : F2_3<0b101, 0, 1, (outs), 986 (ins bprtarget:$imm19, CCOp:$cond), 987 "fb$cond %fcc0, $imm19", 988 [(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>; 989 def FBCONDA_V9 : F2_3<0b101, 1, 1, (outs), 990 (ins bprtarget:$imm19, CCOp:$cond), 991 "fb$cond,a %fcc0, $imm19", 992 [(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>; 993} 994 995let Predicates = [HasV9] in 996 defm BPF : FPredBranch; 997 998// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123 999let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 1000 1001// co-processor conditional branch class: 1002class CPBranchSP<dag ins, string asmstr, list<dag> pattern> 1003 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>; 1004 1005// co-processor conditional branch with annul class: 1006class CPBranchSPA<dag ins, string asmstr, list<dag> pattern> 1007 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>; 1008 1009} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 1010 1011def CBCOND : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond), 1012 "cb$cond $imm22", 1013 [(SPbrfcc bb:$imm22, imm:$cond)]>; 1014def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), 1015 "cb$cond,a $imm22", []>; 1016 1017// Section B.24 - Call and Link Instruction, p. 125 1018// This is the only Format 1 instruction 1019let Uses = [O6], 1020 hasDelaySlot = 1, isCall = 1 in { 1021 def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), 1022 "call $disp", 1023 [], 1024 IIC_jmp_or_call> { 1025 bits<30> disp; 1026 let op = 1; 1027 let Inst{29-0} = disp; 1028 } 1029 1030 // indirect calls: special cases of JMPL. 1031 let isCodeGenOnly = 1, rd = 15 in { 1032 def CALLrr : F3_1<2, 0b111000, 1033 (outs), (ins (MEMrr $rs1, $rs2):$addr, variable_ops), 1034 "call $addr", 1035 [(call ADDRrr:$addr)], 1036 IIC_jmp_or_call>; 1037 def CALLri : F3_2<2, 0b111000, 1038 (outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops), 1039 "call $addr", 1040 [(call ADDRri:$addr)], 1041 IIC_jmp_or_call>; 1042 } 1043} 1044 1045// Section B.25 - Jump and Link Instruction 1046 1047// JMPL Instruction. 1048let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { 1049 def JMPLrr: F3_1<2, 0b111000, 1050 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr), 1051 "jmpl $addr, $rd", 1052 [], 1053 IIC_jmp_or_call>; 1054 def JMPLri: F3_2<2, 0b111000, 1055 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 1056 "jmpl $addr, $rd", 1057 [], 1058 IIC_jmp_or_call>; 1059} 1060 1061// Section A.3 - Synthetic Instructions, p. 85 1062// special cases of JMPL: 1063let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, 1064 isCodeGenOnly = 1 in { 1065 let rd = 0, rs1 = 15 in 1066 def RETL: F3_2<2, 0b111000, 1067 (outs), (ins i32imm:$simm13), 1068 "jmp %o7+$simm13", 1069 [(retglue simm13:$simm13)], 1070 IIC_jmp_or_call>; 1071 1072 let rd = 0, rs1 = 31 in 1073 def RET: F3_2<2, 0b111000, 1074 (outs), (ins i32imm:$simm13), 1075 "jmp %i7+$simm13", 1076 [], 1077 IIC_jmp_or_call>; 1078} 1079 1080// Section B.26 - Return from Trap Instruction 1081let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, 1082 isBarrier = 1, rd = 0 in { 1083 def RETTrr : F3_1<2, 0b111001, 1084 (outs), (ins (MEMrr $rs1, $rs2):$addr), 1085 "rett $addr", 1086 [], 1087 IIC_jmp_or_call>; 1088 def RETTri : F3_2<2, 0b111001, 1089 (outs), (ins (MEMri $rs1, $simm13):$addr), 1090 "rett $addr", 1091 [], 1092 IIC_jmp_or_call>; 1093} 1094 1095 1096// Section B.27 - Trap on Integer Condition Codes Instruction 1097// conditional branch class: 1098let DecoderNamespace = "SparcV8", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in 1099{ 1100 def TRAPrr : TRAPSPrr<0b111010, 1101 (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), 1102 "t$cond $rs1 + $rs2", 1103 []>; 1104 def TRAPri : TRAPSPri<0b111010, 1105 (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), 1106 "t$cond $rs1 + $imm", 1107 []>; 1108} 1109 1110multiclass TRAP<string regStr> { 1111 def rr : TRAPSPrr<0b111010, 1112 (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), 1113 !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), 1114 []>; 1115 def ri : TRAPSPri<0b111010, 1116 (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), 1117 !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), 1118 []>; 1119} 1120 1121let DecoderNamespace = "SparcV9", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in 1122 defm TICC : TRAP<"%icc">; 1123 1124 1125let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in 1126 def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; 1127 1128let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in 1129 def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>; 1130 1131// Section B.28 - Read State Register Instructions 1132let rs2 = 0 in 1133 def RDASR : F3_1<2, 0b101000, 1134 (outs IntRegs:$rd), (ins ASRRegs:$rs1), 1135 "rd $rs1, $rd", []>; 1136 1137// PSR, WIM, and TBR don't exist on the SparcV9, only the V8. 1138let Predicates = [HasNoV9] in { 1139 let rs2 = 0, rs1 = 0, Uses=[PSR] in 1140 def RDPSR : F3_1<2, 0b101001, 1141 (outs IntRegs:$rd), (ins), 1142 "rd %psr, $rd", []>; 1143 1144 let rs2 = 0, rs1 = 0, Uses=[WIM] in 1145 def RDWIM : F3_1<2, 0b101010, 1146 (outs IntRegs:$rd), (ins), 1147 "rd %wim, $rd", []>; 1148 1149 let rs2 = 0, rs1 = 0, Uses=[TBR] in 1150 def RDTBR : F3_1<2, 0b101011, 1151 (outs IntRegs:$rd), (ins), 1152 "rd %tbr, $rd", []>; 1153} 1154 1155// Section B.29 - Write State Register Instructions 1156def WRASRrr : F3_1<2, 0b110000, 1157 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 1158 "wr $rs1, $rs2, $rd", []>; 1159def WRASRri : F3_2<2, 0b110000, 1160 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 1161 "wr $rs1, $simm13, $rd", []>; 1162 1163// PSR, WIM, and TBR don't exist on the SparcV9, only the V8. 1164let Predicates = [HasNoV9] in { 1165 let Defs = [PSR], rd=0 in { 1166 def WRPSRrr : F3_1<2, 0b110001, 1167 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1168 "wr $rs1, $rs2, %psr", []>; 1169 def WRPSRri : F3_2<2, 0b110001, 1170 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1171 "wr $rs1, $simm13, %psr", []>; 1172 } 1173 1174 let Defs = [WIM], rd=0 in { 1175 def WRWIMrr : F3_1<2, 0b110010, 1176 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1177 "wr $rs1, $rs2, %wim", []>; 1178 def WRWIMri : F3_2<2, 0b110010, 1179 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1180 "wr $rs1, $simm13, %wim", []>; 1181 } 1182 1183 let Defs = [TBR], rd=0 in { 1184 def WRTBRrr : F3_1<2, 0b110011, 1185 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1186 "wr $rs1, $rs2, %tbr", []>; 1187 def WRTBRri : F3_2<2, 0b110011, 1188 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1189 "wr $rs1, $simm13, %tbr", []>; 1190 } 1191} 1192 1193// Section B.30 - STBAR Instruction 1194let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in 1195 def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; 1196 1197 1198// Section B.31 - Unimplemented Instruction 1199let rd = 0 in 1200 def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), 1201 "unimp $imm22", []>; 1202 1203// Section B.32 - Flush Instruction Memory 1204let rd = 0 in { 1205 def FLUSHrr : F3_1<2, 0b111011, (outs), (ins (MEMrr $rs1, $rs2):$addr), 1206 "flush $addr", []>; 1207 def FLUSHri : F3_2<2, 0b111011, (outs), (ins (MEMri $rs1, $simm13):$addr), 1208 "flush $addr", []>; 1209 1210 // The no-arg FLUSH is only here for the benefit of the InstAlias 1211 // "flush", which cannot seem to use FLUSHrr, due to the inability 1212 // to construct a MEMrr with fixed G0 registers. 1213 let rs1 = 0, rs2 = 0 in 1214 def FLUSH : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>; 1215} 1216 1217// Section B.33 - Floating-point Operate (FPop) Instructions 1218 1219// Convert Integer to Floating-point Instructions, p. 141 1220def FITOS : F3_3u<2, 0b110100, 0b011000100, 1221 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1222 "fitos $rs2, $rd", 1223 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))], 1224 IIC_fpu_fast_instr>; 1225def FITOD : F3_3u<2, 0b110100, 0b011001000, 1226 (outs DFPRegs:$rd), (ins FPRegs:$rs2), 1227 "fitod $rs2, $rd", 1228 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))], 1229 IIC_fpu_fast_instr>; 1230def FITOQ : F3_3u<2, 0b110100, 0b011001100, 1231 (outs QFPRegs:$rd), (ins FPRegs:$rs2), 1232 "fitoq $rs2, $rd", 1233 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>, 1234 Requires<[HasHardQuad]>; 1235 1236// Convert Floating-point to Integer Instructions, p. 142 1237def FSTOI : F3_3u<2, 0b110100, 0b011010001, 1238 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1239 "fstoi $rs2, $rd", 1240 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))], 1241 IIC_fpu_fast_instr>; 1242def FDTOI : F3_3u<2, 0b110100, 0b011010010, 1243 (outs FPRegs:$rd), (ins DFPRegs:$rs2), 1244 "fdtoi $rs2, $rd", 1245 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))], 1246 IIC_fpu_fast_instr>; 1247def FQTOI : F3_3u<2, 0b110100, 0b011010011, 1248 (outs FPRegs:$rd), (ins QFPRegs:$rs2), 1249 "fqtoi $rs2, $rd", 1250 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>, 1251 Requires<[HasHardQuad]>; 1252 1253// Convert between Floating-point Formats Instructions, p. 143 1254def FSTOD : F3_3u<2, 0b110100, 0b011001001, 1255 (outs DFPRegs:$rd), (ins FPRegs:$rs2), 1256 "fstod $rs2, $rd", 1257 [(set f64:$rd, (fpextend f32:$rs2))], 1258 IIC_fpu_stod>; 1259def FSTOQ : F3_3u<2, 0b110100, 0b011001101, 1260 (outs QFPRegs:$rd), (ins FPRegs:$rs2), 1261 "fstoq $rs2, $rd", 1262 [(set f128:$rd, (fpextend f32:$rs2))]>, 1263 Requires<[HasHardQuad]>; 1264def FDTOS : F3_3u<2, 0b110100, 0b011000110, 1265 (outs FPRegs:$rd), (ins DFPRegs:$rs2), 1266 "fdtos $rs2, $rd", 1267 [(set f32:$rd, (fpround f64:$rs2))], 1268 IIC_fpu_fast_instr>; 1269def FDTOQ : F3_3u<2, 0b110100, 0b011001110, 1270 (outs QFPRegs:$rd), (ins DFPRegs:$rs2), 1271 "fdtoq $rs2, $rd", 1272 [(set f128:$rd, (fpextend f64:$rs2))]>, 1273 Requires<[HasHardQuad]>; 1274def FQTOS : F3_3u<2, 0b110100, 0b011000111, 1275 (outs FPRegs:$rd), (ins QFPRegs:$rs2), 1276 "fqtos $rs2, $rd", 1277 [(set f32:$rd, (fpround f128:$rs2))]>, 1278 Requires<[HasHardQuad]>; 1279def FQTOD : F3_3u<2, 0b110100, 0b011001011, 1280 (outs DFPRegs:$rd), (ins QFPRegs:$rs2), 1281 "fqtod $rs2, $rd", 1282 [(set f64:$rd, (fpround f128:$rs2))]>, 1283 Requires<[HasHardQuad]>; 1284 1285// Floating-point Move Instructions, p. 144 1286def FMOVS : F3_3u<2, 0b110100, 0b000000001, 1287 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1288 "fmovs $rs2, $rd", []>; 1289def FNEGS : F3_3u<2, 0b110100, 0b000000101, 1290 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1291 "fnegs $rs2, $rd", 1292 [(set f32:$rd, (fneg f32:$rs2))], 1293 IIC_fpu_negs>; 1294def FABSS : F3_3u<2, 0b110100, 0b000001001, 1295 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1296 "fabss $rs2, $rd", 1297 [(set f32:$rd, (fabs f32:$rs2))], 1298 IIC_fpu_abs>; 1299 1300 1301// Floating-point Square Root Instructions, p.145 1302// FSQRTS generates an erratum on LEON processors, so by disabling this instruction 1303// this will be promoted to use FSQRTD with doubles instead. 1304let Predicates = [HasNoFdivSqrtFix] in 1305def FSQRTS : F3_3u<2, 0b110100, 0b000101001, 1306 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1307 "fsqrts $rs2, $rd", 1308 [(set f32:$rd, (fsqrt f32:$rs2))], 1309 IIC_fpu_sqrts>; 1310def FSQRTD : F3_3u<2, 0b110100, 0b000101010, 1311 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1312 "fsqrtd $rs2, $rd", 1313 [(set f64:$rd, (fsqrt f64:$rs2))], 1314 IIC_fpu_sqrtd>; 1315def FSQRTQ : F3_3u<2, 0b110100, 0b000101011, 1316 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1317 "fsqrtq $rs2, $rd", 1318 [(set f128:$rd, (fsqrt f128:$rs2))]>, 1319 Requires<[HasHardQuad]>; 1320 1321 1322 1323// Floating-point Add and Subtract Instructions, p. 146 1324def FADDS : F3_3<2, 0b110100, 0b001000001, 1325 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1326 "fadds $rs1, $rs2, $rd", 1327 [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))], 1328 IIC_fpu_fast_instr>; 1329def FADDD : F3_3<2, 0b110100, 0b001000010, 1330 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1331 "faddd $rs1, $rs2, $rd", 1332 [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))], 1333 IIC_fpu_fast_instr>; 1334def FADDQ : F3_3<2, 0b110100, 0b001000011, 1335 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1336 "faddq $rs1, $rs2, $rd", 1337 [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>, 1338 Requires<[HasHardQuad]>; 1339 1340def FSUBS : F3_3<2, 0b110100, 0b001000101, 1341 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1342 "fsubs $rs1, $rs2, $rd", 1343 [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))], 1344 IIC_fpu_fast_instr>; 1345def FSUBD : F3_3<2, 0b110100, 0b001000110, 1346 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1347 "fsubd $rs1, $rs2, $rd", 1348 [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))], 1349 IIC_fpu_fast_instr>; 1350def FSUBQ : F3_3<2, 0b110100, 0b001000111, 1351 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1352 "fsubq $rs1, $rs2, $rd", 1353 [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>, 1354 Requires<[HasHardQuad]>; 1355 1356 1357// Floating-point Multiply and Divide Instructions, p. 147 1358def FMULS : F3_3<2, 0b110100, 0b001001001, 1359 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1360 "fmuls $rs1, $rs2, $rd", 1361 [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))], 1362 IIC_fpu_muls>, 1363 Requires<[HasFMULS]>; 1364def FMULD : F3_3<2, 0b110100, 0b001001010, 1365 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1366 "fmuld $rs1, $rs2, $rd", 1367 [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))], 1368 IIC_fpu_muld>; 1369def FMULQ : F3_3<2, 0b110100, 0b001001011, 1370 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1371 "fmulq $rs1, $rs2, $rd", 1372 [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>, 1373 Requires<[HasHardQuad]>; 1374 1375def FSMULD : F3_3<2, 0b110100, 0b001101001, 1376 (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1377 "fsmuld $rs1, $rs2, $rd", 1378 [(set f64:$rd, (fmul (fpextend f32:$rs1), 1379 (fpextend f32:$rs2)))], 1380 IIC_fpu_muld>, 1381 Requires<[HasFSMULD]>; 1382def FDMULQ : F3_3<2, 0b110100, 0b001101110, 1383 (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1384 "fdmulq $rs1, $rs2, $rd", 1385 [(set f128:$rd, (fmul (fpextend f64:$rs1), 1386 (fpextend f64:$rs2)))]>, 1387 Requires<[HasHardQuad]>; 1388 1389// FDIVS generates an erratum on LEON processors, so by disabling this instruction 1390// this will be promoted to use FDIVD with doubles instead. 1391def FDIVS : F3_3<2, 0b110100, 0b001001101, 1392 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1393 "fdivs $rs1, $rs2, $rd", 1394 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))], 1395 IIC_fpu_divs>; 1396def FDIVD : F3_3<2, 0b110100, 0b001001110, 1397 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1398 "fdivd $rs1, $rs2, $rd", 1399 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))], 1400 IIC_fpu_divd>; 1401def FDIVQ : F3_3<2, 0b110100, 0b001001111, 1402 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1403 "fdivq $rs1, $rs2, $rd", 1404 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>, 1405 Requires<[HasHardQuad]>; 1406 1407// Floating-point Compare Instructions, p. 148 1408// Note: the 2nd template arg is different for these guys. 1409// Note 2: the result of a FCMP is not available until the 2nd cycle 1410// after the instr is retired, but there is no interlock in Sparc V8. 1411// This behavior is modeled with a forced noop after the instruction in 1412// DelaySlotFiller. 1413 1414let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { 1415 def FCMPS : F3_3c<2, 0b110101, 0b001010001, 1416 (outs), (ins FPRegs:$rs1, FPRegs:$rs2), 1417 "fcmps $rs1, $rs2", 1418 [(SPcmpfcc f32:$rs1, f32:$rs2)], 1419 IIC_fpu_fast_instr>; 1420 def FCMPD : F3_3c<2, 0b110101, 0b001010010, 1421 (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1422 "fcmpd $rs1, $rs2", 1423 [(SPcmpfcc f64:$rs1, f64:$rs2)], 1424 IIC_fpu_fast_instr>; 1425 def FCMPQ : F3_3c<2, 0b110101, 0b001010011, 1426 (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1427 "fcmpq $rs1, $rs2", 1428 [(SPcmpfcc f128:$rs1, f128:$rs2)]>, 1429 Requires<[HasHardQuad]>; 1430} 1431 1432// A.13 Floating-Point Compare (SPARC v9) 1433// Note that these always write to %fcc0 instead of having its destination 1434// allocated automatically. 1435// This avoids complications with the scheduler sometimes wanting to spill 1436// the contents of an FCC, since SPARC v9 doesn't have facilities to spill 1437// an individual FCC. 1438 1439let Predicates = [HasV9], Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { 1440 def FCMPS_V9 : F3_3c<2, 0b110101, 0b001010001, 1441 (outs), (ins FPRegs:$rs1, FPRegs:$rs2), 1442 "fcmps %fcc0, $rs1, $rs2", 1443 [(SPcmpfccv9 f32:$rs1, f32:$rs2)], 1444 IIC_fpu_fast_instr>; 1445 def FCMPD_V9 : F3_3c<2, 0b110101, 0b001010010, 1446 (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1447 "fcmpd %fcc0, $rs1, $rs2", 1448 [(SPcmpfccv9 f64:$rs1, f64:$rs2)], 1449 IIC_fpu_fast_instr>; 1450 def FCMPQ_V9 : F3_3c<2, 0b110101, 0b001010011, 1451 (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1452 "fcmpq %fcc0, $rs1, $rs2", 1453 [(SPcmpfccv9 f128:$rs1, f128:$rs2)]>, 1454 Requires<[HasHardQuad]>; 1455} 1456 1457//===----------------------------------------------------------------------===// 1458// Instructions for Thread Local Storage(TLS). 1459//===----------------------------------------------------------------------===// 1460let isAsmParserOnly = 1 in { 1461def TLS_ADDrr : F3_1<2, 0b000000, 1462 (outs IntRegs:$rd), 1463 (ins IntRegs:$rs1, IntRegs:$rs2, TailRelocSymTLSAdd:$sym), 1464 "add $rs1, $rs2, $rd, $sym", 1465 [(set i32:$rd, 1466 (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>; 1467 1468let mayLoad = 1 in { 1469 def TLS_LDrr : F3_1<3, 0b000000, 1470 (outs IntRegs:$rd), 1471 (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymTLSLoad:$sym), 1472 "ld [$addr], $rd, $sym", 1473 [(set i32:$rd, 1474 (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; 1475} 1476 1477let Uses = [O6], isCall = 1, hasDelaySlot = 1 in 1478 def TLS_CALL : InstSP<(outs), 1479 (ins calltarget:$disp, TailRelocSymTLSCall:$sym, 1480 variable_ops), 1481 "call $disp, $sym", 1482 [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)], 1483 IIC_jmp_or_call> { 1484 bits<30> disp; 1485 let op = 1; 1486 let Inst{29-0} = disp; 1487} 1488} 1489 1490//===----------------------------------------------------------------------===// 1491// Instructions for tail calls. 1492//===----------------------------------------------------------------------===// 1493let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, 1494 isTerminator = 1, isBarrier = 1 in { 1495 def TAIL_CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), 1496 "call $disp", 1497 [(tailcall tglobaladdr:$disp)]> { 1498 bits<30> disp; 1499 let op = 1; 1500 let Inst{29-0} = disp; 1501 } 1502} 1503 1504def : Pat<(tailcall (iPTR texternalsym:$dst)), 1505 (TAIL_CALL texternalsym:$dst)>; 1506 1507let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, isTerminator = 1, 1508 isBarrier = 1, rd = 0 in { 1509 def TAIL_CALLri : F3_2<2, 0b111000, 1510 (outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops), 1511 "jmp $addr", 1512 [(tailcall ADDRri:$addr)]>; 1513} 1514 1515//===----------------------------------------------------------------------===// 1516// V9 Instructions 1517//===----------------------------------------------------------------------===// 1518 1519// V9 Conditional Moves. 1520let Predicates = [HasV9], Constraints = "$f = $rd" in { 1521 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. 1522 let Uses = [ICC], intcc = 1, cc = 0b00 in { 1523 def MOVICCrr 1524 : F4_1<0b101100, (outs IntRegs:$rd), 1525 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1526 "mov$cond %icc, $rs2, $rd", 1527 [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>; 1528 1529 def MOVICCri 1530 : F4_2<0b101100, (outs IntRegs:$rd), 1531 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1532 "mov$cond %icc, $simm11, $rd", 1533 [(set i32:$rd, 1534 (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>; 1535 } 1536 1537 let Uses = [FCC0], intcc = 0, cc = 0b00 in { 1538 def MOVFCCrr 1539 : F4_1<0b101100, (outs IntRegs:$rd), 1540 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1541 "mov$cond %fcc0, $rs2, $rd", 1542 [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>; 1543 def MOVFCCri 1544 : F4_2<0b101100, (outs IntRegs:$rd), 1545 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1546 "mov$cond %fcc0, $simm11, $rd", 1547 [(set i32:$rd, 1548 (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>; 1549 } 1550 1551 let Uses = [ICC], intcc = 1, opf_cc = 0b00 in { 1552 def FMOVS_ICC 1553 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1554 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1555 "fmovs$cond %icc, $rs2, $rd", 1556 [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>; 1557 def FMOVD_ICC 1558 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1559 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1560 "fmovd$cond %icc, $rs2, $rd", 1561 [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>; 1562 let Predicates = [HasV9, HasHardQuad] in 1563 def FMOVQ_ICC 1564 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1565 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1566 "fmovq$cond %icc, $rs2, $rd", 1567 [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>; 1568 } 1569 1570 let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in { 1571 def FMOVS_FCC 1572 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1573 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1574 "fmovs$cond %fcc0, $rs2, $rd", 1575 [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>; 1576 def FMOVD_FCC 1577 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1578 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1579 "fmovd$cond %fcc0, $rs2, $rd", 1580 [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>; 1581 let Predicates = [HasV9, HasHardQuad] in 1582 def FMOVQ_FCC 1583 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1584 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1585 "fmovq$cond %fcc0, $rs2, $rd", 1586 [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>; 1587 } 1588 1589} 1590 1591// Floating-Point Move Instructions, p. 164 of the V9 manual. 1592let Predicates = [HasV9] in { 1593 def FMOVD : F3_3u<2, 0b110100, 0b000000010, 1594 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1595 "fmovd $rs2, $rd", []>; 1596 let Predicates = [HasV9, HasHardQuad] in 1597 def FMOVQ : F3_3u<2, 0b110100, 0b000000011, 1598 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1599 "fmovq $rs2, $rd", []>; 1600 def FNEGD : F3_3u<2, 0b110100, 0b000000110, 1601 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1602 "fnegd $rs2, $rd", 1603 [(set f64:$rd, (fneg f64:$rs2))]>; 1604 let Predicates = [HasV9, HasHardQuad] in 1605 def FNEGQ : F3_3u<2, 0b110100, 0b000000111, 1606 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1607 "fnegq $rs2, $rd", 1608 [(set f128:$rd, (fneg f128:$rs2))]>; 1609 def FABSD : F3_3u<2, 0b110100, 0b000001010, 1610 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1611 "fabsd $rs2, $rd", 1612 [(set f64:$rd, (fabs f64:$rs2))]>; 1613 let Predicates = [HasV9, HasHardQuad] in 1614 def FABSQ : F3_3u<2, 0b110100, 0b000001011, 1615 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1616 "fabsq $rs2, $rd", 1617 [(set f128:$rd, (fabs f128:$rs2))]>; 1618} 1619 1620// Floating-point compare instruction with %fcc0-%fcc3. 1621def V9FCMPS : F3_3c<2, 0b110101, 0b001010001, 1622 (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1623 "fcmps $rd, $rs1, $rs2", []>; 1624def V9FCMPD : F3_3c<2, 0b110101, 0b001010010, 1625 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1626 "fcmpd $rd, $rs1, $rs2", []>; 1627def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011, 1628 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1629 "fcmpq $rd, $rs1, $rs2", []>, 1630 Requires<[HasHardQuad]>; 1631 1632let hasSideEffects = 1 in { 1633 def V9FCMPES : F3_3c<2, 0b110101, 0b001010101, 1634 (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1635 "fcmpes $rd, $rs1, $rs2", []>; 1636 def V9FCMPED : F3_3c<2, 0b110101, 0b001010110, 1637 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1638 "fcmped $rd, $rs1, $rs2", []>; 1639 def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111, 1640 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1641 "fcmpeq $rd, $rs1, $rs2", []>, 1642 Requires<[HasHardQuad]>; 1643} 1644 1645// Floating point conditional move instrucitons with %fcc0-%fcc3. 1646let Predicates = [HasV9] in { 1647 let Constraints = "$f = $rd", intcc = 0 in { 1648 def V9MOVFCCrr 1649 : F4_1<0b101100, (outs IntRegs:$rd), 1650 (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1651 "mov$cond $cc, $rs2, $rd", []>; 1652 def V9MOVFCCri 1653 : F4_2<0b101100, (outs IntRegs:$rd), 1654 (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1655 "mov$cond $cc, $simm11, $rd", []>; 1656 def V9FMOVS_FCC 1657 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1658 (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1659 "fmovs$cond $opf_cc, $rs2, $rd", []>; 1660 def V9FMOVD_FCC 1661 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1662 (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1663 "fmovd$cond $opf_cc, $rs2, $rd", []>; 1664 let Predicates = [HasV9, HasHardQuad] in 1665 def V9FMOVQ_FCC 1666 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1667 (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1668 "fmovq$cond $opf_cc, $rs2, $rd", []>; 1669 } // Constraints = "$f = $rd", ... 1670} // let Predicates = [hasV9] 1671 1672 1673// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear 1674// the top 32-bits before using it. To do this clearing, we use a SRLri X,0. 1675let rs1 = 0 in 1676 def POPCrr : F3_1<2, 0b101110, 1677 (outs IntRegs:$rd), (ins IntRegs:$rs2), 1678 "popc $rs2, $rd", []>, Requires<[HasV9]>; 1679def : Pat<(i32 (ctpop i32:$src)), 1680 (POPCrr (SRLri $src, 0))>; 1681 1682let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in 1683 def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13), 1684 "membar $simm13", []>; 1685 1686let Predicates = [HasV9], rd = 15, rs1 = 0b00000 in 1687 def SIR: F3_2<2, 0b110000, (outs), 1688 (ins simm13Op:$simm13), 1689 "sir $simm13", []>; 1690 1691// CASA supported on all V9, some LEON3 and all LEON4 processors. 1692let Predicates = [HasCASA], Constraints = "$swap = $rd" in 1693 def CASArr: F3_1_asi<3, 0b111100, 1694 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1695 IntRegs:$swap, ASITag:$asi), 1696 "casa [$rs1] $asi, $rs2, $rd", []>; 1697 1698// On the other hand, CASA that takes its ASI from a register 1699// is only supported on V9 processors. 1700let Predicates = [HasV9], Uses = [ASR3], Constraints = "$swap = $rd" in 1701 def CASAri: F3_1_cas_asi<3, 0b111100, 1702 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1703 IntRegs:$swap), 1704 "casa [$rs1] %asi, $rs2, $rd", []>; 1705 1706// TODO: Add DAG sequence to lower these instructions. Currently, only provided 1707// as inline assembler-supported instructions. 1708let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in { 1709 def SMACrr : F3_1<2, 0b111111, 1710 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), 1711 "smac $rs1, $rs2, $rd", 1712 [], IIC_smac_umac>; 1713 1714 def SMACri : F3_2<2, 0b111111, 1715 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), 1716 "smac $rs1, $simm13, $rd", 1717 [], IIC_smac_umac>; 1718 1719 def UMACrr : F3_1<2, 0b111110, 1720 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), 1721 "umac $rs1, $rs2, $rd", 1722 [], IIC_smac_umac>; 1723 1724 def UMACri : F3_2<2, 0b111110, 1725 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), 1726 "umac $rs1, $simm13, $rd", 1727 [], IIC_smac_umac>; 1728} 1729 1730// The partial write WRPSR instruction has a non-zero destination 1731// register value to separate it from the standard instruction. 1732let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in { 1733 def PWRPSRrr : F3_1<2, 0b110001, 1734 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1735 "pwr $rs1, $rs2, %psr", []>; 1736 def PWRPSRri : F3_2<2, 0b110001, 1737 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1738 "pwr $rs1, $simm13, %psr", []>; 1739} 1740 1741let Defs = [ICC] in { 1742defm TADDCC : F3_12np<"taddcc", 0b100000>; 1743defm TSUBCC : F3_12np<"tsubcc", 0b100001>; 1744 1745let hasSideEffects = 1 in { 1746 defm TADDCCTV : F3_12np<"taddcctv", 0b100010>; 1747 defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>; 1748} 1749} 1750 1751// Section A.11 - DONE and RETRY 1752// Section A.47 - SAVED and RESTORED 1753let Predicates = [HasV9], rs1 = 0, rs2 = 0 in { 1754 let rd = 0 in 1755 def DONE : F3_1<2, 0b111110, (outs), (ins), "done", []>; 1756 1757 let rd = 1 in 1758 def RETRY : F3_1<2, 0b111110, (outs), (ins), "retry", []>; 1759 1760 let rd = 0 in 1761 def SAVED : F3_1<2, 0b110001, (outs), (ins), "saved", []>; 1762 1763 let rd = 1 in 1764 def RESTORED : F3_1<2, 0b110001, (outs), (ins), "restored", []>; 1765} 1766 1767// Section A.42 - Prefetch Data 1768let Predicates = [HasV9] in { 1769 def PREFETCHr : F3_1<3, 0b101101, 1770 (outs), (ins (MEMrr $rs1, $rs2):$addr, shift_imm5:$rd), 1771 "prefetch [$addr], $rd", []>; 1772 def PREFETCHi : F3_2<3, 0b101101, 1773 (outs), (ins (MEMri $rs1, $simm13):$addr, shift_imm5:$rd), 1774 "prefetch [$addr], $rd", []>; 1775} 1776 1777 1778 1779// Section A.43 - Read Privileged Register Instructions 1780let Predicates = [HasV9] in { 1781let rs2 = 0 in 1782 def RDPR : F3_1<2, 0b101010, 1783 (outs IntRegs:$rd), (ins PRRegs:$rs1), 1784 "rdpr $rs1, $rd", []>; 1785 1786// Special case %fq as the register is also used in V8 1787// (albeit with different instructions and encoding). 1788// This allows us to reuse the register definition and 1789// the "%fq" designation while giving it a different encoding. 1790let Uses = [FQ], rs1 = 15, rs2 = 0 in 1791 def RDFQ : F3_1<2, 0b101010, 1792 (outs IntRegs:$rd), (ins), 1793 "rdpr %fq, $rd", []>; 1794} 1795 1796// Section A.62 - Write Privileged Register Instructions 1797let Predicates = [HasV9] in { 1798 def WRPRrr : F3_1<2, 0b110010, 1799 (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 1800 "wrpr $rs1, $rs2, $rd", []>; 1801 def WRPRri : F3_2<2, 0b110010, 1802 (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 1803 "wrpr $rs1, $simm13, $rd", []>; 1804} 1805 1806//===----------------------------------------------------------------------===// 1807// Non-Instruction Patterns 1808//===----------------------------------------------------------------------===// 1809 1810// Zero immediate. 1811def : Pat<(i32 0), (COPY (i32 G0))>; 1812// Small immediates. 1813def : Pat<(i32 simm13:$val), 1814 (ORri (i32 G0), imm:$val)>; 1815// Arbitrary immediates. 1816def : Pat<(i32 imm:$val), 1817 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; 1818 1819// Frame index. 1820def to_tframeindex : SDNodeXForm<frameindex, [{ 1821 return CurDAG->getTargetFrameIndex(N->getIndex(), N->getValueType(0)); 1822}]>; 1823def : Pat<(i32 (frameindex:$ptr)), (ADDri (i32 (to_tframeindex $ptr)), (i32 0))>; 1824def : Pat<(i64 (frameindex:$ptr)), (ADDri (i64 (to_tframeindex $ptr)), (i64 0))>; 1825 1826// Global addresses, constant pool entries 1827let Predicates = [Is32Bit] in { 1828 1829def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; 1830def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; 1831def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; 1832def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; 1833 1834// GlobalTLS addresses 1835def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; 1836def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>; 1837def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), 1838 (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; 1839def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), 1840 (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; 1841 1842// Blockaddress 1843def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; 1844def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; 1845 1846// Add reg, lo. This is used when taking the addr of a global/constpool entry. 1847def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; 1848def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; 1849def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), 1850 (ADDri $r, tblockaddress:$in)>; 1851} 1852 1853// Calls: 1854def : Pat<(call tglobaladdr:$dst), 1855 (CALL tglobaladdr:$dst)>; 1856def : Pat<(call texternalsym:$dst), 1857 (CALL texternalsym:$dst)>; 1858 1859// Map integer extload's to zextloads. 1860def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1861def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1862def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1863def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1864def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; 1865def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; 1866 1867// zextload bool -> zextload byte 1868def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1869def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1870 1871// store 0, addr -> store %g0, addr 1872def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; 1873def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; 1874 1875// store bar for all atomic_fence in V8. 1876let Predicates = [HasNoV9] in 1877 def : Pat<(atomic_fence timm, timm), (STBAR)>; 1878 1879let Predicates = [HasV9] in 1880 def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>; 1881 1882// atomic_load addr -> load addr 1883def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1884def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1885def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; 1886def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>; 1887def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>; 1888def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>; 1889 1890// atomic_store val, addr -> store val, addr 1891def : Pat<(atomic_store_8 i32:$val, ADDRrr:$dst), (STBrr ADDRrr:$dst, $val)>; 1892def : Pat<(atomic_store_8 i32:$val, ADDRri:$dst), (STBri ADDRri:$dst, $val)>; 1893def : Pat<(atomic_store_16 i32:$val, ADDRrr:$dst), (STHrr ADDRrr:$dst, $val)>; 1894def : Pat<(atomic_store_16 i32:$val, ADDRri:$dst), (STHri ADDRri:$dst, $val)>; 1895def : Pat<(atomic_store_32 i32:$val, ADDRrr:$dst), (STrr ADDRrr:$dst, $val)>; 1896def : Pat<(atomic_store_32 i32:$val, ADDRri:$dst), (STri ADDRri:$dst, $val)>; 1897 1898let Predicates = [HasV9] in 1899def : Pat<(atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap), 1900 (CASArr $rs1, $rs2, $swap, 0x80)>; 1901 1902// Same pattern as CASArr above, but with a different ASI. 1903let Predicates = [HasLeonCASA] in 1904def : Pat<(atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap), 1905 (CASArr $rs1, $rs2, $swap, 0x0A)>; 1906 1907// A register pair with zero upper half. 1908// The upper part is done with ORrr instead of `COPY G0` 1909// or a normal register copy, since `COPY G0`s in that place 1910// will be converted into `COPY G0_G1` later on, which is not 1911// what we want in this case. 1912def : Pat<(build_vector (i32 0), (i32 IntRegs:$a2)), 1913 (INSERT_SUBREG (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), 1914 (ORrr (i32 G0), (i32 G0)), sub_even), 1915 (i32 IntRegs:$a2), sub_odd)>; 1916 1917// extract_vector 1918def : Pat<(extractelt (v2i32 IntPair:$Rn), 0), 1919 (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>; 1920def : Pat<(extractelt (v2i32 IntPair:$Rn), 1), 1921 (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>; 1922 1923// build_vector 1924def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)), 1925 (INSERT_SUBREG 1926 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even), 1927 (i32 IntRegs:$a2), sub_odd)>; 1928 1929 1930include "SparcInstr64Bit.td" 1931include "SparcInstrVIS.td" 1932include "SparcInstrAliases.td" 1933