xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Sparc/SparcInstrInfo.td (revision 8ddb146abcdf061be9f2c0db7e391697dafad85c)
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the Sparc instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// Instruction format superclass
15//===----------------------------------------------------------------------===//
16
17include "SparcInstrFormats.td"
18
19//===----------------------------------------------------------------------===//
20// Feature predicates.
21//===----------------------------------------------------------------------===//
22
23// True when generating 32-bit code.
24def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
25
26// True when generating 64-bit code. This also implies HasV9.
27def Is64Bit : Predicate<"Subtarget->is64Bit()">;
28
29def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">,
30              AssemblerPredicate<(all_of FeatureSoftMulDiv)>;
31
32// HasV9 - This predicate is true when the target processor supports V9
33// instructions.  Note that the machine may be running in 32-bit mode.
34def HasV9   : Predicate<"Subtarget->isV9()">,
35              AssemblerPredicate<(all_of FeatureV9)>;
36
37// HasNoV9 - This predicate is true when the target doesn't have V9
38// instructions.  Use of this is just a hack for the isel not having proper
39// costs for V8 instructions that are more expensive than their V9 ones.
40def HasNoV9 : Predicate<"!Subtarget->isV9()">;
41
42// HasVIS - This is true when the target processor has VIS extensions.
43def HasVIS : Predicate<"Subtarget->isVIS()">,
44             AssemblerPredicate<(all_of FeatureVIS)>;
45def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
46             AssemblerPredicate<(all_of FeatureVIS2)>;
47def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
48             AssemblerPredicate<(all_of FeatureVIS3)>;
49
50// HasHardQuad - This is true when the target processor supports quad floating
51// point instructions.
52def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
53
54// HasLeonCASA - This is true when the target processor supports the CASA
55// instruction
56def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;
57
58// HasPWRPSR - This is true when the target processor supports partial
59// writes to the PSR register that only affects the ET field.
60def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">,
61                AssemblerPredicate<(all_of FeaturePWRPSR)>;
62
63// HasUMAC_SMAC - This is true when the target processor supports the
64// UMAC and SMAC instructions
65def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;
66
67def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
68def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">;
69def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">;
70
71// UseDeprecatedInsts - This predicate is true when the target processor is a
72// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
73// to use when appropriate.  In either of these cases, the instruction selector
74// will pick deprecated instructions.
75def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
76
77//===----------------------------------------------------------------------===//
78// Instruction Pattern Stuff
79//===----------------------------------------------------------------------===//
80
81def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
82
83def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
84
85def LO10 : SDNodeXForm<imm, [{
86  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
87                                   MVT::i32);
88}]>;
89
90def HI22 : SDNodeXForm<imm, [{
91  // Transformation function: shift the immediate value down into the low bits.
92  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
93                                   MVT::i32);
94}]>;
95
96// Return the complement of a HI22 immediate value.
97def HI22_not : SDNodeXForm<imm, [{
98  return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N),
99                                   MVT::i32);
100}]>;
101
102def SETHIimm : PatLeaf<(imm), [{
103  return isShiftedUInt<22, 10>(N->getZExtValue());
104}], HI22>;
105
106// The N->hasOneUse() prevents the immediate from being instantiated in both
107// normal and complement form.
108def SETHIimm_not : PatLeaf<(i32 imm), [{
109  return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue());
110}], HI22_not>;
111
112// Addressing modes.
113def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
114def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
115
116// Constrained operands for the shift operations.
117class ShiftAmtImmAsmOperand<int Bits> : AsmOperandClass {
118    let Name = "ShiftAmtImm" # Bits;
119    let ParserMethod = "parseShiftAmtImm<" # Bits # ">";
120}
121def shift_imm5 : Operand<i32> {
122  let ParserMatchClass = ShiftAmtImmAsmOperand<5>;
123}
124def shift_imm6 : Operand<i32> {
125  let ParserMatchClass = ShiftAmtImmAsmOperand<6>;
126}
127
128// Address operands
129def SparcMEMrrAsmOperand : AsmOperandClass {
130  let Name = "MEMrr";
131  let ParserMethod = "parseMEMOperand";
132}
133
134def SparcMEMriAsmOperand : AsmOperandClass {
135  let Name = "MEMri";
136  let ParserMethod = "parseMEMOperand";
137}
138
139def MEMrr : Operand<iPTR> {
140  let PrintMethod = "printMemOperand";
141  let MIOperandInfo = (ops ptr_rc, ptr_rc);
142  let ParserMatchClass = SparcMEMrrAsmOperand;
143}
144def MEMri : Operand<iPTR> {
145  let PrintMethod = "printMemOperand";
146  let MIOperandInfo = (ops ptr_rc, i32imm);
147  let ParserMatchClass = SparcMEMriAsmOperand;
148}
149
150def TLSSym : Operand<iPTR>;
151
152def SparcMembarTagAsmOperand : AsmOperandClass {
153  let Name = "MembarTag";
154  let ParserMethod = "parseMembarTag";
155}
156
157def MembarTag : Operand<i32> {
158  let PrintMethod = "printMembarTag";
159  let ParserMatchClass = SparcMembarTagAsmOperand;
160}
161
162// Branch targets have OtherVT type.
163def brtarget : Operand<OtherVT> {
164  let EncoderMethod = "getBranchTargetOpValue";
165}
166
167def bprtarget : Operand<OtherVT> {
168  let EncoderMethod = "getBranchPredTargetOpValue";
169}
170
171def bprtarget16 : Operand<OtherVT> {
172  let EncoderMethod = "getBranchOnRegTargetOpValue";
173}
174
175def SparcCallTargetAsmOperand : AsmOperandClass {
176  let Name = "CallTarget";
177  let ParserMethod = "parseCallTarget";
178}
179
180def calltarget : Operand<i32> {
181  let EncoderMethod = "getCallTargetOpValue";
182  let DecoderMethod = "DecodeCall";
183  let ParserMatchClass = SparcCallTargetAsmOperand;
184}
185
186def simm13Op : Operand<i32> {
187  let DecoderMethod = "DecodeSIMM13";
188  let EncoderMethod = "getSImm13OpValue";
189}
190
191// Operand for printing out a condition code.
192let PrintMethod = "printCCOperand" in
193  def CCOp : Operand<i32>;
194
195def SDTSPcmpicc :
196SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
197def SDTSPcmpfcc :
198SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
199def SDTSPbrcc :
200SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
201def SDTSPselectcc :
202SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
203def SDTSPFTOI :
204SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
205def SDTSPITOF :
206SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
207def SDTSPFTOX :
208SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
209def SDTSPXTOF :
210SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
211
212def SDTSPtlsadd :
213SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
214def SDTSPtlsld :
215SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
216
217def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
218def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
219def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
220def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
221def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
222
223def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
224def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
225
226def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
227def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
228def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
229def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
230
231def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
232def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
233def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
234
235//  These are target-independent nodes, but have target-specific formats.
236def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
237                                          SDTCisVT<1, i32> ]>;
238def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
239                                        SDTCisVT<1, i32> ]>;
240
241def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
242                           [SDNPHasChain, SDNPOutGlue]>;
243def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
244                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
245
246def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
247def call          : SDNode<"SPISD::CALL", SDT_SPCall,
248                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
249                            SDNPVariadic]>;
250
251def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
252def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
253                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
254
255def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
256                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
257
258def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
259def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
260def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
261                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
262                             SDNPVariadic]>;
263
264def getPCX        : Operand<iPTR> {
265  let PrintMethod = "printGetPCX";
266}
267
268//===----------------------------------------------------------------------===//
269// SPARC Flag Conditions
270//===----------------------------------------------------------------------===//
271
272// Note that these values must be kept in sync with the CCOp::CondCode enum
273// values.
274class ICC_VAL<int N> : PatLeaf<(i32 N)>;
275def ICC_NE  : ICC_VAL< 9>;  // Not Equal
276def ICC_E   : ICC_VAL< 1>;  // Equal
277def ICC_G   : ICC_VAL<10>;  // Greater
278def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
279def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
280def ICC_L   : ICC_VAL< 3>;  // Less
281def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
282def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
283def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
284def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
285def ICC_POS : ICC_VAL<14>;  // Positive
286def ICC_NEG : ICC_VAL< 6>;  // Negative
287def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
288def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
289
290class FCC_VAL<int N> : PatLeaf<(i32 N)>;
291def FCC_U   : FCC_VAL<23>;  // Unordered
292def FCC_G   : FCC_VAL<22>;  // Greater
293def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
294def FCC_L   : FCC_VAL<20>;  // Less
295def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
296def FCC_LG  : FCC_VAL<18>;  // Less or Greater
297def FCC_NE  : FCC_VAL<17>;  // Not Equal
298def FCC_E   : FCC_VAL<25>;  // Equal
299def FCC_UE  : FCC_VAL<26>;  // Unordered or Equal
300def FCC_GE  : FCC_VAL<27>;  // Greater or Equal
301def FCC_UGE : FCC_VAL<28>;  // Unordered or Greater or Equal
302def FCC_LE  : FCC_VAL<29>;  // Less or Equal
303def FCC_ULE : FCC_VAL<30>;  // Unordered or Less or Equal
304def FCC_O   : FCC_VAL<31>;  // Ordered
305
306class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
307def CPCC_3   : CPCC_VAL<39>;  // 3
308def CPCC_2   : CPCC_VAL<38>;  // 2
309def CPCC_23  : CPCC_VAL<37>;  // 2 or 3
310def CPCC_1   : CPCC_VAL<36>;  // 1
311def CPCC_13  : CPCC_VAL<35>;  // 1 or 3
312def CPCC_12  : CPCC_VAL<34>;  // 1 or 2
313def CPCC_123 : CPCC_VAL<33>;  // 1 or 2 or 3
314def CPCC_0   : CPCC_VAL<41>;  // 0
315def CPCC_03  : CPCC_VAL<42>;  // 0 or 3
316def CPCC_02  : CPCC_VAL<43>;  // 0 or 2
317def CPCC_023 : CPCC_VAL<44>;  // 0 or 2 or 3
318def CPCC_01  : CPCC_VAL<45>;  // 0 or 1
319def CPCC_013 : CPCC_VAL<46>;  // 0 or 1 or 3
320def CPCC_012 : CPCC_VAL<47>;  // 0 or 1 or 2
321
322//===----------------------------------------------------------------------===//
323// Instruction Class Templates
324//===----------------------------------------------------------------------===//
325
326/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
327multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
328                 RegisterClass RC, ValueType Ty, Operand immOp,
329                 InstrItinClass itin = IIC_iu_instr> {
330  def rr  : F3_1<2, Op3Val,
331                 (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
332                 !strconcat(OpcStr, " $rs1, $rs2, $rd"),
333                 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
334                 itin>;
335  def ri  : F3_2<2, Op3Val,
336                 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
337                 !strconcat(OpcStr, " $rs1, $simm13, $rd"),
338                 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
339                 itin>;
340}
341
342/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
343/// pattern.
344multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
345  def rr  : F3_1<2, Op3Val,
346                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
347                 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
348                 itin>;
349  def ri  : F3_2<2, Op3Val,
350                 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
351                 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
352                 itin>;
353}
354
355// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
356multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
357           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
358  def rr  : F3_1<3, Op3Val,
359                 (outs RC:$dst), (ins MEMrr:$addr),
360                 !strconcat(OpcStr, " [$addr], $dst"),
361                 [(set Ty:$dst, (OpNode ADDRrr:$addr))],
362                 itin>;
363  def ri  : F3_2<3, Op3Val,
364                 (outs RC:$dst), (ins MEMri:$addr),
365                 !strconcat(OpcStr, " [$addr], $dst"),
366                 [(set Ty:$dst, (OpNode ADDRri:$addr))],
367                 itin>;
368}
369
370// TODO: Instructions of the LoadASI class are currently asm only; hooking up
371// CodeGen's address spaces to use these is a future task.
372class LoadASI<string OpcStr, bits<6> Op3Val, RegisterClass RC> :
373  F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
374                !strconcat(OpcStr, "a [$addr] $asi, $dst"),
375                []>;
376
377// LoadA multiclass - As above, but also define alternate address space variant
378multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
379                 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
380                 InstrItinClass itin = NoItinerary> :
381             Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
382  def Arr  : LoadASI<OpcStr, LoadAOp3Val, RC>;
383}
384
385// The LDSTUB instruction is supported for asm only.
386// It is unlikely that general-purpose code could make use of it.
387// CAS is preferred for sparc v9.
388def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
389                    "ldstub [$addr], $dst", []>;
390def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
391                    "ldstub [$addr], $dst", []>;
392def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
393                         (ins MEMrr:$addr, i8imm:$asi),
394                         "ldstuba [$addr] $asi, $dst", []>;
395
396// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
397multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
398           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
399  def rr  : F3_1<3, Op3Val,
400                 (outs), (ins MEMrr:$addr, RC:$rd),
401                 !strconcat(OpcStr, " $rd, [$addr]"),
402                 [(OpNode Ty:$rd, ADDRrr:$addr)],
403                 itin>;
404  def ri  : F3_2<3, Op3Val,
405                 (outs), (ins MEMri:$addr, RC:$rd),
406                 !strconcat(OpcStr, " $rd, [$addr]"),
407                 [(OpNode Ty:$rd, ADDRri:$addr)],
408                 itin>;
409}
410
411// TODO: Instructions of the StoreASI class are currently asm only; hooking up
412// CodeGen's address spaces to use these is a future task.
413class StoreASI<string OpcStr, bits<6> Op3Val, RegisterClass RC,
414               InstrItinClass itin = IIC_st> :
415  F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
416           !strconcat(OpcStr, "a $rd, [$addr] $asi"),
417           [],
418           itin>;
419
420multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
421                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
422             Store<OpcStr, Op3Val, OpNode, RC, Ty> {
423  def Arr : StoreASI<OpcStr, StoreAOp3Val, RC>;
424}
425
426//===----------------------------------------------------------------------===//
427// Instructions
428//===----------------------------------------------------------------------===//
429
430// Pseudo instructions.
431class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
432   : InstSP<outs, ins, asmstr, pattern> {
433  let isCodeGenOnly = 1;
434  let isPseudo = 1;
435}
436
437// GETPCX for PIC
438let Defs = [O7] in {
439  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
440}
441
442let Defs = [O6], Uses = [O6] in {
443def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
444                               "!ADJCALLSTACKDOWN $amt1, $amt2",
445                               [(callseq_start timm:$amt1, timm:$amt2)]>;
446def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
447                            "!ADJCALLSTACKUP $amt1",
448                            [(callseq_end timm:$amt1, timm:$amt2)]>;
449}
450
451let hasSideEffects = 1, mayStore = 1 in {
452  let rd = 0, rs1 = 0, rs2 = 0 in
453    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
454                      "flushw",
455                      [(flushw)]>, Requires<[HasV9]>;
456  let rd = 8, rs1 = 0, simm13 = 3 in
457    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
458                   "ta 3",
459                   [(flushw)]>;
460}
461
462// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
463// instruction selection into a branch sequence.  This has to handle all
464// permutations of selection between i32/f32/f64 on ICC and FCC.
465// Expanded after instruction selection.
466let Uses = [ICC], usesCustomInserter = 1 in {
467  def SELECT_CC_Int_ICC
468   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
469            "; SELECT_CC_Int_ICC PSEUDO!",
470            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
471  def SELECT_CC_FP_ICC
472   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
473            "; SELECT_CC_FP_ICC PSEUDO!",
474            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
475
476  def SELECT_CC_DFP_ICC
477   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
478            "; SELECT_CC_DFP_ICC PSEUDO!",
479            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
480
481  def SELECT_CC_QFP_ICC
482   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
483            "; SELECT_CC_QFP_ICC PSEUDO!",
484            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
485}
486
487let usesCustomInserter = 1, Uses = [FCC0] in {
488
489  def SELECT_CC_Int_FCC
490   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
491            "; SELECT_CC_Int_FCC PSEUDO!",
492            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
493
494  def SELECT_CC_FP_FCC
495   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
496            "; SELECT_CC_FP_FCC PSEUDO!",
497            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
498  def SELECT_CC_DFP_FCC
499   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
500            "; SELECT_CC_DFP_FCC PSEUDO!",
501            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
502  def SELECT_CC_QFP_FCC
503   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
504            "; SELECT_CC_QFP_FCC PSEUDO!",
505            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
506}
507
508// Section B.1 - Load Integer Instructions, p. 90
509let DecoderMethod = "DecodeLoadInt" in {
510  defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
511  defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
512  defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
513  defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
514  defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
515}
516
517let DecoderMethod = "DecodeLoadIntPair" in
518  defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;
519
520// Section B.2 - Load Floating-point Instructions, p. 92
521let DecoderMethod = "DecodeLoadFP" in {
522  defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32, IIC_iu_or_fpu_instr>;
523  def LDFArr : LoadASI<"ld",  0b110000, FPRegs>,
524                Requires<[HasV9]>;
525}
526let DecoderMethod = "DecodeLoadDFP" in {
527  defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64, IIC_ldd>;
528  def LDDFArr : LoadASI<"ldd", 0b110011, DFPRegs>,
529                 Requires<[HasV9]>;
530}
531let DecoderMethod = "DecodeLoadQFP" in
532  defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
533               Requires<[HasV9, HasHardQuad]>;
534
535let DecoderMethod = "DecodeLoadCP" in
536  defm LDC   : Load<"ld", 0b110000, load, CoprocRegs, i32>;
537let DecoderMethod = "DecodeLoadCPPair" in
538  defm LDDC   : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;
539
540let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in {
541  let rd = 0 in {
542    def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr),
543                       "ld [$addr], %csr", []>;
544    def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr),
545                       "ld [$addr], %csr", []>;
546  }
547}
548
549let DecoderMethod = "DecodeLoadFP" in
550  let Defs = [FSR] in {
551    let rd = 0 in {
552      def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
553                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
554      def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
555                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
556    }
557    let rd = 1 in {
558      def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
559                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
560      def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
561                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
562    }
563  }
564
565// Section B.4 - Store Integer Instructions, p. 95
566let DecoderMethod = "DecodeStoreInt" in {
567  defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
568  defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
569  defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
570}
571
572let DecoderMethod = "DecodeStoreIntPair" in
573  defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>;
574
575// Section B.5 - Store Floating-point Instructions, p. 97
576let DecoderMethod = "DecodeStoreFP" in {
577  defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
578  def STFArr : StoreASI<"st",  0b110100, FPRegs>,
579               Requires<[HasV9]>;
580}
581let DecoderMethod = "DecodeStoreDFP" in {
582  defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64, IIC_std>;
583  def STDFArr : StoreASI<"std", 0b110111, DFPRegs>,
584                Requires<[HasV9]>;
585}
586let DecoderMethod = "DecodeStoreQFP" in
587  defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
588               Requires<[HasV9, HasHardQuad]>;
589
590let DecoderMethod = "DecodeStoreCP" in
591  defm STC   : Store<"st", 0b110100, store, CoprocRegs, i32>;
592
593let DecoderMethod = "DecodeStoreCPPair" in
594  defm STDC   : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;
595
596let DecoderMethod = "DecodeStoreCP", rd = 0 in {
597  let Defs = [CPSR] in {
598    def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins),
599                       "st %csr, [$addr]", [], IIC_st>;
600    def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins),
601                       "st %csr, [$addr]", [], IIC_st>;
602  }
603  let Defs = [CPQ] in {
604    def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins),
605                       "std %cq, [$addr]", [], IIC_std>;
606    def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins),
607                       "std %cq, [$addr]", [], IIC_std>;
608  }
609}
610
611let DecoderMethod = "DecodeStoreFP" in {
612  let rd = 0 in {
613    let Defs = [FSR] in {
614      def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
615                     "st %fsr, [$addr]", [], IIC_st>;
616      def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
617                     "st %fsr, [$addr]", [], IIC_st>;
618    }
619    let Defs = [FQ] in {
620      def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins),
621                     "std %fq, [$addr]", [], IIC_std>;
622      def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins),
623                     "std %fq, [$addr]", [], IIC_std>;
624    }
625  }
626  let rd = 1, Defs = [FSR] in {
627    def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
628                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
629    def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
630                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
631  }
632}
633
634// Section B.8 - SWAP Register with Memory Instruction
635// (Atomic swap)
636let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
637  def SWAPrr : F3_1<3, 0b001111,
638                 (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
639                 "swap [$addr], $dst",
640                 [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
641  def SWAPri : F3_2<3, 0b001111,
642                 (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
643                 "swap [$addr], $dst",
644                 [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
645  def SWAPArr : F3_1_asi<3, 0b011111,
646                 (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
647                 "swapa [$addr] $asi, $dst",
648                 [/*FIXME: pattern?*/]>;
649}
650
651
652// Section B.9 - SETHI Instruction, p. 104
653def SETHIi: F2_1<0b100,
654                 (outs IntRegs:$rd), (ins i32imm:$imm22),
655                 "sethi $imm22, $rd",
656                 [(set i32:$rd, SETHIimm:$imm22)],
657                 IIC_iu_instr>;
658
659// Section B.10 - NOP Instruction, p. 105
660// (It's a special case of SETHI)
661let rd = 0, imm22 = 0 in
662  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
663
664// Section B.11 - Logical Instructions, p. 106
665defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
666
667def ANDNrr  : F3_1<2, 0b000101,
668                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
669                   "andn $rs1, $rs2, $rd",
670                   [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
671def ANDNri  : F3_2<2, 0b000101,
672                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
673                   "andn $rs1, $simm13, $rd", []>;
674
675defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
676
677def ORNrr   : F3_1<2, 0b000110,
678                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
679                   "orn $rs1, $rs2, $rd",
680                   [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
681def ORNri   : F3_2<2, 0b000110,
682                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
683                   "orn $rs1, $simm13, $rd", []>;
684defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
685
686def XNORrr  : F3_1<2, 0b000111,
687                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
688                   "xnor $rs1, $rs2, $rd",
689                   [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
690def XNORri  : F3_2<2, 0b000111,
691                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
692                   "xnor $rs1, $simm13, $rd", []>;
693
694def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2),
695          (ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>;
696
697def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2),
698          (ORNrr i32:$rs1,  (SETHIi SETHIimm_not:$rs2))>;
699
700let Defs = [ICC] in {
701  defm ANDCC  : F3_12np<"andcc",  0b010001>;
702  defm ANDNCC : F3_12np<"andncc", 0b010101>;
703  defm ORCC   : F3_12np<"orcc",   0b010010>;
704  defm ORNCC  : F3_12np<"orncc",  0b010110>;
705  defm XORCC  : F3_12np<"xorcc",  0b010011>;
706  defm XNORCC : F3_12np<"xnorcc", 0b010111>;
707}
708
709// Section B.12 - Shift Instructions, p. 107
710defm SLL : F3_S<"sll", 0b100101, 0, shl, i32, shift_imm5, IntRegs>;
711defm SRL : F3_S<"srl", 0b100110, 0, srl, i32, shift_imm5, IntRegs>;
712defm SRA : F3_S<"sra", 0b100111, 0, sra, i32, shift_imm5, IntRegs>;
713
714// Section B.13 - Add Instructions, p. 108
715defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
716
717// "LEA" forms of add (patterns to make tblgen happy)
718let Predicates = [Is32Bit], isCodeGenOnly = 1 in
719  def LEA_ADDri   : F3_2<2, 0b000000,
720                     (outs IntRegs:$dst), (ins MEMri:$addr),
721                     "add ${addr:arith}, $dst",
722                     [(set iPTR:$dst, ADDRri:$addr)]>;
723
724let Defs = [ICC] in
725  defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
726
727let Uses = [ICC] in
728  defm ADDC   : F3_12np<"addx", 0b001000>;
729
730let Uses = [ICC], Defs = [ICC] in
731  defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
732
733// Section B.15 - Subtract Instructions, p. 110
734defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
735let Uses = [ICC], Defs = [ICC] in
736  defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
737
738let Defs = [ICC] in
739  defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
740
741let Uses = [ICC] in
742  defm SUBC   : F3_12np <"subx", 0b001100>;
743
744// cmp (from Section A.3) is a specialized alias for subcc
745let Defs = [ICC], rd = 0 in {
746  def CMPrr   : F3_1<2, 0b010100,
747                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
748                     "cmp $rs1, $rs2",
749                     [(SPcmpicc i32:$rs1, i32:$rs2)]>;
750  def CMPri   : F3_2<2, 0b010100,
751                     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
752                     "cmp $rs1, $simm13",
753                     [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
754}
755
756// Section B.18 - Multiply Instructions, p. 113
757let Defs = [Y] in {
758  defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>;
759  defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>;
760}
761
762let Defs = [Y, ICC] in {
763  defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
764  defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
765}
766
767let Defs = [Y, ICC], Uses = [Y, ICC] in {
768  defm MULSCC : F3_12np<"mulscc", 0b100100>;
769}
770
771// Section B.19 - Divide Instructions, p. 115
772let Uses = [Y], Defs = [Y] in {
773  defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
774  defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
775}
776
777let Uses = [Y], Defs = [Y, ICC] in {
778  defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
779  defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
780}
781
782// Section B.20 - SAVE and RESTORE, p. 117
783defm SAVE    : F3_12np<"save"   , 0b111100>;
784defm RESTORE : F3_12np<"restore", 0b111101>;
785
786// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
787
788// unconditional branch class.
789class BranchAlways<dag ins, string asmstr, list<dag> pattern>
790  : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
791  let isBranch     = 1;
792  let isTerminator = 1;
793  let hasDelaySlot = 1;
794  let isBarrier    = 1;
795}
796
797let cond = 8 in
798  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
799
800
801let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
802
803// conditional branch class:
804class BranchSP<dag ins, string asmstr, list<dag> pattern>
805 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;
806
807// conditional branch with annul class:
808class BranchSPA<dag ins, string asmstr, list<dag> pattern>
809 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;
810
811// Conditional branch class on %icc|%xcc with predication:
812multiclass IPredBranch<string regstr, list<dag> CCPattern> {
813  def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
814                   !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
815                   CCPattern,
816                   IIC_iu_instr>;
817  def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
818                   !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
819                   [],
820                   IIC_iu_instr>;
821  def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
822                   !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
823                   [],
824                   IIC_iu_instr>;
825  def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
826                   !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
827                   [],
828                   IIC_iu_instr>;
829}
830
831} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
832
833
834// Indirect branch instructions.
835let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
836     isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
837  def BINDrr  : F3_1<2, 0b111000,
838                   (outs), (ins MEMrr:$ptr),
839                   "jmp $ptr",
840                   [(brind ADDRrr:$ptr)]>;
841  def BINDri  : F3_2<2, 0b111000,
842                   (outs), (ins MEMri:$ptr),
843                   "jmp $ptr",
844                   [(brind ADDRri:$ptr)]>;
845}
846
847let Uses = [ICC] in {
848  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
849                         "b$cond $imm22",
850                        [(SPbricc bb:$imm22, imm:$cond)]>;
851  def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
852                         "b$cond,a $imm22", []>;
853
854  let Predicates = [HasV9], cc = 0b00 in
855    defm BPI : IPredBranch<"%icc", []>;
856}
857
858// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
859
860let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
861
862// floating-point conditional branch class:
863class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
864 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
865
866// floating-point conditional branch with annul class:
867class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
868 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
869
870// Conditional branch class on %fcc0-%fcc3 with predication:
871multiclass FPredBranch {
872  def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
873                                         FCCRegs:$cc),
874                  "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
875  def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
876                                         FCCRegs:$cc),
877                  "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
878  def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
879                                         FCCRegs:$cc),
880                  "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
881  def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
882                                         FCCRegs:$cc),
883                  "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
884}
885} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
886
887let Uses = [FCC0] in {
888  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
889                              "fb$cond $imm22",
890                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
891  def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
892                             "fb$cond,a $imm22", []>;
893}
894
895let Predicates = [HasV9] in
896  defm BPF : FPredBranch;
897
898// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
899let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
900
901// co-processor conditional branch class:
902class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
903 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>;
904
905// co-processor conditional branch with annul class:
906class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
907 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>;
908
909} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
910
911def CBCOND  : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
912                          "cb$cond $imm22",
913                          [(SPbrfcc bb:$imm22, imm:$cond)]>;
914def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
915                           "cb$cond,a $imm22", []>;
916
917// Section B.24 - Call and Link Instruction, p. 125
918// This is the only Format 1 instruction
919let Uses = [O6],
920    hasDelaySlot = 1, isCall = 1 in {
921  def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
922                    "call $disp",
923                    [],
924                    IIC_jmp_or_call> {
925    bits<30> disp;
926    let op = 1;
927    let Inst{29-0} = disp;
928  }
929
930  // indirect calls: special cases of JMPL.
931  let isCodeGenOnly = 1, rd = 15 in {
932    def CALLrr : F3_1<2, 0b111000,
933                      (outs), (ins MEMrr:$ptr, variable_ops),
934                      "call $ptr",
935                      [(call ADDRrr:$ptr)],
936                      IIC_jmp_or_call>;
937    def CALLri : F3_2<2, 0b111000,
938                      (outs), (ins MEMri:$ptr, variable_ops),
939                      "call $ptr",
940                      [(call ADDRri:$ptr)],
941                      IIC_jmp_or_call>;
942  }
943}
944
945// Section B.25 - Jump and Link Instruction
946
947// JMPL Instruction.
948let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
949    DecoderMethod = "DecodeJMPL" in {
950  def JMPLrr: F3_1<2, 0b111000,
951                   (outs IntRegs:$dst), (ins MEMrr:$addr),
952                   "jmpl $addr, $dst",
953                   [],
954                   IIC_jmp_or_call>;
955  def JMPLri: F3_2<2, 0b111000,
956                   (outs IntRegs:$dst), (ins MEMri:$addr),
957                   "jmpl $addr, $dst",
958                   [],
959                   IIC_jmp_or_call>;
960}
961
962// Section A.3 - Synthetic Instructions, p. 85
963// special cases of JMPL:
964let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
965    isCodeGenOnly = 1 in {
966  let rd = 0, rs1 = 15 in
967    def RETL: F3_2<2, 0b111000,
968                   (outs), (ins i32imm:$val),
969                   "jmp %o7+$val",
970                   [(retflag simm13:$val)],
971                   IIC_jmp_or_call>;
972
973  let rd = 0, rs1 = 31 in
974    def RET: F3_2<2, 0b111000,
975                  (outs), (ins i32imm:$val),
976                  "jmp %i7+$val",
977                  [],
978                  IIC_jmp_or_call>;
979}
980
981// Section B.26 - Return from Trap Instruction
982let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
983     isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
984  def RETTrr : F3_1<2, 0b111001,
985                   (outs), (ins MEMrr:$addr),
986                   "rett $addr",
987                   [],
988                   IIC_jmp_or_call>;
989  def RETTri : F3_2<2, 0b111001,
990                    (outs), (ins MEMri:$addr),
991                    "rett $addr",
992                    [],
993                    IIC_jmp_or_call>;
994}
995
996
997// Section B.27 - Trap on Integer Condition Codes Instruction
998// conditional branch class:
999let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
1000{
1001  def TRAPrr : TRAPSPrr<0b111010,
1002                        (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
1003                        "t$cond $rs1 + $rs2",
1004                        []>;
1005  def TRAPri : TRAPSPri<0b111010,
1006                        (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
1007                        "t$cond $rs1 + $imm",
1008                        []>;
1009}
1010
1011multiclass TRAP<string regStr> {
1012  def rr : TRAPSPrr<0b111010,
1013                    (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
1014                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
1015                    []>;
1016  def ri : TRAPSPri<0b111010,
1017                    (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
1018                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
1019                    []>;
1020}
1021
1022let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
1023  defm TICC : TRAP<"%icc">;
1024
1025
1026let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
1027  def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
1028
1029let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in
1030  def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>;
1031
1032// Section B.28 - Read State Register Instructions
1033let rs2 = 0 in
1034  def RDASR : F3_1<2, 0b101000,
1035                 (outs IntRegs:$rd), (ins ASRRegs:$rs1),
1036                 "rd $rs1, $rd", []>;
1037
1038// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
1039let Predicates = [HasNoV9] in {
1040  let rs2 = 0, rs1 = 0, Uses=[PSR] in
1041    def RDPSR : F3_1<2, 0b101001,
1042		     (outs IntRegs:$rd), (ins),
1043		     "rd %psr, $rd", []>;
1044
1045  let rs2 = 0, rs1 = 0, Uses=[WIM] in
1046    def RDWIM : F3_1<2, 0b101010,
1047		     (outs IntRegs:$rd), (ins),
1048		     "rd %wim, $rd", []>;
1049
1050  let rs2 = 0, rs1 = 0, Uses=[TBR] in
1051    def RDTBR : F3_1<2, 0b101011,
1052		     (outs IntRegs:$rd), (ins),
1053		     "rd %tbr, $rd", []>;
1054}
1055
1056// PC don't exist on the SparcV8, only the V9.
1057let Predicates = [HasV9] in {
1058  let rs2 = 0, rs1 = 5 in
1059    def RDPC : F3_1<2, 0b101000,
1060		     (outs IntRegs:$rd), (ins),
1061		     "rd %pc, $rd", []>;
1062}
1063
1064// Section B.29 - Write State Register Instructions
1065def WRASRrr : F3_1<2, 0b110000,
1066                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1067                 "wr $rs1, $rs2, $rd", []>;
1068def WRASRri : F3_2<2, 0b110000,
1069                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1070                 "wr $rs1, $simm13, $rd", []>;
1071
1072// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
1073let Predicates = [HasNoV9] in {
1074  let Defs = [PSR], rd=0 in {
1075    def WRPSRrr : F3_1<2, 0b110001,
1076		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1077		     "wr $rs1, $rs2, %psr", []>;
1078    def WRPSRri : F3_2<2, 0b110001,
1079		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1080		     "wr $rs1, $simm13, %psr", []>;
1081  }
1082
1083  let Defs = [WIM], rd=0 in {
1084    def WRWIMrr : F3_1<2, 0b110010,
1085		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1086		     "wr $rs1, $rs2, %wim", []>;
1087    def WRWIMri : F3_2<2, 0b110010,
1088		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1089		     "wr $rs1, $simm13, %wim", []>;
1090  }
1091
1092  let Defs = [TBR], rd=0 in {
1093    def WRTBRrr : F3_1<2, 0b110011,
1094		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1095		     "wr $rs1, $rs2, %tbr", []>;
1096    def WRTBRri : F3_2<2, 0b110011,
1097		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1098		     "wr $rs1, $simm13, %tbr", []>;
1099  }
1100}
1101
1102// Section B.30 - STBAR Instruction
1103let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
1104  def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
1105
1106
1107// Section B.31 - Unimplemented Instruction
1108let rd = 0 in
1109  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
1110                  "unimp $imm22", []>;
1111
1112// Section B.32 - Flush Instruction Memory
1113let rd = 0 in {
1114  def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
1115                       "flush $addr", []>;
1116  def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
1117                       "flush $addr", []>;
1118
1119  // The no-arg FLUSH is only here for the benefit of the InstAlias
1120  // "flush", which cannot seem to use FLUSHrr, due to the inability
1121  // to construct a MEMrr with fixed G0 registers.
1122  let rs1 = 0, rs2 = 0 in
1123    def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
1124}
1125
1126// Section B.33 - Floating-point Operate (FPop) Instructions
1127
1128// Convert Integer to Floating-point Instructions, p. 141
1129def FITOS : F3_3u<2, 0b110100, 0b011000100,
1130                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1131                 "fitos $rs2, $rd",
1132                 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
1133                 IIC_fpu_fast_instr>;
1134def FITOD : F3_3u<2, 0b110100, 0b011001000,
1135                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
1136                 "fitod $rs2, $rd",
1137                 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
1138                 IIC_fpu_fast_instr>;
1139def FITOQ : F3_3u<2, 0b110100, 0b011001100,
1140                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
1141                 "fitoq $rs2, $rd",
1142                 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
1143                 Requires<[HasHardQuad]>;
1144
1145// Convert Floating-point to Integer Instructions, p. 142
1146def FSTOI : F3_3u<2, 0b110100, 0b011010001,
1147                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1148                 "fstoi $rs2, $rd",
1149                 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
1150                 IIC_fpu_fast_instr>;
1151def FDTOI : F3_3u<2, 0b110100, 0b011010010,
1152                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
1153                 "fdtoi $rs2, $rd",
1154                 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
1155                 IIC_fpu_fast_instr>;
1156def FQTOI : F3_3u<2, 0b110100, 0b011010011,
1157                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
1158                 "fqtoi $rs2, $rd",
1159                 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
1160                 Requires<[HasHardQuad]>;
1161
1162// Convert between Floating-point Formats Instructions, p. 143
1163def FSTOD : F3_3u<2, 0b110100, 0b011001001,
1164                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
1165                 "fstod $rs2, $rd",
1166                 [(set f64:$rd, (fpextend f32:$rs2))],
1167                 IIC_fpu_stod>;
1168def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
1169                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
1170                 "fstoq $rs2, $rd",
1171                 [(set f128:$rd, (fpextend f32:$rs2))]>,
1172                 Requires<[HasHardQuad]>;
1173def FDTOS : F3_3u<2, 0b110100, 0b011000110,
1174                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
1175                 "fdtos $rs2, $rd",
1176                 [(set f32:$rd, (fpround f64:$rs2))],
1177                 IIC_fpu_fast_instr>;
1178def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
1179                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
1180                 "fdtoq $rs2, $rd",
1181                 [(set f128:$rd, (fpextend f64:$rs2))]>,
1182                 Requires<[HasHardQuad]>;
1183def FQTOS : F3_3u<2, 0b110100, 0b011000111,
1184                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
1185                 "fqtos $rs2, $rd",
1186                 [(set f32:$rd, (fpround f128:$rs2))]>,
1187                 Requires<[HasHardQuad]>;
1188def FQTOD : F3_3u<2, 0b110100, 0b011001011,
1189                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
1190                 "fqtod $rs2, $rd",
1191                 [(set f64:$rd, (fpround f128:$rs2))]>,
1192                 Requires<[HasHardQuad]>;
1193
1194// Floating-point Move Instructions, p. 144
1195def FMOVS : F3_3u<2, 0b110100, 0b000000001,
1196                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1197                 "fmovs $rs2, $rd", []>;
1198def FNEGS : F3_3u<2, 0b110100, 0b000000101,
1199                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1200                 "fnegs $rs2, $rd",
1201                 [(set f32:$rd, (fneg f32:$rs2))],
1202                 IIC_fpu_negs>;
1203def FABSS : F3_3u<2, 0b110100, 0b000001001,
1204                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1205                 "fabss $rs2, $rd",
1206                 [(set f32:$rd, (fabs f32:$rs2))],
1207                 IIC_fpu_abs>;
1208
1209
1210// Floating-point Square Root Instructions, p.145
1211// FSQRTS generates an erratum on LEON processors, so by disabling this instruction
1212// this will be promoted to use FSQRTD with doubles instead.
1213let Predicates = [HasNoFdivSqrtFix] in
1214def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
1215                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
1216                  "fsqrts $rs2, $rd",
1217                  [(set f32:$rd, (fsqrt f32:$rs2))],
1218                  IIC_fpu_sqrts>;
1219def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
1220                  (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1221                  "fsqrtd $rs2, $rd",
1222                  [(set f64:$rd, (fsqrt f64:$rs2))],
1223                  IIC_fpu_sqrtd>;
1224def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
1225                  (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1226                  "fsqrtq $rs2, $rd",
1227                  [(set f128:$rd, (fsqrt f128:$rs2))]>,
1228                  Requires<[HasHardQuad]>;
1229
1230
1231
1232// Floating-point Add and Subtract Instructions, p. 146
1233def FADDS  : F3_3<2, 0b110100, 0b001000001,
1234                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1235                  "fadds $rs1, $rs2, $rd",
1236                  [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
1237                  IIC_fpu_fast_instr>;
1238def FADDD  : F3_3<2, 0b110100, 0b001000010,
1239                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1240                  "faddd $rs1, $rs2, $rd",
1241                  [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
1242                  IIC_fpu_fast_instr>;
1243def FADDQ  : F3_3<2, 0b110100, 0b001000011,
1244                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1245                  "faddq $rs1, $rs2, $rd",
1246                  [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
1247                  Requires<[HasHardQuad]>;
1248
1249def FSUBS  : F3_3<2, 0b110100, 0b001000101,
1250                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1251                  "fsubs $rs1, $rs2, $rd",
1252                  [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
1253                  IIC_fpu_fast_instr>;
1254def FSUBD  : F3_3<2, 0b110100, 0b001000110,
1255                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1256                  "fsubd $rs1, $rs2, $rd",
1257                  [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
1258                  IIC_fpu_fast_instr>;
1259def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
1260                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1261                  "fsubq $rs1, $rs2, $rd",
1262                  [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
1263                  Requires<[HasHardQuad]>;
1264
1265
1266// Floating-point Multiply and Divide Instructions, p. 147
1267def FMULS  : F3_3<2, 0b110100, 0b001001001,
1268                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1269                  "fmuls $rs1, $rs2, $rd",
1270                  [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
1271                  IIC_fpu_muls>,
1272		  Requires<[HasFMULS]>;
1273def FMULD  : F3_3<2, 0b110100, 0b001001010,
1274                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1275                  "fmuld $rs1, $rs2, $rd",
1276                  [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
1277                  IIC_fpu_muld>;
1278def FMULQ  : F3_3<2, 0b110100, 0b001001011,
1279                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1280                  "fmulq $rs1, $rs2, $rd",
1281                  [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
1282                  Requires<[HasHardQuad]>;
1283
1284def FSMULD : F3_3<2, 0b110100, 0b001101001,
1285                  (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1286                  "fsmuld $rs1, $rs2, $rd",
1287                  [(set f64:$rd, (fmul (fpextend f32:$rs1),
1288                                        (fpextend f32:$rs2)))],
1289                  IIC_fpu_muld>,
1290		  Requires<[HasFSMULD]>;
1291def FDMULQ : F3_3<2, 0b110100, 0b001101110,
1292                  (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1293                  "fdmulq $rs1, $rs2, $rd",
1294                  [(set f128:$rd, (fmul (fpextend f64:$rs1),
1295                                         (fpextend f64:$rs2)))]>,
1296                  Requires<[HasHardQuad]>;
1297
1298// FDIVS generates an erratum on LEON processors, so by disabling this instruction
1299// this will be promoted to use FDIVD with doubles instead.
1300def FDIVS  : F3_3<2, 0b110100, 0b001001101,
1301                 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1302                 "fdivs $rs1, $rs2, $rd",
1303                 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
1304                 IIC_fpu_divs>;
1305def FDIVD  : F3_3<2, 0b110100, 0b001001110,
1306                 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1307                 "fdivd $rs1, $rs2, $rd",
1308                 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
1309                 IIC_fpu_divd>;
1310def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
1311                 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1312                 "fdivq $rs1, $rs2, $rd",
1313                 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
1314                 Requires<[HasHardQuad]>;
1315
1316// Floating-point Compare Instructions, p. 148
1317// Note: the 2nd template arg is different for these guys.
1318// Note 2: the result of a FCMP is not available until the 2nd cycle
1319// after the instr is retired, but there is no interlock in Sparc V8.
1320// This behavior is modeled with a forced noop after the instruction in
1321// DelaySlotFiller.
1322
1323let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
1324  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1325                   (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
1326                   "fcmps $rs1, $rs2",
1327                   [(SPcmpfcc f32:$rs1, f32:$rs2)],
1328                   IIC_fpu_fast_instr>;
1329  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1330                   (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1331                   "fcmpd $rs1, $rs2",
1332                   [(SPcmpfcc f64:$rs1, f64:$rs2)],
1333                   IIC_fpu_fast_instr>;
1334  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1335                   (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1336                   "fcmpq $rs1, $rs2",
1337                   [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
1338                   Requires<[HasHardQuad]>;
1339}
1340
1341//===----------------------------------------------------------------------===//
1342// Instructions for Thread Local Storage(TLS).
1343//===----------------------------------------------------------------------===//
1344let isAsmParserOnly = 1 in {
1345def TLS_ADDrr : F3_1<2, 0b000000,
1346                    (outs IntRegs:$rd),
1347                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
1348                    "add $rs1, $rs2, $rd, $sym",
1349                    [(set i32:$rd,
1350                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
1351
1352let mayLoad = 1 in
1353  def TLS_LDrr : F3_1<3, 0b000000,
1354                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
1355                      "ld [$addr], $dst, $sym",
1356                      [(set i32:$dst,
1357                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
1358
1359let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
1360  def TLS_CALL : InstSP<(outs),
1361                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
1362                        "call $disp, $sym",
1363                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
1364                        IIC_jmp_or_call> {
1365  bits<30> disp;
1366  let op = 1;
1367  let Inst{29-0} = disp;
1368}
1369}
1370
1371//===----------------------------------------------------------------------===//
1372// V9 Instructions
1373//===----------------------------------------------------------------------===//
1374
1375// V9 Conditional Moves.
1376let Predicates = [HasV9], Constraints = "$f = $rd" in {
1377  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
1378  let Uses = [ICC], intcc = 1, cc = 0b00 in {
1379    def MOVICCrr
1380      : F4_1<0b101100, (outs IntRegs:$rd),
1381             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1382             "mov$cond %icc, $rs2, $rd",
1383             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
1384
1385    def MOVICCri
1386      : F4_2<0b101100, (outs IntRegs:$rd),
1387             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1388             "mov$cond %icc, $simm11, $rd",
1389             [(set i32:$rd,
1390                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
1391  }
1392
1393  let Uses = [FCC0], intcc = 0, cc = 0b00 in {
1394    def MOVFCCrr
1395      : F4_1<0b101100, (outs IntRegs:$rd),
1396             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1397             "mov$cond %fcc0, $rs2, $rd",
1398             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
1399    def MOVFCCri
1400      : F4_2<0b101100, (outs IntRegs:$rd),
1401             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1402             "mov$cond %fcc0, $simm11, $rd",
1403             [(set i32:$rd,
1404                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
1405  }
1406
1407  let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
1408    def FMOVS_ICC
1409      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1410             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1411             "fmovs$cond %icc, $rs2, $rd",
1412             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
1413    def FMOVD_ICC
1414      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1415               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1416               "fmovd$cond %icc, $rs2, $rd",
1417               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
1418    def FMOVQ_ICC
1419      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1420               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1421               "fmovq$cond %icc, $rs2, $rd",
1422               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>,
1423               Requires<[HasHardQuad]>;
1424  }
1425
1426  let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
1427    def FMOVS_FCC
1428      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1429             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1430             "fmovs$cond %fcc0, $rs2, $rd",
1431             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
1432    def FMOVD_FCC
1433      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1434             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1435             "fmovd$cond %fcc0, $rs2, $rd",
1436             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
1437    def FMOVQ_FCC
1438      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1439             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1440             "fmovq$cond %fcc0, $rs2, $rd",
1441             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>,
1442             Requires<[HasHardQuad]>;
1443  }
1444
1445}
1446
1447// Floating-Point Move Instructions, p. 164 of the V9 manual.
1448let Predicates = [HasV9] in {
1449  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
1450                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1451                   "fmovd $rs2, $rd", []>;
1452  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
1453                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1454                   "fmovq $rs2, $rd", []>,
1455                   Requires<[HasHardQuad]>;
1456  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
1457                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1458                   "fnegd $rs2, $rd",
1459                   [(set f64:$rd, (fneg f64:$rs2))]>;
1460  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
1461                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1462                   "fnegq $rs2, $rd",
1463                   [(set f128:$rd, (fneg f128:$rs2))]>,
1464                   Requires<[HasHardQuad]>;
1465  def FABSD : F3_3u<2, 0b110100, 0b000001010,
1466                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1467                   "fabsd $rs2, $rd",
1468                   [(set f64:$rd, (fabs f64:$rs2))]>;
1469  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
1470                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1471                   "fabsq $rs2, $rd",
1472                   [(set f128:$rd, (fabs f128:$rs2))]>,
1473                   Requires<[HasHardQuad]>;
1474}
1475
1476// Floating-point compare instruction with %fcc0-%fcc3.
1477def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1478               (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1479               "fcmps $rd, $rs1, $rs2", []>;
1480def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1481                (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1482                "fcmpd $rd, $rs1, $rs2", []>;
1483def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1484                (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1485                "fcmpq $rd, $rs1, $rs2", []>,
1486                 Requires<[HasHardQuad]>;
1487
1488let hasSideEffects = 1 in {
1489  def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
1490                   (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1491                   "fcmpes $rd, $rs1, $rs2", []>;
1492  def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
1493                   (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1494                   "fcmped $rd, $rs1, $rs2", []>;
1495  def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
1496                   (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1497                   "fcmpeq $rd, $rs1, $rs2", []>,
1498                   Requires<[HasHardQuad]>;
1499}
1500
1501// Floating point conditional move instrucitons with %fcc0-%fcc3.
1502let Predicates = [HasV9] in {
1503  let Constraints = "$f = $rd", intcc = 0 in {
1504    def V9MOVFCCrr
1505      : F4_1<0b101100, (outs IntRegs:$rd),
1506             (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1507             "mov$cond $cc, $rs2, $rd", []>;
1508    def V9MOVFCCri
1509      : F4_2<0b101100, (outs IntRegs:$rd),
1510             (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1511             "mov$cond $cc, $simm11, $rd", []>;
1512    def V9FMOVS_FCC
1513      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1514             (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1515             "fmovs$cond $opf_cc, $rs2, $rd", []>;
1516    def V9FMOVD_FCC
1517      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1518             (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1519             "fmovd$cond $opf_cc, $rs2, $rd", []>;
1520    def V9FMOVQ_FCC
1521      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1522             (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1523             "fmovq$cond $opf_cc, $rs2, $rd", []>,
1524             Requires<[HasHardQuad]>;
1525  } // Constraints = "$f = $rd", ...
1526} // let Predicates = [hasV9]
1527
1528
1529// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
1530// the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
1531let rs1 = 0 in
1532  def POPCrr : F3_1<2, 0b101110,
1533                    (outs IntRegs:$rd), (ins IntRegs:$rs2),
1534                    "popc $rs2, $rd", []>, Requires<[HasV9]>;
1535def : Pat<(i32 (ctpop i32:$src)),
1536          (POPCrr (SRLri $src, 0))>;
1537
1538let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
1539 def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13),
1540                    "membar $simm13", []>;
1541
1542let Predicates = [HasV9], rd = 15, rs1 = 0b00000 in
1543  def SIR: F3_2<2, 0b110000, (outs),
1544                (ins simm13Op:$simm13),
1545                 "sir $simm13", []>;
1546
1547// The CAS instruction, unlike other instructions, only comes in a
1548// form which requires an ASI be provided. The ASI value hardcoded
1549// here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
1550let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
1551  def CASrr: F3_1_asi<3, 0b111100,
1552                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1553                                     IntRegs:$swap),
1554                 "cas [$rs1], $rs2, $rd",
1555                 [(set i32:$rd,
1556                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1557
1558
1559// CASA is supported as an instruction on some LEON3 and all LEON4 processors.
1560// This version can be automatically lowered from C code, selecting ASI 10
1561let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
1562  def CASAasi10: F3_1_asi<3, 0b111100,
1563                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1564                                     IntRegs:$swap),
1565                 "casa [$rs1] 10, $rs2, $rd",
1566                 [(set i32:$rd,
1567                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1568
1569// CASA supported on some LEON3 and all LEON4 processors. Same pattern as
1570// CASrr, above, but with a different ASI. This version is supported for
1571// inline assembly lowering only.
1572let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
1573  def CASArr: F3_1_asi<3, 0b111100,
1574                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1575                                     IntRegs:$swap, i8imm:$asi),
1576                 "casa [$rs1] $asi, $rs2, $rd", []>;
1577
1578// TODO: Add DAG sequence to lower these instructions. Currently, only provided
1579// as inline assembler-supported instructions.
1580let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
1581  def SMACrr :  F3_1<2, 0b111111,
1582                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
1583                   "smac $rs1, $rs2, $rd",
1584                   [], IIC_smac_umac>;
1585
1586  def SMACri :  F3_2<2, 0b111111,
1587                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
1588                   "smac $rs1, $simm13, $rd",
1589                   [], IIC_smac_umac>;
1590
1591  def UMACrr :  F3_1<2, 0b111110,
1592                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
1593                   "umac $rs1, $rs2, $rd",
1594                   [], IIC_smac_umac>;
1595
1596  def UMACri :  F3_2<2, 0b111110,
1597                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
1598                   "umac $rs1, $simm13, $rd",
1599                   [], IIC_smac_umac>;
1600}
1601
1602// The partial write WRPSR instruction has a non-zero destination
1603// register value to separate it from the standard instruction.
1604let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in {
1605  def PWRPSRrr : F3_1<2, 0b110001,
1606     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1607     "pwr $rs1, $rs2, %psr", []>;
1608  def PWRPSRri : F3_2<2, 0b110001,
1609     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1610     "pwr $rs1, $simm13, %psr", []>;
1611}
1612
1613let Defs = [ICC] in {
1614defm TADDCC   : F3_12np<"taddcc",   0b100000>;
1615defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
1616
1617let hasSideEffects = 1 in {
1618  defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
1619  defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
1620}
1621}
1622
1623// Section A.42 - Prefetch Data
1624let Predicates = [HasV9] in {
1625  def PREFETCHr : F3_1<3, 0b101101,
1626                   (outs), (ins MEMrr:$addr, shift_imm5:$rd),
1627                   "prefetch [$addr], $rd", []>;
1628  def PREFETCHi : F3_2<3, 0b101101,
1629                   (outs), (ins MEMri:$addr, shift_imm5:$rd),
1630                   "prefetch [$addr], $rd", []>;
1631}
1632
1633
1634
1635// Section A.43 - Read Privileged Register Instructions
1636let Predicates = [HasV9] in {
1637let rs2 = 0 in
1638  def RDPR : F3_1<2, 0b101010,
1639                 (outs IntRegs:$rd), (ins PRRegs:$rs1),
1640                 "rdpr $rs1, $rd", []>;
1641}
1642
1643// Section A.62 - Write Privileged Register Instructions
1644let Predicates = [HasV9] in {
1645  def WRPRrr : F3_1<2, 0b110010,
1646                   (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1647                   "wrpr $rs1, $rs2, $rd", []>;
1648  def WRPRri : F3_2<2, 0b110010,
1649                   (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1650                   "wrpr $rs1, $simm13, $rd", []>;
1651}
1652
1653//===----------------------------------------------------------------------===//
1654// Non-Instruction Patterns
1655//===----------------------------------------------------------------------===//
1656
1657// Zero immediate.
1658def : Pat<(i32 0),
1659          (ORrr (i32 G0), (i32 G0))>;
1660// Small immediates.
1661def : Pat<(i32 simm13:$val),
1662          (ORri (i32 G0), imm:$val)>;
1663// Arbitrary immediates.
1664def : Pat<(i32 imm:$val),
1665          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
1666
1667
1668// Global addresses, constant pool entries
1669let Predicates = [Is32Bit] in {
1670
1671def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
1672def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
1673def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
1674def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
1675
1676// GlobalTLS addresses
1677def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
1678def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
1679def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1680          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1681def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1682          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1683
1684// Blockaddress
1685def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
1686def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
1687
1688// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
1689def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
1690def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
1691def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
1692                        (ADDri $r, tblockaddress:$in)>;
1693}
1694
1695// Calls:
1696def : Pat<(call tglobaladdr:$dst),
1697          (CALL tglobaladdr:$dst)>;
1698def : Pat<(call texternalsym:$dst),
1699          (CALL texternalsym:$dst)>;
1700
1701// Map integer extload's to zextloads.
1702def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1703def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1704def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1705def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1706def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1707def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1708
1709// zextload bool -> zextload byte
1710def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1711def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1712
1713// store 0, addr -> store %g0, addr
1714def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1715def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1716
1717// store bar for all atomic_fence in V8.
1718let Predicates = [HasNoV9] in
1719  def : Pat<(atomic_fence timm, timm), (STBAR)>;
1720
1721let Predicates = [HasV9] in
1722  def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>;
1723
1724// atomic_load addr -> load addr
1725def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1726def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1727def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1728def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1729def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
1730def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;
1731
1732// atomic_store val, addr -> store val, addr
1733def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
1734def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
1735def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
1736def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
1737def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
1738def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
1739
1740// extract_vector
1741def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
1742          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
1743def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
1744          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
1745
1746// build_vector
1747def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
1748          (INSERT_SUBREG
1749	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
1750            (i32 IntRegs:$a2), sub_odd)>;
1751
1752
1753include "SparcInstr64Bit.td"
1754include "SparcInstrVIS.td"
1755include "SparcInstrAliases.td"
1756