1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the Sparc instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// Instruction format superclass 15//===----------------------------------------------------------------------===// 16 17include "SparcInstrFormats.td" 18 19//===----------------------------------------------------------------------===// 20// Feature predicates. 21//===----------------------------------------------------------------------===// 22 23// True when generating 32-bit code. 24def Is32Bit : Predicate<"!Subtarget->is64Bit()">; 25 26// True when generating 64-bit code. This also implies HasV9. 27def Is64Bit : Predicate<"Subtarget->is64Bit()">; 28 29def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">, 30 AssemblerPredicate<(all_of FeatureSoftMulDiv)>; 31 32// HasV9 - This predicate is true when the target processor supports V9 33// instructions. Note that the machine may be running in 32-bit mode. 34def HasV9 : Predicate<"Subtarget->isV9()">, 35 AssemblerPredicate<(all_of FeatureV9)>; 36 37// HasNoV9 - This predicate is true when the target doesn't have V9 38// instructions. Use of this is just a hack for the isel not having proper 39// costs for V8 instructions that are more expensive than their V9 ones. 40def HasNoV9 : Predicate<"!Subtarget->isV9()">; 41 42// HasVIS - This is true when the target processor has VIS extensions. 43def HasVIS : Predicate<"Subtarget->isVIS()">, 44 AssemblerPredicate<(all_of FeatureVIS)>; 45def HasVIS2 : Predicate<"Subtarget->isVIS2()">, 46 AssemblerPredicate<(all_of FeatureVIS2)>; 47def HasVIS3 : Predicate<"Subtarget->isVIS3()">, 48 AssemblerPredicate<(all_of FeatureVIS3)>; 49 50// HasHardQuad - This is true when the target processor supports quad floating 51// point instructions. 52def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">; 53 54// HasLeonCASA - This is true when the target processor supports the CASA 55// instruction 56def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">; 57 58// HasPWRPSR - This is true when the target processor supports partial 59// writes to the PSR register that only affects the ET field. 60def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">, 61 AssemblerPredicate<(all_of FeaturePWRPSR)>; 62 63// HasUMAC_SMAC - This is true when the target processor supports the 64// UMAC and SMAC instructions 65def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">; 66 67def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">; 68def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">; 69def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">; 70 71// UseDeprecatedInsts - This predicate is true when the target processor is a 72// V8, or when it is V9 but the V8 deprecated instructions are efficient enough 73// to use when appropriate. In either of these cases, the instruction selector 74// will pick deprecated instructions. 75def UseDeprecatedInsts : Predicate<"Subtarget->useV8DeprecatedInsts()">; 76 77//===----------------------------------------------------------------------===// 78// Instruction Pattern Stuff 79//===----------------------------------------------------------------------===// 80 81def simm10 : PatLeaf<(imm), [{ return isInt<10>(N->getSExtValue()); }]>; 82 83def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; 84 85def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; 86 87def LO10 : SDNodeXForm<imm, [{ 88 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N), 89 MVT::i32); 90}]>; 91 92def HI22 : SDNodeXForm<imm, [{ 93 // Transformation function: shift the immediate value down into the low bits. 94 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N), 95 MVT::i32); 96}]>; 97 98// Return the complement of a HI22 immediate value. 99def HI22_not : SDNodeXForm<imm, [{ 100 return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N), 101 MVT::i32); 102}]>; 103 104def SETHIimm : PatLeaf<(imm), [{ 105 return isShiftedUInt<22, 10>(N->getZExtValue()); 106}], HI22>; 107 108// The N->hasOneUse() prevents the immediate from being instantiated in both 109// normal and complement form. 110def SETHIimm_not : PatLeaf<(i32 imm), [{ 111 return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue()); 112}], HI22_not>; 113 114// Addressing modes. 115def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; 116def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>; 117 118// Constrained operands for the shift operations. 119class ShiftAmtImmAsmOperand<int Bits> : AsmOperandClass { 120 let Name = "ShiftAmtImm" # Bits; 121 let ParserMethod = "parseShiftAmtImm<" # Bits # ">"; 122} 123def shift_imm5 : Operand<i32> { 124 let ParserMatchClass = ShiftAmtImmAsmOperand<5>; 125} 126def shift_imm6 : Operand<i32> { 127 let ParserMatchClass = ShiftAmtImmAsmOperand<6>; 128} 129 130// Address operands 131def SparcMEMrrAsmOperand : AsmOperandClass { 132 let Name = "MEMrr"; 133 let ParserMethod = "parseMEMOperand"; 134} 135 136def SparcMEMriAsmOperand : AsmOperandClass { 137 let Name = "MEMri"; 138 let ParserMethod = "parseMEMOperand"; 139} 140 141def MEMrr : Operand<iPTR> { 142 let PrintMethod = "printMemOperand"; 143 let MIOperandInfo = (ops ptr_rc, ptr_rc); 144 let ParserMatchClass = SparcMEMrrAsmOperand; 145} 146def MEMri : Operand<iPTR> { 147 let PrintMethod = "printMemOperand"; 148 let MIOperandInfo = (ops ptr_rc, i32imm); 149 let ParserMatchClass = SparcMEMriAsmOperand; 150} 151 152// Represents a tail relocation operand for instructions such as add, ld, call. 153class SparcTailRelocSymAsmOperand<string Kind> : AsmOperandClass { 154 let Name = "TailRelocSym" # Kind; 155 let RenderMethod = "addTailRelocSymOperands"; 156 let PredicateMethod = "isTailRelocSym"; 157 let ParserMethod = "parseTailRelocSym<TailRelocKind::" # Kind # ">"; 158} 159 160def TailRelocSymGOTLoad : Operand<iPTR> { 161 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_GOT">; 162} 163 164def TailRelocSymTLSAdd : Operand<iPTR> { 165 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Add_TLS">; 166} 167 168def TailRelocSymTLSLoad : Operand<iPTR> { 169 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_TLS">; 170} 171 172def TailRelocSymTLSCall : Operand<iPTR> { 173 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Call_TLS">; 174} 175 176def SparcMembarTagAsmOperand : AsmOperandClass { 177 let Name = "MembarTag"; 178 let ParserMethod = "parseMembarTag"; 179} 180 181def MembarTag : Operand<i32> { 182 let PrintMethod = "printMembarTag"; 183 let ParserMatchClass = SparcMembarTagAsmOperand; 184} 185 186// Branch targets have OtherVT type. 187def brtarget : Operand<OtherVT> { 188 let EncoderMethod = "getBranchTargetOpValue"; 189} 190 191def bprtarget : Operand<OtherVT> { 192 let EncoderMethod = "getBranchPredTargetOpValue"; 193} 194 195def bprtarget16 : Operand<OtherVT> { 196 let EncoderMethod = "getBranchOnRegTargetOpValue"; 197} 198 199def SparcCallTargetAsmOperand : AsmOperandClass { 200 let Name = "CallTarget"; 201 let ParserMethod = "parseCallTarget"; 202} 203 204def calltarget : Operand<i32> { 205 let EncoderMethod = "getCallTargetOpValue"; 206 let DecoderMethod = "DecodeCall"; 207 let ParserMatchClass = SparcCallTargetAsmOperand; 208} 209 210def simm13Op : Operand<i32> { 211 let DecoderMethod = "DecodeSIMM13"; 212 let EncoderMethod = "getSImm13OpValue"; 213} 214 215// Operand for printing out a condition code. 216let PrintMethod = "printCCOperand" in { 217 def CCOp : Operand<i32>; 218 def RegCCOp : Operand<i32>; 219} 220 221def SDTSPcmpicc : 222SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; 223def SDTSPcmpfcc : 224SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; 225def SDTSPbrcc : 226SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; 227def SDTSPbrreg : 228SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>, SDTCisVT<2, i64>]>; 229def SDTSPselectcc : 230SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; 231def SDTSPselectreg : 232SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>, SDTCisVT<4, i64>]>; 233def SDTSPFTOI : 234SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; 235def SDTSPITOF : 236SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; 237def SDTSPFTOX : 238SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>; 239def SDTSPXTOF : 240SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>; 241 242def SDTSPtlsadd : 243SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 244def SDTSPtlsld : 245SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 246 247def SDTSPloadgdop : 248SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 249 250def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; 251def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; 252def SPcmpfccv9 : SDNode<"SPISD::CMPFCC_V9", SDTSPcmpfcc, [SDNPOutGlue]>; 253def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 254def SPbpicc : SDNode<"SPISD::BPICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 255def SPbpxcc : SDNode<"SPISD::BPXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 256def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 257def SPbrfccv9 : SDNode<"SPISD::BRFCC_V9", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 258def SPbrreg : SDNode<"SPISD::BR_REG", SDTSPbrreg, [SDNPHasChain, SDNPInGlue]>; 259 260def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; 261def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; 262 263def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; 264def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; 265def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>; 266def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>; 267 268def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; 269def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; 270def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; 271def SPselectreg : SDNode<"SPISD::SELECT_REG", SDTSPselectreg, [SDNPInGlue]>; 272 273// These are target-independent nodes, but have target-specific formats. 274def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>, 275 SDTCisVT<1, i32> ]>; 276def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, 277 SDTCisVT<1, i32> ]>; 278 279def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, 280 [SDNPHasChain, SDNPOutGlue]>; 281def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, 282 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 283 284def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; 285def call : SDNode<"SPISD::CALL", SDT_SPCall, 286 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 287 SDNPVariadic]>; 288 289def tailcall : SDNode<"SPISD::TAIL_CALL", SDT_SPCall, 290 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 291 SDNPVariadic]>; 292 293def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 294def retglue : SDNode<"SPISD::RET_GLUE", SDT_SPRet, 295 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 296 297def flushw : SDNode<"SPISD::FLUSHW", SDTNone, 298 [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; 299 300def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>; 301def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>; 302def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall, 303 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 304 SDNPVariadic]>; 305 306def load_gdop : SDNode<"SPISD::LOAD_GDOP", SDTSPloadgdop>; 307 308def getPCX : Operand<iPTR> { 309 let PrintMethod = "printGetPCX"; 310} 311 312//===----------------------------------------------------------------------===// 313// SPARC Flag Conditions 314//===----------------------------------------------------------------------===// 315 316// Note that these values must be kept in sync with the CCOp::CondCode enum 317// values. 318class ICC_VAL<int N> : PatLeaf<(i32 N)>; 319def ICC_NE : ICC_VAL< 9>; // Not Equal 320def ICC_E : ICC_VAL< 1>; // Equal 321def ICC_G : ICC_VAL<10>; // Greater 322def ICC_LE : ICC_VAL< 2>; // Less or Equal 323def ICC_GE : ICC_VAL<11>; // Greater or Equal 324def ICC_L : ICC_VAL< 3>; // Less 325def ICC_GU : ICC_VAL<12>; // Greater Unsigned 326def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned 327def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned 328def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned 329def ICC_POS : ICC_VAL<14>; // Positive 330def ICC_NEG : ICC_VAL< 6>; // Negative 331def ICC_VC : ICC_VAL<15>; // Overflow Clear 332def ICC_VS : ICC_VAL< 7>; // Overflow Set 333 334class FCC_VAL<int N> : PatLeaf<(i32 N)>; 335def FCC_U : FCC_VAL<23>; // Unordered 336def FCC_G : FCC_VAL<22>; // Greater 337def FCC_UG : FCC_VAL<21>; // Unordered or Greater 338def FCC_L : FCC_VAL<20>; // Less 339def FCC_UL : FCC_VAL<19>; // Unordered or Less 340def FCC_LG : FCC_VAL<18>; // Less or Greater 341def FCC_NE : FCC_VAL<17>; // Not Equal 342def FCC_E : FCC_VAL<25>; // Equal 343def FCC_UE : FCC_VAL<26>; // Unordered or Equal 344def FCC_GE : FCC_VAL<27>; // Greater or Equal 345def FCC_UGE : FCC_VAL<28>; // Unordered or Greater or Equal 346def FCC_LE : FCC_VAL<29>; // Less or Equal 347def FCC_ULE : FCC_VAL<30>; // Unordered or Less or Equal 348def FCC_O : FCC_VAL<31>; // Ordered 349 350class CPCC_VAL<int N> : PatLeaf<(i32 N)>; 351def CPCC_3 : CPCC_VAL<39>; // 3 352def CPCC_2 : CPCC_VAL<38>; // 2 353def CPCC_23 : CPCC_VAL<37>; // 2 or 3 354def CPCC_1 : CPCC_VAL<36>; // 1 355def CPCC_13 : CPCC_VAL<35>; // 1 or 3 356def CPCC_12 : CPCC_VAL<34>; // 1 or 2 357def CPCC_123 : CPCC_VAL<33>; // 1 or 2 or 3 358def CPCC_0 : CPCC_VAL<41>; // 0 359def CPCC_03 : CPCC_VAL<42>; // 0 or 3 360def CPCC_02 : CPCC_VAL<43>; // 0 or 2 361def CPCC_023 : CPCC_VAL<44>; // 0 or 2 or 3 362def CPCC_01 : CPCC_VAL<45>; // 0 or 1 363def CPCC_013 : CPCC_VAL<46>; // 0 or 1 or 3 364def CPCC_012 : CPCC_VAL<47>; // 0 or 1 or 2 365 366class RegCC_VAL<int N> : PatLeaf<(i32 N)>; 367def RegCC_Z : RegCC_VAL<49>; // Zero 368def RegCC_LEZ : RegCC_VAL<50>; // Lees or equal than zero 369def RegCC_LZ : RegCC_VAL<51>; // Less than zero 370def RegCC_NZ : RegCC_VAL<53>; // Not zero 371def RegCC_GZ : RegCC_VAL<54>; // Greater than zero 372def RegCC_GEZ : RegCC_VAL<55>; // Greater or equal to zero 373 374//===----------------------------------------------------------------------===// 375// Instruction Class Templates 376//===----------------------------------------------------------------------===// 377 378/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. 379multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode, 380 RegisterClass RC, ValueType Ty, Operand immOp, 381 InstrItinClass itin = IIC_iu_instr> { 382 def rr : F3_1<2, Op3Val, 383 (outs RC:$rd), (ins RC:$rs1, RC:$rs2), 384 !strconcat(OpcStr, " $rs1, $rs2, $rd"), 385 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))], 386 itin>; 387 def ri : F3_2<2, Op3Val, 388 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13), 389 !strconcat(OpcStr, " $rs1, $simm13, $rd"), 390 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))], 391 itin>; 392} 393 394/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no 395/// pattern. 396multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> { 397 def rr : F3_1<2, Op3Val, 398 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 399 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [], 400 itin>; 401 def ri : F3_2<2, Op3Val, 402 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 403 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [], 404 itin>; 405} 406 407// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. 408multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, 409 RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> { 410 def rr : F3_1<3, Op3Val, 411 (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr), 412 !strconcat(OpcStr, " [$addr], $rd"), 413 [(set Ty:$rd, (OpNode ADDRrr:$addr))], 414 itin>; 415 def ri : F3_2<3, Op3Val, 416 (outs RC:$rd), (ins (MEMri $rs1, $simm13):$addr), 417 !strconcat(OpcStr, " [$addr], $rd"), 418 [(set Ty:$rd, (OpNode ADDRri:$addr))], 419 itin>; 420} 421 422// TODO: Instructions of the LoadASI class are currently asm only; hooking up 423// CodeGen's address spaces to use these is a future task. 424class LoadASI<string OpcStr, bits<6> Op3Val, RegisterClass RC> : 425 F3_1_asi<3, Op3Val, (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr, i8imm:$asi), 426 !strconcat(OpcStr, "a [$addr] $asi, $rd"), 427 []>; 428 429// LoadA multiclass - As above, but also define alternate address space variant 430multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val, 431 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, 432 InstrItinClass itin = NoItinerary> : 433 Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> { 434 def Arr : LoadASI<OpcStr, LoadAOp3Val, RC>; 435} 436 437// The LDSTUB instruction is supported for asm only. 438// It is unlikely that general-purpose code could make use of it. 439// CAS is preferred for sparc v9. 440def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr), 441 "ldstub [$addr], $rd", []>; 442def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 443 "ldstub [$addr], $rd", []>; 444def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$rd), 445 (ins (MEMrr $rs1, $rs2):$addr, i8imm:$asi), 446 "ldstuba [$addr] $asi, $rd", []>; 447 448// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. 449multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, 450 RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> { 451 def rr : F3_1<3, Op3Val, 452 (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd), 453 !strconcat(OpcStr, " $rd, [$addr]"), 454 [(OpNode Ty:$rd, ADDRrr:$addr)], 455 itin>; 456 def ri : F3_2<3, Op3Val, 457 (outs), (ins (MEMri $rs1, $simm13):$addr, RC:$rd), 458 !strconcat(OpcStr, " $rd, [$addr]"), 459 [(OpNode Ty:$rd, ADDRri:$addr)], 460 itin>; 461} 462 463// TODO: Instructions of the StoreASI class are currently asm only; hooking up 464// CodeGen's address spaces to use these is a future task. 465class StoreASI<string OpcStr, bits<6> Op3Val, RegisterClass RC, 466 InstrItinClass itin = IIC_st> : 467 F3_1_asi<3, Op3Val, (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd, i8imm:$asi), 468 !strconcat(OpcStr, "a $rd, [$addr] $asi"), 469 [], 470 itin>; 471 472multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val, 473 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> : 474 Store<OpcStr, Op3Val, OpNode, RC, Ty> { 475 def Arr : StoreASI<OpcStr, StoreAOp3Val, RC>; 476} 477 478//===----------------------------------------------------------------------===// 479// Instructions 480//===----------------------------------------------------------------------===// 481 482// Pseudo instructions. 483class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> 484 : InstSP<outs, ins, asmstr, pattern> { 485 let isCodeGenOnly = 1; 486 let isPseudo = 1; 487} 488 489// GETPCX for PIC 490let Defs = [O7] in { 491 def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; 492} 493 494let Defs = [O6], Uses = [O6] in { 495def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 496 "!ADJCALLSTACKDOWN $amt1, $amt2", 497 [(callseq_start timm:$amt1, timm:$amt2)]>; 498def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 499 "!ADJCALLSTACKUP $amt1", 500 [(callseq_end timm:$amt1, timm:$amt2)]>; 501} 502 503let hasSideEffects = 1, mayStore = 1 in { 504 let rd = 0, rs1 = 0, rs2 = 0 in 505 def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), 506 "flushw", 507 [(flushw)]>, Requires<[HasV9]>; 508 let rd = 8, rs1 = 0, simm13 = 3 in 509 def TA3 : F3_2<0b10, 0b111010, (outs), (ins), 510 "ta 3", 511 [(flushw)]>; 512} 513 514// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after 515// instruction selection into a branch sequence. This has to handle all 516// permutations of selection between i32/f32/f64 on ICC and FCC. 517// Expanded after instruction selection. 518let Uses = [ICC], usesCustomInserter = 1 in { 519 def SELECT_CC_Int_ICC 520 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 521 "; SELECT_CC_Int_ICC PSEUDO!", 522 [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; 523 def SELECT_CC_FP_ICC 524 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 525 "; SELECT_CC_FP_ICC PSEUDO!", 526 [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; 527 528 def SELECT_CC_DFP_ICC 529 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 530 "; SELECT_CC_DFP_ICC PSEUDO!", 531 [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; 532 533 def SELECT_CC_QFP_ICC 534 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 535 "; SELECT_CC_QFP_ICC PSEUDO!", 536 [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>; 537} 538 539let Uses = [ICC], usesCustomInserter = 1 in { 540 def SELECT_CC_Int_XCC 541 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 542 "; SELECT_CC_Int_XCC PSEUDO!", 543 [(set i32:$dst, (SPselectxcc i32:$T, i32:$F, imm:$Cond))]>; 544 def SELECT_CC_FP_XCC 545 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 546 "; SELECT_CC_FP_XCC PSEUDO!", 547 [(set f32:$dst, (SPselectxcc f32:$T, f32:$F, imm:$Cond))]>; 548 549 def SELECT_CC_DFP_XCC 550 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 551 "; SELECT_CC_DFP_XCC PSEUDO!", 552 [(set f64:$dst, (SPselectxcc f64:$T, f64:$F, imm:$Cond))]>; 553 554 def SELECT_CC_QFP_XCC 555 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 556 "; SELECT_CC_QFP_XCC PSEUDO!", 557 [(set f128:$dst, (SPselectxcc f128:$T, f128:$F, imm:$Cond))]>; 558} 559 560let usesCustomInserter = 1, Uses = [FCC0] in { 561 562 def SELECT_CC_Int_FCC 563 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 564 "; SELECT_CC_Int_FCC PSEUDO!", 565 [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; 566 567 def SELECT_CC_FP_FCC 568 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 569 "; SELECT_CC_FP_FCC PSEUDO!", 570 [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; 571 def SELECT_CC_DFP_FCC 572 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 573 "; SELECT_CC_DFP_FCC PSEUDO!", 574 [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; 575 def SELECT_CC_QFP_FCC 576 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 577 "; SELECT_CC_QFP_FCC PSEUDO!", 578 [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; 579} 580 581// Section B.1 - Load Integer Instructions, p. 90 582defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>; 583defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>; 584defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8, IntRegs, i32>; 585defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>; 586defm LD : LoadA<"ld", 0b000000, 0b010000, load, IntRegs, i32>; 587defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>; 588 589// Section B.2 - Load Floating-point Instructions, p. 92 590defm LDF : Load<"ld", 0b100000, load, FPRegs, f32, IIC_iu_or_fpu_instr>; 591def LDFArr : LoadASI<"ld", 0b110000, FPRegs>, 592 Requires<[HasV9]>; 593 594defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64, IIC_ldd>; 595def LDDFArr : LoadASI<"ldd", 0b110011, DFPRegs>, 596 Requires<[HasV9]>; 597defm LDQF : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>, 598 Requires<[HasV9, HasHardQuad]>; 599 600defm LDC : Load<"ld", 0b110000, load, CoprocRegs, i32>; 601defm LDDC : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>; 602 603let Defs = [CPSR] in { 604 let rd = 0 in { 605 def LDCSRrr : F3_1<3, 0b110001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 606 "ld [$addr], %csr", []>; 607 def LDCSRri : F3_2<3, 0b110001, (outs), (ins (MEMri $rs1, $simm13):$addr), 608 "ld [$addr], %csr", []>; 609 } 610} 611 612let Defs = [FSR] in { 613 let rd = 0 in { 614 def LDFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 615 "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; 616 def LDFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr), 617 "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; 618 } 619 let rd = 1 in { 620 def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 621 "ldx [$addr], %fsr", []>, Requires<[HasV9]>; 622 def LDXFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr), 623 "ldx [$addr], %fsr", []>, Requires<[HasV9]>; 624 } 625} 626 627let mayLoad = 1, isAsmParserOnly = 1 in { 628 def GDOP_LDrr : F3_1<3, 0b000000, 629 (outs IntRegs:$rd), 630 (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymGOTLoad:$sym), 631 "ld [$addr], $rd, $sym", 632 [(set i32:$rd, 633 (load_gdop ADDRrr:$addr, tglobaladdr:$sym))]>; 634} 635 636// Section B.4 - Store Integer Instructions, p. 95 637defm STB : StoreA<"stb", 0b000101, 0b010101, truncstorei8, IntRegs, i32>; 638defm STH : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>; 639defm ST : StoreA<"st", 0b000100, 0b010100, store, IntRegs, i32>; 640defm STD : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>; 641 642// Section B.5 - Store Floating-point Instructions, p. 97 643defm STF : Store<"st", 0b100100, store, FPRegs, f32>; 644def STFArr : StoreASI<"st", 0b110100, FPRegs>, 645 Requires<[HasV9]>; 646defm STDF : Store<"std", 0b100111, store, DFPRegs, f64, IIC_std>; 647def STDFArr : StoreASI<"std", 0b110111, DFPRegs>, 648 Requires<[HasV9]>; 649defm STQF : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>, 650 Requires<[HasV9, HasHardQuad]>; 651 652defm STC : Store<"st", 0b110100, store, CoprocRegs, i32>; 653defm STDC : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>; 654 655let rd = 0 in { 656 let Defs = [CPSR] in { 657 def STCSRrr : F3_1<3, 0b110101, (outs (MEMrr $rs1, $rs2):$addr), (ins), 658 "st %csr, [$addr]", [], IIC_st>; 659 def STCSRri : F3_2<3, 0b110101, (outs (MEMri $rs1, $simm13):$addr), (ins), 660 "st %csr, [$addr]", [], IIC_st>; 661 } 662 let Defs = [CPQ] in { 663 def STDCQrr : F3_1<3, 0b110110, (outs (MEMrr $rs1, $rs2):$addr), (ins), 664 "std %cq, [$addr]", [], IIC_std>; 665 def STDCQri : F3_2<3, 0b110110, (outs (MEMri $rs1, $simm13):$addr), (ins), 666 "std %cq, [$addr]", [], IIC_std>; 667 } 668} 669 670let rd = 0 in { 671 let Defs = [FSR] in { 672 def STFSRrr : F3_1<3, 0b100101, (outs (MEMrr $rs1, $rs2):$addr), (ins), 673 "st %fsr, [$addr]", [], IIC_st>; 674 def STFSRri : F3_2<3, 0b100101, (outs (MEMri $rs1, $simm13):$addr), (ins), 675 "st %fsr, [$addr]", [], IIC_st>; 676 } 677 let Defs = [FQ] in { 678 def STDFQrr : F3_1<3, 0b100110, (outs (MEMrr $rs1, $rs2):$addr), (ins), 679 "std %fq, [$addr]", [], IIC_std>; 680 def STDFQri : F3_2<3, 0b100110, (outs (MEMri $rs1, $simm13):$addr), (ins), 681 "std %fq, [$addr]", [], IIC_std>; 682 } 683} 684let rd = 1, Defs = [FSR] in { 685 def STXFSRrr : F3_1<3, 0b100101, (outs (MEMrr $rs1, $rs2):$addr), (ins), 686 "stx %fsr, [$addr]", []>, Requires<[HasV9]>; 687 def STXFSRri : F3_2<3, 0b100101, (outs (MEMri $rs1, $simm13):$addr), (ins), 688 "stx %fsr, [$addr]", []>, Requires<[HasV9]>; 689} 690 691// Section B.8 - SWAP Register with Memory Instruction 692// (Atomic swap) 693let Constraints = "$val = $rd" in { 694 def SWAPrr : F3_1<3, 0b001111, 695 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, IntRegs:$val), 696 "swap [$addr], $rd", 697 [(set i32:$rd, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>; 698 def SWAPri : F3_2<3, 0b001111, 699 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr, IntRegs:$val), 700 "swap [$addr], $rd", 701 [(set i32:$rd, (atomic_swap_32 ADDRri:$addr, i32:$val))]>; 702 def SWAPArr : F3_1_asi<3, 0b011111, 703 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, i8imm:$asi, IntRegs:$val), 704 "swapa [$addr] $asi, $rd", 705 [/*FIXME: pattern?*/]>; 706} 707 708 709// Section B.9 - SETHI Instruction, p. 104 710def SETHIi: F2_1<0b100, 711 (outs IntRegs:$rd), (ins i32imm:$imm22), 712 "sethi $imm22, $rd", 713 [(set i32:$rd, SETHIimm:$imm22)], 714 IIC_iu_instr>; 715 716// Section B.10 - NOP Instruction, p. 105 717// (It's a special case of SETHI) 718let rd = 0, imm22 = 0 in 719 def NOP : F2_1<0b100, (outs), (ins), "nop", []>; 720 721// Section B.11 - Logical Instructions, p. 106 722defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>; 723 724def ANDNrr : F3_1<2, 0b000101, 725 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 726 "andn $rs1, $rs2, $rd", 727 [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>; 728def ANDNri : F3_2<2, 0b000101, 729 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 730 "andn $rs1, $simm13, $rd", []>; 731 732defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>; 733 734def ORNrr : F3_1<2, 0b000110, 735 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 736 "orn $rs1, $rs2, $rd", 737 [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>; 738def ORNri : F3_2<2, 0b000110, 739 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 740 "orn $rs1, $simm13, $rd", []>; 741defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>; 742 743def XNORrr : F3_1<2, 0b000111, 744 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 745 "xnor $rs1, $rs2, $rd", 746 [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>; 747def XNORri : F3_2<2, 0b000111, 748 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 749 "xnor $rs1, $simm13, $rd", []>; 750 751def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2), 752 (ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; 753 754def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2), 755 (ORNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; 756 757let Defs = [ICC] in { 758 defm ANDCC : F3_12np<"andcc", 0b010001>; 759 defm ANDNCC : F3_12np<"andncc", 0b010101>; 760 defm ORCC : F3_12np<"orcc", 0b010010>; 761 defm ORNCC : F3_12np<"orncc", 0b010110>; 762 defm XORCC : F3_12np<"xorcc", 0b010011>; 763 defm XNORCC : F3_12np<"xnorcc", 0b010111>; 764} 765 766// Section B.12 - Shift Instructions, p. 107 767defm SLL : F3_S<"sll", 0b100101, 0, shl, i32, shift_imm5, IntRegs>; 768defm SRL : F3_S<"srl", 0b100110, 0, srl, i32, shift_imm5, IntRegs>; 769defm SRA : F3_S<"sra", 0b100111, 0, sra, i32, shift_imm5, IntRegs>; 770 771// Section B.13 - Add Instructions, p. 108 772defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>; 773 774// "LEA" forms of add (patterns to make tblgen happy) 775let Predicates = [Is32Bit], isCodeGenOnly = 1 in 776 def LEA_ADDri : F3_2<2, 0b000000, 777 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 778 "add ${addr:arith}, $rd", 779 [(set iPTR:$rd, ADDRri:$addr)]>; 780 781let Defs = [ICC] in 782 defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>; 783 784let Uses = [ICC] in 785 defm ADDC : F3_12np<"addx", 0b001000>; 786 787let Uses = [ICC], Defs = [ICC] in 788 defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>; 789 790// Section B.15 - Subtract Instructions, p. 110 791defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>; 792let Uses = [ICC], Defs = [ICC] in 793 defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>; 794 795let Defs = [ICC] in 796 defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>; 797 798let Uses = [ICC] in 799 defm SUBC : F3_12np <"subx", 0b001100>; 800 801// cmp (from Section A.3) is a specialized alias for subcc 802let Defs = [ICC], rd = 0 in { 803 def CMPrr : F3_1<2, 0b010100, 804 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 805 "cmp $rs1, $rs2", 806 [(SPcmpicc i32:$rs1, i32:$rs2)]>; 807 def CMPri : F3_2<2, 0b010100, 808 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 809 "cmp $rs1, $simm13", 810 [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>; 811} 812 813// Section B.18 - Multiply Instructions, p. 113 814let Defs = [Y] in { 815 defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>; 816 defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>; 817} 818 819let Defs = [Y, ICC] in { 820 defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>; 821 defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>; 822} 823 824let Defs = [Y, ICC], Uses = [Y, ICC] in { 825 defm MULSCC : F3_12np<"mulscc", 0b100100>; 826} 827 828// Section B.19 - Divide Instructions, p. 115 829let Uses = [Y], Defs = [Y] in { 830 defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>; 831 defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>; 832} 833 834let Uses = [Y], Defs = [Y, ICC] in { 835 defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>; 836 defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>; 837} 838 839// Section B.20 - SAVE and RESTORE, p. 117 840defm SAVE : F3_12np<"save" , 0b111100>; 841defm RESTORE : F3_12np<"restore", 0b111101>; 842 843// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 844// Section A.7 - Branch on Integer Condition Codes with Prediction (SPARC v9) 845 846let isBranch = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { 847// unconditional branch class. 848class BranchAlways<dag ins, string asmstr, list<dag> pattern> 849 : F2_2<0b010, 0, (outs), ins, asmstr, pattern>; 850 851// Same as BranchAlways but uses the new v9 encoding 852class BranchPredictAlways<dag ins, string asmstr, list<dag> pattern> 853 : F2_3<0b001, 0, 1, (outs), ins, asmstr, pattern>; 854} 855 856let cond = 8 in 857 def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>; 858 859let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 860 861// conditional branch class: 862class BranchSP<dag ins, string asmstr, list<dag> pattern> 863 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>; 864 865// conditional branch with annul class: 866class BranchSPA<dag ins, string asmstr, list<dag> pattern> 867 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>; 868 869// Conditional branch class on %icc|%xcc with predication: 870multiclass IPredBranch<string regstr, list<dag> CCPattern> { 871 def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), 872 !strconcat("b$cond ", !strconcat(regstr, ", $imm19")), 873 CCPattern, 874 IIC_iu_instr>; 875 def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), 876 !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")), 877 [], 878 IIC_iu_instr>; 879 def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), 880 !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")), 881 [], 882 IIC_iu_instr>; 883 def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), 884 !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")), 885 [], 886 IIC_iu_instr>; 887} 888 889} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 890 891 892// Indirect branch instructions. 893let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1, 894 isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in { 895 def BINDrr : F3_1<2, 0b111000, 896 (outs), (ins (MEMrr $rs1, $rs2):$addr), 897 "jmp $addr", 898 [(brind ADDRrr:$addr)]>; 899 def BINDri : F3_2<2, 0b111000, 900 (outs), (ins (MEMri $rs1, $simm13):$addr), 901 "jmp $addr", 902 [(brind ADDRri:$addr)]>; 903} 904 905let Uses = [ICC] in { 906 def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond), 907 "b$cond $imm22", 908 [(SPbricc bb:$imm22, imm:$cond)]>; 909 def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond), 910 "b$cond,a $imm22", []>; 911 912 let Predicates = [HasV9], cc = 0b00 in 913 defm BPI : IPredBranch<"%icc", [(SPbpicc bb:$imm19, imm:$cond)]>; 914} 915 916// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 917 918let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 919 920// floating-point conditional branch class: 921class FPBranchSP<dag ins, string asmstr, list<dag> pattern> 922 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; 923 924// floating-point conditional branch with annul class: 925class FPBranchSPA<dag ins, string asmstr, list<dag> pattern> 926 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; 927 928// Conditional branch class on %fcc0-%fcc3 with predication: 929multiclass FPredBranch { 930 def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, 931 FCCRegs:$cc), 932 "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>; 933 def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, 934 FCCRegs:$cc), 935 "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>; 936 def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, 937 FCCRegs:$cc), 938 "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>; 939 def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, 940 FCCRegs:$cc), 941 "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>; 942} 943} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 944 945let Uses = [FCC0] in { 946 def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond), 947 "fb$cond $imm22", 948 [(SPbrfcc bb:$imm22, imm:$cond)]>; 949 def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), 950 "fb$cond,a $imm22", []>; 951} 952 953// Variants of FBCOND that uses V9 opcode 954let Predicates = [HasV9], Uses = [FCC0], cc = 0, 955 isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 956 def FBCOND_V9 : F2_3<0b101, 0, 1, (outs), 957 (ins bprtarget:$imm19, CCOp:$cond), 958 "fb$cond %fcc0, $imm19", 959 [(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>; 960 def FBCONDA_V9 : F2_3<0b101, 1, 1, (outs), 961 (ins bprtarget:$imm19, CCOp:$cond), 962 "fb$cond,a %fcc0, $imm19", 963 [(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>; 964} 965 966let Predicates = [HasV9] in 967 defm BPF : FPredBranch; 968 969// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123 970let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 971 972// co-processor conditional branch class: 973class CPBranchSP<dag ins, string asmstr, list<dag> pattern> 974 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>; 975 976// co-processor conditional branch with annul class: 977class CPBranchSPA<dag ins, string asmstr, list<dag> pattern> 978 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>; 979 980} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 981 982def CBCOND : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond), 983 "cb$cond $imm22", 984 [(SPbrfcc bb:$imm22, imm:$cond)]>; 985def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), 986 "cb$cond,a $imm22", []>; 987 988// Section B.24 - Call and Link Instruction, p. 125 989// This is the only Format 1 instruction 990let Uses = [O6], 991 hasDelaySlot = 1, isCall = 1 in { 992 def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), 993 "call $disp", 994 [], 995 IIC_jmp_or_call> { 996 bits<30> disp; 997 let op = 1; 998 let Inst{29-0} = disp; 999 } 1000 1001 // indirect calls: special cases of JMPL. 1002 let isCodeGenOnly = 1, rd = 15 in { 1003 def CALLrr : F3_1<2, 0b111000, 1004 (outs), (ins (MEMrr $rs1, $rs2):$addr, variable_ops), 1005 "call $addr", 1006 [(call ADDRrr:$addr)], 1007 IIC_jmp_or_call>; 1008 def CALLri : F3_2<2, 0b111000, 1009 (outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops), 1010 "call $addr", 1011 [(call ADDRri:$addr)], 1012 IIC_jmp_or_call>; 1013 } 1014} 1015 1016// Section B.25 - Jump and Link Instruction 1017 1018// JMPL Instruction. 1019let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { 1020 def JMPLrr: F3_1<2, 0b111000, 1021 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr), 1022 "jmpl $addr, $rd", 1023 [], 1024 IIC_jmp_or_call>; 1025 def JMPLri: F3_2<2, 0b111000, 1026 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 1027 "jmpl $addr, $rd", 1028 [], 1029 IIC_jmp_or_call>; 1030} 1031 1032// Section A.3 - Synthetic Instructions, p. 85 1033// special cases of JMPL: 1034let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, 1035 isCodeGenOnly = 1 in { 1036 let rd = 0, rs1 = 15 in 1037 def RETL: F3_2<2, 0b111000, 1038 (outs), (ins i32imm:$simm13), 1039 "jmp %o7+$simm13", 1040 [(retglue simm13:$simm13)], 1041 IIC_jmp_or_call>; 1042 1043 let rd = 0, rs1 = 31 in 1044 def RET: F3_2<2, 0b111000, 1045 (outs), (ins i32imm:$simm13), 1046 "jmp %i7+$simm13", 1047 [], 1048 IIC_jmp_or_call>; 1049} 1050 1051// Section B.26 - Return from Trap Instruction 1052let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, 1053 isBarrier = 1, rd = 0 in { 1054 def RETTrr : F3_1<2, 0b111001, 1055 (outs), (ins (MEMrr $rs1, $rs2):$addr), 1056 "rett $addr", 1057 [], 1058 IIC_jmp_or_call>; 1059 def RETTri : F3_2<2, 0b111001, 1060 (outs), (ins (MEMri $rs1, $simm13):$addr), 1061 "rett $addr", 1062 [], 1063 IIC_jmp_or_call>; 1064} 1065 1066 1067// Section B.27 - Trap on Integer Condition Codes Instruction 1068// conditional branch class: 1069let DecoderNamespace = "SparcV8", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in 1070{ 1071 def TRAPrr : TRAPSPrr<0b111010, 1072 (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), 1073 "t$cond $rs1 + $rs2", 1074 []>; 1075 def TRAPri : TRAPSPri<0b111010, 1076 (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), 1077 "t$cond $rs1 + $imm", 1078 []>; 1079} 1080 1081multiclass TRAP<string regStr> { 1082 def rr : TRAPSPrr<0b111010, 1083 (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), 1084 !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), 1085 []>; 1086 def ri : TRAPSPri<0b111010, 1087 (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), 1088 !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), 1089 []>; 1090} 1091 1092let DecoderNamespace = "SparcV9", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in 1093 defm TICC : TRAP<"%icc">; 1094 1095 1096let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in 1097 def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; 1098 1099let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in 1100 def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>; 1101 1102// Section B.28 - Read State Register Instructions 1103let rs2 = 0 in 1104 def RDASR : F3_1<2, 0b101000, 1105 (outs IntRegs:$rd), (ins ASRRegs:$rs1), 1106 "rd $rs1, $rd", []>; 1107 1108// PSR, WIM, and TBR don't exist on the SparcV9, only the V8. 1109let Predicates = [HasNoV9] in { 1110 let rs2 = 0, rs1 = 0, Uses=[PSR] in 1111 def RDPSR : F3_1<2, 0b101001, 1112 (outs IntRegs:$rd), (ins), 1113 "rd %psr, $rd", []>; 1114 1115 let rs2 = 0, rs1 = 0, Uses=[WIM] in 1116 def RDWIM : F3_1<2, 0b101010, 1117 (outs IntRegs:$rd), (ins), 1118 "rd %wim, $rd", []>; 1119 1120 let rs2 = 0, rs1 = 0, Uses=[TBR] in 1121 def RDTBR : F3_1<2, 0b101011, 1122 (outs IntRegs:$rd), (ins), 1123 "rd %tbr, $rd", []>; 1124} 1125 1126// PC don't exist on the SparcV8, only the V9. 1127let Predicates = [HasV9] in { 1128 let rs2 = 0, rs1 = 5 in 1129 def RDPC : F3_1<2, 0b101000, 1130 (outs IntRegs:$rd), (ins), 1131 "rd %pc, $rd", []>; 1132} 1133 1134// Section B.29 - Write State Register Instructions 1135def WRASRrr : F3_1<2, 0b110000, 1136 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 1137 "wr $rs1, $rs2, $rd", []>; 1138def WRASRri : F3_2<2, 0b110000, 1139 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 1140 "wr $rs1, $simm13, $rd", []>; 1141 1142// PSR, WIM, and TBR don't exist on the SparcV9, only the V8. 1143let Predicates = [HasNoV9] in { 1144 let Defs = [PSR], rd=0 in { 1145 def WRPSRrr : F3_1<2, 0b110001, 1146 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1147 "wr $rs1, $rs2, %psr", []>; 1148 def WRPSRri : F3_2<2, 0b110001, 1149 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1150 "wr $rs1, $simm13, %psr", []>; 1151 } 1152 1153 let Defs = [WIM], rd=0 in { 1154 def WRWIMrr : F3_1<2, 0b110010, 1155 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1156 "wr $rs1, $rs2, %wim", []>; 1157 def WRWIMri : F3_2<2, 0b110010, 1158 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1159 "wr $rs1, $simm13, %wim", []>; 1160 } 1161 1162 let Defs = [TBR], rd=0 in { 1163 def WRTBRrr : F3_1<2, 0b110011, 1164 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1165 "wr $rs1, $rs2, %tbr", []>; 1166 def WRTBRri : F3_2<2, 0b110011, 1167 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1168 "wr $rs1, $simm13, %tbr", []>; 1169 } 1170} 1171 1172// Section B.30 - STBAR Instruction 1173let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in 1174 def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; 1175 1176 1177// Section B.31 - Unimplemented Instruction 1178let rd = 0 in 1179 def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), 1180 "unimp $imm22", []>; 1181 1182// Section B.32 - Flush Instruction Memory 1183let rd = 0 in { 1184 def FLUSHrr : F3_1<2, 0b111011, (outs), (ins (MEMrr $rs1, $rs2):$addr), 1185 "flush $addr", []>; 1186 def FLUSHri : F3_2<2, 0b111011, (outs), (ins (MEMri $rs1, $simm13):$addr), 1187 "flush $addr", []>; 1188 1189 // The no-arg FLUSH is only here for the benefit of the InstAlias 1190 // "flush", which cannot seem to use FLUSHrr, due to the inability 1191 // to construct a MEMrr with fixed G0 registers. 1192 let rs1 = 0, rs2 = 0 in 1193 def FLUSH : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>; 1194} 1195 1196// Section B.33 - Floating-point Operate (FPop) Instructions 1197 1198// Convert Integer to Floating-point Instructions, p. 141 1199def FITOS : F3_3u<2, 0b110100, 0b011000100, 1200 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1201 "fitos $rs2, $rd", 1202 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))], 1203 IIC_fpu_fast_instr>; 1204def FITOD : F3_3u<2, 0b110100, 0b011001000, 1205 (outs DFPRegs:$rd), (ins FPRegs:$rs2), 1206 "fitod $rs2, $rd", 1207 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))], 1208 IIC_fpu_fast_instr>; 1209def FITOQ : F3_3u<2, 0b110100, 0b011001100, 1210 (outs QFPRegs:$rd), (ins FPRegs:$rs2), 1211 "fitoq $rs2, $rd", 1212 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>, 1213 Requires<[HasHardQuad]>; 1214 1215// Convert Floating-point to Integer Instructions, p. 142 1216def FSTOI : F3_3u<2, 0b110100, 0b011010001, 1217 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1218 "fstoi $rs2, $rd", 1219 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))], 1220 IIC_fpu_fast_instr>; 1221def FDTOI : F3_3u<2, 0b110100, 0b011010010, 1222 (outs FPRegs:$rd), (ins DFPRegs:$rs2), 1223 "fdtoi $rs2, $rd", 1224 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))], 1225 IIC_fpu_fast_instr>; 1226def FQTOI : F3_3u<2, 0b110100, 0b011010011, 1227 (outs FPRegs:$rd), (ins QFPRegs:$rs2), 1228 "fqtoi $rs2, $rd", 1229 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>, 1230 Requires<[HasHardQuad]>; 1231 1232// Convert between Floating-point Formats Instructions, p. 143 1233def FSTOD : F3_3u<2, 0b110100, 0b011001001, 1234 (outs DFPRegs:$rd), (ins FPRegs:$rs2), 1235 "fstod $rs2, $rd", 1236 [(set f64:$rd, (fpextend f32:$rs2))], 1237 IIC_fpu_stod>; 1238def FSTOQ : F3_3u<2, 0b110100, 0b011001101, 1239 (outs QFPRegs:$rd), (ins FPRegs:$rs2), 1240 "fstoq $rs2, $rd", 1241 [(set f128:$rd, (fpextend f32:$rs2))]>, 1242 Requires<[HasHardQuad]>; 1243def FDTOS : F3_3u<2, 0b110100, 0b011000110, 1244 (outs FPRegs:$rd), (ins DFPRegs:$rs2), 1245 "fdtos $rs2, $rd", 1246 [(set f32:$rd, (fpround f64:$rs2))], 1247 IIC_fpu_fast_instr>; 1248def FDTOQ : F3_3u<2, 0b110100, 0b011001110, 1249 (outs QFPRegs:$rd), (ins DFPRegs:$rs2), 1250 "fdtoq $rs2, $rd", 1251 [(set f128:$rd, (fpextend f64:$rs2))]>, 1252 Requires<[HasHardQuad]>; 1253def FQTOS : F3_3u<2, 0b110100, 0b011000111, 1254 (outs FPRegs:$rd), (ins QFPRegs:$rs2), 1255 "fqtos $rs2, $rd", 1256 [(set f32:$rd, (fpround f128:$rs2))]>, 1257 Requires<[HasHardQuad]>; 1258def FQTOD : F3_3u<2, 0b110100, 0b011001011, 1259 (outs DFPRegs:$rd), (ins QFPRegs:$rs2), 1260 "fqtod $rs2, $rd", 1261 [(set f64:$rd, (fpround f128:$rs2))]>, 1262 Requires<[HasHardQuad]>; 1263 1264// Floating-point Move Instructions, p. 144 1265def FMOVS : F3_3u<2, 0b110100, 0b000000001, 1266 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1267 "fmovs $rs2, $rd", []>; 1268def FNEGS : F3_3u<2, 0b110100, 0b000000101, 1269 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1270 "fnegs $rs2, $rd", 1271 [(set f32:$rd, (fneg f32:$rs2))], 1272 IIC_fpu_negs>; 1273def FABSS : F3_3u<2, 0b110100, 0b000001001, 1274 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1275 "fabss $rs2, $rd", 1276 [(set f32:$rd, (fabs f32:$rs2))], 1277 IIC_fpu_abs>; 1278 1279 1280// Floating-point Square Root Instructions, p.145 1281// FSQRTS generates an erratum on LEON processors, so by disabling this instruction 1282// this will be promoted to use FSQRTD with doubles instead. 1283let Predicates = [HasNoFdivSqrtFix] in 1284def FSQRTS : F3_3u<2, 0b110100, 0b000101001, 1285 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1286 "fsqrts $rs2, $rd", 1287 [(set f32:$rd, (fsqrt f32:$rs2))], 1288 IIC_fpu_sqrts>; 1289def FSQRTD : F3_3u<2, 0b110100, 0b000101010, 1290 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1291 "fsqrtd $rs2, $rd", 1292 [(set f64:$rd, (fsqrt f64:$rs2))], 1293 IIC_fpu_sqrtd>; 1294def FSQRTQ : F3_3u<2, 0b110100, 0b000101011, 1295 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1296 "fsqrtq $rs2, $rd", 1297 [(set f128:$rd, (fsqrt f128:$rs2))]>, 1298 Requires<[HasHardQuad]>; 1299 1300 1301 1302// Floating-point Add and Subtract Instructions, p. 146 1303def FADDS : F3_3<2, 0b110100, 0b001000001, 1304 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1305 "fadds $rs1, $rs2, $rd", 1306 [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))], 1307 IIC_fpu_fast_instr>; 1308def FADDD : F3_3<2, 0b110100, 0b001000010, 1309 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1310 "faddd $rs1, $rs2, $rd", 1311 [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))], 1312 IIC_fpu_fast_instr>; 1313def FADDQ : F3_3<2, 0b110100, 0b001000011, 1314 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1315 "faddq $rs1, $rs2, $rd", 1316 [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>, 1317 Requires<[HasHardQuad]>; 1318 1319def FSUBS : F3_3<2, 0b110100, 0b001000101, 1320 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1321 "fsubs $rs1, $rs2, $rd", 1322 [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))], 1323 IIC_fpu_fast_instr>; 1324def FSUBD : F3_3<2, 0b110100, 0b001000110, 1325 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1326 "fsubd $rs1, $rs2, $rd", 1327 [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))], 1328 IIC_fpu_fast_instr>; 1329def FSUBQ : F3_3<2, 0b110100, 0b001000111, 1330 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1331 "fsubq $rs1, $rs2, $rd", 1332 [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>, 1333 Requires<[HasHardQuad]>; 1334 1335 1336// Floating-point Multiply and Divide Instructions, p. 147 1337def FMULS : F3_3<2, 0b110100, 0b001001001, 1338 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1339 "fmuls $rs1, $rs2, $rd", 1340 [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))], 1341 IIC_fpu_muls>, 1342 Requires<[HasFMULS]>; 1343def FMULD : F3_3<2, 0b110100, 0b001001010, 1344 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1345 "fmuld $rs1, $rs2, $rd", 1346 [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))], 1347 IIC_fpu_muld>; 1348def FMULQ : F3_3<2, 0b110100, 0b001001011, 1349 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1350 "fmulq $rs1, $rs2, $rd", 1351 [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>, 1352 Requires<[HasHardQuad]>; 1353 1354def FSMULD : F3_3<2, 0b110100, 0b001101001, 1355 (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1356 "fsmuld $rs1, $rs2, $rd", 1357 [(set f64:$rd, (fmul (fpextend f32:$rs1), 1358 (fpextend f32:$rs2)))], 1359 IIC_fpu_muld>, 1360 Requires<[HasFSMULD]>; 1361def FDMULQ : F3_3<2, 0b110100, 0b001101110, 1362 (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1363 "fdmulq $rs1, $rs2, $rd", 1364 [(set f128:$rd, (fmul (fpextend f64:$rs1), 1365 (fpextend f64:$rs2)))]>, 1366 Requires<[HasHardQuad]>; 1367 1368// FDIVS generates an erratum on LEON processors, so by disabling this instruction 1369// this will be promoted to use FDIVD with doubles instead. 1370def FDIVS : F3_3<2, 0b110100, 0b001001101, 1371 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1372 "fdivs $rs1, $rs2, $rd", 1373 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))], 1374 IIC_fpu_divs>; 1375def FDIVD : F3_3<2, 0b110100, 0b001001110, 1376 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1377 "fdivd $rs1, $rs2, $rd", 1378 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))], 1379 IIC_fpu_divd>; 1380def FDIVQ : F3_3<2, 0b110100, 0b001001111, 1381 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1382 "fdivq $rs1, $rs2, $rd", 1383 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>, 1384 Requires<[HasHardQuad]>; 1385 1386// Floating-point Compare Instructions, p. 148 1387// Note: the 2nd template arg is different for these guys. 1388// Note 2: the result of a FCMP is not available until the 2nd cycle 1389// after the instr is retired, but there is no interlock in Sparc V8. 1390// This behavior is modeled with a forced noop after the instruction in 1391// DelaySlotFiller. 1392 1393let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { 1394 def FCMPS : F3_3c<2, 0b110101, 0b001010001, 1395 (outs), (ins FPRegs:$rs1, FPRegs:$rs2), 1396 "fcmps $rs1, $rs2", 1397 [(SPcmpfcc f32:$rs1, f32:$rs2)], 1398 IIC_fpu_fast_instr>; 1399 def FCMPD : F3_3c<2, 0b110101, 0b001010010, 1400 (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1401 "fcmpd $rs1, $rs2", 1402 [(SPcmpfcc f64:$rs1, f64:$rs2)], 1403 IIC_fpu_fast_instr>; 1404 def FCMPQ : F3_3c<2, 0b110101, 0b001010011, 1405 (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1406 "fcmpq $rs1, $rs2", 1407 [(SPcmpfcc f128:$rs1, f128:$rs2)]>, 1408 Requires<[HasHardQuad]>; 1409} 1410 1411// A.13 Floating-Point Compare (SPARC v9) 1412// Note that these always write to %fcc0 instead of having its destination 1413// allocated automatically. 1414// This avoids complications with the scheduler sometimes wanting to spill 1415// the contents of an FCC, since SPARC v9 doesn't have facilities to spill 1416// an individual FCC. 1417 1418let Predicates = [HasV9], Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { 1419 def FCMPS_V9 : F3_3c<2, 0b110101, 0b001010001, 1420 (outs), (ins FPRegs:$rs1, FPRegs:$rs2), 1421 "fcmps %fcc0, $rs1, $rs2", 1422 [(SPcmpfccv9 f32:$rs1, f32:$rs2)], 1423 IIC_fpu_fast_instr>; 1424 def FCMPD_V9 : F3_3c<2, 0b110101, 0b001010010, 1425 (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1426 "fcmpd %fcc0, $rs1, $rs2", 1427 [(SPcmpfccv9 f64:$rs1, f64:$rs2)], 1428 IIC_fpu_fast_instr>; 1429 def FCMPQ_V9 : F3_3c<2, 0b110101, 0b001010011, 1430 (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1431 "fcmpq %fcc0, $rs1, $rs2", 1432 [(SPcmpfccv9 f128:$rs1, f128:$rs2)]>, 1433 Requires<[HasHardQuad]>; 1434} 1435 1436//===----------------------------------------------------------------------===// 1437// Instructions for Thread Local Storage(TLS). 1438//===----------------------------------------------------------------------===// 1439let isAsmParserOnly = 1 in { 1440def TLS_ADDrr : F3_1<2, 0b000000, 1441 (outs IntRegs:$rd), 1442 (ins IntRegs:$rs1, IntRegs:$rs2, TailRelocSymTLSAdd:$sym), 1443 "add $rs1, $rs2, $rd, $sym", 1444 [(set i32:$rd, 1445 (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>; 1446 1447let mayLoad = 1 in { 1448 def TLS_LDrr : F3_1<3, 0b000000, 1449 (outs IntRegs:$rd), 1450 (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymTLSLoad:$sym), 1451 "ld [$addr], $rd, $sym", 1452 [(set i32:$rd, 1453 (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; 1454} 1455 1456let Uses = [O6], isCall = 1, hasDelaySlot = 1 in 1457 def TLS_CALL : InstSP<(outs), 1458 (ins calltarget:$disp, TailRelocSymTLSCall:$sym, 1459 variable_ops), 1460 "call $disp, $sym", 1461 [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)], 1462 IIC_jmp_or_call> { 1463 bits<30> disp; 1464 let op = 1; 1465 let Inst{29-0} = disp; 1466} 1467} 1468 1469//===----------------------------------------------------------------------===// 1470// Instructions for tail calls. 1471//===----------------------------------------------------------------------===// 1472let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, 1473 isTerminator = 1, isBarrier = 1 in { 1474 def TAIL_CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), 1475 "call $disp", 1476 [(tailcall tglobaladdr:$disp)]> { 1477 bits<30> disp; 1478 let op = 1; 1479 let Inst{29-0} = disp; 1480 } 1481} 1482 1483def : Pat<(tailcall (iPTR texternalsym:$dst)), 1484 (TAIL_CALL texternalsym:$dst)>; 1485 1486let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, isTerminator = 1, 1487 isBarrier = 1, rd = 0 in { 1488 def TAIL_CALLri : F3_2<2, 0b111000, 1489 (outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops), 1490 "jmp $addr", 1491 [(tailcall ADDRri:$addr)]>; 1492} 1493 1494//===----------------------------------------------------------------------===// 1495// V9 Instructions 1496//===----------------------------------------------------------------------===// 1497 1498// V9 Conditional Moves. 1499let Predicates = [HasV9], Constraints = "$f = $rd" in { 1500 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. 1501 let Uses = [ICC], intcc = 1, cc = 0b00 in { 1502 def MOVICCrr 1503 : F4_1<0b101100, (outs IntRegs:$rd), 1504 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1505 "mov$cond %icc, $rs2, $rd", 1506 [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>; 1507 1508 def MOVICCri 1509 : F4_2<0b101100, (outs IntRegs:$rd), 1510 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1511 "mov$cond %icc, $simm11, $rd", 1512 [(set i32:$rd, 1513 (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>; 1514 } 1515 1516 let Uses = [FCC0], intcc = 0, cc = 0b00 in { 1517 def MOVFCCrr 1518 : F4_1<0b101100, (outs IntRegs:$rd), 1519 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1520 "mov$cond %fcc0, $rs2, $rd", 1521 [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>; 1522 def MOVFCCri 1523 : F4_2<0b101100, (outs IntRegs:$rd), 1524 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1525 "mov$cond %fcc0, $simm11, $rd", 1526 [(set i32:$rd, 1527 (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>; 1528 } 1529 1530 let Uses = [ICC], intcc = 1, opf_cc = 0b00 in { 1531 def FMOVS_ICC 1532 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1533 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1534 "fmovs$cond %icc, $rs2, $rd", 1535 [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>; 1536 def FMOVD_ICC 1537 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1538 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1539 "fmovd$cond %icc, $rs2, $rd", 1540 [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>; 1541 let Predicates = [HasV9, HasHardQuad] in 1542 def FMOVQ_ICC 1543 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1544 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1545 "fmovq$cond %icc, $rs2, $rd", 1546 [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>; 1547 } 1548 1549 let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in { 1550 def FMOVS_FCC 1551 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1552 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1553 "fmovs$cond %fcc0, $rs2, $rd", 1554 [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>; 1555 def FMOVD_FCC 1556 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1557 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1558 "fmovd$cond %fcc0, $rs2, $rd", 1559 [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>; 1560 let Predicates = [HasV9, HasHardQuad] in 1561 def FMOVQ_FCC 1562 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1563 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1564 "fmovq$cond %fcc0, $rs2, $rd", 1565 [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>; 1566 } 1567 1568} 1569 1570// Floating-Point Move Instructions, p. 164 of the V9 manual. 1571let Predicates = [HasV9] in { 1572 def FMOVD : F3_3u<2, 0b110100, 0b000000010, 1573 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1574 "fmovd $rs2, $rd", []>; 1575 let Predicates = [HasV9, HasHardQuad] in 1576 def FMOVQ : F3_3u<2, 0b110100, 0b000000011, 1577 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1578 "fmovq $rs2, $rd", []>; 1579 def FNEGD : F3_3u<2, 0b110100, 0b000000110, 1580 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1581 "fnegd $rs2, $rd", 1582 [(set f64:$rd, (fneg f64:$rs2))]>; 1583 let Predicates = [HasV9, HasHardQuad] in 1584 def FNEGQ : F3_3u<2, 0b110100, 0b000000111, 1585 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1586 "fnegq $rs2, $rd", 1587 [(set f128:$rd, (fneg f128:$rs2))]>; 1588 def FABSD : F3_3u<2, 0b110100, 0b000001010, 1589 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1590 "fabsd $rs2, $rd", 1591 [(set f64:$rd, (fabs f64:$rs2))]>; 1592 let Predicates = [HasV9, HasHardQuad] in 1593 def FABSQ : F3_3u<2, 0b110100, 0b000001011, 1594 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1595 "fabsq $rs2, $rd", 1596 [(set f128:$rd, (fabs f128:$rs2))]>; 1597} 1598 1599// Floating-point compare instruction with %fcc0-%fcc3. 1600def V9FCMPS : F3_3c<2, 0b110101, 0b001010001, 1601 (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1602 "fcmps $rd, $rs1, $rs2", []>; 1603def V9FCMPD : F3_3c<2, 0b110101, 0b001010010, 1604 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1605 "fcmpd $rd, $rs1, $rs2", []>; 1606def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011, 1607 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1608 "fcmpq $rd, $rs1, $rs2", []>, 1609 Requires<[HasHardQuad]>; 1610 1611let hasSideEffects = 1 in { 1612 def V9FCMPES : F3_3c<2, 0b110101, 0b001010101, 1613 (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1614 "fcmpes $rd, $rs1, $rs2", []>; 1615 def V9FCMPED : F3_3c<2, 0b110101, 0b001010110, 1616 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1617 "fcmped $rd, $rs1, $rs2", []>; 1618 def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111, 1619 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1620 "fcmpeq $rd, $rs1, $rs2", []>, 1621 Requires<[HasHardQuad]>; 1622} 1623 1624// Floating point conditional move instrucitons with %fcc0-%fcc3. 1625let Predicates = [HasV9] in { 1626 let Constraints = "$f = $rd", intcc = 0 in { 1627 def V9MOVFCCrr 1628 : F4_1<0b101100, (outs IntRegs:$rd), 1629 (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1630 "mov$cond $cc, $rs2, $rd", []>; 1631 def V9MOVFCCri 1632 : F4_2<0b101100, (outs IntRegs:$rd), 1633 (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1634 "mov$cond $cc, $simm11, $rd", []>; 1635 def V9FMOVS_FCC 1636 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1637 (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1638 "fmovs$cond $opf_cc, $rs2, $rd", []>; 1639 def V9FMOVD_FCC 1640 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1641 (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1642 "fmovd$cond $opf_cc, $rs2, $rd", []>; 1643 let Predicates = [HasV9, HasHardQuad] in 1644 def V9FMOVQ_FCC 1645 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1646 (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1647 "fmovq$cond $opf_cc, $rs2, $rd", []>; 1648 } // Constraints = "$f = $rd", ... 1649} // let Predicates = [hasV9] 1650 1651 1652// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear 1653// the top 32-bits before using it. To do this clearing, we use a SRLri X,0. 1654let rs1 = 0 in 1655 def POPCrr : F3_1<2, 0b101110, 1656 (outs IntRegs:$rd), (ins IntRegs:$rs2), 1657 "popc $rs2, $rd", []>, Requires<[HasV9]>; 1658def : Pat<(i32 (ctpop i32:$src)), 1659 (POPCrr (SRLri $src, 0))>; 1660 1661let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in 1662 def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13), 1663 "membar $simm13", []>; 1664 1665let Predicates = [HasV9], rd = 15, rs1 = 0b00000 in 1666 def SIR: F3_2<2, 0b110000, (outs), 1667 (ins simm13Op:$simm13), 1668 "sir $simm13", []>; 1669 1670// The CAS instruction, unlike other instructions, only comes in a 1671// form which requires an ASI be provided. The ASI value hardcoded 1672// here is ASI_PRIMARY, the default unprivileged ASI for SparcV9. 1673let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in 1674 def CASrr: F3_1_asi<3, 0b111100, 1675 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1676 IntRegs:$swap), 1677 "cas [$rs1], $rs2, $rd", 1678 [(set i32:$rd, 1679 (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>; 1680 1681 1682// CASA is supported as an instruction on some LEON3 and all LEON4 processors. 1683// This version can be automatically lowered from C code, selecting ASI 10 1684let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in 1685 def CASAasi10: F3_1_asi<3, 0b111100, 1686 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1687 IntRegs:$swap), 1688 "casa [$rs1] 10, $rs2, $rd", 1689 [(set i32:$rd, 1690 (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>; 1691 1692// CASA supported on some LEON3 and all LEON4 processors. Same pattern as 1693// CASrr, above, but with a different ASI. This version is supported for 1694// inline assembly lowering only. 1695let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in 1696 def CASArr: F3_1_asi<3, 0b111100, 1697 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1698 IntRegs:$swap, i8imm:$asi), 1699 "casa [$rs1] $asi, $rs2, $rd", []>; 1700 1701// TODO: Add DAG sequence to lower these instructions. Currently, only provided 1702// as inline assembler-supported instructions. 1703let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in { 1704 def SMACrr : F3_1<2, 0b111111, 1705 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), 1706 "smac $rs1, $rs2, $rd", 1707 [], IIC_smac_umac>; 1708 1709 def SMACri : F3_2<2, 0b111111, 1710 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), 1711 "smac $rs1, $simm13, $rd", 1712 [], IIC_smac_umac>; 1713 1714 def UMACrr : F3_1<2, 0b111110, 1715 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), 1716 "umac $rs1, $rs2, $rd", 1717 [], IIC_smac_umac>; 1718 1719 def UMACri : F3_2<2, 0b111110, 1720 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), 1721 "umac $rs1, $simm13, $rd", 1722 [], IIC_smac_umac>; 1723} 1724 1725// The partial write WRPSR instruction has a non-zero destination 1726// register value to separate it from the standard instruction. 1727let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in { 1728 def PWRPSRrr : F3_1<2, 0b110001, 1729 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1730 "pwr $rs1, $rs2, %psr", []>; 1731 def PWRPSRri : F3_2<2, 0b110001, 1732 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1733 "pwr $rs1, $simm13, %psr", []>; 1734} 1735 1736let Defs = [ICC] in { 1737defm TADDCC : F3_12np<"taddcc", 0b100000>; 1738defm TSUBCC : F3_12np<"tsubcc", 0b100001>; 1739 1740let hasSideEffects = 1 in { 1741 defm TADDCCTV : F3_12np<"taddcctv", 0b100010>; 1742 defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>; 1743} 1744} 1745 1746// Section A.11 - DONE and RETRY 1747// Section A.47 - SAVED and RESTORED 1748let Predicates = [HasV9], rs1 = 0, rs2 = 0 in { 1749 let rd = 0 in 1750 def DONE : F3_1<2, 0b111110, (outs), (ins), "done", []>; 1751 1752 let rd = 1 in 1753 def RETRY : F3_1<2, 0b111110, (outs), (ins), "retry", []>; 1754 1755 let rd = 0 in 1756 def SAVED : F3_1<2, 0b110001, (outs), (ins), "saved", []>; 1757 1758 let rd = 1 in 1759 def RESTORED : F3_1<2, 0b110001, (outs), (ins), "restored", []>; 1760} 1761 1762// Section A.42 - Prefetch Data 1763let Predicates = [HasV9] in { 1764 def PREFETCHr : F3_1<3, 0b101101, 1765 (outs), (ins (MEMrr $rs1, $rs2):$addr, shift_imm5:$rd), 1766 "prefetch [$addr], $rd", []>; 1767 def PREFETCHi : F3_2<3, 0b101101, 1768 (outs), (ins (MEMri $rs1, $simm13):$addr, shift_imm5:$rd), 1769 "prefetch [$addr], $rd", []>; 1770} 1771 1772 1773 1774// Section A.43 - Read Privileged Register Instructions 1775let Predicates = [HasV9] in { 1776let rs2 = 0 in 1777 def RDPR : F3_1<2, 0b101010, 1778 (outs IntRegs:$rd), (ins PRRegs:$rs1), 1779 "rdpr $rs1, $rd", []>; 1780} 1781 1782// Section A.62 - Write Privileged Register Instructions 1783let Predicates = [HasV9] in { 1784 def WRPRrr : F3_1<2, 0b110010, 1785 (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 1786 "wrpr $rs1, $rs2, $rd", []>; 1787 def WRPRri : F3_2<2, 0b110010, 1788 (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 1789 "wrpr $rs1, $simm13, $rd", []>; 1790} 1791 1792//===----------------------------------------------------------------------===// 1793// Non-Instruction Patterns 1794//===----------------------------------------------------------------------===// 1795 1796// Zero immediate. 1797def : Pat<(i32 0), (COPY (i32 G0))>; 1798// Small immediates. 1799def : Pat<(i32 simm13:$val), 1800 (ORri (i32 G0), imm:$val)>; 1801// Arbitrary immediates. 1802def : Pat<(i32 imm:$val), 1803 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; 1804 1805 1806// Global addresses, constant pool entries 1807let Predicates = [Is32Bit] in { 1808 1809def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; 1810def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; 1811def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; 1812def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; 1813 1814// GlobalTLS addresses 1815def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; 1816def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>; 1817def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), 1818 (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; 1819def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), 1820 (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; 1821 1822// Blockaddress 1823def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; 1824def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; 1825 1826// Add reg, lo. This is used when taking the addr of a global/constpool entry. 1827def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; 1828def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; 1829def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), 1830 (ADDri $r, tblockaddress:$in)>; 1831} 1832 1833// Calls: 1834def : Pat<(call tglobaladdr:$dst), 1835 (CALL tglobaladdr:$dst)>; 1836def : Pat<(call texternalsym:$dst), 1837 (CALL texternalsym:$dst)>; 1838 1839// Map integer extload's to zextloads. 1840def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1841def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1842def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1843def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1844def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; 1845def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; 1846 1847// zextload bool -> zextload byte 1848def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1849def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1850 1851// store 0, addr -> store %g0, addr 1852def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; 1853def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; 1854 1855// store bar for all atomic_fence in V8. 1856let Predicates = [HasNoV9] in 1857 def : Pat<(atomic_fence timm, timm), (STBAR)>; 1858 1859let Predicates = [HasV9] in 1860 def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>; 1861 1862// atomic_load addr -> load addr 1863def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1864def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1865def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; 1866def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>; 1867def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>; 1868def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>; 1869 1870// atomic_store val, addr -> store val, addr 1871def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>; 1872def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>; 1873def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>; 1874def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>; 1875def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>; 1876def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>; 1877 1878// A register pair with zero upper half. 1879// The upper part is done with ORrr instead of `COPY G0` 1880// or a normal register copy, since `COPY G0`s in that place 1881// will be converted into `COPY G0_G1` later on, which is not 1882// what we want in this case. 1883def : Pat<(build_vector (i32 0), (i32 IntRegs:$a2)), 1884 (INSERT_SUBREG (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), 1885 (ORrr (i32 G0), (i32 G0)), sub_even), 1886 (i32 IntRegs:$a2), sub_odd)>; 1887 1888// extract_vector 1889def : Pat<(extractelt (v2i32 IntPair:$Rn), 0), 1890 (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>; 1891def : Pat<(extractelt (v2i32 IntPair:$Rn), 1), 1892 (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>; 1893 1894// build_vector 1895def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)), 1896 (INSERT_SUBREG 1897 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even), 1898 (i32 IntRegs:$a2), sub_odd)>; 1899 1900 1901include "SparcInstr64Bit.td" 1902include "SparcInstrVIS.td" 1903include "SparcInstrAliases.td" 1904