1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the Sparc instructions in TableGen format. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// Instruction format superclass 15//===----------------------------------------------------------------------===// 16 17include "SparcInstrFormats.td" 18 19//===----------------------------------------------------------------------===// 20// Feature predicates. 21//===----------------------------------------------------------------------===// 22 23// True when generating 32-bit code. 24def Is32Bit : Predicate<"!Subtarget->is64Bit()">; 25 26// True when generating 64-bit code. This also implies HasV9. 27def Is64Bit : Predicate<"Subtarget->is64Bit()">; 28 29def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">, 30 AssemblerPredicate<(all_of FeatureSoftMulDiv)>; 31 32// HasV9 - This predicate is true when the target processor supports V9 33// instructions. Note that the machine may be running in 32-bit mode. 34def HasV9 : Predicate<"Subtarget->isV9()">, 35 AssemblerPredicate<(all_of FeatureV9)>; 36 37// HasNoV9 - This predicate is true when the target doesn't have V9 38// instructions. Use of this is just a hack for the isel not having proper 39// costs for V8 instructions that are more expensive than their V9 ones. 40def HasNoV9 : Predicate<"!Subtarget->isV9()">; 41 42// HasVIS - This is true when the target processor has VIS extensions. 43def HasVIS : Predicate<"Subtarget->isVIS()">, 44 AssemblerPredicate<(all_of FeatureVIS)>; 45def HasVIS2 : Predicate<"Subtarget->isVIS2()">, 46 AssemblerPredicate<(all_of FeatureVIS2)>; 47def HasVIS3 : Predicate<"Subtarget->isVIS3()">, 48 AssemblerPredicate<(all_of FeatureVIS3)>; 49 50// HasHardQuad - This is true when the target processor supports quad floating 51// point instructions. 52def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">; 53 54// HasLeonCASA - This is true when the target processor supports the Leon CASA 55// instruction. 56def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">; 57 58// HasCASA - This is true when the target processor supports CASA instruction. 59def HasCASA : Predicate<"Subtarget->hasLeonCasa() || Subtarget->isV9()">, 60 AssemblerPredicate<(any_of LeonCASA, FeatureV9)>; 61 62// HasPWRPSR - This is true when the target processor supports partial 63// writes to the PSR register that only affects the ET field. 64def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">, 65 AssemblerPredicate<(all_of FeaturePWRPSR)>; 66 67// HasUMAC_SMAC - This is true when the target processor supports the 68// UMAC and SMAC instructions 69def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">; 70 71def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">; 72def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">; 73def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">; 74 75// UseDeprecatedInsts - This predicate is true when the target processor is a 76// V8, or when it is V9 but the V8 deprecated instructions are efficient enough 77// to use when appropriate. In either of these cases, the instruction selector 78// will pick deprecated instructions. 79def UseDeprecatedInsts : Predicate<"Subtarget->useV8DeprecatedInsts()">; 80 81//===----------------------------------------------------------------------===// 82// Instruction Pattern Stuff 83//===----------------------------------------------------------------------===// 84 85def simm10 : PatLeaf<(imm), [{ return isInt<10>(N->getSExtValue()); }]>; 86 87def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; 88 89def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; 90 91def LO10 : SDNodeXForm<imm, [{ 92 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N), 93 MVT::i32); 94}]>; 95 96def HI22 : SDNodeXForm<imm, [{ 97 // Transformation function: shift the immediate value down into the low bits. 98 return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N), 99 MVT::i32); 100}]>; 101 102// Return the complement of a HI22 immediate value. 103def HI22_not : SDNodeXForm<imm, [{ 104 return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N), 105 MVT::i32); 106}]>; 107 108def SETHIimm : PatLeaf<(imm), [{ 109 return isShiftedUInt<22, 10>(N->getZExtValue()); 110}], HI22>; 111 112// The N->hasOneUse() prevents the immediate from being instantiated in both 113// normal and complement form. 114def SETHIimm_not : PatLeaf<(i32 imm), [{ 115 return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue()); 116}], HI22_not>; 117 118// Addressing modes. 119def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; 120def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [], []>; 121 122// Constrained operands for the shift operations. 123class ShiftAmtImmAsmOperand<int Bits> : AsmOperandClass { 124 let Name = "ShiftAmtImm" # Bits; 125 let ParserMethod = "parseShiftAmtImm<" # Bits # ">"; 126} 127def shift_imm5 : Operand<i32> { 128 let ParserMatchClass = ShiftAmtImmAsmOperand<5>; 129} 130def shift_imm6 : Operand<i32> { 131 let ParserMatchClass = ShiftAmtImmAsmOperand<6>; 132} 133 134// Address operands 135def SparcMEMrrAsmOperand : AsmOperandClass { 136 let Name = "MEMrr"; 137 let ParserMethod = "parseMEMOperand"; 138} 139 140def SparcMEMriAsmOperand : AsmOperandClass { 141 let Name = "MEMri"; 142 let ParserMethod = "parseMEMOperand"; 143} 144 145def MEMrr : Operand<iPTR> { 146 let PrintMethod = "printMemOperand"; 147 let MIOperandInfo = (ops ptr_rc, ptr_rc); 148 let ParserMatchClass = SparcMEMrrAsmOperand; 149} 150def MEMri : Operand<iPTR> { 151 let PrintMethod = "printMemOperand"; 152 let MIOperandInfo = (ops ptr_rc, i32imm); 153 let ParserMatchClass = SparcMEMriAsmOperand; 154} 155 156// Represents a tail relocation operand for instructions such as add, ld, call. 157class SparcTailRelocSymAsmOperand<string Kind> : AsmOperandClass { 158 let Name = "TailRelocSym" # Kind; 159 let RenderMethod = "addTailRelocSymOperands"; 160 let PredicateMethod = "isTailRelocSym"; 161 let ParserMethod = "parseTailRelocSym<TailRelocKind::" # Kind # ">"; 162} 163 164def TailRelocSymGOTLoad : Operand<iPTR> { 165 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_GOT">; 166} 167 168def TailRelocSymTLSAdd : Operand<iPTR> { 169 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Add_TLS">; 170} 171 172def TailRelocSymTLSLoad : Operand<iPTR> { 173 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_TLS">; 174} 175 176def TailRelocSymTLSCall : Operand<iPTR> { 177 let ParserMatchClass = SparcTailRelocSymAsmOperand<"Call_TLS">; 178} 179 180def SparcMembarTagAsmOperand : AsmOperandClass { 181 let Name = "MembarTag"; 182 let ParserMethod = "parseMembarTag"; 183} 184 185def MembarTag : Operand<i32> { 186 let PrintMethod = "printMembarTag"; 187 let ParserMatchClass = SparcMembarTagAsmOperand; 188} 189 190def SparcASITagAsmOperand : AsmOperandClass { 191 let Name = "ASITag"; 192 let ParserMethod = "parseASITag"; 193} 194 195def ASITag : Operand<i32> { 196 let PrintMethod = "printASITag"; 197 let ParserMatchClass = SparcASITagAsmOperand; 198} 199 200def SparcPrefetchTagAsmOperand : AsmOperandClass { 201 let Name = "PrefetchTag"; 202 let ParserMethod = "parsePrefetchTag"; 203} 204 205def PrefetchTag : Operand<i32> { 206 let PrintMethod = "printPrefetchTag"; 207 let ParserMatchClass = SparcPrefetchTagAsmOperand; 208} 209 210// Branch targets have OtherVT type. 211def brtarget : Operand<OtherVT> { 212 let EncoderMethod = "getBranchTargetOpValue"; 213} 214 215def bprtarget : Operand<OtherVT> { 216 let EncoderMethod = "getBranchPredTargetOpValue"; 217} 218 219def bprtarget16 : Operand<OtherVT> { 220 let EncoderMethod = "getBranchOnRegTargetOpValue"; 221} 222 223def SparcCallTargetAsmOperand : AsmOperandClass { 224 let Name = "CallTarget"; 225 let ParserMethod = "parseCallTarget"; 226} 227 228def calltarget : Operand<i32> { 229 let EncoderMethod = "getCallTargetOpValue"; 230 let DecoderMethod = "DecodeCall"; 231 let ParserMatchClass = SparcCallTargetAsmOperand; 232} 233 234def simm13Op : Operand<iPTR> { 235 let OperandType = "OPERAND_IMMEDIATE"; 236 let DecoderMethod = "DecodeSIMM13"; 237 let EncoderMethod = "getSImm13OpValue"; 238} 239 240// Operand for printing out a condition code. 241let PrintMethod = "printCCOperand" in { 242 def CCOp : Operand<i32>; 243 def RegCCOp : Operand<i32>; 244} 245 246def SDTSPcmpicc : 247SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; 248def SDTSPcmpfcc : 249SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; 250def SDTSPbrcc : 251SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; 252def SDTSPbrreg : 253SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>, SDTCisVT<2, i64>]>; 254def SDTSPselectcc : 255SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; 256def SDTSPselectreg : 257SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>, SDTCisVT<4, i64>]>; 258def SDTSPFTOI : 259SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; 260def SDTSPITOF : 261SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; 262def SDTSPFTOX : 263SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>; 264def SDTSPXTOF : 265SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>; 266 267def SDTSPtlsadd : 268SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; 269def SDTSPtlsld : 270SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 271 272def SDTSPloadgdop : 273SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; 274 275def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; 276def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; 277def SPcmpfccv9 : SDNode<"SPISD::CMPFCC_V9", SDTSPcmpfcc, [SDNPOutGlue]>; 278def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 279def SPbpicc : SDNode<"SPISD::BPICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 280def SPbpxcc : SDNode<"SPISD::BPXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 281def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 282def SPbrfccv9 : SDNode<"SPISD::BRFCC_V9", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; 283def SPbrreg : SDNode<"SPISD::BR_REG", SDTSPbrreg, [SDNPHasChain, SDNPInGlue]>; 284 285def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; 286def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; 287 288def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; 289def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; 290def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>; 291def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>; 292 293def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; 294def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; 295def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; 296def SPselectreg : SDNode<"SPISD::SELECT_REG", SDTSPselectreg, [SDNPInGlue]>; 297 298// These are target-independent nodes, but have target-specific formats. 299def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>, 300 SDTCisVT<1, i32> ]>; 301def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, 302 SDTCisVT<1, i32> ]>; 303 304def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, 305 [SDNPHasChain, SDNPOutGlue]>; 306def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, 307 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; 308 309def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; 310def call : SDNode<"SPISD::CALL", SDT_SPCall, 311 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 312 SDNPVariadic]>; 313 314def tailcall : SDNode<"SPISD::TAIL_CALL", SDT_SPCall, 315 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 316 SDNPVariadic]>; 317 318def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; 319def retglue : SDNode<"SPISD::RET_GLUE", SDT_SPRet, 320 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; 321 322def flushw : SDNode<"SPISD::FLUSHW", SDTNone, 323 [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; 324 325def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>; 326def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>; 327def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall, 328 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, 329 SDNPVariadic]>; 330 331def load_gdop : SDNode<"SPISD::LOAD_GDOP", SDTSPloadgdop>; 332 333def getPCX : Operand<iPTR> { 334 let PrintMethod = "printGetPCX"; 335} 336 337//===----------------------------------------------------------------------===// 338// SPARC Flag Conditions 339//===----------------------------------------------------------------------===// 340 341// Note that these values must be kept in sync with the CCOp::CondCode enum 342// values. 343class ICC_VAL<int N> : PatLeaf<(i32 N)>; 344def ICC_NE : ICC_VAL< 9>; // Not Equal 345def ICC_E : ICC_VAL< 1>; // Equal 346def ICC_G : ICC_VAL<10>; // Greater 347def ICC_LE : ICC_VAL< 2>; // Less or Equal 348def ICC_GE : ICC_VAL<11>; // Greater or Equal 349def ICC_L : ICC_VAL< 3>; // Less 350def ICC_GU : ICC_VAL<12>; // Greater Unsigned 351def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned 352def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned 353def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned 354def ICC_POS : ICC_VAL<14>; // Positive 355def ICC_NEG : ICC_VAL< 6>; // Negative 356def ICC_VC : ICC_VAL<15>; // Overflow Clear 357def ICC_VS : ICC_VAL< 7>; // Overflow Set 358 359class FCC_VAL<int N> : PatLeaf<(i32 N)>; 360def FCC_U : FCC_VAL<23>; // Unordered 361def FCC_G : FCC_VAL<22>; // Greater 362def FCC_UG : FCC_VAL<21>; // Unordered or Greater 363def FCC_L : FCC_VAL<20>; // Less 364def FCC_UL : FCC_VAL<19>; // Unordered or Less 365def FCC_LG : FCC_VAL<18>; // Less or Greater 366def FCC_NE : FCC_VAL<17>; // Not Equal 367def FCC_E : FCC_VAL<25>; // Equal 368def FCC_UE : FCC_VAL<26>; // Unordered or Equal 369def FCC_GE : FCC_VAL<27>; // Greater or Equal 370def FCC_UGE : FCC_VAL<28>; // Unordered or Greater or Equal 371def FCC_LE : FCC_VAL<29>; // Less or Equal 372def FCC_ULE : FCC_VAL<30>; // Unordered or Less or Equal 373def FCC_O : FCC_VAL<31>; // Ordered 374 375class CPCC_VAL<int N> : PatLeaf<(i32 N)>; 376def CPCC_3 : CPCC_VAL<39>; // 3 377def CPCC_2 : CPCC_VAL<38>; // 2 378def CPCC_23 : CPCC_VAL<37>; // 2 or 3 379def CPCC_1 : CPCC_VAL<36>; // 1 380def CPCC_13 : CPCC_VAL<35>; // 1 or 3 381def CPCC_12 : CPCC_VAL<34>; // 1 or 2 382def CPCC_123 : CPCC_VAL<33>; // 1 or 2 or 3 383def CPCC_0 : CPCC_VAL<41>; // 0 384def CPCC_03 : CPCC_VAL<42>; // 0 or 3 385def CPCC_02 : CPCC_VAL<43>; // 0 or 2 386def CPCC_023 : CPCC_VAL<44>; // 0 or 2 or 3 387def CPCC_01 : CPCC_VAL<45>; // 0 or 1 388def CPCC_013 : CPCC_VAL<46>; // 0 or 1 or 3 389def CPCC_012 : CPCC_VAL<47>; // 0 or 1 or 2 390 391class RegCC_VAL<int N> : PatLeaf<(i32 N)>; 392def RegCC_Z : RegCC_VAL<49>; // Zero 393def RegCC_LEZ : RegCC_VAL<50>; // Lees or equal than zero 394def RegCC_LZ : RegCC_VAL<51>; // Less than zero 395def RegCC_NZ : RegCC_VAL<53>; // Not zero 396def RegCC_GZ : RegCC_VAL<54>; // Greater than zero 397def RegCC_GEZ : RegCC_VAL<55>; // Greater or equal to zero 398 399//===----------------------------------------------------------------------===// 400// Instruction Class Templates 401//===----------------------------------------------------------------------===// 402 403/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. 404multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode, 405 RegisterClass RC, ValueType Ty, Operand immOp, 406 InstrItinClass itin = IIC_iu_instr> { 407 def rr : F3_1<2, Op3Val, 408 (outs RC:$rd), (ins RC:$rs1, RC:$rs2), 409 !strconcat(OpcStr, " $rs1, $rs2, $rd"), 410 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))], 411 itin>; 412 def ri : F3_2<2, Op3Val, 413 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13), 414 !strconcat(OpcStr, " $rs1, $simm13, $rd"), 415 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))], 416 itin>; 417} 418 419/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no 420/// pattern. 421multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> { 422 def rr : F3_1<2, Op3Val, 423 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 424 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [], 425 itin>; 426 def ri : F3_2<2, Op3Val, 427 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 428 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [], 429 itin>; 430} 431 432// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. 433multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, 434 RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> { 435 def rr : F3_1<3, Op3Val, 436 (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr), 437 !strconcat(OpcStr, " [$addr], $rd"), 438 [(set Ty:$rd, (OpNode ADDRrr:$addr))], 439 itin>; 440 def ri : F3_2<3, Op3Val, 441 (outs RC:$rd), (ins (MEMri $rs1, $simm13):$addr), 442 !strconcat(OpcStr, " [$addr], $rd"), 443 [(set Ty:$rd, (OpNode ADDRri:$addr))], 444 itin>; 445} 446 447// TODO: Instructions of the LoadASI class are currently asm only; hooking up 448// CodeGen's address spaces to use these is a future task. 449multiclass LoadASI<string OpcStr, bits<6> Op3Val, RegisterClass RC> { 450 def rr : F3_1_asi<3, Op3Val, (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi), 451 !strconcat(OpcStr, "a [$addr] $asi, $rd"), 452 []>; 453 454 let Predicates = [HasV9], Uses = [ASR3] in 455 def ri : F3_2<3, Op3Val, (outs RC:$rd), (ins (MEMri $rs1, $simm13):$addr), 456 !strconcat(OpcStr, "a [$addr] %asi, $rd"), 457 []>; 458} 459 460// LoadA multiclass - As above, but also define alternate address space variant 461multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val, 462 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty, 463 InstrItinClass itin = NoItinerary> : 464 Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> { 465 defm A : LoadASI<OpcStr, LoadAOp3Val, RC>; 466} 467 468 469// The LDSTUB instruction is supported for asm only. 470// It is unlikely that general-purpose code could make use of it. 471// CAS is preferred for sparc v9. 472def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr), 473 "ldstub [$addr], $rd", []>; 474def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 475 "ldstub [$addr], $rd", []>; 476def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$rd), 477 (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi), 478 "ldstuba [$addr] $asi, $rd", []>; 479let Predicates = [HasV9], Uses = [ASR3] in 480def LDSTUBAri : F3_2<3, 0b011101, (outs IntRegs:$rd), 481 (ins (MEMri $rs1, $simm13):$addr), 482 "ldstuba [$addr] %asi, $rd", []>; 483 484// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. 485multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, 486 RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> { 487 def rr : F3_1<3, Op3Val, 488 (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd), 489 !strconcat(OpcStr, " $rd, [$addr]"), 490 [(OpNode Ty:$rd, ADDRrr:$addr)], 491 itin>; 492 def ri : F3_2<3, Op3Val, 493 (outs), (ins (MEMri $rs1, $simm13):$addr, RC:$rd), 494 !strconcat(OpcStr, " $rd, [$addr]"), 495 [(OpNode Ty:$rd, ADDRri:$addr)], 496 itin>; 497} 498 499// TODO: Instructions of the StoreASI class are currently asm only; hooking up 500// CodeGen's address spaces to use these is a future task. 501multiclass StoreASI<string OpcStr, bits<6> Op3Val, RegisterClass RC, 502 InstrItinClass itin = IIC_st> { 503 def rr : F3_1_asi<3, Op3Val, (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd, ASITag:$asi), 504 !strconcat(OpcStr, "a $rd, [$addr] $asi"), 505 [], 506 itin>; 507 508 let Predicates = [HasV9], Uses = [ASR3] in 509 def ri : F3_2<3, Op3Val, (outs), (ins (MEMri $rs1, $simm13):$addr, RC:$rd), 510 !strconcat(OpcStr, "a $rd, [$addr] %asi"), 511 [], 512 itin>; 513} 514 515multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val, 516 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> : 517 Store<OpcStr, Op3Val, OpNode, RC, Ty> { 518 defm A : StoreASI<OpcStr, StoreAOp3Val, RC>; 519} 520 521//===----------------------------------------------------------------------===// 522// Instructions 523//===----------------------------------------------------------------------===// 524 525// Pseudo instructions. 526class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> 527 : InstSP<outs, ins, asmstr, pattern> { 528 let isCodeGenOnly = 1; 529 let isPseudo = 1; 530} 531 532// GETPCX for PIC 533let Defs = [O7] in { 534 def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; 535} 536 537let Defs = [O6], Uses = [O6] in { 538def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 539 "!ADJCALLSTACKDOWN $amt1, $amt2", 540 [(callseq_start timm:$amt1, timm:$amt2)]>; 541def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), 542 "!ADJCALLSTACKUP $amt1", 543 [(callseq_end timm:$amt1, timm:$amt2)]>; 544} 545 546let hasSideEffects = 1, mayStore = 1 in { 547 let rd = 0, rs1 = 0, rs2 = 0 in 548 def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), 549 "flushw", 550 [(flushw)]>, Requires<[HasV9]>; 551 let rd = 8, rs1 = 0, simm13 = 3 in 552 def TA3 : F3_2<0b10, 0b111010, (outs), (ins), 553 "ta 3", 554 [(flushw)]>; 555} 556 557// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after 558// instruction selection into a branch sequence. This has to handle all 559// permutations of selection between i32/f32/f64 on ICC and FCC. 560// Expanded after instruction selection. 561let Uses = [ICC], usesCustomInserter = 1 in { 562 def SELECT_CC_Int_ICC 563 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 564 "; SELECT_CC_Int_ICC PSEUDO!", 565 [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; 566 def SELECT_CC_FP_ICC 567 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 568 "; SELECT_CC_FP_ICC PSEUDO!", 569 [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; 570 571 def SELECT_CC_DFP_ICC 572 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 573 "; SELECT_CC_DFP_ICC PSEUDO!", 574 [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; 575 576 def SELECT_CC_QFP_ICC 577 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 578 "; SELECT_CC_QFP_ICC PSEUDO!", 579 [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>; 580} 581 582let Uses = [ICC], usesCustomInserter = 1 in { 583 def SELECT_CC_Int_XCC 584 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 585 "; SELECT_CC_Int_XCC PSEUDO!", 586 [(set i32:$dst, (SPselectxcc i32:$T, i32:$F, imm:$Cond))]>; 587 def SELECT_CC_FP_XCC 588 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 589 "; SELECT_CC_FP_XCC PSEUDO!", 590 [(set f32:$dst, (SPselectxcc f32:$T, f32:$F, imm:$Cond))]>; 591 592 def SELECT_CC_DFP_XCC 593 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 594 "; SELECT_CC_DFP_XCC PSEUDO!", 595 [(set f64:$dst, (SPselectxcc f64:$T, f64:$F, imm:$Cond))]>; 596 597 def SELECT_CC_QFP_XCC 598 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 599 "; SELECT_CC_QFP_XCC PSEUDO!", 600 [(set f128:$dst, (SPselectxcc f128:$T, f128:$F, imm:$Cond))]>; 601} 602 603let usesCustomInserter = 1, Uses = [FCC0] in { 604 605 def SELECT_CC_Int_FCC 606 : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), 607 "; SELECT_CC_Int_FCC PSEUDO!", 608 [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; 609 610 def SELECT_CC_FP_FCC 611 : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), 612 "; SELECT_CC_FP_FCC PSEUDO!", 613 [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; 614 def SELECT_CC_DFP_FCC 615 : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), 616 "; SELECT_CC_DFP_FCC PSEUDO!", 617 [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; 618 def SELECT_CC_QFP_FCC 619 : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), 620 "; SELECT_CC_QFP_FCC PSEUDO!", 621 [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; 622} 623 624// Section B.1 - Load Integer Instructions, p. 90 625defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>; 626defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>; 627defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8, IntRegs, i32>; 628defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>; 629defm LD : LoadA<"ld", 0b000000, 0b010000, load, IntRegs, i32>; 630defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>; 631 632// Section B.2 - Load Floating-point Instructions, p. 92 633defm LDF : Load<"ld", 0b100000, load, FPRegs, f32, IIC_iu_or_fpu_instr>; 634defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64, IIC_ldd>; 635 636let DecoderNamespace = "SparcV9", Predicates = [HasV9] in { 637 defm LDFA : LoadASI<"ld", 0b110000, FPRegs>; 638 defm LDDFA : LoadASI<"ldd", 0b110011, DFPRegs>; 639 defm LDQF : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>, 640 Requires<[HasHardQuad]>; 641} 642 643// Coprocessor instructions were removed in v9. 644let DecoderNamespace = "SparcV8", Predicates = [HasNoV9] in { 645 defm LDC : Load<"ld", 0b110000, load, CoprocRegs, i32>; 646 defm LDDC : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>; 647} 648 649let Defs = [CPSR] in { 650 let rd = 0 in { 651 def LDCSRrr : F3_1<3, 0b110001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 652 "ld [$addr], %csr", []>; 653 def LDCSRri : F3_2<3, 0b110001, (outs), (ins (MEMri $rs1, $simm13):$addr), 654 "ld [$addr], %csr", []>; 655 } 656} 657 658let Defs = [FSR] in { 659 let rd = 0 in { 660 def LDFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 661 "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; 662 def LDFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr), 663 "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>; 664 } 665 let rd = 1 in { 666 def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr), 667 "ldx [$addr], %fsr", []>, Requires<[HasV9]>; 668 def LDXFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr), 669 "ldx [$addr], %fsr", []>, Requires<[HasV9]>; 670 } 671} 672 673let mayLoad = 1, isAsmParserOnly = 1 in { 674 def GDOP_LDrr : F3_1<3, 0b000000, 675 (outs IntRegs:$rd), 676 (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymGOTLoad:$sym), 677 "ld [$addr], $rd, $sym", 678 [(set i32:$rd, 679 (load_gdop ADDRrr:$addr, tglobaladdr:$sym))]>; 680} 681 682// Section B.4 - Store Integer Instructions, p. 95 683defm STB : StoreA<"stb", 0b000101, 0b010101, truncstorei8, IntRegs, i32>; 684defm STH : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>; 685defm ST : StoreA<"st", 0b000100, 0b010100, store, IntRegs, i32>; 686defm STD : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>; 687 688// Section B.5 - Store Floating-point Instructions, p. 97 689defm STF : Store<"st", 0b100100, store, FPRegs, f32>; 690defm STDF : Store<"std", 0b100111, store, DFPRegs, f64, IIC_std>; 691 692let DecoderNamespace = "SparcV9", Predicates = [HasV9] in { 693 defm STFA : StoreASI<"st", 0b110100, FPRegs>; 694 defm STDFA : StoreASI<"std", 0b110111, DFPRegs>; 695 defm STQF : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>, 696 Requires<[HasHardQuad]>; 697} 698 699// Coprocessor instructions were removed in v9. 700let DecoderNamespace = "SparcV8", Predicates = [HasNoV9] in { 701 defm STC : Store<"st", 0b110100, store, CoprocRegs, i32>; 702 defm STDC : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>; 703} 704 705let rd = 0 in { 706 let mayStore = 1, Uses = [CPSR] in { 707 def STCSRrr : F3_1<3, 0b110101, (outs), (ins (MEMrr $rs1, $rs2):$addr), 708 "st %csr, [$addr]", [], IIC_st>; 709 def STCSRri : F3_2<3, 0b110101, (outs), (ins (MEMri $rs1, $simm13):$addr), 710 "st %csr, [$addr]", [], IIC_st>; 711 } 712 let mayStore = 1, Uses = [CPQ] in { 713 def STDCQrr : F3_1<3, 0b110110, (outs), (ins (MEMrr $rs1, $rs2):$addr), 714 "std %cq, [$addr]", [], IIC_std>; 715 def STDCQri : F3_2<3, 0b110110, (outs), (ins (MEMri $rs1, $simm13):$addr), 716 "std %cq, [$addr]", [], IIC_std>; 717 } 718} 719 720let rd = 0 in { 721 let mayStore = 1, Uses = [FSR] in { 722 def STFSRrr : F3_1<3, 0b100101, (outs), (ins (MEMrr $rs1, $rs2):$addr), 723 "st %fsr, [$addr]", [], IIC_st>; 724 def STFSRri : F3_2<3, 0b100101, (outs), (ins (MEMri $rs1, $simm13):$addr), 725 "st %fsr, [$addr]", [], IIC_st>; 726 } 727 let mayStore = 1, Defs = [FQ] in { 728 def STDFQrr : F3_1<3, 0b100110, (outs), (ins (MEMrr $rs1, $rs2):$addr), 729 "std %fq, [$addr]", [], IIC_std>; 730 def STDFQri : F3_2<3, 0b100110, (outs), (ins (MEMri $rs1, $simm13):$addr), 731 "std %fq, [$addr]", [], IIC_std>; 732 } 733} 734let rd = 1, mayStore = 1, Uses = [FSR] in { 735 def STXFSRrr : F3_1<3, 0b100101, (outs), (ins (MEMrr $rs1, $rs2):$addr), 736 "stx %fsr, [$addr]", []>, Requires<[HasV9]>; 737 def STXFSRri : F3_2<3, 0b100101, (outs), (ins (MEMri $rs1, $simm13):$addr), 738 "stx %fsr, [$addr]", []>, Requires<[HasV9]>; 739} 740 741// Section B.8 - SWAP Register with Memory Instruction 742// (Atomic swap) 743let Constraints = "$val = $rd" in { 744 def SWAPrr : F3_1<3, 0b001111, 745 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, IntRegs:$val), 746 "swap [$addr], $rd", 747 [(set i32:$rd, (atomic_swap_i32 ADDRrr:$addr, i32:$val))]>; 748 def SWAPri : F3_2<3, 0b001111, 749 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr, IntRegs:$val), 750 "swap [$addr], $rd", 751 [(set i32:$rd, (atomic_swap_i32 ADDRri:$addr, i32:$val))]>; 752 def SWAPArr : F3_1_asi<3, 0b011111, 753 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi, IntRegs:$val), 754 "swapa [$addr] $asi, $rd", 755 [/*FIXME: pattern?*/]>; 756let Predicates = [HasV9], Uses = [ASR3] in 757 def SWAPAri : F3_2<3, 0b011111, 758 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr, IntRegs:$val), 759 "swapa [$addr] %asi, $rd", 760 [/*FIXME: pattern?*/]>; 761} 762 763 764// Section B.9 - SETHI Instruction, p. 104 765def SETHIi: F2_1<0b100, 766 (outs IntRegs:$rd), (ins i32imm:$imm22), 767 "sethi $imm22, $rd", 768 [(set i32:$rd, SETHIimm:$imm22)], 769 IIC_iu_instr>; 770 771// Section B.10 - NOP Instruction, p. 105 772// (It's a special case of SETHI) 773let rd = 0, imm22 = 0 in 774 def NOP : F2_1<0b100, (outs), (ins), "nop", []>; 775 776// Section B.11 - Logical Instructions, p. 106 777defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>; 778 779def ANDNrr : F3_1<2, 0b000101, 780 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 781 "andn $rs1, $rs2, $rd", 782 [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>; 783def ANDNri : F3_2<2, 0b000101, 784 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 785 "andn $rs1, $simm13, $rd", []>; 786 787defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>; 788 789def ORNrr : F3_1<2, 0b000110, 790 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 791 "orn $rs1, $rs2, $rd", 792 [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>; 793def ORNri : F3_2<2, 0b000110, 794 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 795 "orn $rs1, $simm13, $rd", []>; 796defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>; 797 798def XNORrr : F3_1<2, 0b000111, 799 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 800 "xnor $rs1, $rs2, $rd", 801 [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>; 802def XNORri : F3_2<2, 0b000111, 803 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 804 "xnor $rs1, $simm13, $rd", []>; 805 806def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2), 807 (ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; 808 809def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2), 810 (ORNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>; 811 812let Defs = [ICC] in { 813 defm ANDCC : F3_12np<"andcc", 0b010001>; 814 defm ANDNCC : F3_12np<"andncc", 0b010101>; 815 defm ORCC : F3_12np<"orcc", 0b010010>; 816 defm ORNCC : F3_12np<"orncc", 0b010110>; 817 defm XORCC : F3_12np<"xorcc", 0b010011>; 818 defm XNORCC : F3_12np<"xnorcc", 0b010111>; 819} 820 821// Section B.12 - Shift Instructions, p. 107 822defm SLL : F3_S<"sll", 0b100101, 0, shl, i32, shift_imm5, IntRegs>; 823defm SRL : F3_S<"srl", 0b100110, 0, srl, i32, shift_imm5, IntRegs>; 824defm SRA : F3_S<"sra", 0b100111, 0, sra, i32, shift_imm5, IntRegs>; 825 826// Section B.13 - Add Instructions, p. 108 827defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>; 828 829let Defs = [ICC] in 830 defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>; 831 832let Uses = [ICC] in 833 defm ADDC : F3_12np<"addx", 0b001000>; 834 835let Uses = [ICC], Defs = [ICC] in 836 defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>; 837 838// Section B.15 - Subtract Instructions, p. 110 839defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>; 840let Uses = [ICC], Defs = [ICC] in 841 defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>; 842 843let Defs = [ICC], hasPostISelHook = true in 844 defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>; 845 846let Uses = [ICC] in 847 defm SUBC : F3_12np <"subx", 0b001100>; 848 849def : Pat<(SPcmpicc i32:$lhs, i32:$rhs), (SUBCCrr $lhs, $rhs)>; 850def : Pat<(SPcmpicc i32:$lhs, (i32 simm13:$rhs)), (SUBCCri $lhs, imm:$rhs)>; 851 852// Section B.18 - Multiply Instructions, p. 113 853let Defs = [Y] in { 854 defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>; 855 defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>; 856} 857 858let Defs = [Y, ICC] in { 859 defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>; 860 defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>; 861} 862 863let Defs = [Y, ICC], Uses = [Y, ICC] in { 864 defm MULSCC : F3_12np<"mulscc", 0b100100>; 865} 866 867// Section B.19 - Divide Instructions, p. 115 868let Uses = [Y], Defs = [Y] in { 869 defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>; 870 defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>; 871} 872 873let Uses = [Y], Defs = [Y, ICC] in { 874 defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>; 875 defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>; 876} 877 878// Section B.20 - SAVE and RESTORE, p. 117 879defm SAVE : F3_12np<"save" , 0b111100>; 880defm RESTORE : F3_12np<"restore", 0b111101>; 881 882// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 883// Section A.7 - Branch on Integer Condition Codes with Prediction (SPARC v9) 884 885let isBranch = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { 886// unconditional branch class. 887class BranchAlways<dag ins, string asmstr, list<dag> pattern> 888 : F2_2<0b010, 0, (outs), ins, asmstr, pattern>; 889 890// Same as BranchAlways but uses the new v9 encoding 891class BranchPredictAlways<dag ins, string asmstr, list<dag> pattern> 892 : F2_3<0b001, 0, 1, (outs), ins, asmstr, pattern>; 893} 894 895let cond = 8 in 896 def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>; 897 898let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 899 900// conditional branch class: 901class BranchSP<dag ins, string asmstr, list<dag> pattern> 902 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>; 903 904// conditional branch with annul class: 905class BranchSPA<dag ins, string asmstr, list<dag> pattern> 906 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>; 907 908// Conditional branch class on %icc|%xcc with predication: 909multiclass IPredBranch<string regstr, list<dag> CCPattern> { 910 def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), 911 !strconcat("b$cond ", !strconcat(regstr, ", $imm19")), 912 CCPattern, 913 IIC_iu_instr>; 914 def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), 915 !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")), 916 [], 917 IIC_iu_instr>; 918 def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), 919 !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")), 920 [], 921 IIC_iu_instr>; 922 def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), 923 !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")), 924 [], 925 IIC_iu_instr>; 926} 927 928} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 929 930 931// Indirect branch instructions. 932let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1, 933 isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in { 934 def BINDrr : F3_1<2, 0b111000, 935 (outs), (ins (MEMrr $rs1, $rs2):$addr), 936 "jmp $addr", 937 [(brind ADDRrr:$addr)]>; 938 def BINDri : F3_2<2, 0b111000, 939 (outs), (ins (MEMri $rs1, $simm13):$addr), 940 "jmp $addr", 941 [(brind ADDRri:$addr)]>; 942} 943 944let Uses = [ICC] in { 945 def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond), 946 "b$cond $imm22", 947 [(SPbricc bb:$imm22, imm:$cond)]>; 948 def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond), 949 "b$cond,a $imm22", []>; 950 951 let Predicates = [HasV9], cc = 0b00 in 952 defm BPI : IPredBranch<"%icc", [(SPbpicc bb:$imm19, imm:$cond)]>; 953} 954 955// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 956 957let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 958 959// floating-point conditional branch class: 960class FPBranchSP<dag ins, string asmstr, list<dag> pattern> 961 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; 962 963// floating-point conditional branch with annul class: 964class FPBranchSPA<dag ins, string asmstr, list<dag> pattern> 965 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>; 966 967// Conditional branch class on %fcc0-%fcc3 with predication: 968multiclass FPredBranch { 969 def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, 970 FCCRegs:$cc), 971 "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>; 972 def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, 973 FCCRegs:$cc), 974 "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>; 975 def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, 976 FCCRegs:$cc), 977 "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>; 978 def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, 979 FCCRegs:$cc), 980 "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>; 981} 982} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 983 984let Uses = [FCC0] in { 985 def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond), 986 "fb$cond $imm22", 987 [(SPbrfcc bb:$imm22, imm:$cond)]>; 988 def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), 989 "fb$cond,a $imm22", []>; 990} 991 992// Variants of FBCOND that uses V9 opcode 993let Predicates = [HasV9], Uses = [FCC0], cc = 0, 994 isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 995 def FBCOND_V9 : F2_3<0b101, 0, 1, (outs), 996 (ins bprtarget:$imm19, CCOp:$cond), 997 "fb$cond %fcc0, $imm19", 998 [(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>; 999 def FBCONDA_V9 : F2_3<0b101, 1, 1, (outs), 1000 (ins bprtarget:$imm19, CCOp:$cond), 1001 "fb$cond,a %fcc0, $imm19", 1002 [(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>; 1003} 1004 1005let Predicates = [HasV9] in 1006 defm BPF : FPredBranch; 1007 1008// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123 1009let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { 1010 1011// co-processor conditional branch class: 1012class CPBranchSP<dag ins, string asmstr, list<dag> pattern> 1013 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>; 1014 1015// co-processor conditional branch with annul class: 1016class CPBranchSPA<dag ins, string asmstr, list<dag> pattern> 1017 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>; 1018 1019} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 1020 1021def CBCOND : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond), 1022 "cb$cond $imm22", 1023 [(SPbrfcc bb:$imm22, imm:$cond)]>; 1024def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), 1025 "cb$cond,a $imm22", []>; 1026 1027// Section B.24 - Call and Link Instruction, p. 125 1028// This is the only Format 1 instruction 1029let Uses = [O6], 1030 hasDelaySlot = 1, isCall = 1 in { 1031 def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), 1032 "call $disp", 1033 [], 1034 IIC_jmp_or_call> { 1035 bits<30> disp; 1036 let op = 1; 1037 let Inst{29-0} = disp; 1038 } 1039 1040 // indirect calls: special cases of JMPL. 1041 let isCodeGenOnly = 1, rd = 15 in { 1042 def CALLrr : F3_1<2, 0b111000, 1043 (outs), (ins (MEMrr $rs1, $rs2):$addr, variable_ops), 1044 "call $addr", 1045 [(call ADDRrr:$addr)], 1046 IIC_jmp_or_call>; 1047 def CALLri : F3_2<2, 0b111000, 1048 (outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops), 1049 "call $addr", 1050 [(call ADDRri:$addr)], 1051 IIC_jmp_or_call>; 1052 } 1053} 1054 1055// Section B.25 - Jump and Link Instruction 1056 1057// JMPL Instruction. 1058let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { 1059 def JMPLrr: F3_1<2, 0b111000, 1060 (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr), 1061 "jmpl $addr, $rd", 1062 [], 1063 IIC_jmp_or_call>; 1064 def JMPLri: F3_2<2, 0b111000, 1065 (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr), 1066 "jmpl $addr, $rd", 1067 [], 1068 IIC_jmp_or_call>; 1069} 1070 1071// Section A.3 - Synthetic Instructions, p. 85 1072// special cases of JMPL: 1073let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, 1074 isCodeGenOnly = 1 in { 1075 let rd = 0, rs1 = 15 in 1076 def RETL: F3_2<2, 0b111000, 1077 (outs), (ins i32imm:$simm13), 1078 "jmp %o7+$simm13", 1079 [(retglue simm13:$simm13)], 1080 IIC_jmp_or_call>; 1081 1082 let rd = 0, rs1 = 31 in 1083 def RET: F3_2<2, 0b111000, 1084 (outs), (ins i32imm:$simm13), 1085 "jmp %i7+$simm13", 1086 [], 1087 IIC_jmp_or_call>; 1088} 1089 1090// Section B.26 - Return from Trap Instruction 1091let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, 1092 isBarrier = 1, rd = 0 in { 1093 def RETTrr : F3_1<2, 0b111001, 1094 (outs), (ins (MEMrr $rs1, $rs2):$addr), 1095 "rett $addr", 1096 [], 1097 IIC_jmp_or_call>; 1098 def RETTri : F3_2<2, 0b111001, 1099 (outs), (ins (MEMri $rs1, $simm13):$addr), 1100 "rett $addr", 1101 [], 1102 IIC_jmp_or_call>; 1103} 1104 1105 1106// Section B.27 - Trap on Integer Condition Codes Instruction 1107// conditional branch class: 1108let DecoderNamespace = "SparcV8", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in 1109{ 1110 def TRAPrr : TRAPSPrr<0b111010, 1111 (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), 1112 "t$cond $rs1 + $rs2", 1113 []>; 1114 def TRAPri : TRAPSPri<0b111010, 1115 (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), 1116 "t$cond $rs1 + $imm", 1117 []>; 1118} 1119 1120multiclass TRAP<string regStr> { 1121 def rr : TRAPSPrr<0b111010, 1122 (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond), 1123 !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), 1124 []>; 1125 def ri : TRAPSPri<0b111010, 1126 (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond), 1127 !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), 1128 []>; 1129} 1130 1131let DecoderNamespace = "SparcV9", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in 1132 defm TICC : TRAP<"%icc">; 1133 1134 1135let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in 1136 def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; 1137 1138let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in 1139 def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>; 1140 1141// Section B.28 - Read State Register Instructions 1142let rs2 = 0 in 1143 def RDASR : F3_1<2, 0b101000, 1144 (outs IntRegs:$rd), (ins ASRRegs:$rs1), 1145 "rd $rs1, $rd", []>; 1146 1147// PSR, WIM, and TBR don't exist on the SparcV9, only the V8. 1148let Predicates = [HasNoV9] in { 1149 let rs2 = 0, rs1 = 0, Uses=[PSR] in 1150 def RDPSR : F3_1<2, 0b101001, 1151 (outs IntRegs:$rd), (ins), 1152 "rd %psr, $rd", []>; 1153 1154 let rs2 = 0, rs1 = 0, Uses=[WIM] in 1155 def RDWIM : F3_1<2, 0b101010, 1156 (outs IntRegs:$rd), (ins), 1157 "rd %wim, $rd", []>; 1158 1159 let rs2 = 0, rs1 = 0, Uses=[TBR] in 1160 def RDTBR : F3_1<2, 0b101011, 1161 (outs IntRegs:$rd), (ins), 1162 "rd %tbr, $rd", []>; 1163} 1164 1165// Section B.29 - Write State Register Instructions 1166def WRASRrr : F3_1<2, 0b110000, 1167 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 1168 "wr $rs1, $rs2, $rd", []>; 1169def WRASRri : F3_2<2, 0b110000, 1170 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 1171 "wr $rs1, $simm13, $rd", []>; 1172 1173// PSR, WIM, and TBR don't exist on the SparcV9, only the V8. 1174let Predicates = [HasNoV9] in { 1175 let Defs = [PSR], rd=0 in { 1176 def WRPSRrr : F3_1<2, 0b110001, 1177 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1178 "wr $rs1, $rs2, %psr", []>; 1179 def WRPSRri : F3_2<2, 0b110001, 1180 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1181 "wr $rs1, $simm13, %psr", []>; 1182 } 1183 1184 let Defs = [WIM], rd=0 in { 1185 def WRWIMrr : F3_1<2, 0b110010, 1186 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1187 "wr $rs1, $rs2, %wim", []>; 1188 def WRWIMri : F3_2<2, 0b110010, 1189 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1190 "wr $rs1, $simm13, %wim", []>; 1191 } 1192 1193 let Defs = [TBR], rd=0 in { 1194 def WRTBRrr : F3_1<2, 0b110011, 1195 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1196 "wr $rs1, $rs2, %tbr", []>; 1197 def WRTBRri : F3_2<2, 0b110011, 1198 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1199 "wr $rs1, $simm13, %tbr", []>; 1200 } 1201} 1202 1203// Section B.30 - STBAR Instruction 1204let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in 1205 def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; 1206 1207 1208// Section B.31 - Unimplemented Instruction 1209let rd = 0 in 1210 def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), 1211 "unimp $imm22", []>; 1212 1213// Section B.32 - Flush Instruction Memory 1214let rd = 0 in { 1215 def FLUSHrr : F3_1<2, 0b111011, (outs), (ins (MEMrr $rs1, $rs2):$addr), 1216 "flush $addr", []>; 1217 def FLUSHri : F3_2<2, 0b111011, (outs), (ins (MEMri $rs1, $simm13):$addr), 1218 "flush $addr", []>; 1219 1220 // The no-arg FLUSH is only here for the benefit of the InstAlias 1221 // "flush", which cannot seem to use FLUSHrr, due to the inability 1222 // to construct a MEMrr with fixed G0 registers. 1223 let rs1 = 0, rs2 = 0 in 1224 def FLUSH : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>; 1225} 1226 1227// Section B.33 - Floating-point Operate (FPop) Instructions 1228 1229// Convert Integer to Floating-point Instructions, p. 141 1230def FITOS : F3_3u<2, 0b110100, 0b011000100, 1231 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1232 "fitos $rs2, $rd", 1233 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))], 1234 IIC_fpu_fast_instr>; 1235def FITOD : F3_3u<2, 0b110100, 0b011001000, 1236 (outs DFPRegs:$rd), (ins FPRegs:$rs2), 1237 "fitod $rs2, $rd", 1238 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))], 1239 IIC_fpu_fast_instr>; 1240def FITOQ : F3_3u<2, 0b110100, 0b011001100, 1241 (outs QFPRegs:$rd), (ins FPRegs:$rs2), 1242 "fitoq $rs2, $rd", 1243 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>, 1244 Requires<[HasHardQuad]>; 1245 1246// Convert Floating-point to Integer Instructions, p. 142 1247def FSTOI : F3_3u<2, 0b110100, 0b011010001, 1248 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1249 "fstoi $rs2, $rd", 1250 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))], 1251 IIC_fpu_fast_instr>; 1252def FDTOI : F3_3u<2, 0b110100, 0b011010010, 1253 (outs FPRegs:$rd), (ins DFPRegs:$rs2), 1254 "fdtoi $rs2, $rd", 1255 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))], 1256 IIC_fpu_fast_instr>; 1257def FQTOI : F3_3u<2, 0b110100, 0b011010011, 1258 (outs FPRegs:$rd), (ins QFPRegs:$rs2), 1259 "fqtoi $rs2, $rd", 1260 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>, 1261 Requires<[HasHardQuad]>; 1262 1263// Convert between Floating-point Formats Instructions, p. 143 1264def FSTOD : F3_3u<2, 0b110100, 0b011001001, 1265 (outs DFPRegs:$rd), (ins FPRegs:$rs2), 1266 "fstod $rs2, $rd", 1267 [(set f64:$rd, (fpextend f32:$rs2))], 1268 IIC_fpu_stod>; 1269def FSTOQ : F3_3u<2, 0b110100, 0b011001101, 1270 (outs QFPRegs:$rd), (ins FPRegs:$rs2), 1271 "fstoq $rs2, $rd", 1272 [(set f128:$rd, (fpextend f32:$rs2))]>, 1273 Requires<[HasHardQuad]>; 1274def FDTOS : F3_3u<2, 0b110100, 0b011000110, 1275 (outs FPRegs:$rd), (ins DFPRegs:$rs2), 1276 "fdtos $rs2, $rd", 1277 [(set f32:$rd, (fpround f64:$rs2))], 1278 IIC_fpu_fast_instr>; 1279def FDTOQ : F3_3u<2, 0b110100, 0b011001110, 1280 (outs QFPRegs:$rd), (ins DFPRegs:$rs2), 1281 "fdtoq $rs2, $rd", 1282 [(set f128:$rd, (fpextend f64:$rs2))]>, 1283 Requires<[HasHardQuad]>; 1284def FQTOS : F3_3u<2, 0b110100, 0b011000111, 1285 (outs FPRegs:$rd), (ins QFPRegs:$rs2), 1286 "fqtos $rs2, $rd", 1287 [(set f32:$rd, (fpround f128:$rs2))]>, 1288 Requires<[HasHardQuad]>; 1289def FQTOD : F3_3u<2, 0b110100, 0b011001011, 1290 (outs DFPRegs:$rd), (ins QFPRegs:$rs2), 1291 "fqtod $rs2, $rd", 1292 [(set f64:$rd, (fpround f128:$rs2))]>, 1293 Requires<[HasHardQuad]>; 1294 1295// Floating-point Move Instructions, p. 144 1296def FMOVS : F3_3u<2, 0b110100, 0b000000001, 1297 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1298 "fmovs $rs2, $rd", []>; 1299def FNEGS : F3_3u<2, 0b110100, 0b000000101, 1300 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1301 "fnegs $rs2, $rd", 1302 [(set f32:$rd, (fneg f32:$rs2))], 1303 IIC_fpu_negs>; 1304def FABSS : F3_3u<2, 0b110100, 0b000001001, 1305 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1306 "fabss $rs2, $rd", 1307 [(set f32:$rd, (fabs f32:$rs2))], 1308 IIC_fpu_abs>; 1309 1310 1311// Floating-point Square Root Instructions, p.145 1312// FSQRTS generates an erratum on LEON processors, so by disabling this instruction 1313// this will be promoted to use FSQRTD with doubles instead. 1314let Predicates = [HasNoFdivSqrtFix] in 1315def FSQRTS : F3_3u<2, 0b110100, 0b000101001, 1316 (outs FPRegs:$rd), (ins FPRegs:$rs2), 1317 "fsqrts $rs2, $rd", 1318 [(set f32:$rd, (fsqrt f32:$rs2))], 1319 IIC_fpu_sqrts>; 1320def FSQRTD : F3_3u<2, 0b110100, 0b000101010, 1321 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1322 "fsqrtd $rs2, $rd", 1323 [(set f64:$rd, (fsqrt f64:$rs2))], 1324 IIC_fpu_sqrtd>; 1325def FSQRTQ : F3_3u<2, 0b110100, 0b000101011, 1326 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1327 "fsqrtq $rs2, $rd", 1328 [(set f128:$rd, (fsqrt f128:$rs2))]>, 1329 Requires<[HasHardQuad]>; 1330 1331 1332 1333// Floating-point Add and Subtract Instructions, p. 146 1334def FADDS : F3_3<2, 0b110100, 0b001000001, 1335 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1336 "fadds $rs1, $rs2, $rd", 1337 [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))], 1338 IIC_fpu_fast_instr>; 1339def FADDD : F3_3<2, 0b110100, 0b001000010, 1340 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1341 "faddd $rs1, $rs2, $rd", 1342 [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))], 1343 IIC_fpu_fast_instr>; 1344def FADDQ : F3_3<2, 0b110100, 0b001000011, 1345 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1346 "faddq $rs1, $rs2, $rd", 1347 [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>, 1348 Requires<[HasHardQuad]>; 1349 1350def FSUBS : F3_3<2, 0b110100, 0b001000101, 1351 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1352 "fsubs $rs1, $rs2, $rd", 1353 [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))], 1354 IIC_fpu_fast_instr>; 1355def FSUBD : F3_3<2, 0b110100, 0b001000110, 1356 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1357 "fsubd $rs1, $rs2, $rd", 1358 [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))], 1359 IIC_fpu_fast_instr>; 1360def FSUBQ : F3_3<2, 0b110100, 0b001000111, 1361 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1362 "fsubq $rs1, $rs2, $rd", 1363 [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>, 1364 Requires<[HasHardQuad]>; 1365 1366 1367// Floating-point Multiply and Divide Instructions, p. 147 1368def FMULS : F3_3<2, 0b110100, 0b001001001, 1369 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1370 "fmuls $rs1, $rs2, $rd", 1371 [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))], 1372 IIC_fpu_muls>, 1373 Requires<[HasFMULS]>; 1374def FMULD : F3_3<2, 0b110100, 0b001001010, 1375 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1376 "fmuld $rs1, $rs2, $rd", 1377 [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))], 1378 IIC_fpu_muld>; 1379def FMULQ : F3_3<2, 0b110100, 0b001001011, 1380 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1381 "fmulq $rs1, $rs2, $rd", 1382 [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>, 1383 Requires<[HasHardQuad]>; 1384 1385def FSMULD : F3_3<2, 0b110100, 0b001101001, 1386 (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1387 "fsmuld $rs1, $rs2, $rd", 1388 [(set f64:$rd, (fmul (fpextend f32:$rs1), 1389 (fpextend f32:$rs2)))], 1390 IIC_fpu_muld>, 1391 Requires<[HasFSMULD]>; 1392def FDMULQ : F3_3<2, 0b110100, 0b001101110, 1393 (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1394 "fdmulq $rs1, $rs2, $rd", 1395 [(set f128:$rd, (fmul (fpextend f64:$rs1), 1396 (fpextend f64:$rs2)))]>, 1397 Requires<[HasHardQuad]>; 1398 1399// FDIVS generates an erratum on LEON processors, so by disabling this instruction 1400// this will be promoted to use FDIVD with doubles instead. 1401def FDIVS : F3_3<2, 0b110100, 0b001001101, 1402 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1403 "fdivs $rs1, $rs2, $rd", 1404 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))], 1405 IIC_fpu_divs>; 1406def FDIVD : F3_3<2, 0b110100, 0b001001110, 1407 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1408 "fdivd $rs1, $rs2, $rd", 1409 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))], 1410 IIC_fpu_divd>; 1411def FDIVQ : F3_3<2, 0b110100, 0b001001111, 1412 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1413 "fdivq $rs1, $rs2, $rd", 1414 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>, 1415 Requires<[HasHardQuad]>; 1416 1417// Floating-point Compare Instructions, p. 148 1418// Note: the 2nd template arg is different for these guys. 1419// Note 2: the result of a FCMP is not available until the 2nd cycle 1420// after the instr is retired, but there is no interlock in Sparc V8. 1421// This behavior is modeled with a forced noop after the instruction in 1422// DelaySlotFiller. 1423 1424let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { 1425 def FCMPS : F3_3c<2, 0b110101, 0b001010001, 1426 (outs), (ins FPRegs:$rs1, FPRegs:$rs2), 1427 "fcmps $rs1, $rs2", 1428 [(SPcmpfcc f32:$rs1, f32:$rs2)], 1429 IIC_fpu_fast_instr>; 1430 def FCMPD : F3_3c<2, 0b110101, 0b001010010, 1431 (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1432 "fcmpd $rs1, $rs2", 1433 [(SPcmpfcc f64:$rs1, f64:$rs2)], 1434 IIC_fpu_fast_instr>; 1435 def FCMPQ : F3_3c<2, 0b110101, 0b001010011, 1436 (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1437 "fcmpq $rs1, $rs2", 1438 [(SPcmpfcc f128:$rs1, f128:$rs2)]>, 1439 Requires<[HasHardQuad]>; 1440} 1441 1442// A.13 Floating-Point Compare (SPARC v9) 1443// Note that these always write to %fcc0 instead of having its destination 1444// allocated automatically. 1445// This avoids complications with the scheduler sometimes wanting to spill 1446// the contents of an FCC, since SPARC v9 doesn't have facilities to spill 1447// an individual FCC. 1448 1449let Predicates = [HasV9], Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { 1450 def FCMPS_V9 : F3_3c<2, 0b110101, 0b001010001, 1451 (outs), (ins FPRegs:$rs1, FPRegs:$rs2), 1452 "fcmps %fcc0, $rs1, $rs2", 1453 [(SPcmpfccv9 f32:$rs1, f32:$rs2)], 1454 IIC_fpu_fast_instr>; 1455 def FCMPD_V9 : F3_3c<2, 0b110101, 0b001010010, 1456 (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1457 "fcmpd %fcc0, $rs1, $rs2", 1458 [(SPcmpfccv9 f64:$rs1, f64:$rs2)], 1459 IIC_fpu_fast_instr>; 1460 def FCMPQ_V9 : F3_3c<2, 0b110101, 0b001010011, 1461 (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1462 "fcmpq %fcc0, $rs1, $rs2", 1463 [(SPcmpfccv9 f128:$rs1, f128:$rs2)]>, 1464 Requires<[HasHardQuad]>; 1465} 1466 1467//===----------------------------------------------------------------------===// 1468// Instructions for Thread Local Storage(TLS). 1469//===----------------------------------------------------------------------===// 1470let isAsmParserOnly = 1 in { 1471def TLS_ADDrr : F3_1<2, 0b000000, 1472 (outs IntRegs:$rd), 1473 (ins IntRegs:$rs1, IntRegs:$rs2, TailRelocSymTLSAdd:$sym), 1474 "add $rs1, $rs2, $rd, $sym", 1475 [(set i32:$rd, 1476 (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>; 1477 1478let mayLoad = 1 in { 1479 def TLS_LDrr : F3_1<3, 0b000000, 1480 (outs IntRegs:$rd), 1481 (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymTLSLoad:$sym), 1482 "ld [$addr], $rd, $sym", 1483 [(set i32:$rd, 1484 (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; 1485} 1486 1487let Uses = [O6], isCall = 1, hasDelaySlot = 1 in 1488 def TLS_CALL : InstSP<(outs), 1489 (ins calltarget:$disp, TailRelocSymTLSCall:$sym, 1490 variable_ops), 1491 "call $disp, $sym", 1492 [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)], 1493 IIC_jmp_or_call> { 1494 bits<30> disp; 1495 let op = 1; 1496 let Inst{29-0} = disp; 1497} 1498} 1499 1500//===----------------------------------------------------------------------===// 1501// Instructions for tail calls. 1502//===----------------------------------------------------------------------===// 1503let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, 1504 isTerminator = 1, isBarrier = 1 in { 1505 def TAIL_CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), 1506 "call $disp", 1507 [(tailcall tglobaladdr:$disp)]> { 1508 bits<30> disp; 1509 let op = 1; 1510 let Inst{29-0} = disp; 1511 } 1512} 1513 1514def : Pat<(tailcall (iPTR texternalsym:$dst)), 1515 (TAIL_CALL texternalsym:$dst)>; 1516 1517let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, isTerminator = 1, 1518 isBarrier = 1, rd = 0 in { 1519 def TAIL_CALLri : F3_2<2, 0b111000, 1520 (outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops), 1521 "jmp $addr", 1522 [(tailcall ADDRri:$addr)]>; 1523} 1524 1525//===----------------------------------------------------------------------===// 1526// V9 Instructions 1527//===----------------------------------------------------------------------===// 1528 1529// V9 Conditional Moves. 1530let Predicates = [HasV9], Constraints = "$f = $rd" in { 1531 // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. 1532 let Uses = [ICC], intcc = 1, cc = 0b00 in { 1533 def MOVICCrr 1534 : F4_1<0b101100, (outs IntRegs:$rd), 1535 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1536 "mov$cond %icc, $rs2, $rd", 1537 [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>; 1538 1539 def MOVICCri 1540 : F4_2<0b101100, (outs IntRegs:$rd), 1541 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1542 "mov$cond %icc, $simm11, $rd", 1543 [(set i32:$rd, 1544 (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>; 1545 } 1546 1547 let Uses = [FCC0], intcc = 0, cc = 0b00 in { 1548 def MOVFCCrr 1549 : F4_1<0b101100, (outs IntRegs:$rd), 1550 (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1551 "mov$cond %fcc0, $rs2, $rd", 1552 [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>; 1553 def MOVFCCri 1554 : F4_2<0b101100, (outs IntRegs:$rd), 1555 (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1556 "mov$cond %fcc0, $simm11, $rd", 1557 [(set i32:$rd, 1558 (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>; 1559 } 1560 1561 let Uses = [ICC], intcc = 1, opf_cc = 0b00 in { 1562 def FMOVS_ICC 1563 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1564 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1565 "fmovs$cond %icc, $rs2, $rd", 1566 [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>; 1567 def FMOVD_ICC 1568 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1569 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1570 "fmovd$cond %icc, $rs2, $rd", 1571 [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>; 1572 let Predicates = [HasV9, HasHardQuad] in 1573 def FMOVQ_ICC 1574 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1575 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1576 "fmovq$cond %icc, $rs2, $rd", 1577 [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>; 1578 } 1579 1580 let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in { 1581 def FMOVS_FCC 1582 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1583 (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1584 "fmovs$cond %fcc0, $rs2, $rd", 1585 [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>; 1586 def FMOVD_FCC 1587 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1588 (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1589 "fmovd$cond %fcc0, $rs2, $rd", 1590 [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>; 1591 let Predicates = [HasV9, HasHardQuad] in 1592 def FMOVQ_FCC 1593 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1594 (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1595 "fmovq$cond %fcc0, $rs2, $rd", 1596 [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>; 1597 } 1598 1599} 1600 1601// Floating-Point Move Instructions, p. 164 of the V9 manual. 1602let Predicates = [HasV9] in { 1603 def FMOVD : F3_3u<2, 0b110100, 0b000000010, 1604 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1605 "fmovd $rs2, $rd", []>; 1606 let Predicates = [HasV9, HasHardQuad] in 1607 def FMOVQ : F3_3u<2, 0b110100, 0b000000011, 1608 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1609 "fmovq $rs2, $rd", []>; 1610 def FNEGD : F3_3u<2, 0b110100, 0b000000110, 1611 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1612 "fnegd $rs2, $rd", 1613 [(set f64:$rd, (fneg f64:$rs2))]>; 1614 let Predicates = [HasV9, HasHardQuad] in 1615 def FNEGQ : F3_3u<2, 0b110100, 0b000000111, 1616 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1617 "fnegq $rs2, $rd", 1618 [(set f128:$rd, (fneg f128:$rs2))]>; 1619 def FABSD : F3_3u<2, 0b110100, 0b000001010, 1620 (outs DFPRegs:$rd), (ins DFPRegs:$rs2), 1621 "fabsd $rs2, $rd", 1622 [(set f64:$rd, (fabs f64:$rs2))]>; 1623 let Predicates = [HasV9, HasHardQuad] in 1624 def FABSQ : F3_3u<2, 0b110100, 0b000001011, 1625 (outs QFPRegs:$rd), (ins QFPRegs:$rs2), 1626 "fabsq $rs2, $rd", 1627 [(set f128:$rd, (fabs f128:$rs2))]>; 1628} 1629 1630// Floating-point compare instruction with %fcc0-%fcc3. 1631def V9FCMPS : F3_3c<2, 0b110101, 0b001010001, 1632 (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1633 "fcmps $rd, $rs1, $rs2", []>; 1634def V9FCMPD : F3_3c<2, 0b110101, 0b001010010, 1635 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1636 "fcmpd $rd, $rs1, $rs2", []>; 1637def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011, 1638 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1639 "fcmpq $rd, $rs1, $rs2", []>, 1640 Requires<[HasHardQuad]>; 1641 1642let hasSideEffects = 1 in { 1643 def V9FCMPES : F3_3c<2, 0b110101, 0b001010101, 1644 (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), 1645 "fcmpes $rd, $rs1, $rs2", []>; 1646 def V9FCMPED : F3_3c<2, 0b110101, 0b001010110, 1647 (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), 1648 "fcmped $rd, $rs1, $rs2", []>; 1649 def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111, 1650 (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), 1651 "fcmpeq $rd, $rs1, $rs2", []>, 1652 Requires<[HasHardQuad]>; 1653} 1654 1655// Floating point conditional move instrucitons with %fcc0-%fcc3. 1656let Predicates = [HasV9] in { 1657 let Constraints = "$f = $rd", intcc = 0 in { 1658 def V9MOVFCCrr 1659 : F4_1<0b101100, (outs IntRegs:$rd), 1660 (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond), 1661 "mov$cond $cc, $rs2, $rd", []>; 1662 def V9MOVFCCri 1663 : F4_2<0b101100, (outs IntRegs:$rd), 1664 (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond), 1665 "mov$cond $cc, $simm11, $rd", []>; 1666 def V9FMOVS_FCC 1667 : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), 1668 (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond), 1669 "fmovs$cond $opf_cc, $rs2, $rd", []>; 1670 def V9FMOVD_FCC 1671 : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), 1672 (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), 1673 "fmovd$cond $opf_cc, $rs2, $rd", []>; 1674 let Predicates = [HasV9, HasHardQuad] in 1675 def V9FMOVQ_FCC 1676 : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), 1677 (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), 1678 "fmovq$cond $opf_cc, $rs2, $rd", []>; 1679 } // Constraints = "$f = $rd", ... 1680} // let Predicates = [hasV9] 1681 1682 1683// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear 1684// the top 32-bits before using it. To do this clearing, we use a SRLri X,0. 1685let rs1 = 0 in 1686 def POPCrr : F3_1<2, 0b101110, 1687 (outs IntRegs:$rd), (ins IntRegs:$rs2), 1688 "popc $rs2, $rd", []>, Requires<[HasV9]>; 1689def : Pat<(i32 (ctpop i32:$src)), 1690 (POPCrr (SRLri $src, 0))>; 1691 1692let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in 1693 def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13), 1694 "membar $simm13", []>; 1695 1696let Predicates = [HasV9], rd = 15, rs1 = 0b00000 in 1697 def SIR: F3_2<2, 0b110000, (outs), 1698 (ins simm13Op:$simm13), 1699 "sir $simm13", []>; 1700 1701// CASA supported on all V9, some LEON3 and all LEON4 processors. 1702let Predicates = [HasCASA], Constraints = "$swap = $rd" in 1703 def CASArr: F3_1_asi<3, 0b111100, 1704 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1705 IntRegs:$swap, ASITag:$asi), 1706 "casa [$rs1] $asi, $rs2, $rd", []>; 1707 1708// On the other hand, CASA that takes its ASI from a register 1709// is only supported on V9 processors. 1710let Predicates = [HasV9], Uses = [ASR3], Constraints = "$swap = $rd" in 1711 def CASAri: F3_1_cas_asi<3, 0b111100, 1712 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, 1713 IntRegs:$swap), 1714 "casa [$rs1] %asi, $rs2, $rd", []>; 1715 1716// TODO: Add DAG sequence to lower these instructions. Currently, only provided 1717// as inline assembler-supported instructions. 1718let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in { 1719 def SMACrr : F3_1<2, 0b111111, 1720 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), 1721 "smac $rs1, $rs2, $rd", 1722 [], IIC_smac_umac>; 1723 1724 def SMACri : F3_2<2, 0b111111, 1725 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), 1726 "smac $rs1, $simm13, $rd", 1727 [], IIC_smac_umac>; 1728 1729 def UMACrr : F3_1<2, 0b111110, 1730 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18), 1731 "umac $rs1, $rs2, $rd", 1732 [], IIC_smac_umac>; 1733 1734 def UMACri : F3_2<2, 0b111110, 1735 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18), 1736 "umac $rs1, $simm13, $rd", 1737 [], IIC_smac_umac>; 1738} 1739 1740// The partial write WRPSR instruction has a non-zero destination 1741// register value to separate it from the standard instruction. 1742let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in { 1743 def PWRPSRrr : F3_1<2, 0b110001, 1744 (outs), (ins IntRegs:$rs1, IntRegs:$rs2), 1745 "pwr $rs1, $rs2, %psr", []>; 1746 def PWRPSRri : F3_2<2, 0b110001, 1747 (outs), (ins IntRegs:$rs1, simm13Op:$simm13), 1748 "pwr $rs1, $simm13, %psr", []>; 1749} 1750 1751let Defs = [ICC] in { 1752defm TADDCC : F3_12np<"taddcc", 0b100000>; 1753defm TSUBCC : F3_12np<"tsubcc", 0b100001>; 1754 1755let hasSideEffects = 1 in { 1756 defm TADDCCTV : F3_12np<"taddcctv", 0b100010>; 1757 defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>; 1758} 1759} 1760 1761// Section A.11 - DONE and RETRY 1762// Section A.47 - SAVED and RESTORED 1763let Predicates = [HasV9], rs1 = 0, rs2 = 0 in { 1764 let rd = 0 in 1765 def DONE : F3_1<2, 0b111110, (outs), (ins), "done", []>; 1766 1767 let rd = 1 in 1768 def RETRY : F3_1<2, 0b111110, (outs), (ins), "retry", []>; 1769 1770 let rd = 0 in 1771 def SAVED : F3_1<2, 0b110001, (outs), (ins), "saved", []>; 1772 1773 let rd = 1 in 1774 def RESTORED : F3_1<2, 0b110001, (outs), (ins), "restored", []>; 1775} 1776 1777// Section A.42 - Prefetch Data 1778let Predicates = [HasV9] in { 1779 def PREFETCHr : F3_1<3, 0b101101, 1780 (outs), (ins (MEMrr $rs1, $rs2):$addr, PrefetchTag:$rd), 1781 "prefetch [$addr], $rd", []>; 1782 def PREFETCHi : F3_2<3, 0b101101, 1783 (outs), (ins (MEMri $rs1, $simm13):$addr, PrefetchTag:$rd), 1784 "prefetch [$addr], $rd", []>; 1785 def PREFETCHAr : F3_1_asi<3, 0b111101, (outs), 1786 (ins (MEMrr $rs1, $rs2):$addr, ASITag:$asi, PrefetchTag:$rd), 1787 "prefetcha [$addr] $asi, $rd", []>; 1788 let Uses = [ASR3] in 1789 def PREFETCHAi : F3_2<3, 0b111101, (outs), 1790 (ins (MEMri $rs1, $simm13):$addr, PrefetchTag:$rd), 1791 "prefetcha [$addr] %asi, $rd", []>; 1792} 1793 1794 1795 1796// Section A.43 - Read Privileged Register Instructions 1797let Predicates = [HasV9] in { 1798let rs2 = 0 in 1799 def RDPR : F3_1<2, 0b101010, 1800 (outs IntRegs:$rd), (ins PRRegs:$rs1), 1801 "rdpr $rs1, $rd", []>; 1802 1803// Special case %fq as the register is also used in V8 1804// (albeit with different instructions and encoding). 1805// This allows us to reuse the register definition and 1806// the "%fq" designation while giving it a different encoding. 1807let Uses = [FQ], rs1 = 15, rs2 = 0 in 1808 def RDFQ : F3_1<2, 0b101010, 1809 (outs IntRegs:$rd), (ins), 1810 "rdpr %fq, $rd", []>; 1811} 1812 1813// Section A.62 - Write Privileged Register Instructions 1814let Predicates = [HasV9] in { 1815 def WRPRrr : F3_1<2, 0b110010, 1816 (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), 1817 "wrpr $rs1, $rs2, $rd", []>; 1818 def WRPRri : F3_2<2, 0b110010, 1819 (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), 1820 "wrpr $rs1, $simm13, $rd", []>; 1821} 1822 1823//===----------------------------------------------------------------------===// 1824// Non-Instruction Patterns 1825//===----------------------------------------------------------------------===// 1826 1827// Zero immediate. 1828def : Pat<(i32 0), (COPY (i32 G0))>; 1829// Small immediates. 1830def : Pat<(i32 simm13:$val), 1831 (ORri (i32 G0), imm:$val)>; 1832// Arbitrary immediates. 1833def : Pat<(i32 imm:$val), 1834 (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; 1835 1836// Frame index. 1837def to_tframeindex : SDNodeXForm<frameindex, [{ 1838 return CurDAG->getTargetFrameIndex(N->getIndex(), N->getValueType(0)); 1839}]>; 1840def : Pat<(i32 (frameindex:$ptr)), (ADDri (i32 (to_tframeindex $ptr)), (i32 0))>; 1841def : Pat<(i64 (frameindex:$ptr)), (ADDri (i64 (to_tframeindex $ptr)), (i64 0))>; 1842 1843// Global addresses, constant pool entries 1844let Predicates = [Is32Bit] in { 1845 1846def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; 1847def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; 1848def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; 1849def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; 1850 1851// GlobalTLS addresses 1852def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; 1853def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>; 1854def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), 1855 (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; 1856def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), 1857 (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; 1858 1859// Blockaddress 1860def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; 1861def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; 1862 1863// Add reg, lo. This is used when taking the addr of a global/constpool entry. 1864def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; 1865def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; 1866def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), 1867 (ADDri $r, tblockaddress:$in)>; 1868} 1869 1870// Calls: 1871def : Pat<(call tglobaladdr:$dst), 1872 (CALL tglobaladdr:$dst)>; 1873def : Pat<(call texternalsym:$dst), 1874 (CALL texternalsym:$dst)>; 1875 1876// Map integer extload's to zextloads. 1877def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1878def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1879def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1880def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1881def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; 1882def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; 1883 1884// zextload bool -> zextload byte 1885def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1886def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1887 1888// store 0, addr -> store %g0, addr 1889def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; 1890def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; 1891 1892// store bar for all atomic_fence in V8. 1893let Predicates = [HasNoV9] in 1894 def : Pat<(atomic_fence timm, timm), (STBAR)>; 1895 1896let Predicates = [HasV9] in 1897 def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>; 1898 1899// atomic_load addr -> load addr 1900def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; 1901def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>; 1902def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; 1903def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>; 1904def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>; 1905def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>; 1906 1907// atomic_store val, addr -> store val, addr 1908def : Pat<(atomic_store_8 i32:$val, ADDRrr:$dst), (STBrr ADDRrr:$dst, $val)>; 1909def : Pat<(atomic_store_8 i32:$val, ADDRri:$dst), (STBri ADDRri:$dst, $val)>; 1910def : Pat<(atomic_store_16 i32:$val, ADDRrr:$dst), (STHrr ADDRrr:$dst, $val)>; 1911def : Pat<(atomic_store_16 i32:$val, ADDRri:$dst), (STHri ADDRri:$dst, $val)>; 1912def : Pat<(atomic_store_32 i32:$val, ADDRrr:$dst), (STrr ADDRrr:$dst, $val)>; 1913def : Pat<(atomic_store_32 i32:$val, ADDRri:$dst), (STri ADDRri:$dst, $val)>; 1914 1915let Predicates = [HasV9] in 1916def : Pat<(atomic_cmp_swap_i32 iPTR:$rs1, i32:$rs2, i32:$swap), 1917 (CASArr $rs1, $rs2, $swap, 0x80)>; 1918 1919// Same pattern as CASArr above, but with a different ASI. 1920let Predicates = [HasLeonCASA] in 1921def : Pat<(atomic_cmp_swap_i32 iPTR:$rs1, i32:$rs2, i32:$swap), 1922 (CASArr $rs1, $rs2, $swap, 0x0A)>; 1923 1924// A register pair with zero upper half. 1925// The upper part is done with ORrr instead of `COPY G0` 1926// or a normal register copy, since `COPY G0`s in that place 1927// will be converted into `COPY G0_G1` later on, which is not 1928// what we want in this case. 1929def : Pat<(build_vector (i32 0), (i32 IntRegs:$a2)), 1930 (INSERT_SUBREG (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), 1931 (ORrr (i32 G0), (i32 G0)), sub_even), 1932 (i32 IntRegs:$a2), sub_odd)>; 1933 1934// extract_vector 1935def : Pat<(extractelt (v2i32 IntPair:$Rn), 0), 1936 (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>; 1937def : Pat<(extractelt (v2i32 IntPair:$Rn), 1), 1938 (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>; 1939 1940// build_vector 1941def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)), 1942 (INSERT_SUBREG 1943 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even), 1944 (i32 IntRegs:$a2), sub_odd)>; 1945 1946 1947include "SparcInstr64Bit.td" 1948include "SparcInstrVIS.td" 1949include "SparcInstrAliases.td" 1950