xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Sparc/SparcInstr64Bit.td (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains instruction definitions and patterns needed for 64-bit
10// code generation on SPARC v9.
11//
12// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
13// also be used in 32-bit code running on a SPARC v9 CPU.
14//
15//===----------------------------------------------------------------------===//
16
17let Predicates = [Is64Bit] in {
18// The same integer registers are used for i32 and i64 values.
19// When registers hold i32 values, the high bits are don't care.
20// This give us free trunc and anyext.
21def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
22def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
23
24} // Predicates = [Is64Bit]
25
26
27//===----------------------------------------------------------------------===//
28// 64-bit Shift Instructions.
29//===----------------------------------------------------------------------===//
30//
31// The 32-bit shift instructions are still available. The left shift srl
32// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
33//
34// The srl instructions only shift the low 32 bits and clear the high 32 bits.
35// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
36
37let Predicates = [Is64Bit] in {
38
39def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
40def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
41
42def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
43def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
44
45defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, shift_imm6, I64Regs>;
46defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, shift_imm6, I64Regs>;
47defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, shift_imm6, I64Regs>;
48
49} // Predicates = [Is64Bit]
50
51
52//===----------------------------------------------------------------------===//
53// 64-bit Immediates.
54//===----------------------------------------------------------------------===//
55//
56// All 32-bit immediates can be materialized with sethi+or, but 64-bit
57// immediates may require more code. There may be a point where it is
58// preferable to use a constant pool load instead, depending on the
59// microarchitecture.
60
61// Single-instruction patterns.
62
63// Zero immediate.
64def : Pat<(i64 0), (COPY (i64 G0))>,
65  Requires<[Is64Bit]>;
66
67// The ALU instructions want their simm13 operands as i32 immediates.
68def as_i32imm : SDNodeXForm<imm, [{
69  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
70}]>;
71def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
72def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
73
74// Double-instruction patterns.
75
76// All unsigned i32 immediates can be handled by sethi+or.
77def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
78def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
79      Requires<[Is64Bit]>;
80
81// All negative i33 immediates can be handled by sethi+xor.
82def nimm33 : PatLeaf<(imm), [{
83  int64_t Imm = N->getSExtValue();
84  return Imm < 0 && isInt<33>(Imm);
85}]>;
86// Bits 10-31 inverted. Same as assembler's %hix.
87def HIX22 : SDNodeXForm<imm, [{
88  uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
89  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
90}]>;
91// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
92def LOX10 : SDNodeXForm<imm, [{
93  return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), SDLoc(N),
94                                   MVT::i32);
95}]>;
96def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
97      Requires<[Is64Bit]>;
98
99// More possible patterns:
100//
101//   (sllx sethi, n)
102//   (sllx simm13, n)
103//
104// 3 instrs:
105//
106//   (xor (sllx sethi), simm13)
107//   (sllx (xor sethi, simm13))
108//
109// 4 instrs:
110//
111//   (or sethi, (sllx sethi))
112//   (xnor sethi, (sllx sethi))
113//
114// 5 instrs:
115//
116//   (or (sllx sethi), (or sethi, simm13))
117//   (xnor (sllx sethi), (or sethi, simm13))
118//   (or (sllx sethi), (sllx sethi))
119//   (xnor (sllx sethi), (sllx sethi))
120//
121// Worst case is 6 instrs:
122//
123//   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
124
125// Bits 42-63, same as assembler's %hh.
126def HH22 : SDNodeXForm<imm, [{
127  uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
128  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
129}]>;
130// Bits 32-41, same as assembler's %hm.
131def HM10 : SDNodeXForm<imm, [{
132  uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
133  return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
134}]>;
135def : Pat<(i64 imm:$val),
136          (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
137                (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
138      Requires<[Is64Bit]>;
139
140
141//===----------------------------------------------------------------------===//
142// 64-bit Integer Arithmetic and Logic.
143//===----------------------------------------------------------------------===//
144
145let Predicates = [Is64Bit] in {
146
147// Register-register instructions.
148let isCodeGenOnly = 1 in {
149defm ANDX    : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
150defm ORX     : F3_12<"or",  0b000010, or,  I64Regs, i64, i64imm>;
151defm XORX    : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;
152
153def ANDXNrr  : F3_1<2, 0b000101,
154                 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
155                 "andn $rs1, $rs2, $rd",
156                 [(set i64:$rd, (and i64:$rs1, (not i64:$rs2)))]>;
157def ORXNrr   : F3_1<2, 0b000110,
158                 (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
159                 "orn $rs1, $rs2, $rd",
160                 [(set i64:$rd, (or i64:$rs1, (not i64:$rs2)))]>;
161def XNORXrr  : F3_1<2, 0b000111,
162                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
163                   "xnor $rs1, $rs2, $rd",
164                   [(set i64:$rd, (not (xor i64:$rs1, i64:$rs2)))]>;
165
166defm ADDX    : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
167defm SUBX    : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;
168
169def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
170                   (ins I64Regs:$rs1, I64Regs:$rs2, TailRelocSymTLSAdd:$sym),
171                   "add $rs1, $rs2, $rd, $sym",
172                   [(set i64:$rd,
173                       (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;
174
175// "LEA" form of add
176def LEAX_ADDri : F3_2<2, 0b000000,
177                     (outs I64Regs:$rd), (ins (MEMri $rs1, $simm13):$addr),
178                     "add ${addr:arith}, $rd",
179                     [(set iPTR:$rd, ADDRri:$addr)]>;
180}
181
182def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
183def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
184def : Pat<(i64 (ctpop i64:$src)), (POPCrr $src)>;
185
186} // Predicates = [Is64Bit]
187
188
189//===----------------------------------------------------------------------===//
190// 64-bit Integer Multiply and Divide.
191//===----------------------------------------------------------------------===//
192
193let Predicates = [Is64Bit] in {
194
195def MULXrr : F3_1<2, 0b001001,
196                  (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
197                  "mulx $rs1, $rs2, $rd",
198                  [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
199def MULXri : F3_2<2, 0b001001,
200                  (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
201                  "mulx $rs1, $simm13, $rd",
202                  [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;
203
204// Division can trap.
205let hasSideEffects = 1 in {
206def SDIVXrr : F3_1<2, 0b101101,
207                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
208                   "sdivx $rs1, $rs2, $rd",
209                   [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
210def SDIVXri : F3_2<2, 0b101101,
211                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
212                   "sdivx $rs1, $simm13, $rd",
213                   [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;
214
215def UDIVXrr : F3_1<2, 0b001101,
216                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
217                   "udivx $rs1, $rs2, $rd",
218                   [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
219def UDIVXri : F3_2<2, 0b001101,
220                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
221                   "udivx $rs1, $simm13, $rd",
222                   [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
223} // hasSideEffects = 1
224
225} // Predicates = [Is64Bit]
226
227
228//===----------------------------------------------------------------------===//
229// 64-bit Loads and Stores.
230//===----------------------------------------------------------------------===//
231//
232// All the 32-bit loads and stores are available. The extending loads are sign
233// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
234// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
235// Word).
236//
237// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
238
239let Predicates = [Is64Bit] in {
240
241// 64-bit loads.
242defm LDX   : Load<"ldx", 0b001011, load, I64Regs, i64>;
243
244let mayLoad = 1, isAsmParserOnly = 1 in {
245  def TLS_LDXrr : F3_1<3, 0b001011,
246                       (outs IntRegs:$rd),
247                       (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymTLSLoad:$sym),
248                       "ldx [$addr], $rd, $sym",
249                       [(set i64:$rd,
250                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
251  def GDOP_LDXrr : F3_1<3, 0b001011,
252                       (outs I64Regs:$rd),
253                       (ins (MEMrr $rs1, $rs2):$addr, TailRelocSymGOTLoad:$sym),
254                       "ldx [$addr], $rd, $sym",
255                       [(set i64:$rd,
256                           (load_gdop ADDRrr:$addr, tglobaladdr:$sym))]>;
257}
258
259// Extending loads to i64.
260def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
261def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
262def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
263def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
264
265def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
266def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
267def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
268def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
269def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
270def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
271
272def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
273def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
274def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
275def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
276def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
277def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
278
279def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
280def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
281def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
282def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
283
284// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
285defm LDSW   : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;
286
287// 64-bit stores.
288defm STX    : Store<"stx", 0b001110, store,  I64Regs, i64>;
289
290// Truncating stores from i64 are identical to the i32 stores.
291def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
292def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
293def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
294def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
295def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
296def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
297
298// store 0, addr -> store %g0, addr
299def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
300def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
301
302} // Predicates = [Is64Bit]
303
304
305//===----------------------------------------------------------------------===//
306// 64-bit Conditionals.
307//===----------------------------------------------------------------------===//
308
309//
310// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
311// The icc flags correspond to the 32-bit result, and the xcc are for the
312// full 64-bit result.
313//
314// We reuse CMPICC SDNodes for compares, but use new BPXCC branch nodes for
315// 64-bit compares. See LowerBR_CC.
316
317let Predicates = [Is64Bit] in {
318
319let Uses = [ICC], cc = 0b10 in
320  defm BPX : IPredBranch<"%xcc", [(SPbpxcc bb:$imm19, imm:$cond)]>;
321
322// Conditional moves on %xcc.
323let Uses = [ICC], Constraints = "$f = $rd" in {
324let intcc = 1, cc = 0b10 in {
325def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
326                      (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
327                      "mov$cond %xcc, $rs2, $rd",
328                      [(set i32:$rd,
329                       (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
330def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
331                      (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
332                      "mov$cond %xcc, $simm11, $rd",
333                      [(set i32:$rd,
334                       (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
335} // cc
336
337let intcc = 1, opf_cc = 0b10 in {
338def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
339                      (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
340                      "fmovs$cond %xcc, $rs2, $rd",
341                      [(set f32:$rd,
342                       (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
343def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
344                      (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
345                      "fmovd$cond %xcc, $rs2, $rd",
346                      [(set f64:$rd,
347                       (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
348let Predicates = [Is64Bit, HasHardQuad] in
349def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
350                      (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
351                      "fmovq$cond %xcc, $rs2, $rd",
352                      [(set f128:$rd,
353                       (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
354} // opf_cc
355} // Uses, Constraints
356
357// Branch On integer register with Prediction (BPr).
358let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
359multiclass BranchOnReg<bits<3> cond, string OpcStr> {
360  def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
361             !strconcat(OpcStr, " $rs1, $imm16"), []>;
362  def apt  : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
363             !strconcat(OpcStr, ",a $rs1, $imm16"), []>;
364  def napn  : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
365             !strconcat(OpcStr, ",pn $rs1, $imm16"), []>;
366  def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
367             !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>;
368}
369
370multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> {
371  def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"),
372                  (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>;
373  def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"),
374                  (APT I64Regs:$rs1, bprtarget16:$imm16), 0>;
375}
376
377defm BPZ   : BranchOnReg<0b001, "brz">;
378defm BPLEZ : BranchOnReg<0b010, "brlez">;
379defm BPLZ  : BranchOnReg<0b011, "brlz">;
380defm BPNZ  : BranchOnReg<0b101, "brnz">;
381defm BPGZ  : BranchOnReg<0b110, "brgz">;
382defm BPGEZ : BranchOnReg<0b111, "brgez">;
383
384defm : bpr_alias<"brz",   BPZnapt,   BPZapt  >;
385defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>;
386defm : bpr_alias<"brlz",  BPLZnapt,  BPLZapt >;
387defm : bpr_alias<"brnz",  BPNZnapt,  BPNZapt >;
388defm : bpr_alias<"brgz",  BPGZnapt,  BPGZapt >;
389defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>;
390
391// Move integer register on register condition (MOVr).
392let Predicates = [Is64Bit], Constraints = "$f = $rd" in {
393  def MOVRrr : F4_4r<0b101111, 0b00000, (outs IntRegs:$rd),
394                   (ins I64Regs:$rs1, IntRegs:$rs2, IntRegs:$f, RegCCOp:$rcond),
395                   "movr$rcond $rs1, $rs2, $rd",
396                   [(set i32:$rd, (SPselectreg i32:$rs2, i32:$f, imm:$rcond, i64:$rs1))]>;
397
398  def MOVRri : F4_4i<0b101111, (outs IntRegs:$rd),
399                   (ins I64Regs:$rs1, i32imm:$simm10, IntRegs:$f, RegCCOp:$rcond),
400                   "movr$rcond $rs1, $simm10, $rd",
401                   [(set i32:$rd, (SPselectreg simm10:$simm10, i32:$f, imm:$rcond, i64:$rs1))]>;
402}
403
404// Move FP register on integer register condition (FMOVr).
405let Predicates = [Is64Bit], Constraints = "$f = $rd" in {
406  def FMOVRS : F4_4r<0b110101, 0b00101,
407                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2, FPRegs:$f,  RegCCOp:$rcond),
408                "fmovrs$rcond $rs1, $rs2, $rd",
409                [(set f32:$rd, (SPselectreg f32:$rs2, f32:$f, imm:$rcond, i64:$rs1))]>;
410  def FMOVRD : F4_4r<0b110101, 0b00110,
411                (outs DFPRegs:$rd), (ins I64Regs:$rs1, DFPRegs:$rs2, DFPRegs:$f, RegCCOp:$rcond),
412                "fmovrd$rcond $rs1, $rs2, $rd",
413                [(set f64:$rd, (SPselectreg f64:$rs2, f64:$f, imm:$rcond, i64:$rs1))]>;
414  let Predicates = [HasHardQuad] in
415  def FMOVRQ : F4_4r<0b110101, 0b00111,
416                (outs QFPRegs:$rd), (ins I64Regs:$rs1, QFPRegs:$rs2, QFPRegs:$f, RegCCOp:$rcond),
417                "fmovrq$rcond $rs1, $rs2, $rd",
418                [(set f128:$rd, (SPselectreg f128:$rs2, f128:$f, imm:$rcond, i64:$rs1))]>;
419}
420
421//===----------------------------------------------------------------------===//
422// 64-bit Floating Point Conversions.
423//===----------------------------------------------------------------------===//
424
425let Predicates = [Is64Bit] in {
426
427def FXTOS : F3_3u<2, 0b110100, 0b010000100,
428                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
429                 "fxtos $rs2, $rd",
430                 [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
431def FXTOD : F3_3u<2, 0b110100, 0b010001000,
432                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
433                 "fxtod $rs2, $rd",
434                 [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
435let Predicates = [Is64Bit, HasHardQuad] in
436def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
437                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
438                 "fxtoq $rs2, $rd",
439                 [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
440
441def FSTOX : F3_3u<2, 0b110100, 0b010000001,
442                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
443                 "fstox $rs2, $rd",
444                 [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
445def FDTOX : F3_3u<2, 0b110100, 0b010000010,
446                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
447                 "fdtox $rs2, $rd",
448                 [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
449let Predicates = [Is64Bit, HasHardQuad] in
450def FQTOX : F3_3u<2, 0b110100, 0b010000011,
451                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
452                 "fqtox $rs2, $rd",
453                 [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>;
454
455} // Predicates = [Is64Bit]
456
457def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
458          (MOVXCCrr $t, $f, imm:$cond)>;
459def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
460          (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
461
462def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
463          (MOVICCrr $t, $f, imm:$cond)>;
464def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
465          (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
466
467def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
468          (MOVFCCrr $t, $f, imm:$cond)>;
469def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
470          (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
471
472def : Pat<(SPselectreg i64:$t, i64:$f, imm:$rcond, i64:$rs1),
473          (MOVRrr $rs1, $t, $f, imm:$rcond)>;
474def : Pat<(SPselectreg (i64 simm10:$t), i64:$f, imm:$rcond, i64:$rs1),
475          (MOVRri $rs1, (as_i32imm $t), $f, imm:$rcond)>;
476
477} // Predicates = [Is64Bit]
478
479
480// 64 bit SETHI
481let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
482def SETHIXi : F2_1<0b100,
483                   (outs IntRegs:$rd), (ins i64imm:$imm22),
484                   "sethi $imm22, $rd",
485                   [(set i64:$rd, SETHIimm:$imm22)]>;
486}
487
488// ATOMICS.
489let Predicates = [Is64Bit], Constraints = "$swap = $rd", asi = 0b10000000 in {
490  def CASXrr: F3_1_asi<3, 0b111110,
491                (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
492                                     I64Regs:$swap),
493                 "casx [$rs1], $rs2, $rd",
494                 [(set i64:$rd,
495                     (atomic_cmp_swap_64 i64:$rs1, i64:$rs2, i64:$swap))]>;
496
497} // Predicates = [Is64Bit], Constraints = ...
498
499let Predicates = [Is64Bit] in {
500
501// atomic_load_64 addr -> load addr
502def : Pat<(i64 (atomic_load_64 ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
503def : Pat<(i64 (atomic_load_64 ADDRri:$src)), (LDXri ADDRri:$src)>;
504
505// atomic_store_64 val, addr -> store val, addr
506def : Pat<(atomic_store_64 ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
507def : Pat<(atomic_store_64 ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;
508
509} // Predicates = [Is64Bit]
510
511let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in
512 defm TXCC : TRAP<"%xcc">;
513
514// Global addresses, constant pool entries
515let Predicates = [Is64Bit] in {
516
517def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
518def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
519def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
520def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;
521
522// GlobalTLS addresses
523def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
524def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
525def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
526          (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
527def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
528          (XORXri  (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
529
530// Blockaddress
531def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
532def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;
533
534// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
535def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
536def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDXri $r, tconstpool:$in)>;
537def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
538                        (ADDXri $r, tblockaddress:$in)>;
539}
540