1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Sparc uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SparcISelLowering.h" 15 #include "MCTargetDesc/SparcMCExpr.h" 16 #include "SparcMachineFunctionInfo.h" 17 #include "SparcRegisterInfo.h" 18 #include "SparcTargetMachine.h" 19 #include "SparcTargetObjectFile.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 using namespace llvm; 35 36 37 //===----------------------------------------------------------------------===// 38 // Calling Convention Implementation 39 //===----------------------------------------------------------------------===// 40 41 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 42 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, CCState &State) 44 { 45 assert (ArgFlags.isSRet()); 46 47 // Assign SRet argument. 48 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 49 0, 50 LocVT, LocInfo)); 51 return true; 52 } 53 54 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 55 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 56 ISD::ArgFlagsTy &ArgFlags, CCState &State) 57 { 58 static const MCPhysReg RegList[] = { 59 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 60 }; 61 // Try to get first reg. 62 if (unsigned Reg = State.AllocateReg(RegList)) { 63 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 64 } else { 65 // Assign whole thing in stack. 66 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 67 State.AllocateStack(8,4), 68 LocVT, LocInfo)); 69 return true; 70 } 71 72 // Try to get second reg. 73 if (unsigned Reg = State.AllocateReg(RegList)) 74 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 75 else 76 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 77 State.AllocateStack(4,4), 78 LocVT, LocInfo)); 79 return true; 80 } 81 82 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 83 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 84 ISD::ArgFlagsTy &ArgFlags, CCState &State) 85 { 86 static const MCPhysReg RegList[] = { 87 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 88 }; 89 90 // Try to get first reg. 91 if (unsigned Reg = State.AllocateReg(RegList)) 92 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 93 else 94 return false; 95 96 // Try to get second reg. 97 if (unsigned Reg = State.AllocateReg(RegList)) 98 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 99 else 100 return false; 101 102 return true; 103 } 104 105 // Allocate a full-sized argument for the 64-bit ABI. 106 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, 107 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 108 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 109 assert((LocVT == MVT::f32 || LocVT == MVT::f128 110 || LocVT.getSizeInBits() == 64) && 111 "Can't handle non-64 bits locations"); 112 113 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 114 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 115 unsigned alignment = (LocVT == MVT::f128) ? 16 : 8; 116 unsigned Offset = State.AllocateStack(size, alignment); 117 unsigned Reg = 0; 118 119 if (LocVT == MVT::i64 && Offset < 6*8) 120 // Promote integers to %i0-%i5. 121 Reg = SP::I0 + Offset/8; 122 else if (LocVT == MVT::f64 && Offset < 16*8) 123 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 124 Reg = SP::D0 + Offset/8; 125 else if (LocVT == MVT::f32 && Offset < 16*8) 126 // Promote floats to %f1, %f3, ... 127 Reg = SP::F1 + Offset/4; 128 else if (LocVT == MVT::f128 && Offset < 16*8) 129 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 130 Reg = SP::Q0 + Offset/16; 131 132 // Promote to register when possible, otherwise use the stack slot. 133 if (Reg) { 134 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 135 return true; 136 } 137 138 // This argument goes on the stack in an 8-byte slot. 139 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 140 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 141 if (LocVT == MVT::f32) 142 Offset += 4; 143 144 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 145 return true; 146 } 147 148 // Allocate a half-sized argument for the 64-bit ABI. 149 // 150 // This is used when passing { float, int } structs by value in registers. 151 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, 152 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 153 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 154 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 155 unsigned Offset = State.AllocateStack(4, 4); 156 157 if (LocVT == MVT::f32 && Offset < 16*8) { 158 // Promote floats to %f0-%f31. 159 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 160 LocVT, LocInfo)); 161 return true; 162 } 163 164 if (LocVT == MVT::i32 && Offset < 6*8) { 165 // Promote integers to %i0-%i5, using half the register. 166 unsigned Reg = SP::I0 + Offset/8; 167 LocVT = MVT::i64; 168 LocInfo = CCValAssign::AExt; 169 170 // Set the Custom bit if this i32 goes in the high bits of a register. 171 if (Offset % 8 == 0) 172 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 173 LocVT, LocInfo)); 174 else 175 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 176 return true; 177 } 178 179 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 180 return true; 181 } 182 183 #include "SparcGenCallingConv.inc" 184 185 // The calling conventions in SparcCallingConv.td are described in terms of the 186 // callee's register window. This function translates registers to the 187 // corresponding caller window %o register. 188 static unsigned toCallerWindow(unsigned Reg) { 189 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 190 "Unexpected enum"); 191 if (Reg >= SP::I0 && Reg <= SP::I7) 192 return Reg - SP::I0 + SP::O0; 193 return Reg; 194 } 195 196 SDValue 197 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 198 bool IsVarArg, 199 const SmallVectorImpl<ISD::OutputArg> &Outs, 200 const SmallVectorImpl<SDValue> &OutVals, 201 const SDLoc &DL, SelectionDAG &DAG) const { 202 if (Subtarget->is64Bit()) 203 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 204 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 205 } 206 207 SDValue 208 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 209 bool IsVarArg, 210 const SmallVectorImpl<ISD::OutputArg> &Outs, 211 const SmallVectorImpl<SDValue> &OutVals, 212 const SDLoc &DL, SelectionDAG &DAG) const { 213 MachineFunction &MF = DAG.getMachineFunction(); 214 215 // CCValAssign - represent the assignment of the return value to locations. 216 SmallVector<CCValAssign, 16> RVLocs; 217 218 // CCState - Info about the registers and stack slot. 219 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 220 *DAG.getContext()); 221 222 // Analyze return values. 223 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 224 225 SDValue Flag; 226 SmallVector<SDValue, 4> RetOps(1, Chain); 227 // Make room for the return address offset. 228 RetOps.push_back(SDValue()); 229 230 // Copy the result values into the output registers. 231 for (unsigned i = 0, realRVLocIdx = 0; 232 i != RVLocs.size(); 233 ++i, ++realRVLocIdx) { 234 CCValAssign &VA = RVLocs[i]; 235 assert(VA.isRegLoc() && "Can only return in registers!"); 236 237 SDValue Arg = OutVals[realRVLocIdx]; 238 239 if (VA.needsCustom()) { 240 assert(VA.getLocVT() == MVT::v2i32); 241 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 242 // happen by default if this wasn't a legal type) 243 244 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 245 Arg, 246 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 247 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 248 Arg, 249 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 250 251 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag); 252 Flag = Chain.getValue(1); 253 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 254 VA = RVLocs[++i]; // skip ahead to next loc 255 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 256 Flag); 257 } else 258 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 259 260 // Guarantee that all emitted copies are stuck together with flags. 261 Flag = Chain.getValue(1); 262 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 263 } 264 265 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 266 // If the function returns a struct, copy the SRetReturnReg to I0 267 if (MF.getFunction().hasStructRetAttr()) { 268 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 269 unsigned Reg = SFI->getSRetReturnReg(); 270 if (!Reg) 271 llvm_unreachable("sret virtual register not created in the entry block"); 272 auto PtrVT = getPointerTy(DAG.getDataLayout()); 273 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 274 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); 275 Flag = Chain.getValue(1); 276 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 277 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 278 } 279 280 RetOps[0] = Chain; // Update chain. 281 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 282 283 // Add the flag if we have it. 284 if (Flag.getNode()) 285 RetOps.push_back(Flag); 286 287 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 288 } 289 290 // Lower return values for the 64-bit ABI. 291 // Return values are passed the exactly the same way as function arguments. 292 SDValue 293 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 294 bool IsVarArg, 295 const SmallVectorImpl<ISD::OutputArg> &Outs, 296 const SmallVectorImpl<SDValue> &OutVals, 297 const SDLoc &DL, SelectionDAG &DAG) const { 298 // CCValAssign - represent the assignment of the return value to locations. 299 SmallVector<CCValAssign, 16> RVLocs; 300 301 // CCState - Info about the registers and stack slot. 302 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 303 *DAG.getContext()); 304 305 // Analyze return values. 306 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 307 308 SDValue Flag; 309 SmallVector<SDValue, 4> RetOps(1, Chain); 310 311 // The second operand on the return instruction is the return address offset. 312 // The return address is always %i7+8 with the 64-bit ABI. 313 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 314 315 // Copy the result values into the output registers. 316 for (unsigned i = 0; i != RVLocs.size(); ++i) { 317 CCValAssign &VA = RVLocs[i]; 318 assert(VA.isRegLoc() && "Can only return in registers!"); 319 SDValue OutVal = OutVals[i]; 320 321 // Integer return values must be sign or zero extended by the callee. 322 switch (VA.getLocInfo()) { 323 case CCValAssign::Full: break; 324 case CCValAssign::SExt: 325 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 326 break; 327 case CCValAssign::ZExt: 328 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 329 break; 330 case CCValAssign::AExt: 331 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 332 break; 333 default: 334 llvm_unreachable("Unknown loc info!"); 335 } 336 337 // The custom bit on an i32 return value indicates that it should be passed 338 // in the high bits of the register. 339 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 340 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 341 DAG.getConstant(32, DL, MVT::i32)); 342 343 // The next value may go in the low bits of the same register. 344 // Handle both at once. 345 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 346 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 347 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 348 // Skip the next value, it's already done. 349 ++i; 350 } 351 } 352 353 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 354 355 // Guarantee that all emitted copies are stuck together with flags. 356 Flag = Chain.getValue(1); 357 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 358 } 359 360 RetOps[0] = Chain; // Update chain. 361 362 // Add the flag if we have it. 363 if (Flag.getNode()) 364 RetOps.push_back(Flag); 365 366 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 367 } 368 369 SDValue SparcTargetLowering::LowerFormalArguments( 370 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 371 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 372 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 373 if (Subtarget->is64Bit()) 374 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 375 DL, DAG, InVals); 376 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 377 DL, DAG, InVals); 378 } 379 380 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 381 /// passed in either one or two GPRs, including FP values. TODO: we should 382 /// pass FP values in FP registers for fastcc functions. 383 SDValue SparcTargetLowering::LowerFormalArguments_32( 384 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 385 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 386 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 387 MachineFunction &MF = DAG.getMachineFunction(); 388 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 389 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 390 391 // Assign locations to all of the incoming arguments. 392 SmallVector<CCValAssign, 16> ArgLocs; 393 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 394 *DAG.getContext()); 395 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 396 397 const unsigned StackOffset = 92; 398 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 399 400 unsigned InIdx = 0; 401 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 402 CCValAssign &VA = ArgLocs[i]; 403 404 if (Ins[InIdx].Flags.isSRet()) { 405 if (InIdx != 0) 406 report_fatal_error("sparc only supports sret on the first parameter"); 407 // Get SRet from [%fp+64]. 408 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); 409 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 410 SDValue Arg = 411 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 412 InVals.push_back(Arg); 413 continue; 414 } 415 416 if (VA.isRegLoc()) { 417 if (VA.needsCustom()) { 418 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 419 420 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 421 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 422 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 423 424 assert(i+1 < e); 425 CCValAssign &NextVA = ArgLocs[++i]; 426 427 SDValue LoVal; 428 if (NextVA.isMemLoc()) { 429 int FrameIdx = MF.getFrameInfo(). 430 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 431 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 432 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 433 } else { 434 unsigned loReg = MF.addLiveIn(NextVA.getLocReg(), 435 &SP::IntRegsRegClass); 436 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 437 } 438 439 if (IsLittleEndian) 440 std::swap(LoVal, HiVal); 441 442 SDValue WholeValue = 443 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 444 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 445 InVals.push_back(WholeValue); 446 continue; 447 } 448 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 449 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 450 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 451 if (VA.getLocVT() == MVT::f32) 452 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 453 else if (VA.getLocVT() != MVT::i32) { 454 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 455 DAG.getValueType(VA.getLocVT())); 456 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 457 } 458 InVals.push_back(Arg); 459 continue; 460 } 461 462 assert(VA.isMemLoc()); 463 464 unsigned Offset = VA.getLocMemOffset()+StackOffset; 465 auto PtrVT = getPointerTy(DAG.getDataLayout()); 466 467 if (VA.needsCustom()) { 468 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 469 // If it is double-word aligned, just load. 470 if (Offset % 8 == 0) { 471 int FI = MF.getFrameInfo().CreateFixedObject(8, 472 Offset, 473 true); 474 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 475 SDValue Load = 476 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 477 InVals.push_back(Load); 478 continue; 479 } 480 481 int FI = MF.getFrameInfo().CreateFixedObject(4, 482 Offset, 483 true); 484 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 485 SDValue HiVal = 486 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 487 int FI2 = MF.getFrameInfo().CreateFixedObject(4, 488 Offset+4, 489 true); 490 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 491 492 SDValue LoVal = 493 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); 494 495 if (IsLittleEndian) 496 std::swap(LoVal, HiVal); 497 498 SDValue WholeValue = 499 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 500 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 501 InVals.push_back(WholeValue); 502 continue; 503 } 504 505 int FI = MF.getFrameInfo().CreateFixedObject(4, 506 Offset, 507 true); 508 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 509 SDValue Load ; 510 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 511 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 512 } else if (VA.getValVT() == MVT::f128) { 513 report_fatal_error("SPARCv8 does not handle f128 in calls; " 514 "pass indirectly"); 515 } else { 516 // We shouldn't see any other value types here. 517 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 518 } 519 InVals.push_back(Load); 520 } 521 522 if (MF.getFunction().hasStructRetAttr()) { 523 // Copy the SRet Argument to SRetReturnReg. 524 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 525 unsigned Reg = SFI->getSRetReturnReg(); 526 if (!Reg) { 527 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 528 SFI->setSRetReturnReg(Reg); 529 } 530 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 531 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 532 } 533 534 // Store remaining ArgRegs to the stack if this is a varargs function. 535 if (isVarArg) { 536 static const MCPhysReg ArgRegs[] = { 537 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 538 }; 539 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 540 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 541 unsigned ArgOffset = CCInfo.getNextStackOffset(); 542 if (NumAllocated == 6) 543 ArgOffset += StackOffset; 544 else { 545 assert(!ArgOffset); 546 ArgOffset = 68+4*NumAllocated; 547 } 548 549 // Remember the vararg offset for the va_start implementation. 550 FuncInfo->setVarArgsFrameOffset(ArgOffset); 551 552 std::vector<SDValue> OutChains; 553 554 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 555 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 556 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 557 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 558 559 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, 560 true); 561 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 562 563 OutChains.push_back( 564 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); 565 ArgOffset += 4; 566 } 567 568 if (!OutChains.empty()) { 569 OutChains.push_back(Chain); 570 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 571 } 572 } 573 574 return Chain; 575 } 576 577 // Lower formal arguments for the 64 bit ABI. 578 SDValue SparcTargetLowering::LowerFormalArguments_64( 579 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 580 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 581 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 582 MachineFunction &MF = DAG.getMachineFunction(); 583 584 // Analyze arguments according to CC_Sparc64. 585 SmallVector<CCValAssign, 16> ArgLocs; 586 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 587 *DAG.getContext()); 588 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 589 590 // The argument array begins at %fp+BIAS+128, after the register save area. 591 const unsigned ArgArea = 128; 592 593 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 594 CCValAssign &VA = ArgLocs[i]; 595 if (VA.isRegLoc()) { 596 // This argument is passed in a register. 597 // All integer register arguments are promoted by the caller to i64. 598 599 // Create a virtual register for the promoted live-in value. 600 unsigned VReg = MF.addLiveIn(VA.getLocReg(), 601 getRegClassFor(VA.getLocVT())); 602 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 603 604 // Get the high bits for i32 struct elements. 605 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 606 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 607 DAG.getConstant(32, DL, MVT::i32)); 608 609 // The caller promoted the argument, so insert an Assert?ext SDNode so we 610 // won't promote the value again in this function. 611 switch (VA.getLocInfo()) { 612 case CCValAssign::SExt: 613 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 614 DAG.getValueType(VA.getValVT())); 615 break; 616 case CCValAssign::ZExt: 617 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 618 DAG.getValueType(VA.getValVT())); 619 break; 620 default: 621 break; 622 } 623 624 // Truncate the register down to the argument type. 625 if (VA.isExtInLoc()) 626 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 627 628 InVals.push_back(Arg); 629 continue; 630 } 631 632 // The registers are exhausted. This argument was passed on the stack. 633 assert(VA.isMemLoc()); 634 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 635 // beginning of the arguments area at %fp+BIAS+128. 636 unsigned Offset = VA.getLocMemOffset() + ArgArea; 637 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 638 // Adjust offset for extended arguments, SPARC is big-endian. 639 // The caller will have written the full slot with extended bytes, but we 640 // prefer our own extending loads. 641 if (VA.isExtInLoc()) 642 Offset += 8 - ValSize; 643 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 644 InVals.push_back( 645 DAG.getLoad(VA.getValVT(), DL, Chain, 646 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 647 MachinePointerInfo::getFixedStack(MF, FI))); 648 } 649 650 if (!IsVarArg) 651 return Chain; 652 653 // This function takes variable arguments, some of which may have been passed 654 // in registers %i0-%i5. Variable floating point arguments are never passed 655 // in floating point registers. They go on %i0-%i5 or on the stack like 656 // integer arguments. 657 // 658 // The va_start intrinsic needs to know the offset to the first variable 659 // argument. 660 unsigned ArgOffset = CCInfo.getNextStackOffset(); 661 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 662 // Skip the 128 bytes of register save area. 663 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 664 Subtarget->getStackPointerBias()); 665 666 // Save the variable arguments that were passed in registers. 667 // The caller is required to reserve stack space for 6 arguments regardless 668 // of how many arguments were actually passed. 669 SmallVector<SDValue, 8> OutChains; 670 for (; ArgOffset < 6*8; ArgOffset += 8) { 671 unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 672 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 673 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); 674 auto PtrVT = getPointerTy(MF.getDataLayout()); 675 OutChains.push_back( 676 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 677 MachinePointerInfo::getFixedStack(MF, FI))); 678 } 679 680 if (!OutChains.empty()) 681 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 682 683 return Chain; 684 } 685 686 SDValue 687 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 688 SmallVectorImpl<SDValue> &InVals) const { 689 if (Subtarget->is64Bit()) 690 return LowerCall_64(CLI, InVals); 691 return LowerCall_32(CLI, InVals); 692 } 693 694 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 695 ImmutableCallSite CS) { 696 if (CS) 697 return CS.hasFnAttr(Attribute::ReturnsTwice); 698 699 const Function *CalleeFn = nullptr; 700 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 701 CalleeFn = dyn_cast<Function>(G->getGlobal()); 702 } else if (ExternalSymbolSDNode *E = 703 dyn_cast<ExternalSymbolSDNode>(Callee)) { 704 const Function &Fn = DAG.getMachineFunction().getFunction(); 705 const Module *M = Fn.getParent(); 706 const char *CalleeName = E->getSymbol(); 707 CalleeFn = M->getFunction(CalleeName); 708 } 709 710 if (!CalleeFn) 711 return false; 712 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 713 } 714 715 // Lower a call for the 32-bit ABI. 716 SDValue 717 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 718 SmallVectorImpl<SDValue> &InVals) const { 719 SelectionDAG &DAG = CLI.DAG; 720 SDLoc &dl = CLI.DL; 721 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 722 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 723 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 724 SDValue Chain = CLI.Chain; 725 SDValue Callee = CLI.Callee; 726 bool &isTailCall = CLI.IsTailCall; 727 CallingConv::ID CallConv = CLI.CallConv; 728 bool isVarArg = CLI.IsVarArg; 729 730 // Sparc target does not yet support tail call optimization. 731 isTailCall = false; 732 733 // Analyze operands of the call, assigning locations to each operand. 734 SmallVector<CCValAssign, 16> ArgLocs; 735 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 736 *DAG.getContext()); 737 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 738 739 // Get the size of the outgoing arguments stack space requirement. 740 unsigned ArgsSize = CCInfo.getNextStackOffset(); 741 742 // Keep stack frames 8-byte aligned. 743 ArgsSize = (ArgsSize+7) & ~7; 744 745 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 746 747 // Create local copies for byval args. 748 SmallVector<SDValue, 8> ByValArgs; 749 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 750 ISD::ArgFlagsTy Flags = Outs[i].Flags; 751 if (!Flags.isByVal()) 752 continue; 753 754 SDValue Arg = OutVals[i]; 755 unsigned Size = Flags.getByValSize(); 756 unsigned Align = Flags.getByValAlign(); 757 758 if (Size > 0U) { 759 int FI = MFI.CreateStackObject(Size, Align, false); 760 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 761 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 762 763 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align, 764 false, // isVolatile, 765 (Size <= 32), // AlwaysInline if size <= 32, 766 false, // isTailCall 767 MachinePointerInfo(), MachinePointerInfo()); 768 ByValArgs.push_back(FIPtr); 769 } 770 else { 771 SDValue nullVal; 772 ByValArgs.push_back(nullVal); 773 } 774 } 775 776 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); 777 778 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 779 SmallVector<SDValue, 8> MemOpChains; 780 781 const unsigned StackOffset = 92; 782 bool hasStructRetAttr = false; 783 unsigned SRetArgSize = 0; 784 // Walk the register/memloc assignments, inserting copies/loads. 785 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 786 i != e; 787 ++i, ++realArgIdx) { 788 CCValAssign &VA = ArgLocs[i]; 789 SDValue Arg = OutVals[realArgIdx]; 790 791 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 792 793 // Use local copy if it is a byval arg. 794 if (Flags.isByVal()) { 795 Arg = ByValArgs[byvalArgIdx++]; 796 if (!Arg) { 797 continue; 798 } 799 } 800 801 // Promote the value if needed. 802 switch (VA.getLocInfo()) { 803 default: llvm_unreachable("Unknown loc info!"); 804 case CCValAssign::Full: break; 805 case CCValAssign::SExt: 806 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 807 break; 808 case CCValAssign::ZExt: 809 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 810 break; 811 case CCValAssign::AExt: 812 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 813 break; 814 case CCValAssign::BCvt: 815 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 816 break; 817 } 818 819 if (Flags.isSRet()) { 820 assert(VA.needsCustom()); 821 // store SRet argument in %sp+64 822 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 823 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 824 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 825 MemOpChains.push_back( 826 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 827 hasStructRetAttr = true; 828 // sret only allowed on first argument 829 assert(Outs[realArgIdx].OrigArgIndex == 0); 830 PointerType *Ty = cast<PointerType>(CLI.getArgs()[0].Ty); 831 Type *ElementTy = Ty->getElementType(); 832 SRetArgSize = DAG.getDataLayout().getTypeAllocSize(ElementTy); 833 continue; 834 } 835 836 if (VA.needsCustom()) { 837 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 838 839 if (VA.isMemLoc()) { 840 unsigned Offset = VA.getLocMemOffset() + StackOffset; 841 // if it is double-word aligned, just store. 842 if (Offset % 8 == 0) { 843 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 844 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 845 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 846 MemOpChains.push_back( 847 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 848 continue; 849 } 850 } 851 852 if (VA.getLocVT() == MVT::f64) { 853 // Move from the float value from float registers into the 854 // integer registers. 855 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) 856 Arg = bitcastConstantFPToInt(C, dl, DAG); 857 else 858 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 859 } 860 861 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 862 Arg, 863 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 864 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 865 Arg, 866 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 867 868 if (VA.isRegLoc()) { 869 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 870 assert(i+1 != e); 871 CCValAssign &NextVA = ArgLocs[++i]; 872 if (NextVA.isRegLoc()) { 873 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 874 } else { 875 // Store the second part in stack. 876 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 877 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 878 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 879 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 880 MemOpChains.push_back( 881 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 882 } 883 } else { 884 unsigned Offset = VA.getLocMemOffset() + StackOffset; 885 // Store the first part. 886 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 887 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 888 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 889 MemOpChains.push_back( 890 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); 891 // Store the second part. 892 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 893 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 894 MemOpChains.push_back( 895 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 896 } 897 continue; 898 } 899 900 // Arguments that can be passed on register must be kept at 901 // RegsToPass vector 902 if (VA.isRegLoc()) { 903 if (VA.getLocVT() != MVT::f32) { 904 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 905 continue; 906 } 907 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 908 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 909 continue; 910 } 911 912 assert(VA.isMemLoc()); 913 914 // Create a store off the stack pointer for this argument. 915 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 916 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 917 dl); 918 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 919 MemOpChains.push_back( 920 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 921 } 922 923 924 // Emit all stores, make sure the occur before any copies into physregs. 925 if (!MemOpChains.empty()) 926 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 927 928 // Build a sequence of copy-to-reg nodes chained together with token 929 // chain and flag operands which copy the outgoing args into registers. 930 // The InFlag in necessary since all emitted instructions must be 931 // stuck together. 932 SDValue InFlag; 933 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 934 unsigned Reg = toCallerWindow(RegsToPass[i].first); 935 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); 936 InFlag = Chain.getValue(1); 937 } 938 939 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS); 940 941 // If the callee is a GlobalAddress node (quite common, every direct call is) 942 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 943 // Likewise ExternalSymbol -> TargetExternalSymbol. 944 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0; 945 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 946 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 947 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 948 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 949 950 // Returns a chain & a flag for retval copy to use 951 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 952 SmallVector<SDValue, 8> Ops; 953 Ops.push_back(Chain); 954 Ops.push_back(Callee); 955 if (hasStructRetAttr) 956 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 957 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 958 Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first), 959 RegsToPass[i].second.getValueType())); 960 961 // Add a register mask operand representing the call-preserved registers. 962 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 963 const uint32_t *Mask = 964 ((hasReturnsTwice) 965 ? TRI->getRTCallPreservedMask(CallConv) 966 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 967 assert(Mask && "Missing call preserved mask for calling convention"); 968 Ops.push_back(DAG.getRegisterMask(Mask)); 969 970 if (InFlag.getNode()) 971 Ops.push_back(InFlag); 972 973 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 974 InFlag = Chain.getValue(1); 975 976 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true), 977 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 978 InFlag = Chain.getValue(1); 979 980 // Assign locations to each value returned by this call. 981 SmallVector<CCValAssign, 16> RVLocs; 982 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 983 *DAG.getContext()); 984 985 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 986 987 // Copy all of the result registers out of their specified physreg. 988 for (unsigned i = 0; i != RVLocs.size(); ++i) { 989 if (RVLocs[i].getLocVT() == MVT::v2i32) { 990 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 991 SDValue Lo = DAG.getCopyFromReg( 992 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag); 993 Chain = Lo.getValue(1); 994 InFlag = Lo.getValue(2); 995 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 996 DAG.getConstant(0, dl, MVT::i32)); 997 SDValue Hi = DAG.getCopyFromReg( 998 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag); 999 Chain = Hi.getValue(1); 1000 InFlag = Hi.getValue(2); 1001 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1002 DAG.getConstant(1, dl, MVT::i32)); 1003 InVals.push_back(Vec); 1004 } else { 1005 Chain = 1006 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1007 RVLocs[i].getValVT(), InFlag) 1008 .getValue(1); 1009 InFlag = Chain.getValue(2); 1010 InVals.push_back(Chain.getValue(0)); 1011 } 1012 } 1013 1014 return Chain; 1015 } 1016 1017 // FIXME? Maybe this could be a TableGen attribute on some registers and 1018 // this table could be generated automatically from RegInfo. 1019 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, 1020 const MachineFunction &MF) const { 1021 Register Reg = StringSwitch<unsigned>(RegName) 1022 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1023 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1024 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1025 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1026 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1027 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1028 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1029 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1030 .Default(0); 1031 1032 if (Reg) 1033 return Reg; 1034 1035 report_fatal_error("Invalid register name global variable"); 1036 } 1037 1038 // Fixup floating point arguments in the ... part of a varargs call. 1039 // 1040 // The SPARC v9 ABI requires that floating point arguments are treated the same 1041 // as integers when calling a varargs function. This does not apply to the 1042 // fixed arguments that are part of the function's prototype. 1043 // 1044 // This function post-processes a CCValAssign array created by 1045 // AnalyzeCallOperands(). 1046 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1047 ArrayRef<ISD::OutputArg> Outs) { 1048 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1049 const CCValAssign &VA = ArgLocs[i]; 1050 MVT ValTy = VA.getLocVT(); 1051 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1052 // varargs functions. 1053 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1054 continue; 1055 // The fixed arguments to a varargs function still go in FP registers. 1056 if (Outs[VA.getValNo()].IsFixed) 1057 continue; 1058 1059 // This floating point argument should be reassigned. 1060 CCValAssign NewVA; 1061 1062 // Determine the offset into the argument array. 1063 unsigned firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1064 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1065 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1066 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1067 1068 if (Offset < 6*8) { 1069 // This argument should go in %i0-%i5. 1070 unsigned IReg = SP::I0 + Offset/8; 1071 if (ValTy == MVT::f64) 1072 // Full register, just bitconvert into i64. 1073 NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), 1074 IReg, MVT::i64, CCValAssign::BCvt); 1075 else { 1076 assert(ValTy == MVT::f128 && "Unexpected type!"); 1077 // Full register, just bitconvert into i128 -- We will lower this into 1078 // two i64s in LowerCall_64. 1079 NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), 1080 IReg, MVT::i128, CCValAssign::BCvt); 1081 } 1082 } else { 1083 // This needs to go to memory, we're out of integer registers. 1084 NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), 1085 Offset, VA.getLocVT(), VA.getLocInfo()); 1086 } 1087 ArgLocs[i] = NewVA; 1088 } 1089 } 1090 1091 // Lower a call for the 64-bit ABI. 1092 SDValue 1093 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1094 SmallVectorImpl<SDValue> &InVals) const { 1095 SelectionDAG &DAG = CLI.DAG; 1096 SDLoc DL = CLI.DL; 1097 SDValue Chain = CLI.Chain; 1098 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1099 1100 // Sparc target does not yet support tail call optimization. 1101 CLI.IsTailCall = false; 1102 1103 // Analyze operands of the call, assigning locations to each operand. 1104 SmallVector<CCValAssign, 16> ArgLocs; 1105 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1106 *DAG.getContext()); 1107 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1108 1109 // Get the size of the outgoing arguments stack space requirement. 1110 // The stack offset computed by CC_Sparc64 includes all arguments. 1111 // Called functions expect 6 argument words to exist in the stack frame, used 1112 // or not. 1113 unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()); 1114 1115 // Keep stack frames 16-byte aligned. 1116 ArgsSize = alignTo(ArgsSize, 16); 1117 1118 // Varargs calls require special treatment. 1119 if (CLI.IsVarArg) 1120 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1121 1122 // Adjust the stack pointer to make room for the arguments. 1123 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1124 // with more than 6 arguments. 1125 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 1126 1127 // Collect the set of registers to pass to the function and their values. 1128 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1129 // instruction. 1130 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1131 1132 // Collect chains from all the memory opeations that copy arguments to the 1133 // stack. They must follow the stack pointer adjustment above and precede the 1134 // call instruction itself. 1135 SmallVector<SDValue, 8> MemOpChains; 1136 1137 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1138 const CCValAssign &VA = ArgLocs[i]; 1139 SDValue Arg = CLI.OutVals[i]; 1140 1141 // Promote the value if needed. 1142 switch (VA.getLocInfo()) { 1143 default: 1144 llvm_unreachable("Unknown location info!"); 1145 case CCValAssign::Full: 1146 break; 1147 case CCValAssign::SExt: 1148 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1149 break; 1150 case CCValAssign::ZExt: 1151 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1152 break; 1153 case CCValAssign::AExt: 1154 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1155 break; 1156 case CCValAssign::BCvt: 1157 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1158 // SPARC does not support i128 natively. Lower it into two i64, see below. 1159 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1160 || VA.getLocVT() != MVT::i128) 1161 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1162 break; 1163 } 1164 1165 if (VA.isRegLoc()) { 1166 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1167 && VA.getLocVT() == MVT::i128) { 1168 // Store and reload into the integer register reg and reg+1. 1169 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1170 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1171 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1172 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1173 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1174 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1175 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1176 1177 // Store to %sp+BIAS+128+Offset 1178 SDValue Store = 1179 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); 1180 // Load into Reg and Reg+1 1181 SDValue Hi64 = 1182 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); 1183 SDValue Lo64 = 1184 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); 1185 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), 1186 Hi64)); 1187 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1), 1188 Lo64)); 1189 continue; 1190 } 1191 1192 // The custom bit on an i32 return value indicates that it should be 1193 // passed in the high bits of the register. 1194 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1195 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1196 DAG.getConstant(32, DL, MVT::i32)); 1197 1198 // The next value may go in the low bits of the same register. 1199 // Handle both at once. 1200 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1201 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1202 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1203 CLI.OutVals[i+1]); 1204 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1205 // Skip the next value, it's already done. 1206 ++i; 1207 } 1208 } 1209 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg)); 1210 continue; 1211 } 1212 1213 assert(VA.isMemLoc()); 1214 1215 // Create a store off the stack pointer for this argument. 1216 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1217 // The argument area starts at %fp+BIAS+128 in the callee frame, 1218 // %sp+BIAS+128 in ours. 1219 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1220 Subtarget->getStackPointerBias() + 1221 128, DL); 1222 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1223 MemOpChains.push_back( 1224 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 1225 } 1226 1227 // Emit all stores, make sure they occur before the call. 1228 if (!MemOpChains.empty()) 1229 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1230 1231 // Build a sequence of CopyToReg nodes glued together with token chain and 1232 // glue operands which copy the outgoing args into registers. The InGlue is 1233 // necessary since all emitted instructions must be stuck together in order 1234 // to pass the live physical registers. 1235 SDValue InGlue; 1236 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1237 Chain = DAG.getCopyToReg(Chain, DL, 1238 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1239 InGlue = Chain.getValue(1); 1240 } 1241 1242 // If the callee is a GlobalAddress node (quite common, every direct call is) 1243 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1244 // Likewise ExternalSymbol -> TargetExternalSymbol. 1245 SDValue Callee = CLI.Callee; 1246 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS); 1247 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0; 1248 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1249 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1250 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1251 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1252 1253 // Build the operands for the call instruction itself. 1254 SmallVector<SDValue, 8> Ops; 1255 Ops.push_back(Chain); 1256 Ops.push_back(Callee); 1257 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1258 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1259 RegsToPass[i].second.getValueType())); 1260 1261 // Add a register mask operand representing the call-preserved registers. 1262 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1263 const uint32_t *Mask = 1264 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1265 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1266 CLI.CallConv)); 1267 assert(Mask && "Missing call preserved mask for calling convention"); 1268 Ops.push_back(DAG.getRegisterMask(Mask)); 1269 1270 // Make sure the CopyToReg nodes are glued to the call instruction which 1271 // consumes the registers. 1272 if (InGlue.getNode()) 1273 Ops.push_back(InGlue); 1274 1275 // Now the call itself. 1276 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1277 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1278 InGlue = Chain.getValue(1); 1279 1280 // Revert the stack pointer immediately after the call. 1281 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 1282 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 1283 InGlue = Chain.getValue(1); 1284 1285 // Now extract the return values. This is more or less the same as 1286 // LowerFormalArguments_64. 1287 1288 // Assign locations to each value returned by this call. 1289 SmallVector<CCValAssign, 16> RVLocs; 1290 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1291 *DAG.getContext()); 1292 1293 // Set inreg flag manually for codegen generated library calls that 1294 // return float. 1295 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CS) 1296 CLI.Ins[0].Flags.setInReg(); 1297 1298 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1299 1300 // Copy all of the result registers out of their specified physreg. 1301 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1302 CCValAssign &VA = RVLocs[i]; 1303 unsigned Reg = toCallerWindow(VA.getLocReg()); 1304 1305 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1306 // reside in the same register in the high and low bits. Reuse the 1307 // CopyFromReg previous node to avoid duplicate copies. 1308 SDValue RV; 1309 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1310 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1311 RV = Chain.getValue(0); 1312 1313 // But usually we'll create a new CopyFromReg for a different register. 1314 if (!RV.getNode()) { 1315 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1316 Chain = RV.getValue(1); 1317 InGlue = Chain.getValue(2); 1318 } 1319 1320 // Get the high bits for i32 struct elements. 1321 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1322 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1323 DAG.getConstant(32, DL, MVT::i32)); 1324 1325 // The callee promoted the return value, so insert an Assert?ext SDNode so 1326 // we won't promote the value again in this function. 1327 switch (VA.getLocInfo()) { 1328 case CCValAssign::SExt: 1329 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1330 DAG.getValueType(VA.getValVT())); 1331 break; 1332 case CCValAssign::ZExt: 1333 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1334 DAG.getValueType(VA.getValVT())); 1335 break; 1336 default: 1337 break; 1338 } 1339 1340 // Truncate the register down to the return value type. 1341 if (VA.isExtInLoc()) 1342 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1343 1344 InVals.push_back(RV); 1345 } 1346 1347 return Chain; 1348 } 1349 1350 //===----------------------------------------------------------------------===// 1351 // TargetLowering Implementation 1352 //===----------------------------------------------------------------------===// 1353 1354 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1355 if (AI->getOperation() == AtomicRMWInst::Xchg && 1356 AI->getType()->getPrimitiveSizeInBits() == 32) 1357 return AtomicExpansionKind::None; // Uses xchg instruction 1358 1359 return AtomicExpansionKind::CmpXChg; 1360 } 1361 1362 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1363 /// condition. 1364 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1365 switch (CC) { 1366 default: llvm_unreachable("Unknown integer condition code!"); 1367 case ISD::SETEQ: return SPCC::ICC_E; 1368 case ISD::SETNE: return SPCC::ICC_NE; 1369 case ISD::SETLT: return SPCC::ICC_L; 1370 case ISD::SETGT: return SPCC::ICC_G; 1371 case ISD::SETLE: return SPCC::ICC_LE; 1372 case ISD::SETGE: return SPCC::ICC_GE; 1373 case ISD::SETULT: return SPCC::ICC_CS; 1374 case ISD::SETULE: return SPCC::ICC_LEU; 1375 case ISD::SETUGT: return SPCC::ICC_GU; 1376 case ISD::SETUGE: return SPCC::ICC_CC; 1377 } 1378 } 1379 1380 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1381 /// FCC condition. 1382 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1383 switch (CC) { 1384 default: llvm_unreachable("Unknown fp condition code!"); 1385 case ISD::SETEQ: 1386 case ISD::SETOEQ: return SPCC::FCC_E; 1387 case ISD::SETNE: 1388 case ISD::SETUNE: return SPCC::FCC_NE; 1389 case ISD::SETLT: 1390 case ISD::SETOLT: return SPCC::FCC_L; 1391 case ISD::SETGT: 1392 case ISD::SETOGT: return SPCC::FCC_G; 1393 case ISD::SETLE: 1394 case ISD::SETOLE: return SPCC::FCC_LE; 1395 case ISD::SETGE: 1396 case ISD::SETOGE: return SPCC::FCC_GE; 1397 case ISD::SETULT: return SPCC::FCC_UL; 1398 case ISD::SETULE: return SPCC::FCC_ULE; 1399 case ISD::SETUGT: return SPCC::FCC_UG; 1400 case ISD::SETUGE: return SPCC::FCC_UGE; 1401 case ISD::SETUO: return SPCC::FCC_U; 1402 case ISD::SETO: return SPCC::FCC_O; 1403 case ISD::SETONE: return SPCC::FCC_LG; 1404 case ISD::SETUEQ: return SPCC::FCC_UE; 1405 } 1406 } 1407 1408 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1409 const SparcSubtarget &STI) 1410 : TargetLowering(TM), Subtarget(&STI) { 1411 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 1412 1413 // Instructions which use registers as conditionals examine all the 1414 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1415 // matters much whether it's ZeroOrOneBooleanContent, or 1416 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1417 // former. 1418 setBooleanContents(ZeroOrOneBooleanContent); 1419 setBooleanVectorContents(ZeroOrOneBooleanContent); 1420 1421 // Set up the register classes. 1422 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1423 if (!Subtarget->useSoftFloat()) { 1424 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1425 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1426 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1427 } 1428 if (Subtarget->is64Bit()) { 1429 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1430 } else { 1431 // On 32bit sparc, we define a double-register 32bit register 1432 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1433 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1434 1435 // ...but almost all operations must be expanded, so set that as 1436 // the default. 1437 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1438 setOperationAction(Op, MVT::v2i32, Expand); 1439 } 1440 // Truncating/extending stores/loads are also not supported. 1441 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1442 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1443 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1444 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1445 1446 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1447 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1448 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1449 1450 setTruncStoreAction(VT, MVT::v2i32, Expand); 1451 setTruncStoreAction(MVT::v2i32, VT, Expand); 1452 } 1453 // However, load and store *are* legal. 1454 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1455 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1456 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1457 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1458 1459 // And we need to promote i64 loads/stores into vector load/store 1460 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1461 setOperationAction(ISD::STORE, MVT::i64, Custom); 1462 1463 // Sadly, this doesn't work: 1464 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1465 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1466 } 1467 1468 // Turn FP extload into load/fpextend 1469 for (MVT VT : MVT::fp_valuetypes()) { 1470 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1471 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1472 } 1473 1474 // Sparc doesn't have i1 sign extending load 1475 for (MVT VT : MVT::integer_valuetypes()) 1476 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1477 1478 // Turn FP truncstore into trunc + store. 1479 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1480 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1481 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1482 1483 // Custom legalize GlobalAddress nodes into LO/HI parts. 1484 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1485 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1486 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1487 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1488 1489 // Sparc doesn't have sext_inreg, replace them with shl/sra 1490 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1491 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1492 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1493 1494 // Sparc has no REM or DIVREM operations. 1495 setOperationAction(ISD::UREM, MVT::i32, Expand); 1496 setOperationAction(ISD::SREM, MVT::i32, Expand); 1497 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1498 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1499 1500 // ... nor does SparcV9. 1501 if (Subtarget->is64Bit()) { 1502 setOperationAction(ISD::UREM, MVT::i64, Expand); 1503 setOperationAction(ISD::SREM, MVT::i64, Expand); 1504 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1505 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1506 } 1507 1508 // Custom expand fp<->sint 1509 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1510 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1511 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1512 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1513 1514 // Custom Expand fp<->uint 1515 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1516 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1517 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1518 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1519 1520 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1521 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1522 1523 // Sparc has no select or setcc: expand to SELECT_CC. 1524 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1525 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1526 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1527 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1528 1529 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1530 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1531 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1532 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1533 1534 // Sparc doesn't have BRCOND either, it has BR_CC. 1535 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1536 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1537 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1538 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1539 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1540 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1541 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1542 1543 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1544 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1545 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1546 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1547 1548 setOperationAction(ISD::ADDC, MVT::i32, Custom); 1549 setOperationAction(ISD::ADDE, MVT::i32, Custom); 1550 setOperationAction(ISD::SUBC, MVT::i32, Custom); 1551 setOperationAction(ISD::SUBE, MVT::i32, Custom); 1552 1553 if (Subtarget->is64Bit()) { 1554 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1555 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1556 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1557 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1558 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1559 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1560 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1561 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1562 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1563 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1564 1565 setOperationAction(ISD::CTPOP, MVT::i64, 1566 Subtarget->usePopc() ? Legal : Expand); 1567 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1568 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1569 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1570 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1571 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1572 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1573 } 1574 1575 // ATOMICs. 1576 // Atomics are supported on SparcV9. 32-bit atomics are also 1577 // supported by some Leon SparcV8 variants. Otherwise, atomics 1578 // are unsupported. 1579 if (Subtarget->isV9()) 1580 setMaxAtomicSizeInBitsSupported(64); 1581 else if (Subtarget->hasLeonCasa()) 1582 setMaxAtomicSizeInBitsSupported(32); 1583 else 1584 setMaxAtomicSizeInBitsSupported(0); 1585 1586 setMinCmpXchgSizeInBits(32); 1587 1588 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1589 1590 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1591 1592 // Custom Lower Atomic LOAD/STORE 1593 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1594 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1595 1596 if (Subtarget->is64Bit()) { 1597 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1598 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1599 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1600 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1601 } 1602 1603 if (!Subtarget->is64Bit()) { 1604 // These libcalls are not available in 32-bit. 1605 setLibcallName(RTLIB::SHL_I128, nullptr); 1606 setLibcallName(RTLIB::SRL_I128, nullptr); 1607 setLibcallName(RTLIB::SRA_I128, nullptr); 1608 } 1609 1610 if (!Subtarget->isV9()) { 1611 // SparcV8 does not have FNEGD and FABSD. 1612 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1613 setOperationAction(ISD::FABS, MVT::f64, Custom); 1614 } 1615 1616 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1617 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1618 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1619 setOperationAction(ISD::FREM , MVT::f128, Expand); 1620 setOperationAction(ISD::FMA , MVT::f128, Expand); 1621 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1622 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1623 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1624 setOperationAction(ISD::FREM , MVT::f64, Expand); 1625 setOperationAction(ISD::FMA , MVT::f64, Expand); 1626 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1627 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1628 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1629 setOperationAction(ISD::FREM , MVT::f32, Expand); 1630 setOperationAction(ISD::FMA , MVT::f32, Expand); 1631 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1632 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1633 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1634 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1635 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1636 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1637 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1638 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1639 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1640 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1641 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1642 1643 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1644 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1645 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1646 1647 // Expands to [SU]MUL_LOHI. 1648 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1649 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1650 setOperationAction(ISD::MUL, MVT::i32, Expand); 1651 1652 if (Subtarget->useSoftMulDiv()) { 1653 // .umul works for both signed and unsigned 1654 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1655 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1656 setLibcallName(RTLIB::MUL_I32, ".umul"); 1657 1658 setOperationAction(ISD::SDIV, MVT::i32, Expand); 1659 setLibcallName(RTLIB::SDIV_I32, ".div"); 1660 1661 setOperationAction(ISD::UDIV, MVT::i32, Expand); 1662 setLibcallName(RTLIB::UDIV_I32, ".udiv"); 1663 1664 setLibcallName(RTLIB::SREM_I32, ".rem"); 1665 setLibcallName(RTLIB::UREM_I32, ".urem"); 1666 } 1667 1668 if (Subtarget->is64Bit()) { 1669 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1670 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1671 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1672 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1673 1674 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1675 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1676 1677 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1678 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1679 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1680 } 1681 1682 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1683 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1684 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1685 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1686 1687 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1688 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); 1689 1690 // Use the default implementation. 1691 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1692 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1693 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1694 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1695 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1696 1697 setStackPointerRegisterToSaveRestore(SP::O6); 1698 1699 setOperationAction(ISD::CTPOP, MVT::i32, 1700 Subtarget->usePopc() ? Legal : Expand); 1701 1702 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1703 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1704 setOperationAction(ISD::STORE, MVT::f128, Legal); 1705 } else { 1706 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1707 setOperationAction(ISD::STORE, MVT::f128, Custom); 1708 } 1709 1710 if (Subtarget->hasHardQuad()) { 1711 setOperationAction(ISD::FADD, MVT::f128, Legal); 1712 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1713 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1714 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1715 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1716 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1717 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1718 if (Subtarget->isV9()) { 1719 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1720 setOperationAction(ISD::FABS, MVT::f128, Legal); 1721 } else { 1722 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1723 setOperationAction(ISD::FABS, MVT::f128, Custom); 1724 } 1725 1726 if (!Subtarget->is64Bit()) { 1727 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1728 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1729 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1730 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1731 } 1732 1733 } else { 1734 // Custom legalize f128 operations. 1735 1736 setOperationAction(ISD::FADD, MVT::f128, Custom); 1737 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1738 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1739 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1740 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1741 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1742 setOperationAction(ISD::FABS, MVT::f128, Custom); 1743 1744 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1745 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1746 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1747 1748 // Setup Runtime library names. 1749 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1750 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1751 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1752 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1753 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1754 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1755 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1756 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1757 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1758 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1759 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1760 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1761 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1762 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1763 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1764 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1765 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1766 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1767 } else if (!Subtarget->useSoftFloat()) { 1768 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1769 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1770 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1771 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1772 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1773 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1774 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1775 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1776 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1777 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1778 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1779 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1780 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1781 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1782 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1783 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1784 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1785 } 1786 } 1787 1788 if (Subtarget->fixAllFDIVSQRT()) { 1789 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1790 // the former instructions generate errata on LEON processors. 1791 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1792 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1793 } 1794 1795 if (Subtarget->hasNoFMULS()) { 1796 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1797 } 1798 1799 // Custom combine bitcast between f64 and v2i32 1800 if (!Subtarget->is64Bit()) 1801 setTargetDAGCombine(ISD::BITCAST); 1802 1803 if (Subtarget->hasLeonCycleCounter()) 1804 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1805 1806 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1807 1808 setMinFunctionAlignment(Align(4)); 1809 1810 computeRegisterProperties(Subtarget->getRegisterInfo()); 1811 } 1812 1813 bool SparcTargetLowering::useSoftFloat() const { 1814 return Subtarget->useSoftFloat(); 1815 } 1816 1817 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 1818 switch ((SPISD::NodeType)Opcode) { 1819 case SPISD::FIRST_NUMBER: break; 1820 case SPISD::CMPICC: return "SPISD::CMPICC"; 1821 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 1822 case SPISD::BRICC: return "SPISD::BRICC"; 1823 case SPISD::BRXCC: return "SPISD::BRXCC"; 1824 case SPISD::BRFCC: return "SPISD::BRFCC"; 1825 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 1826 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 1827 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 1828 case SPISD::Hi: return "SPISD::Hi"; 1829 case SPISD::Lo: return "SPISD::Lo"; 1830 case SPISD::FTOI: return "SPISD::FTOI"; 1831 case SPISD::ITOF: return "SPISD::ITOF"; 1832 case SPISD::FTOX: return "SPISD::FTOX"; 1833 case SPISD::XTOF: return "SPISD::XTOF"; 1834 case SPISD::CALL: return "SPISD::CALL"; 1835 case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; 1836 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 1837 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 1838 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 1839 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 1840 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 1841 } 1842 return nullptr; 1843 } 1844 1845 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 1846 EVT VT) const { 1847 if (!VT.isVector()) 1848 return MVT::i32; 1849 return VT.changeVectorElementTypeToInteger(); 1850 } 1851 1852 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 1853 /// be zero. Op is expected to be a target specific node. Used by DAG 1854 /// combiner. 1855 void SparcTargetLowering::computeKnownBitsForTargetNode 1856 (const SDValue Op, 1857 KnownBits &Known, 1858 const APInt &DemandedElts, 1859 const SelectionDAG &DAG, 1860 unsigned Depth) const { 1861 KnownBits Known2; 1862 Known.resetAll(); 1863 1864 switch (Op.getOpcode()) { 1865 default: break; 1866 case SPISD::SELECT_ICC: 1867 case SPISD::SELECT_XCC: 1868 case SPISD::SELECT_FCC: 1869 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 1870 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 1871 1872 // Only known if known in both the LHS and RHS. 1873 Known.One &= Known2.One; 1874 Known.Zero &= Known2.Zero; 1875 break; 1876 } 1877 } 1878 1879 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 1880 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 1881 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 1882 ISD::CondCode CC, unsigned &SPCC) { 1883 if (isNullConstant(RHS) && 1884 CC == ISD::SETNE && 1885 (((LHS.getOpcode() == SPISD::SELECT_ICC || 1886 LHS.getOpcode() == SPISD::SELECT_XCC) && 1887 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 1888 (LHS.getOpcode() == SPISD::SELECT_FCC && 1889 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && 1890 isOneConstant(LHS.getOperand(0)) && 1891 isNullConstant(LHS.getOperand(1))) { 1892 SDValue CMPCC = LHS.getOperand(3); 1893 SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue(); 1894 LHS = CMPCC.getOperand(0); 1895 RHS = CMPCC.getOperand(1); 1896 } 1897 } 1898 1899 // Convert to a target node and set target flags. 1900 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 1901 SelectionDAG &DAG) const { 1902 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1903 return DAG.getTargetGlobalAddress(GA->getGlobal(), 1904 SDLoc(GA), 1905 GA->getValueType(0), 1906 GA->getOffset(), TF); 1907 1908 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 1909 return DAG.getTargetConstantPool(CP->getConstVal(), 1910 CP->getValueType(0), 1911 CP->getAlignment(), 1912 CP->getOffset(), TF); 1913 1914 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 1915 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 1916 Op.getValueType(), 1917 0, 1918 TF); 1919 1920 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 1921 return DAG.getTargetExternalSymbol(ES->getSymbol(), 1922 ES->getValueType(0), TF); 1923 1924 llvm_unreachable("Unhandled address SDNode"); 1925 } 1926 1927 // Split Op into high and low parts according to HiTF and LoTF. 1928 // Return an ADD node combining the parts. 1929 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 1930 unsigned HiTF, unsigned LoTF, 1931 SelectionDAG &DAG) const { 1932 SDLoc DL(Op); 1933 EVT VT = Op.getValueType(); 1934 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 1935 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 1936 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1937 } 1938 1939 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 1940 // or ExternalSymbol SDNode. 1941 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 1942 SDLoc DL(Op); 1943 EVT VT = getPointerTy(DAG.getDataLayout()); 1944 1945 // Handle PIC mode first. SPARC needs a got load for every variable! 1946 if (isPositionIndependent()) { 1947 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 1948 PICLevel::Level picLevel = M->getPICLevel(); 1949 SDValue Idx; 1950 1951 if (picLevel == PICLevel::SmallPIC) { 1952 // This is the pic13 code model, the GOT is known to be smaller than 8KiB. 1953 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), 1954 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); 1955 } else { 1956 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 1957 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 1958 SparcMCExpr::VK_Sparc_GOT10, DAG); 1959 } 1960 1961 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 1962 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); 1963 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 1964 // function has calls. 1965 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1966 MFI.setHasCalls(true); 1967 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 1968 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1969 } 1970 1971 // This is one of the absolute code models. 1972 switch(getTargetMachine().getCodeModel()) { 1973 default: 1974 llvm_unreachable("Unsupported absolute code model"); 1975 case CodeModel::Small: 1976 // abs32. 1977 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 1978 SparcMCExpr::VK_Sparc_LO, DAG); 1979 case CodeModel::Medium: { 1980 // abs44. 1981 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 1982 SparcMCExpr::VK_Sparc_M44, DAG); 1983 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 1984 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 1985 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 1986 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 1987 } 1988 case CodeModel::Large: { 1989 // abs64. 1990 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 1991 SparcMCExpr::VK_Sparc_HM, DAG); 1992 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 1993 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 1994 SparcMCExpr::VK_Sparc_LO, DAG); 1995 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1996 } 1997 } 1998 } 1999 2000 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2001 SelectionDAG &DAG) const { 2002 return makeAddress(Op, DAG); 2003 } 2004 2005 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2006 SelectionDAG &DAG) const { 2007 return makeAddress(Op, DAG); 2008 } 2009 2010 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2011 SelectionDAG &DAG) const { 2012 return makeAddress(Op, DAG); 2013 } 2014 2015 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2016 SelectionDAG &DAG) const { 2017 2018 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2019 if (DAG.getTarget().useEmulatedTLS()) 2020 return LowerToTLSEmulatedModel(GA, DAG); 2021 2022 SDLoc DL(GA); 2023 const GlobalValue *GV = GA->getGlobal(); 2024 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2025 2026 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2027 2028 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2029 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2030 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2031 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2032 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2033 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2034 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2035 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2036 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2037 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2038 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2039 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2040 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2041 2042 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2043 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2044 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2045 withTargetFlags(Op, addTF, DAG)); 2046 2047 SDValue Chain = DAG.getEntryNode(); 2048 SDValue InFlag; 2049 2050 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); 2051 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag); 2052 InFlag = Chain.getValue(1); 2053 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2054 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2055 2056 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2057 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2058 DAG.getMachineFunction(), CallingConv::C); 2059 assert(Mask && "Missing call preserved mask for calling convention"); 2060 SDValue Ops[] = {Chain, 2061 Callee, 2062 Symbol, 2063 DAG.getRegister(SP::O0, PtrVT), 2064 DAG.getRegisterMask(Mask), 2065 InFlag}; 2066 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2067 InFlag = Chain.getValue(1); 2068 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true), 2069 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 2070 InFlag = Chain.getValue(1); 2071 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag); 2072 2073 if (model != TLSModel::LocalDynamic) 2074 return Ret; 2075 2076 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2077 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2078 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2079 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2080 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2081 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2082 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2083 } 2084 2085 if (model == TLSModel::InitialExec) { 2086 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2087 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2088 2089 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2090 2091 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2092 // function has calls. 2093 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2094 MFI.setHasCalls(true); 2095 2096 SDValue TGA = makeHiLoPair(Op, 2097 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2098 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2099 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2100 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2101 DL, PtrVT, Ptr, 2102 withTargetFlags(Op, ldTF, DAG)); 2103 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2104 DAG.getRegister(SP::G7, PtrVT), Offset, 2105 withTargetFlags(Op, 2106 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2107 } 2108 2109 assert(model == TLSModel::LocalExec); 2110 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2111 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2112 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2113 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2114 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2115 2116 return DAG.getNode(ISD::ADD, DL, PtrVT, 2117 DAG.getRegister(SP::G7, PtrVT), Offset); 2118 } 2119 2120 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2121 ArgListTy &Args, SDValue Arg, 2122 const SDLoc &DL, 2123 SelectionDAG &DAG) const { 2124 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2125 EVT ArgVT = Arg.getValueType(); 2126 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2127 2128 ArgListEntry Entry; 2129 Entry.Node = Arg; 2130 Entry.Ty = ArgTy; 2131 2132 if (ArgTy->isFP128Ty()) { 2133 // Create a stack object and pass the pointer to the library function. 2134 int FI = MFI.CreateStackObject(16, 8, false); 2135 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2136 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), 2137 /* Alignment = */ 8); 2138 2139 Entry.Node = FIPtr; 2140 Entry.Ty = PointerType::getUnqual(ArgTy); 2141 } 2142 Args.push_back(Entry); 2143 return Chain; 2144 } 2145 2146 SDValue 2147 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2148 const char *LibFuncName, 2149 unsigned numArgs) const { 2150 2151 ArgListTy Args; 2152 2153 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2154 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2155 2156 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2157 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2158 Type *RetTyABI = RetTy; 2159 SDValue Chain = DAG.getEntryNode(); 2160 SDValue RetPtr; 2161 2162 if (RetTy->isFP128Ty()) { 2163 // Create a Stack Object to receive the return value of type f128. 2164 ArgListEntry Entry; 2165 int RetFI = MFI.CreateStackObject(16, 8, false); 2166 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2167 Entry.Node = RetPtr; 2168 Entry.Ty = PointerType::getUnqual(RetTy); 2169 if (!Subtarget->is64Bit()) 2170 Entry.IsSRet = true; 2171 Entry.IsReturned = false; 2172 Args.push_back(Entry); 2173 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2174 } 2175 2176 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2177 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2178 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2179 } 2180 TargetLowering::CallLoweringInfo CLI(DAG); 2181 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2182 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2183 2184 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2185 2186 // chain is in second result. 2187 if (RetTyABI == RetTy) 2188 return CallInfo.first; 2189 2190 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2191 2192 Chain = CallInfo.second; 2193 2194 // Load RetPtr to get the return value. 2195 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, 2196 MachinePointerInfo(), /* Alignment = */ 8); 2197 } 2198 2199 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2200 unsigned &SPCC, const SDLoc &DL, 2201 SelectionDAG &DAG) const { 2202 2203 const char *LibCall = nullptr; 2204 bool is64Bit = Subtarget->is64Bit(); 2205 switch(SPCC) { 2206 default: llvm_unreachable("Unhandled conditional code!"); 2207 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2208 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2209 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2210 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2211 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2212 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2213 case SPCC::FCC_UL : 2214 case SPCC::FCC_ULE: 2215 case SPCC::FCC_UG : 2216 case SPCC::FCC_UGE: 2217 case SPCC::FCC_U : 2218 case SPCC::FCC_O : 2219 case SPCC::FCC_LG : 2220 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2221 } 2222 2223 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2224 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2225 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2226 ArgListTy Args; 2227 SDValue Chain = DAG.getEntryNode(); 2228 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2229 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2230 2231 TargetLowering::CallLoweringInfo CLI(DAG); 2232 CLI.setDebugLoc(DL).setChain(Chain) 2233 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2234 2235 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2236 2237 // result is in first, and chain is in second result. 2238 SDValue Result = CallInfo.first; 2239 2240 switch(SPCC) { 2241 default: { 2242 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); 2243 SPCC = SPCC::ICC_NE; 2244 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2245 } 2246 case SPCC::FCC_UL : { 2247 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); 2248 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2249 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); 2250 SPCC = SPCC::ICC_NE; 2251 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2252 } 2253 case SPCC::FCC_ULE: { 2254 SDValue RHS = DAG.getTargetConstant(2, DL, Result.getValueType()); 2255 SPCC = SPCC::ICC_NE; 2256 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2257 } 2258 case SPCC::FCC_UG : { 2259 SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType()); 2260 SPCC = SPCC::ICC_G; 2261 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2262 } 2263 case SPCC::FCC_UGE: { 2264 SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType()); 2265 SPCC = SPCC::ICC_NE; 2266 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2267 } 2268 2269 case SPCC::FCC_U : { 2270 SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType()); 2271 SPCC = SPCC::ICC_E; 2272 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2273 } 2274 case SPCC::FCC_O : { 2275 SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType()); 2276 SPCC = SPCC::ICC_NE; 2277 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2278 } 2279 case SPCC::FCC_LG : { 2280 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2281 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2282 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); 2283 SPCC = SPCC::ICC_NE; 2284 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2285 } 2286 case SPCC::FCC_UE : { 2287 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2288 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2289 SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType()); 2290 SPCC = SPCC::ICC_E; 2291 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2292 } 2293 } 2294 } 2295 2296 static SDValue 2297 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2298 const SparcTargetLowering &TLI) { 2299 2300 if (Op.getOperand(0).getValueType() == MVT::f64) 2301 return TLI.LowerF128Op(Op, DAG, 2302 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2303 2304 if (Op.getOperand(0).getValueType() == MVT::f32) 2305 return TLI.LowerF128Op(Op, DAG, 2306 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2307 2308 llvm_unreachable("fpextend with non-float operand!"); 2309 return SDValue(); 2310 } 2311 2312 static SDValue 2313 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2314 const SparcTargetLowering &TLI) { 2315 // FP_ROUND on f64 and f32 are legal. 2316 if (Op.getOperand(0).getValueType() != MVT::f128) 2317 return Op; 2318 2319 if (Op.getValueType() == MVT::f64) 2320 return TLI.LowerF128Op(Op, DAG, 2321 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2322 if (Op.getValueType() == MVT::f32) 2323 return TLI.LowerF128Op(Op, DAG, 2324 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2325 2326 llvm_unreachable("fpround to non-float!"); 2327 return SDValue(); 2328 } 2329 2330 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2331 const SparcTargetLowering &TLI, 2332 bool hasHardQuad) { 2333 SDLoc dl(Op); 2334 EVT VT = Op.getValueType(); 2335 assert(VT == MVT::i32 || VT == MVT::i64); 2336 2337 // Expand f128 operations to fp128 abi calls. 2338 if (Op.getOperand(0).getValueType() == MVT::f128 2339 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2340 const char *libName = TLI.getLibcallName(VT == MVT::i32 2341 ? RTLIB::FPTOSINT_F128_I32 2342 : RTLIB::FPTOSINT_F128_I64); 2343 return TLI.LowerF128Op(Op, DAG, libName, 1); 2344 } 2345 2346 // Expand if the resulting type is illegal. 2347 if (!TLI.isTypeLegal(VT)) 2348 return SDValue(); 2349 2350 // Otherwise, Convert the fp value to integer in an FP register. 2351 if (VT == MVT::i32) 2352 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2353 else 2354 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2355 2356 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2357 } 2358 2359 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2360 const SparcTargetLowering &TLI, 2361 bool hasHardQuad) { 2362 SDLoc dl(Op); 2363 EVT OpVT = Op.getOperand(0).getValueType(); 2364 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2365 2366 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2367 2368 // Expand f128 operations to fp128 ABI calls. 2369 if (Op.getValueType() == MVT::f128 2370 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2371 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2372 ? RTLIB::SINTTOFP_I32_F128 2373 : RTLIB::SINTTOFP_I64_F128); 2374 return TLI.LowerF128Op(Op, DAG, libName, 1); 2375 } 2376 2377 // Expand if the operand type is illegal. 2378 if (!TLI.isTypeLegal(OpVT)) 2379 return SDValue(); 2380 2381 // Otherwise, Convert the int value to FP in an FP register. 2382 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2383 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2384 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2385 } 2386 2387 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2388 const SparcTargetLowering &TLI, 2389 bool hasHardQuad) { 2390 SDLoc dl(Op); 2391 EVT VT = Op.getValueType(); 2392 2393 // Expand if it does not involve f128 or the target has support for 2394 // quad floating point instructions and the resulting type is legal. 2395 if (Op.getOperand(0).getValueType() != MVT::f128 || 2396 (hasHardQuad && TLI.isTypeLegal(VT))) 2397 return SDValue(); 2398 2399 assert(VT == MVT::i32 || VT == MVT::i64); 2400 2401 return TLI.LowerF128Op(Op, DAG, 2402 TLI.getLibcallName(VT == MVT::i32 2403 ? RTLIB::FPTOUINT_F128_I32 2404 : RTLIB::FPTOUINT_F128_I64), 2405 1); 2406 } 2407 2408 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2409 const SparcTargetLowering &TLI, 2410 bool hasHardQuad) { 2411 SDLoc dl(Op); 2412 EVT OpVT = Op.getOperand(0).getValueType(); 2413 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2414 2415 // Expand if it does not involve f128 or the target has support for 2416 // quad floating point instructions and the operand type is legal. 2417 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2418 return SDValue(); 2419 2420 return TLI.LowerF128Op(Op, DAG, 2421 TLI.getLibcallName(OpVT == MVT::i32 2422 ? RTLIB::UINTTOFP_I32_F128 2423 : RTLIB::UINTTOFP_I64_F128), 2424 1); 2425 } 2426 2427 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2428 const SparcTargetLowering &TLI, 2429 bool hasHardQuad) { 2430 SDValue Chain = Op.getOperand(0); 2431 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2432 SDValue LHS = Op.getOperand(2); 2433 SDValue RHS = Op.getOperand(3); 2434 SDValue Dest = Op.getOperand(4); 2435 SDLoc dl(Op); 2436 unsigned Opc, SPCC = ~0U; 2437 2438 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2439 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2440 LookThroughSetCC(LHS, RHS, CC, SPCC); 2441 2442 // Get the condition flag. 2443 SDValue CompareFlag; 2444 if (LHS.getValueType().isInteger()) { 2445 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2446 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2447 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2448 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC; 2449 } else { 2450 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2451 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2452 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2453 Opc = SPISD::BRICC; 2454 } else { 2455 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2456 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2457 Opc = SPISD::BRFCC; 2458 } 2459 } 2460 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2461 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2462 } 2463 2464 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2465 const SparcTargetLowering &TLI, 2466 bool hasHardQuad) { 2467 SDValue LHS = Op.getOperand(0); 2468 SDValue RHS = Op.getOperand(1); 2469 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2470 SDValue TrueVal = Op.getOperand(2); 2471 SDValue FalseVal = Op.getOperand(3); 2472 SDLoc dl(Op); 2473 unsigned Opc, SPCC = ~0U; 2474 2475 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2476 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2477 LookThroughSetCC(LHS, RHS, CC, SPCC); 2478 2479 SDValue CompareFlag; 2480 if (LHS.getValueType().isInteger()) { 2481 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2482 Opc = LHS.getValueType() == MVT::i32 ? 2483 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2484 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2485 } else { 2486 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2487 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2488 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2489 Opc = SPISD::SELECT_ICC; 2490 } else { 2491 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2492 Opc = SPISD::SELECT_FCC; 2493 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2494 } 2495 } 2496 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2497 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2498 } 2499 2500 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2501 const SparcTargetLowering &TLI) { 2502 MachineFunction &MF = DAG.getMachineFunction(); 2503 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2504 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2505 2506 // Need frame address to find the address of VarArgsFrameIndex. 2507 MF.getFrameInfo().setFrameAddressIsTaken(true); 2508 2509 // vastart just stores the address of the VarArgsFrameIndex slot into the 2510 // memory location argument. 2511 SDLoc DL(Op); 2512 SDValue Offset = 2513 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2514 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2515 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2516 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2517 MachinePointerInfo(SV)); 2518 } 2519 2520 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2521 SDNode *Node = Op.getNode(); 2522 EVT VT = Node->getValueType(0); 2523 SDValue InChain = Node->getOperand(0); 2524 SDValue VAListPtr = Node->getOperand(1); 2525 EVT PtrVT = VAListPtr.getValueType(); 2526 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2527 SDLoc DL(Node); 2528 SDValue VAList = 2529 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 2530 // Increment the pointer, VAList, to the next vaarg. 2531 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2532 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2533 DL)); 2534 // Store the incremented VAList to the legalized pointer. 2535 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, 2536 MachinePointerInfo(SV)); 2537 // Load the actual argument out of the pointer VAList. 2538 // We can't count on greater alignment than the word size. 2539 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 2540 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); 2541 } 2542 2543 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2544 const SparcSubtarget *Subtarget) { 2545 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2546 SDValue Size = Op.getOperand(1); // Legalize the size. 2547 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2548 unsigned StackAlign = Subtarget->getFrameLowering()->getStackAlignment(); 2549 EVT VT = Size->getValueType(0); 2550 SDLoc dl(Op); 2551 2552 // TODO: implement over-aligned alloca. (Note: also implies 2553 // supporting support for overaligned function frames + dynamic 2554 // allocations, at all, which currently isn't supported) 2555 if (Align > StackAlign) { 2556 const MachineFunction &MF = DAG.getMachineFunction(); 2557 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " 2558 "over-aligned dynamic alloca not supported."); 2559 } 2560 2561 // The resultant pointer needs to be above the register spill area 2562 // at the bottom of the stack. 2563 unsigned regSpillArea; 2564 if (Subtarget->is64Bit()) { 2565 regSpillArea = 128; 2566 } else { 2567 // On Sparc32, the size of the spill area is 92. Unfortunately, 2568 // that's only 4-byte aligned, not 8-byte aligned (the stack 2569 // pointer is 8-byte aligned). So, if the user asked for an 8-byte 2570 // aligned dynamic allocation, we actually need to add 96 to the 2571 // bottom of the stack, instead of 92, to ensure 8-byte alignment. 2572 2573 // That also means adding 4 to the size of the allocation -- 2574 // before applying the 8-byte rounding. Unfortunately, we the 2575 // value we get here has already had rounding applied. So, we need 2576 // to add 8, instead, wasting a bit more memory. 2577 2578 // Further, this only actually needs to be done if the required 2579 // alignment is > 4, but, we've lost that info by this point, too, 2580 // so we always apply it. 2581 2582 // (An alternative approach would be to always reserve 96 bytes 2583 // instead of the required 92, but then we'd waste 4 extra bytes 2584 // in every frame, not just those with dynamic stack allocations) 2585 2586 // TODO: modify code in SelectionDAGBuilder to make this less sad. 2587 2588 Size = DAG.getNode(ISD::ADD, dl, VT, Size, 2589 DAG.getConstant(8, dl, VT)); 2590 regSpillArea = 96; 2591 } 2592 2593 unsigned SPReg = SP::O6; 2594 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2595 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2596 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2597 2598 regSpillArea += Subtarget->getStackPointerBias(); 2599 2600 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2601 DAG.getConstant(regSpillArea, dl, VT)); 2602 SDValue Ops[2] = { NewVal, Chain }; 2603 return DAG.getMergeValues(Ops, dl); 2604 } 2605 2606 2607 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2608 SDLoc dl(Op); 2609 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2610 dl, MVT::Other, DAG.getEntryNode()); 2611 return Chain; 2612 } 2613 2614 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2615 const SparcSubtarget *Subtarget, 2616 bool AlwaysFlush = false) { 2617 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2618 MFI.setFrameAddressIsTaken(true); 2619 2620 EVT VT = Op.getValueType(); 2621 SDLoc dl(Op); 2622 unsigned FrameReg = SP::I6; 2623 unsigned stackBias = Subtarget->getStackPointerBias(); 2624 2625 SDValue FrameAddr; 2626 SDValue Chain; 2627 2628 // flush first to make sure the windowed registers' values are in stack 2629 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); 2630 2631 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2632 2633 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2634 2635 while (depth--) { 2636 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2637 DAG.getIntPtrConstant(Offset, dl)); 2638 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); 2639 } 2640 if (Subtarget->is64Bit()) 2641 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2642 DAG.getIntPtrConstant(stackBias, dl)); 2643 return FrameAddr; 2644 } 2645 2646 2647 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2648 const SparcSubtarget *Subtarget) { 2649 2650 uint64_t depth = Op.getConstantOperandVal(0); 2651 2652 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2653 2654 } 2655 2656 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2657 const SparcTargetLowering &TLI, 2658 const SparcSubtarget *Subtarget) { 2659 MachineFunction &MF = DAG.getMachineFunction(); 2660 MachineFrameInfo &MFI = MF.getFrameInfo(); 2661 MFI.setReturnAddressIsTaken(true); 2662 2663 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2664 return SDValue(); 2665 2666 EVT VT = Op.getValueType(); 2667 SDLoc dl(Op); 2668 uint64_t depth = Op.getConstantOperandVal(0); 2669 2670 SDValue RetAddr; 2671 if (depth == 0) { 2672 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2673 unsigned RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2674 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2675 return RetAddr; 2676 } 2677 2678 // Need frame address to find return address of the caller. 2679 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); 2680 2681 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2682 SDValue Ptr = DAG.getNode(ISD::ADD, 2683 dl, VT, 2684 FrameAddr, 2685 DAG.getIntPtrConstant(Offset, dl)); 2686 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2687 2688 return RetAddr; 2689 } 2690 2691 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2692 unsigned opcode) { 2693 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2694 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2695 2696 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2697 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2698 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2699 2700 // Note: in little-endian, the floating-point value is stored in the 2701 // registers are in the opposite order, so the subreg with the sign 2702 // bit is the highest-numbered (odd), rather than the 2703 // lowest-numbered (even). 2704 2705 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2706 SrcReg64); 2707 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2708 SrcReg64); 2709 2710 if (DAG.getDataLayout().isLittleEndian()) 2711 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2712 else 2713 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2714 2715 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2716 dl, MVT::f64), 0); 2717 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2718 DstReg64, Hi32); 2719 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2720 DstReg64, Lo32); 2721 return DstReg64; 2722 } 2723 2724 // Lower a f128 load into two f64 loads. 2725 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2726 { 2727 SDLoc dl(Op); 2728 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 2729 assert(LdNode && LdNode->getOffset().isUndef() 2730 && "Unexpected node type"); 2731 2732 unsigned alignment = LdNode->getAlignment(); 2733 if (alignment > 8) 2734 alignment = 8; 2735 2736 SDValue Hi64 = 2737 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), 2738 LdNode->getPointerInfo(), alignment); 2739 EVT addrVT = LdNode->getBasePtr().getValueType(); 2740 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2741 LdNode->getBasePtr(), 2742 DAG.getConstant(8, dl, addrVT)); 2743 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, 2744 LdNode->getPointerInfo(), alignment); 2745 2746 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2747 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2748 2749 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2750 dl, MVT::f128); 2751 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2752 MVT::f128, 2753 SDValue(InFP128, 0), 2754 Hi64, 2755 SubRegEven); 2756 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2757 MVT::f128, 2758 SDValue(InFP128, 0), 2759 Lo64, 2760 SubRegOdd); 2761 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2762 SDValue(Lo64.getNode(), 1) }; 2763 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2764 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2765 return DAG.getMergeValues(Ops, dl); 2766 } 2767 2768 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 2769 { 2770 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2771 2772 EVT MemVT = LdNode->getMemoryVT(); 2773 if (MemVT == MVT::f128) 2774 return LowerF128Load(Op, DAG); 2775 2776 return Op; 2777 } 2778 2779 // Lower a f128 store into two f64 stores. 2780 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 2781 SDLoc dl(Op); 2782 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 2783 assert(StNode && StNode->getOffset().isUndef() 2784 && "Unexpected node type"); 2785 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2786 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2787 2788 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2789 dl, 2790 MVT::f64, 2791 StNode->getValue(), 2792 SubRegEven); 2793 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2794 dl, 2795 MVT::f64, 2796 StNode->getValue(), 2797 SubRegOdd); 2798 2799 unsigned alignment = StNode->getAlignment(); 2800 if (alignment > 8) 2801 alignment = 8; 2802 2803 SDValue OutChains[2]; 2804 OutChains[0] = 2805 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), 2806 StNode->getBasePtr(), MachinePointerInfo(), alignment); 2807 EVT addrVT = StNode->getBasePtr().getValueType(); 2808 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2809 StNode->getBasePtr(), 2810 DAG.getConstant(8, dl, addrVT)); 2811 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, 2812 MachinePointerInfo(), alignment); 2813 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2814 } 2815 2816 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 2817 { 2818 SDLoc dl(Op); 2819 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 2820 2821 EVT MemVT = St->getMemoryVT(); 2822 if (MemVT == MVT::f128) 2823 return LowerF128Store(Op, DAG); 2824 2825 if (MemVT == MVT::i64) { 2826 // Custom handling for i64 stores: turn it into a bitcast and a 2827 // v2i32 store. 2828 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 2829 SDValue Chain = DAG.getStore( 2830 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 2831 St->getAlignment(), St->getMemOperand()->getFlags(), St->getAAInfo()); 2832 return Chain; 2833 } 2834 2835 return SDValue(); 2836 } 2837 2838 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 2839 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 2840 && "invalid opcode"); 2841 2842 SDLoc dl(Op); 2843 2844 if (Op.getValueType() == MVT::f64) 2845 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 2846 if (Op.getValueType() != MVT::f128) 2847 return Op; 2848 2849 // Lower fabs/fneg on f128 to fabs/fneg on f64 2850 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 2851 // (As with LowerF64Op, on little-endian, we need to negate the odd 2852 // subreg) 2853 2854 SDValue SrcReg128 = Op.getOperand(0); 2855 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 2856 SrcReg128); 2857 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 2858 SrcReg128); 2859 2860 if (DAG.getDataLayout().isLittleEndian()) { 2861 if (isV9) 2862 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 2863 else 2864 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 2865 } else { 2866 if (isV9) 2867 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 2868 else 2869 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 2870 } 2871 2872 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2873 dl, MVT::f128), 0); 2874 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 2875 DstReg128, Hi64); 2876 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 2877 DstReg128, Lo64); 2878 return DstReg128; 2879 } 2880 2881 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2882 2883 if (Op.getValueType() != MVT::i64) 2884 return Op; 2885 2886 SDLoc dl(Op); 2887 SDValue Src1 = Op.getOperand(0); 2888 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 2889 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 2890 DAG.getConstant(32, dl, MVT::i64)); 2891 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 2892 2893 SDValue Src2 = Op.getOperand(1); 2894 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 2895 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 2896 DAG.getConstant(32, dl, MVT::i64)); 2897 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 2898 2899 2900 bool hasChain = false; 2901 unsigned hiOpc = Op.getOpcode(); 2902 switch (Op.getOpcode()) { 2903 default: llvm_unreachable("Invalid opcode"); 2904 case ISD::ADDC: hiOpc = ISD::ADDE; break; 2905 case ISD::ADDE: hasChain = true; break; 2906 case ISD::SUBC: hiOpc = ISD::SUBE; break; 2907 case ISD::SUBE: hasChain = true; break; 2908 } 2909 SDValue Lo; 2910 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 2911 if (hasChain) { 2912 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 2913 Op.getOperand(2)); 2914 } else { 2915 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 2916 } 2917 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 2918 SDValue Carry = Hi.getValue(1); 2919 2920 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 2921 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 2922 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 2923 DAG.getConstant(32, dl, MVT::i64)); 2924 2925 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 2926 SDValue Ops[2] = { Dst, Carry }; 2927 return DAG.getMergeValues(Ops, dl); 2928 } 2929 2930 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 2931 // in LegalizeDAG.cpp except the order of arguments to the library function. 2932 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 2933 const SparcTargetLowering &TLI) 2934 { 2935 unsigned opcode = Op.getOpcode(); 2936 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 2937 2938 bool isSigned = (opcode == ISD::SMULO); 2939 EVT VT = MVT::i64; 2940 EVT WideVT = MVT::i128; 2941 SDLoc dl(Op); 2942 SDValue LHS = Op.getOperand(0); 2943 2944 if (LHS.getValueType() != VT) 2945 return Op; 2946 2947 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 2948 2949 SDValue RHS = Op.getOperand(1); 2950 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 2951 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 2952 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 2953 2954 TargetLowering::MakeLibCallOptions CallOptions; 2955 CallOptions.setSExt(isSigned); 2956 SDValue MulResult = TLI.makeLibCall(DAG, 2957 RTLIB::MUL_I128, WideVT, 2958 Args, CallOptions, dl).first; 2959 SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2960 MulResult, DAG.getIntPtrConstant(0, dl)); 2961 SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2962 MulResult, DAG.getIntPtrConstant(1, dl)); 2963 if (isSigned) { 2964 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 2965 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 2966 } else { 2967 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 2968 ISD::SETNE); 2969 } 2970 // MulResult is a node with an illegal type. Because such things are not 2971 // generally permitted during this phase of legalization, ensure that 2972 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 2973 // been folded. 2974 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 2975 2976 SDValue Ops[2] = { BottomHalf, TopHalf } ; 2977 return DAG.getMergeValues(Ops, dl); 2978 } 2979 2980 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 2981 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering())) 2982 // Expand with a fence. 2983 return SDValue(); 2984 2985 // Monotonic load/stores are legal. 2986 return Op; 2987 } 2988 2989 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2990 SelectionDAG &DAG) const { 2991 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2992 SDLoc dl(Op); 2993 switch (IntNo) { 2994 default: return SDValue(); // Don't custom lower most intrinsics. 2995 case Intrinsic::thread_pointer: { 2996 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2997 return DAG.getRegister(SP::G7, PtrVT); 2998 } 2999 } 3000 } 3001 3002 SDValue SparcTargetLowering:: 3003 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3004 3005 bool hasHardQuad = Subtarget->hasHardQuad(); 3006 bool isV9 = Subtarget->isV9(); 3007 3008 switch (Op.getOpcode()) { 3009 default: llvm_unreachable("Should not custom lower this!"); 3010 3011 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3012 Subtarget); 3013 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3014 Subtarget); 3015 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3016 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3017 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3018 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3019 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3020 hasHardQuad); 3021 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3022 hasHardQuad); 3023 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3024 hasHardQuad); 3025 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3026 hasHardQuad); 3027 case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this, 3028 hasHardQuad); 3029 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this, 3030 hasHardQuad); 3031 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3032 case ISD::VAARG: return LowerVAARG(Op, DAG); 3033 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3034 Subtarget); 3035 3036 case ISD::LOAD: return LowerLOAD(Op, DAG); 3037 case ISD::STORE: return LowerSTORE(Op, DAG); 3038 case ISD::FADD: return LowerF128Op(Op, DAG, 3039 getLibcallName(RTLIB::ADD_F128), 2); 3040 case ISD::FSUB: return LowerF128Op(Op, DAG, 3041 getLibcallName(RTLIB::SUB_F128), 2); 3042 case ISD::FMUL: return LowerF128Op(Op, DAG, 3043 getLibcallName(RTLIB::MUL_F128), 2); 3044 case ISD::FDIV: return LowerF128Op(Op, DAG, 3045 getLibcallName(RTLIB::DIV_F128), 2); 3046 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3047 getLibcallName(RTLIB::SQRT_F128),1); 3048 case ISD::FABS: 3049 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3050 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3051 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3052 case ISD::ADDC: 3053 case ISD::ADDE: 3054 case ISD::SUBC: 3055 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3056 case ISD::UMULO: 3057 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3058 case ISD::ATOMIC_LOAD: 3059 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3060 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3061 } 3062 } 3063 3064 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, 3065 const SDLoc &DL, 3066 SelectionDAG &DAG) const { 3067 APInt V = C->getValueAPF().bitcastToAPInt(); 3068 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); 3069 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); 3070 if (DAG.getDataLayout().isLittleEndian()) 3071 std::swap(Lo, Hi); 3072 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); 3073 } 3074 3075 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, 3076 DAGCombinerInfo &DCI) const { 3077 SDLoc dl(N); 3078 SDValue Src = N->getOperand(0); 3079 3080 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && 3081 Src.getSimpleValueType() == MVT::f64) 3082 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); 3083 3084 return SDValue(); 3085 } 3086 3087 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, 3088 DAGCombinerInfo &DCI) const { 3089 switch (N->getOpcode()) { 3090 default: 3091 break; 3092 case ISD::BITCAST: 3093 return PerformBITCASTCombine(N, DCI); 3094 } 3095 return SDValue(); 3096 } 3097 3098 MachineBasicBlock * 3099 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3100 MachineBasicBlock *BB) const { 3101 switch (MI.getOpcode()) { 3102 default: llvm_unreachable("Unknown SELECT_CC!"); 3103 case SP::SELECT_CC_Int_ICC: 3104 case SP::SELECT_CC_FP_ICC: 3105 case SP::SELECT_CC_DFP_ICC: 3106 case SP::SELECT_CC_QFP_ICC: 3107 return expandSelectCC(MI, BB, SP::BCOND); 3108 case SP::SELECT_CC_Int_FCC: 3109 case SP::SELECT_CC_FP_FCC: 3110 case SP::SELECT_CC_DFP_FCC: 3111 case SP::SELECT_CC_QFP_FCC: 3112 return expandSelectCC(MI, BB, SP::FBCOND); 3113 } 3114 } 3115 3116 MachineBasicBlock * 3117 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3118 unsigned BROpcode) const { 3119 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3120 DebugLoc dl = MI.getDebugLoc(); 3121 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3122 3123 // To "insert" a SELECT_CC instruction, we actually have to insert the 3124 // triangle control-flow pattern. The incoming instruction knows the 3125 // destination vreg to set, the condition code register to branch on, the 3126 // true/false values to select between, and the condition code for the branch. 3127 // 3128 // We produce the following control flow: 3129 // ThisMBB 3130 // | \ 3131 // | IfFalseMBB 3132 // | / 3133 // SinkMBB 3134 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3135 MachineFunction::iterator It = ++BB->getIterator(); 3136 3137 MachineBasicBlock *ThisMBB = BB; 3138 MachineFunction *F = BB->getParent(); 3139 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3140 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3141 F->insert(It, IfFalseMBB); 3142 F->insert(It, SinkMBB); 3143 3144 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 3145 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 3146 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); 3147 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 3148 3149 // Set the new successors for ThisMBB. 3150 ThisMBB->addSuccessor(IfFalseMBB); 3151 ThisMBB->addSuccessor(SinkMBB); 3152 3153 BuildMI(ThisMBB, dl, TII.get(BROpcode)) 3154 .addMBB(SinkMBB) 3155 .addImm(CC); 3156 3157 // IfFalseMBB just falls through to SinkMBB. 3158 IfFalseMBB->addSuccessor(SinkMBB); 3159 3160 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] 3161 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), 3162 MI.getOperand(0).getReg()) 3163 .addReg(MI.getOperand(1).getReg()) 3164 .addMBB(ThisMBB) 3165 .addReg(MI.getOperand(2).getReg()) 3166 .addMBB(IfFalseMBB); 3167 3168 MI.eraseFromParent(); // The pseudo instruction is gone now. 3169 return SinkMBB; 3170 } 3171 3172 //===----------------------------------------------------------------------===// 3173 // Sparc Inline Assembly Support 3174 //===----------------------------------------------------------------------===// 3175 3176 /// getConstraintType - Given a constraint letter, return the type of 3177 /// constraint it is for this target. 3178 SparcTargetLowering::ConstraintType 3179 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3180 if (Constraint.size() == 1) { 3181 switch (Constraint[0]) { 3182 default: break; 3183 case 'r': 3184 case 'f': 3185 case 'e': 3186 return C_RegisterClass; 3187 case 'I': // SIMM13 3188 return C_Immediate; 3189 } 3190 } 3191 3192 return TargetLowering::getConstraintType(Constraint); 3193 } 3194 3195 TargetLowering::ConstraintWeight SparcTargetLowering:: 3196 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3197 const char *constraint) const { 3198 ConstraintWeight weight = CW_Invalid; 3199 Value *CallOperandVal = info.CallOperandVal; 3200 // If we don't have a value, we can't do a match, 3201 // but allow it at the lowest weight. 3202 if (!CallOperandVal) 3203 return CW_Default; 3204 3205 // Look at the constraint type. 3206 switch (*constraint) { 3207 default: 3208 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3209 break; 3210 case 'I': // SIMM13 3211 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3212 if (isInt<13>(C->getSExtValue())) 3213 weight = CW_Constant; 3214 } 3215 break; 3216 } 3217 return weight; 3218 } 3219 3220 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3221 /// vector. If it is invalid, don't add anything to Ops. 3222 void SparcTargetLowering:: 3223 LowerAsmOperandForConstraint(SDValue Op, 3224 std::string &Constraint, 3225 std::vector<SDValue> &Ops, 3226 SelectionDAG &DAG) const { 3227 SDValue Result(nullptr, 0); 3228 3229 // Only support length 1 constraints for now. 3230 if (Constraint.length() > 1) 3231 return; 3232 3233 char ConstraintLetter = Constraint[0]; 3234 switch (ConstraintLetter) { 3235 default: break; 3236 case 'I': 3237 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3238 if (isInt<13>(C->getSExtValue())) { 3239 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3240 Op.getValueType()); 3241 break; 3242 } 3243 return; 3244 } 3245 } 3246 3247 if (Result.getNode()) { 3248 Ops.push_back(Result); 3249 return; 3250 } 3251 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3252 } 3253 3254 std::pair<unsigned, const TargetRegisterClass *> 3255 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3256 StringRef Constraint, 3257 MVT VT) const { 3258 if (Constraint.size() == 1) { 3259 switch (Constraint[0]) { 3260 case 'r': 3261 if (VT == MVT::v2i32) 3262 return std::make_pair(0U, &SP::IntPairRegClass); 3263 else if (Subtarget->is64Bit()) 3264 return std::make_pair(0U, &SP::I64RegsRegClass); 3265 else 3266 return std::make_pair(0U, &SP::IntRegsRegClass); 3267 case 'f': 3268 if (VT == MVT::f32 || VT == MVT::i32) 3269 return std::make_pair(0U, &SP::FPRegsRegClass); 3270 else if (VT == MVT::f64 || VT == MVT::i64) 3271 return std::make_pair(0U, &SP::LowDFPRegsRegClass); 3272 else if (VT == MVT::f128) 3273 return std::make_pair(0U, &SP::LowQFPRegsRegClass); 3274 // This will generate an error message 3275 return std::make_pair(0U, nullptr); 3276 case 'e': 3277 if (VT == MVT::f32 || VT == MVT::i32) 3278 return std::make_pair(0U, &SP::FPRegsRegClass); 3279 else if (VT == MVT::f64 || VT == MVT::i64 ) 3280 return std::make_pair(0U, &SP::DFPRegsRegClass); 3281 else if (VT == MVT::f128) 3282 return std::make_pair(0U, &SP::QFPRegsRegClass); 3283 // This will generate an error message 3284 return std::make_pair(0U, nullptr); 3285 } 3286 } else if (!Constraint.empty() && Constraint.size() <= 5 3287 && Constraint[0] == '{' && *(Constraint.end()-1) == '}') { 3288 // constraint = '{r<d>}' 3289 // Remove the braces from around the name. 3290 StringRef name(Constraint.data()+1, Constraint.size()-2); 3291 // Handle register aliases: 3292 // r0-r7 -> g0-g7 3293 // r8-r15 -> o0-o7 3294 // r16-r23 -> l0-l7 3295 // r24-r31 -> i0-i7 3296 uint64_t intVal = 0; 3297 if (name.substr(0, 1).equals("r") 3298 && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) { 3299 const char regTypes[] = { 'g', 'o', 'l', 'i' }; 3300 char regType = regTypes[intVal/8]; 3301 char regIdx = '0' + (intVal % 8); 3302 char tmp[] = { '{', regType, regIdx, '}', 0 }; 3303 std::string newConstraint = std::string(tmp); 3304 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3305 VT); 3306 } 3307 if (name.substr(0, 1).equals("f") && 3308 !name.substr(1).getAsInteger(10, intVal) && intVal <= 63) { 3309 std::string newConstraint; 3310 3311 if (VT == MVT::f32 || VT == MVT::Other) { 3312 newConstraint = "{f" + utostr(intVal) + "}"; 3313 } else if (VT == MVT::f64 && (intVal % 2 == 0)) { 3314 newConstraint = "{d" + utostr(intVal / 2) + "}"; 3315 } else if (VT == MVT::f128 && (intVal % 4 == 0)) { 3316 newConstraint = "{q" + utostr(intVal / 4) + "}"; 3317 } else { 3318 return std::make_pair(0U, nullptr); 3319 } 3320 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3321 VT); 3322 } 3323 } 3324 3325 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3326 } 3327 3328 bool 3329 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3330 // The Sparc target isn't yet aware of offsets. 3331 return false; 3332 } 3333 3334 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3335 SmallVectorImpl<SDValue>& Results, 3336 SelectionDAG &DAG) const { 3337 3338 SDLoc dl(N); 3339 3340 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3341 3342 switch (N->getOpcode()) { 3343 default: 3344 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3345 3346 case ISD::FP_TO_SINT: 3347 case ISD::FP_TO_UINT: 3348 // Custom lower only if it involves f128 or i64. 3349 if (N->getOperand(0).getValueType() != MVT::f128 3350 || N->getValueType(0) != MVT::i64) 3351 return; 3352 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3353 ? RTLIB::FPTOSINT_F128_I64 3354 : RTLIB::FPTOUINT_F128_I64); 3355 3356 Results.push_back(LowerF128Op(SDValue(N, 0), 3357 DAG, 3358 getLibcallName(libCall), 3359 1)); 3360 return; 3361 case ISD::READCYCLECOUNTER: { 3362 assert(Subtarget->hasLeonCycleCounter()); 3363 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); 3364 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); 3365 SDValue Ops[] = { Lo, Hi }; 3366 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); 3367 Results.push_back(Pair); 3368 Results.push_back(N->getOperand(0)); 3369 return; 3370 } 3371 case ISD::SINT_TO_FP: 3372 case ISD::UINT_TO_FP: 3373 // Custom lower only if it involves f128 or i64. 3374 if (N->getValueType(0) != MVT::f128 3375 || N->getOperand(0).getValueType() != MVT::i64) 3376 return; 3377 3378 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3379 ? RTLIB::SINTTOFP_I64_F128 3380 : RTLIB::UINTTOFP_I64_F128); 3381 3382 Results.push_back(LowerF128Op(SDValue(N, 0), 3383 DAG, 3384 getLibcallName(libCall), 3385 1)); 3386 return; 3387 case ISD::LOAD: { 3388 LoadSDNode *Ld = cast<LoadSDNode>(N); 3389 // Custom handling only for i64: turn i64 load into a v2i32 load, 3390 // and a bitcast. 3391 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3392 return; 3393 3394 SDLoc dl(N); 3395 SDValue LoadRes = DAG.getExtLoad( 3396 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), 3397 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, Ld->getAlignment(), 3398 Ld->getMemOperand()->getFlags(), Ld->getAAInfo()); 3399 3400 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3401 Results.push_back(Res); 3402 Results.push_back(LoadRes.getValue(1)); 3403 return; 3404 } 3405 } 3406 } 3407 3408 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3409 bool SparcTargetLowering::useLoadStackGuardNode() const { 3410 if (!Subtarget->isTargetLinux()) 3411 return TargetLowering::useLoadStackGuardNode(); 3412 return true; 3413 } 3414 3415 // Override to disable global variable loading on Linux. 3416 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3417 if (!Subtarget->isTargetLinux()) 3418 return TargetLowering::insertSSPDeclarations(M); 3419 } 3420