1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Sparc uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SparcISelLowering.h" 15 #include "MCTargetDesc/SparcMCExpr.h" 16 #include "SparcMachineFunctionInfo.h" 17 #include "SparcRegisterInfo.h" 18 #include "SparcTargetMachine.h" 19 #include "SparcTargetObjectFile.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 using namespace llvm; 35 36 37 //===----------------------------------------------------------------------===// 38 // Calling Convention Implementation 39 //===----------------------------------------------------------------------===// 40 41 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 42 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, CCState &State) 44 { 45 assert (ArgFlags.isSRet()); 46 47 // Assign SRet argument. 48 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 49 0, 50 LocVT, LocInfo)); 51 return true; 52 } 53 54 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 55 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 56 ISD::ArgFlagsTy &ArgFlags, CCState &State) 57 { 58 static const MCPhysReg RegList[] = { 59 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 60 }; 61 // Try to get first reg. 62 if (Register Reg = State.AllocateReg(RegList)) { 63 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 64 } else { 65 // Assign whole thing in stack. 66 State.addLoc(CCValAssign::getCustomMem( 67 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); 68 return true; 69 } 70 71 // Try to get second reg. 72 if (Register Reg = State.AllocateReg(RegList)) 73 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 74 else 75 State.addLoc(CCValAssign::getCustomMem( 76 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); 77 return true; 78 } 79 80 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 81 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 82 ISD::ArgFlagsTy &ArgFlags, CCState &State) 83 { 84 static const MCPhysReg RegList[] = { 85 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 86 }; 87 88 // Try to get first reg. 89 if (Register Reg = State.AllocateReg(RegList)) 90 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 91 else 92 return false; 93 94 // Try to get second reg. 95 if (Register Reg = State.AllocateReg(RegList)) 96 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 97 else 98 return false; 99 100 return true; 101 } 102 103 // Allocate a full-sized argument for the 64-bit ABI. 104 static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT, 105 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 106 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 107 assert((LocVT == MVT::f32 || LocVT == MVT::f128 108 || LocVT.getSizeInBits() == 64) && 109 "Can't handle non-64 bits locations"); 110 111 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 112 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 113 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); 114 unsigned Offset = State.AllocateStack(size, alignment); 115 unsigned Reg = 0; 116 117 if (LocVT == MVT::i64 && Offset < 6*8) 118 // Promote integers to %i0-%i5. 119 Reg = SP::I0 + Offset/8; 120 else if (LocVT == MVT::f64 && Offset < 16*8) 121 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 122 Reg = SP::D0 + Offset/8; 123 else if (LocVT == MVT::f32 && Offset < 16*8) 124 // Promote floats to %f1, %f3, ... 125 Reg = SP::F1 + Offset/4; 126 else if (LocVT == MVT::f128 && Offset < 16*8) 127 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 128 Reg = SP::Q0 + Offset/16; 129 130 // Promote to register when possible, otherwise use the stack slot. 131 if (Reg) { 132 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 133 return true; 134 } 135 136 // Bail out if this is a return CC and we run out of registers to place 137 // values into. 138 if (IsReturn) 139 return false; 140 141 // This argument goes on the stack in an 8-byte slot. 142 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 143 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 144 if (LocVT == MVT::f32) 145 Offset += 4; 146 147 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 148 return true; 149 } 150 151 // Allocate a half-sized argument for the 64-bit ABI. 152 // 153 // This is used when passing { float, int } structs by value in registers. 154 static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT, 155 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 156 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 157 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 158 unsigned Offset = State.AllocateStack(4, Align(4)); 159 160 if (LocVT == MVT::f32 && Offset < 16*8) { 161 // Promote floats to %f0-%f31. 162 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 163 LocVT, LocInfo)); 164 return true; 165 } 166 167 if (LocVT == MVT::i32 && Offset < 6*8) { 168 // Promote integers to %i0-%i5, using half the register. 169 unsigned Reg = SP::I0 + Offset/8; 170 LocVT = MVT::i64; 171 LocInfo = CCValAssign::AExt; 172 173 // Set the Custom bit if this i32 goes in the high bits of a register. 174 if (Offset % 8 == 0) 175 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 176 LocVT, LocInfo)); 177 else 178 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 179 return true; 180 } 181 182 // Bail out if this is a return CC and we run out of registers to place 183 // values into. 184 if (IsReturn) 185 return false; 186 187 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 188 return true; 189 } 190 191 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 192 CCValAssign::LocInfo &LocInfo, 193 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 194 return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 195 State); 196 } 197 198 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 199 CCValAssign::LocInfo &LocInfo, 200 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 201 return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 202 State); 203 } 204 205 static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 206 CCValAssign::LocInfo &LocInfo, 207 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 208 return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 209 State); 210 } 211 212 static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 213 CCValAssign::LocInfo &LocInfo, 214 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 215 return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 216 State); 217 } 218 219 #include "SparcGenCallingConv.inc" 220 221 // The calling conventions in SparcCallingConv.td are described in terms of the 222 // callee's register window. This function translates registers to the 223 // corresponding caller window %o register. 224 static unsigned toCallerWindow(unsigned Reg) { 225 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 226 "Unexpected enum"); 227 if (Reg >= SP::I0 && Reg <= SP::I7) 228 return Reg - SP::I0 + SP::O0; 229 return Reg; 230 } 231 232 bool SparcTargetLowering::CanLowerReturn( 233 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, 234 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 235 SmallVector<CCValAssign, 16> RVLocs; 236 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 237 return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64 238 : RetCC_Sparc32); 239 } 240 241 SDValue 242 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 243 bool IsVarArg, 244 const SmallVectorImpl<ISD::OutputArg> &Outs, 245 const SmallVectorImpl<SDValue> &OutVals, 246 const SDLoc &DL, SelectionDAG &DAG) const { 247 if (Subtarget->is64Bit()) 248 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 249 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 250 } 251 252 SDValue 253 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 254 bool IsVarArg, 255 const SmallVectorImpl<ISD::OutputArg> &Outs, 256 const SmallVectorImpl<SDValue> &OutVals, 257 const SDLoc &DL, SelectionDAG &DAG) const { 258 MachineFunction &MF = DAG.getMachineFunction(); 259 260 // CCValAssign - represent the assignment of the return value to locations. 261 SmallVector<CCValAssign, 16> RVLocs; 262 263 // CCState - Info about the registers and stack slot. 264 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 265 *DAG.getContext()); 266 267 // Analyze return values. 268 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 269 270 SDValue Flag; 271 SmallVector<SDValue, 4> RetOps(1, Chain); 272 // Make room for the return address offset. 273 RetOps.push_back(SDValue()); 274 275 // Copy the result values into the output registers. 276 for (unsigned i = 0, realRVLocIdx = 0; 277 i != RVLocs.size(); 278 ++i, ++realRVLocIdx) { 279 CCValAssign &VA = RVLocs[i]; 280 assert(VA.isRegLoc() && "Can only return in registers!"); 281 282 SDValue Arg = OutVals[realRVLocIdx]; 283 284 if (VA.needsCustom()) { 285 assert(VA.getLocVT() == MVT::v2i32); 286 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 287 // happen by default if this wasn't a legal type) 288 289 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 290 Arg, 291 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 292 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 293 Arg, 294 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 295 296 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag); 297 Flag = Chain.getValue(1); 298 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 299 VA = RVLocs[++i]; // skip ahead to next loc 300 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 301 Flag); 302 } else 303 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 304 305 // Guarantee that all emitted copies are stuck together with flags. 306 Flag = Chain.getValue(1); 307 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 308 } 309 310 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 311 // If the function returns a struct, copy the SRetReturnReg to I0 312 if (MF.getFunction().hasStructRetAttr()) { 313 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 314 Register Reg = SFI->getSRetReturnReg(); 315 if (!Reg) 316 llvm_unreachable("sret virtual register not created in the entry block"); 317 auto PtrVT = getPointerTy(DAG.getDataLayout()); 318 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 319 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); 320 Flag = Chain.getValue(1); 321 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 322 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 323 } 324 325 RetOps[0] = Chain; // Update chain. 326 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 327 328 // Add the flag if we have it. 329 if (Flag.getNode()) 330 RetOps.push_back(Flag); 331 332 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 333 } 334 335 // Lower return values for the 64-bit ABI. 336 // Return values are passed the exactly the same way as function arguments. 337 SDValue 338 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 339 bool IsVarArg, 340 const SmallVectorImpl<ISD::OutputArg> &Outs, 341 const SmallVectorImpl<SDValue> &OutVals, 342 const SDLoc &DL, SelectionDAG &DAG) const { 343 // CCValAssign - represent the assignment of the return value to locations. 344 SmallVector<CCValAssign, 16> RVLocs; 345 346 // CCState - Info about the registers and stack slot. 347 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 348 *DAG.getContext()); 349 350 // Analyze return values. 351 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 352 353 SDValue Flag; 354 SmallVector<SDValue, 4> RetOps(1, Chain); 355 356 // The second operand on the return instruction is the return address offset. 357 // The return address is always %i7+8 with the 64-bit ABI. 358 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 359 360 // Copy the result values into the output registers. 361 for (unsigned i = 0; i != RVLocs.size(); ++i) { 362 CCValAssign &VA = RVLocs[i]; 363 assert(VA.isRegLoc() && "Can only return in registers!"); 364 SDValue OutVal = OutVals[i]; 365 366 // Integer return values must be sign or zero extended by the callee. 367 switch (VA.getLocInfo()) { 368 case CCValAssign::Full: break; 369 case CCValAssign::SExt: 370 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 371 break; 372 case CCValAssign::ZExt: 373 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 374 break; 375 case CCValAssign::AExt: 376 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 377 break; 378 default: 379 llvm_unreachable("Unknown loc info!"); 380 } 381 382 // The custom bit on an i32 return value indicates that it should be passed 383 // in the high bits of the register. 384 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 385 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 386 DAG.getConstant(32, DL, MVT::i32)); 387 388 // The next value may go in the low bits of the same register. 389 // Handle both at once. 390 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 391 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 392 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 393 // Skip the next value, it's already done. 394 ++i; 395 } 396 } 397 398 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 399 400 // Guarantee that all emitted copies are stuck together with flags. 401 Flag = Chain.getValue(1); 402 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 403 } 404 405 RetOps[0] = Chain; // Update chain. 406 407 // Add the flag if we have it. 408 if (Flag.getNode()) 409 RetOps.push_back(Flag); 410 411 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 412 } 413 414 SDValue SparcTargetLowering::LowerFormalArguments( 415 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 416 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 417 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 418 if (Subtarget->is64Bit()) 419 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 420 DL, DAG, InVals); 421 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 422 DL, DAG, InVals); 423 } 424 425 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 426 /// passed in either one or two GPRs, including FP values. TODO: we should 427 /// pass FP values in FP registers for fastcc functions. 428 SDValue SparcTargetLowering::LowerFormalArguments_32( 429 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 430 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 431 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 432 MachineFunction &MF = DAG.getMachineFunction(); 433 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 434 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 435 436 // Assign locations to all of the incoming arguments. 437 SmallVector<CCValAssign, 16> ArgLocs; 438 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 439 *DAG.getContext()); 440 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 441 442 const unsigned StackOffset = 92; 443 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 444 445 unsigned InIdx = 0; 446 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 447 CCValAssign &VA = ArgLocs[i]; 448 449 if (Ins[InIdx].Flags.isSRet()) { 450 if (InIdx != 0) 451 report_fatal_error("sparc only supports sret on the first parameter"); 452 // Get SRet from [%fp+64]. 453 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); 454 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 455 SDValue Arg = 456 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 457 InVals.push_back(Arg); 458 continue; 459 } 460 461 if (VA.isRegLoc()) { 462 if (VA.needsCustom()) { 463 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 464 465 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 466 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 467 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 468 469 assert(i+1 < e); 470 CCValAssign &NextVA = ArgLocs[++i]; 471 472 SDValue LoVal; 473 if (NextVA.isMemLoc()) { 474 int FrameIdx = MF.getFrameInfo(). 475 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 476 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 477 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 478 } else { 479 Register loReg = MF.addLiveIn(NextVA.getLocReg(), 480 &SP::IntRegsRegClass); 481 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 482 } 483 484 if (IsLittleEndian) 485 std::swap(LoVal, HiVal); 486 487 SDValue WholeValue = 488 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 489 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 490 InVals.push_back(WholeValue); 491 continue; 492 } 493 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 494 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 495 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 496 if (VA.getLocVT() == MVT::f32) 497 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 498 else if (VA.getLocVT() != MVT::i32) { 499 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 500 DAG.getValueType(VA.getLocVT())); 501 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 502 } 503 InVals.push_back(Arg); 504 continue; 505 } 506 507 assert(VA.isMemLoc()); 508 509 unsigned Offset = VA.getLocMemOffset()+StackOffset; 510 auto PtrVT = getPointerTy(DAG.getDataLayout()); 511 512 if (VA.needsCustom()) { 513 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 514 // If it is double-word aligned, just load. 515 if (Offset % 8 == 0) { 516 int FI = MF.getFrameInfo().CreateFixedObject(8, 517 Offset, 518 true); 519 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 520 SDValue Load = 521 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 522 InVals.push_back(Load); 523 continue; 524 } 525 526 int FI = MF.getFrameInfo().CreateFixedObject(4, 527 Offset, 528 true); 529 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 530 SDValue HiVal = 531 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 532 int FI2 = MF.getFrameInfo().CreateFixedObject(4, 533 Offset+4, 534 true); 535 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 536 537 SDValue LoVal = 538 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); 539 540 if (IsLittleEndian) 541 std::swap(LoVal, HiVal); 542 543 SDValue WholeValue = 544 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 545 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 546 InVals.push_back(WholeValue); 547 continue; 548 } 549 550 int FI = MF.getFrameInfo().CreateFixedObject(4, 551 Offset, 552 true); 553 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 554 SDValue Load ; 555 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 556 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 557 } else if (VA.getValVT() == MVT::f128) { 558 report_fatal_error("SPARCv8 does not handle f128 in calls; " 559 "pass indirectly"); 560 } else { 561 // We shouldn't see any other value types here. 562 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 563 } 564 InVals.push_back(Load); 565 } 566 567 if (MF.getFunction().hasStructRetAttr()) { 568 // Copy the SRet Argument to SRetReturnReg. 569 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 570 Register Reg = SFI->getSRetReturnReg(); 571 if (!Reg) { 572 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 573 SFI->setSRetReturnReg(Reg); 574 } 575 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 576 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 577 } 578 579 // Store remaining ArgRegs to the stack if this is a varargs function. 580 if (isVarArg) { 581 static const MCPhysReg ArgRegs[] = { 582 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 583 }; 584 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 585 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 586 unsigned ArgOffset = CCInfo.getNextStackOffset(); 587 if (NumAllocated == 6) 588 ArgOffset += StackOffset; 589 else { 590 assert(!ArgOffset); 591 ArgOffset = 68+4*NumAllocated; 592 } 593 594 // Remember the vararg offset for the va_start implementation. 595 FuncInfo->setVarArgsFrameOffset(ArgOffset); 596 597 std::vector<SDValue> OutChains; 598 599 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 600 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 601 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 602 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 603 604 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, 605 true); 606 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 607 608 OutChains.push_back( 609 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); 610 ArgOffset += 4; 611 } 612 613 if (!OutChains.empty()) { 614 OutChains.push_back(Chain); 615 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 616 } 617 } 618 619 return Chain; 620 } 621 622 // Lower formal arguments for the 64 bit ABI. 623 SDValue SparcTargetLowering::LowerFormalArguments_64( 624 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 625 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 626 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 627 MachineFunction &MF = DAG.getMachineFunction(); 628 629 // Analyze arguments according to CC_Sparc64. 630 SmallVector<CCValAssign, 16> ArgLocs; 631 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 632 *DAG.getContext()); 633 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 634 635 // The argument array begins at %fp+BIAS+128, after the register save area. 636 const unsigned ArgArea = 128; 637 638 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 639 CCValAssign &VA = ArgLocs[i]; 640 if (VA.isRegLoc()) { 641 // This argument is passed in a register. 642 // All integer register arguments are promoted by the caller to i64. 643 644 // Create a virtual register for the promoted live-in value. 645 Register VReg = MF.addLiveIn(VA.getLocReg(), 646 getRegClassFor(VA.getLocVT())); 647 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 648 649 // Get the high bits for i32 struct elements. 650 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 651 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 652 DAG.getConstant(32, DL, MVT::i32)); 653 654 // The caller promoted the argument, so insert an Assert?ext SDNode so we 655 // won't promote the value again in this function. 656 switch (VA.getLocInfo()) { 657 case CCValAssign::SExt: 658 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 659 DAG.getValueType(VA.getValVT())); 660 break; 661 case CCValAssign::ZExt: 662 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 663 DAG.getValueType(VA.getValVT())); 664 break; 665 default: 666 break; 667 } 668 669 // Truncate the register down to the argument type. 670 if (VA.isExtInLoc()) 671 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 672 673 InVals.push_back(Arg); 674 continue; 675 } 676 677 // The registers are exhausted. This argument was passed on the stack. 678 assert(VA.isMemLoc()); 679 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 680 // beginning of the arguments area at %fp+BIAS+128. 681 unsigned Offset = VA.getLocMemOffset() + ArgArea; 682 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 683 // Adjust offset for extended arguments, SPARC is big-endian. 684 // The caller will have written the full slot with extended bytes, but we 685 // prefer our own extending loads. 686 if (VA.isExtInLoc()) 687 Offset += 8 - ValSize; 688 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 689 InVals.push_back( 690 DAG.getLoad(VA.getValVT(), DL, Chain, 691 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 692 MachinePointerInfo::getFixedStack(MF, FI))); 693 } 694 695 if (!IsVarArg) 696 return Chain; 697 698 // This function takes variable arguments, some of which may have been passed 699 // in registers %i0-%i5. Variable floating point arguments are never passed 700 // in floating point registers. They go on %i0-%i5 or on the stack like 701 // integer arguments. 702 // 703 // The va_start intrinsic needs to know the offset to the first variable 704 // argument. 705 unsigned ArgOffset = CCInfo.getNextStackOffset(); 706 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 707 // Skip the 128 bytes of register save area. 708 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 709 Subtarget->getStackPointerBias()); 710 711 // Save the variable arguments that were passed in registers. 712 // The caller is required to reserve stack space for 6 arguments regardless 713 // of how many arguments were actually passed. 714 SmallVector<SDValue, 8> OutChains; 715 for (; ArgOffset < 6*8; ArgOffset += 8) { 716 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 717 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 718 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); 719 auto PtrVT = getPointerTy(MF.getDataLayout()); 720 OutChains.push_back( 721 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 722 MachinePointerInfo::getFixedStack(MF, FI))); 723 } 724 725 if (!OutChains.empty()) 726 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 727 728 return Chain; 729 } 730 731 SDValue 732 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 733 SmallVectorImpl<SDValue> &InVals) const { 734 if (Subtarget->is64Bit()) 735 return LowerCall_64(CLI, InVals); 736 return LowerCall_32(CLI, InVals); 737 } 738 739 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 740 const CallBase *Call) { 741 if (Call) 742 return Call->hasFnAttr(Attribute::ReturnsTwice); 743 744 const Function *CalleeFn = nullptr; 745 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 746 CalleeFn = dyn_cast<Function>(G->getGlobal()); 747 } else if (ExternalSymbolSDNode *E = 748 dyn_cast<ExternalSymbolSDNode>(Callee)) { 749 const Function &Fn = DAG.getMachineFunction().getFunction(); 750 const Module *M = Fn.getParent(); 751 const char *CalleeName = E->getSymbol(); 752 CalleeFn = M->getFunction(CalleeName); 753 } 754 755 if (!CalleeFn) 756 return false; 757 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 758 } 759 760 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 761 /// for tail call optimization. 762 bool SparcTargetLowering::IsEligibleForTailCallOptimization( 763 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const { 764 765 auto &Outs = CLI.Outs; 766 auto &Caller = MF.getFunction(); 767 768 // Do not tail call opt functions with "disable-tail-calls" attribute. 769 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 770 return false; 771 772 // Do not tail call opt if the stack is used to pass parameters. 773 if (CCInfo.getNextStackOffset() != 0) 774 return false; 775 776 // Do not tail call opt if either the callee or caller returns 777 // a struct and the other does not. 778 if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet()) 779 return false; 780 781 // Byval parameters hand the function a pointer directly into the stack area 782 // we want to reuse during a tail call. 783 for (auto &Arg : Outs) 784 if (Arg.Flags.isByVal()) 785 return false; 786 787 return true; 788 } 789 790 // Lower a call for the 32-bit ABI. 791 SDValue 792 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 793 SmallVectorImpl<SDValue> &InVals) const { 794 SelectionDAG &DAG = CLI.DAG; 795 SDLoc &dl = CLI.DL; 796 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 797 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 798 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 799 SDValue Chain = CLI.Chain; 800 SDValue Callee = CLI.Callee; 801 bool &isTailCall = CLI.IsTailCall; 802 CallingConv::ID CallConv = CLI.CallConv; 803 bool isVarArg = CLI.IsVarArg; 804 805 // Analyze operands of the call, assigning locations to each operand. 806 SmallVector<CCValAssign, 16> ArgLocs; 807 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 808 *DAG.getContext()); 809 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 810 811 isTailCall = isTailCall && IsEligibleForTailCallOptimization( 812 CCInfo, CLI, DAG.getMachineFunction()); 813 814 // Get the size of the outgoing arguments stack space requirement. 815 unsigned ArgsSize = CCInfo.getNextStackOffset(); 816 817 // Keep stack frames 8-byte aligned. 818 ArgsSize = (ArgsSize+7) & ~7; 819 820 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 821 822 // Create local copies for byval args. 823 SmallVector<SDValue, 8> ByValArgs; 824 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 825 ISD::ArgFlagsTy Flags = Outs[i].Flags; 826 if (!Flags.isByVal()) 827 continue; 828 829 SDValue Arg = OutVals[i]; 830 unsigned Size = Flags.getByValSize(); 831 Align Alignment = Flags.getNonZeroByValAlign(); 832 833 if (Size > 0U) { 834 int FI = MFI.CreateStackObject(Size, Alignment, false); 835 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 836 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 837 838 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, 839 false, // isVolatile, 840 (Size <= 32), // AlwaysInline if size <= 32, 841 false, // isTailCall 842 MachinePointerInfo(), MachinePointerInfo()); 843 ByValArgs.push_back(FIPtr); 844 } 845 else { 846 SDValue nullVal; 847 ByValArgs.push_back(nullVal); 848 } 849 } 850 851 assert(!isTailCall || ArgsSize == 0); 852 853 if (!isTailCall) 854 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); 855 856 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 857 SmallVector<SDValue, 8> MemOpChains; 858 859 const unsigned StackOffset = 92; 860 bool hasStructRetAttr = false; 861 unsigned SRetArgSize = 0; 862 // Walk the register/memloc assignments, inserting copies/loads. 863 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 864 i != e; 865 ++i, ++realArgIdx) { 866 CCValAssign &VA = ArgLocs[i]; 867 SDValue Arg = OutVals[realArgIdx]; 868 869 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 870 871 // Use local copy if it is a byval arg. 872 if (Flags.isByVal()) { 873 Arg = ByValArgs[byvalArgIdx++]; 874 if (!Arg) { 875 continue; 876 } 877 } 878 879 // Promote the value if needed. 880 switch (VA.getLocInfo()) { 881 default: llvm_unreachable("Unknown loc info!"); 882 case CCValAssign::Full: break; 883 case CCValAssign::SExt: 884 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 885 break; 886 case CCValAssign::ZExt: 887 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 888 break; 889 case CCValAssign::AExt: 890 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 891 break; 892 case CCValAssign::BCvt: 893 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 894 break; 895 } 896 897 if (Flags.isSRet()) { 898 assert(VA.needsCustom()); 899 900 if (isTailCall) 901 continue; 902 903 // store SRet argument in %sp+64 904 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 905 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 906 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 907 MemOpChains.push_back( 908 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 909 hasStructRetAttr = true; 910 // sret only allowed on first argument 911 assert(Outs[realArgIdx].OrigArgIndex == 0); 912 SRetArgSize = 913 DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType); 914 continue; 915 } 916 917 if (VA.needsCustom()) { 918 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 919 920 if (VA.isMemLoc()) { 921 unsigned Offset = VA.getLocMemOffset() + StackOffset; 922 // if it is double-word aligned, just store. 923 if (Offset % 8 == 0) { 924 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 925 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 926 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 927 MemOpChains.push_back( 928 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 929 continue; 930 } 931 } 932 933 if (VA.getLocVT() == MVT::f64) { 934 // Move from the float value from float registers into the 935 // integer registers. 936 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) 937 Arg = bitcastConstantFPToInt(C, dl, DAG); 938 else 939 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 940 } 941 942 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 943 Arg, 944 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 945 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 946 Arg, 947 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 948 949 if (VA.isRegLoc()) { 950 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 951 assert(i+1 != e); 952 CCValAssign &NextVA = ArgLocs[++i]; 953 if (NextVA.isRegLoc()) { 954 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 955 } else { 956 // Store the second part in stack. 957 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 958 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 959 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 960 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 961 MemOpChains.push_back( 962 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 963 } 964 } else { 965 unsigned Offset = VA.getLocMemOffset() + StackOffset; 966 // Store the first part. 967 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 968 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 969 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 970 MemOpChains.push_back( 971 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); 972 // Store the second part. 973 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 974 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 975 MemOpChains.push_back( 976 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 977 } 978 continue; 979 } 980 981 // Arguments that can be passed on register must be kept at 982 // RegsToPass vector 983 if (VA.isRegLoc()) { 984 if (VA.getLocVT() != MVT::f32) { 985 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 986 continue; 987 } 988 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 989 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 990 continue; 991 } 992 993 assert(VA.isMemLoc()); 994 995 // Create a store off the stack pointer for this argument. 996 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 997 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 998 dl); 999 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 1000 MemOpChains.push_back( 1001 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 1002 } 1003 1004 1005 // Emit all stores, make sure the occur before any copies into physregs. 1006 if (!MemOpChains.empty()) 1007 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1008 1009 // Build a sequence of copy-to-reg nodes chained together with token 1010 // chain and flag operands which copy the outgoing args into registers. 1011 // The InFlag in necessary since all emitted instructions must be 1012 // stuck together. 1013 SDValue InFlag; 1014 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1015 Register Reg = RegsToPass[i].first; 1016 if (!isTailCall) 1017 Reg = toCallerWindow(Reg); 1018 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); 1019 InFlag = Chain.getValue(1); 1020 } 1021 1022 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1023 1024 // If the callee is a GlobalAddress node (quite common, every direct call is) 1025 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1026 // Likewise ExternalSymbol -> TargetExternalSymbol. 1027 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1028 : SparcMCExpr::VK_Sparc_WDISP30; 1029 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1030 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 1031 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1032 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 1033 1034 // Returns a chain & a flag for retval copy to use 1035 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1036 SmallVector<SDValue, 8> Ops; 1037 Ops.push_back(Chain); 1038 Ops.push_back(Callee); 1039 if (hasStructRetAttr) 1040 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 1041 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1042 Register Reg = RegsToPass[i].first; 1043 if (!isTailCall) 1044 Reg = toCallerWindow(Reg); 1045 Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType())); 1046 } 1047 1048 // Add a register mask operand representing the call-preserved registers. 1049 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1050 const uint32_t *Mask = 1051 ((hasReturnsTwice) 1052 ? TRI->getRTCallPreservedMask(CallConv) 1053 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 1054 assert(Mask && "Missing call preserved mask for calling convention"); 1055 Ops.push_back(DAG.getRegisterMask(Mask)); 1056 1057 if (InFlag.getNode()) 1058 Ops.push_back(InFlag); 1059 1060 if (isTailCall) { 1061 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 1062 return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops); 1063 } 1064 1065 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 1066 InFlag = Chain.getValue(1); 1067 1068 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true), 1069 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 1070 InFlag = Chain.getValue(1); 1071 1072 // Assign locations to each value returned by this call. 1073 SmallVector<CCValAssign, 16> RVLocs; 1074 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1075 *DAG.getContext()); 1076 1077 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 1078 1079 // Copy all of the result registers out of their specified physreg. 1080 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1081 assert(RVLocs[i].isRegLoc() && "Can only return in registers!"); 1082 if (RVLocs[i].getLocVT() == MVT::v2i32) { 1083 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 1084 SDValue Lo = DAG.getCopyFromReg( 1085 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag); 1086 Chain = Lo.getValue(1); 1087 InFlag = Lo.getValue(2); 1088 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 1089 DAG.getConstant(0, dl, MVT::i32)); 1090 SDValue Hi = DAG.getCopyFromReg( 1091 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag); 1092 Chain = Hi.getValue(1); 1093 InFlag = Hi.getValue(2); 1094 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1095 DAG.getConstant(1, dl, MVT::i32)); 1096 InVals.push_back(Vec); 1097 } else { 1098 Chain = 1099 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1100 RVLocs[i].getValVT(), InFlag) 1101 .getValue(1); 1102 InFlag = Chain.getValue(2); 1103 InVals.push_back(Chain.getValue(0)); 1104 } 1105 } 1106 1107 return Chain; 1108 } 1109 1110 // FIXME? Maybe this could be a TableGen attribute on some registers and 1111 // this table could be generated automatically from RegInfo. 1112 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, 1113 const MachineFunction &MF) const { 1114 Register Reg = StringSwitch<Register>(RegName) 1115 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1116 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1117 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1118 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1119 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1120 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1121 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1122 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1123 .Default(0); 1124 1125 if (Reg) 1126 return Reg; 1127 1128 report_fatal_error("Invalid register name global variable"); 1129 } 1130 1131 // Fixup floating point arguments in the ... part of a varargs call. 1132 // 1133 // The SPARC v9 ABI requires that floating point arguments are treated the same 1134 // as integers when calling a varargs function. This does not apply to the 1135 // fixed arguments that are part of the function's prototype. 1136 // 1137 // This function post-processes a CCValAssign array created by 1138 // AnalyzeCallOperands(). 1139 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1140 ArrayRef<ISD::OutputArg> Outs) { 1141 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1142 const CCValAssign &VA = ArgLocs[i]; 1143 MVT ValTy = VA.getLocVT(); 1144 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1145 // varargs functions. 1146 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1147 continue; 1148 // The fixed arguments to a varargs function still go in FP registers. 1149 if (Outs[VA.getValNo()].IsFixed) 1150 continue; 1151 1152 // This floating point argument should be reassigned. 1153 CCValAssign NewVA; 1154 1155 // Determine the offset into the argument array. 1156 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1157 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1158 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1159 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1160 1161 if (Offset < 6*8) { 1162 // This argument should go in %i0-%i5. 1163 unsigned IReg = SP::I0 + Offset/8; 1164 if (ValTy == MVT::f64) 1165 // Full register, just bitconvert into i64. 1166 NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), 1167 IReg, MVT::i64, CCValAssign::BCvt); 1168 else { 1169 assert(ValTy == MVT::f128 && "Unexpected type!"); 1170 // Full register, just bitconvert into i128 -- We will lower this into 1171 // two i64s in LowerCall_64. 1172 NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), 1173 IReg, MVT::i128, CCValAssign::BCvt); 1174 } 1175 } else { 1176 // This needs to go to memory, we're out of integer registers. 1177 NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), 1178 Offset, VA.getLocVT(), VA.getLocInfo()); 1179 } 1180 ArgLocs[i] = NewVA; 1181 } 1182 } 1183 1184 // Lower a call for the 64-bit ABI. 1185 SDValue 1186 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1187 SmallVectorImpl<SDValue> &InVals) const { 1188 SelectionDAG &DAG = CLI.DAG; 1189 SDLoc DL = CLI.DL; 1190 SDValue Chain = CLI.Chain; 1191 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1192 1193 // Sparc target does not yet support tail call optimization. 1194 CLI.IsTailCall = false; 1195 1196 // Analyze operands of the call, assigning locations to each operand. 1197 SmallVector<CCValAssign, 16> ArgLocs; 1198 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1199 *DAG.getContext()); 1200 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1201 1202 // Get the size of the outgoing arguments stack space requirement. 1203 // The stack offset computed by CC_Sparc64 includes all arguments. 1204 // Called functions expect 6 argument words to exist in the stack frame, used 1205 // or not. 1206 unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()); 1207 1208 // Keep stack frames 16-byte aligned. 1209 ArgsSize = alignTo(ArgsSize, 16); 1210 1211 // Varargs calls require special treatment. 1212 if (CLI.IsVarArg) 1213 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1214 1215 // Adjust the stack pointer to make room for the arguments. 1216 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1217 // with more than 6 arguments. 1218 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 1219 1220 // Collect the set of registers to pass to the function and their values. 1221 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1222 // instruction. 1223 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 1224 1225 // Collect chains from all the memory opeations that copy arguments to the 1226 // stack. They must follow the stack pointer adjustment above and precede the 1227 // call instruction itself. 1228 SmallVector<SDValue, 8> MemOpChains; 1229 1230 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1231 const CCValAssign &VA = ArgLocs[i]; 1232 SDValue Arg = CLI.OutVals[i]; 1233 1234 // Promote the value if needed. 1235 switch (VA.getLocInfo()) { 1236 default: 1237 llvm_unreachable("Unknown location info!"); 1238 case CCValAssign::Full: 1239 break; 1240 case CCValAssign::SExt: 1241 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1242 break; 1243 case CCValAssign::ZExt: 1244 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1245 break; 1246 case CCValAssign::AExt: 1247 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1248 break; 1249 case CCValAssign::BCvt: 1250 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1251 // SPARC does not support i128 natively. Lower it into two i64, see below. 1252 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1253 || VA.getLocVT() != MVT::i128) 1254 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1255 break; 1256 } 1257 1258 if (VA.isRegLoc()) { 1259 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1260 && VA.getLocVT() == MVT::i128) { 1261 // Store and reload into the integer register reg and reg+1. 1262 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1263 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1264 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1265 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1266 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1267 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1268 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1269 1270 // Store to %sp+BIAS+128+Offset 1271 SDValue Store = 1272 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); 1273 // Load into Reg and Reg+1 1274 SDValue Hi64 = 1275 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); 1276 SDValue Lo64 = 1277 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); 1278 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), 1279 Hi64)); 1280 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1), 1281 Lo64)); 1282 continue; 1283 } 1284 1285 // The custom bit on an i32 return value indicates that it should be 1286 // passed in the high bits of the register. 1287 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1288 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1289 DAG.getConstant(32, DL, MVT::i32)); 1290 1291 // The next value may go in the low bits of the same register. 1292 // Handle both at once. 1293 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1294 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1295 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1296 CLI.OutVals[i+1]); 1297 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1298 // Skip the next value, it's already done. 1299 ++i; 1300 } 1301 } 1302 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg)); 1303 continue; 1304 } 1305 1306 assert(VA.isMemLoc()); 1307 1308 // Create a store off the stack pointer for this argument. 1309 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1310 // The argument area starts at %fp+BIAS+128 in the callee frame, 1311 // %sp+BIAS+128 in ours. 1312 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1313 Subtarget->getStackPointerBias() + 1314 128, DL); 1315 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1316 MemOpChains.push_back( 1317 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 1318 } 1319 1320 // Emit all stores, make sure they occur before the call. 1321 if (!MemOpChains.empty()) 1322 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1323 1324 // Build a sequence of CopyToReg nodes glued together with token chain and 1325 // glue operands which copy the outgoing args into registers. The InGlue is 1326 // necessary since all emitted instructions must be stuck together in order 1327 // to pass the live physical registers. 1328 SDValue InGlue; 1329 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1330 Chain = DAG.getCopyToReg(Chain, DL, 1331 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1332 InGlue = Chain.getValue(1); 1333 } 1334 1335 // If the callee is a GlobalAddress node (quite common, every direct call is) 1336 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1337 // Likewise ExternalSymbol -> TargetExternalSymbol. 1338 SDValue Callee = CLI.Callee; 1339 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1340 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1341 : SparcMCExpr::VK_Sparc_WDISP30; 1342 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1343 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1344 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1345 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1346 1347 // Build the operands for the call instruction itself. 1348 SmallVector<SDValue, 8> Ops; 1349 Ops.push_back(Chain); 1350 Ops.push_back(Callee); 1351 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1352 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1353 RegsToPass[i].second.getValueType())); 1354 1355 // Add a register mask operand representing the call-preserved registers. 1356 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1357 const uint32_t *Mask = 1358 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1359 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1360 CLI.CallConv)); 1361 assert(Mask && "Missing call preserved mask for calling convention"); 1362 Ops.push_back(DAG.getRegisterMask(Mask)); 1363 1364 // Make sure the CopyToReg nodes are glued to the call instruction which 1365 // consumes the registers. 1366 if (InGlue.getNode()) 1367 Ops.push_back(InGlue); 1368 1369 // Now the call itself. 1370 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1371 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1372 InGlue = Chain.getValue(1); 1373 1374 // Revert the stack pointer immediately after the call. 1375 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 1376 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 1377 InGlue = Chain.getValue(1); 1378 1379 // Now extract the return values. This is more or less the same as 1380 // LowerFormalArguments_64. 1381 1382 // Assign locations to each value returned by this call. 1383 SmallVector<CCValAssign, 16> RVLocs; 1384 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1385 *DAG.getContext()); 1386 1387 // Set inreg flag manually for codegen generated library calls that 1388 // return float. 1389 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 1390 CLI.Ins[0].Flags.setInReg(); 1391 1392 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1393 1394 // Copy all of the result registers out of their specified physreg. 1395 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1396 CCValAssign &VA = RVLocs[i]; 1397 assert(VA.isRegLoc() && "Can only return in registers!"); 1398 unsigned Reg = toCallerWindow(VA.getLocReg()); 1399 1400 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1401 // reside in the same register in the high and low bits. Reuse the 1402 // CopyFromReg previous node to avoid duplicate copies. 1403 SDValue RV; 1404 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1405 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1406 RV = Chain.getValue(0); 1407 1408 // But usually we'll create a new CopyFromReg for a different register. 1409 if (!RV.getNode()) { 1410 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1411 Chain = RV.getValue(1); 1412 InGlue = Chain.getValue(2); 1413 } 1414 1415 // Get the high bits for i32 struct elements. 1416 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1417 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1418 DAG.getConstant(32, DL, MVT::i32)); 1419 1420 // The callee promoted the return value, so insert an Assert?ext SDNode so 1421 // we won't promote the value again in this function. 1422 switch (VA.getLocInfo()) { 1423 case CCValAssign::SExt: 1424 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1425 DAG.getValueType(VA.getValVT())); 1426 break; 1427 case CCValAssign::ZExt: 1428 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1429 DAG.getValueType(VA.getValVT())); 1430 break; 1431 default: 1432 break; 1433 } 1434 1435 // Truncate the register down to the return value type. 1436 if (VA.isExtInLoc()) 1437 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1438 1439 InVals.push_back(RV); 1440 } 1441 1442 return Chain; 1443 } 1444 1445 //===----------------------------------------------------------------------===// 1446 // TargetLowering Implementation 1447 //===----------------------------------------------------------------------===// 1448 1449 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1450 if (AI->getOperation() == AtomicRMWInst::Xchg && 1451 AI->getType()->getPrimitiveSizeInBits() == 32) 1452 return AtomicExpansionKind::None; // Uses xchg instruction 1453 1454 return AtomicExpansionKind::CmpXChg; 1455 } 1456 1457 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1458 /// condition. 1459 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1460 switch (CC) { 1461 default: llvm_unreachable("Unknown integer condition code!"); 1462 case ISD::SETEQ: return SPCC::ICC_E; 1463 case ISD::SETNE: return SPCC::ICC_NE; 1464 case ISD::SETLT: return SPCC::ICC_L; 1465 case ISD::SETGT: return SPCC::ICC_G; 1466 case ISD::SETLE: return SPCC::ICC_LE; 1467 case ISD::SETGE: return SPCC::ICC_GE; 1468 case ISD::SETULT: return SPCC::ICC_CS; 1469 case ISD::SETULE: return SPCC::ICC_LEU; 1470 case ISD::SETUGT: return SPCC::ICC_GU; 1471 case ISD::SETUGE: return SPCC::ICC_CC; 1472 } 1473 } 1474 1475 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1476 /// FCC condition. 1477 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1478 switch (CC) { 1479 default: llvm_unreachable("Unknown fp condition code!"); 1480 case ISD::SETEQ: 1481 case ISD::SETOEQ: return SPCC::FCC_E; 1482 case ISD::SETNE: 1483 case ISD::SETUNE: return SPCC::FCC_NE; 1484 case ISD::SETLT: 1485 case ISD::SETOLT: return SPCC::FCC_L; 1486 case ISD::SETGT: 1487 case ISD::SETOGT: return SPCC::FCC_G; 1488 case ISD::SETLE: 1489 case ISD::SETOLE: return SPCC::FCC_LE; 1490 case ISD::SETGE: 1491 case ISD::SETOGE: return SPCC::FCC_GE; 1492 case ISD::SETULT: return SPCC::FCC_UL; 1493 case ISD::SETULE: return SPCC::FCC_ULE; 1494 case ISD::SETUGT: return SPCC::FCC_UG; 1495 case ISD::SETUGE: return SPCC::FCC_UGE; 1496 case ISD::SETUO: return SPCC::FCC_U; 1497 case ISD::SETO: return SPCC::FCC_O; 1498 case ISD::SETONE: return SPCC::FCC_LG; 1499 case ISD::SETUEQ: return SPCC::FCC_UE; 1500 } 1501 } 1502 1503 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1504 const SparcSubtarget &STI) 1505 : TargetLowering(TM), Subtarget(&STI) { 1506 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 1507 1508 // Instructions which use registers as conditionals examine all the 1509 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1510 // matters much whether it's ZeroOrOneBooleanContent, or 1511 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1512 // former. 1513 setBooleanContents(ZeroOrOneBooleanContent); 1514 setBooleanVectorContents(ZeroOrOneBooleanContent); 1515 1516 // Set up the register classes. 1517 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1518 if (!Subtarget->useSoftFloat()) { 1519 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1520 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1521 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1522 } 1523 if (Subtarget->is64Bit()) { 1524 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1525 } else { 1526 // On 32bit sparc, we define a double-register 32bit register 1527 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1528 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1529 1530 // ...but almost all operations must be expanded, so set that as 1531 // the default. 1532 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1533 setOperationAction(Op, MVT::v2i32, Expand); 1534 } 1535 // Truncating/extending stores/loads are also not supported. 1536 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1537 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1538 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1539 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1540 1541 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1542 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1543 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1544 1545 setTruncStoreAction(VT, MVT::v2i32, Expand); 1546 setTruncStoreAction(MVT::v2i32, VT, Expand); 1547 } 1548 // However, load and store *are* legal. 1549 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1550 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1551 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1552 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1553 1554 // And we need to promote i64 loads/stores into vector load/store 1555 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1556 setOperationAction(ISD::STORE, MVT::i64, Custom); 1557 1558 // Sadly, this doesn't work: 1559 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1560 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1561 } 1562 1563 // Turn FP extload into load/fpextend 1564 for (MVT VT : MVT::fp_valuetypes()) { 1565 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 1566 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1567 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1568 } 1569 1570 // Sparc doesn't have i1 sign extending load 1571 for (MVT VT : MVT::integer_valuetypes()) 1572 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1573 1574 // Turn FP truncstore into trunc + store. 1575 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 1576 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 1577 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1578 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 1579 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1580 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1581 1582 // Custom legalize GlobalAddress nodes into LO/HI parts. 1583 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1584 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1585 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1586 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1587 1588 // Sparc doesn't have sext_inreg, replace them with shl/sra 1589 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1590 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1591 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1592 1593 // Sparc has no REM or DIVREM operations. 1594 setOperationAction(ISD::UREM, MVT::i32, Expand); 1595 setOperationAction(ISD::SREM, MVT::i32, Expand); 1596 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1597 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1598 1599 // ... nor does SparcV9. 1600 if (Subtarget->is64Bit()) { 1601 setOperationAction(ISD::UREM, MVT::i64, Expand); 1602 setOperationAction(ISD::SREM, MVT::i64, Expand); 1603 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1604 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1605 } 1606 1607 // Custom expand fp<->sint 1608 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1609 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1610 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1611 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1612 1613 // Custom Expand fp<->uint 1614 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1615 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1616 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1617 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1618 1619 // Lower f16 conversion operations into library calls 1620 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 1621 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 1622 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 1623 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 1624 setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand); 1625 setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand); 1626 1627 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1628 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1629 1630 // Sparc has no select or setcc: expand to SELECT_CC. 1631 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1632 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1633 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1634 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1635 1636 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1637 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1638 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1639 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1640 1641 // Sparc doesn't have BRCOND either, it has BR_CC. 1642 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1643 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1644 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1645 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1646 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1647 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1648 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1649 1650 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1651 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1652 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1653 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1654 1655 setOperationAction(ISD::ADDC, MVT::i32, Custom); 1656 setOperationAction(ISD::ADDE, MVT::i32, Custom); 1657 setOperationAction(ISD::SUBC, MVT::i32, Custom); 1658 setOperationAction(ISD::SUBE, MVT::i32, Custom); 1659 1660 if (Subtarget->is64Bit()) { 1661 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1662 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1663 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1664 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1665 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1666 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1667 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1668 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1669 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1670 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1671 1672 setOperationAction(ISD::CTPOP, MVT::i64, 1673 Subtarget->usePopc() ? Legal : Expand); 1674 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1675 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1676 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1677 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1678 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1679 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1680 } 1681 1682 // ATOMICs. 1683 // Atomics are supported on SparcV9. 32-bit atomics are also 1684 // supported by some Leon SparcV8 variants. Otherwise, atomics 1685 // are unsupported. 1686 if (Subtarget->isV9()) 1687 setMaxAtomicSizeInBitsSupported(64); 1688 else if (Subtarget->hasLeonCasa()) 1689 setMaxAtomicSizeInBitsSupported(32); 1690 else 1691 setMaxAtomicSizeInBitsSupported(0); 1692 1693 setMinCmpXchgSizeInBits(32); 1694 1695 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1696 1697 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1698 1699 // Custom Lower Atomic LOAD/STORE 1700 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1701 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1702 1703 if (Subtarget->is64Bit()) { 1704 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1705 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1706 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1707 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1708 } 1709 1710 if (!Subtarget->is64Bit()) { 1711 // These libcalls are not available in 32-bit. 1712 setLibcallName(RTLIB::MULO_I64, nullptr); 1713 setLibcallName(RTLIB::SHL_I128, nullptr); 1714 setLibcallName(RTLIB::SRL_I128, nullptr); 1715 setLibcallName(RTLIB::SRA_I128, nullptr); 1716 } 1717 1718 setLibcallName(RTLIB::MULO_I128, nullptr); 1719 1720 if (!Subtarget->isV9()) { 1721 // SparcV8 does not have FNEGD and FABSD. 1722 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1723 setOperationAction(ISD::FABS, MVT::f64, Custom); 1724 } 1725 1726 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1727 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1728 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1729 setOperationAction(ISD::FREM , MVT::f128, Expand); 1730 setOperationAction(ISD::FMA , MVT::f128, Expand); 1731 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1732 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1733 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1734 setOperationAction(ISD::FREM , MVT::f64, Expand); 1735 setOperationAction(ISD::FMA , MVT::f64, Expand); 1736 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1737 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1738 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1739 setOperationAction(ISD::FREM , MVT::f32, Expand); 1740 setOperationAction(ISD::FMA , MVT::f32, Expand); 1741 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1742 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1743 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1744 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1745 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1746 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1747 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1748 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1749 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1750 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1751 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1752 1753 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1754 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1755 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1756 1757 // Expands to [SU]MUL_LOHI. 1758 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1759 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1760 setOperationAction(ISD::MUL, MVT::i32, Expand); 1761 1762 if (Subtarget->useSoftMulDiv()) { 1763 // .umul works for both signed and unsigned 1764 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1765 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1766 setLibcallName(RTLIB::MUL_I32, ".umul"); 1767 1768 setOperationAction(ISD::SDIV, MVT::i32, Expand); 1769 setLibcallName(RTLIB::SDIV_I32, ".div"); 1770 1771 setOperationAction(ISD::UDIV, MVT::i32, Expand); 1772 setLibcallName(RTLIB::UDIV_I32, ".udiv"); 1773 1774 setLibcallName(RTLIB::SREM_I32, ".rem"); 1775 setLibcallName(RTLIB::UREM_I32, ".urem"); 1776 } 1777 1778 if (Subtarget->is64Bit()) { 1779 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1780 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1781 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1782 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1783 1784 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1785 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1786 1787 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1788 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1789 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1790 } 1791 1792 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1793 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1794 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1795 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1796 1797 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1798 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); 1799 1800 // Use the default implementation. 1801 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1802 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1803 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1804 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1805 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1806 1807 setStackPointerRegisterToSaveRestore(SP::O6); 1808 1809 setOperationAction(ISD::CTPOP, MVT::i32, 1810 Subtarget->usePopc() ? Legal : Expand); 1811 1812 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1813 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1814 setOperationAction(ISD::STORE, MVT::f128, Legal); 1815 } else { 1816 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1817 setOperationAction(ISD::STORE, MVT::f128, Custom); 1818 } 1819 1820 if (Subtarget->hasHardQuad()) { 1821 setOperationAction(ISD::FADD, MVT::f128, Legal); 1822 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1823 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1824 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1825 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1826 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1827 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1828 if (Subtarget->isV9()) { 1829 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1830 setOperationAction(ISD::FABS, MVT::f128, Legal); 1831 } else { 1832 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1833 setOperationAction(ISD::FABS, MVT::f128, Custom); 1834 } 1835 1836 if (!Subtarget->is64Bit()) { 1837 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1838 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1839 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1840 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1841 } 1842 1843 } else { 1844 // Custom legalize f128 operations. 1845 1846 setOperationAction(ISD::FADD, MVT::f128, Custom); 1847 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1848 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1849 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1850 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1851 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1852 setOperationAction(ISD::FABS, MVT::f128, Custom); 1853 1854 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1855 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1856 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1857 1858 // Setup Runtime library names. 1859 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1860 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1861 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1862 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1863 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1864 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1865 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1866 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1867 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1868 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1869 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1870 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1871 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1872 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1873 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1874 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1875 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1876 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1877 } else if (!Subtarget->useSoftFloat()) { 1878 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1879 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1880 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1881 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1882 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1883 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1884 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1885 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1886 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1887 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1888 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1889 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1890 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1891 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1892 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1893 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1894 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1895 } 1896 } 1897 1898 if (Subtarget->fixAllFDIVSQRT()) { 1899 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1900 // the former instructions generate errata on LEON processors. 1901 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1902 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1903 } 1904 1905 if (Subtarget->hasNoFMULS()) { 1906 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1907 } 1908 1909 // Custom combine bitcast between f64 and v2i32 1910 if (!Subtarget->is64Bit()) 1911 setTargetDAGCombine(ISD::BITCAST); 1912 1913 if (Subtarget->hasLeonCycleCounter()) 1914 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1915 1916 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1917 1918 setMinFunctionAlignment(Align(4)); 1919 1920 computeRegisterProperties(Subtarget->getRegisterInfo()); 1921 } 1922 1923 bool SparcTargetLowering::useSoftFloat() const { 1924 return Subtarget->useSoftFloat(); 1925 } 1926 1927 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 1928 switch ((SPISD::NodeType)Opcode) { 1929 case SPISD::FIRST_NUMBER: break; 1930 case SPISD::CMPICC: return "SPISD::CMPICC"; 1931 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 1932 case SPISD::BRICC: return "SPISD::BRICC"; 1933 case SPISD::BRXCC: return "SPISD::BRXCC"; 1934 case SPISD::BRFCC: return "SPISD::BRFCC"; 1935 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 1936 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 1937 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 1938 case SPISD::Hi: return "SPISD::Hi"; 1939 case SPISD::Lo: return "SPISD::Lo"; 1940 case SPISD::FTOI: return "SPISD::FTOI"; 1941 case SPISD::ITOF: return "SPISD::ITOF"; 1942 case SPISD::FTOX: return "SPISD::FTOX"; 1943 case SPISD::XTOF: return "SPISD::XTOF"; 1944 case SPISD::CALL: return "SPISD::CALL"; 1945 case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; 1946 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 1947 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 1948 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 1949 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 1950 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 1951 case SPISD::TAIL_CALL: return "SPISD::TAIL_CALL"; 1952 case SPISD::LOAD_GDOP: return "SPISD::LOAD_GDOP"; 1953 } 1954 return nullptr; 1955 } 1956 1957 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 1958 EVT VT) const { 1959 if (!VT.isVector()) 1960 return MVT::i32; 1961 return VT.changeVectorElementTypeToInteger(); 1962 } 1963 1964 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 1965 /// be zero. Op is expected to be a target specific node. Used by DAG 1966 /// combiner. 1967 void SparcTargetLowering::computeKnownBitsForTargetNode 1968 (const SDValue Op, 1969 KnownBits &Known, 1970 const APInt &DemandedElts, 1971 const SelectionDAG &DAG, 1972 unsigned Depth) const { 1973 KnownBits Known2; 1974 Known.resetAll(); 1975 1976 switch (Op.getOpcode()) { 1977 default: break; 1978 case SPISD::SELECT_ICC: 1979 case SPISD::SELECT_XCC: 1980 case SPISD::SELECT_FCC: 1981 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 1982 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 1983 1984 // Only known if known in both the LHS and RHS. 1985 Known = KnownBits::commonBits(Known, Known2); 1986 break; 1987 } 1988 } 1989 1990 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 1991 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 1992 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 1993 ISD::CondCode CC, unsigned &SPCC) { 1994 if (isNullConstant(RHS) && 1995 CC == ISD::SETNE && 1996 (((LHS.getOpcode() == SPISD::SELECT_ICC || 1997 LHS.getOpcode() == SPISD::SELECT_XCC) && 1998 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 1999 (LHS.getOpcode() == SPISD::SELECT_FCC && 2000 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && 2001 isOneConstant(LHS.getOperand(0)) && 2002 isNullConstant(LHS.getOperand(1))) { 2003 SDValue CMPCC = LHS.getOperand(3); 2004 SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue(); 2005 LHS = CMPCC.getOperand(0); 2006 RHS = CMPCC.getOperand(1); 2007 } 2008 } 2009 2010 // Convert to a target node and set target flags. 2011 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 2012 SelectionDAG &DAG) const { 2013 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 2014 return DAG.getTargetGlobalAddress(GA->getGlobal(), 2015 SDLoc(GA), 2016 GA->getValueType(0), 2017 GA->getOffset(), TF); 2018 2019 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 2020 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 2021 CP->getAlign(), CP->getOffset(), TF); 2022 2023 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 2024 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 2025 Op.getValueType(), 2026 0, 2027 TF); 2028 2029 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 2030 return DAG.getTargetExternalSymbol(ES->getSymbol(), 2031 ES->getValueType(0), TF); 2032 2033 llvm_unreachable("Unhandled address SDNode"); 2034 } 2035 2036 // Split Op into high and low parts according to HiTF and LoTF. 2037 // Return an ADD node combining the parts. 2038 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 2039 unsigned HiTF, unsigned LoTF, 2040 SelectionDAG &DAG) const { 2041 SDLoc DL(Op); 2042 EVT VT = Op.getValueType(); 2043 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 2044 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 2045 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2046 } 2047 2048 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 2049 // or ExternalSymbol SDNode. 2050 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 2051 SDLoc DL(Op); 2052 EVT VT = getPointerTy(DAG.getDataLayout()); 2053 2054 // Handle PIC mode first. SPARC needs a got load for every variable! 2055 if (isPositionIndependent()) { 2056 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2057 PICLevel::Level picLevel = M->getPICLevel(); 2058 SDValue Idx; 2059 2060 if (picLevel == PICLevel::SmallPIC) { 2061 // This is the pic13 code model, the GOT is known to be smaller than 8KiB. 2062 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), 2063 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); 2064 } else { 2065 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 2066 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 2067 SparcMCExpr::VK_Sparc_GOT10, DAG); 2068 } 2069 2070 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 2071 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); 2072 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2073 // function has calls. 2074 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2075 MFI.setHasCalls(true); 2076 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 2077 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2078 } 2079 2080 // This is one of the absolute code models. 2081 switch(getTargetMachine().getCodeModel()) { 2082 default: 2083 llvm_unreachable("Unsupported absolute code model"); 2084 case CodeModel::Small: 2085 // abs32. 2086 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2087 SparcMCExpr::VK_Sparc_LO, DAG); 2088 case CodeModel::Medium: { 2089 // abs44. 2090 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 2091 SparcMCExpr::VK_Sparc_M44, DAG); 2092 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 2093 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 2094 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 2095 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 2096 } 2097 case CodeModel::Large: { 2098 // abs64. 2099 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 2100 SparcMCExpr::VK_Sparc_HM, DAG); 2101 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 2102 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2103 SparcMCExpr::VK_Sparc_LO, DAG); 2104 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2105 } 2106 } 2107 } 2108 2109 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2110 SelectionDAG &DAG) const { 2111 return makeAddress(Op, DAG); 2112 } 2113 2114 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2115 SelectionDAG &DAG) const { 2116 return makeAddress(Op, DAG); 2117 } 2118 2119 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2120 SelectionDAG &DAG) const { 2121 return makeAddress(Op, DAG); 2122 } 2123 2124 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2125 SelectionDAG &DAG) const { 2126 2127 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2128 if (DAG.getTarget().useEmulatedTLS()) 2129 return LowerToTLSEmulatedModel(GA, DAG); 2130 2131 SDLoc DL(GA); 2132 const GlobalValue *GV = GA->getGlobal(); 2133 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2134 2135 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2136 2137 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2138 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2139 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2140 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2141 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2142 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2143 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2144 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2145 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2146 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2147 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2148 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2149 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2150 2151 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2152 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2153 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2154 withTargetFlags(Op, addTF, DAG)); 2155 2156 SDValue Chain = DAG.getEntryNode(); 2157 SDValue InFlag; 2158 2159 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); 2160 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag); 2161 InFlag = Chain.getValue(1); 2162 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2163 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2164 2165 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2166 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2167 DAG.getMachineFunction(), CallingConv::C); 2168 assert(Mask && "Missing call preserved mask for calling convention"); 2169 SDValue Ops[] = {Chain, 2170 Callee, 2171 Symbol, 2172 DAG.getRegister(SP::O0, PtrVT), 2173 DAG.getRegisterMask(Mask), 2174 InFlag}; 2175 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2176 InFlag = Chain.getValue(1); 2177 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true), 2178 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 2179 InFlag = Chain.getValue(1); 2180 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag); 2181 2182 if (model != TLSModel::LocalDynamic) 2183 return Ret; 2184 2185 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2186 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2187 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2188 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2189 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2190 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2191 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2192 } 2193 2194 if (model == TLSModel::InitialExec) { 2195 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2196 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2197 2198 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2199 2200 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2201 // function has calls. 2202 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2203 MFI.setHasCalls(true); 2204 2205 SDValue TGA = makeHiLoPair(Op, 2206 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2207 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2208 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2209 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2210 DL, PtrVT, Ptr, 2211 withTargetFlags(Op, ldTF, DAG)); 2212 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2213 DAG.getRegister(SP::G7, PtrVT), Offset, 2214 withTargetFlags(Op, 2215 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2216 } 2217 2218 assert(model == TLSModel::LocalExec); 2219 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2220 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2221 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2222 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2223 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2224 2225 return DAG.getNode(ISD::ADD, DL, PtrVT, 2226 DAG.getRegister(SP::G7, PtrVT), Offset); 2227 } 2228 2229 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2230 ArgListTy &Args, SDValue Arg, 2231 const SDLoc &DL, 2232 SelectionDAG &DAG) const { 2233 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2234 EVT ArgVT = Arg.getValueType(); 2235 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2236 2237 ArgListEntry Entry; 2238 Entry.Node = Arg; 2239 Entry.Ty = ArgTy; 2240 2241 if (ArgTy->isFP128Ty()) { 2242 // Create a stack object and pass the pointer to the library function. 2243 int FI = MFI.CreateStackObject(16, Align(8), false); 2244 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2245 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), 2246 Align(8)); 2247 2248 Entry.Node = FIPtr; 2249 Entry.Ty = PointerType::getUnqual(ArgTy); 2250 } 2251 Args.push_back(Entry); 2252 return Chain; 2253 } 2254 2255 SDValue 2256 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2257 const char *LibFuncName, 2258 unsigned numArgs) const { 2259 2260 ArgListTy Args; 2261 2262 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2263 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2264 2265 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2266 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2267 Type *RetTyABI = RetTy; 2268 SDValue Chain = DAG.getEntryNode(); 2269 SDValue RetPtr; 2270 2271 if (RetTy->isFP128Ty()) { 2272 // Create a Stack Object to receive the return value of type f128. 2273 ArgListEntry Entry; 2274 int RetFI = MFI.CreateStackObject(16, Align(8), false); 2275 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2276 Entry.Node = RetPtr; 2277 Entry.Ty = PointerType::getUnqual(RetTy); 2278 if (!Subtarget->is64Bit()) { 2279 Entry.IsSRet = true; 2280 Entry.IndirectType = RetTy; 2281 } 2282 Entry.IsReturned = false; 2283 Args.push_back(Entry); 2284 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2285 } 2286 2287 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2288 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2289 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2290 } 2291 TargetLowering::CallLoweringInfo CLI(DAG); 2292 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2293 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2294 2295 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2296 2297 // chain is in second result. 2298 if (RetTyABI == RetTy) 2299 return CallInfo.first; 2300 2301 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2302 2303 Chain = CallInfo.second; 2304 2305 // Load RetPtr to get the return value. 2306 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, 2307 MachinePointerInfo(), Align(8)); 2308 } 2309 2310 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2311 unsigned &SPCC, const SDLoc &DL, 2312 SelectionDAG &DAG) const { 2313 2314 const char *LibCall = nullptr; 2315 bool is64Bit = Subtarget->is64Bit(); 2316 switch(SPCC) { 2317 default: llvm_unreachable("Unhandled conditional code!"); 2318 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2319 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2320 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2321 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2322 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2323 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2324 case SPCC::FCC_UL : 2325 case SPCC::FCC_ULE: 2326 case SPCC::FCC_UG : 2327 case SPCC::FCC_UGE: 2328 case SPCC::FCC_U : 2329 case SPCC::FCC_O : 2330 case SPCC::FCC_LG : 2331 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2332 } 2333 2334 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2335 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2336 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2337 ArgListTy Args; 2338 SDValue Chain = DAG.getEntryNode(); 2339 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2340 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2341 2342 TargetLowering::CallLoweringInfo CLI(DAG); 2343 CLI.setDebugLoc(DL).setChain(Chain) 2344 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2345 2346 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2347 2348 // result is in first, and chain is in second result. 2349 SDValue Result = CallInfo.first; 2350 2351 switch(SPCC) { 2352 default: { 2353 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2354 SPCC = SPCC::ICC_NE; 2355 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2356 } 2357 case SPCC::FCC_UL : { 2358 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); 2359 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2360 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2361 SPCC = SPCC::ICC_NE; 2362 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2363 } 2364 case SPCC::FCC_ULE: { 2365 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); 2366 SPCC = SPCC::ICC_NE; 2367 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2368 } 2369 case SPCC::FCC_UG : { 2370 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2371 SPCC = SPCC::ICC_G; 2372 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2373 } 2374 case SPCC::FCC_UGE: { 2375 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2376 SPCC = SPCC::ICC_NE; 2377 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2378 } 2379 2380 case SPCC::FCC_U : { 2381 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2382 SPCC = SPCC::ICC_E; 2383 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2384 } 2385 case SPCC::FCC_O : { 2386 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2387 SPCC = SPCC::ICC_NE; 2388 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2389 } 2390 case SPCC::FCC_LG : { 2391 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2392 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2393 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2394 SPCC = SPCC::ICC_NE; 2395 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2396 } 2397 case SPCC::FCC_UE : { 2398 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2399 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2400 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2401 SPCC = SPCC::ICC_E; 2402 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2403 } 2404 } 2405 } 2406 2407 static SDValue 2408 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2409 const SparcTargetLowering &TLI) { 2410 2411 if (Op.getOperand(0).getValueType() == MVT::f64) 2412 return TLI.LowerF128Op(Op, DAG, 2413 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2414 2415 if (Op.getOperand(0).getValueType() == MVT::f32) 2416 return TLI.LowerF128Op(Op, DAG, 2417 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2418 2419 llvm_unreachable("fpextend with non-float operand!"); 2420 return SDValue(); 2421 } 2422 2423 static SDValue 2424 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2425 const SparcTargetLowering &TLI) { 2426 // FP_ROUND on f64 and f32 are legal. 2427 if (Op.getOperand(0).getValueType() != MVT::f128) 2428 return Op; 2429 2430 if (Op.getValueType() == MVT::f64) 2431 return TLI.LowerF128Op(Op, DAG, 2432 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2433 if (Op.getValueType() == MVT::f32) 2434 return TLI.LowerF128Op(Op, DAG, 2435 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2436 2437 llvm_unreachable("fpround to non-float!"); 2438 return SDValue(); 2439 } 2440 2441 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2442 const SparcTargetLowering &TLI, 2443 bool hasHardQuad) { 2444 SDLoc dl(Op); 2445 EVT VT = Op.getValueType(); 2446 assert(VT == MVT::i32 || VT == MVT::i64); 2447 2448 // Expand f128 operations to fp128 abi calls. 2449 if (Op.getOperand(0).getValueType() == MVT::f128 2450 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2451 const char *libName = TLI.getLibcallName(VT == MVT::i32 2452 ? RTLIB::FPTOSINT_F128_I32 2453 : RTLIB::FPTOSINT_F128_I64); 2454 return TLI.LowerF128Op(Op, DAG, libName, 1); 2455 } 2456 2457 // Expand if the resulting type is illegal. 2458 if (!TLI.isTypeLegal(VT)) 2459 return SDValue(); 2460 2461 // Otherwise, Convert the fp value to integer in an FP register. 2462 if (VT == MVT::i32) 2463 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2464 else 2465 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2466 2467 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2468 } 2469 2470 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2471 const SparcTargetLowering &TLI, 2472 bool hasHardQuad) { 2473 SDLoc dl(Op); 2474 EVT OpVT = Op.getOperand(0).getValueType(); 2475 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2476 2477 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2478 2479 // Expand f128 operations to fp128 ABI calls. 2480 if (Op.getValueType() == MVT::f128 2481 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2482 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2483 ? RTLIB::SINTTOFP_I32_F128 2484 : RTLIB::SINTTOFP_I64_F128); 2485 return TLI.LowerF128Op(Op, DAG, libName, 1); 2486 } 2487 2488 // Expand if the operand type is illegal. 2489 if (!TLI.isTypeLegal(OpVT)) 2490 return SDValue(); 2491 2492 // Otherwise, Convert the int value to FP in an FP register. 2493 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2494 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2495 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2496 } 2497 2498 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2499 const SparcTargetLowering &TLI, 2500 bool hasHardQuad) { 2501 SDLoc dl(Op); 2502 EVT VT = Op.getValueType(); 2503 2504 // Expand if it does not involve f128 or the target has support for 2505 // quad floating point instructions and the resulting type is legal. 2506 if (Op.getOperand(0).getValueType() != MVT::f128 || 2507 (hasHardQuad && TLI.isTypeLegal(VT))) 2508 return SDValue(); 2509 2510 assert(VT == MVT::i32 || VT == MVT::i64); 2511 2512 return TLI.LowerF128Op(Op, DAG, 2513 TLI.getLibcallName(VT == MVT::i32 2514 ? RTLIB::FPTOUINT_F128_I32 2515 : RTLIB::FPTOUINT_F128_I64), 2516 1); 2517 } 2518 2519 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2520 const SparcTargetLowering &TLI, 2521 bool hasHardQuad) { 2522 SDLoc dl(Op); 2523 EVT OpVT = Op.getOperand(0).getValueType(); 2524 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2525 2526 // Expand if it does not involve f128 or the target has support for 2527 // quad floating point instructions and the operand type is legal. 2528 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2529 return SDValue(); 2530 2531 return TLI.LowerF128Op(Op, DAG, 2532 TLI.getLibcallName(OpVT == MVT::i32 2533 ? RTLIB::UINTTOFP_I32_F128 2534 : RTLIB::UINTTOFP_I64_F128), 2535 1); 2536 } 2537 2538 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2539 const SparcTargetLowering &TLI, 2540 bool hasHardQuad) { 2541 SDValue Chain = Op.getOperand(0); 2542 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2543 SDValue LHS = Op.getOperand(2); 2544 SDValue RHS = Op.getOperand(3); 2545 SDValue Dest = Op.getOperand(4); 2546 SDLoc dl(Op); 2547 unsigned Opc, SPCC = ~0U; 2548 2549 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2550 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2551 LookThroughSetCC(LHS, RHS, CC, SPCC); 2552 2553 // Get the condition flag. 2554 SDValue CompareFlag; 2555 if (LHS.getValueType().isInteger()) { 2556 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2557 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2558 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2559 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC; 2560 } else { 2561 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2562 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2563 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2564 Opc = SPISD::BRICC; 2565 } else { 2566 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2567 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2568 Opc = SPISD::BRFCC; 2569 } 2570 } 2571 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2572 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2573 } 2574 2575 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2576 const SparcTargetLowering &TLI, 2577 bool hasHardQuad) { 2578 SDValue LHS = Op.getOperand(0); 2579 SDValue RHS = Op.getOperand(1); 2580 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2581 SDValue TrueVal = Op.getOperand(2); 2582 SDValue FalseVal = Op.getOperand(3); 2583 SDLoc dl(Op); 2584 unsigned Opc, SPCC = ~0U; 2585 2586 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2587 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2588 LookThroughSetCC(LHS, RHS, CC, SPCC); 2589 2590 SDValue CompareFlag; 2591 if (LHS.getValueType().isInteger()) { 2592 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2593 Opc = LHS.getValueType() == MVT::i32 ? 2594 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2595 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2596 } else { 2597 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2598 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2599 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2600 Opc = SPISD::SELECT_ICC; 2601 } else { 2602 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2603 Opc = SPISD::SELECT_FCC; 2604 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2605 } 2606 } 2607 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2608 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2609 } 2610 2611 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2612 const SparcTargetLowering &TLI) { 2613 MachineFunction &MF = DAG.getMachineFunction(); 2614 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2615 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2616 2617 // Need frame address to find the address of VarArgsFrameIndex. 2618 MF.getFrameInfo().setFrameAddressIsTaken(true); 2619 2620 // vastart just stores the address of the VarArgsFrameIndex slot into the 2621 // memory location argument. 2622 SDLoc DL(Op); 2623 SDValue Offset = 2624 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2625 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2626 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2627 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2628 MachinePointerInfo(SV)); 2629 } 2630 2631 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2632 SDNode *Node = Op.getNode(); 2633 EVT VT = Node->getValueType(0); 2634 SDValue InChain = Node->getOperand(0); 2635 SDValue VAListPtr = Node->getOperand(1); 2636 EVT PtrVT = VAListPtr.getValueType(); 2637 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2638 SDLoc DL(Node); 2639 SDValue VAList = 2640 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 2641 // Increment the pointer, VAList, to the next vaarg. 2642 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2643 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2644 DL)); 2645 // Store the incremented VAList to the legalized pointer. 2646 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, 2647 MachinePointerInfo(SV)); 2648 // Load the actual argument out of the pointer VAList. 2649 // We can't count on greater alignment than the word size. 2650 return DAG.getLoad( 2651 VT, DL, InChain, VAList, MachinePointerInfo(), 2652 std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8); 2653 } 2654 2655 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2656 const SparcSubtarget *Subtarget) { 2657 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2658 SDValue Size = Op.getOperand(1); // Legalize the size. 2659 MaybeAlign Alignment = 2660 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 2661 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); 2662 EVT VT = Size->getValueType(0); 2663 SDLoc dl(Op); 2664 2665 // TODO: implement over-aligned alloca. (Note: also implies 2666 // supporting support for overaligned function frames + dynamic 2667 // allocations, at all, which currently isn't supported) 2668 if (Alignment && *Alignment > StackAlign) { 2669 const MachineFunction &MF = DAG.getMachineFunction(); 2670 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " 2671 "over-aligned dynamic alloca not supported."); 2672 } 2673 2674 // The resultant pointer needs to be above the register spill area 2675 // at the bottom of the stack. 2676 unsigned regSpillArea; 2677 if (Subtarget->is64Bit()) { 2678 regSpillArea = 128; 2679 } else { 2680 // On Sparc32, the size of the spill area is 92. Unfortunately, 2681 // that's only 4-byte aligned, not 8-byte aligned (the stack 2682 // pointer is 8-byte aligned). So, if the user asked for an 8-byte 2683 // aligned dynamic allocation, we actually need to add 96 to the 2684 // bottom of the stack, instead of 92, to ensure 8-byte alignment. 2685 2686 // That also means adding 4 to the size of the allocation -- 2687 // before applying the 8-byte rounding. Unfortunately, we the 2688 // value we get here has already had rounding applied. So, we need 2689 // to add 8, instead, wasting a bit more memory. 2690 2691 // Further, this only actually needs to be done if the required 2692 // alignment is > 4, but, we've lost that info by this point, too, 2693 // so we always apply it. 2694 2695 // (An alternative approach would be to always reserve 96 bytes 2696 // instead of the required 92, but then we'd waste 4 extra bytes 2697 // in every frame, not just those with dynamic stack allocations) 2698 2699 // TODO: modify code in SelectionDAGBuilder to make this less sad. 2700 2701 Size = DAG.getNode(ISD::ADD, dl, VT, Size, 2702 DAG.getConstant(8, dl, VT)); 2703 regSpillArea = 96; 2704 } 2705 2706 unsigned SPReg = SP::O6; 2707 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2708 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2709 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2710 2711 regSpillArea += Subtarget->getStackPointerBias(); 2712 2713 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2714 DAG.getConstant(regSpillArea, dl, VT)); 2715 SDValue Ops[2] = { NewVal, Chain }; 2716 return DAG.getMergeValues(Ops, dl); 2717 } 2718 2719 2720 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2721 SDLoc dl(Op); 2722 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2723 dl, MVT::Other, DAG.getEntryNode()); 2724 return Chain; 2725 } 2726 2727 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2728 const SparcSubtarget *Subtarget, 2729 bool AlwaysFlush = false) { 2730 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2731 MFI.setFrameAddressIsTaken(true); 2732 2733 EVT VT = Op.getValueType(); 2734 SDLoc dl(Op); 2735 unsigned FrameReg = SP::I6; 2736 unsigned stackBias = Subtarget->getStackPointerBias(); 2737 2738 SDValue FrameAddr; 2739 SDValue Chain; 2740 2741 // flush first to make sure the windowed registers' values are in stack 2742 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); 2743 2744 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2745 2746 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2747 2748 while (depth--) { 2749 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2750 DAG.getIntPtrConstant(Offset, dl)); 2751 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); 2752 } 2753 if (Subtarget->is64Bit()) 2754 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2755 DAG.getIntPtrConstant(stackBias, dl)); 2756 return FrameAddr; 2757 } 2758 2759 2760 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2761 const SparcSubtarget *Subtarget) { 2762 2763 uint64_t depth = Op.getConstantOperandVal(0); 2764 2765 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2766 2767 } 2768 2769 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2770 const SparcTargetLowering &TLI, 2771 const SparcSubtarget *Subtarget) { 2772 MachineFunction &MF = DAG.getMachineFunction(); 2773 MachineFrameInfo &MFI = MF.getFrameInfo(); 2774 MFI.setReturnAddressIsTaken(true); 2775 2776 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2777 return SDValue(); 2778 2779 EVT VT = Op.getValueType(); 2780 SDLoc dl(Op); 2781 uint64_t depth = Op.getConstantOperandVal(0); 2782 2783 SDValue RetAddr; 2784 if (depth == 0) { 2785 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2786 Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2787 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2788 return RetAddr; 2789 } 2790 2791 // Need frame address to find return address of the caller. 2792 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); 2793 2794 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2795 SDValue Ptr = DAG.getNode(ISD::ADD, 2796 dl, VT, 2797 FrameAddr, 2798 DAG.getIntPtrConstant(Offset, dl)); 2799 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2800 2801 return RetAddr; 2802 } 2803 2804 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2805 unsigned opcode) { 2806 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2807 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2808 2809 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2810 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2811 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2812 2813 // Note: in little-endian, the floating-point value is stored in the 2814 // registers are in the opposite order, so the subreg with the sign 2815 // bit is the highest-numbered (odd), rather than the 2816 // lowest-numbered (even). 2817 2818 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2819 SrcReg64); 2820 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2821 SrcReg64); 2822 2823 if (DAG.getDataLayout().isLittleEndian()) 2824 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2825 else 2826 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2827 2828 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2829 dl, MVT::f64), 0); 2830 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2831 DstReg64, Hi32); 2832 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2833 DstReg64, Lo32); 2834 return DstReg64; 2835 } 2836 2837 // Lower a f128 load into two f64 loads. 2838 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2839 { 2840 SDLoc dl(Op); 2841 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2842 assert(LdNode->getOffset().isUndef() && "Unexpected node type"); 2843 2844 Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8); 2845 2846 SDValue Hi64 = 2847 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), 2848 LdNode->getPointerInfo(), Alignment); 2849 EVT addrVT = LdNode->getBasePtr().getValueType(); 2850 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2851 LdNode->getBasePtr(), 2852 DAG.getConstant(8, dl, addrVT)); 2853 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, 2854 LdNode->getPointerInfo().getWithOffset(8), 2855 Alignment); 2856 2857 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2858 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2859 2860 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2861 dl, MVT::f128); 2862 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2863 MVT::f128, 2864 SDValue(InFP128, 0), 2865 Hi64, 2866 SubRegEven); 2867 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2868 MVT::f128, 2869 SDValue(InFP128, 0), 2870 Lo64, 2871 SubRegOdd); 2872 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2873 SDValue(Lo64.getNode(), 1) }; 2874 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2875 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2876 return DAG.getMergeValues(Ops, dl); 2877 } 2878 2879 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 2880 { 2881 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2882 2883 EVT MemVT = LdNode->getMemoryVT(); 2884 if (MemVT == MVT::f128) 2885 return LowerF128Load(Op, DAG); 2886 2887 return Op; 2888 } 2889 2890 // Lower a f128 store into two f64 stores. 2891 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 2892 SDLoc dl(Op); 2893 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 2894 assert(StNode->getOffset().isUndef() && "Unexpected node type"); 2895 2896 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2897 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2898 2899 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2900 dl, 2901 MVT::f64, 2902 StNode->getValue(), 2903 SubRegEven); 2904 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2905 dl, 2906 MVT::f64, 2907 StNode->getValue(), 2908 SubRegOdd); 2909 2910 Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8); 2911 2912 SDValue OutChains[2]; 2913 OutChains[0] = 2914 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), 2915 StNode->getBasePtr(), StNode->getPointerInfo(), 2916 Alignment); 2917 EVT addrVT = StNode->getBasePtr().getValueType(); 2918 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2919 StNode->getBasePtr(), 2920 DAG.getConstant(8, dl, addrVT)); 2921 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, 2922 StNode->getPointerInfo().getWithOffset(8), 2923 Alignment); 2924 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2925 } 2926 2927 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 2928 { 2929 SDLoc dl(Op); 2930 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 2931 2932 EVT MemVT = St->getMemoryVT(); 2933 if (MemVT == MVT::f128) 2934 return LowerF128Store(Op, DAG); 2935 2936 if (MemVT == MVT::i64) { 2937 // Custom handling for i64 stores: turn it into a bitcast and a 2938 // v2i32 store. 2939 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 2940 SDValue Chain = DAG.getStore( 2941 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 2942 St->getOriginalAlign(), St->getMemOperand()->getFlags(), 2943 St->getAAInfo()); 2944 return Chain; 2945 } 2946 2947 return SDValue(); 2948 } 2949 2950 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 2951 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 2952 && "invalid opcode"); 2953 2954 SDLoc dl(Op); 2955 2956 if (Op.getValueType() == MVT::f64) 2957 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 2958 if (Op.getValueType() != MVT::f128) 2959 return Op; 2960 2961 // Lower fabs/fneg on f128 to fabs/fneg on f64 2962 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 2963 // (As with LowerF64Op, on little-endian, we need to negate the odd 2964 // subreg) 2965 2966 SDValue SrcReg128 = Op.getOperand(0); 2967 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 2968 SrcReg128); 2969 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 2970 SrcReg128); 2971 2972 if (DAG.getDataLayout().isLittleEndian()) { 2973 if (isV9) 2974 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 2975 else 2976 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 2977 } else { 2978 if (isV9) 2979 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 2980 else 2981 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 2982 } 2983 2984 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2985 dl, MVT::f128), 0); 2986 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 2987 DstReg128, Hi64); 2988 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 2989 DstReg128, Lo64); 2990 return DstReg128; 2991 } 2992 2993 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2994 2995 if (Op.getValueType() != MVT::i64) 2996 return Op; 2997 2998 SDLoc dl(Op); 2999 SDValue Src1 = Op.getOperand(0); 3000 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 3001 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 3002 DAG.getConstant(32, dl, MVT::i64)); 3003 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 3004 3005 SDValue Src2 = Op.getOperand(1); 3006 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 3007 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 3008 DAG.getConstant(32, dl, MVT::i64)); 3009 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 3010 3011 3012 bool hasChain = false; 3013 unsigned hiOpc = Op.getOpcode(); 3014 switch (Op.getOpcode()) { 3015 default: llvm_unreachable("Invalid opcode"); 3016 case ISD::ADDC: hiOpc = ISD::ADDE; break; 3017 case ISD::ADDE: hasChain = true; break; 3018 case ISD::SUBC: hiOpc = ISD::SUBE; break; 3019 case ISD::SUBE: hasChain = true; break; 3020 } 3021 SDValue Lo; 3022 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 3023 if (hasChain) { 3024 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 3025 Op.getOperand(2)); 3026 } else { 3027 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 3028 } 3029 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 3030 SDValue Carry = Hi.getValue(1); 3031 3032 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 3033 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 3034 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 3035 DAG.getConstant(32, dl, MVT::i64)); 3036 3037 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 3038 SDValue Ops[2] = { Dst, Carry }; 3039 return DAG.getMergeValues(Ops, dl); 3040 } 3041 3042 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 3043 // in LegalizeDAG.cpp except the order of arguments to the library function. 3044 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 3045 const SparcTargetLowering &TLI) 3046 { 3047 unsigned opcode = Op.getOpcode(); 3048 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 3049 3050 bool isSigned = (opcode == ISD::SMULO); 3051 EVT VT = MVT::i64; 3052 EVT WideVT = MVT::i128; 3053 SDLoc dl(Op); 3054 SDValue LHS = Op.getOperand(0); 3055 3056 if (LHS.getValueType() != VT) 3057 return Op; 3058 3059 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 3060 3061 SDValue RHS = Op.getOperand(1); 3062 SDValue HiLHS, HiRHS; 3063 if (isSigned) { 3064 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 3065 HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 3066 } else { 3067 HiLHS = DAG.getConstant(0, dl, VT); 3068 HiRHS = DAG.getConstant(0, dl, MVT::i64); 3069 } 3070 3071 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3072 3073 TargetLowering::MakeLibCallOptions CallOptions; 3074 CallOptions.setSExt(isSigned); 3075 SDValue MulResult = TLI.makeLibCall(DAG, 3076 RTLIB::MUL_I128, WideVT, 3077 Args, CallOptions, dl).first; 3078 SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 3079 MulResult, DAG.getIntPtrConstant(0, dl)); 3080 SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 3081 MulResult, DAG.getIntPtrConstant(1, dl)); 3082 if (isSigned) { 3083 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 3084 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 3085 } else { 3086 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 3087 ISD::SETNE); 3088 } 3089 // MulResult is a node with an illegal type. Because such things are not 3090 // generally permitted during this phase of legalization, ensure that 3091 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 3092 // been folded. 3093 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 3094 3095 SDValue Ops[2] = { BottomHalf, TopHalf } ; 3096 return DAG.getMergeValues(Ops, dl); 3097 } 3098 3099 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 3100 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) { 3101 // Expand with a fence. 3102 return SDValue(); 3103 } 3104 3105 // Monotonic load/stores are legal. 3106 return Op; 3107 } 3108 3109 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3110 SelectionDAG &DAG) const { 3111 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3112 SDLoc dl(Op); 3113 switch (IntNo) { 3114 default: return SDValue(); // Don't custom lower most intrinsics. 3115 case Intrinsic::thread_pointer: { 3116 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3117 return DAG.getRegister(SP::G7, PtrVT); 3118 } 3119 } 3120 } 3121 3122 SDValue SparcTargetLowering:: 3123 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3124 3125 bool hasHardQuad = Subtarget->hasHardQuad(); 3126 bool isV9 = Subtarget->isV9(); 3127 3128 switch (Op.getOpcode()) { 3129 default: llvm_unreachable("Should not custom lower this!"); 3130 3131 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3132 Subtarget); 3133 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3134 Subtarget); 3135 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3136 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3137 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3138 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3139 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3140 hasHardQuad); 3141 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3142 hasHardQuad); 3143 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3144 hasHardQuad); 3145 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3146 hasHardQuad); 3147 case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this, 3148 hasHardQuad); 3149 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this, 3150 hasHardQuad); 3151 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3152 case ISD::VAARG: return LowerVAARG(Op, DAG); 3153 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3154 Subtarget); 3155 3156 case ISD::LOAD: return LowerLOAD(Op, DAG); 3157 case ISD::STORE: return LowerSTORE(Op, DAG); 3158 case ISD::FADD: return LowerF128Op(Op, DAG, 3159 getLibcallName(RTLIB::ADD_F128), 2); 3160 case ISD::FSUB: return LowerF128Op(Op, DAG, 3161 getLibcallName(RTLIB::SUB_F128), 2); 3162 case ISD::FMUL: return LowerF128Op(Op, DAG, 3163 getLibcallName(RTLIB::MUL_F128), 2); 3164 case ISD::FDIV: return LowerF128Op(Op, DAG, 3165 getLibcallName(RTLIB::DIV_F128), 2); 3166 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3167 getLibcallName(RTLIB::SQRT_F128),1); 3168 case ISD::FABS: 3169 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3170 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3171 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3172 case ISD::ADDC: 3173 case ISD::ADDE: 3174 case ISD::SUBC: 3175 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3176 case ISD::UMULO: 3177 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3178 case ISD::ATOMIC_LOAD: 3179 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3180 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3181 } 3182 } 3183 3184 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, 3185 const SDLoc &DL, 3186 SelectionDAG &DAG) const { 3187 APInt V = C->getValueAPF().bitcastToAPInt(); 3188 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); 3189 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); 3190 if (DAG.getDataLayout().isLittleEndian()) 3191 std::swap(Lo, Hi); 3192 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); 3193 } 3194 3195 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, 3196 DAGCombinerInfo &DCI) const { 3197 SDLoc dl(N); 3198 SDValue Src = N->getOperand(0); 3199 3200 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && 3201 Src.getSimpleValueType() == MVT::f64) 3202 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); 3203 3204 return SDValue(); 3205 } 3206 3207 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, 3208 DAGCombinerInfo &DCI) const { 3209 switch (N->getOpcode()) { 3210 default: 3211 break; 3212 case ISD::BITCAST: 3213 return PerformBITCASTCombine(N, DCI); 3214 } 3215 return SDValue(); 3216 } 3217 3218 MachineBasicBlock * 3219 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3220 MachineBasicBlock *BB) const { 3221 switch (MI.getOpcode()) { 3222 default: llvm_unreachable("Unknown SELECT_CC!"); 3223 case SP::SELECT_CC_Int_ICC: 3224 case SP::SELECT_CC_FP_ICC: 3225 case SP::SELECT_CC_DFP_ICC: 3226 case SP::SELECT_CC_QFP_ICC: 3227 return expandSelectCC(MI, BB, SP::BCOND); 3228 case SP::SELECT_CC_Int_XCC: 3229 case SP::SELECT_CC_FP_XCC: 3230 case SP::SELECT_CC_DFP_XCC: 3231 case SP::SELECT_CC_QFP_XCC: 3232 return expandSelectCC(MI, BB, SP::BPXCC); 3233 case SP::SELECT_CC_Int_FCC: 3234 case SP::SELECT_CC_FP_FCC: 3235 case SP::SELECT_CC_DFP_FCC: 3236 case SP::SELECT_CC_QFP_FCC: 3237 return expandSelectCC(MI, BB, SP::FBCOND); 3238 } 3239 } 3240 3241 MachineBasicBlock * 3242 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3243 unsigned BROpcode) const { 3244 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3245 DebugLoc dl = MI.getDebugLoc(); 3246 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3247 3248 // To "insert" a SELECT_CC instruction, we actually have to insert the 3249 // triangle control-flow pattern. The incoming instruction knows the 3250 // destination vreg to set, the condition code register to branch on, the 3251 // true/false values to select between, and the condition code for the branch. 3252 // 3253 // We produce the following control flow: 3254 // ThisMBB 3255 // | \ 3256 // | IfFalseMBB 3257 // | / 3258 // SinkMBB 3259 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3260 MachineFunction::iterator It = ++BB->getIterator(); 3261 3262 MachineBasicBlock *ThisMBB = BB; 3263 MachineFunction *F = BB->getParent(); 3264 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3265 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3266 F->insert(It, IfFalseMBB); 3267 F->insert(It, SinkMBB); 3268 3269 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 3270 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 3271 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); 3272 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 3273 3274 // Set the new successors for ThisMBB. 3275 ThisMBB->addSuccessor(IfFalseMBB); 3276 ThisMBB->addSuccessor(SinkMBB); 3277 3278 BuildMI(ThisMBB, dl, TII.get(BROpcode)) 3279 .addMBB(SinkMBB) 3280 .addImm(CC); 3281 3282 // IfFalseMBB just falls through to SinkMBB. 3283 IfFalseMBB->addSuccessor(SinkMBB); 3284 3285 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] 3286 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), 3287 MI.getOperand(0).getReg()) 3288 .addReg(MI.getOperand(1).getReg()) 3289 .addMBB(ThisMBB) 3290 .addReg(MI.getOperand(2).getReg()) 3291 .addMBB(IfFalseMBB); 3292 3293 MI.eraseFromParent(); // The pseudo instruction is gone now. 3294 return SinkMBB; 3295 } 3296 3297 //===----------------------------------------------------------------------===// 3298 // Sparc Inline Assembly Support 3299 //===----------------------------------------------------------------------===// 3300 3301 /// getConstraintType - Given a constraint letter, return the type of 3302 /// constraint it is for this target. 3303 SparcTargetLowering::ConstraintType 3304 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3305 if (Constraint.size() == 1) { 3306 switch (Constraint[0]) { 3307 default: break; 3308 case 'r': 3309 case 'f': 3310 case 'e': 3311 return C_RegisterClass; 3312 case 'I': // SIMM13 3313 return C_Immediate; 3314 } 3315 } 3316 3317 return TargetLowering::getConstraintType(Constraint); 3318 } 3319 3320 TargetLowering::ConstraintWeight SparcTargetLowering:: 3321 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3322 const char *constraint) const { 3323 ConstraintWeight weight = CW_Invalid; 3324 Value *CallOperandVal = info.CallOperandVal; 3325 // If we don't have a value, we can't do a match, 3326 // but allow it at the lowest weight. 3327 if (!CallOperandVal) 3328 return CW_Default; 3329 3330 // Look at the constraint type. 3331 switch (*constraint) { 3332 default: 3333 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3334 break; 3335 case 'I': // SIMM13 3336 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3337 if (isInt<13>(C->getSExtValue())) 3338 weight = CW_Constant; 3339 } 3340 break; 3341 } 3342 return weight; 3343 } 3344 3345 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3346 /// vector. If it is invalid, don't add anything to Ops. 3347 void SparcTargetLowering:: 3348 LowerAsmOperandForConstraint(SDValue Op, 3349 std::string &Constraint, 3350 std::vector<SDValue> &Ops, 3351 SelectionDAG &DAG) const { 3352 SDValue Result; 3353 3354 // Only support length 1 constraints for now. 3355 if (Constraint.length() > 1) 3356 return; 3357 3358 char ConstraintLetter = Constraint[0]; 3359 switch (ConstraintLetter) { 3360 default: break; 3361 case 'I': 3362 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3363 if (isInt<13>(C->getSExtValue())) { 3364 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3365 Op.getValueType()); 3366 break; 3367 } 3368 return; 3369 } 3370 } 3371 3372 if (Result.getNode()) { 3373 Ops.push_back(Result); 3374 return; 3375 } 3376 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3377 } 3378 3379 std::pair<unsigned, const TargetRegisterClass *> 3380 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3381 StringRef Constraint, 3382 MVT VT) const { 3383 if (Constraint.empty()) 3384 return std::make_pair(0U, nullptr); 3385 3386 if (Constraint.size() == 1) { 3387 switch (Constraint[0]) { 3388 case 'r': 3389 if (VT == MVT::v2i32) 3390 return std::make_pair(0U, &SP::IntPairRegClass); 3391 else if (Subtarget->is64Bit()) 3392 return std::make_pair(0U, &SP::I64RegsRegClass); 3393 else 3394 return std::make_pair(0U, &SP::IntRegsRegClass); 3395 case 'f': 3396 if (VT == MVT::f32 || VT == MVT::i32) 3397 return std::make_pair(0U, &SP::FPRegsRegClass); 3398 else if (VT == MVT::f64 || VT == MVT::i64) 3399 return std::make_pair(0U, &SP::LowDFPRegsRegClass); 3400 else if (VT == MVT::f128) 3401 return std::make_pair(0U, &SP::LowQFPRegsRegClass); 3402 // This will generate an error message 3403 return std::make_pair(0U, nullptr); 3404 case 'e': 3405 if (VT == MVT::f32 || VT == MVT::i32) 3406 return std::make_pair(0U, &SP::FPRegsRegClass); 3407 else if (VT == MVT::f64 || VT == MVT::i64 ) 3408 return std::make_pair(0U, &SP::DFPRegsRegClass); 3409 else if (VT == MVT::f128) 3410 return std::make_pair(0U, &SP::QFPRegsRegClass); 3411 // This will generate an error message 3412 return std::make_pair(0U, nullptr); 3413 } 3414 } 3415 3416 if (Constraint.front() != '{') 3417 return std::make_pair(0U, nullptr); 3418 3419 assert(Constraint.back() == '}' && "Not a brace enclosed constraint?"); 3420 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3421 if (RegName.empty()) 3422 return std::make_pair(0U, nullptr); 3423 3424 unsigned long long RegNo; 3425 // Handle numbered register aliases. 3426 if (RegName[0] == 'r' && 3427 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { 3428 // r0-r7 -> g0-g7 3429 // r8-r15 -> o0-o7 3430 // r16-r23 -> l0-l7 3431 // r24-r31 -> i0-i7 3432 if (RegNo > 31) 3433 return std::make_pair(0U, nullptr); 3434 const char RegTypes[] = {'g', 'o', 'l', 'i'}; 3435 char RegType = RegTypes[RegNo / 8]; 3436 char RegIndex = '0' + (RegNo % 8); 3437 char Tmp[] = {'{', RegType, RegIndex, '}', 0}; 3438 return getRegForInlineAsmConstraint(TRI, Tmp, VT); 3439 } 3440 3441 // Rewrite the fN constraint according to the value type if needed. 3442 if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' && 3443 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { 3444 if (VT == MVT::f64 && (RegNo % 2 == 0)) { 3445 return getRegForInlineAsmConstraint( 3446 TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT); 3447 } else if (VT == MVT::f128 && (RegNo % 4 == 0)) { 3448 return getRegForInlineAsmConstraint( 3449 TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT); 3450 } else { 3451 return std::make_pair(0U, nullptr); 3452 } 3453 } 3454 3455 auto ResultPair = 3456 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3457 if (!ResultPair.second) 3458 return std::make_pair(0U, nullptr); 3459 3460 // Force the use of I64Regs over IntRegs for 64-bit values. 3461 if (Subtarget->is64Bit() && VT == MVT::i64) { 3462 assert(ResultPair.second == &SP::IntRegsRegClass && 3463 "Unexpected register class"); 3464 return std::make_pair(ResultPair.first, &SP::I64RegsRegClass); 3465 } 3466 3467 return ResultPair; 3468 } 3469 3470 bool 3471 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3472 // The Sparc target isn't yet aware of offsets. 3473 return false; 3474 } 3475 3476 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3477 SmallVectorImpl<SDValue>& Results, 3478 SelectionDAG &DAG) const { 3479 3480 SDLoc dl(N); 3481 3482 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3483 3484 switch (N->getOpcode()) { 3485 default: 3486 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3487 3488 case ISD::FP_TO_SINT: 3489 case ISD::FP_TO_UINT: 3490 // Custom lower only if it involves f128 or i64. 3491 if (N->getOperand(0).getValueType() != MVT::f128 3492 || N->getValueType(0) != MVT::i64) 3493 return; 3494 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3495 ? RTLIB::FPTOSINT_F128_I64 3496 : RTLIB::FPTOUINT_F128_I64); 3497 3498 Results.push_back(LowerF128Op(SDValue(N, 0), 3499 DAG, 3500 getLibcallName(libCall), 3501 1)); 3502 return; 3503 case ISD::READCYCLECOUNTER: { 3504 assert(Subtarget->hasLeonCycleCounter()); 3505 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); 3506 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); 3507 SDValue Ops[] = { Lo, Hi }; 3508 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); 3509 Results.push_back(Pair); 3510 Results.push_back(N->getOperand(0)); 3511 return; 3512 } 3513 case ISD::SINT_TO_FP: 3514 case ISD::UINT_TO_FP: 3515 // Custom lower only if it involves f128 or i64. 3516 if (N->getValueType(0) != MVT::f128 3517 || N->getOperand(0).getValueType() != MVT::i64) 3518 return; 3519 3520 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3521 ? RTLIB::SINTTOFP_I64_F128 3522 : RTLIB::UINTTOFP_I64_F128); 3523 3524 Results.push_back(LowerF128Op(SDValue(N, 0), 3525 DAG, 3526 getLibcallName(libCall), 3527 1)); 3528 return; 3529 case ISD::LOAD: { 3530 LoadSDNode *Ld = cast<LoadSDNode>(N); 3531 // Custom handling only for i64: turn i64 load into a v2i32 load, 3532 // and a bitcast. 3533 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3534 return; 3535 3536 SDLoc dl(N); 3537 SDValue LoadRes = DAG.getExtLoad( 3538 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), 3539 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, 3540 Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(), 3541 Ld->getAAInfo()); 3542 3543 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3544 Results.push_back(Res); 3545 Results.push_back(LoadRes.getValue(1)); 3546 return; 3547 } 3548 } 3549 } 3550 3551 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3552 bool SparcTargetLowering::useLoadStackGuardNode() const { 3553 if (!Subtarget->isTargetLinux()) 3554 return TargetLowering::useLoadStackGuardNode(); 3555 return true; 3556 } 3557 3558 // Override to disable global variable loading on Linux. 3559 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3560 if (!Subtarget->isTargetLinux()) 3561 return TargetLowering::insertSSPDeclarations(M); 3562 } 3563