xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Sparc/SparcISelLowering.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Sparc uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SparcISelLowering.h"
15 #include "MCTargetDesc/SparcMCExpr.h"
16 #include "SparcMachineFunctionInfo.h"
17 #include "SparcRegisterInfo.h"
18 #include "SparcTargetMachine.h"
19 #include "SparcTargetObjectFile.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 using namespace llvm;
35 
36 
37 //===----------------------------------------------------------------------===//
38 // Calling Convention Implementation
39 //===----------------------------------------------------------------------===//
40 
41 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
42                                  MVT &LocVT, CCValAssign::LocInfo &LocInfo,
43                                  ISD::ArgFlagsTy &ArgFlags, CCState &State)
44 {
45   assert (ArgFlags.isSRet());
46 
47   // Assign SRet argument.
48   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
49                                          0,
50                                          LocVT, LocInfo));
51   return true;
52 }
53 
54 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT,
55                                      MVT &LocVT, CCValAssign::LocInfo &LocInfo,
56                                      ISD::ArgFlagsTy &ArgFlags, CCState &State)
57 {
58   static const MCPhysReg RegList[] = {
59     SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
60   };
61   // Try to get first reg.
62   if (unsigned Reg = State.AllocateReg(RegList)) {
63     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
64   } else {
65     // Assign whole thing in stack.
66     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
67                                            State.AllocateStack(8,4),
68                                            LocVT, LocInfo));
69     return true;
70   }
71 
72   // Try to get second reg.
73   if (unsigned Reg = State.AllocateReg(RegList))
74     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
75   else
76     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
77                                            State.AllocateStack(4,4),
78                                            LocVT, LocInfo));
79   return true;
80 }
81 
82 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT,
83                                          MVT &LocVT, CCValAssign::LocInfo &LocInfo,
84                                          ISD::ArgFlagsTy &ArgFlags, CCState &State)
85 {
86   static const MCPhysReg RegList[] = {
87     SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
88   };
89 
90   // Try to get first reg.
91   if (unsigned Reg = State.AllocateReg(RegList))
92     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
93   else
94     return false;
95 
96   // Try to get second reg.
97   if (unsigned Reg = State.AllocateReg(RegList))
98     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
99   else
100     return false;
101 
102   return true;
103 }
104 
105 // Allocate a full-sized argument for the 64-bit ABI.
106 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT,
107                             MVT &LocVT, CCValAssign::LocInfo &LocInfo,
108                             ISD::ArgFlagsTy &ArgFlags, CCState &State) {
109   assert((LocVT == MVT::f32 || LocVT == MVT::f128
110           || LocVT.getSizeInBits() == 64) &&
111          "Can't handle non-64 bits locations");
112 
113   // Stack space is allocated for all arguments starting from [%fp+BIAS+128].
114   unsigned size      = (LocVT == MVT::f128) ? 16 : 8;
115   unsigned alignment = (LocVT == MVT::f128) ? 16 : 8;
116   unsigned Offset = State.AllocateStack(size, alignment);
117   unsigned Reg = 0;
118 
119   if (LocVT == MVT::i64 && Offset < 6*8)
120     // Promote integers to %i0-%i5.
121     Reg = SP::I0 + Offset/8;
122   else if (LocVT == MVT::f64 && Offset < 16*8)
123     // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
124     Reg = SP::D0 + Offset/8;
125   else if (LocVT == MVT::f32 && Offset < 16*8)
126     // Promote floats to %f1, %f3, ...
127     Reg = SP::F1 + Offset/4;
128   else if (LocVT == MVT::f128 && Offset < 16*8)
129     // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
130     Reg = SP::Q0 + Offset/16;
131 
132   // Promote to register when possible, otherwise use the stack slot.
133   if (Reg) {
134     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
135     return true;
136   }
137 
138   // This argument goes on the stack in an 8-byte slot.
139   // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
140   // the right-aligned float. The first 4 bytes of the stack slot are undefined.
141   if (LocVT == MVT::f32)
142     Offset += 4;
143 
144   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
145   return true;
146 }
147 
148 // Allocate a half-sized argument for the 64-bit ABI.
149 //
150 // This is used when passing { float, int } structs by value in registers.
151 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT,
152                             MVT &LocVT, CCValAssign::LocInfo &LocInfo,
153                             ISD::ArgFlagsTy &ArgFlags, CCState &State) {
154   assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
155   unsigned Offset = State.AllocateStack(4, 4);
156 
157   if (LocVT == MVT::f32 && Offset < 16*8) {
158     // Promote floats to %f0-%f31.
159     State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
160                                      LocVT, LocInfo));
161     return true;
162   }
163 
164   if (LocVT == MVT::i32 && Offset < 6*8) {
165     // Promote integers to %i0-%i5, using half the register.
166     unsigned Reg = SP::I0 + Offset/8;
167     LocVT = MVT::i64;
168     LocInfo = CCValAssign::AExt;
169 
170     // Set the Custom bit if this i32 goes in the high bits of a register.
171     if (Offset % 8 == 0)
172       State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
173                                              LocVT, LocInfo));
174     else
175       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
176     return true;
177   }
178 
179   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
180   return true;
181 }
182 
183 #include "SparcGenCallingConv.inc"
184 
185 // The calling conventions in SparcCallingConv.td are described in terms of the
186 // callee's register window. This function translates registers to the
187 // corresponding caller window %o register.
188 static unsigned toCallerWindow(unsigned Reg) {
189   static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7,
190                 "Unexpected enum");
191   if (Reg >= SP::I0 && Reg <= SP::I7)
192     return Reg - SP::I0 + SP::O0;
193   return Reg;
194 }
195 
196 SDValue
197 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
198                                  bool IsVarArg,
199                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
200                                  const SmallVectorImpl<SDValue> &OutVals,
201                                  const SDLoc &DL, SelectionDAG &DAG) const {
202   if (Subtarget->is64Bit())
203     return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
204   return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
205 }
206 
207 SDValue
208 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv,
209                                     bool IsVarArg,
210                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
211                                     const SmallVectorImpl<SDValue> &OutVals,
212                                     const SDLoc &DL, SelectionDAG &DAG) const {
213   MachineFunction &MF = DAG.getMachineFunction();
214 
215   // CCValAssign - represent the assignment of the return value to locations.
216   SmallVector<CCValAssign, 16> RVLocs;
217 
218   // CCState - Info about the registers and stack slot.
219   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
220                  *DAG.getContext());
221 
222   // Analyze return values.
223   CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
224 
225   SDValue Flag;
226   SmallVector<SDValue, 4> RetOps(1, Chain);
227   // Make room for the return address offset.
228   RetOps.push_back(SDValue());
229 
230   // Copy the result values into the output registers.
231   for (unsigned i = 0, realRVLocIdx = 0;
232        i != RVLocs.size();
233        ++i, ++realRVLocIdx) {
234     CCValAssign &VA = RVLocs[i];
235     assert(VA.isRegLoc() && "Can only return in registers!");
236 
237     SDValue Arg = OutVals[realRVLocIdx];
238 
239     if (VA.needsCustom()) {
240       assert(VA.getLocVT() == MVT::v2i32);
241       // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would
242       // happen by default if this wasn't a legal type)
243 
244       SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
245                                   Arg,
246                                   DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
247       SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
248                                   Arg,
249                                   DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout())));
250 
251       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag);
252       Flag = Chain.getValue(1);
253       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
254       VA = RVLocs[++i]; // skip ahead to next loc
255       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1,
256                                Flag);
257     } else
258       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
259 
260     // Guarantee that all emitted copies are stuck together with flags.
261     Flag = Chain.getValue(1);
262     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
263   }
264 
265   unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
266   // If the function returns a struct, copy the SRetReturnReg to I0
267   if (MF.getFunction().hasStructRetAttr()) {
268     SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
269     unsigned Reg = SFI->getSRetReturnReg();
270     if (!Reg)
271       llvm_unreachable("sret virtual register not created in the entry block");
272     auto PtrVT = getPointerTy(DAG.getDataLayout());
273     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT);
274     Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
275     Flag = Chain.getValue(1);
276     RetOps.push_back(DAG.getRegister(SP::I0, PtrVT));
277     RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
278   }
279 
280   RetOps[0] = Chain;  // Update chain.
281   RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32);
282 
283   // Add the flag if we have it.
284   if (Flag.getNode())
285     RetOps.push_back(Flag);
286 
287   return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
288 }
289 
290 // Lower return values for the 64-bit ABI.
291 // Return values are passed the exactly the same way as function arguments.
292 SDValue
293 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv,
294                                     bool IsVarArg,
295                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
296                                     const SmallVectorImpl<SDValue> &OutVals,
297                                     const SDLoc &DL, SelectionDAG &DAG) const {
298   // CCValAssign - represent the assignment of the return value to locations.
299   SmallVector<CCValAssign, 16> RVLocs;
300 
301   // CCState - Info about the registers and stack slot.
302   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
303                  *DAG.getContext());
304 
305   // Analyze return values.
306   CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
307 
308   SDValue Flag;
309   SmallVector<SDValue, 4> RetOps(1, Chain);
310 
311   // The second operand on the return instruction is the return address offset.
312   // The return address is always %i7+8 with the 64-bit ABI.
313   RetOps.push_back(DAG.getConstant(8, DL, MVT::i32));
314 
315   // Copy the result values into the output registers.
316   for (unsigned i = 0; i != RVLocs.size(); ++i) {
317     CCValAssign &VA = RVLocs[i];
318     assert(VA.isRegLoc() && "Can only return in registers!");
319     SDValue OutVal = OutVals[i];
320 
321     // Integer return values must be sign or zero extended by the callee.
322     switch (VA.getLocInfo()) {
323     case CCValAssign::Full: break;
324     case CCValAssign::SExt:
325       OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
326       break;
327     case CCValAssign::ZExt:
328       OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
329       break;
330     case CCValAssign::AExt:
331       OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
332       break;
333     default:
334       llvm_unreachable("Unknown loc info!");
335     }
336 
337     // The custom bit on an i32 return value indicates that it should be passed
338     // in the high bits of the register.
339     if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
340       OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
341                            DAG.getConstant(32, DL, MVT::i32));
342 
343       // The next value may go in the low bits of the same register.
344       // Handle both at once.
345       if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
346         SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
347         OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
348         // Skip the next value, it's already done.
349         ++i;
350       }
351     }
352 
353     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
354 
355     // Guarantee that all emitted copies are stuck together with flags.
356     Flag = Chain.getValue(1);
357     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
358   }
359 
360   RetOps[0] = Chain;  // Update chain.
361 
362   // Add the flag if we have it.
363   if (Flag.getNode())
364     RetOps.push_back(Flag);
365 
366   return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
367 }
368 
369 SDValue SparcTargetLowering::LowerFormalArguments(
370     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
371     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
372     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
373   if (Subtarget->is64Bit())
374     return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
375                                    DL, DAG, InVals);
376   return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
377                                  DL, DAG, InVals);
378 }
379 
380 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
381 /// passed in either one or two GPRs, including FP values.  TODO: we should
382 /// pass FP values in FP registers for fastcc functions.
383 SDValue SparcTargetLowering::LowerFormalArguments_32(
384     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
385     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
386     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
387   MachineFunction &MF = DAG.getMachineFunction();
388   MachineRegisterInfo &RegInfo = MF.getRegInfo();
389   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
390 
391   // Assign locations to all of the incoming arguments.
392   SmallVector<CCValAssign, 16> ArgLocs;
393   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
394                  *DAG.getContext());
395   CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
396 
397   const unsigned StackOffset = 92;
398   bool IsLittleEndian = DAG.getDataLayout().isLittleEndian();
399 
400   unsigned InIdx = 0;
401   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
402     CCValAssign &VA = ArgLocs[i];
403 
404     if (Ins[InIdx].Flags.isSRet()) {
405       if (InIdx != 0)
406         report_fatal_error("sparc only supports sret on the first parameter");
407       // Get SRet from [%fp+64].
408       int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true);
409       SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
410       SDValue Arg =
411           DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
412       InVals.push_back(Arg);
413       continue;
414     }
415 
416     if (VA.isRegLoc()) {
417       if (VA.needsCustom()) {
418         assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
419 
420         Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
421         MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
422         SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
423 
424         assert(i+1 < e);
425         CCValAssign &NextVA = ArgLocs[++i];
426 
427         SDValue LoVal;
428         if (NextVA.isMemLoc()) {
429           int FrameIdx = MF.getFrameInfo().
430             CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
431           SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
432           LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
433         } else {
434           unsigned loReg = MF.addLiveIn(NextVA.getLocReg(),
435                                         &SP::IntRegsRegClass);
436           LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
437         }
438 
439         if (IsLittleEndian)
440           std::swap(LoVal, HiVal);
441 
442         SDValue WholeValue =
443           DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
444         WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue);
445         InVals.push_back(WholeValue);
446         continue;
447       }
448       Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
449       MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
450       SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
451       if (VA.getLocVT() == MVT::f32)
452         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
453       else if (VA.getLocVT() != MVT::i32) {
454         Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
455                           DAG.getValueType(VA.getLocVT()));
456         Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
457       }
458       InVals.push_back(Arg);
459       continue;
460     }
461 
462     assert(VA.isMemLoc());
463 
464     unsigned Offset = VA.getLocMemOffset()+StackOffset;
465     auto PtrVT = getPointerTy(DAG.getDataLayout());
466 
467     if (VA.needsCustom()) {
468       assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32);
469       // If it is double-word aligned, just load.
470       if (Offset % 8 == 0) {
471         int FI = MF.getFrameInfo().CreateFixedObject(8,
472                                                      Offset,
473                                                      true);
474         SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
475         SDValue Load =
476             DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
477         InVals.push_back(Load);
478         continue;
479       }
480 
481       int FI = MF.getFrameInfo().CreateFixedObject(4,
482                                                    Offset,
483                                                    true);
484       SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
485       SDValue HiVal =
486           DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
487       int FI2 = MF.getFrameInfo().CreateFixedObject(4,
488                                                     Offset+4,
489                                                     true);
490       SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT);
491 
492       SDValue LoVal =
493           DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo());
494 
495       if (IsLittleEndian)
496         std::swap(LoVal, HiVal);
497 
498       SDValue WholeValue =
499         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
500       WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue);
501       InVals.push_back(WholeValue);
502       continue;
503     }
504 
505     int FI = MF.getFrameInfo().CreateFixedObject(4,
506                                                  Offset,
507                                                  true);
508     SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
509     SDValue Load ;
510     if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
511       Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
512     } else if (VA.getValVT() == MVT::f128) {
513       report_fatal_error("SPARCv8 does not handle f128 in calls; "
514                          "pass indirectly");
515     } else {
516       // We shouldn't see any other value types here.
517       llvm_unreachable("Unexpected ValVT encountered in frame lowering.");
518     }
519     InVals.push_back(Load);
520   }
521 
522   if (MF.getFunction().hasStructRetAttr()) {
523     // Copy the SRet Argument to SRetReturnReg.
524     SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
525     unsigned Reg = SFI->getSRetReturnReg();
526     if (!Reg) {
527       Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
528       SFI->setSRetReturnReg(Reg);
529     }
530     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
531     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
532   }
533 
534   // Store remaining ArgRegs to the stack if this is a varargs function.
535   if (isVarArg) {
536     static const MCPhysReg ArgRegs[] = {
537       SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
538     };
539     unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs);
540     const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
541     unsigned ArgOffset = CCInfo.getNextStackOffset();
542     if (NumAllocated == 6)
543       ArgOffset += StackOffset;
544     else {
545       assert(!ArgOffset);
546       ArgOffset = 68+4*NumAllocated;
547     }
548 
549     // Remember the vararg offset for the va_start implementation.
550     FuncInfo->setVarArgsFrameOffset(ArgOffset);
551 
552     std::vector<SDValue> OutChains;
553 
554     for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
555       Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
556       MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
557       SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
558 
559       int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset,
560                                                          true);
561       SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
562 
563       OutChains.push_back(
564           DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo()));
565       ArgOffset += 4;
566     }
567 
568     if (!OutChains.empty()) {
569       OutChains.push_back(Chain);
570       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
571     }
572   }
573 
574   return Chain;
575 }
576 
577 // Lower formal arguments for the 64 bit ABI.
578 SDValue SparcTargetLowering::LowerFormalArguments_64(
579     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
580     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
581     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
582   MachineFunction &MF = DAG.getMachineFunction();
583 
584   // Analyze arguments according to CC_Sparc64.
585   SmallVector<CCValAssign, 16> ArgLocs;
586   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
587                  *DAG.getContext());
588   CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
589 
590   // The argument array begins at %fp+BIAS+128, after the register save area.
591   const unsigned ArgArea = 128;
592 
593   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
594     CCValAssign &VA = ArgLocs[i];
595     if (VA.isRegLoc()) {
596       // This argument is passed in a register.
597       // All integer register arguments are promoted by the caller to i64.
598 
599       // Create a virtual register for the promoted live-in value.
600       unsigned VReg = MF.addLiveIn(VA.getLocReg(),
601                                    getRegClassFor(VA.getLocVT()));
602       SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
603 
604       // Get the high bits for i32 struct elements.
605       if (VA.getValVT() == MVT::i32 && VA.needsCustom())
606         Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
607                           DAG.getConstant(32, DL, MVT::i32));
608 
609       // The caller promoted the argument, so insert an Assert?ext SDNode so we
610       // won't promote the value again in this function.
611       switch (VA.getLocInfo()) {
612       case CCValAssign::SExt:
613         Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
614                           DAG.getValueType(VA.getValVT()));
615         break;
616       case CCValAssign::ZExt:
617         Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
618                           DAG.getValueType(VA.getValVT()));
619         break;
620       default:
621         break;
622       }
623 
624       // Truncate the register down to the argument type.
625       if (VA.isExtInLoc())
626         Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
627 
628       InVals.push_back(Arg);
629       continue;
630     }
631 
632     // The registers are exhausted. This argument was passed on the stack.
633     assert(VA.isMemLoc());
634     // The CC_Sparc64_Full/Half functions compute stack offsets relative to the
635     // beginning of the arguments area at %fp+BIAS+128.
636     unsigned Offset = VA.getLocMemOffset() + ArgArea;
637     unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
638     // Adjust offset for extended arguments, SPARC is big-endian.
639     // The caller will have written the full slot with extended bytes, but we
640     // prefer our own extending loads.
641     if (VA.isExtInLoc())
642       Offset += 8 - ValSize;
643     int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
644     InVals.push_back(
645         DAG.getLoad(VA.getValVT(), DL, Chain,
646                     DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
647                     MachinePointerInfo::getFixedStack(MF, FI)));
648   }
649 
650   if (!IsVarArg)
651     return Chain;
652 
653   // This function takes variable arguments, some of which may have been passed
654   // in registers %i0-%i5. Variable floating point arguments are never passed
655   // in floating point registers. They go on %i0-%i5 or on the stack like
656   // integer arguments.
657   //
658   // The va_start intrinsic needs to know the offset to the first variable
659   // argument.
660   unsigned ArgOffset = CCInfo.getNextStackOffset();
661   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
662   // Skip the 128 bytes of register save area.
663   FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
664                                   Subtarget->getStackPointerBias());
665 
666   // Save the variable arguments that were passed in registers.
667   // The caller is required to reserve stack space for 6 arguments regardless
668   // of how many arguments were actually passed.
669   SmallVector<SDValue, 8> OutChains;
670   for (; ArgOffset < 6*8; ArgOffset += 8) {
671     unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
672     SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
673     int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true);
674     auto PtrVT = getPointerTy(MF.getDataLayout());
675     OutChains.push_back(
676         DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT),
677                      MachinePointerInfo::getFixedStack(MF, FI)));
678   }
679 
680   if (!OutChains.empty())
681     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
682 
683   return Chain;
684 }
685 
686 SDValue
687 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
688                                SmallVectorImpl<SDValue> &InVals) const {
689   if (Subtarget->is64Bit())
690     return LowerCall_64(CLI, InVals);
691   return LowerCall_32(CLI, InVals);
692 }
693 
694 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
695                                 ImmutableCallSite CS) {
696   if (CS)
697     return CS.hasFnAttr(Attribute::ReturnsTwice);
698 
699   const Function *CalleeFn = nullptr;
700   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
701     CalleeFn = dyn_cast<Function>(G->getGlobal());
702   } else if (ExternalSymbolSDNode *E =
703              dyn_cast<ExternalSymbolSDNode>(Callee)) {
704     const Function &Fn = DAG.getMachineFunction().getFunction();
705     const Module *M = Fn.getParent();
706     const char *CalleeName = E->getSymbol();
707     CalleeFn = M->getFunction(CalleeName);
708   }
709 
710   if (!CalleeFn)
711     return false;
712   return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
713 }
714 
715 // Lower a call for the 32-bit ABI.
716 SDValue
717 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
718                                   SmallVectorImpl<SDValue> &InVals) const {
719   SelectionDAG &DAG                     = CLI.DAG;
720   SDLoc &dl                             = CLI.DL;
721   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
722   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
723   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
724   SDValue Chain                         = CLI.Chain;
725   SDValue Callee                        = CLI.Callee;
726   bool &isTailCall                      = CLI.IsTailCall;
727   CallingConv::ID CallConv              = CLI.CallConv;
728   bool isVarArg                         = CLI.IsVarArg;
729 
730   // Sparc target does not yet support tail call optimization.
731   isTailCall = false;
732 
733   // Analyze operands of the call, assigning locations to each operand.
734   SmallVector<CCValAssign, 16> ArgLocs;
735   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
736                  *DAG.getContext());
737   CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
738 
739   // Get the size of the outgoing arguments stack space requirement.
740   unsigned ArgsSize = CCInfo.getNextStackOffset();
741 
742   // Keep stack frames 8-byte aligned.
743   ArgsSize = (ArgsSize+7) & ~7;
744 
745   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
746 
747   // Create local copies for byval args.
748   SmallVector<SDValue, 8> ByValArgs;
749   for (unsigned i = 0,  e = Outs.size(); i != e; ++i) {
750     ISD::ArgFlagsTy Flags = Outs[i].Flags;
751     if (!Flags.isByVal())
752       continue;
753 
754     SDValue Arg = OutVals[i];
755     unsigned Size = Flags.getByValSize();
756     unsigned Align = Flags.getByValAlign();
757 
758     if (Size > 0U) {
759       int FI = MFI.CreateStackObject(Size, Align, false);
760       SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
761       SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32);
762 
763       Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align,
764                             false,        // isVolatile,
765                             (Size <= 32), // AlwaysInline if size <= 32,
766                             false,        // isTailCall
767                             MachinePointerInfo(), MachinePointerInfo());
768       ByValArgs.push_back(FIPtr);
769     }
770     else {
771       SDValue nullVal;
772       ByValArgs.push_back(nullVal);
773     }
774   }
775 
776   Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl);
777 
778   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
779   SmallVector<SDValue, 8> MemOpChains;
780 
781   const unsigned StackOffset = 92;
782   bool hasStructRetAttr = false;
783   unsigned SRetArgSize = 0;
784   // Walk the register/memloc assignments, inserting copies/loads.
785   for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
786        i != e;
787        ++i, ++realArgIdx) {
788     CCValAssign &VA = ArgLocs[i];
789     SDValue Arg = OutVals[realArgIdx];
790 
791     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
792 
793     // Use local copy if it is a byval arg.
794     if (Flags.isByVal()) {
795       Arg = ByValArgs[byvalArgIdx++];
796       if (!Arg) {
797         continue;
798       }
799     }
800 
801     // Promote the value if needed.
802     switch (VA.getLocInfo()) {
803     default: llvm_unreachable("Unknown loc info!");
804     case CCValAssign::Full: break;
805     case CCValAssign::SExt:
806       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
807       break;
808     case CCValAssign::ZExt:
809       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
810       break;
811     case CCValAssign::AExt:
812       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
813       break;
814     case CCValAssign::BCvt:
815       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
816       break;
817     }
818 
819     if (Flags.isSRet()) {
820       assert(VA.needsCustom());
821       // store SRet argument in %sp+64
822       SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
823       SDValue PtrOff = DAG.getIntPtrConstant(64, dl);
824       PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
825       MemOpChains.push_back(
826           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
827       hasStructRetAttr = true;
828       // sret only allowed on first argument
829       assert(Outs[realArgIdx].OrigArgIndex == 0);
830       PointerType *Ty = cast<PointerType>(CLI.getArgs()[0].Ty);
831       Type *ElementTy = Ty->getElementType();
832       SRetArgSize = DAG.getDataLayout().getTypeAllocSize(ElementTy);
833       continue;
834     }
835 
836     if (VA.needsCustom()) {
837       assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
838 
839       if (VA.isMemLoc()) {
840         unsigned Offset = VA.getLocMemOffset() + StackOffset;
841         // if it is double-word aligned, just store.
842         if (Offset % 8 == 0) {
843           SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
844           SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
845           PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
846           MemOpChains.push_back(
847               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
848           continue;
849         }
850       }
851 
852       if (VA.getLocVT() == MVT::f64) {
853         // Move from the float value from float registers into the
854         // integer registers.
855         if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg))
856           Arg = bitcastConstantFPToInt(C, dl, DAG);
857         else
858           Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg);
859       }
860 
861       SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
862                                   Arg,
863                                   DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout())));
864       SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
865                                   Arg,
866                                   DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout())));
867 
868       if (VA.isRegLoc()) {
869         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0));
870         assert(i+1 != e);
871         CCValAssign &NextVA = ArgLocs[++i];
872         if (NextVA.isRegLoc()) {
873           RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1));
874         } else {
875           // Store the second part in stack.
876           unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
877           SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
878           SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
879           PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
880           MemOpChains.push_back(
881               DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
882         }
883       } else {
884         unsigned Offset = VA.getLocMemOffset() + StackOffset;
885         // Store the first part.
886         SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
887         SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
888         PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
889         MemOpChains.push_back(
890             DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo()));
891         // Store the second part.
892         PtrOff = DAG.getIntPtrConstant(Offset + 4, dl);
893         PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
894         MemOpChains.push_back(
895             DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
896       }
897       continue;
898     }
899 
900     // Arguments that can be passed on register must be kept at
901     // RegsToPass vector
902     if (VA.isRegLoc()) {
903       if (VA.getLocVT() != MVT::f32) {
904         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
905         continue;
906       }
907       Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
908       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
909       continue;
910     }
911 
912     assert(VA.isMemLoc());
913 
914     // Create a store off the stack pointer for this argument.
915     SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
916     SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset,
917                                            dl);
918     PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
919     MemOpChains.push_back(
920         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
921   }
922 
923 
924   // Emit all stores, make sure the occur before any copies into physregs.
925   if (!MemOpChains.empty())
926     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
927 
928   // Build a sequence of copy-to-reg nodes chained together with token
929   // chain and flag operands which copy the outgoing args into registers.
930   // The InFlag in necessary since all emitted instructions must be
931   // stuck together.
932   SDValue InFlag;
933   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
934     unsigned Reg = toCallerWindow(RegsToPass[i].first);
935     Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
936     InFlag = Chain.getValue(1);
937   }
938 
939   bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
940 
941   // If the callee is a GlobalAddress node (quite common, every direct call is)
942   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
943   // Likewise ExternalSymbol -> TargetExternalSymbol.
944   unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0;
945   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
946     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
947   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
948     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
949 
950   // Returns a chain & a flag for retval copy to use
951   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
952   SmallVector<SDValue, 8> Ops;
953   Ops.push_back(Chain);
954   Ops.push_back(Callee);
955   if (hasStructRetAttr)
956     Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32));
957   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
958     Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first),
959                                   RegsToPass[i].second.getValueType()));
960 
961   // Add a register mask operand representing the call-preserved registers.
962   const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
963   const uint32_t *Mask =
964       ((hasReturnsTwice)
965            ? TRI->getRTCallPreservedMask(CallConv)
966            : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv));
967   assert(Mask && "Missing call preserved mask for calling convention");
968   Ops.push_back(DAG.getRegisterMask(Mask));
969 
970   if (InFlag.getNode())
971     Ops.push_back(InFlag);
972 
973   Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
974   InFlag = Chain.getValue(1);
975 
976   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true),
977                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
978   InFlag = Chain.getValue(1);
979 
980   // Assign locations to each value returned by this call.
981   SmallVector<CCValAssign, 16> RVLocs;
982   CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
983                  *DAG.getContext());
984 
985   RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
986 
987   // Copy all of the result registers out of their specified physreg.
988   for (unsigned i = 0; i != RVLocs.size(); ++i) {
989     if (RVLocs[i].getLocVT() == MVT::v2i32) {
990       SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32);
991       SDValue Lo = DAG.getCopyFromReg(
992           Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag);
993       Chain = Lo.getValue(1);
994       InFlag = Lo.getValue(2);
995       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo,
996                         DAG.getConstant(0, dl, MVT::i32));
997       SDValue Hi = DAG.getCopyFromReg(
998           Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag);
999       Chain = Hi.getValue(1);
1000       InFlag = Hi.getValue(2);
1001       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi,
1002                         DAG.getConstant(1, dl, MVT::i32));
1003       InVals.push_back(Vec);
1004     } else {
1005       Chain =
1006           DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
1007                              RVLocs[i].getValVT(), InFlag)
1008               .getValue(1);
1009       InFlag = Chain.getValue(2);
1010       InVals.push_back(Chain.getValue(0));
1011     }
1012   }
1013 
1014   return Chain;
1015 }
1016 
1017 // FIXME? Maybe this could be a TableGen attribute on some registers and
1018 // this table could be generated automatically from RegInfo.
1019 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT,
1020                                                 const MachineFunction &MF) const {
1021   Register Reg = StringSwitch<unsigned>(RegName)
1022     .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3)
1023     .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7)
1024     .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3)
1025     .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7)
1026     .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3)
1027     .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7)
1028     .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3)
1029     .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7)
1030     .Default(0);
1031 
1032   if (Reg)
1033     return Reg;
1034 
1035   report_fatal_error("Invalid register name global variable");
1036 }
1037 
1038 // Fixup floating point arguments in the ... part of a varargs call.
1039 //
1040 // The SPARC v9 ABI requires that floating point arguments are treated the same
1041 // as integers when calling a varargs function. This does not apply to the
1042 // fixed arguments that are part of the function's prototype.
1043 //
1044 // This function post-processes a CCValAssign array created by
1045 // AnalyzeCallOperands().
1046 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
1047                                    ArrayRef<ISD::OutputArg> Outs) {
1048   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1049     const CCValAssign &VA = ArgLocs[i];
1050     MVT ValTy = VA.getLocVT();
1051     // FIXME: What about f32 arguments? C promotes them to f64 when calling
1052     // varargs functions.
1053     if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
1054       continue;
1055     // The fixed arguments to a varargs function still go in FP registers.
1056     if (Outs[VA.getValNo()].IsFixed)
1057       continue;
1058 
1059     // This floating point argument should be reassigned.
1060     CCValAssign NewVA;
1061 
1062     // Determine the offset into the argument array.
1063     unsigned firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
1064     unsigned argSize  = (ValTy == MVT::f64) ? 8 : 16;
1065     unsigned Offset = argSize * (VA.getLocReg() - firstReg);
1066     assert(Offset < 16*8 && "Offset out of range, bad register enum?");
1067 
1068     if (Offset < 6*8) {
1069       // This argument should go in %i0-%i5.
1070       unsigned IReg = SP::I0 + Offset/8;
1071       if (ValTy == MVT::f64)
1072         // Full register, just bitconvert into i64.
1073         NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(),
1074                                     IReg, MVT::i64, CCValAssign::BCvt);
1075       else {
1076         assert(ValTy == MVT::f128 && "Unexpected type!");
1077         // Full register, just bitconvert into i128 -- We will lower this into
1078         // two i64s in LowerCall_64.
1079         NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(),
1080                                           IReg, MVT::i128, CCValAssign::BCvt);
1081       }
1082     } else {
1083       // This needs to go to memory, we're out of integer registers.
1084       NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(),
1085                                   Offset, VA.getLocVT(), VA.getLocInfo());
1086     }
1087     ArgLocs[i] = NewVA;
1088   }
1089 }
1090 
1091 // Lower a call for the 64-bit ABI.
1092 SDValue
1093 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
1094                                   SmallVectorImpl<SDValue> &InVals) const {
1095   SelectionDAG &DAG = CLI.DAG;
1096   SDLoc DL = CLI.DL;
1097   SDValue Chain = CLI.Chain;
1098   auto PtrVT = getPointerTy(DAG.getDataLayout());
1099 
1100   // Sparc target does not yet support tail call optimization.
1101   CLI.IsTailCall = false;
1102 
1103   // Analyze operands of the call, assigning locations to each operand.
1104   SmallVector<CCValAssign, 16> ArgLocs;
1105   CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
1106                  *DAG.getContext());
1107   CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
1108 
1109   // Get the size of the outgoing arguments stack space requirement.
1110   // The stack offset computed by CC_Sparc64 includes all arguments.
1111   // Called functions expect 6 argument words to exist in the stack frame, used
1112   // or not.
1113   unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset());
1114 
1115   // Keep stack frames 16-byte aligned.
1116   ArgsSize = alignTo(ArgsSize, 16);
1117 
1118   // Varargs calls require special treatment.
1119   if (CLI.IsVarArg)
1120     fixupVariableFloatArgs(ArgLocs, CLI.Outs);
1121 
1122   // Adjust the stack pointer to make room for the arguments.
1123   // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
1124   // with more than 6 arguments.
1125   Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
1126 
1127   // Collect the set of registers to pass to the function and their values.
1128   // This will be emitted as a sequence of CopyToReg nodes glued to the call
1129   // instruction.
1130   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1131 
1132   // Collect chains from all the memory opeations that copy arguments to the
1133   // stack. They must follow the stack pointer adjustment above and precede the
1134   // call instruction itself.
1135   SmallVector<SDValue, 8> MemOpChains;
1136 
1137   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1138     const CCValAssign &VA = ArgLocs[i];
1139     SDValue Arg = CLI.OutVals[i];
1140 
1141     // Promote the value if needed.
1142     switch (VA.getLocInfo()) {
1143     default:
1144       llvm_unreachable("Unknown location info!");
1145     case CCValAssign::Full:
1146       break;
1147     case CCValAssign::SExt:
1148       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1149       break;
1150     case CCValAssign::ZExt:
1151       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1152       break;
1153     case CCValAssign::AExt:
1154       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1155       break;
1156     case CCValAssign::BCvt:
1157       // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
1158       // SPARC does not support i128 natively. Lower it into two i64, see below.
1159       if (!VA.needsCustom() || VA.getValVT() != MVT::f128
1160           || VA.getLocVT() != MVT::i128)
1161         Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1162       break;
1163     }
1164 
1165     if (VA.isRegLoc()) {
1166       if (VA.needsCustom() && VA.getValVT() == MVT::f128
1167           && VA.getLocVT() == MVT::i128) {
1168         // Store and reload into the integer register reg and reg+1.
1169         unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
1170         unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
1171         SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1172         SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL);
1173         HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff);
1174         SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL);
1175         LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff);
1176 
1177         // Store to %sp+BIAS+128+Offset
1178         SDValue Store =
1179             DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo());
1180         // Load into Reg and Reg+1
1181         SDValue Hi64 =
1182             DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo());
1183         SDValue Lo64 =
1184             DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo());
1185         RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()),
1186                                             Hi64));
1187         RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1),
1188                                             Lo64));
1189         continue;
1190       }
1191 
1192       // The custom bit on an i32 return value indicates that it should be
1193       // passed in the high bits of the register.
1194       if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
1195         Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
1196                           DAG.getConstant(32, DL, MVT::i32));
1197 
1198         // The next value may go in the low bits of the same register.
1199         // Handle both at once.
1200         if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
1201             ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
1202           SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
1203                                    CLI.OutVals[i+1]);
1204           Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
1205           // Skip the next value, it's already done.
1206           ++i;
1207         }
1208       }
1209       RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg));
1210       continue;
1211     }
1212 
1213     assert(VA.isMemLoc());
1214 
1215     // Create a store off the stack pointer for this argument.
1216     SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1217     // The argument area starts at %fp+BIAS+128 in the callee frame,
1218     // %sp+BIAS+128 in ours.
1219     SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
1220                                            Subtarget->getStackPointerBias() +
1221                                            128, DL);
1222     PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
1223     MemOpChains.push_back(
1224         DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
1225   }
1226 
1227   // Emit all stores, make sure they occur before the call.
1228   if (!MemOpChains.empty())
1229     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1230 
1231   // Build a sequence of CopyToReg nodes glued together with token chain and
1232   // glue operands which copy the outgoing args into registers. The InGlue is
1233   // necessary since all emitted instructions must be stuck together in order
1234   // to pass the live physical registers.
1235   SDValue InGlue;
1236   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1237     Chain = DAG.getCopyToReg(Chain, DL,
1238                              RegsToPass[i].first, RegsToPass[i].second, InGlue);
1239     InGlue = Chain.getValue(1);
1240   }
1241 
1242   // If the callee is a GlobalAddress node (quite common, every direct call is)
1243   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1244   // Likewise ExternalSymbol -> TargetExternalSymbol.
1245   SDValue Callee = CLI.Callee;
1246   bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
1247   unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0;
1248   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1249     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF);
1250   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1251     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
1252 
1253   // Build the operands for the call instruction itself.
1254   SmallVector<SDValue, 8> Ops;
1255   Ops.push_back(Chain);
1256   Ops.push_back(Callee);
1257   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1258     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1259                                   RegsToPass[i].second.getValueType()));
1260 
1261   // Add a register mask operand representing the call-preserved registers.
1262   const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1263   const uint32_t *Mask =
1264       ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
1265                          : TRI->getCallPreservedMask(DAG.getMachineFunction(),
1266                                                      CLI.CallConv));
1267   assert(Mask && "Missing call preserved mask for calling convention");
1268   Ops.push_back(DAG.getRegisterMask(Mask));
1269 
1270   // Make sure the CopyToReg nodes are glued to the call instruction which
1271   // consumes the registers.
1272   if (InGlue.getNode())
1273     Ops.push_back(InGlue);
1274 
1275   // Now the call itself.
1276   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1277   Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
1278   InGlue = Chain.getValue(1);
1279 
1280   // Revert the stack pointer immediately after the call.
1281   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true),
1282                              DAG.getIntPtrConstant(0, DL, true), InGlue, DL);
1283   InGlue = Chain.getValue(1);
1284 
1285   // Now extract the return values. This is more or less the same as
1286   // LowerFormalArguments_64.
1287 
1288   // Assign locations to each value returned by this call.
1289   SmallVector<CCValAssign, 16> RVLocs;
1290   CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
1291                  *DAG.getContext());
1292 
1293   // Set inreg flag manually for codegen generated library calls that
1294   // return float.
1295   if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CS)
1296     CLI.Ins[0].Flags.setInReg();
1297 
1298   RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
1299 
1300   // Copy all of the result registers out of their specified physreg.
1301   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1302     CCValAssign &VA = RVLocs[i];
1303     unsigned Reg = toCallerWindow(VA.getLocReg());
1304 
1305     // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
1306     // reside in the same register in the high and low bits. Reuse the
1307     // CopyFromReg previous node to avoid duplicate copies.
1308     SDValue RV;
1309     if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
1310       if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
1311         RV = Chain.getValue(0);
1312 
1313     // But usually we'll create a new CopyFromReg for a different register.
1314     if (!RV.getNode()) {
1315       RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
1316       Chain = RV.getValue(1);
1317       InGlue = Chain.getValue(2);
1318     }
1319 
1320     // Get the high bits for i32 struct elements.
1321     if (VA.getValVT() == MVT::i32 && VA.needsCustom())
1322       RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
1323                        DAG.getConstant(32, DL, MVT::i32));
1324 
1325     // The callee promoted the return value, so insert an Assert?ext SDNode so
1326     // we won't promote the value again in this function.
1327     switch (VA.getLocInfo()) {
1328     case CCValAssign::SExt:
1329       RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
1330                        DAG.getValueType(VA.getValVT()));
1331       break;
1332     case CCValAssign::ZExt:
1333       RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
1334                        DAG.getValueType(VA.getValVT()));
1335       break;
1336     default:
1337       break;
1338     }
1339 
1340     // Truncate the register down to the return value type.
1341     if (VA.isExtInLoc())
1342       RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
1343 
1344     InVals.push_back(RV);
1345   }
1346 
1347   return Chain;
1348 }
1349 
1350 //===----------------------------------------------------------------------===//
1351 // TargetLowering Implementation
1352 //===----------------------------------------------------------------------===//
1353 
1354 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
1355   if (AI->getOperation() == AtomicRMWInst::Xchg &&
1356       AI->getType()->getPrimitiveSizeInBits() == 32)
1357     return AtomicExpansionKind::None; // Uses xchg instruction
1358 
1359   return AtomicExpansionKind::CmpXChg;
1360 }
1361 
1362 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
1363 /// condition.
1364 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
1365   switch (CC) {
1366   default: llvm_unreachable("Unknown integer condition code!");
1367   case ISD::SETEQ:  return SPCC::ICC_E;
1368   case ISD::SETNE:  return SPCC::ICC_NE;
1369   case ISD::SETLT:  return SPCC::ICC_L;
1370   case ISD::SETGT:  return SPCC::ICC_G;
1371   case ISD::SETLE:  return SPCC::ICC_LE;
1372   case ISD::SETGE:  return SPCC::ICC_GE;
1373   case ISD::SETULT: return SPCC::ICC_CS;
1374   case ISD::SETULE: return SPCC::ICC_LEU;
1375   case ISD::SETUGT: return SPCC::ICC_GU;
1376   case ISD::SETUGE: return SPCC::ICC_CC;
1377   }
1378 }
1379 
1380 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
1381 /// FCC condition.
1382 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
1383   switch (CC) {
1384   default: llvm_unreachable("Unknown fp condition code!");
1385   case ISD::SETEQ:
1386   case ISD::SETOEQ: return SPCC::FCC_E;
1387   case ISD::SETNE:
1388   case ISD::SETUNE: return SPCC::FCC_NE;
1389   case ISD::SETLT:
1390   case ISD::SETOLT: return SPCC::FCC_L;
1391   case ISD::SETGT:
1392   case ISD::SETOGT: return SPCC::FCC_G;
1393   case ISD::SETLE:
1394   case ISD::SETOLE: return SPCC::FCC_LE;
1395   case ISD::SETGE:
1396   case ISD::SETOGE: return SPCC::FCC_GE;
1397   case ISD::SETULT: return SPCC::FCC_UL;
1398   case ISD::SETULE: return SPCC::FCC_ULE;
1399   case ISD::SETUGT: return SPCC::FCC_UG;
1400   case ISD::SETUGE: return SPCC::FCC_UGE;
1401   case ISD::SETUO:  return SPCC::FCC_U;
1402   case ISD::SETO:   return SPCC::FCC_O;
1403   case ISD::SETONE: return SPCC::FCC_LG;
1404   case ISD::SETUEQ: return SPCC::FCC_UE;
1405   }
1406 }
1407 
1408 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
1409                                          const SparcSubtarget &STI)
1410     : TargetLowering(TM), Subtarget(&STI) {
1411   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
1412 
1413   // Instructions which use registers as conditionals examine all the
1414   // bits (as does the pseudo SELECT_CC expansion). I don't think it
1415   // matters much whether it's ZeroOrOneBooleanContent, or
1416   // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
1417   // former.
1418   setBooleanContents(ZeroOrOneBooleanContent);
1419   setBooleanVectorContents(ZeroOrOneBooleanContent);
1420 
1421   // Set up the register classes.
1422   addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
1423   if (!Subtarget->useSoftFloat()) {
1424     addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
1425     addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
1426     addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
1427   }
1428   if (Subtarget->is64Bit()) {
1429     addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
1430   } else {
1431     // On 32bit sparc, we define a double-register 32bit register
1432     // class, as well. This is modeled in LLVM as a 2-vector of i32.
1433     addRegisterClass(MVT::v2i32, &SP::IntPairRegClass);
1434 
1435     // ...but almost all operations must be expanded, so set that as
1436     // the default.
1437     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
1438       setOperationAction(Op, MVT::v2i32, Expand);
1439     }
1440     // Truncating/extending stores/loads are also not supported.
1441     for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1442       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand);
1443       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand);
1444       setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand);
1445 
1446       setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand);
1447       setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand);
1448       setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand);
1449 
1450       setTruncStoreAction(VT, MVT::v2i32, Expand);
1451       setTruncStoreAction(MVT::v2i32, VT, Expand);
1452     }
1453     // However, load and store *are* legal.
1454     setOperationAction(ISD::LOAD, MVT::v2i32, Legal);
1455     setOperationAction(ISD::STORE, MVT::v2i32, Legal);
1456     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal);
1457     setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal);
1458 
1459     // And we need to promote i64 loads/stores into vector load/store
1460     setOperationAction(ISD::LOAD, MVT::i64, Custom);
1461     setOperationAction(ISD::STORE, MVT::i64, Custom);
1462 
1463     // Sadly, this doesn't work:
1464     //    AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
1465     //    AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
1466   }
1467 
1468   // Turn FP extload into load/fpextend
1469   for (MVT VT : MVT::fp_valuetypes()) {
1470     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1471     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
1472   }
1473 
1474   // Sparc doesn't have i1 sign extending load
1475   for (MVT VT : MVT::integer_valuetypes())
1476     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1477 
1478   // Turn FP truncstore into trunc + store.
1479   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1480   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1481   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1482 
1483   // Custom legalize GlobalAddress nodes into LO/HI parts.
1484   setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
1485   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
1486   setOperationAction(ISD::ConstantPool, PtrVT, Custom);
1487   setOperationAction(ISD::BlockAddress, PtrVT, Custom);
1488 
1489   // Sparc doesn't have sext_inreg, replace them with shl/sra
1490   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1491   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
1492   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
1493 
1494   // Sparc has no REM or DIVREM operations.
1495   setOperationAction(ISD::UREM, MVT::i32, Expand);
1496   setOperationAction(ISD::SREM, MVT::i32, Expand);
1497   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1498   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1499 
1500   // ... nor does SparcV9.
1501   if (Subtarget->is64Bit()) {
1502     setOperationAction(ISD::UREM, MVT::i64, Expand);
1503     setOperationAction(ISD::SREM, MVT::i64, Expand);
1504     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1505     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1506   }
1507 
1508   // Custom expand fp<->sint
1509   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1510   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1511   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
1512   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
1513 
1514   // Custom Expand fp<->uint
1515   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1516   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1517   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
1518   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
1519 
1520   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
1521   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
1522 
1523   // Sparc has no select or setcc: expand to SELECT_CC.
1524   setOperationAction(ISD::SELECT, MVT::i32, Expand);
1525   setOperationAction(ISD::SELECT, MVT::f32, Expand);
1526   setOperationAction(ISD::SELECT, MVT::f64, Expand);
1527   setOperationAction(ISD::SELECT, MVT::f128, Expand);
1528 
1529   setOperationAction(ISD::SETCC, MVT::i32, Expand);
1530   setOperationAction(ISD::SETCC, MVT::f32, Expand);
1531   setOperationAction(ISD::SETCC, MVT::f64, Expand);
1532   setOperationAction(ISD::SETCC, MVT::f128, Expand);
1533 
1534   // Sparc doesn't have BRCOND either, it has BR_CC.
1535   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1536   setOperationAction(ISD::BRIND, MVT::Other, Expand);
1537   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1538   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1539   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1540   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1541   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
1542 
1543   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1544   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1545   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1546   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1547 
1548   setOperationAction(ISD::ADDC, MVT::i32, Custom);
1549   setOperationAction(ISD::ADDE, MVT::i32, Custom);
1550   setOperationAction(ISD::SUBC, MVT::i32, Custom);
1551   setOperationAction(ISD::SUBE, MVT::i32, Custom);
1552 
1553   if (Subtarget->is64Bit()) {
1554     setOperationAction(ISD::ADDC, MVT::i64, Custom);
1555     setOperationAction(ISD::ADDE, MVT::i64, Custom);
1556     setOperationAction(ISD::SUBC, MVT::i64, Custom);
1557     setOperationAction(ISD::SUBE, MVT::i64, Custom);
1558     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
1559     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
1560     setOperationAction(ISD::SELECT, MVT::i64, Expand);
1561     setOperationAction(ISD::SETCC, MVT::i64, Expand);
1562     setOperationAction(ISD::BR_CC, MVT::i64, Custom);
1563     setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
1564 
1565     setOperationAction(ISD::CTPOP, MVT::i64,
1566                        Subtarget->usePopc() ? Legal : Expand);
1567     setOperationAction(ISD::CTTZ , MVT::i64, Expand);
1568     setOperationAction(ISD::CTLZ , MVT::i64, Expand);
1569     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1570     setOperationAction(ISD::ROTL , MVT::i64, Expand);
1571     setOperationAction(ISD::ROTR , MVT::i64, Expand);
1572     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
1573   }
1574 
1575   // ATOMICs.
1576   // Atomics are supported on SparcV9. 32-bit atomics are also
1577   // supported by some Leon SparcV8 variants. Otherwise, atomics
1578   // are unsupported.
1579   if (Subtarget->isV9())
1580     setMaxAtomicSizeInBitsSupported(64);
1581   else if (Subtarget->hasLeonCasa())
1582     setMaxAtomicSizeInBitsSupported(32);
1583   else
1584     setMaxAtomicSizeInBitsSupported(0);
1585 
1586   setMinCmpXchgSizeInBits(32);
1587 
1588   setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
1589 
1590   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
1591 
1592   // Custom Lower Atomic LOAD/STORE
1593   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1594   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1595 
1596   if (Subtarget->is64Bit()) {
1597     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
1598     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
1599     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
1600     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
1601   }
1602 
1603   if (!Subtarget->is64Bit()) {
1604     // These libcalls are not available in 32-bit.
1605     setLibcallName(RTLIB::SHL_I128, nullptr);
1606     setLibcallName(RTLIB::SRL_I128, nullptr);
1607     setLibcallName(RTLIB::SRA_I128, nullptr);
1608   }
1609 
1610   if (!Subtarget->isV9()) {
1611     // SparcV8 does not have FNEGD and FABSD.
1612     setOperationAction(ISD::FNEG, MVT::f64, Custom);
1613     setOperationAction(ISD::FABS, MVT::f64, Custom);
1614   }
1615 
1616   setOperationAction(ISD::FSIN , MVT::f128, Expand);
1617   setOperationAction(ISD::FCOS , MVT::f128, Expand);
1618   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
1619   setOperationAction(ISD::FREM , MVT::f128, Expand);
1620   setOperationAction(ISD::FMA  , MVT::f128, Expand);
1621   setOperationAction(ISD::FSIN , MVT::f64, Expand);
1622   setOperationAction(ISD::FCOS , MVT::f64, Expand);
1623   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1624   setOperationAction(ISD::FREM , MVT::f64, Expand);
1625   setOperationAction(ISD::FMA  , MVT::f64, Expand);
1626   setOperationAction(ISD::FSIN , MVT::f32, Expand);
1627   setOperationAction(ISD::FCOS , MVT::f32, Expand);
1628   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1629   setOperationAction(ISD::FREM , MVT::f32, Expand);
1630   setOperationAction(ISD::FMA  , MVT::f32, Expand);
1631   setOperationAction(ISD::CTTZ , MVT::i32, Expand);
1632   setOperationAction(ISD::CTLZ , MVT::i32, Expand);
1633   setOperationAction(ISD::ROTL , MVT::i32, Expand);
1634   setOperationAction(ISD::ROTR , MVT::i32, Expand);
1635   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1636   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1637   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1638   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1639   setOperationAction(ISD::FPOW , MVT::f128, Expand);
1640   setOperationAction(ISD::FPOW , MVT::f64, Expand);
1641   setOperationAction(ISD::FPOW , MVT::f32, Expand);
1642 
1643   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1644   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1645   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1646 
1647   // Expands to [SU]MUL_LOHI.
1648   setOperationAction(ISD::MULHU,     MVT::i32, Expand);
1649   setOperationAction(ISD::MULHS,     MVT::i32, Expand);
1650   setOperationAction(ISD::MUL,       MVT::i32, Expand);
1651 
1652   if (Subtarget->useSoftMulDiv()) {
1653     // .umul works for both signed and unsigned
1654     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1655     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1656     setLibcallName(RTLIB::MUL_I32, ".umul");
1657 
1658     setOperationAction(ISD::SDIV, MVT::i32, Expand);
1659     setLibcallName(RTLIB::SDIV_I32, ".div");
1660 
1661     setOperationAction(ISD::UDIV, MVT::i32, Expand);
1662     setLibcallName(RTLIB::UDIV_I32, ".udiv");
1663 
1664     setLibcallName(RTLIB::SREM_I32, ".rem");
1665     setLibcallName(RTLIB::UREM_I32, ".urem");
1666   }
1667 
1668   if (Subtarget->is64Bit()) {
1669     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1670     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1671     setOperationAction(ISD::MULHU,     MVT::i64, Expand);
1672     setOperationAction(ISD::MULHS,     MVT::i64, Expand);
1673 
1674     setOperationAction(ISD::UMULO,     MVT::i64, Custom);
1675     setOperationAction(ISD::SMULO,     MVT::i64, Custom);
1676 
1677     setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
1678     setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
1679     setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
1680   }
1681 
1682   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1683   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
1684   // VAARG needs to be lowered to not do unaligned accesses for doubles.
1685   setOperationAction(ISD::VAARG             , MVT::Other, Custom);
1686 
1687   setOperationAction(ISD::TRAP              , MVT::Other, Legal);
1688   setOperationAction(ISD::DEBUGTRAP         , MVT::Other, Legal);
1689 
1690   // Use the default implementation.
1691   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
1692   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
1693   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
1694   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
1695   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
1696 
1697   setStackPointerRegisterToSaveRestore(SP::O6);
1698 
1699   setOperationAction(ISD::CTPOP, MVT::i32,
1700                      Subtarget->usePopc() ? Legal : Expand);
1701 
1702   if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
1703     setOperationAction(ISD::LOAD, MVT::f128, Legal);
1704     setOperationAction(ISD::STORE, MVT::f128, Legal);
1705   } else {
1706     setOperationAction(ISD::LOAD, MVT::f128, Custom);
1707     setOperationAction(ISD::STORE, MVT::f128, Custom);
1708   }
1709 
1710   if (Subtarget->hasHardQuad()) {
1711     setOperationAction(ISD::FADD,  MVT::f128, Legal);
1712     setOperationAction(ISD::FSUB,  MVT::f128, Legal);
1713     setOperationAction(ISD::FMUL,  MVT::f128, Legal);
1714     setOperationAction(ISD::FDIV,  MVT::f128, Legal);
1715     setOperationAction(ISD::FSQRT, MVT::f128, Legal);
1716     setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1717     setOperationAction(ISD::FP_ROUND,  MVT::f64, Legal);
1718     if (Subtarget->isV9()) {
1719       setOperationAction(ISD::FNEG, MVT::f128, Legal);
1720       setOperationAction(ISD::FABS, MVT::f128, Legal);
1721     } else {
1722       setOperationAction(ISD::FNEG, MVT::f128, Custom);
1723       setOperationAction(ISD::FABS, MVT::f128, Custom);
1724     }
1725 
1726     if (!Subtarget->is64Bit()) {
1727       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1728       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1729       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1730       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1731     }
1732 
1733   } else {
1734     // Custom legalize f128 operations.
1735 
1736     setOperationAction(ISD::FADD,  MVT::f128, Custom);
1737     setOperationAction(ISD::FSUB,  MVT::f128, Custom);
1738     setOperationAction(ISD::FMUL,  MVT::f128, Custom);
1739     setOperationAction(ISD::FDIV,  MVT::f128, Custom);
1740     setOperationAction(ISD::FSQRT, MVT::f128, Custom);
1741     setOperationAction(ISD::FNEG,  MVT::f128, Custom);
1742     setOperationAction(ISD::FABS,  MVT::f128, Custom);
1743 
1744     setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
1745     setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
1746     setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
1747 
1748     // Setup Runtime library names.
1749     if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) {
1750       setLibcallName(RTLIB::ADD_F128,  "_Qp_add");
1751       setLibcallName(RTLIB::SUB_F128,  "_Qp_sub");
1752       setLibcallName(RTLIB::MUL_F128,  "_Qp_mul");
1753       setLibcallName(RTLIB::DIV_F128,  "_Qp_div");
1754       setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
1755       setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
1756       setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
1757       setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
1758       setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
1759       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
1760       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
1761       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
1762       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
1763       setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
1764       setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
1765       setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
1766       setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
1767     } else if (!Subtarget->useSoftFloat()) {
1768       setLibcallName(RTLIB::ADD_F128,  "_Q_add");
1769       setLibcallName(RTLIB::SUB_F128,  "_Q_sub");
1770       setLibcallName(RTLIB::MUL_F128,  "_Q_mul");
1771       setLibcallName(RTLIB::DIV_F128,  "_Q_div");
1772       setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
1773       setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
1774       setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
1775       setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
1776       setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
1777       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1778       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1779       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1780       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1781       setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
1782       setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
1783       setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
1784       setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
1785     }
1786   }
1787 
1788   if (Subtarget->fixAllFDIVSQRT()) {
1789     // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as
1790     // the former instructions generate errata on LEON processors.
1791     setOperationAction(ISD::FDIV, MVT::f32, Promote);
1792     setOperationAction(ISD::FSQRT, MVT::f32, Promote);
1793   }
1794 
1795   if (Subtarget->hasNoFMULS()) {
1796     setOperationAction(ISD::FMUL, MVT::f32, Promote);
1797   }
1798 
1799   // Custom combine bitcast between f64 and v2i32
1800   if (!Subtarget->is64Bit())
1801     setTargetDAGCombine(ISD::BITCAST);
1802 
1803   if (Subtarget->hasLeonCycleCounter())
1804     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1805 
1806   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1807 
1808   setMinFunctionAlignment(Align(4));
1809 
1810   computeRegisterProperties(Subtarget->getRegisterInfo());
1811 }
1812 
1813 bool SparcTargetLowering::useSoftFloat() const {
1814   return Subtarget->useSoftFloat();
1815 }
1816 
1817 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
1818   switch ((SPISD::NodeType)Opcode) {
1819   case SPISD::FIRST_NUMBER:    break;
1820   case SPISD::CMPICC:          return "SPISD::CMPICC";
1821   case SPISD::CMPFCC:          return "SPISD::CMPFCC";
1822   case SPISD::BRICC:           return "SPISD::BRICC";
1823   case SPISD::BRXCC:           return "SPISD::BRXCC";
1824   case SPISD::BRFCC:           return "SPISD::BRFCC";
1825   case SPISD::SELECT_ICC:      return "SPISD::SELECT_ICC";
1826   case SPISD::SELECT_XCC:      return "SPISD::SELECT_XCC";
1827   case SPISD::SELECT_FCC:      return "SPISD::SELECT_FCC";
1828   case SPISD::Hi:              return "SPISD::Hi";
1829   case SPISD::Lo:              return "SPISD::Lo";
1830   case SPISD::FTOI:            return "SPISD::FTOI";
1831   case SPISD::ITOF:            return "SPISD::ITOF";
1832   case SPISD::FTOX:            return "SPISD::FTOX";
1833   case SPISD::XTOF:            return "SPISD::XTOF";
1834   case SPISD::CALL:            return "SPISD::CALL";
1835   case SPISD::RET_FLAG:        return "SPISD::RET_FLAG";
1836   case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
1837   case SPISD::FLUSHW:          return "SPISD::FLUSHW";
1838   case SPISD::TLS_ADD:         return "SPISD::TLS_ADD";
1839   case SPISD::TLS_LD:          return "SPISD::TLS_LD";
1840   case SPISD::TLS_CALL:        return "SPISD::TLS_CALL";
1841   }
1842   return nullptr;
1843 }
1844 
1845 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
1846                                             EVT VT) const {
1847   if (!VT.isVector())
1848     return MVT::i32;
1849   return VT.changeVectorElementTypeToInteger();
1850 }
1851 
1852 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
1853 /// be zero. Op is expected to be a target specific node. Used by DAG
1854 /// combiner.
1855 void SparcTargetLowering::computeKnownBitsForTargetNode
1856                                 (const SDValue Op,
1857                                  KnownBits &Known,
1858                                  const APInt &DemandedElts,
1859                                  const SelectionDAG &DAG,
1860                                  unsigned Depth) const {
1861   KnownBits Known2;
1862   Known.resetAll();
1863 
1864   switch (Op.getOpcode()) {
1865   default: break;
1866   case SPISD::SELECT_ICC:
1867   case SPISD::SELECT_XCC:
1868   case SPISD::SELECT_FCC:
1869     Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
1870     Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
1871 
1872     // Only known if known in both the LHS and RHS.
1873     Known.One &= Known2.One;
1874     Known.Zero &= Known2.Zero;
1875     break;
1876   }
1877 }
1878 
1879 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction.  If so
1880 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
1881 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
1882                              ISD::CondCode CC, unsigned &SPCC) {
1883   if (isNullConstant(RHS) &&
1884       CC == ISD::SETNE &&
1885       (((LHS.getOpcode() == SPISD::SELECT_ICC ||
1886          LHS.getOpcode() == SPISD::SELECT_XCC) &&
1887         LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
1888        (LHS.getOpcode() == SPISD::SELECT_FCC &&
1889         LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
1890       isOneConstant(LHS.getOperand(0)) &&
1891       isNullConstant(LHS.getOperand(1))) {
1892     SDValue CMPCC = LHS.getOperand(3);
1893     SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
1894     LHS = CMPCC.getOperand(0);
1895     RHS = CMPCC.getOperand(1);
1896   }
1897 }
1898 
1899 // Convert to a target node and set target flags.
1900 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
1901                                              SelectionDAG &DAG) const {
1902   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1903     return DAG.getTargetGlobalAddress(GA->getGlobal(),
1904                                       SDLoc(GA),
1905                                       GA->getValueType(0),
1906                                       GA->getOffset(), TF);
1907 
1908   if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
1909     return DAG.getTargetConstantPool(CP->getConstVal(),
1910                                      CP->getValueType(0),
1911                                      CP->getAlignment(),
1912                                      CP->getOffset(), TF);
1913 
1914   if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
1915     return DAG.getTargetBlockAddress(BA->getBlockAddress(),
1916                                      Op.getValueType(),
1917                                      0,
1918                                      TF);
1919 
1920   if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
1921     return DAG.getTargetExternalSymbol(ES->getSymbol(),
1922                                        ES->getValueType(0), TF);
1923 
1924   llvm_unreachable("Unhandled address SDNode");
1925 }
1926 
1927 // Split Op into high and low parts according to HiTF and LoTF.
1928 // Return an ADD node combining the parts.
1929 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
1930                                           unsigned HiTF, unsigned LoTF,
1931                                           SelectionDAG &DAG) const {
1932   SDLoc DL(Op);
1933   EVT VT = Op.getValueType();
1934   SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
1935   SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
1936   return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
1937 }
1938 
1939 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
1940 // or ExternalSymbol SDNode.
1941 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
1942   SDLoc DL(Op);
1943   EVT VT = getPointerTy(DAG.getDataLayout());
1944 
1945   // Handle PIC mode first. SPARC needs a got load for every variable!
1946   if (isPositionIndependent()) {
1947     const Module *M = DAG.getMachineFunction().getFunction().getParent();
1948     PICLevel::Level picLevel = M->getPICLevel();
1949     SDValue Idx;
1950 
1951     if (picLevel == PICLevel::SmallPIC) {
1952       // This is the pic13 code model, the GOT is known to be smaller than 8KiB.
1953       Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(),
1954                         withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG));
1955     } else {
1956       // This is the pic32 code model, the GOT is known to be smaller than 4GB.
1957       Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
1958                          SparcMCExpr::VK_Sparc_GOT10, DAG);
1959     }
1960 
1961     SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
1962     SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx);
1963     // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
1964     // function has calls.
1965     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1966     MFI.setHasCalls(true);
1967     return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
1968                        MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1969   }
1970 
1971   // This is one of the absolute code models.
1972   switch(getTargetMachine().getCodeModel()) {
1973   default:
1974     llvm_unreachable("Unsupported absolute code model");
1975   case CodeModel::Small:
1976     // abs32.
1977     return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
1978                         SparcMCExpr::VK_Sparc_LO, DAG);
1979   case CodeModel::Medium: {
1980     // abs44.
1981     SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
1982                                SparcMCExpr::VK_Sparc_M44, DAG);
1983     H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32));
1984     SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
1985     L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
1986     return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
1987   }
1988   case CodeModel::Large: {
1989     // abs64.
1990     SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
1991                               SparcMCExpr::VK_Sparc_HM, DAG);
1992     Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32));
1993     SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
1994                               SparcMCExpr::VK_Sparc_LO, DAG);
1995     return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
1996   }
1997   }
1998 }
1999 
2000 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
2001                                                 SelectionDAG &DAG) const {
2002   return makeAddress(Op, DAG);
2003 }
2004 
2005 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
2006                                                SelectionDAG &DAG) const {
2007   return makeAddress(Op, DAG);
2008 }
2009 
2010 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
2011                                                SelectionDAG &DAG) const {
2012   return makeAddress(Op, DAG);
2013 }
2014 
2015 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2016                                                    SelectionDAG &DAG) const {
2017 
2018   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2019   if (DAG.getTarget().useEmulatedTLS())
2020     return LowerToTLSEmulatedModel(GA, DAG);
2021 
2022   SDLoc DL(GA);
2023   const GlobalValue *GV = GA->getGlobal();
2024   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2025 
2026   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2027 
2028   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2029     unsigned HiTF = ((model == TLSModel::GeneralDynamic)
2030                      ? SparcMCExpr::VK_Sparc_TLS_GD_HI22
2031                      : SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
2032     unsigned LoTF = ((model == TLSModel::GeneralDynamic)
2033                      ? SparcMCExpr::VK_Sparc_TLS_GD_LO10
2034                      : SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
2035     unsigned addTF = ((model == TLSModel::GeneralDynamic)
2036                       ? SparcMCExpr::VK_Sparc_TLS_GD_ADD
2037                       : SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
2038     unsigned callTF = ((model == TLSModel::GeneralDynamic)
2039                        ? SparcMCExpr::VK_Sparc_TLS_GD_CALL
2040                        : SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
2041 
2042     SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
2043     SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2044     SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
2045                                withTargetFlags(Op, addTF, DAG));
2046 
2047     SDValue Chain = DAG.getEntryNode();
2048     SDValue InFlag;
2049 
2050     Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL);
2051     Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag);
2052     InFlag = Chain.getValue(1);
2053     SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
2054     SDValue Symbol = withTargetFlags(Op, callTF, DAG);
2055 
2056     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2057     const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
2058         DAG.getMachineFunction(), CallingConv::C);
2059     assert(Mask && "Missing call preserved mask for calling convention");
2060     SDValue Ops[] = {Chain,
2061                      Callee,
2062                      Symbol,
2063                      DAG.getRegister(SP::O0, PtrVT),
2064                      DAG.getRegisterMask(Mask),
2065                      InFlag};
2066     Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
2067     InFlag = Chain.getValue(1);
2068     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true),
2069                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
2070     InFlag = Chain.getValue(1);
2071     SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag);
2072 
2073     if (model != TLSModel::LocalDynamic)
2074       return Ret;
2075 
2076     SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2077                  withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
2078     SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2079                  withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
2080     HiLo =  DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2081     return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
2082                    withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
2083   }
2084 
2085   if (model == TLSModel::InitialExec) {
2086     unsigned ldTF     = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
2087                          : SparcMCExpr::VK_Sparc_TLS_IE_LD);
2088 
2089     SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2090 
2091     // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2092     // function has calls.
2093     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2094     MFI.setHasCalls(true);
2095 
2096     SDValue TGA = makeHiLoPair(Op,
2097                                SparcMCExpr::VK_Sparc_TLS_IE_HI22,
2098                                SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
2099     SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
2100     SDValue Offset = DAG.getNode(SPISD::TLS_LD,
2101                                  DL, PtrVT, Ptr,
2102                                  withTargetFlags(Op, ldTF, DAG));
2103     return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
2104                        DAG.getRegister(SP::G7, PtrVT), Offset,
2105                        withTargetFlags(Op,
2106                                        SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
2107   }
2108 
2109   assert(model == TLSModel::LocalExec);
2110   SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2111                   withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
2112   SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2113                   withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
2114   SDValue Offset =  DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2115 
2116   return DAG.getNode(ISD::ADD, DL, PtrVT,
2117                      DAG.getRegister(SP::G7, PtrVT), Offset);
2118 }
2119 
2120 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain,
2121                                                   ArgListTy &Args, SDValue Arg,
2122                                                   const SDLoc &DL,
2123                                                   SelectionDAG &DAG) const {
2124   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2125   EVT ArgVT = Arg.getValueType();
2126   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2127 
2128   ArgListEntry Entry;
2129   Entry.Node = Arg;
2130   Entry.Ty   = ArgTy;
2131 
2132   if (ArgTy->isFP128Ty()) {
2133     // Create a stack object and pass the pointer to the library function.
2134     int FI = MFI.CreateStackObject(16, 8, false);
2135     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2136     Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(),
2137                          /* Alignment = */ 8);
2138 
2139     Entry.Node = FIPtr;
2140     Entry.Ty   = PointerType::getUnqual(ArgTy);
2141   }
2142   Args.push_back(Entry);
2143   return Chain;
2144 }
2145 
2146 SDValue
2147 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
2148                                  const char *LibFuncName,
2149                                  unsigned numArgs) const {
2150 
2151   ArgListTy Args;
2152 
2153   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2154   auto PtrVT = getPointerTy(DAG.getDataLayout());
2155 
2156   SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT);
2157   Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2158   Type *RetTyABI = RetTy;
2159   SDValue Chain = DAG.getEntryNode();
2160   SDValue RetPtr;
2161 
2162   if (RetTy->isFP128Ty()) {
2163     // Create a Stack Object to receive the return value of type f128.
2164     ArgListEntry Entry;
2165     int RetFI = MFI.CreateStackObject(16, 8, false);
2166     RetPtr = DAG.getFrameIndex(RetFI, PtrVT);
2167     Entry.Node = RetPtr;
2168     Entry.Ty   = PointerType::getUnqual(RetTy);
2169     if (!Subtarget->is64Bit())
2170       Entry.IsSRet = true;
2171     Entry.IsReturned = false;
2172     Args.push_back(Entry);
2173     RetTyABI = Type::getVoidTy(*DAG.getContext());
2174   }
2175 
2176   assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
2177   for (unsigned i = 0, e = numArgs; i != e; ++i) {
2178     Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
2179   }
2180   TargetLowering::CallLoweringInfo CLI(DAG);
2181   CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
2182     .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args));
2183 
2184   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2185 
2186   // chain is in second result.
2187   if (RetTyABI == RetTy)
2188     return CallInfo.first;
2189 
2190   assert (RetTy->isFP128Ty() && "Unexpected return type!");
2191 
2192   Chain = CallInfo.second;
2193 
2194   // Load RetPtr to get the return value.
2195   return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr,
2196                      MachinePointerInfo(), /* Alignment = */ 8);
2197 }
2198 
2199 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
2200                                               unsigned &SPCC, const SDLoc &DL,
2201                                               SelectionDAG &DAG) const {
2202 
2203   const char *LibCall = nullptr;
2204   bool is64Bit = Subtarget->is64Bit();
2205   switch(SPCC) {
2206   default: llvm_unreachable("Unhandled conditional code!");
2207   case SPCC::FCC_E  : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
2208   case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
2209   case SPCC::FCC_L  : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
2210   case SPCC::FCC_G  : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
2211   case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
2212   case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
2213   case SPCC::FCC_UL :
2214   case SPCC::FCC_ULE:
2215   case SPCC::FCC_UG :
2216   case SPCC::FCC_UGE:
2217   case SPCC::FCC_U  :
2218   case SPCC::FCC_O  :
2219   case SPCC::FCC_LG :
2220   case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
2221   }
2222 
2223   auto PtrVT = getPointerTy(DAG.getDataLayout());
2224   SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT);
2225   Type *RetTy = Type::getInt32Ty(*DAG.getContext());
2226   ArgListTy Args;
2227   SDValue Chain = DAG.getEntryNode();
2228   Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
2229   Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
2230 
2231   TargetLowering::CallLoweringInfo CLI(DAG);
2232   CLI.setDebugLoc(DL).setChain(Chain)
2233     .setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
2234 
2235   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2236 
2237   // result is in first, and chain is in second result.
2238   SDValue Result =  CallInfo.first;
2239 
2240   switch(SPCC) {
2241   default: {
2242     SDValue RHS = DAG.getTargetConstant(0, DL, Result.getValueType());
2243     SPCC = SPCC::ICC_NE;
2244     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2245   }
2246   case SPCC::FCC_UL : {
2247     SDValue Mask   = DAG.getConstant(1, DL, Result.getValueType());
2248     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2249     SDValue RHS    = DAG.getTargetConstant(0, DL, Result.getValueType());
2250     SPCC = SPCC::ICC_NE;
2251     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2252   }
2253   case SPCC::FCC_ULE: {
2254     SDValue RHS = DAG.getTargetConstant(2, DL, Result.getValueType());
2255     SPCC = SPCC::ICC_NE;
2256     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2257   }
2258   case SPCC::FCC_UG :  {
2259     SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType());
2260     SPCC = SPCC::ICC_G;
2261     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2262   }
2263   case SPCC::FCC_UGE: {
2264     SDValue RHS = DAG.getTargetConstant(1, DL, Result.getValueType());
2265     SPCC = SPCC::ICC_NE;
2266     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2267   }
2268 
2269   case SPCC::FCC_U  :  {
2270     SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType());
2271     SPCC = SPCC::ICC_E;
2272     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2273   }
2274   case SPCC::FCC_O  :  {
2275     SDValue RHS = DAG.getTargetConstant(3, DL, Result.getValueType());
2276     SPCC = SPCC::ICC_NE;
2277     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2278   }
2279   case SPCC::FCC_LG :  {
2280     SDValue Mask   = DAG.getConstant(3, DL, Result.getValueType());
2281     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2282     SDValue RHS    = DAG.getTargetConstant(0, DL, Result.getValueType());
2283     SPCC = SPCC::ICC_NE;
2284     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2285   }
2286   case SPCC::FCC_UE : {
2287     SDValue Mask   = DAG.getConstant(3, DL, Result.getValueType());
2288     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2289     SDValue RHS    = DAG.getTargetConstant(0, DL, Result.getValueType());
2290     SPCC = SPCC::ICC_E;
2291     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2292   }
2293   }
2294 }
2295 
2296 static SDValue
2297 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
2298                    const SparcTargetLowering &TLI) {
2299 
2300   if (Op.getOperand(0).getValueType() == MVT::f64)
2301     return TLI.LowerF128Op(Op, DAG,
2302                            TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
2303 
2304   if (Op.getOperand(0).getValueType() == MVT::f32)
2305     return TLI.LowerF128Op(Op, DAG,
2306                            TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
2307 
2308   llvm_unreachable("fpextend with non-float operand!");
2309   return SDValue();
2310 }
2311 
2312 static SDValue
2313 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
2314                   const SparcTargetLowering &TLI) {
2315   // FP_ROUND on f64 and f32 are legal.
2316   if (Op.getOperand(0).getValueType() != MVT::f128)
2317     return Op;
2318 
2319   if (Op.getValueType() == MVT::f64)
2320     return TLI.LowerF128Op(Op, DAG,
2321                            TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
2322   if (Op.getValueType() == MVT::f32)
2323     return TLI.LowerF128Op(Op, DAG,
2324                            TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
2325 
2326   llvm_unreachable("fpround to non-float!");
2327   return SDValue();
2328 }
2329 
2330 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
2331                                const SparcTargetLowering &TLI,
2332                                bool hasHardQuad) {
2333   SDLoc dl(Op);
2334   EVT VT = Op.getValueType();
2335   assert(VT == MVT::i32 || VT == MVT::i64);
2336 
2337   // Expand f128 operations to fp128 abi calls.
2338   if (Op.getOperand(0).getValueType() == MVT::f128
2339       && (!hasHardQuad || !TLI.isTypeLegal(VT))) {
2340     const char *libName = TLI.getLibcallName(VT == MVT::i32
2341                                              ? RTLIB::FPTOSINT_F128_I32
2342                                              : RTLIB::FPTOSINT_F128_I64);
2343     return TLI.LowerF128Op(Op, DAG, libName, 1);
2344   }
2345 
2346   // Expand if the resulting type is illegal.
2347   if (!TLI.isTypeLegal(VT))
2348     return SDValue();
2349 
2350   // Otherwise, Convert the fp value to integer in an FP register.
2351   if (VT == MVT::i32)
2352     Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
2353   else
2354     Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
2355 
2356   return DAG.getNode(ISD::BITCAST, dl, VT, Op);
2357 }
2358 
2359 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2360                                const SparcTargetLowering &TLI,
2361                                bool hasHardQuad) {
2362   SDLoc dl(Op);
2363   EVT OpVT = Op.getOperand(0).getValueType();
2364   assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
2365 
2366   EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
2367 
2368   // Expand f128 operations to fp128 ABI calls.
2369   if (Op.getValueType() == MVT::f128
2370       && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
2371     const char *libName = TLI.getLibcallName(OpVT == MVT::i32
2372                                              ? RTLIB::SINTTOFP_I32_F128
2373                                              : RTLIB::SINTTOFP_I64_F128);
2374     return TLI.LowerF128Op(Op, DAG, libName, 1);
2375   }
2376 
2377   // Expand if the operand type is illegal.
2378   if (!TLI.isTypeLegal(OpVT))
2379     return SDValue();
2380 
2381   // Otherwise, Convert the int value to FP in an FP register.
2382   SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
2383   unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
2384   return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
2385 }
2386 
2387 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
2388                                const SparcTargetLowering &TLI,
2389                                bool hasHardQuad) {
2390   SDLoc dl(Op);
2391   EVT VT = Op.getValueType();
2392 
2393   // Expand if it does not involve f128 or the target has support for
2394   // quad floating point instructions and the resulting type is legal.
2395   if (Op.getOperand(0).getValueType() != MVT::f128 ||
2396       (hasHardQuad && TLI.isTypeLegal(VT)))
2397     return SDValue();
2398 
2399   assert(VT == MVT::i32 || VT == MVT::i64);
2400 
2401   return TLI.LowerF128Op(Op, DAG,
2402                          TLI.getLibcallName(VT == MVT::i32
2403                                             ? RTLIB::FPTOUINT_F128_I32
2404                                             : RTLIB::FPTOUINT_F128_I64),
2405                          1);
2406 }
2407 
2408 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2409                                const SparcTargetLowering &TLI,
2410                                bool hasHardQuad) {
2411   SDLoc dl(Op);
2412   EVT OpVT = Op.getOperand(0).getValueType();
2413   assert(OpVT == MVT::i32 || OpVT == MVT::i64);
2414 
2415   // Expand if it does not involve f128 or the target has support for
2416   // quad floating point instructions and the operand type is legal.
2417   if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
2418     return SDValue();
2419 
2420   return TLI.LowerF128Op(Op, DAG,
2421                          TLI.getLibcallName(OpVT == MVT::i32
2422                                             ? RTLIB::UINTTOFP_I32_F128
2423                                             : RTLIB::UINTTOFP_I64_F128),
2424                          1);
2425 }
2426 
2427 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
2428                           const SparcTargetLowering &TLI,
2429                           bool hasHardQuad) {
2430   SDValue Chain = Op.getOperand(0);
2431   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2432   SDValue LHS = Op.getOperand(2);
2433   SDValue RHS = Op.getOperand(3);
2434   SDValue Dest = Op.getOperand(4);
2435   SDLoc dl(Op);
2436   unsigned Opc, SPCC = ~0U;
2437 
2438   // If this is a br_cc of a "setcc", and if the setcc got lowered into
2439   // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2440   LookThroughSetCC(LHS, RHS, CC, SPCC);
2441 
2442   // Get the condition flag.
2443   SDValue CompareFlag;
2444   if (LHS.getValueType().isInteger()) {
2445     CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2446     if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2447     // 32-bit compares use the icc flags, 64-bit uses the xcc flags.
2448     Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC;
2449   } else {
2450     if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2451       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2452       CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2453       Opc = SPISD::BRICC;
2454     } else {
2455       CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
2456       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2457       Opc = SPISD::BRFCC;
2458     }
2459   }
2460   return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
2461                      DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2462 }
2463 
2464 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
2465                               const SparcTargetLowering &TLI,
2466                               bool hasHardQuad) {
2467   SDValue LHS = Op.getOperand(0);
2468   SDValue RHS = Op.getOperand(1);
2469   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2470   SDValue TrueVal = Op.getOperand(2);
2471   SDValue FalseVal = Op.getOperand(3);
2472   SDLoc dl(Op);
2473   unsigned Opc, SPCC = ~0U;
2474 
2475   // If this is a select_cc of a "setcc", and if the setcc got lowered into
2476   // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2477   LookThroughSetCC(LHS, RHS, CC, SPCC);
2478 
2479   SDValue CompareFlag;
2480   if (LHS.getValueType().isInteger()) {
2481     CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2482     Opc = LHS.getValueType() == MVT::i32 ?
2483           SPISD::SELECT_ICC : SPISD::SELECT_XCC;
2484     if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2485   } else {
2486     if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2487       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2488       CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2489       Opc = SPISD::SELECT_ICC;
2490     } else {
2491       CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
2492       Opc = SPISD::SELECT_FCC;
2493       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2494     }
2495   }
2496   return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2497                      DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2498 }
2499 
2500 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
2501                             const SparcTargetLowering &TLI) {
2502   MachineFunction &MF = DAG.getMachineFunction();
2503   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
2504   auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2505 
2506   // Need frame address to find the address of VarArgsFrameIndex.
2507   MF.getFrameInfo().setFrameAddressIsTaken(true);
2508 
2509   // vastart just stores the address of the VarArgsFrameIndex slot into the
2510   // memory location argument.
2511   SDLoc DL(Op);
2512   SDValue Offset =
2513       DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT),
2514                   DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
2515   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2516   return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
2517                       MachinePointerInfo(SV));
2518 }
2519 
2520 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
2521   SDNode *Node = Op.getNode();
2522   EVT VT = Node->getValueType(0);
2523   SDValue InChain = Node->getOperand(0);
2524   SDValue VAListPtr = Node->getOperand(1);
2525   EVT PtrVT = VAListPtr.getValueType();
2526   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2527   SDLoc DL(Node);
2528   SDValue VAList =
2529       DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
2530   // Increment the pointer, VAList, to the next vaarg.
2531   SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
2532                                 DAG.getIntPtrConstant(VT.getSizeInBits()/8,
2533                                                       DL));
2534   // Store the incremented VAList to the legalized pointer.
2535   InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr,
2536                          MachinePointerInfo(SV));
2537   // Load the actual argument out of the pointer VAList.
2538   // We can't count on greater alignment than the word size.
2539   return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
2540                      std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8);
2541 }
2542 
2543 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
2544                                        const SparcSubtarget *Subtarget) {
2545   SDValue Chain = Op.getOperand(0);  // Legalize the chain.
2546   SDValue Size  = Op.getOperand(1);  // Legalize the size.
2547   unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2548   unsigned StackAlign = Subtarget->getFrameLowering()->getStackAlignment();
2549   EVT VT = Size->getValueType(0);
2550   SDLoc dl(Op);
2551 
2552   // TODO: implement over-aligned alloca. (Note: also implies
2553   // supporting support for overaligned function frames + dynamic
2554   // allocations, at all, which currently isn't supported)
2555   if (Align > StackAlign) {
2556     const MachineFunction &MF = DAG.getMachineFunction();
2557     report_fatal_error("Function \"" + Twine(MF.getName()) + "\": "
2558                        "over-aligned dynamic alloca not supported.");
2559   }
2560 
2561   // The resultant pointer needs to be above the register spill area
2562   // at the bottom of the stack.
2563   unsigned regSpillArea;
2564   if (Subtarget->is64Bit()) {
2565     regSpillArea = 128;
2566   } else {
2567     // On Sparc32, the size of the spill area is 92. Unfortunately,
2568     // that's only 4-byte aligned, not 8-byte aligned (the stack
2569     // pointer is 8-byte aligned). So, if the user asked for an 8-byte
2570     // aligned dynamic allocation, we actually need to add 96 to the
2571     // bottom of the stack, instead of 92, to ensure 8-byte alignment.
2572 
2573     // That also means adding 4 to the size of the allocation --
2574     // before applying the 8-byte rounding. Unfortunately, we the
2575     // value we get here has already had rounding applied. So, we need
2576     // to add 8, instead, wasting a bit more memory.
2577 
2578     // Further, this only actually needs to be done if the required
2579     // alignment is > 4, but, we've lost that info by this point, too,
2580     // so we always apply it.
2581 
2582     // (An alternative approach would be to always reserve 96 bytes
2583     // instead of the required 92, but then we'd waste 4 extra bytes
2584     // in every frame, not just those with dynamic stack allocations)
2585 
2586     // TODO: modify code in SelectionDAGBuilder to make this less sad.
2587 
2588     Size = DAG.getNode(ISD::ADD, dl, VT, Size,
2589                        DAG.getConstant(8, dl, VT));
2590     regSpillArea = 96;
2591   }
2592 
2593   unsigned SPReg = SP::O6;
2594   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
2595   SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
2596   Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP);    // Output chain
2597 
2598   regSpillArea += Subtarget->getStackPointerBias();
2599 
2600   SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
2601                                DAG.getConstant(regSpillArea, dl, VT));
2602   SDValue Ops[2] = { NewVal, Chain };
2603   return DAG.getMergeValues(Ops, dl);
2604 }
2605 
2606 
2607 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
2608   SDLoc dl(Op);
2609   SDValue Chain = DAG.getNode(SPISD::FLUSHW,
2610                               dl, MVT::Other, DAG.getEntryNode());
2611   return Chain;
2612 }
2613 
2614 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
2615                             const SparcSubtarget *Subtarget,
2616                             bool AlwaysFlush = false) {
2617   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2618   MFI.setFrameAddressIsTaken(true);
2619 
2620   EVT VT = Op.getValueType();
2621   SDLoc dl(Op);
2622   unsigned FrameReg = SP::I6;
2623   unsigned stackBias = Subtarget->getStackPointerBias();
2624 
2625   SDValue FrameAddr;
2626   SDValue Chain;
2627 
2628   // flush first to make sure the windowed registers' values are in stack
2629   Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode();
2630 
2631   FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
2632 
2633   unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
2634 
2635   while (depth--) {
2636     SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2637                               DAG.getIntPtrConstant(Offset, dl));
2638     FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo());
2639   }
2640   if (Subtarget->is64Bit())
2641     FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2642                             DAG.getIntPtrConstant(stackBias, dl));
2643   return FrameAddr;
2644 }
2645 
2646 
2647 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
2648                               const SparcSubtarget *Subtarget) {
2649 
2650   uint64_t depth = Op.getConstantOperandVal(0);
2651 
2652   return getFRAMEADDR(depth, Op, DAG, Subtarget);
2653 
2654 }
2655 
2656 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
2657                                const SparcTargetLowering &TLI,
2658                                const SparcSubtarget *Subtarget) {
2659   MachineFunction &MF = DAG.getMachineFunction();
2660   MachineFrameInfo &MFI = MF.getFrameInfo();
2661   MFI.setReturnAddressIsTaken(true);
2662 
2663   if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
2664     return SDValue();
2665 
2666   EVT VT = Op.getValueType();
2667   SDLoc dl(Op);
2668   uint64_t depth = Op.getConstantOperandVal(0);
2669 
2670   SDValue RetAddr;
2671   if (depth == 0) {
2672     auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2673     unsigned RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT));
2674     RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
2675     return RetAddr;
2676   }
2677 
2678   // Need frame address to find return address of the caller.
2679   SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true);
2680 
2681   unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
2682   SDValue Ptr = DAG.getNode(ISD::ADD,
2683                             dl, VT,
2684                             FrameAddr,
2685                             DAG.getIntPtrConstant(Offset, dl));
2686   RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2687 
2688   return RetAddr;
2689 }
2690 
2691 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG,
2692                           unsigned opcode) {
2693   assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
2694   assert(opcode == ISD::FNEG || opcode == ISD::FABS);
2695 
2696   // Lower fneg/fabs on f64 to fneg/fabs on f32.
2697   // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
2698   // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
2699 
2700   // Note: in little-endian, the floating-point value is stored in the
2701   // registers are in the opposite order, so the subreg with the sign
2702   // bit is the highest-numbered (odd), rather than the
2703   // lowest-numbered (even).
2704 
2705   SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
2706                                             SrcReg64);
2707   SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
2708                                             SrcReg64);
2709 
2710   if (DAG.getDataLayout().isLittleEndian())
2711     Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32);
2712   else
2713     Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
2714 
2715   SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2716                                                 dl, MVT::f64), 0);
2717   DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
2718                                        DstReg64, Hi32);
2719   DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
2720                                        DstReg64, Lo32);
2721   return DstReg64;
2722 }
2723 
2724 // Lower a f128 load into two f64 loads.
2725 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
2726 {
2727   SDLoc dl(Op);
2728   LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
2729   assert(LdNode && LdNode->getOffset().isUndef()
2730          && "Unexpected node type");
2731 
2732   unsigned alignment = LdNode->getAlignment();
2733   if (alignment > 8)
2734     alignment = 8;
2735 
2736   SDValue Hi64 =
2737       DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(),
2738                   LdNode->getPointerInfo(), alignment);
2739   EVT addrVT = LdNode->getBasePtr().getValueType();
2740   SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2741                               LdNode->getBasePtr(),
2742                               DAG.getConstant(8, dl, addrVT));
2743   SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr,
2744                              LdNode->getPointerInfo(), alignment);
2745 
2746   SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2747   SDValue SubRegOdd  = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2748 
2749   SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2750                                        dl, MVT::f128);
2751   InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2752                                MVT::f128,
2753                                SDValue(InFP128, 0),
2754                                Hi64,
2755                                SubRegEven);
2756   InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2757                                MVT::f128,
2758                                SDValue(InFP128, 0),
2759                                Lo64,
2760                                SubRegOdd);
2761   SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
2762                            SDValue(Lo64.getNode(), 1) };
2763   SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2764   SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
2765   return DAG.getMergeValues(Ops, dl);
2766 }
2767 
2768 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG)
2769 {
2770   LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2771 
2772   EVT MemVT = LdNode->getMemoryVT();
2773   if (MemVT == MVT::f128)
2774     return LowerF128Load(Op, DAG);
2775 
2776   return Op;
2777 }
2778 
2779 // Lower a f128 store into two f64 stores.
2780 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
2781   SDLoc dl(Op);
2782   StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
2783   assert(StNode && StNode->getOffset().isUndef()
2784          && "Unexpected node type");
2785   SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2786   SDValue SubRegOdd  = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2787 
2788   SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
2789                                     dl,
2790                                     MVT::f64,
2791                                     StNode->getValue(),
2792                                     SubRegEven);
2793   SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
2794                                     dl,
2795                                     MVT::f64,
2796                                     StNode->getValue(),
2797                                     SubRegOdd);
2798 
2799   unsigned alignment = StNode->getAlignment();
2800   if (alignment > 8)
2801     alignment = 8;
2802 
2803   SDValue OutChains[2];
2804   OutChains[0] =
2805       DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0),
2806                    StNode->getBasePtr(), MachinePointerInfo(), alignment);
2807   EVT addrVT = StNode->getBasePtr().getValueType();
2808   SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2809                               StNode->getBasePtr(),
2810                               DAG.getConstant(8, dl, addrVT));
2811   OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr,
2812                               MachinePointerInfo(), alignment);
2813   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2814 }
2815 
2816 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG)
2817 {
2818   SDLoc dl(Op);
2819   StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
2820 
2821   EVT MemVT = St->getMemoryVT();
2822   if (MemVT == MVT::f128)
2823     return LowerF128Store(Op, DAG);
2824 
2825   if (MemVT == MVT::i64) {
2826     // Custom handling for i64 stores: turn it into a bitcast and a
2827     // v2i32 store.
2828     SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue());
2829     SDValue Chain = DAG.getStore(
2830         St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(),
2831         St->getAlignment(), St->getMemOperand()->getFlags(), St->getAAInfo());
2832     return Chain;
2833   }
2834 
2835   return SDValue();
2836 }
2837 
2838 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
2839   assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
2840          && "invalid opcode");
2841 
2842   SDLoc dl(Op);
2843 
2844   if (Op.getValueType() == MVT::f64)
2845     return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode());
2846   if (Op.getValueType() != MVT::f128)
2847     return Op;
2848 
2849   // Lower fabs/fneg on f128 to fabs/fneg on f64
2850   // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
2851   // (As with LowerF64Op, on little-endian, we need to negate the odd
2852   // subreg)
2853 
2854   SDValue SrcReg128 = Op.getOperand(0);
2855   SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
2856                                             SrcReg128);
2857   SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
2858                                             SrcReg128);
2859 
2860   if (DAG.getDataLayout().isLittleEndian()) {
2861     if (isV9)
2862       Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64);
2863     else
2864       Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode());
2865   } else {
2866     if (isV9)
2867       Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
2868     else
2869       Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode());
2870   }
2871 
2872   SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2873                                                  dl, MVT::f128), 0);
2874   DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
2875                                         DstReg128, Hi64);
2876   DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
2877                                         DstReg128, Lo64);
2878   return DstReg128;
2879 }
2880 
2881 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
2882 
2883   if (Op.getValueType() != MVT::i64)
2884     return Op;
2885 
2886   SDLoc dl(Op);
2887   SDValue Src1 = Op.getOperand(0);
2888   SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
2889   SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
2890                                DAG.getConstant(32, dl, MVT::i64));
2891   Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
2892 
2893   SDValue Src2 = Op.getOperand(1);
2894   SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
2895   SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
2896                                DAG.getConstant(32, dl, MVT::i64));
2897   Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
2898 
2899 
2900   bool hasChain = false;
2901   unsigned hiOpc = Op.getOpcode();
2902   switch (Op.getOpcode()) {
2903   default: llvm_unreachable("Invalid opcode");
2904   case ISD::ADDC: hiOpc = ISD::ADDE; break;
2905   case ISD::ADDE: hasChain = true; break;
2906   case ISD::SUBC: hiOpc = ISD::SUBE; break;
2907   case ISD::SUBE: hasChain = true; break;
2908   }
2909   SDValue Lo;
2910   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
2911   if (hasChain) {
2912     Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
2913                      Op.getOperand(2));
2914   } else {
2915     Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
2916   }
2917   SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
2918   SDValue Carry = Hi.getValue(1);
2919 
2920   Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
2921   Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
2922   Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
2923                    DAG.getConstant(32, dl, MVT::i64));
2924 
2925   SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
2926   SDValue Ops[2] = { Dst, Carry };
2927   return DAG.getMergeValues(Ops, dl);
2928 }
2929 
2930 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
2931 // in LegalizeDAG.cpp except the order of arguments to the library function.
2932 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
2933                                 const SparcTargetLowering &TLI)
2934 {
2935   unsigned opcode = Op.getOpcode();
2936   assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
2937 
2938   bool isSigned = (opcode == ISD::SMULO);
2939   EVT VT = MVT::i64;
2940   EVT WideVT = MVT::i128;
2941   SDLoc dl(Op);
2942   SDValue LHS = Op.getOperand(0);
2943 
2944   if (LHS.getValueType() != VT)
2945     return Op;
2946 
2947   SDValue ShiftAmt = DAG.getConstant(63, dl, VT);
2948 
2949   SDValue RHS = Op.getOperand(1);
2950   SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
2951   SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
2952   SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
2953 
2954   TargetLowering::MakeLibCallOptions CallOptions;
2955   CallOptions.setSExt(isSigned);
2956   SDValue MulResult = TLI.makeLibCall(DAG,
2957                                       RTLIB::MUL_I128, WideVT,
2958                                       Args, CallOptions, dl).first;
2959   SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
2960                                    MulResult, DAG.getIntPtrConstant(0, dl));
2961   SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
2962                                 MulResult, DAG.getIntPtrConstant(1, dl));
2963   if (isSigned) {
2964     SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
2965     TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
2966   } else {
2967     TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT),
2968                            ISD::SETNE);
2969   }
2970   // MulResult is a node with an illegal type. Because such things are not
2971   // generally permitted during this phase of legalization, ensure that
2972   // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
2973   // been folded.
2974   assert(MulResult->use_empty() && "Illegally typed node still in use!");
2975 
2976   SDValue Ops[2] = { BottomHalf, TopHalf } ;
2977   return DAG.getMergeValues(Ops, dl);
2978 }
2979 
2980 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
2981   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
2982   // Expand with a fence.
2983   return SDValue();
2984 
2985   // Monotonic load/stores are legal.
2986   return Op;
2987 }
2988 
2989 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2990                                                      SelectionDAG &DAG) const {
2991   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2992   SDLoc dl(Op);
2993   switch (IntNo) {
2994   default: return SDValue();    // Don't custom lower most intrinsics.
2995   case Intrinsic::thread_pointer: {
2996     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2997     return DAG.getRegister(SP::G7, PtrVT);
2998   }
2999   }
3000 }
3001 
3002 SDValue SparcTargetLowering::
3003 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3004 
3005   bool hasHardQuad = Subtarget->hasHardQuad();
3006   bool isV9        = Subtarget->isV9();
3007 
3008   switch (Op.getOpcode()) {
3009   default: llvm_unreachable("Should not custom lower this!");
3010 
3011   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG, *this,
3012                                                        Subtarget);
3013   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG,
3014                                                       Subtarget);
3015   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3016   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3017   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
3018   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3019   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG, *this,
3020                                                        hasHardQuad);
3021   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG, *this,
3022                                                        hasHardQuad);
3023   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG, *this,
3024                                                        hasHardQuad);
3025   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG, *this,
3026                                                        hasHardQuad);
3027   case ISD::BR_CC:              return LowerBR_CC(Op, DAG, *this,
3028                                                   hasHardQuad);
3029   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG, *this,
3030                                                       hasHardQuad);
3031   case ISD::VASTART:            return LowerVASTART(Op, DAG, *this);
3032   case ISD::VAARG:              return LowerVAARG(Op, DAG);
3033   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
3034                                                                Subtarget);
3035 
3036   case ISD::LOAD:               return LowerLOAD(Op, DAG);
3037   case ISD::STORE:              return LowerSTORE(Op, DAG);
3038   case ISD::FADD:               return LowerF128Op(Op, DAG,
3039                                        getLibcallName(RTLIB::ADD_F128), 2);
3040   case ISD::FSUB:               return LowerF128Op(Op, DAG,
3041                                        getLibcallName(RTLIB::SUB_F128), 2);
3042   case ISD::FMUL:               return LowerF128Op(Op, DAG,
3043                                        getLibcallName(RTLIB::MUL_F128), 2);
3044   case ISD::FDIV:               return LowerF128Op(Op, DAG,
3045                                        getLibcallName(RTLIB::DIV_F128), 2);
3046   case ISD::FSQRT:              return LowerF128Op(Op, DAG,
3047                                        getLibcallName(RTLIB::SQRT_F128),1);
3048   case ISD::FABS:
3049   case ISD::FNEG:               return LowerFNEGorFABS(Op, DAG, isV9);
3050   case ISD::FP_EXTEND:          return LowerF128_FPEXTEND(Op, DAG, *this);
3051   case ISD::FP_ROUND:           return LowerF128_FPROUND(Op, DAG, *this);
3052   case ISD::ADDC:
3053   case ISD::ADDE:
3054   case ISD::SUBC:
3055   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
3056   case ISD::UMULO:
3057   case ISD::SMULO:              return LowerUMULO_SMULO(Op, DAG, *this);
3058   case ISD::ATOMIC_LOAD:
3059   case ISD::ATOMIC_STORE:       return LowerATOMIC_LOAD_STORE(Op, DAG);
3060   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3061   }
3062 }
3063 
3064 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C,
3065                                                     const SDLoc &DL,
3066                                                     SelectionDAG &DAG) const {
3067   APInt V = C->getValueAPF().bitcastToAPInt();
3068   SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32);
3069   SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32);
3070   if (DAG.getDataLayout().isLittleEndian())
3071     std::swap(Lo, Hi);
3072   return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo});
3073 }
3074 
3075 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N,
3076                                                    DAGCombinerInfo &DCI) const {
3077   SDLoc dl(N);
3078   SDValue Src = N->getOperand(0);
3079 
3080   if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 &&
3081       Src.getSimpleValueType() == MVT::f64)
3082     return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG);
3083 
3084   return SDValue();
3085 }
3086 
3087 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N,
3088                                                DAGCombinerInfo &DCI) const {
3089   switch (N->getOpcode()) {
3090   default:
3091     break;
3092   case ISD::BITCAST:
3093     return PerformBITCASTCombine(N, DCI);
3094   }
3095   return SDValue();
3096 }
3097 
3098 MachineBasicBlock *
3099 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
3100                                                  MachineBasicBlock *BB) const {
3101   switch (MI.getOpcode()) {
3102   default: llvm_unreachable("Unknown SELECT_CC!");
3103   case SP::SELECT_CC_Int_ICC:
3104   case SP::SELECT_CC_FP_ICC:
3105   case SP::SELECT_CC_DFP_ICC:
3106   case SP::SELECT_CC_QFP_ICC:
3107     return expandSelectCC(MI, BB, SP::BCOND);
3108   case SP::SELECT_CC_Int_FCC:
3109   case SP::SELECT_CC_FP_FCC:
3110   case SP::SELECT_CC_DFP_FCC:
3111   case SP::SELECT_CC_QFP_FCC:
3112     return expandSelectCC(MI, BB, SP::FBCOND);
3113   }
3114 }
3115 
3116 MachineBasicBlock *
3117 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB,
3118                                     unsigned BROpcode) const {
3119   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
3120   DebugLoc dl = MI.getDebugLoc();
3121   unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm();
3122 
3123   // To "insert" a SELECT_CC instruction, we actually have to insert the
3124   // triangle control-flow pattern. The incoming instruction knows the
3125   // destination vreg to set, the condition code register to branch on, the
3126   // true/false values to select between, and the condition code for the branch.
3127   //
3128   // We produce the following control flow:
3129   //     ThisMBB
3130   //     |  \
3131   //     |  IfFalseMBB
3132   //     | /
3133   //    SinkMBB
3134   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3135   MachineFunction::iterator It = ++BB->getIterator();
3136 
3137   MachineBasicBlock *ThisMBB = BB;
3138   MachineFunction *F = BB->getParent();
3139   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
3140   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
3141   F->insert(It, IfFalseMBB);
3142   F->insert(It, SinkMBB);
3143 
3144   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
3145   SinkMBB->splice(SinkMBB->begin(), ThisMBB,
3146                   std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end());
3147   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
3148 
3149   // Set the new successors for ThisMBB.
3150   ThisMBB->addSuccessor(IfFalseMBB);
3151   ThisMBB->addSuccessor(SinkMBB);
3152 
3153   BuildMI(ThisMBB, dl, TII.get(BROpcode))
3154     .addMBB(SinkMBB)
3155     .addImm(CC);
3156 
3157   // IfFalseMBB just falls through to SinkMBB.
3158   IfFalseMBB->addSuccessor(SinkMBB);
3159 
3160   // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ]
3161   BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI),
3162           MI.getOperand(0).getReg())
3163       .addReg(MI.getOperand(1).getReg())
3164       .addMBB(ThisMBB)
3165       .addReg(MI.getOperand(2).getReg())
3166       .addMBB(IfFalseMBB);
3167 
3168   MI.eraseFromParent(); // The pseudo instruction is gone now.
3169   return SinkMBB;
3170 }
3171 
3172 //===----------------------------------------------------------------------===//
3173 //                         Sparc Inline Assembly Support
3174 //===----------------------------------------------------------------------===//
3175 
3176 /// getConstraintType - Given a constraint letter, return the type of
3177 /// constraint it is for this target.
3178 SparcTargetLowering::ConstraintType
3179 SparcTargetLowering::getConstraintType(StringRef Constraint) const {
3180   if (Constraint.size() == 1) {
3181     switch (Constraint[0]) {
3182     default:  break;
3183     case 'r':
3184     case 'f':
3185     case 'e':
3186       return C_RegisterClass;
3187     case 'I': // SIMM13
3188       return C_Immediate;
3189     }
3190   }
3191 
3192   return TargetLowering::getConstraintType(Constraint);
3193 }
3194 
3195 TargetLowering::ConstraintWeight SparcTargetLowering::
3196 getSingleConstraintMatchWeight(AsmOperandInfo &info,
3197                                const char *constraint) const {
3198   ConstraintWeight weight = CW_Invalid;
3199   Value *CallOperandVal = info.CallOperandVal;
3200   // If we don't have a value, we can't do a match,
3201   // but allow it at the lowest weight.
3202   if (!CallOperandVal)
3203     return CW_Default;
3204 
3205   // Look at the constraint type.
3206   switch (*constraint) {
3207   default:
3208     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3209     break;
3210   case 'I': // SIMM13
3211     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
3212       if (isInt<13>(C->getSExtValue()))
3213         weight = CW_Constant;
3214     }
3215     break;
3216   }
3217   return weight;
3218 }
3219 
3220 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3221 /// vector.  If it is invalid, don't add anything to Ops.
3222 void SparcTargetLowering::
3223 LowerAsmOperandForConstraint(SDValue Op,
3224                              std::string &Constraint,
3225                              std::vector<SDValue> &Ops,
3226                              SelectionDAG &DAG) const {
3227   SDValue Result(nullptr, 0);
3228 
3229   // Only support length 1 constraints for now.
3230   if (Constraint.length() > 1)
3231     return;
3232 
3233   char ConstraintLetter = Constraint[0];
3234   switch (ConstraintLetter) {
3235   default: break;
3236   case 'I':
3237     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3238       if (isInt<13>(C->getSExtValue())) {
3239         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
3240                                        Op.getValueType());
3241         break;
3242       }
3243       return;
3244     }
3245   }
3246 
3247   if (Result.getNode()) {
3248     Ops.push_back(Result);
3249     return;
3250   }
3251   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3252 }
3253 
3254 std::pair<unsigned, const TargetRegisterClass *>
3255 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3256                                                   StringRef Constraint,
3257                                                   MVT VT) const {
3258   if (Constraint.size() == 1) {
3259     switch (Constraint[0]) {
3260     case 'r':
3261       if (VT == MVT::v2i32)
3262         return std::make_pair(0U, &SP::IntPairRegClass);
3263       else if (Subtarget->is64Bit())
3264         return std::make_pair(0U, &SP::I64RegsRegClass);
3265       else
3266         return std::make_pair(0U, &SP::IntRegsRegClass);
3267     case 'f':
3268       if (VT == MVT::f32 || VT == MVT::i32)
3269         return std::make_pair(0U, &SP::FPRegsRegClass);
3270       else if (VT == MVT::f64 || VT == MVT::i64)
3271         return std::make_pair(0U, &SP::LowDFPRegsRegClass);
3272       else if (VT == MVT::f128)
3273         return std::make_pair(0U, &SP::LowQFPRegsRegClass);
3274       // This will generate an error message
3275       return std::make_pair(0U, nullptr);
3276     case 'e':
3277       if (VT == MVT::f32 || VT == MVT::i32)
3278         return std::make_pair(0U, &SP::FPRegsRegClass);
3279       else if (VT == MVT::f64 || VT == MVT::i64 )
3280         return std::make_pair(0U, &SP::DFPRegsRegClass);
3281       else if (VT == MVT::f128)
3282         return std::make_pair(0U, &SP::QFPRegsRegClass);
3283       // This will generate an error message
3284       return std::make_pair(0U, nullptr);
3285     }
3286   } else if (!Constraint.empty() && Constraint.size() <= 5
3287               && Constraint[0] == '{' && *(Constraint.end()-1) == '}') {
3288     // constraint = '{r<d>}'
3289     // Remove the braces from around the name.
3290     StringRef name(Constraint.data()+1, Constraint.size()-2);
3291     // Handle register aliases:
3292     //       r0-r7   -> g0-g7
3293     //       r8-r15  -> o0-o7
3294     //       r16-r23 -> l0-l7
3295     //       r24-r31 -> i0-i7
3296     uint64_t intVal = 0;
3297     if (name.substr(0, 1).equals("r")
3298         && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) {
3299       const char regTypes[] = { 'g', 'o', 'l', 'i' };
3300       char regType = regTypes[intVal/8];
3301       char regIdx = '0' + (intVal % 8);
3302       char tmp[] = { '{', regType, regIdx, '}', 0 };
3303       std::string newConstraint = std::string(tmp);
3304       return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint,
3305                                                           VT);
3306     }
3307     if (name.substr(0, 1).equals("f") &&
3308         !name.substr(1).getAsInteger(10, intVal) && intVal <= 63) {
3309       std::string newConstraint;
3310 
3311       if (VT == MVT::f32 || VT == MVT::Other) {
3312         newConstraint = "{f" + utostr(intVal) + "}";
3313       } else if (VT == MVT::f64 && (intVal % 2 == 0)) {
3314         newConstraint = "{d" + utostr(intVal / 2) + "}";
3315       } else if (VT == MVT::f128 && (intVal % 4 == 0)) {
3316         newConstraint = "{q" + utostr(intVal / 4) + "}";
3317       } else {
3318         return std::make_pair(0U, nullptr);
3319       }
3320       return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint,
3321                                                           VT);
3322     }
3323   }
3324 
3325   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3326 }
3327 
3328 bool
3329 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3330   // The Sparc target isn't yet aware of offsets.
3331   return false;
3332 }
3333 
3334 void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
3335                                              SmallVectorImpl<SDValue>& Results,
3336                                              SelectionDAG &DAG) const {
3337 
3338   SDLoc dl(N);
3339 
3340   RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
3341 
3342   switch (N->getOpcode()) {
3343   default:
3344     llvm_unreachable("Do not know how to custom type legalize this operation!");
3345 
3346   case ISD::FP_TO_SINT:
3347   case ISD::FP_TO_UINT:
3348     // Custom lower only if it involves f128 or i64.
3349     if (N->getOperand(0).getValueType() != MVT::f128
3350         || N->getValueType(0) != MVT::i64)
3351       return;
3352     libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
3353                ? RTLIB::FPTOSINT_F128_I64
3354                : RTLIB::FPTOUINT_F128_I64);
3355 
3356     Results.push_back(LowerF128Op(SDValue(N, 0),
3357                                   DAG,
3358                                   getLibcallName(libCall),
3359                                   1));
3360     return;
3361   case ISD::READCYCLECOUNTER: {
3362     assert(Subtarget->hasLeonCycleCounter());
3363     SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32);
3364     SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32);
3365     SDValue Ops[] = { Lo, Hi };
3366     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops);
3367     Results.push_back(Pair);
3368     Results.push_back(N->getOperand(0));
3369     return;
3370   }
3371   case ISD::SINT_TO_FP:
3372   case ISD::UINT_TO_FP:
3373     // Custom lower only if it involves f128 or i64.
3374     if (N->getValueType(0) != MVT::f128
3375         || N->getOperand(0).getValueType() != MVT::i64)
3376       return;
3377 
3378     libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
3379                ? RTLIB::SINTTOFP_I64_F128
3380                : RTLIB::UINTTOFP_I64_F128);
3381 
3382     Results.push_back(LowerF128Op(SDValue(N, 0),
3383                                   DAG,
3384                                   getLibcallName(libCall),
3385                                   1));
3386     return;
3387   case ISD::LOAD: {
3388     LoadSDNode *Ld = cast<LoadSDNode>(N);
3389     // Custom handling only for i64: turn i64 load into a v2i32 load,
3390     // and a bitcast.
3391     if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64)
3392       return;
3393 
3394     SDLoc dl(N);
3395     SDValue LoadRes = DAG.getExtLoad(
3396         Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(),
3397         Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, Ld->getAlignment(),
3398         Ld->getMemOperand()->getFlags(), Ld->getAAInfo());
3399 
3400     SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes);
3401     Results.push_back(Res);
3402     Results.push_back(LoadRes.getValue(1));
3403     return;
3404   }
3405   }
3406 }
3407 
3408 // Override to enable LOAD_STACK_GUARD lowering on Linux.
3409 bool SparcTargetLowering::useLoadStackGuardNode() const {
3410   if (!Subtarget->isTargetLinux())
3411     return TargetLowering::useLoadStackGuardNode();
3412   return true;
3413 }
3414 
3415 // Override to disable global variable loading on Linux.
3416 void SparcTargetLowering::insertSSPDeclarations(Module &M) const {
3417   if (!Subtarget->isTargetLinux())
3418     return TargetLowering::insertSSPDeclarations(M);
3419 }
3420