1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Sparc uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SparcISelLowering.h" 15 #include "MCTargetDesc/SparcMCExpr.h" 16 #include "SparcMachineFunctionInfo.h" 17 #include "SparcRegisterInfo.h" 18 #include "SparcTargetMachine.h" 19 #include "SparcTargetObjectFile.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 using namespace llvm; 35 36 37 //===----------------------------------------------------------------------===// 38 // Calling Convention Implementation 39 //===----------------------------------------------------------------------===// 40 41 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 42 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, CCState &State) 44 { 45 assert (ArgFlags.isSRet()); 46 47 // Assign SRet argument. 48 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 49 0, 50 LocVT, LocInfo)); 51 return true; 52 } 53 54 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 55 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 56 ISD::ArgFlagsTy &ArgFlags, CCState &State) 57 { 58 static const MCPhysReg RegList[] = { 59 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 60 }; 61 // Try to get first reg. 62 if (Register Reg = State.AllocateReg(RegList)) { 63 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 64 } else { 65 // Assign whole thing in stack. 66 State.addLoc(CCValAssign::getCustomMem( 67 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); 68 return true; 69 } 70 71 // Try to get second reg. 72 if (Register Reg = State.AllocateReg(RegList)) 73 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 74 else 75 State.addLoc(CCValAssign::getCustomMem( 76 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); 77 return true; 78 } 79 80 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 81 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 82 ISD::ArgFlagsTy &ArgFlags, CCState &State) 83 { 84 static const MCPhysReg RegList[] = { 85 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 86 }; 87 88 // Try to get first reg. 89 if (Register Reg = State.AllocateReg(RegList)) 90 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 91 else 92 return false; 93 94 // Try to get second reg. 95 if (Register Reg = State.AllocateReg(RegList)) 96 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 97 else 98 return false; 99 100 return true; 101 } 102 103 // Allocate a full-sized argument for the 64-bit ABI. 104 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, 105 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 106 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 107 assert((LocVT == MVT::f32 || LocVT == MVT::f128 108 || LocVT.getSizeInBits() == 64) && 109 "Can't handle non-64 bits locations"); 110 111 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 112 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 113 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); 114 unsigned Offset = State.AllocateStack(size, alignment); 115 unsigned Reg = 0; 116 117 if (LocVT == MVT::i64 && Offset < 6*8) 118 // Promote integers to %i0-%i5. 119 Reg = SP::I0 + Offset/8; 120 else if (LocVT == MVT::f64 && Offset < 16*8) 121 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 122 Reg = SP::D0 + Offset/8; 123 else if (LocVT == MVT::f32 && Offset < 16*8) 124 // Promote floats to %f1, %f3, ... 125 Reg = SP::F1 + Offset/4; 126 else if (LocVT == MVT::f128 && Offset < 16*8) 127 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 128 Reg = SP::Q0 + Offset/16; 129 130 // Promote to register when possible, otherwise use the stack slot. 131 if (Reg) { 132 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 133 return true; 134 } 135 136 // This argument goes on the stack in an 8-byte slot. 137 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 138 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 139 if (LocVT == MVT::f32) 140 Offset += 4; 141 142 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 143 return true; 144 } 145 146 // Allocate a half-sized argument for the 64-bit ABI. 147 // 148 // This is used when passing { float, int } structs by value in registers. 149 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, 150 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 151 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 152 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 153 unsigned Offset = State.AllocateStack(4, Align(4)); 154 155 if (LocVT == MVT::f32 && Offset < 16*8) { 156 // Promote floats to %f0-%f31. 157 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 158 LocVT, LocInfo)); 159 return true; 160 } 161 162 if (LocVT == MVT::i32 && Offset < 6*8) { 163 // Promote integers to %i0-%i5, using half the register. 164 unsigned Reg = SP::I0 + Offset/8; 165 LocVT = MVT::i64; 166 LocInfo = CCValAssign::AExt; 167 168 // Set the Custom bit if this i32 goes in the high bits of a register. 169 if (Offset % 8 == 0) 170 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 171 LocVT, LocInfo)); 172 else 173 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 174 return true; 175 } 176 177 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 178 return true; 179 } 180 181 #include "SparcGenCallingConv.inc" 182 183 // The calling conventions in SparcCallingConv.td are described in terms of the 184 // callee's register window. This function translates registers to the 185 // corresponding caller window %o register. 186 static unsigned toCallerWindow(unsigned Reg) { 187 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 188 "Unexpected enum"); 189 if (Reg >= SP::I0 && Reg <= SP::I7) 190 return Reg - SP::I0 + SP::O0; 191 return Reg; 192 } 193 194 SDValue 195 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 196 bool IsVarArg, 197 const SmallVectorImpl<ISD::OutputArg> &Outs, 198 const SmallVectorImpl<SDValue> &OutVals, 199 const SDLoc &DL, SelectionDAG &DAG) const { 200 if (Subtarget->is64Bit()) 201 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 202 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 203 } 204 205 SDValue 206 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 207 bool IsVarArg, 208 const SmallVectorImpl<ISD::OutputArg> &Outs, 209 const SmallVectorImpl<SDValue> &OutVals, 210 const SDLoc &DL, SelectionDAG &DAG) const { 211 MachineFunction &MF = DAG.getMachineFunction(); 212 213 // CCValAssign - represent the assignment of the return value to locations. 214 SmallVector<CCValAssign, 16> RVLocs; 215 216 // CCState - Info about the registers and stack slot. 217 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 218 *DAG.getContext()); 219 220 // Analyze return values. 221 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 222 223 SDValue Flag; 224 SmallVector<SDValue, 4> RetOps(1, Chain); 225 // Make room for the return address offset. 226 RetOps.push_back(SDValue()); 227 228 // Copy the result values into the output registers. 229 for (unsigned i = 0, realRVLocIdx = 0; 230 i != RVLocs.size(); 231 ++i, ++realRVLocIdx) { 232 CCValAssign &VA = RVLocs[i]; 233 assert(VA.isRegLoc() && "Can only return in registers!"); 234 235 SDValue Arg = OutVals[realRVLocIdx]; 236 237 if (VA.needsCustom()) { 238 assert(VA.getLocVT() == MVT::v2i32); 239 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 240 // happen by default if this wasn't a legal type) 241 242 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 243 Arg, 244 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 245 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 246 Arg, 247 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 248 249 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag); 250 Flag = Chain.getValue(1); 251 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 252 VA = RVLocs[++i]; // skip ahead to next loc 253 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 254 Flag); 255 } else 256 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 257 258 // Guarantee that all emitted copies are stuck together with flags. 259 Flag = Chain.getValue(1); 260 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 261 } 262 263 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 264 // If the function returns a struct, copy the SRetReturnReg to I0 265 if (MF.getFunction().hasStructRetAttr()) { 266 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 267 Register Reg = SFI->getSRetReturnReg(); 268 if (!Reg) 269 llvm_unreachable("sret virtual register not created in the entry block"); 270 auto PtrVT = getPointerTy(DAG.getDataLayout()); 271 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 272 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); 273 Flag = Chain.getValue(1); 274 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 275 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 276 } 277 278 RetOps[0] = Chain; // Update chain. 279 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 280 281 // Add the flag if we have it. 282 if (Flag.getNode()) 283 RetOps.push_back(Flag); 284 285 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 286 } 287 288 // Lower return values for the 64-bit ABI. 289 // Return values are passed the exactly the same way as function arguments. 290 SDValue 291 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 292 bool IsVarArg, 293 const SmallVectorImpl<ISD::OutputArg> &Outs, 294 const SmallVectorImpl<SDValue> &OutVals, 295 const SDLoc &DL, SelectionDAG &DAG) const { 296 // CCValAssign - represent the assignment of the return value to locations. 297 SmallVector<CCValAssign, 16> RVLocs; 298 299 // CCState - Info about the registers and stack slot. 300 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 301 *DAG.getContext()); 302 303 // Analyze return values. 304 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 305 306 SDValue Flag; 307 SmallVector<SDValue, 4> RetOps(1, Chain); 308 309 // The second operand on the return instruction is the return address offset. 310 // The return address is always %i7+8 with the 64-bit ABI. 311 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 312 313 // Copy the result values into the output registers. 314 for (unsigned i = 0; i != RVLocs.size(); ++i) { 315 CCValAssign &VA = RVLocs[i]; 316 assert(VA.isRegLoc() && "Can only return in registers!"); 317 SDValue OutVal = OutVals[i]; 318 319 // Integer return values must be sign or zero extended by the callee. 320 switch (VA.getLocInfo()) { 321 case CCValAssign::Full: break; 322 case CCValAssign::SExt: 323 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 324 break; 325 case CCValAssign::ZExt: 326 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 327 break; 328 case CCValAssign::AExt: 329 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 330 break; 331 default: 332 llvm_unreachable("Unknown loc info!"); 333 } 334 335 // The custom bit on an i32 return value indicates that it should be passed 336 // in the high bits of the register. 337 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 338 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 339 DAG.getConstant(32, DL, MVT::i32)); 340 341 // The next value may go in the low bits of the same register. 342 // Handle both at once. 343 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 344 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 345 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 346 // Skip the next value, it's already done. 347 ++i; 348 } 349 } 350 351 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 352 353 // Guarantee that all emitted copies are stuck together with flags. 354 Flag = Chain.getValue(1); 355 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 356 } 357 358 RetOps[0] = Chain; // Update chain. 359 360 // Add the flag if we have it. 361 if (Flag.getNode()) 362 RetOps.push_back(Flag); 363 364 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 365 } 366 367 SDValue SparcTargetLowering::LowerFormalArguments( 368 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 369 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 370 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 371 if (Subtarget->is64Bit()) 372 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 373 DL, DAG, InVals); 374 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 375 DL, DAG, InVals); 376 } 377 378 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 379 /// passed in either one or two GPRs, including FP values. TODO: we should 380 /// pass FP values in FP registers for fastcc functions. 381 SDValue SparcTargetLowering::LowerFormalArguments_32( 382 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 383 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 384 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 385 MachineFunction &MF = DAG.getMachineFunction(); 386 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 387 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 388 389 // Assign locations to all of the incoming arguments. 390 SmallVector<CCValAssign, 16> ArgLocs; 391 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 392 *DAG.getContext()); 393 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 394 395 const unsigned StackOffset = 92; 396 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 397 398 unsigned InIdx = 0; 399 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 400 CCValAssign &VA = ArgLocs[i]; 401 402 if (Ins[InIdx].Flags.isSRet()) { 403 if (InIdx != 0) 404 report_fatal_error("sparc only supports sret on the first parameter"); 405 // Get SRet from [%fp+64]. 406 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); 407 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 408 SDValue Arg = 409 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 410 InVals.push_back(Arg); 411 continue; 412 } 413 414 if (VA.isRegLoc()) { 415 if (VA.needsCustom()) { 416 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 417 418 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 419 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 420 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 421 422 assert(i+1 < e); 423 CCValAssign &NextVA = ArgLocs[++i]; 424 425 SDValue LoVal; 426 if (NextVA.isMemLoc()) { 427 int FrameIdx = MF.getFrameInfo(). 428 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 429 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 430 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 431 } else { 432 Register loReg = MF.addLiveIn(NextVA.getLocReg(), 433 &SP::IntRegsRegClass); 434 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 435 } 436 437 if (IsLittleEndian) 438 std::swap(LoVal, HiVal); 439 440 SDValue WholeValue = 441 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 442 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 443 InVals.push_back(WholeValue); 444 continue; 445 } 446 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 447 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 448 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 449 if (VA.getLocVT() == MVT::f32) 450 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 451 else if (VA.getLocVT() != MVT::i32) { 452 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 453 DAG.getValueType(VA.getLocVT())); 454 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 455 } 456 InVals.push_back(Arg); 457 continue; 458 } 459 460 assert(VA.isMemLoc()); 461 462 unsigned Offset = VA.getLocMemOffset()+StackOffset; 463 auto PtrVT = getPointerTy(DAG.getDataLayout()); 464 465 if (VA.needsCustom()) { 466 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 467 // If it is double-word aligned, just load. 468 if (Offset % 8 == 0) { 469 int FI = MF.getFrameInfo().CreateFixedObject(8, 470 Offset, 471 true); 472 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 473 SDValue Load = 474 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 475 InVals.push_back(Load); 476 continue; 477 } 478 479 int FI = MF.getFrameInfo().CreateFixedObject(4, 480 Offset, 481 true); 482 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 483 SDValue HiVal = 484 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 485 int FI2 = MF.getFrameInfo().CreateFixedObject(4, 486 Offset+4, 487 true); 488 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 489 490 SDValue LoVal = 491 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); 492 493 if (IsLittleEndian) 494 std::swap(LoVal, HiVal); 495 496 SDValue WholeValue = 497 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 498 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 499 InVals.push_back(WholeValue); 500 continue; 501 } 502 503 int FI = MF.getFrameInfo().CreateFixedObject(4, 504 Offset, 505 true); 506 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 507 SDValue Load ; 508 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 509 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 510 } else if (VA.getValVT() == MVT::f128) { 511 report_fatal_error("SPARCv8 does not handle f128 in calls; " 512 "pass indirectly"); 513 } else { 514 // We shouldn't see any other value types here. 515 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 516 } 517 InVals.push_back(Load); 518 } 519 520 if (MF.getFunction().hasStructRetAttr()) { 521 // Copy the SRet Argument to SRetReturnReg. 522 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 523 Register Reg = SFI->getSRetReturnReg(); 524 if (!Reg) { 525 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 526 SFI->setSRetReturnReg(Reg); 527 } 528 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 529 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 530 } 531 532 // Store remaining ArgRegs to the stack if this is a varargs function. 533 if (isVarArg) { 534 static const MCPhysReg ArgRegs[] = { 535 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 536 }; 537 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 538 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 539 unsigned ArgOffset = CCInfo.getNextStackOffset(); 540 if (NumAllocated == 6) 541 ArgOffset += StackOffset; 542 else { 543 assert(!ArgOffset); 544 ArgOffset = 68+4*NumAllocated; 545 } 546 547 // Remember the vararg offset for the va_start implementation. 548 FuncInfo->setVarArgsFrameOffset(ArgOffset); 549 550 std::vector<SDValue> OutChains; 551 552 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 553 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 554 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 555 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 556 557 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, 558 true); 559 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 560 561 OutChains.push_back( 562 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); 563 ArgOffset += 4; 564 } 565 566 if (!OutChains.empty()) { 567 OutChains.push_back(Chain); 568 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 569 } 570 } 571 572 return Chain; 573 } 574 575 // Lower formal arguments for the 64 bit ABI. 576 SDValue SparcTargetLowering::LowerFormalArguments_64( 577 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 578 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 579 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 580 MachineFunction &MF = DAG.getMachineFunction(); 581 582 // Analyze arguments according to CC_Sparc64. 583 SmallVector<CCValAssign, 16> ArgLocs; 584 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 585 *DAG.getContext()); 586 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 587 588 // The argument array begins at %fp+BIAS+128, after the register save area. 589 const unsigned ArgArea = 128; 590 591 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 592 CCValAssign &VA = ArgLocs[i]; 593 if (VA.isRegLoc()) { 594 // This argument is passed in a register. 595 // All integer register arguments are promoted by the caller to i64. 596 597 // Create a virtual register for the promoted live-in value. 598 Register VReg = MF.addLiveIn(VA.getLocReg(), 599 getRegClassFor(VA.getLocVT())); 600 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 601 602 // Get the high bits for i32 struct elements. 603 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 604 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 605 DAG.getConstant(32, DL, MVT::i32)); 606 607 // The caller promoted the argument, so insert an Assert?ext SDNode so we 608 // won't promote the value again in this function. 609 switch (VA.getLocInfo()) { 610 case CCValAssign::SExt: 611 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 612 DAG.getValueType(VA.getValVT())); 613 break; 614 case CCValAssign::ZExt: 615 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 616 DAG.getValueType(VA.getValVT())); 617 break; 618 default: 619 break; 620 } 621 622 // Truncate the register down to the argument type. 623 if (VA.isExtInLoc()) 624 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 625 626 InVals.push_back(Arg); 627 continue; 628 } 629 630 // The registers are exhausted. This argument was passed on the stack. 631 assert(VA.isMemLoc()); 632 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 633 // beginning of the arguments area at %fp+BIAS+128. 634 unsigned Offset = VA.getLocMemOffset() + ArgArea; 635 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 636 // Adjust offset for extended arguments, SPARC is big-endian. 637 // The caller will have written the full slot with extended bytes, but we 638 // prefer our own extending loads. 639 if (VA.isExtInLoc()) 640 Offset += 8 - ValSize; 641 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 642 InVals.push_back( 643 DAG.getLoad(VA.getValVT(), DL, Chain, 644 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 645 MachinePointerInfo::getFixedStack(MF, FI))); 646 } 647 648 if (!IsVarArg) 649 return Chain; 650 651 // This function takes variable arguments, some of which may have been passed 652 // in registers %i0-%i5. Variable floating point arguments are never passed 653 // in floating point registers. They go on %i0-%i5 or on the stack like 654 // integer arguments. 655 // 656 // The va_start intrinsic needs to know the offset to the first variable 657 // argument. 658 unsigned ArgOffset = CCInfo.getNextStackOffset(); 659 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 660 // Skip the 128 bytes of register save area. 661 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 662 Subtarget->getStackPointerBias()); 663 664 // Save the variable arguments that were passed in registers. 665 // The caller is required to reserve stack space for 6 arguments regardless 666 // of how many arguments were actually passed. 667 SmallVector<SDValue, 8> OutChains; 668 for (; ArgOffset < 6*8; ArgOffset += 8) { 669 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 670 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 671 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); 672 auto PtrVT = getPointerTy(MF.getDataLayout()); 673 OutChains.push_back( 674 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 675 MachinePointerInfo::getFixedStack(MF, FI))); 676 } 677 678 if (!OutChains.empty()) 679 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 680 681 return Chain; 682 } 683 684 SDValue 685 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 686 SmallVectorImpl<SDValue> &InVals) const { 687 if (Subtarget->is64Bit()) 688 return LowerCall_64(CLI, InVals); 689 return LowerCall_32(CLI, InVals); 690 } 691 692 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 693 const CallBase *Call) { 694 if (Call) 695 return Call->hasFnAttr(Attribute::ReturnsTwice); 696 697 const Function *CalleeFn = nullptr; 698 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 699 CalleeFn = dyn_cast<Function>(G->getGlobal()); 700 } else if (ExternalSymbolSDNode *E = 701 dyn_cast<ExternalSymbolSDNode>(Callee)) { 702 const Function &Fn = DAG.getMachineFunction().getFunction(); 703 const Module *M = Fn.getParent(); 704 const char *CalleeName = E->getSymbol(); 705 CalleeFn = M->getFunction(CalleeName); 706 } 707 708 if (!CalleeFn) 709 return false; 710 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 711 } 712 713 // Lower a call for the 32-bit ABI. 714 SDValue 715 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 716 SmallVectorImpl<SDValue> &InVals) const { 717 SelectionDAG &DAG = CLI.DAG; 718 SDLoc &dl = CLI.DL; 719 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 720 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 721 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 722 SDValue Chain = CLI.Chain; 723 SDValue Callee = CLI.Callee; 724 bool &isTailCall = CLI.IsTailCall; 725 CallingConv::ID CallConv = CLI.CallConv; 726 bool isVarArg = CLI.IsVarArg; 727 728 // Sparc target does not yet support tail call optimization. 729 isTailCall = false; 730 731 // Analyze operands of the call, assigning locations to each operand. 732 SmallVector<CCValAssign, 16> ArgLocs; 733 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 734 *DAG.getContext()); 735 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 736 737 // Get the size of the outgoing arguments stack space requirement. 738 unsigned ArgsSize = CCInfo.getNextStackOffset(); 739 740 // Keep stack frames 8-byte aligned. 741 ArgsSize = (ArgsSize+7) & ~7; 742 743 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 744 745 // Create local copies for byval args. 746 SmallVector<SDValue, 8> ByValArgs; 747 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 748 ISD::ArgFlagsTy Flags = Outs[i].Flags; 749 if (!Flags.isByVal()) 750 continue; 751 752 SDValue Arg = OutVals[i]; 753 unsigned Size = Flags.getByValSize(); 754 Align Alignment = Flags.getNonZeroByValAlign(); 755 756 if (Size > 0U) { 757 int FI = MFI.CreateStackObject(Size, Alignment, false); 758 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 759 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 760 761 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, 762 false, // isVolatile, 763 (Size <= 32), // AlwaysInline if size <= 32, 764 false, // isTailCall 765 MachinePointerInfo(), MachinePointerInfo()); 766 ByValArgs.push_back(FIPtr); 767 } 768 else { 769 SDValue nullVal; 770 ByValArgs.push_back(nullVal); 771 } 772 } 773 774 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); 775 776 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 777 SmallVector<SDValue, 8> MemOpChains; 778 779 const unsigned StackOffset = 92; 780 bool hasStructRetAttr = false; 781 unsigned SRetArgSize = 0; 782 // Walk the register/memloc assignments, inserting copies/loads. 783 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 784 i != e; 785 ++i, ++realArgIdx) { 786 CCValAssign &VA = ArgLocs[i]; 787 SDValue Arg = OutVals[realArgIdx]; 788 789 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 790 791 // Use local copy if it is a byval arg. 792 if (Flags.isByVal()) { 793 Arg = ByValArgs[byvalArgIdx++]; 794 if (!Arg) { 795 continue; 796 } 797 } 798 799 // Promote the value if needed. 800 switch (VA.getLocInfo()) { 801 default: llvm_unreachable("Unknown loc info!"); 802 case CCValAssign::Full: break; 803 case CCValAssign::SExt: 804 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 805 break; 806 case CCValAssign::ZExt: 807 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 808 break; 809 case CCValAssign::AExt: 810 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 811 break; 812 case CCValAssign::BCvt: 813 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 814 break; 815 } 816 817 if (Flags.isSRet()) { 818 assert(VA.needsCustom()); 819 // store SRet argument in %sp+64 820 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 821 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 822 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 823 MemOpChains.push_back( 824 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 825 hasStructRetAttr = true; 826 // sret only allowed on first argument 827 assert(Outs[realArgIdx].OrigArgIndex == 0); 828 PointerType *Ty = cast<PointerType>(CLI.getArgs()[0].Ty); 829 Type *ElementTy = Ty->getElementType(); 830 SRetArgSize = DAG.getDataLayout().getTypeAllocSize(ElementTy); 831 continue; 832 } 833 834 if (VA.needsCustom()) { 835 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 836 837 if (VA.isMemLoc()) { 838 unsigned Offset = VA.getLocMemOffset() + StackOffset; 839 // if it is double-word aligned, just store. 840 if (Offset % 8 == 0) { 841 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 842 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 843 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 844 MemOpChains.push_back( 845 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 846 continue; 847 } 848 } 849 850 if (VA.getLocVT() == MVT::f64) { 851 // Move from the float value from float registers into the 852 // integer registers. 853 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) 854 Arg = bitcastConstantFPToInt(C, dl, DAG); 855 else 856 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 857 } 858 859 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 860 Arg, 861 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 862 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 863 Arg, 864 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 865 866 if (VA.isRegLoc()) { 867 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 868 assert(i+1 != e); 869 CCValAssign &NextVA = ArgLocs[++i]; 870 if (NextVA.isRegLoc()) { 871 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 872 } else { 873 // Store the second part in stack. 874 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 875 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 876 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 877 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 878 MemOpChains.push_back( 879 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 880 } 881 } else { 882 unsigned Offset = VA.getLocMemOffset() + StackOffset; 883 // Store the first part. 884 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 885 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 886 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 887 MemOpChains.push_back( 888 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); 889 // Store the second part. 890 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 891 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 892 MemOpChains.push_back( 893 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 894 } 895 continue; 896 } 897 898 // Arguments that can be passed on register must be kept at 899 // RegsToPass vector 900 if (VA.isRegLoc()) { 901 if (VA.getLocVT() != MVT::f32) { 902 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 903 continue; 904 } 905 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 906 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 907 continue; 908 } 909 910 assert(VA.isMemLoc()); 911 912 // Create a store off the stack pointer for this argument. 913 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 914 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 915 dl); 916 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 917 MemOpChains.push_back( 918 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 919 } 920 921 922 // Emit all stores, make sure the occur before any copies into physregs. 923 if (!MemOpChains.empty()) 924 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 925 926 // Build a sequence of copy-to-reg nodes chained together with token 927 // chain and flag operands which copy the outgoing args into registers. 928 // The InFlag in necessary since all emitted instructions must be 929 // stuck together. 930 SDValue InFlag; 931 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 932 Register Reg = toCallerWindow(RegsToPass[i].first); 933 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); 934 InFlag = Chain.getValue(1); 935 } 936 937 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 938 939 // If the callee is a GlobalAddress node (quite common, every direct call is) 940 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 941 // Likewise ExternalSymbol -> TargetExternalSymbol. 942 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0; 943 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 944 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 945 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 946 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 947 948 // Returns a chain & a flag for retval copy to use 949 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 950 SmallVector<SDValue, 8> Ops; 951 Ops.push_back(Chain); 952 Ops.push_back(Callee); 953 if (hasStructRetAttr) 954 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 955 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 956 Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first), 957 RegsToPass[i].second.getValueType())); 958 959 // Add a register mask operand representing the call-preserved registers. 960 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 961 const uint32_t *Mask = 962 ((hasReturnsTwice) 963 ? TRI->getRTCallPreservedMask(CallConv) 964 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 965 assert(Mask && "Missing call preserved mask for calling convention"); 966 Ops.push_back(DAG.getRegisterMask(Mask)); 967 968 if (InFlag.getNode()) 969 Ops.push_back(InFlag); 970 971 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 972 InFlag = Chain.getValue(1); 973 974 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true), 975 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 976 InFlag = Chain.getValue(1); 977 978 // Assign locations to each value returned by this call. 979 SmallVector<CCValAssign, 16> RVLocs; 980 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 981 *DAG.getContext()); 982 983 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 984 985 // Copy all of the result registers out of their specified physreg. 986 for (unsigned i = 0; i != RVLocs.size(); ++i) { 987 if (RVLocs[i].getLocVT() == MVT::v2i32) { 988 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 989 SDValue Lo = DAG.getCopyFromReg( 990 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag); 991 Chain = Lo.getValue(1); 992 InFlag = Lo.getValue(2); 993 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 994 DAG.getConstant(0, dl, MVT::i32)); 995 SDValue Hi = DAG.getCopyFromReg( 996 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag); 997 Chain = Hi.getValue(1); 998 InFlag = Hi.getValue(2); 999 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1000 DAG.getConstant(1, dl, MVT::i32)); 1001 InVals.push_back(Vec); 1002 } else { 1003 Chain = 1004 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1005 RVLocs[i].getValVT(), InFlag) 1006 .getValue(1); 1007 InFlag = Chain.getValue(2); 1008 InVals.push_back(Chain.getValue(0)); 1009 } 1010 } 1011 1012 return Chain; 1013 } 1014 1015 // FIXME? Maybe this could be a TableGen attribute on some registers and 1016 // this table could be generated automatically from RegInfo. 1017 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, 1018 const MachineFunction &MF) const { 1019 Register Reg = StringSwitch<Register>(RegName) 1020 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1021 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1022 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1023 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1024 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1025 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1026 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1027 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1028 .Default(0); 1029 1030 if (Reg) 1031 return Reg; 1032 1033 report_fatal_error("Invalid register name global variable"); 1034 } 1035 1036 // Fixup floating point arguments in the ... part of a varargs call. 1037 // 1038 // The SPARC v9 ABI requires that floating point arguments are treated the same 1039 // as integers when calling a varargs function. This does not apply to the 1040 // fixed arguments that are part of the function's prototype. 1041 // 1042 // This function post-processes a CCValAssign array created by 1043 // AnalyzeCallOperands(). 1044 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1045 ArrayRef<ISD::OutputArg> Outs) { 1046 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1047 const CCValAssign &VA = ArgLocs[i]; 1048 MVT ValTy = VA.getLocVT(); 1049 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1050 // varargs functions. 1051 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1052 continue; 1053 // The fixed arguments to a varargs function still go in FP registers. 1054 if (Outs[VA.getValNo()].IsFixed) 1055 continue; 1056 1057 // This floating point argument should be reassigned. 1058 CCValAssign NewVA; 1059 1060 // Determine the offset into the argument array. 1061 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1062 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1063 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1064 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1065 1066 if (Offset < 6*8) { 1067 // This argument should go in %i0-%i5. 1068 unsigned IReg = SP::I0 + Offset/8; 1069 if (ValTy == MVT::f64) 1070 // Full register, just bitconvert into i64. 1071 NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), 1072 IReg, MVT::i64, CCValAssign::BCvt); 1073 else { 1074 assert(ValTy == MVT::f128 && "Unexpected type!"); 1075 // Full register, just bitconvert into i128 -- We will lower this into 1076 // two i64s in LowerCall_64. 1077 NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), 1078 IReg, MVT::i128, CCValAssign::BCvt); 1079 } 1080 } else { 1081 // This needs to go to memory, we're out of integer registers. 1082 NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), 1083 Offset, VA.getLocVT(), VA.getLocInfo()); 1084 } 1085 ArgLocs[i] = NewVA; 1086 } 1087 } 1088 1089 // Lower a call for the 64-bit ABI. 1090 SDValue 1091 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1092 SmallVectorImpl<SDValue> &InVals) const { 1093 SelectionDAG &DAG = CLI.DAG; 1094 SDLoc DL = CLI.DL; 1095 SDValue Chain = CLI.Chain; 1096 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1097 1098 // Sparc target does not yet support tail call optimization. 1099 CLI.IsTailCall = false; 1100 1101 // Analyze operands of the call, assigning locations to each operand. 1102 SmallVector<CCValAssign, 16> ArgLocs; 1103 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1104 *DAG.getContext()); 1105 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1106 1107 // Get the size of the outgoing arguments stack space requirement. 1108 // The stack offset computed by CC_Sparc64 includes all arguments. 1109 // Called functions expect 6 argument words to exist in the stack frame, used 1110 // or not. 1111 unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()); 1112 1113 // Keep stack frames 16-byte aligned. 1114 ArgsSize = alignTo(ArgsSize, 16); 1115 1116 // Varargs calls require special treatment. 1117 if (CLI.IsVarArg) 1118 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1119 1120 // Adjust the stack pointer to make room for the arguments. 1121 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1122 // with more than 6 arguments. 1123 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 1124 1125 // Collect the set of registers to pass to the function and their values. 1126 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1127 // instruction. 1128 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 1129 1130 // Collect chains from all the memory opeations that copy arguments to the 1131 // stack. They must follow the stack pointer adjustment above and precede the 1132 // call instruction itself. 1133 SmallVector<SDValue, 8> MemOpChains; 1134 1135 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1136 const CCValAssign &VA = ArgLocs[i]; 1137 SDValue Arg = CLI.OutVals[i]; 1138 1139 // Promote the value if needed. 1140 switch (VA.getLocInfo()) { 1141 default: 1142 llvm_unreachable("Unknown location info!"); 1143 case CCValAssign::Full: 1144 break; 1145 case CCValAssign::SExt: 1146 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1147 break; 1148 case CCValAssign::ZExt: 1149 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1150 break; 1151 case CCValAssign::AExt: 1152 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1153 break; 1154 case CCValAssign::BCvt: 1155 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1156 // SPARC does not support i128 natively. Lower it into two i64, see below. 1157 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1158 || VA.getLocVT() != MVT::i128) 1159 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1160 break; 1161 } 1162 1163 if (VA.isRegLoc()) { 1164 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1165 && VA.getLocVT() == MVT::i128) { 1166 // Store and reload into the integer register reg and reg+1. 1167 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1168 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1169 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1170 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1171 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1172 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1173 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1174 1175 // Store to %sp+BIAS+128+Offset 1176 SDValue Store = 1177 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); 1178 // Load into Reg and Reg+1 1179 SDValue Hi64 = 1180 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); 1181 SDValue Lo64 = 1182 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); 1183 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), 1184 Hi64)); 1185 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1), 1186 Lo64)); 1187 continue; 1188 } 1189 1190 // The custom bit on an i32 return value indicates that it should be 1191 // passed in the high bits of the register. 1192 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1193 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1194 DAG.getConstant(32, DL, MVT::i32)); 1195 1196 // The next value may go in the low bits of the same register. 1197 // Handle both at once. 1198 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1199 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1200 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1201 CLI.OutVals[i+1]); 1202 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1203 // Skip the next value, it's already done. 1204 ++i; 1205 } 1206 } 1207 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg)); 1208 continue; 1209 } 1210 1211 assert(VA.isMemLoc()); 1212 1213 // Create a store off the stack pointer for this argument. 1214 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1215 // The argument area starts at %fp+BIAS+128 in the callee frame, 1216 // %sp+BIAS+128 in ours. 1217 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1218 Subtarget->getStackPointerBias() + 1219 128, DL); 1220 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1221 MemOpChains.push_back( 1222 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 1223 } 1224 1225 // Emit all stores, make sure they occur before the call. 1226 if (!MemOpChains.empty()) 1227 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1228 1229 // Build a sequence of CopyToReg nodes glued together with token chain and 1230 // glue operands which copy the outgoing args into registers. The InGlue is 1231 // necessary since all emitted instructions must be stuck together in order 1232 // to pass the live physical registers. 1233 SDValue InGlue; 1234 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1235 Chain = DAG.getCopyToReg(Chain, DL, 1236 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1237 InGlue = Chain.getValue(1); 1238 } 1239 1240 // If the callee is a GlobalAddress node (quite common, every direct call is) 1241 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1242 // Likewise ExternalSymbol -> TargetExternalSymbol. 1243 SDValue Callee = CLI.Callee; 1244 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1245 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 : 0; 1246 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1247 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1248 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1249 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1250 1251 // Build the operands for the call instruction itself. 1252 SmallVector<SDValue, 8> Ops; 1253 Ops.push_back(Chain); 1254 Ops.push_back(Callee); 1255 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1256 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1257 RegsToPass[i].second.getValueType())); 1258 1259 // Add a register mask operand representing the call-preserved registers. 1260 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1261 const uint32_t *Mask = 1262 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1263 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1264 CLI.CallConv)); 1265 assert(Mask && "Missing call preserved mask for calling convention"); 1266 Ops.push_back(DAG.getRegisterMask(Mask)); 1267 1268 // Make sure the CopyToReg nodes are glued to the call instruction which 1269 // consumes the registers. 1270 if (InGlue.getNode()) 1271 Ops.push_back(InGlue); 1272 1273 // Now the call itself. 1274 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1275 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1276 InGlue = Chain.getValue(1); 1277 1278 // Revert the stack pointer immediately after the call. 1279 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 1280 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 1281 InGlue = Chain.getValue(1); 1282 1283 // Now extract the return values. This is more or less the same as 1284 // LowerFormalArguments_64. 1285 1286 // Assign locations to each value returned by this call. 1287 SmallVector<CCValAssign, 16> RVLocs; 1288 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1289 *DAG.getContext()); 1290 1291 // Set inreg flag manually for codegen generated library calls that 1292 // return float. 1293 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 1294 CLI.Ins[0].Flags.setInReg(); 1295 1296 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1297 1298 // Copy all of the result registers out of their specified physreg. 1299 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1300 CCValAssign &VA = RVLocs[i]; 1301 unsigned Reg = toCallerWindow(VA.getLocReg()); 1302 1303 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1304 // reside in the same register in the high and low bits. Reuse the 1305 // CopyFromReg previous node to avoid duplicate copies. 1306 SDValue RV; 1307 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1308 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1309 RV = Chain.getValue(0); 1310 1311 // But usually we'll create a new CopyFromReg for a different register. 1312 if (!RV.getNode()) { 1313 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1314 Chain = RV.getValue(1); 1315 InGlue = Chain.getValue(2); 1316 } 1317 1318 // Get the high bits for i32 struct elements. 1319 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1320 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1321 DAG.getConstant(32, DL, MVT::i32)); 1322 1323 // The callee promoted the return value, so insert an Assert?ext SDNode so 1324 // we won't promote the value again in this function. 1325 switch (VA.getLocInfo()) { 1326 case CCValAssign::SExt: 1327 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1328 DAG.getValueType(VA.getValVT())); 1329 break; 1330 case CCValAssign::ZExt: 1331 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1332 DAG.getValueType(VA.getValVT())); 1333 break; 1334 default: 1335 break; 1336 } 1337 1338 // Truncate the register down to the return value type. 1339 if (VA.isExtInLoc()) 1340 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1341 1342 InVals.push_back(RV); 1343 } 1344 1345 return Chain; 1346 } 1347 1348 //===----------------------------------------------------------------------===// 1349 // TargetLowering Implementation 1350 //===----------------------------------------------------------------------===// 1351 1352 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1353 if (AI->getOperation() == AtomicRMWInst::Xchg && 1354 AI->getType()->getPrimitiveSizeInBits() == 32) 1355 return AtomicExpansionKind::None; // Uses xchg instruction 1356 1357 return AtomicExpansionKind::CmpXChg; 1358 } 1359 1360 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1361 /// condition. 1362 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1363 switch (CC) { 1364 default: llvm_unreachable("Unknown integer condition code!"); 1365 case ISD::SETEQ: return SPCC::ICC_E; 1366 case ISD::SETNE: return SPCC::ICC_NE; 1367 case ISD::SETLT: return SPCC::ICC_L; 1368 case ISD::SETGT: return SPCC::ICC_G; 1369 case ISD::SETLE: return SPCC::ICC_LE; 1370 case ISD::SETGE: return SPCC::ICC_GE; 1371 case ISD::SETULT: return SPCC::ICC_CS; 1372 case ISD::SETULE: return SPCC::ICC_LEU; 1373 case ISD::SETUGT: return SPCC::ICC_GU; 1374 case ISD::SETUGE: return SPCC::ICC_CC; 1375 } 1376 } 1377 1378 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1379 /// FCC condition. 1380 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1381 switch (CC) { 1382 default: llvm_unreachable("Unknown fp condition code!"); 1383 case ISD::SETEQ: 1384 case ISD::SETOEQ: return SPCC::FCC_E; 1385 case ISD::SETNE: 1386 case ISD::SETUNE: return SPCC::FCC_NE; 1387 case ISD::SETLT: 1388 case ISD::SETOLT: return SPCC::FCC_L; 1389 case ISD::SETGT: 1390 case ISD::SETOGT: return SPCC::FCC_G; 1391 case ISD::SETLE: 1392 case ISD::SETOLE: return SPCC::FCC_LE; 1393 case ISD::SETGE: 1394 case ISD::SETOGE: return SPCC::FCC_GE; 1395 case ISD::SETULT: return SPCC::FCC_UL; 1396 case ISD::SETULE: return SPCC::FCC_ULE; 1397 case ISD::SETUGT: return SPCC::FCC_UG; 1398 case ISD::SETUGE: return SPCC::FCC_UGE; 1399 case ISD::SETUO: return SPCC::FCC_U; 1400 case ISD::SETO: return SPCC::FCC_O; 1401 case ISD::SETONE: return SPCC::FCC_LG; 1402 case ISD::SETUEQ: return SPCC::FCC_UE; 1403 } 1404 } 1405 1406 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1407 const SparcSubtarget &STI) 1408 : TargetLowering(TM), Subtarget(&STI) { 1409 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 1410 1411 // Instructions which use registers as conditionals examine all the 1412 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1413 // matters much whether it's ZeroOrOneBooleanContent, or 1414 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1415 // former. 1416 setBooleanContents(ZeroOrOneBooleanContent); 1417 setBooleanVectorContents(ZeroOrOneBooleanContent); 1418 1419 // Set up the register classes. 1420 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1421 if (!Subtarget->useSoftFloat()) { 1422 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1423 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1424 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1425 } 1426 if (Subtarget->is64Bit()) { 1427 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1428 } else { 1429 // On 32bit sparc, we define a double-register 32bit register 1430 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1431 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1432 1433 // ...but almost all operations must be expanded, so set that as 1434 // the default. 1435 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1436 setOperationAction(Op, MVT::v2i32, Expand); 1437 } 1438 // Truncating/extending stores/loads are also not supported. 1439 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1440 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1441 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1442 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1443 1444 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1445 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1446 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1447 1448 setTruncStoreAction(VT, MVT::v2i32, Expand); 1449 setTruncStoreAction(MVT::v2i32, VT, Expand); 1450 } 1451 // However, load and store *are* legal. 1452 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1453 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1454 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1455 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1456 1457 // And we need to promote i64 loads/stores into vector load/store 1458 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1459 setOperationAction(ISD::STORE, MVT::i64, Custom); 1460 1461 // Sadly, this doesn't work: 1462 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1463 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1464 } 1465 1466 // Turn FP extload into load/fpextend 1467 for (MVT VT : MVT::fp_valuetypes()) { 1468 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 1469 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1470 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1471 } 1472 1473 // Sparc doesn't have i1 sign extending load 1474 for (MVT VT : MVT::integer_valuetypes()) 1475 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1476 1477 // Turn FP truncstore into trunc + store. 1478 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 1479 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 1480 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1481 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1482 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1483 1484 // Custom legalize GlobalAddress nodes into LO/HI parts. 1485 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1486 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1487 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1488 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1489 1490 // Sparc doesn't have sext_inreg, replace them with shl/sra 1491 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1492 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1493 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1494 1495 // Sparc has no REM or DIVREM operations. 1496 setOperationAction(ISD::UREM, MVT::i32, Expand); 1497 setOperationAction(ISD::SREM, MVT::i32, Expand); 1498 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1499 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1500 1501 // ... nor does SparcV9. 1502 if (Subtarget->is64Bit()) { 1503 setOperationAction(ISD::UREM, MVT::i64, Expand); 1504 setOperationAction(ISD::SREM, MVT::i64, Expand); 1505 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1506 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1507 } 1508 1509 // Custom expand fp<->sint 1510 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1511 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1512 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1513 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1514 1515 // Custom Expand fp<->uint 1516 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1517 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1518 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1519 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1520 1521 // Lower f16 conversion operations into library calls 1522 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 1523 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 1524 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 1525 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 1526 1527 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1528 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1529 1530 // Sparc has no select or setcc: expand to SELECT_CC. 1531 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1532 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1533 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1534 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1535 1536 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1537 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1538 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1539 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1540 1541 // Sparc doesn't have BRCOND either, it has BR_CC. 1542 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1543 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1544 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1545 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1546 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1547 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1548 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1549 1550 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1551 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1552 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1553 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1554 1555 setOperationAction(ISD::ADDC, MVT::i32, Custom); 1556 setOperationAction(ISD::ADDE, MVT::i32, Custom); 1557 setOperationAction(ISD::SUBC, MVT::i32, Custom); 1558 setOperationAction(ISD::SUBE, MVT::i32, Custom); 1559 1560 if (Subtarget->is64Bit()) { 1561 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1562 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1563 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1564 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1565 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1566 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1567 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1568 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1569 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1570 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1571 1572 setOperationAction(ISD::CTPOP, MVT::i64, 1573 Subtarget->usePopc() ? Legal : Expand); 1574 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1575 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1576 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1577 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1578 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1579 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1580 } 1581 1582 // ATOMICs. 1583 // Atomics are supported on SparcV9. 32-bit atomics are also 1584 // supported by some Leon SparcV8 variants. Otherwise, atomics 1585 // are unsupported. 1586 if (Subtarget->isV9()) 1587 setMaxAtomicSizeInBitsSupported(64); 1588 else if (Subtarget->hasLeonCasa()) 1589 setMaxAtomicSizeInBitsSupported(32); 1590 else 1591 setMaxAtomicSizeInBitsSupported(0); 1592 1593 setMinCmpXchgSizeInBits(32); 1594 1595 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1596 1597 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1598 1599 // Custom Lower Atomic LOAD/STORE 1600 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1601 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1602 1603 if (Subtarget->is64Bit()) { 1604 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1605 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1606 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1607 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1608 } 1609 1610 if (!Subtarget->is64Bit()) { 1611 // These libcalls are not available in 32-bit. 1612 setLibcallName(RTLIB::SHL_I128, nullptr); 1613 setLibcallName(RTLIB::SRL_I128, nullptr); 1614 setLibcallName(RTLIB::SRA_I128, nullptr); 1615 } 1616 1617 if (!Subtarget->isV9()) { 1618 // SparcV8 does not have FNEGD and FABSD. 1619 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1620 setOperationAction(ISD::FABS, MVT::f64, Custom); 1621 } 1622 1623 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1624 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1625 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1626 setOperationAction(ISD::FREM , MVT::f128, Expand); 1627 setOperationAction(ISD::FMA , MVT::f128, Expand); 1628 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1629 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1630 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1631 setOperationAction(ISD::FREM , MVT::f64, Expand); 1632 setOperationAction(ISD::FMA , MVT::f64, Expand); 1633 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1634 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1635 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1636 setOperationAction(ISD::FREM , MVT::f32, Expand); 1637 setOperationAction(ISD::FMA , MVT::f32, Expand); 1638 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1639 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1640 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1641 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1642 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1643 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1644 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1645 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1646 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1647 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1648 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1649 1650 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1651 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1652 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1653 1654 // Expands to [SU]MUL_LOHI. 1655 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1656 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1657 setOperationAction(ISD::MUL, MVT::i32, Expand); 1658 1659 if (Subtarget->useSoftMulDiv()) { 1660 // .umul works for both signed and unsigned 1661 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1662 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1663 setLibcallName(RTLIB::MUL_I32, ".umul"); 1664 1665 setOperationAction(ISD::SDIV, MVT::i32, Expand); 1666 setLibcallName(RTLIB::SDIV_I32, ".div"); 1667 1668 setOperationAction(ISD::UDIV, MVT::i32, Expand); 1669 setLibcallName(RTLIB::UDIV_I32, ".udiv"); 1670 1671 setLibcallName(RTLIB::SREM_I32, ".rem"); 1672 setLibcallName(RTLIB::UREM_I32, ".urem"); 1673 } 1674 1675 if (Subtarget->is64Bit()) { 1676 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1677 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1678 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1679 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1680 1681 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1682 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1683 1684 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1685 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1686 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1687 } 1688 1689 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1690 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1691 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1692 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1693 1694 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1695 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); 1696 1697 // Use the default implementation. 1698 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1699 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1700 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1701 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1702 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1703 1704 setStackPointerRegisterToSaveRestore(SP::O6); 1705 1706 setOperationAction(ISD::CTPOP, MVT::i32, 1707 Subtarget->usePopc() ? Legal : Expand); 1708 1709 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1710 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1711 setOperationAction(ISD::STORE, MVT::f128, Legal); 1712 } else { 1713 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1714 setOperationAction(ISD::STORE, MVT::f128, Custom); 1715 } 1716 1717 if (Subtarget->hasHardQuad()) { 1718 setOperationAction(ISD::FADD, MVT::f128, Legal); 1719 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1720 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1721 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1722 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1723 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1724 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1725 if (Subtarget->isV9()) { 1726 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1727 setOperationAction(ISD::FABS, MVT::f128, Legal); 1728 } else { 1729 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1730 setOperationAction(ISD::FABS, MVT::f128, Custom); 1731 } 1732 1733 if (!Subtarget->is64Bit()) { 1734 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1735 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1736 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1737 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1738 } 1739 1740 } else { 1741 // Custom legalize f128 operations. 1742 1743 setOperationAction(ISD::FADD, MVT::f128, Custom); 1744 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1745 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1746 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1747 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1748 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1749 setOperationAction(ISD::FABS, MVT::f128, Custom); 1750 1751 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1752 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1753 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1754 1755 // Setup Runtime library names. 1756 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1757 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1758 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1759 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1760 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1761 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1762 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1763 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1764 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1765 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1766 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1767 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1768 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1769 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1770 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1771 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1772 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1773 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1774 } else if (!Subtarget->useSoftFloat()) { 1775 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1776 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1777 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1778 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1779 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1780 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1781 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1782 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1783 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1784 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1785 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1786 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1787 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1788 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1789 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1790 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1791 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1792 } 1793 } 1794 1795 if (Subtarget->fixAllFDIVSQRT()) { 1796 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1797 // the former instructions generate errata on LEON processors. 1798 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1799 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1800 } 1801 1802 if (Subtarget->hasNoFMULS()) { 1803 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1804 } 1805 1806 // Custom combine bitcast between f64 and v2i32 1807 if (!Subtarget->is64Bit()) 1808 setTargetDAGCombine(ISD::BITCAST); 1809 1810 if (Subtarget->hasLeonCycleCounter()) 1811 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1812 1813 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1814 1815 setMinFunctionAlignment(Align(4)); 1816 1817 computeRegisterProperties(Subtarget->getRegisterInfo()); 1818 } 1819 1820 bool SparcTargetLowering::useSoftFloat() const { 1821 return Subtarget->useSoftFloat(); 1822 } 1823 1824 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 1825 switch ((SPISD::NodeType)Opcode) { 1826 case SPISD::FIRST_NUMBER: break; 1827 case SPISD::CMPICC: return "SPISD::CMPICC"; 1828 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 1829 case SPISD::BRICC: return "SPISD::BRICC"; 1830 case SPISD::BRXCC: return "SPISD::BRXCC"; 1831 case SPISD::BRFCC: return "SPISD::BRFCC"; 1832 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 1833 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 1834 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 1835 case SPISD::Hi: return "SPISD::Hi"; 1836 case SPISD::Lo: return "SPISD::Lo"; 1837 case SPISD::FTOI: return "SPISD::FTOI"; 1838 case SPISD::ITOF: return "SPISD::ITOF"; 1839 case SPISD::FTOX: return "SPISD::FTOX"; 1840 case SPISD::XTOF: return "SPISD::XTOF"; 1841 case SPISD::CALL: return "SPISD::CALL"; 1842 case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; 1843 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 1844 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 1845 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 1846 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 1847 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 1848 } 1849 return nullptr; 1850 } 1851 1852 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 1853 EVT VT) const { 1854 if (!VT.isVector()) 1855 return MVT::i32; 1856 return VT.changeVectorElementTypeToInteger(); 1857 } 1858 1859 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 1860 /// be zero. Op is expected to be a target specific node. Used by DAG 1861 /// combiner. 1862 void SparcTargetLowering::computeKnownBitsForTargetNode 1863 (const SDValue Op, 1864 KnownBits &Known, 1865 const APInt &DemandedElts, 1866 const SelectionDAG &DAG, 1867 unsigned Depth) const { 1868 KnownBits Known2; 1869 Known.resetAll(); 1870 1871 switch (Op.getOpcode()) { 1872 default: break; 1873 case SPISD::SELECT_ICC: 1874 case SPISD::SELECT_XCC: 1875 case SPISD::SELECT_FCC: 1876 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 1877 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 1878 1879 // Only known if known in both the LHS and RHS. 1880 Known.One &= Known2.One; 1881 Known.Zero &= Known2.Zero; 1882 break; 1883 } 1884 } 1885 1886 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 1887 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 1888 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 1889 ISD::CondCode CC, unsigned &SPCC) { 1890 if (isNullConstant(RHS) && 1891 CC == ISD::SETNE && 1892 (((LHS.getOpcode() == SPISD::SELECT_ICC || 1893 LHS.getOpcode() == SPISD::SELECT_XCC) && 1894 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 1895 (LHS.getOpcode() == SPISD::SELECT_FCC && 1896 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && 1897 isOneConstant(LHS.getOperand(0)) && 1898 isNullConstant(LHS.getOperand(1))) { 1899 SDValue CMPCC = LHS.getOperand(3); 1900 SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue(); 1901 LHS = CMPCC.getOperand(0); 1902 RHS = CMPCC.getOperand(1); 1903 } 1904 } 1905 1906 // Convert to a target node and set target flags. 1907 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 1908 SelectionDAG &DAG) const { 1909 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1910 return DAG.getTargetGlobalAddress(GA->getGlobal(), 1911 SDLoc(GA), 1912 GA->getValueType(0), 1913 GA->getOffset(), TF); 1914 1915 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 1916 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 1917 CP->getAlign(), CP->getOffset(), TF); 1918 1919 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 1920 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 1921 Op.getValueType(), 1922 0, 1923 TF); 1924 1925 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 1926 return DAG.getTargetExternalSymbol(ES->getSymbol(), 1927 ES->getValueType(0), TF); 1928 1929 llvm_unreachable("Unhandled address SDNode"); 1930 } 1931 1932 // Split Op into high and low parts according to HiTF and LoTF. 1933 // Return an ADD node combining the parts. 1934 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 1935 unsigned HiTF, unsigned LoTF, 1936 SelectionDAG &DAG) const { 1937 SDLoc DL(Op); 1938 EVT VT = Op.getValueType(); 1939 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 1940 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 1941 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1942 } 1943 1944 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 1945 // or ExternalSymbol SDNode. 1946 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 1947 SDLoc DL(Op); 1948 EVT VT = getPointerTy(DAG.getDataLayout()); 1949 1950 // Handle PIC mode first. SPARC needs a got load for every variable! 1951 if (isPositionIndependent()) { 1952 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 1953 PICLevel::Level picLevel = M->getPICLevel(); 1954 SDValue Idx; 1955 1956 if (picLevel == PICLevel::SmallPIC) { 1957 // This is the pic13 code model, the GOT is known to be smaller than 8KiB. 1958 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), 1959 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); 1960 } else { 1961 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 1962 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 1963 SparcMCExpr::VK_Sparc_GOT10, DAG); 1964 } 1965 1966 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 1967 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); 1968 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 1969 // function has calls. 1970 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1971 MFI.setHasCalls(true); 1972 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 1973 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1974 } 1975 1976 // This is one of the absolute code models. 1977 switch(getTargetMachine().getCodeModel()) { 1978 default: 1979 llvm_unreachable("Unsupported absolute code model"); 1980 case CodeModel::Small: 1981 // abs32. 1982 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 1983 SparcMCExpr::VK_Sparc_LO, DAG); 1984 case CodeModel::Medium: { 1985 // abs44. 1986 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 1987 SparcMCExpr::VK_Sparc_M44, DAG); 1988 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 1989 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 1990 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 1991 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 1992 } 1993 case CodeModel::Large: { 1994 // abs64. 1995 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 1996 SparcMCExpr::VK_Sparc_HM, DAG); 1997 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 1998 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 1999 SparcMCExpr::VK_Sparc_LO, DAG); 2000 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2001 } 2002 } 2003 } 2004 2005 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2006 SelectionDAG &DAG) const { 2007 return makeAddress(Op, DAG); 2008 } 2009 2010 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2011 SelectionDAG &DAG) const { 2012 return makeAddress(Op, DAG); 2013 } 2014 2015 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2016 SelectionDAG &DAG) const { 2017 return makeAddress(Op, DAG); 2018 } 2019 2020 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2021 SelectionDAG &DAG) const { 2022 2023 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2024 if (DAG.getTarget().useEmulatedTLS()) 2025 return LowerToTLSEmulatedModel(GA, DAG); 2026 2027 SDLoc DL(GA); 2028 const GlobalValue *GV = GA->getGlobal(); 2029 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2030 2031 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2032 2033 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2034 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2035 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2036 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2037 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2038 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2039 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2040 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2041 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2042 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2043 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2044 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2045 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2046 2047 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2048 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2049 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2050 withTargetFlags(Op, addTF, DAG)); 2051 2052 SDValue Chain = DAG.getEntryNode(); 2053 SDValue InFlag; 2054 2055 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); 2056 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag); 2057 InFlag = Chain.getValue(1); 2058 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2059 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2060 2061 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2062 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2063 DAG.getMachineFunction(), CallingConv::C); 2064 assert(Mask && "Missing call preserved mask for calling convention"); 2065 SDValue Ops[] = {Chain, 2066 Callee, 2067 Symbol, 2068 DAG.getRegister(SP::O0, PtrVT), 2069 DAG.getRegisterMask(Mask), 2070 InFlag}; 2071 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2072 InFlag = Chain.getValue(1); 2073 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true), 2074 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 2075 InFlag = Chain.getValue(1); 2076 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag); 2077 2078 if (model != TLSModel::LocalDynamic) 2079 return Ret; 2080 2081 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2082 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2083 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2084 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2085 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2086 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2087 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2088 } 2089 2090 if (model == TLSModel::InitialExec) { 2091 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2092 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2093 2094 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2095 2096 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2097 // function has calls. 2098 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2099 MFI.setHasCalls(true); 2100 2101 SDValue TGA = makeHiLoPair(Op, 2102 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2103 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2104 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2105 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2106 DL, PtrVT, Ptr, 2107 withTargetFlags(Op, ldTF, DAG)); 2108 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2109 DAG.getRegister(SP::G7, PtrVT), Offset, 2110 withTargetFlags(Op, 2111 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2112 } 2113 2114 assert(model == TLSModel::LocalExec); 2115 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2116 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2117 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2118 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2119 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2120 2121 return DAG.getNode(ISD::ADD, DL, PtrVT, 2122 DAG.getRegister(SP::G7, PtrVT), Offset); 2123 } 2124 2125 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2126 ArgListTy &Args, SDValue Arg, 2127 const SDLoc &DL, 2128 SelectionDAG &DAG) const { 2129 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2130 EVT ArgVT = Arg.getValueType(); 2131 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2132 2133 ArgListEntry Entry; 2134 Entry.Node = Arg; 2135 Entry.Ty = ArgTy; 2136 2137 if (ArgTy->isFP128Ty()) { 2138 // Create a stack object and pass the pointer to the library function. 2139 int FI = MFI.CreateStackObject(16, Align(8), false); 2140 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2141 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), 2142 /* Alignment = */ 8); 2143 2144 Entry.Node = FIPtr; 2145 Entry.Ty = PointerType::getUnqual(ArgTy); 2146 } 2147 Args.push_back(Entry); 2148 return Chain; 2149 } 2150 2151 SDValue 2152 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2153 const char *LibFuncName, 2154 unsigned numArgs) const { 2155 2156 ArgListTy Args; 2157 2158 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2159 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2160 2161 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2162 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2163 Type *RetTyABI = RetTy; 2164 SDValue Chain = DAG.getEntryNode(); 2165 SDValue RetPtr; 2166 2167 if (RetTy->isFP128Ty()) { 2168 // Create a Stack Object to receive the return value of type f128. 2169 ArgListEntry Entry; 2170 int RetFI = MFI.CreateStackObject(16, Align(8), false); 2171 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2172 Entry.Node = RetPtr; 2173 Entry.Ty = PointerType::getUnqual(RetTy); 2174 if (!Subtarget->is64Bit()) 2175 Entry.IsSRet = true; 2176 Entry.IsReturned = false; 2177 Args.push_back(Entry); 2178 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2179 } 2180 2181 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2182 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2183 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2184 } 2185 TargetLowering::CallLoweringInfo CLI(DAG); 2186 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2187 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2188 2189 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2190 2191 // chain is in second result. 2192 if (RetTyABI == RetTy) 2193 return CallInfo.first; 2194 2195 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2196 2197 Chain = CallInfo.second; 2198 2199 // Load RetPtr to get the return value. 2200 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, 2201 MachinePointerInfo(), /* Alignment = */ 8); 2202 } 2203 2204 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2205 unsigned &SPCC, const SDLoc &DL, 2206 SelectionDAG &DAG) const { 2207 2208 const char *LibCall = nullptr; 2209 bool is64Bit = Subtarget->is64Bit(); 2210 switch(SPCC) { 2211 default: llvm_unreachable("Unhandled conditional code!"); 2212 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2213 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2214 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2215 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2216 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2217 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2218 case SPCC::FCC_UL : 2219 case SPCC::FCC_ULE: 2220 case SPCC::FCC_UG : 2221 case SPCC::FCC_UGE: 2222 case SPCC::FCC_U : 2223 case SPCC::FCC_O : 2224 case SPCC::FCC_LG : 2225 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2226 } 2227 2228 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2229 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2230 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2231 ArgListTy Args; 2232 SDValue Chain = DAG.getEntryNode(); 2233 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2234 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2235 2236 TargetLowering::CallLoweringInfo CLI(DAG); 2237 CLI.setDebugLoc(DL).setChain(Chain) 2238 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2239 2240 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2241 2242 // result is in first, and chain is in second result. 2243 SDValue Result = CallInfo.first; 2244 2245 switch(SPCC) { 2246 default: { 2247 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2248 SPCC = SPCC::ICC_NE; 2249 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2250 } 2251 case SPCC::FCC_UL : { 2252 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); 2253 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2254 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2255 SPCC = SPCC::ICC_NE; 2256 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2257 } 2258 case SPCC::FCC_ULE: { 2259 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); 2260 SPCC = SPCC::ICC_NE; 2261 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2262 } 2263 case SPCC::FCC_UG : { 2264 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2265 SPCC = SPCC::ICC_G; 2266 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2267 } 2268 case SPCC::FCC_UGE: { 2269 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2270 SPCC = SPCC::ICC_NE; 2271 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2272 } 2273 2274 case SPCC::FCC_U : { 2275 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2276 SPCC = SPCC::ICC_E; 2277 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2278 } 2279 case SPCC::FCC_O : { 2280 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2281 SPCC = SPCC::ICC_NE; 2282 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2283 } 2284 case SPCC::FCC_LG : { 2285 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2286 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2287 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2288 SPCC = SPCC::ICC_NE; 2289 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2290 } 2291 case SPCC::FCC_UE : { 2292 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2293 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2294 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2295 SPCC = SPCC::ICC_E; 2296 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2297 } 2298 } 2299 } 2300 2301 static SDValue 2302 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2303 const SparcTargetLowering &TLI) { 2304 2305 if (Op.getOperand(0).getValueType() == MVT::f64) 2306 return TLI.LowerF128Op(Op, DAG, 2307 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2308 2309 if (Op.getOperand(0).getValueType() == MVT::f32) 2310 return TLI.LowerF128Op(Op, DAG, 2311 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2312 2313 llvm_unreachable("fpextend with non-float operand!"); 2314 return SDValue(); 2315 } 2316 2317 static SDValue 2318 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2319 const SparcTargetLowering &TLI) { 2320 // FP_ROUND on f64 and f32 are legal. 2321 if (Op.getOperand(0).getValueType() != MVT::f128) 2322 return Op; 2323 2324 if (Op.getValueType() == MVT::f64) 2325 return TLI.LowerF128Op(Op, DAG, 2326 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2327 if (Op.getValueType() == MVT::f32) 2328 return TLI.LowerF128Op(Op, DAG, 2329 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2330 2331 llvm_unreachable("fpround to non-float!"); 2332 return SDValue(); 2333 } 2334 2335 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2336 const SparcTargetLowering &TLI, 2337 bool hasHardQuad) { 2338 SDLoc dl(Op); 2339 EVT VT = Op.getValueType(); 2340 assert(VT == MVT::i32 || VT == MVT::i64); 2341 2342 // Expand f128 operations to fp128 abi calls. 2343 if (Op.getOperand(0).getValueType() == MVT::f128 2344 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2345 const char *libName = TLI.getLibcallName(VT == MVT::i32 2346 ? RTLIB::FPTOSINT_F128_I32 2347 : RTLIB::FPTOSINT_F128_I64); 2348 return TLI.LowerF128Op(Op, DAG, libName, 1); 2349 } 2350 2351 // Expand if the resulting type is illegal. 2352 if (!TLI.isTypeLegal(VT)) 2353 return SDValue(); 2354 2355 // Otherwise, Convert the fp value to integer in an FP register. 2356 if (VT == MVT::i32) 2357 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2358 else 2359 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2360 2361 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2362 } 2363 2364 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2365 const SparcTargetLowering &TLI, 2366 bool hasHardQuad) { 2367 SDLoc dl(Op); 2368 EVT OpVT = Op.getOperand(0).getValueType(); 2369 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2370 2371 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2372 2373 // Expand f128 operations to fp128 ABI calls. 2374 if (Op.getValueType() == MVT::f128 2375 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2376 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2377 ? RTLIB::SINTTOFP_I32_F128 2378 : RTLIB::SINTTOFP_I64_F128); 2379 return TLI.LowerF128Op(Op, DAG, libName, 1); 2380 } 2381 2382 // Expand if the operand type is illegal. 2383 if (!TLI.isTypeLegal(OpVT)) 2384 return SDValue(); 2385 2386 // Otherwise, Convert the int value to FP in an FP register. 2387 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2388 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2389 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2390 } 2391 2392 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2393 const SparcTargetLowering &TLI, 2394 bool hasHardQuad) { 2395 SDLoc dl(Op); 2396 EVT VT = Op.getValueType(); 2397 2398 // Expand if it does not involve f128 or the target has support for 2399 // quad floating point instructions and the resulting type is legal. 2400 if (Op.getOperand(0).getValueType() != MVT::f128 || 2401 (hasHardQuad && TLI.isTypeLegal(VT))) 2402 return SDValue(); 2403 2404 assert(VT == MVT::i32 || VT == MVT::i64); 2405 2406 return TLI.LowerF128Op(Op, DAG, 2407 TLI.getLibcallName(VT == MVT::i32 2408 ? RTLIB::FPTOUINT_F128_I32 2409 : RTLIB::FPTOUINT_F128_I64), 2410 1); 2411 } 2412 2413 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2414 const SparcTargetLowering &TLI, 2415 bool hasHardQuad) { 2416 SDLoc dl(Op); 2417 EVT OpVT = Op.getOperand(0).getValueType(); 2418 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2419 2420 // Expand if it does not involve f128 or the target has support for 2421 // quad floating point instructions and the operand type is legal. 2422 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2423 return SDValue(); 2424 2425 return TLI.LowerF128Op(Op, DAG, 2426 TLI.getLibcallName(OpVT == MVT::i32 2427 ? RTLIB::UINTTOFP_I32_F128 2428 : RTLIB::UINTTOFP_I64_F128), 2429 1); 2430 } 2431 2432 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2433 const SparcTargetLowering &TLI, 2434 bool hasHardQuad) { 2435 SDValue Chain = Op.getOperand(0); 2436 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2437 SDValue LHS = Op.getOperand(2); 2438 SDValue RHS = Op.getOperand(3); 2439 SDValue Dest = Op.getOperand(4); 2440 SDLoc dl(Op); 2441 unsigned Opc, SPCC = ~0U; 2442 2443 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2444 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2445 LookThroughSetCC(LHS, RHS, CC, SPCC); 2446 2447 // Get the condition flag. 2448 SDValue CompareFlag; 2449 if (LHS.getValueType().isInteger()) { 2450 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2451 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2452 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2453 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC; 2454 } else { 2455 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2456 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2457 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2458 Opc = SPISD::BRICC; 2459 } else { 2460 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2461 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2462 Opc = SPISD::BRFCC; 2463 } 2464 } 2465 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2466 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2467 } 2468 2469 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2470 const SparcTargetLowering &TLI, 2471 bool hasHardQuad) { 2472 SDValue LHS = Op.getOperand(0); 2473 SDValue RHS = Op.getOperand(1); 2474 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2475 SDValue TrueVal = Op.getOperand(2); 2476 SDValue FalseVal = Op.getOperand(3); 2477 SDLoc dl(Op); 2478 unsigned Opc, SPCC = ~0U; 2479 2480 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2481 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2482 LookThroughSetCC(LHS, RHS, CC, SPCC); 2483 2484 SDValue CompareFlag; 2485 if (LHS.getValueType().isInteger()) { 2486 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2487 Opc = LHS.getValueType() == MVT::i32 ? 2488 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2489 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2490 } else { 2491 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2492 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2493 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2494 Opc = SPISD::SELECT_ICC; 2495 } else { 2496 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2497 Opc = SPISD::SELECT_FCC; 2498 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2499 } 2500 } 2501 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2502 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2503 } 2504 2505 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2506 const SparcTargetLowering &TLI) { 2507 MachineFunction &MF = DAG.getMachineFunction(); 2508 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2509 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2510 2511 // Need frame address to find the address of VarArgsFrameIndex. 2512 MF.getFrameInfo().setFrameAddressIsTaken(true); 2513 2514 // vastart just stores the address of the VarArgsFrameIndex slot into the 2515 // memory location argument. 2516 SDLoc DL(Op); 2517 SDValue Offset = 2518 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2519 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2520 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2521 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2522 MachinePointerInfo(SV)); 2523 } 2524 2525 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2526 SDNode *Node = Op.getNode(); 2527 EVT VT = Node->getValueType(0); 2528 SDValue InChain = Node->getOperand(0); 2529 SDValue VAListPtr = Node->getOperand(1); 2530 EVT PtrVT = VAListPtr.getValueType(); 2531 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2532 SDLoc DL(Node); 2533 SDValue VAList = 2534 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 2535 // Increment the pointer, VAList, to the next vaarg. 2536 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2537 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2538 DL)); 2539 // Store the incremented VAList to the legalized pointer. 2540 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, 2541 MachinePointerInfo(SV)); 2542 // Load the actual argument out of the pointer VAList. 2543 // We can't count on greater alignment than the word size. 2544 return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(), 2545 std::min(PtrVT.getSizeInBits(), VT.getSizeInBits()) / 8); 2546 } 2547 2548 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2549 const SparcSubtarget *Subtarget) { 2550 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2551 SDValue Size = Op.getOperand(1); // Legalize the size. 2552 MaybeAlign Alignment = 2553 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 2554 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); 2555 EVT VT = Size->getValueType(0); 2556 SDLoc dl(Op); 2557 2558 // TODO: implement over-aligned alloca. (Note: also implies 2559 // supporting support for overaligned function frames + dynamic 2560 // allocations, at all, which currently isn't supported) 2561 if (Alignment && *Alignment > StackAlign) { 2562 const MachineFunction &MF = DAG.getMachineFunction(); 2563 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " 2564 "over-aligned dynamic alloca not supported."); 2565 } 2566 2567 // The resultant pointer needs to be above the register spill area 2568 // at the bottom of the stack. 2569 unsigned regSpillArea; 2570 if (Subtarget->is64Bit()) { 2571 regSpillArea = 128; 2572 } else { 2573 // On Sparc32, the size of the spill area is 92. Unfortunately, 2574 // that's only 4-byte aligned, not 8-byte aligned (the stack 2575 // pointer is 8-byte aligned). So, if the user asked for an 8-byte 2576 // aligned dynamic allocation, we actually need to add 96 to the 2577 // bottom of the stack, instead of 92, to ensure 8-byte alignment. 2578 2579 // That also means adding 4 to the size of the allocation -- 2580 // before applying the 8-byte rounding. Unfortunately, we the 2581 // value we get here has already had rounding applied. So, we need 2582 // to add 8, instead, wasting a bit more memory. 2583 2584 // Further, this only actually needs to be done if the required 2585 // alignment is > 4, but, we've lost that info by this point, too, 2586 // so we always apply it. 2587 2588 // (An alternative approach would be to always reserve 96 bytes 2589 // instead of the required 92, but then we'd waste 4 extra bytes 2590 // in every frame, not just those with dynamic stack allocations) 2591 2592 // TODO: modify code in SelectionDAGBuilder to make this less sad. 2593 2594 Size = DAG.getNode(ISD::ADD, dl, VT, Size, 2595 DAG.getConstant(8, dl, VT)); 2596 regSpillArea = 96; 2597 } 2598 2599 unsigned SPReg = SP::O6; 2600 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2601 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2602 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2603 2604 regSpillArea += Subtarget->getStackPointerBias(); 2605 2606 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2607 DAG.getConstant(regSpillArea, dl, VT)); 2608 SDValue Ops[2] = { NewVal, Chain }; 2609 return DAG.getMergeValues(Ops, dl); 2610 } 2611 2612 2613 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2614 SDLoc dl(Op); 2615 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2616 dl, MVT::Other, DAG.getEntryNode()); 2617 return Chain; 2618 } 2619 2620 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2621 const SparcSubtarget *Subtarget, 2622 bool AlwaysFlush = false) { 2623 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2624 MFI.setFrameAddressIsTaken(true); 2625 2626 EVT VT = Op.getValueType(); 2627 SDLoc dl(Op); 2628 unsigned FrameReg = SP::I6; 2629 unsigned stackBias = Subtarget->getStackPointerBias(); 2630 2631 SDValue FrameAddr; 2632 SDValue Chain; 2633 2634 // flush first to make sure the windowed registers' values are in stack 2635 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); 2636 2637 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2638 2639 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2640 2641 while (depth--) { 2642 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2643 DAG.getIntPtrConstant(Offset, dl)); 2644 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); 2645 } 2646 if (Subtarget->is64Bit()) 2647 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2648 DAG.getIntPtrConstant(stackBias, dl)); 2649 return FrameAddr; 2650 } 2651 2652 2653 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2654 const SparcSubtarget *Subtarget) { 2655 2656 uint64_t depth = Op.getConstantOperandVal(0); 2657 2658 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2659 2660 } 2661 2662 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2663 const SparcTargetLowering &TLI, 2664 const SparcSubtarget *Subtarget) { 2665 MachineFunction &MF = DAG.getMachineFunction(); 2666 MachineFrameInfo &MFI = MF.getFrameInfo(); 2667 MFI.setReturnAddressIsTaken(true); 2668 2669 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2670 return SDValue(); 2671 2672 EVT VT = Op.getValueType(); 2673 SDLoc dl(Op); 2674 uint64_t depth = Op.getConstantOperandVal(0); 2675 2676 SDValue RetAddr; 2677 if (depth == 0) { 2678 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2679 unsigned RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2680 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2681 return RetAddr; 2682 } 2683 2684 // Need frame address to find return address of the caller. 2685 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); 2686 2687 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2688 SDValue Ptr = DAG.getNode(ISD::ADD, 2689 dl, VT, 2690 FrameAddr, 2691 DAG.getIntPtrConstant(Offset, dl)); 2692 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2693 2694 return RetAddr; 2695 } 2696 2697 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2698 unsigned opcode) { 2699 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2700 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2701 2702 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2703 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2704 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2705 2706 // Note: in little-endian, the floating-point value is stored in the 2707 // registers are in the opposite order, so the subreg with the sign 2708 // bit is the highest-numbered (odd), rather than the 2709 // lowest-numbered (even). 2710 2711 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2712 SrcReg64); 2713 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2714 SrcReg64); 2715 2716 if (DAG.getDataLayout().isLittleEndian()) 2717 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2718 else 2719 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2720 2721 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2722 dl, MVT::f64), 0); 2723 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2724 DstReg64, Hi32); 2725 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2726 DstReg64, Lo32); 2727 return DstReg64; 2728 } 2729 2730 // Lower a f128 load into two f64 loads. 2731 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2732 { 2733 SDLoc dl(Op); 2734 LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode()); 2735 assert(LdNode && LdNode->getOffset().isUndef() 2736 && "Unexpected node type"); 2737 2738 unsigned alignment = LdNode->getAlignment(); 2739 if (alignment > 8) 2740 alignment = 8; 2741 2742 SDValue Hi64 = 2743 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), 2744 LdNode->getPointerInfo(), alignment); 2745 EVT addrVT = LdNode->getBasePtr().getValueType(); 2746 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2747 LdNode->getBasePtr(), 2748 DAG.getConstant(8, dl, addrVT)); 2749 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, 2750 LdNode->getPointerInfo(), alignment); 2751 2752 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2753 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2754 2755 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2756 dl, MVT::f128); 2757 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2758 MVT::f128, 2759 SDValue(InFP128, 0), 2760 Hi64, 2761 SubRegEven); 2762 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2763 MVT::f128, 2764 SDValue(InFP128, 0), 2765 Lo64, 2766 SubRegOdd); 2767 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2768 SDValue(Lo64.getNode(), 1) }; 2769 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2770 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2771 return DAG.getMergeValues(Ops, dl); 2772 } 2773 2774 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 2775 { 2776 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2777 2778 EVT MemVT = LdNode->getMemoryVT(); 2779 if (MemVT == MVT::f128) 2780 return LowerF128Load(Op, DAG); 2781 2782 return Op; 2783 } 2784 2785 // Lower a f128 store into two f64 stores. 2786 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 2787 SDLoc dl(Op); 2788 StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode()); 2789 assert(StNode && StNode->getOffset().isUndef() 2790 && "Unexpected node type"); 2791 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2792 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2793 2794 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2795 dl, 2796 MVT::f64, 2797 StNode->getValue(), 2798 SubRegEven); 2799 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2800 dl, 2801 MVT::f64, 2802 StNode->getValue(), 2803 SubRegOdd); 2804 2805 unsigned alignment = StNode->getAlignment(); 2806 if (alignment > 8) 2807 alignment = 8; 2808 2809 SDValue OutChains[2]; 2810 OutChains[0] = 2811 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), 2812 StNode->getBasePtr(), MachinePointerInfo(), alignment); 2813 EVT addrVT = StNode->getBasePtr().getValueType(); 2814 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2815 StNode->getBasePtr(), 2816 DAG.getConstant(8, dl, addrVT)); 2817 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, 2818 MachinePointerInfo(), alignment); 2819 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2820 } 2821 2822 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 2823 { 2824 SDLoc dl(Op); 2825 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 2826 2827 EVT MemVT = St->getMemoryVT(); 2828 if (MemVT == MVT::f128) 2829 return LowerF128Store(Op, DAG); 2830 2831 if (MemVT == MVT::i64) { 2832 // Custom handling for i64 stores: turn it into a bitcast and a 2833 // v2i32 store. 2834 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 2835 SDValue Chain = DAG.getStore( 2836 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 2837 St->getAlignment(), St->getMemOperand()->getFlags(), St->getAAInfo()); 2838 return Chain; 2839 } 2840 2841 return SDValue(); 2842 } 2843 2844 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 2845 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 2846 && "invalid opcode"); 2847 2848 SDLoc dl(Op); 2849 2850 if (Op.getValueType() == MVT::f64) 2851 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 2852 if (Op.getValueType() != MVT::f128) 2853 return Op; 2854 2855 // Lower fabs/fneg on f128 to fabs/fneg on f64 2856 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 2857 // (As with LowerF64Op, on little-endian, we need to negate the odd 2858 // subreg) 2859 2860 SDValue SrcReg128 = Op.getOperand(0); 2861 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 2862 SrcReg128); 2863 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 2864 SrcReg128); 2865 2866 if (DAG.getDataLayout().isLittleEndian()) { 2867 if (isV9) 2868 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 2869 else 2870 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 2871 } else { 2872 if (isV9) 2873 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 2874 else 2875 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 2876 } 2877 2878 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2879 dl, MVT::f128), 0); 2880 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 2881 DstReg128, Hi64); 2882 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 2883 DstReg128, Lo64); 2884 return DstReg128; 2885 } 2886 2887 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2888 2889 if (Op.getValueType() != MVT::i64) 2890 return Op; 2891 2892 SDLoc dl(Op); 2893 SDValue Src1 = Op.getOperand(0); 2894 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 2895 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 2896 DAG.getConstant(32, dl, MVT::i64)); 2897 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 2898 2899 SDValue Src2 = Op.getOperand(1); 2900 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 2901 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 2902 DAG.getConstant(32, dl, MVT::i64)); 2903 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 2904 2905 2906 bool hasChain = false; 2907 unsigned hiOpc = Op.getOpcode(); 2908 switch (Op.getOpcode()) { 2909 default: llvm_unreachable("Invalid opcode"); 2910 case ISD::ADDC: hiOpc = ISD::ADDE; break; 2911 case ISD::ADDE: hasChain = true; break; 2912 case ISD::SUBC: hiOpc = ISD::SUBE; break; 2913 case ISD::SUBE: hasChain = true; break; 2914 } 2915 SDValue Lo; 2916 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 2917 if (hasChain) { 2918 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 2919 Op.getOperand(2)); 2920 } else { 2921 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 2922 } 2923 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 2924 SDValue Carry = Hi.getValue(1); 2925 2926 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 2927 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 2928 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 2929 DAG.getConstant(32, dl, MVT::i64)); 2930 2931 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 2932 SDValue Ops[2] = { Dst, Carry }; 2933 return DAG.getMergeValues(Ops, dl); 2934 } 2935 2936 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 2937 // in LegalizeDAG.cpp except the order of arguments to the library function. 2938 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 2939 const SparcTargetLowering &TLI) 2940 { 2941 unsigned opcode = Op.getOpcode(); 2942 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 2943 2944 bool isSigned = (opcode == ISD::SMULO); 2945 EVT VT = MVT::i64; 2946 EVT WideVT = MVT::i128; 2947 SDLoc dl(Op); 2948 SDValue LHS = Op.getOperand(0); 2949 2950 if (LHS.getValueType() != VT) 2951 return Op; 2952 2953 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 2954 2955 SDValue RHS = Op.getOperand(1); 2956 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 2957 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 2958 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 2959 2960 TargetLowering::MakeLibCallOptions CallOptions; 2961 CallOptions.setSExt(isSigned); 2962 SDValue MulResult = TLI.makeLibCall(DAG, 2963 RTLIB::MUL_I128, WideVT, 2964 Args, CallOptions, dl).first; 2965 SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2966 MulResult, DAG.getIntPtrConstant(0, dl)); 2967 SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2968 MulResult, DAG.getIntPtrConstant(1, dl)); 2969 if (isSigned) { 2970 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 2971 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 2972 } else { 2973 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 2974 ISD::SETNE); 2975 } 2976 // MulResult is a node with an illegal type. Because such things are not 2977 // generally permitted during this phase of legalization, ensure that 2978 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 2979 // been folded. 2980 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 2981 2982 SDValue Ops[2] = { BottomHalf, TopHalf } ; 2983 return DAG.getMergeValues(Ops, dl); 2984 } 2985 2986 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 2987 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering())) 2988 // Expand with a fence. 2989 return SDValue(); 2990 2991 // Monotonic load/stores are legal. 2992 return Op; 2993 } 2994 2995 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2996 SelectionDAG &DAG) const { 2997 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2998 SDLoc dl(Op); 2999 switch (IntNo) { 3000 default: return SDValue(); // Don't custom lower most intrinsics. 3001 case Intrinsic::thread_pointer: { 3002 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3003 return DAG.getRegister(SP::G7, PtrVT); 3004 } 3005 } 3006 } 3007 3008 SDValue SparcTargetLowering:: 3009 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3010 3011 bool hasHardQuad = Subtarget->hasHardQuad(); 3012 bool isV9 = Subtarget->isV9(); 3013 3014 switch (Op.getOpcode()) { 3015 default: llvm_unreachable("Should not custom lower this!"); 3016 3017 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3018 Subtarget); 3019 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3020 Subtarget); 3021 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3022 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3023 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3024 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3025 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3026 hasHardQuad); 3027 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3028 hasHardQuad); 3029 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3030 hasHardQuad); 3031 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3032 hasHardQuad); 3033 case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this, 3034 hasHardQuad); 3035 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this, 3036 hasHardQuad); 3037 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3038 case ISD::VAARG: return LowerVAARG(Op, DAG); 3039 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3040 Subtarget); 3041 3042 case ISD::LOAD: return LowerLOAD(Op, DAG); 3043 case ISD::STORE: return LowerSTORE(Op, DAG); 3044 case ISD::FADD: return LowerF128Op(Op, DAG, 3045 getLibcallName(RTLIB::ADD_F128), 2); 3046 case ISD::FSUB: return LowerF128Op(Op, DAG, 3047 getLibcallName(RTLIB::SUB_F128), 2); 3048 case ISD::FMUL: return LowerF128Op(Op, DAG, 3049 getLibcallName(RTLIB::MUL_F128), 2); 3050 case ISD::FDIV: return LowerF128Op(Op, DAG, 3051 getLibcallName(RTLIB::DIV_F128), 2); 3052 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3053 getLibcallName(RTLIB::SQRT_F128),1); 3054 case ISD::FABS: 3055 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3056 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3057 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3058 case ISD::ADDC: 3059 case ISD::ADDE: 3060 case ISD::SUBC: 3061 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3062 case ISD::UMULO: 3063 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3064 case ISD::ATOMIC_LOAD: 3065 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3066 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3067 } 3068 } 3069 3070 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, 3071 const SDLoc &DL, 3072 SelectionDAG &DAG) const { 3073 APInt V = C->getValueAPF().bitcastToAPInt(); 3074 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); 3075 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); 3076 if (DAG.getDataLayout().isLittleEndian()) 3077 std::swap(Lo, Hi); 3078 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); 3079 } 3080 3081 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, 3082 DAGCombinerInfo &DCI) const { 3083 SDLoc dl(N); 3084 SDValue Src = N->getOperand(0); 3085 3086 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && 3087 Src.getSimpleValueType() == MVT::f64) 3088 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); 3089 3090 return SDValue(); 3091 } 3092 3093 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, 3094 DAGCombinerInfo &DCI) const { 3095 switch (N->getOpcode()) { 3096 default: 3097 break; 3098 case ISD::BITCAST: 3099 return PerformBITCASTCombine(N, DCI); 3100 } 3101 return SDValue(); 3102 } 3103 3104 MachineBasicBlock * 3105 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3106 MachineBasicBlock *BB) const { 3107 switch (MI.getOpcode()) { 3108 default: llvm_unreachable("Unknown SELECT_CC!"); 3109 case SP::SELECT_CC_Int_ICC: 3110 case SP::SELECT_CC_FP_ICC: 3111 case SP::SELECT_CC_DFP_ICC: 3112 case SP::SELECT_CC_QFP_ICC: 3113 return expandSelectCC(MI, BB, SP::BCOND); 3114 case SP::SELECT_CC_Int_FCC: 3115 case SP::SELECT_CC_FP_FCC: 3116 case SP::SELECT_CC_DFP_FCC: 3117 case SP::SELECT_CC_QFP_FCC: 3118 return expandSelectCC(MI, BB, SP::FBCOND); 3119 } 3120 } 3121 3122 MachineBasicBlock * 3123 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3124 unsigned BROpcode) const { 3125 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3126 DebugLoc dl = MI.getDebugLoc(); 3127 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3128 3129 // To "insert" a SELECT_CC instruction, we actually have to insert the 3130 // triangle control-flow pattern. The incoming instruction knows the 3131 // destination vreg to set, the condition code register to branch on, the 3132 // true/false values to select between, and the condition code for the branch. 3133 // 3134 // We produce the following control flow: 3135 // ThisMBB 3136 // | \ 3137 // | IfFalseMBB 3138 // | / 3139 // SinkMBB 3140 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3141 MachineFunction::iterator It = ++BB->getIterator(); 3142 3143 MachineBasicBlock *ThisMBB = BB; 3144 MachineFunction *F = BB->getParent(); 3145 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3146 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3147 F->insert(It, IfFalseMBB); 3148 F->insert(It, SinkMBB); 3149 3150 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 3151 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 3152 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); 3153 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 3154 3155 // Set the new successors for ThisMBB. 3156 ThisMBB->addSuccessor(IfFalseMBB); 3157 ThisMBB->addSuccessor(SinkMBB); 3158 3159 BuildMI(ThisMBB, dl, TII.get(BROpcode)) 3160 .addMBB(SinkMBB) 3161 .addImm(CC); 3162 3163 // IfFalseMBB just falls through to SinkMBB. 3164 IfFalseMBB->addSuccessor(SinkMBB); 3165 3166 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] 3167 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), 3168 MI.getOperand(0).getReg()) 3169 .addReg(MI.getOperand(1).getReg()) 3170 .addMBB(ThisMBB) 3171 .addReg(MI.getOperand(2).getReg()) 3172 .addMBB(IfFalseMBB); 3173 3174 MI.eraseFromParent(); // The pseudo instruction is gone now. 3175 return SinkMBB; 3176 } 3177 3178 //===----------------------------------------------------------------------===// 3179 // Sparc Inline Assembly Support 3180 //===----------------------------------------------------------------------===// 3181 3182 /// getConstraintType - Given a constraint letter, return the type of 3183 /// constraint it is for this target. 3184 SparcTargetLowering::ConstraintType 3185 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3186 if (Constraint.size() == 1) { 3187 switch (Constraint[0]) { 3188 default: break; 3189 case 'r': 3190 case 'f': 3191 case 'e': 3192 return C_RegisterClass; 3193 case 'I': // SIMM13 3194 return C_Immediate; 3195 } 3196 } 3197 3198 return TargetLowering::getConstraintType(Constraint); 3199 } 3200 3201 TargetLowering::ConstraintWeight SparcTargetLowering:: 3202 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3203 const char *constraint) const { 3204 ConstraintWeight weight = CW_Invalid; 3205 Value *CallOperandVal = info.CallOperandVal; 3206 // If we don't have a value, we can't do a match, 3207 // but allow it at the lowest weight. 3208 if (!CallOperandVal) 3209 return CW_Default; 3210 3211 // Look at the constraint type. 3212 switch (*constraint) { 3213 default: 3214 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3215 break; 3216 case 'I': // SIMM13 3217 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3218 if (isInt<13>(C->getSExtValue())) 3219 weight = CW_Constant; 3220 } 3221 break; 3222 } 3223 return weight; 3224 } 3225 3226 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3227 /// vector. If it is invalid, don't add anything to Ops. 3228 void SparcTargetLowering:: 3229 LowerAsmOperandForConstraint(SDValue Op, 3230 std::string &Constraint, 3231 std::vector<SDValue> &Ops, 3232 SelectionDAG &DAG) const { 3233 SDValue Result(nullptr, 0); 3234 3235 // Only support length 1 constraints for now. 3236 if (Constraint.length() > 1) 3237 return; 3238 3239 char ConstraintLetter = Constraint[0]; 3240 switch (ConstraintLetter) { 3241 default: break; 3242 case 'I': 3243 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3244 if (isInt<13>(C->getSExtValue())) { 3245 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3246 Op.getValueType()); 3247 break; 3248 } 3249 return; 3250 } 3251 } 3252 3253 if (Result.getNode()) { 3254 Ops.push_back(Result); 3255 return; 3256 } 3257 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3258 } 3259 3260 std::pair<unsigned, const TargetRegisterClass *> 3261 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3262 StringRef Constraint, 3263 MVT VT) const { 3264 if (Constraint.size() == 1) { 3265 switch (Constraint[0]) { 3266 case 'r': 3267 if (VT == MVT::v2i32) 3268 return std::make_pair(0U, &SP::IntPairRegClass); 3269 else if (Subtarget->is64Bit()) 3270 return std::make_pair(0U, &SP::I64RegsRegClass); 3271 else 3272 return std::make_pair(0U, &SP::IntRegsRegClass); 3273 case 'f': 3274 if (VT == MVT::f32 || VT == MVT::i32) 3275 return std::make_pair(0U, &SP::FPRegsRegClass); 3276 else if (VT == MVT::f64 || VT == MVT::i64) 3277 return std::make_pair(0U, &SP::LowDFPRegsRegClass); 3278 else if (VT == MVT::f128) 3279 return std::make_pair(0U, &SP::LowQFPRegsRegClass); 3280 // This will generate an error message 3281 return std::make_pair(0U, nullptr); 3282 case 'e': 3283 if (VT == MVT::f32 || VT == MVT::i32) 3284 return std::make_pair(0U, &SP::FPRegsRegClass); 3285 else if (VT == MVT::f64 || VT == MVT::i64 ) 3286 return std::make_pair(0U, &SP::DFPRegsRegClass); 3287 else if (VT == MVT::f128) 3288 return std::make_pair(0U, &SP::QFPRegsRegClass); 3289 // This will generate an error message 3290 return std::make_pair(0U, nullptr); 3291 } 3292 } else if (!Constraint.empty() && Constraint.size() <= 5 3293 && Constraint[0] == '{' && *(Constraint.end()-1) == '}') { 3294 // constraint = '{r<d>}' 3295 // Remove the braces from around the name. 3296 StringRef name(Constraint.data()+1, Constraint.size()-2); 3297 // Handle register aliases: 3298 // r0-r7 -> g0-g7 3299 // r8-r15 -> o0-o7 3300 // r16-r23 -> l0-l7 3301 // r24-r31 -> i0-i7 3302 uint64_t intVal = 0; 3303 if (name.substr(0, 1).equals("r") 3304 && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) { 3305 const char regTypes[] = { 'g', 'o', 'l', 'i' }; 3306 char regType = regTypes[intVal/8]; 3307 char regIdx = '0' + (intVal % 8); 3308 char tmp[] = { '{', regType, regIdx, '}', 0 }; 3309 std::string newConstraint = std::string(tmp); 3310 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3311 VT); 3312 } 3313 if (name.substr(0, 1).equals("f") && 3314 !name.substr(1).getAsInteger(10, intVal) && intVal <= 63) { 3315 std::string newConstraint; 3316 3317 if (VT == MVT::f32 || VT == MVT::Other) { 3318 newConstraint = "{f" + utostr(intVal) + "}"; 3319 } else if (VT == MVT::f64 && (intVal % 2 == 0)) { 3320 newConstraint = "{d" + utostr(intVal / 2) + "}"; 3321 } else if (VT == MVT::f128 && (intVal % 4 == 0)) { 3322 newConstraint = "{q" + utostr(intVal / 4) + "}"; 3323 } else { 3324 return std::make_pair(0U, nullptr); 3325 } 3326 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3327 VT); 3328 } 3329 } 3330 3331 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3332 } 3333 3334 bool 3335 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3336 // The Sparc target isn't yet aware of offsets. 3337 return false; 3338 } 3339 3340 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3341 SmallVectorImpl<SDValue>& Results, 3342 SelectionDAG &DAG) const { 3343 3344 SDLoc dl(N); 3345 3346 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3347 3348 switch (N->getOpcode()) { 3349 default: 3350 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3351 3352 case ISD::FP_TO_SINT: 3353 case ISD::FP_TO_UINT: 3354 // Custom lower only if it involves f128 or i64. 3355 if (N->getOperand(0).getValueType() != MVT::f128 3356 || N->getValueType(0) != MVT::i64) 3357 return; 3358 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3359 ? RTLIB::FPTOSINT_F128_I64 3360 : RTLIB::FPTOUINT_F128_I64); 3361 3362 Results.push_back(LowerF128Op(SDValue(N, 0), 3363 DAG, 3364 getLibcallName(libCall), 3365 1)); 3366 return; 3367 case ISD::READCYCLECOUNTER: { 3368 assert(Subtarget->hasLeonCycleCounter()); 3369 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); 3370 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); 3371 SDValue Ops[] = { Lo, Hi }; 3372 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); 3373 Results.push_back(Pair); 3374 Results.push_back(N->getOperand(0)); 3375 return; 3376 } 3377 case ISD::SINT_TO_FP: 3378 case ISD::UINT_TO_FP: 3379 // Custom lower only if it involves f128 or i64. 3380 if (N->getValueType(0) != MVT::f128 3381 || N->getOperand(0).getValueType() != MVT::i64) 3382 return; 3383 3384 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3385 ? RTLIB::SINTTOFP_I64_F128 3386 : RTLIB::UINTTOFP_I64_F128); 3387 3388 Results.push_back(LowerF128Op(SDValue(N, 0), 3389 DAG, 3390 getLibcallName(libCall), 3391 1)); 3392 return; 3393 case ISD::LOAD: { 3394 LoadSDNode *Ld = cast<LoadSDNode>(N); 3395 // Custom handling only for i64: turn i64 load into a v2i32 load, 3396 // and a bitcast. 3397 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3398 return; 3399 3400 SDLoc dl(N); 3401 SDValue LoadRes = DAG.getExtLoad( 3402 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), 3403 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, Ld->getAlignment(), 3404 Ld->getMemOperand()->getFlags(), Ld->getAAInfo()); 3405 3406 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3407 Results.push_back(Res); 3408 Results.push_back(LoadRes.getValue(1)); 3409 return; 3410 } 3411 } 3412 } 3413 3414 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3415 bool SparcTargetLowering::useLoadStackGuardNode() const { 3416 if (!Subtarget->isTargetLinux()) 3417 return TargetLowering::useLoadStackGuardNode(); 3418 return true; 3419 } 3420 3421 // Override to disable global variable loading on Linux. 3422 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3423 if (!Subtarget->isTargetLinux()) 3424 return TargetLowering::insertSSPDeclarations(M); 3425 } 3426