1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Sparc uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SparcISelLowering.h" 15 #include "MCTargetDesc/SparcMCExpr.h" 16 #include "MCTargetDesc/SparcMCTargetDesc.h" 17 #include "SparcMachineFunctionInfo.h" 18 #include "SparcRegisterInfo.h" 19 #include "SparcTargetMachine.h" 20 #include "SparcTargetObjectFile.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 40 //===----------------------------------------------------------------------===// 41 // Calling Convention Implementation 42 //===----------------------------------------------------------------------===// 43 44 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 45 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 46 ISD::ArgFlagsTy &ArgFlags, CCState &State) 47 { 48 assert (ArgFlags.isSRet()); 49 50 // Assign SRet argument. 51 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 52 0, 53 LocVT, LocInfo)); 54 return true; 55 } 56 57 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 58 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 59 ISD::ArgFlagsTy &ArgFlags, CCState &State) 60 { 61 static const MCPhysReg RegList[] = { 62 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 63 }; 64 // Try to get first reg. 65 if (Register Reg = State.AllocateReg(RegList)) { 66 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 67 } else { 68 // Assign whole thing in stack. 69 State.addLoc(CCValAssign::getCustomMem( 70 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); 71 return true; 72 } 73 74 // Try to get second reg. 75 if (Register Reg = State.AllocateReg(RegList)) 76 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 77 else 78 State.addLoc(CCValAssign::getCustomMem( 79 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); 80 return true; 81 } 82 83 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 84 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 85 ISD::ArgFlagsTy &ArgFlags, CCState &State) 86 { 87 static const MCPhysReg RegList[] = { 88 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 89 }; 90 91 // Try to get first reg. 92 if (Register Reg = State.AllocateReg(RegList)) 93 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 94 else 95 return false; 96 97 // Try to get second reg. 98 if (Register Reg = State.AllocateReg(RegList)) 99 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 100 else 101 return false; 102 103 return true; 104 } 105 106 // Allocate a full-sized argument for the 64-bit ABI. 107 static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT, 108 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 109 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 110 assert((LocVT == MVT::f32 || LocVT == MVT::f128 111 || LocVT.getSizeInBits() == 64) && 112 "Can't handle non-64 bits locations"); 113 114 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 115 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 116 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); 117 unsigned Offset = State.AllocateStack(size, alignment); 118 unsigned Reg = 0; 119 120 if (LocVT == MVT::i64 && Offset < 6*8) 121 // Promote integers to %i0-%i5. 122 Reg = SP::I0 + Offset/8; 123 else if (LocVT == MVT::f64 && Offset < 16*8) 124 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 125 Reg = SP::D0 + Offset/8; 126 else if (LocVT == MVT::f32 && Offset < 16*8) 127 // Promote floats to %f1, %f3, ... 128 Reg = SP::F1 + Offset/4; 129 else if (LocVT == MVT::f128 && Offset < 16*8) 130 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 131 Reg = SP::Q0 + Offset/16; 132 133 // Promote to register when possible, otherwise use the stack slot. 134 if (Reg) { 135 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 136 return true; 137 } 138 139 // Bail out if this is a return CC and we run out of registers to place 140 // values into. 141 if (IsReturn) 142 return false; 143 144 // This argument goes on the stack in an 8-byte slot. 145 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 146 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 147 if (LocVT == MVT::f32) 148 Offset += 4; 149 150 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 151 return true; 152 } 153 154 // Allocate a half-sized argument for the 64-bit ABI. 155 // 156 // This is used when passing { float, int } structs by value in registers. 157 static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT, 158 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 159 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 160 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 161 unsigned Offset = State.AllocateStack(4, Align(4)); 162 163 if (LocVT == MVT::f32 && Offset < 16*8) { 164 // Promote floats to %f0-%f31. 165 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 166 LocVT, LocInfo)); 167 return true; 168 } 169 170 if (LocVT == MVT::i32 && Offset < 6*8) { 171 // Promote integers to %i0-%i5, using half the register. 172 unsigned Reg = SP::I0 + Offset/8; 173 LocVT = MVT::i64; 174 LocInfo = CCValAssign::AExt; 175 176 // Set the Custom bit if this i32 goes in the high bits of a register. 177 if (Offset % 8 == 0) 178 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 179 LocVT, LocInfo)); 180 else 181 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 182 return true; 183 } 184 185 // Bail out if this is a return CC and we run out of registers to place 186 // values into. 187 if (IsReturn) 188 return false; 189 190 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 191 return true; 192 } 193 194 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 195 CCValAssign::LocInfo &LocInfo, 196 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 197 return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 198 State); 199 } 200 201 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 202 CCValAssign::LocInfo &LocInfo, 203 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 204 return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 205 State); 206 } 207 208 static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 209 CCValAssign::LocInfo &LocInfo, 210 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 211 return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 212 State); 213 } 214 215 static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 216 CCValAssign::LocInfo &LocInfo, 217 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 218 return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 219 State); 220 } 221 222 #include "SparcGenCallingConv.inc" 223 224 // The calling conventions in SparcCallingConv.td are described in terms of the 225 // callee's register window. This function translates registers to the 226 // corresponding caller window %o register. 227 static unsigned toCallerWindow(unsigned Reg) { 228 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 229 "Unexpected enum"); 230 if (Reg >= SP::I0 && Reg <= SP::I7) 231 return Reg - SP::I0 + SP::O0; 232 return Reg; 233 } 234 235 bool SparcTargetLowering::CanLowerReturn( 236 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, 237 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 238 SmallVector<CCValAssign, 16> RVLocs; 239 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 240 return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64 241 : RetCC_Sparc32); 242 } 243 244 SDValue 245 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 246 bool IsVarArg, 247 const SmallVectorImpl<ISD::OutputArg> &Outs, 248 const SmallVectorImpl<SDValue> &OutVals, 249 const SDLoc &DL, SelectionDAG &DAG) const { 250 if (Subtarget->is64Bit()) 251 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 252 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 253 } 254 255 SDValue 256 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 257 bool IsVarArg, 258 const SmallVectorImpl<ISD::OutputArg> &Outs, 259 const SmallVectorImpl<SDValue> &OutVals, 260 const SDLoc &DL, SelectionDAG &DAG) const { 261 MachineFunction &MF = DAG.getMachineFunction(); 262 263 // CCValAssign - represent the assignment of the return value to locations. 264 SmallVector<CCValAssign, 16> RVLocs; 265 266 // CCState - Info about the registers and stack slot. 267 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 268 *DAG.getContext()); 269 270 // Analyze return values. 271 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 272 273 SDValue Glue; 274 SmallVector<SDValue, 4> RetOps(1, Chain); 275 // Make room for the return address offset. 276 RetOps.push_back(SDValue()); 277 278 // Copy the result values into the output registers. 279 for (unsigned i = 0, realRVLocIdx = 0; 280 i != RVLocs.size(); 281 ++i, ++realRVLocIdx) { 282 CCValAssign &VA = RVLocs[i]; 283 assert(VA.isRegLoc() && "Can only return in registers!"); 284 285 SDValue Arg = OutVals[realRVLocIdx]; 286 287 if (VA.needsCustom()) { 288 assert(VA.getLocVT() == MVT::v2i32); 289 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 290 // happen by default if this wasn't a legal type) 291 292 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 293 Arg, 294 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 295 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 296 Arg, 297 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 298 299 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Glue); 300 Glue = Chain.getValue(1); 301 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 302 VA = RVLocs[++i]; // skip ahead to next loc 303 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 304 Glue); 305 } else 306 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); 307 308 // Guarantee that all emitted copies are stuck together with flags. 309 Glue = Chain.getValue(1); 310 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 311 } 312 313 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 314 // If the function returns a struct, copy the SRetReturnReg to I0 315 if (MF.getFunction().hasStructRetAttr()) { 316 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 317 Register Reg = SFI->getSRetReturnReg(); 318 if (!Reg) 319 llvm_unreachable("sret virtual register not created in the entry block"); 320 auto PtrVT = getPointerTy(DAG.getDataLayout()); 321 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 322 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Glue); 323 Glue = Chain.getValue(1); 324 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 325 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 326 } 327 328 RetOps[0] = Chain; // Update chain. 329 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 330 331 // Add the glue if we have it. 332 if (Glue.getNode()) 333 RetOps.push_back(Glue); 334 335 return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps); 336 } 337 338 // Lower return values for the 64-bit ABI. 339 // Return values are passed the exactly the same way as function arguments. 340 SDValue 341 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 342 bool IsVarArg, 343 const SmallVectorImpl<ISD::OutputArg> &Outs, 344 const SmallVectorImpl<SDValue> &OutVals, 345 const SDLoc &DL, SelectionDAG &DAG) const { 346 // CCValAssign - represent the assignment of the return value to locations. 347 SmallVector<CCValAssign, 16> RVLocs; 348 349 // CCState - Info about the registers and stack slot. 350 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 351 *DAG.getContext()); 352 353 // Analyze return values. 354 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 355 356 SDValue Glue; 357 SmallVector<SDValue, 4> RetOps(1, Chain); 358 359 // The second operand on the return instruction is the return address offset. 360 // The return address is always %i7+8 with the 64-bit ABI. 361 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 362 363 // Copy the result values into the output registers. 364 for (unsigned i = 0; i != RVLocs.size(); ++i) { 365 CCValAssign &VA = RVLocs[i]; 366 assert(VA.isRegLoc() && "Can only return in registers!"); 367 SDValue OutVal = OutVals[i]; 368 369 // Integer return values must be sign or zero extended by the callee. 370 switch (VA.getLocInfo()) { 371 case CCValAssign::Full: break; 372 case CCValAssign::SExt: 373 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 374 break; 375 case CCValAssign::ZExt: 376 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 377 break; 378 case CCValAssign::AExt: 379 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 380 break; 381 default: 382 llvm_unreachable("Unknown loc info!"); 383 } 384 385 // The custom bit on an i32 return value indicates that it should be passed 386 // in the high bits of the register. 387 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 388 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 389 DAG.getConstant(32, DL, MVT::i32)); 390 391 // The next value may go in the low bits of the same register. 392 // Handle both at once. 393 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 394 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 395 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 396 // Skip the next value, it's already done. 397 ++i; 398 } 399 } 400 401 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue); 402 403 // Guarantee that all emitted copies are stuck together with flags. 404 Glue = Chain.getValue(1); 405 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 406 } 407 408 RetOps[0] = Chain; // Update chain. 409 410 // Add the flag if we have it. 411 if (Glue.getNode()) 412 RetOps.push_back(Glue); 413 414 return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps); 415 } 416 417 SDValue SparcTargetLowering::LowerFormalArguments( 418 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 419 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 420 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 421 if (Subtarget->is64Bit()) 422 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 423 DL, DAG, InVals); 424 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 425 DL, DAG, InVals); 426 } 427 428 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 429 /// passed in either one or two GPRs, including FP values. TODO: we should 430 /// pass FP values in FP registers for fastcc functions. 431 SDValue SparcTargetLowering::LowerFormalArguments_32( 432 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 433 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 434 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 435 MachineFunction &MF = DAG.getMachineFunction(); 436 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 437 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 438 439 // Assign locations to all of the incoming arguments. 440 SmallVector<CCValAssign, 16> ArgLocs; 441 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 442 *DAG.getContext()); 443 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 444 445 const unsigned StackOffset = 92; 446 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 447 448 unsigned InIdx = 0; 449 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 450 CCValAssign &VA = ArgLocs[i]; 451 452 if (Ins[InIdx].Flags.isSRet()) { 453 if (InIdx != 0) 454 report_fatal_error("sparc only supports sret on the first parameter"); 455 // Get SRet from [%fp+64]. 456 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); 457 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 458 SDValue Arg = 459 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 460 InVals.push_back(Arg); 461 continue; 462 } 463 464 if (VA.isRegLoc()) { 465 if (VA.needsCustom()) { 466 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 467 468 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 469 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 470 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 471 472 assert(i+1 < e); 473 CCValAssign &NextVA = ArgLocs[++i]; 474 475 SDValue LoVal; 476 if (NextVA.isMemLoc()) { 477 int FrameIdx = MF.getFrameInfo(). 478 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 479 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 480 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 481 } else { 482 Register loReg = MF.addLiveIn(NextVA.getLocReg(), 483 &SP::IntRegsRegClass); 484 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 485 } 486 487 if (IsLittleEndian) 488 std::swap(LoVal, HiVal); 489 490 SDValue WholeValue = 491 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 492 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 493 InVals.push_back(WholeValue); 494 continue; 495 } 496 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 497 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 498 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 499 if (VA.getLocVT() == MVT::f32) 500 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 501 else if (VA.getLocVT() != MVT::i32) { 502 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 503 DAG.getValueType(VA.getLocVT())); 504 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 505 } 506 InVals.push_back(Arg); 507 continue; 508 } 509 510 assert(VA.isMemLoc()); 511 512 unsigned Offset = VA.getLocMemOffset()+StackOffset; 513 auto PtrVT = getPointerTy(DAG.getDataLayout()); 514 515 if (VA.needsCustom()) { 516 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 517 // If it is double-word aligned, just load. 518 if (Offset % 8 == 0) { 519 int FI = MF.getFrameInfo().CreateFixedObject(8, 520 Offset, 521 true); 522 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 523 SDValue Load = 524 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 525 InVals.push_back(Load); 526 continue; 527 } 528 529 int FI = MF.getFrameInfo().CreateFixedObject(4, 530 Offset, 531 true); 532 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 533 SDValue HiVal = 534 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 535 int FI2 = MF.getFrameInfo().CreateFixedObject(4, 536 Offset+4, 537 true); 538 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 539 540 SDValue LoVal = 541 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); 542 543 if (IsLittleEndian) 544 std::swap(LoVal, HiVal); 545 546 SDValue WholeValue = 547 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 548 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 549 InVals.push_back(WholeValue); 550 continue; 551 } 552 553 int FI = MF.getFrameInfo().CreateFixedObject(4, 554 Offset, 555 true); 556 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 557 SDValue Load ; 558 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 559 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 560 } else if (VA.getValVT() == MVT::f128) { 561 report_fatal_error("SPARCv8 does not handle f128 in calls; " 562 "pass indirectly"); 563 } else { 564 // We shouldn't see any other value types here. 565 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 566 } 567 InVals.push_back(Load); 568 } 569 570 if (MF.getFunction().hasStructRetAttr()) { 571 // Copy the SRet Argument to SRetReturnReg. 572 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 573 Register Reg = SFI->getSRetReturnReg(); 574 if (!Reg) { 575 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 576 SFI->setSRetReturnReg(Reg); 577 } 578 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 579 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 580 } 581 582 // Store remaining ArgRegs to the stack if this is a varargs function. 583 if (isVarArg) { 584 static const MCPhysReg ArgRegs[] = { 585 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 586 }; 587 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 588 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 589 unsigned ArgOffset = CCInfo.getStackSize(); 590 if (NumAllocated == 6) 591 ArgOffset += StackOffset; 592 else { 593 assert(!ArgOffset); 594 ArgOffset = 68+4*NumAllocated; 595 } 596 597 // Remember the vararg offset for the va_start implementation. 598 FuncInfo->setVarArgsFrameOffset(ArgOffset); 599 600 std::vector<SDValue> OutChains; 601 602 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 603 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 604 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 605 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 606 607 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, 608 true); 609 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 610 611 OutChains.push_back( 612 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); 613 ArgOffset += 4; 614 } 615 616 if (!OutChains.empty()) { 617 OutChains.push_back(Chain); 618 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 619 } 620 } 621 622 return Chain; 623 } 624 625 // Lower formal arguments for the 64 bit ABI. 626 SDValue SparcTargetLowering::LowerFormalArguments_64( 627 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 628 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 629 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 630 MachineFunction &MF = DAG.getMachineFunction(); 631 632 // Analyze arguments according to CC_Sparc64. 633 SmallVector<CCValAssign, 16> ArgLocs; 634 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 635 *DAG.getContext()); 636 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 637 638 // The argument array begins at %fp+BIAS+128, after the register save area. 639 const unsigned ArgArea = 128; 640 641 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 642 CCValAssign &VA = ArgLocs[i]; 643 if (VA.isRegLoc()) { 644 // This argument is passed in a register. 645 // All integer register arguments are promoted by the caller to i64. 646 647 // Create a virtual register for the promoted live-in value. 648 Register VReg = MF.addLiveIn(VA.getLocReg(), 649 getRegClassFor(VA.getLocVT())); 650 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 651 652 // Get the high bits for i32 struct elements. 653 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 654 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 655 DAG.getConstant(32, DL, MVT::i32)); 656 657 // The caller promoted the argument, so insert an Assert?ext SDNode so we 658 // won't promote the value again in this function. 659 switch (VA.getLocInfo()) { 660 case CCValAssign::SExt: 661 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 662 DAG.getValueType(VA.getValVT())); 663 break; 664 case CCValAssign::ZExt: 665 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 666 DAG.getValueType(VA.getValVT())); 667 break; 668 default: 669 break; 670 } 671 672 // Truncate the register down to the argument type. 673 if (VA.isExtInLoc()) 674 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 675 676 InVals.push_back(Arg); 677 continue; 678 } 679 680 // The registers are exhausted. This argument was passed on the stack. 681 assert(VA.isMemLoc()); 682 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 683 // beginning of the arguments area at %fp+BIAS+128. 684 unsigned Offset = VA.getLocMemOffset() + ArgArea; 685 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 686 // Adjust offset for extended arguments, SPARC is big-endian. 687 // The caller will have written the full slot with extended bytes, but we 688 // prefer our own extending loads. 689 if (VA.isExtInLoc()) 690 Offset += 8 - ValSize; 691 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 692 InVals.push_back( 693 DAG.getLoad(VA.getValVT(), DL, Chain, 694 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 695 MachinePointerInfo::getFixedStack(MF, FI))); 696 } 697 698 if (!IsVarArg) 699 return Chain; 700 701 // This function takes variable arguments, some of which may have been passed 702 // in registers %i0-%i5. Variable floating point arguments are never passed 703 // in floating point registers. They go on %i0-%i5 or on the stack like 704 // integer arguments. 705 // 706 // The va_start intrinsic needs to know the offset to the first variable 707 // argument. 708 unsigned ArgOffset = CCInfo.getStackSize(); 709 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 710 // Skip the 128 bytes of register save area. 711 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 712 Subtarget->getStackPointerBias()); 713 714 // Save the variable arguments that were passed in registers. 715 // The caller is required to reserve stack space for 6 arguments regardless 716 // of how many arguments were actually passed. 717 SmallVector<SDValue, 8> OutChains; 718 for (; ArgOffset < 6*8; ArgOffset += 8) { 719 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 720 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 721 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); 722 auto PtrVT = getPointerTy(MF.getDataLayout()); 723 OutChains.push_back( 724 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 725 MachinePointerInfo::getFixedStack(MF, FI))); 726 } 727 728 if (!OutChains.empty()) 729 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 730 731 return Chain; 732 } 733 734 // Check whether any of the argument registers are reserved 735 static bool isAnyArgRegReserved(const SparcRegisterInfo *TRI, 736 const MachineFunction &MF) { 737 // The register window design means that outgoing parameters at O* 738 // will appear in the callee as I*. 739 // Be conservative and check both sides of the register names. 740 bool Outgoing = 741 llvm::any_of(SP::GPROutgoingArgRegClass, [TRI, &MF](MCPhysReg r) { 742 return TRI->isReservedReg(MF, r); 743 }); 744 bool Incoming = 745 llvm::any_of(SP::GPRIncomingArgRegClass, [TRI, &MF](MCPhysReg r) { 746 return TRI->isReservedReg(MF, r); 747 }); 748 return Outgoing || Incoming; 749 } 750 751 static void emitReservedArgRegCallError(const MachineFunction &MF) { 752 const Function &F = MF.getFunction(); 753 F.getContext().diagnose(DiagnosticInfoUnsupported{ 754 F, ("SPARC doesn't support" 755 " function calls if any of the argument registers is reserved.")}); 756 } 757 758 SDValue 759 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 760 SmallVectorImpl<SDValue> &InVals) const { 761 if (Subtarget->is64Bit()) 762 return LowerCall_64(CLI, InVals); 763 return LowerCall_32(CLI, InVals); 764 } 765 766 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 767 const CallBase *Call) { 768 if (Call) 769 return Call->hasFnAttr(Attribute::ReturnsTwice); 770 771 const Function *CalleeFn = nullptr; 772 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 773 CalleeFn = dyn_cast<Function>(G->getGlobal()); 774 } else if (ExternalSymbolSDNode *E = 775 dyn_cast<ExternalSymbolSDNode>(Callee)) { 776 const Function &Fn = DAG.getMachineFunction().getFunction(); 777 const Module *M = Fn.getParent(); 778 const char *CalleeName = E->getSymbol(); 779 CalleeFn = M->getFunction(CalleeName); 780 } 781 782 if (!CalleeFn) 783 return false; 784 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 785 } 786 787 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 788 /// for tail call optimization. 789 bool SparcTargetLowering::IsEligibleForTailCallOptimization( 790 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const { 791 792 auto &Outs = CLI.Outs; 793 auto &Caller = MF.getFunction(); 794 795 // Do not tail call opt functions with "disable-tail-calls" attribute. 796 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 797 return false; 798 799 // Do not tail call opt if the stack is used to pass parameters. 800 // 64-bit targets have a slightly higher limit since the ABI requires 801 // to allocate some space even when all the parameters fit inside registers. 802 unsigned StackSizeLimit = Subtarget->is64Bit() ? 48 : 0; 803 if (CCInfo.getStackSize() > StackSizeLimit) 804 return false; 805 806 // Do not tail call opt if either the callee or caller returns 807 // a struct and the other does not. 808 if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet()) 809 return false; 810 811 // Byval parameters hand the function a pointer directly into the stack area 812 // we want to reuse during a tail call. 813 for (auto &Arg : Outs) 814 if (Arg.Flags.isByVal()) 815 return false; 816 817 return true; 818 } 819 820 // Lower a call for the 32-bit ABI. 821 SDValue 822 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 823 SmallVectorImpl<SDValue> &InVals) const { 824 SelectionDAG &DAG = CLI.DAG; 825 SDLoc &dl = CLI.DL; 826 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 827 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 828 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 829 SDValue Chain = CLI.Chain; 830 SDValue Callee = CLI.Callee; 831 bool &isTailCall = CLI.IsTailCall; 832 CallingConv::ID CallConv = CLI.CallConv; 833 bool isVarArg = CLI.IsVarArg; 834 MachineFunction &MF = DAG.getMachineFunction(); 835 836 // Analyze operands of the call, assigning locations to each operand. 837 SmallVector<CCValAssign, 16> ArgLocs; 838 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 839 *DAG.getContext()); 840 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 841 842 isTailCall = isTailCall && IsEligibleForTailCallOptimization( 843 CCInfo, CLI, DAG.getMachineFunction()); 844 845 // Get the size of the outgoing arguments stack space requirement. 846 unsigned ArgsSize = CCInfo.getStackSize(); 847 848 // Keep stack frames 8-byte aligned. 849 ArgsSize = (ArgsSize+7) & ~7; 850 851 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 852 853 // Create local copies for byval args. 854 SmallVector<SDValue, 8> ByValArgs; 855 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 856 ISD::ArgFlagsTy Flags = Outs[i].Flags; 857 if (!Flags.isByVal()) 858 continue; 859 860 SDValue Arg = OutVals[i]; 861 unsigned Size = Flags.getByValSize(); 862 Align Alignment = Flags.getNonZeroByValAlign(); 863 864 if (Size > 0U) { 865 int FI = MFI.CreateStackObject(Size, Alignment, false); 866 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 867 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 868 869 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, 870 false, // isVolatile, 871 (Size <= 32), // AlwaysInline if size <= 32, 872 false, // isTailCall 873 MachinePointerInfo(), MachinePointerInfo()); 874 ByValArgs.push_back(FIPtr); 875 } 876 else { 877 SDValue nullVal; 878 ByValArgs.push_back(nullVal); 879 } 880 } 881 882 assert(!isTailCall || ArgsSize == 0); 883 884 if (!isTailCall) 885 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); 886 887 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 888 SmallVector<SDValue, 8> MemOpChains; 889 890 const unsigned StackOffset = 92; 891 bool hasStructRetAttr = false; 892 unsigned SRetArgSize = 0; 893 // Walk the register/memloc assignments, inserting copies/loads. 894 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 895 i != e; 896 ++i, ++realArgIdx) { 897 CCValAssign &VA = ArgLocs[i]; 898 SDValue Arg = OutVals[realArgIdx]; 899 900 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 901 902 // Use local copy if it is a byval arg. 903 if (Flags.isByVal()) { 904 Arg = ByValArgs[byvalArgIdx++]; 905 if (!Arg) { 906 continue; 907 } 908 } 909 910 // Promote the value if needed. 911 switch (VA.getLocInfo()) { 912 default: llvm_unreachable("Unknown loc info!"); 913 case CCValAssign::Full: break; 914 case CCValAssign::SExt: 915 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 916 break; 917 case CCValAssign::ZExt: 918 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 919 break; 920 case CCValAssign::AExt: 921 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 922 break; 923 case CCValAssign::BCvt: 924 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 925 break; 926 } 927 928 if (Flags.isSRet()) { 929 assert(VA.needsCustom()); 930 931 if (isTailCall) 932 continue; 933 934 // store SRet argument in %sp+64 935 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 936 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 937 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 938 MemOpChains.push_back( 939 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 940 hasStructRetAttr = true; 941 // sret only allowed on first argument 942 assert(Outs[realArgIdx].OrigArgIndex == 0); 943 SRetArgSize = 944 DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType); 945 continue; 946 } 947 948 if (VA.needsCustom()) { 949 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 950 951 if (VA.isMemLoc()) { 952 unsigned Offset = VA.getLocMemOffset() + StackOffset; 953 // if it is double-word aligned, just store. 954 if (Offset % 8 == 0) { 955 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 956 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 957 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 958 MemOpChains.push_back( 959 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 960 continue; 961 } 962 } 963 964 if (VA.getLocVT() == MVT::f64) { 965 // Move from the float value from float registers into the 966 // integer registers. 967 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) 968 Arg = bitcastConstantFPToInt(C, dl, DAG); 969 else 970 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 971 } 972 973 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 974 Arg, 975 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 976 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 977 Arg, 978 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 979 980 if (VA.isRegLoc()) { 981 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 982 assert(i+1 != e); 983 CCValAssign &NextVA = ArgLocs[++i]; 984 if (NextVA.isRegLoc()) { 985 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 986 } else { 987 // Store the second part in stack. 988 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 989 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 990 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 991 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 992 MemOpChains.push_back( 993 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 994 } 995 } else { 996 unsigned Offset = VA.getLocMemOffset() + StackOffset; 997 // Store the first part. 998 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 999 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 1000 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 1001 MemOpChains.push_back( 1002 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); 1003 // Store the second part. 1004 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 1005 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 1006 MemOpChains.push_back( 1007 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 1008 } 1009 continue; 1010 } 1011 1012 // Arguments that can be passed on register must be kept at 1013 // RegsToPass vector 1014 if (VA.isRegLoc()) { 1015 if (VA.getLocVT() != MVT::f32) { 1016 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1017 continue; 1018 } 1019 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 1020 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1021 continue; 1022 } 1023 1024 assert(VA.isMemLoc()); 1025 1026 // Create a store off the stack pointer for this argument. 1027 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 1028 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 1029 dl); 1030 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 1031 MemOpChains.push_back( 1032 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 1033 } 1034 1035 1036 // Emit all stores, make sure the occur before any copies into physregs. 1037 if (!MemOpChains.empty()) 1038 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1039 1040 // Build a sequence of copy-to-reg nodes chained together with token 1041 // chain and flag operands which copy the outgoing args into registers. 1042 // The InGlue in necessary since all emitted instructions must be 1043 // stuck together. 1044 SDValue InGlue; 1045 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1046 Register Reg = RegsToPass[i].first; 1047 if (!isTailCall) 1048 Reg = toCallerWindow(Reg); 1049 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InGlue); 1050 InGlue = Chain.getValue(1); 1051 } 1052 1053 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1054 1055 // If the callee is a GlobalAddress node (quite common, every direct call is) 1056 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1057 // Likewise ExternalSymbol -> TargetExternalSymbol. 1058 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1059 : SparcMCExpr::VK_Sparc_WDISP30; 1060 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1061 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 1062 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1063 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 1064 1065 // Returns a chain & a flag for retval copy to use 1066 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1067 SmallVector<SDValue, 8> Ops; 1068 Ops.push_back(Chain); 1069 Ops.push_back(Callee); 1070 if (hasStructRetAttr) 1071 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 1072 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1073 Register Reg = RegsToPass[i].first; 1074 if (!isTailCall) 1075 Reg = toCallerWindow(Reg); 1076 Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType())); 1077 } 1078 1079 // Add a register mask operand representing the call-preserved registers. 1080 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1081 const uint32_t *Mask = 1082 ((hasReturnsTwice) 1083 ? TRI->getRTCallPreservedMask(CallConv) 1084 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 1085 1086 if (isAnyArgRegReserved(TRI, MF)) 1087 emitReservedArgRegCallError(MF); 1088 1089 assert(Mask && "Missing call preserved mask for calling convention"); 1090 Ops.push_back(DAG.getRegisterMask(Mask)); 1091 1092 if (InGlue.getNode()) 1093 Ops.push_back(InGlue); 1094 1095 if (isTailCall) { 1096 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 1097 return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops); 1098 } 1099 1100 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 1101 InGlue = Chain.getValue(1); 1102 1103 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, dl); 1104 InGlue = Chain.getValue(1); 1105 1106 // Assign locations to each value returned by this call. 1107 SmallVector<CCValAssign, 16> RVLocs; 1108 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1109 *DAG.getContext()); 1110 1111 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 1112 1113 // Copy all of the result registers out of their specified physreg. 1114 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1115 assert(RVLocs[i].isRegLoc() && "Can only return in registers!"); 1116 if (RVLocs[i].getLocVT() == MVT::v2i32) { 1117 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 1118 SDValue Lo = DAG.getCopyFromReg( 1119 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InGlue); 1120 Chain = Lo.getValue(1); 1121 InGlue = Lo.getValue(2); 1122 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 1123 DAG.getConstant(0, dl, MVT::i32)); 1124 SDValue Hi = DAG.getCopyFromReg( 1125 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InGlue); 1126 Chain = Hi.getValue(1); 1127 InGlue = Hi.getValue(2); 1128 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1129 DAG.getConstant(1, dl, MVT::i32)); 1130 InVals.push_back(Vec); 1131 } else { 1132 Chain = 1133 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1134 RVLocs[i].getValVT(), InGlue) 1135 .getValue(1); 1136 InGlue = Chain.getValue(2); 1137 InVals.push_back(Chain.getValue(0)); 1138 } 1139 } 1140 1141 return Chain; 1142 } 1143 1144 // FIXME? Maybe this could be a TableGen attribute on some registers and 1145 // this table could be generated automatically from RegInfo. 1146 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, 1147 const MachineFunction &MF) const { 1148 Register Reg = StringSwitch<Register>(RegName) 1149 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1150 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1151 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1152 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1153 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1154 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1155 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1156 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1157 .Default(0); 1158 1159 // If we're directly referencing register names 1160 // (e.g in GCC C extension `register int r asm("g1");`), 1161 // make sure that said register is in the reserve list. 1162 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1163 if (!TRI->isReservedReg(MF, Reg)) 1164 Reg = 0; 1165 1166 if (Reg) 1167 return Reg; 1168 1169 report_fatal_error("Invalid register name global variable"); 1170 } 1171 1172 // Fixup floating point arguments in the ... part of a varargs call. 1173 // 1174 // The SPARC v9 ABI requires that floating point arguments are treated the same 1175 // as integers when calling a varargs function. This does not apply to the 1176 // fixed arguments that are part of the function's prototype. 1177 // 1178 // This function post-processes a CCValAssign array created by 1179 // AnalyzeCallOperands(). 1180 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1181 ArrayRef<ISD::OutputArg> Outs) { 1182 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1183 CCValAssign &VA = ArgLocs[i]; 1184 MVT ValTy = VA.getLocVT(); 1185 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1186 // varargs functions. 1187 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1188 continue; 1189 // The fixed arguments to a varargs function still go in FP registers. 1190 if (Outs[VA.getValNo()].IsFixed) 1191 continue; 1192 1193 // This floating point argument should be reassigned. 1194 // Determine the offset into the argument array. 1195 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1196 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1197 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1198 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1199 1200 if (Offset < 6*8) { 1201 // This argument should go in %i0-%i5. 1202 unsigned IReg = SP::I0 + Offset/8; 1203 if (ValTy == MVT::f64) 1204 // Full register, just bitconvert into i64. 1205 VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64, 1206 CCValAssign::BCvt); 1207 else { 1208 assert(ValTy == MVT::f128 && "Unexpected type!"); 1209 // Full register, just bitconvert into i128 -- We will lower this into 1210 // two i64s in LowerCall_64. 1211 VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg, 1212 MVT::i128, CCValAssign::BCvt); 1213 } 1214 } else { 1215 // This needs to go to memory, we're out of integer registers. 1216 VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset, 1217 VA.getLocVT(), VA.getLocInfo()); 1218 } 1219 } 1220 } 1221 1222 // Lower a call for the 64-bit ABI. 1223 SDValue 1224 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1225 SmallVectorImpl<SDValue> &InVals) const { 1226 SelectionDAG &DAG = CLI.DAG; 1227 SDLoc DL = CLI.DL; 1228 SDValue Chain = CLI.Chain; 1229 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1230 MachineFunction &MF = DAG.getMachineFunction(); 1231 1232 // Analyze operands of the call, assigning locations to each operand. 1233 SmallVector<CCValAssign, 16> ArgLocs; 1234 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1235 *DAG.getContext()); 1236 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1237 1238 CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization( 1239 CCInfo, CLI, DAG.getMachineFunction()); 1240 1241 // Get the size of the outgoing arguments stack space requirement. 1242 // The stack offset computed by CC_Sparc64 includes all arguments. 1243 // Called functions expect 6 argument words to exist in the stack frame, used 1244 // or not. 1245 unsigned StackReserved = 6 * 8u; 1246 unsigned ArgsSize = std::max<unsigned>(StackReserved, CCInfo.getStackSize()); 1247 1248 // Keep stack frames 16-byte aligned. 1249 ArgsSize = alignTo(ArgsSize, 16); 1250 1251 // Varargs calls require special treatment. 1252 if (CLI.IsVarArg) 1253 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1254 1255 assert(!CLI.IsTailCall || ArgsSize == StackReserved); 1256 1257 // Adjust the stack pointer to make room for the arguments. 1258 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1259 // with more than 6 arguments. 1260 if (!CLI.IsTailCall) 1261 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 1262 1263 // Collect the set of registers to pass to the function and their values. 1264 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1265 // instruction. 1266 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 1267 1268 // Collect chains from all the memory opeations that copy arguments to the 1269 // stack. They must follow the stack pointer adjustment above and precede the 1270 // call instruction itself. 1271 SmallVector<SDValue, 8> MemOpChains; 1272 1273 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1274 const CCValAssign &VA = ArgLocs[i]; 1275 SDValue Arg = CLI.OutVals[i]; 1276 1277 // Promote the value if needed. 1278 switch (VA.getLocInfo()) { 1279 default: 1280 llvm_unreachable("Unknown location info!"); 1281 case CCValAssign::Full: 1282 break; 1283 case CCValAssign::SExt: 1284 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1285 break; 1286 case CCValAssign::ZExt: 1287 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1288 break; 1289 case CCValAssign::AExt: 1290 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1291 break; 1292 case CCValAssign::BCvt: 1293 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1294 // SPARC does not support i128 natively. Lower it into two i64, see below. 1295 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1296 || VA.getLocVT() != MVT::i128) 1297 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1298 break; 1299 } 1300 1301 if (VA.isRegLoc()) { 1302 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1303 && VA.getLocVT() == MVT::i128) { 1304 // Store and reload into the integer register reg and reg+1. 1305 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1306 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1307 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1308 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1309 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1310 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1311 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1312 1313 // Store to %sp+BIAS+128+Offset 1314 SDValue Store = 1315 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); 1316 // Load into Reg and Reg+1 1317 SDValue Hi64 = 1318 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); 1319 SDValue Lo64 = 1320 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); 1321 1322 Register HiReg = VA.getLocReg(); 1323 Register LoReg = VA.getLocReg() + 1; 1324 if (!CLI.IsTailCall) { 1325 HiReg = toCallerWindow(HiReg); 1326 LoReg = toCallerWindow(LoReg); 1327 } 1328 1329 RegsToPass.push_back(std::make_pair(HiReg, Hi64)); 1330 RegsToPass.push_back(std::make_pair(LoReg, Lo64)); 1331 continue; 1332 } 1333 1334 // The custom bit on an i32 return value indicates that it should be 1335 // passed in the high bits of the register. 1336 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1337 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1338 DAG.getConstant(32, DL, MVT::i32)); 1339 1340 // The next value may go in the low bits of the same register. 1341 // Handle both at once. 1342 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1343 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1344 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1345 CLI.OutVals[i+1]); 1346 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1347 // Skip the next value, it's already done. 1348 ++i; 1349 } 1350 } 1351 1352 Register Reg = VA.getLocReg(); 1353 if (!CLI.IsTailCall) 1354 Reg = toCallerWindow(Reg); 1355 RegsToPass.push_back(std::make_pair(Reg, Arg)); 1356 continue; 1357 } 1358 1359 assert(VA.isMemLoc()); 1360 1361 // Create a store off the stack pointer for this argument. 1362 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1363 // The argument area starts at %fp+BIAS+128 in the callee frame, 1364 // %sp+BIAS+128 in ours. 1365 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1366 Subtarget->getStackPointerBias() + 1367 128, DL); 1368 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1369 MemOpChains.push_back( 1370 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 1371 } 1372 1373 // Emit all stores, make sure they occur before the call. 1374 if (!MemOpChains.empty()) 1375 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1376 1377 // Build a sequence of CopyToReg nodes glued together with token chain and 1378 // glue operands which copy the outgoing args into registers. The InGlue is 1379 // necessary since all emitted instructions must be stuck together in order 1380 // to pass the live physical registers. 1381 SDValue InGlue; 1382 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1383 Chain = DAG.getCopyToReg(Chain, DL, 1384 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1385 InGlue = Chain.getValue(1); 1386 } 1387 1388 // If the callee is a GlobalAddress node (quite common, every direct call is) 1389 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1390 // Likewise ExternalSymbol -> TargetExternalSymbol. 1391 SDValue Callee = CLI.Callee; 1392 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1393 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1394 : SparcMCExpr::VK_Sparc_WDISP30; 1395 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1396 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1397 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1398 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1399 1400 // Build the operands for the call instruction itself. 1401 SmallVector<SDValue, 8> Ops; 1402 Ops.push_back(Chain); 1403 Ops.push_back(Callee); 1404 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1405 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1406 RegsToPass[i].second.getValueType())); 1407 1408 // Add a register mask operand representing the call-preserved registers. 1409 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1410 const uint32_t *Mask = 1411 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1412 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1413 CLI.CallConv)); 1414 1415 if (isAnyArgRegReserved(TRI, MF)) 1416 emitReservedArgRegCallError(MF); 1417 1418 assert(Mask && "Missing call preserved mask for calling convention"); 1419 Ops.push_back(DAG.getRegisterMask(Mask)); 1420 1421 // Make sure the CopyToReg nodes are glued to the call instruction which 1422 // consumes the registers. 1423 if (InGlue.getNode()) 1424 Ops.push_back(InGlue); 1425 1426 // Now the call itself. 1427 if (CLI.IsTailCall) { 1428 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 1429 return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops); 1430 } 1431 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1432 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1433 InGlue = Chain.getValue(1); 1434 1435 // Revert the stack pointer immediately after the call. 1436 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL); 1437 InGlue = Chain.getValue(1); 1438 1439 // Now extract the return values. This is more or less the same as 1440 // LowerFormalArguments_64. 1441 1442 // Assign locations to each value returned by this call. 1443 SmallVector<CCValAssign, 16> RVLocs; 1444 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1445 *DAG.getContext()); 1446 1447 // Set inreg flag manually for codegen generated library calls that 1448 // return float. 1449 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 1450 CLI.Ins[0].Flags.setInReg(); 1451 1452 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1453 1454 // Copy all of the result registers out of their specified physreg. 1455 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1456 CCValAssign &VA = RVLocs[i]; 1457 assert(VA.isRegLoc() && "Can only return in registers!"); 1458 unsigned Reg = toCallerWindow(VA.getLocReg()); 1459 1460 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1461 // reside in the same register in the high and low bits. Reuse the 1462 // CopyFromReg previous node to avoid duplicate copies. 1463 SDValue RV; 1464 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1465 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1466 RV = Chain.getValue(0); 1467 1468 // But usually we'll create a new CopyFromReg for a different register. 1469 if (!RV.getNode()) { 1470 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1471 Chain = RV.getValue(1); 1472 InGlue = Chain.getValue(2); 1473 } 1474 1475 // Get the high bits for i32 struct elements. 1476 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1477 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1478 DAG.getConstant(32, DL, MVT::i32)); 1479 1480 // The callee promoted the return value, so insert an Assert?ext SDNode so 1481 // we won't promote the value again in this function. 1482 switch (VA.getLocInfo()) { 1483 case CCValAssign::SExt: 1484 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1485 DAG.getValueType(VA.getValVT())); 1486 break; 1487 case CCValAssign::ZExt: 1488 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1489 DAG.getValueType(VA.getValVT())); 1490 break; 1491 default: 1492 break; 1493 } 1494 1495 // Truncate the register down to the return value type. 1496 if (VA.isExtInLoc()) 1497 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1498 1499 InVals.push_back(RV); 1500 } 1501 1502 return Chain; 1503 } 1504 1505 //===----------------------------------------------------------------------===// 1506 // TargetLowering Implementation 1507 //===----------------------------------------------------------------------===// 1508 1509 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1510 if (AI->getOperation() == AtomicRMWInst::Xchg && 1511 AI->getType()->getPrimitiveSizeInBits() == 32) 1512 return AtomicExpansionKind::None; // Uses xchg instruction 1513 1514 return AtomicExpansionKind::CmpXChg; 1515 } 1516 1517 /// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC 1518 /// rcond condition. 1519 static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) { 1520 switch (CC) { 1521 default: 1522 llvm_unreachable("Unknown/unsigned integer condition code!"); 1523 case ISD::SETEQ: 1524 return SPCC::REG_Z; 1525 case ISD::SETNE: 1526 return SPCC::REG_NZ; 1527 case ISD::SETLT: 1528 return SPCC::REG_LZ; 1529 case ISD::SETGT: 1530 return SPCC::REG_GZ; 1531 case ISD::SETLE: 1532 return SPCC::REG_LEZ; 1533 case ISD::SETGE: 1534 return SPCC::REG_GEZ; 1535 } 1536 } 1537 1538 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1539 /// condition. 1540 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1541 switch (CC) { 1542 default: llvm_unreachable("Unknown integer condition code!"); 1543 case ISD::SETEQ: return SPCC::ICC_E; 1544 case ISD::SETNE: return SPCC::ICC_NE; 1545 case ISD::SETLT: return SPCC::ICC_L; 1546 case ISD::SETGT: return SPCC::ICC_G; 1547 case ISD::SETLE: return SPCC::ICC_LE; 1548 case ISD::SETGE: return SPCC::ICC_GE; 1549 case ISD::SETULT: return SPCC::ICC_CS; 1550 case ISD::SETULE: return SPCC::ICC_LEU; 1551 case ISD::SETUGT: return SPCC::ICC_GU; 1552 case ISD::SETUGE: return SPCC::ICC_CC; 1553 } 1554 } 1555 1556 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1557 /// FCC condition. 1558 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1559 switch (CC) { 1560 default: llvm_unreachable("Unknown fp condition code!"); 1561 case ISD::SETEQ: 1562 case ISD::SETOEQ: return SPCC::FCC_E; 1563 case ISD::SETNE: 1564 case ISD::SETUNE: return SPCC::FCC_NE; 1565 case ISD::SETLT: 1566 case ISD::SETOLT: return SPCC::FCC_L; 1567 case ISD::SETGT: 1568 case ISD::SETOGT: return SPCC::FCC_G; 1569 case ISD::SETLE: 1570 case ISD::SETOLE: return SPCC::FCC_LE; 1571 case ISD::SETGE: 1572 case ISD::SETOGE: return SPCC::FCC_GE; 1573 case ISD::SETULT: return SPCC::FCC_UL; 1574 case ISD::SETULE: return SPCC::FCC_ULE; 1575 case ISD::SETUGT: return SPCC::FCC_UG; 1576 case ISD::SETUGE: return SPCC::FCC_UGE; 1577 case ISD::SETUO: return SPCC::FCC_U; 1578 case ISD::SETO: return SPCC::FCC_O; 1579 case ISD::SETONE: return SPCC::FCC_LG; 1580 case ISD::SETUEQ: return SPCC::FCC_UE; 1581 } 1582 } 1583 1584 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1585 const SparcSubtarget &STI) 1586 : TargetLowering(TM), Subtarget(&STI) { 1587 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 1588 1589 // Instructions which use registers as conditionals examine all the 1590 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1591 // matters much whether it's ZeroOrOneBooleanContent, or 1592 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1593 // former. 1594 setBooleanContents(ZeroOrOneBooleanContent); 1595 setBooleanVectorContents(ZeroOrOneBooleanContent); 1596 1597 // Set up the register classes. 1598 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1599 if (!Subtarget->useSoftFloat()) { 1600 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1601 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1602 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1603 } 1604 if (Subtarget->is64Bit()) { 1605 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1606 } else { 1607 // On 32bit sparc, we define a double-register 32bit register 1608 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1609 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1610 1611 // ...but almost all operations must be expanded, so set that as 1612 // the default. 1613 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1614 setOperationAction(Op, MVT::v2i32, Expand); 1615 } 1616 // Truncating/extending stores/loads are also not supported. 1617 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1618 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1619 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1620 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1621 1622 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1623 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1624 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1625 1626 setTruncStoreAction(VT, MVT::v2i32, Expand); 1627 setTruncStoreAction(MVT::v2i32, VT, Expand); 1628 } 1629 // However, load and store *are* legal. 1630 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1631 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1632 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1633 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1634 1635 // And we need to promote i64 loads/stores into vector load/store 1636 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1637 setOperationAction(ISD::STORE, MVT::i64, Custom); 1638 1639 // Sadly, this doesn't work: 1640 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1641 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1642 } 1643 1644 // Turn FP extload into load/fpextend 1645 for (MVT VT : MVT::fp_valuetypes()) { 1646 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 1647 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1648 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1649 } 1650 1651 // Sparc doesn't have i1 sign extending load 1652 for (MVT VT : MVT::integer_valuetypes()) 1653 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1654 1655 // Turn FP truncstore into trunc + store. 1656 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 1657 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 1658 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1659 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 1660 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1661 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1662 1663 // Custom legalize GlobalAddress nodes into LO/HI parts. 1664 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1665 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1666 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1667 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1668 1669 // Sparc doesn't have sext_inreg, replace them with shl/sra 1670 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1671 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1672 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1673 1674 // Sparc has no REM or DIVREM operations. 1675 setOperationAction(ISD::UREM, MVT::i32, Expand); 1676 setOperationAction(ISD::SREM, MVT::i32, Expand); 1677 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1678 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1679 1680 // ... nor does SparcV9. 1681 if (Subtarget->is64Bit()) { 1682 setOperationAction(ISD::UREM, MVT::i64, Expand); 1683 setOperationAction(ISD::SREM, MVT::i64, Expand); 1684 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1685 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1686 } 1687 1688 // Custom expand fp<->sint 1689 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1690 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1691 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1692 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1693 1694 // Custom Expand fp<->uint 1695 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1696 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1697 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1698 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1699 1700 // Lower f16 conversion operations into library calls 1701 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 1702 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 1703 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 1704 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 1705 setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand); 1706 setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand); 1707 1708 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1709 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1710 1711 // Sparc has no select or setcc: expand to SELECT_CC. 1712 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1713 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1714 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1715 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1716 1717 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1718 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1719 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1720 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1721 1722 // Sparc doesn't have BRCOND either, it has BR_CC. 1723 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1724 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1725 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1726 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1727 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1728 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1729 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1730 1731 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1732 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1733 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1734 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1735 1736 setOperationAction(ISD::ADDC, MVT::i32, Custom); 1737 setOperationAction(ISD::ADDE, MVT::i32, Custom); 1738 setOperationAction(ISD::SUBC, MVT::i32, Custom); 1739 setOperationAction(ISD::SUBE, MVT::i32, Custom); 1740 1741 if (Subtarget->is64Bit()) { 1742 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1743 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1744 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1745 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1746 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1747 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1748 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1749 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1750 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1751 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1752 1753 setOperationAction(ISD::CTPOP, MVT::i64, 1754 Subtarget->usePopc() ? Legal : Expand); 1755 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1756 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1757 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1758 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1759 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1760 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1761 } 1762 1763 // ATOMICs. 1764 // Atomics are supported on SparcV9. 32-bit atomics are also 1765 // supported by some Leon SparcV8 variants. Otherwise, atomics 1766 // are unsupported. 1767 if (Subtarget->isV9()) 1768 setMaxAtomicSizeInBitsSupported(64); 1769 else if (Subtarget->hasLeonCasa()) 1770 setMaxAtomicSizeInBitsSupported(32); 1771 else 1772 setMaxAtomicSizeInBitsSupported(0); 1773 1774 setMinCmpXchgSizeInBits(32); 1775 1776 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1777 1778 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1779 1780 // Custom Lower Atomic LOAD/STORE 1781 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1782 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1783 1784 if (Subtarget->is64Bit()) { 1785 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1786 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1787 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1788 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1789 } 1790 1791 if (!Subtarget->is64Bit()) { 1792 // These libcalls are not available in 32-bit. 1793 setLibcallName(RTLIB::MULO_I64, nullptr); 1794 setLibcallName(RTLIB::MUL_I128, nullptr); 1795 setLibcallName(RTLIB::SHL_I128, nullptr); 1796 setLibcallName(RTLIB::SRL_I128, nullptr); 1797 setLibcallName(RTLIB::SRA_I128, nullptr); 1798 } 1799 1800 setLibcallName(RTLIB::MULO_I128, nullptr); 1801 1802 if (!Subtarget->isV9()) { 1803 // SparcV8 does not have FNEGD and FABSD. 1804 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1805 setOperationAction(ISD::FABS, MVT::f64, Custom); 1806 } 1807 1808 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1809 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1810 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1811 setOperationAction(ISD::FREM , MVT::f128, Expand); 1812 setOperationAction(ISD::FMA , MVT::f128, Expand); 1813 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1814 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1815 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1816 setOperationAction(ISD::FREM , MVT::f64, Expand); 1817 setOperationAction(ISD::FMA , MVT::f64, Expand); 1818 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1819 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1820 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1821 setOperationAction(ISD::FREM , MVT::f32, Expand); 1822 setOperationAction(ISD::FMA , MVT::f32, Expand); 1823 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1824 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1825 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1826 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1827 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1828 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1829 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1830 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1831 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1832 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1833 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1834 1835 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1836 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1837 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1838 1839 // Expands to [SU]MUL_LOHI. 1840 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1841 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1842 setOperationAction(ISD::MUL, MVT::i32, Expand); 1843 1844 if (Subtarget->useSoftMulDiv()) { 1845 // .umul works for both signed and unsigned 1846 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1847 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1848 setLibcallName(RTLIB::MUL_I32, ".umul"); 1849 1850 setOperationAction(ISD::SDIV, MVT::i32, Expand); 1851 setLibcallName(RTLIB::SDIV_I32, ".div"); 1852 1853 setOperationAction(ISD::UDIV, MVT::i32, Expand); 1854 setLibcallName(RTLIB::UDIV_I32, ".udiv"); 1855 1856 setLibcallName(RTLIB::SREM_I32, ".rem"); 1857 setLibcallName(RTLIB::UREM_I32, ".urem"); 1858 } 1859 1860 if (Subtarget->is64Bit()) { 1861 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1862 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1863 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1864 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1865 1866 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1867 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1868 1869 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1870 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1871 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1872 } 1873 1874 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1875 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1876 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1877 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1878 1879 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1880 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); 1881 1882 // Use the default implementation. 1883 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1884 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1885 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1886 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1887 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1888 1889 setStackPointerRegisterToSaveRestore(SP::O6); 1890 1891 setOperationAction(ISD::CTPOP, MVT::i32, 1892 Subtarget->usePopc() ? Legal : Expand); 1893 1894 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1895 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1896 setOperationAction(ISD::STORE, MVT::f128, Legal); 1897 } else { 1898 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1899 setOperationAction(ISD::STORE, MVT::f128, Custom); 1900 } 1901 1902 if (Subtarget->hasHardQuad()) { 1903 setOperationAction(ISD::FADD, MVT::f128, Legal); 1904 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1905 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1906 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1907 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1908 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1909 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1910 if (Subtarget->isV9()) { 1911 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1912 setOperationAction(ISD::FABS, MVT::f128, Legal); 1913 } else { 1914 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1915 setOperationAction(ISD::FABS, MVT::f128, Custom); 1916 } 1917 1918 if (!Subtarget->is64Bit()) { 1919 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1920 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1921 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1922 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1923 } 1924 1925 } else { 1926 // Custom legalize f128 operations. 1927 1928 setOperationAction(ISD::FADD, MVT::f128, Custom); 1929 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1930 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1931 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1932 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1933 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1934 setOperationAction(ISD::FABS, MVT::f128, Custom); 1935 1936 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1937 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1938 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1939 1940 // Setup Runtime library names. 1941 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1942 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1943 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1944 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1945 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1946 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1947 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1948 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1949 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1950 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1951 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1952 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1953 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1954 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1955 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1956 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1957 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1958 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1959 } else if (!Subtarget->useSoftFloat()) { 1960 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1961 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1962 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1963 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1964 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1965 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1966 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1967 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1968 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1969 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1970 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1971 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1972 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1973 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1974 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1975 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1976 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1977 } 1978 } 1979 1980 if (Subtarget->fixAllFDIVSQRT()) { 1981 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1982 // the former instructions generate errata on LEON processors. 1983 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1984 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1985 } 1986 1987 if (Subtarget->hasNoFMULS()) { 1988 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1989 } 1990 1991 // Custom combine bitcast between f64 and v2i32 1992 if (!Subtarget->is64Bit()) 1993 setTargetDAGCombine(ISD::BITCAST); 1994 1995 if (Subtarget->hasLeonCycleCounter()) 1996 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1997 1998 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1999 2000 setMinFunctionAlignment(Align(4)); 2001 2002 computeRegisterProperties(Subtarget->getRegisterInfo()); 2003 } 2004 2005 bool SparcTargetLowering::useSoftFloat() const { 2006 return Subtarget->useSoftFloat(); 2007 } 2008 2009 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 2010 switch ((SPISD::NodeType)Opcode) { 2011 case SPISD::FIRST_NUMBER: break; 2012 case SPISD::CMPICC: return "SPISD::CMPICC"; 2013 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 2014 case SPISD::CMPFCC_V9: 2015 return "SPISD::CMPFCC_V9"; 2016 case SPISD::BRICC: return "SPISD::BRICC"; 2017 case SPISD::BPICC: 2018 return "SPISD::BPICC"; 2019 case SPISD::BPXCC: 2020 return "SPISD::BPXCC"; 2021 case SPISD::BRFCC: return "SPISD::BRFCC"; 2022 case SPISD::BRFCC_V9: 2023 return "SPISD::BRFCC_V9"; 2024 case SPISD::BR_REG: 2025 return "SPISD::BR_REG"; 2026 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 2027 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 2028 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 2029 case SPISD::SELECT_REG: 2030 return "SPISD::SELECT_REG"; 2031 case SPISD::Hi: return "SPISD::Hi"; 2032 case SPISD::Lo: return "SPISD::Lo"; 2033 case SPISD::FTOI: return "SPISD::FTOI"; 2034 case SPISD::ITOF: return "SPISD::ITOF"; 2035 case SPISD::FTOX: return "SPISD::FTOX"; 2036 case SPISD::XTOF: return "SPISD::XTOF"; 2037 case SPISD::CALL: return "SPISD::CALL"; 2038 case SPISD::RET_GLUE: return "SPISD::RET_GLUE"; 2039 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 2040 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 2041 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 2042 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 2043 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 2044 case SPISD::TAIL_CALL: return "SPISD::TAIL_CALL"; 2045 case SPISD::LOAD_GDOP: return "SPISD::LOAD_GDOP"; 2046 } 2047 return nullptr; 2048 } 2049 2050 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 2051 EVT VT) const { 2052 if (!VT.isVector()) 2053 return MVT::i32; 2054 return VT.changeVectorElementTypeToInteger(); 2055 } 2056 2057 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 2058 /// be zero. Op is expected to be a target specific node. Used by DAG 2059 /// combiner. 2060 void SparcTargetLowering::computeKnownBitsForTargetNode 2061 (const SDValue Op, 2062 KnownBits &Known, 2063 const APInt &DemandedElts, 2064 const SelectionDAG &DAG, 2065 unsigned Depth) const { 2066 KnownBits Known2; 2067 Known.resetAll(); 2068 2069 switch (Op.getOpcode()) { 2070 default: break; 2071 case SPISD::SELECT_ICC: 2072 case SPISD::SELECT_XCC: 2073 case SPISD::SELECT_FCC: 2074 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 2075 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 2076 2077 // Only known if known in both the LHS and RHS. 2078 Known = Known.intersectWith(Known2); 2079 break; 2080 } 2081 } 2082 2083 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 2084 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 2085 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 2086 ISD::CondCode CC, unsigned &SPCC) { 2087 if (isNullConstant(RHS) && CC == ISD::SETNE && 2088 (((LHS.getOpcode() == SPISD::SELECT_ICC || 2089 LHS.getOpcode() == SPISD::SELECT_XCC) && 2090 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 2091 (LHS.getOpcode() == SPISD::SELECT_FCC && 2092 (LHS.getOperand(3).getOpcode() == SPISD::CMPFCC || 2093 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) && 2094 isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) { 2095 SDValue CMPCC = LHS.getOperand(3); 2096 SPCC = LHS.getConstantOperandVal(2); 2097 LHS = CMPCC.getOperand(0); 2098 RHS = CMPCC.getOperand(1); 2099 } 2100 } 2101 2102 // Convert to a target node and set target flags. 2103 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 2104 SelectionDAG &DAG) const { 2105 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 2106 return DAG.getTargetGlobalAddress(GA->getGlobal(), 2107 SDLoc(GA), 2108 GA->getValueType(0), 2109 GA->getOffset(), TF); 2110 2111 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 2112 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 2113 CP->getAlign(), CP->getOffset(), TF); 2114 2115 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 2116 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 2117 Op.getValueType(), 2118 0, 2119 TF); 2120 2121 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 2122 return DAG.getTargetExternalSymbol(ES->getSymbol(), 2123 ES->getValueType(0), TF); 2124 2125 llvm_unreachable("Unhandled address SDNode"); 2126 } 2127 2128 // Split Op into high and low parts according to HiTF and LoTF. 2129 // Return an ADD node combining the parts. 2130 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 2131 unsigned HiTF, unsigned LoTF, 2132 SelectionDAG &DAG) const { 2133 SDLoc DL(Op); 2134 EVT VT = Op.getValueType(); 2135 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 2136 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 2137 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2138 } 2139 2140 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 2141 // or ExternalSymbol SDNode. 2142 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 2143 SDLoc DL(Op); 2144 EVT VT = getPointerTy(DAG.getDataLayout()); 2145 2146 // Handle PIC mode first. SPARC needs a got load for every variable! 2147 if (isPositionIndependent()) { 2148 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2149 PICLevel::Level picLevel = M->getPICLevel(); 2150 SDValue Idx; 2151 2152 if (picLevel == PICLevel::SmallPIC) { 2153 // This is the pic13 code model, the GOT is known to be smaller than 8KiB. 2154 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), 2155 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); 2156 } else { 2157 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 2158 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 2159 SparcMCExpr::VK_Sparc_GOT10, DAG); 2160 } 2161 2162 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 2163 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); 2164 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2165 // function has calls. 2166 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2167 MFI.setHasCalls(true); 2168 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 2169 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2170 } 2171 2172 // This is one of the absolute code models. 2173 switch(getTargetMachine().getCodeModel()) { 2174 default: 2175 llvm_unreachable("Unsupported absolute code model"); 2176 case CodeModel::Small: 2177 // abs32. 2178 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2179 SparcMCExpr::VK_Sparc_LO, DAG); 2180 case CodeModel::Medium: { 2181 // abs44. 2182 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 2183 SparcMCExpr::VK_Sparc_M44, DAG); 2184 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 2185 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 2186 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 2187 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 2188 } 2189 case CodeModel::Large: { 2190 // abs64. 2191 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 2192 SparcMCExpr::VK_Sparc_HM, DAG); 2193 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 2194 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2195 SparcMCExpr::VK_Sparc_LO, DAG); 2196 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2197 } 2198 } 2199 } 2200 2201 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2202 SelectionDAG &DAG) const { 2203 return makeAddress(Op, DAG); 2204 } 2205 2206 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2207 SelectionDAG &DAG) const { 2208 return makeAddress(Op, DAG); 2209 } 2210 2211 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2212 SelectionDAG &DAG) const { 2213 return makeAddress(Op, DAG); 2214 } 2215 2216 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2217 SelectionDAG &DAG) const { 2218 2219 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2220 if (DAG.getTarget().useEmulatedTLS()) 2221 return LowerToTLSEmulatedModel(GA, DAG); 2222 2223 SDLoc DL(GA); 2224 const GlobalValue *GV = GA->getGlobal(); 2225 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2226 2227 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2228 2229 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2230 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2231 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2232 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2233 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2234 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2235 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2236 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2237 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2238 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2239 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2240 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2241 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2242 2243 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2244 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2245 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2246 withTargetFlags(Op, addTF, DAG)); 2247 2248 SDValue Chain = DAG.getEntryNode(); 2249 SDValue InGlue; 2250 2251 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); 2252 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InGlue); 2253 InGlue = Chain.getValue(1); 2254 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2255 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2256 2257 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2258 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2259 DAG.getMachineFunction(), CallingConv::C); 2260 assert(Mask && "Missing call preserved mask for calling convention"); 2261 SDValue Ops[] = {Chain, 2262 Callee, 2263 Symbol, 2264 DAG.getRegister(SP::O0, PtrVT), 2265 DAG.getRegisterMask(Mask), 2266 InGlue}; 2267 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2268 InGlue = Chain.getValue(1); 2269 Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InGlue, DL); 2270 InGlue = Chain.getValue(1); 2271 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InGlue); 2272 2273 if (model != TLSModel::LocalDynamic) 2274 return Ret; 2275 2276 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2277 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2278 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2279 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2280 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2281 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2282 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2283 } 2284 2285 if (model == TLSModel::InitialExec) { 2286 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2287 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2288 2289 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2290 2291 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2292 // function has calls. 2293 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2294 MFI.setHasCalls(true); 2295 2296 SDValue TGA = makeHiLoPair(Op, 2297 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2298 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2299 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2300 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2301 DL, PtrVT, Ptr, 2302 withTargetFlags(Op, ldTF, DAG)); 2303 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2304 DAG.getRegister(SP::G7, PtrVT), Offset, 2305 withTargetFlags(Op, 2306 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2307 } 2308 2309 assert(model == TLSModel::LocalExec); 2310 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2311 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2312 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2313 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2314 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2315 2316 return DAG.getNode(ISD::ADD, DL, PtrVT, 2317 DAG.getRegister(SP::G7, PtrVT), Offset); 2318 } 2319 2320 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2321 ArgListTy &Args, SDValue Arg, 2322 const SDLoc &DL, 2323 SelectionDAG &DAG) const { 2324 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2325 EVT ArgVT = Arg.getValueType(); 2326 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2327 2328 ArgListEntry Entry; 2329 Entry.Node = Arg; 2330 Entry.Ty = ArgTy; 2331 2332 if (ArgTy->isFP128Ty()) { 2333 // Create a stack object and pass the pointer to the library function. 2334 int FI = MFI.CreateStackObject(16, Align(8), false); 2335 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2336 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), 2337 Align(8)); 2338 2339 Entry.Node = FIPtr; 2340 Entry.Ty = PointerType::getUnqual(ArgTy); 2341 } 2342 Args.push_back(Entry); 2343 return Chain; 2344 } 2345 2346 SDValue 2347 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2348 const char *LibFuncName, 2349 unsigned numArgs) const { 2350 2351 ArgListTy Args; 2352 2353 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2354 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2355 2356 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2357 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2358 Type *RetTyABI = RetTy; 2359 SDValue Chain = DAG.getEntryNode(); 2360 SDValue RetPtr; 2361 2362 if (RetTy->isFP128Ty()) { 2363 // Create a Stack Object to receive the return value of type f128. 2364 ArgListEntry Entry; 2365 int RetFI = MFI.CreateStackObject(16, Align(8), false); 2366 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2367 Entry.Node = RetPtr; 2368 Entry.Ty = PointerType::getUnqual(RetTy); 2369 if (!Subtarget->is64Bit()) { 2370 Entry.IsSRet = true; 2371 Entry.IndirectType = RetTy; 2372 } 2373 Entry.IsReturned = false; 2374 Args.push_back(Entry); 2375 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2376 } 2377 2378 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2379 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2380 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2381 } 2382 TargetLowering::CallLoweringInfo CLI(DAG); 2383 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2384 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2385 2386 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2387 2388 // chain is in second result. 2389 if (RetTyABI == RetTy) 2390 return CallInfo.first; 2391 2392 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2393 2394 Chain = CallInfo.second; 2395 2396 // Load RetPtr to get the return value. 2397 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, 2398 MachinePointerInfo(), Align(8)); 2399 } 2400 2401 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2402 unsigned &SPCC, const SDLoc &DL, 2403 SelectionDAG &DAG) const { 2404 2405 const char *LibCall = nullptr; 2406 bool is64Bit = Subtarget->is64Bit(); 2407 switch(SPCC) { 2408 default: llvm_unreachable("Unhandled conditional code!"); 2409 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2410 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2411 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2412 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2413 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2414 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2415 case SPCC::FCC_UL : 2416 case SPCC::FCC_ULE: 2417 case SPCC::FCC_UG : 2418 case SPCC::FCC_UGE: 2419 case SPCC::FCC_U : 2420 case SPCC::FCC_O : 2421 case SPCC::FCC_LG : 2422 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2423 } 2424 2425 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2426 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2427 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2428 ArgListTy Args; 2429 SDValue Chain = DAG.getEntryNode(); 2430 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2431 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2432 2433 TargetLowering::CallLoweringInfo CLI(DAG); 2434 CLI.setDebugLoc(DL).setChain(Chain) 2435 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2436 2437 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2438 2439 // result is in first, and chain is in second result. 2440 SDValue Result = CallInfo.first; 2441 2442 switch(SPCC) { 2443 default: { 2444 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2445 SPCC = SPCC::ICC_NE; 2446 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2447 } 2448 case SPCC::FCC_UL : { 2449 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); 2450 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2451 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2452 SPCC = SPCC::ICC_NE; 2453 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2454 } 2455 case SPCC::FCC_ULE: { 2456 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); 2457 SPCC = SPCC::ICC_NE; 2458 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2459 } 2460 case SPCC::FCC_UG : { 2461 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2462 SPCC = SPCC::ICC_G; 2463 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2464 } 2465 case SPCC::FCC_UGE: { 2466 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2467 SPCC = SPCC::ICC_NE; 2468 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2469 } 2470 2471 case SPCC::FCC_U : { 2472 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2473 SPCC = SPCC::ICC_E; 2474 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2475 } 2476 case SPCC::FCC_O : { 2477 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2478 SPCC = SPCC::ICC_NE; 2479 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2480 } 2481 case SPCC::FCC_LG : { 2482 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2483 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2484 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2485 SPCC = SPCC::ICC_NE; 2486 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2487 } 2488 case SPCC::FCC_UE : { 2489 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2490 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2491 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2492 SPCC = SPCC::ICC_E; 2493 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2494 } 2495 } 2496 } 2497 2498 static SDValue 2499 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2500 const SparcTargetLowering &TLI) { 2501 2502 if (Op.getOperand(0).getValueType() == MVT::f64) 2503 return TLI.LowerF128Op(Op, DAG, 2504 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2505 2506 if (Op.getOperand(0).getValueType() == MVT::f32) 2507 return TLI.LowerF128Op(Op, DAG, 2508 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2509 2510 llvm_unreachable("fpextend with non-float operand!"); 2511 return SDValue(); 2512 } 2513 2514 static SDValue 2515 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2516 const SparcTargetLowering &TLI) { 2517 // FP_ROUND on f64 and f32 are legal. 2518 if (Op.getOperand(0).getValueType() != MVT::f128) 2519 return Op; 2520 2521 if (Op.getValueType() == MVT::f64) 2522 return TLI.LowerF128Op(Op, DAG, 2523 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2524 if (Op.getValueType() == MVT::f32) 2525 return TLI.LowerF128Op(Op, DAG, 2526 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2527 2528 llvm_unreachable("fpround to non-float!"); 2529 return SDValue(); 2530 } 2531 2532 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2533 const SparcTargetLowering &TLI, 2534 bool hasHardQuad) { 2535 SDLoc dl(Op); 2536 EVT VT = Op.getValueType(); 2537 assert(VT == MVT::i32 || VT == MVT::i64); 2538 2539 // Expand f128 operations to fp128 abi calls. 2540 if (Op.getOperand(0).getValueType() == MVT::f128 2541 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2542 const char *libName = TLI.getLibcallName(VT == MVT::i32 2543 ? RTLIB::FPTOSINT_F128_I32 2544 : RTLIB::FPTOSINT_F128_I64); 2545 return TLI.LowerF128Op(Op, DAG, libName, 1); 2546 } 2547 2548 // Expand if the resulting type is illegal. 2549 if (!TLI.isTypeLegal(VT)) 2550 return SDValue(); 2551 2552 // Otherwise, Convert the fp value to integer in an FP register. 2553 if (VT == MVT::i32) 2554 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2555 else 2556 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2557 2558 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2559 } 2560 2561 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2562 const SparcTargetLowering &TLI, 2563 bool hasHardQuad) { 2564 SDLoc dl(Op); 2565 EVT OpVT = Op.getOperand(0).getValueType(); 2566 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2567 2568 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2569 2570 // Expand f128 operations to fp128 ABI calls. 2571 if (Op.getValueType() == MVT::f128 2572 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2573 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2574 ? RTLIB::SINTTOFP_I32_F128 2575 : RTLIB::SINTTOFP_I64_F128); 2576 return TLI.LowerF128Op(Op, DAG, libName, 1); 2577 } 2578 2579 // Expand if the operand type is illegal. 2580 if (!TLI.isTypeLegal(OpVT)) 2581 return SDValue(); 2582 2583 // Otherwise, Convert the int value to FP in an FP register. 2584 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2585 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2586 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2587 } 2588 2589 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2590 const SparcTargetLowering &TLI, 2591 bool hasHardQuad) { 2592 SDLoc dl(Op); 2593 EVT VT = Op.getValueType(); 2594 2595 // Expand if it does not involve f128 or the target has support for 2596 // quad floating point instructions and the resulting type is legal. 2597 if (Op.getOperand(0).getValueType() != MVT::f128 || 2598 (hasHardQuad && TLI.isTypeLegal(VT))) 2599 return SDValue(); 2600 2601 assert(VT == MVT::i32 || VT == MVT::i64); 2602 2603 return TLI.LowerF128Op(Op, DAG, 2604 TLI.getLibcallName(VT == MVT::i32 2605 ? RTLIB::FPTOUINT_F128_I32 2606 : RTLIB::FPTOUINT_F128_I64), 2607 1); 2608 } 2609 2610 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2611 const SparcTargetLowering &TLI, 2612 bool hasHardQuad) { 2613 SDLoc dl(Op); 2614 EVT OpVT = Op.getOperand(0).getValueType(); 2615 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2616 2617 // Expand if it does not involve f128 or the target has support for 2618 // quad floating point instructions and the operand type is legal. 2619 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2620 return SDValue(); 2621 2622 return TLI.LowerF128Op(Op, DAG, 2623 TLI.getLibcallName(OpVT == MVT::i32 2624 ? RTLIB::UINTTOFP_I32_F128 2625 : RTLIB::UINTTOFP_I64_F128), 2626 1); 2627 } 2628 2629 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2630 const SparcTargetLowering &TLI, bool hasHardQuad, 2631 bool isV9, bool is64Bit) { 2632 SDValue Chain = Op.getOperand(0); 2633 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2634 SDValue LHS = Op.getOperand(2); 2635 SDValue RHS = Op.getOperand(3); 2636 SDValue Dest = Op.getOperand(4); 2637 SDLoc dl(Op); 2638 unsigned Opc, SPCC = ~0U; 2639 2640 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2641 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2642 LookThroughSetCC(LHS, RHS, CC, SPCC); 2643 assert(LHS.getValueType() == RHS.getValueType()); 2644 2645 // Get the condition flag. 2646 SDValue CompareFlag; 2647 if (LHS.getValueType().isInteger()) { 2648 // On V9 processors running in 64-bit mode, if CC compares two `i64`s 2649 // and the RHS is zero we might be able to use a specialized branch. 2650 if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && 2651 isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC)) 2652 return DAG.getNode(SPISD::BR_REG, dl, MVT::Other, Chain, Dest, 2653 DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), 2654 LHS); 2655 2656 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2657 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2658 if (isV9) 2659 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2660 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC; 2661 else 2662 // Non-v9 targets don't have xcc. 2663 Opc = SPISD::BRICC; 2664 } else { 2665 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2666 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2667 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2668 Opc = isV9 ? SPISD::BPICC : SPISD::BRICC; 2669 } else { 2670 unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; 2671 CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); 2672 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2673 Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC; 2674 } 2675 } 2676 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2677 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2678 } 2679 2680 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2681 const SparcTargetLowering &TLI, bool hasHardQuad, 2682 bool isV9, bool is64Bit) { 2683 SDValue LHS = Op.getOperand(0); 2684 SDValue RHS = Op.getOperand(1); 2685 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2686 SDValue TrueVal = Op.getOperand(2); 2687 SDValue FalseVal = Op.getOperand(3); 2688 SDLoc dl(Op); 2689 unsigned Opc, SPCC = ~0U; 2690 2691 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2692 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2693 LookThroughSetCC(LHS, RHS, CC, SPCC); 2694 assert(LHS.getValueType() == RHS.getValueType()); 2695 2696 SDValue CompareFlag; 2697 if (LHS.getValueType().isInteger()) { 2698 // On V9 processors running in 64-bit mode, if CC compares two `i64`s 2699 // and the RHS is zero we might be able to use a specialized select. 2700 // All SELECT_CC between any two scalar integer types are eligible for 2701 // lowering to specialized instructions. Additionally, f32 and f64 types 2702 // are also eligible, but for f128 we can only use the specialized 2703 // instruction when we have hardquad. 2704 EVT ValType = TrueVal.getValueType(); 2705 bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 || 2706 ValType == MVT::f64 || 2707 (ValType == MVT::f128 && hasHardQuad); 2708 if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && 2709 isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType) 2710 return DAG.getNode( 2711 SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2712 DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS); 2713 2714 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2715 Opc = LHS.getValueType() == MVT::i32 ? 2716 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2717 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2718 } else { 2719 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2720 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2721 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2722 Opc = SPISD::SELECT_ICC; 2723 } else { 2724 unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; 2725 CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); 2726 Opc = SPISD::SELECT_FCC; 2727 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2728 } 2729 } 2730 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2731 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2732 } 2733 2734 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2735 const SparcTargetLowering &TLI) { 2736 MachineFunction &MF = DAG.getMachineFunction(); 2737 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2738 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2739 2740 // Need frame address to find the address of VarArgsFrameIndex. 2741 MF.getFrameInfo().setFrameAddressIsTaken(true); 2742 2743 // vastart just stores the address of the VarArgsFrameIndex slot into the 2744 // memory location argument. 2745 SDLoc DL(Op); 2746 SDValue Offset = 2747 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2748 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2749 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2750 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2751 MachinePointerInfo(SV)); 2752 } 2753 2754 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2755 SDNode *Node = Op.getNode(); 2756 EVT VT = Node->getValueType(0); 2757 SDValue InChain = Node->getOperand(0); 2758 SDValue VAListPtr = Node->getOperand(1); 2759 EVT PtrVT = VAListPtr.getValueType(); 2760 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2761 SDLoc DL(Node); 2762 SDValue VAList = 2763 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 2764 // Increment the pointer, VAList, to the next vaarg. 2765 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2766 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2767 DL)); 2768 // Store the incremented VAList to the legalized pointer. 2769 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, 2770 MachinePointerInfo(SV)); 2771 // Load the actual argument out of the pointer VAList. 2772 // We can't count on greater alignment than the word size. 2773 return DAG.getLoad( 2774 VT, DL, InChain, VAList, MachinePointerInfo(), 2775 Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8)); 2776 } 2777 2778 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2779 const SparcSubtarget *Subtarget) { 2780 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2781 SDValue Size = Op.getOperand(1); // Legalize the size. 2782 MaybeAlign Alignment = 2783 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 2784 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); 2785 EVT VT = Size->getValueType(0); 2786 SDLoc dl(Op); 2787 2788 // TODO: implement over-aligned alloca. (Note: also implies 2789 // supporting support for overaligned function frames + dynamic 2790 // allocations, at all, which currently isn't supported) 2791 if (Alignment && *Alignment > StackAlign) { 2792 const MachineFunction &MF = DAG.getMachineFunction(); 2793 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " 2794 "over-aligned dynamic alloca not supported."); 2795 } 2796 2797 // The resultant pointer needs to be above the register spill area 2798 // at the bottom of the stack. 2799 unsigned regSpillArea; 2800 if (Subtarget->is64Bit()) { 2801 regSpillArea = 128; 2802 } else { 2803 // On Sparc32, the size of the spill area is 92. Unfortunately, 2804 // that's only 4-byte aligned, not 8-byte aligned (the stack 2805 // pointer is 8-byte aligned). So, if the user asked for an 8-byte 2806 // aligned dynamic allocation, we actually need to add 96 to the 2807 // bottom of the stack, instead of 92, to ensure 8-byte alignment. 2808 2809 // That also means adding 4 to the size of the allocation -- 2810 // before applying the 8-byte rounding. Unfortunately, we the 2811 // value we get here has already had rounding applied. So, we need 2812 // to add 8, instead, wasting a bit more memory. 2813 2814 // Further, this only actually needs to be done if the required 2815 // alignment is > 4, but, we've lost that info by this point, too, 2816 // so we always apply it. 2817 2818 // (An alternative approach would be to always reserve 96 bytes 2819 // instead of the required 92, but then we'd waste 4 extra bytes 2820 // in every frame, not just those with dynamic stack allocations) 2821 2822 // TODO: modify code in SelectionDAGBuilder to make this less sad. 2823 2824 Size = DAG.getNode(ISD::ADD, dl, VT, Size, 2825 DAG.getConstant(8, dl, VT)); 2826 regSpillArea = 96; 2827 } 2828 2829 unsigned SPReg = SP::O6; 2830 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2831 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2832 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2833 2834 regSpillArea += Subtarget->getStackPointerBias(); 2835 2836 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2837 DAG.getConstant(regSpillArea, dl, VT)); 2838 SDValue Ops[2] = { NewVal, Chain }; 2839 return DAG.getMergeValues(Ops, dl); 2840 } 2841 2842 2843 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2844 SDLoc dl(Op); 2845 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2846 dl, MVT::Other, DAG.getEntryNode()); 2847 return Chain; 2848 } 2849 2850 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2851 const SparcSubtarget *Subtarget, 2852 bool AlwaysFlush = false) { 2853 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2854 MFI.setFrameAddressIsTaken(true); 2855 2856 EVT VT = Op.getValueType(); 2857 SDLoc dl(Op); 2858 unsigned FrameReg = SP::I6; 2859 unsigned stackBias = Subtarget->getStackPointerBias(); 2860 2861 SDValue FrameAddr; 2862 SDValue Chain; 2863 2864 // flush first to make sure the windowed registers' values are in stack 2865 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); 2866 2867 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2868 2869 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2870 2871 while (depth--) { 2872 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2873 DAG.getIntPtrConstant(Offset, dl)); 2874 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); 2875 } 2876 if (Subtarget->is64Bit()) 2877 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2878 DAG.getIntPtrConstant(stackBias, dl)); 2879 return FrameAddr; 2880 } 2881 2882 2883 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2884 const SparcSubtarget *Subtarget) { 2885 2886 uint64_t depth = Op.getConstantOperandVal(0); 2887 2888 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2889 2890 } 2891 2892 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2893 const SparcTargetLowering &TLI, 2894 const SparcSubtarget *Subtarget) { 2895 MachineFunction &MF = DAG.getMachineFunction(); 2896 MachineFrameInfo &MFI = MF.getFrameInfo(); 2897 MFI.setReturnAddressIsTaken(true); 2898 2899 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2900 return SDValue(); 2901 2902 EVT VT = Op.getValueType(); 2903 SDLoc dl(Op); 2904 uint64_t depth = Op.getConstantOperandVal(0); 2905 2906 SDValue RetAddr; 2907 if (depth == 0) { 2908 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2909 Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2910 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2911 return RetAddr; 2912 } 2913 2914 // Need frame address to find return address of the caller. 2915 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); 2916 2917 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2918 SDValue Ptr = DAG.getNode(ISD::ADD, 2919 dl, VT, 2920 FrameAddr, 2921 DAG.getIntPtrConstant(Offset, dl)); 2922 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2923 2924 return RetAddr; 2925 } 2926 2927 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2928 unsigned opcode) { 2929 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2930 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2931 2932 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2933 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2934 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2935 2936 // Note: in little-endian, the floating-point value is stored in the 2937 // registers are in the opposite order, so the subreg with the sign 2938 // bit is the highest-numbered (odd), rather than the 2939 // lowest-numbered (even). 2940 2941 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2942 SrcReg64); 2943 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2944 SrcReg64); 2945 2946 if (DAG.getDataLayout().isLittleEndian()) 2947 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2948 else 2949 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2950 2951 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2952 dl, MVT::f64), 0); 2953 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2954 DstReg64, Hi32); 2955 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2956 DstReg64, Lo32); 2957 return DstReg64; 2958 } 2959 2960 // Lower a f128 load into two f64 loads. 2961 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2962 { 2963 SDLoc dl(Op); 2964 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2965 assert(LdNode->getOffset().isUndef() && "Unexpected node type"); 2966 2967 Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8); 2968 2969 SDValue Hi64 = 2970 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), 2971 LdNode->getPointerInfo(), Alignment); 2972 EVT addrVT = LdNode->getBasePtr().getValueType(); 2973 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2974 LdNode->getBasePtr(), 2975 DAG.getConstant(8, dl, addrVT)); 2976 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, 2977 LdNode->getPointerInfo().getWithOffset(8), 2978 Alignment); 2979 2980 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2981 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2982 2983 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2984 dl, MVT::f128); 2985 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2986 MVT::f128, 2987 SDValue(InFP128, 0), 2988 Hi64, 2989 SubRegEven); 2990 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2991 MVT::f128, 2992 SDValue(InFP128, 0), 2993 Lo64, 2994 SubRegOdd); 2995 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2996 SDValue(Lo64.getNode(), 1) }; 2997 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2998 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2999 return DAG.getMergeValues(Ops, dl); 3000 } 3001 3002 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 3003 { 3004 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 3005 3006 EVT MemVT = LdNode->getMemoryVT(); 3007 if (MemVT == MVT::f128) 3008 return LowerF128Load(Op, DAG); 3009 3010 return Op; 3011 } 3012 3013 // Lower a f128 store into two f64 stores. 3014 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 3015 SDLoc dl(Op); 3016 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 3017 assert(StNode->getOffset().isUndef() && "Unexpected node type"); 3018 3019 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 3020 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 3021 3022 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 3023 dl, 3024 MVT::f64, 3025 StNode->getValue(), 3026 SubRegEven); 3027 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 3028 dl, 3029 MVT::f64, 3030 StNode->getValue(), 3031 SubRegOdd); 3032 3033 Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8); 3034 3035 SDValue OutChains[2]; 3036 OutChains[0] = 3037 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), 3038 StNode->getBasePtr(), StNode->getPointerInfo(), 3039 Alignment); 3040 EVT addrVT = StNode->getBasePtr().getValueType(); 3041 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 3042 StNode->getBasePtr(), 3043 DAG.getConstant(8, dl, addrVT)); 3044 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, 3045 StNode->getPointerInfo().getWithOffset(8), 3046 Alignment); 3047 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 3048 } 3049 3050 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 3051 { 3052 SDLoc dl(Op); 3053 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 3054 3055 EVT MemVT = St->getMemoryVT(); 3056 if (MemVT == MVT::f128) 3057 return LowerF128Store(Op, DAG); 3058 3059 if (MemVT == MVT::i64) { 3060 // Custom handling for i64 stores: turn it into a bitcast and a 3061 // v2i32 store. 3062 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 3063 SDValue Chain = DAG.getStore( 3064 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 3065 St->getOriginalAlign(), St->getMemOperand()->getFlags(), 3066 St->getAAInfo()); 3067 return Chain; 3068 } 3069 3070 return SDValue(); 3071 } 3072 3073 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 3074 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 3075 && "invalid opcode"); 3076 3077 SDLoc dl(Op); 3078 3079 if (Op.getValueType() == MVT::f64) 3080 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 3081 if (Op.getValueType() != MVT::f128) 3082 return Op; 3083 3084 // Lower fabs/fneg on f128 to fabs/fneg on f64 3085 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 3086 // (As with LowerF64Op, on little-endian, we need to negate the odd 3087 // subreg) 3088 3089 SDValue SrcReg128 = Op.getOperand(0); 3090 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 3091 SrcReg128); 3092 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 3093 SrcReg128); 3094 3095 if (DAG.getDataLayout().isLittleEndian()) { 3096 if (isV9) 3097 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 3098 else 3099 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 3100 } else { 3101 if (isV9) 3102 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 3103 else 3104 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 3105 } 3106 3107 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 3108 dl, MVT::f128), 0); 3109 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 3110 DstReg128, Hi64); 3111 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 3112 DstReg128, Lo64); 3113 return DstReg128; 3114 } 3115 3116 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 3117 3118 if (Op.getValueType() != MVT::i64) 3119 return Op; 3120 3121 SDLoc dl(Op); 3122 SDValue Src1 = Op.getOperand(0); 3123 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 3124 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 3125 DAG.getConstant(32, dl, MVT::i64)); 3126 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 3127 3128 SDValue Src2 = Op.getOperand(1); 3129 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 3130 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 3131 DAG.getConstant(32, dl, MVT::i64)); 3132 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 3133 3134 3135 bool hasChain = false; 3136 unsigned hiOpc = Op.getOpcode(); 3137 switch (Op.getOpcode()) { 3138 default: llvm_unreachable("Invalid opcode"); 3139 case ISD::ADDC: hiOpc = ISD::ADDE; break; 3140 case ISD::ADDE: hasChain = true; break; 3141 case ISD::SUBC: hiOpc = ISD::SUBE; break; 3142 case ISD::SUBE: hasChain = true; break; 3143 } 3144 SDValue Lo; 3145 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 3146 if (hasChain) { 3147 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 3148 Op.getOperand(2)); 3149 } else { 3150 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 3151 } 3152 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 3153 SDValue Carry = Hi.getValue(1); 3154 3155 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 3156 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 3157 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 3158 DAG.getConstant(32, dl, MVT::i64)); 3159 3160 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 3161 SDValue Ops[2] = { Dst, Carry }; 3162 return DAG.getMergeValues(Ops, dl); 3163 } 3164 3165 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 3166 // in LegalizeDAG.cpp except the order of arguments to the library function. 3167 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 3168 const SparcTargetLowering &TLI) 3169 { 3170 unsigned opcode = Op.getOpcode(); 3171 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 3172 3173 bool isSigned = (opcode == ISD::SMULO); 3174 EVT VT = MVT::i64; 3175 EVT WideVT = MVT::i128; 3176 SDLoc dl(Op); 3177 SDValue LHS = Op.getOperand(0); 3178 3179 if (LHS.getValueType() != VT) 3180 return Op; 3181 3182 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 3183 3184 SDValue RHS = Op.getOperand(1); 3185 SDValue HiLHS, HiRHS; 3186 if (isSigned) { 3187 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 3188 HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 3189 } else { 3190 HiLHS = DAG.getConstant(0, dl, VT); 3191 HiRHS = DAG.getConstant(0, dl, MVT::i64); 3192 } 3193 3194 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3195 3196 TargetLowering::MakeLibCallOptions CallOptions; 3197 CallOptions.setSExt(isSigned); 3198 SDValue MulResult = TLI.makeLibCall(DAG, 3199 RTLIB::MUL_I128, WideVT, 3200 Args, CallOptions, dl).first; 3201 SDValue BottomHalf, TopHalf; 3202 std::tie(BottomHalf, TopHalf) = DAG.SplitScalar(MulResult, dl, VT, VT); 3203 if (isSigned) { 3204 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 3205 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 3206 } else { 3207 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 3208 ISD::SETNE); 3209 } 3210 // MulResult is a node with an illegal type. Because such things are not 3211 // generally permitted during this phase of legalization, ensure that 3212 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 3213 // been folded. 3214 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 3215 3216 SDValue Ops[2] = { BottomHalf, TopHalf } ; 3217 return DAG.getMergeValues(Ops, dl); 3218 } 3219 3220 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 3221 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) { 3222 // Expand with a fence. 3223 return SDValue(); 3224 } 3225 3226 // Monotonic load/stores are legal. 3227 return Op; 3228 } 3229 3230 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3231 SelectionDAG &DAG) const { 3232 unsigned IntNo = Op.getConstantOperandVal(0); 3233 SDLoc dl(Op); 3234 switch (IntNo) { 3235 default: return SDValue(); // Don't custom lower most intrinsics. 3236 case Intrinsic::thread_pointer: { 3237 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3238 return DAG.getRegister(SP::G7, PtrVT); 3239 } 3240 } 3241 } 3242 3243 SDValue SparcTargetLowering:: 3244 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3245 3246 bool hasHardQuad = Subtarget->hasHardQuad(); 3247 bool isV9 = Subtarget->isV9(); 3248 bool is64Bit = Subtarget->is64Bit(); 3249 3250 switch (Op.getOpcode()) { 3251 default: llvm_unreachable("Should not custom lower this!"); 3252 3253 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3254 Subtarget); 3255 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3256 Subtarget); 3257 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3258 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3259 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3260 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3261 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3262 hasHardQuad); 3263 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3264 hasHardQuad); 3265 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3266 hasHardQuad); 3267 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3268 hasHardQuad); 3269 case ISD::BR_CC: 3270 return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); 3271 case ISD::SELECT_CC: 3272 return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); 3273 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3274 case ISD::VAARG: return LowerVAARG(Op, DAG); 3275 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3276 Subtarget); 3277 3278 case ISD::LOAD: return LowerLOAD(Op, DAG); 3279 case ISD::STORE: return LowerSTORE(Op, DAG); 3280 case ISD::FADD: return LowerF128Op(Op, DAG, 3281 getLibcallName(RTLIB::ADD_F128), 2); 3282 case ISD::FSUB: return LowerF128Op(Op, DAG, 3283 getLibcallName(RTLIB::SUB_F128), 2); 3284 case ISD::FMUL: return LowerF128Op(Op, DAG, 3285 getLibcallName(RTLIB::MUL_F128), 2); 3286 case ISD::FDIV: return LowerF128Op(Op, DAG, 3287 getLibcallName(RTLIB::DIV_F128), 2); 3288 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3289 getLibcallName(RTLIB::SQRT_F128),1); 3290 case ISD::FABS: 3291 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3292 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3293 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3294 case ISD::ADDC: 3295 case ISD::ADDE: 3296 case ISD::SUBC: 3297 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3298 case ISD::UMULO: 3299 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3300 case ISD::ATOMIC_LOAD: 3301 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3302 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3303 } 3304 } 3305 3306 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, 3307 const SDLoc &DL, 3308 SelectionDAG &DAG) const { 3309 APInt V = C->getValueAPF().bitcastToAPInt(); 3310 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); 3311 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); 3312 if (DAG.getDataLayout().isLittleEndian()) 3313 std::swap(Lo, Hi); 3314 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); 3315 } 3316 3317 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, 3318 DAGCombinerInfo &DCI) const { 3319 SDLoc dl(N); 3320 SDValue Src = N->getOperand(0); 3321 3322 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && 3323 Src.getSimpleValueType() == MVT::f64) 3324 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); 3325 3326 return SDValue(); 3327 } 3328 3329 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, 3330 DAGCombinerInfo &DCI) const { 3331 switch (N->getOpcode()) { 3332 default: 3333 break; 3334 case ISD::BITCAST: 3335 return PerformBITCASTCombine(N, DCI); 3336 } 3337 return SDValue(); 3338 } 3339 3340 MachineBasicBlock * 3341 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3342 MachineBasicBlock *BB) const { 3343 switch (MI.getOpcode()) { 3344 default: llvm_unreachable("Unknown SELECT_CC!"); 3345 case SP::SELECT_CC_Int_ICC: 3346 case SP::SELECT_CC_FP_ICC: 3347 case SP::SELECT_CC_DFP_ICC: 3348 case SP::SELECT_CC_QFP_ICC: 3349 if (Subtarget->isV9()) 3350 return expandSelectCC(MI, BB, SP::BPICC); 3351 return expandSelectCC(MI, BB, SP::BCOND); 3352 case SP::SELECT_CC_Int_XCC: 3353 case SP::SELECT_CC_FP_XCC: 3354 case SP::SELECT_CC_DFP_XCC: 3355 case SP::SELECT_CC_QFP_XCC: 3356 return expandSelectCC(MI, BB, SP::BPXCC); 3357 case SP::SELECT_CC_Int_FCC: 3358 case SP::SELECT_CC_FP_FCC: 3359 case SP::SELECT_CC_DFP_FCC: 3360 case SP::SELECT_CC_QFP_FCC: 3361 if (Subtarget->isV9()) 3362 return expandSelectCC(MI, BB, SP::FBCOND_V9); 3363 return expandSelectCC(MI, BB, SP::FBCOND); 3364 } 3365 } 3366 3367 MachineBasicBlock * 3368 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3369 unsigned BROpcode) const { 3370 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3371 DebugLoc dl = MI.getDebugLoc(); 3372 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3373 3374 // To "insert" a SELECT_CC instruction, we actually have to insert the 3375 // triangle control-flow pattern. The incoming instruction knows the 3376 // destination vreg to set, the condition code register to branch on, the 3377 // true/false values to select between, and the condition code for the branch. 3378 // 3379 // We produce the following control flow: 3380 // ThisMBB 3381 // | \ 3382 // | IfFalseMBB 3383 // | / 3384 // SinkMBB 3385 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3386 MachineFunction::iterator It = ++BB->getIterator(); 3387 3388 MachineBasicBlock *ThisMBB = BB; 3389 MachineFunction *F = BB->getParent(); 3390 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3391 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3392 F->insert(It, IfFalseMBB); 3393 F->insert(It, SinkMBB); 3394 3395 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 3396 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 3397 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); 3398 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 3399 3400 // Set the new successors for ThisMBB. 3401 ThisMBB->addSuccessor(IfFalseMBB); 3402 ThisMBB->addSuccessor(SinkMBB); 3403 3404 BuildMI(ThisMBB, dl, TII.get(BROpcode)) 3405 .addMBB(SinkMBB) 3406 .addImm(CC); 3407 3408 // IfFalseMBB just falls through to SinkMBB. 3409 IfFalseMBB->addSuccessor(SinkMBB); 3410 3411 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] 3412 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), 3413 MI.getOperand(0).getReg()) 3414 .addReg(MI.getOperand(1).getReg()) 3415 .addMBB(ThisMBB) 3416 .addReg(MI.getOperand(2).getReg()) 3417 .addMBB(IfFalseMBB); 3418 3419 MI.eraseFromParent(); // The pseudo instruction is gone now. 3420 return SinkMBB; 3421 } 3422 3423 //===----------------------------------------------------------------------===// 3424 // Sparc Inline Assembly Support 3425 //===----------------------------------------------------------------------===// 3426 3427 /// getConstraintType - Given a constraint letter, return the type of 3428 /// constraint it is for this target. 3429 SparcTargetLowering::ConstraintType 3430 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3431 if (Constraint.size() == 1) { 3432 switch (Constraint[0]) { 3433 default: break; 3434 case 'r': 3435 case 'f': 3436 case 'e': 3437 return C_RegisterClass; 3438 case 'I': // SIMM13 3439 return C_Immediate; 3440 } 3441 } 3442 3443 return TargetLowering::getConstraintType(Constraint); 3444 } 3445 3446 TargetLowering::ConstraintWeight SparcTargetLowering:: 3447 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3448 const char *constraint) const { 3449 ConstraintWeight weight = CW_Invalid; 3450 Value *CallOperandVal = info.CallOperandVal; 3451 // If we don't have a value, we can't do a match, 3452 // but allow it at the lowest weight. 3453 if (!CallOperandVal) 3454 return CW_Default; 3455 3456 // Look at the constraint type. 3457 switch (*constraint) { 3458 default: 3459 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3460 break; 3461 case 'I': // SIMM13 3462 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3463 if (isInt<13>(C->getSExtValue())) 3464 weight = CW_Constant; 3465 } 3466 break; 3467 } 3468 return weight; 3469 } 3470 3471 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3472 /// vector. If it is invalid, don't add anything to Ops. 3473 void SparcTargetLowering::LowerAsmOperandForConstraint( 3474 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 3475 SelectionDAG &DAG) const { 3476 SDValue Result; 3477 3478 // Only support length 1 constraints for now. 3479 if (Constraint.size() > 1) 3480 return; 3481 3482 char ConstraintLetter = Constraint[0]; 3483 switch (ConstraintLetter) { 3484 default: break; 3485 case 'I': 3486 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3487 if (isInt<13>(C->getSExtValue())) { 3488 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3489 Op.getValueType()); 3490 break; 3491 } 3492 return; 3493 } 3494 } 3495 3496 if (Result.getNode()) { 3497 Ops.push_back(Result); 3498 return; 3499 } 3500 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3501 } 3502 3503 std::pair<unsigned, const TargetRegisterClass *> 3504 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3505 StringRef Constraint, 3506 MVT VT) const { 3507 if (Constraint.empty()) 3508 return std::make_pair(0U, nullptr); 3509 3510 if (Constraint.size() == 1) { 3511 switch (Constraint[0]) { 3512 case 'r': 3513 if (VT == MVT::v2i32) 3514 return std::make_pair(0U, &SP::IntPairRegClass); 3515 else if (Subtarget->is64Bit()) 3516 return std::make_pair(0U, &SP::I64RegsRegClass); 3517 else 3518 return std::make_pair(0U, &SP::IntRegsRegClass); 3519 case 'f': 3520 if (VT == MVT::f32 || VT == MVT::i32) 3521 return std::make_pair(0U, &SP::FPRegsRegClass); 3522 else if (VT == MVT::f64 || VT == MVT::i64) 3523 return std::make_pair(0U, &SP::LowDFPRegsRegClass); 3524 else if (VT == MVT::f128) 3525 return std::make_pair(0U, &SP::LowQFPRegsRegClass); 3526 // This will generate an error message 3527 return std::make_pair(0U, nullptr); 3528 case 'e': 3529 if (VT == MVT::f32 || VT == MVT::i32) 3530 return std::make_pair(0U, &SP::FPRegsRegClass); 3531 else if (VT == MVT::f64 || VT == MVT::i64 ) 3532 return std::make_pair(0U, &SP::DFPRegsRegClass); 3533 else if (VT == MVT::f128) 3534 return std::make_pair(0U, &SP::QFPRegsRegClass); 3535 // This will generate an error message 3536 return std::make_pair(0U, nullptr); 3537 } 3538 } 3539 3540 if (Constraint.front() != '{') 3541 return std::make_pair(0U, nullptr); 3542 3543 assert(Constraint.back() == '}' && "Not a brace enclosed constraint?"); 3544 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3545 if (RegName.empty()) 3546 return std::make_pair(0U, nullptr); 3547 3548 unsigned long long RegNo; 3549 // Handle numbered register aliases. 3550 if (RegName[0] == 'r' && 3551 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { 3552 // r0-r7 -> g0-g7 3553 // r8-r15 -> o0-o7 3554 // r16-r23 -> l0-l7 3555 // r24-r31 -> i0-i7 3556 if (RegNo > 31) 3557 return std::make_pair(0U, nullptr); 3558 const char RegTypes[] = {'g', 'o', 'l', 'i'}; 3559 char RegType = RegTypes[RegNo / 8]; 3560 char RegIndex = '0' + (RegNo % 8); 3561 char Tmp[] = {'{', RegType, RegIndex, '}', 0}; 3562 return getRegForInlineAsmConstraint(TRI, Tmp, VT); 3563 } 3564 3565 // Rewrite the fN constraint according to the value type if needed. 3566 if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' && 3567 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { 3568 if (VT == MVT::f64 && (RegNo % 2 == 0)) { 3569 return getRegForInlineAsmConstraint( 3570 TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT); 3571 } else if (VT == MVT::f128 && (RegNo % 4 == 0)) { 3572 return getRegForInlineAsmConstraint( 3573 TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT); 3574 } else { 3575 return std::make_pair(0U, nullptr); 3576 } 3577 } 3578 3579 auto ResultPair = 3580 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3581 if (!ResultPair.second) 3582 return std::make_pair(0U, nullptr); 3583 3584 // Force the use of I64Regs over IntRegs for 64-bit values. 3585 if (Subtarget->is64Bit() && VT == MVT::i64) { 3586 assert(ResultPair.second == &SP::IntRegsRegClass && 3587 "Unexpected register class"); 3588 return std::make_pair(ResultPair.first, &SP::I64RegsRegClass); 3589 } 3590 3591 return ResultPair; 3592 } 3593 3594 bool 3595 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3596 // The Sparc target isn't yet aware of offsets. 3597 return false; 3598 } 3599 3600 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3601 SmallVectorImpl<SDValue>& Results, 3602 SelectionDAG &DAG) const { 3603 3604 SDLoc dl(N); 3605 3606 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3607 3608 switch (N->getOpcode()) { 3609 default: 3610 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3611 3612 case ISD::FP_TO_SINT: 3613 case ISD::FP_TO_UINT: 3614 // Custom lower only if it involves f128 or i64. 3615 if (N->getOperand(0).getValueType() != MVT::f128 3616 || N->getValueType(0) != MVT::i64) 3617 return; 3618 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3619 ? RTLIB::FPTOSINT_F128_I64 3620 : RTLIB::FPTOUINT_F128_I64); 3621 3622 Results.push_back(LowerF128Op(SDValue(N, 0), 3623 DAG, 3624 getLibcallName(libCall), 3625 1)); 3626 return; 3627 case ISD::READCYCLECOUNTER: { 3628 assert(Subtarget->hasLeonCycleCounter()); 3629 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); 3630 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); 3631 SDValue Ops[] = { Lo, Hi }; 3632 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); 3633 Results.push_back(Pair); 3634 Results.push_back(N->getOperand(0)); 3635 return; 3636 } 3637 case ISD::SINT_TO_FP: 3638 case ISD::UINT_TO_FP: 3639 // Custom lower only if it involves f128 or i64. 3640 if (N->getValueType(0) != MVT::f128 3641 || N->getOperand(0).getValueType() != MVT::i64) 3642 return; 3643 3644 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3645 ? RTLIB::SINTTOFP_I64_F128 3646 : RTLIB::UINTTOFP_I64_F128); 3647 3648 Results.push_back(LowerF128Op(SDValue(N, 0), 3649 DAG, 3650 getLibcallName(libCall), 3651 1)); 3652 return; 3653 case ISD::LOAD: { 3654 LoadSDNode *Ld = cast<LoadSDNode>(N); 3655 // Custom handling only for i64: turn i64 load into a v2i32 load, 3656 // and a bitcast. 3657 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3658 return; 3659 3660 SDLoc dl(N); 3661 SDValue LoadRes = DAG.getExtLoad( 3662 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), 3663 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, 3664 Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(), 3665 Ld->getAAInfo()); 3666 3667 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3668 Results.push_back(Res); 3669 Results.push_back(LoadRes.getValue(1)); 3670 return; 3671 } 3672 } 3673 } 3674 3675 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3676 bool SparcTargetLowering::useLoadStackGuardNode() const { 3677 if (!Subtarget->isTargetLinux()) 3678 return TargetLowering::useLoadStackGuardNode(); 3679 return true; 3680 } 3681 3682 // Override to disable global variable loading on Linux. 3683 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3684 if (!Subtarget->isTargetLinux()) 3685 return TargetLowering::insertSSPDeclarations(M); 3686 } 3687 3688 void SparcTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 3689 SDNode *Node) const { 3690 assert(MI.getOpcode() == SP::SUBCCrr || MI.getOpcode() == SP::SUBCCri); 3691 // If the result is dead, replace it with %g0. 3692 if (!Node->hasAnyUseOfValue(0)) 3693 MI.getOperand(0).setReg(SP::G0); 3694 } 3695