xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Sparc/SparcISelLowering.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Sparc uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SparcISelLowering.h"
15 #include "MCTargetDesc/SparcMCExpr.h"
16 #include "SparcMachineFunctionInfo.h"
17 #include "SparcRegisterInfo.h"
18 #include "SparcTargetMachine.h"
19 #include "SparcTargetObjectFile.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringSwitch.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/SelectionDAGNodes.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/KnownBits.h"
35 using namespace llvm;
36 
37 
38 //===----------------------------------------------------------------------===//
39 // Calling Convention Implementation
40 //===----------------------------------------------------------------------===//
41 
42 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
43                                  MVT &LocVT, CCValAssign::LocInfo &LocInfo,
44                                  ISD::ArgFlagsTy &ArgFlags, CCState &State)
45 {
46   assert (ArgFlags.isSRet());
47 
48   // Assign SRet argument.
49   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
50                                          0,
51                                          LocVT, LocInfo));
52   return true;
53 }
54 
55 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT,
56                                      MVT &LocVT, CCValAssign::LocInfo &LocInfo,
57                                      ISD::ArgFlagsTy &ArgFlags, CCState &State)
58 {
59   static const MCPhysReg RegList[] = {
60     SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
61   };
62   // Try to get first reg.
63   if (Register Reg = State.AllocateReg(RegList)) {
64     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
65   } else {
66     // Assign whole thing in stack.
67     State.addLoc(CCValAssign::getCustomMem(
68         ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo));
69     return true;
70   }
71 
72   // Try to get second reg.
73   if (Register Reg = State.AllocateReg(RegList))
74     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
75   else
76     State.addLoc(CCValAssign::getCustomMem(
77         ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo));
78   return true;
79 }
80 
81 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT,
82                                          MVT &LocVT, CCValAssign::LocInfo &LocInfo,
83                                          ISD::ArgFlagsTy &ArgFlags, CCState &State)
84 {
85   static const MCPhysReg RegList[] = {
86     SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
87   };
88 
89   // Try to get first reg.
90   if (Register Reg = State.AllocateReg(RegList))
91     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
92   else
93     return false;
94 
95   // Try to get second reg.
96   if (Register Reg = State.AllocateReg(RegList))
97     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
98   else
99     return false;
100 
101   return true;
102 }
103 
104 // Allocate a full-sized argument for the 64-bit ABI.
105 static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT,
106                                     MVT &LocVT, CCValAssign::LocInfo &LocInfo,
107                                     ISD::ArgFlagsTy &ArgFlags, CCState &State) {
108   assert((LocVT == MVT::f32 || LocVT == MVT::f128
109           || LocVT.getSizeInBits() == 64) &&
110          "Can't handle non-64 bits locations");
111 
112   // Stack space is allocated for all arguments starting from [%fp+BIAS+128].
113   unsigned size      = (LocVT == MVT::f128) ? 16 : 8;
114   Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8);
115   unsigned Offset = State.AllocateStack(size, alignment);
116   unsigned Reg = 0;
117 
118   if (LocVT == MVT::i64 && Offset < 6*8)
119     // Promote integers to %i0-%i5.
120     Reg = SP::I0 + Offset/8;
121   else if (LocVT == MVT::f64 && Offset < 16*8)
122     // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
123     Reg = SP::D0 + Offset/8;
124   else if (LocVT == MVT::f32 && Offset < 16*8)
125     // Promote floats to %f1, %f3, ...
126     Reg = SP::F1 + Offset/4;
127   else if (LocVT == MVT::f128 && Offset < 16*8)
128     // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
129     Reg = SP::Q0 + Offset/16;
130 
131   // Promote to register when possible, otherwise use the stack slot.
132   if (Reg) {
133     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
134     return true;
135   }
136 
137   // Bail out if this is a return CC and we run out of registers to place
138   // values into.
139   if (IsReturn)
140     return false;
141 
142   // This argument goes on the stack in an 8-byte slot.
143   // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
144   // the right-aligned float. The first 4 bytes of the stack slot are undefined.
145   if (LocVT == MVT::f32)
146     Offset += 4;
147 
148   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
149   return true;
150 }
151 
152 // Allocate a half-sized argument for the 64-bit ABI.
153 //
154 // This is used when passing { float, int } structs by value in registers.
155 static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT,
156                                     MVT &LocVT, CCValAssign::LocInfo &LocInfo,
157                                     ISD::ArgFlagsTy &ArgFlags, CCState &State) {
158   assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
159   unsigned Offset = State.AllocateStack(4, Align(4));
160 
161   if (LocVT == MVT::f32 && Offset < 16*8) {
162     // Promote floats to %f0-%f31.
163     State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
164                                      LocVT, LocInfo));
165     return true;
166   }
167 
168   if (LocVT == MVT::i32 && Offset < 6*8) {
169     // Promote integers to %i0-%i5, using half the register.
170     unsigned Reg = SP::I0 + Offset/8;
171     LocVT = MVT::i64;
172     LocInfo = CCValAssign::AExt;
173 
174     // Set the Custom bit if this i32 goes in the high bits of a register.
175     if (Offset % 8 == 0)
176       State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
177                                              LocVT, LocInfo));
178     else
179       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
180     return true;
181   }
182 
183   // Bail out if this is a return CC and we run out of registers to place
184   // values into.
185   if (IsReturn)
186     return false;
187 
188   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
189   return true;
190 }
191 
192 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
193                             CCValAssign::LocInfo &LocInfo,
194                             ISD::ArgFlagsTy &ArgFlags, CCState &State) {
195   return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
196                                  State);
197 }
198 
199 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
200                             CCValAssign::LocInfo &LocInfo,
201                             ISD::ArgFlagsTy &ArgFlags, CCState &State) {
202   return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
203                                  State);
204 }
205 
206 static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
207                                CCValAssign::LocInfo &LocInfo,
208                                ISD::ArgFlagsTy &ArgFlags, CCState &State) {
209   return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
210                                  State);
211 }
212 
213 static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
214                                CCValAssign::LocInfo &LocInfo,
215                                ISD::ArgFlagsTy &ArgFlags, CCState &State) {
216   return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
217                                  State);
218 }
219 
220 #include "SparcGenCallingConv.inc"
221 
222 // The calling conventions in SparcCallingConv.td are described in terms of the
223 // callee's register window. This function translates registers to the
224 // corresponding caller window %o register.
225 static unsigned toCallerWindow(unsigned Reg) {
226   static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7,
227                 "Unexpected enum");
228   if (Reg >= SP::I0 && Reg <= SP::I7)
229     return Reg - SP::I0 + SP::O0;
230   return Reg;
231 }
232 
233 bool SparcTargetLowering::CanLowerReturn(
234     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
235     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
236   SmallVector<CCValAssign, 16> RVLocs;
237   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
238   return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64
239                                                        : RetCC_Sparc32);
240 }
241 
242 SDValue
243 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
244                                  bool IsVarArg,
245                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
246                                  const SmallVectorImpl<SDValue> &OutVals,
247                                  const SDLoc &DL, SelectionDAG &DAG) const {
248   if (Subtarget->is64Bit())
249     return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
250   return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
251 }
252 
253 SDValue
254 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv,
255                                     bool IsVarArg,
256                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
257                                     const SmallVectorImpl<SDValue> &OutVals,
258                                     const SDLoc &DL, SelectionDAG &DAG) const {
259   MachineFunction &MF = DAG.getMachineFunction();
260 
261   // CCValAssign - represent the assignment of the return value to locations.
262   SmallVector<CCValAssign, 16> RVLocs;
263 
264   // CCState - Info about the registers and stack slot.
265   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
266                  *DAG.getContext());
267 
268   // Analyze return values.
269   CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
270 
271   SDValue Flag;
272   SmallVector<SDValue, 4> RetOps(1, Chain);
273   // Make room for the return address offset.
274   RetOps.push_back(SDValue());
275 
276   // Copy the result values into the output registers.
277   for (unsigned i = 0, realRVLocIdx = 0;
278        i != RVLocs.size();
279        ++i, ++realRVLocIdx) {
280     CCValAssign &VA = RVLocs[i];
281     assert(VA.isRegLoc() && "Can only return in registers!");
282 
283     SDValue Arg = OutVals[realRVLocIdx];
284 
285     if (VA.needsCustom()) {
286       assert(VA.getLocVT() == MVT::v2i32);
287       // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would
288       // happen by default if this wasn't a legal type)
289 
290       SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
291                                   Arg,
292                                   DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
293       SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
294                                   Arg,
295                                   DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout())));
296 
297       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag);
298       Flag = Chain.getValue(1);
299       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
300       VA = RVLocs[++i]; // skip ahead to next loc
301       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1,
302                                Flag);
303     } else
304       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
305 
306     // Guarantee that all emitted copies are stuck together with flags.
307     Flag = Chain.getValue(1);
308     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
309   }
310 
311   unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
312   // If the function returns a struct, copy the SRetReturnReg to I0
313   if (MF.getFunction().hasStructRetAttr()) {
314     SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
315     Register Reg = SFI->getSRetReturnReg();
316     if (!Reg)
317       llvm_unreachable("sret virtual register not created in the entry block");
318     auto PtrVT = getPointerTy(DAG.getDataLayout());
319     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT);
320     Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
321     Flag = Chain.getValue(1);
322     RetOps.push_back(DAG.getRegister(SP::I0, PtrVT));
323     RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
324   }
325 
326   RetOps[0] = Chain;  // Update chain.
327   RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32);
328 
329   // Add the flag if we have it.
330   if (Flag.getNode())
331     RetOps.push_back(Flag);
332 
333   return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
334 }
335 
336 // Lower return values for the 64-bit ABI.
337 // Return values are passed the exactly the same way as function arguments.
338 SDValue
339 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv,
340                                     bool IsVarArg,
341                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
342                                     const SmallVectorImpl<SDValue> &OutVals,
343                                     const SDLoc &DL, SelectionDAG &DAG) const {
344   // CCValAssign - represent the assignment of the return value to locations.
345   SmallVector<CCValAssign, 16> RVLocs;
346 
347   // CCState - Info about the registers and stack slot.
348   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
349                  *DAG.getContext());
350 
351   // Analyze return values.
352   CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
353 
354   SDValue Flag;
355   SmallVector<SDValue, 4> RetOps(1, Chain);
356 
357   // The second operand on the return instruction is the return address offset.
358   // The return address is always %i7+8 with the 64-bit ABI.
359   RetOps.push_back(DAG.getConstant(8, DL, MVT::i32));
360 
361   // Copy the result values into the output registers.
362   for (unsigned i = 0; i != RVLocs.size(); ++i) {
363     CCValAssign &VA = RVLocs[i];
364     assert(VA.isRegLoc() && "Can only return in registers!");
365     SDValue OutVal = OutVals[i];
366 
367     // Integer return values must be sign or zero extended by the callee.
368     switch (VA.getLocInfo()) {
369     case CCValAssign::Full: break;
370     case CCValAssign::SExt:
371       OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
372       break;
373     case CCValAssign::ZExt:
374       OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
375       break;
376     case CCValAssign::AExt:
377       OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
378       break;
379     default:
380       llvm_unreachable("Unknown loc info!");
381     }
382 
383     // The custom bit on an i32 return value indicates that it should be passed
384     // in the high bits of the register.
385     if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
386       OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
387                            DAG.getConstant(32, DL, MVT::i32));
388 
389       // The next value may go in the low bits of the same register.
390       // Handle both at once.
391       if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
392         SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
393         OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
394         // Skip the next value, it's already done.
395         ++i;
396       }
397     }
398 
399     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
400 
401     // Guarantee that all emitted copies are stuck together with flags.
402     Flag = Chain.getValue(1);
403     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
404   }
405 
406   RetOps[0] = Chain;  // Update chain.
407 
408   // Add the flag if we have it.
409   if (Flag.getNode())
410     RetOps.push_back(Flag);
411 
412   return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
413 }
414 
415 SDValue SparcTargetLowering::LowerFormalArguments(
416     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
417     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
418     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
419   if (Subtarget->is64Bit())
420     return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
421                                    DL, DAG, InVals);
422   return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
423                                  DL, DAG, InVals);
424 }
425 
426 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
427 /// passed in either one or two GPRs, including FP values.  TODO: we should
428 /// pass FP values in FP registers for fastcc functions.
429 SDValue SparcTargetLowering::LowerFormalArguments_32(
430     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
431     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
432     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
433   MachineFunction &MF = DAG.getMachineFunction();
434   MachineRegisterInfo &RegInfo = MF.getRegInfo();
435   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
436 
437   // Assign locations to all of the incoming arguments.
438   SmallVector<CCValAssign, 16> ArgLocs;
439   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
440                  *DAG.getContext());
441   CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
442 
443   const unsigned StackOffset = 92;
444   bool IsLittleEndian = DAG.getDataLayout().isLittleEndian();
445 
446   unsigned InIdx = 0;
447   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
448     CCValAssign &VA = ArgLocs[i];
449 
450     if (Ins[InIdx].Flags.isSRet()) {
451       if (InIdx != 0)
452         report_fatal_error("sparc only supports sret on the first parameter");
453       // Get SRet from [%fp+64].
454       int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true);
455       SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
456       SDValue Arg =
457           DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
458       InVals.push_back(Arg);
459       continue;
460     }
461 
462     if (VA.isRegLoc()) {
463       if (VA.needsCustom()) {
464         assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
465 
466         Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
467         MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
468         SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
469 
470         assert(i+1 < e);
471         CCValAssign &NextVA = ArgLocs[++i];
472 
473         SDValue LoVal;
474         if (NextVA.isMemLoc()) {
475           int FrameIdx = MF.getFrameInfo().
476             CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
477           SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
478           LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
479         } else {
480           Register loReg = MF.addLiveIn(NextVA.getLocReg(),
481                                         &SP::IntRegsRegClass);
482           LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
483         }
484 
485         if (IsLittleEndian)
486           std::swap(LoVal, HiVal);
487 
488         SDValue WholeValue =
489           DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
490         WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue);
491         InVals.push_back(WholeValue);
492         continue;
493       }
494       Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
495       MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
496       SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
497       if (VA.getLocVT() == MVT::f32)
498         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
499       else if (VA.getLocVT() != MVT::i32) {
500         Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
501                           DAG.getValueType(VA.getLocVT()));
502         Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
503       }
504       InVals.push_back(Arg);
505       continue;
506     }
507 
508     assert(VA.isMemLoc());
509 
510     unsigned Offset = VA.getLocMemOffset()+StackOffset;
511     auto PtrVT = getPointerTy(DAG.getDataLayout());
512 
513     if (VA.needsCustom()) {
514       assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32);
515       // If it is double-word aligned, just load.
516       if (Offset % 8 == 0) {
517         int FI = MF.getFrameInfo().CreateFixedObject(8,
518                                                      Offset,
519                                                      true);
520         SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
521         SDValue Load =
522             DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
523         InVals.push_back(Load);
524         continue;
525       }
526 
527       int FI = MF.getFrameInfo().CreateFixedObject(4,
528                                                    Offset,
529                                                    true);
530       SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
531       SDValue HiVal =
532           DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
533       int FI2 = MF.getFrameInfo().CreateFixedObject(4,
534                                                     Offset+4,
535                                                     true);
536       SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT);
537 
538       SDValue LoVal =
539           DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo());
540 
541       if (IsLittleEndian)
542         std::swap(LoVal, HiVal);
543 
544       SDValue WholeValue =
545         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
546       WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue);
547       InVals.push_back(WholeValue);
548       continue;
549     }
550 
551     int FI = MF.getFrameInfo().CreateFixedObject(4,
552                                                  Offset,
553                                                  true);
554     SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
555     SDValue Load ;
556     if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
557       Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
558     } else if (VA.getValVT() == MVT::f128) {
559       report_fatal_error("SPARCv8 does not handle f128 in calls; "
560                          "pass indirectly");
561     } else {
562       // We shouldn't see any other value types here.
563       llvm_unreachable("Unexpected ValVT encountered in frame lowering.");
564     }
565     InVals.push_back(Load);
566   }
567 
568   if (MF.getFunction().hasStructRetAttr()) {
569     // Copy the SRet Argument to SRetReturnReg.
570     SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
571     Register Reg = SFI->getSRetReturnReg();
572     if (!Reg) {
573       Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
574       SFI->setSRetReturnReg(Reg);
575     }
576     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
577     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
578   }
579 
580   // Store remaining ArgRegs to the stack if this is a varargs function.
581   if (isVarArg) {
582     static const MCPhysReg ArgRegs[] = {
583       SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
584     };
585     unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs);
586     const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
587     unsigned ArgOffset = CCInfo.getNextStackOffset();
588     if (NumAllocated == 6)
589       ArgOffset += StackOffset;
590     else {
591       assert(!ArgOffset);
592       ArgOffset = 68+4*NumAllocated;
593     }
594 
595     // Remember the vararg offset for the va_start implementation.
596     FuncInfo->setVarArgsFrameOffset(ArgOffset);
597 
598     std::vector<SDValue> OutChains;
599 
600     for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
601       Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
602       MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
603       SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
604 
605       int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset,
606                                                          true);
607       SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
608 
609       OutChains.push_back(
610           DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo()));
611       ArgOffset += 4;
612     }
613 
614     if (!OutChains.empty()) {
615       OutChains.push_back(Chain);
616       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
617     }
618   }
619 
620   return Chain;
621 }
622 
623 // Lower formal arguments for the 64 bit ABI.
624 SDValue SparcTargetLowering::LowerFormalArguments_64(
625     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
626     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
627     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
628   MachineFunction &MF = DAG.getMachineFunction();
629 
630   // Analyze arguments according to CC_Sparc64.
631   SmallVector<CCValAssign, 16> ArgLocs;
632   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
633                  *DAG.getContext());
634   CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
635 
636   // The argument array begins at %fp+BIAS+128, after the register save area.
637   const unsigned ArgArea = 128;
638 
639   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
640     CCValAssign &VA = ArgLocs[i];
641     if (VA.isRegLoc()) {
642       // This argument is passed in a register.
643       // All integer register arguments are promoted by the caller to i64.
644 
645       // Create a virtual register for the promoted live-in value.
646       Register VReg = MF.addLiveIn(VA.getLocReg(),
647                                    getRegClassFor(VA.getLocVT()));
648       SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
649 
650       // Get the high bits for i32 struct elements.
651       if (VA.getValVT() == MVT::i32 && VA.needsCustom())
652         Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
653                           DAG.getConstant(32, DL, MVT::i32));
654 
655       // The caller promoted the argument, so insert an Assert?ext SDNode so we
656       // won't promote the value again in this function.
657       switch (VA.getLocInfo()) {
658       case CCValAssign::SExt:
659         Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
660                           DAG.getValueType(VA.getValVT()));
661         break;
662       case CCValAssign::ZExt:
663         Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
664                           DAG.getValueType(VA.getValVT()));
665         break;
666       default:
667         break;
668       }
669 
670       // Truncate the register down to the argument type.
671       if (VA.isExtInLoc())
672         Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
673 
674       InVals.push_back(Arg);
675       continue;
676     }
677 
678     // The registers are exhausted. This argument was passed on the stack.
679     assert(VA.isMemLoc());
680     // The CC_Sparc64_Full/Half functions compute stack offsets relative to the
681     // beginning of the arguments area at %fp+BIAS+128.
682     unsigned Offset = VA.getLocMemOffset() + ArgArea;
683     unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
684     // Adjust offset for extended arguments, SPARC is big-endian.
685     // The caller will have written the full slot with extended bytes, but we
686     // prefer our own extending loads.
687     if (VA.isExtInLoc())
688       Offset += 8 - ValSize;
689     int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
690     InVals.push_back(
691         DAG.getLoad(VA.getValVT(), DL, Chain,
692                     DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
693                     MachinePointerInfo::getFixedStack(MF, FI)));
694   }
695 
696   if (!IsVarArg)
697     return Chain;
698 
699   // This function takes variable arguments, some of which may have been passed
700   // in registers %i0-%i5. Variable floating point arguments are never passed
701   // in floating point registers. They go on %i0-%i5 or on the stack like
702   // integer arguments.
703   //
704   // The va_start intrinsic needs to know the offset to the first variable
705   // argument.
706   unsigned ArgOffset = CCInfo.getNextStackOffset();
707   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
708   // Skip the 128 bytes of register save area.
709   FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
710                                   Subtarget->getStackPointerBias());
711 
712   // Save the variable arguments that were passed in registers.
713   // The caller is required to reserve stack space for 6 arguments regardless
714   // of how many arguments were actually passed.
715   SmallVector<SDValue, 8> OutChains;
716   for (; ArgOffset < 6*8; ArgOffset += 8) {
717     Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
718     SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
719     int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true);
720     auto PtrVT = getPointerTy(MF.getDataLayout());
721     OutChains.push_back(
722         DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT),
723                      MachinePointerInfo::getFixedStack(MF, FI)));
724   }
725 
726   if (!OutChains.empty())
727     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
728 
729   return Chain;
730 }
731 
732 SDValue
733 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
734                                SmallVectorImpl<SDValue> &InVals) const {
735   if (Subtarget->is64Bit())
736     return LowerCall_64(CLI, InVals);
737   return LowerCall_32(CLI, InVals);
738 }
739 
740 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
741                                 const CallBase *Call) {
742   if (Call)
743     return Call->hasFnAttr(Attribute::ReturnsTwice);
744 
745   const Function *CalleeFn = nullptr;
746   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
747     CalleeFn = dyn_cast<Function>(G->getGlobal());
748   } else if (ExternalSymbolSDNode *E =
749              dyn_cast<ExternalSymbolSDNode>(Callee)) {
750     const Function &Fn = DAG.getMachineFunction().getFunction();
751     const Module *M = Fn.getParent();
752     const char *CalleeName = E->getSymbol();
753     CalleeFn = M->getFunction(CalleeName);
754   }
755 
756   if (!CalleeFn)
757     return false;
758   return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
759 }
760 
761 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
762 /// for tail call optimization.
763 bool SparcTargetLowering::IsEligibleForTailCallOptimization(
764     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const {
765 
766   auto &Outs = CLI.Outs;
767   auto &Caller = MF.getFunction();
768 
769   // Do not tail call opt functions with "disable-tail-calls" attribute.
770   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
771     return false;
772 
773   // Do not tail call opt if the stack is used to pass parameters.
774   // 64-bit targets have a slightly higher limit since the ABI requires
775   // to allocate some space even when all the parameters fit inside registers.
776   unsigned StackOffsetLimit = Subtarget->is64Bit() ? 48 : 0;
777   if (CCInfo.getNextStackOffset() > StackOffsetLimit)
778     return false;
779 
780   // Do not tail call opt if either the callee or caller returns
781   // a struct and the other does not.
782   if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet())
783     return false;
784 
785   // Byval parameters hand the function a pointer directly into the stack area
786   // we want to reuse during a tail call.
787   for (auto &Arg : Outs)
788     if (Arg.Flags.isByVal())
789       return false;
790 
791   return true;
792 }
793 
794 // Lower a call for the 32-bit ABI.
795 SDValue
796 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
797                                   SmallVectorImpl<SDValue> &InVals) const {
798   SelectionDAG &DAG                     = CLI.DAG;
799   SDLoc &dl                             = CLI.DL;
800   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
801   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
802   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
803   SDValue Chain                         = CLI.Chain;
804   SDValue Callee                        = CLI.Callee;
805   bool &isTailCall                      = CLI.IsTailCall;
806   CallingConv::ID CallConv              = CLI.CallConv;
807   bool isVarArg                         = CLI.IsVarArg;
808 
809   // Analyze operands of the call, assigning locations to each operand.
810   SmallVector<CCValAssign, 16> ArgLocs;
811   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
812                  *DAG.getContext());
813   CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
814 
815   isTailCall = isTailCall && IsEligibleForTailCallOptimization(
816                                  CCInfo, CLI, DAG.getMachineFunction());
817 
818   // Get the size of the outgoing arguments stack space requirement.
819   unsigned ArgsSize = CCInfo.getNextStackOffset();
820 
821   // Keep stack frames 8-byte aligned.
822   ArgsSize = (ArgsSize+7) & ~7;
823 
824   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
825 
826   // Create local copies for byval args.
827   SmallVector<SDValue, 8> ByValArgs;
828   for (unsigned i = 0,  e = Outs.size(); i != e; ++i) {
829     ISD::ArgFlagsTy Flags = Outs[i].Flags;
830     if (!Flags.isByVal())
831       continue;
832 
833     SDValue Arg = OutVals[i];
834     unsigned Size = Flags.getByValSize();
835     Align Alignment = Flags.getNonZeroByValAlign();
836 
837     if (Size > 0U) {
838       int FI = MFI.CreateStackObject(Size, Alignment, false);
839       SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
840       SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32);
841 
842       Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment,
843                             false,        // isVolatile,
844                             (Size <= 32), // AlwaysInline if size <= 32,
845                             false,        // isTailCall
846                             MachinePointerInfo(), MachinePointerInfo());
847       ByValArgs.push_back(FIPtr);
848     }
849     else {
850       SDValue nullVal;
851       ByValArgs.push_back(nullVal);
852     }
853   }
854 
855   assert(!isTailCall || ArgsSize == 0);
856 
857   if (!isTailCall)
858     Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl);
859 
860   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
861   SmallVector<SDValue, 8> MemOpChains;
862 
863   const unsigned StackOffset = 92;
864   bool hasStructRetAttr = false;
865   unsigned SRetArgSize = 0;
866   // Walk the register/memloc assignments, inserting copies/loads.
867   for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
868        i != e;
869        ++i, ++realArgIdx) {
870     CCValAssign &VA = ArgLocs[i];
871     SDValue Arg = OutVals[realArgIdx];
872 
873     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
874 
875     // Use local copy if it is a byval arg.
876     if (Flags.isByVal()) {
877       Arg = ByValArgs[byvalArgIdx++];
878       if (!Arg) {
879         continue;
880       }
881     }
882 
883     // Promote the value if needed.
884     switch (VA.getLocInfo()) {
885     default: llvm_unreachable("Unknown loc info!");
886     case CCValAssign::Full: break;
887     case CCValAssign::SExt:
888       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
889       break;
890     case CCValAssign::ZExt:
891       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
892       break;
893     case CCValAssign::AExt:
894       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
895       break;
896     case CCValAssign::BCvt:
897       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
898       break;
899     }
900 
901     if (Flags.isSRet()) {
902       assert(VA.needsCustom());
903 
904       if (isTailCall)
905         continue;
906 
907       // store SRet argument in %sp+64
908       SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
909       SDValue PtrOff = DAG.getIntPtrConstant(64, dl);
910       PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
911       MemOpChains.push_back(
912           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
913       hasStructRetAttr = true;
914       // sret only allowed on first argument
915       assert(Outs[realArgIdx].OrigArgIndex == 0);
916       SRetArgSize =
917           DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType);
918       continue;
919     }
920 
921     if (VA.needsCustom()) {
922       assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
923 
924       if (VA.isMemLoc()) {
925         unsigned Offset = VA.getLocMemOffset() + StackOffset;
926         // if it is double-word aligned, just store.
927         if (Offset % 8 == 0) {
928           SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
929           SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
930           PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
931           MemOpChains.push_back(
932               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
933           continue;
934         }
935       }
936 
937       if (VA.getLocVT() == MVT::f64) {
938         // Move from the float value from float registers into the
939         // integer registers.
940         if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg))
941           Arg = bitcastConstantFPToInt(C, dl, DAG);
942         else
943           Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg);
944       }
945 
946       SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
947                                   Arg,
948                                   DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout())));
949       SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
950                                   Arg,
951                                   DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout())));
952 
953       if (VA.isRegLoc()) {
954         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0));
955         assert(i+1 != e);
956         CCValAssign &NextVA = ArgLocs[++i];
957         if (NextVA.isRegLoc()) {
958           RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1));
959         } else {
960           // Store the second part in stack.
961           unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
962           SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
963           SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
964           PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
965           MemOpChains.push_back(
966               DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
967         }
968       } else {
969         unsigned Offset = VA.getLocMemOffset() + StackOffset;
970         // Store the first part.
971         SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
972         SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
973         PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
974         MemOpChains.push_back(
975             DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo()));
976         // Store the second part.
977         PtrOff = DAG.getIntPtrConstant(Offset + 4, dl);
978         PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
979         MemOpChains.push_back(
980             DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
981       }
982       continue;
983     }
984 
985     // Arguments that can be passed on register must be kept at
986     // RegsToPass vector
987     if (VA.isRegLoc()) {
988       if (VA.getLocVT() != MVT::f32) {
989         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
990         continue;
991       }
992       Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
993       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
994       continue;
995     }
996 
997     assert(VA.isMemLoc());
998 
999     // Create a store off the stack pointer for this argument.
1000     SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
1001     SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset,
1002                                            dl);
1003     PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
1004     MemOpChains.push_back(
1005         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
1006   }
1007 
1008 
1009   // Emit all stores, make sure the occur before any copies into physregs.
1010   if (!MemOpChains.empty())
1011     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1012 
1013   // Build a sequence of copy-to-reg nodes chained together with token
1014   // chain and flag operands which copy the outgoing args into registers.
1015   // The InFlag in necessary since all emitted instructions must be
1016   // stuck together.
1017   SDValue InFlag;
1018   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1019     Register Reg = RegsToPass[i].first;
1020     if (!isTailCall)
1021       Reg = toCallerWindow(Reg);
1022     Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
1023     InFlag = Chain.getValue(1);
1024   }
1025 
1026   bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
1027 
1028   // If the callee is a GlobalAddress node (quite common, every direct call is)
1029   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1030   // Likewise ExternalSymbol -> TargetExternalSymbol.
1031   unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
1032                                         : SparcMCExpr::VK_Sparc_WDISP30;
1033   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1034     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
1035   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1036     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
1037 
1038   // Returns a chain & a flag for retval copy to use
1039   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1040   SmallVector<SDValue, 8> Ops;
1041   Ops.push_back(Chain);
1042   Ops.push_back(Callee);
1043   if (hasStructRetAttr)
1044     Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32));
1045   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1046     Register Reg = RegsToPass[i].first;
1047     if (!isTailCall)
1048       Reg = toCallerWindow(Reg);
1049     Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType()));
1050   }
1051 
1052   // Add a register mask operand representing the call-preserved registers.
1053   const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1054   const uint32_t *Mask =
1055       ((hasReturnsTwice)
1056            ? TRI->getRTCallPreservedMask(CallConv)
1057            : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv));
1058   assert(Mask && "Missing call preserved mask for calling convention");
1059   Ops.push_back(DAG.getRegisterMask(Mask));
1060 
1061   if (InFlag.getNode())
1062     Ops.push_back(InFlag);
1063 
1064   if (isTailCall) {
1065     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
1066     return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops);
1067   }
1068 
1069   Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
1070   InFlag = Chain.getValue(1);
1071 
1072   Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InFlag, dl);
1073   InFlag = Chain.getValue(1);
1074 
1075   // Assign locations to each value returned by this call.
1076   SmallVector<CCValAssign, 16> RVLocs;
1077   CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1078                  *DAG.getContext());
1079 
1080   RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
1081 
1082   // Copy all of the result registers out of their specified physreg.
1083   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1084     assert(RVLocs[i].isRegLoc() && "Can only return in registers!");
1085     if (RVLocs[i].getLocVT() == MVT::v2i32) {
1086       SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32);
1087       SDValue Lo = DAG.getCopyFromReg(
1088           Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag);
1089       Chain = Lo.getValue(1);
1090       InFlag = Lo.getValue(2);
1091       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo,
1092                         DAG.getConstant(0, dl, MVT::i32));
1093       SDValue Hi = DAG.getCopyFromReg(
1094           Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag);
1095       Chain = Hi.getValue(1);
1096       InFlag = Hi.getValue(2);
1097       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi,
1098                         DAG.getConstant(1, dl, MVT::i32));
1099       InVals.push_back(Vec);
1100     } else {
1101       Chain =
1102           DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
1103                              RVLocs[i].getValVT(), InFlag)
1104               .getValue(1);
1105       InFlag = Chain.getValue(2);
1106       InVals.push_back(Chain.getValue(0));
1107     }
1108   }
1109 
1110   return Chain;
1111 }
1112 
1113 // FIXME? Maybe this could be a TableGen attribute on some registers and
1114 // this table could be generated automatically from RegInfo.
1115 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT,
1116                                                 const MachineFunction &MF) const {
1117   Register Reg = StringSwitch<Register>(RegName)
1118     .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3)
1119     .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7)
1120     .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3)
1121     .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7)
1122     .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3)
1123     .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7)
1124     .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3)
1125     .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7)
1126     .Default(0);
1127 
1128   if (Reg)
1129     return Reg;
1130 
1131   report_fatal_error("Invalid register name global variable");
1132 }
1133 
1134 // Fixup floating point arguments in the ... part of a varargs call.
1135 //
1136 // The SPARC v9 ABI requires that floating point arguments are treated the same
1137 // as integers when calling a varargs function. This does not apply to the
1138 // fixed arguments that are part of the function's prototype.
1139 //
1140 // This function post-processes a CCValAssign array created by
1141 // AnalyzeCallOperands().
1142 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
1143                                    ArrayRef<ISD::OutputArg> Outs) {
1144   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1145     CCValAssign &VA = ArgLocs[i];
1146     MVT ValTy = VA.getLocVT();
1147     // FIXME: What about f32 arguments? C promotes them to f64 when calling
1148     // varargs functions.
1149     if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
1150       continue;
1151     // The fixed arguments to a varargs function still go in FP registers.
1152     if (Outs[VA.getValNo()].IsFixed)
1153       continue;
1154 
1155     // This floating point argument should be reassigned.
1156     // Determine the offset into the argument array.
1157     Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
1158     unsigned argSize  = (ValTy == MVT::f64) ? 8 : 16;
1159     unsigned Offset = argSize * (VA.getLocReg() - firstReg);
1160     assert(Offset < 16*8 && "Offset out of range, bad register enum?");
1161 
1162     if (Offset < 6*8) {
1163       // This argument should go in %i0-%i5.
1164       unsigned IReg = SP::I0 + Offset/8;
1165       if (ValTy == MVT::f64)
1166         // Full register, just bitconvert into i64.
1167         VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64,
1168                                  CCValAssign::BCvt);
1169       else {
1170         assert(ValTy == MVT::f128 && "Unexpected type!");
1171         // Full register, just bitconvert into i128 -- We will lower this into
1172         // two i64s in LowerCall_64.
1173         VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg,
1174                                        MVT::i128, CCValAssign::BCvt);
1175       }
1176     } else {
1177       // This needs to go to memory, we're out of integer registers.
1178       VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset,
1179                                VA.getLocVT(), VA.getLocInfo());
1180     }
1181   }
1182 }
1183 
1184 // Lower a call for the 64-bit ABI.
1185 SDValue
1186 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
1187                                   SmallVectorImpl<SDValue> &InVals) const {
1188   SelectionDAG &DAG = CLI.DAG;
1189   SDLoc DL = CLI.DL;
1190   SDValue Chain = CLI.Chain;
1191   auto PtrVT = getPointerTy(DAG.getDataLayout());
1192 
1193   // Analyze operands of the call, assigning locations to each operand.
1194   SmallVector<CCValAssign, 16> ArgLocs;
1195   CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
1196                  *DAG.getContext());
1197   CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
1198 
1199   CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization(
1200                                          CCInfo, CLI, DAG.getMachineFunction());
1201 
1202   // Get the size of the outgoing arguments stack space requirement.
1203   // The stack offset computed by CC_Sparc64 includes all arguments.
1204   // Called functions expect 6 argument words to exist in the stack frame, used
1205   // or not.
1206   unsigned StackReserved = 6 * 8u;
1207   unsigned ArgsSize = std::max(StackReserved, CCInfo.getNextStackOffset());
1208 
1209   // Keep stack frames 16-byte aligned.
1210   ArgsSize = alignTo(ArgsSize, 16);
1211 
1212   // Varargs calls require special treatment.
1213   if (CLI.IsVarArg)
1214     fixupVariableFloatArgs(ArgLocs, CLI.Outs);
1215 
1216   assert(!CLI.IsTailCall || ArgsSize == StackReserved);
1217 
1218   // Adjust the stack pointer to make room for the arguments.
1219   // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
1220   // with more than 6 arguments.
1221   if (!CLI.IsTailCall)
1222     Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
1223 
1224   // Collect the set of registers to pass to the function and their values.
1225   // This will be emitted as a sequence of CopyToReg nodes glued to the call
1226   // instruction.
1227   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
1228 
1229   // Collect chains from all the memory opeations that copy arguments to the
1230   // stack. They must follow the stack pointer adjustment above and precede the
1231   // call instruction itself.
1232   SmallVector<SDValue, 8> MemOpChains;
1233 
1234   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1235     const CCValAssign &VA = ArgLocs[i];
1236     SDValue Arg = CLI.OutVals[i];
1237 
1238     // Promote the value if needed.
1239     switch (VA.getLocInfo()) {
1240     default:
1241       llvm_unreachable("Unknown location info!");
1242     case CCValAssign::Full:
1243       break;
1244     case CCValAssign::SExt:
1245       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1246       break;
1247     case CCValAssign::ZExt:
1248       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1249       break;
1250     case CCValAssign::AExt:
1251       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1252       break;
1253     case CCValAssign::BCvt:
1254       // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
1255       // SPARC does not support i128 natively. Lower it into two i64, see below.
1256       if (!VA.needsCustom() || VA.getValVT() != MVT::f128
1257           || VA.getLocVT() != MVT::i128)
1258         Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1259       break;
1260     }
1261 
1262     if (VA.isRegLoc()) {
1263       if (VA.needsCustom() && VA.getValVT() == MVT::f128
1264           && VA.getLocVT() == MVT::i128) {
1265         // Store and reload into the integer register reg and reg+1.
1266         unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
1267         unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
1268         SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1269         SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL);
1270         HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff);
1271         SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL);
1272         LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff);
1273 
1274         // Store to %sp+BIAS+128+Offset
1275         SDValue Store =
1276             DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo());
1277         // Load into Reg and Reg+1
1278         SDValue Hi64 =
1279             DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo());
1280         SDValue Lo64 =
1281             DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo());
1282 
1283         Register HiReg = VA.getLocReg();
1284         Register LoReg = VA.getLocReg() + 1;
1285         if (!CLI.IsTailCall) {
1286           HiReg = toCallerWindow(HiReg);
1287           LoReg = toCallerWindow(LoReg);
1288         }
1289 
1290         RegsToPass.push_back(std::make_pair(HiReg, Hi64));
1291         RegsToPass.push_back(std::make_pair(LoReg, Lo64));
1292         continue;
1293       }
1294 
1295       // The custom bit on an i32 return value indicates that it should be
1296       // passed in the high bits of the register.
1297       if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
1298         Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
1299                           DAG.getConstant(32, DL, MVT::i32));
1300 
1301         // The next value may go in the low bits of the same register.
1302         // Handle both at once.
1303         if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
1304             ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
1305           SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
1306                                    CLI.OutVals[i+1]);
1307           Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
1308           // Skip the next value, it's already done.
1309           ++i;
1310         }
1311       }
1312 
1313       Register Reg = VA.getLocReg();
1314       if (!CLI.IsTailCall)
1315         Reg = toCallerWindow(Reg);
1316       RegsToPass.push_back(std::make_pair(Reg, Arg));
1317       continue;
1318     }
1319 
1320     assert(VA.isMemLoc());
1321 
1322     // Create a store off the stack pointer for this argument.
1323     SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1324     // The argument area starts at %fp+BIAS+128 in the callee frame,
1325     // %sp+BIAS+128 in ours.
1326     SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
1327                                            Subtarget->getStackPointerBias() +
1328                                            128, DL);
1329     PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
1330     MemOpChains.push_back(
1331         DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
1332   }
1333 
1334   // Emit all stores, make sure they occur before the call.
1335   if (!MemOpChains.empty())
1336     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1337 
1338   // Build a sequence of CopyToReg nodes glued together with token chain and
1339   // glue operands which copy the outgoing args into registers. The InGlue is
1340   // necessary since all emitted instructions must be stuck together in order
1341   // to pass the live physical registers.
1342   SDValue InGlue;
1343   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1344     Chain = DAG.getCopyToReg(Chain, DL,
1345                              RegsToPass[i].first, RegsToPass[i].second, InGlue);
1346     InGlue = Chain.getValue(1);
1347   }
1348 
1349   // If the callee is a GlobalAddress node (quite common, every direct call is)
1350   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1351   // Likewise ExternalSymbol -> TargetExternalSymbol.
1352   SDValue Callee = CLI.Callee;
1353   bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
1354   unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
1355                                         : SparcMCExpr::VK_Sparc_WDISP30;
1356   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1357     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF);
1358   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1359     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
1360 
1361   // Build the operands for the call instruction itself.
1362   SmallVector<SDValue, 8> Ops;
1363   Ops.push_back(Chain);
1364   Ops.push_back(Callee);
1365   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1366     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1367                                   RegsToPass[i].second.getValueType()));
1368 
1369   // Add a register mask operand representing the call-preserved registers.
1370   const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1371   const uint32_t *Mask =
1372       ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
1373                          : TRI->getCallPreservedMask(DAG.getMachineFunction(),
1374                                                      CLI.CallConv));
1375   assert(Mask && "Missing call preserved mask for calling convention");
1376   Ops.push_back(DAG.getRegisterMask(Mask));
1377 
1378   // Make sure the CopyToReg nodes are glued to the call instruction which
1379   // consumes the registers.
1380   if (InGlue.getNode())
1381     Ops.push_back(InGlue);
1382 
1383   // Now the call itself.
1384   if (CLI.IsTailCall) {
1385     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
1386     return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops);
1387   }
1388   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1389   Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
1390   InGlue = Chain.getValue(1);
1391 
1392   // Revert the stack pointer immediately after the call.
1393   Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL);
1394   InGlue = Chain.getValue(1);
1395 
1396   // Now extract the return values. This is more or less the same as
1397   // LowerFormalArguments_64.
1398 
1399   // Assign locations to each value returned by this call.
1400   SmallVector<CCValAssign, 16> RVLocs;
1401   CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
1402                  *DAG.getContext());
1403 
1404   // Set inreg flag manually for codegen generated library calls that
1405   // return float.
1406   if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
1407     CLI.Ins[0].Flags.setInReg();
1408 
1409   RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
1410 
1411   // Copy all of the result registers out of their specified physreg.
1412   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1413     CCValAssign &VA = RVLocs[i];
1414     assert(VA.isRegLoc() && "Can only return in registers!");
1415     unsigned Reg = toCallerWindow(VA.getLocReg());
1416 
1417     // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
1418     // reside in the same register in the high and low bits. Reuse the
1419     // CopyFromReg previous node to avoid duplicate copies.
1420     SDValue RV;
1421     if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
1422       if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
1423         RV = Chain.getValue(0);
1424 
1425     // But usually we'll create a new CopyFromReg for a different register.
1426     if (!RV.getNode()) {
1427       RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
1428       Chain = RV.getValue(1);
1429       InGlue = Chain.getValue(2);
1430     }
1431 
1432     // Get the high bits for i32 struct elements.
1433     if (VA.getValVT() == MVT::i32 && VA.needsCustom())
1434       RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
1435                        DAG.getConstant(32, DL, MVT::i32));
1436 
1437     // The callee promoted the return value, so insert an Assert?ext SDNode so
1438     // we won't promote the value again in this function.
1439     switch (VA.getLocInfo()) {
1440     case CCValAssign::SExt:
1441       RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
1442                        DAG.getValueType(VA.getValVT()));
1443       break;
1444     case CCValAssign::ZExt:
1445       RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
1446                        DAG.getValueType(VA.getValVT()));
1447       break;
1448     default:
1449       break;
1450     }
1451 
1452     // Truncate the register down to the return value type.
1453     if (VA.isExtInLoc())
1454       RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
1455 
1456     InVals.push_back(RV);
1457   }
1458 
1459   return Chain;
1460 }
1461 
1462 //===----------------------------------------------------------------------===//
1463 // TargetLowering Implementation
1464 //===----------------------------------------------------------------------===//
1465 
1466 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
1467   if (AI->getOperation() == AtomicRMWInst::Xchg &&
1468       AI->getType()->getPrimitiveSizeInBits() == 32)
1469     return AtomicExpansionKind::None; // Uses xchg instruction
1470 
1471   return AtomicExpansionKind::CmpXChg;
1472 }
1473 
1474 /// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC
1475 /// rcond condition.
1476 static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) {
1477   switch (CC) {
1478   default:
1479     llvm_unreachable("Unknown/unsigned integer condition code!");
1480   case ISD::SETEQ:
1481     return SPCC::REG_Z;
1482   case ISD::SETNE:
1483     return SPCC::REG_NZ;
1484   case ISD::SETLT:
1485     return SPCC::REG_LZ;
1486   case ISD::SETGT:
1487     return SPCC::REG_GZ;
1488   case ISD::SETLE:
1489     return SPCC::REG_LEZ;
1490   case ISD::SETGE:
1491     return SPCC::REG_GEZ;
1492   }
1493 }
1494 
1495 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
1496 /// condition.
1497 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
1498   switch (CC) {
1499   default: llvm_unreachable("Unknown integer condition code!");
1500   case ISD::SETEQ:  return SPCC::ICC_E;
1501   case ISD::SETNE:  return SPCC::ICC_NE;
1502   case ISD::SETLT:  return SPCC::ICC_L;
1503   case ISD::SETGT:  return SPCC::ICC_G;
1504   case ISD::SETLE:  return SPCC::ICC_LE;
1505   case ISD::SETGE:  return SPCC::ICC_GE;
1506   case ISD::SETULT: return SPCC::ICC_CS;
1507   case ISD::SETULE: return SPCC::ICC_LEU;
1508   case ISD::SETUGT: return SPCC::ICC_GU;
1509   case ISD::SETUGE: return SPCC::ICC_CC;
1510   }
1511 }
1512 
1513 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
1514 /// FCC condition.
1515 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
1516   switch (CC) {
1517   default: llvm_unreachable("Unknown fp condition code!");
1518   case ISD::SETEQ:
1519   case ISD::SETOEQ: return SPCC::FCC_E;
1520   case ISD::SETNE:
1521   case ISD::SETUNE: return SPCC::FCC_NE;
1522   case ISD::SETLT:
1523   case ISD::SETOLT: return SPCC::FCC_L;
1524   case ISD::SETGT:
1525   case ISD::SETOGT: return SPCC::FCC_G;
1526   case ISD::SETLE:
1527   case ISD::SETOLE: return SPCC::FCC_LE;
1528   case ISD::SETGE:
1529   case ISD::SETOGE: return SPCC::FCC_GE;
1530   case ISD::SETULT: return SPCC::FCC_UL;
1531   case ISD::SETULE: return SPCC::FCC_ULE;
1532   case ISD::SETUGT: return SPCC::FCC_UG;
1533   case ISD::SETUGE: return SPCC::FCC_UGE;
1534   case ISD::SETUO:  return SPCC::FCC_U;
1535   case ISD::SETO:   return SPCC::FCC_O;
1536   case ISD::SETONE: return SPCC::FCC_LG;
1537   case ISD::SETUEQ: return SPCC::FCC_UE;
1538   }
1539 }
1540 
1541 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
1542                                          const SparcSubtarget &STI)
1543     : TargetLowering(TM), Subtarget(&STI) {
1544   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
1545 
1546   // Instructions which use registers as conditionals examine all the
1547   // bits (as does the pseudo SELECT_CC expansion). I don't think it
1548   // matters much whether it's ZeroOrOneBooleanContent, or
1549   // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
1550   // former.
1551   setBooleanContents(ZeroOrOneBooleanContent);
1552   setBooleanVectorContents(ZeroOrOneBooleanContent);
1553 
1554   // Set up the register classes.
1555   addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
1556   if (!Subtarget->useSoftFloat()) {
1557     addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
1558     addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
1559     addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
1560   }
1561   if (Subtarget->is64Bit()) {
1562     addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
1563   } else {
1564     // On 32bit sparc, we define a double-register 32bit register
1565     // class, as well. This is modeled in LLVM as a 2-vector of i32.
1566     addRegisterClass(MVT::v2i32, &SP::IntPairRegClass);
1567 
1568     // ...but almost all operations must be expanded, so set that as
1569     // the default.
1570     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
1571       setOperationAction(Op, MVT::v2i32, Expand);
1572     }
1573     // Truncating/extending stores/loads are also not supported.
1574     for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1575       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand);
1576       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand);
1577       setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand);
1578 
1579       setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand);
1580       setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand);
1581       setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand);
1582 
1583       setTruncStoreAction(VT, MVT::v2i32, Expand);
1584       setTruncStoreAction(MVT::v2i32, VT, Expand);
1585     }
1586     // However, load and store *are* legal.
1587     setOperationAction(ISD::LOAD, MVT::v2i32, Legal);
1588     setOperationAction(ISD::STORE, MVT::v2i32, Legal);
1589     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal);
1590     setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal);
1591 
1592     // And we need to promote i64 loads/stores into vector load/store
1593     setOperationAction(ISD::LOAD, MVT::i64, Custom);
1594     setOperationAction(ISD::STORE, MVT::i64, Custom);
1595 
1596     // Sadly, this doesn't work:
1597     //    AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
1598     //    AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
1599   }
1600 
1601   // Turn FP extload into load/fpextend
1602   for (MVT VT : MVT::fp_valuetypes()) {
1603     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1604     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1605     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
1606   }
1607 
1608   // Sparc doesn't have i1 sign extending load
1609   for (MVT VT : MVT::integer_valuetypes())
1610     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1611 
1612   // Turn FP truncstore into trunc + store.
1613   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1614   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1615   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1616   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
1617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1619 
1620   // Custom legalize GlobalAddress nodes into LO/HI parts.
1621   setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
1622   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
1623   setOperationAction(ISD::ConstantPool, PtrVT, Custom);
1624   setOperationAction(ISD::BlockAddress, PtrVT, Custom);
1625 
1626   // Sparc doesn't have sext_inreg, replace them with shl/sra
1627   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1628   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
1629   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
1630 
1631   // Sparc has no REM or DIVREM operations.
1632   setOperationAction(ISD::UREM, MVT::i32, Expand);
1633   setOperationAction(ISD::SREM, MVT::i32, Expand);
1634   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1635   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1636 
1637   // ... nor does SparcV9.
1638   if (Subtarget->is64Bit()) {
1639     setOperationAction(ISD::UREM, MVT::i64, Expand);
1640     setOperationAction(ISD::SREM, MVT::i64, Expand);
1641     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1642     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1643   }
1644 
1645   // Custom expand fp<->sint
1646   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1647   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1648   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
1649   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
1650 
1651   // Custom Expand fp<->uint
1652   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1653   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1654   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
1655   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
1656 
1657   // Lower f16 conversion operations into library calls
1658   setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1659   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1660   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1661   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1662   setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand);
1663   setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand);
1664 
1665   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
1666   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
1667 
1668   // Sparc has no select or setcc: expand to SELECT_CC.
1669   setOperationAction(ISD::SELECT, MVT::i32, Expand);
1670   setOperationAction(ISD::SELECT, MVT::f32, Expand);
1671   setOperationAction(ISD::SELECT, MVT::f64, Expand);
1672   setOperationAction(ISD::SELECT, MVT::f128, Expand);
1673 
1674   setOperationAction(ISD::SETCC, MVT::i32, Expand);
1675   setOperationAction(ISD::SETCC, MVT::f32, Expand);
1676   setOperationAction(ISD::SETCC, MVT::f64, Expand);
1677   setOperationAction(ISD::SETCC, MVT::f128, Expand);
1678 
1679   // Sparc doesn't have BRCOND either, it has BR_CC.
1680   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1681   setOperationAction(ISD::BRIND, MVT::Other, Expand);
1682   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1683   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1684   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1685   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1686   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
1687 
1688   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1689   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1690   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1691   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1692 
1693   setOperationAction(ISD::ADDC, MVT::i32, Custom);
1694   setOperationAction(ISD::ADDE, MVT::i32, Custom);
1695   setOperationAction(ISD::SUBC, MVT::i32, Custom);
1696   setOperationAction(ISD::SUBE, MVT::i32, Custom);
1697 
1698   if (Subtarget->is64Bit()) {
1699     setOperationAction(ISD::ADDC, MVT::i64, Custom);
1700     setOperationAction(ISD::ADDE, MVT::i64, Custom);
1701     setOperationAction(ISD::SUBC, MVT::i64, Custom);
1702     setOperationAction(ISD::SUBE, MVT::i64, Custom);
1703     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
1704     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
1705     setOperationAction(ISD::SELECT, MVT::i64, Expand);
1706     setOperationAction(ISD::SETCC, MVT::i64, Expand);
1707     setOperationAction(ISD::BR_CC, MVT::i64, Custom);
1708     setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
1709 
1710     setOperationAction(ISD::CTPOP, MVT::i64,
1711                        Subtarget->usePopc() ? Legal : Expand);
1712     setOperationAction(ISD::CTTZ , MVT::i64, Expand);
1713     setOperationAction(ISD::CTLZ , MVT::i64, Expand);
1714     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1715     setOperationAction(ISD::ROTL , MVT::i64, Expand);
1716     setOperationAction(ISD::ROTR , MVT::i64, Expand);
1717     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
1718   }
1719 
1720   // ATOMICs.
1721   // Atomics are supported on SparcV9. 32-bit atomics are also
1722   // supported by some Leon SparcV8 variants. Otherwise, atomics
1723   // are unsupported.
1724   if (Subtarget->isV9())
1725     setMaxAtomicSizeInBitsSupported(64);
1726   else if (Subtarget->hasLeonCasa())
1727     setMaxAtomicSizeInBitsSupported(32);
1728   else
1729     setMaxAtomicSizeInBitsSupported(0);
1730 
1731   setMinCmpXchgSizeInBits(32);
1732 
1733   setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
1734 
1735   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
1736 
1737   // Custom Lower Atomic LOAD/STORE
1738   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1739   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1740 
1741   if (Subtarget->is64Bit()) {
1742     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
1743     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
1744     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
1745     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
1746   }
1747 
1748   if (!Subtarget->is64Bit()) {
1749     // These libcalls are not available in 32-bit.
1750     setLibcallName(RTLIB::MULO_I64, nullptr);
1751     setLibcallName(RTLIB::SHL_I128, nullptr);
1752     setLibcallName(RTLIB::SRL_I128, nullptr);
1753     setLibcallName(RTLIB::SRA_I128, nullptr);
1754   }
1755 
1756   setLibcallName(RTLIB::MULO_I128, nullptr);
1757 
1758   if (!Subtarget->isV9()) {
1759     // SparcV8 does not have FNEGD and FABSD.
1760     setOperationAction(ISD::FNEG, MVT::f64, Custom);
1761     setOperationAction(ISD::FABS, MVT::f64, Custom);
1762   }
1763 
1764   setOperationAction(ISD::FSIN , MVT::f128, Expand);
1765   setOperationAction(ISD::FCOS , MVT::f128, Expand);
1766   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
1767   setOperationAction(ISD::FREM , MVT::f128, Expand);
1768   setOperationAction(ISD::FMA  , MVT::f128, Expand);
1769   setOperationAction(ISD::FSIN , MVT::f64, Expand);
1770   setOperationAction(ISD::FCOS , MVT::f64, Expand);
1771   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1772   setOperationAction(ISD::FREM , MVT::f64, Expand);
1773   setOperationAction(ISD::FMA  , MVT::f64, Expand);
1774   setOperationAction(ISD::FSIN , MVT::f32, Expand);
1775   setOperationAction(ISD::FCOS , MVT::f32, Expand);
1776   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1777   setOperationAction(ISD::FREM , MVT::f32, Expand);
1778   setOperationAction(ISD::FMA  , MVT::f32, Expand);
1779   setOperationAction(ISD::CTTZ , MVT::i32, Expand);
1780   setOperationAction(ISD::CTLZ , MVT::i32, Expand);
1781   setOperationAction(ISD::ROTL , MVT::i32, Expand);
1782   setOperationAction(ISD::ROTR , MVT::i32, Expand);
1783   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1784   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1785   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1786   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1787   setOperationAction(ISD::FPOW , MVT::f128, Expand);
1788   setOperationAction(ISD::FPOW , MVT::f64, Expand);
1789   setOperationAction(ISD::FPOW , MVT::f32, Expand);
1790 
1791   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1792   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1793   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1794 
1795   // Expands to [SU]MUL_LOHI.
1796   setOperationAction(ISD::MULHU,     MVT::i32, Expand);
1797   setOperationAction(ISD::MULHS,     MVT::i32, Expand);
1798   setOperationAction(ISD::MUL,       MVT::i32, Expand);
1799 
1800   if (Subtarget->useSoftMulDiv()) {
1801     // .umul works for both signed and unsigned
1802     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1803     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1804     setLibcallName(RTLIB::MUL_I32, ".umul");
1805 
1806     setOperationAction(ISD::SDIV, MVT::i32, Expand);
1807     setLibcallName(RTLIB::SDIV_I32, ".div");
1808 
1809     setOperationAction(ISD::UDIV, MVT::i32, Expand);
1810     setLibcallName(RTLIB::UDIV_I32, ".udiv");
1811 
1812     setLibcallName(RTLIB::SREM_I32, ".rem");
1813     setLibcallName(RTLIB::UREM_I32, ".urem");
1814   }
1815 
1816   if (Subtarget->is64Bit()) {
1817     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1818     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1819     setOperationAction(ISD::MULHU,     MVT::i64, Expand);
1820     setOperationAction(ISD::MULHS,     MVT::i64, Expand);
1821 
1822     setOperationAction(ISD::UMULO,     MVT::i64, Custom);
1823     setOperationAction(ISD::SMULO,     MVT::i64, Custom);
1824 
1825     setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
1826     setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
1827     setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
1828   }
1829 
1830   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1831   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
1832   // VAARG needs to be lowered to not do unaligned accesses for doubles.
1833   setOperationAction(ISD::VAARG             , MVT::Other, Custom);
1834 
1835   setOperationAction(ISD::TRAP              , MVT::Other, Legal);
1836   setOperationAction(ISD::DEBUGTRAP         , MVT::Other, Legal);
1837 
1838   // Use the default implementation.
1839   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
1840   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
1841   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
1842   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
1843   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
1844 
1845   setStackPointerRegisterToSaveRestore(SP::O6);
1846 
1847   setOperationAction(ISD::CTPOP, MVT::i32,
1848                      Subtarget->usePopc() ? Legal : Expand);
1849 
1850   if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
1851     setOperationAction(ISD::LOAD, MVT::f128, Legal);
1852     setOperationAction(ISD::STORE, MVT::f128, Legal);
1853   } else {
1854     setOperationAction(ISD::LOAD, MVT::f128, Custom);
1855     setOperationAction(ISD::STORE, MVT::f128, Custom);
1856   }
1857 
1858   if (Subtarget->hasHardQuad()) {
1859     setOperationAction(ISD::FADD,  MVT::f128, Legal);
1860     setOperationAction(ISD::FSUB,  MVT::f128, Legal);
1861     setOperationAction(ISD::FMUL,  MVT::f128, Legal);
1862     setOperationAction(ISD::FDIV,  MVT::f128, Legal);
1863     setOperationAction(ISD::FSQRT, MVT::f128, Legal);
1864     setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1865     setOperationAction(ISD::FP_ROUND,  MVT::f64, Legal);
1866     if (Subtarget->isV9()) {
1867       setOperationAction(ISD::FNEG, MVT::f128, Legal);
1868       setOperationAction(ISD::FABS, MVT::f128, Legal);
1869     } else {
1870       setOperationAction(ISD::FNEG, MVT::f128, Custom);
1871       setOperationAction(ISD::FABS, MVT::f128, Custom);
1872     }
1873 
1874     if (!Subtarget->is64Bit()) {
1875       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1876       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1877       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1878       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1879     }
1880 
1881   } else {
1882     // Custom legalize f128 operations.
1883 
1884     setOperationAction(ISD::FADD,  MVT::f128, Custom);
1885     setOperationAction(ISD::FSUB,  MVT::f128, Custom);
1886     setOperationAction(ISD::FMUL,  MVT::f128, Custom);
1887     setOperationAction(ISD::FDIV,  MVT::f128, Custom);
1888     setOperationAction(ISD::FSQRT, MVT::f128, Custom);
1889     setOperationAction(ISD::FNEG,  MVT::f128, Custom);
1890     setOperationAction(ISD::FABS,  MVT::f128, Custom);
1891 
1892     setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
1893     setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
1894     setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
1895 
1896     // Setup Runtime library names.
1897     if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) {
1898       setLibcallName(RTLIB::ADD_F128,  "_Qp_add");
1899       setLibcallName(RTLIB::SUB_F128,  "_Qp_sub");
1900       setLibcallName(RTLIB::MUL_F128,  "_Qp_mul");
1901       setLibcallName(RTLIB::DIV_F128,  "_Qp_div");
1902       setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
1903       setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
1904       setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
1905       setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
1906       setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
1907       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
1908       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
1909       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
1910       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
1911       setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
1912       setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
1913       setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
1914       setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
1915     } else if (!Subtarget->useSoftFloat()) {
1916       setLibcallName(RTLIB::ADD_F128,  "_Q_add");
1917       setLibcallName(RTLIB::SUB_F128,  "_Q_sub");
1918       setLibcallName(RTLIB::MUL_F128,  "_Q_mul");
1919       setLibcallName(RTLIB::DIV_F128,  "_Q_div");
1920       setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
1921       setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
1922       setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
1923       setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
1924       setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
1925       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1926       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1927       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1928       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1929       setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
1930       setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
1931       setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
1932       setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
1933     }
1934   }
1935 
1936   if (Subtarget->fixAllFDIVSQRT()) {
1937     // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as
1938     // the former instructions generate errata on LEON processors.
1939     setOperationAction(ISD::FDIV, MVT::f32, Promote);
1940     setOperationAction(ISD::FSQRT, MVT::f32, Promote);
1941   }
1942 
1943   if (Subtarget->hasNoFMULS()) {
1944     setOperationAction(ISD::FMUL, MVT::f32, Promote);
1945   }
1946 
1947   // Custom combine bitcast between f64 and v2i32
1948   if (!Subtarget->is64Bit())
1949     setTargetDAGCombine(ISD::BITCAST);
1950 
1951   if (Subtarget->hasLeonCycleCounter())
1952     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1953 
1954   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1955 
1956   setMinFunctionAlignment(Align(4));
1957 
1958   computeRegisterProperties(Subtarget->getRegisterInfo());
1959 }
1960 
1961 bool SparcTargetLowering::useSoftFloat() const {
1962   return Subtarget->useSoftFloat();
1963 }
1964 
1965 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
1966   switch ((SPISD::NodeType)Opcode) {
1967   case SPISD::FIRST_NUMBER:    break;
1968   case SPISD::CMPICC:          return "SPISD::CMPICC";
1969   case SPISD::CMPFCC:          return "SPISD::CMPFCC";
1970   case SPISD::CMPFCC_V9:
1971     return "SPISD::CMPFCC_V9";
1972   case SPISD::BRICC:           return "SPISD::BRICC";
1973   case SPISD::BPICC:
1974     return "SPISD::BPICC";
1975   case SPISD::BPXCC:
1976     return "SPISD::BPXCC";
1977   case SPISD::BRFCC:           return "SPISD::BRFCC";
1978   case SPISD::BRFCC_V9:
1979     return "SPISD::BRFCC_V9";
1980   case SPISD::SELECT_ICC:      return "SPISD::SELECT_ICC";
1981   case SPISD::SELECT_XCC:      return "SPISD::SELECT_XCC";
1982   case SPISD::SELECT_FCC:      return "SPISD::SELECT_FCC";
1983   case SPISD::SELECT_REG:
1984     return "SPISD::SELECT_REG";
1985   case SPISD::Hi:              return "SPISD::Hi";
1986   case SPISD::Lo:              return "SPISD::Lo";
1987   case SPISD::FTOI:            return "SPISD::FTOI";
1988   case SPISD::ITOF:            return "SPISD::ITOF";
1989   case SPISD::FTOX:            return "SPISD::FTOX";
1990   case SPISD::XTOF:            return "SPISD::XTOF";
1991   case SPISD::CALL:            return "SPISD::CALL";
1992   case SPISD::RET_FLAG:        return "SPISD::RET_FLAG";
1993   case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
1994   case SPISD::FLUSHW:          return "SPISD::FLUSHW";
1995   case SPISD::TLS_ADD:         return "SPISD::TLS_ADD";
1996   case SPISD::TLS_LD:          return "SPISD::TLS_LD";
1997   case SPISD::TLS_CALL:        return "SPISD::TLS_CALL";
1998   case SPISD::TAIL_CALL:       return "SPISD::TAIL_CALL";
1999   case SPISD::LOAD_GDOP:       return "SPISD::LOAD_GDOP";
2000   }
2001   return nullptr;
2002 }
2003 
2004 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
2005                                             EVT VT) const {
2006   if (!VT.isVector())
2007     return MVT::i32;
2008   return VT.changeVectorElementTypeToInteger();
2009 }
2010 
2011 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
2012 /// be zero. Op is expected to be a target specific node. Used by DAG
2013 /// combiner.
2014 void SparcTargetLowering::computeKnownBitsForTargetNode
2015                                 (const SDValue Op,
2016                                  KnownBits &Known,
2017                                  const APInt &DemandedElts,
2018                                  const SelectionDAG &DAG,
2019                                  unsigned Depth) const {
2020   KnownBits Known2;
2021   Known.resetAll();
2022 
2023   switch (Op.getOpcode()) {
2024   default: break;
2025   case SPISD::SELECT_ICC:
2026   case SPISD::SELECT_XCC:
2027   case SPISD::SELECT_FCC:
2028     Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
2029     Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
2030 
2031     // Only known if known in both the LHS and RHS.
2032     Known = KnownBits::commonBits(Known, Known2);
2033     break;
2034   }
2035 }
2036 
2037 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction.  If so
2038 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
2039 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
2040                              ISD::CondCode CC, unsigned &SPCC) {
2041   if (isNullConstant(RHS) && CC == ISD::SETNE &&
2042       (((LHS.getOpcode() == SPISD::SELECT_ICC ||
2043          LHS.getOpcode() == SPISD::SELECT_XCC) &&
2044         LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
2045        (LHS.getOpcode() == SPISD::SELECT_FCC &&
2046         (LHS.getOperand(3).getOpcode() == SPISD::CMPFCC ||
2047          LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) &&
2048       isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) {
2049     SDValue CMPCC = LHS.getOperand(3);
2050     SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
2051     LHS = CMPCC.getOperand(0);
2052     RHS = CMPCC.getOperand(1);
2053   }
2054 }
2055 
2056 // Convert to a target node and set target flags.
2057 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
2058                                              SelectionDAG &DAG) const {
2059   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
2060     return DAG.getTargetGlobalAddress(GA->getGlobal(),
2061                                       SDLoc(GA),
2062                                       GA->getValueType(0),
2063                                       GA->getOffset(), TF);
2064 
2065   if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
2066     return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
2067                                      CP->getAlign(), CP->getOffset(), TF);
2068 
2069   if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
2070     return DAG.getTargetBlockAddress(BA->getBlockAddress(),
2071                                      Op.getValueType(),
2072                                      0,
2073                                      TF);
2074 
2075   if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
2076     return DAG.getTargetExternalSymbol(ES->getSymbol(),
2077                                        ES->getValueType(0), TF);
2078 
2079   llvm_unreachable("Unhandled address SDNode");
2080 }
2081 
2082 // Split Op into high and low parts according to HiTF and LoTF.
2083 // Return an ADD node combining the parts.
2084 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
2085                                           unsigned HiTF, unsigned LoTF,
2086                                           SelectionDAG &DAG) const {
2087   SDLoc DL(Op);
2088   EVT VT = Op.getValueType();
2089   SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
2090   SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
2091   return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
2092 }
2093 
2094 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
2095 // or ExternalSymbol SDNode.
2096 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
2097   SDLoc DL(Op);
2098   EVT VT = getPointerTy(DAG.getDataLayout());
2099 
2100   // Handle PIC mode first. SPARC needs a got load for every variable!
2101   if (isPositionIndependent()) {
2102     const Module *M = DAG.getMachineFunction().getFunction().getParent();
2103     PICLevel::Level picLevel = M->getPICLevel();
2104     SDValue Idx;
2105 
2106     if (picLevel == PICLevel::SmallPIC) {
2107       // This is the pic13 code model, the GOT is known to be smaller than 8KiB.
2108       Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(),
2109                         withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG));
2110     } else {
2111       // This is the pic32 code model, the GOT is known to be smaller than 4GB.
2112       Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
2113                          SparcMCExpr::VK_Sparc_GOT10, DAG);
2114     }
2115 
2116     SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
2117     SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx);
2118     // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2119     // function has calls.
2120     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2121     MFI.setHasCalls(true);
2122     return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
2123                        MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2124   }
2125 
2126   // This is one of the absolute code models.
2127   switch(getTargetMachine().getCodeModel()) {
2128   default:
2129     llvm_unreachable("Unsupported absolute code model");
2130   case CodeModel::Small:
2131     // abs32.
2132     return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2133                         SparcMCExpr::VK_Sparc_LO, DAG);
2134   case CodeModel::Medium: {
2135     // abs44.
2136     SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
2137                                SparcMCExpr::VK_Sparc_M44, DAG);
2138     H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32));
2139     SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
2140     L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
2141     return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
2142   }
2143   case CodeModel::Large: {
2144     // abs64.
2145     SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
2146                               SparcMCExpr::VK_Sparc_HM, DAG);
2147     Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32));
2148     SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2149                               SparcMCExpr::VK_Sparc_LO, DAG);
2150     return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
2151   }
2152   }
2153 }
2154 
2155 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
2156                                                 SelectionDAG &DAG) const {
2157   return makeAddress(Op, DAG);
2158 }
2159 
2160 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
2161                                                SelectionDAG &DAG) const {
2162   return makeAddress(Op, DAG);
2163 }
2164 
2165 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
2166                                                SelectionDAG &DAG) const {
2167   return makeAddress(Op, DAG);
2168 }
2169 
2170 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2171                                                    SelectionDAG &DAG) const {
2172 
2173   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2174   if (DAG.getTarget().useEmulatedTLS())
2175     return LowerToTLSEmulatedModel(GA, DAG);
2176 
2177   SDLoc DL(GA);
2178   const GlobalValue *GV = GA->getGlobal();
2179   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2180 
2181   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2182 
2183   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2184     unsigned HiTF = ((model == TLSModel::GeneralDynamic)
2185                      ? SparcMCExpr::VK_Sparc_TLS_GD_HI22
2186                      : SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
2187     unsigned LoTF = ((model == TLSModel::GeneralDynamic)
2188                      ? SparcMCExpr::VK_Sparc_TLS_GD_LO10
2189                      : SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
2190     unsigned addTF = ((model == TLSModel::GeneralDynamic)
2191                       ? SparcMCExpr::VK_Sparc_TLS_GD_ADD
2192                       : SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
2193     unsigned callTF = ((model == TLSModel::GeneralDynamic)
2194                        ? SparcMCExpr::VK_Sparc_TLS_GD_CALL
2195                        : SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
2196 
2197     SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
2198     SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2199     SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
2200                                withTargetFlags(Op, addTF, DAG));
2201 
2202     SDValue Chain = DAG.getEntryNode();
2203     SDValue InFlag;
2204 
2205     Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL);
2206     Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag);
2207     InFlag = Chain.getValue(1);
2208     SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
2209     SDValue Symbol = withTargetFlags(Op, callTF, DAG);
2210 
2211     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2212     const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
2213         DAG.getMachineFunction(), CallingConv::C);
2214     assert(Mask && "Missing call preserved mask for calling convention");
2215     SDValue Ops[] = {Chain,
2216                      Callee,
2217                      Symbol,
2218                      DAG.getRegister(SP::O0, PtrVT),
2219                      DAG.getRegisterMask(Mask),
2220                      InFlag};
2221     Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
2222     InFlag = Chain.getValue(1);
2223     Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InFlag, DL);
2224     InFlag = Chain.getValue(1);
2225     SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag);
2226 
2227     if (model != TLSModel::LocalDynamic)
2228       return Ret;
2229 
2230     SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2231                  withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
2232     SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2233                  withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
2234     HiLo =  DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2235     return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
2236                    withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
2237   }
2238 
2239   if (model == TLSModel::InitialExec) {
2240     unsigned ldTF     = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
2241                          : SparcMCExpr::VK_Sparc_TLS_IE_LD);
2242 
2243     SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2244 
2245     // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2246     // function has calls.
2247     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2248     MFI.setHasCalls(true);
2249 
2250     SDValue TGA = makeHiLoPair(Op,
2251                                SparcMCExpr::VK_Sparc_TLS_IE_HI22,
2252                                SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
2253     SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
2254     SDValue Offset = DAG.getNode(SPISD::TLS_LD,
2255                                  DL, PtrVT, Ptr,
2256                                  withTargetFlags(Op, ldTF, DAG));
2257     return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
2258                        DAG.getRegister(SP::G7, PtrVT), Offset,
2259                        withTargetFlags(Op,
2260                                        SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
2261   }
2262 
2263   assert(model == TLSModel::LocalExec);
2264   SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2265                   withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
2266   SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2267                   withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
2268   SDValue Offset =  DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2269 
2270   return DAG.getNode(ISD::ADD, DL, PtrVT,
2271                      DAG.getRegister(SP::G7, PtrVT), Offset);
2272 }
2273 
2274 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain,
2275                                                   ArgListTy &Args, SDValue Arg,
2276                                                   const SDLoc &DL,
2277                                                   SelectionDAG &DAG) const {
2278   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2279   EVT ArgVT = Arg.getValueType();
2280   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2281 
2282   ArgListEntry Entry;
2283   Entry.Node = Arg;
2284   Entry.Ty   = ArgTy;
2285 
2286   if (ArgTy->isFP128Ty()) {
2287     // Create a stack object and pass the pointer to the library function.
2288     int FI = MFI.CreateStackObject(16, Align(8), false);
2289     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2290     Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(),
2291                          Align(8));
2292 
2293     Entry.Node = FIPtr;
2294     Entry.Ty   = PointerType::getUnqual(ArgTy);
2295   }
2296   Args.push_back(Entry);
2297   return Chain;
2298 }
2299 
2300 SDValue
2301 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
2302                                  const char *LibFuncName,
2303                                  unsigned numArgs) const {
2304 
2305   ArgListTy Args;
2306 
2307   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2308   auto PtrVT = getPointerTy(DAG.getDataLayout());
2309 
2310   SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT);
2311   Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2312   Type *RetTyABI = RetTy;
2313   SDValue Chain = DAG.getEntryNode();
2314   SDValue RetPtr;
2315 
2316   if (RetTy->isFP128Ty()) {
2317     // Create a Stack Object to receive the return value of type f128.
2318     ArgListEntry Entry;
2319     int RetFI = MFI.CreateStackObject(16, Align(8), false);
2320     RetPtr = DAG.getFrameIndex(RetFI, PtrVT);
2321     Entry.Node = RetPtr;
2322     Entry.Ty   = PointerType::getUnqual(RetTy);
2323     if (!Subtarget->is64Bit()) {
2324       Entry.IsSRet = true;
2325       Entry.IndirectType = RetTy;
2326     }
2327     Entry.IsReturned = false;
2328     Args.push_back(Entry);
2329     RetTyABI = Type::getVoidTy(*DAG.getContext());
2330   }
2331 
2332   assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
2333   for (unsigned i = 0, e = numArgs; i != e; ++i) {
2334     Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
2335   }
2336   TargetLowering::CallLoweringInfo CLI(DAG);
2337   CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
2338     .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args));
2339 
2340   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2341 
2342   // chain is in second result.
2343   if (RetTyABI == RetTy)
2344     return CallInfo.first;
2345 
2346   assert (RetTy->isFP128Ty() && "Unexpected return type!");
2347 
2348   Chain = CallInfo.second;
2349 
2350   // Load RetPtr to get the return value.
2351   return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr,
2352                      MachinePointerInfo(), Align(8));
2353 }
2354 
2355 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
2356                                               unsigned &SPCC, const SDLoc &DL,
2357                                               SelectionDAG &DAG) const {
2358 
2359   const char *LibCall = nullptr;
2360   bool is64Bit = Subtarget->is64Bit();
2361   switch(SPCC) {
2362   default: llvm_unreachable("Unhandled conditional code!");
2363   case SPCC::FCC_E  : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
2364   case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
2365   case SPCC::FCC_L  : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
2366   case SPCC::FCC_G  : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
2367   case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
2368   case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
2369   case SPCC::FCC_UL :
2370   case SPCC::FCC_ULE:
2371   case SPCC::FCC_UG :
2372   case SPCC::FCC_UGE:
2373   case SPCC::FCC_U  :
2374   case SPCC::FCC_O  :
2375   case SPCC::FCC_LG :
2376   case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
2377   }
2378 
2379   auto PtrVT = getPointerTy(DAG.getDataLayout());
2380   SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT);
2381   Type *RetTy = Type::getInt32Ty(*DAG.getContext());
2382   ArgListTy Args;
2383   SDValue Chain = DAG.getEntryNode();
2384   Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
2385   Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
2386 
2387   TargetLowering::CallLoweringInfo CLI(DAG);
2388   CLI.setDebugLoc(DL).setChain(Chain)
2389     .setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
2390 
2391   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2392 
2393   // result is in first, and chain is in second result.
2394   SDValue Result =  CallInfo.first;
2395 
2396   switch(SPCC) {
2397   default: {
2398     SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2399     SPCC = SPCC::ICC_NE;
2400     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2401   }
2402   case SPCC::FCC_UL : {
2403     SDValue Mask   = DAG.getConstant(1, DL, Result.getValueType());
2404     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2405     SDValue RHS    = DAG.getConstant(0, DL, Result.getValueType());
2406     SPCC = SPCC::ICC_NE;
2407     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2408   }
2409   case SPCC::FCC_ULE: {
2410     SDValue RHS = DAG.getConstant(2, DL, Result.getValueType());
2411     SPCC = SPCC::ICC_NE;
2412     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2413   }
2414   case SPCC::FCC_UG :  {
2415     SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
2416     SPCC = SPCC::ICC_G;
2417     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2418   }
2419   case SPCC::FCC_UGE: {
2420     SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
2421     SPCC = SPCC::ICC_NE;
2422     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2423   }
2424 
2425   case SPCC::FCC_U  :  {
2426     SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
2427     SPCC = SPCC::ICC_E;
2428     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2429   }
2430   case SPCC::FCC_O  :  {
2431     SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
2432     SPCC = SPCC::ICC_NE;
2433     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2434   }
2435   case SPCC::FCC_LG :  {
2436     SDValue Mask   = DAG.getConstant(3, DL, Result.getValueType());
2437     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2438     SDValue RHS    = DAG.getConstant(0, DL, Result.getValueType());
2439     SPCC = SPCC::ICC_NE;
2440     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2441   }
2442   case SPCC::FCC_UE : {
2443     SDValue Mask   = DAG.getConstant(3, DL, Result.getValueType());
2444     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2445     SDValue RHS    = DAG.getConstant(0, DL, Result.getValueType());
2446     SPCC = SPCC::ICC_E;
2447     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2448   }
2449   }
2450 }
2451 
2452 static SDValue
2453 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
2454                    const SparcTargetLowering &TLI) {
2455 
2456   if (Op.getOperand(0).getValueType() == MVT::f64)
2457     return TLI.LowerF128Op(Op, DAG,
2458                            TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
2459 
2460   if (Op.getOperand(0).getValueType() == MVT::f32)
2461     return TLI.LowerF128Op(Op, DAG,
2462                            TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
2463 
2464   llvm_unreachable("fpextend with non-float operand!");
2465   return SDValue();
2466 }
2467 
2468 static SDValue
2469 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
2470                   const SparcTargetLowering &TLI) {
2471   // FP_ROUND on f64 and f32 are legal.
2472   if (Op.getOperand(0).getValueType() != MVT::f128)
2473     return Op;
2474 
2475   if (Op.getValueType() == MVT::f64)
2476     return TLI.LowerF128Op(Op, DAG,
2477                            TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
2478   if (Op.getValueType() == MVT::f32)
2479     return TLI.LowerF128Op(Op, DAG,
2480                            TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
2481 
2482   llvm_unreachable("fpround to non-float!");
2483   return SDValue();
2484 }
2485 
2486 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
2487                                const SparcTargetLowering &TLI,
2488                                bool hasHardQuad) {
2489   SDLoc dl(Op);
2490   EVT VT = Op.getValueType();
2491   assert(VT == MVT::i32 || VT == MVT::i64);
2492 
2493   // Expand f128 operations to fp128 abi calls.
2494   if (Op.getOperand(0).getValueType() == MVT::f128
2495       && (!hasHardQuad || !TLI.isTypeLegal(VT))) {
2496     const char *libName = TLI.getLibcallName(VT == MVT::i32
2497                                              ? RTLIB::FPTOSINT_F128_I32
2498                                              : RTLIB::FPTOSINT_F128_I64);
2499     return TLI.LowerF128Op(Op, DAG, libName, 1);
2500   }
2501 
2502   // Expand if the resulting type is illegal.
2503   if (!TLI.isTypeLegal(VT))
2504     return SDValue();
2505 
2506   // Otherwise, Convert the fp value to integer in an FP register.
2507   if (VT == MVT::i32)
2508     Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
2509   else
2510     Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
2511 
2512   return DAG.getNode(ISD::BITCAST, dl, VT, Op);
2513 }
2514 
2515 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2516                                const SparcTargetLowering &TLI,
2517                                bool hasHardQuad) {
2518   SDLoc dl(Op);
2519   EVT OpVT = Op.getOperand(0).getValueType();
2520   assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
2521 
2522   EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
2523 
2524   // Expand f128 operations to fp128 ABI calls.
2525   if (Op.getValueType() == MVT::f128
2526       && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
2527     const char *libName = TLI.getLibcallName(OpVT == MVT::i32
2528                                              ? RTLIB::SINTTOFP_I32_F128
2529                                              : RTLIB::SINTTOFP_I64_F128);
2530     return TLI.LowerF128Op(Op, DAG, libName, 1);
2531   }
2532 
2533   // Expand if the operand type is illegal.
2534   if (!TLI.isTypeLegal(OpVT))
2535     return SDValue();
2536 
2537   // Otherwise, Convert the int value to FP in an FP register.
2538   SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
2539   unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
2540   return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
2541 }
2542 
2543 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
2544                                const SparcTargetLowering &TLI,
2545                                bool hasHardQuad) {
2546   SDLoc dl(Op);
2547   EVT VT = Op.getValueType();
2548 
2549   // Expand if it does not involve f128 or the target has support for
2550   // quad floating point instructions and the resulting type is legal.
2551   if (Op.getOperand(0).getValueType() != MVT::f128 ||
2552       (hasHardQuad && TLI.isTypeLegal(VT)))
2553     return SDValue();
2554 
2555   assert(VT == MVT::i32 || VT == MVT::i64);
2556 
2557   return TLI.LowerF128Op(Op, DAG,
2558                          TLI.getLibcallName(VT == MVT::i32
2559                                             ? RTLIB::FPTOUINT_F128_I32
2560                                             : RTLIB::FPTOUINT_F128_I64),
2561                          1);
2562 }
2563 
2564 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2565                                const SparcTargetLowering &TLI,
2566                                bool hasHardQuad) {
2567   SDLoc dl(Op);
2568   EVT OpVT = Op.getOperand(0).getValueType();
2569   assert(OpVT == MVT::i32 || OpVT == MVT::i64);
2570 
2571   // Expand if it does not involve f128 or the target has support for
2572   // quad floating point instructions and the operand type is legal.
2573   if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
2574     return SDValue();
2575 
2576   return TLI.LowerF128Op(Op, DAG,
2577                          TLI.getLibcallName(OpVT == MVT::i32
2578                                             ? RTLIB::UINTTOFP_I32_F128
2579                                             : RTLIB::UINTTOFP_I64_F128),
2580                          1);
2581 }
2582 
2583 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
2584                           const SparcTargetLowering &TLI, bool hasHardQuad,
2585                           bool isV9) {
2586   SDValue Chain = Op.getOperand(0);
2587   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2588   SDValue LHS = Op.getOperand(2);
2589   SDValue RHS = Op.getOperand(3);
2590   SDValue Dest = Op.getOperand(4);
2591   SDLoc dl(Op);
2592   unsigned Opc, SPCC = ~0U;
2593 
2594   // If this is a br_cc of a "setcc", and if the setcc got lowered into
2595   // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2596   LookThroughSetCC(LHS, RHS, CC, SPCC);
2597   assert(LHS.getValueType() == RHS.getValueType());
2598 
2599   // Get the condition flag.
2600   SDValue CompareFlag;
2601   if (LHS.getValueType().isInteger()) {
2602     CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2603     if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2604     if (isV9)
2605       // 32-bit compares use the icc flags, 64-bit uses the xcc flags.
2606       Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC;
2607     else
2608       // Non-v9 targets don't have xcc.
2609       Opc = SPISD::BRICC;
2610   } else {
2611     if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2612       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2613       CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2614       Opc = isV9 ? SPISD::BPICC : SPISD::BRICC;
2615     } else {
2616       unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC;
2617       CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS);
2618       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2619       Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC;
2620     }
2621   }
2622   return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
2623                      DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2624 }
2625 
2626 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
2627                               const SparcTargetLowering &TLI, bool hasHardQuad,
2628                               bool isV9, bool is64Bit) {
2629   SDValue LHS = Op.getOperand(0);
2630   SDValue RHS = Op.getOperand(1);
2631   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2632   SDValue TrueVal = Op.getOperand(2);
2633   SDValue FalseVal = Op.getOperand(3);
2634   SDLoc dl(Op);
2635   unsigned Opc, SPCC = ~0U;
2636 
2637   // If this is a select_cc of a "setcc", and if the setcc got lowered into
2638   // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2639   LookThroughSetCC(LHS, RHS, CC, SPCC);
2640   assert(LHS.getValueType() == RHS.getValueType());
2641 
2642   SDValue CompareFlag;
2643   if (LHS.getValueType().isInteger()) {
2644     // On V9 processors running in 64-bit mode, if CC compares two `i64`s
2645     // and the RHS is zero we might be able to use a specialized select.
2646     // All SELECT_CC between any two scalar integer types are eligible for
2647     // lowering to specialized instructions. Additionally, f32 and f64 types
2648     // are also eligible, but for f128 we can only use the specialized
2649     // instruction when we have hardquad.
2650     EVT ValType = TrueVal.getValueType();
2651     bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 ||
2652                           ValType == MVT::f64 ||
2653                           (ValType == MVT::f128 && hasHardQuad);
2654     if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 &&
2655         isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType)
2656       return DAG.getNode(
2657           SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2658           DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS);
2659 
2660     CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2661     Opc = LHS.getValueType() == MVT::i32 ?
2662           SPISD::SELECT_ICC : SPISD::SELECT_XCC;
2663     if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2664   } else {
2665     if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2666       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2667       CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2668       Opc = SPISD::SELECT_ICC;
2669     } else {
2670       unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC;
2671       CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS);
2672       Opc = SPISD::SELECT_FCC;
2673       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2674     }
2675   }
2676   return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2677                      DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2678 }
2679 
2680 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
2681                             const SparcTargetLowering &TLI) {
2682   MachineFunction &MF = DAG.getMachineFunction();
2683   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
2684   auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2685 
2686   // Need frame address to find the address of VarArgsFrameIndex.
2687   MF.getFrameInfo().setFrameAddressIsTaken(true);
2688 
2689   // vastart just stores the address of the VarArgsFrameIndex slot into the
2690   // memory location argument.
2691   SDLoc DL(Op);
2692   SDValue Offset =
2693       DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT),
2694                   DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
2695   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2696   return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
2697                       MachinePointerInfo(SV));
2698 }
2699 
2700 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
2701   SDNode *Node = Op.getNode();
2702   EVT VT = Node->getValueType(0);
2703   SDValue InChain = Node->getOperand(0);
2704   SDValue VAListPtr = Node->getOperand(1);
2705   EVT PtrVT = VAListPtr.getValueType();
2706   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2707   SDLoc DL(Node);
2708   SDValue VAList =
2709       DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
2710   // Increment the pointer, VAList, to the next vaarg.
2711   SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
2712                                 DAG.getIntPtrConstant(VT.getSizeInBits()/8,
2713                                                       DL));
2714   // Store the incremented VAList to the legalized pointer.
2715   InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr,
2716                          MachinePointerInfo(SV));
2717   // Load the actual argument out of the pointer VAList.
2718   // We can't count on greater alignment than the word size.
2719   return DAG.getLoad(
2720       VT, DL, InChain, VAList, MachinePointerInfo(),
2721       Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8));
2722 }
2723 
2724 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
2725                                        const SparcSubtarget *Subtarget) {
2726   SDValue Chain = Op.getOperand(0);  // Legalize the chain.
2727   SDValue Size  = Op.getOperand(1);  // Legalize the size.
2728   MaybeAlign Alignment =
2729       cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
2730   Align StackAlign = Subtarget->getFrameLowering()->getStackAlign();
2731   EVT VT = Size->getValueType(0);
2732   SDLoc dl(Op);
2733 
2734   // TODO: implement over-aligned alloca. (Note: also implies
2735   // supporting support for overaligned function frames + dynamic
2736   // allocations, at all, which currently isn't supported)
2737   if (Alignment && *Alignment > StackAlign) {
2738     const MachineFunction &MF = DAG.getMachineFunction();
2739     report_fatal_error("Function \"" + Twine(MF.getName()) + "\": "
2740                        "over-aligned dynamic alloca not supported.");
2741   }
2742 
2743   // The resultant pointer needs to be above the register spill area
2744   // at the bottom of the stack.
2745   unsigned regSpillArea;
2746   if (Subtarget->is64Bit()) {
2747     regSpillArea = 128;
2748   } else {
2749     // On Sparc32, the size of the spill area is 92. Unfortunately,
2750     // that's only 4-byte aligned, not 8-byte aligned (the stack
2751     // pointer is 8-byte aligned). So, if the user asked for an 8-byte
2752     // aligned dynamic allocation, we actually need to add 96 to the
2753     // bottom of the stack, instead of 92, to ensure 8-byte alignment.
2754 
2755     // That also means adding 4 to the size of the allocation --
2756     // before applying the 8-byte rounding. Unfortunately, we the
2757     // value we get here has already had rounding applied. So, we need
2758     // to add 8, instead, wasting a bit more memory.
2759 
2760     // Further, this only actually needs to be done if the required
2761     // alignment is > 4, but, we've lost that info by this point, too,
2762     // so we always apply it.
2763 
2764     // (An alternative approach would be to always reserve 96 bytes
2765     // instead of the required 92, but then we'd waste 4 extra bytes
2766     // in every frame, not just those with dynamic stack allocations)
2767 
2768     // TODO: modify code in SelectionDAGBuilder to make this less sad.
2769 
2770     Size = DAG.getNode(ISD::ADD, dl, VT, Size,
2771                        DAG.getConstant(8, dl, VT));
2772     regSpillArea = 96;
2773   }
2774 
2775   unsigned SPReg = SP::O6;
2776   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
2777   SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
2778   Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP);    // Output chain
2779 
2780   regSpillArea += Subtarget->getStackPointerBias();
2781 
2782   SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
2783                                DAG.getConstant(regSpillArea, dl, VT));
2784   SDValue Ops[2] = { NewVal, Chain };
2785   return DAG.getMergeValues(Ops, dl);
2786 }
2787 
2788 
2789 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
2790   SDLoc dl(Op);
2791   SDValue Chain = DAG.getNode(SPISD::FLUSHW,
2792                               dl, MVT::Other, DAG.getEntryNode());
2793   return Chain;
2794 }
2795 
2796 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
2797                             const SparcSubtarget *Subtarget,
2798                             bool AlwaysFlush = false) {
2799   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2800   MFI.setFrameAddressIsTaken(true);
2801 
2802   EVT VT = Op.getValueType();
2803   SDLoc dl(Op);
2804   unsigned FrameReg = SP::I6;
2805   unsigned stackBias = Subtarget->getStackPointerBias();
2806 
2807   SDValue FrameAddr;
2808   SDValue Chain;
2809 
2810   // flush first to make sure the windowed registers' values are in stack
2811   Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode();
2812 
2813   FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
2814 
2815   unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
2816 
2817   while (depth--) {
2818     SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2819                               DAG.getIntPtrConstant(Offset, dl));
2820     FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo());
2821   }
2822   if (Subtarget->is64Bit())
2823     FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2824                             DAG.getIntPtrConstant(stackBias, dl));
2825   return FrameAddr;
2826 }
2827 
2828 
2829 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
2830                               const SparcSubtarget *Subtarget) {
2831 
2832   uint64_t depth = Op.getConstantOperandVal(0);
2833 
2834   return getFRAMEADDR(depth, Op, DAG, Subtarget);
2835 
2836 }
2837 
2838 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
2839                                const SparcTargetLowering &TLI,
2840                                const SparcSubtarget *Subtarget) {
2841   MachineFunction &MF = DAG.getMachineFunction();
2842   MachineFrameInfo &MFI = MF.getFrameInfo();
2843   MFI.setReturnAddressIsTaken(true);
2844 
2845   if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
2846     return SDValue();
2847 
2848   EVT VT = Op.getValueType();
2849   SDLoc dl(Op);
2850   uint64_t depth = Op.getConstantOperandVal(0);
2851 
2852   SDValue RetAddr;
2853   if (depth == 0) {
2854     auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2855     Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT));
2856     RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
2857     return RetAddr;
2858   }
2859 
2860   // Need frame address to find return address of the caller.
2861   SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true);
2862 
2863   unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
2864   SDValue Ptr = DAG.getNode(ISD::ADD,
2865                             dl, VT,
2866                             FrameAddr,
2867                             DAG.getIntPtrConstant(Offset, dl));
2868   RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2869 
2870   return RetAddr;
2871 }
2872 
2873 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG,
2874                           unsigned opcode) {
2875   assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
2876   assert(opcode == ISD::FNEG || opcode == ISD::FABS);
2877 
2878   // Lower fneg/fabs on f64 to fneg/fabs on f32.
2879   // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
2880   // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
2881 
2882   // Note: in little-endian, the floating-point value is stored in the
2883   // registers are in the opposite order, so the subreg with the sign
2884   // bit is the highest-numbered (odd), rather than the
2885   // lowest-numbered (even).
2886 
2887   SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
2888                                             SrcReg64);
2889   SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
2890                                             SrcReg64);
2891 
2892   if (DAG.getDataLayout().isLittleEndian())
2893     Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32);
2894   else
2895     Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
2896 
2897   SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2898                                                 dl, MVT::f64), 0);
2899   DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
2900                                        DstReg64, Hi32);
2901   DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
2902                                        DstReg64, Lo32);
2903   return DstReg64;
2904 }
2905 
2906 // Lower a f128 load into two f64 loads.
2907 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
2908 {
2909   SDLoc dl(Op);
2910   LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2911   assert(LdNode->getOffset().isUndef() && "Unexpected node type");
2912 
2913   Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8);
2914 
2915   SDValue Hi64 =
2916       DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(),
2917                   LdNode->getPointerInfo(), Alignment);
2918   EVT addrVT = LdNode->getBasePtr().getValueType();
2919   SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2920                               LdNode->getBasePtr(),
2921                               DAG.getConstant(8, dl, addrVT));
2922   SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr,
2923                              LdNode->getPointerInfo().getWithOffset(8),
2924                              Alignment);
2925 
2926   SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2927   SDValue SubRegOdd  = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2928 
2929   SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2930                                        dl, MVT::f128);
2931   InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2932                                MVT::f128,
2933                                SDValue(InFP128, 0),
2934                                Hi64,
2935                                SubRegEven);
2936   InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2937                                MVT::f128,
2938                                SDValue(InFP128, 0),
2939                                Lo64,
2940                                SubRegOdd);
2941   SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
2942                            SDValue(Lo64.getNode(), 1) };
2943   SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2944   SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
2945   return DAG.getMergeValues(Ops, dl);
2946 }
2947 
2948 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG)
2949 {
2950   LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2951 
2952   EVT MemVT = LdNode->getMemoryVT();
2953   if (MemVT == MVT::f128)
2954     return LowerF128Load(Op, DAG);
2955 
2956   return Op;
2957 }
2958 
2959 // Lower a f128 store into two f64 stores.
2960 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
2961   SDLoc dl(Op);
2962   StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode());
2963   assert(StNode->getOffset().isUndef() && "Unexpected node type");
2964 
2965   SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2966   SDValue SubRegOdd  = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2967 
2968   SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
2969                                     dl,
2970                                     MVT::f64,
2971                                     StNode->getValue(),
2972                                     SubRegEven);
2973   SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
2974                                     dl,
2975                                     MVT::f64,
2976                                     StNode->getValue(),
2977                                     SubRegOdd);
2978 
2979   Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8);
2980 
2981   SDValue OutChains[2];
2982   OutChains[0] =
2983       DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0),
2984                    StNode->getBasePtr(), StNode->getPointerInfo(),
2985                    Alignment);
2986   EVT addrVT = StNode->getBasePtr().getValueType();
2987   SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2988                               StNode->getBasePtr(),
2989                               DAG.getConstant(8, dl, addrVT));
2990   OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr,
2991                               StNode->getPointerInfo().getWithOffset(8),
2992                               Alignment);
2993   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2994 }
2995 
2996 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG)
2997 {
2998   SDLoc dl(Op);
2999   StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
3000 
3001   EVT MemVT = St->getMemoryVT();
3002   if (MemVT == MVT::f128)
3003     return LowerF128Store(Op, DAG);
3004 
3005   if (MemVT == MVT::i64) {
3006     // Custom handling for i64 stores: turn it into a bitcast and a
3007     // v2i32 store.
3008     SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue());
3009     SDValue Chain = DAG.getStore(
3010         St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(),
3011         St->getOriginalAlign(), St->getMemOperand()->getFlags(),
3012         St->getAAInfo());
3013     return Chain;
3014   }
3015 
3016   return SDValue();
3017 }
3018 
3019 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
3020   assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
3021          && "invalid opcode");
3022 
3023   SDLoc dl(Op);
3024 
3025   if (Op.getValueType() == MVT::f64)
3026     return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode());
3027   if (Op.getValueType() != MVT::f128)
3028     return Op;
3029 
3030   // Lower fabs/fneg on f128 to fabs/fneg on f64
3031   // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
3032   // (As with LowerF64Op, on little-endian, we need to negate the odd
3033   // subreg)
3034 
3035   SDValue SrcReg128 = Op.getOperand(0);
3036   SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
3037                                             SrcReg128);
3038   SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
3039                                             SrcReg128);
3040 
3041   if (DAG.getDataLayout().isLittleEndian()) {
3042     if (isV9)
3043       Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64);
3044     else
3045       Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode());
3046   } else {
3047     if (isV9)
3048       Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
3049     else
3050       Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode());
3051   }
3052 
3053   SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
3054                                                  dl, MVT::f128), 0);
3055   DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
3056                                         DstReg128, Hi64);
3057   DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
3058                                         DstReg128, Lo64);
3059   return DstReg128;
3060 }
3061 
3062 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
3063 
3064   if (Op.getValueType() != MVT::i64)
3065     return Op;
3066 
3067   SDLoc dl(Op);
3068   SDValue Src1 = Op.getOperand(0);
3069   SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
3070   SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
3071                                DAG.getConstant(32, dl, MVT::i64));
3072   Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
3073 
3074   SDValue Src2 = Op.getOperand(1);
3075   SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
3076   SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
3077                                DAG.getConstant(32, dl, MVT::i64));
3078   Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
3079 
3080 
3081   bool hasChain = false;
3082   unsigned hiOpc = Op.getOpcode();
3083   switch (Op.getOpcode()) {
3084   default: llvm_unreachable("Invalid opcode");
3085   case ISD::ADDC: hiOpc = ISD::ADDE; break;
3086   case ISD::ADDE: hasChain = true; break;
3087   case ISD::SUBC: hiOpc = ISD::SUBE; break;
3088   case ISD::SUBE: hasChain = true; break;
3089   }
3090   SDValue Lo;
3091   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
3092   if (hasChain) {
3093     Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
3094                      Op.getOperand(2));
3095   } else {
3096     Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
3097   }
3098   SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
3099   SDValue Carry = Hi.getValue(1);
3100 
3101   Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
3102   Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
3103   Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
3104                    DAG.getConstant(32, dl, MVT::i64));
3105 
3106   SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
3107   SDValue Ops[2] = { Dst, Carry };
3108   return DAG.getMergeValues(Ops, dl);
3109 }
3110 
3111 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
3112 // in LegalizeDAG.cpp except the order of arguments to the library function.
3113 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
3114                                 const SparcTargetLowering &TLI)
3115 {
3116   unsigned opcode = Op.getOpcode();
3117   assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
3118 
3119   bool isSigned = (opcode == ISD::SMULO);
3120   EVT VT = MVT::i64;
3121   EVT WideVT = MVT::i128;
3122   SDLoc dl(Op);
3123   SDValue LHS = Op.getOperand(0);
3124 
3125   if (LHS.getValueType() != VT)
3126     return Op;
3127 
3128   SDValue ShiftAmt = DAG.getConstant(63, dl, VT);
3129 
3130   SDValue RHS = Op.getOperand(1);
3131   SDValue HiLHS, HiRHS;
3132   if (isSigned) {
3133     HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
3134     HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
3135   } else {
3136     HiLHS = DAG.getConstant(0, dl, VT);
3137     HiRHS = DAG.getConstant(0, dl, MVT::i64);
3138   }
3139 
3140   SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
3141 
3142   TargetLowering::MakeLibCallOptions CallOptions;
3143   CallOptions.setSExt(isSigned);
3144   SDValue MulResult = TLI.makeLibCall(DAG,
3145                                       RTLIB::MUL_I128, WideVT,
3146                                       Args, CallOptions, dl).first;
3147   SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
3148                                    MulResult, DAG.getIntPtrConstant(0, dl));
3149   SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
3150                                 MulResult, DAG.getIntPtrConstant(1, dl));
3151   if (isSigned) {
3152     SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
3153     TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
3154   } else {
3155     TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT),
3156                            ISD::SETNE);
3157   }
3158   // MulResult is a node with an illegal type. Because such things are not
3159   // generally permitted during this phase of legalization, ensure that
3160   // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
3161   // been folded.
3162   assert(MulResult->use_empty() && "Illegally typed node still in use!");
3163 
3164   SDValue Ops[2] = { BottomHalf, TopHalf } ;
3165   return DAG.getMergeValues(Ops, dl);
3166 }
3167 
3168 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
3169   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) {
3170     // Expand with a fence.
3171     return SDValue();
3172   }
3173 
3174   // Monotonic load/stores are legal.
3175   return Op;
3176 }
3177 
3178 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3179                                                      SelectionDAG &DAG) const {
3180   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3181   SDLoc dl(Op);
3182   switch (IntNo) {
3183   default: return SDValue();    // Don't custom lower most intrinsics.
3184   case Intrinsic::thread_pointer: {
3185     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3186     return DAG.getRegister(SP::G7, PtrVT);
3187   }
3188   }
3189 }
3190 
3191 SDValue SparcTargetLowering::
3192 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3193 
3194   bool hasHardQuad = Subtarget->hasHardQuad();
3195   bool isV9        = Subtarget->isV9();
3196   bool is64Bit = Subtarget->is64Bit();
3197 
3198   switch (Op.getOpcode()) {
3199   default: llvm_unreachable("Should not custom lower this!");
3200 
3201   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG, *this,
3202                                                        Subtarget);
3203   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG,
3204                                                       Subtarget);
3205   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3206   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3207   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
3208   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3209   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG, *this,
3210                                                        hasHardQuad);
3211   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG, *this,
3212                                                        hasHardQuad);
3213   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG, *this,
3214                                                        hasHardQuad);
3215   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG, *this,
3216                                                        hasHardQuad);
3217   case ISD::BR_CC:
3218     return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9);
3219   case ISD::SELECT_CC:
3220     return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit);
3221   case ISD::VASTART:            return LowerVASTART(Op, DAG, *this);
3222   case ISD::VAARG:              return LowerVAARG(Op, DAG);
3223   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
3224                                                                Subtarget);
3225 
3226   case ISD::LOAD:               return LowerLOAD(Op, DAG);
3227   case ISD::STORE:              return LowerSTORE(Op, DAG);
3228   case ISD::FADD:               return LowerF128Op(Op, DAG,
3229                                        getLibcallName(RTLIB::ADD_F128), 2);
3230   case ISD::FSUB:               return LowerF128Op(Op, DAG,
3231                                        getLibcallName(RTLIB::SUB_F128), 2);
3232   case ISD::FMUL:               return LowerF128Op(Op, DAG,
3233                                        getLibcallName(RTLIB::MUL_F128), 2);
3234   case ISD::FDIV:               return LowerF128Op(Op, DAG,
3235                                        getLibcallName(RTLIB::DIV_F128), 2);
3236   case ISD::FSQRT:              return LowerF128Op(Op, DAG,
3237                                        getLibcallName(RTLIB::SQRT_F128),1);
3238   case ISD::FABS:
3239   case ISD::FNEG:               return LowerFNEGorFABS(Op, DAG, isV9);
3240   case ISD::FP_EXTEND:          return LowerF128_FPEXTEND(Op, DAG, *this);
3241   case ISD::FP_ROUND:           return LowerF128_FPROUND(Op, DAG, *this);
3242   case ISD::ADDC:
3243   case ISD::ADDE:
3244   case ISD::SUBC:
3245   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
3246   case ISD::UMULO:
3247   case ISD::SMULO:              return LowerUMULO_SMULO(Op, DAG, *this);
3248   case ISD::ATOMIC_LOAD:
3249   case ISD::ATOMIC_STORE:       return LowerATOMIC_LOAD_STORE(Op, DAG);
3250   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3251   }
3252 }
3253 
3254 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C,
3255                                                     const SDLoc &DL,
3256                                                     SelectionDAG &DAG) const {
3257   APInt V = C->getValueAPF().bitcastToAPInt();
3258   SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32);
3259   SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32);
3260   if (DAG.getDataLayout().isLittleEndian())
3261     std::swap(Lo, Hi);
3262   return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo});
3263 }
3264 
3265 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N,
3266                                                    DAGCombinerInfo &DCI) const {
3267   SDLoc dl(N);
3268   SDValue Src = N->getOperand(0);
3269 
3270   if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 &&
3271       Src.getSimpleValueType() == MVT::f64)
3272     return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG);
3273 
3274   return SDValue();
3275 }
3276 
3277 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N,
3278                                                DAGCombinerInfo &DCI) const {
3279   switch (N->getOpcode()) {
3280   default:
3281     break;
3282   case ISD::BITCAST:
3283     return PerformBITCASTCombine(N, DCI);
3284   }
3285   return SDValue();
3286 }
3287 
3288 MachineBasicBlock *
3289 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
3290                                                  MachineBasicBlock *BB) const {
3291   switch (MI.getOpcode()) {
3292   default: llvm_unreachable("Unknown SELECT_CC!");
3293   case SP::SELECT_CC_Int_ICC:
3294   case SP::SELECT_CC_FP_ICC:
3295   case SP::SELECT_CC_DFP_ICC:
3296   case SP::SELECT_CC_QFP_ICC:
3297     if (Subtarget->isV9())
3298       return expandSelectCC(MI, BB, SP::BPICC);
3299     return expandSelectCC(MI, BB, SP::BCOND);
3300   case SP::SELECT_CC_Int_XCC:
3301   case SP::SELECT_CC_FP_XCC:
3302   case SP::SELECT_CC_DFP_XCC:
3303   case SP::SELECT_CC_QFP_XCC:
3304     return expandSelectCC(MI, BB, SP::BPXCC);
3305   case SP::SELECT_CC_Int_FCC:
3306   case SP::SELECT_CC_FP_FCC:
3307   case SP::SELECT_CC_DFP_FCC:
3308   case SP::SELECT_CC_QFP_FCC:
3309     if (Subtarget->isV9())
3310       return expandSelectCC(MI, BB, SP::FBCOND_V9);
3311     return expandSelectCC(MI, BB, SP::FBCOND);
3312   }
3313 }
3314 
3315 MachineBasicBlock *
3316 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB,
3317                                     unsigned BROpcode) const {
3318   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
3319   DebugLoc dl = MI.getDebugLoc();
3320   unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm();
3321 
3322   // To "insert" a SELECT_CC instruction, we actually have to insert the
3323   // triangle control-flow pattern. The incoming instruction knows the
3324   // destination vreg to set, the condition code register to branch on, the
3325   // true/false values to select between, and the condition code for the branch.
3326   //
3327   // We produce the following control flow:
3328   //     ThisMBB
3329   //     |  \
3330   //     |  IfFalseMBB
3331   //     | /
3332   //    SinkMBB
3333   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3334   MachineFunction::iterator It = ++BB->getIterator();
3335 
3336   MachineBasicBlock *ThisMBB = BB;
3337   MachineFunction *F = BB->getParent();
3338   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
3339   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
3340   F->insert(It, IfFalseMBB);
3341   F->insert(It, SinkMBB);
3342 
3343   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
3344   SinkMBB->splice(SinkMBB->begin(), ThisMBB,
3345                   std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end());
3346   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
3347 
3348   // Set the new successors for ThisMBB.
3349   ThisMBB->addSuccessor(IfFalseMBB);
3350   ThisMBB->addSuccessor(SinkMBB);
3351 
3352   BuildMI(ThisMBB, dl, TII.get(BROpcode))
3353     .addMBB(SinkMBB)
3354     .addImm(CC);
3355 
3356   // IfFalseMBB just falls through to SinkMBB.
3357   IfFalseMBB->addSuccessor(SinkMBB);
3358 
3359   // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ]
3360   BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI),
3361           MI.getOperand(0).getReg())
3362       .addReg(MI.getOperand(1).getReg())
3363       .addMBB(ThisMBB)
3364       .addReg(MI.getOperand(2).getReg())
3365       .addMBB(IfFalseMBB);
3366 
3367   MI.eraseFromParent(); // The pseudo instruction is gone now.
3368   return SinkMBB;
3369 }
3370 
3371 //===----------------------------------------------------------------------===//
3372 //                         Sparc Inline Assembly Support
3373 //===----------------------------------------------------------------------===//
3374 
3375 /// getConstraintType - Given a constraint letter, return the type of
3376 /// constraint it is for this target.
3377 SparcTargetLowering::ConstraintType
3378 SparcTargetLowering::getConstraintType(StringRef Constraint) const {
3379   if (Constraint.size() == 1) {
3380     switch (Constraint[0]) {
3381     default:  break;
3382     case 'r':
3383     case 'f':
3384     case 'e':
3385       return C_RegisterClass;
3386     case 'I': // SIMM13
3387       return C_Immediate;
3388     }
3389   }
3390 
3391   return TargetLowering::getConstraintType(Constraint);
3392 }
3393 
3394 TargetLowering::ConstraintWeight SparcTargetLowering::
3395 getSingleConstraintMatchWeight(AsmOperandInfo &info,
3396                                const char *constraint) const {
3397   ConstraintWeight weight = CW_Invalid;
3398   Value *CallOperandVal = info.CallOperandVal;
3399   // If we don't have a value, we can't do a match,
3400   // but allow it at the lowest weight.
3401   if (!CallOperandVal)
3402     return CW_Default;
3403 
3404   // Look at the constraint type.
3405   switch (*constraint) {
3406   default:
3407     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3408     break;
3409   case 'I': // SIMM13
3410     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
3411       if (isInt<13>(C->getSExtValue()))
3412         weight = CW_Constant;
3413     }
3414     break;
3415   }
3416   return weight;
3417 }
3418 
3419 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3420 /// vector.  If it is invalid, don't add anything to Ops.
3421 void SparcTargetLowering::
3422 LowerAsmOperandForConstraint(SDValue Op,
3423                              std::string &Constraint,
3424                              std::vector<SDValue> &Ops,
3425                              SelectionDAG &DAG) const {
3426   SDValue Result;
3427 
3428   // Only support length 1 constraints for now.
3429   if (Constraint.length() > 1)
3430     return;
3431 
3432   char ConstraintLetter = Constraint[0];
3433   switch (ConstraintLetter) {
3434   default: break;
3435   case 'I':
3436     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3437       if (isInt<13>(C->getSExtValue())) {
3438         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
3439                                        Op.getValueType());
3440         break;
3441       }
3442       return;
3443     }
3444   }
3445 
3446   if (Result.getNode()) {
3447     Ops.push_back(Result);
3448     return;
3449   }
3450   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3451 }
3452 
3453 std::pair<unsigned, const TargetRegisterClass *>
3454 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3455                                                   StringRef Constraint,
3456                                                   MVT VT) const {
3457   if (Constraint.empty())
3458     return std::make_pair(0U, nullptr);
3459 
3460   if (Constraint.size() == 1) {
3461     switch (Constraint[0]) {
3462     case 'r':
3463       if (VT == MVT::v2i32)
3464         return std::make_pair(0U, &SP::IntPairRegClass);
3465       else if (Subtarget->is64Bit())
3466         return std::make_pair(0U, &SP::I64RegsRegClass);
3467       else
3468         return std::make_pair(0U, &SP::IntRegsRegClass);
3469     case 'f':
3470       if (VT == MVT::f32 || VT == MVT::i32)
3471         return std::make_pair(0U, &SP::FPRegsRegClass);
3472       else if (VT == MVT::f64 || VT == MVT::i64)
3473         return std::make_pair(0U, &SP::LowDFPRegsRegClass);
3474       else if (VT == MVT::f128)
3475         return std::make_pair(0U, &SP::LowQFPRegsRegClass);
3476       // This will generate an error message
3477       return std::make_pair(0U, nullptr);
3478     case 'e':
3479       if (VT == MVT::f32 || VT == MVT::i32)
3480         return std::make_pair(0U, &SP::FPRegsRegClass);
3481       else if (VT == MVT::f64 || VT == MVT::i64 )
3482         return std::make_pair(0U, &SP::DFPRegsRegClass);
3483       else if (VT == MVT::f128)
3484         return std::make_pair(0U, &SP::QFPRegsRegClass);
3485       // This will generate an error message
3486       return std::make_pair(0U, nullptr);
3487     }
3488   }
3489 
3490   if (Constraint.front() != '{')
3491     return std::make_pair(0U, nullptr);
3492 
3493   assert(Constraint.back() == '}' && "Not a brace enclosed constraint?");
3494   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
3495   if (RegName.empty())
3496     return std::make_pair(0U, nullptr);
3497 
3498   unsigned long long RegNo;
3499   // Handle numbered register aliases.
3500   if (RegName[0] == 'r' &&
3501       getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) {
3502     // r0-r7   -> g0-g7
3503     // r8-r15  -> o0-o7
3504     // r16-r23 -> l0-l7
3505     // r24-r31 -> i0-i7
3506     if (RegNo > 31)
3507       return std::make_pair(0U, nullptr);
3508     const char RegTypes[] = {'g', 'o', 'l', 'i'};
3509     char RegType = RegTypes[RegNo / 8];
3510     char RegIndex = '0' + (RegNo % 8);
3511     char Tmp[] = {'{', RegType, RegIndex, '}', 0};
3512     return getRegForInlineAsmConstraint(TRI, Tmp, VT);
3513   }
3514 
3515   // Rewrite the fN constraint according to the value type if needed.
3516   if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' &&
3517       getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) {
3518     if (VT == MVT::f64 && (RegNo % 2 == 0)) {
3519       return getRegForInlineAsmConstraint(
3520           TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT);
3521     } else if (VT == MVT::f128 && (RegNo % 4 == 0)) {
3522       return getRegForInlineAsmConstraint(
3523           TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT);
3524     } else {
3525       return std::make_pair(0U, nullptr);
3526     }
3527   }
3528 
3529   auto ResultPair =
3530       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3531   if (!ResultPair.second)
3532     return std::make_pair(0U, nullptr);
3533 
3534   // Force the use of I64Regs over IntRegs for 64-bit values.
3535   if (Subtarget->is64Bit() && VT == MVT::i64) {
3536     assert(ResultPair.second == &SP::IntRegsRegClass &&
3537            "Unexpected register class");
3538     return std::make_pair(ResultPair.first, &SP::I64RegsRegClass);
3539   }
3540 
3541   return ResultPair;
3542 }
3543 
3544 bool
3545 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3546   // The Sparc target isn't yet aware of offsets.
3547   return false;
3548 }
3549 
3550 void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
3551                                              SmallVectorImpl<SDValue>& Results,
3552                                              SelectionDAG &DAG) const {
3553 
3554   SDLoc dl(N);
3555 
3556   RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
3557 
3558   switch (N->getOpcode()) {
3559   default:
3560     llvm_unreachable("Do not know how to custom type legalize this operation!");
3561 
3562   case ISD::FP_TO_SINT:
3563   case ISD::FP_TO_UINT:
3564     // Custom lower only if it involves f128 or i64.
3565     if (N->getOperand(0).getValueType() != MVT::f128
3566         || N->getValueType(0) != MVT::i64)
3567       return;
3568     libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
3569                ? RTLIB::FPTOSINT_F128_I64
3570                : RTLIB::FPTOUINT_F128_I64);
3571 
3572     Results.push_back(LowerF128Op(SDValue(N, 0),
3573                                   DAG,
3574                                   getLibcallName(libCall),
3575                                   1));
3576     return;
3577   case ISD::READCYCLECOUNTER: {
3578     assert(Subtarget->hasLeonCycleCounter());
3579     SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32);
3580     SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32);
3581     SDValue Ops[] = { Lo, Hi };
3582     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops);
3583     Results.push_back(Pair);
3584     Results.push_back(N->getOperand(0));
3585     return;
3586   }
3587   case ISD::SINT_TO_FP:
3588   case ISD::UINT_TO_FP:
3589     // Custom lower only if it involves f128 or i64.
3590     if (N->getValueType(0) != MVT::f128
3591         || N->getOperand(0).getValueType() != MVT::i64)
3592       return;
3593 
3594     libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
3595                ? RTLIB::SINTTOFP_I64_F128
3596                : RTLIB::UINTTOFP_I64_F128);
3597 
3598     Results.push_back(LowerF128Op(SDValue(N, 0),
3599                                   DAG,
3600                                   getLibcallName(libCall),
3601                                   1));
3602     return;
3603   case ISD::LOAD: {
3604     LoadSDNode *Ld = cast<LoadSDNode>(N);
3605     // Custom handling only for i64: turn i64 load into a v2i32 load,
3606     // and a bitcast.
3607     if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64)
3608       return;
3609 
3610     SDLoc dl(N);
3611     SDValue LoadRes = DAG.getExtLoad(
3612         Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(),
3613         Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32,
3614         Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(),
3615         Ld->getAAInfo());
3616 
3617     SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes);
3618     Results.push_back(Res);
3619     Results.push_back(LoadRes.getValue(1));
3620     return;
3621   }
3622   }
3623 }
3624 
3625 // Override to enable LOAD_STACK_GUARD lowering on Linux.
3626 bool SparcTargetLowering::useLoadStackGuardNode() const {
3627   if (!Subtarget->isTargetLinux())
3628     return TargetLowering::useLoadStackGuardNode();
3629   return true;
3630 }
3631 
3632 // Override to disable global variable loading on Linux.
3633 void SparcTargetLowering::insertSSPDeclarations(Module &M) const {
3634   if (!Subtarget->isTargetLinux())
3635     return TargetLowering::insertSSPDeclarations(M);
3636 }
3637