1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Sparc uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SparcISelLowering.h" 15 #include "MCTargetDesc/SparcMCExpr.h" 16 #include "MCTargetDesc/SparcMCTargetDesc.h" 17 #include "SparcMachineFunctionInfo.h" 18 #include "SparcRegisterInfo.h" 19 #include "SparcTargetMachine.h" 20 #include "SparcTargetObjectFile.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringSwitch.h" 23 #include "llvm/CodeGen/CallingConvLower.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/DiagnosticInfo.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/KnownBits.h" 37 using namespace llvm; 38 39 40 //===----------------------------------------------------------------------===// 41 // Calling Convention Implementation 42 //===----------------------------------------------------------------------===// 43 44 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 45 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 46 ISD::ArgFlagsTy &ArgFlags, CCState &State) 47 { 48 assert (ArgFlags.isSRet()); 49 50 // Assign SRet argument. 51 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 52 0, 53 LocVT, LocInfo)); 54 return true; 55 } 56 57 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 58 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 59 ISD::ArgFlagsTy &ArgFlags, CCState &State) 60 { 61 static const MCPhysReg RegList[] = { 62 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 63 }; 64 // Try to get first reg. 65 if (Register Reg = State.AllocateReg(RegList)) { 66 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 67 } else { 68 // Assign whole thing in stack. 69 State.addLoc(CCValAssign::getCustomMem( 70 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); 71 return true; 72 } 73 74 // Try to get second reg. 75 if (Register Reg = State.AllocateReg(RegList)) 76 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 77 else 78 State.addLoc(CCValAssign::getCustomMem( 79 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); 80 return true; 81 } 82 83 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 84 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 85 ISD::ArgFlagsTy &ArgFlags, CCState &State) 86 { 87 static const MCPhysReg RegList[] = { 88 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 89 }; 90 91 // Try to get first reg. 92 if (Register Reg = State.AllocateReg(RegList)) 93 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 94 else 95 return false; 96 97 // Try to get second reg. 98 if (Register Reg = State.AllocateReg(RegList)) 99 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 100 else 101 return false; 102 103 return true; 104 } 105 106 // Allocate a full-sized argument for the 64-bit ABI. 107 static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT, 108 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 109 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 110 assert((LocVT == MVT::f32 || LocVT == MVT::f128 111 || LocVT.getSizeInBits() == 64) && 112 "Can't handle non-64 bits locations"); 113 114 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 115 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 116 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); 117 unsigned Offset = State.AllocateStack(size, alignment); 118 unsigned Reg = 0; 119 120 if (LocVT == MVT::i64 && Offset < 6*8) 121 // Promote integers to %i0-%i5. 122 Reg = SP::I0 + Offset/8; 123 else if (LocVT == MVT::f64 && Offset < 16*8) 124 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 125 Reg = SP::D0 + Offset/8; 126 else if (LocVT == MVT::f32 && Offset < 16*8) 127 // Promote floats to %f1, %f3, ... 128 Reg = SP::F1 + Offset/4; 129 else if (LocVT == MVT::f128 && Offset < 16*8) 130 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 131 Reg = SP::Q0 + Offset/16; 132 133 // Promote to register when possible, otherwise use the stack slot. 134 if (Reg) { 135 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 136 return true; 137 } 138 139 // Bail out if this is a return CC and we run out of registers to place 140 // values into. 141 if (IsReturn) 142 return false; 143 144 // This argument goes on the stack in an 8-byte slot. 145 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 146 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 147 if (LocVT == MVT::f32) 148 Offset += 4; 149 150 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 151 return true; 152 } 153 154 // Allocate a half-sized argument for the 64-bit ABI. 155 // 156 // This is used when passing { float, int } structs by value in registers. 157 static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT, 158 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 159 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 160 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 161 unsigned Offset = State.AllocateStack(4, Align(4)); 162 163 if (LocVT == MVT::f32 && Offset < 16*8) { 164 // Promote floats to %f0-%f31. 165 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 166 LocVT, LocInfo)); 167 return true; 168 } 169 170 if (LocVT == MVT::i32 && Offset < 6*8) { 171 // Promote integers to %i0-%i5, using half the register. 172 unsigned Reg = SP::I0 + Offset/8; 173 LocVT = MVT::i64; 174 LocInfo = CCValAssign::AExt; 175 176 // Set the Custom bit if this i32 goes in the high bits of a register. 177 if (Offset % 8 == 0) 178 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 179 LocVT, LocInfo)); 180 else 181 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 182 return true; 183 } 184 185 // Bail out if this is a return CC and we run out of registers to place 186 // values into. 187 if (IsReturn) 188 return false; 189 190 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 191 return true; 192 } 193 194 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 195 CCValAssign::LocInfo &LocInfo, 196 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 197 return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 198 State); 199 } 200 201 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 202 CCValAssign::LocInfo &LocInfo, 203 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 204 return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 205 State); 206 } 207 208 static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 209 CCValAssign::LocInfo &LocInfo, 210 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 211 return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 212 State); 213 } 214 215 static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 216 CCValAssign::LocInfo &LocInfo, 217 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 218 return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags, 219 State); 220 } 221 222 #include "SparcGenCallingConv.inc" 223 224 // The calling conventions in SparcCallingConv.td are described in terms of the 225 // callee's register window. This function translates registers to the 226 // corresponding caller window %o register. 227 static unsigned toCallerWindow(unsigned Reg) { 228 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 229 "Unexpected enum"); 230 if (Reg >= SP::I0 && Reg <= SP::I7) 231 return Reg - SP::I0 + SP::O0; 232 return Reg; 233 } 234 235 bool SparcTargetLowering::CanLowerReturn( 236 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, 237 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 238 SmallVector<CCValAssign, 16> RVLocs; 239 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 240 return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64 241 : RetCC_Sparc32); 242 } 243 244 SDValue 245 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 246 bool IsVarArg, 247 const SmallVectorImpl<ISD::OutputArg> &Outs, 248 const SmallVectorImpl<SDValue> &OutVals, 249 const SDLoc &DL, SelectionDAG &DAG) const { 250 if (Subtarget->is64Bit()) 251 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 252 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 253 } 254 255 SDValue 256 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 257 bool IsVarArg, 258 const SmallVectorImpl<ISD::OutputArg> &Outs, 259 const SmallVectorImpl<SDValue> &OutVals, 260 const SDLoc &DL, SelectionDAG &DAG) const { 261 MachineFunction &MF = DAG.getMachineFunction(); 262 263 // CCValAssign - represent the assignment of the return value to locations. 264 SmallVector<CCValAssign, 16> RVLocs; 265 266 // CCState - Info about the registers and stack slot. 267 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 268 *DAG.getContext()); 269 270 // Analyze return values. 271 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 272 273 SDValue Glue; 274 SmallVector<SDValue, 4> RetOps(1, Chain); 275 // Make room for the return address offset. 276 RetOps.push_back(SDValue()); 277 278 // Copy the result values into the output registers. 279 for (unsigned i = 0, realRVLocIdx = 0; 280 i != RVLocs.size(); 281 ++i, ++realRVLocIdx) { 282 CCValAssign &VA = RVLocs[i]; 283 assert(VA.isRegLoc() && "Can only return in registers!"); 284 285 SDValue Arg = OutVals[realRVLocIdx]; 286 287 if (VA.needsCustom()) { 288 assert(VA.getLocVT() == MVT::v2i32); 289 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 290 // happen by default if this wasn't a legal type) 291 292 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 293 Arg, 294 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 295 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 296 Arg, 297 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 298 299 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Glue); 300 Glue = Chain.getValue(1); 301 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 302 VA = RVLocs[++i]; // skip ahead to next loc 303 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 304 Glue); 305 } else 306 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue); 307 308 // Guarantee that all emitted copies are stuck together with flags. 309 Glue = Chain.getValue(1); 310 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 311 } 312 313 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 314 // If the function returns a struct, copy the SRetReturnReg to I0 315 if (MF.getFunction().hasStructRetAttr()) { 316 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 317 Register Reg = SFI->getSRetReturnReg(); 318 if (!Reg) 319 llvm_unreachable("sret virtual register not created in the entry block"); 320 auto PtrVT = getPointerTy(DAG.getDataLayout()); 321 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 322 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Glue); 323 Glue = Chain.getValue(1); 324 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 325 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 326 } 327 328 RetOps[0] = Chain; // Update chain. 329 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 330 331 // Add the glue if we have it. 332 if (Glue.getNode()) 333 RetOps.push_back(Glue); 334 335 return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps); 336 } 337 338 // Lower return values for the 64-bit ABI. 339 // Return values are passed the exactly the same way as function arguments. 340 SDValue 341 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 342 bool IsVarArg, 343 const SmallVectorImpl<ISD::OutputArg> &Outs, 344 const SmallVectorImpl<SDValue> &OutVals, 345 const SDLoc &DL, SelectionDAG &DAG) const { 346 // CCValAssign - represent the assignment of the return value to locations. 347 SmallVector<CCValAssign, 16> RVLocs; 348 349 // CCState - Info about the registers and stack slot. 350 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 351 *DAG.getContext()); 352 353 // Analyze return values. 354 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 355 356 SDValue Glue; 357 SmallVector<SDValue, 4> RetOps(1, Chain); 358 359 // The second operand on the return instruction is the return address offset. 360 // The return address is always %i7+8 with the 64-bit ABI. 361 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 362 363 // Copy the result values into the output registers. 364 for (unsigned i = 0; i != RVLocs.size(); ++i) { 365 CCValAssign &VA = RVLocs[i]; 366 assert(VA.isRegLoc() && "Can only return in registers!"); 367 SDValue OutVal = OutVals[i]; 368 369 // Integer return values must be sign or zero extended by the callee. 370 switch (VA.getLocInfo()) { 371 case CCValAssign::Full: break; 372 case CCValAssign::SExt: 373 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 374 break; 375 case CCValAssign::ZExt: 376 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 377 break; 378 case CCValAssign::AExt: 379 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 380 break; 381 default: 382 llvm_unreachable("Unknown loc info!"); 383 } 384 385 // The custom bit on an i32 return value indicates that it should be passed 386 // in the high bits of the register. 387 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 388 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 389 DAG.getConstant(32, DL, MVT::i32)); 390 391 // The next value may go in the low bits of the same register. 392 // Handle both at once. 393 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 394 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 395 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 396 // Skip the next value, it's already done. 397 ++i; 398 } 399 } 400 401 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue); 402 403 // Guarantee that all emitted copies are stuck together with flags. 404 Glue = Chain.getValue(1); 405 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 406 } 407 408 RetOps[0] = Chain; // Update chain. 409 410 // Add the flag if we have it. 411 if (Glue.getNode()) 412 RetOps.push_back(Glue); 413 414 return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps); 415 } 416 417 SDValue SparcTargetLowering::LowerFormalArguments( 418 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 419 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 420 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 421 if (Subtarget->is64Bit()) 422 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 423 DL, DAG, InVals); 424 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 425 DL, DAG, InVals); 426 } 427 428 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 429 /// passed in either one or two GPRs, including FP values. TODO: we should 430 /// pass FP values in FP registers for fastcc functions. 431 SDValue SparcTargetLowering::LowerFormalArguments_32( 432 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 433 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 434 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 435 MachineFunction &MF = DAG.getMachineFunction(); 436 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 437 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 438 439 // Assign locations to all of the incoming arguments. 440 SmallVector<CCValAssign, 16> ArgLocs; 441 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 442 *DAG.getContext()); 443 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 444 445 const unsigned StackOffset = 92; 446 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 447 448 unsigned InIdx = 0; 449 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 450 CCValAssign &VA = ArgLocs[i]; 451 452 if (Ins[InIdx].Flags.isSRet()) { 453 if (InIdx != 0) 454 report_fatal_error("sparc only supports sret on the first parameter"); 455 // Get SRet from [%fp+64]. 456 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); 457 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 458 SDValue Arg = 459 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 460 InVals.push_back(Arg); 461 continue; 462 } 463 464 if (VA.isRegLoc()) { 465 if (VA.needsCustom()) { 466 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 467 468 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 469 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 470 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 471 472 assert(i+1 < e); 473 CCValAssign &NextVA = ArgLocs[++i]; 474 475 SDValue LoVal; 476 if (NextVA.isMemLoc()) { 477 int FrameIdx = MF.getFrameInfo(). 478 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 479 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 480 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 481 } else { 482 Register loReg = MF.addLiveIn(NextVA.getLocReg(), 483 &SP::IntRegsRegClass); 484 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 485 } 486 487 if (IsLittleEndian) 488 std::swap(LoVal, HiVal); 489 490 SDValue WholeValue = 491 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 492 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 493 InVals.push_back(WholeValue); 494 continue; 495 } 496 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 497 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 498 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 499 if (VA.getLocVT() == MVT::f32) 500 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 501 else if (VA.getLocVT() != MVT::i32) { 502 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 503 DAG.getValueType(VA.getLocVT())); 504 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 505 } 506 InVals.push_back(Arg); 507 continue; 508 } 509 510 assert(VA.isMemLoc()); 511 512 unsigned Offset = VA.getLocMemOffset()+StackOffset; 513 auto PtrVT = getPointerTy(DAG.getDataLayout()); 514 515 if (VA.needsCustom()) { 516 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 517 // If it is double-word aligned, just load. 518 if (Offset % 8 == 0) { 519 int FI = MF.getFrameInfo().CreateFixedObject(8, 520 Offset, 521 true); 522 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 523 SDValue Load = 524 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 525 InVals.push_back(Load); 526 continue; 527 } 528 529 int FI = MF.getFrameInfo().CreateFixedObject(4, 530 Offset, 531 true); 532 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 533 SDValue HiVal = 534 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 535 int FI2 = MF.getFrameInfo().CreateFixedObject(4, 536 Offset+4, 537 true); 538 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 539 540 SDValue LoVal = 541 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); 542 543 if (IsLittleEndian) 544 std::swap(LoVal, HiVal); 545 546 SDValue WholeValue = 547 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 548 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 549 InVals.push_back(WholeValue); 550 continue; 551 } 552 553 int FI = MF.getFrameInfo().CreateFixedObject(4, 554 Offset, 555 true); 556 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 557 SDValue Load ; 558 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 559 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 560 } else if (VA.getValVT() == MVT::f128) { 561 report_fatal_error("SPARCv8 does not handle f128 in calls; " 562 "pass indirectly"); 563 } else { 564 // We shouldn't see any other value types here. 565 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 566 } 567 InVals.push_back(Load); 568 } 569 570 if (MF.getFunction().hasStructRetAttr()) { 571 // Copy the SRet Argument to SRetReturnReg. 572 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 573 Register Reg = SFI->getSRetReturnReg(); 574 if (!Reg) { 575 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 576 SFI->setSRetReturnReg(Reg); 577 } 578 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 579 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 580 } 581 582 // Store remaining ArgRegs to the stack if this is a varargs function. 583 if (isVarArg) { 584 static const MCPhysReg ArgRegs[] = { 585 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 586 }; 587 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 588 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 589 unsigned ArgOffset = CCInfo.getStackSize(); 590 if (NumAllocated == 6) 591 ArgOffset += StackOffset; 592 else { 593 assert(!ArgOffset); 594 ArgOffset = 68+4*NumAllocated; 595 } 596 597 // Remember the vararg offset for the va_start implementation. 598 FuncInfo->setVarArgsFrameOffset(ArgOffset); 599 600 std::vector<SDValue> OutChains; 601 602 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 603 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 604 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 605 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 606 607 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, 608 true); 609 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 610 611 OutChains.push_back( 612 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); 613 ArgOffset += 4; 614 } 615 616 if (!OutChains.empty()) { 617 OutChains.push_back(Chain); 618 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 619 } 620 } 621 622 return Chain; 623 } 624 625 // Lower formal arguments for the 64 bit ABI. 626 SDValue SparcTargetLowering::LowerFormalArguments_64( 627 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 628 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 629 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 630 MachineFunction &MF = DAG.getMachineFunction(); 631 632 // Analyze arguments according to CC_Sparc64. 633 SmallVector<CCValAssign, 16> ArgLocs; 634 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 635 *DAG.getContext()); 636 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 637 638 // The argument array begins at %fp+BIAS+128, after the register save area. 639 const unsigned ArgArea = 128; 640 641 for (const CCValAssign &VA : ArgLocs) { 642 if (VA.isRegLoc()) { 643 // This argument is passed in a register. 644 // All integer register arguments are promoted by the caller to i64. 645 646 // Create a virtual register for the promoted live-in value. 647 Register VReg = MF.addLiveIn(VA.getLocReg(), 648 getRegClassFor(VA.getLocVT())); 649 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 650 651 // Get the high bits for i32 struct elements. 652 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 653 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 654 DAG.getConstant(32, DL, MVT::i32)); 655 656 // The caller promoted the argument, so insert an Assert?ext SDNode so we 657 // won't promote the value again in this function. 658 switch (VA.getLocInfo()) { 659 case CCValAssign::SExt: 660 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 661 DAG.getValueType(VA.getValVT())); 662 break; 663 case CCValAssign::ZExt: 664 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 665 DAG.getValueType(VA.getValVT())); 666 break; 667 default: 668 break; 669 } 670 671 // Truncate the register down to the argument type. 672 if (VA.isExtInLoc()) 673 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 674 675 InVals.push_back(Arg); 676 continue; 677 } 678 679 // The registers are exhausted. This argument was passed on the stack. 680 assert(VA.isMemLoc()); 681 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 682 // beginning of the arguments area at %fp+BIAS+128. 683 unsigned Offset = VA.getLocMemOffset() + ArgArea; 684 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 685 // Adjust offset for extended arguments, SPARC is big-endian. 686 // The caller will have written the full slot with extended bytes, but we 687 // prefer our own extending loads. 688 if (VA.isExtInLoc()) 689 Offset += 8 - ValSize; 690 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 691 InVals.push_back( 692 DAG.getLoad(VA.getValVT(), DL, Chain, 693 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 694 MachinePointerInfo::getFixedStack(MF, FI))); 695 } 696 697 if (!IsVarArg) 698 return Chain; 699 700 // This function takes variable arguments, some of which may have been passed 701 // in registers %i0-%i5. Variable floating point arguments are never passed 702 // in floating point registers. They go on %i0-%i5 or on the stack like 703 // integer arguments. 704 // 705 // The va_start intrinsic needs to know the offset to the first variable 706 // argument. 707 unsigned ArgOffset = CCInfo.getStackSize(); 708 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 709 // Skip the 128 bytes of register save area. 710 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 711 Subtarget->getStackPointerBias()); 712 713 // Save the variable arguments that were passed in registers. 714 // The caller is required to reserve stack space for 6 arguments regardless 715 // of how many arguments were actually passed. 716 SmallVector<SDValue, 8> OutChains; 717 for (; ArgOffset < 6*8; ArgOffset += 8) { 718 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 719 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 720 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); 721 auto PtrVT = getPointerTy(MF.getDataLayout()); 722 OutChains.push_back( 723 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 724 MachinePointerInfo::getFixedStack(MF, FI))); 725 } 726 727 if (!OutChains.empty()) 728 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 729 730 return Chain; 731 } 732 733 // Check whether any of the argument registers are reserved 734 static bool isAnyArgRegReserved(const SparcRegisterInfo *TRI, 735 const MachineFunction &MF) { 736 // The register window design means that outgoing parameters at O* 737 // will appear in the callee as I*. 738 // Be conservative and check both sides of the register names. 739 bool Outgoing = 740 llvm::any_of(SP::GPROutgoingArgRegClass, [TRI, &MF](MCPhysReg r) { 741 return TRI->isReservedReg(MF, r); 742 }); 743 bool Incoming = 744 llvm::any_of(SP::GPRIncomingArgRegClass, [TRI, &MF](MCPhysReg r) { 745 return TRI->isReservedReg(MF, r); 746 }); 747 return Outgoing || Incoming; 748 } 749 750 static void emitReservedArgRegCallError(const MachineFunction &MF) { 751 const Function &F = MF.getFunction(); 752 F.getContext().diagnose(DiagnosticInfoUnsupported{ 753 F, ("SPARC doesn't support" 754 " function calls if any of the argument registers is reserved.")}); 755 } 756 757 SDValue 758 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 759 SmallVectorImpl<SDValue> &InVals) const { 760 if (Subtarget->is64Bit()) 761 return LowerCall_64(CLI, InVals); 762 return LowerCall_32(CLI, InVals); 763 } 764 765 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 766 const CallBase *Call) { 767 if (Call) 768 return Call->hasFnAttr(Attribute::ReturnsTwice); 769 770 const Function *CalleeFn = nullptr; 771 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 772 CalleeFn = dyn_cast<Function>(G->getGlobal()); 773 } else if (ExternalSymbolSDNode *E = 774 dyn_cast<ExternalSymbolSDNode>(Callee)) { 775 const Function &Fn = DAG.getMachineFunction().getFunction(); 776 const Module *M = Fn.getParent(); 777 const char *CalleeName = E->getSymbol(); 778 CalleeFn = M->getFunction(CalleeName); 779 } 780 781 if (!CalleeFn) 782 return false; 783 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 784 } 785 786 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 787 /// for tail call optimization. 788 bool SparcTargetLowering::IsEligibleForTailCallOptimization( 789 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const { 790 791 auto &Outs = CLI.Outs; 792 auto &Caller = MF.getFunction(); 793 794 // Do not tail call opt functions with "disable-tail-calls" attribute. 795 if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 796 return false; 797 798 // Do not tail call opt if the stack is used to pass parameters. 799 // 64-bit targets have a slightly higher limit since the ABI requires 800 // to allocate some space even when all the parameters fit inside registers. 801 unsigned StackSizeLimit = Subtarget->is64Bit() ? 48 : 0; 802 if (CCInfo.getStackSize() > StackSizeLimit) 803 return false; 804 805 // Do not tail call opt if either the callee or caller returns 806 // a struct and the other does not. 807 if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet()) 808 return false; 809 810 // Byval parameters hand the function a pointer directly into the stack area 811 // we want to reuse during a tail call. 812 for (auto &Arg : Outs) 813 if (Arg.Flags.isByVal()) 814 return false; 815 816 return true; 817 } 818 819 // Lower a call for the 32-bit ABI. 820 SDValue 821 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 822 SmallVectorImpl<SDValue> &InVals) const { 823 SelectionDAG &DAG = CLI.DAG; 824 SDLoc &dl = CLI.DL; 825 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 826 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 827 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 828 SDValue Chain = CLI.Chain; 829 SDValue Callee = CLI.Callee; 830 bool &isTailCall = CLI.IsTailCall; 831 CallingConv::ID CallConv = CLI.CallConv; 832 bool isVarArg = CLI.IsVarArg; 833 MachineFunction &MF = DAG.getMachineFunction(); 834 835 // Analyze operands of the call, assigning locations to each operand. 836 SmallVector<CCValAssign, 16> ArgLocs; 837 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 838 *DAG.getContext()); 839 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 840 841 isTailCall = isTailCall && IsEligibleForTailCallOptimization( 842 CCInfo, CLI, DAG.getMachineFunction()); 843 844 // Get the size of the outgoing arguments stack space requirement. 845 unsigned ArgsSize = CCInfo.getStackSize(); 846 847 // Keep stack frames 8-byte aligned. 848 ArgsSize = (ArgsSize+7) & ~7; 849 850 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 851 852 // Create local copies for byval args. 853 SmallVector<SDValue, 8> ByValArgs; 854 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 855 ISD::ArgFlagsTy Flags = Outs[i].Flags; 856 if (!Flags.isByVal()) 857 continue; 858 859 SDValue Arg = OutVals[i]; 860 unsigned Size = Flags.getByValSize(); 861 Align Alignment = Flags.getNonZeroByValAlign(); 862 863 if (Size > 0U) { 864 int FI = MFI.CreateStackObject(Size, Alignment, false); 865 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 866 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 867 868 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, 869 false, // isVolatile, 870 (Size <= 32), // AlwaysInline if size <= 32, 871 /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), 872 MachinePointerInfo()); 873 ByValArgs.push_back(FIPtr); 874 } 875 else { 876 SDValue nullVal; 877 ByValArgs.push_back(nullVal); 878 } 879 } 880 881 assert(!isTailCall || ArgsSize == 0); 882 883 if (!isTailCall) 884 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); 885 886 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 887 SmallVector<SDValue, 8> MemOpChains; 888 889 const unsigned StackOffset = 92; 890 bool hasStructRetAttr = false; 891 unsigned SRetArgSize = 0; 892 // Walk the register/memloc assignments, inserting copies/loads. 893 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 894 i != e; 895 ++i, ++realArgIdx) { 896 CCValAssign &VA = ArgLocs[i]; 897 SDValue Arg = OutVals[realArgIdx]; 898 899 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 900 901 // Use local copy if it is a byval arg. 902 if (Flags.isByVal()) { 903 Arg = ByValArgs[byvalArgIdx++]; 904 if (!Arg) { 905 continue; 906 } 907 } 908 909 // Promote the value if needed. 910 switch (VA.getLocInfo()) { 911 default: llvm_unreachable("Unknown loc info!"); 912 case CCValAssign::Full: break; 913 case CCValAssign::SExt: 914 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 915 break; 916 case CCValAssign::ZExt: 917 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 918 break; 919 case CCValAssign::AExt: 920 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 921 break; 922 case CCValAssign::BCvt: 923 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 924 break; 925 } 926 927 if (Flags.isSRet()) { 928 assert(VA.needsCustom()); 929 930 if (isTailCall) 931 continue; 932 933 // store SRet argument in %sp+64 934 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 935 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 936 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 937 MemOpChains.push_back( 938 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 939 hasStructRetAttr = true; 940 // sret only allowed on first argument 941 assert(Outs[realArgIdx].OrigArgIndex == 0); 942 SRetArgSize = 943 DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType); 944 continue; 945 } 946 947 if (VA.needsCustom()) { 948 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 949 950 if (VA.isMemLoc()) { 951 unsigned Offset = VA.getLocMemOffset() + StackOffset; 952 // if it is double-word aligned, just store. 953 if (Offset % 8 == 0) { 954 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 955 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 956 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 957 MemOpChains.push_back( 958 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 959 continue; 960 } 961 } 962 963 if (VA.getLocVT() == MVT::f64) { 964 // Move from the float value from float registers into the 965 // integer registers. 966 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) 967 Arg = bitcastConstantFPToInt(C, dl, DAG); 968 else 969 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 970 } 971 972 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 973 Arg, 974 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 975 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 976 Arg, 977 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 978 979 if (VA.isRegLoc()) { 980 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 981 assert(i+1 != e); 982 CCValAssign &NextVA = ArgLocs[++i]; 983 if (NextVA.isRegLoc()) { 984 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 985 } else { 986 // Store the second part in stack. 987 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 988 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 989 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 990 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 991 MemOpChains.push_back( 992 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 993 } 994 } else { 995 unsigned Offset = VA.getLocMemOffset() + StackOffset; 996 // Store the first part. 997 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 998 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 999 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 1000 MemOpChains.push_back( 1001 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); 1002 // Store the second part. 1003 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 1004 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 1005 MemOpChains.push_back( 1006 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 1007 } 1008 continue; 1009 } 1010 1011 // Arguments that can be passed on register must be kept at 1012 // RegsToPass vector 1013 if (VA.isRegLoc()) { 1014 if (VA.getLocVT() != MVT::f32) { 1015 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1016 continue; 1017 } 1018 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 1019 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1020 continue; 1021 } 1022 1023 assert(VA.isMemLoc()); 1024 1025 // Create a store off the stack pointer for this argument. 1026 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 1027 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 1028 dl); 1029 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 1030 MemOpChains.push_back( 1031 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 1032 } 1033 1034 1035 // Emit all stores, make sure the occur before any copies into physregs. 1036 if (!MemOpChains.empty()) 1037 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1038 1039 // Build a sequence of copy-to-reg nodes chained together with token 1040 // chain and flag operands which copy the outgoing args into registers. 1041 // The InGlue in necessary since all emitted instructions must be 1042 // stuck together. 1043 SDValue InGlue; 1044 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1045 Register Reg = RegsToPass[i].first; 1046 if (!isTailCall) 1047 Reg = toCallerWindow(Reg); 1048 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InGlue); 1049 InGlue = Chain.getValue(1); 1050 } 1051 1052 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1053 1054 // If the callee is a GlobalAddress node (quite common, every direct call is) 1055 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1056 // Likewise ExternalSymbol -> TargetExternalSymbol. 1057 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1058 : SparcMCExpr::VK_Sparc_WDISP30; 1059 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1060 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 1061 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1062 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 1063 1064 // Returns a chain & a flag for retval copy to use 1065 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1066 SmallVector<SDValue, 8> Ops; 1067 Ops.push_back(Chain); 1068 Ops.push_back(Callee); 1069 if (hasStructRetAttr) 1070 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 1071 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1072 Register Reg = RegsToPass[i].first; 1073 if (!isTailCall) 1074 Reg = toCallerWindow(Reg); 1075 Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType())); 1076 } 1077 1078 // Add a register mask operand representing the call-preserved registers. 1079 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1080 const uint32_t *Mask = 1081 ((hasReturnsTwice) 1082 ? TRI->getRTCallPreservedMask(CallConv) 1083 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 1084 1085 if (isAnyArgRegReserved(TRI, MF)) 1086 emitReservedArgRegCallError(MF); 1087 1088 assert(Mask && "Missing call preserved mask for calling convention"); 1089 Ops.push_back(DAG.getRegisterMask(Mask)); 1090 1091 if (InGlue.getNode()) 1092 Ops.push_back(InGlue); 1093 1094 if (isTailCall) { 1095 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 1096 return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops); 1097 } 1098 1099 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 1100 InGlue = Chain.getValue(1); 1101 1102 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, dl); 1103 InGlue = Chain.getValue(1); 1104 1105 // Assign locations to each value returned by this call. 1106 SmallVector<CCValAssign, 16> RVLocs; 1107 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1108 *DAG.getContext()); 1109 1110 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 1111 1112 // Copy all of the result registers out of their specified physreg. 1113 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1114 assert(RVLocs[i].isRegLoc() && "Can only return in registers!"); 1115 if (RVLocs[i].getLocVT() == MVT::v2i32) { 1116 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 1117 SDValue Lo = DAG.getCopyFromReg( 1118 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InGlue); 1119 Chain = Lo.getValue(1); 1120 InGlue = Lo.getValue(2); 1121 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 1122 DAG.getConstant(0, dl, MVT::i32)); 1123 SDValue Hi = DAG.getCopyFromReg( 1124 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InGlue); 1125 Chain = Hi.getValue(1); 1126 InGlue = Hi.getValue(2); 1127 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1128 DAG.getConstant(1, dl, MVT::i32)); 1129 InVals.push_back(Vec); 1130 } else { 1131 Chain = 1132 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1133 RVLocs[i].getValVT(), InGlue) 1134 .getValue(1); 1135 InGlue = Chain.getValue(2); 1136 InVals.push_back(Chain.getValue(0)); 1137 } 1138 } 1139 1140 return Chain; 1141 } 1142 1143 // FIXME? Maybe this could be a TableGen attribute on some registers and 1144 // this table could be generated automatically from RegInfo. 1145 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, 1146 const MachineFunction &MF) const { 1147 Register Reg = StringSwitch<Register>(RegName) 1148 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1149 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1150 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1151 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1152 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1153 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1154 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1155 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1156 .Default(0); 1157 1158 // If we're directly referencing register names 1159 // (e.g in GCC C extension `register int r asm("g1");`), 1160 // make sure that said register is in the reserve list. 1161 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1162 if (!TRI->isReservedReg(MF, Reg)) 1163 Reg = 0; 1164 1165 if (Reg) 1166 return Reg; 1167 1168 report_fatal_error("Invalid register name global variable"); 1169 } 1170 1171 // Fixup floating point arguments in the ... part of a varargs call. 1172 // 1173 // The SPARC v9 ABI requires that floating point arguments are treated the same 1174 // as integers when calling a varargs function. This does not apply to the 1175 // fixed arguments that are part of the function's prototype. 1176 // 1177 // This function post-processes a CCValAssign array created by 1178 // AnalyzeCallOperands(). 1179 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1180 ArrayRef<ISD::OutputArg> Outs) { 1181 for (CCValAssign &VA : ArgLocs) { 1182 MVT ValTy = VA.getLocVT(); 1183 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1184 // varargs functions. 1185 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1186 continue; 1187 // The fixed arguments to a varargs function still go in FP registers. 1188 if (Outs[VA.getValNo()].IsFixed) 1189 continue; 1190 1191 // This floating point argument should be reassigned. 1192 // Determine the offset into the argument array. 1193 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1194 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1195 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1196 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1197 1198 if (Offset < 6*8) { 1199 // This argument should go in %i0-%i5. 1200 unsigned IReg = SP::I0 + Offset/8; 1201 if (ValTy == MVT::f64) 1202 // Full register, just bitconvert into i64. 1203 VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64, 1204 CCValAssign::BCvt); 1205 else { 1206 assert(ValTy == MVT::f128 && "Unexpected type!"); 1207 // Full register, just bitconvert into i128 -- We will lower this into 1208 // two i64s in LowerCall_64. 1209 VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg, 1210 MVT::i128, CCValAssign::BCvt); 1211 } 1212 } else { 1213 // This needs to go to memory, we're out of integer registers. 1214 VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset, 1215 VA.getLocVT(), VA.getLocInfo()); 1216 } 1217 } 1218 } 1219 1220 // Lower a call for the 64-bit ABI. 1221 SDValue 1222 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1223 SmallVectorImpl<SDValue> &InVals) const { 1224 SelectionDAG &DAG = CLI.DAG; 1225 SDLoc DL = CLI.DL; 1226 SDValue Chain = CLI.Chain; 1227 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1228 MachineFunction &MF = DAG.getMachineFunction(); 1229 1230 // Analyze operands of the call, assigning locations to each operand. 1231 SmallVector<CCValAssign, 16> ArgLocs; 1232 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1233 *DAG.getContext()); 1234 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1235 1236 CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization( 1237 CCInfo, CLI, DAG.getMachineFunction()); 1238 1239 // Get the size of the outgoing arguments stack space requirement. 1240 // The stack offset computed by CC_Sparc64 includes all arguments. 1241 // Called functions expect 6 argument words to exist in the stack frame, used 1242 // or not. 1243 unsigned StackReserved = 6 * 8u; 1244 unsigned ArgsSize = std::max<unsigned>(StackReserved, CCInfo.getStackSize()); 1245 1246 // Keep stack frames 16-byte aligned. 1247 ArgsSize = alignTo(ArgsSize, 16); 1248 1249 // Varargs calls require special treatment. 1250 if (CLI.IsVarArg) 1251 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1252 1253 assert(!CLI.IsTailCall || ArgsSize == StackReserved); 1254 1255 // Adjust the stack pointer to make room for the arguments. 1256 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1257 // with more than 6 arguments. 1258 if (!CLI.IsTailCall) 1259 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 1260 1261 // Collect the set of registers to pass to the function and their values. 1262 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1263 // instruction. 1264 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 1265 1266 // Collect chains from all the memory opeations that copy arguments to the 1267 // stack. They must follow the stack pointer adjustment above and precede the 1268 // call instruction itself. 1269 SmallVector<SDValue, 8> MemOpChains; 1270 1271 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1272 const CCValAssign &VA = ArgLocs[i]; 1273 SDValue Arg = CLI.OutVals[i]; 1274 1275 // Promote the value if needed. 1276 switch (VA.getLocInfo()) { 1277 default: 1278 llvm_unreachable("Unknown location info!"); 1279 case CCValAssign::Full: 1280 break; 1281 case CCValAssign::SExt: 1282 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1283 break; 1284 case CCValAssign::ZExt: 1285 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1286 break; 1287 case CCValAssign::AExt: 1288 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1289 break; 1290 case CCValAssign::BCvt: 1291 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1292 // SPARC does not support i128 natively. Lower it into two i64, see below. 1293 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1294 || VA.getLocVT() != MVT::i128) 1295 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1296 break; 1297 } 1298 1299 if (VA.isRegLoc()) { 1300 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1301 && VA.getLocVT() == MVT::i128) { 1302 // Store and reload into the integer register reg and reg+1. 1303 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1304 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1305 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1306 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1307 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1308 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1309 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1310 1311 // Store to %sp+BIAS+128+Offset 1312 SDValue Store = 1313 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); 1314 // Load into Reg and Reg+1 1315 SDValue Hi64 = 1316 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); 1317 SDValue Lo64 = 1318 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); 1319 1320 Register HiReg = VA.getLocReg(); 1321 Register LoReg = VA.getLocReg() + 1; 1322 if (!CLI.IsTailCall) { 1323 HiReg = toCallerWindow(HiReg); 1324 LoReg = toCallerWindow(LoReg); 1325 } 1326 1327 RegsToPass.push_back(std::make_pair(HiReg, Hi64)); 1328 RegsToPass.push_back(std::make_pair(LoReg, Lo64)); 1329 continue; 1330 } 1331 1332 // The custom bit on an i32 return value indicates that it should be 1333 // passed in the high bits of the register. 1334 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1335 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1336 DAG.getConstant(32, DL, MVT::i32)); 1337 1338 // The next value may go in the low bits of the same register. 1339 // Handle both at once. 1340 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1341 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1342 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1343 CLI.OutVals[i+1]); 1344 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1345 // Skip the next value, it's already done. 1346 ++i; 1347 } 1348 } 1349 1350 Register Reg = VA.getLocReg(); 1351 if (!CLI.IsTailCall) 1352 Reg = toCallerWindow(Reg); 1353 RegsToPass.push_back(std::make_pair(Reg, Arg)); 1354 continue; 1355 } 1356 1357 assert(VA.isMemLoc()); 1358 1359 // Create a store off the stack pointer for this argument. 1360 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1361 // The argument area starts at %fp+BIAS+128 in the callee frame, 1362 // %sp+BIAS+128 in ours. 1363 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1364 Subtarget->getStackPointerBias() + 1365 128, DL); 1366 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1367 MemOpChains.push_back( 1368 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 1369 } 1370 1371 // Emit all stores, make sure they occur before the call. 1372 if (!MemOpChains.empty()) 1373 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1374 1375 // Build a sequence of CopyToReg nodes glued together with token chain and 1376 // glue operands which copy the outgoing args into registers. The InGlue is 1377 // necessary since all emitted instructions must be stuck together in order 1378 // to pass the live physical registers. 1379 SDValue InGlue; 1380 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1381 Chain = DAG.getCopyToReg(Chain, DL, 1382 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1383 InGlue = Chain.getValue(1); 1384 } 1385 1386 // If the callee is a GlobalAddress node (quite common, every direct call is) 1387 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1388 // Likewise ExternalSymbol -> TargetExternalSymbol. 1389 SDValue Callee = CLI.Callee; 1390 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1391 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1392 : SparcMCExpr::VK_Sparc_WDISP30; 1393 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1394 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1395 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1396 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1397 1398 // Build the operands for the call instruction itself. 1399 SmallVector<SDValue, 8> Ops; 1400 Ops.push_back(Chain); 1401 Ops.push_back(Callee); 1402 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1403 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1404 RegsToPass[i].second.getValueType())); 1405 1406 // Add a register mask operand representing the call-preserved registers. 1407 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1408 const uint32_t *Mask = 1409 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1410 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1411 CLI.CallConv)); 1412 1413 if (isAnyArgRegReserved(TRI, MF)) 1414 emitReservedArgRegCallError(MF); 1415 1416 assert(Mask && "Missing call preserved mask for calling convention"); 1417 Ops.push_back(DAG.getRegisterMask(Mask)); 1418 1419 // Make sure the CopyToReg nodes are glued to the call instruction which 1420 // consumes the registers. 1421 if (InGlue.getNode()) 1422 Ops.push_back(InGlue); 1423 1424 // Now the call itself. 1425 if (CLI.IsTailCall) { 1426 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 1427 return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops); 1428 } 1429 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1430 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1431 InGlue = Chain.getValue(1); 1432 1433 // Revert the stack pointer immediately after the call. 1434 Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL); 1435 InGlue = Chain.getValue(1); 1436 1437 // Now extract the return values. This is more or less the same as 1438 // LowerFormalArguments_64. 1439 1440 // Assign locations to each value returned by this call. 1441 SmallVector<CCValAssign, 16> RVLocs; 1442 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1443 *DAG.getContext()); 1444 1445 // Set inreg flag manually for codegen generated library calls that 1446 // return float. 1447 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 1448 CLI.Ins[0].Flags.setInReg(); 1449 1450 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1451 1452 // Copy all of the result registers out of their specified physreg. 1453 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1454 CCValAssign &VA = RVLocs[i]; 1455 assert(VA.isRegLoc() && "Can only return in registers!"); 1456 unsigned Reg = toCallerWindow(VA.getLocReg()); 1457 1458 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1459 // reside in the same register in the high and low bits. Reuse the 1460 // CopyFromReg previous node to avoid duplicate copies. 1461 SDValue RV; 1462 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1463 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1464 RV = Chain.getValue(0); 1465 1466 // But usually we'll create a new CopyFromReg for a different register. 1467 if (!RV.getNode()) { 1468 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1469 Chain = RV.getValue(1); 1470 InGlue = Chain.getValue(2); 1471 } 1472 1473 // Get the high bits for i32 struct elements. 1474 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1475 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1476 DAG.getConstant(32, DL, MVT::i32)); 1477 1478 // The callee promoted the return value, so insert an Assert?ext SDNode so 1479 // we won't promote the value again in this function. 1480 switch (VA.getLocInfo()) { 1481 case CCValAssign::SExt: 1482 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1483 DAG.getValueType(VA.getValVT())); 1484 break; 1485 case CCValAssign::ZExt: 1486 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1487 DAG.getValueType(VA.getValVT())); 1488 break; 1489 default: 1490 break; 1491 } 1492 1493 // Truncate the register down to the return value type. 1494 if (VA.isExtInLoc()) 1495 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1496 1497 InVals.push_back(RV); 1498 } 1499 1500 return Chain; 1501 } 1502 1503 //===----------------------------------------------------------------------===// 1504 // TargetLowering Implementation 1505 //===----------------------------------------------------------------------===// 1506 1507 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1508 if (AI->getOperation() == AtomicRMWInst::Xchg && 1509 AI->getType()->getPrimitiveSizeInBits() == 32) 1510 return AtomicExpansionKind::None; // Uses xchg instruction 1511 1512 return AtomicExpansionKind::CmpXChg; 1513 } 1514 1515 /// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC 1516 /// rcond condition. 1517 static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) { 1518 switch (CC) { 1519 default: 1520 llvm_unreachable("Unknown/unsigned integer condition code!"); 1521 case ISD::SETEQ: 1522 return SPCC::REG_Z; 1523 case ISD::SETNE: 1524 return SPCC::REG_NZ; 1525 case ISD::SETLT: 1526 return SPCC::REG_LZ; 1527 case ISD::SETGT: 1528 return SPCC::REG_GZ; 1529 case ISD::SETLE: 1530 return SPCC::REG_LEZ; 1531 case ISD::SETGE: 1532 return SPCC::REG_GEZ; 1533 } 1534 } 1535 1536 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1537 /// condition. 1538 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1539 switch (CC) { 1540 default: llvm_unreachable("Unknown integer condition code!"); 1541 case ISD::SETEQ: return SPCC::ICC_E; 1542 case ISD::SETNE: return SPCC::ICC_NE; 1543 case ISD::SETLT: return SPCC::ICC_L; 1544 case ISD::SETGT: return SPCC::ICC_G; 1545 case ISD::SETLE: return SPCC::ICC_LE; 1546 case ISD::SETGE: return SPCC::ICC_GE; 1547 case ISD::SETULT: return SPCC::ICC_CS; 1548 case ISD::SETULE: return SPCC::ICC_LEU; 1549 case ISD::SETUGT: return SPCC::ICC_GU; 1550 case ISD::SETUGE: return SPCC::ICC_CC; 1551 } 1552 } 1553 1554 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1555 /// FCC condition. 1556 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1557 switch (CC) { 1558 default: llvm_unreachable("Unknown fp condition code!"); 1559 case ISD::SETEQ: 1560 case ISD::SETOEQ: return SPCC::FCC_E; 1561 case ISD::SETNE: 1562 case ISD::SETUNE: return SPCC::FCC_NE; 1563 case ISD::SETLT: 1564 case ISD::SETOLT: return SPCC::FCC_L; 1565 case ISD::SETGT: 1566 case ISD::SETOGT: return SPCC::FCC_G; 1567 case ISD::SETLE: 1568 case ISD::SETOLE: return SPCC::FCC_LE; 1569 case ISD::SETGE: 1570 case ISD::SETOGE: return SPCC::FCC_GE; 1571 case ISD::SETULT: return SPCC::FCC_UL; 1572 case ISD::SETULE: return SPCC::FCC_ULE; 1573 case ISD::SETUGT: return SPCC::FCC_UG; 1574 case ISD::SETUGE: return SPCC::FCC_UGE; 1575 case ISD::SETUO: return SPCC::FCC_U; 1576 case ISD::SETO: return SPCC::FCC_O; 1577 case ISD::SETONE: return SPCC::FCC_LG; 1578 case ISD::SETUEQ: return SPCC::FCC_UE; 1579 } 1580 } 1581 1582 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1583 const SparcSubtarget &STI) 1584 : TargetLowering(TM), Subtarget(&STI) { 1585 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 1586 1587 // Instructions which use registers as conditionals examine all the 1588 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1589 // matters much whether it's ZeroOrOneBooleanContent, or 1590 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1591 // former. 1592 setBooleanContents(ZeroOrOneBooleanContent); 1593 setBooleanVectorContents(ZeroOrOneBooleanContent); 1594 1595 // Set up the register classes. 1596 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1597 if (!Subtarget->useSoftFloat()) { 1598 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1599 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1600 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1601 } 1602 if (Subtarget->is64Bit()) { 1603 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1604 } else { 1605 // On 32bit sparc, we define a double-register 32bit register 1606 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1607 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1608 1609 // ...but almost all operations must be expanded, so set that as 1610 // the default. 1611 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1612 setOperationAction(Op, MVT::v2i32, Expand); 1613 } 1614 // Truncating/extending stores/loads are also not supported. 1615 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1616 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1617 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1618 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1619 1620 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1621 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1622 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1623 1624 setTruncStoreAction(VT, MVT::v2i32, Expand); 1625 setTruncStoreAction(MVT::v2i32, VT, Expand); 1626 } 1627 // However, load and store *are* legal. 1628 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1629 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1630 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1631 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1632 1633 // And we need to promote i64 loads/stores into vector load/store 1634 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1635 setOperationAction(ISD::STORE, MVT::i64, Custom); 1636 1637 // Sadly, this doesn't work: 1638 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1639 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1640 } 1641 1642 // Turn FP extload into load/fpextend 1643 for (MVT VT : MVT::fp_valuetypes()) { 1644 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 1645 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1646 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1647 } 1648 1649 // Sparc doesn't have i1 sign extending load 1650 for (MVT VT : MVT::integer_valuetypes()) 1651 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1652 1653 // Turn FP truncstore into trunc + store. 1654 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 1655 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 1656 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1657 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 1658 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1659 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1660 1661 // Custom legalize GlobalAddress nodes into LO/HI parts. 1662 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1663 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1664 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1665 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1666 1667 // Sparc doesn't have sext_inreg, replace them with shl/sra 1668 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1669 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1670 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1671 1672 // Sparc has no REM or DIVREM operations. 1673 setOperationAction(ISD::UREM, MVT::i32, Expand); 1674 setOperationAction(ISD::SREM, MVT::i32, Expand); 1675 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1676 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1677 1678 // ... nor does SparcV9. 1679 if (Subtarget->is64Bit()) { 1680 setOperationAction(ISD::UREM, MVT::i64, Expand); 1681 setOperationAction(ISD::SREM, MVT::i64, Expand); 1682 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1683 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1684 } 1685 1686 // Custom expand fp<->sint 1687 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1688 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1689 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1690 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1691 1692 // Custom Expand fp<->uint 1693 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1694 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1695 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1696 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1697 1698 // Lower f16 conversion operations into library calls 1699 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 1700 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 1701 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 1702 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 1703 setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand); 1704 setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand); 1705 1706 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1707 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1708 1709 // Sparc has no select or setcc: expand to SELECT_CC. 1710 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1711 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1712 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1713 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1714 1715 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1716 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1717 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1718 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1719 1720 // Sparc doesn't have BRCOND either, it has BR_CC. 1721 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1722 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1723 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1724 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1725 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1726 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1727 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1728 1729 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1730 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1731 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1732 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1733 1734 setOperationAction(ISD::ADDC, MVT::i32, Custom); 1735 setOperationAction(ISD::ADDE, MVT::i32, Custom); 1736 setOperationAction(ISD::SUBC, MVT::i32, Custom); 1737 setOperationAction(ISD::SUBE, MVT::i32, Custom); 1738 1739 if (Subtarget->is64Bit()) { 1740 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1741 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1742 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1743 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1744 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1745 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1746 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1747 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1748 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1749 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1750 1751 setOperationAction(ISD::CTPOP, MVT::i64, 1752 Subtarget->usePopc() ? Legal : Expand); 1753 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1754 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1755 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1756 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1757 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1758 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1759 } 1760 1761 // ATOMICs. 1762 // Atomics are supported on SparcV9. 32-bit atomics are also 1763 // supported by some Leon SparcV8 variants. Otherwise, atomics 1764 // are unsupported. 1765 if (Subtarget->isV9()) { 1766 // TODO: we _ought_ to be able to support 64-bit atomics on 32-bit sparcv9, 1767 // but it hasn't been implemented in the backend yet. 1768 if (Subtarget->is64Bit()) 1769 setMaxAtomicSizeInBitsSupported(64); 1770 else 1771 setMaxAtomicSizeInBitsSupported(32); 1772 } else if (Subtarget->hasLeonCasa()) 1773 setMaxAtomicSizeInBitsSupported(32); 1774 else 1775 setMaxAtomicSizeInBitsSupported(0); 1776 1777 setMinCmpXchgSizeInBits(32); 1778 1779 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1780 1781 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1782 1783 // Custom Lower Atomic LOAD/STORE 1784 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1785 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1786 1787 if (Subtarget->is64Bit()) { 1788 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1789 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1790 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1791 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1792 } 1793 1794 if (!Subtarget->isV9()) { 1795 // SparcV8 does not have FNEGD and FABSD. 1796 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1797 setOperationAction(ISD::FABS, MVT::f64, Custom); 1798 } 1799 1800 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1801 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1802 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1803 setOperationAction(ISD::FREM , MVT::f128, Expand); 1804 setOperationAction(ISD::FMA , MVT::f128, Expand); 1805 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1806 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1807 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1808 setOperationAction(ISD::FREM , MVT::f64, Expand); 1809 setOperationAction(ISD::FMA , MVT::f64, Expand); 1810 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1811 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1812 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1813 setOperationAction(ISD::FREM , MVT::f32, Expand); 1814 setOperationAction(ISD::FMA , MVT::f32, Expand); 1815 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1816 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1817 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1818 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1819 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1820 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1821 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1822 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1823 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1824 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1825 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1826 1827 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1828 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1829 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1830 1831 // Expands to [SU]MUL_LOHI. 1832 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1833 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1834 setOperationAction(ISD::MUL, MVT::i32, Expand); 1835 1836 if (Subtarget->useSoftMulDiv()) { 1837 // .umul works for both signed and unsigned 1838 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1839 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1840 setLibcallName(RTLIB::MUL_I32, ".umul"); 1841 1842 setOperationAction(ISD::SDIV, MVT::i32, Expand); 1843 setLibcallName(RTLIB::SDIV_I32, ".div"); 1844 1845 setOperationAction(ISD::UDIV, MVT::i32, Expand); 1846 setLibcallName(RTLIB::UDIV_I32, ".udiv"); 1847 1848 setLibcallName(RTLIB::SREM_I32, ".rem"); 1849 setLibcallName(RTLIB::UREM_I32, ".urem"); 1850 } 1851 1852 if (Subtarget->is64Bit()) { 1853 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1854 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1855 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1856 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1857 1858 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1859 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1860 1861 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1862 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1863 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1864 } 1865 1866 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1867 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1868 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1869 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1870 1871 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1872 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); 1873 1874 // Use the default implementation. 1875 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1876 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1877 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1878 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1879 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1880 1881 setStackPointerRegisterToSaveRestore(SP::O6); 1882 1883 setOperationAction(ISD::CTPOP, MVT::i32, 1884 Subtarget->usePopc() ? Legal : Expand); 1885 1886 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1887 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1888 setOperationAction(ISD::STORE, MVT::f128, Legal); 1889 } else { 1890 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1891 setOperationAction(ISD::STORE, MVT::f128, Custom); 1892 } 1893 1894 if (Subtarget->hasHardQuad()) { 1895 setOperationAction(ISD::FADD, MVT::f128, Legal); 1896 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1897 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1898 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1899 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1900 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1901 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1902 if (Subtarget->isV9()) { 1903 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1904 setOperationAction(ISD::FABS, MVT::f128, Legal); 1905 } else { 1906 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1907 setOperationAction(ISD::FABS, MVT::f128, Custom); 1908 } 1909 1910 if (!Subtarget->is64Bit()) { 1911 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1912 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1913 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1914 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1915 } 1916 1917 } else { 1918 // Custom legalize f128 operations. 1919 1920 setOperationAction(ISD::FADD, MVT::f128, Custom); 1921 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1922 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1923 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1924 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1925 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1926 setOperationAction(ISD::FABS, MVT::f128, Custom); 1927 1928 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1929 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1930 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1931 1932 // Setup Runtime library names. 1933 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1934 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1935 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1936 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1937 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1938 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1939 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1940 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1941 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1942 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1943 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1944 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1945 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1946 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1947 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1948 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1949 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1950 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1951 } else if (!Subtarget->useSoftFloat()) { 1952 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1953 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1954 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1955 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1956 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1957 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1958 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1959 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1960 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1961 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1962 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1963 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1964 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1965 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1966 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1967 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1968 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1969 } 1970 } 1971 1972 if (Subtarget->fixAllFDIVSQRT()) { 1973 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1974 // the former instructions generate errata on LEON processors. 1975 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1976 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1977 } 1978 1979 if (Subtarget->hasNoFMULS()) { 1980 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1981 } 1982 1983 // Custom combine bitcast between f64 and v2i32 1984 if (!Subtarget->is64Bit()) 1985 setTargetDAGCombine(ISD::BITCAST); 1986 1987 if (Subtarget->hasLeonCycleCounter()) 1988 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1989 1990 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1991 1992 setMinFunctionAlignment(Align(4)); 1993 1994 computeRegisterProperties(Subtarget->getRegisterInfo()); 1995 } 1996 1997 bool SparcTargetLowering::useSoftFloat() const { 1998 return Subtarget->useSoftFloat(); 1999 } 2000 2001 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 2002 switch ((SPISD::NodeType)Opcode) { 2003 case SPISD::FIRST_NUMBER: break; 2004 case SPISD::CMPICC: return "SPISD::CMPICC"; 2005 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 2006 case SPISD::CMPFCC_V9: 2007 return "SPISD::CMPFCC_V9"; 2008 case SPISD::BRICC: return "SPISD::BRICC"; 2009 case SPISD::BPICC: 2010 return "SPISD::BPICC"; 2011 case SPISD::BPXCC: 2012 return "SPISD::BPXCC"; 2013 case SPISD::BRFCC: return "SPISD::BRFCC"; 2014 case SPISD::BRFCC_V9: 2015 return "SPISD::BRFCC_V9"; 2016 case SPISD::BR_REG: 2017 return "SPISD::BR_REG"; 2018 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 2019 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 2020 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 2021 case SPISD::SELECT_REG: 2022 return "SPISD::SELECT_REG"; 2023 case SPISD::Hi: return "SPISD::Hi"; 2024 case SPISD::Lo: return "SPISD::Lo"; 2025 case SPISD::FTOI: return "SPISD::FTOI"; 2026 case SPISD::ITOF: return "SPISD::ITOF"; 2027 case SPISD::FTOX: return "SPISD::FTOX"; 2028 case SPISD::XTOF: return "SPISD::XTOF"; 2029 case SPISD::CALL: return "SPISD::CALL"; 2030 case SPISD::RET_GLUE: return "SPISD::RET_GLUE"; 2031 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 2032 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 2033 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 2034 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 2035 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 2036 case SPISD::TAIL_CALL: return "SPISD::TAIL_CALL"; 2037 case SPISD::LOAD_GDOP: return "SPISD::LOAD_GDOP"; 2038 } 2039 return nullptr; 2040 } 2041 2042 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 2043 EVT VT) const { 2044 if (!VT.isVector()) 2045 return MVT::i32; 2046 return VT.changeVectorElementTypeToInteger(); 2047 } 2048 2049 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 2050 /// be zero. Op is expected to be a target specific node. Used by DAG 2051 /// combiner. 2052 void SparcTargetLowering::computeKnownBitsForTargetNode 2053 (const SDValue Op, 2054 KnownBits &Known, 2055 const APInt &DemandedElts, 2056 const SelectionDAG &DAG, 2057 unsigned Depth) const { 2058 KnownBits Known2; 2059 Known.resetAll(); 2060 2061 switch (Op.getOpcode()) { 2062 default: break; 2063 case SPISD::SELECT_ICC: 2064 case SPISD::SELECT_XCC: 2065 case SPISD::SELECT_FCC: 2066 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 2067 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 2068 2069 // Only known if known in both the LHS and RHS. 2070 Known = Known.intersectWith(Known2); 2071 break; 2072 } 2073 } 2074 2075 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 2076 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 2077 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 2078 ISD::CondCode CC, unsigned &SPCC) { 2079 if (isNullConstant(RHS) && CC == ISD::SETNE && 2080 (((LHS.getOpcode() == SPISD::SELECT_ICC || 2081 LHS.getOpcode() == SPISD::SELECT_XCC) && 2082 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 2083 (LHS.getOpcode() == SPISD::SELECT_FCC && 2084 (LHS.getOperand(3).getOpcode() == SPISD::CMPFCC || 2085 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) && 2086 isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) { 2087 SDValue CMPCC = LHS.getOperand(3); 2088 SPCC = LHS.getConstantOperandVal(2); 2089 LHS = CMPCC.getOperand(0); 2090 RHS = CMPCC.getOperand(1); 2091 } 2092 } 2093 2094 // Convert to a target node and set target flags. 2095 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 2096 SelectionDAG &DAG) const { 2097 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 2098 return DAG.getTargetGlobalAddress(GA->getGlobal(), 2099 SDLoc(GA), 2100 GA->getValueType(0), 2101 GA->getOffset(), TF); 2102 2103 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 2104 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 2105 CP->getAlign(), CP->getOffset(), TF); 2106 2107 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 2108 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 2109 Op.getValueType(), 2110 0, 2111 TF); 2112 2113 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 2114 return DAG.getTargetExternalSymbol(ES->getSymbol(), 2115 ES->getValueType(0), TF); 2116 2117 llvm_unreachable("Unhandled address SDNode"); 2118 } 2119 2120 // Split Op into high and low parts according to HiTF and LoTF. 2121 // Return an ADD node combining the parts. 2122 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 2123 unsigned HiTF, unsigned LoTF, 2124 SelectionDAG &DAG) const { 2125 SDLoc DL(Op); 2126 EVT VT = Op.getValueType(); 2127 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 2128 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 2129 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2130 } 2131 2132 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 2133 // or ExternalSymbol SDNode. 2134 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 2135 SDLoc DL(Op); 2136 EVT VT = getPointerTy(DAG.getDataLayout()); 2137 2138 // Handle PIC mode first. SPARC needs a got load for every variable! 2139 if (isPositionIndependent()) { 2140 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2141 PICLevel::Level picLevel = M->getPICLevel(); 2142 SDValue Idx; 2143 2144 if (picLevel == PICLevel::SmallPIC) { 2145 // This is the pic13 code model, the GOT is known to be smaller than 8KiB. 2146 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), 2147 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); 2148 } else { 2149 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 2150 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 2151 SparcMCExpr::VK_Sparc_GOT10, DAG); 2152 } 2153 2154 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 2155 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); 2156 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2157 // function has calls. 2158 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2159 MFI.setHasCalls(true); 2160 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 2161 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2162 } 2163 2164 // This is one of the absolute code models. 2165 switch(getTargetMachine().getCodeModel()) { 2166 default: 2167 llvm_unreachable("Unsupported absolute code model"); 2168 case CodeModel::Small: 2169 // abs32. 2170 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2171 SparcMCExpr::VK_Sparc_LO, DAG); 2172 case CodeModel::Medium: { 2173 // abs44. 2174 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 2175 SparcMCExpr::VK_Sparc_M44, DAG); 2176 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 2177 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 2178 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 2179 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 2180 } 2181 case CodeModel::Large: { 2182 // abs64. 2183 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 2184 SparcMCExpr::VK_Sparc_HM, DAG); 2185 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 2186 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2187 SparcMCExpr::VK_Sparc_LO, DAG); 2188 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2189 } 2190 } 2191 } 2192 2193 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2194 SelectionDAG &DAG) const { 2195 return makeAddress(Op, DAG); 2196 } 2197 2198 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2199 SelectionDAG &DAG) const { 2200 return makeAddress(Op, DAG); 2201 } 2202 2203 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2204 SelectionDAG &DAG) const { 2205 return makeAddress(Op, DAG); 2206 } 2207 2208 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2209 SelectionDAG &DAG) const { 2210 2211 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2212 if (DAG.getTarget().useEmulatedTLS()) 2213 return LowerToTLSEmulatedModel(GA, DAG); 2214 2215 SDLoc DL(GA); 2216 const GlobalValue *GV = GA->getGlobal(); 2217 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2218 2219 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2220 2221 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2222 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2223 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2224 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2225 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2226 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2227 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2228 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2229 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2230 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2231 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2232 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2233 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2234 2235 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2236 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2237 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2238 withTargetFlags(Op, addTF, DAG)); 2239 2240 SDValue Chain = DAG.getEntryNode(); 2241 SDValue InGlue; 2242 2243 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); 2244 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InGlue); 2245 InGlue = Chain.getValue(1); 2246 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2247 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2248 2249 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2250 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2251 DAG.getMachineFunction(), CallingConv::C); 2252 assert(Mask && "Missing call preserved mask for calling convention"); 2253 SDValue Ops[] = {Chain, 2254 Callee, 2255 Symbol, 2256 DAG.getRegister(SP::O0, PtrVT), 2257 DAG.getRegisterMask(Mask), 2258 InGlue}; 2259 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2260 InGlue = Chain.getValue(1); 2261 Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InGlue, DL); 2262 InGlue = Chain.getValue(1); 2263 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InGlue); 2264 2265 if (model != TLSModel::LocalDynamic) 2266 return Ret; 2267 2268 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2269 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2270 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2271 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2272 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2273 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2274 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2275 } 2276 2277 if (model == TLSModel::InitialExec) { 2278 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2279 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2280 2281 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2282 2283 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2284 // function has calls. 2285 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2286 MFI.setHasCalls(true); 2287 2288 SDValue TGA = makeHiLoPair(Op, 2289 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2290 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2291 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2292 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2293 DL, PtrVT, Ptr, 2294 withTargetFlags(Op, ldTF, DAG)); 2295 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2296 DAG.getRegister(SP::G7, PtrVT), Offset, 2297 withTargetFlags(Op, 2298 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2299 } 2300 2301 assert(model == TLSModel::LocalExec); 2302 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2303 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2304 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2305 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2306 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2307 2308 return DAG.getNode(ISD::ADD, DL, PtrVT, 2309 DAG.getRegister(SP::G7, PtrVT), Offset); 2310 } 2311 2312 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2313 ArgListTy &Args, SDValue Arg, 2314 const SDLoc &DL, 2315 SelectionDAG &DAG) const { 2316 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2317 EVT ArgVT = Arg.getValueType(); 2318 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2319 2320 ArgListEntry Entry; 2321 Entry.Node = Arg; 2322 Entry.Ty = ArgTy; 2323 2324 if (ArgTy->isFP128Ty()) { 2325 // Create a stack object and pass the pointer to the library function. 2326 int FI = MFI.CreateStackObject(16, Align(8), false); 2327 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2328 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), 2329 Align(8)); 2330 2331 Entry.Node = FIPtr; 2332 Entry.Ty = PointerType::getUnqual(ArgTy); 2333 } 2334 Args.push_back(Entry); 2335 return Chain; 2336 } 2337 2338 SDValue 2339 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2340 const char *LibFuncName, 2341 unsigned numArgs) const { 2342 2343 ArgListTy Args; 2344 2345 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2346 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2347 2348 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2349 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2350 Type *RetTyABI = RetTy; 2351 SDValue Chain = DAG.getEntryNode(); 2352 SDValue RetPtr; 2353 2354 if (RetTy->isFP128Ty()) { 2355 // Create a Stack Object to receive the return value of type f128. 2356 ArgListEntry Entry; 2357 int RetFI = MFI.CreateStackObject(16, Align(8), false); 2358 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2359 Entry.Node = RetPtr; 2360 Entry.Ty = PointerType::getUnqual(RetTy); 2361 if (!Subtarget->is64Bit()) { 2362 Entry.IsSRet = true; 2363 Entry.IndirectType = RetTy; 2364 } 2365 Entry.IsReturned = false; 2366 Args.push_back(Entry); 2367 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2368 } 2369 2370 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2371 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2372 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2373 } 2374 TargetLowering::CallLoweringInfo CLI(DAG); 2375 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2376 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2377 2378 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2379 2380 // chain is in second result. 2381 if (RetTyABI == RetTy) 2382 return CallInfo.first; 2383 2384 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2385 2386 Chain = CallInfo.second; 2387 2388 // Load RetPtr to get the return value. 2389 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, 2390 MachinePointerInfo(), Align(8)); 2391 } 2392 2393 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2394 unsigned &SPCC, const SDLoc &DL, 2395 SelectionDAG &DAG) const { 2396 2397 const char *LibCall = nullptr; 2398 bool is64Bit = Subtarget->is64Bit(); 2399 switch(SPCC) { 2400 default: llvm_unreachable("Unhandled conditional code!"); 2401 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2402 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2403 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2404 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2405 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2406 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2407 case SPCC::FCC_UL : 2408 case SPCC::FCC_ULE: 2409 case SPCC::FCC_UG : 2410 case SPCC::FCC_UGE: 2411 case SPCC::FCC_U : 2412 case SPCC::FCC_O : 2413 case SPCC::FCC_LG : 2414 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2415 } 2416 2417 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2418 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2419 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2420 ArgListTy Args; 2421 SDValue Chain = DAG.getEntryNode(); 2422 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2423 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2424 2425 TargetLowering::CallLoweringInfo CLI(DAG); 2426 CLI.setDebugLoc(DL).setChain(Chain) 2427 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2428 2429 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2430 2431 // result is in first, and chain is in second result. 2432 SDValue Result = CallInfo.first; 2433 2434 switch(SPCC) { 2435 default: { 2436 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2437 SPCC = SPCC::ICC_NE; 2438 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2439 } 2440 case SPCC::FCC_UL : { 2441 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); 2442 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2443 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2444 SPCC = SPCC::ICC_NE; 2445 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2446 } 2447 case SPCC::FCC_ULE: { 2448 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); 2449 SPCC = SPCC::ICC_NE; 2450 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2451 } 2452 case SPCC::FCC_UG : { 2453 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2454 SPCC = SPCC::ICC_G; 2455 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2456 } 2457 case SPCC::FCC_UGE: { 2458 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2459 SPCC = SPCC::ICC_NE; 2460 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2461 } 2462 2463 case SPCC::FCC_U : { 2464 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2465 SPCC = SPCC::ICC_E; 2466 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2467 } 2468 case SPCC::FCC_O : { 2469 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2470 SPCC = SPCC::ICC_NE; 2471 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2472 } 2473 case SPCC::FCC_LG : { 2474 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2475 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2476 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2477 SPCC = SPCC::ICC_NE; 2478 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2479 } 2480 case SPCC::FCC_UE : { 2481 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2482 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2483 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2484 SPCC = SPCC::ICC_E; 2485 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2486 } 2487 } 2488 } 2489 2490 static SDValue 2491 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2492 const SparcTargetLowering &TLI) { 2493 2494 if (Op.getOperand(0).getValueType() == MVT::f64) 2495 return TLI.LowerF128Op(Op, DAG, 2496 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2497 2498 if (Op.getOperand(0).getValueType() == MVT::f32) 2499 return TLI.LowerF128Op(Op, DAG, 2500 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2501 2502 llvm_unreachable("fpextend with non-float operand!"); 2503 return SDValue(); 2504 } 2505 2506 static SDValue 2507 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2508 const SparcTargetLowering &TLI) { 2509 // FP_ROUND on f64 and f32 are legal. 2510 if (Op.getOperand(0).getValueType() != MVT::f128) 2511 return Op; 2512 2513 if (Op.getValueType() == MVT::f64) 2514 return TLI.LowerF128Op(Op, DAG, 2515 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2516 if (Op.getValueType() == MVT::f32) 2517 return TLI.LowerF128Op(Op, DAG, 2518 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2519 2520 llvm_unreachable("fpround to non-float!"); 2521 return SDValue(); 2522 } 2523 2524 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2525 const SparcTargetLowering &TLI, 2526 bool hasHardQuad) { 2527 SDLoc dl(Op); 2528 EVT VT = Op.getValueType(); 2529 assert(VT == MVT::i32 || VT == MVT::i64); 2530 2531 // Expand f128 operations to fp128 abi calls. 2532 if (Op.getOperand(0).getValueType() == MVT::f128 2533 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2534 const char *libName = TLI.getLibcallName(VT == MVT::i32 2535 ? RTLIB::FPTOSINT_F128_I32 2536 : RTLIB::FPTOSINT_F128_I64); 2537 return TLI.LowerF128Op(Op, DAG, libName, 1); 2538 } 2539 2540 // Expand if the resulting type is illegal. 2541 if (!TLI.isTypeLegal(VT)) 2542 return SDValue(); 2543 2544 // Otherwise, Convert the fp value to integer in an FP register. 2545 if (VT == MVT::i32) 2546 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2547 else 2548 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2549 2550 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2551 } 2552 2553 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2554 const SparcTargetLowering &TLI, 2555 bool hasHardQuad) { 2556 SDLoc dl(Op); 2557 EVT OpVT = Op.getOperand(0).getValueType(); 2558 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2559 2560 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2561 2562 // Expand f128 operations to fp128 ABI calls. 2563 if (Op.getValueType() == MVT::f128 2564 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2565 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2566 ? RTLIB::SINTTOFP_I32_F128 2567 : RTLIB::SINTTOFP_I64_F128); 2568 return TLI.LowerF128Op(Op, DAG, libName, 1); 2569 } 2570 2571 // Expand if the operand type is illegal. 2572 if (!TLI.isTypeLegal(OpVT)) 2573 return SDValue(); 2574 2575 // Otherwise, Convert the int value to FP in an FP register. 2576 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2577 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2578 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2579 } 2580 2581 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2582 const SparcTargetLowering &TLI, 2583 bool hasHardQuad) { 2584 SDLoc dl(Op); 2585 EVT VT = Op.getValueType(); 2586 2587 // Expand if it does not involve f128 or the target has support for 2588 // quad floating point instructions and the resulting type is legal. 2589 if (Op.getOperand(0).getValueType() != MVT::f128 || 2590 (hasHardQuad && TLI.isTypeLegal(VT))) 2591 return SDValue(); 2592 2593 assert(VT == MVT::i32 || VT == MVT::i64); 2594 2595 return TLI.LowerF128Op(Op, DAG, 2596 TLI.getLibcallName(VT == MVT::i32 2597 ? RTLIB::FPTOUINT_F128_I32 2598 : RTLIB::FPTOUINT_F128_I64), 2599 1); 2600 } 2601 2602 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2603 const SparcTargetLowering &TLI, 2604 bool hasHardQuad) { 2605 SDLoc dl(Op); 2606 EVT OpVT = Op.getOperand(0).getValueType(); 2607 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2608 2609 // Expand if it does not involve f128 or the target has support for 2610 // quad floating point instructions and the operand type is legal. 2611 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2612 return SDValue(); 2613 2614 return TLI.LowerF128Op(Op, DAG, 2615 TLI.getLibcallName(OpVT == MVT::i32 2616 ? RTLIB::UINTTOFP_I32_F128 2617 : RTLIB::UINTTOFP_I64_F128), 2618 1); 2619 } 2620 2621 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2622 const SparcTargetLowering &TLI, bool hasHardQuad, 2623 bool isV9, bool is64Bit) { 2624 SDValue Chain = Op.getOperand(0); 2625 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2626 SDValue LHS = Op.getOperand(2); 2627 SDValue RHS = Op.getOperand(3); 2628 SDValue Dest = Op.getOperand(4); 2629 SDLoc dl(Op); 2630 unsigned Opc, SPCC = ~0U; 2631 2632 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2633 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2634 LookThroughSetCC(LHS, RHS, CC, SPCC); 2635 assert(LHS.getValueType() == RHS.getValueType()); 2636 2637 // Get the condition flag. 2638 SDValue CompareFlag; 2639 if (LHS.getValueType().isInteger()) { 2640 // On V9 processors running in 64-bit mode, if CC compares two `i64`s 2641 // and the RHS is zero we might be able to use a specialized branch. 2642 if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && 2643 isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC)) 2644 return DAG.getNode(SPISD::BR_REG, dl, MVT::Other, Chain, Dest, 2645 DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), 2646 LHS); 2647 2648 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2649 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2650 if (isV9) 2651 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2652 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC; 2653 else 2654 // Non-v9 targets don't have xcc. 2655 Opc = SPISD::BRICC; 2656 } else { 2657 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2658 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2659 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2660 Opc = isV9 ? SPISD::BPICC : SPISD::BRICC; 2661 } else { 2662 unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; 2663 CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); 2664 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2665 Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC; 2666 } 2667 } 2668 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2669 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2670 } 2671 2672 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2673 const SparcTargetLowering &TLI, bool hasHardQuad, 2674 bool isV9, bool is64Bit) { 2675 SDValue LHS = Op.getOperand(0); 2676 SDValue RHS = Op.getOperand(1); 2677 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2678 SDValue TrueVal = Op.getOperand(2); 2679 SDValue FalseVal = Op.getOperand(3); 2680 SDLoc dl(Op); 2681 unsigned Opc, SPCC = ~0U; 2682 2683 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2684 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2685 LookThroughSetCC(LHS, RHS, CC, SPCC); 2686 assert(LHS.getValueType() == RHS.getValueType()); 2687 2688 SDValue CompareFlag; 2689 if (LHS.getValueType().isInteger()) { 2690 // On V9 processors running in 64-bit mode, if CC compares two `i64`s 2691 // and the RHS is zero we might be able to use a specialized select. 2692 // All SELECT_CC between any two scalar integer types are eligible for 2693 // lowering to specialized instructions. Additionally, f32 and f64 types 2694 // are also eligible, but for f128 we can only use the specialized 2695 // instruction when we have hardquad. 2696 EVT ValType = TrueVal.getValueType(); 2697 bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 || 2698 ValType == MVT::f64 || 2699 (ValType == MVT::f128 && hasHardQuad); 2700 if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 && 2701 isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType) 2702 return DAG.getNode( 2703 SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2704 DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS); 2705 2706 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2707 Opc = LHS.getValueType() == MVT::i32 ? 2708 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2709 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2710 } else { 2711 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2712 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2713 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2714 Opc = SPISD::SELECT_ICC; 2715 } else { 2716 unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC; 2717 CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS); 2718 Opc = SPISD::SELECT_FCC; 2719 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2720 } 2721 } 2722 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2723 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2724 } 2725 2726 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2727 const SparcTargetLowering &TLI) { 2728 MachineFunction &MF = DAG.getMachineFunction(); 2729 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2730 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2731 2732 // Need frame address to find the address of VarArgsFrameIndex. 2733 MF.getFrameInfo().setFrameAddressIsTaken(true); 2734 2735 // vastart just stores the address of the VarArgsFrameIndex slot into the 2736 // memory location argument. 2737 SDLoc DL(Op); 2738 SDValue Offset = 2739 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2740 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2741 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2742 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2743 MachinePointerInfo(SV)); 2744 } 2745 2746 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2747 SDNode *Node = Op.getNode(); 2748 EVT VT = Node->getValueType(0); 2749 SDValue InChain = Node->getOperand(0); 2750 SDValue VAListPtr = Node->getOperand(1); 2751 EVT PtrVT = VAListPtr.getValueType(); 2752 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2753 SDLoc DL(Node); 2754 SDValue VAList = 2755 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 2756 // Increment the pointer, VAList, to the next vaarg. 2757 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2758 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2759 DL)); 2760 // Store the incremented VAList to the legalized pointer. 2761 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, 2762 MachinePointerInfo(SV)); 2763 // Load the actual argument out of the pointer VAList. 2764 // We can't count on greater alignment than the word size. 2765 return DAG.getLoad( 2766 VT, DL, InChain, VAList, MachinePointerInfo(), 2767 Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8)); 2768 } 2769 2770 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2771 const SparcSubtarget *Subtarget) { 2772 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2773 SDValue Size = Op.getOperand(1); // Legalize the size. 2774 MaybeAlign Alignment = 2775 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 2776 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); 2777 EVT VT = Size->getValueType(0); 2778 SDLoc dl(Op); 2779 2780 // TODO: implement over-aligned alloca. (Note: also implies 2781 // supporting support for overaligned function frames + dynamic 2782 // allocations, at all, which currently isn't supported) 2783 if (Alignment && *Alignment > StackAlign) { 2784 const MachineFunction &MF = DAG.getMachineFunction(); 2785 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " 2786 "over-aligned dynamic alloca not supported."); 2787 } 2788 2789 // The resultant pointer needs to be above the register spill area 2790 // at the bottom of the stack. 2791 unsigned regSpillArea; 2792 if (Subtarget->is64Bit()) { 2793 regSpillArea = 128; 2794 } else { 2795 // On Sparc32, the size of the spill area is 92. Unfortunately, 2796 // that's only 4-byte aligned, not 8-byte aligned (the stack 2797 // pointer is 8-byte aligned). So, if the user asked for an 8-byte 2798 // aligned dynamic allocation, we actually need to add 96 to the 2799 // bottom of the stack, instead of 92, to ensure 8-byte alignment. 2800 2801 // That also means adding 4 to the size of the allocation -- 2802 // before applying the 8-byte rounding. Unfortunately, we the 2803 // value we get here has already had rounding applied. So, we need 2804 // to add 8, instead, wasting a bit more memory. 2805 2806 // Further, this only actually needs to be done if the required 2807 // alignment is > 4, but, we've lost that info by this point, too, 2808 // so we always apply it. 2809 2810 // (An alternative approach would be to always reserve 96 bytes 2811 // instead of the required 92, but then we'd waste 4 extra bytes 2812 // in every frame, not just those with dynamic stack allocations) 2813 2814 // TODO: modify code in SelectionDAGBuilder to make this less sad. 2815 2816 Size = DAG.getNode(ISD::ADD, dl, VT, Size, 2817 DAG.getConstant(8, dl, VT)); 2818 regSpillArea = 96; 2819 } 2820 2821 unsigned SPReg = SP::O6; 2822 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2823 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2824 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2825 2826 regSpillArea += Subtarget->getStackPointerBias(); 2827 2828 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2829 DAG.getConstant(regSpillArea, dl, VT)); 2830 SDValue Ops[2] = { NewVal, Chain }; 2831 return DAG.getMergeValues(Ops, dl); 2832 } 2833 2834 2835 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2836 SDLoc dl(Op); 2837 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2838 dl, MVT::Other, DAG.getEntryNode()); 2839 return Chain; 2840 } 2841 2842 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2843 const SparcSubtarget *Subtarget, 2844 bool AlwaysFlush = false) { 2845 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2846 MFI.setFrameAddressIsTaken(true); 2847 2848 EVT VT = Op.getValueType(); 2849 SDLoc dl(Op); 2850 unsigned FrameReg = SP::I6; 2851 unsigned stackBias = Subtarget->getStackPointerBias(); 2852 2853 SDValue FrameAddr; 2854 SDValue Chain; 2855 2856 // flush first to make sure the windowed registers' values are in stack 2857 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); 2858 2859 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2860 2861 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2862 2863 while (depth--) { 2864 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2865 DAG.getIntPtrConstant(Offset, dl)); 2866 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); 2867 } 2868 if (Subtarget->is64Bit()) 2869 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2870 DAG.getIntPtrConstant(stackBias, dl)); 2871 return FrameAddr; 2872 } 2873 2874 2875 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2876 const SparcSubtarget *Subtarget) { 2877 2878 uint64_t depth = Op.getConstantOperandVal(0); 2879 2880 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2881 2882 } 2883 2884 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2885 const SparcTargetLowering &TLI, 2886 const SparcSubtarget *Subtarget) { 2887 MachineFunction &MF = DAG.getMachineFunction(); 2888 MachineFrameInfo &MFI = MF.getFrameInfo(); 2889 MFI.setReturnAddressIsTaken(true); 2890 2891 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2892 return SDValue(); 2893 2894 EVT VT = Op.getValueType(); 2895 SDLoc dl(Op); 2896 uint64_t depth = Op.getConstantOperandVal(0); 2897 2898 SDValue RetAddr; 2899 if (depth == 0) { 2900 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2901 Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2902 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2903 return RetAddr; 2904 } 2905 2906 // Need frame address to find return address of the caller. 2907 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); 2908 2909 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2910 SDValue Ptr = DAG.getNode(ISD::ADD, 2911 dl, VT, 2912 FrameAddr, 2913 DAG.getIntPtrConstant(Offset, dl)); 2914 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2915 2916 return RetAddr; 2917 } 2918 2919 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2920 unsigned opcode) { 2921 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2922 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2923 2924 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2925 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2926 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2927 2928 // Note: in little-endian, the floating-point value is stored in the 2929 // registers are in the opposite order, so the subreg with the sign 2930 // bit is the highest-numbered (odd), rather than the 2931 // lowest-numbered (even). 2932 2933 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2934 SrcReg64); 2935 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2936 SrcReg64); 2937 2938 if (DAG.getDataLayout().isLittleEndian()) 2939 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2940 else 2941 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2942 2943 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2944 dl, MVT::f64), 0); 2945 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2946 DstReg64, Hi32); 2947 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2948 DstReg64, Lo32); 2949 return DstReg64; 2950 } 2951 2952 // Lower a f128 load into two f64 loads. 2953 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2954 { 2955 SDLoc dl(Op); 2956 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2957 assert(LdNode->getOffset().isUndef() && "Unexpected node type"); 2958 2959 Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8); 2960 2961 SDValue Hi64 = 2962 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), 2963 LdNode->getPointerInfo(), Alignment); 2964 EVT addrVT = LdNode->getBasePtr().getValueType(); 2965 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2966 LdNode->getBasePtr(), 2967 DAG.getConstant(8, dl, addrVT)); 2968 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, 2969 LdNode->getPointerInfo().getWithOffset(8), 2970 Alignment); 2971 2972 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2973 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2974 2975 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2976 dl, MVT::f128); 2977 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2978 MVT::f128, 2979 SDValue(InFP128, 0), 2980 Hi64, 2981 SubRegEven); 2982 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2983 MVT::f128, 2984 SDValue(InFP128, 0), 2985 Lo64, 2986 SubRegOdd); 2987 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2988 SDValue(Lo64.getNode(), 1) }; 2989 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2990 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2991 return DAG.getMergeValues(Ops, dl); 2992 } 2993 2994 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 2995 { 2996 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2997 2998 EVT MemVT = LdNode->getMemoryVT(); 2999 if (MemVT == MVT::f128) 3000 return LowerF128Load(Op, DAG); 3001 3002 return Op; 3003 } 3004 3005 // Lower a f128 store into two f64 stores. 3006 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 3007 SDLoc dl(Op); 3008 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 3009 assert(StNode->getOffset().isUndef() && "Unexpected node type"); 3010 3011 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 3012 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 3013 3014 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 3015 dl, 3016 MVT::f64, 3017 StNode->getValue(), 3018 SubRegEven); 3019 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 3020 dl, 3021 MVT::f64, 3022 StNode->getValue(), 3023 SubRegOdd); 3024 3025 Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8); 3026 3027 SDValue OutChains[2]; 3028 OutChains[0] = 3029 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), 3030 StNode->getBasePtr(), StNode->getPointerInfo(), 3031 Alignment); 3032 EVT addrVT = StNode->getBasePtr().getValueType(); 3033 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 3034 StNode->getBasePtr(), 3035 DAG.getConstant(8, dl, addrVT)); 3036 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, 3037 StNode->getPointerInfo().getWithOffset(8), 3038 Alignment); 3039 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 3040 } 3041 3042 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 3043 { 3044 SDLoc dl(Op); 3045 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 3046 3047 EVT MemVT = St->getMemoryVT(); 3048 if (MemVT == MVT::f128) 3049 return LowerF128Store(Op, DAG); 3050 3051 if (MemVT == MVT::i64) { 3052 // Custom handling for i64 stores: turn it into a bitcast and a 3053 // v2i32 store. 3054 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 3055 SDValue Chain = DAG.getStore( 3056 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 3057 St->getOriginalAlign(), St->getMemOperand()->getFlags(), 3058 St->getAAInfo()); 3059 return Chain; 3060 } 3061 3062 return SDValue(); 3063 } 3064 3065 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 3066 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 3067 && "invalid opcode"); 3068 3069 SDLoc dl(Op); 3070 3071 if (Op.getValueType() == MVT::f64) 3072 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 3073 if (Op.getValueType() != MVT::f128) 3074 return Op; 3075 3076 // Lower fabs/fneg on f128 to fabs/fneg on f64 3077 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 3078 // (As with LowerF64Op, on little-endian, we need to negate the odd 3079 // subreg) 3080 3081 SDValue SrcReg128 = Op.getOperand(0); 3082 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 3083 SrcReg128); 3084 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 3085 SrcReg128); 3086 3087 if (DAG.getDataLayout().isLittleEndian()) { 3088 if (isV9) 3089 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 3090 else 3091 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 3092 } else { 3093 if (isV9) 3094 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 3095 else 3096 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 3097 } 3098 3099 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 3100 dl, MVT::f128), 0); 3101 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 3102 DstReg128, Hi64); 3103 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 3104 DstReg128, Lo64); 3105 return DstReg128; 3106 } 3107 3108 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 3109 3110 if (Op.getValueType() != MVT::i64) 3111 return Op; 3112 3113 SDLoc dl(Op); 3114 SDValue Src1 = Op.getOperand(0); 3115 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 3116 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 3117 DAG.getConstant(32, dl, MVT::i64)); 3118 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 3119 3120 SDValue Src2 = Op.getOperand(1); 3121 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 3122 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 3123 DAG.getConstant(32, dl, MVT::i64)); 3124 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 3125 3126 3127 bool hasChain = false; 3128 unsigned hiOpc = Op.getOpcode(); 3129 switch (Op.getOpcode()) { 3130 default: llvm_unreachable("Invalid opcode"); 3131 case ISD::ADDC: hiOpc = ISD::ADDE; break; 3132 case ISD::ADDE: hasChain = true; break; 3133 case ISD::SUBC: hiOpc = ISD::SUBE; break; 3134 case ISD::SUBE: hasChain = true; break; 3135 } 3136 SDValue Lo; 3137 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 3138 if (hasChain) { 3139 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 3140 Op.getOperand(2)); 3141 } else { 3142 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 3143 } 3144 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 3145 SDValue Carry = Hi.getValue(1); 3146 3147 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 3148 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 3149 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 3150 DAG.getConstant(32, dl, MVT::i64)); 3151 3152 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 3153 SDValue Ops[2] = { Dst, Carry }; 3154 return DAG.getMergeValues(Ops, dl); 3155 } 3156 3157 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 3158 // in LegalizeDAG.cpp except the order of arguments to the library function. 3159 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 3160 const SparcTargetLowering &TLI) 3161 { 3162 unsigned opcode = Op.getOpcode(); 3163 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 3164 3165 bool isSigned = (opcode == ISD::SMULO); 3166 EVT VT = MVT::i64; 3167 EVT WideVT = MVT::i128; 3168 SDLoc dl(Op); 3169 SDValue LHS = Op.getOperand(0); 3170 3171 if (LHS.getValueType() != VT) 3172 return Op; 3173 3174 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 3175 3176 SDValue RHS = Op.getOperand(1); 3177 SDValue HiLHS, HiRHS; 3178 if (isSigned) { 3179 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 3180 HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 3181 } else { 3182 HiLHS = DAG.getConstant(0, dl, VT); 3183 HiRHS = DAG.getConstant(0, dl, MVT::i64); 3184 } 3185 3186 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 3187 3188 TargetLowering::MakeLibCallOptions CallOptions; 3189 CallOptions.setSExt(isSigned); 3190 SDValue MulResult = TLI.makeLibCall(DAG, 3191 RTLIB::MUL_I128, WideVT, 3192 Args, CallOptions, dl).first; 3193 SDValue BottomHalf, TopHalf; 3194 std::tie(BottomHalf, TopHalf) = DAG.SplitScalar(MulResult, dl, VT, VT); 3195 if (isSigned) { 3196 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 3197 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 3198 } else { 3199 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 3200 ISD::SETNE); 3201 } 3202 // MulResult is a node with an illegal type. Because such things are not 3203 // generally permitted during this phase of legalization, ensure that 3204 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 3205 // been folded. 3206 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 3207 3208 SDValue Ops[2] = { BottomHalf, TopHalf } ; 3209 return DAG.getMergeValues(Ops, dl); 3210 } 3211 3212 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 3213 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) { 3214 // Expand with a fence. 3215 return SDValue(); 3216 } 3217 3218 // Monotonic load/stores are legal. 3219 return Op; 3220 } 3221 3222 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3223 SelectionDAG &DAG) const { 3224 unsigned IntNo = Op.getConstantOperandVal(0); 3225 SDLoc dl(Op); 3226 switch (IntNo) { 3227 default: return SDValue(); // Don't custom lower most intrinsics. 3228 case Intrinsic::thread_pointer: { 3229 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3230 return DAG.getRegister(SP::G7, PtrVT); 3231 } 3232 } 3233 } 3234 3235 SDValue SparcTargetLowering:: 3236 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3237 3238 bool hasHardQuad = Subtarget->hasHardQuad(); 3239 bool isV9 = Subtarget->isV9(); 3240 bool is64Bit = Subtarget->is64Bit(); 3241 3242 switch (Op.getOpcode()) { 3243 default: llvm_unreachable("Should not custom lower this!"); 3244 3245 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3246 Subtarget); 3247 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3248 Subtarget); 3249 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3250 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3251 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3252 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3253 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3254 hasHardQuad); 3255 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3256 hasHardQuad); 3257 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3258 hasHardQuad); 3259 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3260 hasHardQuad); 3261 case ISD::BR_CC: 3262 return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); 3263 case ISD::SELECT_CC: 3264 return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit); 3265 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3266 case ISD::VAARG: return LowerVAARG(Op, DAG); 3267 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3268 Subtarget); 3269 3270 case ISD::LOAD: return LowerLOAD(Op, DAG); 3271 case ISD::STORE: return LowerSTORE(Op, DAG); 3272 case ISD::FADD: return LowerF128Op(Op, DAG, 3273 getLibcallName(RTLIB::ADD_F128), 2); 3274 case ISD::FSUB: return LowerF128Op(Op, DAG, 3275 getLibcallName(RTLIB::SUB_F128), 2); 3276 case ISD::FMUL: return LowerF128Op(Op, DAG, 3277 getLibcallName(RTLIB::MUL_F128), 2); 3278 case ISD::FDIV: return LowerF128Op(Op, DAG, 3279 getLibcallName(RTLIB::DIV_F128), 2); 3280 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3281 getLibcallName(RTLIB::SQRT_F128),1); 3282 case ISD::FABS: 3283 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3284 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3285 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3286 case ISD::ADDC: 3287 case ISD::ADDE: 3288 case ISD::SUBC: 3289 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3290 case ISD::UMULO: 3291 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3292 case ISD::ATOMIC_LOAD: 3293 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3294 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3295 } 3296 } 3297 3298 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, 3299 const SDLoc &DL, 3300 SelectionDAG &DAG) const { 3301 APInt V = C->getValueAPF().bitcastToAPInt(); 3302 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); 3303 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); 3304 if (DAG.getDataLayout().isLittleEndian()) 3305 std::swap(Lo, Hi); 3306 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); 3307 } 3308 3309 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, 3310 DAGCombinerInfo &DCI) const { 3311 SDLoc dl(N); 3312 SDValue Src = N->getOperand(0); 3313 3314 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && 3315 Src.getSimpleValueType() == MVT::f64) 3316 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); 3317 3318 return SDValue(); 3319 } 3320 3321 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, 3322 DAGCombinerInfo &DCI) const { 3323 switch (N->getOpcode()) { 3324 default: 3325 break; 3326 case ISD::BITCAST: 3327 return PerformBITCASTCombine(N, DCI); 3328 } 3329 return SDValue(); 3330 } 3331 3332 MachineBasicBlock * 3333 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3334 MachineBasicBlock *BB) const { 3335 switch (MI.getOpcode()) { 3336 default: llvm_unreachable("Unknown SELECT_CC!"); 3337 case SP::SELECT_CC_Int_ICC: 3338 case SP::SELECT_CC_FP_ICC: 3339 case SP::SELECT_CC_DFP_ICC: 3340 case SP::SELECT_CC_QFP_ICC: 3341 if (Subtarget->isV9()) 3342 return expandSelectCC(MI, BB, SP::BPICC); 3343 return expandSelectCC(MI, BB, SP::BCOND); 3344 case SP::SELECT_CC_Int_XCC: 3345 case SP::SELECT_CC_FP_XCC: 3346 case SP::SELECT_CC_DFP_XCC: 3347 case SP::SELECT_CC_QFP_XCC: 3348 return expandSelectCC(MI, BB, SP::BPXCC); 3349 case SP::SELECT_CC_Int_FCC: 3350 case SP::SELECT_CC_FP_FCC: 3351 case SP::SELECT_CC_DFP_FCC: 3352 case SP::SELECT_CC_QFP_FCC: 3353 if (Subtarget->isV9()) 3354 return expandSelectCC(MI, BB, SP::FBCOND_V9); 3355 return expandSelectCC(MI, BB, SP::FBCOND); 3356 } 3357 } 3358 3359 MachineBasicBlock * 3360 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3361 unsigned BROpcode) const { 3362 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3363 DebugLoc dl = MI.getDebugLoc(); 3364 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3365 3366 // To "insert" a SELECT_CC instruction, we actually have to insert the 3367 // triangle control-flow pattern. The incoming instruction knows the 3368 // destination vreg to set, the condition code register to branch on, the 3369 // true/false values to select between, and the condition code for the branch. 3370 // 3371 // We produce the following control flow: 3372 // ThisMBB 3373 // | \ 3374 // | IfFalseMBB 3375 // | / 3376 // SinkMBB 3377 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3378 MachineFunction::iterator It = ++BB->getIterator(); 3379 3380 MachineBasicBlock *ThisMBB = BB; 3381 MachineFunction *F = BB->getParent(); 3382 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3383 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3384 F->insert(It, IfFalseMBB); 3385 F->insert(It, SinkMBB); 3386 3387 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 3388 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 3389 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); 3390 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 3391 3392 // Set the new successors for ThisMBB. 3393 ThisMBB->addSuccessor(IfFalseMBB); 3394 ThisMBB->addSuccessor(SinkMBB); 3395 3396 BuildMI(ThisMBB, dl, TII.get(BROpcode)) 3397 .addMBB(SinkMBB) 3398 .addImm(CC); 3399 3400 // IfFalseMBB just falls through to SinkMBB. 3401 IfFalseMBB->addSuccessor(SinkMBB); 3402 3403 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] 3404 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), 3405 MI.getOperand(0).getReg()) 3406 .addReg(MI.getOperand(1).getReg()) 3407 .addMBB(ThisMBB) 3408 .addReg(MI.getOperand(2).getReg()) 3409 .addMBB(IfFalseMBB); 3410 3411 MI.eraseFromParent(); // The pseudo instruction is gone now. 3412 return SinkMBB; 3413 } 3414 3415 //===----------------------------------------------------------------------===// 3416 // Sparc Inline Assembly Support 3417 //===----------------------------------------------------------------------===// 3418 3419 /// getConstraintType - Given a constraint letter, return the type of 3420 /// constraint it is for this target. 3421 SparcTargetLowering::ConstraintType 3422 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3423 if (Constraint.size() == 1) { 3424 switch (Constraint[0]) { 3425 default: break; 3426 case 'r': 3427 case 'f': 3428 case 'e': 3429 return C_RegisterClass; 3430 case 'I': // SIMM13 3431 return C_Immediate; 3432 } 3433 } 3434 3435 return TargetLowering::getConstraintType(Constraint); 3436 } 3437 3438 TargetLowering::ConstraintWeight SparcTargetLowering:: 3439 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3440 const char *constraint) const { 3441 ConstraintWeight weight = CW_Invalid; 3442 Value *CallOperandVal = info.CallOperandVal; 3443 // If we don't have a value, we can't do a match, 3444 // but allow it at the lowest weight. 3445 if (!CallOperandVal) 3446 return CW_Default; 3447 3448 // Look at the constraint type. 3449 switch (*constraint) { 3450 default: 3451 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3452 break; 3453 case 'I': // SIMM13 3454 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3455 if (isInt<13>(C->getSExtValue())) 3456 weight = CW_Constant; 3457 } 3458 break; 3459 } 3460 return weight; 3461 } 3462 3463 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3464 /// vector. If it is invalid, don't add anything to Ops. 3465 void SparcTargetLowering::LowerAsmOperandForConstraint( 3466 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, 3467 SelectionDAG &DAG) const { 3468 SDValue Result; 3469 3470 // Only support length 1 constraints for now. 3471 if (Constraint.size() > 1) 3472 return; 3473 3474 char ConstraintLetter = Constraint[0]; 3475 switch (ConstraintLetter) { 3476 default: break; 3477 case 'I': 3478 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3479 if (isInt<13>(C->getSExtValue())) { 3480 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3481 Op.getValueType()); 3482 break; 3483 } 3484 return; 3485 } 3486 } 3487 3488 if (Result.getNode()) { 3489 Ops.push_back(Result); 3490 return; 3491 } 3492 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3493 } 3494 3495 std::pair<unsigned, const TargetRegisterClass *> 3496 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3497 StringRef Constraint, 3498 MVT VT) const { 3499 if (Constraint.empty()) 3500 return std::make_pair(0U, nullptr); 3501 3502 if (Constraint.size() == 1) { 3503 switch (Constraint[0]) { 3504 case 'r': 3505 if (VT == MVT::v2i32) 3506 return std::make_pair(0U, &SP::IntPairRegClass); 3507 else if (Subtarget->is64Bit()) 3508 return std::make_pair(0U, &SP::I64RegsRegClass); 3509 else 3510 return std::make_pair(0U, &SP::IntRegsRegClass); 3511 case 'f': 3512 if (VT == MVT::f32 || VT == MVT::i32) 3513 return std::make_pair(0U, &SP::FPRegsRegClass); 3514 else if (VT == MVT::f64 || VT == MVT::i64) 3515 return std::make_pair(0U, &SP::LowDFPRegsRegClass); 3516 else if (VT == MVT::f128) 3517 return std::make_pair(0U, &SP::LowQFPRegsRegClass); 3518 // This will generate an error message 3519 return std::make_pair(0U, nullptr); 3520 case 'e': 3521 if (VT == MVT::f32 || VT == MVT::i32) 3522 return std::make_pair(0U, &SP::FPRegsRegClass); 3523 else if (VT == MVT::f64 || VT == MVT::i64 ) 3524 return std::make_pair(0U, &SP::DFPRegsRegClass); 3525 else if (VT == MVT::f128) 3526 return std::make_pair(0U, &SP::QFPRegsRegClass); 3527 // This will generate an error message 3528 return std::make_pair(0U, nullptr); 3529 } 3530 } 3531 3532 if (Constraint.front() != '{') 3533 return std::make_pair(0U, nullptr); 3534 3535 assert(Constraint.back() == '}' && "Not a brace enclosed constraint?"); 3536 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3537 if (RegName.empty()) 3538 return std::make_pair(0U, nullptr); 3539 3540 unsigned long long RegNo; 3541 // Handle numbered register aliases. 3542 if (RegName[0] == 'r' && 3543 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { 3544 // r0-r7 -> g0-g7 3545 // r8-r15 -> o0-o7 3546 // r16-r23 -> l0-l7 3547 // r24-r31 -> i0-i7 3548 if (RegNo > 31) 3549 return std::make_pair(0U, nullptr); 3550 const char RegTypes[] = {'g', 'o', 'l', 'i'}; 3551 char RegType = RegTypes[RegNo / 8]; 3552 char RegIndex = '0' + (RegNo % 8); 3553 char Tmp[] = {'{', RegType, RegIndex, '}', 0}; 3554 return getRegForInlineAsmConstraint(TRI, Tmp, VT); 3555 } 3556 3557 // Rewrite the fN constraint according to the value type if needed. 3558 if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' && 3559 getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) { 3560 if (VT == MVT::f64 && (RegNo % 2 == 0)) { 3561 return getRegForInlineAsmConstraint( 3562 TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT); 3563 } else if (VT == MVT::f128 && (RegNo % 4 == 0)) { 3564 return getRegForInlineAsmConstraint( 3565 TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT); 3566 } else { 3567 return std::make_pair(0U, nullptr); 3568 } 3569 } 3570 3571 auto ResultPair = 3572 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3573 if (!ResultPair.second) 3574 return std::make_pair(0U, nullptr); 3575 3576 // Force the use of I64Regs over IntRegs for 64-bit values. 3577 if (Subtarget->is64Bit() && VT == MVT::i64) { 3578 assert(ResultPair.second == &SP::IntRegsRegClass && 3579 "Unexpected register class"); 3580 return std::make_pair(ResultPair.first, &SP::I64RegsRegClass); 3581 } 3582 3583 return ResultPair; 3584 } 3585 3586 bool 3587 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3588 // The Sparc target isn't yet aware of offsets. 3589 return false; 3590 } 3591 3592 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3593 SmallVectorImpl<SDValue>& Results, 3594 SelectionDAG &DAG) const { 3595 3596 SDLoc dl(N); 3597 3598 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3599 3600 switch (N->getOpcode()) { 3601 default: 3602 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3603 3604 case ISD::FP_TO_SINT: 3605 case ISD::FP_TO_UINT: 3606 // Custom lower only if it involves f128 or i64. 3607 if (N->getOperand(0).getValueType() != MVT::f128 3608 || N->getValueType(0) != MVT::i64) 3609 return; 3610 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3611 ? RTLIB::FPTOSINT_F128_I64 3612 : RTLIB::FPTOUINT_F128_I64); 3613 3614 Results.push_back(LowerF128Op(SDValue(N, 0), 3615 DAG, 3616 getLibcallName(libCall), 3617 1)); 3618 return; 3619 case ISD::READCYCLECOUNTER: { 3620 assert(Subtarget->hasLeonCycleCounter()); 3621 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); 3622 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); 3623 SDValue Ops[] = { Lo, Hi }; 3624 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); 3625 Results.push_back(Pair); 3626 Results.push_back(N->getOperand(0)); 3627 return; 3628 } 3629 case ISD::SINT_TO_FP: 3630 case ISD::UINT_TO_FP: 3631 // Custom lower only if it involves f128 or i64. 3632 if (N->getValueType(0) != MVT::f128 3633 || N->getOperand(0).getValueType() != MVT::i64) 3634 return; 3635 3636 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3637 ? RTLIB::SINTTOFP_I64_F128 3638 : RTLIB::UINTTOFP_I64_F128); 3639 3640 Results.push_back(LowerF128Op(SDValue(N, 0), 3641 DAG, 3642 getLibcallName(libCall), 3643 1)); 3644 return; 3645 case ISD::LOAD: { 3646 LoadSDNode *Ld = cast<LoadSDNode>(N); 3647 // Custom handling only for i64: turn i64 load into a v2i32 load, 3648 // and a bitcast. 3649 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3650 return; 3651 3652 SDLoc dl(N); 3653 SDValue LoadRes = DAG.getExtLoad( 3654 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), 3655 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, 3656 Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(), 3657 Ld->getAAInfo()); 3658 3659 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3660 Results.push_back(Res); 3661 Results.push_back(LoadRes.getValue(1)); 3662 return; 3663 } 3664 } 3665 } 3666 3667 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3668 bool SparcTargetLowering::useLoadStackGuardNode() const { 3669 if (!Subtarget->isTargetLinux()) 3670 return TargetLowering::useLoadStackGuardNode(); 3671 return true; 3672 } 3673 3674 // Override to disable global variable loading on Linux. 3675 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3676 if (!Subtarget->isTargetLinux()) 3677 return TargetLowering::insertSSPDeclarations(M); 3678 } 3679 3680 void SparcTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 3681 SDNode *Node) const { 3682 assert(MI.getOpcode() == SP::SUBCCrr || MI.getOpcode() == SP::SUBCCri); 3683 // If the result is dead, replace it with %g0. 3684 if (!Node->hasAnyUseOfValue(0)) 3685 MI.getOperand(0).setReg(SP::G0); 3686 } 3687