xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Sparc/SparcISelLowering.cpp (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Sparc uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SparcISelLowering.h"
15 #include "MCTargetDesc/SparcMCExpr.h"
16 #include "MCTargetDesc/SparcMCTargetDesc.h"
17 #include "SparcMachineFunctionInfo.h"
18 #include "SparcRegisterInfo.h"
19 #include "SparcTargetMachine.h"
20 #include "SparcTargetObjectFile.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/DiagnosticInfo.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 using namespace llvm;
38 
39 
40 //===----------------------------------------------------------------------===//
41 // Calling Convention Implementation
42 //===----------------------------------------------------------------------===//
43 
44 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
45                                  MVT &LocVT, CCValAssign::LocInfo &LocInfo,
46                                  ISD::ArgFlagsTy &ArgFlags, CCState &State)
47 {
48   assert (ArgFlags.isSRet());
49 
50   // Assign SRet argument.
51   State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
52                                          0,
53                                          LocVT, LocInfo));
54   return true;
55 }
56 
57 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT,
58                                      MVT &LocVT, CCValAssign::LocInfo &LocInfo,
59                                      ISD::ArgFlagsTy &ArgFlags, CCState &State)
60 {
61   static const MCPhysReg RegList[] = {
62     SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
63   };
64   // Try to get first reg.
65   if (Register Reg = State.AllocateReg(RegList)) {
66     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
67   } else {
68     // Assign whole thing in stack.
69     State.addLoc(CCValAssign::getCustomMem(
70         ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo));
71     return true;
72   }
73 
74   // Try to get second reg.
75   if (Register Reg = State.AllocateReg(RegList))
76     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
77   else
78     State.addLoc(CCValAssign::getCustomMem(
79         ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo));
80   return true;
81 }
82 
83 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT,
84                                          MVT &LocVT, CCValAssign::LocInfo &LocInfo,
85                                          ISD::ArgFlagsTy &ArgFlags, CCState &State)
86 {
87   static const MCPhysReg RegList[] = {
88     SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
89   };
90 
91   // Try to get first reg.
92   if (Register Reg = State.AllocateReg(RegList))
93     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
94   else
95     return false;
96 
97   // Try to get second reg.
98   if (Register Reg = State.AllocateReg(RegList))
99     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
100   else
101     return false;
102 
103   return true;
104 }
105 
106 // Allocate a full-sized argument for the 64-bit ABI.
107 static bool Analyze_CC_Sparc64_Full(bool IsReturn, unsigned &ValNo, MVT &ValVT,
108                                     MVT &LocVT, CCValAssign::LocInfo &LocInfo,
109                                     ISD::ArgFlagsTy &ArgFlags, CCState &State) {
110   assert((LocVT == MVT::f32 || LocVT == MVT::f128
111           || LocVT.getSizeInBits() == 64) &&
112          "Can't handle non-64 bits locations");
113 
114   // Stack space is allocated for all arguments starting from [%fp+BIAS+128].
115   unsigned size      = (LocVT == MVT::f128) ? 16 : 8;
116   Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8);
117   unsigned Offset = State.AllocateStack(size, alignment);
118   unsigned Reg = 0;
119 
120   if (LocVT == MVT::i64 && Offset < 6*8)
121     // Promote integers to %i0-%i5.
122     Reg = SP::I0 + Offset/8;
123   else if (LocVT == MVT::f64 && Offset < 16*8)
124     // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
125     Reg = SP::D0 + Offset/8;
126   else if (LocVT == MVT::f32 && Offset < 16*8)
127     // Promote floats to %f1, %f3, ...
128     Reg = SP::F1 + Offset/4;
129   else if (LocVT == MVT::f128 && Offset < 16*8)
130     // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
131     Reg = SP::Q0 + Offset/16;
132 
133   // Promote to register when possible, otherwise use the stack slot.
134   if (Reg) {
135     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
136     return true;
137   }
138 
139   // Bail out if this is a return CC and we run out of registers to place
140   // values into.
141   if (IsReturn)
142     return false;
143 
144   // This argument goes on the stack in an 8-byte slot.
145   // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
146   // the right-aligned float. The first 4 bytes of the stack slot are undefined.
147   if (LocVT == MVT::f32)
148     Offset += 4;
149 
150   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
151   return true;
152 }
153 
154 // Allocate a half-sized argument for the 64-bit ABI.
155 //
156 // This is used when passing { float, int } structs by value in registers.
157 static bool Analyze_CC_Sparc64_Half(bool IsReturn, unsigned &ValNo, MVT &ValVT,
158                                     MVT &LocVT, CCValAssign::LocInfo &LocInfo,
159                                     ISD::ArgFlagsTy &ArgFlags, CCState &State) {
160   assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
161   unsigned Offset = State.AllocateStack(4, Align(4));
162 
163   if (LocVT == MVT::f32 && Offset < 16*8) {
164     // Promote floats to %f0-%f31.
165     State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
166                                      LocVT, LocInfo));
167     return true;
168   }
169 
170   if (LocVT == MVT::i32 && Offset < 6*8) {
171     // Promote integers to %i0-%i5, using half the register.
172     unsigned Reg = SP::I0 + Offset/8;
173     LocVT = MVT::i64;
174     LocInfo = CCValAssign::AExt;
175 
176     // Set the Custom bit if this i32 goes in the high bits of a register.
177     if (Offset % 8 == 0)
178       State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
179                                              LocVT, LocInfo));
180     else
181       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
182     return true;
183   }
184 
185   // Bail out if this is a return CC and we run out of registers to place
186   // values into.
187   if (IsReturn)
188     return false;
189 
190   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
191   return true;
192 }
193 
194 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
195                             CCValAssign::LocInfo &LocInfo,
196                             ISD::ArgFlagsTy &ArgFlags, CCState &State) {
197   return Analyze_CC_Sparc64_Full(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
198                                  State);
199 }
200 
201 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
202                             CCValAssign::LocInfo &LocInfo,
203                             ISD::ArgFlagsTy &ArgFlags, CCState &State) {
204   return Analyze_CC_Sparc64_Half(false, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
205                                  State);
206 }
207 
208 static bool RetCC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
209                                CCValAssign::LocInfo &LocInfo,
210                                ISD::ArgFlagsTy &ArgFlags, CCState &State) {
211   return Analyze_CC_Sparc64_Full(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
212                                  State);
213 }
214 
215 static bool RetCC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
216                                CCValAssign::LocInfo &LocInfo,
217                                ISD::ArgFlagsTy &ArgFlags, CCState &State) {
218   return Analyze_CC_Sparc64_Half(true, ValNo, ValVT, LocVT, LocInfo, ArgFlags,
219                                  State);
220 }
221 
222 #include "SparcGenCallingConv.inc"
223 
224 // The calling conventions in SparcCallingConv.td are described in terms of the
225 // callee's register window. This function translates registers to the
226 // corresponding caller window %o register.
227 static unsigned toCallerWindow(unsigned Reg) {
228   static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7,
229                 "Unexpected enum");
230   if (Reg >= SP::I0 && Reg <= SP::I7)
231     return Reg - SP::I0 + SP::O0;
232   return Reg;
233 }
234 
235 bool SparcTargetLowering::CanLowerReturn(
236     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
237     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
238   SmallVector<CCValAssign, 16> RVLocs;
239   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
240   return CCInfo.CheckReturn(Outs, Subtarget->is64Bit() ? RetCC_Sparc64
241                                                        : RetCC_Sparc32);
242 }
243 
244 SDValue
245 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
246                                  bool IsVarArg,
247                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
248                                  const SmallVectorImpl<SDValue> &OutVals,
249                                  const SDLoc &DL, SelectionDAG &DAG) const {
250   if (Subtarget->is64Bit())
251     return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
252   return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
253 }
254 
255 SDValue
256 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv,
257                                     bool IsVarArg,
258                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
259                                     const SmallVectorImpl<SDValue> &OutVals,
260                                     const SDLoc &DL, SelectionDAG &DAG) const {
261   MachineFunction &MF = DAG.getMachineFunction();
262 
263   // CCValAssign - represent the assignment of the return value to locations.
264   SmallVector<CCValAssign, 16> RVLocs;
265 
266   // CCState - Info about the registers and stack slot.
267   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
268                  *DAG.getContext());
269 
270   // Analyze return values.
271   CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
272 
273   SDValue Glue;
274   SmallVector<SDValue, 4> RetOps(1, Chain);
275   // Make room for the return address offset.
276   RetOps.push_back(SDValue());
277 
278   // Copy the result values into the output registers.
279   for (unsigned i = 0, realRVLocIdx = 0;
280        i != RVLocs.size();
281        ++i, ++realRVLocIdx) {
282     CCValAssign &VA = RVLocs[i];
283     assert(VA.isRegLoc() && "Can only return in registers!");
284 
285     SDValue Arg = OutVals[realRVLocIdx];
286 
287     if (VA.needsCustom()) {
288       assert(VA.getLocVT() == MVT::v2i32);
289       // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would
290       // happen by default if this wasn't a legal type)
291 
292       SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
293                                   Arg,
294                                   DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout())));
295       SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
296                                   Arg,
297                                   DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout())));
298 
299       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Glue);
300       Glue = Chain.getValue(1);
301       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
302       VA = RVLocs[++i]; // skip ahead to next loc
303       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1,
304                                Glue);
305     } else
306       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue);
307 
308     // Guarantee that all emitted copies are stuck together with flags.
309     Glue = Chain.getValue(1);
310     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
311   }
312 
313   unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
314   // If the function returns a struct, copy the SRetReturnReg to I0
315   if (MF.getFunction().hasStructRetAttr()) {
316     SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
317     Register Reg = SFI->getSRetReturnReg();
318     if (!Reg)
319       llvm_unreachable("sret virtual register not created in the entry block");
320     auto PtrVT = getPointerTy(DAG.getDataLayout());
321     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT);
322     Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Glue);
323     Glue = Chain.getValue(1);
324     RetOps.push_back(DAG.getRegister(SP::I0, PtrVT));
325     RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
326   }
327 
328   RetOps[0] = Chain;  // Update chain.
329   RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32);
330 
331   // Add the glue if we have it.
332   if (Glue.getNode())
333     RetOps.push_back(Glue);
334 
335   return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps);
336 }
337 
338 // Lower return values for the 64-bit ABI.
339 // Return values are passed the exactly the same way as function arguments.
340 SDValue
341 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv,
342                                     bool IsVarArg,
343                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
344                                     const SmallVectorImpl<SDValue> &OutVals,
345                                     const SDLoc &DL, SelectionDAG &DAG) const {
346   // CCValAssign - represent the assignment of the return value to locations.
347   SmallVector<CCValAssign, 16> RVLocs;
348 
349   // CCState - Info about the registers and stack slot.
350   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
351                  *DAG.getContext());
352 
353   // Analyze return values.
354   CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
355 
356   SDValue Glue;
357   SmallVector<SDValue, 4> RetOps(1, Chain);
358 
359   // The second operand on the return instruction is the return address offset.
360   // The return address is always %i7+8 with the 64-bit ABI.
361   RetOps.push_back(DAG.getConstant(8, DL, MVT::i32));
362 
363   // Copy the result values into the output registers.
364   for (unsigned i = 0; i != RVLocs.size(); ++i) {
365     CCValAssign &VA = RVLocs[i];
366     assert(VA.isRegLoc() && "Can only return in registers!");
367     SDValue OutVal = OutVals[i];
368 
369     // Integer return values must be sign or zero extended by the callee.
370     switch (VA.getLocInfo()) {
371     case CCValAssign::Full: break;
372     case CCValAssign::SExt:
373       OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
374       break;
375     case CCValAssign::ZExt:
376       OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
377       break;
378     case CCValAssign::AExt:
379       OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
380       break;
381     default:
382       llvm_unreachable("Unknown loc info!");
383     }
384 
385     // The custom bit on an i32 return value indicates that it should be passed
386     // in the high bits of the register.
387     if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
388       OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
389                            DAG.getConstant(32, DL, MVT::i32));
390 
391       // The next value may go in the low bits of the same register.
392       // Handle both at once.
393       if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
394         SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
395         OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
396         // Skip the next value, it's already done.
397         ++i;
398       }
399     }
400 
401     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Glue);
402 
403     // Guarantee that all emitted copies are stuck together with flags.
404     Glue = Chain.getValue(1);
405     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
406   }
407 
408   RetOps[0] = Chain;  // Update chain.
409 
410   // Add the flag if we have it.
411   if (Glue.getNode())
412     RetOps.push_back(Glue);
413 
414   return DAG.getNode(SPISD::RET_GLUE, DL, MVT::Other, RetOps);
415 }
416 
417 SDValue SparcTargetLowering::LowerFormalArguments(
418     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
419     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
420     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
421   if (Subtarget->is64Bit())
422     return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
423                                    DL, DAG, InVals);
424   return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
425                                  DL, DAG, InVals);
426 }
427 
428 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
429 /// passed in either one or two GPRs, including FP values.  TODO: we should
430 /// pass FP values in FP registers for fastcc functions.
431 SDValue SparcTargetLowering::LowerFormalArguments_32(
432     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
433     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
434     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
435   MachineFunction &MF = DAG.getMachineFunction();
436   MachineRegisterInfo &RegInfo = MF.getRegInfo();
437   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
438 
439   // Assign locations to all of the incoming arguments.
440   SmallVector<CCValAssign, 16> ArgLocs;
441   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
442                  *DAG.getContext());
443   CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
444 
445   const unsigned StackOffset = 92;
446   bool IsLittleEndian = DAG.getDataLayout().isLittleEndian();
447 
448   unsigned InIdx = 0;
449   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
450     CCValAssign &VA = ArgLocs[i];
451 
452     if (Ins[InIdx].Flags.isSRet()) {
453       if (InIdx != 0)
454         report_fatal_error("sparc only supports sret on the first parameter");
455       // Get SRet from [%fp+64].
456       int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true);
457       SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
458       SDValue Arg =
459           DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
460       InVals.push_back(Arg);
461       continue;
462     }
463 
464     if (VA.isRegLoc()) {
465       if (VA.needsCustom()) {
466         assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
467 
468         Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
469         MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
470         SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
471 
472         assert(i+1 < e);
473         CCValAssign &NextVA = ArgLocs[++i];
474 
475         SDValue LoVal;
476         if (NextVA.isMemLoc()) {
477           int FrameIdx = MF.getFrameInfo().
478             CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
479           SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
480           LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
481         } else {
482           Register loReg = MF.addLiveIn(NextVA.getLocReg(),
483                                         &SP::IntRegsRegClass);
484           LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
485         }
486 
487         if (IsLittleEndian)
488           std::swap(LoVal, HiVal);
489 
490         SDValue WholeValue =
491           DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
492         WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue);
493         InVals.push_back(WholeValue);
494         continue;
495       }
496       Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
497       MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
498       SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
499       if (VA.getLocVT() == MVT::f32)
500         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
501       else if (VA.getLocVT() != MVT::i32) {
502         Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
503                           DAG.getValueType(VA.getLocVT()));
504         Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
505       }
506       InVals.push_back(Arg);
507       continue;
508     }
509 
510     assert(VA.isMemLoc());
511 
512     unsigned Offset = VA.getLocMemOffset()+StackOffset;
513     auto PtrVT = getPointerTy(DAG.getDataLayout());
514 
515     if (VA.needsCustom()) {
516       assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32);
517       // If it is double-word aligned, just load.
518       if (Offset % 8 == 0) {
519         int FI = MF.getFrameInfo().CreateFixedObject(8,
520                                                      Offset,
521                                                      true);
522         SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
523         SDValue Load =
524             DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
525         InVals.push_back(Load);
526         continue;
527       }
528 
529       int FI = MF.getFrameInfo().CreateFixedObject(4,
530                                                    Offset,
531                                                    true);
532       SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
533       SDValue HiVal =
534           DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo());
535       int FI2 = MF.getFrameInfo().CreateFixedObject(4,
536                                                     Offset+4,
537                                                     true);
538       SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT);
539 
540       SDValue LoVal =
541           DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo());
542 
543       if (IsLittleEndian)
544         std::swap(LoVal, HiVal);
545 
546       SDValue WholeValue =
547         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
548       WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue);
549       InVals.push_back(WholeValue);
550       continue;
551     }
552 
553     int FI = MF.getFrameInfo().CreateFixedObject(4,
554                                                  Offset,
555                                                  true);
556     SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT);
557     SDValue Load ;
558     if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
559       Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo());
560     } else if (VA.getValVT() == MVT::f128) {
561       report_fatal_error("SPARCv8 does not handle f128 in calls; "
562                          "pass indirectly");
563     } else {
564       // We shouldn't see any other value types here.
565       llvm_unreachable("Unexpected ValVT encountered in frame lowering.");
566     }
567     InVals.push_back(Load);
568   }
569 
570   if (MF.getFunction().hasStructRetAttr()) {
571     // Copy the SRet Argument to SRetReturnReg.
572     SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
573     Register Reg = SFI->getSRetReturnReg();
574     if (!Reg) {
575       Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
576       SFI->setSRetReturnReg(Reg);
577     }
578     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
579     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
580   }
581 
582   // Store remaining ArgRegs to the stack if this is a varargs function.
583   if (isVarArg) {
584     static const MCPhysReg ArgRegs[] = {
585       SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
586     };
587     unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs);
588     const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
589     unsigned ArgOffset = CCInfo.getStackSize();
590     if (NumAllocated == 6)
591       ArgOffset += StackOffset;
592     else {
593       assert(!ArgOffset);
594       ArgOffset = 68+4*NumAllocated;
595     }
596 
597     // Remember the vararg offset for the va_start implementation.
598     FuncInfo->setVarArgsFrameOffset(ArgOffset);
599 
600     std::vector<SDValue> OutChains;
601 
602     for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
603       Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
604       MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
605       SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
606 
607       int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset,
608                                                          true);
609       SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
610 
611       OutChains.push_back(
612           DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo()));
613       ArgOffset += 4;
614     }
615 
616     if (!OutChains.empty()) {
617       OutChains.push_back(Chain);
618       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
619     }
620   }
621 
622   return Chain;
623 }
624 
625 // Lower formal arguments for the 64 bit ABI.
626 SDValue SparcTargetLowering::LowerFormalArguments_64(
627     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
628     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
629     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
630   MachineFunction &MF = DAG.getMachineFunction();
631 
632   // Analyze arguments according to CC_Sparc64.
633   SmallVector<CCValAssign, 16> ArgLocs;
634   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
635                  *DAG.getContext());
636   CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
637 
638   // The argument array begins at %fp+BIAS+128, after the register save area.
639   const unsigned ArgArea = 128;
640 
641   for (const CCValAssign &VA : ArgLocs) {
642     if (VA.isRegLoc()) {
643       // This argument is passed in a register.
644       // All integer register arguments are promoted by the caller to i64.
645 
646       // Create a virtual register for the promoted live-in value.
647       Register VReg = MF.addLiveIn(VA.getLocReg(),
648                                    getRegClassFor(VA.getLocVT()));
649       SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
650 
651       // Get the high bits for i32 struct elements.
652       if (VA.getValVT() == MVT::i32 && VA.needsCustom())
653         Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
654                           DAG.getConstant(32, DL, MVT::i32));
655 
656       // The caller promoted the argument, so insert an Assert?ext SDNode so we
657       // won't promote the value again in this function.
658       switch (VA.getLocInfo()) {
659       case CCValAssign::SExt:
660         Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
661                           DAG.getValueType(VA.getValVT()));
662         break;
663       case CCValAssign::ZExt:
664         Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
665                           DAG.getValueType(VA.getValVT()));
666         break;
667       default:
668         break;
669       }
670 
671       // Truncate the register down to the argument type.
672       if (VA.isExtInLoc())
673         Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
674 
675       InVals.push_back(Arg);
676       continue;
677     }
678 
679     // The registers are exhausted. This argument was passed on the stack.
680     assert(VA.isMemLoc());
681     // The CC_Sparc64_Full/Half functions compute stack offsets relative to the
682     // beginning of the arguments area at %fp+BIAS+128.
683     unsigned Offset = VA.getLocMemOffset() + ArgArea;
684     unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
685     // Adjust offset for extended arguments, SPARC is big-endian.
686     // The caller will have written the full slot with extended bytes, but we
687     // prefer our own extending loads.
688     if (VA.isExtInLoc())
689       Offset += 8 - ValSize;
690     int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true);
691     InVals.push_back(
692         DAG.getLoad(VA.getValVT(), DL, Chain,
693                     DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())),
694                     MachinePointerInfo::getFixedStack(MF, FI)));
695   }
696 
697   if (!IsVarArg)
698     return Chain;
699 
700   // This function takes variable arguments, some of which may have been passed
701   // in registers %i0-%i5. Variable floating point arguments are never passed
702   // in floating point registers. They go on %i0-%i5 or on the stack like
703   // integer arguments.
704   //
705   // The va_start intrinsic needs to know the offset to the first variable
706   // argument.
707   unsigned ArgOffset = CCInfo.getStackSize();
708   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
709   // Skip the 128 bytes of register save area.
710   FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
711                                   Subtarget->getStackPointerBias());
712 
713   // Save the variable arguments that were passed in registers.
714   // The caller is required to reserve stack space for 6 arguments regardless
715   // of how many arguments were actually passed.
716   SmallVector<SDValue, 8> OutChains;
717   for (; ArgOffset < 6*8; ArgOffset += 8) {
718     Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
719     SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
720     int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true);
721     auto PtrVT = getPointerTy(MF.getDataLayout());
722     OutChains.push_back(
723         DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT),
724                      MachinePointerInfo::getFixedStack(MF, FI)));
725   }
726 
727   if (!OutChains.empty())
728     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
729 
730   return Chain;
731 }
732 
733 // Check whether any of the argument registers are reserved
734 static bool isAnyArgRegReserved(const SparcRegisterInfo *TRI,
735                                 const MachineFunction &MF) {
736   // The register window design means that outgoing parameters at O*
737   // will appear in the callee as I*.
738   // Be conservative and check both sides of the register names.
739   bool Outgoing =
740       llvm::any_of(SP::GPROutgoingArgRegClass, [TRI, &MF](MCPhysReg r) {
741         return TRI->isReservedReg(MF, r);
742       });
743   bool Incoming =
744       llvm::any_of(SP::GPRIncomingArgRegClass, [TRI, &MF](MCPhysReg r) {
745         return TRI->isReservedReg(MF, r);
746       });
747   return Outgoing || Incoming;
748 }
749 
750 static void emitReservedArgRegCallError(const MachineFunction &MF) {
751   const Function &F = MF.getFunction();
752   F.getContext().diagnose(DiagnosticInfoUnsupported{
753       F, ("SPARC doesn't support"
754           " function calls if any of the argument registers is reserved.")});
755 }
756 
757 SDValue
758 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
759                                SmallVectorImpl<SDValue> &InVals) const {
760   if (Subtarget->is64Bit())
761     return LowerCall_64(CLI, InVals);
762   return LowerCall_32(CLI, InVals);
763 }
764 
765 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
766                                 const CallBase *Call) {
767   if (Call)
768     return Call->hasFnAttr(Attribute::ReturnsTwice);
769 
770   const Function *CalleeFn = nullptr;
771   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
772     CalleeFn = dyn_cast<Function>(G->getGlobal());
773   } else if (ExternalSymbolSDNode *E =
774              dyn_cast<ExternalSymbolSDNode>(Callee)) {
775     const Function &Fn = DAG.getMachineFunction().getFunction();
776     const Module *M = Fn.getParent();
777     const char *CalleeName = E->getSymbol();
778     CalleeFn = M->getFunction(CalleeName);
779   }
780 
781   if (!CalleeFn)
782     return false;
783   return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
784 }
785 
786 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
787 /// for tail call optimization.
788 bool SparcTargetLowering::IsEligibleForTailCallOptimization(
789     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF) const {
790 
791   auto &Outs = CLI.Outs;
792   auto &Caller = MF.getFunction();
793 
794   // Do not tail call opt functions with "disable-tail-calls" attribute.
795   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
796     return false;
797 
798   // Do not tail call opt if the stack is used to pass parameters.
799   // 64-bit targets have a slightly higher limit since the ABI requires
800   // to allocate some space even when all the parameters fit inside registers.
801   unsigned StackSizeLimit = Subtarget->is64Bit() ? 48 : 0;
802   if (CCInfo.getStackSize() > StackSizeLimit)
803     return false;
804 
805   // Do not tail call opt if either the callee or caller returns
806   // a struct and the other does not.
807   if (!Outs.empty() && Caller.hasStructRetAttr() != Outs[0].Flags.isSRet())
808     return false;
809 
810   // Byval parameters hand the function a pointer directly into the stack area
811   // we want to reuse during a tail call.
812   for (auto &Arg : Outs)
813     if (Arg.Flags.isByVal())
814       return false;
815 
816   return true;
817 }
818 
819 // Lower a call for the 32-bit ABI.
820 SDValue
821 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
822                                   SmallVectorImpl<SDValue> &InVals) const {
823   SelectionDAG &DAG                     = CLI.DAG;
824   SDLoc &dl                             = CLI.DL;
825   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
826   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
827   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
828   SDValue Chain                         = CLI.Chain;
829   SDValue Callee                        = CLI.Callee;
830   bool &isTailCall                      = CLI.IsTailCall;
831   CallingConv::ID CallConv              = CLI.CallConv;
832   bool isVarArg                         = CLI.IsVarArg;
833   MachineFunction &MF = DAG.getMachineFunction();
834 
835   // Analyze operands of the call, assigning locations to each operand.
836   SmallVector<CCValAssign, 16> ArgLocs;
837   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
838                  *DAG.getContext());
839   CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
840 
841   isTailCall = isTailCall && IsEligibleForTailCallOptimization(
842                                  CCInfo, CLI, DAG.getMachineFunction());
843 
844   // Get the size of the outgoing arguments stack space requirement.
845   unsigned ArgsSize = CCInfo.getStackSize();
846 
847   // Keep stack frames 8-byte aligned.
848   ArgsSize = (ArgsSize+7) & ~7;
849 
850   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
851 
852   // Create local copies for byval args.
853   SmallVector<SDValue, 8> ByValArgs;
854   for (unsigned i = 0,  e = Outs.size(); i != e; ++i) {
855     ISD::ArgFlagsTy Flags = Outs[i].Flags;
856     if (!Flags.isByVal())
857       continue;
858 
859     SDValue Arg = OutVals[i];
860     unsigned Size = Flags.getByValSize();
861     Align Alignment = Flags.getNonZeroByValAlign();
862 
863     if (Size > 0U) {
864       int FI = MFI.CreateStackObject(Size, Alignment, false);
865       SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
866       SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32);
867 
868       Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment,
869                             false,        // isVolatile,
870                             (Size <= 32), // AlwaysInline if size <= 32,
871                             /*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
872                             MachinePointerInfo());
873       ByValArgs.push_back(FIPtr);
874     }
875     else {
876       SDValue nullVal;
877       ByValArgs.push_back(nullVal);
878     }
879   }
880 
881   assert(!isTailCall || ArgsSize == 0);
882 
883   if (!isTailCall)
884     Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl);
885 
886   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
887   SmallVector<SDValue, 8> MemOpChains;
888 
889   const unsigned StackOffset = 92;
890   bool hasStructRetAttr = false;
891   unsigned SRetArgSize = 0;
892   // Walk the register/memloc assignments, inserting copies/loads.
893   for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
894        i != e;
895        ++i, ++realArgIdx) {
896     CCValAssign &VA = ArgLocs[i];
897     SDValue Arg = OutVals[realArgIdx];
898 
899     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
900 
901     // Use local copy if it is a byval arg.
902     if (Flags.isByVal()) {
903       Arg = ByValArgs[byvalArgIdx++];
904       if (!Arg) {
905         continue;
906       }
907     }
908 
909     // Promote the value if needed.
910     switch (VA.getLocInfo()) {
911     default: llvm_unreachable("Unknown loc info!");
912     case CCValAssign::Full: break;
913     case CCValAssign::SExt:
914       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
915       break;
916     case CCValAssign::ZExt:
917       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
918       break;
919     case CCValAssign::AExt:
920       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
921       break;
922     case CCValAssign::BCvt:
923       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
924       break;
925     }
926 
927     if (Flags.isSRet()) {
928       assert(VA.needsCustom());
929 
930       if (isTailCall)
931         continue;
932 
933       // store SRet argument in %sp+64
934       SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
935       SDValue PtrOff = DAG.getIntPtrConstant(64, dl);
936       PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
937       MemOpChains.push_back(
938           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
939       hasStructRetAttr = true;
940       // sret only allowed on first argument
941       assert(Outs[realArgIdx].OrigArgIndex == 0);
942       SRetArgSize =
943           DAG.getDataLayout().getTypeAllocSize(CLI.getArgs()[0].IndirectType);
944       continue;
945     }
946 
947     if (VA.needsCustom()) {
948       assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32);
949 
950       if (VA.isMemLoc()) {
951         unsigned Offset = VA.getLocMemOffset() + StackOffset;
952         // if it is double-word aligned, just store.
953         if (Offset % 8 == 0) {
954           SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
955           SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
956           PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
957           MemOpChains.push_back(
958               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
959           continue;
960         }
961       }
962 
963       if (VA.getLocVT() == MVT::f64) {
964         // Move from the float value from float registers into the
965         // integer registers.
966         if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg))
967           Arg = bitcastConstantFPToInt(C, dl, DAG);
968         else
969           Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg);
970       }
971 
972       SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
973                                   Arg,
974                                   DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout())));
975       SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
976                                   Arg,
977                                   DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout())));
978 
979       if (VA.isRegLoc()) {
980         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0));
981         assert(i+1 != e);
982         CCValAssign &NextVA = ArgLocs[++i];
983         if (NextVA.isRegLoc()) {
984           RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1));
985         } else {
986           // Store the second part in stack.
987           unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
988           SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
989           SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
990           PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
991           MemOpChains.push_back(
992               DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
993         }
994       } else {
995         unsigned Offset = VA.getLocMemOffset() + StackOffset;
996         // Store the first part.
997         SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
998         SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
999         PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
1000         MemOpChains.push_back(
1001             DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo()));
1002         // Store the second part.
1003         PtrOff = DAG.getIntPtrConstant(Offset + 4, dl);
1004         PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
1005         MemOpChains.push_back(
1006             DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo()));
1007       }
1008       continue;
1009     }
1010 
1011     // Arguments that can be passed on register must be kept at
1012     // RegsToPass vector
1013     if (VA.isRegLoc()) {
1014       if (VA.getLocVT() != MVT::f32) {
1015         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1016         continue;
1017       }
1018       Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
1019       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1020       continue;
1021     }
1022 
1023     assert(VA.isMemLoc());
1024 
1025     // Create a store off the stack pointer for this argument.
1026     SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
1027     SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset,
1028                                            dl);
1029     PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
1030     MemOpChains.push_back(
1031         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
1032   }
1033 
1034 
1035   // Emit all stores, make sure the occur before any copies into physregs.
1036   if (!MemOpChains.empty())
1037     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1038 
1039   // Build a sequence of copy-to-reg nodes chained together with token
1040   // chain and flag operands which copy the outgoing args into registers.
1041   // The InGlue in necessary since all emitted instructions must be
1042   // stuck together.
1043   SDValue InGlue;
1044   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1045     Register Reg = RegsToPass[i].first;
1046     if (!isTailCall)
1047       Reg = toCallerWindow(Reg);
1048     Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InGlue);
1049     InGlue = Chain.getValue(1);
1050   }
1051 
1052   bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
1053 
1054   // If the callee is a GlobalAddress node (quite common, every direct call is)
1055   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1056   // Likewise ExternalSymbol -> TargetExternalSymbol.
1057   unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
1058                                         : SparcMCExpr::VK_Sparc_WDISP30;
1059   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1060     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
1061   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1062     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
1063 
1064   // Returns a chain & a flag for retval copy to use
1065   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1066   SmallVector<SDValue, 8> Ops;
1067   Ops.push_back(Chain);
1068   Ops.push_back(Callee);
1069   if (hasStructRetAttr)
1070     Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32));
1071   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1072     Register Reg = RegsToPass[i].first;
1073     if (!isTailCall)
1074       Reg = toCallerWindow(Reg);
1075     Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType()));
1076   }
1077 
1078   // Add a register mask operand representing the call-preserved registers.
1079   const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1080   const uint32_t *Mask =
1081       ((hasReturnsTwice)
1082            ? TRI->getRTCallPreservedMask(CallConv)
1083            : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv));
1084 
1085   if (isAnyArgRegReserved(TRI, MF))
1086     emitReservedArgRegCallError(MF);
1087 
1088   assert(Mask && "Missing call preserved mask for calling convention");
1089   Ops.push_back(DAG.getRegisterMask(Mask));
1090 
1091   if (InGlue.getNode())
1092     Ops.push_back(InGlue);
1093 
1094   if (isTailCall) {
1095     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
1096     return DAG.getNode(SPISD::TAIL_CALL, dl, MVT::Other, Ops);
1097   }
1098 
1099   Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
1100   InGlue = Chain.getValue(1);
1101 
1102   Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, dl);
1103   InGlue = Chain.getValue(1);
1104 
1105   // Assign locations to each value returned by this call.
1106   SmallVector<CCValAssign, 16> RVLocs;
1107   CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1108                  *DAG.getContext());
1109 
1110   RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
1111 
1112   // Copy all of the result registers out of their specified physreg.
1113   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1114     assert(RVLocs[i].isRegLoc() && "Can only return in registers!");
1115     if (RVLocs[i].getLocVT() == MVT::v2i32) {
1116       SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32);
1117       SDValue Lo = DAG.getCopyFromReg(
1118           Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InGlue);
1119       Chain = Lo.getValue(1);
1120       InGlue = Lo.getValue(2);
1121       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo,
1122                         DAG.getConstant(0, dl, MVT::i32));
1123       SDValue Hi = DAG.getCopyFromReg(
1124           Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InGlue);
1125       Chain = Hi.getValue(1);
1126       InGlue = Hi.getValue(2);
1127       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi,
1128                         DAG.getConstant(1, dl, MVT::i32));
1129       InVals.push_back(Vec);
1130     } else {
1131       Chain =
1132           DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
1133                              RVLocs[i].getValVT(), InGlue)
1134               .getValue(1);
1135       InGlue = Chain.getValue(2);
1136       InVals.push_back(Chain.getValue(0));
1137     }
1138   }
1139 
1140   return Chain;
1141 }
1142 
1143 // FIXME? Maybe this could be a TableGen attribute on some registers and
1144 // this table could be generated automatically from RegInfo.
1145 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT,
1146                                                 const MachineFunction &MF) const {
1147   Register Reg = StringSwitch<Register>(RegName)
1148     .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3)
1149     .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7)
1150     .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3)
1151     .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7)
1152     .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3)
1153     .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7)
1154     .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3)
1155     .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7)
1156     .Default(0);
1157 
1158   // If we're directly referencing register names
1159   // (e.g in GCC C extension `register int r asm("g1");`),
1160   // make sure that said register is in the reserve list.
1161   const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1162   if (!TRI->isReservedReg(MF, Reg))
1163     Reg = 0;
1164 
1165   if (Reg)
1166     return Reg;
1167 
1168   report_fatal_error("Invalid register name global variable");
1169 }
1170 
1171 // Fixup floating point arguments in the ... part of a varargs call.
1172 //
1173 // The SPARC v9 ABI requires that floating point arguments are treated the same
1174 // as integers when calling a varargs function. This does not apply to the
1175 // fixed arguments that are part of the function's prototype.
1176 //
1177 // This function post-processes a CCValAssign array created by
1178 // AnalyzeCallOperands().
1179 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
1180                                    ArrayRef<ISD::OutputArg> Outs) {
1181   for (CCValAssign &VA : ArgLocs) {
1182     MVT ValTy = VA.getLocVT();
1183     // FIXME: What about f32 arguments? C promotes them to f64 when calling
1184     // varargs functions.
1185     if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
1186       continue;
1187     // The fixed arguments to a varargs function still go in FP registers.
1188     if (Outs[VA.getValNo()].IsFixed)
1189       continue;
1190 
1191     // This floating point argument should be reassigned.
1192     // Determine the offset into the argument array.
1193     Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
1194     unsigned argSize  = (ValTy == MVT::f64) ? 8 : 16;
1195     unsigned Offset = argSize * (VA.getLocReg() - firstReg);
1196     assert(Offset < 16*8 && "Offset out of range, bad register enum?");
1197 
1198     if (Offset < 6*8) {
1199       // This argument should go in %i0-%i5.
1200       unsigned IReg = SP::I0 + Offset/8;
1201       if (ValTy == MVT::f64)
1202         // Full register, just bitconvert into i64.
1203         VA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), IReg, MVT::i64,
1204                                  CCValAssign::BCvt);
1205       else {
1206         assert(ValTy == MVT::f128 && "Unexpected type!");
1207         // Full register, just bitconvert into i128 -- We will lower this into
1208         // two i64s in LowerCall_64.
1209         VA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), IReg,
1210                                        MVT::i128, CCValAssign::BCvt);
1211       }
1212     } else {
1213       // This needs to go to memory, we're out of integer registers.
1214       VA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), Offset,
1215                                VA.getLocVT(), VA.getLocInfo());
1216     }
1217   }
1218 }
1219 
1220 // Lower a call for the 64-bit ABI.
1221 SDValue
1222 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
1223                                   SmallVectorImpl<SDValue> &InVals) const {
1224   SelectionDAG &DAG = CLI.DAG;
1225   SDLoc DL = CLI.DL;
1226   SDValue Chain = CLI.Chain;
1227   auto PtrVT = getPointerTy(DAG.getDataLayout());
1228   MachineFunction &MF = DAG.getMachineFunction();
1229 
1230   // Analyze operands of the call, assigning locations to each operand.
1231   SmallVector<CCValAssign, 16> ArgLocs;
1232   CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
1233                  *DAG.getContext());
1234   CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
1235 
1236   CLI.IsTailCall = CLI.IsTailCall && IsEligibleForTailCallOptimization(
1237                                          CCInfo, CLI, DAG.getMachineFunction());
1238 
1239   // Get the size of the outgoing arguments stack space requirement.
1240   // The stack offset computed by CC_Sparc64 includes all arguments.
1241   // Called functions expect 6 argument words to exist in the stack frame, used
1242   // or not.
1243   unsigned StackReserved = 6 * 8u;
1244   unsigned ArgsSize = std::max<unsigned>(StackReserved, CCInfo.getStackSize());
1245 
1246   // Keep stack frames 16-byte aligned.
1247   ArgsSize = alignTo(ArgsSize, 16);
1248 
1249   // Varargs calls require special treatment.
1250   if (CLI.IsVarArg)
1251     fixupVariableFloatArgs(ArgLocs, CLI.Outs);
1252 
1253   assert(!CLI.IsTailCall || ArgsSize == StackReserved);
1254 
1255   // Adjust the stack pointer to make room for the arguments.
1256   // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
1257   // with more than 6 arguments.
1258   if (!CLI.IsTailCall)
1259     Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL);
1260 
1261   // Collect the set of registers to pass to the function and their values.
1262   // This will be emitted as a sequence of CopyToReg nodes glued to the call
1263   // instruction.
1264   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
1265 
1266   // Collect chains from all the memory opeations that copy arguments to the
1267   // stack. They must follow the stack pointer adjustment above and precede the
1268   // call instruction itself.
1269   SmallVector<SDValue, 8> MemOpChains;
1270 
1271   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1272     const CCValAssign &VA = ArgLocs[i];
1273     SDValue Arg = CLI.OutVals[i];
1274 
1275     // Promote the value if needed.
1276     switch (VA.getLocInfo()) {
1277     default:
1278       llvm_unreachable("Unknown location info!");
1279     case CCValAssign::Full:
1280       break;
1281     case CCValAssign::SExt:
1282       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
1283       break;
1284     case CCValAssign::ZExt:
1285       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
1286       break;
1287     case CCValAssign::AExt:
1288       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
1289       break;
1290     case CCValAssign::BCvt:
1291       // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
1292       // SPARC does not support i128 natively. Lower it into two i64, see below.
1293       if (!VA.needsCustom() || VA.getValVT() != MVT::f128
1294           || VA.getLocVT() != MVT::i128)
1295         Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1296       break;
1297     }
1298 
1299     if (VA.isRegLoc()) {
1300       if (VA.needsCustom() && VA.getValVT() == MVT::f128
1301           && VA.getLocVT() == MVT::i128) {
1302         // Store and reload into the integer register reg and reg+1.
1303         unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
1304         unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
1305         SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1306         SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL);
1307         HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff);
1308         SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL);
1309         LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff);
1310 
1311         // Store to %sp+BIAS+128+Offset
1312         SDValue Store =
1313             DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo());
1314         // Load into Reg and Reg+1
1315         SDValue Hi64 =
1316             DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo());
1317         SDValue Lo64 =
1318             DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo());
1319 
1320         Register HiReg = VA.getLocReg();
1321         Register LoReg = VA.getLocReg() + 1;
1322         if (!CLI.IsTailCall) {
1323           HiReg = toCallerWindow(HiReg);
1324           LoReg = toCallerWindow(LoReg);
1325         }
1326 
1327         RegsToPass.push_back(std::make_pair(HiReg, Hi64));
1328         RegsToPass.push_back(std::make_pair(LoReg, Lo64));
1329         continue;
1330       }
1331 
1332       // The custom bit on an i32 return value indicates that it should be
1333       // passed in the high bits of the register.
1334       if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
1335         Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
1336                           DAG.getConstant(32, DL, MVT::i32));
1337 
1338         // The next value may go in the low bits of the same register.
1339         // Handle both at once.
1340         if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
1341             ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
1342           SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
1343                                    CLI.OutVals[i+1]);
1344           Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
1345           // Skip the next value, it's already done.
1346           ++i;
1347         }
1348       }
1349 
1350       Register Reg = VA.getLocReg();
1351       if (!CLI.IsTailCall)
1352         Reg = toCallerWindow(Reg);
1353       RegsToPass.push_back(std::make_pair(Reg, Arg));
1354       continue;
1355     }
1356 
1357     assert(VA.isMemLoc());
1358 
1359     // Create a store off the stack pointer for this argument.
1360     SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT);
1361     // The argument area starts at %fp+BIAS+128 in the callee frame,
1362     // %sp+BIAS+128 in ours.
1363     SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
1364                                            Subtarget->getStackPointerBias() +
1365                                            128, DL);
1366     PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
1367     MemOpChains.push_back(
1368         DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
1369   }
1370 
1371   // Emit all stores, make sure they occur before the call.
1372   if (!MemOpChains.empty())
1373     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1374 
1375   // Build a sequence of CopyToReg nodes glued together with token chain and
1376   // glue operands which copy the outgoing args into registers. The InGlue is
1377   // necessary since all emitted instructions must be stuck together in order
1378   // to pass the live physical registers.
1379   SDValue InGlue;
1380   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1381     Chain = DAG.getCopyToReg(Chain, DL,
1382                              RegsToPass[i].first, RegsToPass[i].second, InGlue);
1383     InGlue = Chain.getValue(1);
1384   }
1385 
1386   // If the callee is a GlobalAddress node (quite common, every direct call is)
1387   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1388   // Likewise ExternalSymbol -> TargetExternalSymbol.
1389   SDValue Callee = CLI.Callee;
1390   bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB);
1391   unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30
1392                                         : SparcMCExpr::VK_Sparc_WDISP30;
1393   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1394     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF);
1395   else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1396     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF);
1397 
1398   // Build the operands for the call instruction itself.
1399   SmallVector<SDValue, 8> Ops;
1400   Ops.push_back(Chain);
1401   Ops.push_back(Callee);
1402   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1403     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1404                                   RegsToPass[i].second.getValueType()));
1405 
1406   // Add a register mask operand representing the call-preserved registers.
1407   const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo();
1408   const uint32_t *Mask =
1409       ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
1410                          : TRI->getCallPreservedMask(DAG.getMachineFunction(),
1411                                                      CLI.CallConv));
1412 
1413   if (isAnyArgRegReserved(TRI, MF))
1414     emitReservedArgRegCallError(MF);
1415 
1416   assert(Mask && "Missing call preserved mask for calling convention");
1417   Ops.push_back(DAG.getRegisterMask(Mask));
1418 
1419   // Make sure the CopyToReg nodes are glued to the call instruction which
1420   // consumes the registers.
1421   if (InGlue.getNode())
1422     Ops.push_back(InGlue);
1423 
1424   // Now the call itself.
1425   if (CLI.IsTailCall) {
1426     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
1427     return DAG.getNode(SPISD::TAIL_CALL, DL, MVT::Other, Ops);
1428   }
1429   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1430   Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
1431   InGlue = Chain.getValue(1);
1432 
1433   // Revert the stack pointer immediately after the call.
1434   Chain = DAG.getCALLSEQ_END(Chain, ArgsSize, 0, InGlue, DL);
1435   InGlue = Chain.getValue(1);
1436 
1437   // Now extract the return values. This is more or less the same as
1438   // LowerFormalArguments_64.
1439 
1440   // Assign locations to each value returned by this call.
1441   SmallVector<CCValAssign, 16> RVLocs;
1442   CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
1443                  *DAG.getContext());
1444 
1445   // Set inreg flag manually for codegen generated library calls that
1446   // return float.
1447   if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB)
1448     CLI.Ins[0].Flags.setInReg();
1449 
1450   RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
1451 
1452   // Copy all of the result registers out of their specified physreg.
1453   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1454     CCValAssign &VA = RVLocs[i];
1455     assert(VA.isRegLoc() && "Can only return in registers!");
1456     unsigned Reg = toCallerWindow(VA.getLocReg());
1457 
1458     // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
1459     // reside in the same register in the high and low bits. Reuse the
1460     // CopyFromReg previous node to avoid duplicate copies.
1461     SDValue RV;
1462     if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
1463       if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
1464         RV = Chain.getValue(0);
1465 
1466     // But usually we'll create a new CopyFromReg for a different register.
1467     if (!RV.getNode()) {
1468       RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
1469       Chain = RV.getValue(1);
1470       InGlue = Chain.getValue(2);
1471     }
1472 
1473     // Get the high bits for i32 struct elements.
1474     if (VA.getValVT() == MVT::i32 && VA.needsCustom())
1475       RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
1476                        DAG.getConstant(32, DL, MVT::i32));
1477 
1478     // The callee promoted the return value, so insert an Assert?ext SDNode so
1479     // we won't promote the value again in this function.
1480     switch (VA.getLocInfo()) {
1481     case CCValAssign::SExt:
1482       RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
1483                        DAG.getValueType(VA.getValVT()));
1484       break;
1485     case CCValAssign::ZExt:
1486       RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
1487                        DAG.getValueType(VA.getValVT()));
1488       break;
1489     default:
1490       break;
1491     }
1492 
1493     // Truncate the register down to the return value type.
1494     if (VA.isExtInLoc())
1495       RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
1496 
1497     InVals.push_back(RV);
1498   }
1499 
1500   return Chain;
1501 }
1502 
1503 //===----------------------------------------------------------------------===//
1504 // TargetLowering Implementation
1505 //===----------------------------------------------------------------------===//
1506 
1507 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
1508   if (AI->getOperation() == AtomicRMWInst::Xchg &&
1509       AI->getType()->getPrimitiveSizeInBits() == 32)
1510     return AtomicExpansionKind::None; // Uses xchg instruction
1511 
1512   return AtomicExpansionKind::CmpXChg;
1513 }
1514 
1515 /// intCondCCodeToRcond - Convert a DAG integer condition code to a SPARC
1516 /// rcond condition.
1517 static SPCC::CondCodes intCondCCodeToRcond(ISD::CondCode CC) {
1518   switch (CC) {
1519   default:
1520     llvm_unreachable("Unknown/unsigned integer condition code!");
1521   case ISD::SETEQ:
1522     return SPCC::REG_Z;
1523   case ISD::SETNE:
1524     return SPCC::REG_NZ;
1525   case ISD::SETLT:
1526     return SPCC::REG_LZ;
1527   case ISD::SETGT:
1528     return SPCC::REG_GZ;
1529   case ISD::SETLE:
1530     return SPCC::REG_LEZ;
1531   case ISD::SETGE:
1532     return SPCC::REG_GEZ;
1533   }
1534 }
1535 
1536 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
1537 /// condition.
1538 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
1539   switch (CC) {
1540   default: llvm_unreachable("Unknown integer condition code!");
1541   case ISD::SETEQ:  return SPCC::ICC_E;
1542   case ISD::SETNE:  return SPCC::ICC_NE;
1543   case ISD::SETLT:  return SPCC::ICC_L;
1544   case ISD::SETGT:  return SPCC::ICC_G;
1545   case ISD::SETLE:  return SPCC::ICC_LE;
1546   case ISD::SETGE:  return SPCC::ICC_GE;
1547   case ISD::SETULT: return SPCC::ICC_CS;
1548   case ISD::SETULE: return SPCC::ICC_LEU;
1549   case ISD::SETUGT: return SPCC::ICC_GU;
1550   case ISD::SETUGE: return SPCC::ICC_CC;
1551   }
1552 }
1553 
1554 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
1555 /// FCC condition.
1556 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
1557   switch (CC) {
1558   default: llvm_unreachable("Unknown fp condition code!");
1559   case ISD::SETEQ:
1560   case ISD::SETOEQ: return SPCC::FCC_E;
1561   case ISD::SETNE:
1562   case ISD::SETUNE: return SPCC::FCC_NE;
1563   case ISD::SETLT:
1564   case ISD::SETOLT: return SPCC::FCC_L;
1565   case ISD::SETGT:
1566   case ISD::SETOGT: return SPCC::FCC_G;
1567   case ISD::SETLE:
1568   case ISD::SETOLE: return SPCC::FCC_LE;
1569   case ISD::SETGE:
1570   case ISD::SETOGE: return SPCC::FCC_GE;
1571   case ISD::SETULT: return SPCC::FCC_UL;
1572   case ISD::SETULE: return SPCC::FCC_ULE;
1573   case ISD::SETUGT: return SPCC::FCC_UG;
1574   case ISD::SETUGE: return SPCC::FCC_UGE;
1575   case ISD::SETUO:  return SPCC::FCC_U;
1576   case ISD::SETO:   return SPCC::FCC_O;
1577   case ISD::SETONE: return SPCC::FCC_LG;
1578   case ISD::SETUEQ: return SPCC::FCC_UE;
1579   }
1580 }
1581 
1582 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM,
1583                                          const SparcSubtarget &STI)
1584     : TargetLowering(TM), Subtarget(&STI) {
1585   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
1586 
1587   // Instructions which use registers as conditionals examine all the
1588   // bits (as does the pseudo SELECT_CC expansion). I don't think it
1589   // matters much whether it's ZeroOrOneBooleanContent, or
1590   // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the
1591   // former.
1592   setBooleanContents(ZeroOrOneBooleanContent);
1593   setBooleanVectorContents(ZeroOrOneBooleanContent);
1594 
1595   // Set up the register classes.
1596   addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
1597   if (!Subtarget->useSoftFloat()) {
1598     addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
1599     addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
1600     addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
1601   }
1602   if (Subtarget->is64Bit()) {
1603     addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
1604   } else {
1605     // On 32bit sparc, we define a double-register 32bit register
1606     // class, as well. This is modeled in LLVM as a 2-vector of i32.
1607     addRegisterClass(MVT::v2i32, &SP::IntPairRegClass);
1608 
1609     // ...but almost all operations must be expanded, so set that as
1610     // the default.
1611     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
1612       setOperationAction(Op, MVT::v2i32, Expand);
1613     }
1614     // Truncating/extending stores/loads are also not supported.
1615     for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1616       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand);
1617       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand);
1618       setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand);
1619 
1620       setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand);
1621       setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand);
1622       setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand);
1623 
1624       setTruncStoreAction(VT, MVT::v2i32, Expand);
1625       setTruncStoreAction(MVT::v2i32, VT, Expand);
1626     }
1627     // However, load and store *are* legal.
1628     setOperationAction(ISD::LOAD, MVT::v2i32, Legal);
1629     setOperationAction(ISD::STORE, MVT::v2i32, Legal);
1630     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal);
1631     setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal);
1632 
1633     // And we need to promote i64 loads/stores into vector load/store
1634     setOperationAction(ISD::LOAD, MVT::i64, Custom);
1635     setOperationAction(ISD::STORE, MVT::i64, Custom);
1636 
1637     // Sadly, this doesn't work:
1638     //    AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
1639     //    AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
1640   }
1641 
1642   // Turn FP extload into load/fpextend
1643   for (MVT VT : MVT::fp_valuetypes()) {
1644     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1645     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1646     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
1647   }
1648 
1649   // Sparc doesn't have i1 sign extending load
1650   for (MVT VT : MVT::integer_valuetypes())
1651     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1652 
1653   // Turn FP truncstore into trunc + store.
1654   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1655   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1656   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1657   setTruncStoreAction(MVT::f128, MVT::f16, Expand);
1658   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1659   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1660 
1661   // Custom legalize GlobalAddress nodes into LO/HI parts.
1662   setOperationAction(ISD::GlobalAddress, PtrVT, Custom);
1663   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
1664   setOperationAction(ISD::ConstantPool, PtrVT, Custom);
1665   setOperationAction(ISD::BlockAddress, PtrVT, Custom);
1666 
1667   // Sparc doesn't have sext_inreg, replace them with shl/sra
1668   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1669   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
1670   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
1671 
1672   // Sparc has no REM or DIVREM operations.
1673   setOperationAction(ISD::UREM, MVT::i32, Expand);
1674   setOperationAction(ISD::SREM, MVT::i32, Expand);
1675   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1676   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1677 
1678   // ... nor does SparcV9.
1679   if (Subtarget->is64Bit()) {
1680     setOperationAction(ISD::UREM, MVT::i64, Expand);
1681     setOperationAction(ISD::SREM, MVT::i64, Expand);
1682     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1683     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1684   }
1685 
1686   // Custom expand fp<->sint
1687   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1688   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1689   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
1690   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
1691 
1692   // Custom Expand fp<->uint
1693   setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1694   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1695   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
1696   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
1697 
1698   // Lower f16 conversion operations into library calls
1699   setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1700   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1701   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1702   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1703   setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand);
1704   setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand);
1705 
1706   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
1707   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
1708 
1709   // Sparc has no select or setcc: expand to SELECT_CC.
1710   setOperationAction(ISD::SELECT, MVT::i32, Expand);
1711   setOperationAction(ISD::SELECT, MVT::f32, Expand);
1712   setOperationAction(ISD::SELECT, MVT::f64, Expand);
1713   setOperationAction(ISD::SELECT, MVT::f128, Expand);
1714 
1715   setOperationAction(ISD::SETCC, MVT::i32, Expand);
1716   setOperationAction(ISD::SETCC, MVT::f32, Expand);
1717   setOperationAction(ISD::SETCC, MVT::f64, Expand);
1718   setOperationAction(ISD::SETCC, MVT::f128, Expand);
1719 
1720   // Sparc doesn't have BRCOND either, it has BR_CC.
1721   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
1722   setOperationAction(ISD::BRIND, MVT::Other, Expand);
1723   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1724   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1725   setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1726   setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1727   setOperationAction(ISD::BR_CC, MVT::f128, Custom);
1728 
1729   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1730   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1731   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1732   setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1733 
1734   setOperationAction(ISD::ADDC, MVT::i32, Custom);
1735   setOperationAction(ISD::ADDE, MVT::i32, Custom);
1736   setOperationAction(ISD::SUBC, MVT::i32, Custom);
1737   setOperationAction(ISD::SUBE, MVT::i32, Custom);
1738 
1739   if (Subtarget->is64Bit()) {
1740     setOperationAction(ISD::ADDC, MVT::i64, Custom);
1741     setOperationAction(ISD::ADDE, MVT::i64, Custom);
1742     setOperationAction(ISD::SUBC, MVT::i64, Custom);
1743     setOperationAction(ISD::SUBE, MVT::i64, Custom);
1744     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
1745     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
1746     setOperationAction(ISD::SELECT, MVT::i64, Expand);
1747     setOperationAction(ISD::SETCC, MVT::i64, Expand);
1748     setOperationAction(ISD::BR_CC, MVT::i64, Custom);
1749     setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
1750 
1751     setOperationAction(ISD::CTPOP, MVT::i64,
1752                        Subtarget->usePopc() ? Legal : Expand);
1753     setOperationAction(ISD::CTTZ , MVT::i64, Expand);
1754     setOperationAction(ISD::CTLZ , MVT::i64, Expand);
1755     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1756     setOperationAction(ISD::ROTL , MVT::i64, Expand);
1757     setOperationAction(ISD::ROTR , MVT::i64, Expand);
1758     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
1759   }
1760 
1761   // ATOMICs.
1762   // Atomics are supported on SparcV9. 32-bit atomics are also
1763   // supported by some Leon SparcV8 variants. Otherwise, atomics
1764   // are unsupported.
1765   if (Subtarget->isV9()) {
1766     // TODO: we _ought_ to be able to support 64-bit atomics on 32-bit sparcv9,
1767     // but it hasn't been implemented in the backend yet.
1768     if (Subtarget->is64Bit())
1769       setMaxAtomicSizeInBitsSupported(64);
1770     else
1771       setMaxAtomicSizeInBitsSupported(32);
1772   } else if (Subtarget->hasLeonCasa())
1773     setMaxAtomicSizeInBitsSupported(32);
1774   else
1775     setMaxAtomicSizeInBitsSupported(0);
1776 
1777   setMinCmpXchgSizeInBits(32);
1778 
1779   setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
1780 
1781   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
1782 
1783   // Custom Lower Atomic LOAD/STORE
1784   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1785   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1786 
1787   if (Subtarget->is64Bit()) {
1788     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
1789     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
1790     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
1791     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
1792   }
1793 
1794   if (!Subtarget->isV9()) {
1795     // SparcV8 does not have FNEGD and FABSD.
1796     setOperationAction(ISD::FNEG, MVT::f64, Custom);
1797     setOperationAction(ISD::FABS, MVT::f64, Custom);
1798   }
1799 
1800   setOperationAction(ISD::FSIN , MVT::f128, Expand);
1801   setOperationAction(ISD::FCOS , MVT::f128, Expand);
1802   setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
1803   setOperationAction(ISD::FREM , MVT::f128, Expand);
1804   setOperationAction(ISD::FMA  , MVT::f128, Expand);
1805   setOperationAction(ISD::FSIN , MVT::f64, Expand);
1806   setOperationAction(ISD::FCOS , MVT::f64, Expand);
1807   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1808   setOperationAction(ISD::FREM , MVT::f64, Expand);
1809   setOperationAction(ISD::FMA  , MVT::f64, Expand);
1810   setOperationAction(ISD::FSIN , MVT::f32, Expand);
1811   setOperationAction(ISD::FCOS , MVT::f32, Expand);
1812   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1813   setOperationAction(ISD::FREM , MVT::f32, Expand);
1814   setOperationAction(ISD::FMA  , MVT::f32, Expand);
1815   setOperationAction(ISD::CTTZ , MVT::i32, Expand);
1816   setOperationAction(ISD::CTLZ , MVT::i32, Expand);
1817   setOperationAction(ISD::ROTL , MVT::i32, Expand);
1818   setOperationAction(ISD::ROTR , MVT::i32, Expand);
1819   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1820   setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1821   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1822   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1823   setOperationAction(ISD::FPOW , MVT::f128, Expand);
1824   setOperationAction(ISD::FPOW , MVT::f64, Expand);
1825   setOperationAction(ISD::FPOW , MVT::f32, Expand);
1826 
1827   setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1828   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1829   setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1830 
1831   // Expands to [SU]MUL_LOHI.
1832   setOperationAction(ISD::MULHU,     MVT::i32, Expand);
1833   setOperationAction(ISD::MULHS,     MVT::i32, Expand);
1834   setOperationAction(ISD::MUL,       MVT::i32, Expand);
1835 
1836   if (Subtarget->useSoftMulDiv()) {
1837     // .umul works for both signed and unsigned
1838     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1839     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1840     setLibcallName(RTLIB::MUL_I32, ".umul");
1841 
1842     setOperationAction(ISD::SDIV, MVT::i32, Expand);
1843     setLibcallName(RTLIB::SDIV_I32, ".div");
1844 
1845     setOperationAction(ISD::UDIV, MVT::i32, Expand);
1846     setLibcallName(RTLIB::UDIV_I32, ".udiv");
1847 
1848     setLibcallName(RTLIB::SREM_I32, ".rem");
1849     setLibcallName(RTLIB::UREM_I32, ".urem");
1850   }
1851 
1852   if (Subtarget->is64Bit()) {
1853     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1854     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1855     setOperationAction(ISD::MULHU,     MVT::i64, Expand);
1856     setOperationAction(ISD::MULHS,     MVT::i64, Expand);
1857 
1858     setOperationAction(ISD::UMULO,     MVT::i64, Custom);
1859     setOperationAction(ISD::SMULO,     MVT::i64, Custom);
1860 
1861     setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
1862     setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
1863     setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
1864   }
1865 
1866   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1867   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
1868   // VAARG needs to be lowered to not do unaligned accesses for doubles.
1869   setOperationAction(ISD::VAARG             , MVT::Other, Custom);
1870 
1871   setOperationAction(ISD::TRAP              , MVT::Other, Legal);
1872   setOperationAction(ISD::DEBUGTRAP         , MVT::Other, Legal);
1873 
1874   // Use the default implementation.
1875   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
1876   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
1877   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
1878   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
1879   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
1880 
1881   setStackPointerRegisterToSaveRestore(SP::O6);
1882 
1883   setOperationAction(ISD::CTPOP, MVT::i32,
1884                      Subtarget->usePopc() ? Legal : Expand);
1885 
1886   if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
1887     setOperationAction(ISD::LOAD, MVT::f128, Legal);
1888     setOperationAction(ISD::STORE, MVT::f128, Legal);
1889   } else {
1890     setOperationAction(ISD::LOAD, MVT::f128, Custom);
1891     setOperationAction(ISD::STORE, MVT::f128, Custom);
1892   }
1893 
1894   if (Subtarget->hasHardQuad()) {
1895     setOperationAction(ISD::FADD,  MVT::f128, Legal);
1896     setOperationAction(ISD::FSUB,  MVT::f128, Legal);
1897     setOperationAction(ISD::FMUL,  MVT::f128, Legal);
1898     setOperationAction(ISD::FDIV,  MVT::f128, Legal);
1899     setOperationAction(ISD::FSQRT, MVT::f128, Legal);
1900     setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1901     setOperationAction(ISD::FP_ROUND,  MVT::f64, Legal);
1902     if (Subtarget->isV9()) {
1903       setOperationAction(ISD::FNEG, MVT::f128, Legal);
1904       setOperationAction(ISD::FABS, MVT::f128, Legal);
1905     } else {
1906       setOperationAction(ISD::FNEG, MVT::f128, Custom);
1907       setOperationAction(ISD::FABS, MVT::f128, Custom);
1908     }
1909 
1910     if (!Subtarget->is64Bit()) {
1911       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1912       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1913       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1914       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1915     }
1916 
1917   } else {
1918     // Custom legalize f128 operations.
1919 
1920     setOperationAction(ISD::FADD,  MVT::f128, Custom);
1921     setOperationAction(ISD::FSUB,  MVT::f128, Custom);
1922     setOperationAction(ISD::FMUL,  MVT::f128, Custom);
1923     setOperationAction(ISD::FDIV,  MVT::f128, Custom);
1924     setOperationAction(ISD::FSQRT, MVT::f128, Custom);
1925     setOperationAction(ISD::FNEG,  MVT::f128, Custom);
1926     setOperationAction(ISD::FABS,  MVT::f128, Custom);
1927 
1928     setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
1929     setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
1930     setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
1931 
1932     // Setup Runtime library names.
1933     if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) {
1934       setLibcallName(RTLIB::ADD_F128,  "_Qp_add");
1935       setLibcallName(RTLIB::SUB_F128,  "_Qp_sub");
1936       setLibcallName(RTLIB::MUL_F128,  "_Qp_mul");
1937       setLibcallName(RTLIB::DIV_F128,  "_Qp_div");
1938       setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
1939       setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
1940       setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
1941       setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
1942       setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
1943       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
1944       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
1945       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
1946       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
1947       setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
1948       setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
1949       setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
1950       setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
1951     } else if (!Subtarget->useSoftFloat()) {
1952       setLibcallName(RTLIB::ADD_F128,  "_Q_add");
1953       setLibcallName(RTLIB::SUB_F128,  "_Q_sub");
1954       setLibcallName(RTLIB::MUL_F128,  "_Q_mul");
1955       setLibcallName(RTLIB::DIV_F128,  "_Q_div");
1956       setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
1957       setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
1958       setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
1959       setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
1960       setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
1961       setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
1962       setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
1963       setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
1964       setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
1965       setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
1966       setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
1967       setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
1968       setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
1969     }
1970   }
1971 
1972   if (Subtarget->fixAllFDIVSQRT()) {
1973     // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as
1974     // the former instructions generate errata on LEON processors.
1975     setOperationAction(ISD::FDIV, MVT::f32, Promote);
1976     setOperationAction(ISD::FSQRT, MVT::f32, Promote);
1977   }
1978 
1979   if (Subtarget->hasNoFMULS()) {
1980     setOperationAction(ISD::FMUL, MVT::f32, Promote);
1981   }
1982 
1983   // Custom combine bitcast between f64 and v2i32
1984   if (!Subtarget->is64Bit())
1985     setTargetDAGCombine(ISD::BITCAST);
1986 
1987   if (Subtarget->hasLeonCycleCounter())
1988     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1989 
1990   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1991 
1992   setMinFunctionAlignment(Align(4));
1993 
1994   computeRegisterProperties(Subtarget->getRegisterInfo());
1995 }
1996 
1997 bool SparcTargetLowering::useSoftFloat() const {
1998   return Subtarget->useSoftFloat();
1999 }
2000 
2001 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
2002   switch ((SPISD::NodeType)Opcode) {
2003   case SPISD::FIRST_NUMBER:    break;
2004   case SPISD::CMPICC:          return "SPISD::CMPICC";
2005   case SPISD::CMPFCC:          return "SPISD::CMPFCC";
2006   case SPISD::CMPFCC_V9:
2007     return "SPISD::CMPFCC_V9";
2008   case SPISD::BRICC:           return "SPISD::BRICC";
2009   case SPISD::BPICC:
2010     return "SPISD::BPICC";
2011   case SPISD::BPXCC:
2012     return "SPISD::BPXCC";
2013   case SPISD::BRFCC:           return "SPISD::BRFCC";
2014   case SPISD::BRFCC_V9:
2015     return "SPISD::BRFCC_V9";
2016   case SPISD::BR_REG:
2017     return "SPISD::BR_REG";
2018   case SPISD::SELECT_ICC:      return "SPISD::SELECT_ICC";
2019   case SPISD::SELECT_XCC:      return "SPISD::SELECT_XCC";
2020   case SPISD::SELECT_FCC:      return "SPISD::SELECT_FCC";
2021   case SPISD::SELECT_REG:
2022     return "SPISD::SELECT_REG";
2023   case SPISD::Hi:              return "SPISD::Hi";
2024   case SPISD::Lo:              return "SPISD::Lo";
2025   case SPISD::FTOI:            return "SPISD::FTOI";
2026   case SPISD::ITOF:            return "SPISD::ITOF";
2027   case SPISD::FTOX:            return "SPISD::FTOX";
2028   case SPISD::XTOF:            return "SPISD::XTOF";
2029   case SPISD::CALL:            return "SPISD::CALL";
2030   case SPISD::RET_GLUE:        return "SPISD::RET_GLUE";
2031   case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
2032   case SPISD::FLUSHW:          return "SPISD::FLUSHW";
2033   case SPISD::TLS_ADD:         return "SPISD::TLS_ADD";
2034   case SPISD::TLS_LD:          return "SPISD::TLS_LD";
2035   case SPISD::TLS_CALL:        return "SPISD::TLS_CALL";
2036   case SPISD::TAIL_CALL:       return "SPISD::TAIL_CALL";
2037   case SPISD::LOAD_GDOP:       return "SPISD::LOAD_GDOP";
2038   }
2039   return nullptr;
2040 }
2041 
2042 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
2043                                             EVT VT) const {
2044   if (!VT.isVector())
2045     return MVT::i32;
2046   return VT.changeVectorElementTypeToInteger();
2047 }
2048 
2049 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
2050 /// be zero. Op is expected to be a target specific node. Used by DAG
2051 /// combiner.
2052 void SparcTargetLowering::computeKnownBitsForTargetNode
2053                                 (const SDValue Op,
2054                                  KnownBits &Known,
2055                                  const APInt &DemandedElts,
2056                                  const SelectionDAG &DAG,
2057                                  unsigned Depth) const {
2058   KnownBits Known2;
2059   Known.resetAll();
2060 
2061   switch (Op.getOpcode()) {
2062   default: break;
2063   case SPISD::SELECT_ICC:
2064   case SPISD::SELECT_XCC:
2065   case SPISD::SELECT_FCC:
2066     Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
2067     Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
2068 
2069     // Only known if known in both the LHS and RHS.
2070     Known = Known.intersectWith(Known2);
2071     break;
2072   }
2073 }
2074 
2075 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction.  If so
2076 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
2077 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
2078                              ISD::CondCode CC, unsigned &SPCC) {
2079   if (isNullConstant(RHS) && CC == ISD::SETNE &&
2080       (((LHS.getOpcode() == SPISD::SELECT_ICC ||
2081          LHS.getOpcode() == SPISD::SELECT_XCC) &&
2082         LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
2083        (LHS.getOpcode() == SPISD::SELECT_FCC &&
2084         (LHS.getOperand(3).getOpcode() == SPISD::CMPFCC ||
2085          LHS.getOperand(3).getOpcode() == SPISD::CMPFCC_V9))) &&
2086       isOneConstant(LHS.getOperand(0)) && isNullConstant(LHS.getOperand(1))) {
2087     SDValue CMPCC = LHS.getOperand(3);
2088     SPCC = LHS.getConstantOperandVal(2);
2089     LHS = CMPCC.getOperand(0);
2090     RHS = CMPCC.getOperand(1);
2091   }
2092 }
2093 
2094 // Convert to a target node and set target flags.
2095 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
2096                                              SelectionDAG &DAG) const {
2097   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
2098     return DAG.getTargetGlobalAddress(GA->getGlobal(),
2099                                       SDLoc(GA),
2100                                       GA->getValueType(0),
2101                                       GA->getOffset(), TF);
2102 
2103   if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
2104     return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0),
2105                                      CP->getAlign(), CP->getOffset(), TF);
2106 
2107   if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
2108     return DAG.getTargetBlockAddress(BA->getBlockAddress(),
2109                                      Op.getValueType(),
2110                                      0,
2111                                      TF);
2112 
2113   if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
2114     return DAG.getTargetExternalSymbol(ES->getSymbol(),
2115                                        ES->getValueType(0), TF);
2116 
2117   llvm_unreachable("Unhandled address SDNode");
2118 }
2119 
2120 // Split Op into high and low parts according to HiTF and LoTF.
2121 // Return an ADD node combining the parts.
2122 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
2123                                           unsigned HiTF, unsigned LoTF,
2124                                           SelectionDAG &DAG) const {
2125   SDLoc DL(Op);
2126   EVT VT = Op.getValueType();
2127   SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
2128   SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
2129   return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
2130 }
2131 
2132 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
2133 // or ExternalSymbol SDNode.
2134 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
2135   SDLoc DL(Op);
2136   EVT VT = getPointerTy(DAG.getDataLayout());
2137 
2138   // Handle PIC mode first. SPARC needs a got load for every variable!
2139   if (isPositionIndependent()) {
2140     const Module *M = DAG.getMachineFunction().getFunction().getParent();
2141     PICLevel::Level picLevel = M->getPICLevel();
2142     SDValue Idx;
2143 
2144     if (picLevel == PICLevel::SmallPIC) {
2145       // This is the pic13 code model, the GOT is known to be smaller than 8KiB.
2146       Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(),
2147                         withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG));
2148     } else {
2149       // This is the pic32 code model, the GOT is known to be smaller than 4GB.
2150       Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
2151                          SparcMCExpr::VK_Sparc_GOT10, DAG);
2152     }
2153 
2154     SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
2155     SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx);
2156     // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2157     // function has calls.
2158     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2159     MFI.setHasCalls(true);
2160     return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
2161                        MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2162   }
2163 
2164   // This is one of the absolute code models.
2165   switch(getTargetMachine().getCodeModel()) {
2166   default:
2167     llvm_unreachable("Unsupported absolute code model");
2168   case CodeModel::Small:
2169     // abs32.
2170     return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2171                         SparcMCExpr::VK_Sparc_LO, DAG);
2172   case CodeModel::Medium: {
2173     // abs44.
2174     SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
2175                                SparcMCExpr::VK_Sparc_M44, DAG);
2176     H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32));
2177     SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
2178     L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
2179     return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
2180   }
2181   case CodeModel::Large: {
2182     // abs64.
2183     SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
2184                               SparcMCExpr::VK_Sparc_HM, DAG);
2185     Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32));
2186     SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
2187                               SparcMCExpr::VK_Sparc_LO, DAG);
2188     return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
2189   }
2190   }
2191 }
2192 
2193 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
2194                                                 SelectionDAG &DAG) const {
2195   return makeAddress(Op, DAG);
2196 }
2197 
2198 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
2199                                                SelectionDAG &DAG) const {
2200   return makeAddress(Op, DAG);
2201 }
2202 
2203 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
2204                                                SelectionDAG &DAG) const {
2205   return makeAddress(Op, DAG);
2206 }
2207 
2208 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2209                                                    SelectionDAG &DAG) const {
2210 
2211   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2212   if (DAG.getTarget().useEmulatedTLS())
2213     return LowerToTLSEmulatedModel(GA, DAG);
2214 
2215   SDLoc DL(GA);
2216   const GlobalValue *GV = GA->getGlobal();
2217   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2218 
2219   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2220 
2221   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2222     unsigned HiTF = ((model == TLSModel::GeneralDynamic)
2223                      ? SparcMCExpr::VK_Sparc_TLS_GD_HI22
2224                      : SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
2225     unsigned LoTF = ((model == TLSModel::GeneralDynamic)
2226                      ? SparcMCExpr::VK_Sparc_TLS_GD_LO10
2227                      : SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
2228     unsigned addTF = ((model == TLSModel::GeneralDynamic)
2229                       ? SparcMCExpr::VK_Sparc_TLS_GD_ADD
2230                       : SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
2231     unsigned callTF = ((model == TLSModel::GeneralDynamic)
2232                        ? SparcMCExpr::VK_Sparc_TLS_GD_CALL
2233                        : SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
2234 
2235     SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
2236     SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2237     SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
2238                                withTargetFlags(Op, addTF, DAG));
2239 
2240     SDValue Chain = DAG.getEntryNode();
2241     SDValue InGlue;
2242 
2243     Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL);
2244     Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InGlue);
2245     InGlue = Chain.getValue(1);
2246     SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
2247     SDValue Symbol = withTargetFlags(Op, callTF, DAG);
2248 
2249     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2250     const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask(
2251         DAG.getMachineFunction(), CallingConv::C);
2252     assert(Mask && "Missing call preserved mask for calling convention");
2253     SDValue Ops[] = {Chain,
2254                      Callee,
2255                      Symbol,
2256                      DAG.getRegister(SP::O0, PtrVT),
2257                      DAG.getRegisterMask(Mask),
2258                      InGlue};
2259     Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
2260     InGlue = Chain.getValue(1);
2261     Chain = DAG.getCALLSEQ_END(Chain, 1, 0, InGlue, DL);
2262     InGlue = Chain.getValue(1);
2263     SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InGlue);
2264 
2265     if (model != TLSModel::LocalDynamic)
2266       return Ret;
2267 
2268     SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2269                  withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
2270     SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2271                  withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
2272     HiLo =  DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2273     return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
2274                    withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
2275   }
2276 
2277   if (model == TLSModel::InitialExec) {
2278     unsigned ldTF     = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
2279                          : SparcMCExpr::VK_Sparc_TLS_IE_LD);
2280 
2281     SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
2282 
2283     // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
2284     // function has calls.
2285     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2286     MFI.setHasCalls(true);
2287 
2288     SDValue TGA = makeHiLoPair(Op,
2289                                SparcMCExpr::VK_Sparc_TLS_IE_HI22,
2290                                SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
2291     SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
2292     SDValue Offset = DAG.getNode(SPISD::TLS_LD,
2293                                  DL, PtrVT, Ptr,
2294                                  withTargetFlags(Op, ldTF, DAG));
2295     return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
2296                        DAG.getRegister(SP::G7, PtrVT), Offset,
2297                        withTargetFlags(Op,
2298                                        SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
2299   }
2300 
2301   assert(model == TLSModel::LocalExec);
2302   SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
2303                   withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
2304   SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
2305                   withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
2306   SDValue Offset =  DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
2307 
2308   return DAG.getNode(ISD::ADD, DL, PtrVT,
2309                      DAG.getRegister(SP::G7, PtrVT), Offset);
2310 }
2311 
2312 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain,
2313                                                   ArgListTy &Args, SDValue Arg,
2314                                                   const SDLoc &DL,
2315                                                   SelectionDAG &DAG) const {
2316   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2317   EVT ArgVT = Arg.getValueType();
2318   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2319 
2320   ArgListEntry Entry;
2321   Entry.Node = Arg;
2322   Entry.Ty   = ArgTy;
2323 
2324   if (ArgTy->isFP128Ty()) {
2325     // Create a stack object and pass the pointer to the library function.
2326     int FI = MFI.CreateStackObject(16, Align(8), false);
2327     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2328     Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(),
2329                          Align(8));
2330 
2331     Entry.Node = FIPtr;
2332     Entry.Ty   = PointerType::getUnqual(ArgTy);
2333   }
2334   Args.push_back(Entry);
2335   return Chain;
2336 }
2337 
2338 SDValue
2339 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
2340                                  const char *LibFuncName,
2341                                  unsigned numArgs) const {
2342 
2343   ArgListTy Args;
2344 
2345   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2346   auto PtrVT = getPointerTy(DAG.getDataLayout());
2347 
2348   SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT);
2349   Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
2350   Type *RetTyABI = RetTy;
2351   SDValue Chain = DAG.getEntryNode();
2352   SDValue RetPtr;
2353 
2354   if (RetTy->isFP128Ty()) {
2355     // Create a Stack Object to receive the return value of type f128.
2356     ArgListEntry Entry;
2357     int RetFI = MFI.CreateStackObject(16, Align(8), false);
2358     RetPtr = DAG.getFrameIndex(RetFI, PtrVT);
2359     Entry.Node = RetPtr;
2360     Entry.Ty   = PointerType::getUnqual(RetTy);
2361     if (!Subtarget->is64Bit()) {
2362       Entry.IsSRet = true;
2363       Entry.IndirectType = RetTy;
2364     }
2365     Entry.IsReturned = false;
2366     Args.push_back(Entry);
2367     RetTyABI = Type::getVoidTy(*DAG.getContext());
2368   }
2369 
2370   assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
2371   for (unsigned i = 0, e = numArgs; i != e; ++i) {
2372     Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
2373   }
2374   TargetLowering::CallLoweringInfo CLI(DAG);
2375   CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
2376     .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args));
2377 
2378   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2379 
2380   // chain is in second result.
2381   if (RetTyABI == RetTy)
2382     return CallInfo.first;
2383 
2384   assert (RetTy->isFP128Ty() && "Unexpected return type!");
2385 
2386   Chain = CallInfo.second;
2387 
2388   // Load RetPtr to get the return value.
2389   return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr,
2390                      MachinePointerInfo(), Align(8));
2391 }
2392 
2393 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
2394                                               unsigned &SPCC, const SDLoc &DL,
2395                                               SelectionDAG &DAG) const {
2396 
2397   const char *LibCall = nullptr;
2398   bool is64Bit = Subtarget->is64Bit();
2399   switch(SPCC) {
2400   default: llvm_unreachable("Unhandled conditional code!");
2401   case SPCC::FCC_E  : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
2402   case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
2403   case SPCC::FCC_L  : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
2404   case SPCC::FCC_G  : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
2405   case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
2406   case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
2407   case SPCC::FCC_UL :
2408   case SPCC::FCC_ULE:
2409   case SPCC::FCC_UG :
2410   case SPCC::FCC_UGE:
2411   case SPCC::FCC_U  :
2412   case SPCC::FCC_O  :
2413   case SPCC::FCC_LG :
2414   case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
2415   }
2416 
2417   auto PtrVT = getPointerTy(DAG.getDataLayout());
2418   SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT);
2419   Type *RetTy = Type::getInt32Ty(*DAG.getContext());
2420   ArgListTy Args;
2421   SDValue Chain = DAG.getEntryNode();
2422   Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
2423   Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
2424 
2425   TargetLowering::CallLoweringInfo CLI(DAG);
2426   CLI.setDebugLoc(DL).setChain(Chain)
2427     .setCallee(CallingConv::C, RetTy, Callee, std::move(Args));
2428 
2429   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
2430 
2431   // result is in first, and chain is in second result.
2432   SDValue Result =  CallInfo.first;
2433 
2434   switch(SPCC) {
2435   default: {
2436     SDValue RHS = DAG.getConstant(0, DL, Result.getValueType());
2437     SPCC = SPCC::ICC_NE;
2438     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2439   }
2440   case SPCC::FCC_UL : {
2441     SDValue Mask   = DAG.getConstant(1, DL, Result.getValueType());
2442     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2443     SDValue RHS    = DAG.getConstant(0, DL, Result.getValueType());
2444     SPCC = SPCC::ICC_NE;
2445     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2446   }
2447   case SPCC::FCC_ULE: {
2448     SDValue RHS = DAG.getConstant(2, DL, Result.getValueType());
2449     SPCC = SPCC::ICC_NE;
2450     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2451   }
2452   case SPCC::FCC_UG :  {
2453     SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
2454     SPCC = SPCC::ICC_G;
2455     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2456   }
2457   case SPCC::FCC_UGE: {
2458     SDValue RHS = DAG.getConstant(1, DL, Result.getValueType());
2459     SPCC = SPCC::ICC_NE;
2460     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2461   }
2462 
2463   case SPCC::FCC_U  :  {
2464     SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
2465     SPCC = SPCC::ICC_E;
2466     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2467   }
2468   case SPCC::FCC_O  :  {
2469     SDValue RHS = DAG.getConstant(3, DL, Result.getValueType());
2470     SPCC = SPCC::ICC_NE;
2471     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2472   }
2473   case SPCC::FCC_LG :  {
2474     SDValue Mask   = DAG.getConstant(3, DL, Result.getValueType());
2475     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2476     SDValue RHS    = DAG.getConstant(0, DL, Result.getValueType());
2477     SPCC = SPCC::ICC_NE;
2478     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2479   }
2480   case SPCC::FCC_UE : {
2481     SDValue Mask   = DAG.getConstant(3, DL, Result.getValueType());
2482     Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
2483     SDValue RHS    = DAG.getConstant(0, DL, Result.getValueType());
2484     SPCC = SPCC::ICC_E;
2485     return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
2486   }
2487   }
2488 }
2489 
2490 static SDValue
2491 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
2492                    const SparcTargetLowering &TLI) {
2493 
2494   if (Op.getOperand(0).getValueType() == MVT::f64)
2495     return TLI.LowerF128Op(Op, DAG,
2496                            TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
2497 
2498   if (Op.getOperand(0).getValueType() == MVT::f32)
2499     return TLI.LowerF128Op(Op, DAG,
2500                            TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
2501 
2502   llvm_unreachable("fpextend with non-float operand!");
2503   return SDValue();
2504 }
2505 
2506 static SDValue
2507 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
2508                   const SparcTargetLowering &TLI) {
2509   // FP_ROUND on f64 and f32 are legal.
2510   if (Op.getOperand(0).getValueType() != MVT::f128)
2511     return Op;
2512 
2513   if (Op.getValueType() == MVT::f64)
2514     return TLI.LowerF128Op(Op, DAG,
2515                            TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
2516   if (Op.getValueType() == MVT::f32)
2517     return TLI.LowerF128Op(Op, DAG,
2518                            TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
2519 
2520   llvm_unreachable("fpround to non-float!");
2521   return SDValue();
2522 }
2523 
2524 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
2525                                const SparcTargetLowering &TLI,
2526                                bool hasHardQuad) {
2527   SDLoc dl(Op);
2528   EVT VT = Op.getValueType();
2529   assert(VT == MVT::i32 || VT == MVT::i64);
2530 
2531   // Expand f128 operations to fp128 abi calls.
2532   if (Op.getOperand(0).getValueType() == MVT::f128
2533       && (!hasHardQuad || !TLI.isTypeLegal(VT))) {
2534     const char *libName = TLI.getLibcallName(VT == MVT::i32
2535                                              ? RTLIB::FPTOSINT_F128_I32
2536                                              : RTLIB::FPTOSINT_F128_I64);
2537     return TLI.LowerF128Op(Op, DAG, libName, 1);
2538   }
2539 
2540   // Expand if the resulting type is illegal.
2541   if (!TLI.isTypeLegal(VT))
2542     return SDValue();
2543 
2544   // Otherwise, Convert the fp value to integer in an FP register.
2545   if (VT == MVT::i32)
2546     Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
2547   else
2548     Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
2549 
2550   return DAG.getNode(ISD::BITCAST, dl, VT, Op);
2551 }
2552 
2553 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2554                                const SparcTargetLowering &TLI,
2555                                bool hasHardQuad) {
2556   SDLoc dl(Op);
2557   EVT OpVT = Op.getOperand(0).getValueType();
2558   assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
2559 
2560   EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
2561 
2562   // Expand f128 operations to fp128 ABI calls.
2563   if (Op.getValueType() == MVT::f128
2564       && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
2565     const char *libName = TLI.getLibcallName(OpVT == MVT::i32
2566                                              ? RTLIB::SINTTOFP_I32_F128
2567                                              : RTLIB::SINTTOFP_I64_F128);
2568     return TLI.LowerF128Op(Op, DAG, libName, 1);
2569   }
2570 
2571   // Expand if the operand type is illegal.
2572   if (!TLI.isTypeLegal(OpVT))
2573     return SDValue();
2574 
2575   // Otherwise, Convert the int value to FP in an FP register.
2576   SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
2577   unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
2578   return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
2579 }
2580 
2581 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
2582                                const SparcTargetLowering &TLI,
2583                                bool hasHardQuad) {
2584   SDLoc dl(Op);
2585   EVT VT = Op.getValueType();
2586 
2587   // Expand if it does not involve f128 or the target has support for
2588   // quad floating point instructions and the resulting type is legal.
2589   if (Op.getOperand(0).getValueType() != MVT::f128 ||
2590       (hasHardQuad && TLI.isTypeLegal(VT)))
2591     return SDValue();
2592 
2593   assert(VT == MVT::i32 || VT == MVT::i64);
2594 
2595   return TLI.LowerF128Op(Op, DAG,
2596                          TLI.getLibcallName(VT == MVT::i32
2597                                             ? RTLIB::FPTOUINT_F128_I32
2598                                             : RTLIB::FPTOUINT_F128_I64),
2599                          1);
2600 }
2601 
2602 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2603                                const SparcTargetLowering &TLI,
2604                                bool hasHardQuad) {
2605   SDLoc dl(Op);
2606   EVT OpVT = Op.getOperand(0).getValueType();
2607   assert(OpVT == MVT::i32 || OpVT == MVT::i64);
2608 
2609   // Expand if it does not involve f128 or the target has support for
2610   // quad floating point instructions and the operand type is legal.
2611   if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
2612     return SDValue();
2613 
2614   return TLI.LowerF128Op(Op, DAG,
2615                          TLI.getLibcallName(OpVT == MVT::i32
2616                                             ? RTLIB::UINTTOFP_I32_F128
2617                                             : RTLIB::UINTTOFP_I64_F128),
2618                          1);
2619 }
2620 
2621 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
2622                           const SparcTargetLowering &TLI, bool hasHardQuad,
2623                           bool isV9, bool is64Bit) {
2624   SDValue Chain = Op.getOperand(0);
2625   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2626   SDValue LHS = Op.getOperand(2);
2627   SDValue RHS = Op.getOperand(3);
2628   SDValue Dest = Op.getOperand(4);
2629   SDLoc dl(Op);
2630   unsigned Opc, SPCC = ~0U;
2631 
2632   // If this is a br_cc of a "setcc", and if the setcc got lowered into
2633   // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2634   LookThroughSetCC(LHS, RHS, CC, SPCC);
2635   assert(LHS.getValueType() == RHS.getValueType());
2636 
2637   // Get the condition flag.
2638   SDValue CompareFlag;
2639   if (LHS.getValueType().isInteger()) {
2640     // On V9 processors running in 64-bit mode, if CC compares two `i64`s
2641     // and the RHS is zero we might be able to use a specialized branch.
2642     if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 &&
2643         isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC))
2644       return DAG.getNode(SPISD::BR_REG, dl, MVT::Other, Chain, Dest,
2645                          DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32),
2646                          LHS);
2647 
2648     CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2649     if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2650     if (isV9)
2651       // 32-bit compares use the icc flags, 64-bit uses the xcc flags.
2652       Opc = LHS.getValueType() == MVT::i32 ? SPISD::BPICC : SPISD::BPXCC;
2653     else
2654       // Non-v9 targets don't have xcc.
2655       Opc = SPISD::BRICC;
2656   } else {
2657     if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2658       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2659       CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2660       Opc = isV9 ? SPISD::BPICC : SPISD::BRICC;
2661     } else {
2662       unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC;
2663       CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS);
2664       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2665       Opc = isV9 ? SPISD::BRFCC_V9 : SPISD::BRFCC;
2666     }
2667   }
2668   return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
2669                      DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2670 }
2671 
2672 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
2673                               const SparcTargetLowering &TLI, bool hasHardQuad,
2674                               bool isV9, bool is64Bit) {
2675   SDValue LHS = Op.getOperand(0);
2676   SDValue RHS = Op.getOperand(1);
2677   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2678   SDValue TrueVal = Op.getOperand(2);
2679   SDValue FalseVal = Op.getOperand(3);
2680   SDLoc dl(Op);
2681   unsigned Opc, SPCC = ~0U;
2682 
2683   // If this is a select_cc of a "setcc", and if the setcc got lowered into
2684   // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
2685   LookThroughSetCC(LHS, RHS, CC, SPCC);
2686   assert(LHS.getValueType() == RHS.getValueType());
2687 
2688   SDValue CompareFlag;
2689   if (LHS.getValueType().isInteger()) {
2690     // On V9 processors running in 64-bit mode, if CC compares two `i64`s
2691     // and the RHS is zero we might be able to use a specialized select.
2692     // All SELECT_CC between any two scalar integer types are eligible for
2693     // lowering to specialized instructions. Additionally, f32 and f64 types
2694     // are also eligible, but for f128 we can only use the specialized
2695     // instruction when we have hardquad.
2696     EVT ValType = TrueVal.getValueType();
2697     bool IsEligibleType = ValType.isScalarInteger() || ValType == MVT::f32 ||
2698                           ValType == MVT::f64 ||
2699                           (ValType == MVT::f128 && hasHardQuad);
2700     if (is64Bit && isV9 && LHS.getValueType() == MVT::i64 &&
2701         isNullConstant(RHS) && !ISD::isUnsignedIntSetCC(CC) && IsEligibleType)
2702       return DAG.getNode(
2703           SPISD::SELECT_REG, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2704           DAG.getConstant(intCondCCodeToRcond(CC), dl, MVT::i32), LHS);
2705 
2706     CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
2707     Opc = LHS.getValueType() == MVT::i32 ?
2708           SPISD::SELECT_ICC : SPISD::SELECT_XCC;
2709     if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
2710   } else {
2711     if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
2712       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2713       CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
2714       Opc = SPISD::SELECT_ICC;
2715     } else {
2716       unsigned CmpOpc = isV9 ? SPISD::CMPFCC_V9 : SPISD::CMPFCC;
2717       CompareFlag = DAG.getNode(CmpOpc, dl, MVT::Glue, LHS, RHS);
2718       Opc = SPISD::SELECT_FCC;
2719       if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
2720     }
2721   }
2722   return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
2723                      DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag);
2724 }
2725 
2726 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
2727                             const SparcTargetLowering &TLI) {
2728   MachineFunction &MF = DAG.getMachineFunction();
2729   SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
2730   auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2731 
2732   // Need frame address to find the address of VarArgsFrameIndex.
2733   MF.getFrameInfo().setFrameAddressIsTaken(true);
2734 
2735   // vastart just stores the address of the VarArgsFrameIndex slot into the
2736   // memory location argument.
2737   SDLoc DL(Op);
2738   SDValue Offset =
2739       DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT),
2740                   DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL));
2741   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2742   return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
2743                       MachinePointerInfo(SV));
2744 }
2745 
2746 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
2747   SDNode *Node = Op.getNode();
2748   EVT VT = Node->getValueType(0);
2749   SDValue InChain = Node->getOperand(0);
2750   SDValue VAListPtr = Node->getOperand(1);
2751   EVT PtrVT = VAListPtr.getValueType();
2752   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2753   SDLoc DL(Node);
2754   SDValue VAList =
2755       DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV));
2756   // Increment the pointer, VAList, to the next vaarg.
2757   SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
2758                                 DAG.getIntPtrConstant(VT.getSizeInBits()/8,
2759                                                       DL));
2760   // Store the incremented VAList to the legalized pointer.
2761   InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr,
2762                          MachinePointerInfo(SV));
2763   // Load the actual argument out of the pointer VAList.
2764   // We can't count on greater alignment than the word size.
2765   return DAG.getLoad(
2766       VT, DL, InChain, VAList, MachinePointerInfo(),
2767       Align(std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8));
2768 }
2769 
2770 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
2771                                        const SparcSubtarget *Subtarget) {
2772   SDValue Chain = Op.getOperand(0);  // Legalize the chain.
2773   SDValue Size  = Op.getOperand(1);  // Legalize the size.
2774   MaybeAlign Alignment =
2775       cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
2776   Align StackAlign = Subtarget->getFrameLowering()->getStackAlign();
2777   EVT VT = Size->getValueType(0);
2778   SDLoc dl(Op);
2779 
2780   // TODO: implement over-aligned alloca. (Note: also implies
2781   // supporting support for overaligned function frames + dynamic
2782   // allocations, at all, which currently isn't supported)
2783   if (Alignment && *Alignment > StackAlign) {
2784     const MachineFunction &MF = DAG.getMachineFunction();
2785     report_fatal_error("Function \"" + Twine(MF.getName()) + "\": "
2786                        "over-aligned dynamic alloca not supported.");
2787   }
2788 
2789   // The resultant pointer needs to be above the register spill area
2790   // at the bottom of the stack.
2791   unsigned regSpillArea;
2792   if (Subtarget->is64Bit()) {
2793     regSpillArea = 128;
2794   } else {
2795     // On Sparc32, the size of the spill area is 92. Unfortunately,
2796     // that's only 4-byte aligned, not 8-byte aligned (the stack
2797     // pointer is 8-byte aligned). So, if the user asked for an 8-byte
2798     // aligned dynamic allocation, we actually need to add 96 to the
2799     // bottom of the stack, instead of 92, to ensure 8-byte alignment.
2800 
2801     // That also means adding 4 to the size of the allocation --
2802     // before applying the 8-byte rounding. Unfortunately, we the
2803     // value we get here has already had rounding applied. So, we need
2804     // to add 8, instead, wasting a bit more memory.
2805 
2806     // Further, this only actually needs to be done if the required
2807     // alignment is > 4, but, we've lost that info by this point, too,
2808     // so we always apply it.
2809 
2810     // (An alternative approach would be to always reserve 96 bytes
2811     // instead of the required 92, but then we'd waste 4 extra bytes
2812     // in every frame, not just those with dynamic stack allocations)
2813 
2814     // TODO: modify code in SelectionDAGBuilder to make this less sad.
2815 
2816     Size = DAG.getNode(ISD::ADD, dl, VT, Size,
2817                        DAG.getConstant(8, dl, VT));
2818     regSpillArea = 96;
2819   }
2820 
2821   unsigned SPReg = SP::O6;
2822   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
2823   SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
2824   Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP);    // Output chain
2825 
2826   regSpillArea += Subtarget->getStackPointerBias();
2827 
2828   SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
2829                                DAG.getConstant(regSpillArea, dl, VT));
2830   SDValue Ops[2] = { NewVal, Chain };
2831   return DAG.getMergeValues(Ops, dl);
2832 }
2833 
2834 
2835 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
2836   SDLoc dl(Op);
2837   SDValue Chain = DAG.getNode(SPISD::FLUSHW,
2838                               dl, MVT::Other, DAG.getEntryNode());
2839   return Chain;
2840 }
2841 
2842 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
2843                             const SparcSubtarget *Subtarget,
2844                             bool AlwaysFlush = false) {
2845   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2846   MFI.setFrameAddressIsTaken(true);
2847 
2848   EVT VT = Op.getValueType();
2849   SDLoc dl(Op);
2850   unsigned FrameReg = SP::I6;
2851   unsigned stackBias = Subtarget->getStackPointerBias();
2852 
2853   SDValue FrameAddr;
2854   SDValue Chain;
2855 
2856   // flush first to make sure the windowed registers' values are in stack
2857   Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode();
2858 
2859   FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
2860 
2861   unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
2862 
2863   while (depth--) {
2864     SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2865                               DAG.getIntPtrConstant(Offset, dl));
2866     FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo());
2867   }
2868   if (Subtarget->is64Bit())
2869     FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
2870                             DAG.getIntPtrConstant(stackBias, dl));
2871   return FrameAddr;
2872 }
2873 
2874 
2875 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
2876                               const SparcSubtarget *Subtarget) {
2877 
2878   uint64_t depth = Op.getConstantOperandVal(0);
2879 
2880   return getFRAMEADDR(depth, Op, DAG, Subtarget);
2881 
2882 }
2883 
2884 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
2885                                const SparcTargetLowering &TLI,
2886                                const SparcSubtarget *Subtarget) {
2887   MachineFunction &MF = DAG.getMachineFunction();
2888   MachineFrameInfo &MFI = MF.getFrameInfo();
2889   MFI.setReturnAddressIsTaken(true);
2890 
2891   if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
2892     return SDValue();
2893 
2894   EVT VT = Op.getValueType();
2895   SDLoc dl(Op);
2896   uint64_t depth = Op.getConstantOperandVal(0);
2897 
2898   SDValue RetAddr;
2899   if (depth == 0) {
2900     auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
2901     Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT));
2902     RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
2903     return RetAddr;
2904   }
2905 
2906   // Need frame address to find return address of the caller.
2907   SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true);
2908 
2909   unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
2910   SDValue Ptr = DAG.getNode(ISD::ADD,
2911                             dl, VT,
2912                             FrameAddr,
2913                             DAG.getIntPtrConstant(Offset, dl));
2914   RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2915 
2916   return RetAddr;
2917 }
2918 
2919 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG,
2920                           unsigned opcode) {
2921   assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
2922   assert(opcode == ISD::FNEG || opcode == ISD::FABS);
2923 
2924   // Lower fneg/fabs on f64 to fneg/fabs on f32.
2925   // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
2926   // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
2927 
2928   // Note: in little-endian, the floating-point value is stored in the
2929   // registers are in the opposite order, so the subreg with the sign
2930   // bit is the highest-numbered (odd), rather than the
2931   // lowest-numbered (even).
2932 
2933   SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
2934                                             SrcReg64);
2935   SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
2936                                             SrcReg64);
2937 
2938   if (DAG.getDataLayout().isLittleEndian())
2939     Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32);
2940   else
2941     Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
2942 
2943   SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2944                                                 dl, MVT::f64), 0);
2945   DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
2946                                        DstReg64, Hi32);
2947   DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
2948                                        DstReg64, Lo32);
2949   return DstReg64;
2950 }
2951 
2952 // Lower a f128 load into two f64 loads.
2953 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
2954 {
2955   SDLoc dl(Op);
2956   LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2957   assert(LdNode->getOffset().isUndef() && "Unexpected node type");
2958 
2959   Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8);
2960 
2961   SDValue Hi64 =
2962       DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(),
2963                   LdNode->getPointerInfo(), Alignment);
2964   EVT addrVT = LdNode->getBasePtr().getValueType();
2965   SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
2966                               LdNode->getBasePtr(),
2967                               DAG.getConstant(8, dl, addrVT));
2968   SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr,
2969                              LdNode->getPointerInfo().getWithOffset(8),
2970                              Alignment);
2971 
2972   SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
2973   SDValue SubRegOdd  = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
2974 
2975   SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
2976                                        dl, MVT::f128);
2977   InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2978                                MVT::f128,
2979                                SDValue(InFP128, 0),
2980                                Hi64,
2981                                SubRegEven);
2982   InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
2983                                MVT::f128,
2984                                SDValue(InFP128, 0),
2985                                Lo64,
2986                                SubRegOdd);
2987   SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
2988                            SDValue(Lo64.getNode(), 1) };
2989   SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
2990   SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
2991   return DAG.getMergeValues(Ops, dl);
2992 }
2993 
2994 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG)
2995 {
2996   LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode());
2997 
2998   EVT MemVT = LdNode->getMemoryVT();
2999   if (MemVT == MVT::f128)
3000     return LowerF128Load(Op, DAG);
3001 
3002   return Op;
3003 }
3004 
3005 // Lower a f128 store into two f64 stores.
3006 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
3007   SDLoc dl(Op);
3008   StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode());
3009   assert(StNode->getOffset().isUndef() && "Unexpected node type");
3010 
3011   SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32);
3012   SDValue SubRegOdd  = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32);
3013 
3014   SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3015                                     dl,
3016                                     MVT::f64,
3017                                     StNode->getValue(),
3018                                     SubRegEven);
3019   SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3020                                     dl,
3021                                     MVT::f64,
3022                                     StNode->getValue(),
3023                                     SubRegOdd);
3024 
3025   Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8);
3026 
3027   SDValue OutChains[2];
3028   OutChains[0] =
3029       DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0),
3030                    StNode->getBasePtr(), StNode->getPointerInfo(),
3031                    Alignment);
3032   EVT addrVT = StNode->getBasePtr().getValueType();
3033   SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
3034                               StNode->getBasePtr(),
3035                               DAG.getConstant(8, dl, addrVT));
3036   OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr,
3037                               StNode->getPointerInfo().getWithOffset(8),
3038                               Alignment);
3039   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
3040 }
3041 
3042 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG)
3043 {
3044   SDLoc dl(Op);
3045   StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
3046 
3047   EVT MemVT = St->getMemoryVT();
3048   if (MemVT == MVT::f128)
3049     return LowerF128Store(Op, DAG);
3050 
3051   if (MemVT == MVT::i64) {
3052     // Custom handling for i64 stores: turn it into a bitcast and a
3053     // v2i32 store.
3054     SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue());
3055     SDValue Chain = DAG.getStore(
3056         St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(),
3057         St->getOriginalAlign(), St->getMemOperand()->getFlags(),
3058         St->getAAInfo());
3059     return Chain;
3060   }
3061 
3062   return SDValue();
3063 }
3064 
3065 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
3066   assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
3067          && "invalid opcode");
3068 
3069   SDLoc dl(Op);
3070 
3071   if (Op.getValueType() == MVT::f64)
3072     return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode());
3073   if (Op.getValueType() != MVT::f128)
3074     return Op;
3075 
3076   // Lower fabs/fneg on f128 to fabs/fneg on f64
3077   // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
3078   // (As with LowerF64Op, on little-endian, we need to negate the odd
3079   // subreg)
3080 
3081   SDValue SrcReg128 = Op.getOperand(0);
3082   SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
3083                                             SrcReg128);
3084   SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
3085                                             SrcReg128);
3086 
3087   if (DAG.getDataLayout().isLittleEndian()) {
3088     if (isV9)
3089       Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64);
3090     else
3091       Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode());
3092   } else {
3093     if (isV9)
3094       Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
3095     else
3096       Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode());
3097   }
3098 
3099   SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
3100                                                  dl, MVT::f128), 0);
3101   DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
3102                                         DstReg128, Hi64);
3103   DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
3104                                         DstReg128, Lo64);
3105   return DstReg128;
3106 }
3107 
3108 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
3109 
3110   if (Op.getValueType() != MVT::i64)
3111     return Op;
3112 
3113   SDLoc dl(Op);
3114   SDValue Src1 = Op.getOperand(0);
3115   SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
3116   SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
3117                                DAG.getConstant(32, dl, MVT::i64));
3118   Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
3119 
3120   SDValue Src2 = Op.getOperand(1);
3121   SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
3122   SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
3123                                DAG.getConstant(32, dl, MVT::i64));
3124   Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
3125 
3126 
3127   bool hasChain = false;
3128   unsigned hiOpc = Op.getOpcode();
3129   switch (Op.getOpcode()) {
3130   default: llvm_unreachable("Invalid opcode");
3131   case ISD::ADDC: hiOpc = ISD::ADDE; break;
3132   case ISD::ADDE: hasChain = true; break;
3133   case ISD::SUBC: hiOpc = ISD::SUBE; break;
3134   case ISD::SUBE: hasChain = true; break;
3135   }
3136   SDValue Lo;
3137   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
3138   if (hasChain) {
3139     Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
3140                      Op.getOperand(2));
3141   } else {
3142     Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
3143   }
3144   SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
3145   SDValue Carry = Hi.getValue(1);
3146 
3147   Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
3148   Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
3149   Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
3150                    DAG.getConstant(32, dl, MVT::i64));
3151 
3152   SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
3153   SDValue Ops[2] = { Dst, Carry };
3154   return DAG.getMergeValues(Ops, dl);
3155 }
3156 
3157 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
3158 // in LegalizeDAG.cpp except the order of arguments to the library function.
3159 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
3160                                 const SparcTargetLowering &TLI)
3161 {
3162   unsigned opcode = Op.getOpcode();
3163   assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
3164 
3165   bool isSigned = (opcode == ISD::SMULO);
3166   EVT VT = MVT::i64;
3167   EVT WideVT = MVT::i128;
3168   SDLoc dl(Op);
3169   SDValue LHS = Op.getOperand(0);
3170 
3171   if (LHS.getValueType() != VT)
3172     return Op;
3173 
3174   SDValue ShiftAmt = DAG.getConstant(63, dl, VT);
3175 
3176   SDValue RHS = Op.getOperand(1);
3177   SDValue HiLHS, HiRHS;
3178   if (isSigned) {
3179     HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
3180     HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
3181   } else {
3182     HiLHS = DAG.getConstant(0, dl, VT);
3183     HiRHS = DAG.getConstant(0, dl, MVT::i64);
3184   }
3185 
3186   SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
3187 
3188   TargetLowering::MakeLibCallOptions CallOptions;
3189   CallOptions.setSExt(isSigned);
3190   SDValue MulResult = TLI.makeLibCall(DAG,
3191                                       RTLIB::MUL_I128, WideVT,
3192                                       Args, CallOptions, dl).first;
3193   SDValue BottomHalf, TopHalf;
3194   std::tie(BottomHalf, TopHalf) = DAG.SplitScalar(MulResult, dl, VT, VT);
3195   if (isSigned) {
3196     SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
3197     TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
3198   } else {
3199     TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT),
3200                            ISD::SETNE);
3201   }
3202   // MulResult is a node with an illegal type. Because such things are not
3203   // generally permitted during this phase of legalization, ensure that
3204   // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
3205   // been folded.
3206   assert(MulResult->use_empty() && "Illegally typed node still in use!");
3207 
3208   SDValue Ops[2] = { BottomHalf, TopHalf } ;
3209   return DAG.getMergeValues(Ops, dl);
3210 }
3211 
3212 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
3213   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) {
3214     // Expand with a fence.
3215     return SDValue();
3216   }
3217 
3218   // Monotonic load/stores are legal.
3219   return Op;
3220 }
3221 
3222 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3223                                                      SelectionDAG &DAG) const {
3224   unsigned IntNo = Op.getConstantOperandVal(0);
3225   SDLoc dl(Op);
3226   switch (IntNo) {
3227   default: return SDValue();    // Don't custom lower most intrinsics.
3228   case Intrinsic::thread_pointer: {
3229     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3230     return DAG.getRegister(SP::G7, PtrVT);
3231   }
3232   }
3233 }
3234 
3235 SDValue SparcTargetLowering::
3236 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3237 
3238   bool hasHardQuad = Subtarget->hasHardQuad();
3239   bool isV9        = Subtarget->isV9();
3240   bool is64Bit = Subtarget->is64Bit();
3241 
3242   switch (Op.getOpcode()) {
3243   default: llvm_unreachable("Should not custom lower this!");
3244 
3245   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG, *this,
3246                                                        Subtarget);
3247   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG,
3248                                                       Subtarget);
3249   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3250   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3251   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
3252   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3253   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG, *this,
3254                                                        hasHardQuad);
3255   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG, *this,
3256                                                        hasHardQuad);
3257   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG, *this,
3258                                                        hasHardQuad);
3259   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG, *this,
3260                                                        hasHardQuad);
3261   case ISD::BR_CC:
3262     return LowerBR_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit);
3263   case ISD::SELECT_CC:
3264     return LowerSELECT_CC(Op, DAG, *this, hasHardQuad, isV9, is64Bit);
3265   case ISD::VASTART:            return LowerVASTART(Op, DAG, *this);
3266   case ISD::VAARG:              return LowerVAARG(Op, DAG);
3267   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
3268                                                                Subtarget);
3269 
3270   case ISD::LOAD:               return LowerLOAD(Op, DAG);
3271   case ISD::STORE:              return LowerSTORE(Op, DAG);
3272   case ISD::FADD:               return LowerF128Op(Op, DAG,
3273                                        getLibcallName(RTLIB::ADD_F128), 2);
3274   case ISD::FSUB:               return LowerF128Op(Op, DAG,
3275                                        getLibcallName(RTLIB::SUB_F128), 2);
3276   case ISD::FMUL:               return LowerF128Op(Op, DAG,
3277                                        getLibcallName(RTLIB::MUL_F128), 2);
3278   case ISD::FDIV:               return LowerF128Op(Op, DAG,
3279                                        getLibcallName(RTLIB::DIV_F128), 2);
3280   case ISD::FSQRT:              return LowerF128Op(Op, DAG,
3281                                        getLibcallName(RTLIB::SQRT_F128),1);
3282   case ISD::FABS:
3283   case ISD::FNEG:               return LowerFNEGorFABS(Op, DAG, isV9);
3284   case ISD::FP_EXTEND:          return LowerF128_FPEXTEND(Op, DAG, *this);
3285   case ISD::FP_ROUND:           return LowerF128_FPROUND(Op, DAG, *this);
3286   case ISD::ADDC:
3287   case ISD::ADDE:
3288   case ISD::SUBC:
3289   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
3290   case ISD::UMULO:
3291   case ISD::SMULO:              return LowerUMULO_SMULO(Op, DAG, *this);
3292   case ISD::ATOMIC_LOAD:
3293   case ISD::ATOMIC_STORE:       return LowerATOMIC_LOAD_STORE(Op, DAG);
3294   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3295   }
3296 }
3297 
3298 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C,
3299                                                     const SDLoc &DL,
3300                                                     SelectionDAG &DAG) const {
3301   APInt V = C->getValueAPF().bitcastToAPInt();
3302   SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32);
3303   SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32);
3304   if (DAG.getDataLayout().isLittleEndian())
3305     std::swap(Lo, Hi);
3306   return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo});
3307 }
3308 
3309 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N,
3310                                                    DAGCombinerInfo &DCI) const {
3311   SDLoc dl(N);
3312   SDValue Src = N->getOperand(0);
3313 
3314   if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 &&
3315       Src.getSimpleValueType() == MVT::f64)
3316     return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG);
3317 
3318   return SDValue();
3319 }
3320 
3321 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N,
3322                                                DAGCombinerInfo &DCI) const {
3323   switch (N->getOpcode()) {
3324   default:
3325     break;
3326   case ISD::BITCAST:
3327     return PerformBITCASTCombine(N, DCI);
3328   }
3329   return SDValue();
3330 }
3331 
3332 MachineBasicBlock *
3333 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
3334                                                  MachineBasicBlock *BB) const {
3335   switch (MI.getOpcode()) {
3336   default: llvm_unreachable("Unknown SELECT_CC!");
3337   case SP::SELECT_CC_Int_ICC:
3338   case SP::SELECT_CC_FP_ICC:
3339   case SP::SELECT_CC_DFP_ICC:
3340   case SP::SELECT_CC_QFP_ICC:
3341     if (Subtarget->isV9())
3342       return expandSelectCC(MI, BB, SP::BPICC);
3343     return expandSelectCC(MI, BB, SP::BCOND);
3344   case SP::SELECT_CC_Int_XCC:
3345   case SP::SELECT_CC_FP_XCC:
3346   case SP::SELECT_CC_DFP_XCC:
3347   case SP::SELECT_CC_QFP_XCC:
3348     return expandSelectCC(MI, BB, SP::BPXCC);
3349   case SP::SELECT_CC_Int_FCC:
3350   case SP::SELECT_CC_FP_FCC:
3351   case SP::SELECT_CC_DFP_FCC:
3352   case SP::SELECT_CC_QFP_FCC:
3353     if (Subtarget->isV9())
3354       return expandSelectCC(MI, BB, SP::FBCOND_V9);
3355     return expandSelectCC(MI, BB, SP::FBCOND);
3356   }
3357 }
3358 
3359 MachineBasicBlock *
3360 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB,
3361                                     unsigned BROpcode) const {
3362   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
3363   DebugLoc dl = MI.getDebugLoc();
3364   unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm();
3365 
3366   // To "insert" a SELECT_CC instruction, we actually have to insert the
3367   // triangle control-flow pattern. The incoming instruction knows the
3368   // destination vreg to set, the condition code register to branch on, the
3369   // true/false values to select between, and the condition code for the branch.
3370   //
3371   // We produce the following control flow:
3372   //     ThisMBB
3373   //     |  \
3374   //     |  IfFalseMBB
3375   //     | /
3376   //    SinkMBB
3377   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3378   MachineFunction::iterator It = ++BB->getIterator();
3379 
3380   MachineBasicBlock *ThisMBB = BB;
3381   MachineFunction *F = BB->getParent();
3382   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
3383   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
3384   F->insert(It, IfFalseMBB);
3385   F->insert(It, SinkMBB);
3386 
3387   // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
3388   SinkMBB->splice(SinkMBB->begin(), ThisMBB,
3389                   std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end());
3390   SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
3391 
3392   // Set the new successors for ThisMBB.
3393   ThisMBB->addSuccessor(IfFalseMBB);
3394   ThisMBB->addSuccessor(SinkMBB);
3395 
3396   BuildMI(ThisMBB, dl, TII.get(BROpcode))
3397     .addMBB(SinkMBB)
3398     .addImm(CC);
3399 
3400   // IfFalseMBB just falls through to SinkMBB.
3401   IfFalseMBB->addSuccessor(SinkMBB);
3402 
3403   // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ]
3404   BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI),
3405           MI.getOperand(0).getReg())
3406       .addReg(MI.getOperand(1).getReg())
3407       .addMBB(ThisMBB)
3408       .addReg(MI.getOperand(2).getReg())
3409       .addMBB(IfFalseMBB);
3410 
3411   MI.eraseFromParent(); // The pseudo instruction is gone now.
3412   return SinkMBB;
3413 }
3414 
3415 //===----------------------------------------------------------------------===//
3416 //                         Sparc Inline Assembly Support
3417 //===----------------------------------------------------------------------===//
3418 
3419 /// getConstraintType - Given a constraint letter, return the type of
3420 /// constraint it is for this target.
3421 SparcTargetLowering::ConstraintType
3422 SparcTargetLowering::getConstraintType(StringRef Constraint) const {
3423   if (Constraint.size() == 1) {
3424     switch (Constraint[0]) {
3425     default:  break;
3426     case 'r':
3427     case 'f':
3428     case 'e':
3429       return C_RegisterClass;
3430     case 'I': // SIMM13
3431       return C_Immediate;
3432     }
3433   }
3434 
3435   return TargetLowering::getConstraintType(Constraint);
3436 }
3437 
3438 TargetLowering::ConstraintWeight SparcTargetLowering::
3439 getSingleConstraintMatchWeight(AsmOperandInfo &info,
3440                                const char *constraint) const {
3441   ConstraintWeight weight = CW_Invalid;
3442   Value *CallOperandVal = info.CallOperandVal;
3443   // If we don't have a value, we can't do a match,
3444   // but allow it at the lowest weight.
3445   if (!CallOperandVal)
3446     return CW_Default;
3447 
3448   // Look at the constraint type.
3449   switch (*constraint) {
3450   default:
3451     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3452     break;
3453   case 'I': // SIMM13
3454     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
3455       if (isInt<13>(C->getSExtValue()))
3456         weight = CW_Constant;
3457     }
3458     break;
3459   }
3460   return weight;
3461 }
3462 
3463 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3464 /// vector.  If it is invalid, don't add anything to Ops.
3465 void SparcTargetLowering::LowerAsmOperandForConstraint(
3466     SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
3467     SelectionDAG &DAG) const {
3468   SDValue Result;
3469 
3470   // Only support length 1 constraints for now.
3471   if (Constraint.size() > 1)
3472     return;
3473 
3474   char ConstraintLetter = Constraint[0];
3475   switch (ConstraintLetter) {
3476   default: break;
3477   case 'I':
3478     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
3479       if (isInt<13>(C->getSExtValue())) {
3480         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
3481                                        Op.getValueType());
3482         break;
3483       }
3484       return;
3485     }
3486   }
3487 
3488   if (Result.getNode()) {
3489     Ops.push_back(Result);
3490     return;
3491   }
3492   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3493 }
3494 
3495 std::pair<unsigned, const TargetRegisterClass *>
3496 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3497                                                   StringRef Constraint,
3498                                                   MVT VT) const {
3499   if (Constraint.empty())
3500     return std::make_pair(0U, nullptr);
3501 
3502   if (Constraint.size() == 1) {
3503     switch (Constraint[0]) {
3504     case 'r':
3505       if (VT == MVT::v2i32)
3506         return std::make_pair(0U, &SP::IntPairRegClass);
3507       else if (Subtarget->is64Bit())
3508         return std::make_pair(0U, &SP::I64RegsRegClass);
3509       else
3510         return std::make_pair(0U, &SP::IntRegsRegClass);
3511     case 'f':
3512       if (VT == MVT::f32 || VT == MVT::i32)
3513         return std::make_pair(0U, &SP::FPRegsRegClass);
3514       else if (VT == MVT::f64 || VT == MVT::i64)
3515         return std::make_pair(0U, &SP::LowDFPRegsRegClass);
3516       else if (VT == MVT::f128)
3517         return std::make_pair(0U, &SP::LowQFPRegsRegClass);
3518       // This will generate an error message
3519       return std::make_pair(0U, nullptr);
3520     case 'e':
3521       if (VT == MVT::f32 || VT == MVT::i32)
3522         return std::make_pair(0U, &SP::FPRegsRegClass);
3523       else if (VT == MVT::f64 || VT == MVT::i64 )
3524         return std::make_pair(0U, &SP::DFPRegsRegClass);
3525       else if (VT == MVT::f128)
3526         return std::make_pair(0U, &SP::QFPRegsRegClass);
3527       // This will generate an error message
3528       return std::make_pair(0U, nullptr);
3529     }
3530   }
3531 
3532   if (Constraint.front() != '{')
3533     return std::make_pair(0U, nullptr);
3534 
3535   assert(Constraint.back() == '}' && "Not a brace enclosed constraint?");
3536   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
3537   if (RegName.empty())
3538     return std::make_pair(0U, nullptr);
3539 
3540   unsigned long long RegNo;
3541   // Handle numbered register aliases.
3542   if (RegName[0] == 'r' &&
3543       getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) {
3544     // r0-r7   -> g0-g7
3545     // r8-r15  -> o0-o7
3546     // r16-r23 -> l0-l7
3547     // r24-r31 -> i0-i7
3548     if (RegNo > 31)
3549       return std::make_pair(0U, nullptr);
3550     const char RegTypes[] = {'g', 'o', 'l', 'i'};
3551     char RegType = RegTypes[RegNo / 8];
3552     char RegIndex = '0' + (RegNo % 8);
3553     char Tmp[] = {'{', RegType, RegIndex, '}', 0};
3554     return getRegForInlineAsmConstraint(TRI, Tmp, VT);
3555   }
3556 
3557   // Rewrite the fN constraint according to the value type if needed.
3558   if (VT != MVT::f32 && VT != MVT::Other && RegName[0] == 'f' &&
3559       getAsUnsignedInteger(RegName.begin() + 1, 10, RegNo)) {
3560     if (VT == MVT::f64 && (RegNo % 2 == 0)) {
3561       return getRegForInlineAsmConstraint(
3562           TRI, StringRef("{d" + utostr(RegNo / 2) + "}"), VT);
3563     } else if (VT == MVT::f128 && (RegNo % 4 == 0)) {
3564       return getRegForInlineAsmConstraint(
3565           TRI, StringRef("{q" + utostr(RegNo / 4) + "}"), VT);
3566     } else {
3567       return std::make_pair(0U, nullptr);
3568     }
3569   }
3570 
3571   auto ResultPair =
3572       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3573   if (!ResultPair.second)
3574     return std::make_pair(0U, nullptr);
3575 
3576   // Force the use of I64Regs over IntRegs for 64-bit values.
3577   if (Subtarget->is64Bit() && VT == MVT::i64) {
3578     assert(ResultPair.second == &SP::IntRegsRegClass &&
3579            "Unexpected register class");
3580     return std::make_pair(ResultPair.first, &SP::I64RegsRegClass);
3581   }
3582 
3583   return ResultPair;
3584 }
3585 
3586 bool
3587 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
3588   // The Sparc target isn't yet aware of offsets.
3589   return false;
3590 }
3591 
3592 void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
3593                                              SmallVectorImpl<SDValue>& Results,
3594                                              SelectionDAG &DAG) const {
3595 
3596   SDLoc dl(N);
3597 
3598   RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
3599 
3600   switch (N->getOpcode()) {
3601   default:
3602     llvm_unreachable("Do not know how to custom type legalize this operation!");
3603 
3604   case ISD::FP_TO_SINT:
3605   case ISD::FP_TO_UINT:
3606     // Custom lower only if it involves f128 or i64.
3607     if (N->getOperand(0).getValueType() != MVT::f128
3608         || N->getValueType(0) != MVT::i64)
3609       return;
3610     libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
3611                ? RTLIB::FPTOSINT_F128_I64
3612                : RTLIB::FPTOUINT_F128_I64);
3613 
3614     Results.push_back(LowerF128Op(SDValue(N, 0),
3615                                   DAG,
3616                                   getLibcallName(libCall),
3617                                   1));
3618     return;
3619   case ISD::READCYCLECOUNTER: {
3620     assert(Subtarget->hasLeonCycleCounter());
3621     SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32);
3622     SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32);
3623     SDValue Ops[] = { Lo, Hi };
3624     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops);
3625     Results.push_back(Pair);
3626     Results.push_back(N->getOperand(0));
3627     return;
3628   }
3629   case ISD::SINT_TO_FP:
3630   case ISD::UINT_TO_FP:
3631     // Custom lower only if it involves f128 or i64.
3632     if (N->getValueType(0) != MVT::f128
3633         || N->getOperand(0).getValueType() != MVT::i64)
3634       return;
3635 
3636     libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
3637                ? RTLIB::SINTTOFP_I64_F128
3638                : RTLIB::UINTTOFP_I64_F128);
3639 
3640     Results.push_back(LowerF128Op(SDValue(N, 0),
3641                                   DAG,
3642                                   getLibcallName(libCall),
3643                                   1));
3644     return;
3645   case ISD::LOAD: {
3646     LoadSDNode *Ld = cast<LoadSDNode>(N);
3647     // Custom handling only for i64: turn i64 load into a v2i32 load,
3648     // and a bitcast.
3649     if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64)
3650       return;
3651 
3652     SDLoc dl(N);
3653     SDValue LoadRes = DAG.getExtLoad(
3654         Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(),
3655         Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32,
3656         Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(),
3657         Ld->getAAInfo());
3658 
3659     SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes);
3660     Results.push_back(Res);
3661     Results.push_back(LoadRes.getValue(1));
3662     return;
3663   }
3664   }
3665 }
3666 
3667 // Override to enable LOAD_STACK_GUARD lowering on Linux.
3668 bool SparcTargetLowering::useLoadStackGuardNode() const {
3669   if (!Subtarget->isTargetLinux())
3670     return TargetLowering::useLoadStackGuardNode();
3671   return true;
3672 }
3673 
3674 // Override to disable global variable loading on Linux.
3675 void SparcTargetLowering::insertSSPDeclarations(Module &M) const {
3676   if (!Subtarget->isTargetLinux())
3677     return TargetLowering::insertSSPDeclarations(M);
3678 }
3679 
3680 void SparcTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3681                                                         SDNode *Node) const {
3682   assert(MI.getOpcode() == SP::SUBCCrr || MI.getOpcode() == SP::SUBCCri);
3683   // If the result is dead, replace it with %g0.
3684   if (!Node->hasAnyUseOfValue(0))
3685     MI.getOperand(0).setReg(SP::G0);
3686 }
3687