1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Sparc uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SparcISelLowering.h" 15 #include "MCTargetDesc/SparcMCExpr.h" 16 #include "SparcMachineFunctionInfo.h" 17 #include "SparcRegisterInfo.h" 18 #include "SparcTargetMachine.h" 19 #include "SparcTargetObjectFile.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 using namespace llvm; 35 36 37 //===----------------------------------------------------------------------===// 38 // Calling Convention Implementation 39 //===----------------------------------------------------------------------===// 40 41 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 42 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, CCState &State) 44 { 45 assert (ArgFlags.isSRet()); 46 47 // Assign SRet argument. 48 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 49 0, 50 LocVT, LocInfo)); 51 return true; 52 } 53 54 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 55 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 56 ISD::ArgFlagsTy &ArgFlags, CCState &State) 57 { 58 static const MCPhysReg RegList[] = { 59 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 60 }; 61 // Try to get first reg. 62 if (Register Reg = State.AllocateReg(RegList)) { 63 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 64 } else { 65 // Assign whole thing in stack. 66 State.addLoc(CCValAssign::getCustomMem( 67 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); 68 return true; 69 } 70 71 // Try to get second reg. 72 if (Register Reg = State.AllocateReg(RegList)) 73 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 74 else 75 State.addLoc(CCValAssign::getCustomMem( 76 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); 77 return true; 78 } 79 80 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 81 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 82 ISD::ArgFlagsTy &ArgFlags, CCState &State) 83 { 84 static const MCPhysReg RegList[] = { 85 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 86 }; 87 88 // Try to get first reg. 89 if (Register Reg = State.AllocateReg(RegList)) 90 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 91 else 92 return false; 93 94 // Try to get second reg. 95 if (Register Reg = State.AllocateReg(RegList)) 96 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 97 else 98 return false; 99 100 return true; 101 } 102 103 // Allocate a full-sized argument for the 64-bit ABI. 104 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, 105 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 106 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 107 assert((LocVT == MVT::f32 || LocVT == MVT::f128 108 || LocVT.getSizeInBits() == 64) && 109 "Can't handle non-64 bits locations"); 110 111 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 112 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 113 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); 114 unsigned Offset = State.AllocateStack(size, alignment); 115 unsigned Reg = 0; 116 117 if (LocVT == MVT::i64 && Offset < 6*8) 118 // Promote integers to %i0-%i5. 119 Reg = SP::I0 + Offset/8; 120 else if (LocVT == MVT::f64 && Offset < 16*8) 121 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 122 Reg = SP::D0 + Offset/8; 123 else if (LocVT == MVT::f32 && Offset < 16*8) 124 // Promote floats to %f1, %f3, ... 125 Reg = SP::F1 + Offset/4; 126 else if (LocVT == MVT::f128 && Offset < 16*8) 127 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 128 Reg = SP::Q0 + Offset/16; 129 130 // Promote to register when possible, otherwise use the stack slot. 131 if (Reg) { 132 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 133 return true; 134 } 135 136 // This argument goes on the stack in an 8-byte slot. 137 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 138 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 139 if (LocVT == MVT::f32) 140 Offset += 4; 141 142 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 143 return true; 144 } 145 146 // Allocate a half-sized argument for the 64-bit ABI. 147 // 148 // This is used when passing { float, int } structs by value in registers. 149 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, 150 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 151 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 152 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 153 unsigned Offset = State.AllocateStack(4, Align(4)); 154 155 if (LocVT == MVT::f32 && Offset < 16*8) { 156 // Promote floats to %f0-%f31. 157 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 158 LocVT, LocInfo)); 159 return true; 160 } 161 162 if (LocVT == MVT::i32 && Offset < 6*8) { 163 // Promote integers to %i0-%i5, using half the register. 164 unsigned Reg = SP::I0 + Offset/8; 165 LocVT = MVT::i64; 166 LocInfo = CCValAssign::AExt; 167 168 // Set the Custom bit if this i32 goes in the high bits of a register. 169 if (Offset % 8 == 0) 170 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 171 LocVT, LocInfo)); 172 else 173 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 174 return true; 175 } 176 177 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 178 return true; 179 } 180 181 #include "SparcGenCallingConv.inc" 182 183 // The calling conventions in SparcCallingConv.td are described in terms of the 184 // callee's register window. This function translates registers to the 185 // corresponding caller window %o register. 186 static unsigned toCallerWindow(unsigned Reg) { 187 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 188 "Unexpected enum"); 189 if (Reg >= SP::I0 && Reg <= SP::I7) 190 return Reg - SP::I0 + SP::O0; 191 return Reg; 192 } 193 194 SDValue 195 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 196 bool IsVarArg, 197 const SmallVectorImpl<ISD::OutputArg> &Outs, 198 const SmallVectorImpl<SDValue> &OutVals, 199 const SDLoc &DL, SelectionDAG &DAG) const { 200 if (Subtarget->is64Bit()) 201 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 202 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 203 } 204 205 SDValue 206 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 207 bool IsVarArg, 208 const SmallVectorImpl<ISD::OutputArg> &Outs, 209 const SmallVectorImpl<SDValue> &OutVals, 210 const SDLoc &DL, SelectionDAG &DAG) const { 211 MachineFunction &MF = DAG.getMachineFunction(); 212 213 // CCValAssign - represent the assignment of the return value to locations. 214 SmallVector<CCValAssign, 16> RVLocs; 215 216 // CCState - Info about the registers and stack slot. 217 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 218 *DAG.getContext()); 219 220 // Analyze return values. 221 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 222 223 SDValue Flag; 224 SmallVector<SDValue, 4> RetOps(1, Chain); 225 // Make room for the return address offset. 226 RetOps.push_back(SDValue()); 227 228 // Copy the result values into the output registers. 229 for (unsigned i = 0, realRVLocIdx = 0; 230 i != RVLocs.size(); 231 ++i, ++realRVLocIdx) { 232 CCValAssign &VA = RVLocs[i]; 233 assert(VA.isRegLoc() && "Can only return in registers!"); 234 235 SDValue Arg = OutVals[realRVLocIdx]; 236 237 if (VA.needsCustom()) { 238 assert(VA.getLocVT() == MVT::v2i32); 239 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 240 // happen by default if this wasn't a legal type) 241 242 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 243 Arg, 244 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 245 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 246 Arg, 247 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 248 249 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag); 250 Flag = Chain.getValue(1); 251 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 252 VA = RVLocs[++i]; // skip ahead to next loc 253 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 254 Flag); 255 } else 256 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 257 258 // Guarantee that all emitted copies are stuck together with flags. 259 Flag = Chain.getValue(1); 260 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 261 } 262 263 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 264 // If the function returns a struct, copy the SRetReturnReg to I0 265 if (MF.getFunction().hasStructRetAttr()) { 266 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 267 Register Reg = SFI->getSRetReturnReg(); 268 if (!Reg) 269 llvm_unreachable("sret virtual register not created in the entry block"); 270 auto PtrVT = getPointerTy(DAG.getDataLayout()); 271 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 272 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); 273 Flag = Chain.getValue(1); 274 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 275 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 276 } 277 278 RetOps[0] = Chain; // Update chain. 279 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 280 281 // Add the flag if we have it. 282 if (Flag.getNode()) 283 RetOps.push_back(Flag); 284 285 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 286 } 287 288 // Lower return values for the 64-bit ABI. 289 // Return values are passed the exactly the same way as function arguments. 290 SDValue 291 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 292 bool IsVarArg, 293 const SmallVectorImpl<ISD::OutputArg> &Outs, 294 const SmallVectorImpl<SDValue> &OutVals, 295 const SDLoc &DL, SelectionDAG &DAG) const { 296 // CCValAssign - represent the assignment of the return value to locations. 297 SmallVector<CCValAssign, 16> RVLocs; 298 299 // CCState - Info about the registers and stack slot. 300 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 301 *DAG.getContext()); 302 303 // Analyze return values. 304 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 305 306 SDValue Flag; 307 SmallVector<SDValue, 4> RetOps(1, Chain); 308 309 // The second operand on the return instruction is the return address offset. 310 // The return address is always %i7+8 with the 64-bit ABI. 311 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 312 313 // Copy the result values into the output registers. 314 for (unsigned i = 0; i != RVLocs.size(); ++i) { 315 CCValAssign &VA = RVLocs[i]; 316 assert(VA.isRegLoc() && "Can only return in registers!"); 317 SDValue OutVal = OutVals[i]; 318 319 // Integer return values must be sign or zero extended by the callee. 320 switch (VA.getLocInfo()) { 321 case CCValAssign::Full: break; 322 case CCValAssign::SExt: 323 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 324 break; 325 case CCValAssign::ZExt: 326 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 327 break; 328 case CCValAssign::AExt: 329 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 330 break; 331 default: 332 llvm_unreachable("Unknown loc info!"); 333 } 334 335 // The custom bit on an i32 return value indicates that it should be passed 336 // in the high bits of the register. 337 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 338 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 339 DAG.getConstant(32, DL, MVT::i32)); 340 341 // The next value may go in the low bits of the same register. 342 // Handle both at once. 343 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 344 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 345 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 346 // Skip the next value, it's already done. 347 ++i; 348 } 349 } 350 351 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 352 353 // Guarantee that all emitted copies are stuck together with flags. 354 Flag = Chain.getValue(1); 355 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 356 } 357 358 RetOps[0] = Chain; // Update chain. 359 360 // Add the flag if we have it. 361 if (Flag.getNode()) 362 RetOps.push_back(Flag); 363 364 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 365 } 366 367 SDValue SparcTargetLowering::LowerFormalArguments( 368 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 369 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 370 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 371 if (Subtarget->is64Bit()) 372 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 373 DL, DAG, InVals); 374 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 375 DL, DAG, InVals); 376 } 377 378 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 379 /// passed in either one or two GPRs, including FP values. TODO: we should 380 /// pass FP values in FP registers for fastcc functions. 381 SDValue SparcTargetLowering::LowerFormalArguments_32( 382 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 383 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 384 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 385 MachineFunction &MF = DAG.getMachineFunction(); 386 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 387 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 388 389 // Assign locations to all of the incoming arguments. 390 SmallVector<CCValAssign, 16> ArgLocs; 391 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 392 *DAG.getContext()); 393 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 394 395 const unsigned StackOffset = 92; 396 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 397 398 unsigned InIdx = 0; 399 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 400 CCValAssign &VA = ArgLocs[i]; 401 402 if (Ins[InIdx].Flags.isSRet()) { 403 if (InIdx != 0) 404 report_fatal_error("sparc only supports sret on the first parameter"); 405 // Get SRet from [%fp+64]. 406 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); 407 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 408 SDValue Arg = 409 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 410 InVals.push_back(Arg); 411 continue; 412 } 413 414 if (VA.isRegLoc()) { 415 if (VA.needsCustom()) { 416 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 417 418 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 419 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 420 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 421 422 assert(i+1 < e); 423 CCValAssign &NextVA = ArgLocs[++i]; 424 425 SDValue LoVal; 426 if (NextVA.isMemLoc()) { 427 int FrameIdx = MF.getFrameInfo(). 428 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 429 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 430 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 431 } else { 432 Register loReg = MF.addLiveIn(NextVA.getLocReg(), 433 &SP::IntRegsRegClass); 434 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 435 } 436 437 if (IsLittleEndian) 438 std::swap(LoVal, HiVal); 439 440 SDValue WholeValue = 441 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 442 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 443 InVals.push_back(WholeValue); 444 continue; 445 } 446 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 447 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 448 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 449 if (VA.getLocVT() == MVT::f32) 450 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 451 else if (VA.getLocVT() != MVT::i32) { 452 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 453 DAG.getValueType(VA.getLocVT())); 454 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 455 } 456 InVals.push_back(Arg); 457 continue; 458 } 459 460 assert(VA.isMemLoc()); 461 462 unsigned Offset = VA.getLocMemOffset()+StackOffset; 463 auto PtrVT = getPointerTy(DAG.getDataLayout()); 464 465 if (VA.needsCustom()) { 466 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 467 // If it is double-word aligned, just load. 468 if (Offset % 8 == 0) { 469 int FI = MF.getFrameInfo().CreateFixedObject(8, 470 Offset, 471 true); 472 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 473 SDValue Load = 474 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 475 InVals.push_back(Load); 476 continue; 477 } 478 479 int FI = MF.getFrameInfo().CreateFixedObject(4, 480 Offset, 481 true); 482 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 483 SDValue HiVal = 484 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 485 int FI2 = MF.getFrameInfo().CreateFixedObject(4, 486 Offset+4, 487 true); 488 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 489 490 SDValue LoVal = 491 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); 492 493 if (IsLittleEndian) 494 std::swap(LoVal, HiVal); 495 496 SDValue WholeValue = 497 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 498 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 499 InVals.push_back(WholeValue); 500 continue; 501 } 502 503 int FI = MF.getFrameInfo().CreateFixedObject(4, 504 Offset, 505 true); 506 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 507 SDValue Load ; 508 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 509 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 510 } else if (VA.getValVT() == MVT::f128) { 511 report_fatal_error("SPARCv8 does not handle f128 in calls; " 512 "pass indirectly"); 513 } else { 514 // We shouldn't see any other value types here. 515 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 516 } 517 InVals.push_back(Load); 518 } 519 520 if (MF.getFunction().hasStructRetAttr()) { 521 // Copy the SRet Argument to SRetReturnReg. 522 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 523 Register Reg = SFI->getSRetReturnReg(); 524 if (!Reg) { 525 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 526 SFI->setSRetReturnReg(Reg); 527 } 528 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 529 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 530 } 531 532 // Store remaining ArgRegs to the stack if this is a varargs function. 533 if (isVarArg) { 534 static const MCPhysReg ArgRegs[] = { 535 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 536 }; 537 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 538 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 539 unsigned ArgOffset = CCInfo.getNextStackOffset(); 540 if (NumAllocated == 6) 541 ArgOffset += StackOffset; 542 else { 543 assert(!ArgOffset); 544 ArgOffset = 68+4*NumAllocated; 545 } 546 547 // Remember the vararg offset for the va_start implementation. 548 FuncInfo->setVarArgsFrameOffset(ArgOffset); 549 550 std::vector<SDValue> OutChains; 551 552 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 553 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 554 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 555 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 556 557 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, 558 true); 559 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 560 561 OutChains.push_back( 562 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); 563 ArgOffset += 4; 564 } 565 566 if (!OutChains.empty()) { 567 OutChains.push_back(Chain); 568 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 569 } 570 } 571 572 return Chain; 573 } 574 575 // Lower formal arguments for the 64 bit ABI. 576 SDValue SparcTargetLowering::LowerFormalArguments_64( 577 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 578 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 579 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 580 MachineFunction &MF = DAG.getMachineFunction(); 581 582 // Analyze arguments according to CC_Sparc64. 583 SmallVector<CCValAssign, 16> ArgLocs; 584 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 585 *DAG.getContext()); 586 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 587 588 // The argument array begins at %fp+BIAS+128, after the register save area. 589 const unsigned ArgArea = 128; 590 591 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 592 CCValAssign &VA = ArgLocs[i]; 593 if (VA.isRegLoc()) { 594 // This argument is passed in a register. 595 // All integer register arguments are promoted by the caller to i64. 596 597 // Create a virtual register for the promoted live-in value. 598 Register VReg = MF.addLiveIn(VA.getLocReg(), 599 getRegClassFor(VA.getLocVT())); 600 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 601 602 // Get the high bits for i32 struct elements. 603 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 604 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 605 DAG.getConstant(32, DL, MVT::i32)); 606 607 // The caller promoted the argument, so insert an Assert?ext SDNode so we 608 // won't promote the value again in this function. 609 switch (VA.getLocInfo()) { 610 case CCValAssign::SExt: 611 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 612 DAG.getValueType(VA.getValVT())); 613 break; 614 case CCValAssign::ZExt: 615 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 616 DAG.getValueType(VA.getValVT())); 617 break; 618 default: 619 break; 620 } 621 622 // Truncate the register down to the argument type. 623 if (VA.isExtInLoc()) 624 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 625 626 InVals.push_back(Arg); 627 continue; 628 } 629 630 // The registers are exhausted. This argument was passed on the stack. 631 assert(VA.isMemLoc()); 632 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 633 // beginning of the arguments area at %fp+BIAS+128. 634 unsigned Offset = VA.getLocMemOffset() + ArgArea; 635 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 636 // Adjust offset for extended arguments, SPARC is big-endian. 637 // The caller will have written the full slot with extended bytes, but we 638 // prefer our own extending loads. 639 if (VA.isExtInLoc()) 640 Offset += 8 - ValSize; 641 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 642 InVals.push_back( 643 DAG.getLoad(VA.getValVT(), DL, Chain, 644 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 645 MachinePointerInfo::getFixedStack(MF, FI))); 646 } 647 648 if (!IsVarArg) 649 return Chain; 650 651 // This function takes variable arguments, some of which may have been passed 652 // in registers %i0-%i5. Variable floating point arguments are never passed 653 // in floating point registers. They go on %i0-%i5 or on the stack like 654 // integer arguments. 655 // 656 // The va_start intrinsic needs to know the offset to the first variable 657 // argument. 658 unsigned ArgOffset = CCInfo.getNextStackOffset(); 659 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 660 // Skip the 128 bytes of register save area. 661 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 662 Subtarget->getStackPointerBias()); 663 664 // Save the variable arguments that were passed in registers. 665 // The caller is required to reserve stack space for 6 arguments regardless 666 // of how many arguments were actually passed. 667 SmallVector<SDValue, 8> OutChains; 668 for (; ArgOffset < 6*8; ArgOffset += 8) { 669 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 670 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 671 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); 672 auto PtrVT = getPointerTy(MF.getDataLayout()); 673 OutChains.push_back( 674 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 675 MachinePointerInfo::getFixedStack(MF, FI))); 676 } 677 678 if (!OutChains.empty()) 679 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 680 681 return Chain; 682 } 683 684 SDValue 685 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 686 SmallVectorImpl<SDValue> &InVals) const { 687 if (Subtarget->is64Bit()) 688 return LowerCall_64(CLI, InVals); 689 return LowerCall_32(CLI, InVals); 690 } 691 692 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 693 const CallBase *Call) { 694 if (Call) 695 return Call->hasFnAttr(Attribute::ReturnsTwice); 696 697 const Function *CalleeFn = nullptr; 698 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 699 CalleeFn = dyn_cast<Function>(G->getGlobal()); 700 } else if (ExternalSymbolSDNode *E = 701 dyn_cast<ExternalSymbolSDNode>(Callee)) { 702 const Function &Fn = DAG.getMachineFunction().getFunction(); 703 const Module *M = Fn.getParent(); 704 const char *CalleeName = E->getSymbol(); 705 CalleeFn = M->getFunction(CalleeName); 706 } 707 708 if (!CalleeFn) 709 return false; 710 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 711 } 712 713 // Lower a call for the 32-bit ABI. 714 SDValue 715 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 716 SmallVectorImpl<SDValue> &InVals) const { 717 SelectionDAG &DAG = CLI.DAG; 718 SDLoc &dl = CLI.DL; 719 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 720 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 721 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 722 SDValue Chain = CLI.Chain; 723 SDValue Callee = CLI.Callee; 724 bool &isTailCall = CLI.IsTailCall; 725 CallingConv::ID CallConv = CLI.CallConv; 726 bool isVarArg = CLI.IsVarArg; 727 728 // Sparc target does not yet support tail call optimization. 729 isTailCall = false; 730 731 // Analyze operands of the call, assigning locations to each operand. 732 SmallVector<CCValAssign, 16> ArgLocs; 733 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 734 *DAG.getContext()); 735 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 736 737 // Get the size of the outgoing arguments stack space requirement. 738 unsigned ArgsSize = CCInfo.getNextStackOffset(); 739 740 // Keep stack frames 8-byte aligned. 741 ArgsSize = (ArgsSize+7) & ~7; 742 743 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 744 745 // Create local copies for byval args. 746 SmallVector<SDValue, 8> ByValArgs; 747 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 748 ISD::ArgFlagsTy Flags = Outs[i].Flags; 749 if (!Flags.isByVal()) 750 continue; 751 752 SDValue Arg = OutVals[i]; 753 unsigned Size = Flags.getByValSize(); 754 Align Alignment = Flags.getNonZeroByValAlign(); 755 756 if (Size > 0U) { 757 int FI = MFI.CreateStackObject(Size, Alignment, false); 758 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 759 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 760 761 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, 762 false, // isVolatile, 763 (Size <= 32), // AlwaysInline if size <= 32, 764 false, // isTailCall 765 MachinePointerInfo(), MachinePointerInfo()); 766 ByValArgs.push_back(FIPtr); 767 } 768 else { 769 SDValue nullVal; 770 ByValArgs.push_back(nullVal); 771 } 772 } 773 774 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); 775 776 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 777 SmallVector<SDValue, 8> MemOpChains; 778 779 const unsigned StackOffset = 92; 780 bool hasStructRetAttr = false; 781 unsigned SRetArgSize = 0; 782 // Walk the register/memloc assignments, inserting copies/loads. 783 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 784 i != e; 785 ++i, ++realArgIdx) { 786 CCValAssign &VA = ArgLocs[i]; 787 SDValue Arg = OutVals[realArgIdx]; 788 789 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 790 791 // Use local copy if it is a byval arg. 792 if (Flags.isByVal()) { 793 Arg = ByValArgs[byvalArgIdx++]; 794 if (!Arg) { 795 continue; 796 } 797 } 798 799 // Promote the value if needed. 800 switch (VA.getLocInfo()) { 801 default: llvm_unreachable("Unknown loc info!"); 802 case CCValAssign::Full: break; 803 case CCValAssign::SExt: 804 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 805 break; 806 case CCValAssign::ZExt: 807 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 808 break; 809 case CCValAssign::AExt: 810 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 811 break; 812 case CCValAssign::BCvt: 813 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 814 break; 815 } 816 817 if (Flags.isSRet()) { 818 assert(VA.needsCustom()); 819 // store SRet argument in %sp+64 820 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 821 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 822 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 823 MemOpChains.push_back( 824 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 825 hasStructRetAttr = true; 826 // sret only allowed on first argument 827 assert(Outs[realArgIdx].OrigArgIndex == 0); 828 PointerType *Ty = cast<PointerType>(CLI.getArgs()[0].Ty); 829 Type *ElementTy = Ty->getPointerElementType(); 830 SRetArgSize = DAG.getDataLayout().getTypeAllocSize(ElementTy); 831 continue; 832 } 833 834 if (VA.needsCustom()) { 835 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 836 837 if (VA.isMemLoc()) { 838 unsigned Offset = VA.getLocMemOffset() + StackOffset; 839 // if it is double-word aligned, just store. 840 if (Offset % 8 == 0) { 841 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 842 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 843 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 844 MemOpChains.push_back( 845 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 846 continue; 847 } 848 } 849 850 if (VA.getLocVT() == MVT::f64) { 851 // Move from the float value from float registers into the 852 // integer registers. 853 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) 854 Arg = bitcastConstantFPToInt(C, dl, DAG); 855 else 856 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 857 } 858 859 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 860 Arg, 861 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 862 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 863 Arg, 864 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 865 866 if (VA.isRegLoc()) { 867 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 868 assert(i+1 != e); 869 CCValAssign &NextVA = ArgLocs[++i]; 870 if (NextVA.isRegLoc()) { 871 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 872 } else { 873 // Store the second part in stack. 874 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 875 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 876 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 877 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 878 MemOpChains.push_back( 879 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 880 } 881 } else { 882 unsigned Offset = VA.getLocMemOffset() + StackOffset; 883 // Store the first part. 884 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 885 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 886 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 887 MemOpChains.push_back( 888 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); 889 // Store the second part. 890 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 891 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 892 MemOpChains.push_back( 893 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 894 } 895 continue; 896 } 897 898 // Arguments that can be passed on register must be kept at 899 // RegsToPass vector 900 if (VA.isRegLoc()) { 901 if (VA.getLocVT() != MVT::f32) { 902 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 903 continue; 904 } 905 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 906 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 907 continue; 908 } 909 910 assert(VA.isMemLoc()); 911 912 // Create a store off the stack pointer for this argument. 913 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 914 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 915 dl); 916 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 917 MemOpChains.push_back( 918 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 919 } 920 921 922 // Emit all stores, make sure the occur before any copies into physregs. 923 if (!MemOpChains.empty()) 924 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 925 926 // Build a sequence of copy-to-reg nodes chained together with token 927 // chain and flag operands which copy the outgoing args into registers. 928 // The InFlag in necessary since all emitted instructions must be 929 // stuck together. 930 SDValue InFlag; 931 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 932 Register Reg = toCallerWindow(RegsToPass[i].first); 933 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); 934 InFlag = Chain.getValue(1); 935 } 936 937 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 938 939 // If the callee is a GlobalAddress node (quite common, every direct call is) 940 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 941 // Likewise ExternalSymbol -> TargetExternalSymbol. 942 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 943 : SparcMCExpr::VK_Sparc_WDISP30; 944 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 945 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 946 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 947 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 948 949 // Returns a chain & a flag for retval copy to use 950 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 951 SmallVector<SDValue, 8> Ops; 952 Ops.push_back(Chain); 953 Ops.push_back(Callee); 954 if (hasStructRetAttr) 955 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 956 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 957 Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first), 958 RegsToPass[i].second.getValueType())); 959 960 // Add a register mask operand representing the call-preserved registers. 961 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 962 const uint32_t *Mask = 963 ((hasReturnsTwice) 964 ? TRI->getRTCallPreservedMask(CallConv) 965 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 966 assert(Mask && "Missing call preserved mask for calling convention"); 967 Ops.push_back(DAG.getRegisterMask(Mask)); 968 969 if (InFlag.getNode()) 970 Ops.push_back(InFlag); 971 972 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 973 InFlag = Chain.getValue(1); 974 975 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true), 976 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 977 InFlag = Chain.getValue(1); 978 979 // Assign locations to each value returned by this call. 980 SmallVector<CCValAssign, 16> RVLocs; 981 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 982 *DAG.getContext()); 983 984 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 985 986 // Copy all of the result registers out of their specified physreg. 987 for (unsigned i = 0; i != RVLocs.size(); ++i) { 988 if (RVLocs[i].getLocVT() == MVT::v2i32) { 989 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 990 SDValue Lo = DAG.getCopyFromReg( 991 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag); 992 Chain = Lo.getValue(1); 993 InFlag = Lo.getValue(2); 994 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 995 DAG.getConstant(0, dl, MVT::i32)); 996 SDValue Hi = DAG.getCopyFromReg( 997 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag); 998 Chain = Hi.getValue(1); 999 InFlag = Hi.getValue(2); 1000 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1001 DAG.getConstant(1, dl, MVT::i32)); 1002 InVals.push_back(Vec); 1003 } else { 1004 Chain = 1005 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1006 RVLocs[i].getValVT(), InFlag) 1007 .getValue(1); 1008 InFlag = Chain.getValue(2); 1009 InVals.push_back(Chain.getValue(0)); 1010 } 1011 } 1012 1013 return Chain; 1014 } 1015 1016 // FIXME? Maybe this could be a TableGen attribute on some registers and 1017 // this table could be generated automatically from RegInfo. 1018 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, 1019 const MachineFunction &MF) const { 1020 Register Reg = StringSwitch<Register>(RegName) 1021 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1022 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1023 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1024 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1025 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1026 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1027 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1028 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1029 .Default(0); 1030 1031 if (Reg) 1032 return Reg; 1033 1034 report_fatal_error("Invalid register name global variable"); 1035 } 1036 1037 // Fixup floating point arguments in the ... part of a varargs call. 1038 // 1039 // The SPARC v9 ABI requires that floating point arguments are treated the same 1040 // as integers when calling a varargs function. This does not apply to the 1041 // fixed arguments that are part of the function's prototype. 1042 // 1043 // This function post-processes a CCValAssign array created by 1044 // AnalyzeCallOperands(). 1045 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1046 ArrayRef<ISD::OutputArg> Outs) { 1047 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1048 const CCValAssign &VA = ArgLocs[i]; 1049 MVT ValTy = VA.getLocVT(); 1050 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1051 // varargs functions. 1052 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1053 continue; 1054 // The fixed arguments to a varargs function still go in FP registers. 1055 if (Outs[VA.getValNo()].IsFixed) 1056 continue; 1057 1058 // This floating point argument should be reassigned. 1059 CCValAssign NewVA; 1060 1061 // Determine the offset into the argument array. 1062 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1063 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1064 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1065 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1066 1067 if (Offset < 6*8) { 1068 // This argument should go in %i0-%i5. 1069 unsigned IReg = SP::I0 + Offset/8; 1070 if (ValTy == MVT::f64) 1071 // Full register, just bitconvert into i64. 1072 NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), 1073 IReg, MVT::i64, CCValAssign::BCvt); 1074 else { 1075 assert(ValTy == MVT::f128 && "Unexpected type!"); 1076 // Full register, just bitconvert into i128 -- We will lower this into 1077 // two i64s in LowerCall_64. 1078 NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), 1079 IReg, MVT::i128, CCValAssign::BCvt); 1080 } 1081 } else { 1082 // This needs to go to memory, we're out of integer registers. 1083 NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), 1084 Offset, VA.getLocVT(), VA.getLocInfo()); 1085 } 1086 ArgLocs[i] = NewVA; 1087 } 1088 } 1089 1090 // Lower a call for the 64-bit ABI. 1091 SDValue 1092 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1093 SmallVectorImpl<SDValue> &InVals) const { 1094 SelectionDAG &DAG = CLI.DAG; 1095 SDLoc DL = CLI.DL; 1096 SDValue Chain = CLI.Chain; 1097 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1098 1099 // Sparc target does not yet support tail call optimization. 1100 CLI.IsTailCall = false; 1101 1102 // Analyze operands of the call, assigning locations to each operand. 1103 SmallVector<CCValAssign, 16> ArgLocs; 1104 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1105 *DAG.getContext()); 1106 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1107 1108 // Get the size of the outgoing arguments stack space requirement. 1109 // The stack offset computed by CC_Sparc64 includes all arguments. 1110 // Called functions expect 6 argument words to exist in the stack frame, used 1111 // or not. 1112 unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()); 1113 1114 // Keep stack frames 16-byte aligned. 1115 ArgsSize = alignTo(ArgsSize, 16); 1116 1117 // Varargs calls require special treatment. 1118 if (CLI.IsVarArg) 1119 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1120 1121 // Adjust the stack pointer to make room for the arguments. 1122 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1123 // with more than 6 arguments. 1124 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 1125 1126 // Collect the set of registers to pass to the function and their values. 1127 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1128 // instruction. 1129 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 1130 1131 // Collect chains from all the memory opeations that copy arguments to the 1132 // stack. They must follow the stack pointer adjustment above and precede the 1133 // call instruction itself. 1134 SmallVector<SDValue, 8> MemOpChains; 1135 1136 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1137 const CCValAssign &VA = ArgLocs[i]; 1138 SDValue Arg = CLI.OutVals[i]; 1139 1140 // Promote the value if needed. 1141 switch (VA.getLocInfo()) { 1142 default: 1143 llvm_unreachable("Unknown location info!"); 1144 case CCValAssign::Full: 1145 break; 1146 case CCValAssign::SExt: 1147 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1148 break; 1149 case CCValAssign::ZExt: 1150 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1151 break; 1152 case CCValAssign::AExt: 1153 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1154 break; 1155 case CCValAssign::BCvt: 1156 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1157 // SPARC does not support i128 natively. Lower it into two i64, see below. 1158 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1159 || VA.getLocVT() != MVT::i128) 1160 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1161 break; 1162 } 1163 1164 if (VA.isRegLoc()) { 1165 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1166 && VA.getLocVT() == MVT::i128) { 1167 // Store and reload into the integer register reg and reg+1. 1168 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1169 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1170 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1171 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1172 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1173 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1174 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1175 1176 // Store to %sp+BIAS+128+Offset 1177 SDValue Store = 1178 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); 1179 // Load into Reg and Reg+1 1180 SDValue Hi64 = 1181 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); 1182 SDValue Lo64 = 1183 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); 1184 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), 1185 Hi64)); 1186 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1), 1187 Lo64)); 1188 continue; 1189 } 1190 1191 // The custom bit on an i32 return value indicates that it should be 1192 // passed in the high bits of the register. 1193 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1194 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1195 DAG.getConstant(32, DL, MVT::i32)); 1196 1197 // The next value may go in the low bits of the same register. 1198 // Handle both at once. 1199 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1200 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1201 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1202 CLI.OutVals[i+1]); 1203 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1204 // Skip the next value, it's already done. 1205 ++i; 1206 } 1207 } 1208 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg)); 1209 continue; 1210 } 1211 1212 assert(VA.isMemLoc()); 1213 1214 // Create a store off the stack pointer for this argument. 1215 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1216 // The argument area starts at %fp+BIAS+128 in the callee frame, 1217 // %sp+BIAS+128 in ours. 1218 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1219 Subtarget->getStackPointerBias() + 1220 128, DL); 1221 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1222 MemOpChains.push_back( 1223 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 1224 } 1225 1226 // Emit all stores, make sure they occur before the call. 1227 if (!MemOpChains.empty()) 1228 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1229 1230 // Build a sequence of CopyToReg nodes glued together with token chain and 1231 // glue operands which copy the outgoing args into registers. The InGlue is 1232 // necessary since all emitted instructions must be stuck together in order 1233 // to pass the live physical registers. 1234 SDValue InGlue; 1235 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1236 Chain = DAG.getCopyToReg(Chain, DL, 1237 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1238 InGlue = Chain.getValue(1); 1239 } 1240 1241 // If the callee is a GlobalAddress node (quite common, every direct call is) 1242 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1243 // Likewise ExternalSymbol -> TargetExternalSymbol. 1244 SDValue Callee = CLI.Callee; 1245 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1246 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1247 : SparcMCExpr::VK_Sparc_WDISP30; 1248 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1249 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1250 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1251 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1252 1253 // Build the operands for the call instruction itself. 1254 SmallVector<SDValue, 8> Ops; 1255 Ops.push_back(Chain); 1256 Ops.push_back(Callee); 1257 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1258 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1259 RegsToPass[i].second.getValueType())); 1260 1261 // Add a register mask operand representing the call-preserved registers. 1262 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1263 const uint32_t *Mask = 1264 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1265 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1266 CLI.CallConv)); 1267 assert(Mask && "Missing call preserved mask for calling convention"); 1268 Ops.push_back(DAG.getRegisterMask(Mask)); 1269 1270 // Make sure the CopyToReg nodes are glued to the call instruction which 1271 // consumes the registers. 1272 if (InGlue.getNode()) 1273 Ops.push_back(InGlue); 1274 1275 // Now the call itself. 1276 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1277 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1278 InGlue = Chain.getValue(1); 1279 1280 // Revert the stack pointer immediately after the call. 1281 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 1282 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 1283 InGlue = Chain.getValue(1); 1284 1285 // Now extract the return values. This is more or less the same as 1286 // LowerFormalArguments_64. 1287 1288 // Assign locations to each value returned by this call. 1289 SmallVector<CCValAssign, 16> RVLocs; 1290 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1291 *DAG.getContext()); 1292 1293 // Set inreg flag manually for codegen generated library calls that 1294 // return float. 1295 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 1296 CLI.Ins[0].Flags.setInReg(); 1297 1298 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1299 1300 // Copy all of the result registers out of their specified physreg. 1301 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1302 CCValAssign &VA = RVLocs[i]; 1303 unsigned Reg = toCallerWindow(VA.getLocReg()); 1304 1305 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1306 // reside in the same register in the high and low bits. Reuse the 1307 // CopyFromReg previous node to avoid duplicate copies. 1308 SDValue RV; 1309 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1310 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1311 RV = Chain.getValue(0); 1312 1313 // But usually we'll create a new CopyFromReg for a different register. 1314 if (!RV.getNode()) { 1315 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1316 Chain = RV.getValue(1); 1317 InGlue = Chain.getValue(2); 1318 } 1319 1320 // Get the high bits for i32 struct elements. 1321 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1322 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1323 DAG.getConstant(32, DL, MVT::i32)); 1324 1325 // The callee promoted the return value, so insert an Assert?ext SDNode so 1326 // we won't promote the value again in this function. 1327 switch (VA.getLocInfo()) { 1328 case CCValAssign::SExt: 1329 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1330 DAG.getValueType(VA.getValVT())); 1331 break; 1332 case CCValAssign::ZExt: 1333 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1334 DAG.getValueType(VA.getValVT())); 1335 break; 1336 default: 1337 break; 1338 } 1339 1340 // Truncate the register down to the return value type. 1341 if (VA.isExtInLoc()) 1342 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1343 1344 InVals.push_back(RV); 1345 } 1346 1347 return Chain; 1348 } 1349 1350 //===----------------------------------------------------------------------===// 1351 // TargetLowering Implementation 1352 //===----------------------------------------------------------------------===// 1353 1354 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1355 if (AI->getOperation() == AtomicRMWInst::Xchg && 1356 AI->getType()->getPrimitiveSizeInBits() == 32) 1357 return AtomicExpansionKind::None; // Uses xchg instruction 1358 1359 return AtomicExpansionKind::CmpXChg; 1360 } 1361 1362 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1363 /// condition. 1364 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1365 switch (CC) { 1366 default: llvm_unreachable("Unknown integer condition code!"); 1367 case ISD::SETEQ: return SPCC::ICC_E; 1368 case ISD::SETNE: return SPCC::ICC_NE; 1369 case ISD::SETLT: return SPCC::ICC_L; 1370 case ISD::SETGT: return SPCC::ICC_G; 1371 case ISD::SETLE: return SPCC::ICC_LE; 1372 case ISD::SETGE: return SPCC::ICC_GE; 1373 case ISD::SETULT: return SPCC::ICC_CS; 1374 case ISD::SETULE: return SPCC::ICC_LEU; 1375 case ISD::SETUGT: return SPCC::ICC_GU; 1376 case ISD::SETUGE: return SPCC::ICC_CC; 1377 } 1378 } 1379 1380 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1381 /// FCC condition. 1382 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1383 switch (CC) { 1384 default: llvm_unreachable("Unknown fp condition code!"); 1385 case ISD::SETEQ: 1386 case ISD::SETOEQ: return SPCC::FCC_E; 1387 case ISD::SETNE: 1388 case ISD::SETUNE: return SPCC::FCC_NE; 1389 case ISD::SETLT: 1390 case ISD::SETOLT: return SPCC::FCC_L; 1391 case ISD::SETGT: 1392 case ISD::SETOGT: return SPCC::FCC_G; 1393 case ISD::SETLE: 1394 case ISD::SETOLE: return SPCC::FCC_LE; 1395 case ISD::SETGE: 1396 case ISD::SETOGE: return SPCC::FCC_GE; 1397 case ISD::SETULT: return SPCC::FCC_UL; 1398 case ISD::SETULE: return SPCC::FCC_ULE; 1399 case ISD::SETUGT: return SPCC::FCC_UG; 1400 case ISD::SETUGE: return SPCC::FCC_UGE; 1401 case ISD::SETUO: return SPCC::FCC_U; 1402 case ISD::SETO: return SPCC::FCC_O; 1403 case ISD::SETONE: return SPCC::FCC_LG; 1404 case ISD::SETUEQ: return SPCC::FCC_UE; 1405 } 1406 } 1407 1408 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1409 const SparcSubtarget &STI) 1410 : TargetLowering(TM), Subtarget(&STI) { 1411 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 1412 1413 // Instructions which use registers as conditionals examine all the 1414 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1415 // matters much whether it's ZeroOrOneBooleanContent, or 1416 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1417 // former. 1418 setBooleanContents(ZeroOrOneBooleanContent); 1419 setBooleanVectorContents(ZeroOrOneBooleanContent); 1420 1421 // Set up the register classes. 1422 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1423 if (!Subtarget->useSoftFloat()) { 1424 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1425 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1426 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1427 } 1428 if (Subtarget->is64Bit()) { 1429 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1430 } else { 1431 // On 32bit sparc, we define a double-register 32bit register 1432 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1433 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1434 1435 // ...but almost all operations must be expanded, so set that as 1436 // the default. 1437 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1438 setOperationAction(Op, MVT::v2i32, Expand); 1439 } 1440 // Truncating/extending stores/loads are also not supported. 1441 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1442 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1443 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1444 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1445 1446 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1447 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1448 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1449 1450 setTruncStoreAction(VT, MVT::v2i32, Expand); 1451 setTruncStoreAction(MVT::v2i32, VT, Expand); 1452 } 1453 // However, load and store *are* legal. 1454 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1455 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1456 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1457 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1458 1459 // And we need to promote i64 loads/stores into vector load/store 1460 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1461 setOperationAction(ISD::STORE, MVT::i64, Custom); 1462 1463 // Sadly, this doesn't work: 1464 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1465 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1466 } 1467 1468 // Turn FP extload into load/fpextend 1469 for (MVT VT : MVT::fp_valuetypes()) { 1470 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 1471 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1472 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1473 } 1474 1475 // Sparc doesn't have i1 sign extending load 1476 for (MVT VT : MVT::integer_valuetypes()) 1477 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1478 1479 // Turn FP truncstore into trunc + store. 1480 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 1481 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 1482 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1483 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 1484 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1485 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1486 1487 // Custom legalize GlobalAddress nodes into LO/HI parts. 1488 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1489 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1490 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1491 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1492 1493 // Sparc doesn't have sext_inreg, replace them with shl/sra 1494 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1495 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1496 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1497 1498 // Sparc has no REM or DIVREM operations. 1499 setOperationAction(ISD::UREM, MVT::i32, Expand); 1500 setOperationAction(ISD::SREM, MVT::i32, Expand); 1501 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1502 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1503 1504 // ... nor does SparcV9. 1505 if (Subtarget->is64Bit()) { 1506 setOperationAction(ISD::UREM, MVT::i64, Expand); 1507 setOperationAction(ISD::SREM, MVT::i64, Expand); 1508 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1509 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1510 } 1511 1512 // Custom expand fp<->sint 1513 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1514 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1515 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1516 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1517 1518 // Custom Expand fp<->uint 1519 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1520 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1521 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1522 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1523 1524 // Lower f16 conversion operations into library calls 1525 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 1526 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 1527 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 1528 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 1529 setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand); 1530 setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand); 1531 1532 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1533 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1534 1535 // Sparc has no select or setcc: expand to SELECT_CC. 1536 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1537 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1538 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1539 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1540 1541 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1542 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1543 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1544 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1545 1546 // Sparc doesn't have BRCOND either, it has BR_CC. 1547 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1548 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1549 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1550 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1551 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1552 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1553 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1554 1555 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1556 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1557 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1558 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1559 1560 setOperationAction(ISD::ADDC, MVT::i32, Custom); 1561 setOperationAction(ISD::ADDE, MVT::i32, Custom); 1562 setOperationAction(ISD::SUBC, MVT::i32, Custom); 1563 setOperationAction(ISD::SUBE, MVT::i32, Custom); 1564 1565 if (Subtarget->is64Bit()) { 1566 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1567 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1568 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1569 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1570 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1571 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1572 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1573 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1574 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1575 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1576 1577 setOperationAction(ISD::CTPOP, MVT::i64, 1578 Subtarget->usePopc() ? Legal : Expand); 1579 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1580 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1581 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1582 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1583 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1584 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1585 } 1586 1587 // ATOMICs. 1588 // Atomics are supported on SparcV9. 32-bit atomics are also 1589 // supported by some Leon SparcV8 variants. Otherwise, atomics 1590 // are unsupported. 1591 if (Subtarget->isV9()) 1592 setMaxAtomicSizeInBitsSupported(64); 1593 else if (Subtarget->hasLeonCasa()) 1594 setMaxAtomicSizeInBitsSupported(32); 1595 else 1596 setMaxAtomicSizeInBitsSupported(0); 1597 1598 setMinCmpXchgSizeInBits(32); 1599 1600 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1601 1602 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1603 1604 // Custom Lower Atomic LOAD/STORE 1605 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1606 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1607 1608 if (Subtarget->is64Bit()) { 1609 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1610 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1611 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1612 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1613 } 1614 1615 if (!Subtarget->is64Bit()) { 1616 // These libcalls are not available in 32-bit. 1617 setLibcallName(RTLIB::MULO_I64, nullptr); 1618 setLibcallName(RTLIB::SHL_I128, nullptr); 1619 setLibcallName(RTLIB::SRL_I128, nullptr); 1620 setLibcallName(RTLIB::SRA_I128, nullptr); 1621 } 1622 1623 setLibcallName(RTLIB::MULO_I128, nullptr); 1624 1625 if (!Subtarget->isV9()) { 1626 // SparcV8 does not have FNEGD and FABSD. 1627 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1628 setOperationAction(ISD::FABS, MVT::f64, Custom); 1629 } 1630 1631 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1632 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1633 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1634 setOperationAction(ISD::FREM , MVT::f128, Expand); 1635 setOperationAction(ISD::FMA , MVT::f128, Expand); 1636 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1637 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1638 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1639 setOperationAction(ISD::FREM , MVT::f64, Expand); 1640 setOperationAction(ISD::FMA , MVT::f64, Expand); 1641 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1642 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1643 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1644 setOperationAction(ISD::FREM , MVT::f32, Expand); 1645 setOperationAction(ISD::FMA , MVT::f32, Expand); 1646 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1647 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1648 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1649 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1650 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1651 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1652 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1653 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1654 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1655 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1656 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1657 1658 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1659 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1660 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1661 1662 // Expands to [SU]MUL_LOHI. 1663 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1664 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1665 setOperationAction(ISD::MUL, MVT::i32, Expand); 1666 1667 if (Subtarget->useSoftMulDiv()) { 1668 // .umul works for both signed and unsigned 1669 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1670 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1671 setLibcallName(RTLIB::MUL_I32, ".umul"); 1672 1673 setOperationAction(ISD::SDIV, MVT::i32, Expand); 1674 setLibcallName(RTLIB::SDIV_I32, ".div"); 1675 1676 setOperationAction(ISD::UDIV, MVT::i32, Expand); 1677 setLibcallName(RTLIB::UDIV_I32, ".udiv"); 1678 1679 setLibcallName(RTLIB::SREM_I32, ".rem"); 1680 setLibcallName(RTLIB::UREM_I32, ".urem"); 1681 } 1682 1683 if (Subtarget->is64Bit()) { 1684 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1685 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1686 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1687 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1688 1689 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1690 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1691 1692 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1693 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1694 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1695 } 1696 1697 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1698 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1699 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1700 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1701 1702 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1703 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); 1704 1705 // Use the default implementation. 1706 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1707 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1708 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1709 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1710 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1711 1712 setStackPointerRegisterToSaveRestore(SP::O6); 1713 1714 setOperationAction(ISD::CTPOP, MVT::i32, 1715 Subtarget->usePopc() ? Legal : Expand); 1716 1717 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1718 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1719 setOperationAction(ISD::STORE, MVT::f128, Legal); 1720 } else { 1721 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1722 setOperationAction(ISD::STORE, MVT::f128, Custom); 1723 } 1724 1725 if (Subtarget->hasHardQuad()) { 1726 setOperationAction(ISD::FADD, MVT::f128, Legal); 1727 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1728 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1729 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1730 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1731 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1732 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1733 if (Subtarget->isV9()) { 1734 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1735 setOperationAction(ISD::FABS, MVT::f128, Legal); 1736 } else { 1737 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1738 setOperationAction(ISD::FABS, MVT::f128, Custom); 1739 } 1740 1741 if (!Subtarget->is64Bit()) { 1742 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1743 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1744 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1745 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1746 } 1747 1748 } else { 1749 // Custom legalize f128 operations. 1750 1751 setOperationAction(ISD::FADD, MVT::f128, Custom); 1752 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1753 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1754 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1755 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1756 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1757 setOperationAction(ISD::FABS, MVT::f128, Custom); 1758 1759 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1760 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1761 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1762 1763 // Setup Runtime library names. 1764 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1765 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1766 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1767 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1768 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1769 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1770 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1771 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1772 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1773 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1774 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1775 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1776 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1777 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1778 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1779 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1780 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1781 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1782 } else if (!Subtarget->useSoftFloat()) { 1783 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1784 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1785 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1786 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1787 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1788 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1789 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1790 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1791 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1792 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1793 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1794 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1795 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1796 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1797 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1798 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1799 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1800 } 1801 } 1802 1803 if (Subtarget->fixAllFDIVSQRT()) { 1804 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1805 // the former instructions generate errata on LEON processors. 1806 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1807 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1808 } 1809 1810 if (Subtarget->hasNoFMULS()) { 1811 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1812 } 1813 1814 // Custom combine bitcast between f64 and v2i32 1815 if (!Subtarget->is64Bit()) 1816 setTargetDAGCombine(ISD::BITCAST); 1817 1818 if (Subtarget->hasLeonCycleCounter()) 1819 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1820 1821 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1822 1823 setMinFunctionAlignment(Align(4)); 1824 1825 computeRegisterProperties(Subtarget->getRegisterInfo()); 1826 } 1827 1828 bool SparcTargetLowering::useSoftFloat() const { 1829 return Subtarget->useSoftFloat(); 1830 } 1831 1832 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 1833 switch ((SPISD::NodeType)Opcode) { 1834 case SPISD::FIRST_NUMBER: break; 1835 case SPISD::CMPICC: return "SPISD::CMPICC"; 1836 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 1837 case SPISD::BRICC: return "SPISD::BRICC"; 1838 case SPISD::BRXCC: return "SPISD::BRXCC"; 1839 case SPISD::BRFCC: return "SPISD::BRFCC"; 1840 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 1841 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 1842 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 1843 case SPISD::Hi: return "SPISD::Hi"; 1844 case SPISD::Lo: return "SPISD::Lo"; 1845 case SPISD::FTOI: return "SPISD::FTOI"; 1846 case SPISD::ITOF: return "SPISD::ITOF"; 1847 case SPISD::FTOX: return "SPISD::FTOX"; 1848 case SPISD::XTOF: return "SPISD::XTOF"; 1849 case SPISD::CALL: return "SPISD::CALL"; 1850 case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; 1851 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 1852 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 1853 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 1854 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 1855 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 1856 } 1857 return nullptr; 1858 } 1859 1860 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 1861 EVT VT) const { 1862 if (!VT.isVector()) 1863 return MVT::i32; 1864 return VT.changeVectorElementTypeToInteger(); 1865 } 1866 1867 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 1868 /// be zero. Op is expected to be a target specific node. Used by DAG 1869 /// combiner. 1870 void SparcTargetLowering::computeKnownBitsForTargetNode 1871 (const SDValue Op, 1872 KnownBits &Known, 1873 const APInt &DemandedElts, 1874 const SelectionDAG &DAG, 1875 unsigned Depth) const { 1876 KnownBits Known2; 1877 Known.resetAll(); 1878 1879 switch (Op.getOpcode()) { 1880 default: break; 1881 case SPISD::SELECT_ICC: 1882 case SPISD::SELECT_XCC: 1883 case SPISD::SELECT_FCC: 1884 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 1885 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 1886 1887 // Only known if known in both the LHS and RHS. 1888 Known = KnownBits::commonBits(Known, Known2); 1889 break; 1890 } 1891 } 1892 1893 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 1894 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 1895 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 1896 ISD::CondCode CC, unsigned &SPCC) { 1897 if (isNullConstant(RHS) && 1898 CC == ISD::SETNE && 1899 (((LHS.getOpcode() == SPISD::SELECT_ICC || 1900 LHS.getOpcode() == SPISD::SELECT_XCC) && 1901 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 1902 (LHS.getOpcode() == SPISD::SELECT_FCC && 1903 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && 1904 isOneConstant(LHS.getOperand(0)) && 1905 isNullConstant(LHS.getOperand(1))) { 1906 SDValue CMPCC = LHS.getOperand(3); 1907 SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue(); 1908 LHS = CMPCC.getOperand(0); 1909 RHS = CMPCC.getOperand(1); 1910 } 1911 } 1912 1913 // Convert to a target node and set target flags. 1914 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 1915 SelectionDAG &DAG) const { 1916 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1917 return DAG.getTargetGlobalAddress(GA->getGlobal(), 1918 SDLoc(GA), 1919 GA->getValueType(0), 1920 GA->getOffset(), TF); 1921 1922 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 1923 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 1924 CP->getAlign(), CP->getOffset(), TF); 1925 1926 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 1927 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 1928 Op.getValueType(), 1929 0, 1930 TF); 1931 1932 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 1933 return DAG.getTargetExternalSymbol(ES->getSymbol(), 1934 ES->getValueType(0), TF); 1935 1936 llvm_unreachable("Unhandled address SDNode"); 1937 } 1938 1939 // Split Op into high and low parts according to HiTF and LoTF. 1940 // Return an ADD node combining the parts. 1941 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 1942 unsigned HiTF, unsigned LoTF, 1943 SelectionDAG &DAG) const { 1944 SDLoc DL(Op); 1945 EVT VT = Op.getValueType(); 1946 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 1947 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 1948 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1949 } 1950 1951 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 1952 // or ExternalSymbol SDNode. 1953 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 1954 SDLoc DL(Op); 1955 EVT VT = getPointerTy(DAG.getDataLayout()); 1956 1957 // Handle PIC mode first. SPARC needs a got load for every variable! 1958 if (isPositionIndependent()) { 1959 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 1960 PICLevel::Level picLevel = M->getPICLevel(); 1961 SDValue Idx; 1962 1963 if (picLevel == PICLevel::SmallPIC) { 1964 // This is the pic13 code model, the GOT is known to be smaller than 8KiB. 1965 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), 1966 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); 1967 } else { 1968 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 1969 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 1970 SparcMCExpr::VK_Sparc_GOT10, DAG); 1971 } 1972 1973 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 1974 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); 1975 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 1976 // function has calls. 1977 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1978 MFI.setHasCalls(true); 1979 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 1980 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1981 } 1982 1983 // This is one of the absolute code models. 1984 switch(getTargetMachine().getCodeModel()) { 1985 default: 1986 llvm_unreachable("Unsupported absolute code model"); 1987 case CodeModel::Small: 1988 // abs32. 1989 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 1990 SparcMCExpr::VK_Sparc_LO, DAG); 1991 case CodeModel::Medium: { 1992 // abs44. 1993 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 1994 SparcMCExpr::VK_Sparc_M44, DAG); 1995 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 1996 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 1997 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 1998 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 1999 } 2000 case CodeModel::Large: { 2001 // abs64. 2002 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 2003 SparcMCExpr::VK_Sparc_HM, DAG); 2004 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 2005 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2006 SparcMCExpr::VK_Sparc_LO, DAG); 2007 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2008 } 2009 } 2010 } 2011 2012 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2013 SelectionDAG &DAG) const { 2014 return makeAddress(Op, DAG); 2015 } 2016 2017 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2018 SelectionDAG &DAG) const { 2019 return makeAddress(Op, DAG); 2020 } 2021 2022 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2023 SelectionDAG &DAG) const { 2024 return makeAddress(Op, DAG); 2025 } 2026 2027 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2028 SelectionDAG &DAG) const { 2029 2030 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2031 if (DAG.getTarget().useEmulatedTLS()) 2032 return LowerToTLSEmulatedModel(GA, DAG); 2033 2034 SDLoc DL(GA); 2035 const GlobalValue *GV = GA->getGlobal(); 2036 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2037 2038 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2039 2040 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2041 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2042 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2043 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2044 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2045 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2046 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2047 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2048 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2049 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2050 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2051 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2052 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2053 2054 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2055 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2056 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2057 withTargetFlags(Op, addTF, DAG)); 2058 2059 SDValue Chain = DAG.getEntryNode(); 2060 SDValue InFlag; 2061 2062 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); 2063 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag); 2064 InFlag = Chain.getValue(1); 2065 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2066 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2067 2068 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2069 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2070 DAG.getMachineFunction(), CallingConv::C); 2071 assert(Mask && "Missing call preserved mask for calling convention"); 2072 SDValue Ops[] = {Chain, 2073 Callee, 2074 Symbol, 2075 DAG.getRegister(SP::O0, PtrVT), 2076 DAG.getRegisterMask(Mask), 2077 InFlag}; 2078 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2079 InFlag = Chain.getValue(1); 2080 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true), 2081 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 2082 InFlag = Chain.getValue(1); 2083 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag); 2084 2085 if (model != TLSModel::LocalDynamic) 2086 return Ret; 2087 2088 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2089 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2090 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2091 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2092 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2093 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2094 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2095 } 2096 2097 if (model == TLSModel::InitialExec) { 2098 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2099 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2100 2101 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2102 2103 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2104 // function has calls. 2105 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2106 MFI.setHasCalls(true); 2107 2108 SDValue TGA = makeHiLoPair(Op, 2109 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2110 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2111 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2112 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2113 DL, PtrVT, Ptr, 2114 withTargetFlags(Op, ldTF, DAG)); 2115 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2116 DAG.getRegister(SP::G7, PtrVT), Offset, 2117 withTargetFlags(Op, 2118 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2119 } 2120 2121 assert(model == TLSModel::LocalExec); 2122 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2123 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2124 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2125 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2126 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2127 2128 return DAG.getNode(ISD::ADD, DL, PtrVT, 2129 DAG.getRegister(SP::G7, PtrVT), Offset); 2130 } 2131 2132 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2133 ArgListTy &Args, SDValue Arg, 2134 const SDLoc &DL, 2135 SelectionDAG &DAG) const { 2136 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2137 EVT ArgVT = Arg.getValueType(); 2138 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2139 2140 ArgListEntry Entry; 2141 Entry.Node = Arg; 2142 Entry.Ty = ArgTy; 2143 2144 if (ArgTy->isFP128Ty()) { 2145 // Create a stack object and pass the pointer to the library function. 2146 int FI = MFI.CreateStackObject(16, Align(8), false); 2147 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2148 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), 2149 Align(8)); 2150 2151 Entry.Node = FIPtr; 2152 Entry.Ty = PointerType::getUnqual(ArgTy); 2153 } 2154 Args.push_back(Entry); 2155 return Chain; 2156 } 2157 2158 SDValue 2159 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2160 const char *LibFuncName, 2161 unsigned numArgs) const { 2162 2163 ArgListTy Args; 2164 2165 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2166 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2167 2168 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2169 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2170 Type *RetTyABI = RetTy; 2171 SDValue Chain = DAG.getEntryNode(); 2172 SDValue RetPtr; 2173 2174 if (RetTy->isFP128Ty()) { 2175 // Create a Stack Object to receive the return value of type f128. 2176 ArgListEntry Entry; 2177 int RetFI = MFI.CreateStackObject(16, Align(8), false); 2178 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2179 Entry.Node = RetPtr; 2180 Entry.Ty = PointerType::getUnqual(RetTy); 2181 if (!Subtarget->is64Bit()) 2182 Entry.IsSRet = true; 2183 Entry.IsReturned = false; 2184 Args.push_back(Entry); 2185 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2186 } 2187 2188 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2189 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2190 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2191 } 2192 TargetLowering::CallLoweringInfo CLI(DAG); 2193 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2194 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2195 2196 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2197 2198 // chain is in second result. 2199 if (RetTyABI == RetTy) 2200 return CallInfo.first; 2201 2202 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2203 2204 Chain = CallInfo.second; 2205 2206 // Load RetPtr to get the return value. 2207 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, 2208 MachinePointerInfo(), Align(8)); 2209 } 2210 2211 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2212 unsigned &SPCC, const SDLoc &DL, 2213 SelectionDAG &DAG) const { 2214 2215 const char *LibCall = nullptr; 2216 bool is64Bit = Subtarget->is64Bit(); 2217 switch(SPCC) { 2218 default: llvm_unreachable("Unhandled conditional code!"); 2219 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2220 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2221 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2222 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2223 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2224 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2225 case SPCC::FCC_UL : 2226 case SPCC::FCC_ULE: 2227 case SPCC::FCC_UG : 2228 case SPCC::FCC_UGE: 2229 case SPCC::FCC_U : 2230 case SPCC::FCC_O : 2231 case SPCC::FCC_LG : 2232 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2233 } 2234 2235 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2236 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2237 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2238 ArgListTy Args; 2239 SDValue Chain = DAG.getEntryNode(); 2240 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2241 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2242 2243 TargetLowering::CallLoweringInfo CLI(DAG); 2244 CLI.setDebugLoc(DL).setChain(Chain) 2245 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2246 2247 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2248 2249 // result is in first, and chain is in second result. 2250 SDValue Result = CallInfo.first; 2251 2252 switch(SPCC) { 2253 default: { 2254 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2255 SPCC = SPCC::ICC_NE; 2256 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2257 } 2258 case SPCC::FCC_UL : { 2259 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); 2260 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2261 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2262 SPCC = SPCC::ICC_NE; 2263 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2264 } 2265 case SPCC::FCC_ULE: { 2266 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); 2267 SPCC = SPCC::ICC_NE; 2268 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2269 } 2270 case SPCC::FCC_UG : { 2271 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2272 SPCC = SPCC::ICC_G; 2273 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2274 } 2275 case SPCC::FCC_UGE: { 2276 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2277 SPCC = SPCC::ICC_NE; 2278 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2279 } 2280 2281 case SPCC::FCC_U : { 2282 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2283 SPCC = SPCC::ICC_E; 2284 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2285 } 2286 case SPCC::FCC_O : { 2287 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2288 SPCC = SPCC::ICC_NE; 2289 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2290 } 2291 case SPCC::FCC_LG : { 2292 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2293 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2294 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2295 SPCC = SPCC::ICC_NE; 2296 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2297 } 2298 case SPCC::FCC_UE : { 2299 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2300 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2301 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2302 SPCC = SPCC::ICC_E; 2303 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2304 } 2305 } 2306 } 2307 2308 static SDValue 2309 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2310 const SparcTargetLowering &TLI) { 2311 2312 if (Op.getOperand(0).getValueType() == MVT::f64) 2313 return TLI.LowerF128Op(Op, DAG, 2314 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2315 2316 if (Op.getOperand(0).getValueType() == MVT::f32) 2317 return TLI.LowerF128Op(Op, DAG, 2318 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2319 2320 llvm_unreachable("fpextend with non-float operand!"); 2321 return SDValue(); 2322 } 2323 2324 static SDValue 2325 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2326 const SparcTargetLowering &TLI) { 2327 // FP_ROUND on f64 and f32 are legal. 2328 if (Op.getOperand(0).getValueType() != MVT::f128) 2329 return Op; 2330 2331 if (Op.getValueType() == MVT::f64) 2332 return TLI.LowerF128Op(Op, DAG, 2333 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2334 if (Op.getValueType() == MVT::f32) 2335 return TLI.LowerF128Op(Op, DAG, 2336 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2337 2338 llvm_unreachable("fpround to non-float!"); 2339 return SDValue(); 2340 } 2341 2342 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2343 const SparcTargetLowering &TLI, 2344 bool hasHardQuad) { 2345 SDLoc dl(Op); 2346 EVT VT = Op.getValueType(); 2347 assert(VT == MVT::i32 || VT == MVT::i64); 2348 2349 // Expand f128 operations to fp128 abi calls. 2350 if (Op.getOperand(0).getValueType() == MVT::f128 2351 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2352 const char *libName = TLI.getLibcallName(VT == MVT::i32 2353 ? RTLIB::FPTOSINT_F128_I32 2354 : RTLIB::FPTOSINT_F128_I64); 2355 return TLI.LowerF128Op(Op, DAG, libName, 1); 2356 } 2357 2358 // Expand if the resulting type is illegal. 2359 if (!TLI.isTypeLegal(VT)) 2360 return SDValue(); 2361 2362 // Otherwise, Convert the fp value to integer in an FP register. 2363 if (VT == MVT::i32) 2364 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2365 else 2366 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2367 2368 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2369 } 2370 2371 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2372 const SparcTargetLowering &TLI, 2373 bool hasHardQuad) { 2374 SDLoc dl(Op); 2375 EVT OpVT = Op.getOperand(0).getValueType(); 2376 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2377 2378 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2379 2380 // Expand f128 operations to fp128 ABI calls. 2381 if (Op.getValueType() == MVT::f128 2382 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2383 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2384 ? RTLIB::SINTTOFP_I32_F128 2385 : RTLIB::SINTTOFP_I64_F128); 2386 return TLI.LowerF128Op(Op, DAG, libName, 1); 2387 } 2388 2389 // Expand if the operand type is illegal. 2390 if (!TLI.isTypeLegal(OpVT)) 2391 return SDValue(); 2392 2393 // Otherwise, Convert the int value to FP in an FP register. 2394 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2395 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2396 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2397 } 2398 2399 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2400 const SparcTargetLowering &TLI, 2401 bool hasHardQuad) { 2402 SDLoc dl(Op); 2403 EVT VT = Op.getValueType(); 2404 2405 // Expand if it does not involve f128 or the target has support for 2406 // quad floating point instructions and the resulting type is legal. 2407 if (Op.getOperand(0).getValueType() != MVT::f128 || 2408 (hasHardQuad && TLI.isTypeLegal(VT))) 2409 return SDValue(); 2410 2411 assert(VT == MVT::i32 || VT == MVT::i64); 2412 2413 return TLI.LowerF128Op(Op, DAG, 2414 TLI.getLibcallName(VT == MVT::i32 2415 ? RTLIB::FPTOUINT_F128_I32 2416 : RTLIB::FPTOUINT_F128_I64), 2417 1); 2418 } 2419 2420 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2421 const SparcTargetLowering &TLI, 2422 bool hasHardQuad) { 2423 SDLoc dl(Op); 2424 EVT OpVT = Op.getOperand(0).getValueType(); 2425 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2426 2427 // Expand if it does not involve f128 or the target has support for 2428 // quad floating point instructions and the operand type is legal. 2429 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2430 return SDValue(); 2431 2432 return TLI.LowerF128Op(Op, DAG, 2433 TLI.getLibcallName(OpVT == MVT::i32 2434 ? RTLIB::UINTTOFP_I32_F128 2435 : RTLIB::UINTTOFP_I64_F128), 2436 1); 2437 } 2438 2439 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2440 const SparcTargetLowering &TLI, 2441 bool hasHardQuad) { 2442 SDValue Chain = Op.getOperand(0); 2443 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2444 SDValue LHS = Op.getOperand(2); 2445 SDValue RHS = Op.getOperand(3); 2446 SDValue Dest = Op.getOperand(4); 2447 SDLoc dl(Op); 2448 unsigned Opc, SPCC = ~0U; 2449 2450 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2451 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2452 LookThroughSetCC(LHS, RHS, CC, SPCC); 2453 2454 // Get the condition flag. 2455 SDValue CompareFlag; 2456 if (LHS.getValueType().isInteger()) { 2457 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2458 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2459 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2460 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC; 2461 } else { 2462 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2463 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2464 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2465 Opc = SPISD::BRICC; 2466 } else { 2467 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2468 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2469 Opc = SPISD::BRFCC; 2470 } 2471 } 2472 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2473 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2474 } 2475 2476 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2477 const SparcTargetLowering &TLI, 2478 bool hasHardQuad) { 2479 SDValue LHS = Op.getOperand(0); 2480 SDValue RHS = Op.getOperand(1); 2481 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2482 SDValue TrueVal = Op.getOperand(2); 2483 SDValue FalseVal = Op.getOperand(3); 2484 SDLoc dl(Op); 2485 unsigned Opc, SPCC = ~0U; 2486 2487 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2488 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2489 LookThroughSetCC(LHS, RHS, CC, SPCC); 2490 2491 SDValue CompareFlag; 2492 if (LHS.getValueType().isInteger()) { 2493 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2494 Opc = LHS.getValueType() == MVT::i32 ? 2495 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2496 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2497 } else { 2498 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2499 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2500 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2501 Opc = SPISD::SELECT_ICC; 2502 } else { 2503 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2504 Opc = SPISD::SELECT_FCC; 2505 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2506 } 2507 } 2508 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2509 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2510 } 2511 2512 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2513 const SparcTargetLowering &TLI) { 2514 MachineFunction &MF = DAG.getMachineFunction(); 2515 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2516 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2517 2518 // Need frame address to find the address of VarArgsFrameIndex. 2519 MF.getFrameInfo().setFrameAddressIsTaken(true); 2520 2521 // vastart just stores the address of the VarArgsFrameIndex slot into the 2522 // memory location argument. 2523 SDLoc DL(Op); 2524 SDValue Offset = 2525 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2526 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2527 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2528 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2529 MachinePointerInfo(SV)); 2530 } 2531 2532 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2533 SDNode *Node = Op.getNode(); 2534 EVT VT = Node->getValueType(0); 2535 SDValue InChain = Node->getOperand(0); 2536 SDValue VAListPtr = Node->getOperand(1); 2537 EVT PtrVT = VAListPtr.getValueType(); 2538 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2539 SDLoc DL(Node); 2540 SDValue VAList = 2541 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 2542 // Increment the pointer, VAList, to the next vaarg. 2543 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2544 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2545 DL)); 2546 // Store the incremented VAList to the legalized pointer. 2547 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, 2548 MachinePointerInfo(SV)); 2549 // Load the actual argument out of the pointer VAList. 2550 // We can't count on greater alignment than the word size. 2551 return DAG.getLoad( 2552 VT, DL, InChain, VAList, MachinePointerInfo(), 2553 std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8); 2554 } 2555 2556 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2557 const SparcSubtarget *Subtarget) { 2558 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2559 SDValue Size = Op.getOperand(1); // Legalize the size. 2560 MaybeAlign Alignment = 2561 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 2562 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); 2563 EVT VT = Size->getValueType(0); 2564 SDLoc dl(Op); 2565 2566 // TODO: implement over-aligned alloca. (Note: also implies 2567 // supporting support for overaligned function frames + dynamic 2568 // allocations, at all, which currently isn't supported) 2569 if (Alignment && *Alignment > StackAlign) { 2570 const MachineFunction &MF = DAG.getMachineFunction(); 2571 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " 2572 "over-aligned dynamic alloca not supported."); 2573 } 2574 2575 // The resultant pointer needs to be above the register spill area 2576 // at the bottom of the stack. 2577 unsigned regSpillArea; 2578 if (Subtarget->is64Bit()) { 2579 regSpillArea = 128; 2580 } else { 2581 // On Sparc32, the size of the spill area is 92. Unfortunately, 2582 // that's only 4-byte aligned, not 8-byte aligned (the stack 2583 // pointer is 8-byte aligned). So, if the user asked for an 8-byte 2584 // aligned dynamic allocation, we actually need to add 96 to the 2585 // bottom of the stack, instead of 92, to ensure 8-byte alignment. 2586 2587 // That also means adding 4 to the size of the allocation -- 2588 // before applying the 8-byte rounding. Unfortunately, we the 2589 // value we get here has already had rounding applied. So, we need 2590 // to add 8, instead, wasting a bit more memory. 2591 2592 // Further, this only actually needs to be done if the required 2593 // alignment is > 4, but, we've lost that info by this point, too, 2594 // so we always apply it. 2595 2596 // (An alternative approach would be to always reserve 96 bytes 2597 // instead of the required 92, but then we'd waste 4 extra bytes 2598 // in every frame, not just those with dynamic stack allocations) 2599 2600 // TODO: modify code in SelectionDAGBuilder to make this less sad. 2601 2602 Size = DAG.getNode(ISD::ADD, dl, VT, Size, 2603 DAG.getConstant(8, dl, VT)); 2604 regSpillArea = 96; 2605 } 2606 2607 unsigned SPReg = SP::O6; 2608 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2609 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2610 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2611 2612 regSpillArea += Subtarget->getStackPointerBias(); 2613 2614 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2615 DAG.getConstant(regSpillArea, dl, VT)); 2616 SDValue Ops[2] = { NewVal, Chain }; 2617 return DAG.getMergeValues(Ops, dl); 2618 } 2619 2620 2621 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2622 SDLoc dl(Op); 2623 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2624 dl, MVT::Other, DAG.getEntryNode()); 2625 return Chain; 2626 } 2627 2628 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2629 const SparcSubtarget *Subtarget, 2630 bool AlwaysFlush = false) { 2631 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2632 MFI.setFrameAddressIsTaken(true); 2633 2634 EVT VT = Op.getValueType(); 2635 SDLoc dl(Op); 2636 unsigned FrameReg = SP::I6; 2637 unsigned stackBias = Subtarget->getStackPointerBias(); 2638 2639 SDValue FrameAddr; 2640 SDValue Chain; 2641 2642 // flush first to make sure the windowed registers' values are in stack 2643 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); 2644 2645 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2646 2647 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2648 2649 while (depth--) { 2650 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2651 DAG.getIntPtrConstant(Offset, dl)); 2652 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); 2653 } 2654 if (Subtarget->is64Bit()) 2655 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2656 DAG.getIntPtrConstant(stackBias, dl)); 2657 return FrameAddr; 2658 } 2659 2660 2661 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2662 const SparcSubtarget *Subtarget) { 2663 2664 uint64_t depth = Op.getConstantOperandVal(0); 2665 2666 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2667 2668 } 2669 2670 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2671 const SparcTargetLowering &TLI, 2672 const SparcSubtarget *Subtarget) { 2673 MachineFunction &MF = DAG.getMachineFunction(); 2674 MachineFrameInfo &MFI = MF.getFrameInfo(); 2675 MFI.setReturnAddressIsTaken(true); 2676 2677 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2678 return SDValue(); 2679 2680 EVT VT = Op.getValueType(); 2681 SDLoc dl(Op); 2682 uint64_t depth = Op.getConstantOperandVal(0); 2683 2684 SDValue RetAddr; 2685 if (depth == 0) { 2686 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2687 Register RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2688 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2689 return RetAddr; 2690 } 2691 2692 // Need frame address to find return address of the caller. 2693 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); 2694 2695 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2696 SDValue Ptr = DAG.getNode(ISD::ADD, 2697 dl, VT, 2698 FrameAddr, 2699 DAG.getIntPtrConstant(Offset, dl)); 2700 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2701 2702 return RetAddr; 2703 } 2704 2705 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2706 unsigned opcode) { 2707 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2708 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2709 2710 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2711 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2712 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2713 2714 // Note: in little-endian, the floating-point value is stored in the 2715 // registers are in the opposite order, so the subreg with the sign 2716 // bit is the highest-numbered (odd), rather than the 2717 // lowest-numbered (even). 2718 2719 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2720 SrcReg64); 2721 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2722 SrcReg64); 2723 2724 if (DAG.getDataLayout().isLittleEndian()) 2725 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2726 else 2727 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2728 2729 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2730 dl, MVT::f64), 0); 2731 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2732 DstReg64, Hi32); 2733 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2734 DstReg64, Lo32); 2735 return DstReg64; 2736 } 2737 2738 // Lower a f128 load into two f64 loads. 2739 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2740 { 2741 SDLoc dl(Op); 2742 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2743 assert(LdNode->getOffset().isUndef() && "Unexpected node type"); 2744 2745 Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8); 2746 2747 SDValue Hi64 = 2748 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), 2749 LdNode->getPointerInfo(), Alignment); 2750 EVT addrVT = LdNode->getBasePtr().getValueType(); 2751 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2752 LdNode->getBasePtr(), 2753 DAG.getConstant(8, dl, addrVT)); 2754 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, 2755 LdNode->getPointerInfo().getWithOffset(8), 2756 Alignment); 2757 2758 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2759 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2760 2761 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2762 dl, MVT::f128); 2763 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2764 MVT::f128, 2765 SDValue(InFP128, 0), 2766 Hi64, 2767 SubRegEven); 2768 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2769 MVT::f128, 2770 SDValue(InFP128, 0), 2771 Lo64, 2772 SubRegOdd); 2773 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2774 SDValue(Lo64.getNode(), 1) }; 2775 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2776 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2777 return DAG.getMergeValues(Ops, dl); 2778 } 2779 2780 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 2781 { 2782 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2783 2784 EVT MemVT = LdNode->getMemoryVT(); 2785 if (MemVT == MVT::f128) 2786 return LowerF128Load(Op, DAG); 2787 2788 return Op; 2789 } 2790 2791 // Lower a f128 store into two f64 stores. 2792 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 2793 SDLoc dl(Op); 2794 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 2795 assert(StNode->getOffset().isUndef() && "Unexpected node type"); 2796 2797 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2798 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2799 2800 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2801 dl, 2802 MVT::f64, 2803 StNode->getValue(), 2804 SubRegEven); 2805 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2806 dl, 2807 MVT::f64, 2808 StNode->getValue(), 2809 SubRegOdd); 2810 2811 Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8); 2812 2813 SDValue OutChains[2]; 2814 OutChains[0] = 2815 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), 2816 StNode->getBasePtr(), StNode->getPointerInfo(), 2817 Alignment); 2818 EVT addrVT = StNode->getBasePtr().getValueType(); 2819 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2820 StNode->getBasePtr(), 2821 DAG.getConstant(8, dl, addrVT)); 2822 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, 2823 StNode->getPointerInfo().getWithOffset(8), 2824 Alignment); 2825 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2826 } 2827 2828 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 2829 { 2830 SDLoc dl(Op); 2831 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 2832 2833 EVT MemVT = St->getMemoryVT(); 2834 if (MemVT == MVT::f128) 2835 return LowerF128Store(Op, DAG); 2836 2837 if (MemVT == MVT::i64) { 2838 // Custom handling for i64 stores: turn it into a bitcast and a 2839 // v2i32 store. 2840 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 2841 SDValue Chain = DAG.getStore( 2842 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 2843 St->getOriginalAlign(), St->getMemOperand()->getFlags(), 2844 St->getAAInfo()); 2845 return Chain; 2846 } 2847 2848 return SDValue(); 2849 } 2850 2851 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 2852 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 2853 && "invalid opcode"); 2854 2855 SDLoc dl(Op); 2856 2857 if (Op.getValueType() == MVT::f64) 2858 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 2859 if (Op.getValueType() != MVT::f128) 2860 return Op; 2861 2862 // Lower fabs/fneg on f128 to fabs/fneg on f64 2863 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 2864 // (As with LowerF64Op, on little-endian, we need to negate the odd 2865 // subreg) 2866 2867 SDValue SrcReg128 = Op.getOperand(0); 2868 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 2869 SrcReg128); 2870 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 2871 SrcReg128); 2872 2873 if (DAG.getDataLayout().isLittleEndian()) { 2874 if (isV9) 2875 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 2876 else 2877 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 2878 } else { 2879 if (isV9) 2880 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 2881 else 2882 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 2883 } 2884 2885 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2886 dl, MVT::f128), 0); 2887 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 2888 DstReg128, Hi64); 2889 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 2890 DstReg128, Lo64); 2891 return DstReg128; 2892 } 2893 2894 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2895 2896 if (Op.getValueType() != MVT::i64) 2897 return Op; 2898 2899 SDLoc dl(Op); 2900 SDValue Src1 = Op.getOperand(0); 2901 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 2902 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 2903 DAG.getConstant(32, dl, MVT::i64)); 2904 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 2905 2906 SDValue Src2 = Op.getOperand(1); 2907 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 2908 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 2909 DAG.getConstant(32, dl, MVT::i64)); 2910 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 2911 2912 2913 bool hasChain = false; 2914 unsigned hiOpc = Op.getOpcode(); 2915 switch (Op.getOpcode()) { 2916 default: llvm_unreachable("Invalid opcode"); 2917 case ISD::ADDC: hiOpc = ISD::ADDE; break; 2918 case ISD::ADDE: hasChain = true; break; 2919 case ISD::SUBC: hiOpc = ISD::SUBE; break; 2920 case ISD::SUBE: hasChain = true; break; 2921 } 2922 SDValue Lo; 2923 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 2924 if (hasChain) { 2925 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 2926 Op.getOperand(2)); 2927 } else { 2928 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 2929 } 2930 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 2931 SDValue Carry = Hi.getValue(1); 2932 2933 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 2934 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 2935 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 2936 DAG.getConstant(32, dl, MVT::i64)); 2937 2938 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 2939 SDValue Ops[2] = { Dst, Carry }; 2940 return DAG.getMergeValues(Ops, dl); 2941 } 2942 2943 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 2944 // in LegalizeDAG.cpp except the order of arguments to the library function. 2945 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 2946 const SparcTargetLowering &TLI) 2947 { 2948 unsigned opcode = Op.getOpcode(); 2949 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 2950 2951 bool isSigned = (opcode == ISD::SMULO); 2952 EVT VT = MVT::i64; 2953 EVT WideVT = MVT::i128; 2954 SDLoc dl(Op); 2955 SDValue LHS = Op.getOperand(0); 2956 2957 if (LHS.getValueType() != VT) 2958 return Op; 2959 2960 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 2961 2962 SDValue RHS = Op.getOperand(1); 2963 SDValue HiLHS, HiRHS; 2964 if (isSigned) { 2965 HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 2966 HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 2967 } else { 2968 HiLHS = DAG.getConstant(0, dl, VT); 2969 HiRHS = DAG.getConstant(0, dl, MVT::i64); 2970 } 2971 2972 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 2973 2974 TargetLowering::MakeLibCallOptions CallOptions; 2975 CallOptions.setSExt(isSigned); 2976 SDValue MulResult = TLI.makeLibCall(DAG, 2977 RTLIB::MUL_I128, WideVT, 2978 Args, CallOptions, dl).first; 2979 SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2980 MulResult, DAG.getIntPtrConstant(0, dl)); 2981 SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2982 MulResult, DAG.getIntPtrConstant(1, dl)); 2983 if (isSigned) { 2984 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 2985 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 2986 } else { 2987 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 2988 ISD::SETNE); 2989 } 2990 // MulResult is a node with an illegal type. Because such things are not 2991 // generally permitted during this phase of legalization, ensure that 2992 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 2993 // been folded. 2994 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 2995 2996 SDValue Ops[2] = { BottomHalf, TopHalf } ; 2997 return DAG.getMergeValues(Ops, dl); 2998 } 2999 3000 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 3001 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering())) { 3002 // Expand with a fence. 3003 return SDValue(); 3004 } 3005 3006 // Monotonic load/stores are legal. 3007 return Op; 3008 } 3009 3010 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 3011 SelectionDAG &DAG) const { 3012 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3013 SDLoc dl(Op); 3014 switch (IntNo) { 3015 default: return SDValue(); // Don't custom lower most intrinsics. 3016 case Intrinsic::thread_pointer: { 3017 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3018 return DAG.getRegister(SP::G7, PtrVT); 3019 } 3020 } 3021 } 3022 3023 SDValue SparcTargetLowering:: 3024 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3025 3026 bool hasHardQuad = Subtarget->hasHardQuad(); 3027 bool isV9 = Subtarget->isV9(); 3028 3029 switch (Op.getOpcode()) { 3030 default: llvm_unreachable("Should not custom lower this!"); 3031 3032 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3033 Subtarget); 3034 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3035 Subtarget); 3036 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3037 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3038 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3039 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3040 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3041 hasHardQuad); 3042 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3043 hasHardQuad); 3044 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3045 hasHardQuad); 3046 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3047 hasHardQuad); 3048 case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this, 3049 hasHardQuad); 3050 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this, 3051 hasHardQuad); 3052 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3053 case ISD::VAARG: return LowerVAARG(Op, DAG); 3054 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3055 Subtarget); 3056 3057 case ISD::LOAD: return LowerLOAD(Op, DAG); 3058 case ISD::STORE: return LowerSTORE(Op, DAG); 3059 case ISD::FADD: return LowerF128Op(Op, DAG, 3060 getLibcallName(RTLIB::ADD_F128), 2); 3061 case ISD::FSUB: return LowerF128Op(Op, DAG, 3062 getLibcallName(RTLIB::SUB_F128), 2); 3063 case ISD::FMUL: return LowerF128Op(Op, DAG, 3064 getLibcallName(RTLIB::MUL_F128), 2); 3065 case ISD::FDIV: return LowerF128Op(Op, DAG, 3066 getLibcallName(RTLIB::DIV_F128), 2); 3067 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3068 getLibcallName(RTLIB::SQRT_F128),1); 3069 case ISD::FABS: 3070 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3071 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3072 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3073 case ISD::ADDC: 3074 case ISD::ADDE: 3075 case ISD::SUBC: 3076 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3077 case ISD::UMULO: 3078 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3079 case ISD::ATOMIC_LOAD: 3080 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3081 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3082 } 3083 } 3084 3085 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, 3086 const SDLoc &DL, 3087 SelectionDAG &DAG) const { 3088 APInt V = C->getValueAPF().bitcastToAPInt(); 3089 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); 3090 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); 3091 if (DAG.getDataLayout().isLittleEndian()) 3092 std::swap(Lo, Hi); 3093 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); 3094 } 3095 3096 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, 3097 DAGCombinerInfo &DCI) const { 3098 SDLoc dl(N); 3099 SDValue Src = N->getOperand(0); 3100 3101 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && 3102 Src.getSimpleValueType() == MVT::f64) 3103 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); 3104 3105 return SDValue(); 3106 } 3107 3108 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, 3109 DAGCombinerInfo &DCI) const { 3110 switch (N->getOpcode()) { 3111 default: 3112 break; 3113 case ISD::BITCAST: 3114 return PerformBITCASTCombine(N, DCI); 3115 } 3116 return SDValue(); 3117 } 3118 3119 MachineBasicBlock * 3120 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3121 MachineBasicBlock *BB) const { 3122 switch (MI.getOpcode()) { 3123 default: llvm_unreachable("Unknown SELECT_CC!"); 3124 case SP::SELECT_CC_Int_ICC: 3125 case SP::SELECT_CC_FP_ICC: 3126 case SP::SELECT_CC_DFP_ICC: 3127 case SP::SELECT_CC_QFP_ICC: 3128 return expandSelectCC(MI, BB, SP::BCOND); 3129 case SP::SELECT_CC_Int_FCC: 3130 case SP::SELECT_CC_FP_FCC: 3131 case SP::SELECT_CC_DFP_FCC: 3132 case SP::SELECT_CC_QFP_FCC: 3133 return expandSelectCC(MI, BB, SP::FBCOND); 3134 } 3135 } 3136 3137 MachineBasicBlock * 3138 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3139 unsigned BROpcode) const { 3140 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3141 DebugLoc dl = MI.getDebugLoc(); 3142 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3143 3144 // To "insert" a SELECT_CC instruction, we actually have to insert the 3145 // triangle control-flow pattern. The incoming instruction knows the 3146 // destination vreg to set, the condition code register to branch on, the 3147 // true/false values to select between, and the condition code for the branch. 3148 // 3149 // We produce the following control flow: 3150 // ThisMBB 3151 // | \ 3152 // | IfFalseMBB 3153 // | / 3154 // SinkMBB 3155 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3156 MachineFunction::iterator It = ++BB->getIterator(); 3157 3158 MachineBasicBlock *ThisMBB = BB; 3159 MachineFunction *F = BB->getParent(); 3160 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3161 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3162 F->insert(It, IfFalseMBB); 3163 F->insert(It, SinkMBB); 3164 3165 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 3166 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 3167 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); 3168 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 3169 3170 // Set the new successors for ThisMBB. 3171 ThisMBB->addSuccessor(IfFalseMBB); 3172 ThisMBB->addSuccessor(SinkMBB); 3173 3174 BuildMI(ThisMBB, dl, TII.get(BROpcode)) 3175 .addMBB(SinkMBB) 3176 .addImm(CC); 3177 3178 // IfFalseMBB just falls through to SinkMBB. 3179 IfFalseMBB->addSuccessor(SinkMBB); 3180 3181 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] 3182 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), 3183 MI.getOperand(0).getReg()) 3184 .addReg(MI.getOperand(1).getReg()) 3185 .addMBB(ThisMBB) 3186 .addReg(MI.getOperand(2).getReg()) 3187 .addMBB(IfFalseMBB); 3188 3189 MI.eraseFromParent(); // The pseudo instruction is gone now. 3190 return SinkMBB; 3191 } 3192 3193 //===----------------------------------------------------------------------===// 3194 // Sparc Inline Assembly Support 3195 //===----------------------------------------------------------------------===// 3196 3197 /// getConstraintType - Given a constraint letter, return the type of 3198 /// constraint it is for this target. 3199 SparcTargetLowering::ConstraintType 3200 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3201 if (Constraint.size() == 1) { 3202 switch (Constraint[0]) { 3203 default: break; 3204 case 'r': 3205 case 'f': 3206 case 'e': 3207 return C_RegisterClass; 3208 case 'I': // SIMM13 3209 return C_Immediate; 3210 } 3211 } 3212 3213 return TargetLowering::getConstraintType(Constraint); 3214 } 3215 3216 TargetLowering::ConstraintWeight SparcTargetLowering:: 3217 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3218 const char *constraint) const { 3219 ConstraintWeight weight = CW_Invalid; 3220 Value *CallOperandVal = info.CallOperandVal; 3221 // If we don't have a value, we can't do a match, 3222 // but allow it at the lowest weight. 3223 if (!CallOperandVal) 3224 return CW_Default; 3225 3226 // Look at the constraint type. 3227 switch (*constraint) { 3228 default: 3229 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3230 break; 3231 case 'I': // SIMM13 3232 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3233 if (isInt<13>(C->getSExtValue())) 3234 weight = CW_Constant; 3235 } 3236 break; 3237 } 3238 return weight; 3239 } 3240 3241 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3242 /// vector. If it is invalid, don't add anything to Ops. 3243 void SparcTargetLowering:: 3244 LowerAsmOperandForConstraint(SDValue Op, 3245 std::string &Constraint, 3246 std::vector<SDValue> &Ops, 3247 SelectionDAG &DAG) const { 3248 SDValue Result; 3249 3250 // Only support length 1 constraints for now. 3251 if (Constraint.length() > 1) 3252 return; 3253 3254 char ConstraintLetter = Constraint[0]; 3255 switch (ConstraintLetter) { 3256 default: break; 3257 case 'I': 3258 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3259 if (isInt<13>(C->getSExtValue())) { 3260 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3261 Op.getValueType()); 3262 break; 3263 } 3264 return; 3265 } 3266 } 3267 3268 if (Result.getNode()) { 3269 Ops.push_back(Result); 3270 return; 3271 } 3272 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3273 } 3274 3275 std::pair<unsigned, const TargetRegisterClass *> 3276 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3277 StringRef Constraint, 3278 MVT VT) const { 3279 if (Constraint.size() == 1) { 3280 switch (Constraint[0]) { 3281 case 'r': 3282 if (VT == MVT::v2i32) 3283 return std::make_pair(0U, &SP::IntPairRegClass); 3284 else if (Subtarget->is64Bit()) 3285 return std::make_pair(0U, &SP::I64RegsRegClass); 3286 else 3287 return std::make_pair(0U, &SP::IntRegsRegClass); 3288 case 'f': 3289 if (VT == MVT::f32 || VT == MVT::i32) 3290 return std::make_pair(0U, &SP::FPRegsRegClass); 3291 else if (VT == MVT::f64 || VT == MVT::i64) 3292 return std::make_pair(0U, &SP::LowDFPRegsRegClass); 3293 else if (VT == MVT::f128) 3294 return std::make_pair(0U, &SP::LowQFPRegsRegClass); 3295 // This will generate an error message 3296 return std::make_pair(0U, nullptr); 3297 case 'e': 3298 if (VT == MVT::f32 || VT == MVT::i32) 3299 return std::make_pair(0U, &SP::FPRegsRegClass); 3300 else if (VT == MVT::f64 || VT == MVT::i64 ) 3301 return std::make_pair(0U, &SP::DFPRegsRegClass); 3302 else if (VT == MVT::f128) 3303 return std::make_pair(0U, &SP::QFPRegsRegClass); 3304 // This will generate an error message 3305 return std::make_pair(0U, nullptr); 3306 } 3307 } else if (!Constraint.empty() && Constraint.size() <= 5 3308 && Constraint[0] == '{' && *(Constraint.end()-1) == '}') { 3309 // constraint = '{r<d>}' 3310 // Remove the braces from around the name. 3311 StringRef name(Constraint.data()+1, Constraint.size()-2); 3312 // Handle register aliases: 3313 // r0-r7 -> g0-g7 3314 // r8-r15 -> o0-o7 3315 // r16-r23 -> l0-l7 3316 // r24-r31 -> i0-i7 3317 uint64_t intVal = 0; 3318 if (name.substr(0, 1).equals("r") 3319 && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) { 3320 const char regTypes[] = { 'g', 'o', 'l', 'i' }; 3321 char regType = regTypes[intVal/8]; 3322 char regIdx = '0' + (intVal % 8); 3323 char tmp[] = { '{', regType, regIdx, '}', 0 }; 3324 std::string newConstraint = std::string(tmp); 3325 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3326 VT); 3327 } 3328 if (name.substr(0, 1).equals("f") && 3329 !name.substr(1).getAsInteger(10, intVal) && intVal <= 63) { 3330 std::string newConstraint; 3331 3332 if (VT == MVT::f32 || VT == MVT::Other) { 3333 newConstraint = "{f" + utostr(intVal) + "}"; 3334 } else if (VT == MVT::f64 && (intVal % 2 == 0)) { 3335 newConstraint = "{d" + utostr(intVal / 2) + "}"; 3336 } else if (VT == MVT::f128 && (intVal % 4 == 0)) { 3337 newConstraint = "{q" + utostr(intVal / 4) + "}"; 3338 } else { 3339 return std::make_pair(0U, nullptr); 3340 } 3341 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3342 VT); 3343 } 3344 } 3345 3346 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3347 } 3348 3349 bool 3350 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3351 // The Sparc target isn't yet aware of offsets. 3352 return false; 3353 } 3354 3355 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3356 SmallVectorImpl<SDValue>& Results, 3357 SelectionDAG &DAG) const { 3358 3359 SDLoc dl(N); 3360 3361 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3362 3363 switch (N->getOpcode()) { 3364 default: 3365 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3366 3367 case ISD::FP_TO_SINT: 3368 case ISD::FP_TO_UINT: 3369 // Custom lower only if it involves f128 or i64. 3370 if (N->getOperand(0).getValueType() != MVT::f128 3371 || N->getValueType(0) != MVT::i64) 3372 return; 3373 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3374 ? RTLIB::FPTOSINT_F128_I64 3375 : RTLIB::FPTOUINT_F128_I64); 3376 3377 Results.push_back(LowerF128Op(SDValue(N, 0), 3378 DAG, 3379 getLibcallName(libCall), 3380 1)); 3381 return; 3382 case ISD::READCYCLECOUNTER: { 3383 assert(Subtarget->hasLeonCycleCounter()); 3384 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); 3385 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); 3386 SDValue Ops[] = { Lo, Hi }; 3387 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); 3388 Results.push_back(Pair); 3389 Results.push_back(N->getOperand(0)); 3390 return; 3391 } 3392 case ISD::SINT_TO_FP: 3393 case ISD::UINT_TO_FP: 3394 // Custom lower only if it involves f128 or i64. 3395 if (N->getValueType(0) != MVT::f128 3396 || N->getOperand(0).getValueType() != MVT::i64) 3397 return; 3398 3399 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3400 ? RTLIB::SINTTOFP_I64_F128 3401 : RTLIB::UINTTOFP_I64_F128); 3402 3403 Results.push_back(LowerF128Op(SDValue(N, 0), 3404 DAG, 3405 getLibcallName(libCall), 3406 1)); 3407 return; 3408 case ISD::LOAD: { 3409 LoadSDNode *Ld = cast<LoadSDNode>(N); 3410 // Custom handling only for i64: turn i64 load into a v2i32 load, 3411 // and a bitcast. 3412 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3413 return; 3414 3415 SDLoc dl(N); 3416 SDValue LoadRes = DAG.getExtLoad( 3417 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), 3418 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, 3419 Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(), 3420 Ld->getAAInfo()); 3421 3422 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3423 Results.push_back(Res); 3424 Results.push_back(LoadRes.getValue(1)); 3425 return; 3426 } 3427 } 3428 } 3429 3430 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3431 bool SparcTargetLowering::useLoadStackGuardNode() const { 3432 if (!Subtarget->isTargetLinux()) 3433 return TargetLowering::useLoadStackGuardNode(); 3434 return true; 3435 } 3436 3437 // Override to disable global variable loading on Linux. 3438 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3439 if (!Subtarget->isTargetLinux()) 3440 return TargetLowering::insertSSPDeclarations(M); 3441 } 3442