1 //===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interfaces that Sparc uses to lower LLVM code into a 10 // selection DAG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SparcISelLowering.h" 15 #include "MCTargetDesc/SparcMCExpr.h" 16 #include "SparcMachineFunctionInfo.h" 17 #include "SparcRegisterInfo.h" 18 #include "SparcTargetMachine.h" 19 #include "SparcTargetObjectFile.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringSwitch.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/KnownBits.h" 34 using namespace llvm; 35 36 37 //===----------------------------------------------------------------------===// 38 // Calling Convention Implementation 39 //===----------------------------------------------------------------------===// 40 41 static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT, 42 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 43 ISD::ArgFlagsTy &ArgFlags, CCState &State) 44 { 45 assert (ArgFlags.isSRet()); 46 47 // Assign SRet argument. 48 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 49 0, 50 LocVT, LocInfo)); 51 return true; 52 } 53 54 static bool CC_Sparc_Assign_Split_64(unsigned &ValNo, MVT &ValVT, 55 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 56 ISD::ArgFlagsTy &ArgFlags, CCState &State) 57 { 58 static const MCPhysReg RegList[] = { 59 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 60 }; 61 // Try to get first reg. 62 if (Register Reg = State.AllocateReg(RegList)) { 63 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 64 } else { 65 // Assign whole thing in stack. 66 State.addLoc(CCValAssign::getCustomMem( 67 ValNo, ValVT, State.AllocateStack(8, Align(4)), LocVT, LocInfo)); 68 return true; 69 } 70 71 // Try to get second reg. 72 if (Register Reg = State.AllocateReg(RegList)) 73 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 74 else 75 State.addLoc(CCValAssign::getCustomMem( 76 ValNo, ValVT, State.AllocateStack(4, Align(4)), LocVT, LocInfo)); 77 return true; 78 } 79 80 static bool CC_Sparc_Assign_Ret_Split_64(unsigned &ValNo, MVT &ValVT, 81 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 82 ISD::ArgFlagsTy &ArgFlags, CCState &State) 83 { 84 static const MCPhysReg RegList[] = { 85 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 86 }; 87 88 // Try to get first reg. 89 if (Register Reg = State.AllocateReg(RegList)) 90 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 91 else 92 return false; 93 94 // Try to get second reg. 95 if (Register Reg = State.AllocateReg(RegList)) 96 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 97 else 98 return false; 99 100 return true; 101 } 102 103 // Allocate a full-sized argument for the 64-bit ABI. 104 static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT, 105 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 106 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 107 assert((LocVT == MVT::f32 || LocVT == MVT::f128 108 || LocVT.getSizeInBits() == 64) && 109 "Can't handle non-64 bits locations"); 110 111 // Stack space is allocated for all arguments starting from [%fp+BIAS+128]. 112 unsigned size = (LocVT == MVT::f128) ? 16 : 8; 113 Align alignment = (LocVT == MVT::f128) ? Align(16) : Align(8); 114 unsigned Offset = State.AllocateStack(size, alignment); 115 unsigned Reg = 0; 116 117 if (LocVT == MVT::i64 && Offset < 6*8) 118 // Promote integers to %i0-%i5. 119 Reg = SP::I0 + Offset/8; 120 else if (LocVT == MVT::f64 && Offset < 16*8) 121 // Promote doubles to %d0-%d30. (Which LLVM calls D0-D15). 122 Reg = SP::D0 + Offset/8; 123 else if (LocVT == MVT::f32 && Offset < 16*8) 124 // Promote floats to %f1, %f3, ... 125 Reg = SP::F1 + Offset/4; 126 else if (LocVT == MVT::f128 && Offset < 16*8) 127 // Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7). 128 Reg = SP::Q0 + Offset/16; 129 130 // Promote to register when possible, otherwise use the stack slot. 131 if (Reg) { 132 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 133 return true; 134 } 135 136 // This argument goes on the stack in an 8-byte slot. 137 // When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to 138 // the right-aligned float. The first 4 bytes of the stack slot are undefined. 139 if (LocVT == MVT::f32) 140 Offset += 4; 141 142 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 143 return true; 144 } 145 146 // Allocate a half-sized argument for the 64-bit ABI. 147 // 148 // This is used when passing { float, int } structs by value in registers. 149 static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT, 150 MVT &LocVT, CCValAssign::LocInfo &LocInfo, 151 ISD::ArgFlagsTy &ArgFlags, CCState &State) { 152 assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations"); 153 unsigned Offset = State.AllocateStack(4, Align(4)); 154 155 if (LocVT == MVT::f32 && Offset < 16*8) { 156 // Promote floats to %f0-%f31. 157 State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4, 158 LocVT, LocInfo)); 159 return true; 160 } 161 162 if (LocVT == MVT::i32 && Offset < 6*8) { 163 // Promote integers to %i0-%i5, using half the register. 164 unsigned Reg = SP::I0 + Offset/8; 165 LocVT = MVT::i64; 166 LocInfo = CCValAssign::AExt; 167 168 // Set the Custom bit if this i32 goes in the high bits of a register. 169 if (Offset % 8 == 0) 170 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, 171 LocVT, LocInfo)); 172 else 173 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 174 return true; 175 } 176 177 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 178 return true; 179 } 180 181 #include "SparcGenCallingConv.inc" 182 183 // The calling conventions in SparcCallingConv.td are described in terms of the 184 // callee's register window. This function translates registers to the 185 // corresponding caller window %o register. 186 static unsigned toCallerWindow(unsigned Reg) { 187 static_assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7, 188 "Unexpected enum"); 189 if (Reg >= SP::I0 && Reg <= SP::I7) 190 return Reg - SP::I0 + SP::O0; 191 return Reg; 192 } 193 194 SDValue 195 SparcTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 196 bool IsVarArg, 197 const SmallVectorImpl<ISD::OutputArg> &Outs, 198 const SmallVectorImpl<SDValue> &OutVals, 199 const SDLoc &DL, SelectionDAG &DAG) const { 200 if (Subtarget->is64Bit()) 201 return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 202 return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG); 203 } 204 205 SDValue 206 SparcTargetLowering::LowerReturn_32(SDValue Chain, CallingConv::ID CallConv, 207 bool IsVarArg, 208 const SmallVectorImpl<ISD::OutputArg> &Outs, 209 const SmallVectorImpl<SDValue> &OutVals, 210 const SDLoc &DL, SelectionDAG &DAG) const { 211 MachineFunction &MF = DAG.getMachineFunction(); 212 213 // CCValAssign - represent the assignment of the return value to locations. 214 SmallVector<CCValAssign, 16> RVLocs; 215 216 // CCState - Info about the registers and stack slot. 217 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 218 *DAG.getContext()); 219 220 // Analyze return values. 221 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32); 222 223 SDValue Flag; 224 SmallVector<SDValue, 4> RetOps(1, Chain); 225 // Make room for the return address offset. 226 RetOps.push_back(SDValue()); 227 228 // Copy the result values into the output registers. 229 for (unsigned i = 0, realRVLocIdx = 0; 230 i != RVLocs.size(); 231 ++i, ++realRVLocIdx) { 232 CCValAssign &VA = RVLocs[i]; 233 assert(VA.isRegLoc() && "Can only return in registers!"); 234 235 SDValue Arg = OutVals[realRVLocIdx]; 236 237 if (VA.needsCustom()) { 238 assert(VA.getLocVT() == MVT::v2i32); 239 // Legalize ret v2i32 -> ret 2 x i32 (Basically: do what would 240 // happen by default if this wasn't a legal type) 241 242 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 243 Arg, 244 DAG.getConstant(0, DL, getVectorIdxTy(DAG.getDataLayout()))); 245 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, 246 Arg, 247 DAG.getConstant(1, DL, getVectorIdxTy(DAG.getDataLayout()))); 248 249 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part0, Flag); 250 Flag = Chain.getValue(1); 251 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 252 VA = RVLocs[++i]; // skip ahead to next loc 253 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Part1, 254 Flag); 255 } else 256 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 257 258 // Guarantee that all emitted copies are stuck together with flags. 259 Flag = Chain.getValue(1); 260 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 261 } 262 263 unsigned RetAddrOffset = 8; // Call Inst + Delay Slot 264 // If the function returns a struct, copy the SRetReturnReg to I0 265 if (MF.getFunction().hasStructRetAttr()) { 266 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 267 Register Reg = SFI->getSRetReturnReg(); 268 if (!Reg) 269 llvm_unreachable("sret virtual register not created in the entry block"); 270 auto PtrVT = getPointerTy(DAG.getDataLayout()); 271 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, PtrVT); 272 Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag); 273 Flag = Chain.getValue(1); 274 RetOps.push_back(DAG.getRegister(SP::I0, PtrVT)); 275 RetAddrOffset = 12; // CallInst + Delay Slot + Unimp 276 } 277 278 RetOps[0] = Chain; // Update chain. 279 RetOps[1] = DAG.getConstant(RetAddrOffset, DL, MVT::i32); 280 281 // Add the flag if we have it. 282 if (Flag.getNode()) 283 RetOps.push_back(Flag); 284 285 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 286 } 287 288 // Lower return values for the 64-bit ABI. 289 // Return values are passed the exactly the same way as function arguments. 290 SDValue 291 SparcTargetLowering::LowerReturn_64(SDValue Chain, CallingConv::ID CallConv, 292 bool IsVarArg, 293 const SmallVectorImpl<ISD::OutputArg> &Outs, 294 const SmallVectorImpl<SDValue> &OutVals, 295 const SDLoc &DL, SelectionDAG &DAG) const { 296 // CCValAssign - represent the assignment of the return value to locations. 297 SmallVector<CCValAssign, 16> RVLocs; 298 299 // CCState - Info about the registers and stack slot. 300 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, 301 *DAG.getContext()); 302 303 // Analyze return values. 304 CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64); 305 306 SDValue Flag; 307 SmallVector<SDValue, 4> RetOps(1, Chain); 308 309 // The second operand on the return instruction is the return address offset. 310 // The return address is always %i7+8 with the 64-bit ABI. 311 RetOps.push_back(DAG.getConstant(8, DL, MVT::i32)); 312 313 // Copy the result values into the output registers. 314 for (unsigned i = 0; i != RVLocs.size(); ++i) { 315 CCValAssign &VA = RVLocs[i]; 316 assert(VA.isRegLoc() && "Can only return in registers!"); 317 SDValue OutVal = OutVals[i]; 318 319 // Integer return values must be sign or zero extended by the callee. 320 switch (VA.getLocInfo()) { 321 case CCValAssign::Full: break; 322 case CCValAssign::SExt: 323 OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal); 324 break; 325 case CCValAssign::ZExt: 326 OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal); 327 break; 328 case CCValAssign::AExt: 329 OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal); 330 break; 331 default: 332 llvm_unreachable("Unknown loc info!"); 333 } 334 335 // The custom bit on an i32 return value indicates that it should be passed 336 // in the high bits of the register. 337 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 338 OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal, 339 DAG.getConstant(32, DL, MVT::i32)); 340 341 // The next value may go in the low bits of the same register. 342 // Handle both at once. 343 if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) { 344 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]); 345 OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV); 346 // Skip the next value, it's already done. 347 ++i; 348 } 349 } 350 351 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag); 352 353 // Guarantee that all emitted copies are stuck together with flags. 354 Flag = Chain.getValue(1); 355 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 356 } 357 358 RetOps[0] = Chain; // Update chain. 359 360 // Add the flag if we have it. 361 if (Flag.getNode()) 362 RetOps.push_back(Flag); 363 364 return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps); 365 } 366 367 SDValue SparcTargetLowering::LowerFormalArguments( 368 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 369 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 370 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 371 if (Subtarget->is64Bit()) 372 return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins, 373 DL, DAG, InVals); 374 return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins, 375 DL, DAG, InVals); 376 } 377 378 /// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are 379 /// passed in either one or two GPRs, including FP values. TODO: we should 380 /// pass FP values in FP registers for fastcc functions. 381 SDValue SparcTargetLowering::LowerFormalArguments_32( 382 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 383 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 384 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 385 MachineFunction &MF = DAG.getMachineFunction(); 386 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 387 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 388 389 // Assign locations to all of the incoming arguments. 390 SmallVector<CCValAssign, 16> ArgLocs; 391 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 392 *DAG.getContext()); 393 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32); 394 395 const unsigned StackOffset = 92; 396 bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); 397 398 unsigned InIdx = 0; 399 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) { 400 CCValAssign &VA = ArgLocs[i]; 401 402 if (Ins[InIdx].Flags.isSRet()) { 403 if (InIdx != 0) 404 report_fatal_error("sparc only supports sret on the first parameter"); 405 // Get SRet from [%fp+64]. 406 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, 64, true); 407 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 408 SDValue Arg = 409 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 410 InVals.push_back(Arg); 411 continue; 412 } 413 414 if (VA.isRegLoc()) { 415 if (VA.needsCustom()) { 416 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 417 418 Register VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 419 MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi); 420 SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32); 421 422 assert(i+1 < e); 423 CCValAssign &NextVA = ArgLocs[++i]; 424 425 SDValue LoVal; 426 if (NextVA.isMemLoc()) { 427 int FrameIdx = MF.getFrameInfo(). 428 CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true); 429 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 430 LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 431 } else { 432 Register loReg = MF.addLiveIn(NextVA.getLocReg(), 433 &SP::IntRegsRegClass); 434 LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32); 435 } 436 437 if (IsLittleEndian) 438 std::swap(LoVal, HiVal); 439 440 SDValue WholeValue = 441 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 442 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), WholeValue); 443 InVals.push_back(WholeValue); 444 continue; 445 } 446 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 447 MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg); 448 SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 449 if (VA.getLocVT() == MVT::f32) 450 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg); 451 else if (VA.getLocVT() != MVT::i32) { 452 Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg, 453 DAG.getValueType(VA.getLocVT())); 454 Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg); 455 } 456 InVals.push_back(Arg); 457 continue; 458 } 459 460 assert(VA.isMemLoc()); 461 462 unsigned Offset = VA.getLocMemOffset()+StackOffset; 463 auto PtrVT = getPointerTy(DAG.getDataLayout()); 464 465 if (VA.needsCustom()) { 466 assert(VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::v2i32); 467 // If it is double-word aligned, just load. 468 if (Offset % 8 == 0) { 469 int FI = MF.getFrameInfo().CreateFixedObject(8, 470 Offset, 471 true); 472 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 473 SDValue Load = 474 DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 475 InVals.push_back(Load); 476 continue; 477 } 478 479 int FI = MF.getFrameInfo().CreateFixedObject(4, 480 Offset, 481 true); 482 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 483 SDValue HiVal = 484 DAG.getLoad(MVT::i32, dl, Chain, FIPtr, MachinePointerInfo()); 485 int FI2 = MF.getFrameInfo().CreateFixedObject(4, 486 Offset+4, 487 true); 488 SDValue FIPtr2 = DAG.getFrameIndex(FI2, PtrVT); 489 490 SDValue LoVal = 491 DAG.getLoad(MVT::i32, dl, Chain, FIPtr2, MachinePointerInfo()); 492 493 if (IsLittleEndian) 494 std::swap(LoVal, HiVal); 495 496 SDValue WholeValue = 497 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal); 498 WholeValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), WholeValue); 499 InVals.push_back(WholeValue); 500 continue; 501 } 502 503 int FI = MF.getFrameInfo().CreateFixedObject(4, 504 Offset, 505 true); 506 SDValue FIPtr = DAG.getFrameIndex(FI, PtrVT); 507 SDValue Load ; 508 if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) { 509 Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr, MachinePointerInfo()); 510 } else if (VA.getValVT() == MVT::f128) { 511 report_fatal_error("SPARCv8 does not handle f128 in calls; " 512 "pass indirectly"); 513 } else { 514 // We shouldn't see any other value types here. 515 llvm_unreachable("Unexpected ValVT encountered in frame lowering."); 516 } 517 InVals.push_back(Load); 518 } 519 520 if (MF.getFunction().hasStructRetAttr()) { 521 // Copy the SRet Argument to SRetReturnReg. 522 SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>(); 523 Register Reg = SFI->getSRetReturnReg(); 524 if (!Reg) { 525 Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass); 526 SFI->setSRetReturnReg(Reg); 527 } 528 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 529 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 530 } 531 532 // Store remaining ArgRegs to the stack if this is a varargs function. 533 if (isVarArg) { 534 static const MCPhysReg ArgRegs[] = { 535 SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5 536 }; 537 unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs); 538 const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6; 539 unsigned ArgOffset = CCInfo.getNextStackOffset(); 540 if (NumAllocated == 6) 541 ArgOffset += StackOffset; 542 else { 543 assert(!ArgOffset); 544 ArgOffset = 68+4*NumAllocated; 545 } 546 547 // Remember the vararg offset for the va_start implementation. 548 FuncInfo->setVarArgsFrameOffset(ArgOffset); 549 550 std::vector<SDValue> OutChains; 551 552 for (; CurArgReg != ArgRegEnd; ++CurArgReg) { 553 Register VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass); 554 MF.getRegInfo().addLiveIn(*CurArgReg, VReg); 555 SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32); 556 557 int FrameIdx = MF.getFrameInfo().CreateFixedObject(4, ArgOffset, 558 true); 559 SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32); 560 561 OutChains.push_back( 562 DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, MachinePointerInfo())); 563 ArgOffset += 4; 564 } 565 566 if (!OutChains.empty()) { 567 OutChains.push_back(Chain); 568 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 569 } 570 } 571 572 return Chain; 573 } 574 575 // Lower formal arguments for the 64 bit ABI. 576 SDValue SparcTargetLowering::LowerFormalArguments_64( 577 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 578 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 579 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 580 MachineFunction &MF = DAG.getMachineFunction(); 581 582 // Analyze arguments according to CC_Sparc64. 583 SmallVector<CCValAssign, 16> ArgLocs; 584 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 585 *DAG.getContext()); 586 CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64); 587 588 // The argument array begins at %fp+BIAS+128, after the register save area. 589 const unsigned ArgArea = 128; 590 591 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 592 CCValAssign &VA = ArgLocs[i]; 593 if (VA.isRegLoc()) { 594 // This argument is passed in a register. 595 // All integer register arguments are promoted by the caller to i64. 596 597 // Create a virtual register for the promoted live-in value. 598 Register VReg = MF.addLiveIn(VA.getLocReg(), 599 getRegClassFor(VA.getLocVT())); 600 SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT()); 601 602 // Get the high bits for i32 struct elements. 603 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 604 Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg, 605 DAG.getConstant(32, DL, MVT::i32)); 606 607 // The caller promoted the argument, so insert an Assert?ext SDNode so we 608 // won't promote the value again in this function. 609 switch (VA.getLocInfo()) { 610 case CCValAssign::SExt: 611 Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg, 612 DAG.getValueType(VA.getValVT())); 613 break; 614 case CCValAssign::ZExt: 615 Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg, 616 DAG.getValueType(VA.getValVT())); 617 break; 618 default: 619 break; 620 } 621 622 // Truncate the register down to the argument type. 623 if (VA.isExtInLoc()) 624 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 625 626 InVals.push_back(Arg); 627 continue; 628 } 629 630 // The registers are exhausted. This argument was passed on the stack. 631 assert(VA.isMemLoc()); 632 // The CC_Sparc64_Full/Half functions compute stack offsets relative to the 633 // beginning of the arguments area at %fp+BIAS+128. 634 unsigned Offset = VA.getLocMemOffset() + ArgArea; 635 unsigned ValSize = VA.getValVT().getSizeInBits() / 8; 636 // Adjust offset for extended arguments, SPARC is big-endian. 637 // The caller will have written the full slot with extended bytes, but we 638 // prefer our own extending loads. 639 if (VA.isExtInLoc()) 640 Offset += 8 - ValSize; 641 int FI = MF.getFrameInfo().CreateFixedObject(ValSize, Offset, true); 642 InVals.push_back( 643 DAG.getLoad(VA.getValVT(), DL, Chain, 644 DAG.getFrameIndex(FI, getPointerTy(MF.getDataLayout())), 645 MachinePointerInfo::getFixedStack(MF, FI))); 646 } 647 648 if (!IsVarArg) 649 return Chain; 650 651 // This function takes variable arguments, some of which may have been passed 652 // in registers %i0-%i5. Variable floating point arguments are never passed 653 // in floating point registers. They go on %i0-%i5 or on the stack like 654 // integer arguments. 655 // 656 // The va_start intrinsic needs to know the offset to the first variable 657 // argument. 658 unsigned ArgOffset = CCInfo.getNextStackOffset(); 659 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 660 // Skip the 128 bytes of register save area. 661 FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea + 662 Subtarget->getStackPointerBias()); 663 664 // Save the variable arguments that were passed in registers. 665 // The caller is required to reserve stack space for 6 arguments regardless 666 // of how many arguments were actually passed. 667 SmallVector<SDValue, 8> OutChains; 668 for (; ArgOffset < 6*8; ArgOffset += 8) { 669 Register VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass); 670 SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 671 int FI = MF.getFrameInfo().CreateFixedObject(8, ArgOffset + ArgArea, true); 672 auto PtrVT = getPointerTy(MF.getDataLayout()); 673 OutChains.push_back( 674 DAG.getStore(Chain, DL, VArg, DAG.getFrameIndex(FI, PtrVT), 675 MachinePointerInfo::getFixedStack(MF, FI))); 676 } 677 678 if (!OutChains.empty()) 679 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); 680 681 return Chain; 682 } 683 684 SDValue 685 SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 686 SmallVectorImpl<SDValue> &InVals) const { 687 if (Subtarget->is64Bit()) 688 return LowerCall_64(CLI, InVals); 689 return LowerCall_32(CLI, InVals); 690 } 691 692 static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee, 693 const CallBase *Call) { 694 if (Call) 695 return Call->hasFnAttr(Attribute::ReturnsTwice); 696 697 const Function *CalleeFn = nullptr; 698 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 699 CalleeFn = dyn_cast<Function>(G->getGlobal()); 700 } else if (ExternalSymbolSDNode *E = 701 dyn_cast<ExternalSymbolSDNode>(Callee)) { 702 const Function &Fn = DAG.getMachineFunction().getFunction(); 703 const Module *M = Fn.getParent(); 704 const char *CalleeName = E->getSymbol(); 705 CalleeFn = M->getFunction(CalleeName); 706 } 707 708 if (!CalleeFn) 709 return false; 710 return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice); 711 } 712 713 // Lower a call for the 32-bit ABI. 714 SDValue 715 SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI, 716 SmallVectorImpl<SDValue> &InVals) const { 717 SelectionDAG &DAG = CLI.DAG; 718 SDLoc &dl = CLI.DL; 719 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 720 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 721 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 722 SDValue Chain = CLI.Chain; 723 SDValue Callee = CLI.Callee; 724 bool &isTailCall = CLI.IsTailCall; 725 CallingConv::ID CallConv = CLI.CallConv; 726 bool isVarArg = CLI.IsVarArg; 727 728 // Sparc target does not yet support tail call optimization. 729 isTailCall = false; 730 731 // Analyze operands of the call, assigning locations to each operand. 732 SmallVector<CCValAssign, 16> ArgLocs; 733 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 734 *DAG.getContext()); 735 CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32); 736 737 // Get the size of the outgoing arguments stack space requirement. 738 unsigned ArgsSize = CCInfo.getNextStackOffset(); 739 740 // Keep stack frames 8-byte aligned. 741 ArgsSize = (ArgsSize+7) & ~7; 742 743 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 744 745 // Create local copies for byval args. 746 SmallVector<SDValue, 8> ByValArgs; 747 for (unsigned i = 0, e = Outs.size(); i != e; ++i) { 748 ISD::ArgFlagsTy Flags = Outs[i].Flags; 749 if (!Flags.isByVal()) 750 continue; 751 752 SDValue Arg = OutVals[i]; 753 unsigned Size = Flags.getByValSize(); 754 Align Alignment = Flags.getNonZeroByValAlign(); 755 756 if (Size > 0U) { 757 int FI = MFI.CreateStackObject(Size, Alignment, false); 758 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 759 SDValue SizeNode = DAG.getConstant(Size, dl, MVT::i32); 760 761 Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Alignment, 762 false, // isVolatile, 763 (Size <= 32), // AlwaysInline if size <= 32, 764 false, // isTailCall 765 MachinePointerInfo(), MachinePointerInfo()); 766 ByValArgs.push_back(FIPtr); 767 } 768 else { 769 SDValue nullVal; 770 ByValArgs.push_back(nullVal); 771 } 772 } 773 774 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, dl); 775 776 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 777 SmallVector<SDValue, 8> MemOpChains; 778 779 const unsigned StackOffset = 92; 780 bool hasStructRetAttr = false; 781 unsigned SRetArgSize = 0; 782 // Walk the register/memloc assignments, inserting copies/loads. 783 for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size(); 784 i != e; 785 ++i, ++realArgIdx) { 786 CCValAssign &VA = ArgLocs[i]; 787 SDValue Arg = OutVals[realArgIdx]; 788 789 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 790 791 // Use local copy if it is a byval arg. 792 if (Flags.isByVal()) { 793 Arg = ByValArgs[byvalArgIdx++]; 794 if (!Arg) { 795 continue; 796 } 797 } 798 799 // Promote the value if needed. 800 switch (VA.getLocInfo()) { 801 default: llvm_unreachable("Unknown loc info!"); 802 case CCValAssign::Full: break; 803 case CCValAssign::SExt: 804 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 805 break; 806 case CCValAssign::ZExt: 807 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 808 break; 809 case CCValAssign::AExt: 810 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 811 break; 812 case CCValAssign::BCvt: 813 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 814 break; 815 } 816 817 if (Flags.isSRet()) { 818 assert(VA.needsCustom()); 819 // store SRet argument in %sp+64 820 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 821 SDValue PtrOff = DAG.getIntPtrConstant(64, dl); 822 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 823 MemOpChains.push_back( 824 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 825 hasStructRetAttr = true; 826 // sret only allowed on first argument 827 assert(Outs[realArgIdx].OrigArgIndex == 0); 828 PointerType *Ty = cast<PointerType>(CLI.getArgs()[0].Ty); 829 Type *ElementTy = Ty->getElementType(); 830 SRetArgSize = DAG.getDataLayout().getTypeAllocSize(ElementTy); 831 continue; 832 } 833 834 if (VA.needsCustom()) { 835 assert(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2i32); 836 837 if (VA.isMemLoc()) { 838 unsigned Offset = VA.getLocMemOffset() + StackOffset; 839 // if it is double-word aligned, just store. 840 if (Offset % 8 == 0) { 841 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 842 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 843 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 844 MemOpChains.push_back( 845 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 846 continue; 847 } 848 } 849 850 if (VA.getLocVT() == MVT::f64) { 851 // Move from the float value from float registers into the 852 // integer registers. 853 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Arg)) 854 Arg = bitcastConstantFPToInt(C, dl, DAG); 855 else 856 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, Arg); 857 } 858 859 SDValue Part0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 860 Arg, 861 DAG.getConstant(0, dl, getVectorIdxTy(DAG.getDataLayout()))); 862 SDValue Part1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 863 Arg, 864 DAG.getConstant(1, dl, getVectorIdxTy(DAG.getDataLayout()))); 865 866 if (VA.isRegLoc()) { 867 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Part0)); 868 assert(i+1 != e); 869 CCValAssign &NextVA = ArgLocs[++i]; 870 if (NextVA.isRegLoc()) { 871 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Part1)); 872 } else { 873 // Store the second part in stack. 874 unsigned Offset = NextVA.getLocMemOffset() + StackOffset; 875 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 876 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 877 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 878 MemOpChains.push_back( 879 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 880 } 881 } else { 882 unsigned Offset = VA.getLocMemOffset() + StackOffset; 883 // Store the first part. 884 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 885 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl); 886 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 887 MemOpChains.push_back( 888 DAG.getStore(Chain, dl, Part0, PtrOff, MachinePointerInfo())); 889 // Store the second part. 890 PtrOff = DAG.getIntPtrConstant(Offset + 4, dl); 891 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 892 MemOpChains.push_back( 893 DAG.getStore(Chain, dl, Part1, PtrOff, MachinePointerInfo())); 894 } 895 continue; 896 } 897 898 // Arguments that can be passed on register must be kept at 899 // RegsToPass vector 900 if (VA.isRegLoc()) { 901 if (VA.getLocVT() != MVT::f32) { 902 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 903 continue; 904 } 905 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 906 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 907 continue; 908 } 909 910 assert(VA.isMemLoc()); 911 912 // Create a store off the stack pointer for this argument. 913 SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32); 914 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + StackOffset, 915 dl); 916 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); 917 MemOpChains.push_back( 918 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 919 } 920 921 922 // Emit all stores, make sure the occur before any copies into physregs. 923 if (!MemOpChains.empty()) 924 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 925 926 // Build a sequence of copy-to-reg nodes chained together with token 927 // chain and flag operands which copy the outgoing args into registers. 928 // The InFlag in necessary since all emitted instructions must be 929 // stuck together. 930 SDValue InFlag; 931 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 932 Register Reg = toCallerWindow(RegsToPass[i].first); 933 Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag); 934 InFlag = Chain.getValue(1); 935 } 936 937 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 938 939 // If the callee is a GlobalAddress node (quite common, every direct call is) 940 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 941 // Likewise ExternalSymbol -> TargetExternalSymbol. 942 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 943 : SparcMCExpr::VK_Sparc_WDISP30; 944 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 945 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF); 946 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 947 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF); 948 949 // Returns a chain & a flag for retval copy to use 950 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 951 SmallVector<SDValue, 8> Ops; 952 Ops.push_back(Chain); 953 Ops.push_back(Callee); 954 if (hasStructRetAttr) 955 Ops.push_back(DAG.getTargetConstant(SRetArgSize, dl, MVT::i32)); 956 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 957 Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first), 958 RegsToPass[i].second.getValueType())); 959 960 // Add a register mask operand representing the call-preserved registers. 961 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 962 const uint32_t *Mask = 963 ((hasReturnsTwice) 964 ? TRI->getRTCallPreservedMask(CallConv) 965 : TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv)); 966 assert(Mask && "Missing call preserved mask for calling convention"); 967 Ops.push_back(DAG.getRegisterMask(Mask)); 968 969 if (InFlag.getNode()) 970 Ops.push_back(InFlag); 971 972 Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops); 973 InFlag = Chain.getValue(1); 974 975 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, dl, true), 976 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 977 InFlag = Chain.getValue(1); 978 979 // Assign locations to each value returned by this call. 980 SmallVector<CCValAssign, 16> RVLocs; 981 CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 982 *DAG.getContext()); 983 984 RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32); 985 986 // Copy all of the result registers out of their specified physreg. 987 for (unsigned i = 0; i != RVLocs.size(); ++i) { 988 if (RVLocs[i].getLocVT() == MVT::v2i32) { 989 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2i32); 990 SDValue Lo = DAG.getCopyFromReg( 991 Chain, dl, toCallerWindow(RVLocs[i++].getLocReg()), MVT::i32, InFlag); 992 Chain = Lo.getValue(1); 993 InFlag = Lo.getValue(2); 994 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Lo, 995 DAG.getConstant(0, dl, MVT::i32)); 996 SDValue Hi = DAG.getCopyFromReg( 997 Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), MVT::i32, InFlag); 998 Chain = Hi.getValue(1); 999 InFlag = Hi.getValue(2); 1000 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2i32, Vec, Hi, 1001 DAG.getConstant(1, dl, MVT::i32)); 1002 InVals.push_back(Vec); 1003 } else { 1004 Chain = 1005 DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()), 1006 RVLocs[i].getValVT(), InFlag) 1007 .getValue(1); 1008 InFlag = Chain.getValue(2); 1009 InVals.push_back(Chain.getValue(0)); 1010 } 1011 } 1012 1013 return Chain; 1014 } 1015 1016 // FIXME? Maybe this could be a TableGen attribute on some registers and 1017 // this table could be generated automatically from RegInfo. 1018 Register SparcTargetLowering::getRegisterByName(const char* RegName, LLT VT, 1019 const MachineFunction &MF) const { 1020 Register Reg = StringSwitch<Register>(RegName) 1021 .Case("i0", SP::I0).Case("i1", SP::I1).Case("i2", SP::I2).Case("i3", SP::I3) 1022 .Case("i4", SP::I4).Case("i5", SP::I5).Case("i6", SP::I6).Case("i7", SP::I7) 1023 .Case("o0", SP::O0).Case("o1", SP::O1).Case("o2", SP::O2).Case("o3", SP::O3) 1024 .Case("o4", SP::O4).Case("o5", SP::O5).Case("o6", SP::O6).Case("o7", SP::O7) 1025 .Case("l0", SP::L0).Case("l1", SP::L1).Case("l2", SP::L2).Case("l3", SP::L3) 1026 .Case("l4", SP::L4).Case("l5", SP::L5).Case("l6", SP::L6).Case("l7", SP::L7) 1027 .Case("g0", SP::G0).Case("g1", SP::G1).Case("g2", SP::G2).Case("g3", SP::G3) 1028 .Case("g4", SP::G4).Case("g5", SP::G5).Case("g6", SP::G6).Case("g7", SP::G7) 1029 .Default(0); 1030 1031 if (Reg) 1032 return Reg; 1033 1034 report_fatal_error("Invalid register name global variable"); 1035 } 1036 1037 // Fixup floating point arguments in the ... part of a varargs call. 1038 // 1039 // The SPARC v9 ABI requires that floating point arguments are treated the same 1040 // as integers when calling a varargs function. This does not apply to the 1041 // fixed arguments that are part of the function's prototype. 1042 // 1043 // This function post-processes a CCValAssign array created by 1044 // AnalyzeCallOperands(). 1045 static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs, 1046 ArrayRef<ISD::OutputArg> Outs) { 1047 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1048 const CCValAssign &VA = ArgLocs[i]; 1049 MVT ValTy = VA.getLocVT(); 1050 // FIXME: What about f32 arguments? C promotes them to f64 when calling 1051 // varargs functions. 1052 if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128)) 1053 continue; 1054 // The fixed arguments to a varargs function still go in FP registers. 1055 if (Outs[VA.getValNo()].IsFixed) 1056 continue; 1057 1058 // This floating point argument should be reassigned. 1059 CCValAssign NewVA; 1060 1061 // Determine the offset into the argument array. 1062 Register firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0; 1063 unsigned argSize = (ValTy == MVT::f64) ? 8 : 16; 1064 unsigned Offset = argSize * (VA.getLocReg() - firstReg); 1065 assert(Offset < 16*8 && "Offset out of range, bad register enum?"); 1066 1067 if (Offset < 6*8) { 1068 // This argument should go in %i0-%i5. 1069 unsigned IReg = SP::I0 + Offset/8; 1070 if (ValTy == MVT::f64) 1071 // Full register, just bitconvert into i64. 1072 NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(), 1073 IReg, MVT::i64, CCValAssign::BCvt); 1074 else { 1075 assert(ValTy == MVT::f128 && "Unexpected type!"); 1076 // Full register, just bitconvert into i128 -- We will lower this into 1077 // two i64s in LowerCall_64. 1078 NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(), 1079 IReg, MVT::i128, CCValAssign::BCvt); 1080 } 1081 } else { 1082 // This needs to go to memory, we're out of integer registers. 1083 NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(), 1084 Offset, VA.getLocVT(), VA.getLocInfo()); 1085 } 1086 ArgLocs[i] = NewVA; 1087 } 1088 } 1089 1090 // Lower a call for the 64-bit ABI. 1091 SDValue 1092 SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI, 1093 SmallVectorImpl<SDValue> &InVals) const { 1094 SelectionDAG &DAG = CLI.DAG; 1095 SDLoc DL = CLI.DL; 1096 SDValue Chain = CLI.Chain; 1097 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1098 1099 // Sparc target does not yet support tail call optimization. 1100 CLI.IsTailCall = false; 1101 1102 // Analyze operands of the call, assigning locations to each operand. 1103 SmallVector<CCValAssign, 16> ArgLocs; 1104 CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs, 1105 *DAG.getContext()); 1106 CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64); 1107 1108 // Get the size of the outgoing arguments stack space requirement. 1109 // The stack offset computed by CC_Sparc64 includes all arguments. 1110 // Called functions expect 6 argument words to exist in the stack frame, used 1111 // or not. 1112 unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset()); 1113 1114 // Keep stack frames 16-byte aligned. 1115 ArgsSize = alignTo(ArgsSize, 16); 1116 1117 // Varargs calls require special treatment. 1118 if (CLI.IsVarArg) 1119 fixupVariableFloatArgs(ArgLocs, CLI.Outs); 1120 1121 // Adjust the stack pointer to make room for the arguments. 1122 // FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls 1123 // with more than 6 arguments. 1124 Chain = DAG.getCALLSEQ_START(Chain, ArgsSize, 0, DL); 1125 1126 // Collect the set of registers to pass to the function and their values. 1127 // This will be emitted as a sequence of CopyToReg nodes glued to the call 1128 // instruction. 1129 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; 1130 1131 // Collect chains from all the memory opeations that copy arguments to the 1132 // stack. They must follow the stack pointer adjustment above and precede the 1133 // call instruction itself. 1134 SmallVector<SDValue, 8> MemOpChains; 1135 1136 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1137 const CCValAssign &VA = ArgLocs[i]; 1138 SDValue Arg = CLI.OutVals[i]; 1139 1140 // Promote the value if needed. 1141 switch (VA.getLocInfo()) { 1142 default: 1143 llvm_unreachable("Unknown location info!"); 1144 case CCValAssign::Full: 1145 break; 1146 case CCValAssign::SExt: 1147 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 1148 break; 1149 case CCValAssign::ZExt: 1150 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 1151 break; 1152 case CCValAssign::AExt: 1153 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 1154 break; 1155 case CCValAssign::BCvt: 1156 // fixupVariableFloatArgs() may create bitcasts from f128 to i128. But 1157 // SPARC does not support i128 natively. Lower it into two i64, see below. 1158 if (!VA.needsCustom() || VA.getValVT() != MVT::f128 1159 || VA.getLocVT() != MVT::i128) 1160 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 1161 break; 1162 } 1163 1164 if (VA.isRegLoc()) { 1165 if (VA.needsCustom() && VA.getValVT() == MVT::f128 1166 && VA.getLocVT() == MVT::i128) { 1167 // Store and reload into the integer register reg and reg+1. 1168 unsigned Offset = 8 * (VA.getLocReg() - SP::I0); 1169 unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128; 1170 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1171 SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset, DL); 1172 HiPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, HiPtrOff); 1173 SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8, DL); 1174 LoPtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, LoPtrOff); 1175 1176 // Store to %sp+BIAS+128+Offset 1177 SDValue Store = 1178 DAG.getStore(Chain, DL, Arg, HiPtrOff, MachinePointerInfo()); 1179 // Load into Reg and Reg+1 1180 SDValue Hi64 = 1181 DAG.getLoad(MVT::i64, DL, Store, HiPtrOff, MachinePointerInfo()); 1182 SDValue Lo64 = 1183 DAG.getLoad(MVT::i64, DL, Store, LoPtrOff, MachinePointerInfo()); 1184 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), 1185 Hi64)); 1186 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1), 1187 Lo64)); 1188 continue; 1189 } 1190 1191 // The custom bit on an i32 return value indicates that it should be 1192 // passed in the high bits of the register. 1193 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) { 1194 Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg, 1195 DAG.getConstant(32, DL, MVT::i32)); 1196 1197 // The next value may go in the low bits of the same register. 1198 // Handle both at once. 1199 if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() && 1200 ArgLocs[i+1].getLocReg() == VA.getLocReg()) { 1201 SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, 1202 CLI.OutVals[i+1]); 1203 Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV); 1204 // Skip the next value, it's already done. 1205 ++i; 1206 } 1207 } 1208 RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg)); 1209 continue; 1210 } 1211 1212 assert(VA.isMemLoc()); 1213 1214 // Create a store off the stack pointer for this argument. 1215 SDValue StackPtr = DAG.getRegister(SP::O6, PtrVT); 1216 // The argument area starts at %fp+BIAS+128 in the callee frame, 1217 // %sp+BIAS+128 in ours. 1218 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() + 1219 Subtarget->getStackPointerBias() + 1220 128, DL); 1221 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); 1222 MemOpChains.push_back( 1223 DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); 1224 } 1225 1226 // Emit all stores, make sure they occur before the call. 1227 if (!MemOpChains.empty()) 1228 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1229 1230 // Build a sequence of CopyToReg nodes glued together with token chain and 1231 // glue operands which copy the outgoing args into registers. The InGlue is 1232 // necessary since all emitted instructions must be stuck together in order 1233 // to pass the live physical registers. 1234 SDValue InGlue; 1235 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1236 Chain = DAG.getCopyToReg(Chain, DL, 1237 RegsToPass[i].first, RegsToPass[i].second, InGlue); 1238 InGlue = Chain.getValue(1); 1239 } 1240 1241 // If the callee is a GlobalAddress node (quite common, every direct call is) 1242 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1243 // Likewise ExternalSymbol -> TargetExternalSymbol. 1244 SDValue Callee = CLI.Callee; 1245 bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CB); 1246 unsigned TF = isPositionIndependent() ? SparcMCExpr::VK_Sparc_WPLT30 1247 : SparcMCExpr::VK_Sparc_WDISP30; 1248 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1249 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT, 0, TF); 1250 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 1251 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, TF); 1252 1253 // Build the operands for the call instruction itself. 1254 SmallVector<SDValue, 8> Ops; 1255 Ops.push_back(Chain); 1256 Ops.push_back(Callee); 1257 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1258 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1259 RegsToPass[i].second.getValueType())); 1260 1261 // Add a register mask operand representing the call-preserved registers. 1262 const SparcRegisterInfo *TRI = Subtarget->getRegisterInfo(); 1263 const uint32_t *Mask = 1264 ((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv) 1265 : TRI->getCallPreservedMask(DAG.getMachineFunction(), 1266 CLI.CallConv)); 1267 assert(Mask && "Missing call preserved mask for calling convention"); 1268 Ops.push_back(DAG.getRegisterMask(Mask)); 1269 1270 // Make sure the CopyToReg nodes are glued to the call instruction which 1271 // consumes the registers. 1272 if (InGlue.getNode()) 1273 Ops.push_back(InGlue); 1274 1275 // Now the call itself. 1276 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1277 Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops); 1278 InGlue = Chain.getValue(1); 1279 1280 // Revert the stack pointer immediately after the call. 1281 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, DL, true), 1282 DAG.getIntPtrConstant(0, DL, true), InGlue, DL); 1283 InGlue = Chain.getValue(1); 1284 1285 // Now extract the return values. This is more or less the same as 1286 // LowerFormalArguments_64. 1287 1288 // Assign locations to each value returned by this call. 1289 SmallVector<CCValAssign, 16> RVLocs; 1290 CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs, 1291 *DAG.getContext()); 1292 1293 // Set inreg flag manually for codegen generated library calls that 1294 // return float. 1295 if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && !CLI.CB) 1296 CLI.Ins[0].Flags.setInReg(); 1297 1298 RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64); 1299 1300 // Copy all of the result registers out of their specified physreg. 1301 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1302 CCValAssign &VA = RVLocs[i]; 1303 unsigned Reg = toCallerWindow(VA.getLocReg()); 1304 1305 // When returning 'inreg {i32, i32 }', two consecutive i32 arguments can 1306 // reside in the same register in the high and low bits. Reuse the 1307 // CopyFromReg previous node to avoid duplicate copies. 1308 SDValue RV; 1309 if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1))) 1310 if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg) 1311 RV = Chain.getValue(0); 1312 1313 // But usually we'll create a new CopyFromReg for a different register. 1314 if (!RV.getNode()) { 1315 RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue); 1316 Chain = RV.getValue(1); 1317 InGlue = Chain.getValue(2); 1318 } 1319 1320 // Get the high bits for i32 struct elements. 1321 if (VA.getValVT() == MVT::i32 && VA.needsCustom()) 1322 RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV, 1323 DAG.getConstant(32, DL, MVT::i32)); 1324 1325 // The callee promoted the return value, so insert an Assert?ext SDNode so 1326 // we won't promote the value again in this function. 1327 switch (VA.getLocInfo()) { 1328 case CCValAssign::SExt: 1329 RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV, 1330 DAG.getValueType(VA.getValVT())); 1331 break; 1332 case CCValAssign::ZExt: 1333 RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV, 1334 DAG.getValueType(VA.getValVT())); 1335 break; 1336 default: 1337 break; 1338 } 1339 1340 // Truncate the register down to the return value type. 1341 if (VA.isExtInLoc()) 1342 RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV); 1343 1344 InVals.push_back(RV); 1345 } 1346 1347 return Chain; 1348 } 1349 1350 //===----------------------------------------------------------------------===// 1351 // TargetLowering Implementation 1352 //===----------------------------------------------------------------------===// 1353 1354 TargetLowering::AtomicExpansionKind SparcTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 1355 if (AI->getOperation() == AtomicRMWInst::Xchg && 1356 AI->getType()->getPrimitiveSizeInBits() == 32) 1357 return AtomicExpansionKind::None; // Uses xchg instruction 1358 1359 return AtomicExpansionKind::CmpXChg; 1360 } 1361 1362 /// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC 1363 /// condition. 1364 static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) { 1365 switch (CC) { 1366 default: llvm_unreachable("Unknown integer condition code!"); 1367 case ISD::SETEQ: return SPCC::ICC_E; 1368 case ISD::SETNE: return SPCC::ICC_NE; 1369 case ISD::SETLT: return SPCC::ICC_L; 1370 case ISD::SETGT: return SPCC::ICC_G; 1371 case ISD::SETLE: return SPCC::ICC_LE; 1372 case ISD::SETGE: return SPCC::ICC_GE; 1373 case ISD::SETULT: return SPCC::ICC_CS; 1374 case ISD::SETULE: return SPCC::ICC_LEU; 1375 case ISD::SETUGT: return SPCC::ICC_GU; 1376 case ISD::SETUGE: return SPCC::ICC_CC; 1377 } 1378 } 1379 1380 /// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC 1381 /// FCC condition. 1382 static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) { 1383 switch (CC) { 1384 default: llvm_unreachable("Unknown fp condition code!"); 1385 case ISD::SETEQ: 1386 case ISD::SETOEQ: return SPCC::FCC_E; 1387 case ISD::SETNE: 1388 case ISD::SETUNE: return SPCC::FCC_NE; 1389 case ISD::SETLT: 1390 case ISD::SETOLT: return SPCC::FCC_L; 1391 case ISD::SETGT: 1392 case ISD::SETOGT: return SPCC::FCC_G; 1393 case ISD::SETLE: 1394 case ISD::SETOLE: return SPCC::FCC_LE; 1395 case ISD::SETGE: 1396 case ISD::SETOGE: return SPCC::FCC_GE; 1397 case ISD::SETULT: return SPCC::FCC_UL; 1398 case ISD::SETULE: return SPCC::FCC_ULE; 1399 case ISD::SETUGT: return SPCC::FCC_UG; 1400 case ISD::SETUGE: return SPCC::FCC_UGE; 1401 case ISD::SETUO: return SPCC::FCC_U; 1402 case ISD::SETO: return SPCC::FCC_O; 1403 case ISD::SETONE: return SPCC::FCC_LG; 1404 case ISD::SETUEQ: return SPCC::FCC_UE; 1405 } 1406 } 1407 1408 SparcTargetLowering::SparcTargetLowering(const TargetMachine &TM, 1409 const SparcSubtarget &STI) 1410 : TargetLowering(TM), Subtarget(&STI) { 1411 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 1412 1413 // Instructions which use registers as conditionals examine all the 1414 // bits (as does the pseudo SELECT_CC expansion). I don't think it 1415 // matters much whether it's ZeroOrOneBooleanContent, or 1416 // ZeroOrNegativeOneBooleanContent, so, arbitrarily choose the 1417 // former. 1418 setBooleanContents(ZeroOrOneBooleanContent); 1419 setBooleanVectorContents(ZeroOrOneBooleanContent); 1420 1421 // Set up the register classes. 1422 addRegisterClass(MVT::i32, &SP::IntRegsRegClass); 1423 if (!Subtarget->useSoftFloat()) { 1424 addRegisterClass(MVT::f32, &SP::FPRegsRegClass); 1425 addRegisterClass(MVT::f64, &SP::DFPRegsRegClass); 1426 addRegisterClass(MVT::f128, &SP::QFPRegsRegClass); 1427 } 1428 if (Subtarget->is64Bit()) { 1429 addRegisterClass(MVT::i64, &SP::I64RegsRegClass); 1430 } else { 1431 // On 32bit sparc, we define a double-register 32bit register 1432 // class, as well. This is modeled in LLVM as a 2-vector of i32. 1433 addRegisterClass(MVT::v2i32, &SP::IntPairRegClass); 1434 1435 // ...but almost all operations must be expanded, so set that as 1436 // the default. 1437 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { 1438 setOperationAction(Op, MVT::v2i32, Expand); 1439 } 1440 // Truncating/extending stores/loads are also not supported. 1441 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 1442 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Expand); 1443 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i32, Expand); 1444 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Expand); 1445 1446 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, VT, Expand); 1447 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, VT, Expand); 1448 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, VT, Expand); 1449 1450 setTruncStoreAction(VT, MVT::v2i32, Expand); 1451 setTruncStoreAction(MVT::v2i32, VT, Expand); 1452 } 1453 // However, load and store *are* legal. 1454 setOperationAction(ISD::LOAD, MVT::v2i32, Legal); 1455 setOperationAction(ISD::STORE, MVT::v2i32, Legal); 1456 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Legal); 1457 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Legal); 1458 1459 // And we need to promote i64 loads/stores into vector load/store 1460 setOperationAction(ISD::LOAD, MVT::i64, Custom); 1461 setOperationAction(ISD::STORE, MVT::i64, Custom); 1462 1463 // Sadly, this doesn't work: 1464 // AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); 1465 // AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); 1466 } 1467 1468 // Turn FP extload into load/fpextend 1469 for (MVT VT : MVT::fp_valuetypes()) { 1470 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 1471 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 1472 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); 1473 } 1474 1475 // Sparc doesn't have i1 sign extending load 1476 for (MVT VT : MVT::integer_valuetypes()) 1477 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 1478 1479 // Turn FP truncstore into trunc + store. 1480 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 1481 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 1482 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 1483 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1484 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1485 1486 // Custom legalize GlobalAddress nodes into LO/HI parts. 1487 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 1488 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 1489 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 1490 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 1491 1492 // Sparc doesn't have sext_inreg, replace them with shl/sra 1493 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 1494 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); 1495 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 1496 1497 // Sparc has no REM or DIVREM operations. 1498 setOperationAction(ISD::UREM, MVT::i32, Expand); 1499 setOperationAction(ISD::SREM, MVT::i32, Expand); 1500 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 1501 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 1502 1503 // ... nor does SparcV9. 1504 if (Subtarget->is64Bit()) { 1505 setOperationAction(ISD::UREM, MVT::i64, Expand); 1506 setOperationAction(ISD::SREM, MVT::i64, Expand); 1507 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 1508 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 1509 } 1510 1511 // Custom expand fp<->sint 1512 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1513 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 1514 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 1515 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 1516 1517 // Custom Expand fp<->uint 1518 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 1519 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 1520 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 1521 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 1522 1523 // Lower f16 conversion operations into library calls 1524 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 1525 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 1526 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 1527 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 1528 1529 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 1530 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 1531 1532 // Sparc has no select or setcc: expand to SELECT_CC. 1533 setOperationAction(ISD::SELECT, MVT::i32, Expand); 1534 setOperationAction(ISD::SELECT, MVT::f32, Expand); 1535 setOperationAction(ISD::SELECT, MVT::f64, Expand); 1536 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1537 1538 setOperationAction(ISD::SETCC, MVT::i32, Expand); 1539 setOperationAction(ISD::SETCC, MVT::f32, Expand); 1540 setOperationAction(ISD::SETCC, MVT::f64, Expand); 1541 setOperationAction(ISD::SETCC, MVT::f128, Expand); 1542 1543 // Sparc doesn't have BRCOND either, it has BR_CC. 1544 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 1545 setOperationAction(ISD::BRIND, MVT::Other, Expand); 1546 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 1547 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 1548 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 1549 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 1550 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 1551 1552 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1553 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 1554 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 1555 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1556 1557 setOperationAction(ISD::ADDC, MVT::i32, Custom); 1558 setOperationAction(ISD::ADDE, MVT::i32, Custom); 1559 setOperationAction(ISD::SUBC, MVT::i32, Custom); 1560 setOperationAction(ISD::SUBE, MVT::i32, Custom); 1561 1562 if (Subtarget->is64Bit()) { 1563 setOperationAction(ISD::ADDC, MVT::i64, Custom); 1564 setOperationAction(ISD::ADDE, MVT::i64, Custom); 1565 setOperationAction(ISD::SUBC, MVT::i64, Custom); 1566 setOperationAction(ISD::SUBE, MVT::i64, Custom); 1567 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 1568 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 1569 setOperationAction(ISD::SELECT, MVT::i64, Expand); 1570 setOperationAction(ISD::SETCC, MVT::i64, Expand); 1571 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 1572 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 1573 1574 setOperationAction(ISD::CTPOP, MVT::i64, 1575 Subtarget->usePopc() ? Legal : Expand); 1576 setOperationAction(ISD::CTTZ , MVT::i64, Expand); 1577 setOperationAction(ISD::CTLZ , MVT::i64, Expand); 1578 setOperationAction(ISD::BSWAP, MVT::i64, Expand); 1579 setOperationAction(ISD::ROTL , MVT::i64, Expand); 1580 setOperationAction(ISD::ROTR , MVT::i64, Expand); 1581 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); 1582 } 1583 1584 // ATOMICs. 1585 // Atomics are supported on SparcV9. 32-bit atomics are also 1586 // supported by some Leon SparcV8 variants. Otherwise, atomics 1587 // are unsupported. 1588 if (Subtarget->isV9()) 1589 setMaxAtomicSizeInBitsSupported(64); 1590 else if (Subtarget->hasLeonCasa()) 1591 setMaxAtomicSizeInBitsSupported(32); 1592 else 1593 setMaxAtomicSizeInBitsSupported(0); 1594 1595 setMinCmpXchgSizeInBits(32); 1596 1597 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal); 1598 1599 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal); 1600 1601 // Custom Lower Atomic LOAD/STORE 1602 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 1603 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 1604 1605 if (Subtarget->is64Bit()) { 1606 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal); 1607 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal); 1608 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); 1609 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom); 1610 } 1611 1612 if (!Subtarget->is64Bit()) { 1613 // These libcalls are not available in 32-bit. 1614 setLibcallName(RTLIB::SHL_I128, nullptr); 1615 setLibcallName(RTLIB::SRL_I128, nullptr); 1616 setLibcallName(RTLIB::SRA_I128, nullptr); 1617 } 1618 1619 if (!Subtarget->isV9()) { 1620 // SparcV8 does not have FNEGD and FABSD. 1621 setOperationAction(ISD::FNEG, MVT::f64, Custom); 1622 setOperationAction(ISD::FABS, MVT::f64, Custom); 1623 } 1624 1625 setOperationAction(ISD::FSIN , MVT::f128, Expand); 1626 setOperationAction(ISD::FCOS , MVT::f128, Expand); 1627 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 1628 setOperationAction(ISD::FREM , MVT::f128, Expand); 1629 setOperationAction(ISD::FMA , MVT::f128, Expand); 1630 setOperationAction(ISD::FSIN , MVT::f64, Expand); 1631 setOperationAction(ISD::FCOS , MVT::f64, Expand); 1632 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 1633 setOperationAction(ISD::FREM , MVT::f64, Expand); 1634 setOperationAction(ISD::FMA , MVT::f64, Expand); 1635 setOperationAction(ISD::FSIN , MVT::f32, Expand); 1636 setOperationAction(ISD::FCOS , MVT::f32, Expand); 1637 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 1638 setOperationAction(ISD::FREM , MVT::f32, Expand); 1639 setOperationAction(ISD::FMA , MVT::f32, Expand); 1640 setOperationAction(ISD::CTTZ , MVT::i32, Expand); 1641 setOperationAction(ISD::CTLZ , MVT::i32, Expand); 1642 setOperationAction(ISD::ROTL , MVT::i32, Expand); 1643 setOperationAction(ISD::ROTR , MVT::i32, Expand); 1644 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 1645 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1646 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 1647 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 1648 setOperationAction(ISD::FPOW , MVT::f128, Expand); 1649 setOperationAction(ISD::FPOW , MVT::f64, Expand); 1650 setOperationAction(ISD::FPOW , MVT::f32, Expand); 1651 1652 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 1653 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 1654 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 1655 1656 // Expands to [SU]MUL_LOHI. 1657 setOperationAction(ISD::MULHU, MVT::i32, Expand); 1658 setOperationAction(ISD::MULHS, MVT::i32, Expand); 1659 setOperationAction(ISD::MUL, MVT::i32, Expand); 1660 1661 if (Subtarget->useSoftMulDiv()) { 1662 // .umul works for both signed and unsigned 1663 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 1664 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 1665 setLibcallName(RTLIB::MUL_I32, ".umul"); 1666 1667 setOperationAction(ISD::SDIV, MVT::i32, Expand); 1668 setLibcallName(RTLIB::SDIV_I32, ".div"); 1669 1670 setOperationAction(ISD::UDIV, MVT::i32, Expand); 1671 setLibcallName(RTLIB::UDIV_I32, ".udiv"); 1672 1673 setLibcallName(RTLIB::SREM_I32, ".rem"); 1674 setLibcallName(RTLIB::UREM_I32, ".urem"); 1675 } 1676 1677 if (Subtarget->is64Bit()) { 1678 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 1679 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 1680 setOperationAction(ISD::MULHU, MVT::i64, Expand); 1681 setOperationAction(ISD::MULHS, MVT::i64, Expand); 1682 1683 setOperationAction(ISD::UMULO, MVT::i64, Custom); 1684 setOperationAction(ISD::SMULO, MVT::i64, Custom); 1685 1686 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 1687 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 1688 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 1689 } 1690 1691 // VASTART needs to be custom lowered to use the VarArgsFrameIndex. 1692 setOperationAction(ISD::VASTART , MVT::Other, Custom); 1693 // VAARG needs to be lowered to not do unaligned accesses for doubles. 1694 setOperationAction(ISD::VAARG , MVT::Other, Custom); 1695 1696 setOperationAction(ISD::TRAP , MVT::Other, Legal); 1697 setOperationAction(ISD::DEBUGTRAP , MVT::Other, Legal); 1698 1699 // Use the default implementation. 1700 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 1701 setOperationAction(ISD::VAEND , MVT::Other, Expand); 1702 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 1703 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); 1704 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 1705 1706 setStackPointerRegisterToSaveRestore(SP::O6); 1707 1708 setOperationAction(ISD::CTPOP, MVT::i32, 1709 Subtarget->usePopc() ? Legal : Expand); 1710 1711 if (Subtarget->isV9() && Subtarget->hasHardQuad()) { 1712 setOperationAction(ISD::LOAD, MVT::f128, Legal); 1713 setOperationAction(ISD::STORE, MVT::f128, Legal); 1714 } else { 1715 setOperationAction(ISD::LOAD, MVT::f128, Custom); 1716 setOperationAction(ISD::STORE, MVT::f128, Custom); 1717 } 1718 1719 if (Subtarget->hasHardQuad()) { 1720 setOperationAction(ISD::FADD, MVT::f128, Legal); 1721 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1722 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1723 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1724 setOperationAction(ISD::FSQRT, MVT::f128, Legal); 1725 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1726 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1727 if (Subtarget->isV9()) { 1728 setOperationAction(ISD::FNEG, MVT::f128, Legal); 1729 setOperationAction(ISD::FABS, MVT::f128, Legal); 1730 } else { 1731 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1732 setOperationAction(ISD::FABS, MVT::f128, Custom); 1733 } 1734 1735 if (!Subtarget->is64Bit()) { 1736 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1737 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1738 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1739 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1740 } 1741 1742 } else { 1743 // Custom legalize f128 operations. 1744 1745 setOperationAction(ISD::FADD, MVT::f128, Custom); 1746 setOperationAction(ISD::FSUB, MVT::f128, Custom); 1747 setOperationAction(ISD::FMUL, MVT::f128, Custom); 1748 setOperationAction(ISD::FDIV, MVT::f128, Custom); 1749 setOperationAction(ISD::FSQRT, MVT::f128, Custom); 1750 setOperationAction(ISD::FNEG, MVT::f128, Custom); 1751 setOperationAction(ISD::FABS, MVT::f128, Custom); 1752 1753 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 1754 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 1755 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 1756 1757 // Setup Runtime library names. 1758 if (Subtarget->is64Bit() && !Subtarget->useSoftFloat()) { 1759 setLibcallName(RTLIB::ADD_F128, "_Qp_add"); 1760 setLibcallName(RTLIB::SUB_F128, "_Qp_sub"); 1761 setLibcallName(RTLIB::MUL_F128, "_Qp_mul"); 1762 setLibcallName(RTLIB::DIV_F128, "_Qp_div"); 1763 setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt"); 1764 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi"); 1765 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui"); 1766 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq"); 1767 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq"); 1768 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox"); 1769 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux"); 1770 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq"); 1771 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq"); 1772 setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq"); 1773 setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq"); 1774 setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos"); 1775 setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod"); 1776 } else if (!Subtarget->useSoftFloat()) { 1777 setLibcallName(RTLIB::ADD_F128, "_Q_add"); 1778 setLibcallName(RTLIB::SUB_F128, "_Q_sub"); 1779 setLibcallName(RTLIB::MUL_F128, "_Q_mul"); 1780 setLibcallName(RTLIB::DIV_F128, "_Q_div"); 1781 setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt"); 1782 setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi"); 1783 setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou"); 1784 setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq"); 1785 setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq"); 1786 setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll"); 1787 setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull"); 1788 setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq"); 1789 setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq"); 1790 setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq"); 1791 setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq"); 1792 setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos"); 1793 setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod"); 1794 } 1795 } 1796 1797 if (Subtarget->fixAllFDIVSQRT()) { 1798 // Promote FDIVS and FSQRTS to FDIVD and FSQRTD instructions instead as 1799 // the former instructions generate errata on LEON processors. 1800 setOperationAction(ISD::FDIV, MVT::f32, Promote); 1801 setOperationAction(ISD::FSQRT, MVT::f32, Promote); 1802 } 1803 1804 if (Subtarget->hasNoFMULS()) { 1805 setOperationAction(ISD::FMUL, MVT::f32, Promote); 1806 } 1807 1808 // Custom combine bitcast between f64 and v2i32 1809 if (!Subtarget->is64Bit()) 1810 setTargetDAGCombine(ISD::BITCAST); 1811 1812 if (Subtarget->hasLeonCycleCounter()) 1813 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 1814 1815 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 1816 1817 setMinFunctionAlignment(Align(4)); 1818 1819 computeRegisterProperties(Subtarget->getRegisterInfo()); 1820 } 1821 1822 bool SparcTargetLowering::useSoftFloat() const { 1823 return Subtarget->useSoftFloat(); 1824 } 1825 1826 const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const { 1827 switch ((SPISD::NodeType)Opcode) { 1828 case SPISD::FIRST_NUMBER: break; 1829 case SPISD::CMPICC: return "SPISD::CMPICC"; 1830 case SPISD::CMPFCC: return "SPISD::CMPFCC"; 1831 case SPISD::BRICC: return "SPISD::BRICC"; 1832 case SPISD::BRXCC: return "SPISD::BRXCC"; 1833 case SPISD::BRFCC: return "SPISD::BRFCC"; 1834 case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC"; 1835 case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC"; 1836 case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC"; 1837 case SPISD::Hi: return "SPISD::Hi"; 1838 case SPISD::Lo: return "SPISD::Lo"; 1839 case SPISD::FTOI: return "SPISD::FTOI"; 1840 case SPISD::ITOF: return "SPISD::ITOF"; 1841 case SPISD::FTOX: return "SPISD::FTOX"; 1842 case SPISD::XTOF: return "SPISD::XTOF"; 1843 case SPISD::CALL: return "SPISD::CALL"; 1844 case SPISD::RET_FLAG: return "SPISD::RET_FLAG"; 1845 case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG"; 1846 case SPISD::FLUSHW: return "SPISD::FLUSHW"; 1847 case SPISD::TLS_ADD: return "SPISD::TLS_ADD"; 1848 case SPISD::TLS_LD: return "SPISD::TLS_LD"; 1849 case SPISD::TLS_CALL: return "SPISD::TLS_CALL"; 1850 } 1851 return nullptr; 1852 } 1853 1854 EVT SparcTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, 1855 EVT VT) const { 1856 if (!VT.isVector()) 1857 return MVT::i32; 1858 return VT.changeVectorElementTypeToInteger(); 1859 } 1860 1861 /// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to 1862 /// be zero. Op is expected to be a target specific node. Used by DAG 1863 /// combiner. 1864 void SparcTargetLowering::computeKnownBitsForTargetNode 1865 (const SDValue Op, 1866 KnownBits &Known, 1867 const APInt &DemandedElts, 1868 const SelectionDAG &DAG, 1869 unsigned Depth) const { 1870 KnownBits Known2; 1871 Known.resetAll(); 1872 1873 switch (Op.getOpcode()) { 1874 default: break; 1875 case SPISD::SELECT_ICC: 1876 case SPISD::SELECT_XCC: 1877 case SPISD::SELECT_FCC: 1878 Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); 1879 Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); 1880 1881 // Only known if known in both the LHS and RHS. 1882 Known = KnownBits::commonBits(Known, Known2); 1883 break; 1884 } 1885 } 1886 1887 // Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so 1888 // set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition. 1889 static void LookThroughSetCC(SDValue &LHS, SDValue &RHS, 1890 ISD::CondCode CC, unsigned &SPCC) { 1891 if (isNullConstant(RHS) && 1892 CC == ISD::SETNE && 1893 (((LHS.getOpcode() == SPISD::SELECT_ICC || 1894 LHS.getOpcode() == SPISD::SELECT_XCC) && 1895 LHS.getOperand(3).getOpcode() == SPISD::CMPICC) || 1896 (LHS.getOpcode() == SPISD::SELECT_FCC && 1897 LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) && 1898 isOneConstant(LHS.getOperand(0)) && 1899 isNullConstant(LHS.getOperand(1))) { 1900 SDValue CMPCC = LHS.getOperand(3); 1901 SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue(); 1902 LHS = CMPCC.getOperand(0); 1903 RHS = CMPCC.getOperand(1); 1904 } 1905 } 1906 1907 // Convert to a target node and set target flags. 1908 SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF, 1909 SelectionDAG &DAG) const { 1910 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) 1911 return DAG.getTargetGlobalAddress(GA->getGlobal(), 1912 SDLoc(GA), 1913 GA->getValueType(0), 1914 GA->getOffset(), TF); 1915 1916 if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) 1917 return DAG.getTargetConstantPool(CP->getConstVal(), CP->getValueType(0), 1918 CP->getAlign(), CP->getOffset(), TF); 1919 1920 if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) 1921 return DAG.getTargetBlockAddress(BA->getBlockAddress(), 1922 Op.getValueType(), 1923 0, 1924 TF); 1925 1926 if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) 1927 return DAG.getTargetExternalSymbol(ES->getSymbol(), 1928 ES->getValueType(0), TF); 1929 1930 llvm_unreachable("Unhandled address SDNode"); 1931 } 1932 1933 // Split Op into high and low parts according to HiTF and LoTF. 1934 // Return an ADD node combining the parts. 1935 SDValue SparcTargetLowering::makeHiLoPair(SDValue Op, 1936 unsigned HiTF, unsigned LoTF, 1937 SelectionDAG &DAG) const { 1938 SDLoc DL(Op); 1939 EVT VT = Op.getValueType(); 1940 SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG)); 1941 SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG)); 1942 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 1943 } 1944 1945 // Build SDNodes for producing an address from a GlobalAddress, ConstantPool, 1946 // or ExternalSymbol SDNode. 1947 SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const { 1948 SDLoc DL(Op); 1949 EVT VT = getPointerTy(DAG.getDataLayout()); 1950 1951 // Handle PIC mode first. SPARC needs a got load for every variable! 1952 if (isPositionIndependent()) { 1953 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 1954 PICLevel::Level picLevel = M->getPICLevel(); 1955 SDValue Idx; 1956 1957 if (picLevel == PICLevel::SmallPIC) { 1958 // This is the pic13 code model, the GOT is known to be smaller than 8KiB. 1959 Idx = DAG.getNode(SPISD::Lo, DL, Op.getValueType(), 1960 withTargetFlags(Op, SparcMCExpr::VK_Sparc_GOT13, DAG)); 1961 } else { 1962 // This is the pic32 code model, the GOT is known to be smaller than 4GB. 1963 Idx = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22, 1964 SparcMCExpr::VK_Sparc_GOT10, DAG); 1965 } 1966 1967 SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT); 1968 SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, Idx); 1969 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 1970 // function has calls. 1971 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 1972 MFI.setHasCalls(true); 1973 return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr, 1974 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 1975 } 1976 1977 // This is one of the absolute code models. 1978 switch(getTargetMachine().getCodeModel()) { 1979 default: 1980 llvm_unreachable("Unsupported absolute code model"); 1981 case CodeModel::Small: 1982 // abs32. 1983 return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 1984 SparcMCExpr::VK_Sparc_LO, DAG); 1985 case CodeModel::Medium: { 1986 // abs44. 1987 SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44, 1988 SparcMCExpr::VK_Sparc_M44, DAG); 1989 H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, DL, MVT::i32)); 1990 SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG); 1991 L44 = DAG.getNode(SPISD::Lo, DL, VT, L44); 1992 return DAG.getNode(ISD::ADD, DL, VT, H44, L44); 1993 } 1994 case CodeModel::Large: { 1995 // abs64. 1996 SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH, 1997 SparcMCExpr::VK_Sparc_HM, DAG); 1998 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, DL, MVT::i32)); 1999 SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI, 2000 SparcMCExpr::VK_Sparc_LO, DAG); 2001 return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo); 2002 } 2003 } 2004 } 2005 2006 SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op, 2007 SelectionDAG &DAG) const { 2008 return makeAddress(Op, DAG); 2009 } 2010 2011 SDValue SparcTargetLowering::LowerConstantPool(SDValue Op, 2012 SelectionDAG &DAG) const { 2013 return makeAddress(Op, DAG); 2014 } 2015 2016 SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op, 2017 SelectionDAG &DAG) const { 2018 return makeAddress(Op, DAG); 2019 } 2020 2021 SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2022 SelectionDAG &DAG) const { 2023 2024 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2025 if (DAG.getTarget().useEmulatedTLS()) 2026 return LowerToTLSEmulatedModel(GA, DAG); 2027 2028 SDLoc DL(GA); 2029 const GlobalValue *GV = GA->getGlobal(); 2030 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2031 2032 TLSModel::Model model = getTargetMachine().getTLSModel(GV); 2033 2034 if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { 2035 unsigned HiTF = ((model == TLSModel::GeneralDynamic) 2036 ? SparcMCExpr::VK_Sparc_TLS_GD_HI22 2037 : SparcMCExpr::VK_Sparc_TLS_LDM_HI22); 2038 unsigned LoTF = ((model == TLSModel::GeneralDynamic) 2039 ? SparcMCExpr::VK_Sparc_TLS_GD_LO10 2040 : SparcMCExpr::VK_Sparc_TLS_LDM_LO10); 2041 unsigned addTF = ((model == TLSModel::GeneralDynamic) 2042 ? SparcMCExpr::VK_Sparc_TLS_GD_ADD 2043 : SparcMCExpr::VK_Sparc_TLS_LDM_ADD); 2044 unsigned callTF = ((model == TLSModel::GeneralDynamic) 2045 ? SparcMCExpr::VK_Sparc_TLS_GD_CALL 2046 : SparcMCExpr::VK_Sparc_TLS_LDM_CALL); 2047 2048 SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG); 2049 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2050 SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo, 2051 withTargetFlags(Op, addTF, DAG)); 2052 2053 SDValue Chain = DAG.getEntryNode(); 2054 SDValue InFlag; 2055 2056 Chain = DAG.getCALLSEQ_START(Chain, 1, 0, DL); 2057 Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag); 2058 InFlag = Chain.getValue(1); 2059 SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT); 2060 SDValue Symbol = withTargetFlags(Op, callTF, DAG); 2061 2062 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2063 const uint32_t *Mask = Subtarget->getRegisterInfo()->getCallPreservedMask( 2064 DAG.getMachineFunction(), CallingConv::C); 2065 assert(Mask && "Missing call preserved mask for calling convention"); 2066 SDValue Ops[] = {Chain, 2067 Callee, 2068 Symbol, 2069 DAG.getRegister(SP::O0, PtrVT), 2070 DAG.getRegisterMask(Mask), 2071 InFlag}; 2072 Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops); 2073 InFlag = Chain.getValue(1); 2074 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, DL, true), 2075 DAG.getIntPtrConstant(0, DL, true), InFlag, DL); 2076 InFlag = Chain.getValue(1); 2077 SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag); 2078 2079 if (model != TLSModel::LocalDynamic) 2080 return Ret; 2081 2082 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2083 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG)); 2084 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2085 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG)); 2086 HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2087 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo, 2088 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG)); 2089 } 2090 2091 if (model == TLSModel::InitialExec) { 2092 unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX 2093 : SparcMCExpr::VK_Sparc_TLS_IE_LD); 2094 2095 SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT); 2096 2097 // GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this 2098 // function has calls. 2099 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2100 MFI.setHasCalls(true); 2101 2102 SDValue TGA = makeHiLoPair(Op, 2103 SparcMCExpr::VK_Sparc_TLS_IE_HI22, 2104 SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG); 2105 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA); 2106 SDValue Offset = DAG.getNode(SPISD::TLS_LD, 2107 DL, PtrVT, Ptr, 2108 withTargetFlags(Op, ldTF, DAG)); 2109 return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, 2110 DAG.getRegister(SP::G7, PtrVT), Offset, 2111 withTargetFlags(Op, 2112 SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG)); 2113 } 2114 2115 assert(model == TLSModel::LocalExec); 2116 SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT, 2117 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG)); 2118 SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT, 2119 withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG)); 2120 SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo); 2121 2122 return DAG.getNode(ISD::ADD, DL, PtrVT, 2123 DAG.getRegister(SP::G7, PtrVT), Offset); 2124 } 2125 2126 SDValue SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, 2127 ArgListTy &Args, SDValue Arg, 2128 const SDLoc &DL, 2129 SelectionDAG &DAG) const { 2130 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2131 EVT ArgVT = Arg.getValueType(); 2132 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2133 2134 ArgListEntry Entry; 2135 Entry.Node = Arg; 2136 Entry.Ty = ArgTy; 2137 2138 if (ArgTy->isFP128Ty()) { 2139 // Create a stack object and pass the pointer to the library function. 2140 int FI = MFI.CreateStackObject(16, Align(8), false); 2141 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2142 Chain = DAG.getStore(Chain, DL, Entry.Node, FIPtr, MachinePointerInfo(), 2143 Align(8)); 2144 2145 Entry.Node = FIPtr; 2146 Entry.Ty = PointerType::getUnqual(ArgTy); 2147 } 2148 Args.push_back(Entry); 2149 return Chain; 2150 } 2151 2152 SDValue 2153 SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG, 2154 const char *LibFuncName, 2155 unsigned numArgs) const { 2156 2157 ArgListTy Args; 2158 2159 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2160 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2161 2162 SDValue Callee = DAG.getExternalSymbol(LibFuncName, PtrVT); 2163 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); 2164 Type *RetTyABI = RetTy; 2165 SDValue Chain = DAG.getEntryNode(); 2166 SDValue RetPtr; 2167 2168 if (RetTy->isFP128Ty()) { 2169 // Create a Stack Object to receive the return value of type f128. 2170 ArgListEntry Entry; 2171 int RetFI = MFI.CreateStackObject(16, Align(8), false); 2172 RetPtr = DAG.getFrameIndex(RetFI, PtrVT); 2173 Entry.Node = RetPtr; 2174 Entry.Ty = PointerType::getUnqual(RetTy); 2175 if (!Subtarget->is64Bit()) 2176 Entry.IsSRet = true; 2177 Entry.IsReturned = false; 2178 Args.push_back(Entry); 2179 RetTyABI = Type::getVoidTy(*DAG.getContext()); 2180 } 2181 2182 assert(Op->getNumOperands() >= numArgs && "Not enough operands!"); 2183 for (unsigned i = 0, e = numArgs; i != e; ++i) { 2184 Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG); 2185 } 2186 TargetLowering::CallLoweringInfo CLI(DAG); 2187 CLI.setDebugLoc(SDLoc(Op)).setChain(Chain) 2188 .setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args)); 2189 2190 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2191 2192 // chain is in second result. 2193 if (RetTyABI == RetTy) 2194 return CallInfo.first; 2195 2196 assert (RetTy->isFP128Ty() && "Unexpected return type!"); 2197 2198 Chain = CallInfo.second; 2199 2200 // Load RetPtr to get the return value. 2201 return DAG.getLoad(Op.getValueType(), SDLoc(Op), Chain, RetPtr, 2202 MachinePointerInfo(), Align(8)); 2203 } 2204 2205 SDValue SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS, 2206 unsigned &SPCC, const SDLoc &DL, 2207 SelectionDAG &DAG) const { 2208 2209 const char *LibCall = nullptr; 2210 bool is64Bit = Subtarget->is64Bit(); 2211 switch(SPCC) { 2212 default: llvm_unreachable("Unhandled conditional code!"); 2213 case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break; 2214 case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break; 2215 case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break; 2216 case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break; 2217 case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break; 2218 case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break; 2219 case SPCC::FCC_UL : 2220 case SPCC::FCC_ULE: 2221 case SPCC::FCC_UG : 2222 case SPCC::FCC_UGE: 2223 case SPCC::FCC_U : 2224 case SPCC::FCC_O : 2225 case SPCC::FCC_LG : 2226 case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break; 2227 } 2228 2229 auto PtrVT = getPointerTy(DAG.getDataLayout()); 2230 SDValue Callee = DAG.getExternalSymbol(LibCall, PtrVT); 2231 Type *RetTy = Type::getInt32Ty(*DAG.getContext()); 2232 ArgListTy Args; 2233 SDValue Chain = DAG.getEntryNode(); 2234 Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG); 2235 Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG); 2236 2237 TargetLowering::CallLoweringInfo CLI(DAG); 2238 CLI.setDebugLoc(DL).setChain(Chain) 2239 .setCallee(CallingConv::C, RetTy, Callee, std::move(Args)); 2240 2241 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 2242 2243 // result is in first, and chain is in second result. 2244 SDValue Result = CallInfo.first; 2245 2246 switch(SPCC) { 2247 default: { 2248 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2249 SPCC = SPCC::ICC_NE; 2250 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2251 } 2252 case SPCC::FCC_UL : { 2253 SDValue Mask = DAG.getConstant(1, DL, Result.getValueType()); 2254 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2255 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2256 SPCC = SPCC::ICC_NE; 2257 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2258 } 2259 case SPCC::FCC_ULE: { 2260 SDValue RHS = DAG.getConstant(2, DL, Result.getValueType()); 2261 SPCC = SPCC::ICC_NE; 2262 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2263 } 2264 case SPCC::FCC_UG : { 2265 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2266 SPCC = SPCC::ICC_G; 2267 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2268 } 2269 case SPCC::FCC_UGE: { 2270 SDValue RHS = DAG.getConstant(1, DL, Result.getValueType()); 2271 SPCC = SPCC::ICC_NE; 2272 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2273 } 2274 2275 case SPCC::FCC_U : { 2276 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2277 SPCC = SPCC::ICC_E; 2278 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2279 } 2280 case SPCC::FCC_O : { 2281 SDValue RHS = DAG.getConstant(3, DL, Result.getValueType()); 2282 SPCC = SPCC::ICC_NE; 2283 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2284 } 2285 case SPCC::FCC_LG : { 2286 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2287 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2288 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2289 SPCC = SPCC::ICC_NE; 2290 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2291 } 2292 case SPCC::FCC_UE : { 2293 SDValue Mask = DAG.getConstant(3, DL, Result.getValueType()); 2294 Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask); 2295 SDValue RHS = DAG.getConstant(0, DL, Result.getValueType()); 2296 SPCC = SPCC::ICC_E; 2297 return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS); 2298 } 2299 } 2300 } 2301 2302 static SDValue 2303 LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG, 2304 const SparcTargetLowering &TLI) { 2305 2306 if (Op.getOperand(0).getValueType() == MVT::f64) 2307 return TLI.LowerF128Op(Op, DAG, 2308 TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1); 2309 2310 if (Op.getOperand(0).getValueType() == MVT::f32) 2311 return TLI.LowerF128Op(Op, DAG, 2312 TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1); 2313 2314 llvm_unreachable("fpextend with non-float operand!"); 2315 return SDValue(); 2316 } 2317 2318 static SDValue 2319 LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG, 2320 const SparcTargetLowering &TLI) { 2321 // FP_ROUND on f64 and f32 are legal. 2322 if (Op.getOperand(0).getValueType() != MVT::f128) 2323 return Op; 2324 2325 if (Op.getValueType() == MVT::f64) 2326 return TLI.LowerF128Op(Op, DAG, 2327 TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1); 2328 if (Op.getValueType() == MVT::f32) 2329 return TLI.LowerF128Op(Op, DAG, 2330 TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1); 2331 2332 llvm_unreachable("fpround to non-float!"); 2333 return SDValue(); 2334 } 2335 2336 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG, 2337 const SparcTargetLowering &TLI, 2338 bool hasHardQuad) { 2339 SDLoc dl(Op); 2340 EVT VT = Op.getValueType(); 2341 assert(VT == MVT::i32 || VT == MVT::i64); 2342 2343 // Expand f128 operations to fp128 abi calls. 2344 if (Op.getOperand(0).getValueType() == MVT::f128 2345 && (!hasHardQuad || !TLI.isTypeLegal(VT))) { 2346 const char *libName = TLI.getLibcallName(VT == MVT::i32 2347 ? RTLIB::FPTOSINT_F128_I32 2348 : RTLIB::FPTOSINT_F128_I64); 2349 return TLI.LowerF128Op(Op, DAG, libName, 1); 2350 } 2351 2352 // Expand if the resulting type is illegal. 2353 if (!TLI.isTypeLegal(VT)) 2354 return SDValue(); 2355 2356 // Otherwise, Convert the fp value to integer in an FP register. 2357 if (VT == MVT::i32) 2358 Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0)); 2359 else 2360 Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0)); 2361 2362 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 2363 } 2364 2365 static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2366 const SparcTargetLowering &TLI, 2367 bool hasHardQuad) { 2368 SDLoc dl(Op); 2369 EVT OpVT = Op.getOperand(0).getValueType(); 2370 assert(OpVT == MVT::i32 || (OpVT == MVT::i64)); 2371 2372 EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64; 2373 2374 // Expand f128 operations to fp128 ABI calls. 2375 if (Op.getValueType() == MVT::f128 2376 && (!hasHardQuad || !TLI.isTypeLegal(OpVT))) { 2377 const char *libName = TLI.getLibcallName(OpVT == MVT::i32 2378 ? RTLIB::SINTTOFP_I32_F128 2379 : RTLIB::SINTTOFP_I64_F128); 2380 return TLI.LowerF128Op(Op, DAG, libName, 1); 2381 } 2382 2383 // Expand if the operand type is illegal. 2384 if (!TLI.isTypeLegal(OpVT)) 2385 return SDValue(); 2386 2387 // Otherwise, Convert the int value to FP in an FP register. 2388 SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0)); 2389 unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF; 2390 return DAG.getNode(opcode, dl, Op.getValueType(), Tmp); 2391 } 2392 2393 static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG, 2394 const SparcTargetLowering &TLI, 2395 bool hasHardQuad) { 2396 SDLoc dl(Op); 2397 EVT VT = Op.getValueType(); 2398 2399 // Expand if it does not involve f128 or the target has support for 2400 // quad floating point instructions and the resulting type is legal. 2401 if (Op.getOperand(0).getValueType() != MVT::f128 || 2402 (hasHardQuad && TLI.isTypeLegal(VT))) 2403 return SDValue(); 2404 2405 assert(VT == MVT::i32 || VT == MVT::i64); 2406 2407 return TLI.LowerF128Op(Op, DAG, 2408 TLI.getLibcallName(VT == MVT::i32 2409 ? RTLIB::FPTOUINT_F128_I32 2410 : RTLIB::FPTOUINT_F128_I64), 2411 1); 2412 } 2413 2414 static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG, 2415 const SparcTargetLowering &TLI, 2416 bool hasHardQuad) { 2417 SDLoc dl(Op); 2418 EVT OpVT = Op.getOperand(0).getValueType(); 2419 assert(OpVT == MVT::i32 || OpVT == MVT::i64); 2420 2421 // Expand if it does not involve f128 or the target has support for 2422 // quad floating point instructions and the operand type is legal. 2423 if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT))) 2424 return SDValue(); 2425 2426 return TLI.LowerF128Op(Op, DAG, 2427 TLI.getLibcallName(OpVT == MVT::i32 2428 ? RTLIB::UINTTOFP_I32_F128 2429 : RTLIB::UINTTOFP_I64_F128), 2430 1); 2431 } 2432 2433 static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG, 2434 const SparcTargetLowering &TLI, 2435 bool hasHardQuad) { 2436 SDValue Chain = Op.getOperand(0); 2437 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2438 SDValue LHS = Op.getOperand(2); 2439 SDValue RHS = Op.getOperand(3); 2440 SDValue Dest = Op.getOperand(4); 2441 SDLoc dl(Op); 2442 unsigned Opc, SPCC = ~0U; 2443 2444 // If this is a br_cc of a "setcc", and if the setcc got lowered into 2445 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2446 LookThroughSetCC(LHS, RHS, CC, SPCC); 2447 2448 // Get the condition flag. 2449 SDValue CompareFlag; 2450 if (LHS.getValueType().isInteger()) { 2451 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2452 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2453 // 32-bit compares use the icc flags, 64-bit uses the xcc flags. 2454 Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC; 2455 } else { 2456 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2457 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2458 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2459 Opc = SPISD::BRICC; 2460 } else { 2461 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2462 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2463 Opc = SPISD::BRFCC; 2464 } 2465 } 2466 return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest, 2467 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2468 } 2469 2470 static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG, 2471 const SparcTargetLowering &TLI, 2472 bool hasHardQuad) { 2473 SDValue LHS = Op.getOperand(0); 2474 SDValue RHS = Op.getOperand(1); 2475 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2476 SDValue TrueVal = Op.getOperand(2); 2477 SDValue FalseVal = Op.getOperand(3); 2478 SDLoc dl(Op); 2479 unsigned Opc, SPCC = ~0U; 2480 2481 // If this is a select_cc of a "setcc", and if the setcc got lowered into 2482 // an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values. 2483 LookThroughSetCC(LHS, RHS, CC, SPCC); 2484 2485 SDValue CompareFlag; 2486 if (LHS.getValueType().isInteger()) { 2487 CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS); 2488 Opc = LHS.getValueType() == MVT::i32 ? 2489 SPISD::SELECT_ICC : SPISD::SELECT_XCC; 2490 if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC); 2491 } else { 2492 if (!hasHardQuad && LHS.getValueType() == MVT::f128) { 2493 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2494 CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG); 2495 Opc = SPISD::SELECT_ICC; 2496 } else { 2497 CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS); 2498 Opc = SPISD::SELECT_FCC; 2499 if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC); 2500 } 2501 } 2502 return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal, 2503 DAG.getConstant(SPCC, dl, MVT::i32), CompareFlag); 2504 } 2505 2506 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG, 2507 const SparcTargetLowering &TLI) { 2508 MachineFunction &MF = DAG.getMachineFunction(); 2509 SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>(); 2510 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2511 2512 // Need frame address to find the address of VarArgsFrameIndex. 2513 MF.getFrameInfo().setFrameAddressIsTaken(true); 2514 2515 // vastart just stores the address of the VarArgsFrameIndex slot into the 2516 // memory location argument. 2517 SDLoc DL(Op); 2518 SDValue Offset = 2519 DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getRegister(SP::I6, PtrVT), 2520 DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset(), DL)); 2521 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2522 return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1), 2523 MachinePointerInfo(SV)); 2524 } 2525 2526 static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) { 2527 SDNode *Node = Op.getNode(); 2528 EVT VT = Node->getValueType(0); 2529 SDValue InChain = Node->getOperand(0); 2530 SDValue VAListPtr = Node->getOperand(1); 2531 EVT PtrVT = VAListPtr.getValueType(); 2532 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2533 SDLoc DL(Node); 2534 SDValue VAList = 2535 DAG.getLoad(PtrVT, DL, InChain, VAListPtr, MachinePointerInfo(SV)); 2536 // Increment the pointer, VAList, to the next vaarg. 2537 SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, 2538 DAG.getIntPtrConstant(VT.getSizeInBits()/8, 2539 DL)); 2540 // Store the incremented VAList to the legalized pointer. 2541 InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr, VAListPtr, 2542 MachinePointerInfo(SV)); 2543 // Load the actual argument out of the pointer VAList. 2544 // We can't count on greater alignment than the word size. 2545 return DAG.getLoad( 2546 VT, DL, InChain, VAList, MachinePointerInfo(), 2547 std::min(PtrVT.getFixedSizeInBits(), VT.getFixedSizeInBits()) / 8); 2548 } 2549 2550 static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG, 2551 const SparcSubtarget *Subtarget) { 2552 SDValue Chain = Op.getOperand(0); // Legalize the chain. 2553 SDValue Size = Op.getOperand(1); // Legalize the size. 2554 MaybeAlign Alignment = 2555 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); 2556 Align StackAlign = Subtarget->getFrameLowering()->getStackAlign(); 2557 EVT VT = Size->getValueType(0); 2558 SDLoc dl(Op); 2559 2560 // TODO: implement over-aligned alloca. (Note: also implies 2561 // supporting support for overaligned function frames + dynamic 2562 // allocations, at all, which currently isn't supported) 2563 if (Alignment && *Alignment > StackAlign) { 2564 const MachineFunction &MF = DAG.getMachineFunction(); 2565 report_fatal_error("Function \"" + Twine(MF.getName()) + "\": " 2566 "over-aligned dynamic alloca not supported."); 2567 } 2568 2569 // The resultant pointer needs to be above the register spill area 2570 // at the bottom of the stack. 2571 unsigned regSpillArea; 2572 if (Subtarget->is64Bit()) { 2573 regSpillArea = 128; 2574 } else { 2575 // On Sparc32, the size of the spill area is 92. Unfortunately, 2576 // that's only 4-byte aligned, not 8-byte aligned (the stack 2577 // pointer is 8-byte aligned). So, if the user asked for an 8-byte 2578 // aligned dynamic allocation, we actually need to add 96 to the 2579 // bottom of the stack, instead of 92, to ensure 8-byte alignment. 2580 2581 // That also means adding 4 to the size of the allocation -- 2582 // before applying the 8-byte rounding. Unfortunately, we the 2583 // value we get here has already had rounding applied. So, we need 2584 // to add 8, instead, wasting a bit more memory. 2585 2586 // Further, this only actually needs to be done if the required 2587 // alignment is > 4, but, we've lost that info by this point, too, 2588 // so we always apply it. 2589 2590 // (An alternative approach would be to always reserve 96 bytes 2591 // instead of the required 92, but then we'd waste 4 extra bytes 2592 // in every frame, not just those with dynamic stack allocations) 2593 2594 // TODO: modify code in SelectionDAGBuilder to make this less sad. 2595 2596 Size = DAG.getNode(ISD::ADD, dl, VT, Size, 2597 DAG.getConstant(8, dl, VT)); 2598 regSpillArea = 96; 2599 } 2600 2601 unsigned SPReg = SP::O6; 2602 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 2603 SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 2604 Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain 2605 2606 regSpillArea += Subtarget->getStackPointerBias(); 2607 2608 SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP, 2609 DAG.getConstant(regSpillArea, dl, VT)); 2610 SDValue Ops[2] = { NewVal, Chain }; 2611 return DAG.getMergeValues(Ops, dl); 2612 } 2613 2614 2615 static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) { 2616 SDLoc dl(Op); 2617 SDValue Chain = DAG.getNode(SPISD::FLUSHW, 2618 dl, MVT::Other, DAG.getEntryNode()); 2619 return Chain; 2620 } 2621 2622 static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG, 2623 const SparcSubtarget *Subtarget, 2624 bool AlwaysFlush = false) { 2625 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 2626 MFI.setFrameAddressIsTaken(true); 2627 2628 EVT VT = Op.getValueType(); 2629 SDLoc dl(Op); 2630 unsigned FrameReg = SP::I6; 2631 unsigned stackBias = Subtarget->getStackPointerBias(); 2632 2633 SDValue FrameAddr; 2634 SDValue Chain; 2635 2636 // flush first to make sure the windowed registers' values are in stack 2637 Chain = (depth || AlwaysFlush) ? getFLUSHW(Op, DAG) : DAG.getEntryNode(); 2638 2639 FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT); 2640 2641 unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56; 2642 2643 while (depth--) { 2644 SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2645 DAG.getIntPtrConstant(Offset, dl)); 2646 FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo()); 2647 } 2648 if (Subtarget->is64Bit()) 2649 FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr, 2650 DAG.getIntPtrConstant(stackBias, dl)); 2651 return FrameAddr; 2652 } 2653 2654 2655 static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG, 2656 const SparcSubtarget *Subtarget) { 2657 2658 uint64_t depth = Op.getConstantOperandVal(0); 2659 2660 return getFRAMEADDR(depth, Op, DAG, Subtarget); 2661 2662 } 2663 2664 static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG, 2665 const SparcTargetLowering &TLI, 2666 const SparcSubtarget *Subtarget) { 2667 MachineFunction &MF = DAG.getMachineFunction(); 2668 MachineFrameInfo &MFI = MF.getFrameInfo(); 2669 MFI.setReturnAddressIsTaken(true); 2670 2671 if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG)) 2672 return SDValue(); 2673 2674 EVT VT = Op.getValueType(); 2675 SDLoc dl(Op); 2676 uint64_t depth = Op.getConstantOperandVal(0); 2677 2678 SDValue RetAddr; 2679 if (depth == 0) { 2680 auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 2681 unsigned RetReg = MF.addLiveIn(SP::I7, TLI.getRegClassFor(PtrVT)); 2682 RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT); 2683 return RetAddr; 2684 } 2685 2686 // Need frame address to find return address of the caller. 2687 SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget, true); 2688 2689 unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60; 2690 SDValue Ptr = DAG.getNode(ISD::ADD, 2691 dl, VT, 2692 FrameAddr, 2693 DAG.getIntPtrConstant(Offset, dl)); 2694 RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 2695 2696 return RetAddr; 2697 } 2698 2699 static SDValue LowerF64Op(SDValue SrcReg64, const SDLoc &dl, SelectionDAG &DAG, 2700 unsigned opcode) { 2701 assert(SrcReg64.getValueType() == MVT::f64 && "LowerF64Op called on non-double!"); 2702 assert(opcode == ISD::FNEG || opcode == ISD::FABS); 2703 2704 // Lower fneg/fabs on f64 to fneg/fabs on f32. 2705 // fneg f64 => fneg f32:sub_even, fmov f32:sub_odd. 2706 // fabs f64 => fabs f32:sub_even, fmov f32:sub_odd. 2707 2708 // Note: in little-endian, the floating-point value is stored in the 2709 // registers are in the opposite order, so the subreg with the sign 2710 // bit is the highest-numbered (odd), rather than the 2711 // lowest-numbered (even). 2712 2713 SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32, 2714 SrcReg64); 2715 SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32, 2716 SrcReg64); 2717 2718 if (DAG.getDataLayout().isLittleEndian()) 2719 Lo32 = DAG.getNode(opcode, dl, MVT::f32, Lo32); 2720 else 2721 Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32); 2722 2723 SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2724 dl, MVT::f64), 0); 2725 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64, 2726 DstReg64, Hi32); 2727 DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64, 2728 DstReg64, Lo32); 2729 return DstReg64; 2730 } 2731 2732 // Lower a f128 load into two f64 loads. 2733 static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG) 2734 { 2735 SDLoc dl(Op); 2736 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2737 assert(LdNode->getOffset().isUndef() && "Unexpected node type"); 2738 2739 Align Alignment = commonAlignment(LdNode->getOriginalAlign(), 8); 2740 2741 SDValue Hi64 = 2742 DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LdNode->getBasePtr(), 2743 LdNode->getPointerInfo(), Alignment); 2744 EVT addrVT = LdNode->getBasePtr().getValueType(); 2745 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2746 LdNode->getBasePtr(), 2747 DAG.getConstant(8, dl, addrVT)); 2748 SDValue Lo64 = DAG.getLoad(MVT::f64, dl, LdNode->getChain(), LoPtr, 2749 LdNode->getPointerInfo().getWithOffset(8), 2750 Alignment); 2751 2752 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2753 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2754 2755 SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2756 dl, MVT::f128); 2757 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2758 MVT::f128, 2759 SDValue(InFP128, 0), 2760 Hi64, 2761 SubRegEven); 2762 InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, 2763 MVT::f128, 2764 SDValue(InFP128, 0), 2765 Lo64, 2766 SubRegOdd); 2767 SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1), 2768 SDValue(Lo64.getNode(), 1) }; 2769 SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2770 SDValue Ops[2] = {SDValue(InFP128,0), OutChain}; 2771 return DAG.getMergeValues(Ops, dl); 2772 } 2773 2774 static SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) 2775 { 2776 LoadSDNode *LdNode = cast<LoadSDNode>(Op.getNode()); 2777 2778 EVT MemVT = LdNode->getMemoryVT(); 2779 if (MemVT == MVT::f128) 2780 return LowerF128Load(Op, DAG); 2781 2782 return Op; 2783 } 2784 2785 // Lower a f128 store into two f64 stores. 2786 static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) { 2787 SDLoc dl(Op); 2788 StoreSDNode *StNode = cast<StoreSDNode>(Op.getNode()); 2789 assert(StNode->getOffset().isUndef() && "Unexpected node type"); 2790 2791 SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, dl, MVT::i32); 2792 SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, dl, MVT::i32); 2793 2794 SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2795 dl, 2796 MVT::f64, 2797 StNode->getValue(), 2798 SubRegEven); 2799 SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, 2800 dl, 2801 MVT::f64, 2802 StNode->getValue(), 2803 SubRegOdd); 2804 2805 Align Alignment = commonAlignment(StNode->getOriginalAlign(), 8); 2806 2807 SDValue OutChains[2]; 2808 OutChains[0] = 2809 DAG.getStore(StNode->getChain(), dl, SDValue(Hi64, 0), 2810 StNode->getBasePtr(), StNode->getPointerInfo(), 2811 Alignment); 2812 EVT addrVT = StNode->getBasePtr().getValueType(); 2813 SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT, 2814 StNode->getBasePtr(), 2815 DAG.getConstant(8, dl, addrVT)); 2816 OutChains[1] = DAG.getStore(StNode->getChain(), dl, SDValue(Lo64, 0), LoPtr, 2817 StNode->getPointerInfo().getWithOffset(8), 2818 Alignment); 2819 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 2820 } 2821 2822 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) 2823 { 2824 SDLoc dl(Op); 2825 StoreSDNode *St = cast<StoreSDNode>(Op.getNode()); 2826 2827 EVT MemVT = St->getMemoryVT(); 2828 if (MemVT == MVT::f128) 2829 return LowerF128Store(Op, DAG); 2830 2831 if (MemVT == MVT::i64) { 2832 // Custom handling for i64 stores: turn it into a bitcast and a 2833 // v2i32 store. 2834 SDValue Val = DAG.getNode(ISD::BITCAST, dl, MVT::v2i32, St->getValue()); 2835 SDValue Chain = DAG.getStore( 2836 St->getChain(), dl, Val, St->getBasePtr(), St->getPointerInfo(), 2837 St->getOriginalAlign(), St->getMemOperand()->getFlags(), 2838 St->getAAInfo()); 2839 return Chain; 2840 } 2841 2842 return SDValue(); 2843 } 2844 2845 static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) { 2846 assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS) 2847 && "invalid opcode"); 2848 2849 SDLoc dl(Op); 2850 2851 if (Op.getValueType() == MVT::f64) 2852 return LowerF64Op(Op.getOperand(0), dl, DAG, Op.getOpcode()); 2853 if (Op.getValueType() != MVT::f128) 2854 return Op; 2855 2856 // Lower fabs/fneg on f128 to fabs/fneg on f64 2857 // fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64 2858 // (As with LowerF64Op, on little-endian, we need to negate the odd 2859 // subreg) 2860 2861 SDValue SrcReg128 = Op.getOperand(0); 2862 SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64, 2863 SrcReg128); 2864 SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64, 2865 SrcReg128); 2866 2867 if (DAG.getDataLayout().isLittleEndian()) { 2868 if (isV9) 2869 Lo64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Lo64); 2870 else 2871 Lo64 = LowerF64Op(Lo64, dl, DAG, Op.getOpcode()); 2872 } else { 2873 if (isV9) 2874 Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64); 2875 else 2876 Hi64 = LowerF64Op(Hi64, dl, DAG, Op.getOpcode()); 2877 } 2878 2879 SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, 2880 dl, MVT::f128), 0); 2881 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128, 2882 DstReg128, Hi64); 2883 DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128, 2884 DstReg128, Lo64); 2885 return DstReg128; 2886 } 2887 2888 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 2889 2890 if (Op.getValueType() != MVT::i64) 2891 return Op; 2892 2893 SDLoc dl(Op); 2894 SDValue Src1 = Op.getOperand(0); 2895 SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1); 2896 SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1, 2897 DAG.getConstant(32, dl, MVT::i64)); 2898 Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi); 2899 2900 SDValue Src2 = Op.getOperand(1); 2901 SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2); 2902 SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2, 2903 DAG.getConstant(32, dl, MVT::i64)); 2904 Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi); 2905 2906 2907 bool hasChain = false; 2908 unsigned hiOpc = Op.getOpcode(); 2909 switch (Op.getOpcode()) { 2910 default: llvm_unreachable("Invalid opcode"); 2911 case ISD::ADDC: hiOpc = ISD::ADDE; break; 2912 case ISD::ADDE: hasChain = true; break; 2913 case ISD::SUBC: hiOpc = ISD::SUBE; break; 2914 case ISD::SUBE: hasChain = true; break; 2915 } 2916 SDValue Lo; 2917 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue); 2918 if (hasChain) { 2919 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo, 2920 Op.getOperand(2)); 2921 } else { 2922 Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo); 2923 } 2924 SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1)); 2925 SDValue Carry = Hi.getValue(1); 2926 2927 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo); 2928 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi); 2929 Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi, 2930 DAG.getConstant(32, dl, MVT::i64)); 2931 2932 SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo); 2933 SDValue Ops[2] = { Dst, Carry }; 2934 return DAG.getMergeValues(Ops, dl); 2935 } 2936 2937 // Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode() 2938 // in LegalizeDAG.cpp except the order of arguments to the library function. 2939 static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG, 2940 const SparcTargetLowering &TLI) 2941 { 2942 unsigned opcode = Op.getOpcode(); 2943 assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode."); 2944 2945 bool isSigned = (opcode == ISD::SMULO); 2946 EVT VT = MVT::i64; 2947 EVT WideVT = MVT::i128; 2948 SDLoc dl(Op); 2949 SDValue LHS = Op.getOperand(0); 2950 2951 if (LHS.getValueType() != VT) 2952 return Op; 2953 2954 SDValue ShiftAmt = DAG.getConstant(63, dl, VT); 2955 2956 SDValue RHS = Op.getOperand(1); 2957 SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt); 2958 SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt); 2959 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 2960 2961 TargetLowering::MakeLibCallOptions CallOptions; 2962 CallOptions.setSExt(isSigned); 2963 SDValue MulResult = TLI.makeLibCall(DAG, 2964 RTLIB::MUL_I128, WideVT, 2965 Args, CallOptions, dl).first; 2966 SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2967 MulResult, DAG.getIntPtrConstant(0, dl)); 2968 SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, 2969 MulResult, DAG.getIntPtrConstant(1, dl)); 2970 if (isSigned) { 2971 SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 2972 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE); 2973 } else { 2974 TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, dl, VT), 2975 ISD::SETNE); 2976 } 2977 // MulResult is a node with an illegal type. Because such things are not 2978 // generally permitted during this phase of legalization, ensure that 2979 // nothing is left using the node. The above EXTRACT_ELEMENT nodes should have 2980 // been folded. 2981 assert(MulResult->use_empty() && "Illegally typed node still in use!"); 2982 2983 SDValue Ops[2] = { BottomHalf, TopHalf } ; 2984 return DAG.getMergeValues(Ops, dl); 2985 } 2986 2987 static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) { 2988 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering())) 2989 // Expand with a fence. 2990 return SDValue(); 2991 2992 // Monotonic load/stores are legal. 2993 return Op; 2994 } 2995 2996 SDValue SparcTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 2997 SelectionDAG &DAG) const { 2998 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2999 SDLoc dl(Op); 3000 switch (IntNo) { 3001 default: return SDValue(); // Don't custom lower most intrinsics. 3002 case Intrinsic::thread_pointer: { 3003 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3004 return DAG.getRegister(SP::G7, PtrVT); 3005 } 3006 } 3007 } 3008 3009 SDValue SparcTargetLowering:: 3010 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 3011 3012 bool hasHardQuad = Subtarget->hasHardQuad(); 3013 bool isV9 = Subtarget->isV9(); 3014 3015 switch (Op.getOpcode()) { 3016 default: llvm_unreachable("Should not custom lower this!"); 3017 3018 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this, 3019 Subtarget); 3020 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG, 3021 Subtarget); 3022 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 3023 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 3024 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 3025 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 3026 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this, 3027 hasHardQuad); 3028 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this, 3029 hasHardQuad); 3030 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this, 3031 hasHardQuad); 3032 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this, 3033 hasHardQuad); 3034 case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this, 3035 hasHardQuad); 3036 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this, 3037 hasHardQuad); 3038 case ISD::VASTART: return LowerVASTART(Op, DAG, *this); 3039 case ISD::VAARG: return LowerVAARG(Op, DAG); 3040 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, 3041 Subtarget); 3042 3043 case ISD::LOAD: return LowerLOAD(Op, DAG); 3044 case ISD::STORE: return LowerSTORE(Op, DAG); 3045 case ISD::FADD: return LowerF128Op(Op, DAG, 3046 getLibcallName(RTLIB::ADD_F128), 2); 3047 case ISD::FSUB: return LowerF128Op(Op, DAG, 3048 getLibcallName(RTLIB::SUB_F128), 2); 3049 case ISD::FMUL: return LowerF128Op(Op, DAG, 3050 getLibcallName(RTLIB::MUL_F128), 2); 3051 case ISD::FDIV: return LowerF128Op(Op, DAG, 3052 getLibcallName(RTLIB::DIV_F128), 2); 3053 case ISD::FSQRT: return LowerF128Op(Op, DAG, 3054 getLibcallName(RTLIB::SQRT_F128),1); 3055 case ISD::FABS: 3056 case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9); 3057 case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this); 3058 case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this); 3059 case ISD::ADDC: 3060 case ISD::ADDE: 3061 case ISD::SUBC: 3062 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 3063 case ISD::UMULO: 3064 case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this); 3065 case ISD::ATOMIC_LOAD: 3066 case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); 3067 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 3068 } 3069 } 3070 3071 SDValue SparcTargetLowering::bitcastConstantFPToInt(ConstantFPSDNode *C, 3072 const SDLoc &DL, 3073 SelectionDAG &DAG) const { 3074 APInt V = C->getValueAPF().bitcastToAPInt(); 3075 SDValue Lo = DAG.getConstant(V.zextOrTrunc(32), DL, MVT::i32); 3076 SDValue Hi = DAG.getConstant(V.lshr(32).zextOrTrunc(32), DL, MVT::i32); 3077 if (DAG.getDataLayout().isLittleEndian()) 3078 std::swap(Lo, Hi); 3079 return DAG.getBuildVector(MVT::v2i32, DL, {Hi, Lo}); 3080 } 3081 3082 SDValue SparcTargetLowering::PerformBITCASTCombine(SDNode *N, 3083 DAGCombinerInfo &DCI) const { 3084 SDLoc dl(N); 3085 SDValue Src = N->getOperand(0); 3086 3087 if (isa<ConstantFPSDNode>(Src) && N->getSimpleValueType(0) == MVT::v2i32 && 3088 Src.getSimpleValueType() == MVT::f64) 3089 return bitcastConstantFPToInt(cast<ConstantFPSDNode>(Src), dl, DCI.DAG); 3090 3091 return SDValue(); 3092 } 3093 3094 SDValue SparcTargetLowering::PerformDAGCombine(SDNode *N, 3095 DAGCombinerInfo &DCI) const { 3096 switch (N->getOpcode()) { 3097 default: 3098 break; 3099 case ISD::BITCAST: 3100 return PerformBITCASTCombine(N, DCI); 3101 } 3102 return SDValue(); 3103 } 3104 3105 MachineBasicBlock * 3106 SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 3107 MachineBasicBlock *BB) const { 3108 switch (MI.getOpcode()) { 3109 default: llvm_unreachable("Unknown SELECT_CC!"); 3110 case SP::SELECT_CC_Int_ICC: 3111 case SP::SELECT_CC_FP_ICC: 3112 case SP::SELECT_CC_DFP_ICC: 3113 case SP::SELECT_CC_QFP_ICC: 3114 return expandSelectCC(MI, BB, SP::BCOND); 3115 case SP::SELECT_CC_Int_FCC: 3116 case SP::SELECT_CC_FP_FCC: 3117 case SP::SELECT_CC_DFP_FCC: 3118 case SP::SELECT_CC_QFP_FCC: 3119 return expandSelectCC(MI, BB, SP::FBCOND); 3120 } 3121 } 3122 3123 MachineBasicBlock * 3124 SparcTargetLowering::expandSelectCC(MachineInstr &MI, MachineBasicBlock *BB, 3125 unsigned BROpcode) const { 3126 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 3127 DebugLoc dl = MI.getDebugLoc(); 3128 unsigned CC = (SPCC::CondCodes)MI.getOperand(3).getImm(); 3129 3130 // To "insert" a SELECT_CC instruction, we actually have to insert the 3131 // triangle control-flow pattern. The incoming instruction knows the 3132 // destination vreg to set, the condition code register to branch on, the 3133 // true/false values to select between, and the condition code for the branch. 3134 // 3135 // We produce the following control flow: 3136 // ThisMBB 3137 // | \ 3138 // | IfFalseMBB 3139 // | / 3140 // SinkMBB 3141 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3142 MachineFunction::iterator It = ++BB->getIterator(); 3143 3144 MachineBasicBlock *ThisMBB = BB; 3145 MachineFunction *F = BB->getParent(); 3146 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB); 3147 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 3148 F->insert(It, IfFalseMBB); 3149 F->insert(It, SinkMBB); 3150 3151 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB. 3152 SinkMBB->splice(SinkMBB->begin(), ThisMBB, 3153 std::next(MachineBasicBlock::iterator(MI)), ThisMBB->end()); 3154 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB); 3155 3156 // Set the new successors for ThisMBB. 3157 ThisMBB->addSuccessor(IfFalseMBB); 3158 ThisMBB->addSuccessor(SinkMBB); 3159 3160 BuildMI(ThisMBB, dl, TII.get(BROpcode)) 3161 .addMBB(SinkMBB) 3162 .addImm(CC); 3163 3164 // IfFalseMBB just falls through to SinkMBB. 3165 IfFalseMBB->addSuccessor(SinkMBB); 3166 3167 // %Result = phi [ %TrueValue, ThisMBB ], [ %FalseValue, IfFalseMBB ] 3168 BuildMI(*SinkMBB, SinkMBB->begin(), dl, TII.get(SP::PHI), 3169 MI.getOperand(0).getReg()) 3170 .addReg(MI.getOperand(1).getReg()) 3171 .addMBB(ThisMBB) 3172 .addReg(MI.getOperand(2).getReg()) 3173 .addMBB(IfFalseMBB); 3174 3175 MI.eraseFromParent(); // The pseudo instruction is gone now. 3176 return SinkMBB; 3177 } 3178 3179 //===----------------------------------------------------------------------===// 3180 // Sparc Inline Assembly Support 3181 //===----------------------------------------------------------------------===// 3182 3183 /// getConstraintType - Given a constraint letter, return the type of 3184 /// constraint it is for this target. 3185 SparcTargetLowering::ConstraintType 3186 SparcTargetLowering::getConstraintType(StringRef Constraint) const { 3187 if (Constraint.size() == 1) { 3188 switch (Constraint[0]) { 3189 default: break; 3190 case 'r': 3191 case 'f': 3192 case 'e': 3193 return C_RegisterClass; 3194 case 'I': // SIMM13 3195 return C_Immediate; 3196 } 3197 } 3198 3199 return TargetLowering::getConstraintType(Constraint); 3200 } 3201 3202 TargetLowering::ConstraintWeight SparcTargetLowering:: 3203 getSingleConstraintMatchWeight(AsmOperandInfo &info, 3204 const char *constraint) const { 3205 ConstraintWeight weight = CW_Invalid; 3206 Value *CallOperandVal = info.CallOperandVal; 3207 // If we don't have a value, we can't do a match, 3208 // but allow it at the lowest weight. 3209 if (!CallOperandVal) 3210 return CW_Default; 3211 3212 // Look at the constraint type. 3213 switch (*constraint) { 3214 default: 3215 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 3216 break; 3217 case 'I': // SIMM13 3218 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 3219 if (isInt<13>(C->getSExtValue())) 3220 weight = CW_Constant; 3221 } 3222 break; 3223 } 3224 return weight; 3225 } 3226 3227 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 3228 /// vector. If it is invalid, don't add anything to Ops. 3229 void SparcTargetLowering:: 3230 LowerAsmOperandForConstraint(SDValue Op, 3231 std::string &Constraint, 3232 std::vector<SDValue> &Ops, 3233 SelectionDAG &DAG) const { 3234 SDValue Result(nullptr, 0); 3235 3236 // Only support length 1 constraints for now. 3237 if (Constraint.length() > 1) 3238 return; 3239 3240 char ConstraintLetter = Constraint[0]; 3241 switch (ConstraintLetter) { 3242 default: break; 3243 case 'I': 3244 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 3245 if (isInt<13>(C->getSExtValue())) { 3246 Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 3247 Op.getValueType()); 3248 break; 3249 } 3250 return; 3251 } 3252 } 3253 3254 if (Result.getNode()) { 3255 Ops.push_back(Result); 3256 return; 3257 } 3258 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 3259 } 3260 3261 std::pair<unsigned, const TargetRegisterClass *> 3262 SparcTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 3263 StringRef Constraint, 3264 MVT VT) const { 3265 if (Constraint.size() == 1) { 3266 switch (Constraint[0]) { 3267 case 'r': 3268 if (VT == MVT::v2i32) 3269 return std::make_pair(0U, &SP::IntPairRegClass); 3270 else if (Subtarget->is64Bit()) 3271 return std::make_pair(0U, &SP::I64RegsRegClass); 3272 else 3273 return std::make_pair(0U, &SP::IntRegsRegClass); 3274 case 'f': 3275 if (VT == MVT::f32 || VT == MVT::i32) 3276 return std::make_pair(0U, &SP::FPRegsRegClass); 3277 else if (VT == MVT::f64 || VT == MVT::i64) 3278 return std::make_pair(0U, &SP::LowDFPRegsRegClass); 3279 else if (VT == MVT::f128) 3280 return std::make_pair(0U, &SP::LowQFPRegsRegClass); 3281 // This will generate an error message 3282 return std::make_pair(0U, nullptr); 3283 case 'e': 3284 if (VT == MVT::f32 || VT == MVT::i32) 3285 return std::make_pair(0U, &SP::FPRegsRegClass); 3286 else if (VT == MVT::f64 || VT == MVT::i64 ) 3287 return std::make_pair(0U, &SP::DFPRegsRegClass); 3288 else if (VT == MVT::f128) 3289 return std::make_pair(0U, &SP::QFPRegsRegClass); 3290 // This will generate an error message 3291 return std::make_pair(0U, nullptr); 3292 } 3293 } else if (!Constraint.empty() && Constraint.size() <= 5 3294 && Constraint[0] == '{' && *(Constraint.end()-1) == '}') { 3295 // constraint = '{r<d>}' 3296 // Remove the braces from around the name. 3297 StringRef name(Constraint.data()+1, Constraint.size()-2); 3298 // Handle register aliases: 3299 // r0-r7 -> g0-g7 3300 // r8-r15 -> o0-o7 3301 // r16-r23 -> l0-l7 3302 // r24-r31 -> i0-i7 3303 uint64_t intVal = 0; 3304 if (name.substr(0, 1).equals("r") 3305 && !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) { 3306 const char regTypes[] = { 'g', 'o', 'l', 'i' }; 3307 char regType = regTypes[intVal/8]; 3308 char regIdx = '0' + (intVal % 8); 3309 char tmp[] = { '{', regType, regIdx, '}', 0 }; 3310 std::string newConstraint = std::string(tmp); 3311 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3312 VT); 3313 } 3314 if (name.substr(0, 1).equals("f") && 3315 !name.substr(1).getAsInteger(10, intVal) && intVal <= 63) { 3316 std::string newConstraint; 3317 3318 if (VT == MVT::f32 || VT == MVT::Other) { 3319 newConstraint = "{f" + utostr(intVal) + "}"; 3320 } else if (VT == MVT::f64 && (intVal % 2 == 0)) { 3321 newConstraint = "{d" + utostr(intVal / 2) + "}"; 3322 } else if (VT == MVT::f128 && (intVal % 4 == 0)) { 3323 newConstraint = "{q" + utostr(intVal / 4) + "}"; 3324 } else { 3325 return std::make_pair(0U, nullptr); 3326 } 3327 return TargetLowering::getRegForInlineAsmConstraint(TRI, newConstraint, 3328 VT); 3329 } 3330 } 3331 3332 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 3333 } 3334 3335 bool 3336 SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 3337 // The Sparc target isn't yet aware of offsets. 3338 return false; 3339 } 3340 3341 void SparcTargetLowering::ReplaceNodeResults(SDNode *N, 3342 SmallVectorImpl<SDValue>& Results, 3343 SelectionDAG &DAG) const { 3344 3345 SDLoc dl(N); 3346 3347 RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL; 3348 3349 switch (N->getOpcode()) { 3350 default: 3351 llvm_unreachable("Do not know how to custom type legalize this operation!"); 3352 3353 case ISD::FP_TO_SINT: 3354 case ISD::FP_TO_UINT: 3355 // Custom lower only if it involves f128 or i64. 3356 if (N->getOperand(0).getValueType() != MVT::f128 3357 || N->getValueType(0) != MVT::i64) 3358 return; 3359 libCall = ((N->getOpcode() == ISD::FP_TO_SINT) 3360 ? RTLIB::FPTOSINT_F128_I64 3361 : RTLIB::FPTOUINT_F128_I64); 3362 3363 Results.push_back(LowerF128Op(SDValue(N, 0), 3364 DAG, 3365 getLibcallName(libCall), 3366 1)); 3367 return; 3368 case ISD::READCYCLECOUNTER: { 3369 assert(Subtarget->hasLeonCycleCounter()); 3370 SDValue Lo = DAG.getCopyFromReg(N->getOperand(0), dl, SP::ASR23, MVT::i32); 3371 SDValue Hi = DAG.getCopyFromReg(Lo, dl, SP::G0, MVT::i32); 3372 SDValue Ops[] = { Lo, Hi }; 3373 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops); 3374 Results.push_back(Pair); 3375 Results.push_back(N->getOperand(0)); 3376 return; 3377 } 3378 case ISD::SINT_TO_FP: 3379 case ISD::UINT_TO_FP: 3380 // Custom lower only if it involves f128 or i64. 3381 if (N->getValueType(0) != MVT::f128 3382 || N->getOperand(0).getValueType() != MVT::i64) 3383 return; 3384 3385 libCall = ((N->getOpcode() == ISD::SINT_TO_FP) 3386 ? RTLIB::SINTTOFP_I64_F128 3387 : RTLIB::UINTTOFP_I64_F128); 3388 3389 Results.push_back(LowerF128Op(SDValue(N, 0), 3390 DAG, 3391 getLibcallName(libCall), 3392 1)); 3393 return; 3394 case ISD::LOAD: { 3395 LoadSDNode *Ld = cast<LoadSDNode>(N); 3396 // Custom handling only for i64: turn i64 load into a v2i32 load, 3397 // and a bitcast. 3398 if (Ld->getValueType(0) != MVT::i64 || Ld->getMemoryVT() != MVT::i64) 3399 return; 3400 3401 SDLoc dl(N); 3402 SDValue LoadRes = DAG.getExtLoad( 3403 Ld->getExtensionType(), dl, MVT::v2i32, Ld->getChain(), 3404 Ld->getBasePtr(), Ld->getPointerInfo(), MVT::v2i32, 3405 Ld->getOriginalAlign(), Ld->getMemOperand()->getFlags(), 3406 Ld->getAAInfo()); 3407 3408 SDValue Res = DAG.getNode(ISD::BITCAST, dl, MVT::i64, LoadRes); 3409 Results.push_back(Res); 3410 Results.push_back(LoadRes.getValue(1)); 3411 return; 3412 } 3413 } 3414 } 3415 3416 // Override to enable LOAD_STACK_GUARD lowering on Linux. 3417 bool SparcTargetLowering::useLoadStackGuardNode() const { 3418 if (!Subtarget->isTargetLinux()) 3419 return TargetLowering::useLoadStackGuardNode(); 3420 return true; 3421 } 3422 3423 // Override to disable global variable loading on Linux. 3424 void SparcTargetLowering::insertSSPDeclarations(Module &M) const { 3425 if (!Subtarget->isTargetLinux()) 3426 return TargetLowering::insertSSPDeclarations(M); 3427 } 3428