1 //===- SPIRVModuleAnalysis.h - analysis of global instrs & regs -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The analysis collects instructions that should be output at the module level 10 // and performs the global register numbering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H 15 #define LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H 16 17 #include "MCTargetDesc/SPIRVBaseInfo.h" 18 #include "SPIRVGlobalRegistry.h" 19 #include "SPIRVUtils.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 25 namespace llvm { 26 class SPIRVSubtarget; 27 class MachineFunction; 28 class MachineModuleInfo; 29 30 namespace SPIRV { 31 // The enum contains logical module sections for the instruction collection. 32 enum ModuleSectionType { 33 // MB_Capabilities, MB_Extensions, MB_ExtInstImports, MB_MemoryModel, 34 MB_EntryPoints, // All OpEntryPoint instructions (if any). 35 // MB_ExecutionModes, MB_DebugSourceAndStrings, 36 MB_DebugNames, // All OpName and OpMemberName intrs. 37 MB_DebugModuleProcessed, // All OpModuleProcessed instructions. 38 MB_Annotations, // OpDecorate, OpMemberDecorate etc. 39 MB_TypeConstVars, // OpTypeXXX, OpConstantXXX, and global OpVariables. 40 MB_ExtFuncDecls, // OpFunction etc. to declare for external funcs. 41 NUM_MODULE_SECTIONS // Total number of sections requiring basic blocks. 42 }; 43 44 struct Requirements { 45 const bool IsSatisfiable; 46 const std::optional<Capability::Capability> Cap; 47 const ExtensionList Exts; 48 const unsigned MinVer; // 0 if no min version is required. 49 const unsigned MaxVer; // 0 if no max version is required. 50 51 Requirements(bool IsSatisfiable = false, 52 std::optional<Capability::Capability> Cap = {}, 53 ExtensionList Exts = {}, unsigned MinVer = 0, 54 unsigned MaxVer = 0) 55 : IsSatisfiable(IsSatisfiable), Cap(Cap), Exts(Exts), MinVer(MinVer), 56 MaxVer(MaxVer) {} 57 Requirements(Capability::Capability Cap) : Requirements(true, {Cap}) {} 58 }; 59 60 struct RequirementHandler { 61 private: 62 CapabilityList MinimalCaps; 63 SmallSet<Capability::Capability, 8> AllCaps; 64 SmallSet<Extension::Extension, 4> AllExtensions; 65 unsigned MinVersion; // 0 if no min version is defined. 66 unsigned MaxVersion; // 0 if no max version is defined. 67 DenseSet<unsigned> AvailableCaps; 68 // Remove a list of capabilities from dedupedCaps and add them to AllCaps, 69 // recursing through their implicitly declared capabilities too. 70 void pruneCapabilities(const CapabilityList &ToPrune); 71 72 public: 73 RequirementHandler() : MinVersion(0), MaxVersion(0) {} 74 void clear() { 75 MinimalCaps.clear(); 76 AllCaps.clear(); 77 AvailableCaps.clear(); 78 AllExtensions.clear(); 79 MinVersion = 0; 80 MaxVersion = 0; 81 } 82 unsigned getMinVersion() const { return MinVersion; } 83 unsigned getMaxVersion() const { return MaxVersion; } 84 const CapabilityList &getMinimalCapabilities() const { return MinimalCaps; } 85 const SmallSet<Extension::Extension, 4> &getExtensions() const { 86 return AllExtensions; 87 } 88 // Add a list of capabilities, ensuring AllCaps captures all the implicitly 89 // declared capabilities, and MinimalCaps has the minimal set of required 90 // capabilities (so all implicitly declared ones are removed). 91 void addCapabilities(const CapabilityList &ToAdd); 92 void addCapability(Capability::Capability ToAdd) { addCapabilities({ToAdd}); } 93 void addExtensions(const ExtensionList &ToAdd) { 94 AllExtensions.insert(ToAdd.begin(), ToAdd.end()); 95 } 96 void addExtension(Extension::Extension ToAdd) { AllExtensions.insert(ToAdd); } 97 // Add the given requirements to the lists. If constraints conflict, or these 98 // requirements cannot be satisfied, then abort the compilation. 99 void addRequirements(const Requirements &Req); 100 // Get requirement and add it to the list. 101 void getAndAddRequirements(SPIRV::OperandCategory::OperandCategory Category, 102 uint32_t i, const SPIRVSubtarget &ST); 103 // Check if all the requirements can be satisfied for the given subtarget, and 104 // if not abort compilation. 105 void checkSatisfiable(const SPIRVSubtarget &ST) const; 106 void initAvailableCapabilities(const SPIRVSubtarget &ST); 107 // Add the given capabilities to available and all their implicitly defined 108 // capabilities too. 109 void addAvailableCaps(const CapabilityList &ToAdd); 110 bool isCapabilityAvailable(Capability::Capability Cap) const { 111 return AvailableCaps.contains(Cap); 112 } 113 }; 114 115 using InstrList = SmallVector<MachineInstr *>; 116 // Maps a local register to the corresponding global alias. 117 using LocalToGlobalRegTable = std::map<Register, Register>; 118 using RegisterAliasMapTy = 119 std::map<const MachineFunction *, LocalToGlobalRegTable>; 120 121 // The struct contains results of the module analysis and methods 122 // to access them. 123 struct ModuleAnalysisInfo { 124 RequirementHandler Reqs; 125 MemoryModel::MemoryModel Mem; 126 AddressingModel::AddressingModel Addr; 127 SourceLanguage::SourceLanguage SrcLang; 128 unsigned SrcLangVersion; 129 StringSet<> SrcExt; 130 // Maps ExtInstSet to corresponding ID register. 131 DenseMap<unsigned, Register> ExtInstSetMap; 132 // Contains the list of all global OpVariables in the module. 133 SmallVector<MachineInstr *, 4> GlobalVarList; 134 // Maps functions to corresponding function ID registers. 135 DenseMap<const Function *, Register> FuncMap; 136 // The set contains machine instructions which are necessary 137 // for correct MIR but will not be emitted in function bodies. 138 DenseSet<MachineInstr *> InstrsToDelete; 139 // The set contains machine basic blocks which are necessary 140 // for correct MIR but will not be emitted. 141 DenseSet<MachineBasicBlock *> MBBsToSkip; 142 // The table contains global aliases of local registers for each machine 143 // function. The aliases are used to substitute local registers during 144 // code emission. 145 RegisterAliasMapTy RegisterAliasTable; 146 // The counter holds the maximum ID we have in the module. 147 unsigned MaxID; 148 // The array contains lists of MIs for each module section. 149 InstrList MS[NUM_MODULE_SECTIONS]; 150 // The table maps MBB number to SPIR-V unique ID register. 151 DenseMap<int, Register> BBNumToRegMap; 152 153 Register getFuncReg(const Function *F) { 154 assert(F && "Function is null"); 155 auto FuncPtrRegPair = FuncMap.find(F); 156 assert(FuncPtrRegPair != FuncMap.end() && "Cannot find function ID"); 157 return FuncPtrRegPair->second; 158 } 159 Register getExtInstSetReg(unsigned SetNum) { return ExtInstSetMap[SetNum]; } 160 InstrList &getMSInstrs(unsigned MSType) { return MS[MSType]; } 161 void setSkipEmission(MachineInstr *MI) { InstrsToDelete.insert(MI); } 162 bool getSkipEmission(const MachineInstr *MI) { 163 return InstrsToDelete.contains(MI); 164 } 165 void setRegisterAlias(const MachineFunction *MF, Register Reg, 166 Register AliasReg) { 167 RegisterAliasTable[MF][Reg] = AliasReg; 168 } 169 Register getRegisterAlias(const MachineFunction *MF, Register Reg) { 170 auto RI = RegisterAliasTable[MF].find(Reg); 171 if (RI == RegisterAliasTable[MF].end()) { 172 return Register(0); 173 } 174 return RegisterAliasTable[MF][Reg]; 175 } 176 bool hasRegisterAlias(const MachineFunction *MF, Register Reg) { 177 return RegisterAliasTable.find(MF) != RegisterAliasTable.end() && 178 RegisterAliasTable[MF].find(Reg) != RegisterAliasTable[MF].end(); 179 } 180 unsigned getNextID() { return MaxID++; } 181 bool hasMBBRegister(const MachineBasicBlock &MBB) { 182 return BBNumToRegMap.find(MBB.getNumber()) != BBNumToRegMap.end(); 183 } 184 // Convert MBB's number to corresponding ID register. 185 Register getOrCreateMBBRegister(const MachineBasicBlock &MBB) { 186 auto f = BBNumToRegMap.find(MBB.getNumber()); 187 if (f != BBNumToRegMap.end()) 188 return f->second; 189 Register NewReg = Register::index2VirtReg(getNextID()); 190 BBNumToRegMap[MBB.getNumber()] = NewReg; 191 return NewReg; 192 } 193 }; 194 } // namespace SPIRV 195 196 struct SPIRVModuleAnalysis : public ModulePass { 197 static char ID; 198 199 public: 200 SPIRVModuleAnalysis() : ModulePass(ID) {} 201 202 bool runOnModule(Module &M) override; 203 void getAnalysisUsage(AnalysisUsage &AU) const override; 204 static struct SPIRV::ModuleAnalysisInfo MAI; 205 206 private: 207 void setBaseInfo(const Module &M); 208 void collectGlobalEntities( 209 const std::vector<SPIRV::DTSortableEntry *> &DepsGraph, 210 SPIRV::ModuleSectionType MSType, 211 std::function<bool(const SPIRV::DTSortableEntry *)> Pred, 212 bool UsePreOrder); 213 void processDefInstrs(const Module &M); 214 void collectFuncNames(MachineInstr &MI, const Function *F); 215 void processOtherInstrs(const Module &M); 216 void numberRegistersGlobally(const Module &M); 217 218 const SPIRVSubtarget *ST; 219 SPIRVGlobalRegistry *GR; 220 const SPIRVInstrInfo *TII; 221 MachineModuleInfo *MMI; 222 }; 223 } // namespace llvm 224 #endif // LLVM_LIB_TARGET_SPIRV_SPIRVMODULEANALYSIS_H 225